
TOPS-10/TOPS-20
FORTRAN Language Manual
AA-N383B-TK

May 1985

This document describes the language elements of
FORTRAN-10 and FORTRAN-20.

This manual supersedes the TOPS-10120 FORTRAN Language
Manual, order number AA-N383A-TK.

OPERATING 8YSTEIVI: TOPS-10 V7.02
TOPS-20 V4.1, V5.1

SOFTWARE: FORTHAN-10 V10
FORTF~AN-20 V10

Software and manuals should be orderecl by title and order numbEr. In the United States. send orders
to the nearest distribution center Outside the United States. order~; should be directed to the nearest
DIGITAL Field Sales Office or representative

NortheasttMid-Atiantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation DlgHal Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center
Nashua. New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive
Telephone:(603)884-6660 Schaumburg. Illinois 60195 Sunnyvale. California 94086

Telephone (312)64Q--5612 Telephone.(408)734-4915

digital equipment corporation. marlboro. massachusetts

First Printing, February 1983
Revised, May 1985

© Digital Equipment Corporation 1983, 1985. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

~DmDDmDTM
DEC MASSBUS RSX
DECmate PDP RT
DECsystem-10 P/OS UNIBUS
DECSYSTEM-20 Professional VAX
DECUS Q-BUS VMS
DECwriter Rainbow VT
DIBOL RSTS Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4

CHAPTER 3

3.1
3.2
3.3
3.4
3.4.1
3.5
3.6
3.7
3.8
3.9
3.10

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.2.1
5.2

CONTENTS

INTRODUCTION

OVERVIEW • • • • • • • • • • • • •• ••••• 1-1
M~NUAL ORGANIZATION • • • • • • • • • • • • • • • 1-1

FORTRAN Language Elements (Part I) •• 1-2
FORTRAN Statements (Part II) ••••••• 1-2
FORTRAN Language Usage (Part III) •••• 1-3
APPENDIXES • • • • • • • • • • • • • • • • • • • 1-4

CHARACTERS AND LINES

CHARACTER SET • • • • • • • • • • • • • • • 2-1
STATEMENT DEFINITION AND FORMAT • • • • • • • • • 2-2

Statement Label Field and Statement Numbers •• 2-3
Line Continuation Field •••• • • 2-3
Statement Field • • • • • 2-4
Remark Field • • • • .• •••••••••• 2-4

LINE TYPES • • • • • • • • • • • • • • • • • 2-4
Initial and Continuation Lines • • •••• 2-4
Multi-Statement Lines •• 2-5
Comment Lines and Remarks ••••• • • 2-5
Debug Lines •••.•••• • 2-6
Blank Lines •••• • • • • • • •• ••• • 2-7

LINE-SEQUENCED SOURCE FILES • • 2-7

CONSTANTS

INTRODUCTION • • • • • • 3-1
INTEGER CONSTANTS • • • • • • • • • • • 3-1
REAL CONSTANTS • • • • • • • • • • • • • 3-2
DOUBLE-PRECISION CONSTANTS • • • • • • • • • • • • 3-2

Comparison of Real, D-floating, and G-floating • 3-3
COMPLEX CONSTANTS • • • • • • • 3-4
CHARACTER CONSTANTS •• • • • • • • • • • • • • • 3-4
OCTAL AND DOUBLE-OCTAL CONSTANTS ••••••• 3-5
LOGICAL CONSTANTS • • • 3-6
HOLLERITH CONSTANTS •••• • • • 3-6
s'rATEMENT LABEL CONSTANTS • • • • • • • 3-7

SYMBOLIC NAMES, VARLr\BLES, AND ARRAYS

SYMBOLIC NAMES •
VARIABLES

· 4-1
• • • 4-2

ARRAYS • • •• ••••
Array Element Subscripts •
Dimensioning Arrays

· 4-3
• • • • • 4- 3

Order of Stored Array Elements •
CHARACTER SUBSTRINGS • • •• • • • •

EXPRESSIONS

ARITHMETIC EXPRESSIONS
Rules for Writing Arithmetic Expressions.
Arithmetic Constant Expressions

Integer Constant Expression
CHARACTER EXPRESSIONS • • • • • .

iii

• 4-4
• 4-5

• • 4-6

5-1
• 5-2
• 5-5

• • • 5-5
• • 5-6

5.2.1
5.3
5.3.1
5.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4

5.6

CHAPTER 6

6.1
6.2
6.3
6.4
6.4.1
6.4.2

CHAPTER 7

7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.3
7.4
7.4.1
7.4.2
7.5
7.5.1
7.6
7.7
7.8
7.9
7.10

CHAPTER 8

8.1
8.2
8.3
8.4

CHAPTER 9

9.1
9.1.1
9.1.2
9.1.3
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.4.1

Character Constant Expression
LOGICAL EXPRESSIONS .• . • •

Logical Constant Expression
RELATIONAL EXPRESSIONS . . • .
EVALUATION OF EXPRESSIONS

Parenthetical Subexpressions .
Hierarchy of Operators • • • . • • • •
Mixed-Mode Expressions • .• ••••
Use of Logical Operands in Mixed-Mode
Expressions • • •.

CONSTANT EXPRESSIONS . • • . • . • . • •

EXECUTABLE AND NONEXECUTABLE STATEMENTS

EXECUTABLE STATEMENTS .•.••••••••.
NONEXECUTABLE STATEMENTS . • •
ORDERING OF FORTRAN STATEMENTS • • . • • •
COMPILATION CONTROL STATEMENTS

• • 5-7
• 5-7

5-10
5-11
5-13
5-13
5-14
5-15

5-15
5-15

6-1
· 6-2
· 6-2

• . 6-4
PROGRAM Statement . • • • • • • • .. 6-4
INCLUDE Statement • • • • • • • • • • • • 6 - 4

SPECIFICATION AND DATA STATEMENTS

DIMENSION STATEMENT . • • .
Adjustable Dimensions
Assumed-size Arrays

TYPE SPECIFICATION STATEMENTS
Numeric Type Specification Statements
Character Type Specification Statements

· 7-1
· • • • .. 7-3
• • • • .' 7 - 4

· 7-4
. • .. 7-5

• .. 7-6
IMPLICIT STATEMENTS • • • • • • . • • • .. 7-7
COMMON STATEMENT . • . • . . • . • • • • •

Dimensioning Arrays in COMMON Statements
Character Data in COMMON • • • . • ••

EQUIVALENCE STATEMENT • . • • • • •
EQUIVALENCE and Extended Addressing

EXTERNAL STATEMENT •
INTRINSIC STATEMENT
PARAMETER STATEMENT

7-8
7-10
7-10
7-11
7-17
7-17
7-18
7-20

DATA STATEMENT •
SAVE STATEMENT • • •

• • . • 7-21
• • • • 7 -24

ASSIGNMENT STATEMENTS

ARITHMETIC ASSIGNMENT STATEMENT • • • . • . • • . 8-1
LOGICAL ASSIGNMENT STATEMENTS .. • • • • • • • • 8-3
ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT •• 8-3
CHARACTER ASSIGNMENT STATEMENT • . • • • . • • • • 8-4

CONTROL STATEMENTS

GO TO STATEMENTS •
Unconditional GO TO Statements .
Computed GO TO Statements
Assigned GO TO Statements

IF STATEMENTS . . • • • • • • • .
Arithmetic IF Statements ••
Logical IF Statements
Logical Two-Branch IF Statements ••
Block IF Statements

Statement Blocks . . • . • . . • .

iv

· 9-1
• . 9-2

9-2
· 9-3

• • 9-3
• 9-3
· 9-4
• 9-4

9-5
· 9-8

9.2.4.2
9.2.4.3
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.4
9.5
9.6
9.7
9.8

CHAPTER 10

10.1
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.1.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.4.3
10.4.3.1
10.4.3.2
10.4.4

10.4.5
10.4.5.1
10.4.5.2
10.4.5.3
10.4.6

10.4.7
10.4.8

Block IF Examples ••••
Nested Block IF Constructs

DO STATEMENT • • • • • • • • • •

• • • • 9-8
• • • • • • • • 9-9

Indexed DO Statement •
9-10
9-10
9-12 Executing an Indexed DO Statement

DO Iteration Control • • •• 9-12
DO WHILE Statement • • • • •• 9-13
The Range of a DO Statement ••••
Nested DO Statements • • •••
Extended Range • • . • • • •
Permitted Transfer Operations

END DO STATEMENT •• ••• • • • • • •
CONTINUE STATEMENT • • • • •
STOP STATEMENT • •
PAUSE STATEMENT • • • •
END STATEMENT • • • •

DATA TRANSFER STATEMENTS

9-14
9-14
9-15
9-16
9-17
9-17
9-18
9-19
9-20

DATA TRANSFER OPERATIONS • 10-5
DATA ACCESS ••••••••• 10-5

Sequential Access 10-5
Direct Access 10-6

FORMATTED AND UNFORMATTED DATA TRANSFERS • • 10-6
Formatted Data Transfers • • 10-6

Internal Files • • • • . • 10-7
Unformatted Data Transfers • 10-8
Unformatted Data Transfer to ASCII Devices •• 10-8

DATA TRANSFER STATEMENT FORMS 10-8
Data Transfer Statement Names • • • • •• 10-9
Data Transfer Control-Information List • • 10-9
Unit References in Data Transfer Statements • 10-10

FORTRAN LO'Jical Unit Identifier •••••• 10-11
Internal File Identifier •••••••••• 10-13

Record Number References In Data Transfer
Statements • • • • • • • • • • • • •••••• 10-13

Statements 10-13 Format References in Data Transfer
FORMAT-Statement Formatting
List-Directed Formatting •••••••
NAME LIST-Statement Formatting ••••

Optional End-of-File Transfer of Control
(END=) •••••••••••••••••
Optional Dat3 Transfer Error Control (ERR=)
Optional Error Variable For Error Reporting

• • 10-14
• 10-16
• 10-16

• 10-17
• 10-18

(IOSTAT=) ••••••••••••• • • 10-19
10.4.9 Data Transfer Statement Input/Output Lists •• 10-20
10.4.9.1 Simple List Elements. • • •• •• 10-21
10.4.9.2 Implied DO Lists. • • • • • • • • • •• 10-22
10.5 READ STATEMENT. . • • • • • • • • • • • 10-24
10.5.1 Formatted READ Transfers. • • • • 10-26
10.5.1.1 Sequential FORMAT-Statement READ. • • 10-26
10.5.1.2 Direct-Access FORMAT-Statement READ •• 10-27
10.5.1.3 Sequential List-Directed READ ••••• 10-27
10.5.1.4 Sequential NAMELIST-Statement READ. • 10-28
10.5.2 Unformatted READ Transfers. • • • • 10-29
10.5.2.1 Sequential Unformatted READ • 10-29
10.5.2.2 Direct-Access Unformatted READ. • 10-30
10.6 WRITE STATEMENT • • • • • • • • • • • 10-30
10.6.1 Formatted WRITE Transfers 10-31
10.6.1.1 Sequential FORMAT-Statement WRITE • 10-32
10.6.1.2 Direct-Access FORMAT-Statement WRITE 10-33
10.6.1.3 Sequential List-Directed WRITE. • • • 10-34
10.6.1.4 Sequential NAMELIST-Statement WRITE •• 10-35

v

10.6.2 Unformatted WRITE Transfers 10-35
10.6.2.1 Sequential Unformatted WRITE •• • 10-36
10.6.2.2 Direct-Access Unformatted WRITE •••• • • 10-36
10.7 REREAD STATEMENT .••.•.•..•• • • 10-37
10.7.1 Sequential FORMAT-Statement REREAD. • • 10-38
10.7.2 Sequential List-Directed REREAD ••••• • • 10-39
10.8 ACCEPT STATEMENT •••••••.•••.•• • • 10-40
10.8.1 Sequential FORMAT-Statement ACCEPT. • • 10-40

10-41 10.8.2 Sequential List-Directed ACCEPT
10.9 TYPE STATEMENT ..••.•••••• • 10-42
10.9.1 Sequential FORMAT-Statement TYPE •• • • 10-43

• 10-44 10.9.2 Sequential List-Directed TYPE
10.10 PRINT STATEMENT ••••..••.. · • 10-45

• 10-45 10.10.1 Sequential FORMAT-Statement PRINT
10.10.2 Sequential List-Directed PRINT •..
10.11 PUNCH STATEMENT •.•••••••••
10.11.1 Sequential FORMAT-Statement PUNCH

• • 10-46
• •• 10-47

• 10-48
10.11.2 Sequential List-Directed PUNCH ••••
10.12 INTERNAL FILES AND ENCODE/DECODE STATEMENTS
10.12.1 Internal READ and WRITE Statements.
10.12.2 ENCODE and DECODE Statements ••••••

• • 10-48
• • 10-49
• • 10-50

• • • 10-51

CHAPTER 11

11.1
11.2
11.2.1
11.2.2
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.3.8
11.3.9
11.3.10
11.3.11
11.3.12
11.3.13
11.3.14
11.3.15
11.3.16
11.3.17
11.3.18
11.3.19
11.3.20
11.3.21
11.3.22
11.3.23
11.3.24
11.3.25
11.3.26
11.3.27
11.3.28
11.3.29
11.3.30
11.3.31
11.3.32
11.4
11.4.1

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

FILE-CONTROL STATEMENTS 11-1
OPEN STATEMENT • • • . . • 11-1

Implicit OPEN • • • • . 11-3
OPEN on a Connected Unit. • • • • . 11-4

OPEN STATEMENT SPECIFIERS 11-4
ACCESS Specifier • • • • • . 11-6
ASSOCIATEVARIABLE Specifier 11-8
BLANK Specifier ••.••• .•••• 11-9
BLOCKSIZE Specifier ••.••• 11-10
BUFFERCOUNT Specifier •• 11-10
CARRIAGECONTROL Specifier .••••• 11-11
DENSITY Specifier • 11-12
DEVICE Specifier . • • • • • • 11-13
DIALOG Specifier • • . • • • • 11-13
DIALOG= Specifier ••••• • •• 11-14
DIRECTORY Specifier (TOPS-I0) •• 11-14
DIRECTORY Specifier (TOPS-20) •• 11-16
DISPOSE Specifier .••••••.•••••• 11-16
ERR Specifier •.••.•••.••••••• 11-17
FILE Specifier • • . • . • • • • • • • 11-18
FILESIZE (INITIALIZE) Specifier (TOPS-10 Only) 11-18
FORM Specifier • • 11-19
IOSTAT Specifier . • • . • • 11-20
LIMIT Specifier . • • • • 11-21
MODE Specifier • • • 11-21
NAME Specifier • • . • • 11-23
PADCHAR Specifier •• 11-24
PARITY Specifier • • • 11-24
PROTECTION Specifier (TOPS-10) ••• 11-25
PROTECTION Specifier (TOPS-20) •• 11-27
READONLY Specifier • • • • . • 11-28
RECL (RECORDSIZE) Specifier ••••• • • 11-28
RECORDTYPE Specifier • • • . • • 11-29
STATUS (TYPE) Specifier ••••••• 11-30
TAPE FORMAT SPECIFIER • • .. .••• • • • 11-32
UNIT Specifier (Required) .••••••••• 11-33
VERSION Specifier (TOPS-I0) •• 11-34

CLOSE STATEMENT • • • 11-34
Implicit CLOSE. • • • • • • • ••••• 11-34

vi

11.5
11.5.1

CLOSE STATEMENT SPECIFIERS 11-34
DEVICE, DIRECTORY, FILE, NAME, and PROTECTION
Specifiers • • • . . • 11-36

11.5.2 DIALOG Specifier. . • • . . • 11-36
11.5.3 DIALOG= Specifier •••• 11-37
11.5.4 DISPOSE Specifier • 11-37
11.5.5 ERR Specifier .•••••• 11-39
11.5.6 IOSTAT Specifier. 11-39
11.5.7 LIMIT Specifier . • • • • 11-39
11.5.8 STATUS Specifier. . • 11-40
11.5.9 UNIT Specifier (Required) ..•• 11-41
11.6 OPEN AND CLOSE STATEMENT EXAMPLES •.••••• 11-41
11.7 INQUIRE STATEMENT • 11-42
11.7.1 INQUIRE by File • • •. • •• 11-42
11.7.2 INQUIRE by Lnit 11-43
11.7.3 Inquiry Specifiers. 11-43
11.7.3.1 ACCESS Specifier. 11-43
11.7.3.2 BLANK Specifier •• • 11-44
11.7.3.3 CARRIAGECONTROL Specifier • 11-44
11.7.3.4 DIRECT Specifier. 11-44
11.7.3.5 ERR Specifier ••••• • 11-45
11.7.3.6 EXIST Specifier .• 11-45
11.7.3.7 FORM Specifier. • •. •••• • 11-45
11.7.3.8 FORMATTED Specifier .••• 11-45
11.7.3.9 IOSTAT Specifier. • 11-46
11.7.3.10 NAME Specifier. • • • . • . • •••• 11-46
11.7.3.11 NAMED Specifier .•••••• 11-47
11.7.3.12 NEXTREC Specifier ••• 11-47
11.7.3.13 NUMBER Specifier. •• • • • • 11-47
11.7.3.14 OPENED Specifier. • • • • • 11-48
11.7.3.15 RECL (RECORDSIZE) Specifier • 11-48
11.7.3.16 RECORDTYPE Specifier. . • • • • 11-48
11.7.3.17 SEQUENTIAL Specifier. •• . •••••• 11-49
11.7.3.18 UNFORMATTED Specifier • • • • • 11-49
11.8 DEVICE CONTROL STATEMENTS ••••• • • 11-52
11.8.1 FIND Statem~nt • • • • . • • • • • 11-53
11.8.2 REWIND Stat~ment • • • 11-54
11.8.3 UNLOAD Stat~ment • • • . • •• • 11-54
11.8.4 BACKSPACE Statement 11-55
11.8.5 ENDFILE Stat.ement • • • • • • 11-55
11.8.6 SKIPRECORD Statement. • 11-56
11.8.7 SKIPFILE Statement. 11-57
11.8.8 BACKFILE Statement. . • • 11-57

CHAPTER 12

12.1
12.1.1
12.1.2

12.1.3

12.1.4

12.1.5

12.2
12.2.1
12.2.2
12.2.3
12.3
12.3.1
12.3.2

FORMATTED DATA TRANSFERS

FORMAT-STATEMENT FORMATTING • • • • • • . • •. 12-2
Specifying a Format List in a FORMAT Statement 12-2
Specifying a Format Specification as a
Character E)pression • . • • • • • • • • • •• 12-3
Specifying a Format Specification in a Numeric
Array • . • • • • • • • • • • • • • •• 12-4
Specifying a FORMAT Statement Using an ASSIGNed
Variable • . • • • • • • • •. •• •• 12-4
The Ordering and Interpretation of Format List
Items • . • • • • • • 12-5

EDIT DESCRIPTORS • . • • • • • • • • 12-6
Repeatable Edit Descriptors • • • • 12-7
NonrepeatabJe Edit Descriptors. 12-8
Carriage-Control Specifiers 12-9

INTERACTION or INPUT/OUTPUT LIST AND FORMAT LIST 12-11
General Description . • • • • • •• • 12-11
Formatted Input . • • • • • • • • • • • • 12-14

vii.

Formatted Output • • • • • • • • • •
Embedded Format Specifications •

FORMAT EDITING • • • • • • • • •
Apostrophe (') Editing.
H Editing .••••.•
positional Editing •••

12-15
• • 12-15

12-16
• 12-16
• 12-17
• 12-18

12.3.3
12.3.4
12.4
12.4.1
12.4.2
12.4.3
12.4.3.1
12.4.3.2
12.4.4
12.4.5
12.4.6
12.4.7
12.4.8
12.4.9
12.4.10
12.4.11
12.4.11.1
12.4.11.2
12.4.11.3
12.4.11.4
12.4.11.5
12.4.11.6
12.4.11.7
12.4.12
12.4.13
12.4.14
12.5

T, TL, and TR Editing • ••••• 12-19
X Editing .•••••.

$ (Dollar Sign) Editing
/ (Slash) Editing

(Colon) Editing
S, SP,and SS Editing •
P Editing ••••••.••.
BN and BZ Editing
Q Ed it i ng •.•••

• 12-21
12-22

• • • 12-23
12-24
12-24
12-25

• 12-28
• • 12-29

Numeric Editing
I Editing

• ••••. 12-29

F Editing
E and D Editing ••••
G Editing ••••••••
Complex Editing ••••
o (Oc tal) Ed i tin g • • • •

12-31
12-32

• 12-32
• • • 12-33

12-36
· 12-36

Z Editing •••••••• • •••.• 12-37

12.6

L Editing ..••••.
A Editing
R Editing .••.

LIST-DIRECTED FORMATTING • . • • • •
NAMELIST-STATEMENT FORMATTING • • • •
NAMELIST STATEMENT • • . •

• . • 12-38
• • 12-39

12-40
• 12-41

• •• 12-44
• 12-44 12.7

12.7.1
12.7.2

NAMELIST-Controlled Data Input Transfer
NAMELIST-Controlled Data Output Transfers

• 12-45
12-46

CHAPTER 13 FUNCTIONS AND SUBROUTINES

INTRINSIC FUNCTIONS
Using an Intrinsic Function
Character Intrinsic Functions
Character Comparison Functions •
Bit Manipulation Functions ••

STATEMENT FUNCTIONS • • • • • •
Defining a Statement Function ••••
Using a Statement Function • •
Statement Function Restrictions

EXTERNAL FUNCTIONS . • • . • • • • • •
FORTRAN-Supplied External Functions
User-Defined External Functions
Function Subprogram Restrictions ••
Using a Function Subprogram

SUBROUTINES • • . • • • • • • •
FORTRAN-Supplied Subroutines.

13-1
. • •• 13-2

13-12
• 13-14
• 13-14
· 13-15

· • 13-16
• • 13-16

13-17
· 13-18

13-18
· • 13-20
• • 13-21

· • • 13-21
• • 13-22

• 13-24

13.1
13.1.1
13.1.2
13.1.3
13.1.4
13.2
13.2.1
13.2.2
13.2.3
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.4
13.4.1
13.4.1.1
13.4.1.2
13.4.1.3
13.4.1.4
13.4.1.5
13.4.1.6
13.4.1.7
13.4.1.8
13.4.1.9
13.4.1.10
13.4.1.11
13.4.1.12
13.4.1.13

ALCCHR Subroutine ••••.• ••
CDABS Function . • . • . •

· • 13-24
13-25
13-25

• •••.. 13-26
CDCOS Subroutine
CDEXP Subroutine •
CDLOG Subroutine
CDSIN Subroutine •
CDSQRT Subroutine
CHKDIV Subroutine
CLRFMT Subroutine
DATE Subroutine
DIVERT Subroutine
DTOGA . . • • • •
DUMP Subroutine ••••

viii

13-26
· 13-27
· 13-28
· 13-28

• • 13-29
• 13-29
• 13-30
• 13-30
· 13-30

13.4.1.14
13.4.1.1S
13.4.1.16
13.4.1.17
13.4.1.18
13.4.1.19
13.4.1.20
13.4.1.21
13.4.1.22
13.4.1.23
13.4.1.24
13.4til.2S
13.4.1.26
13.4.1.27
13.4.1.28
13.4.1.29
13.4.1.30
13.4.1.31
13.4.1.32
13.4.2
13.4.2.1
13.4.2.2
13.4.2.3
13.4.2.4
13.4.3
13.4.4
13.4.S
13.4.S.1

13.4.S.2

ERRSET Subroutine •. •• · 13-31
ERRSNS Subroutine
E X ITS u b r c· uti n e
FFUNIT Subroutine

•••.•..•.. 13-32
• 13-33

.••••..• 13-33
GTODA Subroutine ••
ILL Subroutine • •
LEGAL Subroutine ••
MVBITS Subroutine
OVERFL Subroutine
PDUMP Subroutine • .
QUIETX Subroutine ..•.
SAVFMT Subroutine
SAVRAN Subroutine
SETRAN Subroutine • • • •
SORT Subrcutine
SRTINI Subroutine ..••.
TIME Subrcutine
TOPMEM Subroutine
TRACE Subroutine •• •••.

• 13-34
13-34

· • 13-34
• 13-3S
· 13-3S

.••• 13-36
· . 13-36

...•.• 13-37
· 13-37
• 13-38

· . 13-38
• 13-39

• • 13-39
• . • 13-40

• • • • . . 13- 41
. • •• 13-42 User-Defined Subroutines • •

SUBROUTINE Statement • • • •••••...• 13-43
.••...• 13-44 CALL Statement • • • . .

Execution of a CALL Statement
Actual Arguments for a Subroutine

ENTRY Statement •••• • . .•.
RETURN Statement • . • • . • • • . .
Dummy and Actual Arguments • • • • • •

Length of Character Dummy and Actual
Arguments ••••. • • • • • . • . .

• • 13-44
• • 13-4S

· 13-4S
.•• 13-47

• • 13-49

· 13-51
Character and Hollerith Constants as Actual
Argumen ts 13-51

HAPTER 14 BLOCK DATA SUBPROGRAMS

14.1

HAPTER IS

IS.1
lS.l.l
lS.1.2

lS.1.3
lS.1.4
lS.l.S
lS.1.6
lS.1.7
lS.2
IS.2.1
lS.2.1.1
lS.2.1.2
lS.2.1.3
lS.2.1.4
lS.2.1.S
lS.2.1.6
lS.2.1.7
lS.2.1.8
lS.2.1.9
lS.2.2

lS.3
lS.4

BLOCK DATA STATEMENT •

WRITING USER PROGRAMS

GENERAL PROGRAMMING CONSIDERATIONS
Accuracy and Range of Double-Precision Numbers
Writing FORTRAN Programs for Use on Other
Computers •.•••••.•••••••••.
Using Floating-Point DO Loops •••••.
Computation of DO Loop Iterations
Subroutines - Programming Considerations
Reordering of Computations • • • . ••.
Dimensioning of Dummy Arrays • • • • . • •

FORTRAN GLOBAL OPTIMIZATION . • • . • • .
Optimization Techniques •••••••••

Elimination of Redundant Computations
Reduction of Operator Strength •••
Removal of Constant Computation from Loops .
Constant Folding and Propagation
Removal of Inaccessible Code •
Global Register Allocation ••.•
I/O Optimization •.•••••.•
Uninitialized Variable Detection •.•••.
Test Replacement •• • • • • •

Programming Techniques for Effective

14-1

lS-l
lS-1

lS-2
IS-2
lS-2
15-3
15-4
15-5
lS-6
15-6
15-6
lS-7
15-7
15-8
IS-9
lS-9
lS-9
15-9
15-9

Optimization. . • • • • • • • . . • • lS-10
FUNCTION SIDE EFFECTS • • • • • • . ••. lS-10
INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES lS-10

ix

15.4.1
15.4.2
15.4.3
15.4.4
15.4.5
15.4.6
15.4.7
15.4.7.1

15.4.7.2

15.4.8
15.4.8.1

15.4.8.2
15.4.9
15.4.10
15.4.11

Using The Sharable High-Segment FOROTS • • •• 15-10
Calling Sequences ••••• 15-11
Accumulator Usage • • 15-11
A r g urn e n t Lis t s . • 15 -1 2
Argument Types • • • . ••••••••• 15-14
Description of Arguments •••••.••• 15-14
Interaction with COBOL. • • ••• 15-16

Calling FORTRAN Subprograms from COBOL
Programs • • • • • • . • • • • • • • • ••• 15-16
Calling COBOL Subroutines from FORTRAN
Programs .••••••••••• 15-18

Interaction with BLISS-36 •••• • 15-18
Calling FORTRAN Subprograms From BLISS-36
Programs • • • • • • • • • • • • • •• • 15-18
Calling BLISS-36 Routines From FORTRAN ••• 15-19

LINK Overlay Facilities .•••••••••• 15-19
FOROTS and Overlay Memory Management • • • • • 15-20
Extended Addressing Memory Layout (TOPS-20
only) •••••••••••••••••••• 15-22

CHAPTER 16 USING THE FORTRAN COMPILER

CHAPTER

16.1
16.1.1
16.1.2
16.1.3
16.2
16.2.1
16.2.2
16.2.3
16.3
16.4
16.5
16.5.1
16.5.2

16.5.2.1
16.5.2.2
16.5.3
16.5.4
16.6
16.7
16.7.1
16.8
16.8.1
16.8.2
16.9

17

17.1
17.1.1
17.1.2
17.1.3
17.2
17.3
17.4
17.5
17.6
17.7

USING THE FORTRAN-I0 COMPILER 16-1
TOPS-I0 COMPILE-Class Commands • • 16-1
RUNNING THE FORTRAN-IO COMPILER 16-2
TOPS-I0 Compiler Command Switches • • • • 16-2

USING THE FORTRAN-20 COMPILER 16-5
TOPS-20 COMPILE-Class Commands • • 16-5
RUNNING THE FORTRAN-20 COMPI LER • • • • • •• 16-6
TOPS-20 Compiler Commands Switches ••••• 16-8

THE /DEBUG SWITCH • • . • • • • • • • • • 16-11
THE /NOWARN SWITCH • • • . • • • • • • • • 16-14
THE /EXTEND SWITCH (TOPS-20 ONLY) 16-15

/EXTEND and Applications with Large Arrays •• 16-16
/EXTEND and Applications with Large Executable
Code • • • • • • • • • • • • • • • • • • 16-17

/EXTEND PSECT Placement •• • • • • • 16-17
Building Large-Code Applications.. •• 16-18

Arguments to /EXTEND • • • • • • • • • •••• 16-19
Linking With TWOSEG REL Files • 16-21

THE /FLAG (/FLAG-NON-STANDARD) SWITCH • 16-21
READING A FORTRAN COMPILER LISTING • • • • ••• 16-22

Compiler-Generated Variables • • • • • 16-24
ERROR REPORTING . • • • • • • • • • • 16-33

Fatal Errors and Warning Messages •• 16-34
Message Summary • • • • • • 16-34

CREATING A SHARABLE HIGH SEGMENT FOR A FORTRAN
PROGRAM • • • • • • • • • • • • • • • ••• 16-35

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

INPUT FORMAT . . · · · · · · · · · 17-2
Variables and Arrays · · · · 17-2
Constant Conventions · 17-3
Statement Labels and Source Line Numbers . 17-4

FORDDT AND THE FORTRAN /DEBUG SWITCH . 17-4
LOADING AND STARTING FORDDT · · · · 17-5
SCOPE OF NAME AND LABEL REFERENCES · 17-6
FORDDT COMMANDS · · · · · · . . . 17-7
ENVIRONMENT CONTROL · · · · . . . · 17-16
FORTRAN /OPTIMIZE SWITCH . · 17-17

17.8 CALLING FORDDT . · · · · · · · · · · 17-17

x

17.9 FORDDT AND FORTRAN-20 EXTENDED ADDRESSING • 17-17

CHAPTER 18 USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

CHAPTER

18.1
18.2
18.3
18.3.1

FEATURES OF FOROTS • • • • • • • • • • • • • •. 18-1
ERROR PROCESSING • • •• • • • • • • • • •• 18-2
INPUT/OUTPUT FACILITIES • • • • • • •• 18-2

Input/Output Channels Used By FOROTS (TOPS-10
On 1 y) ••••• '. • • • • • • • • • 18-2

18-3
18-3
18-3
18-4
18-4
18-4

18.3.2 File Access •••• • • • • ••••
18.3.3 Closing Files After Non-standard Termination.
18.3.3.1 Sequential Access •••••• • •••
18.3.3.2 Direct (Random) Access Mode ••••••••
18.4 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS
18.4.1 ASCII Data Files ••••••
18.4.2 FORTRAN Binary Data Files •••• 18-4
18.4.2.1 Format of Binary Files. • • • •• 18-4
18.5 USING FOROTS .••••• • • 18-14
18.5.1 FOROTS Entry Points • • • • • • • 18-15
18.5.2 Calling Sequences ••••••• • • • 18-16
18.5.3 MACRO Calls for FOROTS Functions.
18.5.3.1 Sequential-Access Calling Sequences
18.5.3.2 Internal Pile Calling Sequences ••••

• 18-17
18-18
18-19

18.5.3.3 NAMELIST I/O, Sequential-Access Calling

18.5.3.4
18.5.3.5

18.5.3.6

Sequences ••••••••••••••
Array Offsets and Factoring ••.••
I/O Statenents, Direct-Access Calling
Sequences ••••• • • • • • • . •
Default Devices Statements, Calling

• 18-20
18-20

• • 18-22

Sequences •••• • • • • • • • • • • • • • 18-23
18.5.3.7 Statements to position Files. • •• • • 18-24
18.5.3.8 List-Directed Input/Output Statements .•• 18-24
18.5.3.9 Input/Output Data Lists ••••••• 18-25
18.5.3.10 OPEN and CLOSE Statements, Calling Sequences 18-28
18.5.3.11 Memory Al:.ocation Routines ••••••••• 18-29
18.5.3.12 Channel A:1ocation and Deallocation Routines 18-30
18.6 FUNCTIONS TO FACILITATE OVERLAYS. • • 18-31
18.7 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS ••• 18-36
18.8 F'OROTS AND INQUIRE BY FILE STATEMENT • • • • • • 18-36

19 USING THE FORr;"'RAN RE:AL-TIME SOFTWARE (TOPS-I0 ONLY)

19.1 INTRODUCTION 19-1
19.2 UlSING FORRTF · · · · 19-2
19.2.1 Memory · . · · · · · · · · · 19-2
19.2.2 Modes · · · · 19-2
19.2.3 Priority-Interrupt Levels · · · · · 19-2
19.2.4 Masks · · · · 19-2
19.3 SUBROUTINES · · · · 19-3
19.3.1 LOCK . · · · · · · · · 19-3
19.3.2 RTINIT · · · · · 19-3
19.3.3 CONECT · · · · · · · · · 19-4
19.3.4 RTSTRT · · · · · · 19-4
19.3.5 BLKRW · · · · · · · · 19-4
19.3.6 RTREAD · · · · · · · · · 19-5
19.3.7 RTWRIT · · · · · 19-5
19.3.8 STATO · · · · · · · · 19-5
19.3.9 STATI · · · · · · · · · 19-6
19.3.10 RTSLP · · · · 19-6
19.3.11 RTWAKE · · · · 19-6
19.3.12 DISMIS · · · · · · · · · · 19-6
19.3.13 DISCON · · · · · · · · · 19-7

xi

19.3.14
19.3.15

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

UNLOCK • • • • •
Error Messages •

SUMMARY OF FORTRAN STATEMENTS

ASCII-196S CHARACTER CODE SET

COMPILER MESSAGES

FOROTS ERROR MESSAGES

19-7
19-7

D.1 ALPHABETICAL DESCRIPTION OF FOROTS MESSAGES ••• D-9

APPENDIX E

APPENDIX F

INDEX

FIGURES

F.1
F.2
F.3
F.4
F.S
F.S.1
F.S.1.1
F.S.1.2
F.S.1.3
F.S.1.4
F.6
F.7
F.S
F.9
F.10
F.11

2-1
4-1
6-1
7-1
7-2
7-3
7-4
7-5
9-1
10-1
11-1
11-2
15-1
F-1
F-2
F-3

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

PLOTS SUBROUTINE • • F-2
AXIS SUBROUTINE • • • • • F-2
CAXIS SUBROUTINE • • • • • • • • • F-3
LINE SUBROUTINE . • • • • . F-4
MKTBL SUBROUTINE • F-5

Character Tables • • • • • • • • •. F-S
Creating a Character Table • • • F-6
Creating a Stroke Table • • . F-6
Sample Character Stroke Table . F-7
FORTRAN- and User-Defined Character Sets • • • F-9

NUMBER SUBROUTINE • • •• •••••. F-9
PLOT SUBROUTINE • • • • • • • • • • • • F-10
SCALE SUBROUTINE • • • • • • • • • • • F-10
SETABL SUBROUTINE • • • • • . • •• F-11
SYMBOL SUBROUTINE F-12
WHERE SUBROUTINE • F-12

Fields Within a FORTRAN Line ••
A 3 x 3 x 2 Array • • . • • • •
Ordering of FORTRAN Statements.

.. 2-3
• • • • .. 4 - 4

. 6-3
Shared Storage using EQUIVALENCE Statement •
Equivalence of Substrings .••••••••••
Equivalence of Character Arrays • • • • • •
Valid Equivalencing ••••••

7-12
7-13
7-14
7-16

Invalid Equivalencing •••••
Examples of Block IF Constructs
Components of Data Transfer Statements •
TOPS-10 File Protection Number ••
TOPS-20 Protection Number ••••
Run-time Memory Layout for Section Zero
Plotter Character Table Entry ••••
Character Stroke Table Entry ••
Sample Character Stroke Table .•••

xii

7-16
.. 9-7
10-S

. 11-25
• • • 11-27

• • 15-21
.. F-6
• F-6
.. F-S

TABLES

2-1
3-1

4-1
5-1
5-2

5-3
5-4
5-5
5-6
5-7
8-1
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11

11-1

11-2
11-3
11-4
11-5

11-6
12-1
12-2
12-3
12-4
12-5

12-6

13-1
13-2
15-1
15-2
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
17-1
18-1
18-2
19-1

D-l

FORTRAN Character Set •• • • • • • • • • • • . • 2-2
Comparison of Real, D-floating, and G-floating
Numbe r 5 •• 3-4
Use of Symbolic Names ••••••••••••
Arithmetic Operations and Operators •••••
~rype of the Rt~sul t Obta ined from Mixed-Mode

. • 4-1
• • 5-2

Operations • • • • • • • • • • • • • • .• .• 5-3
Permitted Base/Exponent Type Combinations .••• 5-5
Logical Operators • • • • • • • 5-8
Logical Opera:ions Truth Table • • • • 5-9
Relational Operators and Operations 5-11
Hierarchy of PORTRAN Operators • • 5-14
Rules for Conversion in Mixed-Mode Assignments • • 8-2
FORTRAN I/O S':atement Categories. 10-2
Summary of Da~a Transfer Statement Forms • 10-3
FORTRAN Logical Device Assignments • 10-12
Summary of READ Statement Forms • • • • 10-25
Summary of WRITE Statement Forms • . . • • 10-31
Summary of REHEAD Statement Forms • • • • • • • 10-38
Summary of ACCEPT Statement Forms • • 10-40
Summary of TYPE Statement Forms • 10-43
Summary of PRINT Statement Forms . • . 10-45
Summary of PUNCH Statement Forms • • . 10-47
Summary of Internal READ/WRITE and ENCODE/DECODE
Statement Forns • • • • • • • • . • . 10-49
Summary of OPEN Statement Specifiers and
Arguments .••••••••
DEVICE and MODE Cross-Table
'I'OPS-I0 Protection Code Values
'I'OPS-20 Protection Code Val ues ••••
Summary of CLOSE Statement Specifiers and

11-5
. • 11-23

· 11-26
· 11-27

• • • 11-35
. . . 11-51

12-8
12-9

12-11

Arguments • • • • • • • .•
Summary of Device-Control Statements •
Repeatable FORTRAN Edit Descriptors
Nonrepeatable FORTRAN Edit Descriptors
Carriage-Control Specifiers •••••
Eecord, Format List" and I/O List Interaction
Default Field Widths for Numeric Edit

· 12-13

Descriptors ••.•••.••••.•..•• 12-30
Effect of Data Magnitude on G-Format Output
Conversion • , • • • • • • •••.••• 12-35
FORTRAN Instrjnsic Functions . 13-4
FORTRAN-Suppl~,ed Subroutines. • . • • •. • 13-23
Argument Types and Types Codes . . 15-14
~[emory Allocations for /EXTEND and /NOEXTEND •• 15-23
FORTRAN-I0 Compiler Switches. . • . . 16-3
FORTRAN-20 Compiler Switches. ••••. 16-9
JI,rg umen ts to /DEBUG Swi tch •• •.... 16 -12
Legal Dummy and Actual Argument Associations •. 16-14
Arguments to /NOWARN Switch •••• 16-15
/EXTEND DefauJt Memory Layout .•••• 16-16
Arguments to /EXTEND Switch •••• . •• 16-20
Arguments to /FLAG Switch • • • • •• . 16-22
FORDDT Commands • • • • • • • . 17-1
FOROTS Entry Points ••• . • . •• 18-15
Function Numbers and Function Codes .•. 18-32
Error Messages - Code Format and Full Message
Format . • • • • • • • •
FOROTS Error Codes • • • • •

xiii

19-8
. • D-2

PREFACE

The FORTRAN-IO/20 Language Manual reflects the software as of Version
10 of the FORTRAN-IO/20 compiler, the FORTRAN-IO/20 Object Time System
(FOROTS), and the FORTRAN-IO/20 debugging program (FORDDT).

This manual describes the FORTRAN language as implemented for the
TOPS-IO operating system (FORTRAN-IO) and the TOPS-20 operating system
(FORTRAN-20). Any differences between FORTRAN-IO and FORTRAN-20 are
noted in this manual.

Since this is a reference manual, we assume that you have used FORTRAN
before. If you haven't, you should read one of the many introductory
FORTRAN texts.

CONVENTIONS

The following conventions are used throughout the manual:

Braces {

Brackets []

Ellipsis or.

Lowercase letters

UPPERCASE LETTERS

indicate that a choice must be made from one
of the enclosed lines.

indicate an optional feature.

indicate the omission of information from a
programming example or that items in a
command line can be optionally repeated.

indicate variable information you supply in a
command string.

indicate fixed (or literal) information that
you must enter as shown in a command string.

indicates a blank.

The standard for FORTRAN is the American National Standards Institute
(ANSI) FORTRAN, X3.9-1978 (also known as FORTRAN-77). FORTRAN-IO/20
extensions and additions to ANSI FORTRAN are in blue print in this
manual.

xv

MANUALS REFERENCED

The following manuals are referenced from TOPS-IO pUblications:

• TOPS-IO Operating System Commands Man ua I ----

• SOS Reference Manual

• TOPS-IO Moni tor Calls Manual ---

• TOPS-IO Hardware Reference Manual

• TOPS-IO LINK Reference Manual

• TOPS-IO SORT/MERGE User's Guide

• TOPS-IO FORTRAN Installation Guide

The following manuals are referenced from TOPS-20 pUblications:

• TOPS-20 Commands Reference Manual

• TOPS-20 EDIT Reference Manua I

• TOPS-20 User's Guide

• TOPS-20 Monitor Calls Manual

• TOPS-20 Link Reference Manual

• TOPS-20 SORT/MERGE User's Guide ---

• TOPS-20 FORTRAN Installation Guide ---
The following TOPS-IO/TOPS-20 manual are referenced:

• FORTRAN-IO/20 and VAX-II FORTRAN Compatibility Manual

• TOPS-IO/TOPS-20 FORTRAN Pocket Guide

• TOPS-IO/TOPS-20 COBOL-74 Language Manual

• TOPS-IO/20 BLISS Language Guide

• TOPS-IO/20 Common Math Library Manual

xvi

CHAPTgR 1

INTRODUCTION

1.1 OVERVIEW

The FORTRAN language, as implemented on the TOPS-IO and TOPS-20
operating systems, is compatible with and encompasses the standard
described in "AmE~rican National Standard FORTRAN, X3.9-1978" (referred
to as the FORTRAN-77 standard) at the full-language level.

FORTRAN-10/20 provides many extensions and additions to the FORTRAN-77
standard that 9reatly enhance the usefulness of FORTRAN and increase
its compatibility with FORTRAN languages implemented by other computer
manufacturers. The extensions and additions to the standard
FORTRAN-77 are printed in this manual in blue print.

A FORTRAN source program cons~sts of a set of statements constructed
using the language elements and the syntax described in this manual.
A given FORTRAN statement performs anyone of the following functions:

1. It causes operations such as multiplication, division, and
branching to be carr led out.

2. It specifies the tYPE~ and format of the data being processed.

3. It specifies the characteristics of the source program.

FORTRAN statements are composE~d of keywords (words that are recognized
by the compiler) used with elements of the language set: constants,
variables, and expressions. ~here are two basic types of FORTRAN
statements: executable and nonexecutable.

Executable statements spec~.fy the actions of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and the kind of
subprograms that may be incl.uded in the program. The compilation of
executable statements results in the creation of executable code in
the object program. Nonexecutable statements provide information only
to the compiler; they do not create executable code.

1.2 MANUAL ORGANIZATION

This manual is divided into three parts: Language Elements,
Stater~nts, and Language Usage. Sections 1.2.1 through 1.2.3 contain
general descriptions for each of these three parts. Section 1.2.4
contains a general description of the appendixes.

1-1

INTRODUCTION

1.2.1 FORTRAN Language Elements (Part I)

Part I of this manual describes the fundamental elements of FOHTRAN
programs, including (by chapter):

Chapter 2, CHARACTERS AND LINES, describes FORTRAN source program
characters and lines. The FORTRAN compiler interprets your
source program and translates it into machine code (executable
code) •

Chapter 3, CONSTANTS, describes FORTRAN data types and constants.
FORTRAN enables you to manipulate information (data) in a variety
of ways. This chapter describes the techniques for defining
FORTRAN constants of various data types.

Chapter 4, SYMBOLIC NAMES, VARIABLES, AND ARRAYS, describes
symbolic names, variables, and arrays in FORTRAN. The symbolic
name is used in a variety of ways in a source program; this
chapter describes the conventions for using symbolic names to
define both variables and arrays.

Chapter 5, EXPRESSIONS,
operators. Expressions
constants, and operators.

introduces and describes FORTRAN
in FORTRAN are formed using variables,

1.2.2 FORTRAN Statements (Part II)

Part II of this manual describes all the statements in the FORTRAN
language. The following list describes (by chapter) the information
presented in Part II:

Chapter 6, EXECUTABLE AND NONEXECUTABLE STATEMENTS, defines the
term "FORTRAN Statement", and describes the "Compilation Control
Statements".

Chapter 7, SPECIFICATION AND DATA STATEMENTS, describes all the
statements within the category "Specification and Data
Statements". The specification statements enable you to
explicitly define the data types of variables used within your
program; the DATA statement enables you to create initially
defined constants within your program.

Chapter 8, ASSIGNMENT STATEMENTS, describes
within the category "Assignment Statements".
statements enable you to assign values to
assign statement labels to symbolic names.

all the statements
FORTRAN assignment

variables, and to

Chapter 9, CONTROL STATEMENTS, describes all the statements
within the category "Control Statements". The default execution
sequence of lines in a FORTRAN program is each line from
left-to-right, and all lines from top-to-bottom. You use the
FORTRAN control statements to alter the default execution
sequence, to stop or pause during program execution, or to mark
the end of an executable program.

Chapter 10, DATA TRANSFER STATEMENTS, describes the data transfer
category of "FORTRAN Input/Output (I/O) Statements". As the term
implies, a data transfer statement moves data from one place to
another.

1-2

INTRODUCTION

Chapter 11, FILE-CONTROL AND DEVICE-CONTROL STATEMENTS, describes
file-control and devi~e-control categories of "FORTRAN I/O
Statements". The file-control statements enable you to associate
a unit number with a file. Device-control statements enable you
to position a storage medium (for example, magnetic tape) on a
connected unit.

Chapter 12, FORMATTED DATA TRANSFERS, describes three types of
data formatting. During certain types of data transfer
operations, you must specify the format of the data being
transferred. FORTRAN provides three techniques for specifying
the format of data: FORMAT-Statement, List-Directed, and
NAMELIST-Statement formatting.

Chapter 13, FUNCTIONS AND SUBROUTINES, describes FORTRAN
functions and subprograms. Functions and subprograms provide a
technique for producing clear and concise FORTRAN programs.
FORTRAN-IO/20 provides both predefined functions and subprograms,
and the statements for defining your own functions and
subprograms.

Chapter 14, BLOCK DATA SUBPROGRAMS, describes
subprogram. This type of subprogram enables
initial values for variables in COMMON.

1.2.3 FORTRAN Language Usage (Part III)

the block-data
you to define

Parts I and II of the manual contain complete descriptions of FORTRAN
elements and statements. Part III of the manual contains explanations
of how you use FORTRAN-IO/20. The following usage topics are covered
in Part III:

Chapter 15 , WRITING USER PROGRAMS, presents some general
considerations that you should follow when you are creating
FORTRAN source programs. In addition, this chapter contains a
description of the FORTRAN optimizer.

Chapter 16, USING THE FORTRAN COMPILER, describes how to use the
FORTRAN compiler and contains descriptions on how to compile,
load, and execute a FORTRAN program. In addition, this chapter
contains descriptions of how to read a compiler-generated program
listing, and how to create a reentrant FORTRAN program. This
Chapter also describes how to use FORTRAN-20 extended addressing.

Chapter 17, USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT),
describes how to use the FORTRAN interactive debugging program
(FORDDT) to test and debug a running program. This chapter also
contains a brief explanation of how to debug a running FORTRAN
program using DDT, the system debugger.

Chapter 18, USING THE FORTRAN OBJECT-TIME SYSTEM (FOROTS),
describes the FORTRAN Object-Time System (FOROTS). This chapter
also contains descriptions of how you can use the FOROTS
software.

Chapter 19, USING THE FORTRAN lREAL-TIME SOFTWARE (TOPS-IO ONLY),
describes how to use the FORTRAN real-time software. This
chapter is for TOPS-IO installations only.

1-3

INTRODUCTION

1.2.4 APPENDIXES

The appendixes describe various useful information.
topics are covered in the appendixes:

The following

Appendix A, SUMMARY OF FORTRAN STATEMENTS, summarizes the forms
of all FORTRAN statements and provides a section reference where
each statement is described in detail.

Appendix B, ASCII-1968 CHARACTER CODE SET, lists the character
code set defined in the X3.4-1968 version of the American
National Standard Code for Information Interchange (ASCII).

Appendix C, COMPILER MESSAGES, describes the FORTRAN compiler
messages.

Appendix D, FOROTS ERROR MESSAGES, describes the FOROTS error
messages.

Appendix E, FORDDT ERROR MESSAGES, describes the FORDDT E!rror
messages.

Appendix F, FORTRAN-SUPPLIED PLOTTER SUBROUTINES, describes the
FORTRAN-supplied plotter subroutines.

1-4

CHAPTER 2

CHARACTERS AND LINES

The basic elements of the FORTRAN source program are its characters
and lines. Characters are l]sed to form statements, expressions, and
comments in FORTRAN source programs. Lines, and fields within lines,
are used to define the context in which characters are interpreted by
the FORTRAN compiler.

This chapter describes the relationships among source
characters, lines, and fields within source program lines.

2.1 CHARACTER SET

program

Table 2-1 lists the digits, letters, and symbols recognized by
FORTRAN. The remainder of the ASCII-1968 character set is acceptable
within character or Hollerith constants or comment text, but these
characters cause fatal errors in other contexts.

NOTE

The complete ASCII chdracter set is defined in the
X3.4-1968 version of the "American National Standard
Code for Information Interchange". A summary of the
standard ASCII set ia also contained in Appendix B of
this manual.

Lowercase alphabetic
upper-case outside
character constants.

NOTE

characters are
the context of

2-1

treated
Hollerith

as
or

CHARACTERS AND LINES

Table 2-1: FORTRAN Character Set

Letters

Uppercase: ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z

Lowercase: abc d e f 9 h i j kIm n 0 p q r stu v w x y z

Digits

o 1 234 567 8 9

Symbols

! Exclamation point , Comma
" Quotation Mark - Hyphen (Minus)
Number Sign . Period (Decimal Point)
$ Dollar Sign / Slant (Slash)
& Ampersand : Colon , Apostrophe ; Semicolon
(Left Parenthesis < Less Than
) Right Parenthesis = Equal To
* Asterisk > Greater Than
+ Plus

,.
Ci rcumflex

Line Termination Characters

Line Feed (LF), Form Feed (FF), Vertical Tab (VT)

Line Formatting Characters

Carriage Return (RET), Horizontal Tab (TAB), Blank

Note that horizontal tabs normally advance the character position
pointer to the next position that is an even multiple of 8. An
exception to this is the initial tab, which is defined as a tab that
either includes or starts in character position 6. (Refer to Section
2.3.1 for a description of initial and continuation line types.) Tabs
within character specifications count as one character, even though
they may advance the character position as many as eight places.

2.2 STATEMENT DEFINITION AND FORMAT

Source program statements are divided into physical lines. A line is
defined as a string of adjacent character positions, terminated by the
first occurrence of a line termination character, regardless of
context. As shown in Figure 2-1, each source program line is divided
into four fields.

2-2

CHARACTERS AND LINES

t-ol ---·------ Line Character Positions ---------~·~I

\ 1 2 !-~---___v--7-0--7-1-7-2-'/~
Statement Continuation Statement Field Remarks
Label Field Field

Mf1.S-176181

Figure 2-1: Fields Within a FORTRAN Line

2.2.1 Statement Label Field and Statement Numbers

You can place a number ranging from 1 to 99999 in the statement label
field of an initial line to identify the statement. Any source
program statement that is referenced by another statement must have a
statement number. Leading zel~OS and all blanks in the label field are
ignored; for example, the numbers 00105 and 105 are both accepted as
statement number 105.

You can assign the statement numbers in a source program in any order;
however, each statement number must be unique with respect to all
other statements in the program or subprogram.

A main program and a subprogram can contain identical statement
numbers. In this case, references to these numbers are understood to
mean the numbers in the same program unit in which the reference is
made. An example follows:

Assume that main module MAINMD and subprogram SUBI both
contain statement numbE~r 10~). A GO TO 105 statement, for
instance, in MAINMD will refer to statement 105 in MAINMD,
not to 105 in SUBI. A GO TO 105 in SUBI will transfer
control to 105 in SUBI.

An initial tab may be used to skip all or part of the label field. If
an initial tab is encountered during compilation, FORTRAN-IO/20
examines the character immediately following the tab to determine the
type of line being entered. If this character is one of the digits 1
through 9, FORTRAN-IO/20 cons:.ders the line as a continuation line and
uses the second character after the tab as the first character of the
statement field.

If the character following thE! tab is not one of the digits 1 through
9, FORTRAN-10/20 considers the line to be an initial line and the
character following the tab i~; considered to be the first character of
the statement field. The character following the initial tab is
considered to be in character position 6 for a continuation line, and
in character position 7 for arl initial line.

2.2.2 Line Continuation Field

Any character of the FORTRAN character set (except a blank, a zero, or
an exclamation point) placed in the line continuation field (position
6) identifies the line as a continuation line (see Section 2.3.1).
Whenever you use an initial tab to skip all or part of the label field
of a continuation line, the next character you enter must be one of
the digits I through 9 to identify the line as a continuation line.

2-3

CHARACTERS AND LINES

2.2.3 Statement Field

Any FORTRAN statement can appear in the statement field. Blanks
(spaces) and tabs do not affect compilation of the statement. Blanks
and tabs may be used freely in this field for appearance purposes,
with the exception of textual data given within either a character or
Hollerith specification, where blanks and tabs are significant
characters.

2.2.4 Remark Field

In lines consisting of 73 or more character positions, only the first
72 character positions are interpreted by FORTRAN. Note that tabs
generally occupy more than one character position, usually advancing
the cursor to the next character position that is an even multiple of
8. The pxcept:.ion is the tab in a label field, which advances the
"llrSOr either to column 6 or 7, deoendinq on the character following

1-. he' tab (see Section 2.2.1).

All other characters after character position 72 are treated as
remarks and do not affect compilation.

:JOt-p t-t1at remarks may also be added to a line jn character positions 1
L;-:r'onoh 72, provided the text of the remark is preceded by the symbol
nTH (see Section 2.3.3).

2.3 LINE TYPES

A line in a FORTRAN source program may be:

1. An initial line

2. A continuation line

i\ multi-statement line

4. A comment line

i\ debuo 1 j ne

6. A blank line

These lines are described in Sections 2.3.1 through 2.3.5.

2.3.1 Initial and Continuation Lines

A FORTRAN statement may occupy the statement fields of up to 20
consecutive lines. The first line in a multi-line statement is
referred to as the initial line; the succeeding lines are referred to
as continuation lines. Initial lines may be assigned a statement
number and must have either a blank or a zero in character position 6.

'nltl~l tab may be used to skip all or part of the label field. If
, ; S (Co .H) i nIt i a 1 tab for t his 0 u r po s e , yo u m us t i mm e d i ate 1 y follow

ij· ii :wnrJUmerjc character; that is, the fjrst character of the
; prni--'rd. i leid must be nonnumeric.

2-4

CHARAc'rERS AND LINES

You cannot assign a statement label to a continuation line. Instead,
you identify a continuation line by placing a character from the
FORTRAN character set (except blank, zero, or exclamation point) in
character position 6 of that line. This position is the line
continuation field. The label field of a continuation line must be
blank.

Note that blank lines, comments, and debug lines that are treated like
comments (that is, debug line; that are not compiled with the rest of
the program) are legal continuation lines and do not terminate a
continuation sequence (see Section 2.3.4).

The following is an example of a 3-line FORTRAN FORMAT statement with
two continuation lines:

105 FORMAT (IX, 'This eX.3mple shows how continuation lines I,
2 'are used to accommodate FORTRAN statements that do not'
3 'entirely fit on a single line.')

In this example the characters 2 and 3 in position 6
lines as continuation lines.

2.3.2 Mul t i-Sta tE~ment Li nes

identify those

You may write more than one FO~TRAN statement in the statement field
of one line. The rules for structuring a multi-statement line are:

1. Successive statements must be separated by a semicolon (;).

2. Only the first statement in the series can have a statement
number.

3. The last statement in a line is continued to the next line if
that next line is mad,? a continuation line.

An example of a multi-statement line is:

450 DIST=RATE * TIME; TIME=TIME+O.05; CALL PRIME(TIME,DIST)

NOTE

If a statem?nt sequence in a
multi-statement line consists of a
logical IF (see Section 9.2.2) followed
by any other executable statement, then
the statement f~llowing the IF will be
executed in all cases, even if the IF
expression evallates as false.

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are called comment lines.
Comment lines commonly identify and introduce a source program,
describe the purpose of a particular set of statements, and introduce
subprograms.

2-5

CHARACTERS AND LINES

To structure a comment line:

1. You must place one of the characters C (or c), *, $, /, or
in character position 1 of the line to identify it as a
comment line.

2. You place the text of the comment in the remainder of the
line.

3. You may place comment lines anywhere in the source program,
including preceding a continuation line.

4. You may write a large comment as a sequence of any number of
lines; however, each line must carry the identifying
character (C (or c), *, $, /, or !) in its first character
position.

The following is an example of a comment that occupies more than one
line:

C SUBROUTINE - A12
C This subroutine formats
c and stores the results of
c the HEAT-TEST program

Comment lines are printed on all listings, but are otherwise ignored
by the compiler.

You may add a remark to any statement field, in character positions 7
through 72, provided the symbol! precedes the text. For example, in
the line

IF(N.EQ.O)STOP ! Stop if card is blank

the text "Stop if card is blank" is identified as a remark by the
preceding symbol. The compiler ignores all characters from the
exclamation point to the end of the line. The characters following
the exclamation point, however, appear in the source program listing.
To be treated as a remark symbol, the exclamation point must not
appear in a Hollerith or character constant.

Note that characters appearing in character positions 73 and beyond
are automatically treated as remarks, so that you need not use the
symbol (see Section 2.2.4).

2.3.4 Debug Lines

As an aid in program debugging, a D (or d) in character position 1 of
any line causes the line to be interpreted as a comment line; that is,
not compiled with the rest of the program unless the /INCLUDE switch
is present in the compiler command string. (See Chapter 16 for a
description of the compiler switches.)

When the /INCLUDE switch is present in the compiler command string,
the D (or d) in character position 1 is treated as a blank so that the
remainder of the line is compiled as an ordinary (noncomment) line. A
debug line can have a label following the D (or d). Note that if the
debug statement is an initial line, all of its continuation lines must
contain a D (or d) in character position 1.

2-6

CHARAC~lERS AND LINES

2.3.5 Blank Lines

You may insert lines consisting of only blanks, tabs, or no characters
anywhere in a FORTRAN source program. Blank lines that contain
remarks only, are considered as blank lines. Blank lines are used for
formatting purposes only; they cause blank lines to appear in their
corresponding positions in source program listings; otherwise, they
are ignored by the compiler.

2.4 LINE-SEQUENCE:D SOURCE FILgS

FORTRAN-IO/20 accepts I ine--sequenced fi les as produced by
line-oriented text editors (for E~xample, SOS on TOPS-IO or EDIT on
TOPS-20). These sequence numb(~rs are used in place of the listing
line numbers normally generated by FORTRAN. The listing line numbers
are not the same as FORTRAN statement: numbers.

2-7

CHAPTEH 3

CONSTANTS

3.1 INTRODUCTION

Constants are quantities that do not change value during the execution
of the object program. The data types you can use for constants in
FORTRAN-10/20 source programs are:

1. Integer

2. Real

3. Double-precision

4. Complex

5. Character

6. Logical

7. Octal

8. Double-octal

9. Hollerith

10. Statement: label

The use and format: of each of these data types are discussed in
Sections 3.2 through 3.10.

3.2 INTEGER CONSTANTS

An integer constant is a string of one to eleven digits that
represents a whole decimal number (a number without a fractional
part). Integer constants must be within the range of -(2**35-1) to
(+2**35)-1 (-34359738367 to +34359738367). positive integer constants

may optionally be signed; negative integer constants must always be
signed. You cannot use decjmal points, commas, or other symbols in
integer constants (except for a preceding sign, + or -).

Examples of valid integer constants are:

345
+345
-345

3-1

CONSTANTS

Examples of invalid integer constants are:

+34S.
3,4S0
34.S

(use of decimal point)
(use of comma)
(use of decimal point; not a whole number)

3.3 REAL CONSTANTS

A real constant can have any of the following forms:

1. A basic real constant: a string of decimal digits
by a decimal point, followed optionally by a
fraction, for e~ample, LSS7.42.

followed
decimal

2. A basic real constant followed by a decimal integer exponent
written in E notation (exponential notation) form, for
example, lSS9.E2 or lSS9.e2. The number following the E (or
e) specifies a power of ten by which the basic real constant
will be multiplied.

3. An integer constant (no decimal point) followed by a decimal
integer exponent written in E notation, for example, lSS9E2
or lSSge2.

Real constants may be of any size; however, each will be rounded to
fit the precision of 27 bits (7 to 9 decimal digits).

Precision for real constants is maintained to approximately eight
significant digits; the absolute precision depends upon the numbers
involved.

The exponent field of a real constant written in E notation cannot be
empty (blank); it must be either a zero or an integer constant. The
range of magnitude permitted a real constant is from approximately
1.47 * LO**(-39) to 1.70 * 10**(+38).

The following are examples of valid real constants:

-98.76S
7.0E+0
.7E-3
SE+S
SOlIS.
SO.El

(= 7.)
(= .0007)
(= SOOOOO.)

(= SOO.)

The following are examples of invalid real constants:

72.6ES12
.37SE
SOO

(exponent is too large)
(exponent incorrectly written)
(no decimal point given)

3.4 DOUBLE-PRECISION CONSTANTS

Double-precision constants are similar to real constants written in E
notation form; the differences between these two constants are:

1. Double-precision constants, depending on their magnitude,
have precision from 16 to 18 places, rather than the 8-digit
precision obtained for real constants.

3-2

CONSTAN~rs

2. Each double-precision
locations.

constant occupies two storage

3. The letter 0 (or (1), instead of E, is used in
double-precision constants to identify a decimal exponent.

On KL model B systems, there a~e two forms of double-precision number
formats. If the /GFLOATING compiler switch is specified (see Chapter
16), the double-precision numbE?r form.at is called G-floating. If the
/OFLOATING compiler switch (the default) is specified (see Chapter
16), the double-precision number format is called O-floating. See
Section 3.4.1 for a comparison of the different double-precision
number formats.

On KS systems, only the O-floating double-precision number format is
provided.

You must use both the letter 0 and an exponent (including zero) in
writing a double-precision constant. The range of magnitude permitted
a double-precision constant is from approximately:

1.47 * 10**(-39) to 1.70 * 10**(+38) for O-floating

or

2.78 * 10**(--309) to 8.99 * 10**(+307) for G-floating

The following are examples of valid double-precision constants:

7.9003
7.90+03
7.90-3
79003
7900

(= 7900.)
(= 7900.)
(= .0079)
(= 79000.)
(= 79.)

The following are examples of invalid double-precision constants:

7.90999
7.9E5

(exponent is too large)
("E" denotes single precision; "0" denotes double
prE~cision)

3.4.1 Comparison of Real, O-floating, and G-floating

For KL model B systems, G-floal:ing double-precision is provided as an
alternative double-precision number format. You must specify the
/GFLOATING compiler switch (see Chapter 16) to invoke the G-floating
double-precision format. If you specify the /OFLOATING compiler
switch (the default), the O-floating format is used. Table 3-1
summarizes the comparisons among real, O-floating, and G-floating.

3-3

CONSTANTS

Table 3-1: Comparison of Real, D-floating, and G-floating Numbers

Bits of Bits of Digits of
Exponent Mantissa Range Precision

Real 8 27 1.47 * 10** (-39) 8.1
to 1.70 * 10**(+38)

D-floating 8 62 1.47 * 10** (-39) 18.7
to 1.70 * 10**(+38)

G-floating 11 59 2.78 * 10** (-309) 17.8
to 8.99 * 10**(+307)

_.

3.5 COMPLEX CONSTANTS

You can represent a complex constant by an ordered pair of integer,
real, or octal constants written within parentheses and separated by a
comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are
complex constants.

In a complex constant, the first (leftmost) constant of the pair
represents the real part of the number; the second constant reprE~sents
the imaginary part of the number. Both the real and imaginary parts
of a complex constant can be signed.

The constants that represent the real and imaginary parts of a complex
constant occupy two consecutive storage locations in the object
program.

3.6 CHARACTER CONSTANTS

A character constant is a string of printable ASCII characters
enclosed by apostrophes. Both delimiting apostrophes must be present,
and the string must be at least one character in length. The compiler
accepts control characters in character constants with the following
exceptions:

Character Octal Value

"'@

"'J
"'K
"'L
"'M

- NUL "0
- LF "12
- VT 1113
- FF "14
- CR "IS

NOTE

The CHAR function (see Chapte~ 13) can be used to
build variables that contain these control characters.

The value of a character constant is the string of characters b(=tween
the delimiting apostrophes. The value does not include the delimiting
apostrophes, but does include all spaces or tabs within the
apostrophes.

Within a character constant, the apostrophe character is represented
by two consecutive apostrophes (with no space or other character
between them).

3-4

CONSTANTS

The length of the character constant is the number of characters
between the apostrophes, except that two consecutive apostrophes count
as a single apostrophe.

Each character in the string has a character position that is numbered
consecutively starting at one. The number indicates the sequential
position of a character in a string, from left to right. There is one
character storage location for each character in the string.

If a character constant appears in a numeric context (for example, as
the expression on the right side of an arithmetic assignment
statement), it is considered a Hollerith constant (see Section 3.9).

Examples of valid character constants and their lengths are:

Length Value

'WHAT? ' 5 WHAT?

'TODAYS"S DATE IS: 18 TODAY'S DATE IS:

'He said, "hello'" 16 He said, "hello"

, , , , 1

Examples of invalid character constants are:

'HEADINGS

, ,

"Now or Never"

(no trailing apostrophe)

(a character constant must contain at least
one character)

(quotation marks cannot be used in place of
apostrophes)

3.7 OCTAL AND DOUBLE-OCTAL CONSTANTS

You may use octal numbers (radix 8) as constants in arithmetic
expressions, logical expressi~ns, and data statements. Octal numbers
up to 12 digits in length are considered standard octal constants;
they are stored right-justified in one storage location. When
necessary, standard octal constants are padded with leading zeros to
fill their storage location.

If you specify more than 12 digits in an octal number, it is
considered a double-octal constant. Double-octal constants occupy two
storage locations and may contain up to 24 right-iustified octal
digits; leading zeros are adde·j to fill any unused digits.

If you assign a single-octal c~nstant to a double-precision or complex
variable, it is stored right-justified in the high-order word of the
variable. The low-order porti)n of the variable is set to zero. If
you assign a double-octal c)nstant to a double-precision or complex
variable, it is stored right-jJstified in the two words.

All octal constants must:

1. Be preceded by a double quote (") to identify the digits as
octal, for example, "777

2. Be signed if negative, but optionally signed if positive

3. Contain one or more of the digits 0 through 7, hut not 8 or 9

3-5

CONSTANTS

The following are examples of valid octal constants:

"123456700007
+"12345 (optional sign)
-"7777
"-7777

The following are examples of invalid octal constants:

(contains an 8) "12368
7777 (no identifying double quote)

When you use an octal constant as an operand in an expression, its
form (bit pattern) is not converted to accommodate it to the type of
any other operand. For example, the subexpression (A + "202400000000)
has as its result the sum of A with the floating point number 2.0;
while the subexpression (I + "202400000000) has as its result the sum
of I with a large integer.

You cannot use octal constants as stand-alone arguments for library
functions that require non-octal arguments. MINO, for instance,
requires integer arguments and cannot accept octal arguments.

When you combine a double-octal constant in an expression with (or
assign it to) either an integer or real variable, only the contents of
the high order location (leftmost) are used.

3.8 LOGICAL CONSTANTS

The Boolean values of truth and falsehood are represented in FORTRAN
source programs as the logical constants .TRUE. and .FALSE •• Always
write logical constants enclosed by periods, as in the preceding
sentence.

You may use logical quantities in arithmetic and logical statements.
Only the sign of a numeric value used in a logical IF statement is
tested to determine if it is true (negative) or false (nonnegative).

3.9 HOLLERITH CONSTANTS

A Hollerith constant is a string of alphanumeric and/or special
characters preceded by nH (for example, nHstring). In the prefix nH,
the letter n represents a number that specifies the exact number of
characters (including blanks) that follow the letter H.

\JOTE

If a character constant appears in a numeric context
it is considered a Hollerith constant (see Section
3.6) •

The following are examples of Hollerith constants:

2HAB
14HLOAD TEST #124
6H#124-A

3-6

You may

1.

2.

CONSTANTS

A tab in a Holleritt
character; for examplE,

NO'I'E

constant
3H .A.B.

is

enter Hollerith constents into DATA

counted as

statements as

Up to ten 7-bit ASCI I characters for
double-precision tYPE variables

Up to five 7 -·b it ASCI I characters for all
variables

one

a string of:

complex or

other type

The 7-bit ASCII characters that comprise a Hollerith constant are
stored left-justified (st2rting in the first word of a
double-precision constant (thE high-order word) or the real part of a
complex constant) with blarks placed in empty character positions.
Holler i th constan ts tha t occur·y more than one var iable are stored as
successive variables in the list. The following example illustrates
how the string of characters is stored in a six-element array calle~
A:

DIMENSION A(6)
DATA A/27HA string of mary characters/

A (1) is set to 'A str'
A(2) is set to 'ing 0'

A(3} is set to 'f man'
A(4) is set to 'y chat
A (5) is set to 'racte'
A(6) is set to 'rs

3.10 STATEMENT LABEL CONSTANTS

Statement labels are numerjc identifiers that represent program
statement numbers.

You write statement label constants as strings of one to five decimal
digits, that are preceded by either an asterisk (*), a dollar sign
($), or an ampersand (&). Foz' example, *11992, $11992, and &11992 are
all valid statement label constants. You use statement label
constants only in the argument. list of CALL statements to identify the
number of the executable statement to return to in a multiple RETURN
statement (see Chapter 13).

3-7

CHAPTF~R 4

SYMBOLIC NAMES,. VARIABLES, AND ARRAYS

4.1 SYMBOLIC NAMES

Symbolic names consist of any alphanumeric combination of one to six
characters, the first of which must be a letter. 1 i you use more than
six characters in a symbolic name, the compiler prints a warning
message and ignores all bu: the first six characters. The compiler
interprets lowercase letters in symbolic names as uppercase letters.

The following arE! examples of legal symbolic names:

A12345
IAMBIC
ABLE
C

The following arE! examples of illegal symbolic names:

.AMBIC
SAB

(fir s t c h a r act E~ r i s not ale t t e r)
(first charactE~r is not a letter)

You use symbolic names to identify specific items of a FORTRAN source
program; Table 4-1 lists these items, together with an example of a
symbolic name and text reference for each.

Table 4-1: Use Clf Symbolic Names

For a Deta iled
Symbolic Names Description

Can Identi fy For 8xample See Section

1. Variables Pl r CONS1~ , LIMIT 4.2
2. Arrays TAX 4.3
3. Array elements TAX(3,5) 4.3.1
4. Substrings FOO(l:N) 4.4
5. Functions MYFUNC, VALFUN 13.2
6. Subroutines CALCSB, SUB2, LOOKUP 13.4
7. Intrinsic functions SIN, ATAN, COSH 13.1
S. PROGRAM Statement TEST 6.4.1
9. PARAMETER Statement VI, C2,K 7.S

10. COMMON block names DA~r1AR, COMDAT 7.4
11. NAMELIST list DA':'A3 ' -, ,.

~ .".: ;: 1

4-1.

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.2 VARIABLES

A variable is a data storage location identified by a symbolic name; a
variable is not a constant, an array, or an array element. Variables
specify values that are assigned to them in such ways as assignment
statements (Chapter 8), DATA statements (Chapter 7), or at run time
through I/O data transfers (Chapter 10). Before you assign a value to
a variable, its value is undefined; and you should not reference it
except to assign a value to it.

The value you assign to a variable can be either a constant or the
result of a calculation that is performed during the execution of the
object program. For example, the statement IAB=5 assigns the constant
5 to the variable lAB. In the statement IAB=5+IB, however, the value
assigned lAB depends on the value of variable IB at the time the
statement is executed.

The type of a variable determines the interpretation of its contents.
Variables can be:

1. Integer

2. Real

3. Logical

4. Double-precision

5. Complex

6. Character

The type of a variable is determined either implicitly, by the first
letter of the variable name (described below), or explicitly, by
declaring the variable type in a type declaration statement (see
Chapter 7).

FORTRAN uses the following default conventions for variables whose
types are not explicitly declared:

1. Variable names that begin with the letters I, J, K, L, M, or
N are integer variables.

2. Variable names that begin with any letter other than I, J, K,
L, M, or N are real variables.

NOTE

These default conventions can be
use of the IMPLICIT statement,
described in Section 7.3.

altered
which

by
is

The following are examples of determining the type of a variable
according to the preceding conventions:

Variable Beginning Letter Assumed Data Type

ITEMP I Integer
OTEMP 0 Real
KAl23 K Integer
AABLE A Real

4-2

SYMBOLIC NAMES, VARIA.BLES, AND ARRAYS

4.3 ARRAYS

An array is an ordered set of data identified by an array name. Array
names are symbolic names and must conform to the rules for writing
symbolic names (see Section 4.1).

Arrays are made up of smaller units of data called array elements. As
with variables, you may assign a value to an array element. Before
you assign a value to an array element it has an undefined value. You
should not reference an alray element until you have assigned it a
value.

An array element is referenced by using the array name together with
some number of subscripts that describe the position of the element
within the array.

4.3.1 Array Element Subscripts

The general form of an array element name is AN (Sl, S2, ••• Sn), where
AN is the array name and Sl ttrough Sn represent 1 through n subscript
expressions. You may use any number of subscript quantities in an
element name; however, the number used must always equal the number of
dimensions (see Section 4.3.2) specified for the array.

A subscript can be any constant or expression (see Chapter S), for
example:

1. Subscript quantities may contain arithmetic expressions that
involve addition, sobtraction, multiplication, division, and
exponentiation. For example, (A+B,C*S,D/2) and
(A**3,(B/4+C)*E,3) ale valid subscripts.

2. l\rithmetic expressic.ns (see Chapter 5) used in array
subscripts may be of any type, but noninteger expressions
(including complex) are converted to integer when the
subscript is evaluatE!d.

3. A subscript may contain function references (see Chapter 13).
For example, TABLE (SIN(A)*B,2,3) is a valid array element
identifier.

4. Subscripts may contain array element identifiers nested to
any level as subscripts. For example, in the subscript
(I(J(K(L»),A+B,C) the first subscript expression given is a
nested 3-level array reference.

Some examples of valid array elements are:

1. IAB(1,S,3)

2. ABLE (A)

3. TABLEl(lO/C+K**2,A,B)

4 • ~AT (A , AH (2 * L) , • 3 * TAB i A, M + 1,0) , 55)

4-3

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.3.2 Dimensioning Arrays

You must declare the size (number of elements) of an array to enable
FORTRAN to reserve the number of locations needed to store the array.
Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single
or multi-dimensional, rectilinear matrices dimensioned on a row,
column, and plane basis. For example, Figure 4-1 represents a 3-row,
3-column, 2-plane array.

3 ROWS

.~ 'l'-~
~'v

-------~-------/ 3 COLUMNS MH S 11~~·81

Figure 4-1: A 3 x 3 x 2 Array

You specify the size of an array by an array declarator written as a
subscripted array name. In an array declarator each subscript
quantity is a dimension of the array and must be either an integer
expression, an integer variable, or an asterisk (*).

Only the upper bound in the last dimension declarator in a list of
dimension declarators can be an asterisk. An asterisk marks the
declarators as an assumed-size array declarator (see Section 7.1.2).

NOTE

Variable array dimensions are only
subprograms. See adjustable dimension
Section 7.1.1.

allowed in
statements,

For example, TABLE(I,J,K) and MATRIX(lO,7,3,4) are valid
declarators.

array

The total number of elements that comprise an array is the product of
the dimension quantities given in its array declarator. For example,
the array lAB dimensioned as IAB(2,3,4) has 24 elements (2 * 3 * 4
24) •

You dimension arrays only in the specification statements DIMENSION,
COMMON, and type declaration (see Chapter 7). Subscripted array names
appearing in any of the these statements are array declarators;
subscripted array names appearing in any other statements are always
array element identifiers.

4-4

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

In array declarators, the position of a given subscript quantity
determines the particular c:imension of the array (for example, row,
column, or plane) that it represents. The first three subscript
positions specify the number of rows, columns, and planes that
comprise the named array; each following subscript given then
specifies a set comprised of n-number (value of the subscript) of the
previously defined sets. For example:

The Dimension Declarator

TAB(2)

TAB(2,2)

TAB(2,2,2)
........

,.""".",*,'

--'
,"

1,1,1 1,2,1

2,1,1 2,2,1

SpE~cifies thE! Array(s)

~~
~~

1,1,2 1,2,2 j
2,1,2 2,2,2

'" .,.., -'"
.... "''''

.... -

) -"'''' 1,1,2,1 1,2,2,1 - -_ --- -, 1,1,2,2 1,2,2,2 T AB(2,2,2,2
",--- I

2,1,2,1 2,2,2,1 _-- I 2,1,2,2 2,2,2,2
1,1,1,1 1,2,1,1 -'- 1,1,1,2 1,2,1,2

'"
.... "

2,1,1,1 2,2,1,1 -.~

-'" -2,1,1,2 2,2,1,2 ---.,..,

NOTE

FORTRAN-IO/20 permits up to 127 dimensions in an array
declarator. (The FORTRAN-77 Standard allows a maximum
of 7 dimensions.)

4.3.3 Order of Stored Array E:lements

MH·S 1762-81

The elements of an array are stored in ascending order. The value of
the first (leftmost) subscript varies between its minimum and maximum
values most rapidly. The value of the last (rightmost) subscript
increases to its maximum value least rapidly. For example, the
elements of the array dimensioned as 1(2,3) are stored in the
following order:

1(1,1) 1(2,1) 1(1,2)] (2,2) 1(1,3) 1(2,3)

In the following list, the elE·ments of the three-dimensional array
(B(3,3,3» are stored row by row from left to right and from top to
bottom.

4-5

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

8(1,1,1) 8(2,1,1) 8(3,1,1)--1
,------------------------
- - 8(1,2,1) 8(2,2,1) 8(3,2,1)-,
,------------------------
--8(1,3,1) 8(2,3,1) 8(3,3,1)-,

[:B(1~~2) - --B(2~1 ~2) - --a(3,1~2)==1
[------------ - -----------

- 8(1,2,2) 8(2,2,2) 8(3,2,2)-,

~~~~,!~2I===~~~3~ = ==~~'~~}=J 
I - - 8(1,1,3) 8(2,1,3) 8(3,1,3)-, 

~ :~~,~~3I ~ = = ~~~!~ = = =~(~,~~3~~; 
L - 8(1 ,3,3) 8(2,3,3) 8(3,3,3) 

MR·S·1756·81 

Thus B(3,1,1) is stored before B(1,2,1), and so forth. 

Character array elements are stored in successive character positions, 
and do not necessarily start on a word boundary. Character array 
elements are stored five characters per word (seven bits per 
character), and the low order bit is never used, for example: 

CHARACTER*3 A(4) 

The array A will be stored in the following way: 

A(1) A(2) A(3) A(4) Unused 
" ~ A A A.._ 

" \I " \1 , 
I x I I x I x I x I x I xl 

0 7 14 21 28 35 0 7 14 21 28 35 0 7 14 21 28 35 
MR-S-2S28-83 

where: 

x means bits are not used. The value in bit 35 is zero. 

4.4 CHARACTER SUBSTRINGS 

A character substring is a contiguous segment of a character variable 
or character array element. A character substring is identified by a 
substring name and can be assigned values and referenced. 

A character substring reference has one of the following forms: 

v([el]:[e2]) 

or 

a(s[,s] •.. ) ([el]:[e2]) 

4-6 



SYl1BOLIC NAMES, VARIABLES, AND ARRAYS 

where: 

v is a character variable name. 

a is a character array name. 

s is a subscript expression. 

el 

e2 

is an optional nu~eric expression that specifies 
leftmost character position of the substring. 

is an optional nuneric expression that specifies 
rightmost character position of the substring. 

the 

the 

Character positions within a character variable or array element are 
numbered from left to right, beginning at 1. For example, LABEL{2:7) 
specifies the substring beginning with the second character position 
and ending with the seventh character position of the character 
variable LABEL. 

If the value of the numeric 
integer, FORTRAN converts 
fractional part before use. 

Expression el or e2 is not of type 
it to an integer value by truncating any 

The values of the numeric expression el and e2 must meet the following 
conditions: 

1 .LE. el .I.E. e2 .LE. len 

where: 

len is the length of the character variable or array element. 

If el is omitted, FORTRAN assumes that el is 1. 
FORTRAN assumes that e2 equals len. 

If e2 is omitted, 

For Qxample, NAMES{1,3) (:7) specifies the substring starting with the 
first character position and ending with the seventh character 
position of the character array element NAMES{1,3). 

4-7 





CHAPTER 5 

EXPRESSIONS 

5.1 ARITHMETIC EXPRESSIONS 

An arithmetic expression is formed with arithmetic operands and 
arithmetic operators. The evaluation of such an expression produces a 
numeric value. 

Arithmetic expressions may be either simple or compound. 
arithmetic expression consists of an operand that can be: 

1. A numeric constant 

2. A numeric variable 

3. A numeric array element 

4. An arithmetic function reference (see Chapter 13) 

5. An a r i t hme tic 
parentheses 

or logical expression written 

A simple 

within 

Operands may be of integer, real, double-precision, complex, logical, 
octal, double-octal, or Hollerith type. 

The following are examples of valid simple arithmetic expressions: 

105 
lAB 
TABLE(3,4,5) 
SIN (X) 
(A+B) 

(integer constant) 
(integer variable) 
( a r ray e 1 em E~ n t ) 
(function reference) 
(a parenthetical expression) 

A compound arithmetic expression consists of two or more operands 
combined by arithmetic operators. Table 5-1 lists the arithmetic 
operations permitted in FORTRAN and the operator recognized for each 
operation. 

5-1 



EXPRESSIONS 

Table 5-1: Arithmetic Operations and Operators 

Operation Binary Operator Example 

Addition + A+B 
Subtraction - A-B 
Multiplication * A*B 
Division I AlB 
Exponentiation ** " or A**B or A"'B 

Operation Unary Operator Example 

Identity + +A 
Negation - -B 

5.1.1 Rules for Writing Arithmetic Expressions 

Observe the following rules in structuring arithmetic expressions: 

1. The operands comprising an arithmetic expression can be of 
different types. Tables 5-2 and 5-3 illustrate all permitted 
combinations of data types and the type assigned to the 
result of each. 

NOTE 

All combinations of numeric data types except 
double-precision with complex are allowed in 
FORTRAN. 

2. If you specify two adjacent operators, and the second is a 
minus or a plus, the second operator is considered a unary 
operator and acts only on the term immediately following it. 
Thus, in the example (A*X+B)*+C, the subexpression, *+C, is 
interpreted as the binary operator * and the unary +. 

You cannot, however, have two adjacent binary operators in an 
expression. For example, the expression A*/B is not 
permitted. 

3. All operators must be included; no operation is implied. For 
example, the expression A(B) does not specify multiplication, 
although this is implied in standard algebraic notation. The 
expression A*(B) is required to specify a mUltiplication of 
the operands. 

5-2 



Ul 
I 

w 

Table 5-2: Type of the Result Obtained from Mixed-Mode Operations 

For operators 
+ ,-,', Integer Real 

Double 
Precision 

Type of Argllment 2 

Complex LO~lical Octal 
Double 
Octal Literal 

~------------------------~~--------------'-i----------------;--------------'----~---'------------~-------.--------_4----------------_+----- ----------+----------------~ 

Integer 

Real 

1. Type of operation 
used 

2_ Type associated 
with result 

3_ Conversion on 
Argument 1 

4. Conversion on 
Argument 2 

1. Type of operation 
used 

2_ Type associated 
with result 

3. Conversion on 
Argument 1 

4. Conversion on 
Argument 2 

1. Integer 

2. Integer 

3. None 

4. None 

2 lie.,1 

4. I-rom 'me,:" 
to Rr-_! 

J. from jmegc' 
to ticaj 

1. Real 

2. Real 

3. None 

4. None 

1. Uouble preCIS!'")!' 

:l (Jouble Preclslul' 

J. From InleClN Ie 
Doubie Pn~cISl(jp 

4. None 

1. Double PreCISion 

'-- Doubie PreCISI,)!, 

3. Used direGtlv as 
the high order 
wora: low orch!, 
wora IS zen, 

4. Non,; 

J. Holm InlNlc' 10 
L(ln;:)I;:~ '.1,;' 

us -~d as Heai 
:l. N( U' 

J Lsed dlrp.cll~ as 
tile Real n.ll' 
If jf]aln~T 'j D,~~7 

'L. InteGer 

3. No",,' 

4. NOlii' 

3. Non" 

4. Non" 

1. Heal 

4. Norw 

4. Hig n order 1V0ro 
is used directly' 
low oraer worli 
IS Iqrlo.-eo 

J None 

4. High orOel won; 
IS used dw'ctly 
lOW Ofoel wor,-j 

IS Iqnoreo 

, intr'q 

3 Nor". 

4. tilan ordPi \'\{(}, 
IS used dlleeti·, 
tunner worGS aft" 

J. Non.-

4. HI9h order wor.i 
is used dlrectlv 
further word, 
are Ignore,; 

~--------------------------~----------------4_--------------~~-----------------------.-----------~----------------~----------------+_--------------_4----------------~ 

Double 
Precision 

1. Type of operation 
used 

2. Type associated 
with result 

3. Conversion on 
Argument 1 

4. Conversion on 
Argument 2 

1. Doubie Precis!. n 

2. Uoubl" t-'reclslClJ 

:< None 

4 Hom Imeoer tu 
Double Preclsl' I 

I. Double PreC"Wii' 

f\h~: ' 

4. Used direcllv 
the nlun t.'rr:~"f 

word: iew or!1:i""; 
wc:c !~, lP.'" 

1. Double Precision 

2. Double Precisiion 

3. None 

4. None 

1. lJout.le PrecIsion 

2. Double PrecIsIon 

J. No,,' 

4. Useo dllecTly a,; 
thl' hiqh onh': 
woro: lOW orde; 
woro IS zer': 

1. Double PrecIsion 

2. Double PrecIsion 

3. Non ... · 

1. Double I'r,,~ls'on 

2. Double PrecislO!' 

J NII'i! 

4. NOtl(' 

1. Douoj~ ~rcClsloP 

2. Douale t>recisloll 

1. New 

4. first two WOI(j,: 

are used dir~~!!' 
further \Nunj-: 
are Ignorl'rl 

~---------.---------_+--------__f----------~---------_+---------f------.----_+--------~-.- --------1---------.---1 

Complex 

Logical 

1. Type of operation 
used 

2. Type associated 
with result 

3_ Conversion on 
Argument 1 

4. Conversion on 
Argument 2 

1_ Type of operation 
used 

2. Type associated 
with result 

3. Conversion on 
Argument 1 

4. Conversion on 
Argument 2 

1. I VDe OT ooeraV!n r . 

"L. I voe assucICll.-;(i 

4 l.·(l~;;;'-:r">itljl ,",; 

4. I--rom Inteqer II. 
(.omDI~)! \I~IU'~ 

USP.r1 as. Hpal p. 'r' 

1 InICQ(" 

J. ~or1t;) 

4 ;-.tont: 

Cornplf· ... 

.l N[;; 

1 Us("o d!rf>(:tl': 

ttH! Hl:~ii ..... 3. ': 

Imaqmary p.;; 1 

H. 

I f,.l .• " 

4. Nnne 

,. HC.JI 

2. Real 

1. lJouble tJreclslul 

2. 1J0ubie Pree"'"'' 

J. Used directly ~'. 

lhe high order 
word; low order 
wora IS zern 

:i io,lon .. 

1. Double .... reCISILJ'. 

~. Double t-'reC'IS!I;, 

3. Used directly as 
the hlqh ordet 
word; low orcl." 
word IS .ler n . 

a Non-

1. Complex 

2. Complex 

3. None 

4. None 

j lJ sed alrrcll" 
II e Heal 0,.,' 
Ir laQlniU'" 0;1" 

't j'urll' 

L. COlllllle! 

3. Nol' 

4. Used drrectlv .IS 

me Heal par!; 
nnaqlnary pctn 

1. Integ'~r 

2. Octal 

3. None 

4. None 

1. Inl"q~" 

2. Oc.ai 

!. L..omnlex 

2. (~ompl"" 

3. Nnr,~' 

't USPfl nneC'tiv .::. 
the HI"i";; p.u 

InlaQm~t \f II .... " 

2 Oc!~1 

3. NOfl(' 

4. None 

J. NOfn-

2. Cornplex 

1 inleat~r 

2. Octal 

J. None 

-1 Hiqll order word 

IS Iqnolt-'tl 

"I Uclal 

4 Hiqh order ''II'ptd 

IS U:icd dlifL.i:b. 

iow oloer 'J\'Cf{1 

l!i lonOf~o:j 

1. Compl~"" 

L. Lorfluh.:t, 

3. No"" 

4. First two WC"'j, 

are used olrcr.tl'..: 
Further WOf!;-.. 

are IQno,· ' .... 

} Octa; 

3 Non" 

4 Hiah order wc"r.! 

rurtner ;}IIII~;; 

1. Imeq'" 

Ncr-~ 

4. Hioh order "'C>" 
IS used drrcc;:'j 

furtner woc'" 
ar~ IqnOrf>rJ 

~-------------------------+_--------------.~--------------~--------------~---------------~---------------4---------------4---------------~------------~ 

.1 (;'U1V .. ' ...... , ••••• 

L.. !rHeaE" 

IS used di, l-cil 

hJW OHler .fi{),,; 

H,'.!' 1. Uouole t-"reCISIUII 

"2.. LJouble t-"reCISlon 

IS IJseri nl;f~1 I" 

J H!Qtl urder ...-vor,j 

IS used dlrectlv 
low (Iral~r \Nil(fj 

I~ IQllort.·U 
4. Non,. 

3. HIOh ararl"" wnni 

IS used t1!rf~~.:tb. 

lOW orner WO.I. 

IS lunnrer1 

4. NOlh:-

3. HIUh 'Jr':1e, ·'-.!d; j 

IS used ct, ' "'I; 
lOW order y..i 11'.1 

IS Iqnorc'r. 
4. Hloh order WGf~l 

IS used d""o.:tl •. 
low orner ~""_'f;1 

J. Hlqh orde, .f.- •. , 

IS used Qtrc-:';'" 
lOW order W:.ii. 

are Igoor"" 
4. Hlch order ~",'(:f( I 

IS used dli;.;(';;·~· 
lOW orar.or ~·'..;f·!·. 

are Iqnot(\(i 

~---------------_4-----------.. r__---.-------+_-------.--_;_-.------------------.. -------+----------11----------+---------1 

L iit .... : 

i t ~n:':.;::'!--;.ll;:r-:: 

.u'lHH~\,.nt -

L IrT~'f"-

,r:'C;l' .. 

h.l.rtrit-"'f .'d' :1~-" 
IS IiSC'U (Hft.:' ,. 

jupr~er Wnf(1 

arc l"Un'Jn-~~: 

Nc· 

,j Hrst twu WO'lL 

are USP.(~ Oirec:·~ 

are IOnore{l 
-t Nu,',,' 

J i- !st ivvl) wurOb 
a' e used dlr.~c\iv 

;. 

J. Hlqn oroer word 
IS u<;f,·d oirectlV' 
further wm·,b 

.I. t"Han ~Jr..:1cr ":Vl"" i 

IS USeO tllret !., 

tunner WOIUS 

dt~ 1l.!l1uretj 

·t. None 

.j Mlon Ordej .-vu' I 

IS usea OIP'C!:'}. 

rurther W(;I':'; 
ctre IUfHHt'(1 

4. Hlgtl order ""01·1 
is used din-. ct~'! 
low o·der word 

In~,_·(' ... 

,; .• 1100 Of(;€i V.I." 

!S usea ol:-e::::: . 
furirler WOf{j 

are IU"Cf'I~'; 
4. High oroer wOln 

-----_._-,----- --... - .. --.-.- --_._------- -_ ... _----------\--------------"-----------------_ .. _-----------_._- --.-----------''-----------~ 
MR-SI751-Bl 



, ................. a .. I ........ I ..... IIII ........... IIIIIIII ............. ~ ........................ ~ ...................... ~ .... I ............ I ...... ~ .. B .. & 



EXPRESSIONS 

Table 5-3: Permitted Base/Exponent Type Combinations 

Base Operand Exponent Operand 

Double-
Integer Real Precision Complex 

Integer Integer Real Double- Complex 
Precision 

Real Real Real Double- Complex 
Precision 

Double- Double- Double- Double-
Precision Precisio n Precision Precision (Illegal) 

Complex Complex Complex (I llega 1) Complex 

5.1.2 Arithmetic Constant Expressions 

An arithmetic constant expression is an arithmetic expression in which 
each operand is one of the following: 

1. A numeric constant 

2. A symbolic name of a numeric constant 

3. An arith~etic constant expression enclosed in parentheses 

4. A call to the function ICHAR (see Chapter 13) 
argument is a character constant expression 

where thp-

The exponentiation operator is not permitted unless the exponent is of 
type integer. Note that variables, array elements, and function 
references are not allowed. 

Example: 

5+6*(ICHAR('Z')-ICHAR('A ' )+1)*4.1**3 

5.1.2.1 Integer Constant Expression - An integer constant 
is an arithmetic constant expression in which each 
symbolic name of a constant is of type integer. 

Example: 

3+4**6+2 

5-5 

expression 
constant or 



EXPRESSIONS 

5.2 CHARACTER EXPRESSIONS 

Character expressions consist of character operands and character 
operators. The evaluation of a character expression yields a single 
value of character data type. 

A character operand can be anyone of the following: 

1. A character constant 

2. A symbolic name of a character constant 

3. A character variable 

4. A character array element 

5. A character substring 

6. A character expression, optionally enclosed in parentheses 

7. A character function reference 

The only character operator is the concatenation operator (II). 

A character expression has the form: 

character operand [Ilcharacter operand] •.• 

The value of a character expression is a character string formed by 
successive left-to-right concatenations of the value of the elements 
of the character expression. The length of a character expression is 
the sum of the lengths of the character elements. For example, the 
value of the character expression 'AB'II'CDE' is 'ABCDE', which has a 
length of 5. 

Note that the expression: 

A=AIIB 

has no effect on A, since the concatenation result is truncated to the 
length of A. 

Parentheses do not affect the value of a character expression. For 
example, the following character expressions are equivalent: 

('ABC'II'DE')II'F' 
'ABC'II('DE'II'F') 
'ABC'II'DE'II'F' 

Each of these character expressions has the value 'ABCDEF'. 

If a character element in a character expression contains spaces, the 
spaces are included in the value of the character expression. For 
example, 'ABC 'II'D E'II'F' has a value of 'ABC D EF'. 

5-6 



E}(PRESSIONS 

5.2.1 Character Constant Expression 

A character constant expression is a character expression in which 
each operand is one of the following: 

1. A character constant 

2. The symbolic name of a character constant 

3. A character constant expression enclosed in parentheses 

4. A call to the function CHAR (see Chapter 13) where the 
a r gum e n tis ani n t e g E' r con s tan t ex pre s s ion 

Variables, array elements, substrings, and function references are not 
allowed. 

Example: 

'HELLO' II:HAR (13)1 ICHAR (] 0)1 I'GOODBYE' 

5.3 LOGICAL EXPRESSIONS 

Logical expressions can be either simple or compound. Simple logical 
expressions consist of a logical operand, which can be one of the 
following: 

1. A constant 

2. A variable 

3. An array element 

4. A function reference (see Chapter 13) 

5. An expression written within parentheses 

Compound logical expressions consist of two or more logical or numeric 
operands combined by logical operators. The evaluation of a logical 
expression produces a truth value (type logical, true or false) as 
determined by the resulting bit pattern. 

Table 5-4 gives the logical operators permitted by FORTRAN and a 
description of the operation each provides. 

5-7 



EXPRESSIONS 

Table 5-4: Logical Operators 

Operator Description 

.AND. AND operator. Both of the logical operands combined by 
this operator must be true to produce a true result • 

• OR. Inclusive OR operator. If either or both of the logical 
operands combined by .OR. are true, the result will be 
true. 

.NEQV. 

.EQV. 

.NOT. 

Exclusive OR operator (also .XOR.). If either but not 
both of the logical operands combined by .NEQV. is 
true, the result will be true. 

Equivalence operator. If the logical operands being 
combined by .EQV. are both the same (both are true or 
both are false), the result will be true. 

Complement operator. This operator specifies 
complementation (inversion) of the item (operand or 
expression) that it modifies. The original item, if 
true by itself, becomes false, and vice versa. 

Logical expressions are of the general form P .op. Q, where P and Q 
are logical operands and .op. is any logical operator except ".NOT.". 
The .NOT. operator complements the value of an operand; it must 
appear immediately before the operand that it modifies, for example, 
.NOT.P. 

Table 5-5 is a truth table illustrating all possible logical 
combinations of two logical operands (P and Q) and the result of each 
combination. 

5-8 



EXPRESSIONS 

Table 5-5: Logical Operations Truth Table 

When P is And Q is: Then the Expression: 
t-----------.. -r------

True .NOT. P 

False .NOT. P 

True True P .AND. 

True False P .AND. 

False True P .AND. 

False False P .AND. 

True True P • OR. Q 

True False P .OR. Q 

False True P .OR. Q 

False False P .OR. Q 

True True P .NEQV. 

True False P • NEQV. 

False True P .NEQV. 

False False P • NEQV. 

True True P .EQV. 

True False P • EQV. 

False True P. EQV. 

False False P • EQV. 

For example, consider the following variables: 

Variables 

PHETT, RUN 
I,J,K 
DP,D 
L,A,B 
CPX,C 

Type 

Real 
Inteqer 
Doubje-Precision 
Logical 
Complex 

5-9 

Q 

Q 

Q 

Q 

Q 

Q 

Q 

Q 

Q 

Q 

Q 

Q 

Is: 

False 

True 

True 

False 

False 

False 

True 

True 

True 

False 

False 

True 

True 

False 

True 

False 

False 

True 



EXPRESSIONS 

Examples of valid logical expressions consisting of the preceding 
variables are: 

L.AND.B 
(PHETT*I).NEQV. (DP+K) 
L. AND. A. OR .• NOT. (I -K) 

Logical operations are performed on the full 36-bit binary 
representation of the operands involved. However, when an operand of 
a logical expression is double-precision or complex, only the first 
word of a double-precision operand (the high-order word) or the real 
part of the complex operand is used in the specified logical 
operation. 

The result of a logical operation is found by performing the specified 
operation simultaneously for each of the corresponding bits in each 
operand. r'or example, consider the expression A=C.OR.D, where C="456 
and D="201. The operation performed by the processor and the result 
j s: 

Word 
Bits 0 1 .. 24 25 26 27 28 29 30 31 32 33 34 35 
Operand C 0 0 ~O 0 0 1 0 0 I 0 1 I I 0 
Operand D 0 0 ·0 0 0 0 1 0 0 0 0 0 0 1 
Result A 0 0 .. 0 0 0 1 I 0 1 0 1 I 1 1 

Table 5-5 also illustrates all possible logical combinations of two 
one-bit binary operands (P and Q) and gives the result of each 
combination. Simply read 1 for true and 0 for false. 

If a logical expression is used as an operand in an arithmetic 
expression, its value is not converted to accommodate it to the type 
of any other operand. 

5.3.1 Logical Constant Expression 

A logical constant expression is a logical expression in which each 
operand is one of the following: 

1. A logical constant 

2. The symbolic name of a logical constant 

3. A relational expression in which each operand is a constant 
expression 

4. A logical constant expression enclosed in parentheses 

Variables, array elements, and function references are not allowed. 

Example: 

.NOT. (PARML1.NE.PARML2) 

where PARMLI and PARML2 are specified in a PARAMETER statement (see 
Sec t ion 7.8). 

5-10 



EXPRESSIONS 

5.4 RELATIONAL EXPRESSIONS 

Relational expressions consist of two arithmetic expressions or two 
character expressions combined by a relational operator. The 
relational operator allows you to test the relationship between two 
arithmetic or two character expressions. 

The result of a relational expression is always a logically true or 
false value. 

You can write relational operators either as 
enclosed within periods (for example, .GT.) 
equivalent, for example, >, instead of .GT. 

a 2-letter mnemonic 
or use the symbolic 

Table 5-6 lists the mnemonic and symbolic forms of the FORTRAN-10/20 
relational operators and specifies the type of test performed by each. 

Table 5-6: Relational Operators and Operations 

Operators Relation Tested 

Mnemonic Symbolic 

.GT. > Greater than 

.GE. >:= Greater than or equal to 

.LT. < Less than 

.LE. <~ Less than or equal to 

.EQ. - .- Equal to 

.NE. # Not equal to 

Relational expressions are of the general form A .op. B, where A and B 
represent arithml~tic or character operands, and .op. is a relational 
operator. 

You can mix arithmetic operands of type 
double-precision in relational expressions. 

integer, real, and 

A relational expression cannot be used to compare the value of an 
arithmetic expression with the value of a character expression. 
However, you can compare a num~ric expression to a character constant. 
In this case, the character '~onstant is considered to be a Hollerith 
(see Section 3.9). 

You can compare complex operands using only the operators .EQ. (==) 
and .NE. (#) • Complex quantiti,es are equal if the corresponding 
parts of both words are equal. 

For example, assume the following variables: 

Variables 

PHETT, RON 
I,J,K 
DP,D 
L,A,B 
CPX,C 
CHR,RA 

Type 

Real 
Integer 
Double-Precision 
Logical 
Complex 
Character 

5-11 



EXPRESSIONS 

Examples of valid relational expressions consisting of the above 
variables are: 

(PHETT) .GT.lO 
I -- 5 

C.EQ.CPX 
CHR.LT.RA 

Examples of invalid relational expressions consisting of the above 
variables are: 

(PHETT) .GT 10 (closing period missing from operator) 

C.GT.CPX (complex operands can only be compared by .EQ. 
and .NE. operators) 

RA.EQ.RON (you cannot compare arithmetic 
character operands) 

operands and 

Examples of valid expressions that use both logical and relational 
operators to combine the preceding variables are: 

( I • GT. 10). AND. (J. L E. K) 
( (I * RON) . EQ. (1/ J) ) • OR. L 
(I. AND. K) # ( (PHETT) . OR. (RON) ) 
'-:#CPX. OR. RON 

~ Logical expression is used as an operand in an arithmetic 
':~-"'DreSSlon, its value is not converted to accommodate it to the type 
i)f any other operand. 

In character relational expressions "less than" means "precedes in the 
ASCII collating sequence," and "greater than" means "follows in the 
ASCII collating sequence", for example: 

, AB ' / / ' Z Z Z' . LT. 'CCCCC' 

This expression tests whether 'ABZZZ' is less than 'CCCCC'. Since 
that relationship does exist, the value of the expression is true. If 
the relationship stated does not exist, the value of the expression is 
false. 

If the two character expressions in a relational expression are not 
the same length, the comparison is performed as if the shorter one is 
padded on the right with spaces until the lengths are equal, for 
example: 

, ABC' • EQ. 'ABC 

, AB' • LT • ' C ' 

The first relational expression has a value of true even though the 
lengths of the expressions are not equal, and the second has a value 
of true even though 'AB' is longer than 'C'. 

5-12 



EXPRESSIONS 

NOTE 

The rule that character relationals extend the shorter 
operand with spaces to match the length of the longer 
operand has an interesting effect when the longer 
string ends with characters in the range CHARCO) to 
CHAR(31) (ASCII control characters such as 'bell' and 
line feed). 

Since space is CHAR(32), the trailing spaces supplied 
as filler by FORTRAN compare being greater than 
trailing control characters. Thus, the string 'FOO' 
is .GT. 'FOO"G' (FOO followed by a bell). 

5.5 EVALUATION OF EXPRESSIONS 

The following considerations determine the order of computation of a 
FORTRAN expression: 

1. The use of parenthesEs 

2. An established hierarchy for the execution of arithmetic 
relational, and logical operations 

3. The location of operators within an expression 

5.5.1 Parenthetical Subexpressions 

In an expression, all sUbexpressions enclosed within parentheses are 
evaluated first. When parenthetical subexpressions are nested (one 
contained within another), the most deeply nested subexpression is 
evaluated first; the next most deeply nested sUbexpression is 
evaluated second; and so on, until the value of the final 
parenthetical expression is computed. 

When more than one operator is contained in a parenthetical 
subexpression, the required computations are performed according to 
the hierarchy assigned to operators by FORTRAN (see Section 5.5.2). 

For example, the separate computations performed in evaluating the 
expression A+B/«A/B)+C)-C are: 

1. Rl=A/B 

2. R2=Rl+C 

3. R3=B/R2 

4. R4=A+R3 

5. R5=R4-C 

where: 

Rl through R5 represent the interim and final results of the 
computations performed. 

5-13 



EXPRESSIONS 

5.5.2 Hierarchy of Operators 

The following hierarchy (order of execution) 
classes of FORTRAN operators: 

is assigned to the 

first, 
second, 
third, 

arithmetic operators 
relational operators 
logical operators 

Table 5-7 specifies the precedence assigned to the 
operators of the above classes. 

individual 

With the exception of exponentiation and integer division, all 
operations on expressions or subexpressions involving operators of 
equal precedence are computed in any order that is algebraically 
correct. 

A subexpression of a given expression may be computed in any order. 
For example, in the expression (F(X) + A*B), the function reference 
may be computed either before or after A*B. 

Table 5-7: Hierarchy of FORTRAN Operators 

--
Class Level Symbol or Mnemonic 

EXPONENTIAL First ** or 
... 

-'-
Second -(negation) and + (identity) 

ARITHMETIC Third * ,/ 
Fourth +,- _.-

RELATIONAL Fifth .GT.,.GE.,.LT.,.LE.,.EQ.,.NE. 
or 

>,>=,<,<=,==,# 
'-

Sixth .NOT. 
Seventh .AND. 

LOGICAL Eighth .OR. 
Ninth .EQV.,.NEQV. 

Operations specifying integer division are evaluated from left to 
right. For example, the expression I/J*K is evaluated as if it had 
been written as (I/J)*K), but this left-to-right evaluation process 
can be overridden by parentheses. I/J*K (evaluated as(I/J) *K) does 
not equal I/(J*K). 

When a series of exponentiation operations occurs in an expression, it 
is evaluated in order from right to left. For example, the expression 
A**2**B is evaluated in the following order: 

first Rl = 2**B (intermediate result) 
second R2 = A**RI (final result). 

As with other expressions, parentheses alter the evaluation of the 
above expression. The expression (A**2)**B is evaluated in theSE! two 
steps: 

first RI = A**2 (intermediate result) 
second R2 = RI**B (final result) 

5-14 



EXPRESSIONS 

5.5.3 Mixed-Mode Expressions 

Mixed-mode exprE!ssions arE~ evaluated on a basis of 
subexpression-by-subexpression r with the type of the results obtained 
converted and combined with other results or terms according to the 
conversion procedures described in Table 5-2. 

For example, assume the follow!ng variables and data types: 

Variables 

D 
X 
I,J 

Type 

Double-Precision 
Real 
Integer 

The mixed-mode expression D+X*(I/J) 
manner: 

is evaluated in the following 

1. Rl I/J Rl is integE~r 

2. R2 X*Rl Rl is converted to type real and is mUltiplied by X 
to produce H2 

3. R3 D+R2 R2 is convel:ted to type double-precision and is 
added to D to produce R3 

where: 

Rl and R2, and R3 repr(~sent the interim and final results 
respectively of the computations performed. 

5.5.4 Use of Logical Operands in Mixed-Mode Expressions 

When you use logical operands :_n mixed-mode expressions, the value of 
the log ical oper-and is not convertE~d in any way to accommoda te it to 
the type of the other operands in the expression. For example, in 
L*R, where L is type logical and R is type real, the expression is 
evaluated without convertinq L to type real. 

5.6 CONSTANT EXPRESSIONS 

A constant expression is an arithmetic constant expression (see 
Section 5.1.2), a character constant expression (see Section 5.2.1), 
or a logical constant expression (see Section 5.3.1). 

5-15 





CHAPTER 6 

EXECUTABLE AND NONEXECUTABLE STATEMENTS 

Each statement is classified as executable or nonexecutable. 
Executable statements specify actions and form an execution sequence 
in a program. Nonexecutable statements do the following: 

1. Specify characteristics, arrangement, and initial values of 
data 

2. Contain editing information 

3. Specify statement functions 

4. Classify program units 

5. Specify entry points within subprograms 

Nonexecutable statements are not part of the execution sequence. 
Nonexecutable statements may be labeled, but such statement labels 
must not be used to control the execution sequence. 

6.1 EXECUTABLE STATEMENTS 

The following statements are classified as executable: 

1. Arithmetic, logical, statement label (ASSIGN), and character 
assignment statements 

2. Unconditional GO TO, assigned GO TO, and computed GO TO 
statements 

3. Arithmetic IF, logical IF statements, and two-branch logical 
IF statements, IF THEN, ELSE, and ELSE IF THEN statements 

4. CONTINUE statement 

5. STOP and PAUSE statements 

6. DO and DO WHILE statements 

7. READ, REREAD, WRITE, and PRINT statements 

8. OPEN and CLOSE statements 

9. REWIND, BACKSPACE, ENDFILE, BACKFILE, SKIPRECORD, SKIPFILE, 
FIND and UNLOAD statements 

10. CALL and RETURN statements 

6-1 



EXECUTABLE AND NONEXECUTABLE STATEMENTS 

11. END, END IF, and END DO statements 

12. DECODE and ENCODE statements 

13. ACCEPT, PUNCH, and TYPE statements 

14. INQUIRE statement 

6.2 NONEXECUTABLE STATEMENTS 

The following statements are classified as nonexecutable: 

1. PROGRAM, FUNCTION, SUBROUTINE, ENTRY, 
statements 

and BLOCK DATA 

2. DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, PARAMETER, 
INTRINSIC, EXTERNAL, and SAVE statements 

3. INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and 
CHARACTER type-specification statements 

4. DATA statement 

5. FORMAT statement 

6. Statement function statement 

7. INCLUDE statement 

8. NAMELIST statement 

6.3 ORDERING OF FORTRAN STATEMENTS 

The order in which you place FORTRAN statements in a program unit is 
important. Certain types of statements must be processed before 
others to guarantee that compilation takes place as you expect. 

Figure 6-1 shows the required order of statements and comment 
within a program unit. Horizontal lines indicate (from the top 
diagram to the bottom) the order in which statements and comment 
must appear in a program. For example, a PROGRAM statement must 
before FORMAT statements. FORMAT statements, in turn, must 
before an END statement. 

lines 
of the 
lines 
occur 
occur 

Vertical lines in the diagram indicate how comment lines and 
statements may be interspersed in the program. For example, PARAMETER 
statements must be placed after all PROGRAM, FUNCTION, or SUBROUTINE 
statements, and before all statement function and executable 
statements. PARAMETER statements can be placed before, after, or 
between all IMPLICIT and other specification statements. Comment 
lines may be interspersed anywhere in a program. 

Generally if FORTRAN encounters statements that are out of place, it 
prints warning messages and continues compilation. In some cases, 
however, out-of-place statements cause the compiler to terminate 
compilation or generate unexpected results. 

6-2 



EXECUTABLE AND NONEXECUTABLE STATEMENTS 

Comment 
Lines 
and 
INCLUDE:i 

Statements 

PROGRAM, FUNCTION, SUBROUTINE, or 
BLOCI( DATA 1 Statements 

FORMAT 
and 
Entry2 
Statements 

IMPLICIT 
Statements 

NAMELIST 
and 
DATA 
Statements 

E'~D Statement 

Other 
Specification 
Statements 

PARAMETER 
Statements 

Statement 
Function 
Definitions 

Executable 
Statements 

1 BLOCK DATA subroutines cannot contain any executable statements, statement 
functions, FORMAT statements, EXTERNAL statements, INTRINSIC statements, 
or NAMELIST statements (See Section 14.1). 

2 The ENTRY statement is allowed only in functions or subroutines. All executable 
statements which reference an~1 dummy parameters must physically follow the 
ENTRY statement unless the references appear in the FUNCTION statement, the 
SUBROUTINE statement, or in a precedin9 ENTRY statement. 

:i The placement of an INCLUDE :,tatement is dictated by the types of statements to 
be included. 

Figure 6-1: Ordering of FORTRAN Statements 

NOTE 

In FORTRAN-IO/20, a DATA 
PARAMETER statement or 
statement. 

6-3 

statement 
another 

MR-S-3822-85 

can precede a 
specification 



EXECUTABLE AND NONEXECUTABLE STATEMENTS 

6.4 COMPILATION CONTROL STATEMENTS 

You use compilation control statements to identify FORTRAN programs 
and to specify their termination. Statements of this type do not 
affect either the operations performed by the object program, or the 
manner in which the object program is executed. The three compilation 
control statements are: 

1. PROGRAM statement 

2. INCLUDE statement 

3. END statement 

The PROGRAM statement and the INCLUDE statement are described in the 
following sections. The END statement is described in Section 9.8. 

6.4.1 PROGRAM Statement 

This statement allows you to give the main program a name 
the compiler-assumed name "MAIN." The general form 
statement is: 

other than 
of a PROGRAM 

PROGRAM name 

where: 

name is a symbolic name that begins with an alphabetic 
character and contains a maximum of six characters. 
(See Section 4.1 for a description of symbolic names.) 

The PROGRAM statement must be the first statement in a program unit. 
(see Section 6.3 for a discussion of the ordering of FORTRAN 
sta temen ts. ) 

6.4.2 INCLUDE Statement 

This statement allows you to include code segments or external 
declarations in a program unit without having them in the same file as 
the primary program unit. When an INCLUDE statement is encountered 
during compilation, the compiler replaces the INCLUDE statement with 
the contents of the specified file. The general form of the INCLUDE 
statement is: 

INCLUDE 'filespec [/switch]' 

where: 

filespec 

switch 

is a TOPS-IO or TOPS-20 file specification (refer 
to the TOPS-IO or TOPS-20 Operating System 
Commands manliaT):-- The only restricti~is-- that 
under---rfOps=lo you cannot speci fy subd i rectory 
information. 

is one of the following optional switches: 

/CREF indicates the included statements 
are to be used to augment the 
cross-reference listing (default). 

6-4 



EXECUTABLE AND NONEXECUTABLE STATEMENTS 

/LIST 

/NOLI3T 

/NOCREF 

indicates that the statement in the 
specified file is to be listed in 
t~e compilation source listing. A 
number indicating the depth of 
rlesting of include files precedes 
(>.3ch statement listed (default). 

indicates that the included 
statements are not to be prInted in 
tje compilation listing. 

indicates 
,; ta temen t s 
,j Llqmen t 
listjng. 

that the included 
are not to be used to 
the cross-reference 

The following rules govern the use of the INCLUDE statement: 

1. The INCLUDEd file can contain any legal ~ORTRAN statement 
except a statement that terminates the current program unit, 
such as the END, PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA 
statements. 

The INCL~DEd file can contain other INCLUDE statements. This 
is called nestinq INCLUDE statements. The number of nested 
levels i'3 restricted to 12. 

2. The proper placement of the INCLUDE statement within a 
program unit depends upon the types of statements to be 
INCLUDEd. (See Section 6.3 for information on the orderinq 
of FORTRAN statements.) 

3. The file to be INCLUDEd must be on disk. 

Note that an asterisk (*) is appended to the line numbers of the 
INCLUDEd statements on the compIlation listing. The level ot nesting 
is indicated following the asterisk. 

6-5 





CHAPTE1R 7 

SPECIFICATION AND DATA STATEMENTS 

Specification statements are used to specify 
storage allocation, and data arrangement. 
specification statements: 

1. DIMENSION 

type characteristics, 
There are ten types of 

2. Statements that explicitly specify type, including INTEGER, 
REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or CHARACTER 

3. IMPLICIT 

4. COMMON 

5. EQUIVALENCE 

6. EXTERNAL 

7. INTRINSIC 

8. PARAMETER 

9. DATA 

10. SAVE 

Specification statements are nonexecutable and must conform to the 
ordering guidelines described in Section 6.3. 

7.1 DIMENSION STATEMENT 

The DIMENSION statement provides FORTRAN with information needed to 
identify and allocate the space required for arrays. You may specify 
any number of subscripted array names as array declarators in a 
DIMENSION statement. The general form of a DIMENSION statement is: 

DIMENSION a(d) [,a(d) ••• ] 

where: 

each a(d) is an array declarator. An array declarator 
provides the name and dimension(s) of an array. 
An array declarator is written in the following 
form: 

a(d [,d •.• ]) 

7-1 



SPECIFICATION AND DATA STATEMENTS 

where: 

a is the symbolic name of the array. 

d is the array dimension declarator. The form of a dimension 
declarator is as follows: 

where: 

dl 

dl: ] d2 

is an optional integer 
variable specifying the 
The lower dimension bound 
that dimension of the 
specified the default is 

expression or integer 
lower dimension bound. 

is the first element in 
array. If dl is not 

1. 

d2 is an integer expression or integer variable that 
specifies the upper dimension bound. The upper 
dimension bound is the greatest element in that 
dimension of the array. You must have at least 
one d2 specification in each array declaration. 

If both dl and d2 are specified, dl cannot have a 
value greater than d2. The values dl and d2 can, 
however, be the same. 

An asterisk (*) can also occur as an upper bound, 
but only as the last dimension. An asterisk marks 
the declarator as an assumed-size array declarator 
(see Section 7.1.2). 

NOTE 

A dimension bound expression must not contain a 
function or array element reference. 

If the array is a dummy argument to a subprogram, then dl and d2 can 
be integer dummy arguments and d2 can be an asterisk; otherwise, they 
must be constants. 

If the symbolic name of a constant or variable that appears in a 
dimension bound expression is not of implicit default integer type 
(see Section 4.2), it must be specified integer by an IMPLICIT 
statement or a type-statement. 

Examples: 

DIMENSION EDGE (-1:1,4:8), NET (5,10,4), TABLE (567) 
DIMENSION TABLE (IAB:J,K,M,10:20) 

where: 

lAB, J, K, and M are of type integer. 

7-2 



SPECIFICATION AND DATA STATEMENTS 

7.1.1 Adjustable Dimensions 

When used within a subprogram, a declarator for an array that is a 
dummy argument can use integer dummy arguments as dimension bounds. 
The following rules govern the use of adjustable dimensions in a 
subprogram: 

1. The array name must be a dummy argument. Each variable that 
is used as a dimension bound must be either a dummy argument 
or in COMMON (see Section 7.4). 

2. For multiple entry suoprograms, if any variables that specify 
dimension bounds are dummy arguments which do not occur in 
the formal argument list of the entry point used, the value 
of the variables as passed for a prevIous call are used. 
However, this is only permitted if the subprogram has not 
changed those dummy arguments. Futhermore, when overlays are 
used, a SAVE statement that preserves the local variables of 
the subprogram is neejed. 

3. If the value of an array dimension variable is altered within 
the program, the dimensionality of the array is not affected. 

4. The size of an array within a subprogram cannot 
size of the original array, as defined in 
program. 

Example 1: 

SUBROUTINE SBR (ARRAY,Ml,M2,M3,M4) 
DIMENSION ARRAY(Ml:M2,M3:M4) 
DO 27 L=M3,M4 
DO 27 K=Ml,M2 
ARRAY (K,L)=VALUE 

27 CONTINUE 
END 

exceed the 
the calling 

In the example above, the dimensions of ARRAY will be re-specified 
each time the subroutine SBR is entered. 

Example 2: 

SUBROUTINE SBI (ARR1,M,N) 
DIMENSION ARRl(M,N) 
ARRl(M,N)=VALUE 
ENTRY SB2(ARRl,M) 
ENTRY SB3(ARRl,N) 
ENTRY SB4(ARRl) 

END 

In the example above, the first call made to the subroutine must be 
made to SBI so that all of the dimension bounds have defined values. 
If a call is made to SBI with the values M=ll and N=13, a succeeding 
call to SB2 will use the value N=13, but will give M a new value. If 
a succeeding call is made to SB4, the last values passed through 
entries SBl, SB2, or SB3 are used for M and N. 

7-3 



SPECIFICATION AND DATA STATEMENTS 

7.1.2 Assumed-size Arrays 

An assumed-size array is a dummy array for which the upper bound of 
the last dimension is specified as an asterisk(*), for example: 

SUBROUTINE SUB(A,N) 
DIMENSION A(l:N,l:*) 

Since storage for array A is allocated in the calling routine, the 
upper bound of the rightmost dimension of A does not affect the 
subscript calculations or storage allocation for A. 

Therefore, subroutine SUB can be written to handle arguments with any 
rightmost dimension (the last subscript is never range checked for 
being too large, even when the /DEBUG:BOUNDS compiler switch is 
specified). Such a subroutine can declare assumed-size arrays. 

The size of an assumed-size array, and the number of elements that can 
be referenced, are determined as follows: 

1. If the actual argument corresponding to the dummy array is a 
noncharacter array name, the size of the dummy array is the 
size of the actual-argument array. 

2. If the actual argument corresponding to the dummy argument is 
a noncharacter array element name, with a subscript value of 
s in an array of size a, the size of the dummy array is: 
a+l-s. 

3. If the actual argument is a character-array name, 
character-array element name, or character-array element 
substring name, and begins at character storage unit b of an 
array with n character storage units, the size of the dummy 
array is INT«n+l-b)/y). Where y is the length of an element 
of the dummy array. 

Because the actual size of an assumed-size array is not known, an 
assumed-size array name cannot be used as: 

1. An array name in the list of an I/O statement 

2. A unit identifier for an internal file in an I/O statement 

3. A format specifier in an I/O statement 

4. A NAMELIST statement element 

7.2 TYPE SPECIFICATION STATEMENTS 

Type specification statements explicitly declare the data type of 
variables, arrays, or function names. You can give an array name in a 
type specification statement, either alone (unsubscripted) to declare 
the type of all its elements, or with dimension bounds, to specify 
both its type and dimensions. 

There are two forms of type specification statements: numeric type 
specification (see Section 7.2.1) and character type specification 
(see Section 7.2.2). 

7-4 



SPECIFICATION AND DATA STATEMENTS 

7.2.1 Numeric Type Specification Statements 

The general form of numeric type specification statements is: 

type v [ , v ••• ] 

where: 

type 

v 

Examples: 

can be anyone of the following declarators: 

1. INTEGE:R 

2. REAL 

3. DOUBLE: PRECISION 

4. COMPLE:X 

5. LOGICJ,L 

is a variable, array, or function name to be declared 
the specified type. The names listed must be separated 
by commas and can appear in only one type statement 
within a program unit. 

INTEGER A, a, TABLE, FUNC 
REAL R, M, ARRAY(5:l0,lO~20,5) 

If a name that is the same as an intrinsic FORTRAN function name 
appears in a conflicting type statement, it is assumed that the name 
refers to a user-defined routine, variable, or array of the given 
type. If you place a generic FORTRAN function name in an explicit 
type statement, it loses its qeneric properties. 

NO'I'E 

The data type size modifier, *n, is accepted by 
FORTRAN-IO/20 to be compatible with the type 
statements used by other manufacturers. You may 
append this size mod-.fier to the declarators, causing 
some to E~licit messagE~s warning users of the form of 
the variable specified by FORTRAN-IO/20: 

Declarator Forn of Variable Specified 

INTEGER*2 Full word integE~r with warning message 
INTEGER*4 Full word i n tegE~r 
LOGICAL*1 Full word logical with warning message 
LOGICAL*2 Full word logical with warning message 
LOGICAL*4 Full word logical 
REAL*4 Full word real 
REAL*8 Doubl e-pr~?c is ion real 
COMPLEX*8 Complex 
COMPLEX*16 Complex with warning message 
REAL*16 Doubl e-prl?c is ion real with warning message 
COMPLEX*32 Complex with wal::'ning message 

7-5 



SPECIFICATION AND DATA STATEMENTS 

fn addition, you can append the data 
~ype size modifier to individual 
variables, arrays, or function names. 
Its effect is to override, for the 
particular element, the size modifier 
(explicit or implicit) of the primary 
type. For example, 

HEAL*4 A, 8*8, C*8(lO}, D 

A ~nd D are single-precision (one word) 
real, and Band C are double-precision 
(two words for each element) real. 

7.2.2 Character Type Specification Statements 

The form of the character type specification statement is: 

CHARACTER [*len[,]] v[*len] [,v[*len]] ••• 

where: 

v is one of the following: 

• The name of a symbolic constant, variable, array, or 
function subprogram 

• An array declarator 

len is the length of the character data item and is one of the 
following: 

• An unsigned, nonzero integer constant 

• An integer constant expression enclosed in parentheses 
and with a positive value 

• An asterisk enclosed in parentheses 

If you specify CHARACTER*len, len is the default length specification 
for that list. If an item in that list does not have a length 
specification, the item's length is len. But if an item does have a 
length specification, it overrides the default length specified in 
CHARACTER*len. 

A length specification of asterisk (for example, CHARACTER*(*» 
specifies that a dummy argument or function name assumes the length 
specification of the corresponding actual argument or function 
reference (see Chapter 13). A length specification of asterisk for 
the symbolic name of a constant specifies that the symbolic constant 
assumes the actual length of the constant that it represents. 

If you do not specify a length, a length of one is assumed. Note that 
a length specification of zero is invalid. You can use a character 
type declaration statement to define arrays by including array 
declarators (see Section 4.3.2) in the list. If you specify both an 
array declarator and a length, the array bounds precede the length, 
the form is: 

a [ (d) ] [*len] 

7-6 



SPECIFICATION AND DATA STATEMENTS 

where: 

a is an array name, and a(d) is an array declarator. 

Examples of character type specification statements follow: 

CHARACTER*32 SOCSEC(lOO)~9, NAMES(lOO) 

The above stateme'nt specifies an array SOCSEC comprising one hundred 
9-character elements, and an array NAMES comprising one hundred 
32-character elements. 

PARAMETER (LENGTH=4) 
CHARACTER* (4 +LENGTH) LAS~I, FIRST 

The above statements specify two 8-character variables, LAST and 
FIRST. (The PARAMETER statemEmt is described in Section 7.8.) 

SUBROUTINE SI(BUBBLE) 
CHARACTER LETTER(26), BUBBLE*(·) 

The above statements specify an array LETTER comprising twenty-six 
I-character elements and a dummy argument, BUBBLE, which has a length 
defined by the cCllling program. 

CHARACTER*16 QUEST* (5*IN~1 (A» 

The above statement is invalid. The length specifier for QUEST is not 
an integer constant expression. 

7.3 IMPLICIT STATEMENTS 

IMPLICIT statements declare the data type of variables and functions 
according to the first letter of each symbolic name. The IMPLICIT 
statement has two forms: 

IMPLICIT type (a[,a] ••• )[,type (a[,a] .•• )] ••• 

IMPLICIT NONE 

As shown in the statement above, an IMPLICIT statement consists of one 
or more type declarators sE~parated by commas. Each type declarator 
has the form: 

type (a[,a] .•• ) 

where: 

type can be anyone of the following declarators: 

1. INTEGER 

2., REAL 

3., DOUBLE PRECISION 

4., COMPLEX 

5" LOGICAL 

6" CHARACTER [,'" len] 

7-7 



SPECIFICATION AND DATA STATEMENTS 

a is an alphabetic specification in either of the general 
forms: c or cl-c2, where c, cl, or c2 is an alphabetic 
character. The latter form specifies a range of 
letters, from cl through c2, which must occur in 
alphabetical order. 

When you specify type as CHARACTER*len, len specifies the length for 
character data type. Len is an unsigned, nonzero integer constant or 
an integer constant expression enclosed in parentheses and with a 
positive value. If you do not specify a length, a length of one is 
assumed. 

Each letter in a type declarator list specifies that each symbolic 
name (not declared in an explicit type specification statement) 
starting with that letter is assigned the data type named in the 
declarator. For example, the statement: 

IMPLICIT REAL (R,M,N,O) 

declares that all names that begin with the letters R, M, N, or 0 are 
type REAL names, unless declared otherwise in an explicit type 
statement. 

NOTE 

Type declarations given in an explicit type 
specification override those also given in an IMPLICIT 
statement. IMPLICIT declaratinns do not affect 
intrinsic functions. The length is also overridden 
when a particular name appears in a CHARACTER or 
CHARACTER FUNCTION statement (see Chapter 13). 

You may specify a range of letters within the alphabet by writing the 
first and last letters of the desired range separated by a dash, for 
example, A-E for A,B,C,D,E. 

Thus, the statement: 

IMPLICIT INTEGER (I,L-P) 

declares that all symbolic names that begin with the 
I,L,M,N,O, and P are of type INTEGER. 

letters 

You may use more than one IMPLICIT statement, but they must appear 
before any other declaration statement in the program unit. (See 
Section 6.3 for a discussion on ordering FORTRAN statements.) 

The same letter must not appear as a single letter, or be included in 
a range of letters, more than once in all of the IMPLICIT statements 
in a program unit. 

You can use an IMPLICIT NONE statement to provide warning messages for 
variables not explicitly declared, including variables implicitly 
declared by other IMPLICIT statements. If you specify IMPLICIT NONE, 
no other IMPLICIT statement should be included in the program unit. 

7.4 COMMON STATEMENT 

The COMMON statement enables you to establish storage that may be 
shared by two or more programs and/or subprograms, and to name the 
variables and arrays that are to occupy the common storage. The use 
of common storage conserves storage and provides a means to reference 
the same data in different subprograms without passing arguments. 

7-8 



SPECIFICATIOlJ AND DATA STATEMENTS 

COMMON statements have the fo~lowing form: 

COMMON [/cb/] nlist[[,]/[cb]/nlist] •.. 

where: 

cb is an optional common block name. 
the rules for ~;ymbol ic names.) 

(See Section 4.1 for 

nlist is a list of variablE~ names, array names, and array 
dE~clarators that are to occupy the common area. The 
items specified for a common area (block) are ordered 
within storagc~ as they are listed in the COMMON 
statement. 

The items in nlist must 
character data type. 
character data. 

be (~ither all numeric data type or all 
A common block cannot contain both numeric and 

A symbolic name can be used to identify each block. However, you 
omit the symbolic name fo~ one block in a program unit. 
unlabeled block is called the blank common block. 

can 
This 

The elements of a named commOll block can be assigned initial values by 
DATA statements appearing ill the BLOCK DATA subprograms (see Chapter 
14). In standard-conforming programs, the elements of the blank 
common block may not be assigned initial values. However, 
FORTRAN-lO/20 allows any comml)n block elements to be defined in a DATA 
statement in any program unit. 

A given common block name may appear more than once in the same COMMON 
statement, and in more th.3n one COMMON statement within the same 
program or subprogram. 

When extended addressing is i~ effect, COMMON blocks reside in the 
large data area by def3ult. However, the /EXTEND:COMMON or 
/EXTEND:NOCOMMON switches can be used to explicitly allocate COMMON 
blocks in the large data area or small data area (see Section 16.5). 

During compilation of a source program, FORTRAN strings together all 
items listed for each commo~ block in the order in which they appear 
in the source program. For e~ample: 

COMMON X,Y,Z/STl/A,B 

COMMON/STl/TST(3,4)/ST2/rAB(2,2) 

COMMON/ST2/C,D,E//P,Q 

COMMON W 

has the same effect as the si,gle statement: 

COMMON X,Y,Z,P,Q,W/STl/A,B,TST(3,4)/ST2/TAB(2,2),C,D,E 

All elements specified for a common block are placed into one area. 
Common block names must be unique with respect to all subroutine, 
function, and entry point names. 

7-9 



SPECIFICATION AND DATA STATEMENTS 

NOTE 

If you use overlays, you can use the SAVE statement to 
retain the value of variables in a named common across 
overlays (see Section 7.10). (Blank common is always 
saved.) 

For example: 

Main Program 

COMMON DELTA, LENGTH 
COMMON /COMI/KILOS,PRICE 

CALL CALC 

Subprogram 

SUBROUTINE CALC 
COMMON/COMl/N,A 
COMMON Z,KOUNT 

The COMMON statements in the main program put DELTA and LENGTH into 
the blank common block, and put KILOS and PRICE into a common block 
named COM1. 

The COMMON statements in the subroutine make Z correspond to DELTA in 
the main program, KOUNT correspond to LENGTH, N correspond to KILOS, 
and A correspond to PRICE. 

To prevent conflict with other COMMON blocks, LINK requires that the 
largest definition for each common block be loaded first. 

7.4.1 Dimensioning Arrays in COMMON Statements 

Array names with dimension bounds can be given in COMMON statements. 
However, variables cannot be used as dimension bounds in a declarator 
appearing in a COMMON statement; adjustable dimensioning is not 
permitted in COMMON. 

Each array name given in a COMMON statement must be dimensioned either 
by the COMMON statement or by another dimensioning statement within 
the program or subprogram that contains the COMMON statement, but not 
both. 

For examples, 

COMMON /A/B(lOO), C(lO,lO) 
COMMON X(5,15) ,Y(5) 

7.4.2 Character Data in COMMON 

Each character variable in a COMMON block is allocated to start at the 
first available character position. 

For example, 

CHARACTER B*3,C*3,D(3)*2 
COMMON B,C,D 

7-10 



SPECIFICATION AND DATA STATEMENTS 

The COMMON block will be allocated in the following way: 

B C 0(1) 0(2) 0(3) Unused 
rr----',A------..,,--~----...\f~~ ~ r,,------A----___ , 

I x I x I x I 

o 7 14 21 28 35 0 7 14 ~!1 28 35 0 7 14 21 28 35 
MR-S-252783 

where x means the bits are not used. 

7.5 EQUIVALENCE STATEMENT 

The EQUIVALENCE statement associates two or more variables with the 
same storage location. 

The format of the EQUIVALENCE HtatemE~nt is: 

EQU I VALENCE (n lis t) [, (n Ii!; t ••• ) ] 

where: 

nlist is a list of variablE~ names, array elements, array 
names, and chal~acter substring references separated by 
commas and enclosed in parentheses. You must specify 
two or more of these items in each list. 

In an EQUIVALENCE statement, each expression in a subscript or a 
substring reference must be an integer constant expression. 

The EQUIVALENCE statement a:.locatE!s 
parenthesized list beginning at the 
example, the statements: 

EQUIVALENCE (,A,B,C) 
EQUIVALENCE (LOC,SHARE{3): 

all of the items in 
same storage location. 

one 
For 

specify that the variables A, B, and C are to share the same storage 
location, and that: the variablE! LaC and the array element SHARE(3) are 
to share the same location. 

The relationship of equivalence is transitive. 
following statements have the game effect: 

EQUIVALENCE ('A,B) , (B,C) 
EQUIVALENCE (A,B,C) 

For example, the 

The following EQUIVALENCE statE~ment makes the first character of the 
character variables KEY and STAR share the same storage location. The 
character variable STAR is equjvalent: to the substring KEY (l:lO): 

CHARACTER KEY*16, STAR*lO 
EQUIVALENCE (KEY,STAR) 

You can equivalence variables of different numeric data types. 
Character variables must not: be equivalenced to numeric variables. 
For example, you can equivalence a real variable equivalent to a 
complex variable. In this case, since each complex variable occupies 

7-11 



SPECIFICATION AND DATA STATEMENTS 

two words of storage, and each single-precision variable occupies one 
word of storage, if you equivalence a real and a complex variable, the 
real variable shares storage with the real part of the complex 
variable. Figure 7-1 depicts the shared storage when a complex 
variable is equivalenced with a real variable. 

Source Program Statements: 

COMPLEX A 
REAL B 
EQUIVALENCE (A,B) 

1. Memory Location 
A or B 

2. Second Part of 
Memory Location A 

Stores: Real Part of Complex A 
or Entire Real B 

Stores: Imaginary Part of 
Complex A 

~-------------------------~ 

1--36-8il word--! 
MR-S-1764-81 

Figure 7-1: Shared Storage using EQUIVALENCE Statement 

The EQUIVALENCE statement does not imply (or perform) any type 
conversions. If you equivalence a real variable and an integer 
variable, the data within the equivalenced location will be treated as 
a real or integer number, depending on whether it is referenced by the 
real or integer variable. 

If you equivalence a real variable with a double-precision variable, 
the data in the high-order word of the double-precision variable will 
be used by the real variable. For positive D-floating 
double-precision numbers (see Section 3.4), the high-order word is in 
the same format as a single-precision number. 

For G-floating double-precision numbers (KL model B only - see Section 
3.4), the high-order word is not in the format of a single-precision 
number. Thus, equivalencing a real variable and a G-floating 
double-precision variable will produce incorrect results. 

Equivalencing a negative D-floating number and a real variable may not 
produce correct results either, for example the number: 

577000000000 000000000001 
777777777777, almost 1.0) 

(the negative of 200777777777 

does not have a valid single-precision number in its high-order word. 

If you equivalence an array and a variable, the array does not assume 
any of the properties of the variable, and the variable does not 
assume any of the properties of the array. 

When you use an array element in EQUIVALENCE statements, it must have 
either as many subscripts as dimensions of the array, or only one 
subscript. In either case, the subscripts must be integer constants. 
Note that the single subscript case treats the array as a 
one-dimensional array of the given type. 

7-12 



SPECIFICATION AND DATA STATEMENTS 

The following example shows the effect 
I-dimensional and a 2-dimensional array: 

DIMENSION A(3,2) ,B(6) 
EQUIVALENCE (A(l,l) ,B(l» 

or 
EQUIVALENCE (A(l),B (1» 

of equivalencing a 

In this example, each array elE~ent of array A shares the same storage 
area with an element of array B: 

A(I,l) 
A(2,1) 
A(3,1) 
A(1,2) 
A(2,2) 
A(3,2) 

B(l) 
B (2) 
B(3) 
B (4) 
B(5) 
B(6) 

Specifying an array name wjthout subscripts in an EQUIVALENCE 
statement is the same as specifying the first element of the array. 

When you make one character substring equivalent to another character 
substring, the EQUIVALENCE statement also sets equivalences between 
the other corresponding characters in the character strings, for 
example, 

CHARACTER NAME*16, 10*9 
EQUIVALENCE (NAME (10: 13), ID (2: S) ) 

As a result of these statements, the character variables NAME and ID 
share space as illustrated in rigure 7-2. 

NAME 
Character 
Position 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 

1 '. I.-

1 ~I 

1 t!~ 

H. 

Hi 

10 
Character 
Position 

1 

2 

3 

4 

5 

6 

7 

8 

9 
MR-S-2523-83 

Figure 7-2: Equivalence of Substrings 

7-13 



SPECIFICATION AND DATA STATEMENTS 

The following statement also aligns the variables as shown in Figure 
7-2: 

EQUIVALENCE (NAME(9:9) ,ID(l:l)) 

If the character substring references are 
EQUIVALENCE statement sets equivalences 
corresponding characters in the complete arrays. 

array elements, 
between the 

the 
other 

Character elements of arrays can overlap at any character posit.ion, 
for example: 

CHARACTER FIELDS(6)*4, STAR(5)*5 
EQUIVALENCE (FIELDS(l) (2:4), STAR(2) (3:5)) 

As a result of these statements, the character arrays FIELDS and STAR 
share storage space as shown in Figure 7-3. 

STAR 

Character 
Position Subscript 

1 1 

2 

3 
FIELDS 4 

Character 5 

Subscript Position 1 2 

1 1 2 

2 3 

3 4 

4 5 

2 1 1 3 

2 2 

3 3 

4 4 

3 1 5 

2 1 4 

3 2 

4 3 

4 1 4 

2 5 

3 1 5 

4 2 

5 1 3 

2 4 

3 5 

4 

6 1 

2 

3 

4 
MR-S-2S24-83 

Figure 7-3: Equivalence of Character Arrays 

7-14 



SPECIFICATION AND DATA STATEMENTS 

General EQUIVALENCE Restrictions: 

1. You cannot cause two different elements of an array to become 
equivalenced to each other. Thus, the following statement 
sequence is prohibited because it specifies the same storage 
location (B) for A(l) and A(2): 

DIMENSION A(2) 
EQUIVALENCE (A(l) ,B), (A(2) ,B) 

2. An EQUIVALENCE statement must not specify that two 
consecutive locations are nonconsecutive. For example, the 
following statement sequence is prohibited because B(l) takes 
two storage locations, the second of which would make A(2) 
nonconsecutive to A(l): 

INTEGER A(2) 
DOUBLE PRECISION B(2) 
EQUIVALENCE (A(l) ,B(l)), (A(2) ,B(2)) 

3. An EQUIVALENCE statement in a SUBROUTINE or FUNCTION 
subprogram must not refer to an argument of the subprogram. 
For example, the following statement sequence is prohibited: 

SUBROUTINE A(B,C) 
EQUIVALENCE (B,X) 

4. You cannot cause two different substrings of the same 
character variables or arrays to become equivalenced to each 
other. For example, the following statement sequence is 
prohibited because it specifies the same substring B(1:3) for 
A(1:3) and A(2:4): 

CHARACTER A(3)*4,B*4 
EQUIVALENCE (A(l) (1:3) ,B(1:3)), (A(l) (2:4) ,B(1:3)) 

5. You also cannot use the EQUIVALENCE statement to assign 
memory locations in a way that is inconsistent with the 
normal linear storage of character variables and arrays. For 
example, the following statement sequence is prohibited 
because it would require the character variable B(2:2) to be 
equivalent to both A(l) (2:2) and A(l) (1:1): 

CHARACTER A(2)*lO,B*lO 
EQUIVALENCE (A(l) (1:3) ,B(1:3)), (A(l) (4:6) ,B(5:7)) 

Restrictions on EQUIVALENCE and COMMON: 

1. You cannot use the EQUIVALENCE statement to equivalence two 
elements in different common blocks. Thus, the following 
statement sequence is prohibited: 

COMMON /BLOCKl/A,B,F/BLOCK2/C,D,E 
EQUIVALENCE (A,C) 

2. You cannot set two quantities declared in a COMMON block to 
be equivalent to one another. Thus, the following statement 
sequence is prohibited: 

COM~MON A,B,C 
EQUIVALENCE (A,C) 

7-15 



SPECIFICATION AND DATA STATEMENTS 

3. Quantities placed in a common area by means of an EQUIVALENCE 
statement are permitted to extend the end of the common area 
forward. For example, the statements: 

COMMON/R/X,Y,Z 
DIMENSION A(4) 
EQUIVALENCE (A,Y) 

cause the common block R to extend from Z to A(4) arranged as 
shown in Figure 7-4. 

Location X 

Location Y and A(1) } 

~-----------t Shared Locations 

Location Z and A(2) 

Location A(3) 

Location A( 4) 

MR-S-1746-81 

Figure 7-4: Valid Equivalencing 

4. You cannot use EQUIVALENCE statements that cause the start of 
a common block to be extended backwards. For example, the 
invalid sequence: 

COMMON/R/X,Y,Z 
DIMENSION A(4) 
EQUIVALENCE(X,A(3) ) 

would require A(l) and A(2) to extend the starting location 
of block R in a backwards direction as illustrated in Figure 
7-5. 

Location A(1) 

Location A(2) 

Location X and A(3) } 

t-----------I Causes COMMON R to Extend Backward 

Location Y and A(4} 

Location Z 

MR-S-1747-81 

Figure 7-5: Invalid Equivalencing 

7-16 



SPECIFICATION AND DATA STATEMENTS 

7.5.1 EQUIVALENC:E: and Extended Addr1essing 

When extended addressing is in effect, and an EQUIVALENCE statement 
causes a variable to be in COMMON, that variable resides in the same 
psect as the rest of the COMMON block. 

For variables not in COMMON, if you equivalence a large variable 
(default 10,000 or more words) with other variables (including 
scalars), all these variables will reside in the large data psect. 
For example, 

REAL A(20000),X 
EQUIVALENCE (A(l),X) 

causes variable X to be placed in the large data psect, since it is 
equivalenced with a large array. 

Conversely, if each equivalence variable is small (default less than 
10,000 words), they will reside in the small data psect, even if the 
total size of the equivalence class is over the small variable limit. 
For example, 

REAL A(8000) ,B(8000) 
EQUIVALENCE (A (8000), B (1» 

The arrays will reside in the small data psect, because each one is 
smaller than 10,000 words. 

See Sections 15.4.11 and 16.5 for more information on extended 
addressing. 

7.6 EXTERNAL STATEMENT 

Any user subprogram name to be used as an argument to another 
subprogram must appear in an EXTERNAL statement in the calling 
subprogram. The EXTERNAL statement declares names to be subprogram 
names to distinguish them from other variable or array names. 

The subprograms mentioned in the EXT:E:RNAL statement cannot be FORTRAN 
intrinsic functions; they can be only user-supplied functions, 
subroutines, or block data subprograms. (The INTRINSIC statement 
discussed in Section 7.7 allows intrinsic function names to be used as 
arguments.) The EXTERNAL state~ent has the following form: 

EXTERNAL proc[,proc •.• ] 

where: 

proc is the symbolic name of a user-supplied subprogram, the 
name of a dummy argument associated with the name of a 
subprogram, or a block data subprogram. 

The EXTERNAL statement declares each symbolic name included in it to 
be the name of an external procedure, even if a name is the same as 
that of an intrinsic function. For example, if SIN is specified in an 
EXTERNAL statement (EXTERNAL SIN), all subsequent references to SIN 
are to a user-supplied function name SIN, not to the intrinsic 
function of the same name. 

The name specified in an EXTERNAL statement can be used as an actual 
argument to a subprogram, which can then use the corresponding dummy 
argument in a function reference or a CALL statement. 

7-17 



SPECIFICATION AND DATA STATEMENTS 

NOTE 

Note that a complete function reference 
argument, for instance, FUNC(B) in 
(A(FUNC(B) ,C», represents a value, not a 
A complete function reference is not, 
defined in an EXTERNAL statement. 

used as an 
CALL SUBR 

subprogram. 
therefore, 

The interpretation of the EXTERNAL statement described above is 
different from that of earlier versions of FORTRAN-lO/20. :f the 
INOF77 compiler switch is specified (see Sections 16.1.3 and 16.2.3), 
lhe subprogram names can be intrinsic functions. 

Por compatibility with previous versions of FORTRAN-10/20, 
of external subprograms can be preceded by an asterisk 
ampersand (&) within an EXTERNAL statement. For example, 

EXTERNAL *SIN, &COS 

the 
(* ) 

names 
or an 

declares SIN and COS to be user subprograms. (If a prefixed name is 
not an intrinsic function, then the prefix is ignored.) 

Note that specifying an intrinsic function in an EXTERNAL 
without a prefix (that is, EXTERNAL SIN) has no effect upon 
of the function name outside of actual argument lists. If 
has generic properties, they are retained outside the actual 
1 ist. (The name has no generic properties within an argument 

statement 
the usage 
the name 
argument 
list.) 

The names declared in a program EXTERNAL statement are reserved 
throughout the compilation of the program, and cannot be used in any 
declarator statement other than a type statement. 

7.7 INTRINSIC STATEMENT 

The INTRINSIC statement allows you to use intrinsic function names as 
arguments to subprograms. See Section 13.1 for further information on 
intrinsic functions. 

The INTRINSIC statement has the form: 

INTRINSIC fun[,fun] ••• 

where: 

fun is the symbolic name of an intrinsic function. 

The INTRINSIC statement declares each symbolic name included in it to 
be the name of an intrinsic procedure. This name can then be used as 
an actual argument to a subprogram, which can use the corresponding 
dummy argument in a function refe~ence or a CALL statement. 

The appearance of a generic function name in an INTRINSIC statement 
does not cause that name to lose its generic property. 

7-18 



SPECIFICATION AND DATA STATEMENTS 

NOTE 

You cannot use a generic-only name in an INTRINSIC 
statement. The generic name must be the same as an 
instrinic function name. For example, 

INTRINSIC LOG 

is illegal because there is no function named 'LOG'. 
LOG is the generic name that selects between functions 
such as ALOG, DLOG, or CLOG. 

Only one appearance of a symbolic name is permitted in all of the 
INTRINSIC statements of a program unit. Also, a symbolic name must 
not appear in both an EXTERNAL and an INTRINSIC statement in a program 
unit. 

An example of the use of the EXTERNAL and INTRINSIC statements 
follows: 

Main Program 

EXTERNAL CTN 
INTRINSIC SIN, COS 

CALL TRIG(ANGLE,SIN,SINE) 

CALL TRIG(ANGLE,COS,COSINE) 

CALL TRIG(ANGLE,CTN,COTANT) 

Subprograms 

SUBROUTINE TRIG(X,F,Y) 
Y = F(X) 
RETURN 
END 

FUNCTION CTN(X) 
CTN = COS(X)/SIN(X) 
RETURN 
END 

In this example, when TRIG is called with a second argument of SIN or 
COS, the function reference F(X) references the math library functions 
SIN and COS; but when TRIG is called with a second argument of CTN, 
F(X) references the user function CTN. 

7-19 



SPECIFICATION AND DATA STATEMENTS 

7.8 PARAMETER STATEMENT 

The PARAMETER statement allows you to define constants symbolically 
during compilation. 

The general form of the PARAMETER Statement is: 

PARAMETER (p=c[,p=c) ••. ) 

where: 

P is a s~nbolic name. 

c is a constant expression (except for expressions involving 
multiplication, division, or exponentiation of complex 
numbers). (See Chapter 3 for a descr ipt ion of FORTRAN 
constants.) 

The constant acquires the same data type as the symbolic name. If the 
symbolic name is of type integer, real, double precision, or complex, 
the corresponding expression (c) must be an arithmetic constant 
expression (see Section 5.1.2). If the symbolic name is of type 
character or logical, the corresponding expression (c) must be a 
character constant expression (see Section 5.2.1) or a logical 
constant expression (see Section 5.3.1), respectively. 

The data type of a symbolic name defined to be a constant is specified 
by a type-statement or IMPLICIT statement preceding the defining 
PARAMETER statement. Also, if the length specified for the symbolic 
name of a character constant is not the default length of one, its 
length must be specified by a type-statement or IMPLICIT statement 
preceding the symbolic name of the constant. 

NOTE 

The form and the interpretation to the PARAMETER 
statement described above are different from those of 
the PARAMETER statement provided in earlier versions 
of FORTRAN-IO/20. The earlier version is described 
below. This form and interpretation can still be 
used, however a warning message will be issued. This 
form of the PARAMETER statement is: 

PARAMETER p=c[,p=c ••• ] 

The symbolic name acquires the same data type as the 
constant. 

During compilation, the symbolic names are replaced by their 
associated constants, provided the following rules are observed: 

1. Symbolic names may appear only where FORTRAN constants are 
acceptable. 

2. Symbolic name references must appear after the PARAMETER 
statement definition. 

3. Symbolic names must be unique with respect to all other names 
in the program unit. 

7-20 



SPECIFICATION AND DATA STATEMENTS 

4. Symbol ic names must r!ot be redef ined in subsequent PARAMETER 
statements. 

5. Symbolic names must not be used as part of another constant, 
such as within a character constant or as the count for a 
Hollerith constant. 

6. Symbolic names must not be used as part of a format 
specification. 

7.9 DATA STATEMENT 

DATA statements are used to supply the initial values of variables, 
arrays, array elements, substrings, and COMMON areas. 

The form of th~ data statement. is: 

DATA nlist/clist/ [[,]nlist/clist/] •.. 

where: 

nlist identifies a set of items to be initialized. 

clist contains the set of values to be assigned the items in 
nlist. 

For example, the statement: 

DATA IA/5/,IB/IO/,IC/15/ 

initializes variable IA to the value 5, variable IB to the value 10, 
and variable IC to the value 15. The number of storage locations you 
specify in the list of variab]es must be equal to the number of 
storage locations you specjfy in its associated list of values. If 
not, a warning m€!ssage is output. 

When the value list specifies more storage locations than the variable 
list, the excess values are ignored. When the value list specifies 
fewer storage locations than the variable list, the excess variables 
are not initialized. 

The nlist portion of each nlist/clist/ set can contain the names of 
one or more variables, array names, array elements, character 
substring names, or labeled COMMON variables. You may specify an 
entire array (unsubscripted array name) or a portion of an array in a 
DATA statement nlist as an implied DO loop construct. (See Section 
10.4.9.2 for a description of implied DO loops.) 

The form of an implied-DO list: in a DATA statement is: 

(dlist,i=n1,n2[,n3]) 

where: 

d1ist 

i 

is a list of array element names, character substring 
names, or impljed-DO lists. 

is the name of an integer variable, called the loop 
index variable. 

n1,n2,n3 are integer E~xpressions that can contain 
constants and loop index variables. 

integer 

7-21 



SPECIFICATION AND DATA STATEMENTS 

For example, the statement: 

DATA (NARY(I) ,I=1,S)/1,2,3,4,S/ 

initializes the first five elements of array NARY as NARY(l)=l, 
NARY(2)=2, NARY(3)=3, NARY(4)=4, and NARY(S)=S. 

When you use an implied DO loop in a DATA statement, the loop index 
variable must be of type INTEGER, and the Initial, Terminal, and 
Increment parameters of the loop must be of type INTEGER. 

In a DATA statement, references to an array element or substring must 
be integer expressions in which all terms are either integer constants 
or indices of embracing implied DO loops. These types of integer 
expressions can include the exponentiation operator. 

The clist portion of each nlist/clist/ set can contain one 
numeric, logical, Hollerith, octal, hexadecimal, or 
constants. You may specify literal data as either a 
sgecific3tion, for example, SHABCDE, or a string enclosed 
quotes, for example, 'Abcde'. Each ASCII data item 
left-justified and is padded with blanks if necessary. 

or more 
character 
Hollerith 
in single 

is stored 

When you assign the same value to more than one item in nlist, a 
repeat specification may be used. The repeat specification has the 
form: 

n*d 

where: 

n is an integer that specifies how many times the value d is 
to be used. For example, a clist specification of /3*20/ 
specifies that the value 20 is to be assigned to the first 
three items named in the preceding list. The statement: 

DATA M,N,L/3*20/ 

assigns the value 20 to the variables M, N, and L. 

When the specified data type is not the same as that of the variable 
to which it is assigned, FORTRAN converts the data item to the type of 
the variable. The type conversion is performed using the rules 9iven 
for type conversion in arithmetic assignments. (See Table 8-1.) 
Octal, logical, Hollerith, hexadecimal, and character constants are 
not converted. 

Sample Statement Result 

DATA PRINT,I,0/'TEST',30, 11 77/, (TAB(J),J=1,30)/30*S/ The first 30 
elements of 
array TAB are 
initialized to 
S.O. 

DA T A ( (A ( I , J) , I = 1 , S) , J = I , 6 ) /30 * I . 0/ 

DATA( (A(I,J) ,I=S,10) ,J=6,15)/60*2.0/ 

7-22 

No conversion 
required. 

No conversion 
required. 



SPECIFICATION AND DATA STATEMENTS 

When character variables are initialized, length conversions are made. 
The conversion is based on the following rules: 

1. If the constant contains fewer characters than the length of 
the element in nlist, the rightmost character positions of 
the element are initialized with spaces. 

2. If the constant contains more characters than the length of 
the element in nlist, the character constant is truncated to 
the right. 

Character constants and HollErith constants can also be used to 
initialize numeric variableE. The character string is stored left 
justified in the numeric variable. When the character string 
specified is longer than one numeric variable can hold, the string is 
stored left justified across ES many variables as are needed to hold 
it. If necessary, the last variable used is padded with blanks up to 
its right boundary. 

For character variables, each variable or array element must have 
exactly one character constant in the data list. 

For example, assuming that X, 
statement: 

DATA X,Y,Z/'abcdefghijkl'/ 

causes: 

Y, 

X to be initialized to '2bcde' 
Y to be initialized to 'fghij' 
Z to be initialized to '~lbbb' 

and Z are single-precision, the 

When a character string is to be stored in double-precision and/or 
complex variables, and the specified string is only one word long, the 
second word of the variable iE padded with blanks. 

For example, assuming that thE variable C is complex, the statement: 

DATA C/'ABCDE','FGHIJ'/ 

causes the first word of C to be initialized to 'ABCDE' and its second 
word to be initialized to 'bbbbb'. The string 'FGHIJ' is ignored. 
The first word contains the rEal part of the ~omplex variable; the 
second word contains the imaginary part. 

In addition, the following twc forms of bit data constants are allowed 
in DATA statements: 

O'di ... dn' 

Z'hi ... hn' 

where di are octal digits and hi are hexadecimal digits with A-F 
representing the decimal eGuivalent of 10-15. These constants are 
right-justified. Note that you can also use the double quote (") form 
of octal constants as describE'd in Section 3.7. 

7-23 



SPECIFICATION AND DATA STATEMENTS 

7.10 SAVE STATEMENT 

The SAVE statement retains the values stored in a variable, array, or 
common block after execution of a RETURN or END statement in a 
subprogram. 

The SAVE statement has the following form: 

SAVE [a[,a] ••• ] 

where: 

a is a named common block name (preceded and followed by a 
slash), a variable name, or an array name. 

NOTE 

Ordinarily, the values of all variables are retained 
after execution of a RETURN or END statement. 
However, when overlays are used, the SAVE statement 
must be used to ensure retention of values. 

An entity specified by a SAVE statement within a program unit does not 
become undefined upon execution of a RETURN or END statement in that 
unit. If the entity is in a common block, however, it may be 
redefined in another program unit that references that common. 

Procedure names, the names of variables and arrays in a common block, 
and dummy argument names cannot be used in a SAVE statement. 

A SAVE statement that does not explicitly contain a list is treated as 
though it contained a list of all allowable items in the program unit 
that contains the SAVE statement. 

If a particular common block name is specified by a SAVE statement in 
a subprogram of an executable program, it must be specified by a SAVE 
statement in every subprogram in which that common block appears. 

NOTE 

It is not necessary to use the SAVE statement to 
retain the value of a blank common block; the 
definition status of blank common is automatically 
retained after a RETURN or END statement. 

Also, when the SAVE statement is used, it is not 
necessary to specify the LINK switch /OVERLAY:WRITABLE 
when loading a program. 

7-24 



CHAPTER 8 

ASSIGNMENT STATEMENTS 

Assignment statements assign values to variables, array elements, or 
character substrings. There are four kinds of assignment statements: 

1. Arithmetic assignment statements (see Section 8.1) 

2. Logical assignment statements (see Section 8.2) 

3. Statement Label assignment (ASSIGN) statements 
8.3) 

(see Section 

4. Character assignment statements (see Section 8.4) 

8.1 ARITHMETIC ASSIGNMENT STATEMENT 

You use statements of this type to assign numeric values to numeric 
variables or array elements. Arithmetic assignment statements have 
the form: 

v=e 

where: 

v is the name of the numeric variable or array element that is 
to receive the specjfied value. 

e is an arithmetic expression. 

In assignment statements, the equal symbol (=) does not imply equality 
as it would in algebraic E?xpressions; it implies replacement. For 
example, the expression v=e is interpreted as "the contents of the 
location identified as v are t:o be replaced by the value of expression 
e; the previous contents of v are lost." 

When the type of the specified variable or array element name differs 
from that of its assigned value, FORTRAN converts the value to the 
type of its assigned variable or array element. Table 8-1 describes 
the type conversion operations performed by FORTRAN for each possible 
combination of variable and value types. 

8-1 



ASSIGNMENT STATEMENTS 

Table 8-1: Rules for Conversion in Mixed-Mode Assignments 

~---------------r------------------------------------------------------------. 

Expression 
Type (e) 

VariabLe Type (v) 

~------------------------------------------.--------------------~ 

REAL INTEGER COMPLEX DOUBLE- LOGICAL CHARACTER 
PRECISION 

~---------------+----------------------------------------------------------------~ 
Real 

Integer 

Complex 

Double
precision 

Logical 

Octal 

Hollerith 

Character 

Double
Octal* 

D C 

F D 

R C,R 

o N 

o D 

o D 

D% D% 

x x 

H H 

R,I H,L D X 

R,F,I M D X 

D R,L R X 

H,I D H X 

R,I H,L D x 

R,I H,L D x 

0& D& D% x 

x x x D 

D# D H x 

~--------------~-------------------------------------------------------------. 

Legend 

D = Direct replacement 
C = Conversion from real to integer with truncation, overflow i ~ 

possible 
F = Conversion from integer to real with rounding 
R = Real part only 
I = Set imaginary part to 0 
H = High-order only 
L = Set low-order part to 0 
M = Convert with no truncation and no rounding 
N = Convert with rounding; truncation can occur and overflow is 

possible 
0 = Round to one word of precision, overflow is possible 
X = Not allowed 

Notes 

* Octal numbers with 13 to 24 digits are termed double-octal. 
Double-octals require two storage locations. They are stored 
right-justified and are padded with zeros to fill the 
locations. 

8-2 



ASSIGNMENT STATEMENTS 

& Use the first two words of the Hollerith constant. If the 
Hollerith constant is only one word long, the second word is 
padded with blanks. 

% Use the first word of thE~ HollE!rith constant. 

# To convert double-octal ~umbers to complex, the low-order octal 
digits are assumed to be the imaginary part, and the high-order 
digits are assumed to be the real part of the complex value. 

8.2 LOGICAL ASSIGNMENT STATEMENTS 

Statements of this type are used to assign values to variables and 
array elements of type logical. Logical assignment statements have 
the following form: 

v=e 

where: 

v is the name of a variable or array element 

e is a logical expression 

For example, assuming that the variables L, F, M, and G are of type 
logical, the following statements are valid: 

Sample Statement 

L=.TRUE. 

F=.NOT.G 

M=A.GT.T 
or 

M=A)T 

L=«I.GT.H) .AND. (J<=:K) 

Results 

The contents of L are replaced by 
logical truth. 

The contents of F are replaced by 
the complement of the contents of 
G. 

If A is greater than T, the 
contents of M are replaced by 
logical truth; if A is less than or 
equal to T, the contents of Mare 
replaced by logical false. This 
can also be read: If A is greater 
than T, then M is true, otherwise, 
M is false. 

The contents of L are replaced by 
either the true or false resultant 
of the expression. 

8.3 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT 

The ASSIGN statement is used to assign a statement label constant (a 1 
to 5 digit statement number) to a variable name. The form of the 
ASSIGN statement is: 

ASSIGN s TO i 

8-3 



ASSIGNMENT STATEMENTS 

where: 

s is a statement number in the current program unit. 

i is a variable name. 

For example, the statement: 

ASSIGN 2000 TO LABEL 

specifies that the variable LABEL references the statement number 
2000. 

with the exception of complex, double-precision, or character, you can 
use any type of variable in an ASSIGN statement. 

Use the ASSIGN statement in conjunction with assigned GO TO control 
statements (see Chapter 9), or as a format identifier in an I/O 
statement (See Chapter 10). The ASSIGN statement sets up statement 
label variables that are then referenced in subsequent GO TO control 
statements, or in format specifiers in I/O statements. The following 
sequence illustrates the use of the ASSIGN statement: 

555 TAX=(A+B+C)*.05 

ASSIGN 555 TO LABEL 

GO TO LABEL 

8.4 CHARACTER ASSIGNMENT STATEMENT 

The character assignment statement assigns the value of the character 
expression on the right of the equal sign to the character variable, 
array element, or substring on the left of the equal sign. 

The form of the character assignment statement is: 

v=e 

where: 

v is a character variable, array element, or substring. 

e is a character expression. 

If the length of the expression on the right side of the assignment is 
greater than the length of the variable on the left side, the 
character expression is truncated on the right. 

If the length of the expression on the right side of the assignment is 
less than the length of the variable on the left side, the character 
expression is filled on the right with blanks. 

8-4 



ASSIGNMENT STATEMENTS 

FORTRAN-IO/20 allows overlap between the character expression and the 
character variable, array element, or substring. (That is, the 
character positions defined in the character variable, array element, 
or substring can be referenced in the character expression.) For 
example, the following assignments are allowed: 

CHARACTER *4 A,B 
DATA A/'abcd'/,B/'efgh'/ 

A(1:3) 
B(2:4) 

A(2:4) 
B(1:3) 

After the above assignment statements, A is 'bcdd', and B is 'eefg'. 

The expression must be of character data type. You cannot assign a 
numeric value to a character variable, array element, or substring. 

Note that assigning a value to a character substring does not affect 
character positions in the character variable or array element not 
included in the substring. If a character position outside of the 
substring has a value previously assigned, it remains unchanged. If 
the character position is undefined, it remains undefined. 

Examples of valid and invalid character assignment statements 
All variables and arrays in the examples are assumed 
character data type. 

Valid 

FILE = 'PROG.2' 

REVOL(l) = 'MAR'//'CIA' 

LOCA(3:8) = 'PLANTS' 

TEXT ( I , J + 1) (.2: N -1 ) NAME//X 

Invalid 

follow. 
to be of 

'ABC' CHARS (the left side must be a character variable, 
array element, or substring reference) 

CHARS 25 (expression on the right must be of character 
data type) 

8-5 





CHAPTEn 9 

CONTROL STATEMENTS 

FORTRAN object programs normally execute statement by statement in the 
order in which they were p~esented to the compiler. The following 
control statements, however, enable you to alter the normal sequence 
of statement execution: 

1 • CAL L ( Sec t ion 1 3 • 4 . 2 • :2) 

2. CONTINUE (Section 9.5) 

3 • DO ( Sec t ion 9. 3 ) 

4. DO WHILE (Section 9.3.2) 

5. ELSE (Section 9.2.4) 

6. ELSE IF ~~HEN (Section 9.2.4) 

7. END (Section 9.8) 

8. END DO (Sec t ion 9.4) 

9. END IF (Section 9.2.4) 

10. GO TO (SE~ction 9.1) 

11. IF (Section 9.2) 

12. IF THEN (Section 9.2.-1) 

13. STOP (Section 9.6) 

14. PAUSE (SE~ction 9.7) 

1 5 • RET URN ( Sec t ion 13. 4 • '0 

The CALL and RETURN statements are described in Sections 13.4.2.2 and 
13.4.4, respectively. The rernainin9 statements are described in this 
chapter. 

9.1 GO TO STATEMENTS 

A GO TO statement causes the statement that it identifies to be 
executed next, regardless of i~s position within the program. 

There are three kinds of GO TO statements: 
9. 1. 1), Compu ted (see Sec t ion 9. 1.2) , 
9.1.3). 

9-1 

Unconditional 
and Assigned 

(see Section 
(see Section 



CONTROL STATEMENTS 

9.1.1 Unconditional GO TO Statements 

An unconditional GO TO statement transfers program control to the 
specified statement label. 

The form of the unconditional GO TO statement is: 

GO TO s 

where: 

s is a statement label of an executable statement. 

For example: 

GO TO 300 

You can position an unconditional GO TO statement anywhere in the 
source program, except as the terminating statement of a DO loop. 

9.1.2 Computed GO TO Statements 

The form of a computed GO TO statement is: 

GO TO ( s [, s] ••• ) [ ,] e 

where: 

(s[,s] ••• ) is a list of statement labels. 

e is an integer expression. 

You may include any number of statement labels in the list of a 
computed GO TO statement. However, each statement label must appear 
within the program unit containing the GO TO statement. The same 
statement label can appear more than once in the list. 

The value of the expression must be an integer value (it will be 
truncated if necessary) that is greater than 0 and less than or equal 
to the number of statement labels given in the list. If the value of 
the expression is not within this range, the next sequential statement 
is executed. 

When a computed GO TO statement is executed, the value of the 
expression is computed first. The value of the expression specifies 
the position of the label (within the given list of statement labels) 
that identifies the statement to be executed next. For example, in 
the statement sequence: 

GO TO ( 2 0, 10 , 5) K 
CALL XRANGE(K) 

the variable K acts as a switch, causing a transfer to statement 20 if 
K=l, to statement 10 if K=2, or to statement 5 if K=3. The subprogram 
XRANGE is called if K is less than 1 or greater than 3. 

9-2 



CONTROL STATEMENTS 

9.1.3 Assigned GO TO Statements 

The form of an assigned GO TO statement is: 

GO TO i [[,] (s [, s] ••• ) ] 

where: 

i is a variable name and the optional parenthesized list is a 
list of statement labels. The statement labels specified 
must appear within the program unit containing the GO TO 
statement. 

Assigned GO TO statements must be logically preceded by an ASSIGN 
statement (see Section 8.3) that assigns a statement label value to 
the variable i. The assigned GO TO statement transfers program 
control to the label that has been ASSIGNed. 

The statement label value assigned must appear within the same program 
unit as the GO TO statement that uses that value. In statements with 
a specified list, if i is not assigned one of the statement label 
values given in the list, the next sequential statement is executed. 

Examples: 

ASSIGN 300 TO STAT1 
GO TO STATI 
GO TO STATl, (177,300,777) 

9.2 IF STATEMENTS 

There are four kinds of IF statements: arithmetic (see Section 
9.2.1), logical (see Section 9.2.2), logical two-branch (see Section 
9.2.3), and block IF (see Section 9.2.4). 

9.2.1 Arithmetic IF Statements 

The form of the arithmetic IF statement is: 

IF (e) sl, s2, s3 

where: 

e is an expression enclosed within parentheses and sl, s2, and 
s3 are statement labels of three executable statements 
appearing within the program unit containing the IF 
statement. The expressIon e must not be of type complex. 
The same statement label can appear more than once in the IF 
statement. 

This type of IF statement transfers control of the program to one of 
the given statements according to the computed value of the given 
expression. If the value of the expression is: 

1. Less than 0, control is transferred to the 
identified by label sl. 

2. Equal to 0, control is transferred to the 
identified by label s2. 

9-3 

sta tement 

statement 



CONTROL STATEMENTS 

3. Grea ter than 0, con trol is transferred to the sta tE~ment 
identified by label s3. 

Examples: 

IF(ETA)4, 7~ 12 

IF ( KA P P A - L (1 0) ) 2 0 , 14 , 14 

9.2.2 Logical IF Statements 

Transfers control to statement 4 if 
ETA is negative, to statement 7 if 
ETA is 0, and to statement 12 if 
ETA is greater than O. 

Transfers control to statement 20 
if KAPPA is less than the 10th 
element of array L and to statement 
14 if KAPPA is greater than or 
equal to the 10th element of array 
L. 

The form of the logical IF statement is: 

IF (e) st 

where: 

e is any expression. The expression must not be of type 
complex. 

st is an executable statement. 

If the value of the expression is true (negative), control is 
transferred to the executable statement within the IF statement. If 
the value of the expression is false (nonnegative), control is 
transferred to the next sequential executable statement. The 
statement you give in a logical IF statement may be any executable 
statement except a DO statement, an END statement, or another logical 
IF statement. 

Examples: 

IF(T.OR.S) X=Y+l 

IF(Z.GT.X(K» CALL SWITCH(S,Y) 

IF(K.EQ.INDEX) GO TO 15 

9.2.3 Logical Two-Branch IF Statements 

Performs an arithmetic 
assignment operation if the 
result of the IF is true. 

Performs a subroutine call if 
the result of the IF is true. 

Performs an unconditional 
transfer if the result of the 
IF is true. 

'[''lP format of a logical two-branch IF statement is: 

[l-' ( e) 5,1, s 2 

9-4 



CONT~OL STATEMENTS 

where: 

c is any expression, and sl and s2 are statement labels 
appearing within the program unit containing the IF 
statement. The expression must not be of type complex. 

Logical two-branch IF statemer;ts transfer control to either statement 
sl or s2, depending on the corrputed value of the given expression. If 
the value of the given logical .expression is true (negati.ve), control 
is transferred to statement 51. If the value of the expression is 
false (nonnegative), control is transferred to statement s2. 

Examples: 

IF (LOG1) 10,20 

IF (A.LT.B.AND.A.LT.C) 31,32 

Transfers control to 
if LOGl is true 
0therwise transfers 
statement 20. 

Transfers control to 
if A is less than 
transfers control to 

statement LO 
(negative) ; 

control to 

statement 31 
both B and C; 
statement 32 

i f A is qreater than or equal to 
I~ i ther B or C. 

9.2.4 Block IF Statements 

Block IF statements conditionally execute blocks 
statements. The four block IF statements are: 

• IF THEN 

• ELSE IF THEN 

• ELSE 

• END IF 

(or groups) of 

These statements are used in block 
construct has the followinQ form, 

IF constructs. The block IF 
where the ELSE IF THEN and ELSE 

statements are optional: -

IF (e) THEN 
block 

ELSE IF (e) THEN 
block 

ELSE 
block 

END IF 

where: 

e is d logical expression. 

block is a sequence of zero or more complete. FORTRAN statements. 
This sequence is called a statement block. 

9-5 



CONTROL STATEMENTS 

Each block IF statement, except the END IF statement, has an 
associated statement block. The statement block consists of all the 
statements following the block IF statement up to (but not including) 
the next block IF statement in the block IF construct. The statement 
block is conditionally executed based on the values of logical 
expressions in the preceding block IF statements. A statement block 
can be empty. 

The IF THEN statement begins 
following it is executed if the 
IF THEN statement is true. The 
directly follow the THEN on the 
is ilLegal: 

IF (T.LT.X) THEN T X 

The correct form is: 

IF (T.LT.X) THEN 
T = X 

a block IF construct. The block 
value of the logical expression in the 
first statement of the block cannot 
same line. For example, the following 

The ELSE statement specifies a statement block to be executed if no 
preceding statement block in the block IF construct was executed. The 
ELSE statement is optional. 

The ELSE IF THEN statement is similar to the ELSE statement, except it 
requires an additional condition for execution. The ELSE IF THEN 
statement specifies a statement block to be executed if both the value 
of the logical expression in the ELSE IF THEN statement is true, and 
no preceding statement block in the block IF construct was executed. 
A block IF construct can contain any number of ELSE IF THEN 
statements. The ELSE IF THEN statement is optional. 

The END IF statement terminates the block IF construct. 

Figure 9-1 describes the flow of control for four examples of block IF 
constructs. 

9-6 



Construct 

IF (e) THEN 
block 

END IF 

IF (e) THEN 
block1 

ELSE 
block2 

END IF 

IF (e1) THEN 
block1 

ELSE IF (e2) THEN 
block2 

END IF 

IF (e1) THEN 
block1 

ELSE IF (e2) THEN 
block2 

ELSE IF (e3) THEN 
block3 

ELSE 
block4 

END IF 

CONTROL STATEMENTS 

CONTROL STATEMENTS 

Flow of Contml 

Execute 
block 

Execute 
block1 

Execute 
block1 

Execute 
block1 

False 

I Execute 
block2 

Execute 
blo,ck2 

Execute 
block2 

Figure 9-1: Examples of Block IF Constructs 

Execute 
block3 

False 

Execute 
block4 

MR-S-2525-83 

After the last statement in a statement block is executed, control 
passes to the next executable statement following the END IF 
statement. Consequently, at most one statement block in a block IF 
construct is executed each time the IF THEN statement is executed. 

9-7 



CONTROL STATEMENTS 

ELSE IF THEN and ELSE statements can have statement labels, but these 
labels cannot be referenced. The END IF statement can have a 
statement label to which control can be transferred, but only from 
within the block IF construct. 

Section 9.2.4.1 describes restrictions on statements in a statement 
block. Section 9.2.4.2 describes examples of block IF constructs. 
Section 9.2.4.3 describes nested block IF constructs. 

9.2.4.1 Statement Blocks - A statement 
executable FORTRAN statement except an 
9.8). You can transfer control out of a 
cannot transfer control back into the 
transfer control from one statement block 

block can contain any 
END statement (see Section 

statement block, but you 
block. Note that you cannot 
into another. 

DO loops cannot ove~lap statement blocks. When a statement block 
contains a DO statement (see Section 9.3), it must also contain the DO 
loop's terminal statement or END DO statement. Conversely, if a block 
IF construct appears within the range of a DO loop, the corresponding 
END IF statement must also appear within the range of that DO loop. 

9.2.4.2 Block IF Examples - The simplest block IF construct consists 
of the IF THEN and END IF statements; this construct conditionally 
executes one statement block. 

Form 

IF (e) THEN 
block 

END IF 

Example 

IF (LOWER.LE.UPPER) THEN 
MIDDLE=(LOWER+UPPER)/2 

END IF 

The statement block consists of all the statements between the IF THEN 
and END IF statements. 

The IF THEN statement first evaluates the logical expression (e), 
(LOWER.LE.UPPER). If the value of e is true, the statement block is 
executed. If the value of e is false, control transfers to the next 
executable statement after the END IF statement; the block is not 
executed. 

The following example contains a block IF construct with an ELSE IF 
THEN statement: 

Form 

IF (el) THEN 
blockl 

ELSE IF (e2) THEN 
block2 

END IF 

Example 

IF (ITEM.LT.A(MIDDLE» THEN 
UPPER=MIDDLE-I 

ELSE IF (ITEM.GT.A(MIDDLE» THEN 
LOWER=MIDDLE+l 

END IF 

Blockl consists of all statements between the IF THEN and the ELSE IF 
THEN statements; block2 consists of all the statements between the 
ELSE IF THEN and the END IF statements. 

If ITEM is less than A(MIDDLE), blockl is executed. 

If ITEM is not less than A(MIDDLE), but ITEM is greater than 
A(MIDDLE), block2 is executed. 

9-8 



CONTROL STATEMENTS 

If ITEM is not less than A(MIDDLE) and ITEM is not greater than 
A(MIDDLE), neither blockl nor block2 is executed; control transfers 
directly to the next executable statement after the END IF statement. 

The following example contain5 a block IF construct with an ELSE 
statement: 

Form 

IF (e) THEN 
block1 

ELSE 
block2 

END IF 

Example 

IF (ITEM.GT.A(MIDDLE» THEN 
LOWER=MIDDLE+1 

ELSE 
S8ARCH=MIDDLE 
RETURN 

END IF 

Block1 consists of all the statements between the IF THEN and the ELSE 
statements; block2 consists of all the statements between the ELSE and 
the END IF statements. 

If ITEM is greatE~r than A(MIDJ)LE), block1 is executed. 

If ITEM is not greater than A(MIDDLE), block2 is executed. 

9.2.4.3 Nested Block IF Constructs - A block IF construct can be 
included in a statement bloc~ of another block IF construct. But the 
nested block IF construct m~st be completely contained within a 
statement block; it must not ~verlap statement blocks. 

The following example contains a nested block IF construct. 

Form 

IF (e) THEN 

Example 

FUNCTION SEARCH(A,N,ITEM) 
CHARACTER*(*) A(N),ITEM 
INTEGER SEARCH,N,LOWER,MIDDLE,UPPER 

LO'~ER=l 
UPlI?ER=N 

IF(LOWER.LE.UPPER) THEN 
MIDDLE=(LOWER+UPPER)/2 

IF (e) THEN 10 IF (ITEM.LT.A(MIDDLE» THEN 
UPPER=MIDDLE-1 

blockl 

END IF 

blocka 
ELSE IF (e) THEN 

blockb 
ELSE 

blockc 

END IF 

ELSE IF (ITEM.GT.A(MIDDLE» THEN 
LOWER=MIDDLE+1 

ELSE 
SEARCH=MIDDLE 
RETURN 

END IF 

GOTOIO 

END IF 
20 SEARCH=O 

RE'rURN 

END 

9-9 



CONTROL STATEMENTS 

If LOWER is less than or equal to UPPER, blockl is executed. Block1 
contains a nested block IF construct. If ITEM is less than A(MIDDLE), 
blocka is executed. If ITEM is greater than A(MIDDLE) blockb is 
executed. If ITEM is equal to A(MIDDLE), blockc is executed. 

If LOWER is greater than UPPER, control is transferred 
executable statement after the last END IF statement. 
construct is not executed. 

9.3 DO STATEMENT 

The two types of DO statements are: 

1. Indexed DO (DO statement) 

2. Pretested indefinite DO (DO WHILE statement) 

to the first 
The nested IF 

The indexed DO statement is described in Section 9.3.1, ,=Fld the DO 
WHILE statement is described in Section 9.3.2. 

9.3.1 Indexed DO Statement 

DO statements simplify the coding of iterative procedures; that is, 
the statements in the DO statement range are executed repeatedly a 
specified number of times. 

The form of an indexed DO statement is: 

where: 

Indexing Parameters 

/L 
---=---
TERMINAL 
STATEMENT 
LABEL 

INDEX 
VARIABLE 

i = el, \~:-::-IN~C~R=E~M=E~NT=-
\ (OPTIONAL) 

TERMINAL PARAMETER 
PARAMETER 

INITIAL 
PARAMETER 

Mns1760·S1 

s Terminal statement label s identifies the last statement of 
the DO statement range. The statement must follow the DO 
statement in the same program unit. s is omitted, then 
the loop must be terminated by an END DO statement (see 
Se c t ion 9. 4) • 

The terminal statement can be any executable statement other 
than one of the following: 

• Unconditional or assigned GO TO statement 

• Arithmetic IF :n logical two-branch IF statemE-?nt 

• Block IF, ELSE IF, ELSE, or END IF statement 

9-10 



CONTROL STATEMENTS 

• RETURN statement 

• STOP statement 

• END statement 

• DO statement 

If the terminal statement is a logical IF, it can contain any 
executable statement except one of the following: 

• DO statement 

• Block IF, ELSE IF, ELSE, or END IF statement 

• END statement 

• Another logical IF statement 

i Index variable i is an unsubscripted numeric variable whose 
value is defined at the start of the DO statement operations. 
The index variable must not be of type complex. 

The index variable is available for use throughout each 
execution of the range of the DO statement, but altering its 
value within the DO loop does not change the number of times 
the DO loop will execute. The DO loop index variable is also 
available for use in the program when: 

a. Control is transferred outside the range of the DO loop 
by a GO TO, IF, cr RETURN statement located within the DO 
range 

b. Control is transferred outside the range of the DO loop 
by an I/O statement with either or both the options END= 
or ERR= (see Chapter 10) 

c. A subprogram is executed from within the DO statement 
range having the index variable as an argument or in 
COMMON 

e1 Initial parameter el assigns the index variable i its initial 
value. This parameter can be any expression, but cannot be 
of type complex. 

e2 Terminal parameter e2 provides the value used to determine 
how many repetitions of the DO statement range are performed. 
This parameter can be any expression, but cannot be of type 
complex. 

e3 Increment parameter e3 specifies the value to be added to the 
initial parameter (e!1) on completion of each cycle of the DO 
loop. The increment parameter is optional. If e3 and its 
preceding comma are omitted, e3 is assumed to be equal to 1. 
This parameter can be any expression, but cannot be of type 
complex. 

9-11 



CONTROL STATEMENTS 

9.3.1.1 Executing an Indexed DO Statement - The indexing parameters 
el, e2 or e3 can be any expressions. Their values are calculated only 
once, at the start of each DO loop operation, to determine the values 
for the initial, terminal, and increment parameters. If necessary, 
the initial, terminal, and increment parameters are converted, before 
use, to the data type of the index variable. 

The number of times that a DO loop will execute, called the iteration 
count, is specified by the formula: 

MAX(INT«e2-el+e3)/e3) ,0) 

If the iteration count is less than or equal to zero, the body of the 
loop is not executed. The index variable retains its assigned value 
(el) • 

NOTE 

The interpretation of the iteration count described 
above is different from that of earlier versions of 
FORTRAN-I0/20. If the /NOF77 compiler switch is 
specified (see Sections 16.1.3 or 16.2.3), and the 
iteration count is less than or equal to zero, the 
body of the loop is executed once. 

Since the iteration count is computed at the start of a DO loop 
operation, changing the value of the loop index variable within the 
loop cannot affect the number of times that the loop is executed. 

At the start of a DO loop operation, the index value is set to the 
value of the initial parameter (el); and the iteration count is 
established. 

9.3.1.2 DO Iteration Control - At the end of each DO loop cycle, the 
following steps are executed: 

1. The value of the increment parameter (e3) 
index variable. 

2. The iteration count is decremented. 

is added to the 

3. If the iteration count is greater than zero, control 
transfers to the first executable statement after the DO 
statement for another iteration of the loop. 

4. If the iteration count is less than or equal to zero, 
execution of the DO loop terminates. 

Exit from a DO loop upon completion of the number of iterations 
specified by the loop count is referred to as a normal exit. If no 
other DO loop shares the terminal statement, or if this DO loop 
statement is outermost, control passes to the first executable 
statement after the terminal statement of the DO loop. 

The final value of the index variable is the value determined by step 
1. 

9-12 



CONTROL STATEMENTS 

NOTE: 

The interpretation of the index variable described 
above is different from that of earlier versions of 
FORTRAN-10/20. ! f tile /NO~"77 compiler switch is 
specified (see Sections 16.1.3 or 16.2.3), the final 
value of the index var:.able of the DO statement is 
undefined after a normal loop exit. 

8xit from a DO loop may also bE! accomplished by a transfer of control 
by a statement within the DO loop range to a statement outside the 
range of the DO statement. Th~.s is called an extended range DO loop 
(see Section 9.3.5). 

When execution of a DO loop terminates, and other DO loops share its 
terminal statement, control transfers outward to the next most 
enclosing DO loop in the DO nesting structure (see Section 9.3.4). 

Examples of DO Iteration Control: 

DO 100 I = 1,10 
100 J=I 

After execution of these statements, 1=11 and J=lO. 
switch is specified, I is undefined and J=lO). 

L=O 
DO 200 K 5,1 

200 L=K 

After execution of these statements, K=5 and L=O. 
switch is specified, K is undefined and L=5). 

9.3.2 DO WHILE Statement 

(I f the /NOF77 

(If the /NOF77 

The DO WHILE statement is simiJ.ar to the DO statement described in 
Section 9.3.1. Instead of executing a fixed number of iterations, the 
DO WHILE statement. executes for as long as a logical expression 
contained in the statement continues to be true. 

The form of the DO WHILE statement is: 

DO [s[,]] WHILE (e) 

where: 

is the label of an executable statement that must physically 
follow in the same program unit. 

is a logical express:on. 

'rhe DO WHILE statement tests the logical expression at the beginning 
of each execution of the loop, including the first. If the value of 
the expression is true, the statements in the body of the loop are 
executed; if the expression is false, control transfers to the 
statement followinq the loop. 

If no Label appears in a DO WH:LE statement, the DO WHILE loop must be 
terminated with an END DO statement (see Section 9.4). 

9-13 



CONTROL STATEMENTS 

The following example demonstrates the use of the DO WHILE statement: 

CHARACTER*132 LINE 
1=1 
LINE (132:) = IX I 

DO WHILE (LINE(I:I) .EQ. I I) 
I = I + 1 

END DO 

9.3.3 The Range of a DO Statement 

The range of a DO statement is defined as the series of statements 
that follows the DO statement, up to and including the specified 
terminal statement or END DO statement. 

If another DO statement appears within the range of a DO statement, 
the range of that statement must be entirely contained within the 
range of the first DO statement. More than one DO statement may have 
the same labeled terminal statement but not unlabeled END DO 
statement. (See Section 9.3.4, Nested DO Statements.) 

If a DO statement appears within an IF block, ELSE IF block, or ELSE 
block (see Section 9.2.4), the range of the DO statement must be 
contained entirely within that block. 

If a block IF statement appears within the range of a DO statement, 
the corresponding END IF statement must also appear within the range 
of the DO statement. 

9.3.4 Nested DO Statements 

One or more DO statements can be contained within the range of another 
DO statement. This is called nesting. The following rules govern the 
nesting of DO statements: 

1. The number of nested levels (DO loop within DO loop) is 
restricted to 79 DO loops. 

2. The range of each nested DO statement must be entirely within 
the range of the containing DO statement (such as, they 
cannot overlap). 

For example: 

Valid Invalid 

DO 1 DO 1 

DO 2 DO 2 

C 

~ DO 3 The ranges of 

c= loop DO 2 and 
DO 3 overlap 

MR·S·1758·81 

9-14 



CONTROL STATEMENTS 

3. More than one DO loop within a nest of labeled DO loops can 
end on the same statement. When this occurs, the terminal 
statement is considered to belong to the innermost DO 
statement that ends on that statement. Only a statement that 
occurs within the range of the innermost DO statement can use 
the statement label of the shared terminal statement for 
transfer of control. 

For example: 

un
DO 4 ---.. - Outermost DO Loop 

004 __ 

00_4 __ 

[I~..- Innermost DO Loop 
---..- Terminal Statement 

MR-S-1759-81 

Although all four DO loops share the same terminal statement, 
the terminal statement "belongs" to the innermost DO loop. 

4. Nested loops cannot share an unlabeled END DO statement. 
Each unlabeled END DO terminates exactly one DO loop. 

For example: 

Correctly Nested 
DO Loops 

DO 10 1= 1,20 

DO J=1,!i 

[ 

DO K=1,10 

END DO 

END DO 

10 CONTINUE 

9.3.5 Extended Range 

Incorrectly Nested 
DO Loops 

DO 10 1=1,5 

DO J= 1,10 

CONTINUE 

END DO 

By following certain rules, it is possible to transfer out of a DO 
loop, perform a series of statements elsewhere in the program, and 
then transfer back into the DO loop. The statements that are executed 
after a transfer out of a DO loop and before a transfer back into the 
same DO loop are collectively known as the "extended range." A DO loop 
that permits transfer in and out of its range is called an extended 
range DO loop. 

9-15 



CONTROL STATEMENTS 

NOTE 

;'his feature makes the flow of a program difficult to 
follow, does not conform to the FORTRAN-77 standard, 
;Ind is therefore discouraged. 

"'he following rules govern the use of extended range DO loops: 

I. The statement that causes the transfer out of the DO loop 
'oust be contained within the most deeply nested DO (innermost 
loop having the same terminal statement). This loop must 
~lso contain the statement to WhICh the extended range 
r-eturns. 

A transfer into the ranqe of a DO statement is permitted only 
if the transfer is made from the extended range of that DO 
~; ta temen t . 

The extended range of a DO statement must not contain another 
)")0 s ta temen t . 

4. The extended range of a DO statement cannot change the index 
v~riable or indexing parameters of the DO statement. 

~ You can call a subprogram within an extended range. 

The following example illustrates the use of an extended range DO 
loop: 

DIMENSION TABLE(10,5), 
LOGICAL LOGARR(lO) 

VALUE(10) 

:.;00 

)000 

:: 000 
2100 

1)0 1000 I = 1, 10 
If (LOGARR(I» GOTO 500 
I=K 
CALL SUBROT(K) 

DO 2 () 0 J = 1, 5 
TABLE(I,J) 0 
CONTINUE 

GOTO 2000 
VALUE(I) GETVAL(K) 

CONTINUE 

STOP 
TYPE 2100, I 
FORMAT (' I = " I 2) 
LOGARR(I) = .TRUE. 
GOTO 500 

END 

9.3.6 Permitted Transfer Operations 

An extended range DO loop 
Test logical array item 

Invoke subroutine using 
current index value 
Nonextended range loop 

Extended range invocation 
Invoke function GETVAL with 
current index 
Terminal statement for outer 
loop 

Extended range starts 

Extended range ends and 
r.::eturns 

The following rules govern the transfer of program control from within 
a DO statement range or the ranges of nested DO statements: 

1. A transfer out of the range of any DO loop is permitted at 
any time. When such a transfer occurs, the value of the 
controlling DO loop's index variable is defined as the 
current value. 

9-16 



CONTROL STATEMENTS 

2. A transfE~r into the r,3.nge of a DO statement is permitted if 
it is made from the ectended range of the DO statement. 

3. You can call a subprogram from within the range of any: 

a. DO loop 
b. nested DO loop 
c. extended ranqe 101)p (in which you leave the loop through 

a GO TO, execu~e statements in the extended range, and 
return to the oriqinal loop) 

The following examples illustrate the transfer operations permitted 
from within the ranges of nested DO statements: 

Valid 
Transfers 

01 

~. 
~"""I--_e_xt_ended~ rangle 

9.4 END DO STATEMENT 

Invalid 
Transfers 

01 .. 

MR-S-17,7-81 

The END DO statemE'nt terminatE!s the range of a DO or DO WHILE 
statement. The END DO statemE~nt must be used to terminate a DO block 
if the DO or DO WIULE statement defining the block does not contain a 
terminal-statement label~ The END DO statement may also be used as a 
labeled terminal statement if the DO or DO WHILE statement does 
contain a terminal-statement label. 

The form of the END DO statemerlt is: 

END DO 

9.5 CONTINUE STATEMENT 

The form of the CONTINUE statement is: 

CONTINUE 

Execution of the CONTINUE statE~ment has no effect. 
the terminating statement of a DO loop. 

9-17 

It may be used as 



CONTROL STATEMENTS 

In the following example, the labeled CONTINUE statement provides a 
legal termination for the range of the DO loop. 

DIMENSION STOCK(lOO) 
DO 20 1=1, 100 
STOCK(I)=O 
CALL UPDATE (STOCK(I» 
IF(STOCK (I) .EQ. 0) GO TO 30 

20 CONTINUE 
STOP 

30 TYPE 35 
35 FORMAT (' UPDATE ERROR') 

END 

9.6 STOP STATEMENT 

Execution of the STOP statement causes program execution 
terminated. A descriptive message may optionally be included 
STOP statement to be output to your terminal immediately 
program execution is terminated. 

The form of the STOP statement is: 

STOP [n] 

where: 

to be 
in the 
b«~fore 

n is an optional decimal integer constant of up to 6 digits, 
or a character constant. The constant is printed at the 
terminal when the STOP statement is executed. 

You can have any number of characters in the character 
constant. You can use continuation lines to accommodate 
large character strings. The constant is printed without 
leading zeroes, unless they are specified in the statement. 

NOTE 

The word STOP is not printed when the STOP statement 
is executed unless the word STOP is included in the 
statement as a character constant. 

The following examples show the results of executing STOP statements 
that contain a 6-digit decimal string and a character constant. 

PROGRAM TEST 
10 STOP 123456 

END 

EXECUTE STOP1.FOR 
FORTRAN: STOPl 
TEST 
LINK: Loading 
[LNKXCT TEST execution] 
123456 
CPU time 0.1 Elapsed time 0.3 

9-18 



CONT~OL STATEMENTS 

PROGRAM TEST 
10 STOP 'The prograrr has stopped' 

END 

EXECUTE STOP2.FOR 
FORTRAN: STOP2 
TEST 
LINK: Loading 
[LNKXCT TEST execution] 
The program has stopped 
CPU time 0.1 Elapsed time 0.3 

9.7 PAUSE STATEMENT 

Execution of a PAUSE statement suspends the execution of the object 
program and gives you the option of continuing execution of the 
program, exiting from the program, or beginning a TRACE operation. 

The form of the PAUSE statement is: 

PAUSE [n] 

where: 

n is an optional integer constant of up to 6 digits, or a 
character constant. The constant is printed at the terminal 
when the PAUSE statement is executed. 

You can have any number of characters in the character 
constant. You can use continuation lines to accommodate 
large character strings. The constant is printed without 
leading zeros, unless they are specified in the statement. 

If execution of the program is resumed after a PAUSE, program control 
continues as if a CONTINUE had been executed. Execution of the PAUSE 
statement causes the word PAUSE, the optionally specified constant, 
and the following prompt to be printed at the terminal: 

Type G to Continue, X to Exit, T to Trace 

The responses to this prompt are: 

G continues program execution at the statement immediately 
following the PAUSE statement. 

X causes program termination. 

T produces a trace back list at the terminal. This list 
consists of invoked routine names and locations, plus the 
location and module names of the callers of those routines. 
Using this information you can track the active path of 
execution from the main program to the PAUSE trace routine. 
(See Section 13.4.1.32 for a detailed description of this 
feature.) 

9-19 



CONTROL STATEMENTS 

PROGRAM PTEST 
PAUSE 
PAUSE 234 
PAUSE 'Character String' 
END 

EXECUTE PTEST.FOR 
FORTRAN: PTEST 
PTEST 
LINK: Loading 
[LNKXCT PTEST execution] 
PAUSE 
Type G to Continue, X to Exit, T to Trace. 
G 
PAUSE 
234 
Type G to Continue, X to Exit, T to Trace. 
G 
PAUSE 
Character String 
Type G to Continue, X to Exit, T to Trace. 
X 

CPU time 0.3 Elapsed time 18.8 

9.8 END STATEMENT 

This statement signals FORTRAN that the physical end of a program unit 
has been reached. END is an executable statement. The general form 
of an END statement is: 

END 

The following rules govern the use of the END statement: 

1. This statement must be the last physical statement of a 
source program unit (main program or subprogram). 

2. When executed in a main program, the END statement has the 
effect of a STOP statement; in a subprogram, END has the 
effect of a RETURN statement. 

3. An END statement may be labeled, but it must not be continued 
(that is, it must appear only on an initial line). 

9-20 



CHAPTER 10 

DATA TRANSFER STATEMENTS 

FORTRAN I/O statements are divided into three categories by function, 
as follows: 

1. Data Transfer Statements transfer data between memory and 
files. The "files" can be devices such as TTY: or MTA:. 
Internal files and ENCODE/DECODE statements are used for 
memory-to-memory data transfers. 

2. File Control Statements associate and disassociate files 
and FORTRAN logical unit numbers, and can specify 
characteristics of such an association. 

3. Device Control Statements position files. For example, 
using the device control statements you can position magnetic 
tape to a particular file or record. 

This chapter describes data transfer statements. Chapter 11 describes 
file-control and device-control statements. 

Table 10-1 lists the three categories of I/O statements, the 
statements within each category, and the sections in which each I/O 
statement is further described. 

10-1 



DATA TRANSFER STATEMENTS 

Table 10-1: FORTRAN 110 Statement Categories 

Categories Statements Sections 

Data Transfer READ 10.5 
WRITE 10.6 
REREAD 10.7 
ACCEIYf 10.8 
TYPE 10.9 
PRINT 10.10 
PUNCH 10.11 
ENCODE 10.12 
DECODE 10.12 
Internal READ 10.12 
Internal WRITE 10.12 

File Control OPEN 11.2 
CLOSE 11.4 
INQUIRE 11.7 

Device Control FIND 11.8.1 
REWIND 11.8.2 
UNLOAD 11.8.3 
BACKSPACE 11.8.4 
ENDFILE 11.8.5 
SKIPRECORD 11.8.6 
SKIPFILE 11.8.7 
BACKFILE 11.8.8 

Table 10-2, on the tab-divider, summarizes all the data transfer 
statement forms. 

10-2 



DATA TRANSFEd STATEMENTS 

Table 10-2: Summary of Data Transfer Statement Forms 

Data Access 

Sequential Formatted 
(FORMAT Statement) 

Sequential Formatted 
(List Directed) 

Statement Construct 

READ(UNIT un,FMT fI ,END = sll ,ERR= sll ,IOSTAT- iosilliolistl 
READ( un,FMT -- fI ,END - s II ,ERR = s II ,IOSTAT = ios III iolist I 
READ( un. fI ,END - sII,ERR= sll ,JOSTAT = ioslli iolistl 
READ fI ,iolist I 
READ(UNIT-*,FMTo /l,END-sll,ERR -sll,IOSTATc. iosilliolistl 

WRITE(UNIT, un,FMT -fi.ERR-sll,IOSTAT=iosDliolistl 
WRln.:( un,FMT - flERR - sll ,lOSTAT = ioslHiolistl 
WRITE( un, fI ERR-slI,lOSTATc iosilliolistl 
W({ITI': f1.iolist I 
WRITE (UNIT - *,FMT - fi ,FRR - sll ,IOSTAT ~ iosPliolistl 

1<i<:I{I':'\I)IF1\l'J' t[.l-:NJ) sl.EHf{ sll,lOSTAT ioslJliolistl 
In':I{EAJ) {'1.lolist I 

\(TI',I'TIFMT f'lYNJ) sl.EH,I{ sllJOSTAT iosiJiiolistl 
\('( '1':\ ''I' f'I.iolisll 

TYI'Eil·iV1T· n.Elm "II.J(JSTA'!' ioe,llliolistl 
TYPE f'I.iolis! I 

II{IN'J'!VMT I'I.EIn{ ,.:II.H)STAT iosliJiolistl 
PRINT fI ,iolist I 

l'l!:\'(,IIIFMT fl.J-:I{H sll.IUS,\,AT io"liJiolis!1 
j'llNCII l'I.iollstl 

1';~(:OJ)E(l'.f'.al.EI{f{ .-;II.J(S'I'AT ioslJiiolistl 
1)/':<'( )DEIl'.Lal.l~KJ-{ ,.: II.JUSTAT ios ill iolis! I 

READ(UNIT - un,FMT ~- *I,END - sll,ERR = sll ,lOSTAT = iosilliolistl 
READ( un,FMT - *I.END - sll ,ERR = sll ,lOSTAT= iosDliolistl 
READ( un. *1.END~sll,ERR=sll,lOSTAT=ioslliiolistl 
READ *1 ,iolist I 
READ(uNIT- *,FMT ~ *I,END sll,ERR-sll,IOSTAT-iosIHiolistl 

WRlTE(uNJT - un,FMT = *1 ,ERR - s II ,lOST AT = ios DI iolist I 
WRI'I'E( un,FMT- *1,ERR~sll,IOSTAT=iosDliolistl 

WRITE( un, ~I ,ERR = sll ,lOSTAT= ioslJl iolistl 
\\'I{ITE 'I.ioli,,! I 
WRITE(UNIT = ';',FMT - *1 ,ERR- sll ,lOSTAT = ioslHiolistl 

i{I·:I<I-:ADIF1\1T'I.i<:l\'[) ~ II.Elm ,.:I.JUSTAT iosliJlOiI,.:t I 
I~ F H I':A D"I.IOII:"t I 

\('('!':I'TI1'1\l'I' 'I.END o-II.EHI\ ,,11.lOSTAT io"liJio]i"tl 
\(.(' 1·:I>'I"I.iolist I 

TYPI'>v:vn I.EHH ,,11.l1)STAT Im;lllioli"tl 
TY 1'1':'I.iolist I 

'UINTIFMT 'I.":HH sll.OS'I'AT lOslljiolist I 
PRINT *1 ,iolist I 

!'l'NCIIIFMT 'IYIW s: .IUS'I'AT io:"l!liolistl 
I'll'~ (' III. i III i st I 

10-3 

Section 

10.5.1.1 

10.6.1.1 

;iJ.i.] 

; iI.h.1 

I) III i 

I'.) ] I. J 

III I ~ 

10.5.1.:3 

10.6.1.3 

:(i 1-' ~ 

10.9.2 

10.10.2 

1(' 11.2 



DATA TRANSFER STATEMENTS 

Table 10--2: Summary of Data Transfer Statement Forms (ConLl 

Data Access Statement Construct Section 

~;('qu('nti<ll Formatted 
,:\Al\H:J.lST Statement! 

/{EA /)1 I J N IT 
HEAD( l.TNIT 

un.FMT 
\lfl.:\':\1 L 

lI<lnwl.END sll.Elm· 
namP! .END ;.;11.Elm· 

sll.IOSTAT iosll 
s IIJOSTAT - ins il 
sll.lOSTAT - ioslJ 
s II.JOSTAT io;.; II 
;.;II.IOSTAT iosll 

/IUi./.4 

I\E.\/)( llllYi\1T nanH'I.E]\;J) sHElm 
I{EADI IITl.NML nall1l'l./<:ND sll.ERR 
]{E.\/)( 1111. nanwl.END sll.Elm 

WI{ITEJ 11NI'I' Illl.F!\1T 1Ii1111('I.EHH sll.IOSTAT insll /IUi /.1 
WHITEIUNJT I1I1.Ni\lL 1l<lIll<'l.EHH s 1I.Ji )STAT iosll 
WHITEI lIrlYMT nanwl.EJ{H ;.;II.l0STAT io;.;IJ 
WHITEr I1I1.NML naml'I.EJm ;.;II.H)STAT insll 
\VHJTEI lin. nallll'l.EJU{ sll./OSTAT illsl J 

Sequential Unformatted READ( UNIT - unl ,END ~ s II ,ERR ~ s II ,IOSTAT = ios III iolist I 10.5.2.1 
READ( unl,END = sll ,ERR - sll JOSTAT- ioslliiolistl 

WRITE (UNIT = unl ,ERR = sll ,IOSTAT- ioslll iolistl 10.6.2.1 
WHITE( unl,ERR -sll,IOSTAT~iosllliolistl 

Direct Formatted HEAD(UNIT- un,FMT ~ f,REC - rnl,ERR sll,lOSTAT~ ioslliiolistl 10.5.1.2 
READ( un.FMT = f,REC - rnl ,ERR - sll ,IOSTAT~ ioslHiolistl 
READ( un, f,HEC-rnl,ERR- sll,IOSTAT~iosllliolistl 

IU:ADI un'rn.F\rr I' I.EJu{ ;.;II.IOS'I'AT iosillinlisli 
HEADI 11111'11. r I,EHH sll.lOSTAT iosliliolisll 

WRITE(UNIT~un,FMT f,REC rnl,EHR-sll,IOSTAT iosilliolistl 10,6.1.2 
WRITE( un,FMT ~ f,HEC - rnl ,ERH - sll,IOSTAT ioslliiolistl 
WHITE( un, f,REC=rnl,ERR sll,IOSTAT iosilliolistl 
\VJ{IT/':I un'rn.FMT f I.EJm ,1i.IOSTAT ins III inlist I 
\rJ{]TEI 1I1l'1'll, r I,Elm 'ill.lOSTAT io;.;ll/iolist I 

Direct Unformatted READ(UNIT - un,REC ~ rnl ,ERH ,'co sll ,lOSTAT - ioslliiolistl 10.5.2.2 

Key: 

UNIT- un 

UNIT-* 

REC~rn 

IIIl rn 

FMT~f 

FMT=* 

F!\IT nan\(' 

I\' \1 I. . 

END"'-'s 

ERR- s 

IOSTAT= ios 

iolist 

READ( un,REC - rnl ,ERR - s II ,IOSTAT = ios III iolist I 
J{EADI un'rn I.Elm sll.IOSTAT io;.;ll/iolistl 

WRITE (UNIT un,REC - rnl ,ERR = sl/ ,IOSTAT= ioslliiolistl 
WRITE( un,REC ~ rnl ,ERR - sll ,lOSTAT~ ioslliiolistl 

IIn'rn 1.f<:HH ;.;II.10STAT iosilliolistl 

is a FORTHAN logical unit number or internal file specifier (Section 10.4,3). 

10.6.2.2 

is a default unit specification used with the READ Statement to read from CDR, and with 
the WHITE Statement to write to LPT: (see Section 10.4.3). 

is a direct-access record number (Section 10.4.4). 

I" an all(,1'nat(' W<l\' of specifying Logical Unit NumiJl'r and n'cord numhc'r of a riirect
~1c('('"S transfer! SI'ct Ion I (j ,-l.·1 I. 

is FORMAT-statement formatting; iolist is optional (Section 1O.4.5.ll. 

is list-directed formatting; iolist is optional (Section 10.4.5.2). 

is th(' ;1I1('rnal in' form of Ihl' NA:\1FLlST st;tll'nwnt f;1I'mal ;';J)('cifi!'1' ISection 1().·L'J,:~1 

is an optional end-of-file transfer specifier (Section 10.4.6), 

is an optional error transfer specifier (Section 10.4.71. 

is an optional 1/0 status specifier (Section lO.4.S). 

is a data transfer 110 list ISection 10.4.9). 

10-4 



DATA TRANSFER STATEMENTS 

10.1 DATA TRANSFER OPERATIONS 

Data transfer statements are used to transfer data between memory and 
files or between memory and memory. Data can be transferred 
sequentially (sequential access) or randomly (direct access). The 
areas in memory from which data is to be taken during output (write) 
operations, and into which data is stored during input (read) 
operations are specified by: 

1. A list in the data transfer statement 

2. A list defined by a ~AMELIST statement 

3. FORMAT specifications referenced in the 
statement 

data transfer 

The appearance and arrangement of transferred data can be specified 
by: 

1. Format specifications located in either a FORMAT statement or 
an array (FORMAT-statement I/O) 

2. The contents of an I/O list (list-directed I/O) 

3. An I/O list defined in a NAMELIST statement (NAMELIST I/O) 

These three methods are known collectively as formatted I/O. 

In contrast to formatted I/O transfers, FORTRAN has several methods 
for transferring data without regard for the type and arrangement of 
the data being transferred. These methods are known collectively as 
unformatted I/O. Unformatted I/O transfers are particularly useful 
when you want the internal (memory) representation of the data being 
transferred to be the same as the external (file) representation of 
the data. 

In addition, unformatted data transfers are generally faster than 
formatted transfers. This is because unformatted data transfers do 
not convert the data to or from its ASCII representation during the 
transfer. 

The following sections describe the types of access available, the 
types of data transfers available, and the statements used for I/O 
transfer operations. 

10.2 DATA ACCESS 

There are two forms of access available sequential and direct. 
These forms are described in the following sections. 

10.2.1 Sequential Access 

If the data access is sequential, the data records are transferred in 
a serial fashion to or from the external data file. Each 
sequential-access input stateMent transfers the next record(s) from 
the accessed data file, such that data records are transferred in the 
same order that they appear in the file. 

10--5 



DATA TRANSFER STATEMENTS 

10.2.2 Direct Access 

If the data access is direct, the data records are transferred to or 
from a file in any desired order, as specified by a record number in 
the data transfer statement. (Section 10.4.4 describes specifying 
records in data transfer statements.) 

Direct-access transfers, however, can be made only to files residing 
on disk that have been previously set up (using an OPEN statement) for 
direct access. Direct-access files must contain identically sized 
records that are accessed by a record number. 

You must use the OPEN statement to establish direct access (see 
Section 11.2). Execution of the OPEN statement must precede the first 
data transfer statement for the specified logical unit. 

10.3 FORMATTED AND UNFORMATTED DATA TRANSFERS 

The term "formatted data transfer" describes an intermediate step that 
occurs during a data transfer. This intermediate step, which does not 
occur in an unformatted data transfer, converts the data from its 
internal (memory) representation to a different external (file) 
representation. (Formatted data transfers are described in Section 
10.3.1.) 

An unformatted data transfer refers to the transfer of data with no 
change to the data during the transfer. In an unformatted data 
transfer, the internal (memory) representation of the data and the 
external (file) representation of the data are the same. (Unformatted 
data transfers are described in Section 10.3.2.) 

10.3.1 Formatted Data Transfers 

In a formatted data transfer, the internal and external format of the 
data is controlled during the data transfer in one of three ways: 

1. FORMAT-Statement Formatting The data transfer 
contains a statement number, a numeric array 
character expression, or an integer, real, or 
variable as a format identifier. 

statement 
name, a 

logical 

The statement number references a line that contains a FORMAT 
statement. The array name references an array that contains 
a format specification. The value of the character 
expression is a format specification. The integer, real, or 
logical variable references a FORMAT statement number that 
was assigned with an ASSIGN statement. 

In the following example, the data transfer statement 
contains a statement number of a FORMAT statement. The 
FORMAT statement, in turn, contains edit descriptors that 
control the formatting of the data during the transfer: 

WR I T E ( 2 2 , 1 0 1 ) X , J , Z 
101 FORMA T ( 1 X, FlO. 5, I 5 , F 6 . 4 ) 

See Section 10.4.5.1 for more information on FORMAT-statement 
formatting. 

10-6 



DATA TRANSFER STATEMENTS 

2. List-Directed Format~ing The data transfer statement 
contains an asterisk as thE~ format identifier. The asterisk 
signifies that the transfer is controlled by the data type of 
the variables in the data transfer statement I/O list. 

In the following example, the data transfer is controlled by 
the I/O list items X, J, and Z: 

WR I ~~E ( 2 2, * ) X, J , Z 

In this example, unless the data types of X, J, and Z have 
been set explicitly to a type other than the default data 
type, the transferred values of X and Z appear in 
floating-point form, and the transferred value of J appears 
in integE~r form. 

See Section 10.4.5.2 for more information on list-directed 
formatting. 

3. NAMELIST-Statement Formatting The data transfer statement 
contains a NAMELIST name as the format identifier. This 
NAMELIST name associates the data transfer statement with a 
NAMELIST I/O list defined in the NAMELIST statement elsewhere 
in the same program unit. Elements in the NAMELIST I/O list, 
in turn. dictate th~ formatting of the data during the data 
transfer. 

In the following exam9le, the data transfer is controlled by 
the NAMELIST. 

PROGRAM NAMLS'r 
NAMELIST/VAR/X,Y,Z 
READ (22, VAR) 
WRI'[,E (5,VAR) 
END 

See Section 10.4.5.3 fornore information on NAMELIST-statement 
formatting. 

10.3.1.1 Internal Files - Internal files provide the capability to 
perform formatted data transfers between character variables and the 
elements of an I/O list. T~eir use with formatted sequential READ and 
WRITE statements reduces the need to use the ENCODE and DECODE 
statements for internal 1/0 (s~e Section 10.12). 

An internal file consists of a character variable, a character array 
element, a character array, or a character substring; a record In an 
internal file consists of any of the above except a character array. 

If an internal file is a character variable, array element, or 
substring, that file comprises a single record whose length is the 
same as the length of the variable, array element, or substring. 

If an internal file is a character array, that file comprises a 
sequence of records, with each record consisting of a single array 
element. The sequence of records in an internal file is determined by 
the order of subscript progression (see Section 4.3.2). Every record 
of the file has the same length, which is the length of an array 
element in the array. 

10-7 



DATA TRANSFER STATEMENTS 

The character variable, array element, or substring that is the record 
of the internal file becomes defined by writing the record. If the 
number of characters written in a record is less than the length of 
the record, the remaining portion of the record is left-justified and 
filled with blanks. 

A record in an internal file can be read only if the character 
variable, array element, or substring comprising the record has been 
defined (that is, a value has been assigned to the record). Prior to 
data transfer, an internal file is always positioned at the beginning 
of the first record. 

10.3.2 Unformatted Data Transfers 

Unformatted data is transferred in two forms on TOPS-20 (BINARY or 
IMAGE), and three forms on TOPS-IO (BINARY, IMAGE, or DUMP). In an 
explicit OPEN statement (Section 11.2.1), you can specify one of these 
forms as an argument to the MODE specifier. (Section 11.3.20 
describes the MODE specifier and its arguments.) 

On disk devices and CORE-DUMP tapes, numeric data items are 
transferred directly as 36-bit words. Character data items are 
t~ansferred as 7-bit bytes. Numeric and character items can be 
interpersed in the same I/O list. Nu~eric data items and, for BINARY 
files, record markers (LSCWs) are always word-aligned (see Section 
18.4.2). On INDUSTRY tapes, numeric data items should not be used. 
Character data items are transferred one character per frame (see 
Section 11.3.30). 

10.3.3 Unformatted Data Transfer to ASCII Devices 

Unformatted data transfer can be done to and from ASCII devices (such 
as line printer, plotter, or terminal). Character data is transferred 
exactly as it appears in the input/output list, with no formatting or 
carriage control. 

The method for transferring numeric data items depends on the device. 
For non-terminal devices (such as, line printer or plotter), numeric 
data is treated as if it were packed (Hollerith) data, 
left-justifited, five characters per word. For the terminal, the data 
is treated as if it were right-justified, one character per word. 

10.4 DATA TRANSFER STATEMENT FORMS 

Table 10-2, on the tab divider, summarizes the forms of all the 
FORTRAN data transfer statements. Figure 10-1 shows the three major 
components of data transfer statements. 

Statement 
Name (Control-Information List) I/O List 

'-----" I'---..r---J 
(See Section 10.4.1) I (See Section 10.4.9) 

(See Section 10.4.2 - 10.4.8) 
MF~· s· 1750-8i 

Figure 10-1: Components of Data Transfer Statements 

10-8 



DATA TRANSFER STATEMENTS 

10.4.1 Data Transfer Statement Names 

In a data transfer statement, the statement name indicates whether the 
operation is an input (read) or output (write) operation. 

The FORTRAN data transfer statements described in this chapter are: 

1. READ (See Section 10.5) 

2. WRITE (See Section 10.6) 

3. REREAD (See Section 10.7) 

4. ACCEPT ( Sc!e Section 10.8) 

5. TYPE (See Section 10.9) 

6. PRINT (See Section 10.10) 

7 . PUNCH (Se(;:! Section 10.ll) 

8. ENCODE (S(?e Section 10.12) 

9. DECODE (See Section 10.12) 

10. Internal READ (See Section 10.12) 

11. Internal 1(vRITE (See Section 10.12) 

10.4.2 Data Transfer Control-Information List 

A control-information list is included in every data transfer 
statement. Each control-information list (including those having an 
implicit definition of device) can contain: 

1. One unit specifier (see Section 10.4.3) 

2. One forma t specifier (see Section 10.4.5) 

3. One record specifier (see Section 10.4.4) 

4. One I/O status specifier (se1e Section 10.4.8) 

5. One error specifier (see Section 10.4.7) 

6. One end-of-file specifier (see Section 10.4.6) 

The following rules govern the placement and inclusion of items in a 
control-information list: 

1. If the keyword UNIT= is omitted from the unit specifier, 
unit specifier must be the first item in 
control-information list. 

10-9 

the 
the 



DATA TRANSFER STATEMENTS 

2. If the control-information list contains a format specifier 
(FMT= or NML=), the statement is a formatted data transfer 
statement. Otherwise, it is an unformatted data transfer 
statement. The NML= keyword is used for NAMELIST formatting 
only, although you can also use the FMT= keyword for NAMELIST 
formatting. 

If the keywords FMT= or NML= is omitted from the format 
specifier, the format specifier must be the second item in 
the control-information list, and the first item must be the 
unit specifier without the keyword UNIT=. 

3. If the control-information list contains a record specifier 
(REC=), the statement is a direct-access data transfer 
statement. Otherwise, it is a sequential-access data 
transfer statement. 

If the keyword REC= is omitted from the record specifier, the 
unit specifier (without the keyword UNIT=) must appear first 
in the control-information list, followed by a single quote 
(')! and then the record specifier. 

4. A control-information list cannot contain both a record 
specifier and an end-of-file specifier. 

5. If the format specifier is an asterisk or a NAMELIST name, a 
record specifier must not Je included in the 
~ontrol-information list. 

G. A control-information list in an internal file or ENCODE or 
CECODE statement must contain a format specifier other than 
dn ~sterisk or NAMELIST name, and must not contain a record 
';0ecifier. 

10.4.3 Unit References in Data Transfer Statements 

The unit specifier is used to refer to a file or device. The form of 
a unit specifier is: 

UNIT un 

where: 

un is a logical unit identifier or an internal file identifier. 

A logical unit identifier (see Section 10.4.3.1) is used to refer to 
an external file. An internal file identifier (see Section 10.4.3.2) 
is used to refer to an internal file. 

The keyword UNIT= is optional if the unit specifier is the first item 
in the control-information list. 

10-10 



DATA TRANSFER STATEMENTS 

10.4.3.1 FORTRAN Logical Unit Identifier - The FORTRAN logical unit 
identifier is associated with the file to or from which data is being 
transferred. This identifier is an integer expression whose value is 
in the range of 0 to 99, or an asterisk. 

For example, the following WRITE statement contains the reference to 
logical unit number 22 as the first item in the control-information 
list: 

WRITE (22,101) 

Table 10-3 lists the default logical unit number assignments. Note 
that logical unit number 22 identifies the file as DSK:FOR22.DAT. 
Thus, the sample WRITE statement references a disk. The unit 
identifier asterisk corresponds to the card reader for the READ 
statement, and to the line printer for the WRI'rE statement. 

The compiler automatically assigns default logical unit numbers for 
the REREAD, READ, ACCEPT, PRINT, PUNCH, TYPE, and WRITE statements. 
Default unit numbers are negative integers that cannot be accessed. 
For example: 

1. OPEN(UNIT=n) or READ/WRITE (UNIT=n) 
integer is illegal. 

where n is a negative 

2. Assigning a negative decimal number to a device at command 
level is illegal. 

You can, however, from monitor command level, 
default device to another device. For example, 
TOPS-20 DEFINE command (or TOPS-IO ASSIGN command), 
assign LPT: (line printer) to DSK: (disk). If you 
then any I/O statements that reference the line 
actually reference the disk. 

assign a 
using the 

you can 
do this, 
printer 

You can optionally make the logical device assignments at runtime, or 
you can use the default assignments contained by the FORTRAN Object 
Time System (FOROTS). Table 10-3 lists the default logical device 
assignments. You should specify the device explicitly in an OPEN 
statement (see Section 11.2) if you wish to override the default 
assignment. 

10-11 



DATA TRANSFER STATEMENTS 

l allll' ill-:{: FOHTHAN Logical Device Assignments 

,'j H{ 

"Y 

i}pvicc 

· TY 
"',' 

, i I 

)'1'1' 

"'.\ 1 

! i !",\-i 

iT.\.-' 
i';'.l,f; 

\I! Au 
.11'-'\1 
'-)TA~ 

, iHTl{ 

:;',1" 
:1.--;'" 

... -:.;'; 
· ,:-; f\ 

• )~!{ 

IW\, 1 

! W\'2 
· "F\':; 
· ;;·:\'·t 
, .. ~ . \ ' -: 
:!.\ oJ 

I)('fault Devices (inaccessible to til£' user) 

--! I)~-ia~I~FiI;~~J~l~--------l- i~~);i~~ll;~it'-N-~~~I;~;- -- --.-
F()J{PI.T.DAT 
Fi Ie last read 
HH{( 'UR.nAT 
F( )l{TTY.1 )AT 
FOI{IJYr. [)AT 
FOl{PTP.UAT 
FORTTY ()AT 

I -7 

I -on 
I 

I 
-A 

. __ 1 __________ ~~ __ . _______ _ 
Standard Devices" 

'I-D~t:~~lt ~~ii~n;~~-------TLOgiC-;ll~it N-~;b~;--------

I FOJ{(Hl.DAT I 00 

FOIWl.DAT I 01 

FOH25.DAT 

I 02 
i 03 
i f)4 

I 0.') 

I f)(:; 

I fJl 
i {1.'I 

I 09 
10 
11 

l~ 

l:{ 

14 
1[, 

16 
17 
11"1 

19 

2fl 
n 
n 
2:{ 

M 
25 
2fi 
27 

------------
Usc 

For use by FORPLT 
REREAD statement 
READ stat.emellt 
ACCEPT statement 
PRINT statement 
PUNCH stat.ement 
TYPE statement 

-----------

Disk 
Disk 

Usc 

Card Reader 
Line Pnnter 
Console Teletype 
lJser's Teletype 
Paper Tape Reader 
Paper Tape Punch 
Display' 
DECtape 

Magnetic Tape 

Assignable DeVice 
Disk 

Assigna ble Devices 

I Di:-;k 

I 
I . 

FOH99./lAT _. _____ . __ .=~ ___ . ________ J_[)i'k _____ . __ . __ 
":1i' device table ean be altered when l'OHOTS is installed or bv the ,,;v~,telIl administrator. The supplied 

q!! Hili,., are PHhpr value;; in the default tabll' pictured above. or all positive logical unit numhers default to disk. 
;H'ck to sm' vvhich device taole is oein!! uH:d at vour installation. 

10-12 



DATA TRANSFER STATEMENTS 

10.4.3.2 Internal File Identifier - The internal file identifier 
specifies the internal file to be used. This identifier is the name 
of a character variable, character array, character array element, or 
character substring. 

Example: 

CHARACTER*132 LINE 
WRITE (UNIT=LINE,FMT= I (F) ') 3.14159 

10.4.4 Record Number References In Data Transfer Statements 

All direct-access data transfer statements must contain a record 
specifier, which is used in the transfer to identify the number of the 
record to be accessed. 

The form of the record specifier in the control-information list is: 

REC=rn 

where: 

rn is a positive integer expression that indicates the 
record number. 

When you use the REC=rn form to specify the record number, you can 
place the record specifier anywhere in the control-information list. 

An alternative way for including the record specifier is: 

un'rn 

where: 

un 

rn 

is a positive 
el'2men t tha t 
device to or 
made. When 
loqical unit 

integer constant, variable, or array 
represents the logical unit number of the 

from which the data transfer is beinq 
you use this form for specifying the 

nu~ber, you cannot use the UNIT= keyword. 

is an apostrophe delimiting the logical unit number 
from the record number. 

is a positive integer 
element that represents 

constant, variable, 
the record number. 

or array 

When you use the alternative form for specifying the record number, 
you cannot use the keyword REC=. 

10.4.5 Format References in Data Transfer Statements 

All formatted data transfer statements must contain a format specifier 
in the control-information list. The general form of the format 
specifier is: 

FMT=f 

or 

NML= a NAMELIST name 

10-13 



where: 

FMT= 

NML= 

f 

DATA TRANSFER STATEMENTS 

is the keyword used in the keyword form of the 
specifier. Using the keyword form of the 
specifier makes it positionally independent 
control-information list. 

format 
format 

in the 

is the keyword that can be used instead of FMT= for 
NAMELIST formatting. Either FMT= or NML= can be used 
for NAMELIST formatting. 

is a format identifier. Depending on the type of 
formatting chosen, f can be one of the following: 

1. A statement number 

2. A numeric array name 

3. A character expression 

4. An integer, real, or logical variable 

5. An asterisk 

6. A NAMELIST name 

If you do not use the keyword form of the format specifier, you 
place the format specifier as the second item of 
control-information list (immediately following the logical 
number specifier) (see Section 10.4.2). 

must 
the 

unit 

Sections 10.4.5.1 through 10.4.5.3 describe all forms of the format 
specifier. 

10.4.5.1 FORMAT-Statement Formatting - The FORMAT-statement format 
specifier has the following form: 

FMT=f 

where: 

FMT= 

f 

is the optional keyword in the format specifier. 

is one of the following: 

1. The statement number 
appearing in the same 
transfer statement 

of a 
program 

2. The name of a numeric array 

3. A character expression 

FORMAT statement 
unit as the data 

4. An integer, real, or logical variable that has been 
assigned a FORMAT statement number with an ASSIGN 
statement (see Section 8.3) 

(See Section 12.1 for more information on 
FORMAT-statement formatting.) 

10-14 



DATA TRANSFER STATEMENTS 

The following examples show all forms of the FORMAT-statement format 
specifier. In the first e~ample, the format specifier (FMT=lOl) 
references the FORMAT statement 101 in the same program unit. 

PROGRAM TEST 
1=67 
P=90.8 
WRITE (UNIT=22,FMT=lJl) I,P 

101 FORMAT (IX, 'FIRST VA::'UE IS: ',I,' SECOND VALUE IS: ',F) 
END 

In the second example, the saml~ format list used in the first example 
is stored in an la-element ar~ay. Note that the word "FORMAT" is not 
included in the array. 

PROGRAM TESTB 
DIMENSION MYARAY(lO) 

MYARAY (1) =' (IX,' , , 
MYARAY(2)='FJRST' 
MYARAY(3)=' "ALU' 
MYARAY(4)='E IS:' 
M YA RA Y (5 ) =' '1', I , , 
MYARAY(6)=' ,q SEC' 
MYARAY(7)='OND V' 
MYARAY(8)='ALUE ' 
MYARAY(9)='IS: '" 
MYARAY (10) =' "F) , 

1=67 
P=90.8 

WRITE (UNIT=22,FMT=MYARAY)I,P 
END 

In the third example, the same format list used in the first two 
examples is stored in a character expression. 

PROGRAM TESTe 
INTEGER I 
REAL P 
CHARACTER WORDl*5,WORD2*6 

1=67 
P=90.8 
WORDl='FIRST' 
WORD2='SECOND' 
WR I 'r E (U N I 'r = 2 2 , FM T =' (1 X, " , / /WO R 01/ /' VA L U E IS: ", I ," '/ / 
1 WORD2//' V.I\LUE IS: ",F)') I,P 
END 

In the fourth example, the format specifier (FMT=IFORMT) references a 
variable that has been assigned a statement number. 

PROGRAM TESTD 
ASSIGN 101 TO IFORMT 
1=67 
P=90.8 
WRITE (UNIT=22,FMT=IFORMT) I,P 

101 FORMAT (IX, 'FIRST VALUE IS: " I, 'SECOND VALUE IS: ',F) 
END 

For more information on FORMAT-statement formatting, see Section 12.1. 

10-15 



DATA TRANSFER STATEMENTS 

10.4.5.2 List-Directed Formatting - In list-directed formatting, the 
variables in the I/O list of the data transfer statement dictate the 
formatting of the data during the transfer. 

The form of the list-directed format specifier is: 

FMT=* 

where: 

FMT= 

* 

is the optional keyword part of the format specifier. 
Including this keyword in the format specification 
makes the specification positionally independent in the 
control-information list. If you omit the FMT= 
keyword, the format specifier must be the second 
specifier (the unit specifier must he first). 

is an asterisk that indicates that the formatting is 
list-directed. 

In the following example, the variables I and P are formatted by 
list-directed formatting. 

PROGRAM TESTLD 
1=67 
P=90.8 
WRITE (UNIT=22,FMT=*) I,P 
END 

List-directed formatting is further described in Section 12.5. 

10.4.5.3 
\lAMELIST, 
contains a 
statement 
defInition 
contains 

NAMELIST-Statement Formatting - If the formatting is 
the format specifier in the control-information list 
reference to a NAMELIST name defined in a NAMELIST 
in the same program unit. Since the NAMELIST name 

contains an I/O list, a data transfer statement that 
a NAMELIST name in the format specifier cannot also contain 

'n1 I/O 1 ist. 

The form of the NAMELIST format specifier is: 

FMT=name 

or 

NML=name 

!"MT= 

~~ML= 

,;ame 

is the optional keyword part of the format specifier. 
Including the keyword in the format specification makes 
it positionally independent in the control-information 
list. If you do not include the keyword part of the 
Format specifier, you must place the format specifier 
:;econd (after the logical unit :1umber specifier) in the 
control-information list. 

is an alternative keyword that can be used in place of 
::'MT. 

IS the NAMELIST name. The NAMELIST name is defined in 
~ NAMELIST statement in the same program unit. 

10-16 



DATA TR~NSFER STATEMENTS 

In the following example, the data transfer statement uses a NAMELIST 
name in its format reference: 

PROGRAM TESTNL 
NAMELIST/MYIOLT/I,P 
READ (UNIT=5,NML=MYIOLT) 
WRITE (UNIT=5,FMT=MYIOLT) 
END 

'rhe execution of this sample program is as follows: 

EXECUTE TES'I.FOR 
LINK: Loading 
[LNKXCT TESTNL execution] 
$MYIOLT I=675,P=34.71$ 

$MYIOLT 
1= 675, P= 34.71000 
$END 

CPU time O.L~ Elapsed t:me 32.0 

For further information on thE! NAMELIST statement, see SectIon 12.7. 

10.4.6 Optional End-of-File Transfer of Control (END=) 

The optional end-of-file transfer specifier (END=) specifies a 
statement number to which control passes if this statement attempts to 
read past the last data record of a file. 

If you include an ERR= specifier (Section 10.4.7) and no END= 
specifier, control passes to the statement indicated in the ERR= 
specifier whenever an end-of-file condition occurs. Note that an END= 
specifier on any output statement and on an input statement of a 
direct-access file is ignored. 

If no END= specifier, IOSTAT= specifier, or ERR= specifier is included 
in the data transfer stab~ment, and an end-of-file condition is 
encountered, an error message is displayed on the controlling 
terminal, and program execution is terminated. 

The form of the END specifier is: 

END=s 

where: 

END= is the keyword part of the END= specifier. 
portion of the END= specifier is required. 

The END= 

s is the statement number of an executable statement in 
the current program unit. 

In the following example, the end-of-file specifier causes a 
of control to statement 50 after the data transfer 
encounters an end-of-file on unit 22. 

10-17 

transfer 
statement 



DATA TRANSFER STATEMENTS 

PROGRAM TESTEN 
READ (UNIT=22,FMT=30,END=50) A,B,C 

30 FORMAT (FjFjF) 
GO TO 100 

50 WRITE (UNIT=5,FMT=75) 
75 FORMAT (lX,'END-OF-FILE HAS BEEN ENCOUNTERED') 
100 WRITE (UNIT=5,FMT=105) 
105 FORMAT (IX, 'EXECUTION HAS ENDED') 

END 

The following shows the sample program being executed and the 
end-of-file branch being taken. In this example, the READ statement 
reads from the default filename, FOR22.DAT. To demonstrate the 
end-of-file branch, FOR22.DAT is an empty file. Thus, when the READ 
statement attempts to read records from FOR22.DAT, an immediate 
end-of-file condition is detected. 

EXECUTE TEST. FOR 
FORTRAN:TESTEN 
TESTEN 
LINK: Loading 
[LNKXCT TESTEN execution] 

END-OF-FILE HAS BEEN ENCOUNTERED 
EXECUTION HAS ENDED 
CPU time 0.2 Elapsed time 0.5 

10.4.7 Optional Data Transfer Error Control (ERR=) 

The optional error specifier (ERR=) enables you to specify a statement 
to which control passes if an error occurs during the data transfer. 
If an error occurs other than for end-of-file, the file is positioned 
after the record containing the error. 

NOTE 

If the program attempts to read from the same unit 
after an ERR= branch occurs, the record following the 
record containing the error will be read. To read a 
record containing the error, the program must execute 
either a REREAD statement (Section 10.7) or a 
BACKSPACE (Section 11.8.4) followed by a READ 
statement. 

If no ERR= specifier or IOSTAT= specifier is present and an error 
occurs during the data transfer, the program is aborted. 

The form of the error specifier is: 

ERR=s 

where: 

ERR= 

s 

is the keyword portion of the error specifier. 

is the statement number of an executable statement in 
the same program unit. 

10-18 



DATA TRANSFER STATEMENTS 

The following example shows the error specifier being used to pass 
control to the statement at ljne 85 if an error occurs during the data 
transfer. 

PROGRAM TESTEN 
READ (UNIT=22,FMT=30,END=50,ERR=85) A,B,C 

30 FORMAT (F/F/F) 
GO TO 100 

50 WRITE (UNIT=5,FMT=7~) 

75 FORMAT (lX,'END-OF-E'ILE HAS BEEN ENCOUNTERED') 
GO TO 100 

85 WRITE (UNIT=5,FMT=86) 
86 FORMAT (lX,'THE TRANSFER ENCOUNTERED AN ERROR') 
100 WRITE (5,105) 
105 FORMAT (' EXECUTION HAS ENDED') 

END 

TYPE FOR22.DAT 
100. 
200. 
AAAA BBBB CCCC DDDD 

EXECUTE TESTEN.FOR 
FORTRAN: TESTEN 
TESTEN 
LINK: Loac\ ing 
[LNKXCT TESTEN execution: 

THE TRANSFER ENCOUNTERED AN ERROR 
EXECUTION HAS ENDED 
CPU time 0.2 Elapsed t::.me 2. B 

In this example, the error branch is taken when the input routine 
detects a nonnumeric da1:a item while attempting to read a 
floating-point number into val~iable C. If the file FOR22.DAT contains 
more than three records, the next READ accesses record 4 in the file. 

10.4.8 Optional Error Variable For Error Reporting (IOSTAT=) 

The optional I/O status specifier enables you to designate an integer 
variable which receives a value indicating the success or failure of 
the data transfer. 

When the data transfer statement is successfully executed, the 
variable is assigned a valu«? of ZE?ro. If an error occurs during the 
data transfer, the variable is assigned a positive value indicating 
which error occured (see Appendix D). In this case, if there is no 
ERR= specifier, the program proceeds to the statement after the data 
transfer statement. 

If an end-of-filE:?, occurs during the data transfer, the variable is set 
to -1. In this case, if there is no END= or ERR= specifier, the 
program proceeds to the statement after the data transfer statement. 

The form of the error variabl,~ specifier is: 

IOSTAT=ios 

where: 

ios is an integer variable that is the 
specifier. 

10-19 

I/O status 



DATA TRANSFER STATEMENTS 

The following example shows the I/O status specifier being used to 
report the number of the error on default unit 5 if the error branch 
is taken. 

PROGRAM TESTEN 
10 READ {UNIT=22,FMT=30,END=50,ERR=85,IOSTAT=J)A,B,C 
30 FORMAT (F4.1/F4.1/F4.1) 

WRITE {UNIT=5,FMT=40)A,B,C 
40 FORMAT (lX,'THE VALUES ARE: ',3F6.1) 

GO TO 100 
50 WRITE (UNIT=5,FMT=75) 
75 FORMAT (lX,'END-OF-FILE HAS BEEN ENCOUNTERED') 

GO TO 100 
85 WRITE {UNIT=5,FMT=86)J 
86 FORMAT (lX,'THE TRANSFER ENCOUNTERED AN ERROR; STATUS: ',IS) 

IF(J.GT.O) GO TO 10 
100 WRITE (5,105) 
105 FORMAT (' EXECUTION HAS ENDED') 

END 

TYPE FOR22.DAT 
100. 
200. 
AAAA BBBB CCCC DODD 
80. 
90. 
95. 

EXECUTE TESTEN.FOR 
FORTRAN: TESTEN 
TESTEN 
LINK: Loading 
[LNKXCT TESTEN execution] 

THE TRANSFER ENCOUNTERED AN ERROR; STATUS: 307 
THE VALUES ARE: 80.0 90.0 95.0 
EXECUTION HAS ENDED 

CPU time 0.2 Elapsed time 1.5 

In this example, the IOSTAT variable J is set when the first READ 
detects a nonnumeric data item while trying to input the data for 
variable C. In this case, the value of 10STAT represents the 
processor specific error number (the second value listed in the FOROTS 
error messages in Section 0.1), and indicates that an illegal 
character has been detected in the data. After the error status has 
been printed, the second READ successfully executes using records 4, 
5, and 6 from the file. 

10.4.9 Data Transfer Statement Input/Output Lists 

The I/O list in an input or output statement contains the names of 
variables, arrays, array elements, or character substrings. The I/O 
list in an output statement can also contain expressions, function 
references, or constants. 

An I/O list has the following form: 

e[,e] .•. 

10-20 



DATA TRANSFER STATEMENTS 

The variable i and the parameters el, e2, and e3 have the same forms 
and the same functions that they have in the DO statement (see Section 
9.3). The list immediately preceding the DO loop control variable is 
the range of the implied DO loop. Elements in that list can reference 
the index, but they must not alter it. Some examples are: 

WRITE (3,200) (A,B,C, 1=1,3) 

The statement in this example functions as though you had written: 

WRITE (3,200) A,B,C,A,B,C,A,B,C 

The following two statements are thE~ same: 

WRITE (3,200) (X(I),I=l,]) 

WR I T E ( 3 , 200) X (l) ,X ( 2) ,;(( 3 ) 

Another example is: 

WRITE (6) (1, (J,P(I) ,Q(I,.J) ,J=l,L) ,I=l,M) 

The I/O list in this example consists of an implied DO list containing 
another implied DO list nested with it. The implied DO lists together 
write a total of (l+3*L) *M fields, varying values of J for each value 
of I. 

In a series of nested implied DO lists, the parentheses indicate the 
nesting (see Section 9.3.4). Execution of the innermost list is 
repeated most often. For example: 

WRITE (6,150) «FORl1(K,L) •. L=l,lO), K=l,10,2) 
150 FORMAT (FIO.2) 

Because the inner DO loop is E~xecutE~d 10 times for each iteration of 
the outer loop, the second subscript, L, advances from 1 through 10 
for each increment of the first subscript. This is the reverse of the 
order of subscript progression. In addition, K is incremented by 2, 
so only the odd-numbered rows of the array are output. 

The entire list of an implied DO list is transmitted before the 
control variable is increment(~d, fOl= example: 

READ ( 5, 999) (P (I), (Q ( I , J), J := 1 , 10), I = 1 , 5 ) 

In this example, pel), Q(l,l), Q(1,2), ••• ,Q(1,10) are read before I is 
incremented to 2~ 

When processing multidimensional an=ays, you can use a combination of 
fixed subscripts and subscripts that vary according to an implied DO 
list, for example: 

READ (3,555~» (BOX(l,J), J=l,lO) 

This statement assigns input values to BOX(l,l) through BOX(l,lO) and 
then terminates without affecting any other element of the array. 

The value of the control variable can also be output directly. For 
example: 

WR I T E (6, 1111) (I, 1=1, 21) 

This statement simply outputs the integers 1 through 20. 

10-23 



DATA TRANSFER STATEMENTS 

10.5 READ STATEMENT 

READ 
Statement 

The READ statement transfers data from a file into memory. There are 
two categories of READ statements: formatted (see Section 10.5.1) and 
unformatted (see Section 10.5.2). 

Table 10-4 summarizes the various forms of the READ statement. 

10-24 



DATA TRA~SFER STATEMENTS 

Table 10-4: Summary of READ Statement Forms 

Data Access Statement Construct 

Sequential Formatted 
(FORMAT Statement) 

READ(UNI'l = un,FMT = fI ,END = s H ,ERR = sJ[ ,lOST AT = ios])! iolist I 
READ( un,FMT = fI ,END = s 11 ,ERR ~ s 11 ,lOST AT = ios 1)[ iolist 1 
REA D( un, fl ,END = s If,ERR = s H ,10STAT = ios])1 iolist 1 

Sequential Formatted 
(List Directed) 

READ(UNI'l = un,FMT = *1 ,END = s 11 ,ERR = s 11 ,10STAT = ios])l iolist I 
READ( un,FMT = *1 ,END = s]l ,ERR --,- s 11 ,lOST AT = ios III iolist I 
READ( un, *1 ,END = s 11 ,ERR = s 11 ,lOST AT-=- ios I)] iolist 1 

Sequential Formatted HEAD(UNl'I-un.FMT--namel.END- sll.EHH ~IIJOSTAT -iosl) 
REAJ)(UNlT un.NML - namel.END sll.ERR sliJOSTAT -iosl) I NAMELIST Statement! 
HEAD! un.FMT namel.END-slI.EHR sll.lOSTAT iosl) 
READ! un.NMLc namel.END' sll.ERH sll.lOSTAT ios]) 
READ( un. namel.END-- !:i11.ERR sliJOSTAT iosl) 

Sequential Formatted 
(Default Unit) 

READ fI ,ioli.,t 1 
READ *I,iolistl 
READ(UNI'l = *,FMT =fl,END=s]l,ERR= sll,lOSTAT= iosllliolistl 
READ( UNI'l = * ,FMT = *1 ,END = s 11 ,ERR = s 11 ,lOST AT =- ios 1)] iolist 1 

Sequential Unformatted READ(UNI'I = unl ,END = s 11 ,ERR = s 11 ,10STAT = ios])l iolist 1 
READ( unl ,END = sll,ERR= sJ!,10STAT= iosl)]iolistl 

Direct Formatted READ(UNI1 = un,FMT= f,REC = rnl,ERR= sll ,10STAT= iosl)liolistl 
READ( un,FMT = f,REC = rnl ,ERR ~ s 11 ,lOSTA T = ios 1)1 iolist 1 
READ( un, f,REC = rnl ,ERR = s 11 ,lOST A T --,- ios III iolist I 
I{EADI un'rn.Fl\1T f I.ERH sliJOSTAT iosi!liolistl 
READI un'rn. f I.EHH-sIiJOSTAT iosilliolistl 

Direct Unformatted READ(UNI'I = un,REC = rnl ,ERR = s 11 ,lOST AT = ios])1 iolist 1 
READ( un,REC =rnl,ERR= sll ,10STAT= ios])]iolistl 

Key: 

UNIT=un 

UNIT=* 

REC=rn 

un 1'n 

FMT=f 

FMT-* 

FMT -- name 

Nl\lL- name 

END=s 

ERR=s 

IOSTAT=ios 

iolist 

un'rn I.EHH sil.lOSTAT - iosllJiolis11 

is a FORTRAN logical unit number (Section 10.4.3), 

is a default unit specification mection 1004.3). 

is a direct-access record number (Section 10.4.4). 

is an alternate way of specifying Logical Unit Number and record number for a direct-access 
1 ransfer (Section 10.4.4). 

is FORMAT-statement formatt'ng; iolist is optional (Section 10.4.5.l>. 

is list-directed formatting; iolist is optional (Section 10.4.5.2). 

is NAMELIST-siatell1cnt form[ tting; iolist is prohiuited (Section 10.4.5.3). 

is the altl'rnativ(' form of the !'.AMELlST-statement format spl'cifier ISection 10.4.5.:3) 

is an optional end-of-file transf.~r specifier (Section 10.4.6). 

is an optional error transfer spl~cifier (Section 10.4.7!. 

is an optional 110 status specifier (Section 10.4.8). 

is a data transfer 110 list (Section 10.4.9), 

10-2 !3 



DATA TRANSFER STATEMENTS 

10.5.1 Formatted READ Transfers 

A formatted READ transfer uses a READ statement that specifies that 
the transferred data is edited during the transfer, such that the 
external and internal representation of the data are different. The 
three types of formatted READ statements are: FORMAT-statement, 
list-directed, and NAMELIST-statement. 

There are two types of access to the device from which the READ 
statement transfers data. They are sequential and direct. If you 
want to perform a direct-access formatted READ from a device, you must 
use FORMAT-statement formatting. List-directed and NAMELIST 
formatting can only be used with sequential-access formatted READ 
statements. 

10.5.1.1 Sequential FORMAT-Statement READ - This section descl~ibes 
the sequential-access (FORMAT-statement) formatted READ statement. 

This statement has the following forms: 

READ (UNIT=un,FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

READ (un,FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

READ (un,f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

If an I/O list is included in these forms, it specifies that data is 
transferred from logical unit un, formatted according to the 
specification given by f, and transferred into the elements of the 
specified I/O list. 

If an I/O list is not included, the input record is skipped. (If the 
FORMAT statement specifies slash editing, more than one record can be 
skipped. H or apostrophe editing can cause data transfers to occur to 
the FORMAT statement itself. See Section 12.4.) 

The following example contains two READ statements: 
contains an I/O list; the second does not: 

READ (22, 5) A, Z, J 
5 FORMA T (2 FlO. 2 , I 5 ) 

READ (22,5) 
END 

the first 

In this example, the first READ statement reads one record from 
logical unit 22, formats the data according to the FORMAT statement, 
and assigns the values to the variables A, Z, and J. The second READ 
statement skips one input record on logical unit 22. 

The default unit forms of this READ statement operates in the same way 
as the first forms, except that data transfers reference the card 
reader, which is the default logical unit for these forms. 

The default unit forms of this statement are: 

READ f[,iolist] 

READ (UNIT=*,FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

10-26 



DATA TRANSFER STATEMENTS 

10.5.1.2 Direct-Access FORMAT-Statement READ - This section describes 
the direct-access (FORMAT-statement) formatted READ statement. 

The forms of this statement are: 

READ (UNIT=un,FMT=f,REC=rn[ ,ERR:=s] [,IOSTAT=ios]) [iolist] 

READ (un,FMT::f,REC=rn[,ERR=s] [, IOSTAT=ios]) [iolist] 

READ (un,f,REC=rn[,ERR=s] [,IOSTi\T=ios]) [iolist] 

If an I/O list is included in these forms, the data specified by 
record rn is transferred, according to the format specifications given 
in f, into the elements of the I/O list. These forms can be used only 
with disk files that have been opened by an OPEN statement that 
specifies ACCESS='DIRECT', ACCESS='RANDOM', or ACCESS='RANDIN' (see 
Sec t i on 11. 3. 1) • 

If the record specified by rn has not been written, an error results 
(except for IMAGE mode files). 

The following example shows this form of the READ statement. 

OPEN(22,RECORDSIZE=25,ACCESS='DIRECT') 
READ (22,5,REC=10)A,Z,J 

5 FORMAT (2F10.2,I5) 
END 

In this example, the READ stab?ment lreads record 10 from logical unit 
22, formats the data according to the FORMAT statement, and assigns 
the values to variables A, Z, dnd J. 

The alternative forms of this ~EAD statement operate in the same way 
as the first forms. The only difference between the forms is the way 
in which the unit and record s~ecifications are expressed. 

The alternative forms for this statement are: 

READ (un'rn,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist] 

READ (un'rn,f[,ERR=s] [,IO;:;TAT=ios]) [iolist] 

In the alternative forms, the unit and record references do not 
contain the keywords UNIT= and REC=. Instead the unit number is 
specified first; a single quot'? (') is specified next; followed by a 
record number, a comma, and finally the format reference. 

10.5.1.3 Sequential List-Directed READ - This section describes the 
sequential-access (list-directed) formatted READ statement. 

This statement has the following forms: 

READ (UNIT=un,FMT=*[,END=:3] [,ERR=s] [,IOSTAT=ios]) [iolist] 

READ (un,FMT:=*[,END=s] [,EHR=s] [,IOSTAT=ios]) [iolist] 

READ (un,*[,END=s] [,ERR=sl [,IOS~PAT=ios]) [iolist] 

with these forms, the data is transferred from logical device un and 
is formatted according to the data types of the elements of the I/O 
list. If the I/O list is not included, a record is skipped. 

10-27 



DATA TRANSFER STATEMENTS 

The default unit forms of this statement are: 

REA 0 * [ , i 0 1 is t ] 

READ (UNIT=* ,FMT=* [,END=s] [,ERR=s] [, IOSTAT=ios]) [iolist] 

With these forms, the data is transferred from the card reader (the 
default device), and is formatted according to the data types of the 
elements in the specified I/O list. 

The following example shows this form of the READ statement: 

CHARACTER*14 C 
DOUBLE PRECISION T 
COMPLEX D,E 
LOGICAL L,M 
READ (l,*) I,R,D,E,L,M,J,K,S,T,C,A,B 
END 

The external record to be read contains the following: 

4 6.3 (3.4,4.2), (3,2 ) , T,F,,3*14.6 ,'ABC,DEF/GHI' 'JK'/ 

Upon execution of the program unit, the following values are assigned 
to the I/O list elements: 

I 4 
R 6.3 
D (3.4,4.2) 
E (3.0,2.0) 
L .TRUE. 
M .FALSE. 
K 14 
S 14.6 
T 14.6DO 
C ABC,DEF/GHI'JK 

A, B, and J are unchanged. 

:0.5.1.4 Sequential NAMELIST-Statement READ - This section describes 
t:)C sequential-access (NAMELIST-statement) formatted READ statement. 

~~lS statement has the following forms: 

,'~EAD (UNIT=un,FMT=name[,END=sJ [,ERR==s] [,IOSTAT=ios]) 

l~EAD (UNI'r=un,NML=namet,END=s] [,ERR=s] [,IOSTAT=ios]) 

i;;EAD (un,FMT=name/,END=sJ [,ERR==s] [,IOSTAT=ios]) 

i~EAD (un,NML=name[ ,END=sJ [,ERR=s] [,IOSTAT=ios]) 

!.;;r:AD (un,name( ,END=s] [,ERR=s] [, IOSTAT=ios]) 

WIth these forms, the data is transferred from the specified unit into 
~he locations specified by the NAMELIST list. The formatting is 
·»ntrolled by the implicit data types of the NAMELIST list items. We 
>;~lagest that you use the NAMELIST form of the READ statement to 
'~-,lnsfer data from files created by the NAMELIST form of the WRITE 
:-. t-,d ternent (Sect ion 10.6.1.4). 

10-28 



DATA TRANSFER STATEMENTS 

where: 

e is a simple input or output item (see Section 10.4.9.1) or 
an implied DO list :see Section 10.4.9.2). 

The I/O statement: assigns values to, or transfers values from, the 
list elements in the order in which they appear (from left to right). 

10.4.9.1 Simple List Elements - A simple input list item can be one 
of the following: 

1. A variable name 

2. An array element namE~ 

3. A character substring name 

4. An array name 

For example: 

READ (5, 10) J, K (3) , CH (1 : ]) 

A simple output list item can be one of the above, or it can be one of 
the following: 

1. A consta.nt 

2. A function reference 

3. An expression 

For example: 

WRITE (5,10) J,K(3),(L+4)/2,CH(1:3) 

An input list itE~m cannot be an expression. However, it can contain 
expressions as subscr ipts or ~)ubstr ing bounds. 

I/O list items can be of the following types: 

1. In teger 

2. Real 

3. Double-precision 

4. Complex 

5. Logical 

6. CharactE~r 

7. Octal 

8. Double Octal 

9. Hollerith 

10-21 



DATA TRANSFER STATEMENTS 

When you use an unsubscripted array name in an I/O list, an input 
statement reads enough data to fill every element of the array; an 
output statement writes all the values in the array. Data transfer 
begins with the initial element of the array and proceeds in the order 
of subscript progression, with the leftmost subscript varying most 
rapidly from lower to upper bound. For example, the following defines 
a two-dimensional array: 

DIMENSION ARRAY(3,3) 

If the name ARRAY with no subscripts appears in a READ statement, that 
statement assigns values from the input record(s) to ARRAY(I,I) , 
ARRAY(2,1) , ARRAY(3,1) , ARRAY(I,2), and so on through ARRAY(3,3). 

In an input statement, variables in the I/O list can be used in array 
subscripts later in the list, for example: 

1250 
READ (1,1250) J,K,ARRAY(J,K) 
FORMAT (Il,IX,Il,IX,F6.2) 

The input record contains the following values: 

1,3,721.73 

When the READ statement is executed, the first input value is assigned 
to J and the second to K, thereby establishing the actual subscript 
values for ARRAY(J,K). Then the value 721.73 is assigned to 
ARRAY(I,3). Variables that are to be used as subscripts in this way 
must appear before (to the left of) their use as the array subscripts 
in the I/O list. 

10.4.9.2 Implied DO Lists - An implied DO list is an I/O list element 
that functions as though it were part of an I/O statement within a DO 
loop. Implied DO lists can be used to: 

1. Specify iteration of part of an I/O list 

2. Transfer part of an array 

3. Transfer array elements in a sequence different from the 
order of subscript progression 

As in explicit DO loops, zero-trip implied DO loops are possible (see 
Section 9.3). 

An implied DO list has the form: 

(d 1 i s t , i =e 1, e 2 [ ,e3] ) 

where: 

dlist 

i 

el,e2,e3 

is an I/O list. Dlist can also contain other 
implied DO lists. 

is the index control variable that can represent a 
subscript appearing in a preceding subscript list. 

are the indexing parameters that specify, 
respectively, the initial, terminal, and increment 
values that control the range of i. If e3 is 
omitted (with its preceding comma), a value of 1 
is assumed. 

10-22 



DATA TRANSFER STATEMENTS 

The following example shows this form of the READ statement: 

NAMELIST /DATA/A,Z,J 
l~ EAD ( 2 2 , DA T A) 
END 

In this example, the NAMELIST 3tatement associates the NAMELIST name 
DATA with a list of three items. The corresponding READ statement 
reads input data and assigns v::dues to the specified namelist items. 

10.5.2 Unformatted READ Transfers 

Unformatted READ transfers move data from a specified file to 
locations in memory. Unlike formatted READ transfers, unformatted 
transfers do not involve any editing of the data. 

The two types of unformatted data transfers enable you to access a 
specified file either sequentially or directly. 

NOTE: 

The OPEN statement MJDE specifier enables you to 
specify in which form the unformatted data file exists 
(see Section 11.3.20). If you execute an unformatted 
READ statement without having first specified the MODE 
in an OPEN statement, the data file is assumed to be 
BINARY. (For additi·)nal information on unformatted 
data file forms, see S'?ction 11.2.) 

10.5.2.1 Sequential Unformatted READ - This section describes the 
sequential-access unformatted READ statement. 

This statement has the following forms: 

READ (UNIT=un[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

READ (un[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

If the I/O list is present, the data is transferred as one logical 
record from the specified logical unit. This type of read should only 
be used to read files that have been created by unformatted WRITE 
statements. 

If you omit the I/O list portion of the statement, the statement skips 
one logical record on input from the specified unit. 

The following example shows this type of READ statement used both with 
and without the I/O list: 

READ (22) A, Z, J 
READ (22) 
END 

In this example, the first READ statement reads one record 
logical unit 22 and assigns values to variables A, Z, and J. 
second READ statement skip one record from logical unit 22. 

10-29 

from 
The 



DATA TRANSFER STATEMENTS 

10.5.2.2 Direct-Access Unformatted READ - This section describes the 
direct-access unformatted READ statement. 

This statement has the following forms: 

READ (UNIT=un,REC=rn[,ERR=s] [,IOSTAT=ios]) [iolist] 

READ (un,REC=rn[,ERR=s] [,IOSTAT=ios]) [iolist] 

If an I/O list is included in these forms, the data, in the form of 
one logical record, is transferred from the specified unit into the 
elements of the I/O list. Only files that have been output by an 
unformatted WRITE statement should be transferred by this form of the 
READ statement. In addition, for FORTRAN binary files, if the record 
specified by rn has not been written, an error results. 

These forms can be used only with disk files that have been opened by 
an OPEN statement that specifies ACCESS='DIRECT', qCCESS='RANDOM ' , or 
ACCESS='RANDIN ' (see Section 11.3.1). 

Tne alternative form of this READ statement functions the same as the 
first forms. The only difference between the forms is in the way that 
the unit and record are specified. 

The alternative form of this statement is: 

READ (un'rn[,ERR=s] [,IOSTAT=ios]) (iolist] 

In this form, the unit and record references do not contain the 
keywords UNIT= and REC=. Instead the unit number is specified first; 
a single quote (I) is specified next; then the record numbe:r is 
specified last. 

The following example demonstrates the use of the unformatted READ 
statement: 

OPEN (22,ACCESS='DIRECT' ;.·:CCORDSIZE=3) 
READ (22,REC=10)A,Z,J 
READ (22Il2)B,X,K 
END 

In this example, the first READ statement reads record 10 from logical 
unit 22 and assigns values to the variables A, Z, and J. The second 
READ statement reads record 12 from logical unit 22 and assigns values 
to the variables B, X, and K. 

WRITE 
Statement 

10.6 WRITE STATEMENT 

WRITE statements transfer data from memory to a file. The various 
forms of the WRITE statement enable it to be used in sequential, 
append, and direct-access transfer modes for formatted, unformatted, 
list-directed, Jnd NAMELIST-controlled data transfers. 

10-30 



DATA TRANSFER STATEMENTS 

Table 10-5 summarizes all forms of the WRITE statement. 

Table 10--5: Summary of WRITE Statement Forms 

Data Access Statement Construct 

Sequential Formatted 
(FORMAT Statement) 

WRlTE(UNIT =, un,FMT =£1 ,ERR = sll ,10STAT= iosilliolistl 
WRITE( un,FMT = £I ,ERR = s 11 ,lOST AT ~ ios])l iolistl 
WRITE( un, fl,ERR=slI,IOSTAT=ios111iolist1 

Sequential Formatted 
(List Directed) 

WHITE(UNIT =, un,FMT = *1 ,ERR = s 1[ ,10STAT = ios DI iolist I 
WRITE( un,FMT = *[,ERR = sll ,10STAT = ios 1lI iolist I 
WRITE( un, *[,ERR=sJ[,10STAT=iosl)liolist1 

Sequential Formatted 
(j\,"AMELIST Statement) 

WEITE(UI'IT - un.FMT - namel.ERH - sll.IOSTAT, iosll 
WHITE(LWIT- un.NML- namel.EHR - sll.lOSTAT iusll 
WHITEr un.FMT - namel.ERH s II.IOSTAT - ios i I 
WHITEr un.NML namel.EHR - sllJOSTAT - lOS!1 

WHITEI un. namel.ERH sll.lOSTAT iosll 

Sequential Formatted 
(Default Unit) 

w nnE fI.i )]jst I 
WHITE ';-I.iolist I 
WRITE(UNIT ~ * ,FMT = £I ,ERR = s 1[ ,lOST AT = ios 1lI iolist I 
WRITE (UNIT =, * ,FMT = *1 ,ERR = s I[ ,IOSTAT = ios 1)1 iolist I 

Sequential Unformatted WRITE(UNIT =- unl ,ERR = sJ[ ,10STAT = ioslll iolistl 
WRITE ( unI,ERR= sJ[ ,10STAT= iosllliolistl 

Direct Formatted WRITE( UNIT =, un,FMT = f,REC = rnl ,ERR = s J[ ,lOST AT - ios l)j iol ist I 
WRITE( un,FMT = f,REC = rnl ,ERR = s 11 ,lOST AT ~. ios 1)1 iolist I 
WRITE( un, f,REC = rnl ,ERR= sll ,IOSTAT 'co iosDliolistl 
WHIT~;I un'rn,FMT f I.EHR- sll.lUSTAT -ioslJliolistl 
\\'R.IH) un'rn. r I.ERH --sIiJOSTAT iosDliolistl 

Direct Unformatted WRITE (UNIT =, un,REC = rnl,ERR == s 11,10ST AT co- ios III iolist 1 

Key: 

UNIT=un 

UNIT=* 

REC=rn 

un'rn 

FMT=f 

FMT=* 

FMT-'-name 

NML name 

ERR=s 

10STAT=ios 

iolist 

WRITE( un,REC = rnl ,ERR = s 11 ,lOST AT - ios 111 iolist 1 
Wf{JTE( un'rn I.ERR-sII.lOSTAT iosliliolistl 

is a FORTRAN logical unit number (Seetion 10.4.3), 

is a detmlt unit specification (Section 10.4.3). 

is a direct-access record number (Section 10.4.4). 

is an alternate way of sppcifYcng Logical Unit Number and record number fill' a direct-access 
transfer (Section 10.4.4 J. 

is FORMAT-statement formatting; iolist is optional (Section 10.4.5.11. 

is list-directed formatting; iolist is optional (Section 10.4.5.2). 

is NAMELIST-statement fornatting; iolist is prohihited (Section 10.4.5.:3). 

is the alternative form of the NAME LIST-statement format specifier (Section 10.4_5.3) 

is an optional error transfer Epecifier (Section 10.4.7). 

is an optional 110 status spec: fier (Section 10.4.8). 

is a data transfer 110 list (Se<tion 10.4.~1). 

10.6.1 Formatted WRITE Transfers 

A formatted WRITE transfer USE'S a WRITE statement that specifies that 
the transferred data is edited during the transfer, such that the 
external and internal representations of the data are different. The 
three types of formatted ~lRITE statements are: FORMAT-statement, 
list-directed, and NAMELIST-st.atement. 

10-31 



DATA TRANSFER STATEMENTS 

There are two types of access to the device to which the WRITE 
statement transfers data. They are sequential and direct. If you 
want to perform a direct-access formatted WRITE to a device, you must 
use FORMAT-statement formattin~. List-directed and NAMELIST-statement 
formatting can only be used for sequential-access formatted WRITE 
statements. 

10.6.1.1 Sequential FORMAT-Statement WRITE - This section describes 
the sequential-access (FORMAT-statement) formatted WRITE statement. 

This statement has the following forms: 

WRITE (UNIT=un ,FMT=f [ , ERR=s] [, IOSTAT=ios] ) [iol ist] 

WRITE (un,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist] 

WRITE (un,f[,ERR=s] [,IOSTAT=ios]) [iolist] 

If the I/O list is included in these forms, the data specified by the 
elements of the I/O list are output to a file on logical unit un. The 
output data is formatted in this file according to the FORMAT 
specifications given in f. 

A blank record is written if the I/O list is not specified, and one of 
the following is true: 

1. The FORMAT statement is empty. 

2. No slash, H, or apostrophe editing descriptors occur alone. 

3. No slash, H, or apostrophe editing descriptors precede the 
first repeatable edit descriptors. 

See Section 12.4. 

The following example contains a sequential formatted WRITE that 
contains an I/O list, and one that does not: 

A=11.4 
Z=13.9 
J=5 
WRITE (22,5)A,Z,J 

5 FORMAT (IX,2FIO.2,I5) 
WR I T E (22, 15 ) 

15 FORMAT (' PAGE NO.1') 
END 

The following is written to logical unit 22: 

11.40 
PAGE NO. 1 

13.90 5 

The default unit forms of this statement are: 

vvRITE f[,iolist] 

WRITE (UNIT=*,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist] 

10-32 



DATA TRANSFER STATEMENTS 

If an I/O list is included in these forms, the data, specified by the 
elements within the I/O list, are transferred to the default device 
(line printer). The transferIed data are formatted according to the 
FORMAT specification given by f. 

The following example shows both forms of this WRITE transfer: 

A=11.4 
Z=13.9 
J=5 
WRITE ~>,A,Z,J 

5 FORMAT (lX,2FIO.2,I~.) 
WRITE 15 

15 FORMAT (I PAGE NO. J. I ) 
END 

The following is written to the default device (line printer): 

11.40 
PAGE NO. 1 

13.90 5 

10.6.1.2 Direct-·Access FORM1~T-Statement WRITE - The direct-access 
(FORMAT-statement) formatted WRITE statement is described in this 
section. 

This statement has the following forms: 

WRITE(UNIT=un,FMT=f,REC=l~n[,ERH=s] [,IOSTAT=ios]) [iolist] 

WRITE (un ,FM'l'=f, REC=rn [ , EHR=s] [" IOSTAT=ios] ) [iol ist] 

WRITE(un,f,HEC=rn[,ERR=s:i [,IOSTAT=ios]) [iolist] 

If you include an I/O list in these forms, the data in the I/O list is 
written starting at record rn to a file on logical unit un. The 
formatting is controlled by the FOR1'1AT specifications given at f. 

Only disk files that have been opened by an OPEN statement that 
specifies ACCESS='DIRECT ' or ACCESS='RANDOM ' (see Section 11.3.1) can 
be accessed by a WRITE statement of this form. 

If you omit the I/O list portion of this statement, at least one blank 
record (specified by REC=rn) is written to logical unit un. 

The following example shows a direct-access formatted WRITE statement 
that contains an I/O list, and one that does not: 

A=11.4 
Z=13.9 
J=5 
OPEN(22, RECORDSIZE=25,ACCESS='RANDOM ' ) 
WRITE (22,5,REC=10)A,Z,J 

5 FORMAT (2FlO.2,I5) 
WRITE (22,15,REC=11) 

15 FORMAT (I PAGE NO. II) 
END 

10-33 



DATA TRANSFER STATEMENTS 

The following is written to logical unit 22: 

11.40 
PAGE NO. 1 

13.90 5 

The alternative forms of this WRITE statement operate the same way as 
the first forms. The only difference between the forms is in the way 
that the logical unit and the record number are expressed. 

The alternative.forms of this statement are: 

WRITE (un'rn,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist] 

WRITE (un'rn,f[,ERR=s] [,IOSTAT=ios]) [iolist] 

In these forms, the unit and record references do not contain the 
keywords UNIT= and REC=. Instead the unit number is specified first; 
a single-quote (I) is specified next, followed by a record number, a 
comma, and finally the format reference. 

10.6.1.3 Sequential List-Directed WRITE - This section describes the 
sequential-access (list-directed) formatted WRITE statement. 

This statement has the following forms: 

WRITE (UNIT=un,FMT=*[,ERR=s] [,IOSTAT=ios]) [iolist] 

WRITE (un,FMT=* [, ERR=s] [, IOSTAT=ios]) [iolist] 

WRITE (un,*[,ERR=s] [,IOSTAT=ios]) [iolist] 

These forms of the WRITE statement specify that the data identified in 
the I/O list is written to logical unit un. Because the transfer is 
list-directed (FMT=*), the data is formatted according to the implicit 
data types of the variables in the I/O list. If the I/O list is not 
included, a blank record is written. 

The default unit forms of this statement are: 

WRITE *[,iolist] 

WRITE (UNIT=*,FMT=*[,ERR=s] [,IOSTAT=ios]) [iolist] 

The default unit forms function in the same way as the 
except that the output is written to the default 
printer) • 

first forms, 
device (line 

The following example shows the list-directed WRITE statement: 

DIMENSION A(4) 
DATA A/4*3,4/ 
WRITE (1, *) 'ARRAY VALUES FOLLOW' 
WRITE (1,*) A,4 
END 

The following is written to logical unit 1: 

ARRAY VALUES FOLLOW 
4*3,400000, 4 

10-34 



DATA TRANSFER STATEMENTS 

10.6.1.4 Sequential NAMELIST-Statement WRITE - This sectIon describes 
the sequential-access (NAMELJET-statement) formatted WRI'l'E statement. 

This statement has the followjng forms: 

VvRITE (UNIT=un,FMT=namel ,ERR=sJ [,IOSTAT=ios]) 

WRITE (UNIT=un,NML=namel ,ERR=sJ [,IOSTA'I'=ios]) 

WRITE (un, FMT=name I, EHR=~;J [, IOSTAT=ios] ) 

WRITE (un,NML=name[ ,ERR=~iJ I ,IOSTAT=iosJ) 

\'.7RITE (un,namef ,ERR=:sll,JOSTAT=:ios]) 

These forms of the WRITE sti-:tement transfer data defined in the 
referenced NAMELIST statE:'ment (FtvIT=name or NML=name) to the file on 
the logical unit specified by un. 

The following example demonstrates the NAMELIST form of the WRITE 
statement: 

CHARACTER*19 NAME(2) 
D A TAN AM E /2 '*' I / 

I~EAL PITCH, ROLL, YAW, POSIT(3) 
iJOGICAL DIAC:NO 
INTEGER ITEPA'l' 
NAMELIST /PP,RAM/ NAME, P TCH, HOLL, YAW, POSIT, DIAGNO, ITERAT 
ACCEPT (FMT=PARAM) 
WRITE (UNIT=l,FMT=PARAM) 
':ND 

The input contaLns the fcllow_nq: 

bSPARAM NAME(2) (lO:)='HE:SENBEHG', 
hPITCH=5.0, YAW=O.O, ROLL=5.0, 
',)LH AGNO =. TRUE. 
hITERAT=lO$END 

'I' heW R I T Est ate men t w r I tEO'S t h (~ toll ow i n q : 

SPARAM 
NAME= ' HE ISENBERG', PI TCH= 
5.000000, ROLL= 5.000000, YAW= O.OOOOOOOE+OO, POSIT= 3*0.0000000E+00, 
DIAGNO= T, ITERAT= 10 
$END 

10.6.2 Unformatted WRITE Transfers 

Unformatted WRITE transfers move data from memory to a file. Unlike 
formatted WRITE transfers, u1formatted WRITE transfers do not involve 
any editing of the data. 

The two types of unformatted data transfers enable you to write to a 
file either sequentially or directly. 

10-35 



DATA TRANSFER STATEMENTS 

NOTE 

The MODE spRcifier of the OPEN statemRnt enables you 
:0 sORcify thR type of unformatted data file you want 
~o create (see Section 11.3.20). If you execute an 
I.~nformatted WRITE statRment without having first 
specIfied the MODE in an OPEN statement, the data file 
IS by default BINARY. For additional information on 
unformatted data file forms, see Section 11.2. 

10.6.2.1 Sequential Unformatted WRITE - This section describes the 
sequential-access unformatted WRITE statement. 

This statement has the following forms: 

WRITE (UNIT=un[,ERR=s) [,IOSTAT=ios)) [iolist) 

WRITE (un[,ERR=s) [,IOSTAT=ios)) [iolist) 

If the I/O list is present in these forms, the data is written as one 
logical record to the file contained on the specified logical unit un. 

If you omit the I/O list in this statement, the statement writes one 
blank logical record to the file contained on the specified loqical 
unit un. 

The following example shows this form of the WRITE statement with the 
I/O list and without the I/O list: 

WRITE (22)A,Z,K 
WRITE (22) 
END 

In this example, the first WRITE statement writes a record to the file 
connected to logical unit 22 containing the values of the variables A, 
Z, and K. The second WRITE statement writes one blank record to the 
file connected to logical unit 22. 

10.6.2.2 Direct-Access Unformatted WRITE - This section describes the 
direct-access unformatted WRITE statement. 

This statement has the following forms: 

WRITE (UNIT=un,REC=rn[ ,ERR=s) [,IOSTAT=ios)) [iolist] 

WRITE (un,REC=rn[,ERR=s] [,IOSTAT=ios)) [iolist] 

These forms can be used only with disk files which have been opened by 
an OPEN statement that specifies ACCESS='DIRECT' or ACCESS='RANDOM' 
(see Section 11.3.1). If an I/O list is included in these forms, the 
data, in the form of one logical record, is transferred from the 
memory to record rn of the file on the specified logical unit. 

If the I/O list is not specified, the statement outputs one logical 
blank record. 

10-36 



DATA TRANSFER STATEMENTS 

The following example shows this type of WRITE statement with an I/O 
list and without an I/O list: 

OPEN (22,ACCESS= 'DIRECT' ,id:.:CORDSIZE=3) 
WRITE (22,REC=10)A,Z,K 
WRITE (22,REC=12) 

In this example, the first WRITE statement writes the values of the 
variables A, Z, and K to record 10 on logical unit 22. The second 
WRITE statement writes one logical blank record to record 12 on 
logical unit 22. 

'rhe alternative form of this ~ype of WRITE statement operates in the 
same way as the first forms. The difference between the forms is in 
the way that the unit and the record are specified. 

The alternative form of this ::;tatement is: 

WRITE (un'rnr,ERR=sl [,IO:,TAT=ios]) [iolist] 

In this form, the unit and ~ecord references do not contain the 
keywords UNIT= and REC=. In,;tead the unit number is sp2cified first; 
a single quote (') is specified next; then the record number is 
specified last. 

10.7 REREAD STATEMENT 

The REREAD statenent causes the last record read from the last 
sequential formatted READ or ~CCEPT statement to again be accessed and 
processed. You cannot use th,= REREAD feature until an input (READ) 
transfer has been accomplishe,j. You can use the REREAD statement only 
for sequential-access formatt,?d data transfers. The REREAD statement 
can be used with both FORM,\T-statement formatting a.nd list-directE:'d 
formatting. 

Once a record has been access,?d by a formatted READ statement, the 
record transferred can be reread as many times as desired. You can 
use the same or a new format 5pecification for each successive REREAD 
statement. 

Table 10-,6 summal~izes all the forms of the REREAD statement. 

10-37 



DATA TRANSFER STATEMENTS 

Tahlt, lO-(): Summary of IU~I{I'~AD Stait'nwllt "onns 

r-'----.. ~ )~~~ Access 

\_. __ .. _----
:)L:tH'm('ui ( onstrucl , . ----"'-' ._-_. . .. _-_.,_._ . ., 

i Sequential Formatted 'i l.l\ 1. \I) . I- 1\1'1" 1\1<: N I)~ Ii Y IW s 11.1 ()STAT ios III IOlist I 
r FORMAT Statt'JIlenU 
f-.-.---------.---.- .. -.... I S(·quential Fornwttt'd 
i LI,,{ Din'("\.I'(jl 

I--K-t~;; 

FMT ic: iist-riin'cipd IClrtllal j II~!'. 1I,j,,;t ic: (llll iOl1:1i ,:--;.'ci IIlI1 I iJ 4.;).! I. 

;():-iTAT- IOC: 

li1.7.1 Sequential FORMAT-Statement REREAD 

Tllis section describes the secuentlal-dccess (FORMAT-statement) REREAD 
:::;::a tcmen t • 

'l' '1 e fir s t for m 0 f t h 1 sst ,:, t em e n t J S : 

I~EI~F:AD (FMT=tl.END=sl 1.ERR=sll,lOS'l'AT=ioSI) iiolistj 

It' the I/O list is snecifled in ttlis Lorm, t'-le preVIOUS record is 
l?:"C1nsterred trom the loalcaL urllt (soecllleeJ In ttle preVIOUS tormatted 
READ statement) to the memory locatIons specItled by the elements in 
tt1e I/O list. The transterred record IS tocrndtted according to the 
:~':)RMAT soecifications oiv(~n in f. 

rt you omit the 110 list from thIS stdternent, the Input record is 
skipged. (If the FORMAT st~tement specIfies 31ash editInq, more than 
::)ne record can be skipped. H or apostrophe editIng can cause data 
transfers to occur to the t'vkf'i!AT statement Its(~lt. See SectIon 12.4.) 

rile 

Ule 
second 
first 

t'ORMAT 

form at this R~R~AU statement operates 
form. The diLletence beLweel1 tile two 

soecitiers are exrnf.l.sspd. 

],'10 second form of this SLdL(.l.lI1l-:'IIT_ I.S: 

ln~l~EAD t[,iolistJ 

In the same way as 
torms is In the way 

IlJ this forrn, the keyword (oun oj thp i'ORMAT sJecltier (t'M'I'=) IS not 
;.c;c·d in the t'OkMAT ref ,,::,rence. 
t:1is specifier, you must. enclose 

Whenever YOU use tne Keyword torm of 
the keywurd llst in parentheses. 

10-38 



DATA TRANSFER STATEMENTS 

The following example shows tte formatted REREAD being used: 

CHARACTER J*5 
DIMENSION J(5) 

1. READ (20,5)A,X,I 
r, FORMAT (2F10.2,I5) 
10 REREAD 15,J 
15 FORMAT (5A5) 

END 

In the above sequence, statemEnt 1 reads the two real varIables A and 
x, and the integer I. StatemEnt 10 rereads the last record input from 
unit 5 as a character string cf 25 characters, five per word, and puts 
five characters per element irto the array J. 

10.7.2 Sequential List-Directed REREAD 

'rhis section describes the sE·quential-access 
statement. 

The first form of this statemE'nt is: 

(list-directed) 

F~EREAD (FMT=*r,END=s] [,Ef'R=s] [,IOSTAT=jos)) [iolist) 

REREAD 

In this form, the last record read by a formatted READ statement is 
transferred from the loqic"l unit (specified in the formatted READ 
statement) into the memory locations identified by the elements of the 
I/O list. Since the formatting is list-directed, the format of the 
data is controlled by the date types of the elements in the I/O list. 
If no I/O list is included, no data is transferred. 

The second form of this statement operates in the same way as the 
first form. The difference between the two forms is the way in which 
the formatting is specified. 

The second form of this statement is: 

I~ ERE AD * [ , i 0 1 i s t ) 

The following example shows 1:he list-directed form of the REREAD 
statement: 

HEAD (L:O,*) A 
I~EREAD *, B 
END 

In this example, the READ stai:ement reads data from logical unit 20 
into variable "A. The REREAD statement rereads the data from logical 
unit 20 into variable B. 

10-39 



DATA TRANSFER STATEMENTS 

ACCEPT 
r------------.---J l __ ~~:em_=: ____ _ 
10.8 ACCEPT STATEMENT 

The ACCEPT statement enables you to input data from your terminal into 
memory. You can use the ACCEPT statement only for sequential-access 
formatted data transfers. This statement can be used with both 
FORMAT-statement and list-directed formattina. 

Table 10-7 summarizes all forms of the ACCEPT statement. 

Table ]()-7: Summal'~' of ACCEPT Statement Forms 
I ----------.- ---.. _--------------.. _-

r 
Data Access 

~-- ------ ----- ----- ----- ---

S('4Uenlial Formatted 
I FURl\lAT Statement) 

~ Sequential Forlllatt~J--- --- ---

I (List DirC'ded' 

Key: 

Statement Consh'ud 

ACCEPT(FMT fl,ENJ) ,,11.Elm c.II.1()STAT 
ACCEPT fI,ioli~tl 

ACCEPT( F\JT 
ACCEPTI.ioli~t I 

.1-:1\'1) "11.Elm ;-;II.lOSTAT 

io" ill iol i"j I 

io" III iolist I 

FMT--{, is FOf{:\lAT-statenwnt forma11inl!: inlist is optional I.S('ction lO.4:)]) 

is list-directed formatting; iolist is optional ISt'ctiol1 104 . .'1.2l. 

END s is an optional end-of-fil(' transfer "pl'cifipr IS,'ction lO.4.f)). 

EHH ;-; is an optiol1a I error transfl'r spccifi('l' I S('ction 10...1-.71 

IOSTAT - ios is an optional I,n slatus specifier 'Section lO.4.H). 

101 ist is a dala transfer 10 list (S('ction lO49! 
l ___ .... _._ ... _ . ___ .. __ 

10.8.1 Sequential FORMAT-Statement ACCEPT 

"-'---"--1 
I 

--"---"1 
I 
I 
I 

I 

This section describes the sequential-access (FORMAT-st~tement) ACCEPT 
~~ t a temen t . 

The first form of this statement is: 

ACCEPT (FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist) 

ff you include the I/O list in this form, the data is taken from the 
terminal and stored in the memorv locations identified in the I/O 
list. The transferred data is formatted accordina to the FORMAT 
specifications given in f. 

10-40 



DATA TRANSFER STATEMENTS 

If vou omit the 1/0 list from this form, the input record is skipped. 
(If thE~ FORMAT statement soecifies slash editing, more than one record 

CLln bf~ skipped. H or apostropne editing can cause data transfers to 
occur to the FORMAT statement itself. See Section 12.4.) 

'['h0 spconri form of this statem,~nt operates in the same way as the 
first form. The rlifference between the two forms is in how the FORMAT 
l"p"!"prence is expressed. 

"'11 (' S (> con d for III 0 [ t his s tat e m ~ n tis : 

'\lCF:PT f r • i 01 is t 1 

in this form, the keyword portion of the FORMAT specifier 
omItted. 

(FMT=) is 

':'11(' followinq example sho'Ns both forms of the FORMAT-statement ACCEP'r. 

ACCEPT (FMT=3S)A,Z,J 
FORMAT (2FlO. 2, IS) 
t'.·,::::CEPT J 5, B 

lr, FORMAT (FIO.2) 
"\J D 

)n this example, i::he first ACCEPT statement accepts the values of the 
variables A~ Z, and J from the terminal in th~~ form of FORMAT 
~;tatement 35. Thf~ second AC(~EPT statement accepts the value of 
variable P, from the termi~')al i1 the form of FORMAT statement 15. 

10.8.2 SequentiaJ List-Direct·:?d ACCEPT 

'1'hEO' list-directed ACCEPT statement transfers data entered from the 
t.crminal into variables specified in the I/O list. The formattinq of 
the transferred dilta is controlled by the data types of the items in 
t he I /0 1 i st. 

T rH~ fir s t form 0 f t his s tat em el tis: 

!\ ( : C E f-' T ( F M T= :', r , END = s 1 [ , ERR = s] [, lOS TAT = i 0 s] ) [i ali s t ] 

In this form, the data is tra1sferred from the terminal into the 
memory iocations identiried in the I/O list. Since the transfer is 
"i1,st-clirected, thE:' data is formatted according to the data types of 
lhe items in the I/O list. If no I/O list is inc]uded, a line is 
:: k i ppea • 

The second form oJ:: this statpm~nt operates in the same way as the 
:l,st fcrm. 'rhe dlff('renr,::> in the two forms is in how the 

! ist-directed iormattina refer~nre is specified. 

Thf> spcond form of this starpm,~nt: is: 

V'C E P'P * I • i o:t is t 1 

10-41 



DATA TRANSFER STATEMENTS 

In the following example, both forms of the list-directed ACCEPT 
statement are used to take information, character-by-character, from 
the terminal. This example additionally shows the list-directed TYPE 
statement being used to print the ACCEPTed data at the terminal: 

I 
I 

10.9 

PROGRAM ACCTST 
ACCEPT *,I,J,K 
TYPE *,K,I,J 
ACCEPT (FMT=*)G,H,F 
'P Y P E *, H , F , G 
END 

EXECUTE ACCEPT.FOR 
FORTRAN: ACCEPT 
ACCTST 
LINK: Loading 
[LNKXCT ACCTST execution] 
23456 9876 12 
12, 23456, 9876 
12.34 98.16 789.67 
98.16000, 789.6700, 12.34000 
CPU time 0.2 Elapsed time 40.4 

TYPE 
Statement 

__ 00 _____ 0_] __ " __ " 

TYPE STATEMENT 

The TYPE statement enables you to output data to your terminal. 
the TYPE statement only for sequential-access formatted 
transfers. This statement can be used with both FORMAT-statement 
list-directed formatting. 

Table 10-8 summarizes all the forms of the TYPE statement. 

10-42 

Use 
data 

and 



DATA TRANSFER STATEMENTS 

Tahle' 1(1-8: Summar" of TYPE Stalenwnt FI' rt,,~; 

Data Ac("pss 

'~'i 'qllPnlla I Form;l1l<·d 

i'(lHMXr ~tatt'l1l(>ntl 
I "IJf'~ I-'\j'i Ii 1<1(f{ ,;;II()~Tj,T ill~llii"!i,,tl 

1'1'\'1'1,: n "d, ... i I 

,";"IJll!'nl iai Form:lttpd 
,I.i;;! f)i r('I'j ('0 I 

l'I'Yf'I'; 1-1\1'1 I I'I{I~ ,..;11 I()STAT ill"lllillli;;tl 
i'l\'I'I-: I I,.! ~T: 

:\1T 

i()STAT Ill;; 

",Ii,,) 

iO.9.1 Sequential FORMAT-Statement TYPE 

';' his seC' t :t 0 n d E~ S C rIb est h (~ ~.; po 0 tJ, > n t 1 a ] -- dec f~ s S 

'; td temen t. 

':' h p fir s t tor mot t his ~; t (~ t (> in t 1'1 [-I S : 

i' ':' P I<~ ( PM'T' = t , ,. P. R R::: s! ! , I OS T A '1':: lOS I ) I 1 01 i s t: I 

(FORMAT-statement) TYPE 

I f you inc 1 u d e t h ," 1 / (j lIS tIn t: i11 S t () r m ~ t he cj ,;j tal S t r (1 nsf err e d f r om 
t-hr: I/O 1 i st tr) your h->rmi nal. 'rhe transfprred data is formatted 
ICCOrolnq to the t'ORMAT SPPcltl,'atlons aiven in t. 

T\ hlank record is written it' the· 1/0 -I ist is not- st)pc;ifipd~ and one of 
'he foLlo'vJinq ,is true: 

<'tHe> FORMAT staternE'nt 1'::; emntv. 

:Jo sldsr1. H. or <-1L'()strool1e eciltinq descriptors occur alone. 

; J 0 s 1 .') S h. H. 0 r <1 D () S t r n 0 rl 1''' e cj 1 t- j 1'1 q riescrlntors precede the 
d p s (~ r 1 p t- 0 r s . 

,()f) Ll.'-+ ior ;lIor'p Jnrormatl.on on i'ormat: editinq) 

Thp spcond form ot thIS statement operates in the same way as the 
i irs t form. The d i [f EO rel1('e be h<Jpen t he two forms 

Th(=' sC"C'ond torm at this statement, lS: 

I,iolistl 

fn this form, the keyword portiul1 of the FORMAT 
'.)n1 i t tpo . 

10-43 

is in how the FORMAT 

specifier (FMT=) I
" ,~ 

.~ 



DATA TRANSFER STATEMENTS 

The following example shows both forms of the FORMAT-statement TYPE: 

A=11.4 
2=13.9 
.1=5 
K=lO 
T Y P E ( FM T = 5 ) A , Z , J 

5 FORMAT (IX,2FIO.2,I5) 
TYPE 15,K 

J5 FORMAT (lX.IIO) 
~:ND 

T~e following is typed on your terminal upon execution: 

LINK: Loading 
[LNKXCT TEST40 execution] 

ll.40 13.90 5 
10 

CPU t I me O. 22 Elaosed time 2.00 

10.9.2 Sequential List-Directed TYPE 

The list-directed TYPE statement transfers dat~ from a program to the 
terminal. The formatting of the transferred data is controlled by the 
ridta types of the items in the I/O list. 

TrJ.e fIrst form of this statement is: 

TYP~~ (FMT=* [, ERR=s] [, IOSTAT= ios]) [iolist] 

In this form, the data is transferred from the program to the 
terminal. Since the transfer is list-directed, the data is formatted 
according to the data types of the items in the I/O list. If no I/O 
list is included, a blank record is written. 

T~e second form of this statement operates in the 
fLrst form. The difference between the ~wo 
I lst-directed formatting reference is specified. 

The second form of the statement is: 

TYPE *[,iolistJ 

same way as the 
forms is in how the 

'fhe following example shows both forms of the list-directed TYPE 
statement: 

1\=11.4 
~: = l3 • 9 
,1=') 

~' Y P E ( FM T = *) , A , Z , J 
TYPE *,K 
r:ND 

'rho following is typed on the terminal upon ex~cution: 

:,INK: Loading 
rLNKXCT TEST41 executionl 
11.40000, 13,90000, 5 
;() 
CPU tIme 0.20 Elapsed time 0.87 

10-44 



DATA TRANSFER STATEMENTS 

10.10 PRINT STATEMENT 

PRINT 
Statement 

The PRINT statement transfers data from memory to the line printer. 
You can use the PRINT statement only for sequential-access formatted 
data transfers. 'This statement can be used with both FORMAT-statement 
formatting and list-directed formatting. 

Table 10-9 summarizes all forms of the PRINT statement. 

Table 10-9: Summary of PRINT Statement Forms 

Data Access 

Sequential Formatted 
(FORMAT Statement) 

Sequential Formatted 
(List Directed) 

Key: 

Statement Construct 

:'IW\'T(FMT-lI.ERH sll.lOSTAT- iosiilioiistl 
PRINT f[,iolistl 

i'!?lI\T(f<'MT I.I';IW ;.;II,IOSTAT ios!ilinlisti 
PRINT *[ ,iol: st 1 

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1). 

FMT = * is list-dirl~cted formatting; iolis', is optional (Section 10.4.5.2). 

ERR = s is an optional error transfer sp(,cifier (Section 10.4.7). 

IOSTAT ~ ios is an optional 110 status specifi.~r (Section 10.4.8). 

ioIist is a data transfer 110 list (Section 10.4.9). 

10.10.1 Sequential FORMAT-Statement PRINT 

This section describes the sequential-access (FORMAT-statement) 
statement. 

The first form of this statement is: 

PRINT (FMT=fr,ERR=-s] r,IOSrAT=-ios]) [iolist] 

PRINT 

If the I/O list is included in this form, the data identified by the 
I/O list is transferred from memory to the line printer. The 
formatting of the transferred data is controlled by the FORMAT 
specifications given in f. 

10-45 



DATA TRANSFER STATEMENTS 

A blank record is written if the I/O list is not specified, and one of 
the following is true: 

1. The FORMAT statement is empty. 

2. No slash, H, or apostrophe editing descriptors occur alone. 

3. No slash, H, or apostrophe editing descriptors precede the 
first repeatable edit descriptor. 

See Section 12.4. 

The second form of this statement operates in the same way as the 
first form. The difference between the two forms is in how the FORMAT 
specifier is expressed. 

The second form of this statement is: 

PRINT f[,iolist] 

The following example shows two PRINT statements; one with an I/O list 
and one without: 

A=7.6 
B=12.5 
C=20.9 
PRINT 10 
PRINT 20,A,B,C 

10 FORMAT (' Beginning of test') 
20 FORMAT (' Values are:',3F) 

END 

The following is printed to the line printer upon execution: 

Beginning of test 
Values are: 7.6000000 12.5000000 20.9000001 

10.10.2 Sequential List-Directed PRINT 

This section describes the sequential-access (list-directed) PRINT 
statement. 

The first form of this statement is: 

PRINT (FMT=*[,ERR=s) [,IOSTAT=ios]) [iolist] 

This form of the PRINT statement specifies that the data identified by 
the elements of the I/O list is output on the line printer. The data 
is formatted according to the data types of the elements in the I/O 
list. If no I/O list is included, a blank record is written. 

The second form of the list-directed PRINT statement operates in the 
same way as the first form. The difference between the two forms is 
in the way that the formatting is expressed. 

The second form of this statement is: 

PRINT *[,iolist] 

10-46 



DATA TRAI-JSFER STATEMENTS 

The following example shows the use of the list-directed PRINT 
statement: 

0=1 
E=40 
F=23.3 
PR I NT *,0, E, l:!' 
END 

The following is printed to the line printer upon execution: 

1.000000, 40.00000, 23.30000 

i-PUNCH 

L ____ :~ta:ment ____ J 

10.11 PUNCH STATEMENT 

The PUNCH statement transfers data from memory to the paper tape 
punch. You can use the PUNCH statement only for sequential-access 
formatted data transfers. This statement can be used with both 
FORMAT-statement formatting and :List-directed formatting. 

Table 10-10 summarizes all forms of the PUNCH statement. 

Table 10-10: Summary of PUNCH Statemenl Forms 

Data Access 
1---------------

Sequential Formatted 
(FORMAT Statement) 

Sequential Formatted 
(List Directed) 

Key: 

Statement Construct 

PUNC H(Fl\lT - fl,ERH - s IIJOSTAT = ios III iolist I 
PUNCH fI.iolistl 

PUNCHd,'l\lT ~~I ,ERH"" s II ,10STA'I' - ios Iii iolist I 
PUNCH *1. olistl 

------- ""------

FMT-f is FOHMAT-statement formattll1g; iolist is optional (Section 10.4.5.1). 

FMT ~ * is list-directed formatting; iolist is optional (Section 10.4.5.2). 

is an optional error tram;fer s )ecifier (Section ]0.4.71. 

IOSTAT-~ ios is an optional 1'0 status ::'peci'ier I Section 1O.4.8!. 

iolist is a data transfer 1'0 list (Sec~ion I0.4.9). 

10-47 



DATA TRANSFER STATEMENTS 

10.11.1 Sequential FORMAT-Statement PUNCH 

ThIS section describes the seauential-access (FORMAT-statement) 
,; i., temen t. 

TrlP first form of this statement is: 

PUNCH (FMT=f[,ERR=s] [,IOSTAT=ios]) [iolistl 

PUNCH 

" the I/O list is specified in this form, the data identified by the 
i c'_'ms in the I/O list are transferred to the paper tape punch. The 
formattinq of the data is controlled by the FORMAT specifications 

(J I ven in f. 

\ blank record is written if the I/O list is not specified, and one of 
the followinSl is true: 

1. The FORMAT statement is empty. 

2. No slash, H, or apostrophe editing descriptors occur alone. 

~. No slash, H, or apostrophe editinq descriptors precede the 
first repeatable edjt descriptor. 

~ee Section 12.4. 

The second form of this statement operates in 
First form. The difference between the two 
the format specification is referenced. 

rhe second form of this statement is: 

PUNCH f[,iolist] 

the same way as the 
forms is in the way that 

The followinq example shows the formatted PUNCH statement: 

i?UNCH lO,A,B,C 
10 F'ORMAT (iF) 

to.ll.2 Sequential List-Directed PUNCH 

Thls section describes the sequential-access 
:; t 'i t em e n t . 

T~e first form of this statement is: 

~')UNCH (FMT=*[ ,ERR=s] [,IOSTAT=ios]) [iolist] 

(list-directed) PUNCH 

Phis form of the PUNCH statement transfers the data identified by the 
,"oments of the I/O list to the paper tape punch. Since the transfer 
i:i list-directed, the formatting of the data is controlled by the data 
:-Yges of the items within the I/O list. If no I/O list is includE~d, a 
~]ank record is wrItten. 

10-48 



DATA TR~NSFER STATEMENTS 

The second form of this staterr,ent operates in the 
first form. The difference between the two forms 
the list-directed format reference is written. 

The second form of this statement is: 

PUNCH *[,iolist] 

same way as the 
is in the way that 

The following example shows the list.-directed PUNCH statement: 

PUNCH *,D,E,F 

INTERNAL FILES AND 
ENCODE/DECODE 

Statements 

10.12 INTERNAL FILES AND ENCODE/DECODE STATEMENTS 

Internal READ/WRITE statements dnd ENCODE/DECODE statements are used 
for internal I/O. 

Table 10-11 summarizes all the forms of the internal READ/WRITE and 
ENCODE/DECODE statements. 

Table 10-11: Summary of Internal READ/WRITE and 
ENCODE'DECODE StatemeD1 Forms 

Data Access Statement Construct 

Sequential Formatted 
(FORMA T Statement) 

l:t,C()OBk.f.al.BW{o s II,lOSTAT ioslJI iolist I 
DECODE(! .Lal.BHJ{ -- s :1.l0STAT - ios III iolist I 

Key: 

UNIT=un 

c 

f 

a 

END=s 

JOSTAT- iOB 

iolist 

READ(UNIT = un,FMT = fl ,END = s][ ,ERR = s If ,lOST A T = ios ])[iolist] 
READ(un,FMT = fl,END = s][,ERR = slI,IOSTAT= ios])[iolist] 
READ(un,fl ,END = s]1 ,ERR = s]! ,IOSTAT = ios])[iolistl 
WRITE(UNIT = un,FMT = fl,ERR = s][ ,IOSTAT = ios])[iolist] 
WRITE( un ,FMT = fl ,ERR = s][ ,lOST A T = ios])[ iolist 1 
WRITE(un,fl,ERR = sH,IOSTAT = ios])[iolist] 

is an Internal File identifier Section 10.4.3.2). 

is the total number of characters being transferred. 

is a FORMAT-statement formatting reference. 

is the name of the array from which or to which data is being transferred. 

is an optional END-of-file specifier. 

is an optional error transfer Hpecifier (Section 10.4.7). 

is an optional 110 status specifier (Section 10.4.8). 

is a data transfer 110 list (Se:::tion 1O.4.B). 

10-49 



DATA TRANSFER STATEMENTS 

10.12.1 Internal READ and WRITE Statements 

The internal READ statement transfers data from an internal file to 
I/O list elements. The internal WRITE statement transfers data from 
I/O list elements to an internal file. Internal READ and WRITE 
statements are always formatted. 

NOTE 

The DECODE statement can he used as an alternative to 
the internal READ statement, and the ENCODE statement 
can be used as an alternative to the internal WRITE 
statement. (See Section 10.3.1.1 for more information 
on internal files.) 

The internal READ statement has the following forms: 

READ (UNIT=un,FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

READ (un,FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

READ (un,f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist] 

In the above forms, un is an internal file identifier 
10.4.3.2) • 

(see Section 

If an I/O list is included in these forms, it specifies that data is 
transferred from internal file identifier, un, formatted according to 
the specification given by f, and transferred into the elements of the 
specified I/O list. 

If an I/O list is not included, the input record is skipped. (If the 
FORMAT statement specifies slash editing, more than one record can be 
skipped. Apostrophe or H editing can cause data transfers to occur to 
the FORMAT statement itself. See Section 12.4.) 

The following example demonstrates the use of the internal READ 
statement: 

CHARACTER*9 STRING 
STRING = '3.14 6.02' 
READ(STRING,lO) PI, A 

10 FORMAT(F4.2, IX, F4.2) 
WRITE(5,20) PI, A, PI+A 

20 FORMAT(' PI=', F6.3, 5X, 'A=', F6.3, 5X, 'PI+A=', F6.3) 
STOP 
END 

The READ statement in this example is an internal file read. It 
extracts the two numbers that are encoded in the character variable 
STRING, converts the numbers to floating point, and then stores them 
into the two variables PI and A. The following is printed at the 
terminal when the above program is executed: 

EXECUTE IR.FOR 
LINK: Load ing 
[LNKXCT IR execution] 

PI= 3.140 A= 6.020 PI+A= 9.160 
CPU time 0.19 Elapsed time 0.40 

10-50 



DATA TRANSFER STATEMENTS 

The internal WRITE statement has the following forms: 

WRITE (UNIT=un ,FMT=f [, ERR=s] [, IOSTAT=ios] ) [iol ist] 

WRITE (un,FM'r=f[,ERR=s] [,IOSTAT=ios]) [iolist] 

WRITE (un,f[,ERR=s] [,IOSTAT=ios]) [iolist] 

If the I/O list is included in these forms, the data specified by the 
elements of the I/O list are output to a file on internal file 
identifier un. The output data is formatted in this file according to 
the FORMAT specifications given in f. 

A blank record is written if the I/O list is not specified, and one of 
the following is true: 

1. The FORMAT statement is empty. 

2. No slash, H, or apostrophe editing descriptors occur alone. 

3. No slash, H, or apostrophe editing descriptors preceded the 
first repeatable edit descriptors. 

See Section 12.4. 

The following example demonstrates the use of the internal WRITE 
statement: 

CHARACTER*20 CHARS(3) 
INTEGER PHNE(3) 
PHNE(l) = 617 
PHNE(2) = 481 
PHNE(3) = 4054 
WRITE(CHARS,10) (I, PHNE(I), 1=1,3) 

10 FORMAT ( 'PHNE(', 11, ')=',14) 
WRITE(5,20) (I, CHARS(I), 1=1,3) 

20 FORMAT (' Record " 11, I of CHARS is'" A20, I"') 
STOP 
END 

The first WRITE statement in the above program is an internal file 
write. Since the characteI variable being written to is a three 
element array, the internal file is a file of three records. When 
this program is executed, the following is output to the terminal: 

EXECUTE IW.F'OR 
LINK: Loading 
[LNKXCT IW execution] 

Record 1 of CHARS is "PHNE(l)= 617 
Record 2 of CHARS is "PHNE(2)= 481 
Record 3 of CHARS is "PHNE(3)=4054 
CPU time 0.2,4 Elapsed time 0.82 

10.12.2 ENCODE and DECODE Statements 

" 
" 
" 

The DECODE statement can be u~;ed as an alternative to an internal 
READ, and the ENCODE statement can be used as an alternative to the 
internal WRITE. 

10-Sl 



DATA TRANSFER STATEMENTS 

'r'he ENCODE statement transfers data from the variables of a specified 
rio list into a specified array. ENCODE operations are similar to 
those performed by a WRITE statement. 

The DECODE statement transfers data from a specified array into the 
variables of an 1/0 list. DECODE operations are similar to those 
performed by a READ statement. 

ENCODE and DECODE statements have the following forms: 

~;NCODE (c,f,a[,ERR=s] [,IOSTAT=iosl) [iolist] 

Jt-':CODE (c,f,a[,ERR=s] [,IOSTAT=ios]) [iolistl 

where: 

c 

f 

specifies the number of characters in each internal 
record of the array. This argument can be any integer 
expression, and must be the first specification in the 
stntement. 

NOTE 

~ivp characters per word are stored in the 
~rray without regard to the type of the array. 

~pecifies either a FORMAT-statement or a numeric array 
1:hat contains format specifications. This must b,e the 
second specification. 

specifies the array, array element, variable, or 
character substrinq reference that is to be used in the 
transfer operations, and it must contain at least c 
characters. More than one element of the array can be 
used by the ENCODE/DECODE. 

iolist specifies an 1/0 list of the standard form. 

~hen multiple records are stored by ENCODE or read by DECODE, 
record starts c characters nfter the previous record; 
(carriage return/line feed) is inserted between records. 

NOTE 

rf the array contains fewer characters than required 
by the format and the I/O list, the variables 
followinq the array in memory are used. If the 
processing of the I/O list requires more characters in 
1 single record than are specified by the character 
count c, blanks are used. 

each new 
no CR/LF 

l'he fo1lowinq example shows how the ENCODE and DECODE statements are 
Jsed: 

:0 

DIMENSION B(4) ,A(2) 
A(l)=300.45 
A(2)=3.0 
C='l2345' 

no 2 ,J=1, 2 

I'; NC ODE (1 6 , I 0 , B) J , A ( J ) 
FORMAT (IX. 'A ( I , I l, I) 

10-52 

FB.2) 



DATA TRANSFER STATEMENTS 

s 'rYPE 11,B 
11 FORMAT(4A5) 

2 CONTINUE 

DECODE(5,12,C)B 
:2 FORMJI.T(3Fl.0,.lX,F: .• O) 

TYPE 13,B 
13 FORMAT(4F5.2) 

END 

During the first iteration of the DO loop, the ENCODE statement has 
transferred the contents o~ variable J and array element A(l) into 
array B. rrhe formatting of the data being transferred is specified by 
the FORMAT statement at lineLO. 

After the first iteration of:he DO loop, the contents of array Bare: 

13(1) 
R (2) 
B (3) 
13 (4 ) 

I A (1) I 

I = 
'300.4 ' 
'5 

The TYPE statement at line 5 :ypes array B on the terminal during the 
first iteration of the DO Loop. 

During the second iteration of the DO loop, the data 
from variable J and array element A(2) into array B. 
iteration, the contents of array Bare: 

B (1) 
13(2) 

I3 (3 ) 
13(4) 

I A (2) , 

3 .. 0' 
, 0 

IS transferred 
Atter the second 

The TYPE statement at line 5 types array B on the terminal during the 
second iteratjon of the DO 10Jp. 

The DECODE statement: 

1. Extracts the digits 1, 2, and 3 from C 

2. Converts them to fl03ting-point values 

3. Stores them in B( L), B(2), and B(3) 

4. Skips the next character (the digit 4) 

S. Extract.:;; the digit 5 from C 

6. Converts it to a floating-point value 

i. Stores the value in 8(4) 

10-53 



DATA TRANSFER STATEMENTS 

The following shows what is printed at the terminal when the above 
program is executed: 

EXECUTE T.FOR 
LINK: Loading 
[LNKXCT T execution] 
A(l) 300.45 
A(2) = 3.00 
1.00 2.00 3.00 5.00 
CPU time 0.1 Elapsed time 0.8 

10-54 



CHAPTER 11 

FIL8-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.1 FILE-CONTROL STATEMENTS 

Prior to transferring any data using one of the forms of data transfer 
statements, you can establish a connection between a logical unit and 
a file by using the OPEN statement. After the completion of a data 
transfer, you can terminate the connection between the logical unit 
and the file before ending the program by using the CLOSE statement. 

The OPEN statement enables you to explicitly connect a logical unit to 
a file prior to the first data transfer, and also to specify a variety 
of characteristics about the file and the data transfers. 

After the last data transfer is completed, the CLOSE statement enables 
you to explicitly disconnect the logical unit from the file and, 
optionally, to specify a variety of characteristics about the CLOSE. 

If you do not precede an I/O statement with an OPEN statement, FOROTS 
automatically performs an "implicit OPEN" (see Section 11.2.1). 

Similarly, if you do not specify a CLOSE statement to explicitly 
disconnect a file from a logical unit, FOROTS performs an "implicit 
CLOSE" (see Section 11.4.1) when your program terminates. 

You need not specify the OPEN and CLOSE statements if the actions 
performed by the implicit OPEN or CLOSE are satisfactory. 

11.2 OPEN STATEMENT 

OPEN 
Statement 

The OPEN statement is used to specify characteristics of a file that 
you wish to read or write. An example of an OPEN statement is: 

OPEN (UNIT=20,FILE='MYDATA.DAT') 

The specifiers inside the parentheses give information about the file 
and determine how the file is opened. 

11-1 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

The UNIT specifier (in the example above, "UNIT=20") is required in an 
OPEN statement. All other specifiers are optional, including the FILE 
specifier in the example shown above. You can supply many other 
optional specifiers (see Section 11.3 for a description of OPEN 
statement specifiers). The order in which the specifiers appear does 
not affect the execution of the OPEN statement. 

By using the OPEN specifiers, you 
characteristics of each data transfer, 

1. The name of the data file 

2. The type of access required 

3. The data format of the file 

are able 
including: 

4. The disposition of the data file 

5. The data file record and block sizes 

to define certain 

In addition, a DIALOG argument permits you to establish a dialog mode 
of operation when the OPEN statement containing it is executed. In a 
dialog mode, interactive terminal/program communication is 
established, enabling the user to define or redefine the values of the 
OPEN statement specifiers. 

When a file is open for output (STATUS='NEW' or ACCESS='SEQOUT'), a 
null file is created on the device specified by FILE= OEVICE=, or 
if none, the first structure in the job's search list. 

An OPEN statement is referred to as a "deferred" OPEN statement if 
both of the following are true: 

• The OPEN statement specifies STATUS='UNKNOWN' 
specify a STATUS value). 

(or does not 

• The OPEN 
'SEQUENTIAL' 

statement specifies ACCESS='SEQINOUT' or 
(or does not specify an ACCESS value). 

The actual opening of the file is deferred until the first data 
transfer statement (READ, WRITE, PRINT, PUNCH, or SKIPRECORD). The 
actual opening of the file means the determination of the physical 
device, and for TOPS-20, the generation number (if not explicitly 
specified) . 

If the first data transfer statement is a READ or SKIPRECORD the 
first file that matches the file specification given in the OPEN 
statement is opened. If no file exists that matches the file 
specification given, a null file is created on the device specified by 
FILE= or DEVICE=, or if none, the first structure in the job's search 
list. The file is positioned as if a READ or SKIPRECORD statement had 
been executed, and an end-of-file error will be generated (see END=, 
Section 10.4.6). 

If the first data transfer statement is a WRITE, PRINT, or PUNCH 
statement, a new file (with a new generation on TOPS-20) will be 
created on the device specified by FILE= or DEVICE=, or if none, the 
first structure in the job's search list. 

If the file specified in the OPEN statement does not exist, and either 
a CLOSE statement is executed oi the program runs to completion, a 
null file is created on the device specified by FILE= or DEVICE=, or 
if none, the first structure in the job's search list. 

11-2 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.2.1 Implicit OPEN 

When the OPEN statement has not been executed before a data transfer 
that references the unit number, an implicit OPEN is performed. 

An implicit OPEN has almost exactly the same effect as if you had put 
an OPEN statement with the following format in the program just before 
the data transfer statement: 

OPEN (UNIT=un,STATUS='UNKNOWN' ,FORM=fm) 

where: 

un 

fm 

is the unit nu~ber specified in the data transfer 
statement. 

is 'UNFORMATTED' if the data transfer statement is an 
unformatted RE~D or WRITE statement; otherwise fm is 
'FORMATTED' • 

In addition, if the data transfer statement has an ERR specifier, the 
implicit OPEN has this same qualifier included. This is also true of 
the IOSTAT specifier. 

NOTE 

The default for the BLANK specifier is different 
depending on whether the OPEN is implicit or explicit 
(see Section 11.3.3). 

11-3 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.2.2 OPEN on a Connected Unit 

If the OPEN statement contains a STATUS=OLD specifier (see Section 
11.3.29), then its action depends on whether a file is already OPEN on 
the unit, and whether the file specified by the OPEN is the same file 
that is currently on the unit. If the file specified by the OPEN is 
different from the OPEN file, the connected file is closed and the new 
file is opened. If the file specified by the OPEN is the same as the 
connected file, the file is not closed, and the file pointer is not 
moved. This action is not affected by the /F66 compiler switch 
(described in Chapter 16). 

11.3 OPEN STATEMENT SPECIFIERS 

All of the OPEN statement specifiers are optional, except the UNIT 
specifier, which is required. Some specifiers have default values 
that can depend on the unit number or the values of other specifiers. 

Table 11-1 summarizes the specifiers in the OPEN statement and the 
type of value required by each. A section number is provided to refer 
to detailed description"s of each specifier. The CLOSE statement 
specifiers are summarized in Table 11-5. 

11-4 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

Table 11-1: Summary of OPEN Statement Specifiers and Arguments 

Argument 

ACCESS= 

,\SSO(,IATEV ARIABLE 

BLANK ~ 

HLOCKSIZE 

IH 1 FFEI{(,OUNT-

( 'AlmlA(~ECONTI{OL 

I )J':NSITY 

DEVICE 

IJ\:\LOG 

D] HECTOI{Y 
,TO I'S 10 i 

! >I1{E('TOHY 
,T()I'S,-2()\ 

r )!SI'()S"~ 

EHR= 

FILE c-

I'-IIYSIZI': 
INITIALIZE 

FOHM-

IOSTAT 

Lll\lIT 

l\1() I )J.: 

'\ ,\1\11': 

1 ':\ 1)( '1IAI{ 

I',\I{ITY 

I'[WTI-:( 'TION 
/'()J'S 10\ 

Possible Value 

Character expression \\ ith one of the following values: 
~;EqlN', 'SEQOLJT'. 'SEQINOUT', 'SEQUENTIAL', 

'DIRECT', ru\ NJ)()M' 'I{ANIHN', 'APPEND' 

i:Jll'gl'], variuble or intlg('r array element 

Character expression \\ ith one of the following values: 
'NULL', 'ZERO' 

1'1lcgcr ('xpre:.;sioll 

('haracter exp]'(-'s:.;ion \\ ith ol1e of the following valups: 
"( mTRAN' , 'LIST', 'IIEVICE' 

'Iwractcr t'xp)'('s~ion \\ iih "me of lhe following valw's: 
',~()()', 'GGG'. 'BOO'. 'l(iW)', '6:250', 'SYSTEM' 

Character exprp:.;sion 

('haractt'r expl'es~ion 

l-h;ll'<:ictc'r expreS:--lOn 

('h:}r<}clt'r pxprcs~\()n 

(h;II'Llcj('r expn'sslOll \\ ith one of the following values: 
<.\ VE', '[)I':LE'n:', 'I' {lNT', 'KEEP', 'UST, '!'llNClI'. 
I':XI'UNCE 

Statement number 

Character expression 

Character expression v:ith one of the following values: 
'FORMATTED', 'UNFORMATTED' 

Integer variable or intt~ger array element 

('lwracll'J' ('xprl's<-.iol1 v'it h one- of the following value:-: 
\:-->('11', 'LINE)), 'BHlA[{Y'. 'IMAGE', 'I)lIMP' 

('JWl'HctC'l' l'xpr'cs~i()11 

,\ character e:,;pl'l':';SIU:l 111 which thl' fir::;t charilctl'l' is 
",.:t,d 

(-haractc<]' ('xpn'S,'lOll \'"lth one of' the' following v:t1u(':--: 
" )I)J)', EVEN' 

11-5 

Section 

11.3.1 

11:3_2 

11.3.3 

11,;31 

11_:U; 

II ;{'i 

I\,:U-I 

I I_:\. 11 

1 LT IL' 

: 1 ,j 1;1 

11.3.14 

11.3.15 

11,:1 Hi 

11.3.17 

11.3.18 

• , ::. ~! 

1 • .:~2:\ 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

'fable 11-1: Summary of OPEN Statement Specifiers and ArJ,{uments (Coni.) 

Argument Possible Value Section 

!'!{(),[,H'TI()N 

Teil'S :ZO' 
11 :::2.> 

1{1':-\\)()NLY 

HECL- Integer expression 11.3.27 
HH '()IWSIZE 

STATUS
TYPF 

Character expression with one of the following values: 
'OLD', 'NEW'. 'SCHATCII'. :'~\I'[l:\(;E' 

'UNKNOWN', 1\ FI':!'· .. ()[':LET!': 

i 1.:\.:.!1i 

11..3.29 

I' \PI':F< )I{MAT ('hdl':lCtel' ('xpn'ssi(lll with OIl(> .)1' till' f'()!!()\\'ing \',d\ll'~: 

(·()In.: 1)['I\11' or INI>L'STI{Y 
11.:UO 

UNIT- Integer expression 11.:3.:11 

li.:U:2 

NOTE 

Par compatibility with previous versions of 
PORTRAN-10/20, you can specify a numeric array name as 
the value of each of the followinq specifiers: 

DIALOG= 
DIRECTORY 
NAME 

When a numeric array name is used, FOROTS assumes that 
it contains a string of characters terminated by a 
null character. 

In addition, you can specify a numeric variable as the 
value of the DEVICE and FILE specifiers. If the 
variable is single precision, FOROTS assumes that it 
contains 5 characters; if it is double precision, 
FOROTS assumes that is contains 10 characters. 

The use of numeric array names and 
in place of character variables 
feature. 

ACCESS 
Specifier 

numeric variables 
is a nonstandard 

11.3.1 ACCESS Specifier 

The ACCESS specifier describes the type of data transfer statements 
allowed. Records within files can be accessed directly (randomly) and 
sequentially. 

The form of the ACCESS specifier is: 

ACCESS acc 

11-6 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

where: 

acc is a character expression having a value equal to one of 
the following: 

'SEQIN' 
'SEOOUT' 
'SEQINOUT' 
'SEQUENTIAL' 
'DIRECT' 
'RANDOM' 
'RANDIN ' 
'APPEND ' 

ACCESS has a number of arguments, each of which specifies a method of 
data access. SEQUENTIAL is the default access unless the device 
(UNIT) opened is a read-only device, in which case the default is 
SEQIN. If the device ope~ed is a write-only device, the default 
access is SEQOUT. 

The arguments to the ACCESS specifier are: 

SEQIN 

SEQOUT 

SEQUENTIAL 

SEQINOUT 

DIRECT 

(Implies ST~TUS='OLD') The specified 
opened tor read-only sequential 
ACCESS='SEOIN' is specified, it is 
specifying ACCESS='SEQUENTIAL' and 
Section 11.3.26). 

The specifi~d data file is opened 

data file is 
access. When 
equivalent to 
READONLY (see 

for output and 
sequential access. If the specified file already 
exists, it is superseded (TOPS-IO) , or a new 
generat:ion is created (TOPS-20) . 

The specified data file is opened for sequential 
access. Records can be read from or written to the 
file in sequential order. However, when a record is 
written to the file, it becomes the last record of 
the file. Any data following that record becomes 
i naccess i bl ,=. 
Records can also be written to the file and then 
read, as long as a device-positioning statement 
(BACKSPACE or REWIND, Section 11.8) is used before 
the READ statement. 

Same as SEQJENTIAL 

The specified data file may be read from and/or 
written to in units of fixed-length records. The 
record to be accessed next is specified in the data 
transfer statement by a record number. 

The relative position of each record is independent 
of the previous READ or WRITE statement. The RECL 
specifier (see Section 11.3.27) is required for 
random-access operations. You must specify a disk 
device when the DIRECT argument is used. 

11--7 



I , 

I 
i 

:~'ANDI N 

i'ANDOM 

'\.PPEND 

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

(Implies STATUS='OLD ' ) The specified data file is 
,:)t·'neo tor- read-only direct access. More than one 
j'-;P[ can read the same tile at the same time wi th 
·Ti.:!':SS=· RANDIN·. When ACCESS= I RAND IN , is spec it i ed, 

;s l~quivalent to specifying ACCESS='RANDOM' and 
·L\LJUNLY (see Section 11.3.26). 

Same as DiRECT 

The specItIed tile IS opened for sequential 
r J tl-'-on1v access. APPEND is the same as SEQOUT 
.~~~p~ tnat the file is positioned at its end after 
h, id">EN statement. Headinq an APPEND mode file is 
;~eqal. R~WIND and BACKSPACE are illegal for files 

"t)t-'neu Wltfl APPEND access. 

ASSOCIATEVARIABLE 
Specifier 

L._._ ... __ ._._P,._P ____ .. __ .. ~ .. _u .... _ N" .. __ .. __ ... __ , __ ,_··_~._n·. 

; '.3.2 ASSOCIATEVARIABLE SpecItier 

~his specifier enables you to declare a variabie whose value is the 
11umber ot the next record that will be read from or written to the 
L i 1 e • 

~or example, atter the execution of an OPEN statement and prior to the 
[irst data transfer, the associate varIable is set to 1. 

~n a data transfer atter the first record is transferred, the value of 
he associate variable is 2. 

'f'he form of the ASSOCIATEVARIABLE specItier is: 

/\SSOCIATEVARIABLE= Inteqer varIable or integer array element 

r~ you are using the ASSOCIATEVARIABLE specitier in a program that 
makes use of the LINK overlay facility, please read the paragraphs 
~ ~l a t toll ow . 

;;~ the variable yOU specify as the ASSOCIATEVAHIABLE is declared in a 
~ORTRAN subroutine. then that subroutine must be loaded in the root 
i ink of the overlay structure. It the subroutine cannot be loaded in 
~lle root link of the overlay structure, declare your ASSOCIATEVARIABLE 
l n a (.;Or-U40N statement so that the ASSOCIATEVARIABLE will operate 
:):'"operly. 

The reasons tor these steps are: 

~hen the overlay facility is used to load FORTRAN modules, 
,1 e 10 c a .i va ria b 1 e sin the mod u 1 (~ s are g r 0 up e d wit h the 

.-:, 'Jr_ 1 n e In w h i c n they are declared. 

j~;len FuRTRAN subroutInes are loaded bv the overlay facility, 
.'iE:"/ are uivided into sets called overlay links. 

_, ' .. ;!' t:- u V e r 1 d Y 1 ink, the 0 n e s p e c 1 LL edt 0 bet her 0 0 t 1 ink, 
i:W~VS reSIdent in memory. The other overlay links are 

; ~ ; i. ~. ff; 2' m (j r 'l a s rea u i r. e d • 

11-8 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

Accessing a file opened with arl ASSOCIATEVARIABLE changes the value of 
the specified variable. If tilis variable is in a nonresident overlay 
link when the access is made, J>roqram execution produces unpredictable 
res u 1 t s . M 0 reo v E' r , t: his val' i a b 1 e i s res e t to Z e roe a c h tim e its 
8verlay link is removed froIT! memory. 

Only variables declared in routines loaded into the root link are 
always resident. Variables declared in COMMON statements and those 
declared in the main proqram al'e always resident and can always be 
l)Sea as an assocIate variable. 

For more information Ofl the LINK overlay facility. see 
t.he LINK ProgrammE~r' s F~eterence Manual. and Chapter 15 

BLANK 
Specifier 

11.3.3 BLANK Specifier 

The BLANK specifier applj,es only when reading formatted 
(FORMAT-statement) numeric fjelds that have a field width specified. 
BLANK enables you to specify how blanks in formatted numeric fields 
are treated in a read transfer (either as zero or ignored). 

The form of the BLANK specifier is: 

BLANK = blnk 

where: 

blnk is a character expression having a value equal to either 
'NULL' or 'ZERO'. 

The arguments to the BLANK specifier are: 

NULL 

ZERO 

specifies that all blank characters within numeric 
formatted input fields are ignored. The exception is 
that a field of all blanks has a value of zero. 

specifies that all blanks are treated as zeros. 

If an OPEN statement is executed and the BLANK specifier is not given, 
the default is BLANK='NULL'. 

If no explicit OPEN statement js executed before a data transfer on a 
unit, the default is BLANK='ZERO' for all devices except terminals. 
For terminals, the default js always BLANK='NULL' regardless of 
whether or not the OPEN statement is given. 

The BLANK specifier is overridden if a corresponding data transfer 
statement references a format, list that contains either the BN or BZ 
descriptor. In this case, the BN or BZ descriptor in the format list 
overrides the setting in the OPEN statement until the end of the 
format list, or until the settjng is changed within the format list. 
(The BN or BZ descriptors are described in Section 12.4.9.) 

11-9 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

Example: 

OPEN(UNIT=l,~EVICE='DSK',FILE='FOO.DAT',BLANK='ZERO') 
READ(I,10)K 

10 FORMAT(I5) 
CLOSE(UNIT=I) 

OPEN(UNIT=I,DEVICE='DSK',FILE='FOO.DAT' ,BLANK='NULL') 
READ(I,10)L 
CLOSE (UNIT=I) 

END 

In the above example, if FOO.DAT contains 123bb, K has the value 12300 
and L has the value 123. 

f""--' .. ---... -.......... -- ~---''''''''----''-------''--'-'-l 

I i 

I BLOCKSIZE I' 
Specifier 

I L. __ .. _ .. _ .... _ ......... __ ........ __ ... __ ........... __ ..... _. __ ...... ____ . .-1 

il.3.4 BLOCKSIZE Specifier 

The BLOCKSIZE specifier enables you to specify a physical storage 
block size for magnetic tape files. 

NOTE 

'\LOCKSIZE specltles the physical record length, and 
lU~CL(RECORDSIZE) specifies the logical record length. 

The argument is an integer expression, and for CORE-DUMP tape format, 
the value assigned represents the number of words in the physical 
~lock. For INDUSTRY tape tormat, the value represents the number of 
hytes in the physical block. (See the TAPEFORMAT specifier, Section 
11.3.30.) 

':'he form of the BLOCKSIZE specifier is: 

;),LOCKSIZE= Integer; expression 

BUFFERCOUNT 
;pecifier 

11.1.5 BUFFERCOUNT Specifier 

hE: BUFFERCOUNT specifier enables you to define the number of I/O 
. lHLers llsed in the data transfer. 

11-10 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

The BUFFERCOUNT is the number of pages used in disk transfers, and 
ignored for nondisk transfers. 

The form of the BUFFERCOUNT specifier is: 

BUFFERCOUNT= Integer expression 

I" (~ .:> 

If a BUFFERCOUNT is not specified, or is assigned a value at zero, the 
buffercount is four pages. 

NOTE 

If MODE='DUMP' is specified, BUFFERCOUNT is ignored. 

The BUFFERCOUNT specifier does not affect the operation at the 
program, but it can affect execution time and memory req1lirements. 

For random I/O, 
buffers which 
operations. 

the buffercount specifies the maximum 
are in memory (not yet written to dISk) 

numbe rot 
during I/O 

NOTE 

For TOPS-20 extended addressing, all I/O buffers must 
fit in FOROTS's secticn. 

r~-·"---"--

11 CARRIAGECONTROL 
Specifier 

11.3.6 CARRIAGECONTROL Specifier 

The CARRIAGECONTROL specifier enables you to decide how the first 
character of each record er~countered during an output data transfer 
operation is treated. (Section 12.2.3 describes carriage-control 
specifiers.) 

The form of the CARRIAGECONTR(IL speCIfier is: 

CARRIAGECONTROL = cc 

where: 

cc is a character expression having a value e<1Ud.L to one of 
the following: 

'FORTRAN' 
'LIST' 
I TRANSU\TED' 
'DEVICE' 

11-11 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

_~\~ arquments to the CARRIAGECONTROL specifier- are: 

r.I:-''1' 

TRANSLATED 

speclties that the FORTRAN data file attribute is 
.. , In the file's access information, so that when 
'H~ tIle is printed, the fj_rst character of each 
r~~ord IS replaced with a carriage return and the 
]rrC~pondlng printer-control vertical motion 
'Jaracter(s) (see Table 12-3). The record 

i l~rmindtor at the end of the record will be 

specifies that the first character is output with no 
;- " pia c e men t . 

speclties that the first character of each record is 
:~Dlacea wIth a carrIage return and the 
, orresponalng printer-control vertical motion 

-,en deLer (s) (see Table 12-3). No record terminator 
, written at the end of the record. 

c,- .-} t e t hat the 1 a s t d a tar e cor din the f i 1 e has no 
"=lcJinq carriaqe return/line feed sequence unless a 
'~aflk record is written. 

O[ i lxed-ienuth tiles, TRANSLATED is treated as 
, c· 'T" 
. ~.) i • 

specifies that the first character will only be 
i~pldce8 for a carriage-control device (such as LPT 
() [ l'TY). 

:'he default value is CARRIAGECONTROL='DEVICE' 

'!hp 1 inp nrintp.r software aSS1]meS that the first 
(;f1-':1rdcter at all data files is a carriage-control 
,:ildracter It the fIle has the extension .DAT or if the 
:!TLE:FORTRAN switch is specified. 

DENSITY 
Specifier 

1 
I 
.I 

i j ,3.7 DENSITY Specifier 

';'he DE:NSITY specifier is ionored except when used with magnetic tape; 
lr Germlts you to specity the tape density. If you do not specify a 
'_Jpe densIty, FORTRAN assumes that you have set the density at monitor 
ievel or that you are satisfied with the system default for the 

"hp tor~ ot the D~NSITY specifier is: 

11-12 



FILE-CONTROL ANI> DEVICE-CONTROL STATEMENTS 

where: 

dens is a character expression having a value equal. to one ot 
the f.ollowinq: 

'200' 
'51)6 I 

'800' 
'1600' 
'G250' 
. :;YSTEM' 

SYSTEM specifies that the den:)lty JLS the detault denslty for the 
magnetic tape device being us!~d. 

11.3.8 DEVICE Specifier 

0r:VICE 
: ;[}ecifier 

The DEVICE speciJ~ler enablt~s IOU to specity tne name oJ.: Lfle deVIce 
involved in the data transter. A loqlcal name always taKes precedence 
over a physical name. The DE~ICE arguments can specity 1/0 devlces 
located at remote statlons, a3 weil as loglcal deVIces. 

The form of the DEVICE specltier is: 

DEVICE= Character expreS.310n 

It you omit this option, tne logical name un (wnere un IS tne decimal 
unit number) is tried. IE this is not successtul, the standard 
( d e fa u 1 t) de vic e ass 0 cia ted wit h the un i tIS use d ( see '1 a ole 1 U - 3) • 

11.3.9 DIALOG Specifier 

;J~!'\LOG 

~p:edfier 

The DIALOG specifier enables you to type In additIonal UP~N speciiiers 
when the OPEN statement is actually executed. 

If the DIALOG specifier is found In an OPEN llSt, tnen eacn time the 
OPEN statement is executed FUHU'l'S suspenejs executIon dnd prompcs t:.he 
terminal with an asterisk. 

The torm of the DIALOG specltier is: 

DIALOG 

11-13 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

Yuu can respond to the asterisk prompt by entering a file 
;',pecification, DIALOG switches (see below), or a file specification 
followed bv DIALOG switches. The file specification may be a full 
file specification including the device, directory name, and so on. 

i'JUTE 

1\ i) I A L OG s wit chi san v 0 PEN s p e c i fie r ( ex c e p t D I A L OG , 
CIALOG=, UNIT, NAME, FILE, IOSTAT, or ERR) preceded by 
d ::; 1 ash (/). 

;"-,r example, when FOROTS enters DIALOG mode, you can type a string 
:3uch as: 

*DSK:FOO.BAR/MODE:BINARY/ACCESS:DIRECT 

DIALOG= 
Specifier 

. j 

J 1 .3.10 DIALOG= Specifier 

The DIALOG= specifier enables you to include all or a portion of the 
·,:?EN speclfiers in a character expression. The contents of the 
character expression are interpreted as if yOll had given the DIALOG 
:pecifier (see above); and, when the asterisk prompt was given, you 

liad typed in the same strinq as is contained in the character 
0xpression, followed by a carriaqe return. 

The form of the DIALOG= specifier is: 

~) tAL 0(; = C h a r act ere x pre s s ion 

L:xample: 

OPEN(UNIT=l,DIALOG='DSK:FOO.BAR/ACCESS:SEQOUT/MODE:ASCII') 
L c:22 
l'JnITE(1,100)I 

!')O FORMAT(I5) 
;~ND 

DIRECTORY (TOP5-10) 
Specifier 

1 j. L 11 DIRECTORY Specifier (TOPS-IO) 

'in TOPS-lO, the DIRECTORY specltier is iqnored except for disk files. 
!t Sp8cltles the location of the User File Directory (UFD) and, 
.) EJL. ion a 11 y, the Sub F i leD ire c tor y ( S FD), e i t h er a f w h i c h can can t a i n 
, }!'~ fi le snecified in the OPEN statement. 

11-14 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

'l'he form of the DIRECTORY specitier 1· c • "" . 
U1RECTORY:=: Character express10n 

The UFD is the di~ectory in which a user's files are stored; the SFD 
exists within the UFD. An SFD is often used to group files into 
::cpdrate subdirectories. 

The following is a sample of the UFD and SFD specification: 

lO,7,SFDA,SFDB 

In the sample specification, 10,7 is the project-programmer 
'I'his is an adequate directory specification if the file is in 
~;peci[ied by 10,7. The SFDA and SFDB specify two levels of 
(lirectories. The complete directory specification indicates 
! lIe is located in subtile directory SFDB. As indicated, the 
SFDB is through the UFD lU,l and through the SFD SFDA. 

Hefer to the TOPS-IO 
complete description 
dIrectory structures. 

NOTE 

Mon1tor Calls 
o f- d ire c t o--r i e s 

Manual tor a 
and multilevel 

number. 
the UFD 
subfile 

that the 
path to 

The follo\ving is an example of a character expression specification: 

1'[ HECTORY= t 10,7, SFDl, SFD2, SFD3· 
- ....-. ~.~ - -_.---...-- .- ..... --- ~---. 
Project SubFile 
programmer Directory 
Number Path 

'1' he f 0 11 0 win 9 i 5 a n ex am p 1 e 0 tho w to ass em b lea s pe c 1 tic a t ion f r om 
individual elements: 

(:HARACTER* 1 0 PROJ, PROG, PATH.l, PATH2 
(:HARACTER* 1 COMM 

P R O,J == I I 0 I 

i?HOG:= 17 1 

:'/:.,TH== I SFDA I 

PATH= 'SFDB' 
l'OMM:= I 

llPEN(UNIT=l,DIRECTORY=PRtJ//COMM//PROG//COMM//PATHl//COMM//PATH2) 

Th~ above specification 
,:~ x pre s s ion: 

I l 0, 1 , SFDA, SFDB I 

is equivalent to the following character 

11-15 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

E--------] 
DIRECTORY (TOPS-20) 

Specifier 

--------.---..... 

11.3.12 DIRECTORY Specifier (TOPS-20) 

On TOPS-20, the DIRECTORY specifier is ignored except for disk files. 
The DIRECTORY specifier enables you to define the path through the 
directory structure to a file specified in the OPEN statement. 

The form of the DIRECTORY specifier is: 

DIRECTORY= Character expression 

The argument to the DIRECTORY specifier is 3 character expression 
whose elements comprise the directory path specification, for example: 

OPEN(UNIT=22,DIRECTORY= 'GUEST') 
!Looks for DSK:(GUEST)FOR22.DAT 

or 

CHARACTER*12 ID 
1D= 'GUEST.CLASS3' 
OPEN(UNIT=22,DIRECTORY=ID) 
!Looks for DSK:(GUEST.CLASS3)FOR22.DAT 

r
---··· __ ·· __ ···- _.'" .-......... _ ..... _ .. _. __ ._ ..... "._- ""J' 

DISPOSE 
I Specifier 

L ___ . __ . __ . ____ _ 

11.3.13 DISPOSE Specifier 

The DISPOSE specifier enables you to specify an action to occur when 
the file is closed. 

The form of the DISPOSE specifier is: 

DISPOSE = dis 

where: 

dis is a character expression having a value equal to one of 
the following: 

'KEEP' 
'SAVE' 
'l)ELETE' 
'2XPUNGE' 
'PRINT' 
I [.1ST I 

'PUNCH' 

11-16 



FILE-CONTROL ANI> DEVICE-CONTROL STATEMENTS 

The DISPOSE specj~fier must ha'le one of the following values: 

KEEP 

SAVE 

DELETE 

EXPUNGE 

PRINT 

LIST 

PUNCH 

Specifies that the file is to be left where the OPEN 
statement specifies. DISPOSE='KEEP' is the default. 

Same as KE:EP. 

Specifies on TOPS-I0 that, if the device is either a 
DECtape or disk, delete the file; otherwise, take no 
action. 

On TOPS-20, if the device involved is a disk, delete 
the file; otherwise, take no action. 

On TOPS-I0, saIne as DELETE. On TOPS-20, if the device 
involved is .3 disk, expunge the file; otherwise, take 
!10 action. 

Specifies that the file will be printed and kept. 
file must be o~ disk. 

The 

Specifies that the file will be printed and deleted. 
The file must ~e on disk. 

Specifies that the file will be punched on the paper 
tape punch and kept. The file must be on disk. 

ERR 
Specifier 

11.3.14 ERR Specifier 

The ERR specifier enables you to designate a statement number of an 
executable statement, in the current program unit, to which control 
passes if an error occurs during the execution of an I/O statement. 

If an error occurs and no ERR specifier or IOSTAT specifier (see 
Section 11.3.18) is supplied, the program types an error message. If 
the program is running under batch, it is aborted. 

If the program is not running under batch, it enters DIALOG mode after 
processing all of the other specifiers, as if you had supplied the 
DIALOG specifier (see Section 11.3.9). This is true regardless of 
whether or not the OPEN statement was explicitly executed or implied 
by the execution of the first data transfer statement for a unit. 

The form of the ERR specifier is: 

ERR= s 

where: 

s is the number of an executable statement to which program 
control passes if an error occurs during the execution of 
the statement that includes the ERR specifier. 

The subroutine ERRSNS can be called to pinpoint the error. See 
Appendix D for FOROTS error values returned by ERRSNS. 

11-17 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

FILE 
Specifier 

11.3.15 FILE Specifier 

The FILE specifier enables you to name the file involved in the data 
transfer operation. You can specify a full file specification. 

The form of the FILE specifier is: 

FILE= Character expression 

The value of the character expression is any legal TOPS-IO or TOPS-20 
file specification. (See the TOPS-IO Operating System Commands Manual 
or the TOPS-20 User's Guide.) ------

If you omit the period and extension, the extension .DAT is assumed. 
If just the extension is omitted, a null extension is assumed. Thus, 
if you want a filename without an extension, remember to use the 
period. 

If a filename is not specified, a default name is generated that has 
the form: 

FORxx.DAT 

where: 

xx is the FORTRAN logical unit number (decimal) or the logical 
unit name for the default statements ACCEPT, PRINT, PUNCH, 
READ, WRITE, or TYPE. 

FILESIZE 
(INITIALIZE) 

Specifier 
(TOPS-10 only) 

11.3.16 FILESIZE (INITIALIZE) Specifier (TOPS-IO Only) 

The FILESIZE (or INITIALIZE) specifier is used for disk operations 
only. It enables you to estimate the number of words that an output 
file is going to contain. 

The form of the FILESIZE specifier is: 

FILESIZE= Integer expression 

The value assigned as a FILESIZE argument can be a integer expression, 
and is rounded up to the next higher block boundary (multiple of 128). 

11-18 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

The value specified by FILESIZE= is used as an estimate only. The 
effect of FILE~3IZE= is to help the monitor try to choose the best 
place on the disk to put the file. 

11.3.17 FORM Specifier 

FORM 
Specifier 

The FORM specifier designates whether the records in a data transfer 
operation are formatted or unformatted. You should not mix formatted 
(character) and unformatted (binary) records in the same file. 

The form of the FORM specifier is: 

FORM ft 

where: 

ft is a character expression having a value equal 
, FORMATTED' 0 r 'UtJFORMA'1'TED'. 

The arguments to the FORM specifier are: 

to 

FORMATTED specifies that the records being 
contain character (formatted) data. 

transferred 

UNFORMATTED specifies that the records being 
contain bj.nary (unformatted) data. 

transferred 

If FORM is not specified and HaDE is 'ASCII' or 
value for FORM is 'FORMATr~~ED'. Otherwise, 
'IMAGE', or 'DUMP' (TOPS-IO only), the default 
'UNFORMATTED' • 

'LINED', the default 
if MODE is 'BINARY', 
value for FORM is 

If both FORM and MODE are specified and they are incompatible, then 
DIALOG mode is entered, and you are asked to correct the 
incompatibility. In the following example, MODE='BINARY' and 
FORM='FORMATTED' are specified in the same OPEN statement. As shown 
below, when the program is executed, interactive DIALOG mode is 
automatically entered to enable the user to correct the 
incompatibility. 

PROGRAI'-l TRIMP 
OPEN(UNIT=l,MODE='B~NARY' ,FORM='FORMATTED') 
ltoJRITE (UNIT=l ,FMT=lO:.) 

lOl FORMATflX,'This is il test .. '} 
END 

EXECUTE TRINP 
LINK: Loading 
[LNKXCT TRIMP execution] 
?OPEN unit 1 DSK:FOROl.DAT at MAIN.+4 in TRIMP (PC InS) 
?Incompatible attributes /MODE:BINARY /FORM:FORMATTED 

11-19 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

[Enter correct file specs] 
*/MODE:ASCII 
CPU time 0.3 Elapsed time 11.4 
TYPE FOROl.DAT 
This is a test. 

If neither FORM nor MODE is specified the default value for FORM 
depends on the access. If the access is SEQUENTIAL (or is defaulted), 
the default for FORM is FORMATTED. If the access is DIRECT or RANDOM, 
the default for FORM is UNFORMATTED. 

NOTE 

For ASCII devices (line printer, plotter, terminal, 
industry magnetic tape), the FORM= specifier has no 
meaning and is ignored; both formatted and unformatted 
data transfers are legal (see Section 10.3.3). 

IOSTAT 
Specifier 

11.3.18 IOSTAT Specifier 

The IOSTAT specifier identifies an integer variable that is used to 
store the I/O status code during the execution of a statement. 

The form of the IOSTAT specifier is: 

IOSTAT= Integer variable or integer array element 

If no error occurs during the execution of the statement, the defined 
variable is set to zero. 

If an error does occur during the execution of the statement, the 
defined variable is assigned a positive integer value that corresponds 
to the number of the FOROTS error that occurred (see Appendix D for 
FOROTS error codes). 

When an error occurs, no error message is typed; instead, the program 
either continues at the ERR= statement number (if the ERR specifier is 
included), or continues at the statement immediately following the 
OPEN statement (if no ERR specifier is included). 

11-20 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.3.19 LIMIT Specifier 

[
._--- - .. - ._-_ .. _ .. _ •... _ .. _-_ ... _ ... _.] 

LIMIT 
Specifier 

--.- - ... - .. - .. ---------

The LIMIT specifier designates the number of output units (such as 
pages) for spooled print or punch requests, which result from using 
DISPOSE='PRINT', DISPOSE='PUNCH', or DISPOSE='LIST' (see Section 
11.3.13). 

The form of the LIMIT specifier is: 

LIMIT= Integer expression 

11.3.20 MODE Specifier 

The MODE specifier defines the data mode of an external file or 
record. 

The form of the MODE specifier is: 

MODE mod 

where: 

mod is a character expression having a value equal to one of 
the following: 

'ASCII' 
'LINED' 
'BINARY' 
I IMAGE' 
'DUMP' 

After a MODE has been assigned (either explicitly or by default), it 
cannot be changed until the file is closed and then reopened. 

The default value of MODE depends on the values of FORM and ACCESS. 
If FORM is FORMATTED, then the default MODE is ASCII. If FORM is 
UNFORMATTED, then the default MODE is BINARY. If ACCESS is SEQUENTIAL 
and no FORM= is specified, then the default MODE is ASCII; if ACCESS 
is DIRECT or RANDOM, and no FORM= is specified, then the default MODE 
is BINARY. (See Section 11.3.17 for details on FORM, and Section 
11.3.1 for details on ACCESS.) 

11-21 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

Character data is supported in formatted BINARY and IMAGE mode tiles; 
it is not supported in DUMP mode files. 

The possible values ot MODE are: 

l\SCI I 

BINARY 

IMAGE 

DUMP 
TOPS-IO 

specities the data to be )-bit ASCII characters. 
l~ecor(js are terminated with a line feed, form teed, or 
\/ertlcal tab. 

Takes effect on Input only. For output, this mode 
defaults to ASCII. LINED specifies the data to be 
7-bit ASCII characters with optional line sequen~e 

numbers. FORTRAN removes the line sequence numbers, if 
present, before supplying the data to the user. (The 
1 ine sequence number can be obtained by using the 
lunction LSNGET, see Section 13.3.1.) 

Note that a page mark in a file containing line 
::equence numbers is a separate record. FORTRAN removes 
the blank sequence number, and the carriage return/form 
tRed sequence is read as a blank record. 

Specifies that data is formatted as a FORTRAN binary 
data tile. A BINARY file is composed of 36-bit words 
~ [-; C e Sec t ion 1 0 • 3 . 2). The fir s t wo r d 0 f e a c h r e cor dis 
written by FOROTS and specifies the beginning of the 
;iinary record; this 36-bit value is called a type I 
:.()uical Segment Control Word (LSCW). 

i<rlct! binary record can contain one or more type 2 
i ,:~;CWs . The type 2 LSCW, vir it ten by FOROTS und e r 
::(~r ta in condi tions. is used to mark a record that spans 
lnternal buffer boundaries. 

i\ third FOROTS-written word, the type 3 LSCW, is always 
' .. If Itt en as the I a s t 36 - bit va III e i n e a c h BIN A R Y r E~ cor d • 

All data in a "BINARY" transfer remains equivalent in 
its external form with its internal representation. 

Specifies an unformatted binary mode. Like the BINARY 
form of unformatted transfers, IMAGE specifies that 
dAta is transferred as 36-bit values, with the internal 
~nd external representation of the data remaining the 
'~a me. 

Unlike BINARY tiles, IMAGE files do not contain record 
~nformation (LSCWs); they contain only the data 
~r~nsterred. IMAGE files can be backspaced if a record 
~; i ze iss pec if i ed • 

corresponds to TOPS-IO DUMP mode I/O. (See the TOPS-lO 
Mon i to r Ca 11 s Man ua I .) Reco rd size i s igrl-or-ecf~
Cha~acterdafa can~cif "be written into or read from DUMP 
1l1Ode files. Note that there is little or no 
pertormance advantage to uSlng DUMP, as FOROTS uses 
DUMP mode internally for all disk files. 

NOTE 

For ASCII devices (line printer, plotter, termInal, 
Lndustry magnetic tape), the MODE= specifier has no 
meaning and is ignored; both formatted and unformatted 
clata transfers are leqal (see Section 10.3.3). 

11-22 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

:'d:)le 11-2 summarizes the different MODE arquments that are supported 
l) n a iff ere n t de vic e s • 

Tahle 11-2: DEVICE and MODE Cross-Tahl,~ 

I)pvi('p 'ASCII' 'LlNI~))' 

J)lc;k (sequential) X X 
Disk Idin~ct.) X 
11I'~Ctapc X X 
'j'f'nninal X 
l'vhl~tap(' X X 
I ,j lit' Print!'f X 
I ';lrd H.t·ader X 
<. ';11'(1 Punch X 
I 'aper Tapt' Reader X 
!';iper Tape Punch X 

I i.3.21 NAME Specifier 

I 
, 'BINARY' 

r - X 

I 
I 
I 
i 
I 
i_ 

X 
x 

x 

x 
x 
x 
X 

I 
I 

T 
I 
I 

I 
I 
I 
I 
i 

.1 

I 

'IMA(~E' P(:~~~~011 
X 
X 

I I X 

X I 
A I 
X i 
X I 
X 

~.J A 

NL\:VlE 
~. pi-"clfier 

The NAME specifier is used to specitv a full tile speclflcatlon. You 
:-:an use this specifier instEad of the DEVICE, FILE, and/or UllH..:CTORY 
...:;pecifiers. 

~'he form of the NAME specifier IS: 

~. L"',M E:= C h a r act ere x pre s sic n 

~xamples at the NAME specifier are: 

: TOPS-l 0): NAME= I DSK : FOCi. BAR I 1 () ,34.1 ' 

'T()PS-20): NAME=ipS:<SMITH)BILLING.DAT i 

rhe NAME specifier can not be qiven in DIALOG mode. Also, the OPEN 
,Latement cannot have both a I.·lALOG= specitier and a NAMEspecltler. 

11-23 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

PADCHAR 
Specifier 

il.3.22 PADCHAR Specifier 

The PADCHAR specifier is used onlv with formatted output data transfer 
lperations. PADCHAR enables vou to speclfv a character that will be 
,]sed to pad fixed-lenqth formatted records, on output only, to their 
~pecified record lenqth (see the RECL(RECORDSIZE) specltier, Section 
:l.3.27). 

'rho torm tor the PADCHAR specltier is: 

lADCHAR= A character expreSSIon In WhICh the tirst character is 
lsed 

The default pad character is space. The pad character IS 
tixed-lenqth records are not beinq used (that 
HECL(RECORDSIZE) specitler is absent). or if formatted 
:)e i nq done. 

ignored if 
is, if the 
I/O is not 

~o specity a null character tor the pad character, you 
inList use the tunction CHAR (see Chapter 13), since the 
;'::Clrnpiler does not allow null character constants, for 
l~xamp..i.e: 

\,Pf·;N (UNI'),=l. PADCHAR=CHAR (0)) 

PARITY 
Specifier 

11.3.23 PARITY Specifier 

The PARITY specitier is onlv Llsed for maqnetic tape operations. It 
')ermics you to specitv paritv to be oi)served (odd or even) during the 
~ransfer at aata. 

The form ot the PARITY sPE~citler IS: 

'",here: 

'ARITY = par 

D~r IS d cnaraccer exuression navlnq a value equal to 10DD' or 
, ~:VEN; • 

11-24 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

PROTECTION (TOP5-10) 
c::,pecifier 

11.3.24 PROTECTION Specifier (TOPS-lO) 

This option specifies a protection code to be assigned to the data 
file being transferred. The protection code is a 3-dIglt octal value 
indicating the level of acces~ to the tile. 

Each of tne three numbers in the protection code ha3 a specItic 
meaning. The number in tte leftmost position desIgnates the tile 
owner's protection; the middlE- numbe·r designates the pro]ect member's 
protection; and the rightmost number designates the protection tor all 
others users on the system. The system default tor t.he file 
protection is assigned if a protection is not specitied. 

On TOPS-IO, the form of the PLOTECTION specitler is: 

PROTECTION= Inteqer expression 

Figure 11-1 illustrates the 1'OPS-IO 3-digIt octal tile protectIon 
code. 

When sett.ing the protection code for a file open tor 
output, be sure not to set the protection SUCt1 that 
the file is protected against writing by the program; 
if you should do this the OPEN statement WIll fail. 

To protect the fj_le aqainst writing by the owner, you 
should give the PROTECTION specIfIer in t.he CLOSf<~ 

~3tatement • 

r----·-- File Owner 

PROTECTION = nnn ~.-Other Users 

File owner 

PrOject Members 

Other Users 

t_. ____ ... _ Prolect Member~ 

An octal dlQlt In the tirst r'OSitiOn speCifies the file access for tile 111e owner. I he file owner 
IS tle user whose pro'lrarnmer number maiches the directory !n wllietl the file IS 
con·:alned. 

An actal digit in the seC::>nd position specltles the tile access tor me project members. 
Protect members are us(~rs whose prolect number matches the Ijlrectory In which the file 
IS comalned. 

An octal value In the thlr,j Dosltlon speCifies the file access for all users other than the file 
owner or a protect rnerntJer_ 

•• " f"' ~ -"1 p '!' 

Fig ure 11-1: TOPS-IO F i 1 e Pr,)tect ion Nurnbe r 

11-25 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

":1ble 11-3 lists all the 
"-ocectlon COde. keter 
information. 

possible values for 
to the TOPS-IO Monitor 

each field 
Calls Manual 

of the 
for more 

T'l()TE 

]:, ; I:" Daemon referred to in Table 
D~ovides extended file protection . 

• r i" i 1 P. Daemon allows any user to 
v who can and who cannot access 

,t:lr tiles (if applicable). (Refer to 
"f" l'uP~-lU Operating §ystem _~o_l!I_m_~r~d_s 
;, r-:; l a _L • ) 

Tahl~' 11--:~: TOPS-IO Protection Cod£' Valm's 

'!klHI 

\' dill{' 

,:ktal 

Value 

.VI~>aning in Owner Field 

':'~.1\' [ill' "WIlt'r C<Ill ex('cule. /'('ad. append to. update. wntc. re!wme. or change the protection of 
i fl,' j'dp Tlw I'ill' I>al'rnon 1;'; not called Oil a protection failure, 

:'f1,· ,1 I .. ,;\\,111'1' {',In !'Xl'CUlt~_ n'ad. apPl'nd to. update. write. or ~'pname the fill', Thl' Fill' Daemon 
i'- nol 1',lilpt! 011 il prott'ctioll j~lIlun', 

':'IH' fi I,' {)Wllt'!' ('(in I'xpcute. read. dDpend to. UpJcltt'. Of' write the file, The Vile Daemon is not 
,::1< ,j ::!1 ,I pr!ll.I'('t\OI1 lailun'. 

:'Iw Ii 1(' OWIH'1' C<1l1llot acce;.;;.; the hie. HUwl'\'l'r. tile uwner can use the RENAME monitor call to 
'h,111l:l' IIII' 1111' prolL'lllOll. The hie Dal'mon 1:- nut called on a protection failure, 

Tit!' ii I" OWIl,'!' call eXI'cute. read. append to. update. writl', rename. or change till' protection of 
:111' iill', The mOl11tor calb thl' fIle Daemon on a protection fadUl'e, 

i fl!' iii" "Wlwr ('all Px('cute. n·ad. apPl'nd to. update. or write the fill', The monitor calls the File 
: :;il'iiliiil .1I1 ;, prlJlvclllJlI {'ad un', 

['IH' fil(· O\Vlwr can ('xt'cut(' or !'l'ad thl' file, The monitor call~ the File Daemon on a protection 
f"; I i I t 1 !'( ~ . 

I'hl' lilt' Il\VTlI'r call1lot atT,'SS the file, Howe\'er. the owner can use the 1{r.;NAME monitor call to 
:,;IOll'" LfH' Idp pnll.t'l'tlOll. The Il)onitor call,.; the Fill' Daemon on a protection failure, 

Meaning in Proj('('t Member and Other User Fields 

• !'i'p ,11'1111'('t I1Il'mtH'!' IO/' Olilel" c<ln l'xecute. read. append to. update. write. rename, or change the 
'!!'.ilj-'l'!jlll! iii dl" iilt" 

,:q ;;;('i('('l IIIL'llllwl illl' "lIwl' I I'<tll ,'xl'cuLl'. 1"',1(1. appt'nd to. update. write. or rename the file, 

! :". [)f'('ll'('[ 1T1t'lflilt'l' ;(Ii' olifl'l j ,'all (·Xl'cut!'. /'('ad_ appt'nd to. update. or write the file. 

i'h., nl'OIl'I" IflI'llltH'1' lor ottH'1'1 call t'Xl'Cutl'. rpad. appl'nd to. O!' update the file. 

f !'IH' (l1'1J1l't'1 IIWIlllwl' lor ntiw!,1 call I'XI'l'ute. I't'ad. or append to the file, 

II II,' prlllVl't 11I1~fl1tlel' (or Ultlt'I'1 can execule or reaL! the tile. 

TIlt' nrOf('1'1 11lt'1Il1H'1' lor other I call onlv execute the fIle, 

'j';ii' pnlll'l.'i 1I1l'lllhe)' Ill)' oliler! has Ill) at'Ll'S" to the file. 

i'liP;'-> L ii. PH,()'l'U:T LON can be an integer expression. If the argument 
not specified, the default protection 
Installation is used. 

zero 
i '.J [ 

vdlue or lS 

Lile TOPS-10 

11-26 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

PROTECTION (TOPS-20) 
-:recifier 

11.3.25 PROTECTION Specifier (TOPS-20) 

The PROTECTION specifier enab:.es you to designate an octal protectIon 
code for the file. The protE!ction code is a 6-digjt octal value that 
designates the access to the 1:ile of the owner, group members, and 
other system users. 

On TOPS-20, the form of the PHOTECTION specltler IS: 

PROTECTION= Integer expr(~ssion 

Figure 11-2 illustrates a TOP~;-20 pI:otection cone. 

r--·· ---- File Owner 
!:'--Group Memter 
+ r--Other Users 

PROTECTION = nnnnnn 

File Owner The leftmost two digits jesiqnate the file access tor the 111e owner I he tile owner IS the 
user who is connected 10 the directory in which the file resl(ies. 

Group Member The middle two digits d,;slgnatc the file access tor group memt)ers l~roup memDers ar(~ 
established by the syst;m administrator. A group member~;hip enatdes a user to srlarl"; 
files among other users In the same group. 

Other Users The rightmost two digit~: designate the file access fOI all us~~rs on lilC systern. oltwr Ulan 
the file owner or a qrouo member. 

Figure 11-2: TOPS-20 Protect Lon Number 

Table 11-4 lists the possible protection values and their meaninqs In 
the TOPS-20 file protection code. 

Table 11-4: TOPS-20 Protection Code Values 

Octal 
Value 

77 

40 

20 

10 

04 

02 

00 

Meaning in 0" ncr, Group Member. or Other Ust'!" Field" 

Permits fu II access to th(.' fi Ie. 

Permits rC'ld-only access io the j Ie. 

Permits write and delete access: 0 the file. 

Permits execute-only access to tll' file. 

Permits append-only ac('cs~ to the fill>. 

Permits li;;,ting of the fil!' specification using the DIRE('TOI{Y (,()lllnwlld. 

Permits nco access to the' fil('. 

11-:27 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

0n TOPS-20, PROTECTION specities a protection code to be assigned to 
~ne data tile belna transterred. The protection code determines the 
i0vel of access cnat three classes ot users have to the file. 

')!~OTECTION takes an lnteaer expreSSIon as an argument. If PROTECTION 
asslqnea a zero value or is not specified. the default protection 

>;rle establishE~d for vour connected directorv 1S used. 

READONLY 
Specifier 

~1.3.26 READONLY Specitier 

':"lC READONLY specltier is used to speclty that the program will only 
-,-','10 from the tile. Output to the tIle is L_leqal and will cause an 
'rro[ ~t execution tIme. 

~': e form of the READ a N L Y s p e cit i e r is: 

'::f\iJON L Y 

REel 
(RECORDSIZE) 

Specifier 

11.3.27 RECL . :::'>:'RDSIZE) Specifier 

The RECL (0r KECORDSIZEI specifier enables you to specify the number 
of characters or words in each record transferred. RECL is required 
for all files opened for direct access (ACCESS='DIRECT', ~RANDOM'. or 
';~ANDIN'). (See Section 11.3.1.) 

The form of the REeL specifier is: 

REeL= Integer expression 

an ASCII transter (MODE=fASCII I or 'LINED'). the value assigned to 
;n<CL spec 1 ties the number 0 f cha r acte rs in each record. 

For output to disk or CORE-DUMP tape files, in addition to these 
characters, FOROTS adds a carriage return/line feed to each record, 
followed by enough null characters to fill the current word, so that 
records are word-aligned. REeL is enforced on output by padding short 
records with the padding character for formatted records. Long 
records are truncated. 

FORTRAN enforces a specified REeL for all input operations. If the 
REeL specified in an OPEN statement is different from the actual size 
of the records, FOROTS reads the number of characters specified by 
REeL. 

11-28 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

For input to disk or CORE-DUMP tape files, specifying a record size 
directs FOROTS to read records that are word-aligned. The calculation 
of the actual recordsize is the size specified, plus two for the 
carriage return/line feed, plus the number of nulls necessary to 
word-align the record. 

1"0 r INDUSTRY tapes, wi th RJ~COf~DTYPE=:' FIXED', RECL spec 1 t 1 es the exact 
ilumber of characters In edch record; there are no termInators or 
;),ldd ing character s. .b'or lNDU~i·l·H.Y t:apes WI th RECORDTYPE=' VARIABLE' , 
f~ECL :;pecifies the maximum record size in the file, excludIng the RCW. 

When the record is read, regardless of the contents of the record, it 
is interpreted as specified by the rules above; there are RECL 
characters of data, and the rest are ignored. No interpretation is 
done of the characters in the data part of the record. These 
characters appear in the FOROTS line buffer exactly as they appear in 
the file, including nulls and control characters. 

T ~1 the cas e 0 t M 0 1) E = ' LIN E: D', 1: h e va Iu e 0 t R E C Lex c 1 u (1 est h e t i v e 
,: fld r ac te r s and tab in each .lltte-sequence n umbe r • 

fn d iJilldrV tran!::;ter (MODE::::'B_:NARY'" or 'IMAGE'), the value assigned 
1-0 f-n:CL specitles the fluml>er ot 36-bit words in eacl1 record. .For 
MODE='BINARY', ttle value In RJ;CL excludes the LSCWs wrItten by t'UROTS. 

i t MOD E '" ' 1) U M P' 1 ssp e c i fie d" R EeL 1 s 1 g nor e d • 

11.3.28 RECORDTYPE SpecltIer 

RECORDTYPE 
SDecifier 

The Rr~CORDTYPE specitier detilles the format. ot the records In a 
magnetic tape fIle. 

The torm of the HECORDTYPE Spl~cltIer is: 

lRCORDTYPE = rtype 

tJhere: 

Lype l ~j den d r d C !_ e r t-' X pre S :::0. 1 0 n 

11-29 



11.3.29 

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

STATUS 
;-; 'f:~E) 

Specifier 

STATUS 

ncr: c;l?rlrU-'(] tor jh-oir: format (CORE-DUMP) . For 

:1: 

&. I.," I ,~ 

t -, lsi s 
Tnu3, the 

the standard ANSI 
record data is 

r~Ym;~A[orS or carriaae control 
7"""'''y"'1 ·'11 r~C';-1.y arter another. to 
: x;·rj-- i ."!ui fl >iocks. For this record 

tne OPEN 

f n ,- f~, ,-'i t- ~ i n h v:::; 1 r. Alb -1 0 c k s () nth f> 

'-: ,1Iil P '~I '/ f-' P X" An, f () r the last b Joe k . 

!:! ,. : 

thi~ r~~()rrl format sDecifies 
lIes. ~ standard stream record 

pnd of 
f,',:.;;r _OJ ~t?lnn'1l"'C1 :::;rrprlm rerminAi.or is 

• t)'" rj,~ i 1mi t records. For 
-;, ""- ,ii'[ldV [()r I;; irjpntical to that 

the 
_.,'. ::. ,; l ~',(~ ,'x '"", r or the i.ASr:. nl.ocK. 

: '; i (~. :-.... ;.:; .. 

,-- ! ;--' r r - ,-: -- r ) ! l M P i _ r t1 p h v t- psi n 

1 A -..-: 1 ,,_ 1 ,--i r .~ c~ r:- p r 
1 t a 

ot dat:.a WIlt 
Rr~CORDS I Z E is 

f!!, ,i ; ,,, (i 'I i p t n PAC t: II i'I ire cor d 
;:nii:-;;'-;f':~ ,;, ,if"> rlrit'i'I. CRLr'. And the 

'" n('), c1eflne(1 tor 11-,-hlt t-Anp formAt (COR f<---:-D1JMP) • 

" : t i ; -) : i. i'. f:· .~~ ;"'; ( .. C" 1 

! -: , 

Specifier 

chis is the standard 
Tnus. recon1s are 

rp("r)rO (latA IS wr'lttpn 
rn-"'lY',"lcrprs. 

, .. / r ~~ ~ (.....l. r ", ,... ,. , ~ • .:..:- 1 ""7 £.,l. - .. ---". 

r~ () t to 
tl" 

exceed the block 
i t Cl 

this 

rpcord 
W; ii, f.."ofi tS rOijr cnaracters tess 

t .. ~ • ~rJ .. 

The STATUS specifier 
file being opened must exist, 
it is closed. 

lets you specify whether or 
or what to do with the opened 

not the 
file when 

11-30 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

The form of the STATUS specifier is: 

STATUS = sta 

where: 

sta is a character expression whose value is equal to one of 
the following: 

'F:XPUNGE' 
'OLD' 
'NEW' 
'SCRATCH' 
'UNKNOWN' 
'KEEP' 
'DELETE' 

The arguments to STATUS are: 

I';XPUNGE 

OLD 

NEW 

On TOPS-lO, thjs specifies that the fIle IS ~eletej 

\!lhen it is clo~,ed. On TOPS-20, this spec fies that the 
f iJp is deletec. and expunged when it is ctosed. 

NOTE 

On TOPS-IO I any delete also expunges a t J I.e 
from st.orage. On TOPS-20, a DELETE operatIon 
marks the 1ile as deleted; an EXPUNGE c)peratlon 
immediat:.ely erases the file from storaqe. 

Specifies that the file being opened must already 
exist. If the file does not exist, an error results. 

On TOPS-10, STATUS='NEW' specifies that the file must 
not exist. ]f the file does exist, an error results. 
An error also occurs if you specify STATUS='NEW' with 
ACCESS=" ·::O:N', 'SEQUENTIAL',· ~'i:(;TN()UTi (to a read-only 
device), .Il~ '[U,NDIN' (see Section 11.3.1). 

On TOPS-20, the STATUS='NEW' specifier 
differently, depending on what you have 
directory befoI·e STATUS='NEW' is executed. 

acts 
in the 

Also, the way you specify the file in the OPEN 
statement which contains the STATUS='NEW' specifier 
influences the way the STATUS='NEW' specifier operates. 
The following list describes the ways that this 
specifier can operate when used on TOPS-20. 

1. If the file specified in the OPEN statement does 
not currently exist in the directory, and no 
generation number is specified, then the 
STATUS='NEW' specifier creates the specified file 
and gives jt a generation number of 1. 

2. If the fj.le specified in the OPEN statement 
contains a name, extension, and generation number 
that does not exist, the specified file is used. 

3. If the flle specified in the OPEN or CLOSE 
statement contains a name, extension, and 
generation number that is exactly the same as an 
existing file in your directory, then STATUS='NEW' 
causes an error, and no file is created. 

11-31 



SCRATCH 

UNKNOWN 

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

4. If you did not specify a generation number, but the 
file specified has the same name and extension as 
an existing file in your directory, then the file 
with the same name and extension and the next 
highest generation will be created. 

Specifies that the file will be automatically deleted 
when the file is closed. STATUS='SCRATCH' implies 

A SCRATCH file is always given a name by 
name of the file is inaccessible to 
program. 

FOROTS. The 
the FOHTRAN 

If STATUS='SCRATCH' is used, you must not specify FILE, 
!-\ '! i-i,i;',,,',i!()N, 'l( Vr:RSl()N. If your program is 

writing a file with STATUS='SCRATCH', and the file is 
being written to disk, you can retain it by executing a 
CLOSE statement that renames the file to a specified 
name. 

If a file is opened with STATUS='SCRATCH', the access 
must be ACCESS=' SEQUENTIAL' ,I ',.;JUT· 1 or 
A C C E S S = ' D IRE C T ' , " , ',,, til .) ( see Sec t ion 11. 3 • 1) • 

Specifies that a file opened for an input operation 
must exist. When a file is opened for output with 
STATUS='UNKNOWN', if the file exists, it is superseded; 
if it does not exist, it is created. 

UNKNOWN is the default for STATUS. This value is used 
unless you specify STATUS or unless the value of STATUS 
is otherwise determined by the ACCESS specifier. 

, ; ;-:; c '-: ; i i e ,c:; t, tl a t ;'~ h (; :- i i e i s no',: del e ted • Soecifyinq 
specifvinq )i..Ja~ent to 

",.j', .1fi': :-,'l'/\'J'lJS=' UNKNOWN' • 

lj n TOP S - 1 O. S U t' elL 1 est II a L the elI e w i 11 bee r a sed w hen 

UidL tlle tile 
I I ~- ! ..::: ,~ 1 () :, pd. TIl e til e 

IS (]lVt~n. 

will be deleted 
IS erased when a 

'J'o undelete a 

T' ~i,PEFORMAT 
S!J(::ci iier 

I l.3.JO TAPE FORMAT SPECIFIER 

:nrrn oj 1 ne iAi"r;i'UHMAT snecltler IS: 

11-32 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

where: 

tmode is a character expression having a value equal to 
'CORE-DUMP' or 'INDUSTRY'. 

The values for the TAPEFORMAT specifier are: 

CORE-DUMP specifies the "DIGITAL-compatible" tape format, which 
is 36-bits stored in five frames on a 9-track tape. 
The SET TAPE RECORDSIZE (TOPS-20) or SET BLOCKSIZE 
(TOPS-IO) command is interpreted to be the number of 
36-bit words in the magnetic tape blocks on the tape, 
and is used if no BLOCKSIZE specifier is given in the 
OPEN statement. If a BLOCKSIZE specifier is given in 
the OPEN statement, it is interpreted to be the number 
of 36-bit words for both formatted and unformatted 
files. 

INDUSTRY specifies characters are read or written in standard 
industry tape format, one character per tape frame. 

11.3.31 UNIT Specifier (Required) 

UNIT 
Specifier 
(required) 

The UNIT specifier defines the FORTRAN logical unit number to be used. 
FORTRAN devices are identified by assigned decimal numbers within the 
range 0-99 (see Table 10-3). UNIT must be an integer expression. 

The form of the UNIT specifier is: 

UNIT= Integer expression 

If the unit specifier is the first specifier given in the OPEN 
statement, the keyword UNIT= is optional. For example the following 
statement opens a file on unit 20: 

OPEN (20,FILE='MYFILE') 

NOTE 

The FORTRAN standard logical unit assignments are 
described in Section 10.4.3.1. Although the range of 
logical unit numbers shown in Table 10-3 is 0-99, the 
range of UNIT numbers is an installation-defined 
parameter. 

11-33 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

VERSION (TOP5-10) 
Specifier 

11.3.32 VERSION Specifier (TOPS-IO) 

Use the VERSION specifier for disk operations only; it enables you to 
assign a 12-digit octal version number to an output file. 

The form of the VERSION specifier is: 

VERSION=Integer expression 

11.4 CLOSE STATEMENT 

The CLOSE statement disassociates an active file from a logical unit 
and releases the memory occupied by I/O buffers and other unit-related 
data. The CLOSE statement can also change some of the file 
characteristics that were assigned during the OPEN, such as the name, 
protection, directory, and disposition of the file. 

Once a CLOSE statement has been executed, you must use another OPEN 
statement (or implicit OPEN) to regain access to the closed file. 

The form of the CLOSE statement is: 

CLOSE (closelist) 

where: 

closelist is a list of CLOSE statement specifiers. This 
list must contain the UNIT specifier (see Section 
11.5.9) and can optionally contain other 
specifiers. 

11.4.1 Implicit CLOSE 

An implicit CLOSE occurs when FOROTS automatically closes a logical 
unit without execution of a CLOSE statement. This can happen when a 
program terminates, or when you execute an OPEN for a unit that is 
already connected to another file. 

11.5 CLOSE STATEMENT SPECIFIERS 

All of the CLOSE statement specifiers are optional, except the UNIT 
specifier which is required. Some CLOSE statement specifiers have the 
same formats as the corresponding specifiers in the OPEN statement. 

Table 11-5 summarizes the specifiers in the CLOSE statement, and the 
typ~ of value required by each. A section number is provide~ to refer 
to detailed descriptions of each specifier. 

11-34 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

Table 11-5: Summary of CLOSE Statement SpecifiHs and Arguments 

Argument Pnssible Value Section 

DLVICE ~ : .S. I 

DIALO(; ( 'haractcr cxpn'SSlOn i i.0 .. 1 

I 1IIn:( "I'< my t 'harllctcl' exprcsslOn 

J)1:--iI'OSE 

ERR-

IOSTAT= 

1.1\11'1' 

.\i,\.l\lE 

lliaractl'l' l'XPI'l'''c-IOJ1 \nth ol1e of tlll' following values: 
:-;1\ VE', 'IWU:Tl';', 'l'l{lNT', KEEP', 'LIST', Pl 'Nell', 
EXPUNCE' 

Statement number 

[nteger variable or integer array element 

11.5.5 

11.5.6 

I l.f) " 

II.j i 

I'IU),),ECTION ~ 1.'. 1 

STATUS· 
TYI'E 

UNIT-

Character expression with one of the following values: 
'KEEP', 'DELETE', :\!'UN<a.;' 

11.5.8 

Integer expression 11.5.9 

QOTE 

For compat:.bility with previous versions of 
FORTRAN-lOj20, you can sp(~cify a numeric array name as 
the value of each of the :ollowing specifiers: 

DIALOG= 
DIRECTOHY 
NAME 

When a numeric array name is used, FOROTS assumes that 
it contains a strIng ~f characters terminated by a 
null character. 

In addition, you can specify a numeric variable as the 
value of the DEVICE and FILE specifiers. If the 
variable is single precision, FOROTS assumes that it 
contains 5 characters; if it is double precision, 
FOROTS assumes that is contains 10 characters. 

The use of numeric array names and 
in place of character variables 
feature. 

11-35 

numeric variables 
is a nonstandard 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

DEVICE, DIRECTORY] 
FILE, NAME, and 

PROTECTION 
Specifiers 

11.5.1 DEVICE, DIRECTORY, FILE, NAME, and PROTECTION Specifiers 

The CLOSE statement file identification specifiers can be used when 
you want to rename the output file when it is closed. Their formats 
are the same as the corresponding specifiers in the OPEN statement. 

If any of these specifiers are given in the CLOSE statement, the file 
is renamed when it is closed. If some, but not all of the file 
identification parameters are specified on a CLOSE statement, only the 
specified parameters are changed when the file is renamed. 

Example: 

OPEN(20,ACCESS='SEQOUT' ,FILE='FOO.BAR') 

CLOSE(20,FILE='NEWFIL') 

The above sequence renames the output file to DKSB:NEWFIL.BAR. 

Refer to the following sections under the OPEN statement: 

FILE - see Section 11.3.15 
NAME - see Section 11.3.21 
DEVICE - see Section 11.3.8 
DIRECTORY (TOPS-I0) - see Section 11.3.11 
DIRECTORY (TOPS-20) - see Section 11.1.12 
PROTECTION (TOPS-IO) - see Section 11.3.24 
PROTECTION (TOPS-20) - see Section 11.3.25 

DIALOG 
Specifier 

11.5.2 DIALOG Specifier 

The DIALOG specifier enables you to type in additional 
specifiers when the CLOSE statement is actually executed. 

CLOSE 

If the DIALOG specifier is found in the CLOSE list, then each time the 
CLOSE statement is executed, FOROTS suspends execution and prompts the 
terminal with an asterisk. 

The form of the DIALOG specifier is: 

DIALOG 

11-36 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

',,11 ~:an respond to t.tle a~terlSK Drornot by enterLnq a tile 
")E:~cirication. iJiALOG switcres (see below), or a t1le spec1fication 
r,)11owed by DIALOG switches. The file specification cal. be a full 
"Ip ~~nA"ltication 1ncludino the device. directorv namE:. cmd so on. 

'/0 II e nc. era i 1.1 e S Dec 1 t 1 cat 1 0 rl t h d t IS dlr:1:ererlt 
:,)eCli lcacion currencly a!:Osloned co trle [lIe. ruH\JiS 

tlom the tile 
KE1"AMf~s the tile 

': i E-' r it- ! ~o. ci ()~~~~j to tile r1(~W name. 

:.,""',': 

. '. !'! 1\ LUG s WIt c 11 1 san \. C L OS Esp e c 1 t 1 e r (e x c e p t J) J l\ LOG , 
'!/\.LOG=. UNIT. NAME:. foILf:o~. [USTAT, or t:RH) preceded bv 

:_.1 ash (I). 

D[ALOG= Specitier 

;~:ie.~_::)G -=
;:"'--ifier 

"'lie DTAL()(;= spec1tier enables vou to include all or a portion ot the 
':_:JSE spec1lIers 1n a cl1aracter expression. l'ne C()[1tents at the 
:j'~'ract:C'r expressIon are incerpreteri as if vou had qiverl the DIALOG 
';~"C'11:1er (see above); and, when the asterIsk prompt was gIven, you 

:jdd tVDed 1n the same strirq as 1S contaIned in Lhe character 
'~Dression, followed by a carriaqe return. 

:';1'2 form 01 the DIALOG= specif1er 1S: 

! 1\ L OC; = C h a rae t ere x 0 res S Ion 

'<xamOJe: 

.()f;:~ (UNIT=20,ERR=lO,DIflLO(3=' /DISPOSE:DELETE') 

.-Jhen DIALOG= 1 S a i ven in the l LOSE 1 i st, :l t 
-'Lher ::;wecitie[~. exceDt DIALOl. 

IS processed alter 

'l~ J>OSE 
-.,:",:,:ifier 

DISPOSE Specifier 

!' '--I e IH~:) PO:"; Esp e c 1 tIe r en a 1) 1 e s v 0 U to S P e c 1 t Y a n act 1 0 n t () 
;hp tile is closed. 

!'IIt=' form ,)t the DISPOSE specliier is: 

f'r~;p()sF. = dis 

11-37 

occur 

all 

when 



, 'er. e: 

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

i ::'lc:l(=jcter expression having a value equal to on'= ot 
; flO" ! {)i i OW 1 no: 

X i-~U~·lG E ' 
"j( f NT I 

i !,jJNCH I 

'" ~1 C iJ I S PO S E spec 1 tie r In u s t have one 0 t the to 11 0 win g va I u e s : 

':~p Epccitles that the file is to be left on the connected 
n: , 1, • U I S PO S E = 'KE: E P 'is the de fa u 1 t • You can not 
';:';~:clt\/ DISPOSE='KEEP' if in the corresponding OPEN 
~~;_lr.ement yOU specified STATUS='SCRATCH' (see Section 

iT NT 

~ • ,:; ~ 1 • 

~ame as Kr:r:P. 

:'~Dt::cifies on TOPS-IO that, if the device is either a 
:; ''; (: tap e 0 r dis k , del e t e the f i Ie; 0 the r w i s e, t a ken 0 

·;n TUPS--20, if the device involved is a disk, delete 
fk tile: otherwise, take no action. 

On TOPS-IO, same as DELETE. On TOPS-20, if the device 
;;"i'Jolved is a disk. expunge the file; otherwise, take 
"j U (j c t 1 0 n • 

Specifies that the file will be printed and kept (the 
tile wlil not be kept if you specify the CLOSE 
·;Latement STATUS='DELETE' or 'EXPUNGE'). The file must 
H' on dlSK. 

:~T specifies that the file will be printed, deleted, and 
'«;)~Inaed (the file will not be deleted if you specify 
:-h,_, CL()Sr~ statement STATUS='KEEP'). The file must be 

. I ~ .. i 1 s k • 

;;C;_~CltU?S that the flie will be punched on the paper 
;, , tJ : H: c n ,HI d k e pt. The f i 1 emu s t be 0 n dis k • 

[':-It:: value ot the CLOSE statement DISPOSE specifier 
'!)er :--;edes the value of the OPEN statement DISPOSE 
~ecifier and the OPEN statement STATUS specifier if 
':'.'\TUS=· EXPUNGE', 'KEEP', and 'DELETE'. 

11-38 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.5.5 ERR Specifier 

ERR 
Specifier 

The ERR specifier enables you to designate a statement label of an 
executable statement, in the current program unit, to which control 
passes if an error occurs during the execution of an I/O statement. 

The form of the ERR specifier is: 

ERR= s 

where: 

s is the number of an executable statement to which program 
control passes if an error occurs during the execution of 
the statement in which the ERR specifier is included. 

The ERR specifier works the same way when it is given in a CLOSE as it 
does when given in an OPEN statement (see Section 11.3.14). 

11.5.6 IOSTAT Specifier 

IOSTAT 
Specifier 

The IOSTAT specifier identifies an integer variable that is used to 
store the I/O status code during the execution of a statement. 

The form of the IOSTAT specifier is: 

IOSTAT= Integer variable or integer array element 

11.5.7 LIMIT Specifier 

1.
------ -.--. -._" ----------] 

LIMIT 
Specifier 

I __________________ _ 

The LIMIT specifier designates the number of output units (such as 
pages) for spooled print or punch requests, which result from using 
DISPOSE='PRINT', DISPOSE='PUNCH', or DISPOSE='LIST' (see Section 
11.5.4) . 

11-39 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

The form of the LIMIT specifier is: 

LIMIT= Integer expression 

STATUS 
Specifier 

11.5.8 STATUS Specifier 

The STATUS specifier tells FOROTS what to do with a file when it is 
closed. In the CLOSE statement, STATUS values are a subset of the 
DISPOSE specifier (see Section 11.5.4) values. 

NOTE 

The ANSI-77 standard does not have DISPOSE and only 
allows STATUS='KEEP' or STATUS='DELETE'. 

The form of the STATUS specifier is: 

STATUS = sta 

where: 

sta is a character expression having a value equal to one of 
the following: 

'KEEP' 
'DELETE' 
'EXPUNGE' 

The arguments to STATUS are: 

KEEP 

DELETE 

EXPUNGE 

Specifies that the file is not deleted. 

On TOPS-IO, specifies that the file is deleted. 

On TOPS-20, specifies that the file is marked for 
deletion when the file is closed. The file is erased 
when a TOPS-20 EXPUNGE command is given. To undelete a 
deleted file, use the TOPS-20 UNDELETE command. 

On TOPS-IO, the same as delete. On TOPS-20, this 
specifies that the file is deleted and expunged. 

NOTE 

The value of the CLOSE statement STATUS specifier 
supersedes the value of the OPEN statement DISPOSE 
specifier and OPEN statement STATUS specifier if 
STATUS='EXPUNGE', 'KEEP', and 'DELETE'. 

11-40 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.5.9 UNIT Specifier (Required) 

UNIT 
Specifier 

(Required) 

The UNIT specifier tells FOROTS which logical unit number is to be 
closed. This specifier corresponds to the UNIT specifier in the OPEN 
statement (see Section 11.3.31) and to the UNIT specifiers in the data 
transfer statements (see Section 10.4.3). 

The form of the UNIT specifier is: 

UNIT= Integer expression 

If the unit specifier is the first specifier given in the CLOSE 
statement, the keyword UNIT= is optional. For example, to close a 
file on unit 20, you can use the following command: 

CLOSE (20) 

11.6 OPEN AND CLOSE STATEMENT EXAMPLES 

The following are examples of OPEN and CLOSE statements: 

OPEN (UNIT=l,DEVICE='DSK' ,ACCESS='SEQIN' ,MODE='BINARY') 

causes a disk file named FOROI.DAT (since no FILE= option was 
specified) to be opened on unit 1 for sequential input in binary mode. 

OPEN (UNIT=3,DEVICE='DSK' ,FILE='PAYROL.DAT', 
1 ACCESS='RANDOM',MODE='ASCII',RECORDSIZE= 80, 
2 ASSOCIATEVARIABLE=I,ERR=240) 

Causes a disk file named PAYROL.DAT to be opened on unit 3 for random 
I/O operations in ASCII mode. The records in PAYROL.DAT are 80 
characters long; the ASSOCIATE VARIABLE for this file is I. If an 
error occurs during the execution of this OPEN statement, the OPEN 
terminates, and control is transferred to the statement labeled 240. 

CLOSE (UNIT=3,DISPOSE='DELETE') 

The above statement causes the file associated with unit 3 to be 
closed and deleted. 

11-41 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.7 INQUIRE STATEMENT 

The INQUIRE statement inquires about specific properties of a file 
name or of a logical unit number on which a file might be opened. The 
INQUIRE statement has two forms: one inquires by file, and the other 
inquires by unit. 

11.7.1 INQUIRE by File 

An INQUIRE by file is an INQUIRE statement containing the following: 

• A FILE= keyword 

• An associated file specification 

• No UNIT= keyword 

It is used to obtain information about a file based on the file name. 
INQUIRE by file can be used to get information on the following files: 

• Files that are "connected"; meaning files for which an OPEN 
statement has been executed or for which a data transfer 
statement has been executed. 

• Files that are not "connected." 

INQUIRE by file has the following form: 

INQUIRE (FILE=fi [, fl ist] ) 

where: 

fi is a character expression whose value specifies the name 
of the file to be inquired about. 

flist is a list that can contain at most one of each of the 
inquiry specifiers (see Section 11.7.3). 

INQUIRE by file may be used any time during the execution of a 
program. It can be used before a file is opened to find out about the 
existence of the file, or after the file is opened to find out other 
attributes of the file. It can also be used to find the unit number 
on which the file is opened. If the same file is opened on more than 
one unit, the smallest number on which the file is opened is returned. 

The determination of whether a file specified in an INQUIRE statement 
is opened on a unit is the following: 

1. The file specification given in the INQUIRE statement is used 
to lookup the file. 

2. If the file exists, the file specification, expanded with the 
physical device name and generation (TOPS-20 only), is 
compared with the file specification for each open unit, in 
ascending order, until there is an exact string match. 

11-42 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

3. If the Eile does not exist, the specification given in the 
INQUIRE statement (with a default of DSK: added if necessary 
for the device name), is compared with the file specification 
for each open unit, in ascending order, until there is an 
exact string match. Note that this match will only be 
successful for 'deferred' OPEN files, since non-deferred OPEN 
files are always established in the specified directory 
immediately. Therefore, the file exists (see item 2 above). 

NOTE 

If a file exists, INQUIRE by file will not generally 
match the file with a unit for which a 'deferred' OPEN 
has been done, since the file specification for the 
unit has not been expanded. For example, the file's 
logical device name has not been replaced by a 
physical device name. 

(See Section 18.8 for information on FOROTS and INQUIRE by file.) 

11.7.2 INQUIRE by Unit 

INQUIRE by unit is an INQUIRE statement containing a UNIT= keyword and 
no FILE= keyword. It is used to find out information about the file 
that may be "connected" to the specified unit. 

INQUIRE by unit has the following form: 

INQUIRE ([UNIT=]u,ulist) 

where: 

u is the number of the logical unit to be inquired about. 
The unit need not exist, nor need it be connected to a 
file. If the unit is connected to a file, the inquiry 
encompasses both the connection and the file. 

ulist is a list that can contain at most one of each of the 
inquiry specifiers (see Section 11.7.3). 

If the optional UNIT= keyword if omitted, u must be the first item in 
the list. 

INQUIRE by unit can be used at any time during the execution of a 
program. It can be used before a file is opened to find out if there 
is another file open on the unit, or after the file is opened to find 
out other attributes of the file. 

11.7.3 Inquiry Specifiers 

The specifiers described in the following sections may be used in 
either form of the INQUIRE statement. 

11.7.3.1 ACCESS Specifier - The ACCESS specifier has the following 
form: 

ACCESS acc 

11-43 



where: 

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

acc is a character variable, array element, or substring 
reterence. It is assigned the value 'SEQUENTIAL' if the 
file is connected for sequential access, or 'DIRECT' if 
the file is connected for direct access. If there is no 
connection, acc is 'UNKNOWN'. 

11.7.3.2 BLANK Specifier - The BLANK specifier has the following 
form: 

BLANK blk 

where: 

blk is a character 
reference. It 
was last opened 
value 'ZERO' if 
the file is not 

variable, array element, or substring 
is assigned the value 'NULL' if the file 

with BLANK='NULL', and is assigned the 
the file was opened with BLANK='ZERO'. If 
open, blk is 'UNKNOWN'. 

11.7.3.3 CARRIAGECONTROL Specifier - The CARRIAGECONTROL Specifier 
has the following form: 

CARRIAGECONTROL = cc 

where: 

~c is a character variable, array element, or substring 
reterence. It is assigned the following values: 

L 'FORTRAN' if the file has the FORTRAN carriage-control 
attribute 

2. 'LIST' if the file has the implied carriage-control 
attribute 

L 'NONE' if the file has no carriage-control attribute 

1. 'TRANSLATED' if the file has FORTRAN carriage-control 
characters being translated directly into vertical 
motion characters. 

~. UNKNOWN if the CARRIAGECONTROL value 
determined. or the file is not open. 

cannot be 

11.7.3.4 DIRECT Specifier - The DIRECT specifier has the following 
form: 

DIRECT dir 

11-44 



where: 

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

dir is a character variable, array element, or substring 
reference. It is assigned the following values: 

1. 'YES' if DIREc'r is an allowed access method for the 
file 

2. 'NO' if DIRECT is not an allowed access method for the 
file 

3. 'UNKNOWN' if tne processor is unable to determine 
whether DIRECT is an allowed access method 

11.7.3.5 ERR Specifier - The ERR specifier has the following form: 

ERR = s 

where: 

s is the label of an executable statement. ERR is a control 
specifier; if an error occurs during execution of the 
INQUIRE statement, control is transferred to the statement 
whose label is s. 

11.7.3.6 EXIST Specifier - The EXIST specifier has the following 
form: 

EXIST ex 

where: 

ex is a logical variable or logical array element. It is 
assigned the value .TRUE. if the specified file or unit 
exists, and the value .FALSE. if the specified file or 
unit does not exist. 

11.7.3.7 FORM Specifier - The FORM specifier has the following form: 

FORM = fm 

where: 

fm is a character variable, array element, or substring 
reference. It is assigned the value 'FORMATTED' if the 
file is connected for formatted I/O, and 'UNFORMATTED' if 
the file is connected for unformatted I/O. If there is no 
connection, fm is 'UNKNOWN'. 

11.7.3.8 FORMATTED SpecifieI' - The FORMATTED specifier 
following form: 

has the 

FORMATTED = fmd 

11-45 



where: 

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

fmd is a character variable, array element, or substring 
reference. It is assigned the value 'YES' if formatted is 
an allowed form for the file. It is assigned the value 
'NO' if formatted is not an allowed form of the file, and 
the value 'UNKNOWN' if the form cannot be determined. 

11.7.3.9 IOSTAT Specifier - The IOSTAT specifier has the following 
form: 

IOSTAT ios 

where: 

ios is an integer variable or integer array element. It is 
assigned a processor-dependent positive integer value if 
an error occurs during execution of the INQUIRE statement, 
or assigned the value zero if there is no error condition. 

11.7.3.10 NAME Specifier - The NAME specifi~r has the following form: 

NAME = nme 

where: 

nme is a character 
reference. It 
inquired about. 

variable, array 
is assigned the 

element, or substring 
name of the file being 

The value assigned to nme is not necessarily identical to 
the value specified with FILE=. For example, the value 
that the processor returns may contain a directory name or 
generation number (TOPS-20 only). However, the value that 
is assigned is always valid for use with FILE= in an OPEN 
statement. 

NOTE 

FILE and NAME are synonyms when used with the OPEN 
statement, but not when used with the INQUIRE 
statement. 

For INQUIRE by unit, FOROTS returns the full, expanded 
file specification if any of the following is true: 

• If there is a file open on the specified unit with 
STATUS other than UNKNOWN or SCRATCH. 

• If there is a file open on the specified unit with 
ACCESS other than SEQUENTIAL. 

• An I/O transfer statement has been executed using the 
specified unit and the unit has not been closed. 

11-46 



FILE-CONTROL ANI> DEVICE-CONTROL STATEMENTS 

FOROTS returns thE! string given in the OPEN for NAME= with 
defaults applied j,f both of the following are true: 

• If the file is open on the specified unit as a result 
of an OPEN statement in which STATUS='UNKNOWN' and 
ACCESS='SEQUENTIAL' are specified or implied. 

• No I/O transfE!r statement has been executed us ing the 
specified unit. 

If STATUS='SCRATCII', FOROTS returns blanks for NAME=. 

If there has been no OPEN statement, and no I/O transfer 
statement has bE~en executed using the specified unit, 
FOROl'S returns for NAME:: the default file specification 
for that unit. 

For INQUIRE by file, FOROTS returns the full, expanded 
file specification if the file exists in the specified 
directory. If the file does not yet exist on the 
speci.fied directory, but has been opened by a 'deferred' 
OPEN, FOROTS returns the string given in the INQUIRE 
statement, with defaults applied for the device and 
generation number (TOPS--20 only). Otherwise, blanks are 
returned. 

11.7.3.11 NAMED Specifier - The NAMED specifier has the following 
form: 

NAMED nmd 

where: 

nmd is a logical varidble or logical array element. It is 
assigned the value .TRUE. if the specified file has a 
name, and the val~e .FALSE. if the file does not have a 
name .. 

11.7.3.12 NEXTREC Specifier .- The NEXTREC specifier has the following 
form: 

NEXTREC nr 

where: 

nr is an integer variable or integer array element. It is 
assigned an integer value that is one more than the last 
record number read or written on the specified direct 
access file. If no records have been read or written, the 
value of nr is one. If the file is not connected for 
direct access, or if the position is indeterminate because 
of an error condition, nr is zero. 

11.7.3.13 NUMBER Specifier - The NUMBER specifier has the following 
form: 

NUMBER num 

11-47 



where: 

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

num is an integer variable or integer array element. It is 
assigned the number of a logical unit currently connected 
to the specified file. If there is no logical unit 
connected to the file, num is not defined. If more than 
one unit is connected to the file, the smallest unit 
number is returned. 

11.7.3.14 OPENED Specifier - The OPENED specifier has the fo1101Ning 
form: 

OPENED od 

where: 

od is a logical variable or logical array element. 
assigned the value .TRUE. if the specified file is 
on a unit or if the specified unit is opened; 
assigned the value .FALSE. if the file or unit 
open. 

It is 
opened 
it is 
is not 

11.7.3.15 RECL (RECORDSIZE) Specifier - The RECL (RECORDSIZE) 
specifier has the following form: 

RECL = rcl 

where: 

rcl is an integer variable or integer array element. If the 
file (or unit) is opened, rcl is the record length for 
fixed-length record files. In all other cases, rcl is 
zero. If the file is opened for formatted I/O, rcI is 
expressed in characters, and in words if the file is 
unformatted. 

11.7.3.16 RECORDTYPE Specifier - The RECORDTYPE specifier has the 
fallowing form: 

RECORDTYPE rtype 

where: 

rtype is a character variable, array element, or substring 
reference. It is assigned the value 'FIXED' if the file 
has fixed-length records, assigned the value 'VARIABLED if 
the file has variable-length records, and assigned the 
value 'STREAM' if the file is a stream file (default for 
disk and maqnetic tape). If the processor cannot 
,Jetermine the record type, rtype is assigned the value 
'UNKNOWN' . 

11-48 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.7.3.17 SEQUENTIAL Specifier - The SEQUENTIAL specifier has the 
following form: 

SEQUENTIAL seq 

where: 

seq is a character variable, array element, or substring 
reference. It is assigned the following values: 

1. 'YES' if SEQUENTIAL is an allowed access method for 
the specified file 

2. 'NO' if SEQUENTIAL is not an allowed access method 

3. 'UNKNOWN' if the processor cannot determine whether 
SEQUENTIAL is an allowed access method 

11.7.3.18 UNFORMATTED Specifier - The UNFORMATTED specifier has the 
following form: 

UNFORMATTED unf 

where: 

unf is a character variable, array element, or substring 
reference. It is assigned the value 'YES' if unformatted 
is an allowed form for the file. It is assigned the value 
'NO' if unformatted is not an allowed form of the file, 
and the value 'UNKNOWN' if the form cannot be determined. 

11-49 





FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

Table 11-6 summarizes the form and use of the FORTRAN device control 
statements. 

Table 11-6: Summary of FORTRAN Device Control Statements 

Statement Form 

FIND il~NIT 11l1.Ht:C rnl.EIW ~II.IOSTAT ioo;l! 
FIND lun'rnl.Elm ~1I,lOSTAT j()~11 

HEWIND un 
HEWIND (UNIT - unl ,ERR - s" ,IOSTAT = ios II 
REWIND (unl,ERR ~ sll,IOSTAT'- iosl) 

l TNLOA D lIn 

l'!'.'LOAD ((TNIT unl.EIW o;ll.IOSTAT io~1 

llNI.OAD (unl.EHH o;lI.IOSTAT io~11 

Section 

IUU 

:I 1.8.2 

ll.!-i.:l 

BACKSPACE un I 1.8.4 
BACKSPACE (UNIT- unl,ERR sll,I08TAT-iosl) 
BACKSPACE (unl,ERR=sll,IOSTAT-- ios)) 

ENDFILE un 11.8.5 
ENDFILE (UNIT = unl ,ERR = s II ,lOST AT - ios)) 
ENDFILE (unl,ERR'=sll,IOSTAT~iosl) 

SKII'J{JTOHf) un 11.S.G 

SKIPRECOH]) dJNJT unl.END o;lIYlm 0;1I.108TA" iosll 
SKII'HECOJ{I) iunl.r:ND o;lI.Elm 0;II.10STAT ioo;li 

1--------------.-------------1-.--.. -
SKIPFILE un 
SKIPFILE IT [NIT unl.EHH ~ II.IOSTAT ioo; II 
8KII'FILE (unl.EHH.;II.IOSTA'1 iosll 

I ;\('I(FI1.E lIn 

IA(,KFII.E((TNIT unl.EHH 0;11.I08TAT io',11 
I ACKFII.E (lI11I.ERR 0;II.10STAT ius Ii 

llY'.I 

11.H.H 

11-51 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.8 DEVICE CONTROL STATEMENTS 

Device control statements enable you to position external devices. 
For example, when performing data transfers with magnetic tape, you 
use device control statements to position the tape. The device 
control statements may be used for both formatted and unformatted 
files. 

The following list contains all of the device control statements, and 
the section in which each statement is described. 

] . 
2. 

J 
.J • 

4. 

5. 

6. 

/'. 

8. 

FIND (Section 11.8.1) 

REWIND (Section 11.8.2) 

UNLOAD (Section 11.8.3) 

BACKSPACE (Section 11.8.4) 

ENDFILE (Section 11.8.5) 

SKIPRECORD (Section 11.8.6) 

SKIPFILE (Section 11.8.7) 

BACKFILE (Section 11.8.8) 

NOTE 

The results of the BACKSPACE and SKIPRECORD statements 
are unpredictable when used on list-directed and 
NAMELIST formatted data. 

The general form of every device control statement is: 

keyword un 

or 

keyword (UNIT=un [,END=s] [,ERR=s] r ,IOSTAT=ios]) 

or 

keyword (un[,END=s] [,ERR=s] [,IOSTAT=ios]) 

where: 

keyword 

un 

END=s 

is the statement name. 

is the FORTRAN logical unit number. Table 10-3 
lists the default logical unit numbers. If you 
enclose the logical unit specification In 
parentheses, you can include the keyword portion 
(UNIT=) of the logical unit specification. The 
keyword form of the unit specifier makes the 
specification positionally independent in the 
parenthetical list. 

is the optional end-of-file specifier (see Section 
10.4.6) • 

11-52 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

ERR=s is the optional error specifier 
10.4.7) • 

(see Section 

IOSTAT=ios is the optional I/O error status specifier 
Sec t ion 1 'J • 4 • 8) " 

(see 

The operations performed by the device control statements are usually 
used only for magnetic tape devices (MTA). In FORTRAN, however, the 
device control operations are simulated for disk devices. 

11.8.1 FIND Statement 

[ ---- -- --.------] 
FIND 

Statement 

-----_ .. -

In earlier versions of FORTRA1-.J-IO/20, the FIND statement could be used 
during direct-access READ/WRITE operations to reduce the time 
necessary to do data tran:;fers and to locate records in a 
direct-access fi.le. For FORTRAN-IO/20 Version 10, the FIND statement 
has no effect, except for se:ting the current record number and, 
therefore, the associate vari.:tble. 

The first form of the FIND st.ltement is: 

FIND (UNIT=un,REC=rn [,ERH=s] [, IOSTAT=ios]) 

The second form of the FIND s~atement operates in the same way as the 
first form. The difference between the two forms is in the way that 
the unit number and record number are specified. 

The second form of this statement 1· c' • ", . 
FIND(unl rn[ ,.ERR=s] [,IOSTAT=ios]) 

In this form, the unit number and record number do not contain the 
keywords UNIT= and REC=. Ins·:ead, the unit number is specified first, 
followed by a single quote (I', and finally the record number. 

The following example demonst~ates how the FIND statement is used: 

PIND(UNIT=I,REC=lOO) 

This statement positions the ~ile so that the next READ statement 
rcads record 100. 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

REWIND 
Statement 

11.8.2 REWIND Statement 

The REWIND statement, used for disk files, causes a specified file to 
be positioned at its initial point. For magnetic tape, execution of 
the REWIND statement positions the magnetic tape at its initial point. 

The forms of the REWIND statement are: 

REWIND un 

or 

REWIND (UNIT=un[ ,ERR=s] [,IOSTAT=ios]) 

or 

REWIND (un[ ,ERR=s] [,IOSTAT=ios]) 

where: 

un is the logical unit number of the device on which the REWIND 
is being performed. Table 10-3 lists the default logical 
unit numbers. 

I~EWIND is illegal for files opened with ACCESS='APPEND'. 

r -- . _.-. -' ",-- -,-.. --.. _ .......... -- --... _- -.-----,-.------- .. ,-

I 
I 

UNLOAD 
Statement 

L, _______ .. , .. ,_. 

I l.8.3 UNLOAD Statement 

rne UNLOAD statement rewinds and unloads the magnetic tape associated 
with the specified unit. 

The forms of the UNLOAD statement are: 

UNLOAD un 

or 

UNLOAD (UNIT=un[ ,ERR=s] [,IOSTAT=ios]) 

ur 

LiNLOAD (un [ , ERR=s] [ , IOSTAT= ios] ) 

11-54 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

where: 

un is the logical unit number of the device on whi.ch the UNLOAD 
is being performe~. Table 10-3 lists the default logical 
unit numbers. 

11.8.4 BACKSPACE Statement 

BACKSPACE 
Statement 

Execution of a BACKSPACE statement causes the file connected to the 
specified unit to be positioned before the preceding record. If there 
is no preceding record, the position of the file is not changed. If 
the preceding record is an ENDFILE record (see Section 11.8.5), the 
file is positioned before the ENDFILE record. 

The BACKSPACE statement cannot be used for direct-access files, 
append-access files, or files that are formatted with list-directed or 
NAMELIST-statement formatting. 

The forms of the BACKSPACE statement are: 

BACKSPACE un 

or 

BACKSPACE (UNIT=un [ ,ERR=~.] [ ,IOSTAT= ios] ) 

or 

BACKSPACE (un [ ,ERR=s] [ ,IOSTAT= ios] ) 

where: 

un is the logical unit number of 
BACKSPACE is being performed. 
logical unit numbers. 

11.8.5 ENDFILE Statement 

the device on which the 
Table 10-3 lists the default 

ENDFILE 
Statement 

The ENDFILE statement closes the file on the specified unit. On 
magnetic tape, an 'ENDFILE record' is written and is then positioned 
after the end-of-file mark. 

For disk, the file is closed and then positioned at the end of the 
file, and an end-of-file status is set. This status is the equivalent 
of the file being positioned after an 'ENDFILE record'. 

11-55 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

Thus, for both disk and magnetic tape, a BACKSPACE operation given 
after an end file operation positions the file after the last data 
record (that is, before the physical (or virtual) 'ENDFILE record'). 

The ENDFILE statement can be used only with sequential access files. 

The forms of the ENDFILE statement are: 

ENDFILE un 

or 

ENDFILE (UNIT=un [ ,ERR=s] [ ,IOSTAT= ios] ) 

or 

ENDFILE (un[ ,ERR=s] [,IOSTAT=ios]) 

where: 

un is the logical unit number of 
ENDFILE is being performed. 
logical unit numbers. 

SKIPRECORD 
Statement 

11.8.6 SKIPRECORD Statement 

the device on which the 
Table 10-3 lists the default 

The SKIPRECORD statement skips the record immediately following the 
current (last accessed) record. If the SKIPRECORD statement is 
executed prior to accessing any records, then the first record in the 
file is skipped. You cannot use SKIPRECORD on direct-access files. 

The forms of the SKIPRECORD statement are: 

SKIPRECORD un 

or 

SKIPRECORD (UNIT=un [ , END=s] [ , ERR=s] [ , IOSTAT=ios] ) 

or 

SKIPRECORD{un[ ,END=s] [,ERR=s] [,IOSTAT=iosj) 

where: 

un is the logical unit number of 
SKIPRECORD is being performed. 
logical unit numbers. 

11-56 

the device on which the 
Table 10-3 lists the default 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

11.8.7 SKIPFILE Statement 

[
-_. __ . __ .=._-J -... 

SKIPFILE 
Statement 

---. --------

This statement is used only for magnetic tape operations. Unless an 
end-of-file has been encountered, the SKIPFILE statement advances to 
the beginning of the next file. If an end-of-file has been 
encountered, SKIPFILE skips the next file. If the number of SKIPFILE 
executions exceeds the number of files available to be skipped, an 
error occurs. 

The forms of the SKIPFILE statement are: 

SKIPFILE un 

or 

SKIPFILE (UNIT=un [,ERR=s] [, IOSTAT=ios]) 

or 

SKIPFILE (un[ ,ERR=s] [,IOSTAT=ios]) 

where: 

un is the logical unit number of 
SKIPFILE is being performed. 
logical unit numbers. 

11.8.8 BACKFILE Statement 

the device on which the 
Table 10-3 lists the default 

BACKFILE 
Statement C
-_·_-_·_--J 

This statement is used only for magnetic tape operations. If an 
end-of-file has been encountered, the BACKFILE statement positions to 
the start of the file whose end-of-file was detected. Otherwise, the 
BACKFILE statement positions to the start of the file that precedes 
the current (last accessed) file. 

11-57 



FILE-CONTROL AND DEVICE-CONTROL STATEMENTS 

The forms of the BACKFILE statement are: 

bACKFILE un 

,~ r 

F;ACKFILE (UNIT=un r , ERR=s] [ , IOSTAT= ios] ) 

or 

BACKFILE (un [ , ERR=s] [, IOSTAT=s] ) 

\vhere: 

un is the logical unit number of 
BACKFILE is being performed. 
logical unit numbers. 

NOTE 

the device on which the 
Table 10-3 lists the default 

On a magnetic tape with multiple files, the position 
of the tape after an ENDFILE record of one file is 
equivalent to the position at the beginning of the 
next file. 

11-58 



CHAPTER 12 

FORMATTED DATA TRANSFERS 

Data transfers can be either formatted or unformatted. When the 
internal (memory) representation of the data is translated to a 
different external (peripheral storage) representation during a data 
transfer, that data transfer is considered formatted. 

Conversely, when the internal and external representations of the data 
are the same, that data transfer is considered unformatted. 

A formatted data transfer involves editing of data as it is 
transferred to and from memory. FORTRAN provides you with three ways 
for specifying how the data is formatted during a formatted data 
transfer. These are: 

1. FORMAT-Statement Formatting 

2. List-Directed Formatting 

3. NAMELlST-Statement Formatting 

Of the three types, FORMAT-statement formatting provides you with the 
most control over how the data is formatted. Section 12.1 describes 
FORMAT-statement formatting. 

List-directed formatting means that the formatting is controlled by 
the data types of the l/C list elements. Section 12.5 describes 
list-directed formatting. 

NAMELlST-statement formatting is the third method for formatting the 
data; the formatting is controlled by the data types of the namelist 
elements. In this form, the I/O list is defined in a NAMELIST 
statement and referenced by the data transfer statement. Section 12.6 
describes NAMELlST-statement formatting. 

12-1 



FORMATTED DATA TRANSFERS 

FORMAT-Statement 
Formatting 

12.1 FORMAT-STATEMENT FORMATTING 

A FORMAT statement directs the editing of data during its transfer 
between internal and external storage. Every formatted (FORMAT 
statement) data transfer statement contains a reference to one of the 
following: 

1. A line containing a FORMAT statement with a format list 

2. A numeric array containing a format list 

3. A character expression containing a format list 

4. An integer, real, or logical variable that has been assigned 
a FORMAT statement number with an ASSIGN statement 

The format list is made up of format specifiers. 

During execution of a formatted data transfer statement, items in the 
I/O list are associated with specifiers in the referenced format list. 
The specifiers dictate how the various data items are formatted. 

Section 12.1.1 describes how to create a format list in a FORMAT 
statement; Section 12.1.2 describes how to create a format 
specification as a character expression. Section 12.1.3 describes how 
to create a numeric array that contains a format list. Section 12.1.4 
describes how to specify a FORMAT statement using an ASSIGNed 
variable. 

12.1.1 Specifying a Format List in a FORMAT Statement 

The general form of a FORMAT statement is: 

n FORMAT fs 

where: 

n 

fs 

is the required statement number. This number, 
referenced in the control-information list of an 
I/O statement (see Section 10.4.2) provides the 
association between the data transfer statement 
and the FORMAT statement. 

is a format specification. The form of a format 
specification is: 

([format list]) 

12-2 



FORMATTI!D DATJll TRANSFERS 

where: 

format list is a list of items which may take any of the 
following forms: 

where: 

r 

ed 

ned 

fl 

[r] ed 

or 

ned 

or 

[r] (fl) 

is a nonzel~O, unsigned, integer constant called a 
repeat specification. 

is a repeatable edit descriptor (see Section 
12.2.1) • 

is a nonrepeatable edit descriptor (see Section 
12.2.2) • 

is a nonempty format list. 

The only placement restrictions for FORMAT statements are that they 
follow PROGRAM, FUNCTION, SUBPROGRAM, or BLOCK DATA statements, and 
that they precede the END stat.~ment. 

The following example illustrates FORMAT-statement formatting. The 
FMT specifier in the WRITE statement references the label of FORMAT 
statement 101. This FORMAT statement contains a list of edit 
descriptors (X, I, and F) that dictate the formatting of the data in 
I/O 1 i s t ( va ria b 1 E~ S J, Y, and :~). 

J=2 
Y=3.0 
Z=S.l 
WRITE(UNIT=S,FMT=lOl)J,Y,Z 

101 FORMAT(lX,I,F,F) 

12.1.2 Specifying a Format Specification as a Character Expression 

You can store format specifications in character variables, character 
arrays, character array elements, character substrings, or character 
expressions. 

A character format specification must be of the form described in 
Section 12.1.1. Note that the form begins with a left parenthesis and 
ends with a right parenthesis. Charc~cter data may follow the right 
parenthesis that ends the format sp.~cification, with no effect on the 
format specification. Blank characters may precede the format 
specification. 

If the format identifier is a character array name, the format 
specification may be contained in more than the first element of the 
array. (A character array format specification is considered to be a 
concatenation of all the array .~lements of the array in the order 
given by array element ordering (see Section 4.3.3).) 

12-.3 



FORMATTED DATA TRANSFERS 

However, if a character array element name is specified as a format 
identifier, the length of the format specification must not exceed the 
length of the array element. 

The following example shows the same format specification used in the 
examples in Section 12.1.1. This time, however, instead of 
referencing the format specification by statement number, or 
referencing the name of a numeric array, the data transfer statement 
references the name of the character variable in which the format 
specification is contained. 

J=2 
Y=3.0 
Z=5.1 
CHARACTER FORNAM*lO 
FORNAM = '( 1 X, I , F, F) , 
WRITE(UNIT=5,FMT=FORNAM)J,Y,Z 

12.1.3 Specifying a Format Specification in a Numeric Array 

An alternative to using FORMAT statements is to store the format 
specification in a numeric array. 

The format specifications are associated with a data transfer 
statement by referencing the array name containing the format 
specification, instead of a statement label of a FORMAT statement. 

The following example shows the same format specification used in the 
example in Section 12.1.1. This time, however, instead of referencing 
the format specification by statement number, the data transfer 
statement references the name of the numeric array in which the format 
specification is contained. 

T~TEGER FORNAM(2) 
FORNAM (I) = I (IX, I I 

FORNAt-1 ( 2 ) = I , F, F) I 

J=2 
y= 3.0 
2::::5.1 
WRITEfUNIT=5,FMT=FORNAM)J,Y,Z 
END 

In the above example the format specification is stored in both words 
o( array FORNAM. This is because the format contains ten characters: 
the first five are in FORNAM(l); and the last five are in FORNAM(2). 

NOTE 

When storing a format specification in an array, 
always include the outer most parentheses enclosing 
the form~t specifiers. Note that the word FORMAT 
should not be included in the string. 

12.1.4 Specifying a FORMAT Statement Using an ASSIGNed Variable 

Integer, rcal, or logical variables that have been ASSIGNed FORMAT 
statement numbers can be used as format specifiers. (See Section 8.3 
for information on the ASSIGN (statement label) assignment statement.) 

12-4 



FORMATTED DATA TRANSFERS 

The variable is assigned a statement number by an 
The format specifier references the variable 
statement number it has been assigned. 

ASSIGN statement. 
that refers to the 

The following example shows thE! same format specification used in the 
examples in Sections 12.1.1, :2.1.2, and 12.1.3. This time, however, 
instead of referencing the forrlat specification by statement number, 
the data transfer statement references a variable that has been 
assigned a statement number by an ASSIGN statement. 

ASSIGN 101 TO IFORMT 
WRITE(UNIT=5,FMT=IFOHMT)J,Y,Z 

101 FORMAT ( lX, I , F , F) 

12.1.5 The Ordering and Interpretation of Format List Items 

For standard conforming programs, all items within the format list 
should be separated by comMas, with the exception of the following 
cases: 

1. Between a P edit descriptor and an immediately following F, 
E, D, or G edit descriptor (See Section 12.4.11) 

2. Before Ol~ after a sla:,h edit descriptor (See Section 12.4.5) 

3. Before or after a colon edit descriptor (See Section 12.4.6) 

In FORTRAN-I0/20, the use of c.)mmas to delimit format edit descriptors 
wit h ina for mat 1 i s tis 0 P t i 0:1 a 1 as 1 0 n gas no am big u i t Y ex i s t s . Fo r 
example, 

FORMAT (3X,A2) 

can be written as 

FORMAT (3XA2) 

Rut the specification 

FORMAT (12215) 

is ambiguous, since it can represent 

FORMAT (122,15) or FORMi\ T (1,22 15) 

and requires the comma to eliminate ambiguity. 

12-5 



FORMATTED DATA TRANSFERS 

FORMAT -Statement 
Edit Descriptors 

12.2 EDIT DESCRIPTORS 

Edit descriptors within the format list describe the manner of editing 
performed on the data being transferred. 

For example, when you transfer integers from a file to memory, you use 
an I edit descriptor. When the data transfer statement is executed, 
an item in the I/O list is associated with the I edit descriptor in 
the format list, and the following results: 

1. Before being stored in memory, the data is converted to an 
internal integer format by the I edit descriptor in the 
format list. 

2. The memory location in which the data is stored is identified 
by the I/O list element. 

The following sample program demonstrates how an integer is read from 
the terminal (external device) into the memory location identified in 
the I/O list of the ACCEPT statement. 

PROGRAM FORMAT 

TYPE *,'Please enter a two digit number:' 
ACCEPT 101,K 

101 FORMAT(I2) 

TYPE 102,K 
102 FORMAT(lX,IS) 

END 

The sample output below shows what happens when the user executes the 
above program. The user enters 78 in response to the ACCEPT 
statement. This causes the integer value to be stored in the variable 
K according to the I edit descriptor in FORMAT statement 101. Then 
the type statement causes the value of variable K to be printed at the 
terminal according to the I edit descriptor in FORMAT statement 102. 

EXECUTE TEST 
LINK: Loading 
[LNKXCT FORMAT execution] 

Please enter a two digit number: 
78 

78 
CPU Time 0.1 Elapsed Time 8.7 

The I edit descriptor is an example of a repeatable edit descriptor. 
FORTRAN has two types of edit descriptors: repeatable (Section 
12.2.1) and nonrepeatable (Section 12.2.2). The third type of item 
that appears in a format list is the carriage-control specifier 
(Section 12.2.3). 

12-6 



FORMATTED DATA TRANSFERS 

12.2.1 Repeatable Edit Descriptors 

Repeatable Edit 
Descriptors 

A repeatable edit descriptor may be preceded by an optional, unsigned, 
nonzero, integer constant that specifies a repeat count. This integer 
is called a repeat specification. 

Using a repeat specification in an edit descriptor gives you a 
shorthand way to specify multiple fields with a single specification. 
For example, without using the repeat specification, if you wanted to 
specify four fields, each of which contain an integer value that is 
six characters long, you might construct the following FORMAT 
statement: 

101 FORMAT (lX,I6,I6,I6,I6) 

If you use the repeat specification, however, you need only specify 
the edit descriptor and field width a single time, as follows: 

101 FORMAT (lX,416) 

These two FORMAT statements are equivalent. 

Table 12-1 lists the repeatable edit descriptors. Each descriptor 
listed in the table is shown in its complete form. The key at the 
bottom of Table 12-1 describes all the optional elements in each edit 
descriptor. The right-most column of Table 12-1 references the 
section in which each edit descriptor is discussed. 

12-7 



FORMATTED DATA TRANSFERS 

Table 12-1: Repeatable FORTRAN Edit Descriptors 

Edit Descriptor Descriptor Type Hefer to: 

Irlllwl.mll Integer Section 12.4.11.1 

IrJFI w.dl Floating Point Section 12.4.11.2 _.-
IrlEI w.dlEell Scientific Notation Section 12.4.11.3 

.-

IrlD! w.dl Eell Scientific Notation Section 12.4.11.3 
--_._._-_ .... - _.-

IrlGlw.dlEell General Conversion Section 12.4.11.4 _.-
F,E,D,G 
(Two successive) Complex Section 12.4.11.5 

--
IrlOlwl.mll Octal Section 12.4.11.6 

--
IrlZlwl.mll Hexadecimal Section 12.4.11.7 

--
IrJLlwl Logical Section 12.4.12 

IrJAlwJ Character or Hollerith Section 12.4.13 

IrlRlwl Hollerith Section 12.4.14 _.-
Key: 

r is a nonzero, unsigned, integer constant called a repeat specification. 

w is a nonzero, unsigned, integer constant which is equal to the total number of characters in the numeric field 

.m 

.d 

e 

being described. The numeric edit descriptors are described in Section 12.4.11. 

is an unsigned, integer constant which specifies the minimum number of digits to be output to the field 
being described. If necessary, leading zeros are output. The value of m must not exceed the value of w. 

If m is zero and the value of the internal data item is zero, the output field consists of only blank characters, 
regardless of the sign control in effect. 

is a nonzero, unsigned, integer constant which specifies the total number of digits to the right of the decimal 
point in the numeric field being described. If .d is specified, w must also be specified. The maximum value is 
63 digits. 

is a nonzero, unsigned, integer constant which is equal to the total number of digits in the exponent field of 
the numeric field being described. The maximum value is 15 digits. 

Nonrepeatable Edit 
Descriptors 

12.2.2 Nonrepeatable Edit Descriptors 

A nonrepeatable edit descriptor can not be preceded by a repeat 
specification. The nonrepeatable edit descriptors provide a vaI-iety 
of editing possibilities, such as positioning within a record, 
including character constants in a FORMAT statement, and delimiting 
records within a single format descriptor. 

Table 12-2 lists the nonrepeatable edit descriptors. The format, 
function, and section number where each descriptor is discussed are 
listed in the table. 

12-8 



FORMATT3D DATA TRANSFERS 

Table 12-2: Nonrepeatable FORTRAN Edit Dpscriptors 

Edit Descriptor 

'h1. .. hn' 

nHh 

Tc 
TLc 
TRc 

InlX 

$ 

! 

: 

S 
SP 
SS 

kP 

BN 
BZ 

Q 

Character Data 
------

Hollerith Data 

In-Hecord Positio ning 
--------

In-Hecord Positio ning 

(Do dar sign) Pre" ents recl 
OF LINE 

-------
(Slash) Record De limiter 

(Colon) Format-C ontrol TI 
--------

PIll!; sign control for outpl 

Scal ing Factor fo r Numer 
--------

Specifies the ha ndling 0 

Numeric Fields 

Input Only Descr iptor -
rrent re< ters left in the cu 

Key: 

n is a nonzero, unsigned, integer consta nt whicr 
number of characters (H descriptor). 

h is a character capable of representation by the p 

c is a nonzero, unsigned, in teger constan t which i 
the current position. 

k is an optionally signed integer constan t which 
--------

mction Refer to: 

Section 12.4.1 

Section 12.4.2 

Section 12.4.3.1 

Section 12.4.3.2 

lrd from terminating with END Section 12.4.4 

Section 12.4.5 

!rmination Section 12.4.6 

It of positive numeric fields Section 12.4_7 

c Fields Section 12.4.8 

f blanks during the input of Section 12.4.9 

returns the number of charac- Section 12.4.10 
ord. 

is equal to a number of spaces (X descriptor) or the total 

rocessor. This type of character is described in Appendix B. 

s equal to a number of characters within a record relative to 

::!eclares the scaling factor for the field being described. 

Carriage-Control 
Specifiers 

12.2.3 Carriage-Control Specifiers 

In a data output transfer, the first character of each record can be 
used for carriage control. A carriage-control specifier dictates the 
action of the printing mechanism on output devices. For example, 
carriage-control specifiers determine the vertical spacing for 
line-printer output. 

12-9 



FORMATTED DATA TRANSFERS 

NOTE 

The CARRIAGECONTROL specifier of the OPEN statement 
enables you to decide how the first character of each 
record is treated. Depending on the value of the 
CARRIAGECONTROL specifier, the first character can be: 

1. Replaced with the appropriate 
character (s) . 

printer-control 

2. Disregarded as a carriage-control character and, 
instead, be transferred as part of the record. 

For more information on the CARRIAGECONTROL specifier, 
see Section 11.3.6 

The carriage-control specifier may be written as a character constant. 
The following example shows the blank carriage-control character in a 
FORMAT statement: 

WRITE(5,101) 

101 FORMAT(' I ,'This is a string') 

END 

When this example is executed, the string in the format list is 
printed on unit 5, the terminal, as follows: 

This is a string 

If you omit the carriage-control specifier from a data output transfer 
format list, FOROTS interprets the first character to be output to the 
record as the carriage-control character. using the example above, if 
we omit the blank specifier, FOROTS assumes that the first character 
encountered (in this case, the "T" in "This") is the carriage-control 
character. Executing this example, after removing the 
carriage-control specifier, causes the first character to be stripped 
from the character constant. Thus, the output at the terminal is: 

his is a string 

The carriage-control characters are summ~rized in Table 12-3. The $ 
(dollar sign) output edit descriptor modifies the action of the 
carriage-control specifier (see Section 12.4.4). 

12-10 



FORMATTED DATA TRANSFERS 

Table 12-3: Carriage-Control Specifiers 

Specifier Format List Form 

blank 

... _----
plus '+' 

zero '0' 

one* '1' 
------

two* '2' 
... _----

three'" '3' 
.. _----

minus -

asterisk'" '*' 

period* ' , 

.. _----
comma'" ' , 

slash* '/' 

Pr 

I---

I---

I---

r---

-

--------.~------- -r--"--- .. --... 

inter Ct·aracter Octal Value Effect on Carriage Control 
------.--- ------.. - ... · .. r-·-·--.... _-· 

LF 012 Skip to next. line (form feed after 
60 lines on printer). 

-------'--"-'- ~--.. --------+---.-
Suppress line feed: overprint tl1<' 
line . 

.. - -_._ ..... -_._--- ~------- .. - ............ _ ... _---

LF,LF 012,012 Skip a line. 
-----_._--- I-----------~.-- ... --- - ....... - .. - .. --.-...... -.--

FF 014 Form feed to top of next page. 
----_._-- --... ---- -_ .......... ---_ .. _ .. _ .... -

DLE 020 Space to next half page . 
-----_._--- ----_ .. _--_ .. _ .. __ .... _ .. __ .. -

VT 013 Space to next one-third of a page . 
-----.---- --------_ .. - _ ........ _---

LF,LF,LF 012,012,012 Skip two lines. 
-------- --------f------.. - .... ----- - .. --.---.... --.-

DC3 023 Skip to next line; suppress form 
feed. (Continous print) 

-----.--- ---------f-----...... -- -- .-- --... -.-----
DC2 022 Triple space. with a form feed 

after every 20 lines printed. 
------.-- -.--------t--------.-.-----------

DC1 021 Double space, with a form feed 
after every 30 lines printed. 

-----.---- ----------1-._-_ .. __ ._--------

DC4 024 Space to next one-sixth of a page. 
_____ • ___ • ...L-_____ --'~ _______ ._ ... ____ .. ___ _ 

* Indicates carriage-control specifiers for which the effect on carriage control is device dependent. The effpct 
described is for a line printer with a standa! d form set.up. 

Note - This table assumes a st.andard form setlip for your line printer (or other output dcyic('l. 

1/0 List & FORMAT List 
Interaction 

12.3 INTERACTION OF INPUT/OU~'PUT LIST AND FORMAT LIST 

This section describes how thE~ I/O list and the format 
during a data transfer. 

12.3.1 General Description 

list interact 

Format control is initiated by execution of a formatted data transfer 
statement. The actions performed by format control depend on the 
interaction of the edit descrjptors in the format specification and 
the I/O list elements in the data transfer statement. 

The following example shows how the I/O list elements in a data 
transfer statement interact with the edit descriptors in the format 
list in a simple data transfer. 

READ (5, 100) N, X, Y 
100 FORMAT (I5,FI2.0,F'10.O) 

12-11 



FORMATTED DATA TRANSFERS 

In this example, the I/O list is 

N,X,Y 

and the format specification is 

(I5,F12.0,FI0.0) 

The variables in the I/O list and the specifiers in the format are 
mat~hed up as follows: 

N I5 
X F12.0 
Y FI0.0 

A formatted data transfer statement matches elements of the I/O list 
and specifiers in the format specification. The matching proceeds 
from left to right, one I/O list element to one repeatable edit 
descriptor. 

In the above example, there are three elements in the I/O list and 
three format specifiers. However, the interactions can be more 
complicated than those in the example. A format specifier can be 
preceded by a repeat count, in which case it corresponds to more than 
one element in the I/O list. Also, an element of the I/O list can be 
an array name, in which case it can correspond to more than one format 
specifier. The number of elements in the I/O list and in the format 
specification do not have to be the same. 

Table 12-4 details what happens in these more complex cases. 

12-12 



FORMATTED DATA TRANSFERS 

Table 12-4: Record, Format List, and 110 List Interaction 

1. Record ends 
Format specification continues 
110 list continues 

Action: 

The transfer continues as if the record was extended with blanks. 

Example: 

READ (5 dO) A ,8 ,C 
10 FORMAT (3F10.0) 

Record contains: 

40 10 

Resulting values: 

A = 40.0 
B 10.0 
C '"" 0.0 

Note that this situation :is not applicable to an output transfer. 

2. 110 list ends 
Format specification continues 

Action: 

The format scan continues until it encounters 1 repeatable edit descriptor, a colon, or until the rightmost right 
parenthesis of the format is reached. 

Nonrepeatable edit descriptors up to and including the first colon, if present, are processed if they are encoun
tered during the scan. 

Example: 

A 12 
B 123 
C 1234 
D = 12345 

WRITE (5,20) A,8,C 
20 FORMAT (' A'= I ,F3.0, I 8= I ,F4.0, I C= I ,F5.0, I 

1 D= I ,F6.0) 

Resulting output: 

A= 12., B = 123., C = 1234., D = 

Note that the', D =' descriptor was processed. The format scan does not terminate until it encounters a descrip
tor which requires an 1'0 list element, and 1 here is no 110 list element to supply. However, the colon edit 
descriptor will cause the format scan to stop if there is nothing left in the 110 list (see Section 12.4.6J. 

3. Format specification ends 
110 list continues 

Action: 

A new record is started. The format scan contiIlues, starting at the beginning of the last complete parenthesized 
h1TOUP within the format specification. If there is no parenthesized group within the format, the format is 
restarted from the beginning (see Section 12.34). 

Example: 

A=123. 
8=7654.125 
C=1.6125 

WRITE (5 dO) A ,8 ,C 
10 FORMAT (F15.6) 

12-13 



FORMATTED DATA TRANSFERS 

Table 12-4: Record, Format List, and 1/0 List Interaction (Cont.) 

Resulting output: 

123.000000 
7654.125000 

1.612500 

4. 1/0 list ends 
Format specification ends 

Action: 

On input, if there are any characters remaining in the record, they are ignored. On output, the record is simply 
terminated without any extra characters added. 

Example: 

READ (5 ,10) GAMMA 
10 FORMAT (F5.2) 

Record contains: 

12.34 value of GAMMA 

Resulting values: 

GAMMA = 12.34 

The extra data (the comment) in the input record is ignored. 

The execution of a formatted I/O statement proceeds by matching I/O 
list elements and FORMAT edit descriptors. The edit descriptors I, 0, 
Z, R, F, E, 0, G, L, A, and Q each correspond to one element of the 
I/O list. No I/O list element corresponds to H, X, P, T, :, $, S, SP, 
SS, BN, BZ, or apostrophe edit descriptors. If one of these 
descriptors is encountered, it is executed and the format scan 
continues. 

12.3.2 Formatted Input 

A formatted input statement begins by reading a record from the 
specified unit. The format is scanned from left to right. X, P, T, 
BN, BZ, and / edit descriptors are executed as they are encountered. 
If an I, 0, Z, R, F, E, 0, G, L, A, or Q descriptor is encountered, 
data is read into the corresponding I/O list element as specified by 
the edit descriptor. 

If the I/O list contains no more elements, execution of the READ 
statement ends. Additional records will be read from the specified 
unit when a slash occurs in the format, or when the last right 
parenthesis of the format is reached, and I/O list elements remain to 
be filled. 

When an input record is terminated by a slash or by the end of the 
format, any data left in the input record is discarded. If the input 
record is exhausted before the data transfers are completed, the 
remainder of the transfer is completed as if the record were extended 
with blanks. 

12-14 



FORMATTED DATA TRANSFERS 

12.3.3 Formatted Output 

A formatted output statement begins by scanning the format. The H, X, 
P, T, BN, BZ, :, /, $, s, SS, SP, and apostrophe edit descriptors are 
executed as they are encountered. If an I, 0, Z, R, F, E, D, G, L, or 
A descriptor is encountered, data is translated from the corresponding 
I/O list element, as specified by the edit descriptor, and placed in 
the output record. 

If the I/O list contains no more elements, the output record is 
written to the specified unit, and execution of the WRITE statement 
ends. Additional records will be written to the specified unit when a 
slash occurs in the format, or when the last right parenthesis is 
reached, and I/O list elements remain to be transferred. 

12.3.4 Embedded Format Specifications 

Format specifications may contain embedded format specifications with 
optional repeat specifications. If a repeat specification is used, 
the entire format specification that it precedes is scanned the 
specified number of times during the I/O transfer. In the example: 

WRITE (1,100) A,B,C,D,E,F,G,H,I,J 
100 FORMAT (FlO.2,4(I5,lX,I3) ,18) 

the variable A is matched with the format item FlO.2. Then, the 
variable B is matched with IS, variable C with 13, variable D with IS, 
and so on for four iterations of the embedded format specification. 
Finally, the variable J is matched with the format item 18. 

If no repeat specification is used preceding an embedded format 
specification, a repeat count of 1 is implied. 

When the last right parenthesis of the format is reached, and more I/O 
list elements remain to be transferred, a new record is started and 
format scanning continues. The scanning continues at the beginning of 
the format specification whose right parenthesis is the next to last 
right parenthesis in the format. If there are no embedded format 
specifications, format scanning continues at the beginning of the 
format. 

For example: 

DIMENSION A(lOO) 
INTEGER CASE 
CASE=33 

WRITE (l,lOO)CASE, (A{I) ,1=1,100) 
100 FORMAT ('THIS IS CASE' ,I6,//,4{lX,FI0.5» 

After A{l) through A(4) are written, a new line is started and format 
scanning continues at the beginning of the embedded format 
specification. Thus, A(5) through A(8) are written; a new record is 
started, and so forth. 

12-15 



FORMATTED DATA TRANSFERS 

The output file would appear as follows: 

THIS IS CASE 33 

A (1) 
A(5) 
A(9) 

A (2) 
A(6) 
A (10) 

A(3) 
A(7) 
A (II) 

A(4) 
A(8) 
A (12) 

Example: 

DIMENSION A(5) ,DATl(100) ,B(4,100) ,DAT2(100) 
WRITE (1,100) CASE, (A(K) ,K=1,5), (DATI (J), (B{I,J) ,I=1,4), 

1 DAT2 (J) ,J=l, 100) 
100 FORMAT ('CASE' ,I5,11,5(lX,FI0.3) ,1,{FI0.3,4(3X,F15.5) 

1 ,lX,FI0.3» 

In this example, after A{l) through A(5), DAT1(1), B(l,l) through 
B(4,1), and DAT2(1) are written, a new record is started, and format 
scanning begins. The format scanning begins at the embedded format 
specification following the 'I' (the specification whose right 
parenthesis is the next to last right parenthesis) • 

The output file would appear as follows: 

CASE 33 

A{l) A (2) A(3) A(4) A(5) 
DATl(l) B{l,l) B(2,1) B{3,1) B(4,1) DAT2 (l) 
DATl(2) B(1,2) B(2,2) B(3,2) B(4,2) DAT2(2) 
DATI (3) B(1,3) B(2,3) B{3,3) B{4,3) DAT2(3) 

12.4 FORMAT EDITING 

Tables 12-1 and 12-2 describe forms of all the FORMAT edit 
descriptors. The edit descriptors enable you to specify the form of a 
record and to specify the editing of the data as it is transferred. 

The edit descriptors are described according to the character used to 
accomplish a particular modification to the data or record in ~lhich 
the data are stored. 

APOSTROPHE (') 
Editing 

12.4.1 Apostrophe (') Editing 

The apostrophe (') edit descriptor (single-quote) enables you to 
include a character constant in a format list. 

12-16 



FORMATTED DATA TRANSFERS 

The form of the apostrophe edit descriptor is: 

'hl ••• hn' 

where: 

'hl ••• hn' is a character constant. 

To include an apostrophe as part of the character constant, you must 
use two successive apostrophes. 

This descriptor is only used for output; the characters enclosed by 
the apostrophes are written. 

Example: 

TYPE 10 
10 FORMAT (' That' 's the way!') 

will output 

That's the I~ay! 

12.4.2 H Editing 

H 
Editing 

The H edit descriptor (also called the Hollerith descriptor) 
you to include character strings in a format list. 

The form of the H edit descriptor is: 

nHhl ••• hn 

where: 

enables 

n is a nonzero, unsigned, integer constant that indicates 
the total number of ASCII characters included in the 
string. 

hI ••• hn is a string of ASCII characters. 
set is described in Appendix B.) 

(The ASCII character 

You may transmit alphanumeric data directly from the FORMAT statement 
using either the H or apostrophe specifiers. 

This descriptor is only used for output; the n characters that follow 
the H are written. For example, you can use the following statement 
sequence to print the words PROGRAM COMPLETE on the printer: 

PRINT 101 I 

101 FORMAT (17HlpROGRAM~COMPLETE) 

12-17 



FORMATTED DATA TRANSFERS 

The result of apostrophe editing is the same as Hollerith editing. 
For example, you may use the descriptors: 

101 FORMAT (17H~PROGRAM~COMPLETE) 

and 

101 FORMAT ('~PROGRAM~COMPLETE') 

in the same manner. 

Apostrophes can appear anywhere within a Hollerith edit descriptor 
without having to be represented by two apostrophes. However, if the 
H edit descriptor occurs within a character constant, the apostrophe 
is written as two apostrophes, which are counted as one character. 

POSITIONAL 
Editing 

12.4.3 positional Editing 

The positional edit descriptors specify the position at which the next 
character will be transmitted to or from the record. The positional 
edit descriptors are: T, TL, TR, and X. 

The T edit descriptor specifies the character position within a record 
where the next character will be transmitted (see Section l2.4.3.1). 

The TL and TR descriptors specify the number of character positions to 
the left or right, respectively, of the current position for the 
character position of the next character (see Section 12.4.3.1). 

The X descriptor specifies the number of character positions to the 
right of the current position for the character position of the next 
character (see Section 12.4.3.2). 

NOTE 

On output, a record is initially filled with blanks. 
Therefore, fields skipped by the positional editing 
descriptors will be blank-filled. However, the output 
record length is determined by actual output. Merely 
specifying a positional editing descriptor with no 
output will not change the record size. Thus, the 
record written with: 

FORMAT (I6,50X,T10,I3) 

will have a record length of 13 characters, since no 
output was done after the 50X. 

Examples: 

The statement sequence: 

PRINT 2 
2 FORMAT (T50,'BLACK' ,T30,'WHITE') 

12-18 



FORMAT~(,ED DATA TRANSFERS 

causes the following line to be printed: 

lHITE 

(print position 30) 

The statement sequence: 

1 FORMAT (T35,'MONTH') 
READ (2,1) 

BLACK 
t 

(print position 50) 

causes the first 34 characters of the input data associated with 
logical unit 2 to be skipped, and the next five characters to replace 
the characters M, 0, N, T, and H in storage. 

If an input record containing: 

ABCP{~J6XYZ 

is read with the format specification: 

10 FORMAT (T7,A3,Tl,A3) 

then the characters XYZ and ABC are read in that order. 

You can use the field descriptor nX to introduce blanks into output 
records or to skip characters of input records. The letter X 
specifies the operation, and n is a positive integer that specifies 
the number of character positions to be either made blanks (output) or 
skipped (input). 

The statement: 

FORMAT (5H~3TEP,I5,10X,2Hy=,F7.3) 

may be used to print the line: 

T, TL, and TR 
Editing 

12.4.3.1 T, TL, and TR Editing - The T edit descriptor specifies that 
the transmission of the next character to or from a record is to occur 
at the specified character position. 

The form of the T descriptor is: 

Tc 

where: 

c is a positive, unsigned, integer constant that indicates the 
character position to or from which the next character will 
be transferred. 

For example: 

FORMAT (T20,I5,T8,I2) 
12-19 



FORMATTED DATA TRANSFERS 

specifies that the characters read or written for the 15 descriptor 
will start in character position 20, and the characters read or 
written for the 12 descriptor will start in character position 8. For 
out put to car ria g e - con t r old e vic e s ( 1 i n e p r i n t era n d t e r min a 1), Tn 
specifies that n-l will be the next character written, since the 
character position 1 is the carriage-control character position. 

The TL edit descriptor specifies that the transmission of the next 
character to or from the record is to occur at a position which is a 
specified number of positions backward from the current position. 

The form of the TL edit descriptor is: 

TLc 

where: 

c is a positive, unsigned, integer constant that indicates the 
character position, c positions backward from the current 
position, to or from which the next character will be 
transferred. If c would cause transmission to start at a 
position before the beginning of the current record, 
transmission will start instead at position one. 

For example: 

FORMAT (I5,T13,A5,TLI0,I2) 

specifies that the characters read or written for the A5 descriptor 
will start at character position 13, and that the characters read or 
written for the 12 descriptor at will start at character position 8. 

The TR edit descriptor specifies that the transmission of the 
character to or from a record will occur at a position that 
specified number of positions forward from the current position. 
function of this form is identical to that of the X descriptor 
Section 12.4.3.2). 

The form of the TR edit descriptor is: 

TRc 

where: 

next 
is a 

The 
(see 

c is a positive, unsigned, integer constant that indicates the 
character position, c positions forward from the current 
position, from which the next character will be transferred. 

Example using all three types of T descriptor: 

TYPE 10 
10 FORMAT(' 234567890123456789012345678901234567890') 

TYPE 20 
20 FORMAT(T29,'BLACK' ,TIO,'WHITE') 

TYPE 30 
30 FORMAT(TI0,'9012' ,TR5,'8901') 

TYPE 10 

TYPE 40 
40 FORMAT(T20,'<SECOND)' ,TLI0,')FIRST<') 

END 

12-20 



EXECUTE TEST2.FOR 
FORTRAN: TES~~2 

MAIN. 
LINK: Loading 

FORMATT~D DATA TRANSFERS 

[LNKXCT TEST2 execution] 

2345678901234567890123456 '78 90 1234 56 78 90 
WHITE BLACK 
9012 8901 

2345678901234567890123456'78901234567890 
)FIRST<ND> 

CPU time 0.1 Elapsed tim~ 0.5 

In FORMAT 20, 'BLACK' is writt~n, then 'WHITE' is written to the left 
of it. In FORMAT 30, fiv~ positions are skipped between the two 
character strings being printed. In FORMAT 40, '<SECOND)' is written, 
the format goes back ten positions and writes ')FIRST<' over the 
previously written character string. 

X 
Editing 

12.4.3.2 X Editing - The X edit descriptor specifies that the 
transmission of characters to or from a record will occur a specified 
number of characters forward from the current position. 

The form of the X edit descriptor is: 

(n]X 

where: 

n is an optional, unsigned, positive, integer constant that 
indicates the number of characters forward from the current 
position, at which the next character will be transmitted. 
The default value is 1. 

Example: 

TYPE 10 
10 FORMAT(' 1234567890123456789012345678901234567890') 

TYPE 20 
20 FORMAT(' A WORD OR TWO' ,10X,'OR THREE') 

END 

EXECUTE TEST3.FOR 
FORTRAN: TEST3 
MAIN. 
LINK: Loading 
[LNKXCT TEST3 execution] 

1234567890123456789012345678901234567890 
A WORD OR TWO OR THREE 

CPU time 0.2 Elapsed time 2.1 

12-21 



FORMATTED DATA TRANSFERS 

In this example, ten positions are skipped between the printing of 
'A WORD OR TWO' and 'OR THREE'. 

$ 
(DOLLAR SIGN) 

Editing 

12 • 4 .4 $ (Do 11 a r S i g n) Ed i t i ng 

The $ (dollar sign) output edit descriptor suppresses all carriage 
control at the end of the current record (for CARRIAGECONTROL='LIST') 
or at the beginning of the next record (for CARRIAGECONTROL='FORTRAN' 
or 'TRANSLATED'). 

This descriptor is used for interactive I/O; it leaves the terminal 
position at the end of the text so that a response will follow the 
output on the same line. 

Example: 

WRITE (5,10) 
READ (5, *) N 

10 FORMAT (' Number of samples:' $) 
WR I TE ( 5 ,20 ) 
READ (5,*) X 

20 FORMAT (' Mean value: $) 
END 

If the user enters 100 for Nand 1.23 for X, executing the program 
will produce the typescript: 

Number of samples: 100 
Mean value: 1.23 

The $ edit descriptor can be used to append the output of several 
statements into a single line. For example: 

DO 10 I = 1,10 
10 WR I TE (5, 20) I 
20 FORMAT (lX,I3,$) 

WRITE (5,20) 
END 

will produce one line of output: 

1 2 3 4 5 6 7 8 9 10 

The $ edit descriptor is ignored for input. 

12-22 



FORMATTED DAT1~ TRANSFERS 

12.4.5 / (Slash) Editing 

/ (SLASH) 
Editing 

The / (slash) edit descriptor indicates the end of data transfer for a 
record. Two consecutive slashl!s indicate the transmission of an empty 
record. 

On input to a file connected Eor sequential access, the remaining 
portion of the current record is skipped, and the file is positioned 
at the beginning of the next record. This new record becomes the 
current record. On output to a file connected for sequential access, 
the current record is terminated, and a new record is created, which 
becomes the current and last rl!cord of the file. 

A record that contains no char~cters may be written. Also, an entire 
record may be skipped on input. 

If the file is connected for direct access, the record number is 
increased by one, and the file is positioned at the beginning of the 
record that has that record number. This record becomes the current 
record. 

The following statements will write a record with no characters: 

WRITE (1,100) 
100 FORMAT(/) 

To handle a group of I/O records where different records have 
different field descriptors, use a slash to indicate a new record. 
For example, the statement 

FORMAT (308/15,2F8.4) 

is equivalent to 

FORMAT (308) 

for the first record, and 

FORMAT (15,2F8.4) 

for the second record. 

You may 
appear 
written 
middle 
records 

omit separating commas when you use a slash. When n slashes 
at the beginning or end of a format, n blank records will be 
on output or skipped on input. When n slashes appear in the 
of a format, n-l blank records are written on output or n-l 
are skipped on input. 

12-23 



12.4.6 

: (COLON) 
Editing 

FORMATTED DATA TRANSFERS 

(Colon) Editing 

The: (colon) edit descriptor terminates format control if there are 
no more items in the I/O list of the corresponding data transfer 
statement. The colon edit descriptor has no effect if there are any 
items left in the I/O list of the corresponding data transfer 
statement. 

Example: 

Xl 100 
X2 200 
X3 300 

TYPE 10, Xl,X2 
10 FORMAT(F6.1,F6.1,:,'THIS SHOULD NOT PRINT' ,F6.1) 

TYPE 20,Xl,X2,X3 
20 FORMAT(F6.1,F6.1, :,' BUT THIS SHOULD' ,F6.1) 

END 

EXECUTE TEST4.FOR 
FORTRAN: TEST4 
MAIN. 
LINK: Load ing 
[LNKXCT TEST4 execution] 

100.0 200.0 
100.0 200.0 BUT THIS SHOULD 300.0 
CPU time 0.1 Elapsed time 1.5 

S, SP, and SS 
Editing 

12.4.7 S, SP,and SS Editing 

The S, SP, and SS edit descriptors control the output of the optional 
plus sign in numeric output fields. These descriptors are used as 
follows: 

S indicates that the system-defined action is taken. The 
system-defined specification for Digital FORTRAN is SSe 

SP indicates that the plus sign is printed in all positive 
numer ic output fields. 

SS indicates that the plus sign is not printed in positive 
numeric output fields. This descriptor is the default. 

12-24 



FORMATTED DAT}~ TRANSFERS 

The S, SP, and SS edit descrip~ors affect only I, F, E, D, and G 
editing during the executiOJl of a data transfer output statement; 
these edit descriptors have no effect during input transfers. These 
descriptors stay in effect un":il the end of the I/O transfer or until 
another S, SP, or SS is encoun':ered. 

Example: 

Xl 100 
X2 200 
X3 300 
X4 400 

TYPE 10, XI,X2,X3,X4 
10 FORMAT(" ,S,F7.1, SP,F7.1, SS,F7.1, SP,F7.1) 

END 

EXECUTE TESTS.FOR 
FORTRAN: TESTS 
MAIN. 
LINK: Loading 
[LNKXCT TESTS execution] 

100.0 +200.,0 300.0 +400.0 
CPU time 0.1 Elapsed time 0.2 

In this example, X2 and X4 have plus signs because of the SP 
descriptors in front of the F descriptors that correspond to them. 

12.4.8 P Editing 

p 
Editing 

The P edit descriptor is used ":0 specify a scale factor for F, E, D, 
and G edit descriptors. 

The form of the P edit descrip':or is:: 

kP 

where: 

k is an optionally signed integer constant representing the 
scale factor. 

If a scale factor is not specified in a format list, a scale factor of 
zero is assumed., Once a scale factor is specified in a format list, 
that scale factor remains in effect for all F, E, D, and G edit 
descriptors unti1 a new scale factor is specified, or to the end of 
the execution of the current I/O statement. Scale factors have no 
effect on I, Z, and 0 edit descriptors. 

12-25 



FORMATTED DATA TRANSFERS 

The scale factor affects the F, E, D, and G data transfers as follows: 

On input: 

If there is an exponent field, the scale factor k has no effect. If 
there is no exponent field on the number read in, the number is 
multiplied by 10**(-k) before being assigned to the input variable. 

On output: 

The basic real constant part of the quantity, in E and D editing only, 
is multiplied by 10**k and the exponent is reduced by k. For G 
editing, the scale factor has no effect unless the magnitude of the 
data item to be edited is outside of the range that permits the use of 
F editing. If G editing is specified, and the magnitude of the data 
item to be edited is such that E editing is required, the scale factor 
has the same effect as with E output editing (see Section 12.4.11.3). 

The comma is optional between a P edit descriptor and immediately 
following F, E, D, or G edit descriptors. 

For example, assume the data involved is the real number 26.451; the 
edit descriptor 

F8.3 

produces the external field 

~~26.45l 

The addition of the scale factor of -lP, as in 

FORMAT (-lP,F8.3) 

produces the external field 

When you add a scale factor to D, E, and G (external field not a 
decimal fixed-point) edit descriptors, the scale factor multiplies the 
number by the specified power of ten, and the exponent is changed 
accordingly. 

In input operations, type F (and type G, if the external field is 
decimal fixed-point) conversions are the only ones affected by scale 
factors. 

When you add a scale factor to a D or E edit descriptor, it specifies 
a power of 10 so that the e~ternal form of the number has its mantissa 
multiplied by the specified power of 10; its exponent is adjusted 
accordingly. 

For example, assume the data involved is the real number 12.49; the 
edit descriptor 

Ell.3 

produces the external field 

¥~0.125E+02 

The addition of the scale factor 2P, as in 

FORMAT (2P,E11.3) 

12-26 



FORMATTED DATA TRANSFERS 

produces the external field 

Y/jS12.49E+00 

With a scale factor of zero, the number of significant digits printed 
by a format of the form: 

Ew.d 

or 

Dw.d 

is the number of digits to the right of the decimal point. 

For a negative scale factor nP, for -d<n<O, there will be ABS(n) 
leading zeros and d-ABS(n) significant digits after the decimal point 
(for a total of d digits after the d,ecimal point). If ns...-d, there 
will be d insignificant digits (zeros) to the right of the decimal 
point. 

If the scale factor nP is positive, for 0<n<d+2 there will be n 
significant digits to the left of the decimal point and d-n+l 
significant digits to the right of the decimal point (for a total of 
d+l significant digits). If n>d+2, there will be d+l significant 
digits and n-d-l insignificant trailing zeros on the left of the 
decimal point. 

If the data to be printed is 12.493, these formats produce results as 
follows: 

FORMAT 

E15.3 
IPE15.3 
-lPE15.3 
2PE15.3 
-3PE15.3 
4PE15.3 
6PE15.3 

Example: 

TYPE 10 

OUTPUT 

J6J6J6J6;))1) 0 • 125 E + 0 2 
J6t6J6)$,K>)S1.249E+Ol 
)5JzS}6}6b))0.012E+03 
~JzSt6}6J6J612.49E+OO 
16)S)Sk):>,kS0.000E+05 
J6t6,kSjSJzSjS12 4 9. E- 0 2 
J6JzS X> pn 2 4 9 0 0 • E - :) 4 

SIGNIFICANT 
DIGITS 

3 
4 
2 
4 
o 
4 
4 

10 FORMAT(' Type in a real number') 

ACCEPT 20,Xl 
20 FORMAT(2P,F) 

TYPE 30"Xl 
30 FORMAT(' Number read with P=2 =' ,F, 

1 I,' (Number read)*10**(-2) ') 

TYPE 40~X1 

REASON 

n=O 
n<d+2 
-d<n 
n<d+2 
n~-d 
n<d+2 
n>d+2 

40 FORMAT(/,' The above number written with P=2' ,I, 
1 ' is:::', 2 P , F ,I " ( N urn b era b a v e) * 1 0 * * (2) , ) 

END 

12-27 



FORMATTED DATA TRANSFERS 

EXECUTE TESTP.FOR 
FORTRAN: TESTP 
MAIN. 
LINK: Loading 
[LNKXCT TESTP execution] 

Type in a real number 
5. 

Number read with P=2 = 
(Number read)*10**(-2) 

0.0500000 

The above number written with P=2 
is = 5.0000000 
(Number above)*10**(2) 
CPU time 0.2 Elapsed time 5.1 

The number the program receives is (5.)*(10**(-2)) and the value typed 
out is (.05) * (10** (2)) • 

BN and BZ 
Editing 

12.4.9 BN and BZ Editing 

The BN and BZ edit descriptors specify how blanks other than leading 
blanks are interpreted only for numeric input fields where a width has 
been specified. These edit descriptors have no effect on numeric 
output fields. 

The BZ descriptor specifies that blanks will be read as zeroes. The 
BN descriptor specifies that blanks will not be read as zeroes. The 
use of the BN or BZ edit descriptors in a format overrides the BLANK= 
specifier in the OPEN statement for the duration of the use of that 
format. (The BLANK= specifier is described in Section 11.3.3.) 

For example: 

ACCEPT (FMT=101)A,B,C,D 
101 FORMAT (BN,r5,FI0.2,BZ,FI0.2,F8.5) 

reads the first two numbers of data, ignoring blanks embedded in the 
numbers. Then the program reads the second two numbers, substituting 
zeroes for blanks embedded in the numbers. 

12-28 



FORMATTED DATA TRANSFERS 

12.4.10 0 Editing 

[,
------·-------r, 

a I 
Editing ! 

~ 
I ___ ,, __ , __ , _____ ----J 

The 0 edit descriptor sets a cJrresponding integer variable in the I/O 
list to the numbe~ of characters left in the record being transferred. 
This descriptor is for use wit, input transfers only. You can use 
multiple Q descriptors in the same format list. The Q edit descriptor 
is useful when you need to kno~ the number of characters remaining in 
a record. 

For example: 

TYPE *,'Enter text:' 
ACCEPT 1.00,L,Jl 

100 FORMAT (A5,Q) 

when used to read the data 

Enter text: 
HELLO THIS IS A TEST 

would yield the value 15 for variable Jl, since there are 20 
~haracters in the data, and A5 reads 5 of them. 

12.4.11 Numeric Editing 

Numeric 
Editing 

The I, F, E, D, G, Z, and 0 edit descriptors are used to specify the 
input and output of integer, real, complex, double-precision, 
hexadecimal, and octal data. 

The numeric edit descriptors are repeatable, and can be used without 
specifying size. For output, if you use a numeric edit descriptor 
without specifying a field width, the defaults shown in Table 12-5 are 
used. 

For input, the data is scanned until a blank, comma, or character 
illegal for the specified edit descriptor is encountered, except for A 
format, which uses the defaults shown in Table 12-5. 

12-29 



FORMATTED DATA TRANSFERS 

I'ahle 12-5: ))dault Field Widths for NUJlwrie Edit D('scriptors 
-------- - ----- - - --- -- - - -

~=t~~.~~.~:~or _~ _!" ~;ia~l:;, Field Width 

.... _. . .. _-_. -_. __ . _. -_ .. _-_ ... _. - .. __ ._ .. _-------, 

.. ---.-------------~ 

F ':-'lnglp pr(>c ) F15 -; 

r-;::-:lio~;bk,-~;~e~·~--- --- ;·F25.1H 
. __ .... -_ .. _ .. _.- ----.-.. ---.---------------~ 

_._-_ .. ---------.---~ 
\.: isingle prec. 1 

E (double prec.) E2f>.lH 

D isingle prec. 1 ])1 f>. 7 

[) I double prec.) D2f>.IH 
- -.- -.- - ... - - -------.-- -----l 

(; (single prec. I 

(; (double prec.1 

o lsi ngle prec. I OJ ;j 
.... -- .. -··---···--······-------------------l 

() (double prec. 1 

L LUi 

Z I smgle prec.) 
.. -... --.- .... --.-- ---------1 

Z Idouble prec. 1 

. ···-·-·-·---·····-·-··-------·-----l 
.-\ Isingle prec. 1 A:"i 

A 'double prec.) All) 

··-I-{ (-si-ngT(-:-p~·~~-·- . ------ t ---- [{5 

L..._R_(_d-_~_lb_l(> ~};;~--- - =~-=t~~-_: HI 0 
_ .... - .- ... _---_._- ._._----------------' 

If t}ll' dd~lUlt Eeld width for F furmat is too small li)r the data, the field width expands to fit the data. 

The following conventions apply to all I/O transfers using the numeric 
edit descriptors: 

1. The interpretation of blanks is determined by a combination 
of any BLANK= specifier in the corresponding OPEN statement 
(see Section 11.3.3), and any BN or BZ edit descriptor (see 
Section 12.4.9) that is currently in effect in the format 
list. A field of all blanks is always equal to zero. 

2. On input transfers, with F, E, D, and G editing, a decimal 
point appearing in the input field overrides the portion of 
the edit descriptor that specifies the location of the 
decimal point. 

3. On output transfers, the representation of a positive or zero 
value in the field may be prefixed with a plus, as controlled 
by the S, SP, and SS edit descriptors (see Section 12.4.7). 
The representation of a negative value in the field is 
prefixed with a minus sign. 

4. On output transfers, the representation of the transferred 
datum is right-justified in the specified field. If the 
number of characters produced by the editing is smaller than 
the specified field width, leading blanks are inserted in the 
field. 

12-30 



FORMATTED DATA TRANSFERS 

5. On output transfers, if the number of characters produced 
exceeds the field width, or if an exponent exceeds its length 
(as specified in the Ew.dEe or Gw.dEe forms), the entire 
field width, represented by w, is filled with asterisks. 

The next sections describe the individual numeric edit descriptors. 

12.4.11.1 I Editing - The 1 edit descriptor 
editing. 

The form of the I edit descriptor is: 

[r]I[w[.m]] 

where: 

I 
Editmg 

specifies integer 

r is an optional, nonzero, unsigned, integer constant 
indicat.ing how many fields of I are being specified. The 
default is one field. 

w is an cptional, nonzero, unsigned, integer constant that is 
equal to the total number of digits in the integer field 
being described. If w is not specified, for output, the 
value is 15 (the default); for input, the data is scanned 
until a blank, commil, or character illegal for the I edit 
descriptor is encountered . 

• m is an optional, uns~gned, integer constant (separated from w 
by a period) that indicates the minimum number of digits to 
be output to the integer field being described. The default 
is one digit (Il~j.l). If necessary, leading zeroes are 
output .' 

The value of m must not exceed the value of w. If m is zero 
and the value of the internal data item is zero, the output 
field consists of only blank characters, regardless of the 
sign control in effect. 

On input, the Iw.m and the Iw forms of the I edit descriptor are 
treated the same. 

Example: 

10 FORMAT(I,I8,2I9.5) 

The first data item is output as a 1- to IS-digit right-justified 
integer in the first 15 columns. The second item is a 1- to 8-digit 
integer occuPyin9 the next 8 columns. The third and fourth items are 
5- to 9-digit integers occupying 9 columns each, with leading zeroes 
appended to the data to make ~hem 5 digits if necessary. 

12-31 



FORMATTED DATA TRANSFERS 

F 
Editing 

12.4.11.2 F Editing - The 
(floating-point) editing. 

F edit 

The form of the F edit descriptor is: 

[r]F:w.dJ 

where: 

descriptor specifies real 

r is an optional, nonzero, unsigned, integer constant 
indicating the number of fields of F being specified. The 
default is one field. 

w is an optional, nonzero, unsigned, integer constant equal to 
the total number of digits in the F field being described. 
This total includes the digits to the right and left of the 
decimal point, the decimal point itself, and (if included) 
the sign. On input, if the decimal point is omitted, the 
rightmost d digits of the string, with leading zeros assumed 
if necessary, are interpreted as the fractional part of the 
value represented. 

If w is not specified, for output, the value for 
single-precision is 15 (the default), and the value for 
double-precision is 25 (the default). For input, the data 
is scanned until a blank, comma, or character illegal for 
the F edit descriptor is encountered • 

• d is an optional, nonzero, unsigned, integer constant that 
specifies the total number of fractional digits in the field 
of width w. The default for single-precision is 7 digits; 
the default for double-precision is 18. The maximum is 63 
digits. 

NOTE 

If the default field width for F format (with no width 
specified) is too small for the data, the field width 
expands to fit the data. 

E and 0 
Editing 

12.4.11.3 E and D Editing - The E and D edit descriptors specify 
editing of real data. 

The form of the E edit descriptor is: 

[r]E:w.d[Ee] : 

12-32 



FORMAT~'ED DATA TRANSFERS 

The form of the D edit descriptor is: 

[r]D[w.d[Ee]] 

where: 

r is an optional, non~ero, unsigned, integer constant that 
equal to the numbE~r of E: or D fields being described. 
defaults are one single-precision E field and 
do ubI e-·prec i s ion D field. 

is 
The 
one 

w is an optional, non~ero, unsigned, integer constant equal to 
the total number of digits in the E or D field being 
described. The total for both types of fields is equal to: 

1. ThE! total number of digits on both sides of the decimal 
point 

2. ThE! decimal point itsE~lf 

3. ThE! sign for thE~ numbE~r (if included) 

4. ThE~ exponent character (i f included) 

5. The digits in the exponent 

If w is not specifi«~d, for output, the value for single 
precision is 15 :the default), and the value for double 
precision is 2!:' (th(~ default). For input, the data is 
scanned until a blank, comma, or character illegal for the E 
or D edit descripto~ is encountered. 

d is an optional, non~ero, unsigned integer constant equal to 
the total number of fractional digits in the field being 
described (unless a scale factor greater than one is in 
effect). The defaults for both the E and D edit descriptors 
are 7 digits if single precision, and 18 if double 
precision. The maximum is 63 digits. 

e is an optional, non~ero, unsigned, integer constant equal to 
the total number of digits in the E or D field being 
described. The default for both types of edit descriptors 
is two digits. The maximum is 15 digits. 

For KL model B systems, if the program is compiled with the 
/GFLOATING switch (see Section 16.1.3 or 16.2.3), you may 
want to specify three digits to accommodate the exponent 
field of double-precision numbers. 

G 
Editing 

12.4.11.4 G Editing - The G edit descriptor allows editing of 
integer, real, double-precision, logical, complex, or character data. 
With the exception of real, double-precision, and complex data, the 
type of conversion performed by the G edit descriptor depends on the 
type of the corresponding variable in the I/O list. 

12-33 



FORMATTED DATA TRANSFERS 

The form of the G edit descriptor is: 

[r] G [w.d [Ee] ] 

where: 

r is an optional, nonzero, unsigned, integer constant that 
equal to the number of G fields being described. 
default is one. 

is 
The 

w is an optional, nonzero, unsigned, integer constant equal to 
the total number of digits in the G field being described. 
The total for both types of fields is equal to: 

1. The total number of digits on both sides of the decimal 
point 

2. The decimal point itself 

3. The sign for the number (if included) 

4. The exponent character (if included) 

5. The digits in the exponent 

If w is not specified, for output, the value for single 
precision is 15 (the default), and the value for double 
precision is 25 (the default). For input, the data is 
scanned until a blank, comma, or character illegal for the G 
edit descriptor is encountered. 

d is an optional, nonzero, unsigned integer constant equal to 
the total number of fractional digits in the field being 
described (unless a scale factor greater than one is in 
effect). The defaults are 7 digits if single precision, and 
18 if double precision. The maximum is 63 digits. 

e is an optional, nonzero, unsigned, integer constant equal to 
the total number of digits in the G field being described. 
The default is two digits. The maximum is 15 digits. 

For KL model B systems, if the program is compiled with the 
/GFLOATING switch (see Section 16.1.3 or 16.2.3), you may 
want to specify three digits to accommodate the exponent 
field of double-precision numbers. 

For input, in the case of real, double-precision, and complex data, 
the G-format conversion is the same as for E-format conversion. For 
output, however, the type of conversion performed depends on the 
magnitude of the data items. Table 12-6 illustrates the conversion 
performed for various ranges of real, double-precision, and complex 
data. 

12-34 



FORMATTED DATA TRANSFERS 

Table 12-6: Effect of Dalla Magnitude on G-Format Output 
Conversions 

Data Magnitude (m) Effective Cor,version 

m .LT. 0.1. Ew.d 
0.1 .LE. m .LT. 1.0 F(w - nl.d,n(x) 
1.0 .LE. m .LT. 10.0 F(w - nUd-l ),n(x) 

10**d-2 .LE. III .LT. 10**d-J F(w - nl.1,n(x) 
10**d-l .LE. III .LT. 10**d F(w - nl.O,n(x) 
m .GE. 10**d Ew.d 

where: 

x is a blank 

n is 4 for Gw.d and e + 2 for Gw.dEc 

where: 

x is a blank. 

n is 4 for Gw.d and e~2 for Gw.dEe 

NOTE 

I naIl n urn e ric fie 1 d co n v e r s ion s, the fie 1 d wid t h ( w) 
you specify should be large enough to include the 
decimal point, sign, and, where applicable, the 
exponent character (E), the exponent sign, plus the 
exponent digits. This is in addition to the number of 
digits in the number to be represented. 

If the specified width is too small to accommodate the 
converted number, the field will be filled with 
asterisks (*). If the number converted occupies fewer 
character positions than specified by w, it will be 
rig h t - j us t i fie din t h I~ fie 1 d , and 1 e a din g b 1 an k s will 
be used to fill the field. 

If the numeric data u~presentation cannot fit into the 
field width F(w-n), the n spaces (n(x» are removed 
from the right, and the numeric data representation is 
again processed into :he field width Fw. 

Examples of G output conversions (where the ¥ signifies a blank) are: 

Format 

G13.6 
G13.6 
G13.6 
G13.6 
G13.6 
G13.6 
G13.6 
G13.6 
G13.6 

Inter:1al Value 

I) • 0 1 2 3 4 5 6 7 
-1.1234S678 

1.23456789 
12.34567890 

123.45678901 
-1234.56789012 
12345.67890123 

123455.78901234 
-1234567.89012345 

12-35 

External Representation 

~0.123457E-Ol 
-0.123457J6)6;)~ 
)6)51. 23457l6)'5~J6 
;.sp512.3457}6J6~~ 
J6t612 3.457j25.kS.l6'» 
t6-1234.57)5J6)S~ 
J6}612 3 4 5 • 7,t6kS~t6 
PSj25123457.j6}25pJpJ 
-0.123457E+07 



FORMATTED DATA TRANSFERS 

F~r comparison, consider the following example of the same values 
output under the control of an equivalent F field descriptor. 

Format 

F13.6 
F13.6 
F13.6 
F13.6 
F13.6 
F13.6 
F13.6 
F13.6 
F13.6 

Complex 
Editing 

Internal Value 

0.01234567 
-0.12345678 

1.23456789 
12.34567890 

123.45678901 
-1234.56789012 
12345.67890123 

123456.78901234 
-1234567.89012345 

External Representation 

~J6)6});S0 • 012346 
,lzSJ6)S;S-0.123457 
~J61t5JzS;S1.234568 
jSJt5~~12.345679 
~p5PS123.456789 
J'.'-1234.567890 
~12345.678901 
123456.789012 
************* 

12.4.11.5 Complex Editing - A complex number consists of a pair of 
separate real numbers. The first number of the pair is the real part 
of the complex number; the second number is the imaginary part. 

The editing of a complex number involves specifying two successive F, 
E, D, or G edit descriptors. The edit descriptors need not be the 
same. 

A sample format list description for a complex number is: 

101 FORMAT (FIO.2,EIO.2) 

In this sample, the FIO.2 edit descriptor provides editing for the 
real part of the complex number; the ElO.2 edit descriptor provides 
editing for the imaginary part. 

You may include any nonrepeatable edit descriptors between the real 
and imaginary edit descriptors for a complex number. 

[
~----.----.J o 

(Octal) 
Editing 

________ . __ ,_ •. _., __ ._. _________ M._ 

12.4.11.6 0 (Octal) Editing - The 0 (octal) edit descriptor specifies 
octal editing. 

The form of the 0 edit descriptor is: 

··rjO[w[.m]] 

12-36 



\.yflere: 

FORMATTED DATA TRANSFERS 

i oS dna p t ion a 1 , non z e r 0 , un s i 9 ned , 1 n t e \.1 t r co fj oS tan L 
~;pecifying the number ot successive octal tielas beinq 
()escribed. The detault IS one octal tleld. 

'., 1 san opt ion aI, f1 0 n z e r 0 , un s 1 9 ned ,In t e q £:' r con!::) t d II C 

::-pecifying the total number ot dlglts In ttlt' octal tield 
l)einq described. 

It w is not specified, for output, the value tor d 

c.ingie-precision octal field is l~ (the detault), and the 
vdlue tor a double-precision octal field IS 2S (the 
clefault). For inI=ut, the data is scanned untll a blank, 
comma, or character illeqal for the 0 edIt descrIptor is 
.:~ncountered • 

'1.1 j s an optional, unsiqned, integer constant speci tyinq the 
min i m urn n urn b e rot dig its to be 0 u t put tot net] e 1 a • The 
cl e fa u] t s are 1 2. tor sin 9 1 e - pre cis ion 0 c tal v 0 .iu e san d / 4 tor 
double-precision octal values. 

(Hexadecimal) 
::::~:d;inq 

1 
i 
I 
i 

J 

12.4.11.7 Z Editing - The Z edit descriptor speclties lnput and 
out put 0 f hexadE~c ima 1 val ues. Hexadec ima lis u ba se J f) n umoe r system 
where the characters 0-9 and A-F (or a-f) represent the numbers 0-9 
and 10-15, respectively. (On output, A-F only.) 

The form of the Z edit descrIptor is: 

ir)Z[w[.m]] 

where: 

r- L san 0 p t ion aI, il n s i 9 ned , non z e r 0 ,In L e q (~ r c () 11 oS L d n t 
:; p e cit yin 9 the nun b e r 0 f con sec UtI ve hex ad e c 1 mal tie 1 d s 
beinq specified. The default is one hexadeclmal tleJd. 

i.s an optional, unsigned, 
.:;pecltying the to::al number 
field being describE~d. 

nonzero, 
ot digItS 

inleger constant 
in tile 11exaciec Imal 

[f w is not: spe(:lfied" for output, tne \1a.lue Lor a 
:;ingle-precision h(~xadec:lmal fie_Ld is .is (tile detaul C), dnd 
:~ h e val u e for at do u I) 1 e - pre cis ion hex ad e c 1 m cLl tIe J d 1 S L S 
(the default). FIH input, the data i,"; scanned untll a 
)lank, comma, or ch,Hacter illegal for the Z ecilt (jescrlptor 
is encountered. 

in is an optional, uns lqned, integer constant StJ-=Cl LYlnq tne 
.ninimum number at digits to be output In the tleld. The 
iefault for sinqle-~recision hexadecimal tlclds is 9 dlgits; 
the detault for double-precIsion fields IS Hi dlqlCS. 

12-37 



L 
Editing 

FORMATTED DATA TRANSFERS 

12.4.12 L Editing 

The L edit descriptor provides editing of logical data. 

The form of the L edit descriptor is: 

[r]L[w] 

where: 

r is an optional, unsigned, nonzero, integer constant 
specifying the number of consecutive logical fields being 
described. The default is one logical field. 

w is an optional, unsigned, 
specifying the total number 
field being described. 

nonzero, integer constant 
of characters in the logical 

If w is not specified, for output, the value is 15 (the 
default) For input, the data is scanned until a blank, 
comma, or character illegal for the L edit descriptor is 
encountered. 

You may transfer logical data under format control in a manner similar 
to numeric data transfer by use of the field descriptor 

Lw 

where: 

L is the control character and w is an integer specifying the 
field width. The data is transmitted as the value of a 
corresponding logical variable in the associated I/O list. 

The input field consists of optional blanks, optionally followed by a 
period, followed by a T for true or F for false, optionally followed 
by any series of characters (such as, .TRUE. for true or .FALSE. for 
false) • If the entire input data field is blank or empty, a value of 
false is stored. 

On output, w minus 1 blanks followed by T or F will be output if the 
value of the logical variable is true or false, respectively. 

12-38 



FORMATT3D DATA TRANSFERS 

12.4.13 A Editing 

A 
Editing 

The A edit descriptor specifies the editing of character or Hollerith 
data. The data are stored left-justified in a word and padded with 
blanks to the right. 

NOTE 

The R edit descriptor performs the same function for 
Hollerith data, only it stores the data 
right-justified in a word with leading nulls. The R 
edit descriptor is not supported for character data. 
For a description of the R edit descriptor, see 
Section 12.4.14. 

The form of the A edit descriptor is: 

[r]A[w] 

where: 

r is an optional, unsigned, integer constant specifying the 
number of consecutive A fields being defined. The default 
is one A field. 

w is an optional, unsigned, integer constant specifying 
total number of characters in the field being defined. 
default for single-precision values is 5 characters; 
default for double-precision and complex values is 
characters. 

the 
The 
the 

10 

Depending on the I/O operation, the A edit descriptor transfers 
character or Hollerith data into or from a variable in an I/O list. A 
list variable may be of any type. For example, 

READ (6,5) V 
5 FORMAT (A4) 

causes four character or Hollerith characters to be read from unit 6 
and stored in the variable v. 

The A descriptor deals with variables containing left-justified, 
blank-filled characters. The following list summarizes the result of 
character or Hollerith data transfer (both internal and external 
representations) using the A descriptor. These explanations assume 
that w represents the field width and m represents the total number of 
characters possible in the variable. Double-precision and complex 
variables contain 10 characters (m=lO)i integer, real, and logical 
variables contain 5 (m=5). 

12-39 



FORMATTED DATA TRANSFERS 

A Descriptor 

1. INPUT, where w > m -- The rightmost m characters of the field 
are read in and stored in the corresponding variable. 

2. INPUT, where w < m -- All w characters are read in and stored 
left-justified and blank-filled in the corresponding 
variable. 

3. OUTPUT, where 
right-justified 
blank-filled. 

w > m m characters are output and 
in the field. The remainder of the field is 

4. OUTPUT, where w < m -- The leftmost w characters of the 
corresponding variable are output. 

[
._--_._---:-------------

Editing 

_.--------_._---_._--------_._--

12.4.14 R Editing 

The R edit descriptor specifies the editing of Hollerith data. 
Hollerith data are stored right-justified with leading nulls. 
edit descriptor is not supported for character data. 

>,JOTE 

The A edit descriptor, described in ~ection 12.4.13, 
performs the same function as the R descriptor except 
that it left-iustifies the data in storaqe with 
t:cailing spaces. 

The form of the R edit descriptor is: 

[r] R [w] 

where: 

The 
The R 

r is an optional, unsigned, nonzero, integer constant 
specifying the number of consecutive R fields being defined. 
The default is one R field. 

w is an optional, unsigned, nonzero, integer constant that 
specifies the total number of characters in the R field. 

If w is not specified, for output, 
single-precision field is 5 (the default), 
a double-precision or complex field is 10. 
data is scanned until a blank, comma, or 
for the R edit descriptor is encountered. 

12-40 

the value for a 
and the value for 

For input, the 
character illegal 



FORMATT8D DATA TRANSFERS 

The R descriptor deals with variables containing right-justified, 
zero-filled characters. The following list summarizes the result of 
Hollerith data transfer (both internal and external representations) 
using the R descriptor. These explanations assume that w represents 
the field width and m represents the total number of characters 
possible in the variable. Double-precision and complex variables 
contain 10 characters (m=lO); integer, real, and logical variables 
contain 5 (m=5). 

NOTE 

When more than five characters are stored, bit zero of 
the low-order word is skipped. Thus, a 
double-precision or complex variable filled by an 
R-format data transfer is of the form: 

R Descriptor 

1. INPUT, where w > m -- The rightmost m characters of the field 
are read in and storej in the corresponding variable. 

2. INPUT, where w < m -- All w characters are read in and stored 
right-justified and zero-filled in the corresponding 

3. 

variable. 

OUTPUT, where 
right-justified 
zero-filled. 

w > m 1m characters are output and 
in the field. The remainder of the field is 

4. OUTPUT, where w < rn -- The rightmost w characters of the 
corresponding variable are output. 

12.5 LIST-DIRECTED FORMATTING 

List-Directed 
Formatting 

The use of an asterisk in a data transfer statement in place of a 
FORMAT statement label specifies list-directed formatting. For this 
type of formatting, the type of each transferred data item is 
specified by the types of respective elements in the I/O list. 

List-directed input data transfers are performed without regard for 
column, card, or line boundaries. List-directed output transfers 
produce records with a maximum length of 72 characters (the default) 
or the length specified by the RECL specifier (see Section 11.3.27 for 
devices other than the terminal). Otherwise, the maximum length of 
the current terminal width is used. 

The following is a sample list-directed data transfer statement: 

READ (5,*)I,IAB,M,L 

12-41 



FORMATTED DATA TRANSFERS 

You may use list-directed transfers to read data from any acceptable 
input device, including a terminal. However, do not use 
device-positioning commands in conjunction with list-directed data 
transfers. If you do, the results are unpredictable. 

Data for list-directed transfers should consist of alternate constants 
and delimiters. The constants used should have the following 
characteristics: 

1. Input constants must be of a form acceptable to FORTRAN. 

2. Character constants must be enclosed within single quotes, 
for example, 'ABLE'. Each apostrophe in a character constant 
must be represented by two apostrophes. 

3. The end of a record is equivalent to a blank except when it 
occurs in a character constant. In this case, the end of the 
record is ignored and the character constant is continued 
with the next reco~d. The first character of the continued 
record must be blank, which is ignored. 

4. If the string of a character constant exceeds the length of 
the data item, the string is truncated. If the string is 
shorter than the data item, the string is left-justified and 
remaining character positions are blank filled. 

5. Blanks are used as delimiters in 
Embedded blanks are, therefore, 
list-directed data item, with the 
constants. 

list-directed input. 
not permitted in any 

exception of character 

6. Decimal points may be omitted from real constants that do not 
have a fractional part. In this case, it is assumed that the 
decimal point follows the rightmost digit of a real constant. 

7. Complex constants must be enclosed within parentheses. 

8. Octal constants must be preceded with a double quote (II). 

9. A numeric data item can correspond only to a numeric 
constant, and a character data item can correspond only to a 
character constant. 

A delimiter in a list-directed list of data items separates one data 
item from another. Delimiters in data for list-directed input must 
comply with the following: 

1. Delimiters may be commas, blanks, or slashes. 

2. Delimiters may be either preceded by or followed by any 
number of blanks, carriage return/line feed characters, tabs, 
or line terminators; any such combination is treated as a 
single delimiter. 

3. A null item (the complete absence of a data item) is 
represented by two consecutive commas that have no 
intervening constant (s). You may place any number of bl anks, 
tabs, or carriage return/line feed characters between the 
commas of a null item. Each time you specify a null item in 
the input data, its corresponding list element is skipped 
(unchanged) • 

12-42 



FORMATTED DATA TRANSFERS 

The following illustrates the effect of the input of a null 
item: 

I/O List A,B,IAB,N 

Data input 101,'A' ,,20 

Resulting contents of I/O list items: 

A 101. 
B 'A' 
IAB unchanged 
N 20 

4. Slashes (/) cause the current input operation to terminate 
even if all the items of the I/O list are not filled. The 
contents of items of the I/O list that either are skipped (by 
null items) or have not received an input data item before 
the transfer is terminated remain unchanged. Once the I/O 
list of the data transfer statement is satisfied, the use of 
the / delimiter is optional. 

5. Once the I/O list has been satisfied (values have been 
transferred to each item of the list), any items remaining in 
the input record are skipped. 

Constants or null items in data for list-directed input may be 
assigned a repeat count so that an item is repeated. 

A constant with a repeat count is written as: 

r*K 

where: 

r is an integer constant that specifies the number of 
times the constant is repeated, the asterisk delimits 
the repeat count from the constant, and K represents 
the constant. 

A null item with a repeat count is written as an integer, which 
specifies the repeat count, followed by an asterisk. 

The following are examples of constants and null items: 

10*5 
3*'ABLE' 
3* 

represents 5,5,5,5,5,5,5,5,5,5 
represents 'ABLE' ,'ABLE' ,'ABLE' 
represents null,null,null 

NOTE 

The asterisk form representing nulls must be delimited 
by a comma or slash; in this case spaces are ignored 
and not treated as delimiters. 

12-43 



FORMATTED DATA TRANSFERS 

~O!/\!\':'ELlST·Statement 
- -,rn'li:Htmq 

NAMELIST-STATEMENT FORMATTING 

'jata transter statements descrIbed in Chapter 10 usually include 
" (-~ i~; a list ot 

" ... ~ ::-' ,-1 r 
varIable, array, or array element 
data beinq transferred. 

~ltrrn~tive way ot creating 1/0 lists is to use the NAMELIST 
i : "'Ii (' r: r- • U c; 1 n:.l t his In e tho d , v 0 u can s p e c i f v the I/O 1 i s tin a 

·1\.~L'LIf~,], :~t,v-Rment and then reterence the list by name in the 
"'!)[)fi,-iiP elilla r.ransrer statement. 

u~e NAf'1ELlST-statement tormatt inq, as opposed to 
'·1 ~ c: '"'1. :~ r t- G r- ! ~ ~ t -- rl ire c ted for mat tin q, V 0 U nee rl 0 n 1 y ret ere nee 

,do. :i'/ NAi"1t:LIST name In a data transter statement. 

N.~MELIST 

Slatement 

J /'-. ~.: F: r . T S r r / n a m e / 1 i s t r .1 n am e I .1 i s t J • • • 

L::~: :ld!!l!~ OL t.lw NAMELIST I/O list. This is the name 
'::~,.::!:eci In ddta transter statements. Each NAMELIST 

",' !':'':;\ ')C cnc.1used in slashes. 

! ~ 1 i : :; t- ()! j t. e ITl S com p r i sin a the N AM ELI S T I /0 1 i st. 
!i .,> •• J L t: 1 1 n tIle 1 i s t may bE' va ria b 1 e n arne s a r a r ray 

:jC'Jd[rlte fTlUitlPie list items with commas. 

h i i :"; t ,) taN 1\ MEL 1ST s tat e Ilt e n tIS ide n t i fie dan d 
'·.r'!l~~!rj by the name immediately precedinq the list. 

_,::rFl is an example ot creatinq two NP,MELIST I/O lists having 
! ~1 rn (' s 'l' !\l~ L t: and SUM S • 

'~I~,'!I,''\!<-:T!)N C(),4.l ,TOTAL(lU) 
. '- :',":'/\:..\L~~~/.Il,,~!C/SUMS/TOTAL 

,i .. :: ndIlle:' TABLE l(jentlties thE list consistinq of the 
j r _ . d (1 (1 f _ r: ':' d r r a v C. and the n am e SUM Sid en t i fie s the 1 i s t 

'-'l~:::' dr(d'i l"Yl'.A,L. 

12-44 



FORMATT~D DATA TRANSFERS 

Once a list has been defined ill a NAMELIST statement, one or more I/O 
statements may ref:erence its name. 

The rules for structur ing a NAr1ELIST statement are: 

1. You may use a maximum of six characters for a NAMELIST name. 

2. You must begin the li:,t name with an alphabetic character. 

3. You must enclose the NAMELI~3T name in slashes. 

4. You should use NAMELI~)T names that are unique wi thin the 
program. 

S. You may define a NAMEL.IST name only once, and you mllst detine 
it by a NAMELIST s~atement. Once defined, you may use the 
name only in I/O tran!,ter statements. 

6. You must define the NAMELIST name before the data 
"tatement.s in WhICh ii: is used. 

transfer 

7. You must define any dimensioned variable contained in a 
NAMELIST statement In an array declaration statement 
precedinq the NAf'lELIST statement. 

12.7.1 NAMELIST-Controlled Da~a Input Transfer 

During data input transfers ~n which a NAMELIST-detined name is 
referenced, records are read Imtil a record is found that begins with 
a blank, then $ (dollar sign), and then the desired NAr'1ELIST name. 
The dollar sign must be the s,~cond character in the rE~cord; the first 
character in the record must b,~ a blank. 

NOTE 

You may use "&" instea(l of 
input. 

II C" II 
~) in NAMELIST-controlled 

Da t a i tern s 0 f r e cor d s to be i n put (r e ad) us i n g NAM ELI S T - d e fin e d 
must be separated by commas and may be of the following form: 

lists 

V=Kl,K2, ••• ,f(n 

where: 

v 

K 1 , ••• , Kn 

may be a variable, array, or array element name. 

are constants. A series of ident.ical constants 
may be rj~presented as a single constant preceded 
by a repetLtion count (5*5 represents 5,5,5,5,5). 
You can :;pecify more than one constant only if V 
is an arra'/. If V is a scalar, then you may have 
only Kl. 

The input data is always conve~ted to the type of the list variable 
when there is a conflict of t'lpes. A character constant 1S truncated 
from the right, or extended on the right with blanks, if necessary, to 
yield a constant of the same lE~ngth as the variable, array, or 
substring. 

12-45 



FORMATTED DATA TRANSFERS 

~he input operation continues until another $ symbol is detected. If 
variables appear in the NAMELIST record that do not appear in the 
NAMELIST list, an error condition will occur. 

i\ character constant must have del imi ting apostrophes. If an 
apostrophe is part of a character constant, it must be represented by 
two consecutive apostrophes, which must be contained in the same 
record (one apostrophe cannot end a record, and the other apostrophe 
:~tart a record). 

For example, assume: 

1. A is a 2-dlmensional real array 

7.. B is a I-dimensional integer array 

3. C is an inteqer variable 

4. 0 is a character variable of length 5. 

5. The program contains the NAMELIST declaration: 

NAMELIST /FRED/ A,B,C,D 

b. The input data is as follows: 

~$FRED A(7,2)=4, B=3,6*2.8, C=3.32, D='RON'$ 

A READ statement referring to the NAMELIST-defined name FRED will 
result in the following: 

1. The inteqer 4 will be converted to floating point and placed 
in A(7,2). 

2. The integer 3 will be placed in B(l). 

1. The inteqer 2 (after being truncated) 
,~ \ 2) , B ( 3) , • • • , B ( 7) • 

will be placed in 

4. The floating point number 3.32 will be converted to the 
integer 3 and placed in C. 

5. The character strinq 'RON~~' will be placed in D. 

12.7.2 NAMELIST-Controlled Data Output Transfers 

When a WRITE statement reters to a NAMELIST-defined name, all 
variables and arrays and their values belonging to the named list are 
written out, each according to its type. Character constants are 
written with delimiting apostrophes. Arrays are written out by 
columns. Output data is written so that: 

1. The fields for the data will be large enough to contain all 
the significant digits. 

2. The output can be read by an input statement referencing a 
~AMELIST-defined list. 

12-46 



FORMAT,]'ED DATA TRANSFERS 

For example, if ARRAY is a 2 X 3 real array, Al is a real variable, Kl 
is an integer variable, and D is a character variable containing the 
five characters }\B'CD, the statements: 

REAL ARRAY (L~ , 3) 
CHARACTER D"~ 5 
DATA ARRAy,Al,KI,D/-6.75~ 0.234E-04, 680.0, -17.8,0.0,00, 
1 7 3 • 1, 3, ! AB' 'CD' / 
NAMELI ST/NAMI/ARRAY, AI, K"., D 
WRITE (u, NAtvll) 

generate the following form o~ output: 

io!umn 1 

~$NAMl 
ARRAY= -6.750000, 0.2340000E-04, 680.0000, -17.80000, 2*0.0000000, 

Al= 73.10000, Kl= 3, D='AB' 'CD' 
$END 

NOTE 

Do not use device-positioning commands such as 
BACKSPACE or SKIPRECORD with NAMELIST-contro.lled I/O 
operations. If you do, the results are unpredictable. 

12-47 





CHAPTER 13 

FUNCTIONS AND SUBROUTINES 

Procedures you use repeatedly in a program can be written once and 
then referenced each time you need the procedure. Procedures that may 
be referenced are either contained within the program in which they 
are referenced, or self-contained executable procedures that can be 
compiled separately. The kinds of procedures that can be referenced 
are: 

1. Intrinsic functions (FORTRAN-defined functions) 

2. Statement functions 

3. External functions 

4. Subroutines 

The first three of these categories are referred to collectively as 
functions or function procedures; procedures of the last category are 
referred to as subroutines or subroutine procedures. 

Intrinsic functions perform a predefined computation with a specific 
number and type of arguments. These functions are provided by FORTRAN 
(see Section 13.1). 

Statement functions are user-defined, single statement procedures that 
resemble assignment statements. The appearance of a statement 
function reference in an expression causes the user-defined 
computation to be performed (see Section 13.2). 

External functions are separate program units that generally compute a 
single value using one or more parameters. There are two types of 
external functions available: user-defined and FORTRAN-supplied. A 
user-defined external function is defined with a FUNCTION statement. 
Both types of external functions are invoked by including a function 
reference in an expression (see Section 13.3). 

Subroutines are external program units that are used to perform 
multiple computations or alter variables. There are two types of 
subroutines available: user-defined and FORTRAN-supplied. 
User-defined subroutines are defined with a SUBROUTINE statement (see 
Section 13.4.2.1). Both types of subroutines are invoked with a CALL 
statement (see Section 13.4.2.2). 

13.1 INTRINSIC FUNCTIONS 

Intrinsic functions are supplied with the FORTRAN software. Each 
intrinsic function performs a predefined computation. There are two 
types of intrinsic functions: specific and generic. 

13-1 



FUNCTIONS AND SUBROUTINES 

Specific functions have an implicitly defined data type. Each 
specific function requires arguments of a particular type and returns 
results of a predefined type. The IMPLICIT statement cannot be used 
to change the type of a specific intrinsic function. 

The data type of the return value of a generic function is determined 
by the data type of its arguments. The FORTRAN generic functions are: 

ASS DIM 
ACOS EXP 
AINT INT 
ALOG LOG 
ALOGIO LOGlO 
AMAXI MAX 
AMINI MIN 
ANINT MOD 
ASIN NINT 
ATAN REAL 
ATAN2 SIGN 
CMPLX SIN 
COS SINH 
COSH SQRT 
DSLE TAN 

TANH 

NOTE 

Table 13-1 lists all the specific and generic 
intrinsic functions. For ease of identification, each 
generic function name in the table is indicated by an 
asterisk. 

13.1.1 Using an Intrinsic Function 

An intrinsic function is used in a FORTRAN expression by referencing 
the name of the function in an expression. For example, the following 
program contains two intrinsic functions: ASS (returns the absolute 
value of the argument) and SQRT (returns the square root of the 
argument) • 

PROGRAM TEST 

Y = -64 
A = ASS (Y) 
TYPE ,A 

S = SQRT (A) 
TYPE ,B 

END 

When the preceding program is executed, variable Y is assigned the 
value -64. The ABS function in the second expression calculates the 
absolute value of -64. Next, in the third expression, the SQRT 
function calculates the square root of the absolute value of Y, which 
is A. The square root of A is assigned to B in the third expression. 
Executing the program yields the following resulta: 

13-2 



FUNCTIONS AND SUBROUTINES 

EXECUTE TEST. FOR 
FORTRAN: TEST 
TEST 
LINK: Load i ng 
[LNKXCT TEST execution] 
64.00000 
8.000000 
CPU time 0.1 Elapsed time 4.0 

The following example contains specific and generic functions. In the 
example, the generic function SQRT is used to find the square root of 
the double-precision value 64.0. Next, the specific function DSQRT is 
used to find the square root of the double-precision value 64.0. If 
the argument supplied to DSQRT was not a double-precision number, a 
fatal compilation error would I"esult. 

PROGRAM TESFUN 

DOUBLE PRECISION A,B,AR,BR 
REAL C,eR 

A 64.00DO 
B 64.00DO 
C 64.00 

C GENERIC SQRT RETURNS DP 
C SQRT BECAUSE ARG TYPE IS DP 

AR = SQRT(A) 

C SPECIFIC DSQRT PERFORMS THE 
C SAME FUNCTION WHEN GIVEN A DP 
C ARGUMEN'1' 

BR = DSC!RT (A) 

C SPECIFIC SQRT RETURNS A REAL 
C VALUE RESULT 

CR = SQRT(C) 

TYPE, ]\.R,BR,CR 
END 

Executing the program above yields the following results: 

EXE TESFUN 
LINK: Load ing 
[LNKXCT TESFUN Execution] 
8.0000000000000000, 8.0000000000000000, 8.000000 
CPU time 0.1 Elapsed time 0.7 

Table 13-1 lists the FORTRAN intrinsic functions. This table gives 
function definitions, argument and function types, and ranges of 
acceptable values.. Each function contains a description of the range 
for valid arguments(s) and the range within which the function returns 
valid results. If function arguments do not fall within the specified 
range, the result of the function is undefined. 

For more information on the precision and accuracy of the FORTRAN 
intrinsic functions, refer to the TOPS-IO/TOPS-20 Common Math Library 
Manual. 

13-:3 



FUNCTIONS AND SUBROUTINES 

Table 13-1: FORTRAN Intrinsic Functions 
.. -

Argument Function Result 
Name Definition Type Argument Restrictions Type Range 

Exponential 

EXP* y = e**x Real ·89.415 .LE. x Real y .GT. 0 
.LE.88.029 

DEXP** y = e**x Double D-floating: Double D·-floating: 
-89.415 .LE. x y .GT. 0 
.LE. 88.029 

G·-floating: G-floating: 
710.475 .LE. x y .GT. 0 

.LE. 709.089 

CEXP w = e**z Complex -89.415 .LE. REAUzl Complex All COMPLEX Numbers 
.LE. 88.029 
IAIMAG(zll .LE. 36394.429 

Logarithm (LOG, LOG 10 = Generic Functions) 

ALOG* y = log(x) [base eJ Real x .GT. 0 Real -89.415 .LE. y .LE. 88.029 

DLOG** y = log(x) [base eJ Double D-floating: Double D-floating: 
x .GT. 0 89.415 .LE. y .LE. 88.029 

G- floating: G-floating: 
x .GT. 0 -710.4 75 .LE. y .LE. 709.08B 

CLOG w = log(z) [base eJ Complex z .NE. (o,m Complex -89.415 .LE. REAUw) .LE. 88.029 

-PI .LT. AIMAG(w) .LE. PI 

ALOGlO* y = log(x) [base 1O[ Real x .GT. 0 Real -38.832 .LE. y .LE. 38.230 

DLOG10** y = log(x) [base 1O[ Double D-·floating: Double D-floating: 
x .GT. 0 -38.832 .LE. y .LE. 38.320 

G-floating: G-floating: 
x .GT. 0 -308.555 .LE. y .LE. 307.953 

Square Root _.-
SQRT* y = SQRT(x) = x**12 Real x .GE. 0 Real y .GE. () 

DSQRT** y = SQRT(x) = x**L'2 Double D-floating: Double D-floating: 
x .GE. 0 y .GE. 0 

G-floating: G-floating: 
x .GE. 0 y .GE. 0 

CSQRT w = SQRT(z) ~ z**112 Complex Any COMPLEX Number Complex All COMPLEX Numbers 
REAL(w) .GE. 0 

13-4 



FUNCTIONS AND SUBROUTINES 

Table 13-1: FORTRAN Intrinsic Functions (Cont.) 

Argument Function Hesult 
Name Definition Type A rgument Restrictions Type Hange 

Trigonometric 

SIN* y ,= sin(x) Real 1,,1 .LE. 210828714 Real -1 .LE. y .LE. 1 

:-iJND v .;in(x) (degrees) Heal 1:1 .LE. --l7IH!)919 Heal I .LE .. \ LE. I 

DSIN** y ,= sin(x) Double D-floating: Double D-floating: 
I> i .LE. 6746~j18852 -1 .LE. y .LE. 1 

(-floating: G-floating: 
1>·1 .LE. 1686()29713 . 1 .LE. y .LE. 1 

CSIN w = sin(z) Complex IHEAUzlj .LE. 210828714 Complex All COMPLEX Numbers 
11\IMAG(z)1 .LE. 88.895 

COS* y = cos(x) Real I>.j .LT. 210828714 Real 1 .LT. y .LE. 1 

(;()SD :". cos(xl (degn'cs) J{eal ;: .LT. 4711-\5919 Heal 1 .1.T. \ . LE. 1 

DCOS** y = cos(x) Double ii-floating: Double D-floating: 
1;:1 .LT. 6746518852 1.LE.y.LE.l 

G-floating: G-floating: 
Ixl .LT. 1686629713 1 .LE. y .LE. 1 

CCOS w = cos(z) Complex IImAL(zll .LE. 210828714 Complex All COMPLEX Numbers 
IAIMAG(zlj .LE. 88.895 

TAN* y ~ tan(x) Real 1:..:1 .LE. 363913 Real All REAL Numbers 

DTAN** y = tan(x) Real II-floating: Double D-floating: 
I:{i .LE. 3373259426 All D-·FLOATING Numbers 

(f-floating: G-floating: 
I{i .LE. 843314856 All G-FLOATING Numbers 

C<JTAN \" eoUx l Ilpal XI U:. :Hi:!96 Ileal All HKA.L Numbers 

[)COTAN' ". cotlxl (l()uble ) tloating: Ilouhlc Df10ating 
x .LK :1:373259426 All D FLOATING Numbers 

; !1(1ating: G· floating: 
x .LE. 8433.148[,6 All G FLOATINU Numbcrs 

13-5 



FUNCTIONS AND SUBROUTINES 

Table 13-1: FORTRAN Intrinsic Functions (Cont.) 

Argument Function Result 
Name Definition Type Argument Restrictions Type Range 

Inverse 
Trigonometric 

--
ASIN* y = arcsin(x) Real - 1 .LE. x .LE. 1 Real - PJ/2 .LE. y .LE. PII2 

DASIN** y = arcsin(x) Double D-floating: Double D-floating: 
-1 .LE. x .LE. 1 -PJ/2 .LE. y .LE. PII2 

G-floating: G-floating: 
-1 .LE. x .LE. 1 -PJ/2 .LE. y .LE. PII2 

ACOS* y = arccos( x) Real -1 .LE. x .LE. 1 Real o .LE. y .LE. PI 

DACOS** y = arccos( x) Double Dfloating: Double D-floating: 
-1 .LE. x .LE. 1 o .LE. y .LE. PI 

G-floating: G-floating: 
I .LE. x .LE. I o .LE. y .LE. PI 

ATAN* y = arctan(x) Real x ~ any Real -Pl/2 .LE. y .LE. PII2 
REAL Numbers 

DATAN** y = arctan(x) Double D-floating: Double D-floating: 
x = any D-FLOATING -Pl/2 .LE. y .LE. PI/2 
Numbers 

G-floating: G-floating: 
x = any G-FLOATING -Pl/2 .LE. y .LE. PII2 
Numbers 

ATAN2* y = arctan(argliarg2) Real argl,arg2 = any Real -PI .LE. y .LE. PI 
REAL Numbers 

DATAN2** y = arctan(argllarg2) Double D--floating: Double D-floating: 
arg I ,arg2 = any -PI .LE. y .LE. PI 
f)-·FLOATING Numbers 

G-floating: G-floating: 
argl,arg2 = any -PI .LE. y .LE. PI 
G--FLOATING Numbers 

Hyperbolic 

SINH* y = sinh(x) Real Ixl .LE. 88.722 Real All REAL Numbers 

DSINH** y = sinh(x) Double D--floating: Double D-floating: 
Ixl .LE. 88.722 All D-FLOATING 

Numbers 

G-floating: G-floating: 
Ixl .LE. 709.782 All G-FLOA TING 

Numbers 

COSH* y = cosh(x) Real ixl .LE. 88.722 Double y .GE. 1 

DCOSH** y = cosh(xl Double D-floating: Double D-floating: 
!xi .LE. 88.722 y .GE. 1 

G-floating: G-floating: 
ix! .LE. 709.782 y .GE. 1 

TANH* y = tanh(x) Real Any REAL Numbers Real -1 .LE. y .LE. 1 

DTANH** y = tanh(x) Double D-floating: Double D--floating: 
Any D-FLOATING -1 .LE.y.LE. 1 
Numbers 

G-floating: G-floating: 
Any G-·FLOATING -1 .LE. y .LE. 1 
Numbers 

13-6 



FUNCTIONB AND SUBROUTINES 

Table 13-1: FORTRAN Intrinsic Functions (Cont.) 

Argument Function Result 
Name Definition Type Argument RE!strictions Type Range 

--
Absolute Value 

ABS* Y = Ixl Real ArlY REAL Numbers Real Y .GE. 0 

lABS Y = Iii Integer ArlY INTEGER Numbers Integer Y .GE. 0 

DABS** Y = Ixl Double D-floating: Double D--floating: 
AllY D--FLOATING Y .GE. 0 
Numbers 

G-floating: G--floating: 
AllY G--FLOATING Y .GE. 0 
Numbers 

CABS Y = Izl Complex AllY COMPLEX Numbers Real Y .GE. 0 
--

Truncation 

AINT* Sign of arg * Real AllY REAL Numbers Real All REAL Numbers 
largest integer 
.LT.largl 

INT* Sign of arg * Real AllY REAL Numbers Integer All INTEGER Numbers 
largest integer 
.LT·largl 

IDINT Sign of arg * Double AllY DOUBLE Integer All INTEGER Numbers 
largest integer PRECISION Numbers 
.LT·largl 

DlNT** Sign of arg* Double D-floating: Double D·-floating: 
largest integer AllY D--FLOATING All DFLOATING 
.LT·largl Numbers Numbers 

G-floating: G-floating: 
AllY G--FLOATING All G--FLOATING 
Numbers Numbers 

---. 
Nearest Whole Number 

ANINT* Y = int(x + .5) if Real AllY REAL Numbers Real All REAL Numbers 
x .GE. 0 else 
y=int<x-.5) 

DNINT** Y = int(x + .5) if Double D- ·floating: Double Dfloating: 
x .GE. 0 else AllY D--FLOATING All D--FLOATING 
Y = int<x -.5) Numbers Numbers 

G--floating: G-floating: 
AllY G--FLOATING All G--FLOA TING 
N'lmbers Numbers 

Nearest Integer 

NINT* Y = int(x + .5) if Real x LE. 12"*35)·-1 Integer All INTEGER Numbers 
x .OE. 0 else x GE. -(2"*35) 
Y = int(x -.5) 

IDNINT Y = int(x + .5) if Double x LE. 12**35) 1 Integer All INTEGER Numbers 
x .GE. 0 else x GK (2"*:~5) 

Y = int(x -.5) 

13-7 



FUNCTIONS AND SUBROUTINES 

Table 13-1: FORTRAN Intrinsic Functions (Cont.) 

Argument Function Result 
Name Definition Type Argument Restrictions Type Range 

Remaindering 

AMOD Remainder when Real arg2 .NE. 0 Real o .LE. y .LT. arg2 
argl is divided 
byarg2 

MOD* Remainder when Integer arg2 .NE. 0 Integer o .LE. y .LT. arg2 
argi is divided 
byarg2 

DMOD** Hemainder when Double D-floating: Double 0-· floa ting: 
argi is divided arg2 .NE. 0 o .LE. y .1.1'. arg2 
byarg2 

G- floating: G-floating 
arg2 .NE. 0 o .LE. y .LT. arg2 

--
Maximum Value (MAX = Generic Function) 

--
AMAXO Argument with Integer Any INTEGER Numbers Real All HEAL Numbers 

greatest value 

AMAXl* Argument with Real Any REAL Numbers Real All REAL Numbers 
greatest value 

MAXO Argument with Integer Any INTEGER Numbers Integer All INTEGER Numbers 
greatest value 

MAXI Argument with Real Any REAL Numbers Integer All INTEGER Numbers 
greatest value 

DMAXI*'" Argument with Double D floating: Double D-floating: 
greatest value Any D FLOATING All D-FLOA TING: 

Numbers Numbers 

G- floating: G-floating: 
Any G-FLOATING All G-FLOATING 
Numbers Numbers 

Minimum Value (MIN = Generic Function) 
_.-

AMINO Argument with Integer Any INTEGER Numbers Real All REAL Numbers 
least value 

AMINI" Argument with Real Any REAL Numbers Real All REAL Numbers 
least value 

MINO Argument with Integer Any INTEGER Numbers Intl'ger All INTEGER Numbers 
least value 

MINI Argument with Real Any REAL Numbers Integer All INTEGER Numbers 
least value 

DMINI** Argument with Double D floating: Double D-floating: 
least value Any D-·FLOATING All D-FLOATING 

Numbers Numbers 

G-floating: G-floating: 
Any G-FLOATING All G-FLOATING 
Numbers Numbers 

13-8 



FUNCTIONS AND SUBROUTINES 

Table 13-1: FORTRAN Intrinsic Functions (Cont.) 

Argument Function Result 
Name Definition Type Argument Restrictions Type Range 

Transfer of Sign 

SIGN* If arg2 .GE. 0 Real Any REAL Numbers Real All REAL Numbers 
then larg11 
else -!arg11 

ISIGN If arg2 .GE. 0 Integer Any INTEGER Numbers Real All INTEGER Numbers 
then larg11 
else -Iargl! 

DSIGN** If arg2 .GE. 0 Double D-floating: Double D-·floating: 
then iarg11 Any D-·FLOATING All D-FLOATlNG 
else -Iargll Nlmbers Numbers 

G-floating: G-floating: 
Any G-FLOATING All G-FLOATING 
Nlmbers Numbers 

Positive Difference 

DIM'" If argl .GT. arg2 Real Any REAL Numbers Real y .GE. 0 
then arg1 - arg2 
else 0 

IDIM If arg1 .GT. arg2 Integer Any INTEGER Numbers Integer y .GE. 0 
then argl - arg2 
else 0 

DDlM** If arg1 .GT. arg2 Double D-floating: Double D-floating: 
then argl - arg2 Any D-FLOATING y .GE. 0 
else 0 Nlmbers 

G- floating: G-floating: 
Any G-FLOATING y .GE. 0 
Nlmbers 

Double Preeision Product 

DPROD argl *arg2 ~Y REAL Numb", Double ALL DOUBLE PRECISION 
Numbers 

Conversion Routines 

CONJG arg = x ·t i"'y, Complex Any COMPLEX Numbers Complex All COMPLEX Numbers 
CONJG = x·- i*y 

REAL* arg = x + i*y Complex Any COMPLEX Numbers Real All REAL Numbers 
returns x 

AIMAG arg = x + i*y Complex Any COMPLEX Numbers Real All REAL Numbers 
returns y 

CMI'LX" Returns Real Any HEAL Numhers Complex All COMPI.EX Numbers 
argl I i"arg~ 

DFLOAT lnte~er to double Integer An\' INTEGEIi~ Numbers Double iy: .LT. ~"" :~5 
preCISIOn 

DBLE* Real to double Real Any REAL Numbers Double All DOUBLE PRECISION 
precision Numbers 

SNGL Double precision Double Any DOUBLE Real All REAL Numbers 
to real PRECISION Numbers 

FLOAT Integer to real Integer Any INTEGEF: Numbers Real Iyl .LT. 2**35 

IFIX Real to integer Real Ix! ,LT, 2**35 Integer All INTEGER Numbers 

ICHAR Character to Character FiJ st character of Integer o ,LE. y .LE. 127 
Integer character value 

CHAR Integer to Integer o . '~E. y .LE, 127 Character All Single Character 
Character 

13-9 



FUNCTIONS AND SUBROUTINES 

Table 13-1: FORTRAN Intrinsic Functions (Cont.) 

Argument Function Result 
Name Definition Type Argument Restrictions Type Range 

Length 

LEN Length of Character Any CHARACTER Value Integer y .GE. 1 
character entity 

Index of a Substring 

INDEX Return location of Character Size of character Integer y .GE. 0 
arg2 within argl string argl must 
if not found be larger than 
return 0 or equal to arg2 

Character Comparisons 

LGE argl .GE. arg2 Character Any CHARACTER Value Logical .TRUE. or .FALSE. 

LGT argl .GT. arg2 Character Any CHARACTER Value Logical .TRUE. or .FALSE. 

LLE argl .LE. arg2 Character Any CHARACTER Value Logical .TRUE. or .FALSE. 

LLT argl . LT. arg2 Character Any CHARACTER Value Logical .TRUE. or .FALSE . 

Bit Manipulation 

lAND Pf'rforms a logical Integer arg I .arg2 o. any Integer All Integer Numbers 
AND on corresponding Inte~er Numbers 
hit,.. of argl and arg2 

IOH Pl'rf()rm~ an inclu~ive Integer arg l.arg2 = any Integer All Integer Numbers 
01{ on corresponding Integer Numbers 
hits of argl ;md arg2 

IEOR Pertl)rm;.; an exclusive Integer arg l.arg2 = any Integer All Integer Numbers 
Oft on corresponding Integer Numbers 
bits of argl and arg2 

NOT Complements each bit Integer Anv Integer Number Integer All Integer Numbers 
of argument 

ISHFT L()~icall:v shiftt< argl Integer argJ any Integer All Integer Numbers 
leit arg2 bits if arg2 Integer Number 
is positive; argl is :16 . I.E. arg2 .LE. 36 
logically shifted right 
aq~L ~,its if arg2 is 
nt~~atlve 

ISHFTC Circularlv shifts (rotates) Intpger argl anv Ir;teger All Integer Numbers 
rightmost arg:3 bits of Inte~er Numbpr 
argl by arg2 places. :16 .LE. arg2 .U: 36 
If ilrg2 is positive. I .LE. arg3 .I.E. 36 
the rutation is to the 
left: :f arg2 is negative. 
the mtation is to the 
nght 

13-10 



FUNCTIONS AND SUBROUTINES 

Table 13-1: FORTRAN Intrinsic Functions (Cont.) 

Argument Function Result 
Name Definition Type Arl!Ument Restrictions Type Range 

Bit Manipulation 

IBITS Extracts bits arg2 Integer ar~ 1 7 any Integer All Integer Numbers 
through arg2 + arg:l-] Int'~ger Number 
from argl *** (] .LE. arg2 .LE. :{5 

ar~ 2 -+ arg3 .LE. 36 

IBSET Returns the value of integer arl'l = any Integer All Integer Numbers 
argl with bit arg2 of Integer Number 
argl set to 1 o .LE. arg2 .LE. 35 

IBCLR Returns the value of Integer ar~ 1 ~ any Integer All Integer Numbers 
argl with bit arg2 of Int~ger Number 
argJ set to 0 o .LE. arg2 .LE. 35 

BTEST Returns .TRUE. if bit Integer ar!!l ~ any Logical .TRUE. or .FALSE. 
arg2 of argl equals 1; Int'~ger NumbE-r 
returns .FALSE. if o .LE. arg2 .LE. 35 
hit arg2 of argl is 0 

Notes: 

* = Generic function 

** =- G-floating double-precision functions (KL model B only) -- are used if IGFLOA TING compiler switch is 
specified (see Section 16.1.3 or 16.2.3l. 

*** ,= See also the MVBITS Subroutine. Section 13.4.Ul 

(2**35)-1 = 34359738367 
-(2**35) = -34359738368 

13-11 



FUNCTIONS AND SUBROUTINES 

13.1.2 Character Intrinsic Functions 

Character intrinsic functions are functions that take character 
arguments or return character values. Character comparison intrinsic 
functions are functions that take character arguments and return 
logical values. 

FORTRAN provides four character intrinsic functions: 

1. LEN 

The LEN function returns the length of a character 
expression. The LEN function has the following form: 

LEN(arg) 

where: 

arg is a character 
indicates how 
expression. 

expression. The 
many characters 

value returned 
there are in the 

The following example illustrates the LEN function: 

2. INDEX 

C This subroutine reverses an entire character 
C string. 

SUBROUTINE REVERS(S) 
CHARACTER T, S*(*) 

J = LEN(S) 
DO 10 I=1,J/2 

T = S(I:I) 
S(I:I) = S(J:J) 
S(J:J) = T 
J = J - 1 

10 CONTINUE 

RETURN 
END 

The INDEX function searches for a substring (arg2) in a 
specified character string (arg1), and, if it finds the 
substring, returns the substring's starting position. If 
arg2 occurs more than once in argl, the starting position of 
the first (leftmost) occurrence is returned. If arg2 does 
not occur in arg1, the value zero is returned. The INDEX 
function has the following form: 

INDEX(argl,arg2) 

where: 

arg1 

arg2 

is a character expression specifying the string 
to be searched for the substring specified by 
arg2. 

is a character expression specifying 
substring that is searched for. 

13-12 

the 



FUNCTIONS AND SUBROUTINES 

The following example illustrates the INDEX function: 

3. ICHAR 

C This subroutine places the symbol # into the 
C variable MARKS at places corresponding to the 
C beginning of all occurrences of the substring 
C SUB within the string S. 

SUBROUTINE FINSTR(SUB,S) 
CHARACTER*(*) SUB, S 
CHARACTER*132 MARKS 
INTEGER I,J 

1=1 
MARKS 1 1 

10 J = INDEX(S(I:), SUB) 
IF (J .NE. 0) THEN 

I = 1 + J 
MARKS(I-l:I-l) = 1#1 

IF (I .LE. LEN(S» GO TO 10 
END IF 

WRITE (5,91) S, MARKS 
91 FORMAT (2(/lX,A» 

END 

The ICHAR function converts a character expression to its 
equivalent ASCII code and returns the ASCII value. The 
ICHAR function has the following form: 

ICHAR(arg) 

where: 

4. CHAR 

arg is the character to be converted to an ASCII 
code. If arg is longer than one character, only 
the value of the first character is returned; 
the remaining characters are ignored. 

The CHAR function returns the single character whose ASCII 
code is the integer or octal argument. The CHAR function 
has the following form: 

CHl\R(arg) 

where: 

arg is an integer expression. 

The following example illustrates the CHAR and ICHAR functions: 

CHARACTER C*l 
INTEGER I 

C Convert number between 0 and 9 in I to a character 
C digit 

C = CHAR(I+ICHAR('O'» 

END 

13-13 



FUNCTIONS AND SUBROUTINES 

13.1.3 Character Comparison Functions 

The four character comparison functions provided with FORTRAN are: 

LLT, where LLT{argl,arg2) is equivalent to (argl.LT.arg2) 

LLE, where LLE{argl,arg2) is equivalent to (argl.LE.arg2) 

LGT, where LGT{argl,arg2) is equivalent to (argl.GT.arg2) 

LGE, where LGE{argl,arg2) is equivalent to (argl.GE.arg2) 

The comparison functions have the following form: 

func{argl,arg2) 

where: 

arg is a character expression. 

The character comparison functions defined by the FORTRAN-77 standard 
are guaranteed to make comparisons according to the ASCII collating 
sequence, even on non-ASCII processors. On TOPS-IO/20 systems, the 
character comparison functions are identical to the corresponding 
character relationals. 

An example of the use of a character comparison function follows: 

CHARACTER*lO CH2 
IF (LGT{CH2,'SMITH'» STOP 

The IF statement in this example is equivalent to: 

IF (CH2.GT.'SMITH') STOP 

:3.1.4 Bit Manipulation Functions 

intrinsic bit manipulation functions are used for manipulation of the 
;;i ts in the binary patterns that represent integers. Integer data 
Lypes are represented internally in binary two's complement notation. 
!3it positions in the binary representation are numbered from right 
~least siqnificant bit) to left (most significant bit); the rightmost 
0it position is numbered 0, and the leftmost bit position is numbered 
~5. A bit in a binary pattern has a value of 0 or 1. 

The intrinsic functiDns lAND, lOR, lEaR, and NOT perform bitwise 
')perations on all the bits of their arguments. Bit 0 of the result is 
-~e result of applying the specified logical operation to bit 0 of the 
.lrguments. Bit 1 of the result is the result of applying the 
.~pecified logical operation to bit 1 of the arguments, and so on for 
.j ~ l the bi ts of the resul t. 

'''hi':' shift functions lSHFT and lSHFTC shift binary patterns. A 
:)ositive shift count indicates a left shift, while a negative shift 
<aunt indicates a right shift. A shift count of zero means no shift. 
_SHFT specifies a logical shift; bits shifted out of one end are lost 
",nd zeros are shifted in at the other end. ISHFTC performs a circular 
.hift; bits shifted out at one end are shifted back in at the other 

13-14 



FUNCTIONS AND SUBROUTINES 

The function IBITS and the subroutine MVBITS (see Section 13.4.1.21) 
operate on bit fields. A bit field is a contiguous group of bits 
within a binary pattern. Bit fields are specified by a starting bit 
position and a length. A hi: field must be entirely contained in its 
source operand. 

For example, the integer 79 i:; represented by the following binary 
pattern: 

o ••• 0101111 

n ••• 6543210 (bi t posi t ion) 

where: 

n is 35 ,:the number oE bit positions in an integer). 

You can refer to the bit field contained in bits 3 through 6 by 
specifying a starting position of 3 and a length of 4. In the above 
example, the selected bit pat~ern would be the following: 

o ••• 000101 

Negative integer~; are represented in two's complement notation. The 
integer -79 is represented by the following binary pattern: 

1 .•• 1010001 

n ••• I) 5 4 3 21 0 ( bit po sit ion) 

where: 

n is 35 ': the number 0,: bi t posi tions in an integer). 

NOTE 

The value of bit pos i': i on 35 is 1 for a negative 
number and 0 for ,~ non--negative. Also, all the 
high-order bits of th,~ pa t tE~ rn to the left of the 
value up to bit 35 ar·~ the same as bit 35. 

IBITS and MVBITS operate on bLt fields. Both the starting position of 
a bit field and its lenqth a~e arguments to these intrinsics. IBSET, 
IBCLR, and BTEST operate only on one bit. Thus, they do not require a 
length argument. 

13.2 STATEMENT FUNCTIONS 

A statement function is a procedure specified by a single statement 
that is similar in form 1:0 an arithmetic, character, or logical 
assignment statement. The statement function enables you to define a 
single-line computation once in your program, give it a name, and have 
that calculation performed each time you reference the statement 
function in the program. A statement function is classified as a 
nonexecutable statement. 

13-15 



FUNCTIONS AND SUBROUTINES 

13.2.1 Defining a Statement Function 

Statement functions have the following form: 

fun [d [, d] ••• ] ) = e 

where: 

fun is the symbolic name for the statement function. The 
function name follows the rules for forming symbolic names 
in FORTRAN (see Chapter 4). 

d is an optional dummy argument. Separate multiple dummy 
arguments with commas. (Dummy arguments are described in 
Section 13.4.5.) The parentheses are still required if no 
dummy arguments are specified. 

e is any type of FORTRAN expression. The expression part of 
the statement function (to the right of the equal sign) 
defines the computation performed using the dummy arguments. 

The relationship between fun and e must conform to the assignment 
rules in Sections 8.1, 8.2, and 8.4. Note that the type of the 
expression may be different from the type of the statement function 
name. 

The following rules govern the formation and use of statement 
functions: 

1. The dummy argument list in the statement function serves only 
to indicate the order, number, and type of arguments for the 
statement function. 

2. The dummy arguments used in a statement function are local to 
that statement function. It is valid to use the same names 
in multiple statement functions in the same program unit. A 
dummy argument name may also be used elsewhere in the program 
unit to identify a variable of the same type, including its 
appearance as a dummy argument in a FUNCTION, SUBROUTINE, or 
ENTRY statement. 

3. Each dummy argument in a statement function dummy argument 
list must be unique; the same dummy argument cannot appear 
twice in a single list. 

Each variable reference in the function can be either a reference to a 
dummy argument of the statement function, or a reference to a variable 
that appears within the same program unit as the statement function 
statement. 

If a statement function dummy argument name is the same as the name of 
another entity, the appearance of that name in the expression of a 
statement function statement is a reference to the statement function 
dummy argument. 

13.2.2 Using a Statement Function 

Statement functions are used in FORTRAN programs by referencing the 
name of the statement function in an expression that is in the same 
program unit as the statement function definition. If a character 
function is referenced in a program unit, the function length 
specified in the program unit must be an integer constant expression. 

13-16 



FUNCTIONS AND SUBROUTINES 

For example, the following program uses a statement function (called 
PROFIT) to determine the ?rofit for a product. In the statement 
function definition, PROFIT is defined as the difference between 
wholesale and retail prices minus .05 sales tax. 

PROGR)\M STAFUN 

PROFrl' (A,B) == ((A - B) -- (A * .05» 

WRITE (UNIT=5,FMT==lOO) 
100 FORMAT(lX,'Enter Mlolesale Price and Retail Price') 

ACCEPT *, WHOSAL, RET.\I L 

150 C = PROFIT(RETAIL,WHOSAL) 

WRITE(UNIT=5,FMT=lQl) C 
101 FORMA'r(lX, 'The Profit (minus sales tax) is: ',F8.2) 

END 

When the program is executed, the retail and wholesale values are 
entered at the terminal. Next, the expression at statement number 150 
uses the values of RETAIL and WHO SAL to calculate the profit as 
defined in the PROFIT statement function. A sample execution of this 
program yields the following results: 

EXECUTE STATE 
LINK: Load i ng 
[LINKXCT STAFUN executio~] 
Enter Wholesale Price and Retail Price 
31.67 45.95 
The profit (minus sales tax) is: 11.98 
CPU time 0.2 Elapsed time 18.5 

When a FORTRAN expression that contains a statement function reference 
is executed, the following happens: 

1. The actual arguments contained in the statement function 
reference are evaluated. 

2. The actual arguments in the statement function are associated 
with the dummy arguments in the statement function 
definition. 

3. The expression portion of the statement function is evaluated 
using the actual arguments. 

4. If necessary, the value of the expression is converted to the 
type of the statement function. Finally, the value resulting 
from the expression evaluation is substituted in the 
expression containing the statement function reference. 

13.2.3 Statement Function Restrictions 

The following rules and restrictions must be adhered to when using 
statement functions: 

1. The actual arguments in a function reference must agree in 
type and number with the corresponding dummy arguments in the 
statement function dummy argument list. 

13-17 



FUNCTIONS AND SUBROUTINES 

2. An actual argument in a statement function reference can 
itself be an expression; all actual arguments must be defined 
when a statement function reference is evaluated. 

3. A statement function can only be referenced in the program 
unit that contains the statement function statement. 

4. A statement function must not contain a reference to another 
statement function that appears later in the program unit, 
but can contain a reference to another statement function 
that appears earlier in the program. 

5. The symbolic name used to identify a statement function must 
not appear as a symbolic name in any specification statement 
except a type statement (to specify the type of the function) 
or as the name of a common block in the same program unit. 

6. An external function reference (see Section 13.3) in the 
expression part of a statement function statement must not 
cause a dummy argument of the statement function to become 
undefined or redefined. 

7. The symbolic name of a statement function may not be an 
actual argument. It must not appear in an EXTERNAL statement 
( see Se c t ion 7. 6) • 

8. A statement function statement in a function subprogram (see 
Section 13.3.4.) must not contain a function reference to the 
name of the function subprogram or an entry name in the 
function subprogram. 

9. An actual argument in a statement function reference can be 
any expression, ~ncluding a character expression involving 
concatenation of an operand whose length specification is an 
asterisk in parentheses. 

10. The length specification of a character statement function 
must be an integer constant expression. 

13.3 EXTERNAL FUNCTIONS 

An external function is a procedure that is defined externally to the 
program unit that references it. FORTRAN offers two types of external 
functions: FORTRAN-supplied and user-defined. The FORTRAN-supplied 
external functions are described in Section 13.3.1; the user-defined 
functions are described in Sections 13.3.2 through 13.3.4. 

lJ.3.1 FORTRAN-Supplied External Functions 

ORTRAN-supplied external functions are similar to intrinsic 
unctions. To use a FORTRAN-supplied function, you reference its name 
n an expression. 

13-18 



FUNCTIONS AND SUBROUTINES 

The following are the FORTRAN-supplied external functions: 

x=DTOG (y) 

x=GTOD (y) 

x=LSNGET(unit} 

x=RAN(O} 

x=RANS(O) 

y=SECNDS(x} 

x=TIM2GO (0) 

returns a G-floating double-precision number 
in the range 1.47 x 10**-39 to 1.70 x 
10**+38. The argument y is aD-floating 
double-precision number. (Also, see the 
0TOGA subroutine, Section 13.4.1.12.) 

returns a D-floating double-precision number 
in the ranqe 1.47 x 10**-39 to 1.70 x 
10**+38. The argument y is a G-floating 
double-precision number. (Also, see the 
GTODA subroutine, Section 13.4.1.18.) 

returns the last line number read in a line 
sequenced file. LSNGET returns a positive 
integer if the last line has a valid line 
number; returns zero if the last line is a 
page mark; or returns -1 If the last line 
number is invalid (such as, AAAA with bit 35 
se t) • It al so returns -1 I t the tile 
contains no line number, or was opened with a 
mode other than, LINED (see Section 11.3.20). 

returns a pseudo random floating-point number 
in the range of D.LT.x.LT.1. The argument is 
a durrmy (not used) and may be any number. 
Refer to the related subroutines SETRAN (see 
Section 13.4.1.27) and SAVRAN (see Section 
13.4.1.26) • 

returns a pseudo random floating-point number 
in the range of O.LT.x.LT.l. RANS is a 
primE-modulus random number generator with 
shuffling capability. It calls RAN to 
generate its initial table of random 
devi2tes. Refer to related subroutins SETRAN 
(see Section 12.4.1.27) and SAVRAN (see 
S~ction 12.4.1.26). 

returns the system tIme in seconds as a 
single-precision, floating-point value, minus 
the value of its sinqle-precision, 
floating-point argument. The argument y is 
set equal to the time in seconds since 
midnjght, minus the user-supplied value of x. 

returns the number of seconds remaining in 
the -job's run-time limit. The time limit is 
set by the /TIME switch when submitting the 
hatch iob. The argument is a dummy (not 
used) and may be any number. 

You ntay also specify a time limit for an 
interactive job by using the SET TIME-LIMIT 
COffiffictnd on TOPS-20, 0 r the SET TIME command 
on TOPS-IO. 

FORTRAN-supplied external functions are treated in the same manner as 
user-defined functions. Impljcit or explicit type declarations affect 
these funct ions, and no a I"g umen t check ing (type or numbe r) is 
performed at compile time. 

13-19 



FUNCTIONS AND SUBROUTINES 

13.3.2 User-Defined External Functions 

An external user-defined function is a procedure that is external to 
the program unit that references it. The function subprogram enables 
you to define a multiline function. By referencing the name of that 
function in an expression, the lines of the function are automatically 
executed. 

The FUNCTION statement is always the first statement in a function 
subprogram. The form of the FUNCTION statement is: 

[type] FUNCTION fun ([arg1 [,arg2] .•• ]) 

where: 

type is an optional type specification for the external 
function. This may be INTEGER, REAL, DOUBLE PRECISION, 
COMPLEX, LOGICAL, or CHARACTER (plus the optional size 
modifier *len). 

fun 

arg 

For CHARACTER, len is the length specification of the 
result of the character function. If you specify 
CHARACTER*(*), the function assumes the length declared 
for it in the program unit that invokes it. If len is 
an integer constant, the value of len must agree with 
the length of the function specified in the program 
unit that invokes the function. If a length is not 
specified in a CHARACTER FUNCTION statement, a length 
of one is assumed. 

If you do not specify a type, the type of the 
subprogram name determines the data type 
external function. 

function 
of the 

is the symbolic name of the externa~ function 
subprogram. Unless the optional data type is specified 
in the FUNCTION statement, the type of the function 
name determines the data type of the function 
subprogram. 

is an optional dummy argument. Arg may be a variable 
name, array name, or dummy procedure name. Separate 
multiple dummy arguments with commas. The parentheses 
are optional if no dummy arguments are specified. 

You must define the symbolic name assigned a function subprogram as a 
variable name in the function. During each execution of the function, 
this variable can be redefined. The value of the variable at the time 
of execution of any RETURN statement is the value of the function. 

NOTE 

The RETURN statement returns control to the statement 
that referenced the function subprogram (see Section 
13.4.4). Additionally, you may desire to have a 
function start executing at a statement other than the 
first executable statement in the function subprogram. 
The ENTRY statement (see Section 13.4.3) enables you 
to define an alternate entry point in the function 
subprogram. 

13-20 



FUNCTIONS AND SUBROUTINES 

13.3.3 Function Subprogram R~strictions 

The following rules govern the structuring of a function subprogram: 

1. You can not use the ~;ymbolic name of a function subprogram in 
any nonexecutable ~;tatement in the subprogram except in the 
initial FUNCTION statement or a type statement. 

2. Dummy argument names cannot appear in any EQUIVALENCE, 
COMMON, or DATA statement used within the subprogram. 

3. The function subprogram can define or redefine one or more of 
its arguments so as to return results in addition to the 
value of the function. 

4. The function subprogram can contain any FORTRAN statement 
except BLOCK DATA, SUBROUTINE, PROGRAM, or another FUNCTION 
statement. 

5. The function subprogram should contain at least one RETURN 
statement and must be terminated by an END statement. The 
RETURN statement signifies a logical conclusion of the 
computation made by the subprogram, and returns the computed 
function value and control to the calling program. A 
subprogram can have more than one RETURN statement. 

The END statement specifies the physical end 
subprogram and implies a return. 

of the 

6. If the type of a function is specified in a FUNCTION 
statement, the function name must not appear in a type 
statement. Note that a name must not have its type 
explicitly specified more than once in a program unit. 

7. A function specified in a subprogram may be referenced within 
any other procedurl~ subprogram or the main program of the 
executable program. A function subprogram must not reference 
itself, either directly or indirectly. 

8. If the name of a func:tion subprogram is of type character, 
each entry name il1 the function subprogram must be of type 
character. If the name of the function subprogram or any 
entry in the subprogram has a length of (*) declared, all 
such items must have a length of (*) declared; otherwise, all 
such items must have a length specification of the same 
integer value. 

13.3.4 Using a Function Subprogram 

After defining a function subprogram, you use it by referencing the 
name of the function s~bprogram in an expression. Function 
subprograms are referenced in expressions using the following form: 

fun ([argl,a.rg2, ••• argn]) 

where: 

fun is the function subprogram name. This is the same name 
that appears in the corresponding FUNCTION statement. 
The length of the character function in a character 
function reference must be the same as the length of 
the character function in the referenced function. 

13-21 



arg 

FUNCTIONS AND SUBROUTINES 

is an optional list of actual arguments. These 
arguments must agree in type and number with the dummy 
argument list of the corresponding FUNCTION statement. 
If the actual and dummy arguments do not agree, no type 
conversion is done; and the results are unpredictable. 
The parentheses are required even if no actual 
arguments are specified. 

When an expression that contains a function subprogram reference is 
executed, the following happens: 

1. Evaluation of actual arguments that are expressions 

2. Association of actual arguments with the corresponding dummy 
arguments 

3. Execution of the referenced function subprogram 

Section 13.3.3 describes all the restrictions that must be adhered to 
when using function subprograms. 

13.4 SUBROUTINES 

A subroutine subprogram is a procedure that is external to the program 
units that reference it. FORTRAN offers two types of subroutines: 
user-defined dlllj FORTRAN-supplied. FORTRAN-supplied subroutines are 
described in Sections 13.4.1 - 13.4.1.32; user-defined subroutines are 
described in Sections 13.4.2 through 13.4.2.4. 

NOTE 

The FORTRAN-supplied subroutines are described in this 
manual in two sections. Section 13.4.1 describes the 
~eneral ~ORTRAN subroutines; Appendix F describes the 
~;ubroutines that enable you to use a plotter. 

Program units reference subroutines with the CALL statement (see 
Section 13.4.2.2). The subroutine reference in the CALL statement 
contains the unique name of the subroutine, as defined in a SUBROUTINE 
statement (see Section 13.4.2.1). The SUBROUTINE statement is always 
the first statement in a subroutine. 

When a CALL statement reference is made to a subroutine subprogram, 
program execution transfers from that CALL statement to the referenced 
subroutine subprogram. 

By including the ENTRY statement (see Section 13.4.3) within the body 
of a subroutine subprogram, you can enter the subroutine at a point 
other than the first statement in the subroutine. In this case, the 
CALL statement used to reference an entry point in a subroutine 
contains a reference to an entry point name, as opposed to the 
subroutine name. 

Return of program control from the subroutine to the calling program 
unit occurs when the RETURN statement is executed (see Section 
13.4.4). The RETURN statement is always the last statement executed 
in a subroutine subprogram. 

13-22 



FUNCTIONS AND SUBROUTINES 

'fable 13-2: FORTRAN-Supplied Subroutines 
'---"--- --"------------_._-----.....----------. 

Form Function Se(~tion 

~----------------------------.--~-------------------.-----------------.------~~-------------

CALL ALCCllR(size) 

rlpres - CDABS(dparg) 

('ALL CDCOSldparg.dpresl 

('ALL CDEXPldparg.dpres) 

('ALl. CDLOG(dparg,rlpres) 

('ALL CDSIN(dparg,dprps) 

('ALL CDSQRT(dparg.dpres) 

CALL CHKDIV(unitvarl 

('ALL CLRFMT(arraynanH') 

('ALL DATEII1amc) 

CALL 1)\ VERT(un) 

('ALL IrrO(;A(sname.dname,n \ 

CALL IJ LJ 1\1 p( LB I . U H 1 .limned I 
1 ...• LBn.UBn,fi)rmatn II 

(:ALI, El{HSETln) 
('ALL EHH~ET(n.ll 
CALL EHHSET(n.l,subri 

('ALL EHH~NS( II 
('ALL ERI{SNS(] .• J) 
CALL EI{]{SNS!I.,J.MSG I 

('ALL 1'~XlT 

CALL (;T(H)A(sllame.dname.ni 

CALL ILL 

CALL LE( ;AL 

CALL MVBJTS(m.Uen.n.jl 

CA LL ()" EJ{FLIIANS I 

('ALL PIHTMP(LB1.UD1JorJlIatl 
I ... LBn.U Bn.limnatn I) 

QlJIETX 

Allocates span' for dynamic character concate
nation operatiolls. 

Heturns tIll' dO'lble··precision absolute valUl' of 
the spPcifipd do Ible-precu:iion complex number. 

Finds the complex co~ine of the ~pecifil'd 

double-prccisioJI compll'x number. 

Finds the comllex l'xponenlial of the sp('citied 
doubk-prl'cisio 1 complt'x number. 

R<.'turns lhl' C( mplex logarithm of a ~pecified 

duubll'-pn'cisiol ('ompll'x numher. 

Returns thl' 20mplex Sll1e of tlw doubll'
precision comp ex number spt'cificci. 

i{eturns the complPx ~quan' root of the double 
preciSIOn complex number sp<'cificd. 

I{eturns thl' numb!.'r of t1w unit to which error 
messages an' t'l'ing written. 

Discards the H)I{M AT statement .-;<lvpd by the 
('xpcutioT1 of' tll' SAVFMT ~;ubroutine. 

I'lacl's thp cU!'l'('nt data. left-justified. in a char

acll'r "'arlahle 

Enables you 0 n'dll'l'ct error messages from 
tIll' current dtvin' to an open file on a sp<'cified 
devictc'. 

Convert" del wnts of doublp-precision arrays 
fi'om D float II1g double-prl'cision format to 
(; .floating do .lbl(L.pr<'cisioJ1 format. 

Causl'1' spl'ci ied portions of memory to be 
dumped to th,' line prillter (LPT:I. 

Controls the output or arithmetIC error m('~
sage~ dlll'ing program ('xl'l'ution. 

J)('t<.'I·l11lfH'S t 1l' f('as()n for <In error trapped by 
ERR on an OPEN. CLOSE, or datil tran.",fl'r 
oPP),;,tiOll. 

'I't'rminat.l's t w program and l'l'turns control to 
the monitor. 

Heturm the IHlrntwr or thp first availabll' 
FOHTRAN l'lgical unit 

COIl\'('rb pit-ments of doublL'-precislOn arra.vs 
from (;t1o;lting double·precision l(lrJnat to 
I) lloatll1g d lUbll'-pn'cision format. 

Sl't~ th(' lLU:(; flag. 

('lear~ the lLU:(; nag. 

Tral1sfi'rs a bit lipid from one storag(' location 
to a sl'('ond ,torClgt' location. 

I{('turns iniJrll1atlOll about ov('rf1ow. unckr
flow. and di'ide' che'ck. 

Function,; l'xactly Ilk(, DUMP suhroutllw ('X

l'{'pl that COllt rol returns to the call1l1g program 
;II'Il'r tlw dump has bn'n t'xt'l'uted. 

Suppn'Si-'es .111 SUlllll1ar~' typ<' out wlH'1l tlw pro
I-!'rarn tl'rmi WIt's. 

13.4.1.1 

1 :3.4.1.2 

1 :~.4.1 :\ 

1 :3.4.1.4 

1:1.<1.16 

1:1.4.1. 7 

1:IA.l.H 

1 :1.4. l.!::l 

1:1.4.1.10 

};3.4.1.11 

\:U.1.12 

1 :1.4.1.14 

1 :1.4.1.15 

1:1.4.1.1 () 

n.<1 1 17 

U.4 1 I H 

1:U 1.1!) 

J:U.1.20 

1:1.1.1.21 

I;U.l.~4 

_________ . ____ . ______________________ ~ ________ __J 

13-23 



FUNCTIONS AND SUBROUTINES 

Tah/£' 1:J-2: FORTHAN--Supplipd Suhroutines !Cont.) 
,----------- - - 1--- - -------

Form Function Section 

I ('AIJ. SAVFMT1n;lnH'i,arravsiZ<'!! Directs rOBOTS tl) ('ncodc format sp('('ifica
(lOllS l'ontain('rl in the slwcifipd charart(']' vari
dhl(' (/1' :lrrav, 

I <'ALI. SAVHAN,tl' Sav('s the last internal integer spcd valup gen
,·rat(·d hv the nAN function, 

I:1A.L26 

Specifi('s the intl'rnal ill(('gn :-;('f'd valup filr th(' 

I{AN function, 
1:3A,1.27 

j (',\I,L SOHTI'sort string', Sorts onl' or mon' tih's using the SOHT 
progT;lnl, 

I 
CALL SHTINllnl 

CALL TIME, x I 
CALL TIMI'~'x,yl 

CALL TOPMEMI n' 

,'ALL THACE 

,--------------

Din'c(s FOf{OTS to "tart allocating memory 
from top downward to account itJr large overla,v 
programs and pn'allocatc's pages (jOO:677 for 
SOH'/', 

I{eturns the curn'llt ! ill1e of day in left-justifipd 
ASCII 

Direch FOROTS !o start allflenring rnpll10ry 
from top rlowllward to account for largp overla:v 
prllgr,lIl1S, 

(;pnpr;] tes a I i sf. of act i ve subprograms Oil the 
(('rrninaL 

13.4, 1.29 

13A.1.31 

____ , ____ , __ -----------.1----------

13.4.1 FORTRAN-Supplied Subroutines 

The FORTRAN software includes a set of predefined subroutines. Th. 
section describes the general FORTRAN subroutines (and a function thi 
is similar) in alphabetical order. (See Appendix F for t! 
tORTRAN-supplied plotter subroutines.) 

NOTE 

Sections 13.4.1.2 through 13.4.1.7 describe 
subroutines (and a function) that are used for 
calculations on double-precision complex numbers. You 
must supply your own subroutines for performing 
addition, subtraction, multiplication, and division of 
double-precision complex numbers. 

In addition, FORTRAN does not 
double-precision complex data 
COMPLEX*16). These numbers are kept 
cannot be used in expressions or as 
generic routines. 

1- ] ALCCHR 
Subroutine 

L _____________ _ 

support the 
type (called 
as arrays and 

the arguments of 

13.4.1.1 ALCCHR Subroutine - The ALCCHH subroutine allocates spaCE 
for dynamic character concatenation operations. You do not normall~ 
need to allocate space for this purpose unless you are doing very 
large character concatenation operations. 

13-24 



FUNCTIONS AND SUBROUTINES 

The form of the ALCCHR subroutine is: 

CALL ALCCHR(size) 

where: 

size is the integer size in characters for either creating 
or expanding the character stack. 

L CDABS ] 
Function 

----------------

13.4.1.2 CDABS 
double-precision 
complex number. 
subroutine, it 
subroutines. ) 

Function - The CDABS 
absolute value of 

(Although CDABS 
is included here 

the 
is a 
because 

function returns the 
specified double-precision 
function and is not a 

it is similar to some 

The form of the CDABS function is: 

dpres = CDABS(dparg) 

where: 

dparg 

dpres 

is a 2-element double-precision array containing the 
complex value whose absolute value you want calculated. 
The first element of dparg contains the real part of 
the double-precision complex number; the second element 
contains the imaginary part. 

is a double-precision variable that is set to the 
absolute value of the complex number. 

~DCOS 
Subroutine 

---------_. 

13.4.1.3 CDCOS Subroutine - Tje CDCOS subroutine finds the complex 
cosine of the specified double-precision complex number. 

The form of the CDCOS subrouti,e is: 

CALL CDCOS(dparg,dpres) 

where: 

dparg is a 2-element jouble-precision array containing the 
complex value whose cosine you want calculated. The 
first element of dparg contains the real part of the 
double-precision complex number; the second element 
contains the im3ginary part. 

13-25 



dpres 

Example: 

FUNCTIONS AND SUBROUTINES 

is a 2-element double-precision array in which the 
subroutine returns the result of the calculation. The 
first element of dpres contains the real part of the 
double-precision complex number; the second element 
contains the imaginary part. 

DOUBLE PRECISION dparg(2) ,dpres(2) 
dparg(l) = IDa !arg is (1,-1) 
dparg(2) = -IDa 
CALL CDCOS(dparg,dpres) 

Subroutine ~C~EXP 
-------~ 

13.4.1.4 CDEXP Subroutine - The CDEXP subroutine finds the complex 
exponential of the specified double-precision complex number. 

The form of the CDEXP subroutine is: 

CALL CDEXP(dparg,dpres) 

where: 

dparq 

dpres 

Example: 

is a 2-element double-precision array that contains the 
complex argument to the subroutine. The first element 
of dparg contains the real part of the double-precision 
complex number; the second element contains the 
imaginary part. 

is a 2-element double-precision array that stores the 
result of the calculation. The first element of dpres 
stores the real part of the result; the second element 
stores the imaginary part. 

DOUBLE PRECISION dparg(2) ,dpres(2) 
dparg(l) = aDO 
dparg(2) = IDa !arg is (0,1) 
CALL CDEXP(dparg,dpres) 

13.4.1.5 CDLOG Subroutine - The CDLOG subroutine returns the complex 
logarithm of a specified double-precision complex number. 

13-26 



FUNCTIONS AND SUBROUTINES 

The form of the CDLOG subrout~ne is: 

CALL CDLOG(dparg,dpres) 

where: 

dparg 

dpres 

Example: 

is a 2-element double-precision array that contains the 
double-precision complex number whose logarithm you 
want calculate(i. The first element of dparg contains 
the real part of the complex number; the second element 
contains the inaginary part. 

is a 2-element double-precision array that stores the 
result returnt~rl by CDLOG. The first element of dpres 
contains the rt~al part of the double-precision complex 
number; the second element contains the imaginary part. 

DOUBLE PRECISION dparg(2: ,dpres(2) 
dparg(l) = IDO !arg is (1,0) 
dparg(2) = ODD 
CALL CDLOG(dparg,dpres) 

[------l 
eOSIN 

Subroutine 

_____________ -.J 

13.4.1.6 CDSIN Subroutine - ~~he CDSIN subroutine returns the complex 
sine of the double-precision complex number specified. 

The form of the CDSIN subrout:.ne is: 

CALL CDSIN(dparg,dpres) 

where: 

dparg 

c]pres 

Example: 

is a 2-element double-precision array that contains the 
number whose sine you want calculated. The first 
element of dparg contains the real part of the 
double-precision complex number; the second element 
contains the inaginary part. 

is a 2-element double-precision array in which the 
result of thf! calculation is returned. The first 
element of dpr~!s contains the real part of the result; 
tr..e second ele!11ent contains the imaginary part. 

DOUBLE PRECISION dparq(2; ,dpres(2) 
dparg(l) = -lDO !arg is (-1,01) 
dpar9(2) = lDO 
CALL CDSIN(dparg,dpres) 

13-27 



CDSQRT 
Subroutine 

FUNCTIONS AND SUBROUTINES 

13.4.1.7 CDSQRT Subroutine - The CDSQRT subroutine returns the 
complex square root of the specified double-precision complex number. 

The form of the CDSQRT subroutine is: 

CALL CDSQRT(dparg,dpres) 

where: 

dparg 

dpres 

SXClmple: 

is a 2-element double-precision array that contains the 
riouble-precision complex number whose square root you 
want calculated. The first element of dparg contains 
the real part of the double-precision complex number; 
t::.he second element contains the imaginary part. 

is a 2-element double-precision array that contains the 
result of the calculation. The first element of dpres 
contains the real part of the complex square root; the 
second element contains the imaginary part. 

:JOUBLE PRECISION dparg(2) ,dpres(2) 
ciparg(l) = lODO 
dpres(2) = -lODO !arg is (10,-10) 
CALL CDSQRT(dparg,dpres) 

ICHKDIV i Subroutine 

I 

13.4.1.8 CHKDIV Subroutine - The CHKDIV subroutine returns the number 
0f the unit to which error messages are being written. 
c;ubroutine returns the value -1 if the messages are being sent to 
' __ erminal. 

The form of the CHKDIV subroutine is: 

~ALL CHKDIV(unitvar) 

where: 

unitvar is the variable in which the unit number is stored. 

13-28 

This 
the 



FUNCTIONS AND SUBROUTINES 

r·-----· 
i 
i 
L .. 

CLRFMT 
Subroutine 

13.4.1.9 CLRFMT Subroutine - The CLRFMT subroutine discards the 
encoded form of the FORMA']' statement saved by the execution of the 
SAVFMT subroutine (see Sectior 13.4.1.25). 

The form of the CLRFMT subroutine is: 

CALL CLRFMT(arrayname) 

where: 

arrayname is the nan!e of the array that contains the encoded 
form of the FORMAT specifications saved by the 
SAVFMT sut·routine. 

r-------"-- ~ --- -- --- -----] 
I DATE 
! Subroutine 
i L_____ _ ___ ._ 

13.4.1.10 DATE Subroutine - 'l'he DATE subroutine stores the current 
date as a left-justified AE;CII string in a character variable. The 
date is in the form: 

dd-mmm-yyb 

where: 

rid is a 2-digit day (if the first digit is 0, it is converted 
to a blank), mmm i~. a 3-1etter month abbreviation (such as, 
Jan,Feb), yy is a 2-letter year, and b is a blank. The data 
is stored in ASCII, left-iustified, and blank filled. 

The form of the DATE subroutir.e is: 

CALL DATE(name) 

where: 

name is the name of a character variable. The date returned 
by the subroutjne is stored in this variable. 

NOTE 

For compatibility with previous versions of 
FORTRAN-IO/20, you car:. specify a numeric array name as 
the argument for the DATE subroutine. The current 
date is stored as a left-iustified ASCII strinq in a 
2-word array or data item (double-precision or 
complex). The array ITlust have at least two elements. 

13-29 



FUNCTIONS AND SUBROUTINES 

DIVERT 
Subroutine 

13.4.1.11 DIVERT Subroutine - The DIVERT subroutine enables you to 
redirect error messages from the current device to an open file on a 
specified device. 

The form of the DIVERT subroutine is: 

CALL DIVERT(un) 

where: 

un is the logical device number of the file on which the open 
file resides. 

[ ----] DTOGA 
~broutine 

13.4.1.12 DTOGA - The DTOGA subroutine 
double-precision arrays from D-floating 
G-floating double-precision format. 

The form of the DTOGA subroutine is: 

CALL DTOGA (sname,dname,n) 

where: 

converts elements of 
double-precision format to 

sname is the name of the source array. 

dname is the name of the destination array. 

n is the number of elements to convert. 

(See Section 13.4.1.18 for the GTODA subroutine.) 

DUMP 
Subroutine 

13.4.1.13 DUMP Subroutine - The DUMP subroutine causes specified 
portions of memory to be dumped to the line printer (LPT:). 

13-30 



FUNCTIO~IS AND SUBROUTINES 

The form of the DUMP subroutire is: 

CALL DUMP(LBl,UBl,tormatJ [ .•• ,LBn,UBn,formatn]) 

where: 

LBl,UBl are the integer values of the upper and lower memory 
addresses to bE dumped. 

formatl is an integer that indicates the dump format. 
possible specifications are: 

0 octal 
1 real 
'") inteqEr ~-

-3 /l.SC I I 

The 

If no arguments are supplied, all of user memory is dumped In octal. 
If only the bounds arguments are specified, or if the format value is 
out of range, the dump format is octal. If only the first bound 
argument is' specified, all locations from that address to the end of 
memory are dumped. 

The dump is terminated by a c2l1 to EXIT. 

r'------
I 

I 
~ , 
L ___ _ 

13.4.1.14 ERRSET' Subroutine - The ERRSET subroutine controls the 
output of warning messages during program execution. 

The ERRSET subroutine has thrEe forms: 

1. CALL ERRSET(n) 

2. CALL ERRSET(n,i) 

3. CALL ERRSET(n,i,subr) 

where: 

n is the maximum number of error messaqes to type. 

is the code to which error the call applies; one of the 
followinq: 

-1 C'1nv 01 the followinG 
r) inLeq('r overflow 
1 jnteQ('r divide 
~) input integer overflow 
3 input floating overflow 
4 float ng overflow 
~ fluatJnq divide check 
G floatinG underflow 
" in~ut floating underflow 
R 1 ihrarv routine error 

13-31 



:3ubr 

FUNCTIONS AND SUBROUTINES 

3 output field width too small 
1 FORLIB warnings 
2 nonstandard usage warnings 
1 Bounds check warnings 

if is not specified, -1 is assumed 

is the name of the user-defined error handling routine 
[0 be invoked each time any of the above errors occur. 
The e~fect is as if 

CALL SUBR (I,IPC,N2,ITYPE,UNFIXD,FIXED) 

were placed in the program just after the instruction 
causing the trap. 

I = error number of trap, same as above 

IPC PC of trap instruction (if code 9 is 
trapped, IPC = PC of the IOLST. call 

N2 = second error number (reserved for Digital) 

ITYPE = data type of value 

UNFIXD = value returned by the hardware 

¥IXED = value after fixup (SUBR can change this 
\/Alue) 

If SUBR is not specified, no routine is called on 
the APR trap. 

,---------------
i ERRSNS 
I Subroutine 

t_ ... _______ ... _. ___ . _______ ._ . __ .... ___ . __ ._ .. _. ________ . 

l3.4.l.l5 ERRSNS Subroutine - The ERRSNS subroutine returns integer 
values that describe the status (success or failure) of the last I/O 
nperation (see Appendix D). This subroutine can be used to determine 
the reason for an error trapped by ERR= on an OPEN, CLOSE, or data 
transfer operation. Both return values are always cleared after a 
successful data transfer operation. 

The forll1s of the ERRSNS subroutine are: 

CALL ERRSNS (I) 

::::ALL ERRSNS (I, J) 

)r 

:ALL ERRSNS (I,J,MSG) 

13-32 



where: 

I 

MSG 

FUNCTIONS AND SUBROUTINES 

returns a FORTF:AN-supplied number that describes the 
class of failure that occurred. 

optionally returns 
further descrjbes 
error. 

a processor-specific number that 
or qualifies the type of the last 

If present, is a character variable used to return the 
ASCII text of the last error message. It the variable 
for MSG is less than 80 characters, the text 
truncated; if the variable is greater than 
characters, th{~ text is padded to the right 
blanks. 

NOTE 

For compat .. bility with previous versions of 
FORTRAN-lO;'20, you can specify a numeric array 
as the MSG argument. The numeric array is used 
as a 16-word array to return the ASCII text ot 
the last error message. 

is 
80 

with 

13.4.1.16 EXIT Subroutine - The EXIT subroutine terminates the 
program and returns control to the monitor. The EXIT subroutine takes 
no arguments. 

The form of the EXIT subrolltine is: 

CALL EXIT 

r
--·-···_- --- .'- ---·------------1 

FFUNIT 
I Subroutine 

L __ . __________ .... __ . _______ J 

13.4.1.17 FFUNIT Subroutine - The FFUNIT subroutine returns the 
lowest available FORTRAN logic:al unit number (see Table 10-3). 

The form of the FFUNIT subrou~ine is: 

CALL FFUNIT (n) 

13-33 



FUNCTIONS AND SUBROUTINES 

1··----·.--.-----------------
GTODA -I 

l Subroutine 

_______ .. _p ______ ~L _ . ..1 

i3.4.1.18 GTODA Subroutine - The GTODA subroutine converts elements 
~f double-precision arrays from G-floating double-precision format to 
D-floating double-precision format. 

The form of the GTODA subroutine is: 

CALL GTODA(sname,dname,n) 

v..'here: 

sname is the source array name. 

dname is the destination array name. 

n is the number of array elements to convert. 

~See Section 13.4.1.12 for the DTOGA subroutine.) 

13.4.1.19 ILL Subroutine - The ILL subroutine sets the ILLEG flag. 
[f this flag is set and an illegal character is encountered in 
floating-point, double-precision input, the corresponding value is set 
to zero and no error message is issued. The ILL subroutine takes no 
~rguments. The ILLEG flag is not set initially. 

rhe form of the ILL subroutine is: 

CALL ILL 

r-·····-·--~---·--·---·-·---··- --.----.---- ... ----.-

I 
I LEGAL 
! Subroutine 

L ...... _ ..... _ .. _ .. _._. ___ .... _ .. 

11.4.1.20 LEGAL Subroutine - The LEGAL subroutine clears the ILLEG 
[lag sec by the ILL subroutine. The LEGAL subroutine takes no 
1'rq umen ts . 

T'iL' form of the LEGAL subroutine is: 

13-34 



FUNCTIONS AND SUBROUTINES 

[
-----'-------1 

MVBITS 
Subroutine 

._. __ ... ' .. _ .. ___ ,, ______ J 

13.4.1.21 MVBITS Subroutine -. The MVBITS subroutine transfers a bit 
field from one storage location (source) to a field in a second 
storage location (destination). 

The form of the r.'iVBITS subrout:ine is: 

CALL MVBITS(m,i,len,n,j) 

where: 

m is an integer expre~;sion that represents the source location 
from which a bit fiE!ld is transferred. 

i is an integer exprE!ssion that identifies the first bit 
position in the SOUI-ce field transferred from m. 

len is an integer expre~;sion that identifies the length of the 
field transferred fl-om m. 

n is an integer val-iable or array element that is the 
destination location to which a bit field is transferred. 

j is an integer expression that identifies the first bit 
position in the c1estination field transferred from m. 

The MVBITS subroutine transfel~s len bits from position i through 
i+len-l of the source locat~on (m) to positions j through j+len-l of 
the destination location (n). Other bits of the destination location 
and all of the bits of the source location remain unchanged. The 
values of i+len and j+len musi: not be greater than 36. 

(See Section l3.J~.4 for infornation on bit manipulation functions.) 

[
-----.----.-.--J. 

OVERFL 
Subroutine 

--- '-.'~ -------.------

13.4.1.22 OVERFL Subroutin,~ _. The OVERFL subroutine returns 
information about overflow, ulderflow, and divide check. 

The form of the OVERFL subrou':ine is: 

CALL OVERFL(IANS) 

13-35 



FUNCTIONS AND SUBROUTINES 

wnere: 

~ANS is an integer variable whose value specifies whether an 
overflow, underflow, or divide check has occurred since 
the last call to OVERFL. The values returned are: 

at least one overflow, 
check occurred. 

underflow, or divide 

2 none occurred. 

I-----s~~~~~ne -
L_ .. ___________ ._. _____________ ...... ___ .... __ .... _ t 

13.4.1.23 PDUMP Subroutine - The PDUMP subroutine functions exactly 
like the DUMP subroutine (see Section 13.4.1.13) except that control 
returns to the calling program after the dump has been executed. 

The form of the PDUMP subroutine is: 

CALL PDUMP(LBl,UBI,formatl[ .•. ,LBn,UBn,formatn]) 

where: 

LBI,UBI are the integer values of the upper and lower memory 
addresses to be dumped. 

formatl is an integer that indicates the dump format. 
possible specifications are: 

0 octal 
_L real 
2 integer 

) ASCII _.1 

The 

[f no arguments are supplied, all of user memory is dumped in octal. 
If only the bounds arguments are specified, or if the format value is 
aut ot range, the dump format is octal. If only the first bound 
3rgument is specified, all locations from that address to the end of 

memor yare dumped. 

,-.-.-------.--.----.-.-.-----... ---.-.. -. '-1 
I 

! aUIETXI I' 
I Subroutine 

L. __ .. _________________ .. ____________ . ___ .. _ J 

l~.4.1.24 QUIETX Subroutine - The QUIETX subroutine suppresses all 
:>llmmary typeout when the program terminates, including library error 
:,ilmmaries and CPU times. The OUIETX subroutine takes no arguments. 

"'he form of the OUIETX subroutine is: 

"ALL OUIETX 

13-36 



FUNCTIONS AND SUBROUTINES 

[

----_._--_. -------.---_._------j 
SAVFMT 

Subroutine 

---_._-----------

13.4.1.25 SAVFMT Subroutine _. The SAVFMT subroutine directs FOROTS to 
encode the FORMAT specificat~ons contained in the specified character 
variable or array, and to SaVE! the encoded form. This action improves 
the performance of any fuLure 1/0 statements which that character 
variable or array is the format identifier. 

FOROTS saves the encoded form of the format until a call to CLRFMT 
(see Section 13.4.1.9) is executed for that variable or array, or 
until another call to SAVFMT -os executed for that variable or array. 

NOTE 

After a call to SAVFMr~, you must not change the value 
of the variable or array_ If the value is changed, 
the new value may be _.gnorecl. A call to SAVFMT with a 
variable or array whose address is identical to that 
in a previous call, does an implied call to CLRFMT. 

The form of the SAVFMT subroutine is: 

CALL SAVFMT(name[ ,arrays:.ze]) 

where: 

name is the nane of the character variable or array 
that contains the FORMAT descriptors that you want 
encoded. 

urraysize is the nunber of array elements if an array is 
specified. 

NOTE 

For compatibility with previous versions of 
FORTRAN-10/20, you can specify a numeric array name as 
the argument for the ::;AVFMT subroutine. 

[ ------- -----------] 
SAVRAN 

Subroutine 

------.--------

13.4.1.26 SAVRAN Subroutine -- The SAVRAN subroutine saves the last 
internal integer seed valu'~ generated by the RAN function. The RAN 
function, described in Sectio'1 13.3.1, returns a random number each 
time it is called. This value can be used at a later time in a call 
to SETRAN to reestablish the .3ame random number sequence. 

13-37 



FUNCTIONS AND SUBROUTINES 

The form of the SAVRAN subroutine is: 

CALL SAVRAN(n) 

where: 

n is an integer variable into which the SAVRAN subroutine 
stores the last internal integer seed value generated. 

~
--~ SETRAN 

Subroutine 

13.4.1.27 SETRAN Subroutine - The SETRAN subroutine specifies the 
internal integer seed value for the RAN function. If the SETRAN 
argument is zero, RAN uses its own default starting value. 

The form of the SETRAN subroutine is: 

CALL SP,TRAN(n) 

where: 

n is a nonnegative integer constant or variable 
2**31) . 

SORT 
Subroutine 

(less than 

13.4.1.28 SORT Subroutine - The SORT subroutine sorts one or more 
files using the SORT program. You can successfully use this 
sub r 0 uti n eon 1 y i f the SORT so f twa r e has been ins tall e d ( see the 
FORTRAN Installation Guide). The SORT software is sold as a separate 
product and may -i1O-t-be-avaTlable at your installation. 

The form of the SORT subroutine is: 

CALL SORT('sort string') 

where: 

sort string is a command line containing file specifications 
and SORT switches. For specific information about 
the SORT command line, see the SORT/MERGE User's 
Guide. 

13-38 



FUNCTIONS AND SUBROUTINES 

NOTE 

The sert string must be compatIble with 
the current version of the standalone 
SORT. Therefore, the string is not the 
same for TOPS-I0 and TOPS-20 (see the 
'§~Q?_T / r-' ~~g_~ ~~~ r 's G ~_~~_~) • 

13.4.1.29 SRTINI Subroutine - The SRTINI subroutine directs FOROTS to 
start allocating memory from t.op downward to account for large overlay 
programs and preallocates pagE·s 600: 677 (octal) for SORT. 

The form of the SRTINI routinE is: 

CALL SRTINI(n) 

where: 

n is top page number t.o use when allocating memory. 

Note that FOROTS will not alle,cate pages (including DDT pages) 
have been marked as unavailabJe at memory initialization. 

that 

13.4.1.30 TIME Subroutine - ~'he TIME subroutine returns the current 
time of day in left-justified ASCII. 

The TIME subroutine has two forms: 

CALL TIME(x) 

or 

CALL TIME(x,y) 

where: 

xis a c h a r act e r va r i (\ b 1 e • In the 0 n ear 9 urn e n t tor m , TIM E 
r~eturns the time :_n x in the form: hh:mm, where hh is the 
h 0 u r ( 2 4 - h 0 u r tim e) and mm i s the min ute s • 

y is a character variable. When the two argument form of the 
TIME subroutine is used, the forms of the time returned in x 
is the same as the one arqument form, and the value returned 
i n y has the f 0 ]- m : b s s • t, w her e b i s a b 1 an k, s sis the 
current seconds, and t is the current tenths 01' seconds. 

13-39 



FUNCTIONS AND SUBROUTINES 

HOTE 

For compatibility with previous versions of 
FORTRAN-IO/20, you can specify a numeric variable or 
array element as an argument of the TIME subroutine. 

The following example demonstrates using the one and the two argument 
forms of the TIME subroutine in a program. 

PROGRAM TIMTST 
CHARACTER*lO X,Y 

CALL TIME(X,Y) 

WRITE(UNIT=5,FMT=101)X,Y 

CALL TIME(X) 

WRITE (UNIT=5, FMT=102)X 
102 FORMAT(lX,'THE ONE ARGUMENT TIME RETURNS: ',A) 

SND 

EXECUTE TIMTST 
LINK: Loading 
[LNKXCT TIMTST execution] 
THE TWO ARGUMENT TIME RETURNS: 09:00 20.9 
THE ONE ARGUMENT TIME RETURNS: 09:00 
CPU time 0.1 Elapsed time 0.2 

I S:~~:~i~e ] 
L _____________________________ _ 

13.4.1.31 TOPMEM Subroutine - The TOPMEM subrJutine directs FOROTS to 
start allocating memory from a specified page number downward to 
account for large overlay programs. 

The form of the TOPMEM subroutine is: 

CALL TOPMEM(n) 

where: 

n is the top page number to use in allocating memory. 

Note that FOROTS will not allocate paqes (including DDT pages) 
have been marked as unavailable at memory initialization. 

13-40 

that 



FUNCTIONS AND SUBROUTINES 

I TRACE 
I---~ 
I . SUb~Uline ____ _ 

13.4.1.32 TRACE Subroutine - The TRACE subroutine generates a list of 
active subprograms on the terminal. An active subprogram is one that 
has been called but has not YEt returned. The main program is always 
active. The trace listinq st2rts at the currently active routine (the 
one containing the call to TFACE) and proceeds back to the main 
program. 

The form of the TRACE subroutine is: 

CALL TRACE 

The information produced by tte TRACE routine consists of, 
subprogram: 

The name of the routjne 

The address of the rcutine (in octal) 

for each 

J. The address of the slbprogram call (expressed as routine-name 
-I- offset) 

4. The address of the slbprogram call 
()f fset with the calling routine) 

(expressed as label + 

~. The number of argumerts passed to the called routine 

6. The types of the argLments passed including: 

Character string descriptor 
'i - D-tloating couble precision 
l" - Heal 
(; - G-floating couble precision 

- Integer or couble integer 
~ - Literal string 
:::.. Logical 
i) - Octal or dOlble octal 

Statement 12bel 
'J - Unknown arglment type 
:{ - Complex 

If there are too many arguments to display, the 'types' column will 
contain ' 

If local symbols are loadec with the program, the label+offset 
information will be much more informative. A label of the form 12345P 
refers to FORTRAN statement nLmber 12345; a label of the form 56789L 
refers to line number 56789 in the compiler listing. Line number 
labels only appear if the program was compiled with /DEBUG:LABELS (see 
Chapter 16). 

The traceback listing is sent to the error-message unit, 
normally the terminal. YOl can use the DIVERT subroutine 
13.4.1.11) to change where thE listing is sent. 

13-41 

which is 
(Section 



FUNCTIONS AND SUBROUTINES 

Example: 

PROGRAM MAIN 
TYPE 10 

10 FORMAT (I' Calling 8UBl:') 
CALL 8UBl 
TYPE 20 

20 FORMAT (I' Calling 8UB2:') 
CALL 8UB2 (A,B) 
END 

SUBROUTINE SUBl 
Y = F(X) 
END 

SUBROUTINE SUB2 (G,H) 
CALL SUB3 (G,H,I) 
END 

SUBROUTINE SUB3 (Al,A2,A3) 

EXECUTE 
LINK: 
[LNKXCT 

Calling 

Name 
TRACE. 
SUB3 
SUB2 
F 
SUBl 

Calling 

Name 
TRACE. 
SUB3 
SUB2 

CALL TRACE 
END 

FUNCTION F(Y) 
CALL SUB2 (Y,O) 
1:"=2. 
END 

TRC.FOR 
Load i ng 

TRC execution] 

8UBl: 

(Loc) «--- Caller 
(426373) «--- 8UB3+2 
(256 ) «--- 8UB2+6 
(232) «--- F+20 
( 30"1) «--- 8UB1+2 
(214) «--- MAIN.+7 

SUB2: 

( Loc) «--- Caller 
(426373) «--- 8UB3+2 
(256 ) «--- 8UB2+6 
(232) «--- MAIN.+14 

CPU time 0.4 Elapsed time 3.1 

13.4.2 User-Defined Subroutines 

(Loc) 
(SUB3+2) 
(SUB2+6) 
(F+20) 
(SUB1+2) 
(MAIN.+7) 

( Loc) 
(SUB3+2) 
(SUB2+6) 
(MAIN.+14) 

Args 
0 
3 
2 
1 
0 

Args 
o 
3 
2 

Types 

FFI 
FI 
F 

Types 

FFI 
FF 

A subroutine subprogram is a separate program unit. The FORTRAN CALL 
statement is used in a program unit to call a subroutine subprogram. 
The CALL statement contains the name of the subroutine to which 
control passes when the CALL statement is executed. The CALL 
statement can also optionally contain actual arguments that are passed 
to the called subroutine. The CALL statement is described in Section 
13.4.?'.2. 

13-42 



FUNCTIONS AND SUBROUTINES 

The SUBROUTINE statement is always the first statement in a subroutine 
subprogram. The SUBROUTINE statement defines the name and, 
optionally, any dummy arguments used by the subroutine. The 
SUBROUTINE statement is described in Section 13.4.2.1. 

The ENTRY statement enables yeu to enter a subroutine subprogram at a 
statement other than the first statement of the subroutine. The ENTRY 
statement is described in Section 13.4.3. 

The last logical statement of a subroutine subprogram is always the 
RETURN statement. By default, the RETURN statement always returns 
control to the first executable statement in the calling program that 
immediately follows the CALL statement. Optionally, you may use the 
alternate return form of the RETURN statement to return control to a 
statement other than the default. Both forms of the RETURN statement 
are described in Section 13.4.4. 

13.4.2.1 SUBROUTINE Statement - The SUBROUTINE statement is always 
the first statement in a subroutine subprogram. It is used to define 
the name of the subroutine and, optionally, to define dummy arguments 
that are used by the subroutine. 

The form of the SUBROUTINE statement is: 

SUBROUTINE sub [([dl[,d2) ••• ])] 

where: 

sub is the symbolic name of the subroutine or dummy procedure. 

d is an optional dummy argument for the subroutine subprogram. 
This argument can be a variable name, an array name, a dummy 
procedure name, or any combination of these separated by 
commas. The parentheses are optional if no dummy arguments 
are specified. 

The following rules control the structuring 
subprogram: 

of a subroutine 

1. You can not use the symbolic name of the subprogram in any 
statement within the defined subprogram except the SUBROUTINE 
statement itself. The symbolic name of a subroutine is a 
global name and must not be the same as any other global name 
or any local name in the program unit. 

2. The symbolic name of a dummy argument is local to the program 
unit and must not appear in an EQUIVALENCE, PARAMETER, SAVE, 
INTRINSIC, COMMON, or DATA statement except as a common block 
name. 

3. The subroutine subprogram may define or redefine one or more 
of its dummy arguments so as to return results. 

4. If the actual argument is a constant or expression, the 
subroutine must not change the value of that argument. 

5. The subroutine subprogram may contain any FORTRAN statement 
except BLOCK DATA, FUNCTION, PROGRAM, another SUBROUTINE 
statement, or any statement that either directly or 
indirectly references the subroutine being defined or any of 
the subprograms in the chain of subprogram references leading 
to this subroutine. 

13-43 



FUNCTIONS AND SUBROUTINES 

6. Dummy arguments that represent statement labels may be either 
an *, $, 0 r &. 

7. The subprogram should contain at least one RETURN statement 
and must be terminated by an END statement. The RETURN 
statement indicates a logical end of the routine; the END 
statement signifies the physical end of the subroutine. If 
no RETURN precedes the END statement, then the RETURN 
statement is implicit. 

8. Subroutine subprograms can have as many entry points as 
desired (see description of ENTRY statement given in Section 
13.4.3) • 

9. A character dummy argument whose length specification is an 
asterisk in parentheses may appear as an operand for 
concatenation. 

13.4.2.2 CALL Statement - The CALL statement is used in a program 
unit to reference a subroutine. Execution of the CALL statement 
causes a transfer of program control to the subroutine referenced in 
the CALL statement. 

The CALL statement can also contain a list of arguments that is used 
by the computation performed in the referenced subroutine. 

The form of the CALL statement is: 

CALL sub [([al[,a2] ••• ])] 

where: 

sub is the symbolic name of a subroutine or dummy procedure. 

a is an optional actual argument that is used by 
subroutine. The actual arguments in the CALL statement 
agree in position and type with the dummy arguments in 
referenced SUBROUTINE statement. The parentheses 
optional if no actual arguments are specified. 

the 
must 

the 
are 

13.4.2.3 Execution of a CALL Statement - When a CALL statement is 
executed, the following results occur: 

1. Any actual arguments in the CALL statement argument list that 
are expressions are evaluated. 

2. The actual arguments are then associated with the dummy 
arguments in the referenced SUBROUTINE statement. 

3. Control passes to the subroutine and it is executed. 

4. Return of control 
calling program 
statement. 

from the 
completes 

referenced subroutine to 
the execution of the 

the 
CALL 

A subroutine can be referenced within any other procedure or the main 
program of the executable program. A subprogram cannot, however, 
reference itself, either directly or indirectly. 

13-44 



FUNCTIONS AND SUBROUTINES 

13.4.2.4 Actual Arguments for a Subroutine - Actual arguments can 
appear in the CALL statement argument list. Actual arguments must 
agree in order, number, and type with the corresponding dummy 
arguments in the dummy argument list of the referenced subroutine. 
The exception to the agreement rules between actual and dummy argument 
lists is the use of a subroutine name or an alternate return specifier 
as an actual argument. 

Actual arguments in CALL statements can be any of the following: 

1. Any expression, including a character expression whose length 
specification is an asterisk in parentheses. 

2. An array name 

3. An intrinsic function name 

4. An external proced ure name .. 
5. A dummy procedure name 

6. An alternate return label 

An actual argument in a subroutine reference may be a dummy argument 
name that appears in a dummy argument list within the subprogram 
containing the reference. An asterisk dummy argument must not be used 
as an actual argument in a subprogram reference. 

13.4.3 ENTRY Statement 

The ENTRY statement provides you with a method for entering a function 
or subroutine subprogram at any executable statement. The ENTRY 
statement can appear anywhere within a function subprogram after the 
FUNCTION statement, or within a subroutine subprogram after the 
SUBROUTINE statement. An ENTRY statement cannot appear between a DO 
statement and the terminal statement of its DO-loop or inside a 
block-IF statement. 

A subprogram may optionally have one or more ENTRY statements. An 
ENTRY statement is classified as a nonexecutable statement. 

The form of the ENTRY statement is: 

EN TR Yen [( d 1 [, d 2 ••• ] ) ] 

where: 

en is the symbolic name of an entry in a function or subroutine 
subprogram. This symbolic name is called an entry name. If 
the entry name appears in a subroutine subprogram, it is 
referred to as a subroutine name; if the entry name appears 
in a function subprogram, it is called an external function 
name. 

d is a variable name, array name, dummy procedure name, or the 
symbols: *, $, or & (these symbols can represent a dummy 
argument which is an alternate return label). The symbol 
references (asterisk, ampersand, and dollar sign) are 
permitted only when the ENTRY statement appears in a 
subroutine subprogram. 

13-45 



FUNCTIONS AND SUBROUTINES 

If you do not specify any parentheses after the entry name, you need 
not specify any dummy arguments. If, however, you include the 
parentheses, you must specify at least one dummy argument. The rules 
for the use of an ENTRY statement follow: 

1. The ENTRY statement allows entry into a subprogram at a place 
other than that defined by the SUBROUTINE or FUNCTION 
statement. You may include more than one ENTRY statement in 
an external subprogram. 

2. Execution begins at the first executable statement following 
the ENTRY statement. 

3. Appearance of an ENTRY statement in a subprogram does not 
negate the rule that statement functions in subprograms must 
precede the first executable statement. 

4. ENTRY statements are nonexecutable and do not affect the 
execution flow of a subprogram. 

5. You can not use an ENTRY statement in a main program or have 
a subprogram reference itself through its entry points. 

6. You can not use an ENTRY statement in the range of a DO 
statement construction. 

7. The dummy arguments in the ENTRY statement need not agree in 
order, number, or type with the dummy arguments in SUBROUTINE 
or FUNCTION statements or any other ENTRY statement in the 
subprogram. However, the arguments for each call or function 
reference must agree with the dummy arguments in the 
SUBROUTINE, FUNCTION, or ENTRY statement that is referenced. 

8. Entry into a subprogram initializes only the dummy arguments 
of the referenced ENTRY statement. 

9. You can not reference a dummy argument unless it 
the dummy list of the ENTRY, SUBROUTINE, 
statement by which the subprogram is entered. 

appears in 
or FUNCTION 

10. The source subprogram must be ordered such that references to 
dummy arguments in executable statements follow the 
appearance of the dummy argument in the dummy list of a 
SUBROUTINE, FUNCTION, or ENTRY statement. 

11. Dummy arguments that were defined for a 
previous reference to the subprogram 
subsequent entry into the subprogram. 

subprogram by 
are undefined 

some 
for 

12. The value of a function must be returned by use of the 
current entry name. 

13. If an entry name in a function subprogram is of type 
character, each entry name and the name of the function 
subprogram must be of type character. If the name of the 
function subprogram or any entry in the subprogram has a 
length of (*) declared, all such items must have a length 
specification of the same integer value. 

13-46 



FUNCTIONS AND SUBROUTINES 

13.4.4 RETURN Statement 

The RETURN statement returns control to the referencing 
and may appear only in a function subprogram or 
subprogram. 

program unit 
a subroutine 

The RETURN statement has 
is the last statement 
subprogram. 

two possible forms, depending on whether it 
in a function subprogram or a subroutine 

The form of the HETURN stateml;nt in a function subprogram is: 

RETURN 

The form of the HETURN stateml;nt in a subroutine subprogram is: 

RETURN [e] 

where: 

e is an integer constant, variable, or expression. This form 
of thE~ RETURN statl;ment is called an alternate return. The 
alternate return fonn enables you to select any labeled 
statement in the calling program unit as a return point 
after I'~xecution of the program unit in which the alternate 
RETURN statement appenrs. 

The value of e shou1d be a positive integer that is equal to 
or less than the number of statement labels given in the 
argument list of th(; calling statement. If e is less than 1 
or is larger than ":he number of available statement labels, 
a standard return is performed. (A standard return 
transfers control back to the first executable statement 
immediately following the calling statement in the calling 
program unit). 

A dummy argument for a statE:!ment label must be either 
an asterisk (*), a dollar sign ($), or an ampersand 
( &) • 

You may use more than one RETURN (standard return) 
subprogram. The use of the alternate return 
statement is restricted to subroutine subprograms. 

13-47 

statement in any 
form of the RETURN 



FUNCTIONS AND SUBROUTINES 

For example, assume the following statement sequence in a main 
program: 

CALL EXAMP(1,*10,K,*15,M,*20) 
GO TO 101 

10 alternate return #1 

15 alternate return #2 

20 alternate return #3 

END 

SUBROUTINE EXAMP (L, *,M, *,N,*) 

RETURN 

RETURN 

RETURN(I+J) 

END 

Each occurrence of RETURN returns control to the statement GO TO 101 
in the calling program. 

If, on the execution of the RETURN(I+J) statement, the value of (I+J) 
is: 

Value The following is performed: 

less than one a standard return to the GO TO 101 
statement is made 

1 the return is made to statement 10 
2 the return is made to statement 15 
3 the return is made to statement 20 

Greater than 3 a standard return to the GO TO 101 
statement is made. 

13-48 



FUNCTIONS AND SUBROUTINES 

13.4.5 Dummy and Actual Argwnents 

Since you may reference subprograms at more than one point throughout 
a program, many of the val~es used by the subprogram may be changed 
each time it is used. Dummy ~rguments in subprograms represent the 
actual values to be used, w~ich are passed to the subprogram when it 
is called. 

For example, shown below is a subroutine (TEST) being called from the 
main program by a CALL statement. In this example, the variables in 
the CALL statement, A, B, and C(2), represent actual values in the 
main program. They are therefore called actual arguments. 

On the other hand, the variables in the SUBROUTINE statement, R, X, 
and Z, do not represent any values until they have values passed to 
them from the CALL stateme~t. They are therefore called dummy 
arguments. 

(The CALL, SUBROUTINE, and RETURN statements are described in Sections 
13.4.2.2, 13.4.2.1, and 13.4.4, respectively.) 

CALL TEST (A,B,C(2» 

END 
SUBROUTINE TEST (R,X,Z) 

RETURN 
END 

Functions and subroutines use dummy arguments to indicate the type of 
the actual arguments they represent and whether the actual arguments 
are variables, arrays, subroutine names, or the names of external 
functions. Each dummy argument must be used within a function or 
subroutine as if it were a variable, array, subroutine, or external 
function identifier. 

Dummy arguments are given in an argument list associated with the 
identifier assigned to the subprogram; actual arguments are normally 
given in an argument list associated with a call made to the desired 
subprogram. 

The position, number, and type of each dummy argument in a subprogram 
list must agree with the position, number, and type of each argument 
list of the subprogram reference. 

NO'TE 

If the /DEBUG:ARGUMENTS compiler switch is specified 
(see Section 16.3), optional type checking is 
performed at load time on dummy and actual arguments. 

13-49 



FUNCTIONS AND SUBROUTINES 

Dummy arguments may be: 

1. variables 

2. array names 

3. subroutine identifiers 

4. function identifiers 

5. the symbols *, $, or & that are used to denote the position 
of alternate return labels 

When you reference a subprogram, its dummy arguments are replaced by 
the corresponding actual arguments supplied in the reference. All 
appearances of a dummy argument within a function or subroutine are 
related to the given actual arguments. Except for subroutine 
identifiers and character constants, a valid association between dummy 
and actual arguments occurs only if both are of the same type; 
otherwise, the results of the subprogram computations will be 
unpredictable. 

Argument association may be carried through more than one level of 
subprogram reference if a valid association is maintained through each 
level. The dummy/actual argument associations established when a 
subprogram is referenced are terminated when the desired subprogram 
operations are completed. 

The following rules govern the use and form of dummy arguments: 

1. The number and type of the dummy arguments of a procedure 
must be the same as the number and type of the actual 
arguments given each time the procedure is referenced. 

2. Dummy argument names may not appear in EQUIVALENCE, DATA, or 
COMMON statements. 

3. A variable dummy argument should have a variable, an array 
element identifier, an expression, or a constant as its 
corresponding argument. 

4. An array dummy argument should have either an array name or 
an array element identifier as its corresponding actual 
argument. If the actual argument is an array, the length of 
the dummy array should be less than or equal to that of the 
actual array. Each element of a dummy array is associated 
directly with the corresponding elements of the actual array. 

5. A dummy argument representing a subroutine identifier should 
have a subroutine name as its actual argument. 

6. A dummy argument representing an external function must have 
an external function as its actual argument. 

7. A dummy argument may be defined or redefined in a referenced 
subprogram only if its corresponding actual argument is a 
variable. If dummy arguments are array names, then elements 
of the array may be redefined. 

Additional information regarding the use of dummy and actual arguments 
is given in the description of how subprograms are defined and 
referenced. 

13-50 



FUNCTIONS AND SUBROUTINES 

13.4.5.1 Length of Character Dummy and Actual Arguments - The length 
of a dummy argument of type character must not be greater than the 
length of its associated actual argument. Note that if the character 
dummy argument's length is specified as *(*), the length used is 
exactly the length of the asscciated actual argument. This is known 
as a passed length character 6rgument. 

The length of the dummy argument is determined each time control 
transfers to the function. The length of the actual argument can be 
the length of a character v~riable, array element, substring, or 
expression. 

A character array dummy argumE'nt can have passed length. The length 
of each element in the dummy argument is the length of the elements in 
the actual argument. The passed length and the array declaractor 
together determine the size of the passed length character array. 

The following example of a function subprogram uses a passed length 
character argument. The function finds the position of the character 
with the highest ASCII code value; it uses the length of the passed 
length character argument t.o control the iteration. (Note that the 
intrinsic function LEN is used to determine the length of the 
argument. See Table 13-1 for a description of the LEN function.) 

INTEGER FUNCTION ICMAX(CVAR) 
CHARACTER*(*) CVAR 
ICMAX =: 1 
DO 10 I = 2, LEN (CV]\R) 

10 IF (CVAR(I:I) .GT. CVAR(ICMAX:ICMAX)) ICMAX =1 
RETURN 
END 

Each of the following functiorl references specifies a different length 
for the dummy argument: 

CHARACTER VAR*lO, CARRAY:3,5)*20 

11 ICMAX (VAR) 
12 ICMAX(CARRAY(2,2)) 
13 ICMAX(VAR(3:8)) 
I 4 I CMAX (CARRAY (1,3) (5 15)) 
IS ICMAX (VAR(3:4)//CAHRAY(3,.5)) 

13.4.5.2 Character and Hollerith Constants as Actual Arguments
Actual arguments and their cOJ~responding dummy arguments must agree in 
data type. If the actual al~gument is a Hollerith constant (for 
example, 4HABCD),. the dummy aJ~gument must be of numeric data type. 

In FORTRAN-IO/20, if an actua: argument is a character constant (for 
example 'ABCD') r the corresponding dummy argument can have either 
numeric or character data tYPE!. If the dummy argument has a numeric 
data type, the character cons~ant 'ABCD' is, in effect, converted to a 
Hollerith constant by the FOR'rRAN compiler and the loader. 

An exception to this occurs when the function or subroutine name is 
itself a dummy argument. It is not possible to determine at compile 
time or load timE~ whether a charactEH constant or Hollerith constant 
is required. In this case, a character constant actual argument can 
correspond only to a characte~ dummy argument. 

13-51 





CHAPTEFt 14 

BLOCK D}\TA SUBPROGRAMS 

Block data subprograms provide initial values for variables and array 
elements in named common blocks. 

A block data subprogram must st:art with the BLOCK DATA statement. The 
only valid statements within a block data subprogram are the 
specification and DATA statemE~nts (COMMON, DIMENSION, EQUIVALENCE, 
IMPLICIT, PARAMETER, SAVE, type statements, and DATA statements). The 
last statement of a block data subprogram must be an END statement. 

You can enter initial values illto more than one labeled common block 
in a single subprogram of this type. 

An executable program can contain more than one block data subprogram. 

14.1 BLOCK DATA STATEMENT 

The form of the BLOCK DATA sta":ement is: 

BLOCK DATA [sub] 

where: 

sub is the optional symbolic name of a block data subprogram in 
which the BLOCK DATA statement appears. 

The name sub is a global name and must therefore be a unique 
symbolic name within the executable program. 

The following is an example of a block data subprogram: 

BLOCK DATA TEST 
COMMON /SQUARE/ CIRCLE,RECTAN,PI 
DATA CIRCLE,RECTAN,PI/1.,2.,3.14159/ 
END 

This example initializes the COMMON variables CIRCLE, RECTAN, and PI 
to 1., 2., and 3.14159 respectively. 

14-1 





CHAPTER 15 

WRITING USER PROGRAMS 

This chapter is a guide for writing effective programs with FORTRAN. 
It contains techniques for optimization, interaction with non-FORTRAN 
programs, and other useful programming hints. 

15.1 GENERAL PROGRAMMING CONSIDERATIONS 

The following 
should observe 
FORTRAN. 

paragraphs describe 
when preparing a 

programming considerations you 
FORTRAN program to be compiled by 

15.1.1 Accuracy and Range of Double-Precision Numbers 

Floating-point and real numbers may consist of up to 16 digits in a 
double-precision mode. Their range is specified in Chapter 3, Section 
3.2. You must be careful when testing the value of a number within 
the specified range, since, although numbers up to 10**38 may be 
represented, FORTRAN can only test numbers of up to eight significant 
digits (REAL precision) and 16 significant digits (DOUBLE precision). 

NOTE 

For KL model B systems, if the /GFLOATING compiler 
switch is specified (see Section 16.1.3 or 16.2.3), 
double-precision numbers up to 10**307 can be 
represented. 

You must also be careful when testing floating-point computations for 
a result of O. In most cases the anticipated result, that is, 0 will 
be obtained; however, in some cases the result may be a very small 
number that approximates O. Such an approximation of 0 will cause 
tests for equality to 0 to fai1. 

To increase the accuracy of its compile-time arithmetic, the compiler 
does all floating point arithmetic in double precision (it converts 
back to single precision when necessary). For KL model B systems, if 
the /GFLOATING compiler switch is specified (see Section 16.1.3 or 
16.2.3), the compiler does its compile-time arithmetic in G-floating 
double-precision. If the /DFLOATING compiler switch is specified (the 
default), the compiler does its compile-time arithmetic in D-floating 
double-precision. 

Compile-time arithmetic done in G-floating double-precision may not 
overflow or underflow as it. might with D-floating double-precision 
arithmetic. G-floating double-precision has a greater range than 
D-floating double-precision (see Section 3.4). 

15-1 



WRITING USER PROGRAMS 

15.1.2 Writing FORTRAN Programs for Use on Other Computers 

If you prepare a program to run on both TOPS-I0 or TOPS-20 and another 
manufacturer's computer, you should: 

1. Avoid using any blue print language extensions in this 
manual. (All information in blue print represents aspects of 
FORTRAN that are extensions to the FORTRAN-77 Standard.) 

2. Consider the accuracy and size of the numbers that another 
manufacturer's computer is capable of handling. 

You can use the /FLAG compiler switch to invoke the compatibility 
flagger. This feature provides warning messages for language elements 
that are extensions to the FORTRAN-77 standard or that are 
incompatible with VAX FORTRAN (see Section 16.6). 

15.1.3 Using Floating-Point DO Loops 

FORTRAN permits you to use noninteger, single- or double- precision 
numbers as the parameter variables in a DO statement. This lets you 
generate a wider range of values for the DO loop index variables, 
which may, in turn, be used inside the loop for computations. 

WARNING 

If a noninteger index is used, accumulation of 
rounding errors may lead to unexpected values for the 
loop variable. 

15.1.4 Computation of DO Loop Iterations 

The number of times through a DO loop is computed outside the loop and 
is not affected by any changes to the DO index parameters within the 
loop. The farmula far the number of times a DO loop is executed is: 

DO 10 I=Ml,M2,M3 

Number of cycles=MAX (INT((M2-Ml+M3)/M3) ,0) 

The values of the parameters Ml, M2, M3 can be of any type except 
complex. If the iteration count is less than or equal to zero, the 
body of the loop is not executed. The index variable retains its 
assigned value (Ml). (See Section 9.3.) 

NOTE 

The interpretation of the iteration count and the 
index variable described above is different from that 
of earlier versions of FORTRAN-IO/20. If the /NOF77 
compiler switch is specified (see Section 16.1.3 or 
16.2.3), and the iteration count is less than or equal 
to zero, the body of the loop is executed once. In 
addition, the final value of the index variable of the 
DO statement is undefined after a normal exit. 

15-2 



WRITING USER PROGRAMS 

15.1.5 Subroutines - Programming Considerations 

Consider the following items when preparing and executing subroutines: 

1. During execution, no check is made to see if the proper 
number of arguments is passed (unless the /DEBUG:ARGUMENTS 
compiler switch is specified, see Section 16.3). 

2. If the number of actual arguments passed to a subroutine is 
less than the number of dummy arguments specified, the values 
of the unspecified 3rguments are undefined (unless the 
/DEBUG:ARGUMENTS compiler switch is specified, see Section 
16.3) • 

3. If the number of actual arguments passed to a subroutine is 
greater than the number of dummy arguments given, the excess 
arguments are ignored (unless the /DEBUG:ARGUMENTS compiler 
switch is specified, see Section 16.3). 

4. If an actual argument is a constant and its corresponding 
dummy argument is set to another value (an illegal usage), 
all references made to the constant in the calling program 
may be changed to the new value of the dummy argument. 

5. No check is made to see if the arguments passed are of the 
same type as the dummy arguments (unless the /DEBUG:ARGUMENTS 
compiler switch is specified, see Section 16.3). 

NOTE 

An exception is that a check is always made 
for G-floating and D-floating type mismatches 
regardless of the /DEBUG:ARGUMENTS switch 
being specified. 

In addition, w~en 
a subroutine or 
wi th the /EXTE.'1D 
must also be? 
switch. 

you pass character data to 
function that is compiled 

switch, the calling program 
compiled with the /EXTEND 

If an actual parameter is a constant and the corresponding 
dummy is of type real, be sure to include the decimal point 
in the constant. If t~e dummy is double-precision, be sure 
to specify the constant with a "D". 

NOTE 

You are given no warning if any of the situations 
described in items 1,2,3,4, or 5 occur (unless the 
/DEBUG:ARGUMENTS compiler switch is specified, see 
Section 16,.3). 

Examples: 

If a function F has a single dummy arqument of type real, and that 
function is called with: 

F(2) 

15-3 



WRITING USER PROGRAMS 

F interprets the integer 2 as an unnormalized floating-point number. 
In this instance, F(A) should be called with: 

F(2.0) 

Similarly, if the function Fl(D) is called with: 

Fl (2.5) 

and D is double-precision, Fl assumes that its parameters have been 
specified with two words of precision and picks up whatever follows 
the constant 2.5 in memory. The proper method is to use: 

Fl(2.5DO) 

15.1.6 Reordering of Computations 

computations that are not enclosed within parentheses may be reordered 
by the compiler. Sometimes it is necessary to use parentheses to 
ensure proper results from a specific computation. 

For example, assuming that: 

1. RLI represents a large number, such that RLl*RL2 will cause 
an overflow condition, and 

2. RSI is a very small number, that is, less than 1, the program 
sequence: 

A=RSl*RLl*RL2 
B=RS2*RL2*RLI 

will not produce an overflow when evaluated left to right, 
since the first computation in each expression (that is, 
RSl*RLl and RS2*RL2) will produce an interim result that is 
smaller than either large number (RLI or RL2). 

However, the compiler may recognize RLl*RL2 as a common sUbexpression 
(see Section 15.2.1.1) and generate the following sequence: 

temp 
A 
B 

RLl*RL2 
RSl*temp 
RS2*temp 

The computation of temp will cause an overflow. 

You should write the program as follows to ensure that the desired 
results are obtained: 

A=(RSl*RLl)*RL2 
B=(RS2*RL2)*RLI 

computations may be reordered even when global optimization is not 
selected. 

15-4 



WRITING USER PROGRAMS 

15.1.7 Dimensioning of Dummy Arrays 

When you specify an array as a dummy argument to a subprogram unit, 
you must indicate to the compiler that the parameter is an array by 
dimensioning the array in a specification statement. This is the only 
way the compiler is able to distinguish a reference to such an array 
from a function reference. A dummy array can be dimensioned the 
following ways: 

1. Assumed size 

2. Adjustable dimensioned 

3. Fixed dimension bound 

Dimensioning the array with a size of 
dangerous, practice. The alternative 
assumed-size arrays (see Section 7.1.2). 

1 
to 

is a 
this 

common, although 
practice is to use 

Example: 

SUBROUTINE SUBl(A,B) 
DIMENSION A (l) 

There are disadvantages to using the above technique because it may 
prevent the compiler from diagnosing illegal programs, specifically: 

1. Reading or writing the array by name 

DIMENSION ARRAY (10) 
READ (l) ARRAY 

The above is a binary read that will read ten words into 
ARRAY. 

SUBROUTINE SUBl(A) 
DIMENSION A(l) 
READ (l) A 

This binary read will cause one word to be read into A. 

2. Using the array as a format 

3. 

SUBROUTINE SUB2(FMT) 
DIMENSION FMT(l) 
READ (l, FMT) 

Only the first word of the format specification contained in 
FMT is used. 

Using the /DEBUG:BOUNDS compilation switch 
16.3), the dimension information used is 
specified in the array declaration 

SUBROUTINE SUB3(A) 
DIMENSION A(l) 
A(2)=0 

(see Section 
that which is 

The reference to A(2) will cause the out-of-bounds warning 
message to be generated. 

15-5 



WRITING USER PROGRAMS 

15.2 FORTRAN GLOBAL OPTIMIZATION 

You have the option of invoking the global optimizer during 
compilation. The optimizer treats groups of statements in the source 
program as a single entity. The purpose of the global optimizer is to 
prepare a more efficient object program that produces the same results 
as the original unoptimized program, but takes significantly less 
execution time. 

The output of the lexical and syntactic analysis phase of the compiler 
is developed into an optimized source program equivalent (in results) 
to the original. The optimized program is then processed by the 
standard compiler code generation phase. 

15.2.1 Optimization Techniques 

15.2.1.1 Elimination of Redundant Computations - Often the same 
sUbexpression will appear in more than one computation throughout a 
program. If the values of the operands of such a common expression 
are not changed between computations, the sUbexpression may be written 
as a separate arithmetic expression. Also, the variable representing 
its resultant may then be substituted where the subexpression appears. 
This eliminates unnecessary recomputation of the subexpression. For 
example, the instruction sequence: 

A=B*C+E*F 

H=A+G-B*C 

IF((B*C)-H) 10,20,30 

contains the sUbexpression B*C three times when it really needs to be 
computed only once. Rewriting the preceding sequence as: 

T=B*C 
A=T+E*F 

H=A+G-T 

IF(T-H) 10,20,30 

eliminates two computations of the sUbexpression B*C from the overall 
sequence. 

Decreasing the number of arithmetic operations performed in a source 
program by the elimination of common sUbexpressions shortens the 
execution time of the resulting object program. 

15-6 



WRITING USER PROGRAMS 

15.2.1.2 Reduction of Operator Strength - The 
execute arithmetic operations varies according 
involved. The hierarchy of arithmetic operations 
amount of execution time required is: 

MOST TIME 

LEAST TIME 

OPERATOR 
** 
/ 
* 
+,-

time required to 
to the operator(s) 
according to the 

During program optimization, the global optimizer replaces, where 
possible some arithmetic operations that require the most time 
with operations that require less time. For example, consider the 
following DO loop that is used to create a table for the conversion of 
from 1 to 20 miles to their equivalents in feet: 

DO 10 MILES=1,20 
10 IFEET(MILES)=5280*MILES 

The execution time of the loop would be shorter if the time-consuming 
multiply operation, that is, 5280*MILES, could be replaced by a faster 
operation. Since you increment MILES on each pass, you can replace 
the multiply operation by an add and total operation. 

In its optimized form, the loop would be replaced by a sequence 
equivalent to: 

K=5280 
DO 10 MILES=1,20 
IFEET(MILES)=K 

10 K=K+5280 

In the optimized form of the loop, the value of K is set to 5280 for 
the first iteration of the loop, and is increased by 5280 for each 
succeeding iteration of the loop. 

This situation occurs frequently in subscript calculations that 
implicitly contain multiplications. 

15.2.1.3 Removal of Constant Computation from Loops - The speed with 
which a given algorithm may be executed can be increased if 
instructions and/or computations are moved out of frequently traversed 
program sequences into less frequently traversed program sequences. 

Movement of code is possible only if none of the arguments in the 
items to be moved are redefined within the code sequences from which 
they are to be taken. Computations within a loop consisting of 
variables or constants that are not changed in value within the loop 
may be moved outside the loop. Decreasing the number of computations 
made within a loop greatly decreases the execution time required by 
the loop. 

For example, in the sequence: 

DO 10 1=1,100 
10 F=2.0*Q*A(I)+F 

INumerical analysis considerations severely limit the number of 
cases where this is possible. 

15-7 



WRITING USER PROGRAMS 

the value of the computation 2.0*Q, once calculated on the first 
iteration, will remain unchanged during the remaining 99 iterations of 
the loop. Reforming the preceding sequence to: 

QQ=2.0*Q 
DO 10 1=1,100 

10 F=QQ*A(I)+F 

moves the calculation 2.0*Q outside the scope of the loop. 
movement of code eliminates 99 multiply operations. 

This 

In addition, it is possible to remove entire assignment statements 
from loops. This action can be easily detected from the macro 
expanded listings. The internal sequence number remains with the 
statement and appears out of order in the leftmost column of the macro 
expanded listing (LINE). 

15.2.1.4 Constant Folding and Propagation - In this method of 
optimization, expressions containing determinate constant values are 
detected and the constants are replaced, at compile time, by their 
defined or calculated value. For example, assume that the constant PI 
is defined and used in the following manner: 

PI=3.14159 

X=2*PI*Y 

At compile time, the optimizer will have used the defined value of PI 
to calculate the value of the sUbexpression 2*PI. The optimized 
sequence would then be: 

PI=3.14159 

X=6.28318*Y 

thereby eliminating a multiply operation from the object code program. 

The evaluation of constant expressions at compile time is called 
"folding"; the replacement of variables with their constant values is 
called "constant propagation". 

NOTE 

For KL model B systems, use of the /GFLOATING compiler 
switch (see Section 16.1.3 or 16.2.3) may affect 
compile-time arithmetic. 

15-8 



WRITING USER PROGRAMS 

15.2.1.5 Removal of Inaccessible Code - The optimizer detects and 
eliminates any code within the source program that cannot be accessed. 
In general, this will not happ8n since programmers do not normally 
include such code in their ]Jrograms; however, inaccessible code may 
appear in a program during the debugging process. The removal of 
inaccessible code by the o]Jtimizer reduces the size of the object 
program. 

A warning message is generated for each inaccessible line removed. 

15.2.1.6 Global Register Allocation - During the compilation of a 
source program, the optimizer controls the allocation of registers to 
minimize computation time in the optimized object program. The 
allocation process is designed to minimize the number of MOVE and 
MOVEM machine instructions that will appear in the most frequently 
executed portions of the code. 

15.2.1.7 I/O Optimization - Every effort is made to minimize the 
number of required calls to the FOROTS system. This is done primarily 
through extensive analysis of implied DO loop constructs on I/O data 
transfer statements. The formats of these special blocks are 
described in Chapter 18. These optimizations reduce the size of the 
program (argument code plus argument block size is reduced) and 
greatly improve the performanc8 of programs that use implied DO loop 
I/O statements. 

15.2.1.8 Uninitialized Variable Detection - A warning message may be 
generated when a scalar variable is referenced before it has received 
a value (only when optimizing). 

15.2.1.9 Test Replacement - If the only use of a DO loop index is to 
reduce operator strength (see Section 15.2.1.2) and the loop does not 
contain exits (GO TOs out of the loop), the DO loop index is not 
needed and can be replaced by the reduced variable. 

For example: 

DO 10 1=1,10 
K=K+7*I 

10 CONTINUE 

Reduction of operator strength and test replacement together transform 
this loop into: 

DO 10 1=7,70,7 
K=K+I 

10 CONTINUE 

This situation occurs frequently in subscript computation. 
execution of these statements, 1=11. 

15-9 

After 



WRITING USER PROGRAMS 

lS.2.2 Programming Techniques for Effective Optimization 

Observe the following recommendations during the coding of a FORTRAN 
source program. They will improve the effectiveness of the optimizer: 

1. Do not use DO loops with an extended range. 

2. Specify label lists when using assigned GO TOs. 

3. Nest loops so that the innermost index is the one with the 
largest range of values. 

4. Avoid the use of associated I/O variables. 

S. Avoid unnecessary use of COMMON and EQUIVALENCE. 

lS.3 FUNCTION SIDE EFFECTS 

Unpredictable results can occur if a statement includes calls to 
different functions that modify the same variables. 

Consider the following example: 

COMMON A 
A=S. 
P=F(1.)+Q(2.) 
END 

FUNCTION F(X) 
COMMON A 
A=O. 
F=X+l 
END 

FUNCTION Q(Y) 
COMMON A 
Q=A 
END 

In the preceding sequence, if P is evaluated by calling F before Q, 
the value of P will be 2. If P is evaluated by calling Q before F, 
the value of P will be 7. 

lS.4 INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES 

1S.4.1 Using The Sharable High-Segment FOROTS 

If your program does not contain a FORTRAN main program module, and 
you wish to have the sharable FOROTS GETSEGed at run time, you must do 
the following: 

1. Force the loading of the FOROTS initialization routine RESET. 
by declaring it as an external. 

2. Define the symbol FOROT% as a global with a positive, nonzero 
value before FORLIB.REL is searched. 

IS-l0 



WRITI1~G USER PROGRAMS 

3. Initialize FOROTS by the appropriate initialization call: 

JSP 16, RESET. 
EXP 0 

15.4.2 Calling Sequences 

The following paragraphs describe the standard procedures for writing 
subroutine calls. 

1. Procedure 

a. The calling program must load the accumulator (AC) 16 
with the addre::;s of the first argument in the argument 
list. 

b. The subroutine i ::; then called by a PUSHJ instruction 
using AC 17. 

c. The return will be made to the instruction immediately 
after the PUSHJ 17 instruction. 

d. The FOROTS trace facility requires the calling sequence 
to be: 

XMOVEI 16,AP 
PUSHJ 17,F 

where AP is the ?ointer to the argument list and F is the 
subprogram name. The word preceding the first word of an 
entry point should have its name in SIXBIT. 

2. Restrictions 

a. Skip returns are not permitted. 

b. The contents of the pushdown stack located before the 
address specified by AC 17 belong to the calling program; 
they cannot be rl~ad by the called subprogram. 

c. FOROTS assumes that it has control of the stack; 
therefore, you must not create your own stack. The 
FOROTS stack is initialized by the call to RESET. (See 
Section 15.4.1). 

15.4.3 Accumulator Usage 

The specific functions performed by accumulators (AC) 17,16,0, and 1 
are: 

1. Pushdown Pointer - AC 17 is always maintained as a pushdown 
pointer. In sectio~ zero, its right half points to the last 
location in use on the stack, and its left half contains the 
negative of the n~mber of words allocated to the unused 
remaindE~r of the staGk. 

In non-zero sections, the pushdown pointer contains the 
global address of the last location in use on the stack. 

15-11 



WRITING USER PROGRAMS 

2. Argument List Pointer - AC 16 is used as the argument 
pointer. The called subprogram does not need to preserve its 
contents. The calling program cannot depend on getting back 
the address of the argument list passed to the called 
subprogram. AC 16 cannot point to the ACs or to the stack. 

3. Temporary and Value Return Registers - AC a and 1 are used as 
temporary registers and for returning values. The called 
subprogram does not need to preserve the contents of AC 0 or 
1 (even if not returning a value). The calling program must 
never depend on getting back the original contents of the 
data passed to the called subprogram. 

4. Returning Values - A subroutine subprogram may pass back 
results by modifying arguments. 

A numeric function subprogram always returns the value of the 
function in AC a (or ACs 0-1 if the value is double precision 
or complex). A function subprogram may also pass back 
additional results by modifying the arguments. (See Section 
15.4.4 for a description of character functions.) 

5. Preserved ACs - FORTRAN function subprograms preserve ACs 2 
through 15; subroutine subprograms do not. 

The design of the called subprogram cannot depend on the contents of 
any of the ACs being set up by the calling subprogram, except for ACs 
16 and 17. Passing information must be done explicitly by the 
argument list mechanism. Otherwise, the called subprograms cannot be 
written in either FORTRAN or COBOL. 

15.4.4 Argument Lists 

Since the FORTRAN compiler uses the indirect bits on argument lists 
(note that this permits shared, pure code argument lists), it is 
essential for code that accesses parameters to take this into account. 
Specifically, sequences that obtained the values of parameters through 
use of operations such as: 

HRRZ R,1(16) 

to pick up the address of the second argument should be changed to 

XMOVEI R,@1(16) 

The latter operation will work when interfacing with FORTRAN. 

The format of the argument list is as follows: 

Arg count word 
Arg list addr.---First arg entry 

Second arg entry 

Last arg entry 

The format of the arg count word is: 

bits 0-17 These contain -n, where n is the number of arg 
entries. 

bits 18-35 Reserved for future DIGITAL development, and must be 
o. 

15-12 



WRITING USER PROGRAMS 

The format of an arg entry is as follows (each entry is a single 
wo rd) : 

bit 

bits 
bits 
bit 
bits 
bits 

o 

1-8 
9-12 
13 
14-17 
18-35 

IFIW (Instruction Format Indirect Word) flag, must be 
1. 
Reserved for future DIGITAL development, must be o. 
Arg type code. 
Indirect bit if desired. 
Index field, must be O. 
Address of the argument. 

For character functions, the first argument points to the return 
value, which is a character string descriptor (see Section 15.4.6). 
The actual arguments to the function start in the second argument 
entry. 

The following restrictions shculd be observed: 

1. Neither the argument list nor the arguments themselves can be 
on the stack. The same restriction applies to any indirect 
argument pointers. 

2. The called program may not modify the argument list itself. 

Example: 

The argument list may be in a write-protected segment. 

Note that the arg count word is at position -1 with respect 
to the contents of AC 16. This word is always required even 
if the subroutine does not handle a variable number of 
arguments. A subroutine that has no arguments must still 
provide an argument list consisting of two words, that is, 
the argument count word with a 0 in it and a zero argument 
word. 

XMOVEI 16,AP 
PUSHJ 17,SUB 

;ARGUMENT LIST 
-3, ,0 

;SET UP ARG POINTER 
;CALI. SUBROUTINE 
;RETURN HEHE 

AP: IFIW 4,A 
IFIW 4,B 
IFIW 4,C 

;SUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS 

SUB: MOVE 
ADD 
MOVEM 
POPJ 

T,@O 16) 
T,@l 16) 
T,@2 16) 
17, 

15-13 

;GET FIRST ARG 
;ADD SECOND ARG 
;SET THIRD ARG 
;RETURN TO CALLER 



WRITING USER PROGRAMS 

15.4.5 Argument Types 

Table 15-1: Argument Types and Types Codes 

Type Code Description 
(Octal) 

FORTRAN Use COBOL Use 

I--------------+-------------+---------,-----.--......j 

o 
1 
2 
3 
4 
5 
6 
7 

10 

11 
12 
13 

14 
15 
16 
17 

Unspecified 
FORTRAN Logical 
Integer 
Reserved 
Real 
Reserved 
Octal 
Label 
Double real 
(D-floating) 
Not applicable 
Double octal 
Double real 
(G-floating) 
Complex 
Character 
Reserved 
Hollerith 

Unspecified 
Not applicable 
I-word COMP 
Reserved 
COMP-l 
Reserved 
Reserved 
Procedure address 
Not applicable 

2-word COMP 
Not applicable 
Not applicable 

Not applicable 
Byte string descriptor 
Reserved 
Not applicable 

~------------~-------------~-----------.------------~ 

Literal arguments are permitted, but they must reside in a writable 
segment. This is because the FORTRAN compiler makes a local copy of 
all non array elements and may copy dummy arguments back to the actual 
arguments. All unused type codes are reserved for future DIGITAL 
development. 

15.4.6 Description of Arguments 

The types of the arguments that may be passed are: 

1. Type 0 - Unspecified 

The calling program has not specified the type. The called 
subprograms should assume that the argument is of the correct 
type if it is checking types. If several types are possible, 
the called subprogram should assume a default as part of its 
specification. If none of the above conditions is true, the 
called subprogram should handle the argument as an integer 
(type 2). 

2. Type 1 - FORTRAN logical 

A 36-bit binary value containing 0 or positive to specify 
.FALSE. and negative to specify .TRUE .• 

3. Type 2 - Integer and l-word-COMP 

A 36-bit 2's complement signed binary integer. 

15-14 



WRITING USER PROGRAMS 

4. Type 4 - Real and COMP-l 

A 36-bit floating-point number. 

bit 0 
bits 1-8 
bits 9-35 

5. Type 6 - Octal 

sign 
excess 128 exponent 
mantissa 

A 36-bit unsigned binary value. 

6. Type 7 _. Label and pl-ocedure address 

The address of the parameter is the address of an alternate 
return label or a subprogram. 

7. Type 10 - Double real (D-f1oating) 

A double-precision floating-point number represented in 
D-floating form. (See Section 3.4.) 

8. Type 11 - 2-word COMP 

A 2-word (72-bit) 2'~; complement signed binary integer. 

word 1, bit 0 
word 1, bits 1-35 
word 2, bit 0 
word 2, bits 1-35 

9. Type 12 - Double octal 

sign 
high order 
same as word 1, bit 0 
low order 

A 72-bit unsigned binary value. 

10. Type 13 - Double real (G-floating) (KL model B only) 

A double-precision floating-point number represented in 
G-floating form. (See Section 3.4.) 

11. Type 14 - Complex 

A complex number represented as an ordered pair of 36-bit 
floatin9-point numbers. The first represents the real part, 
and the second repre:,ents the imag inary part. 

12. Type 15 - Character string descriptor 

The format of the character string descriptor is: 

word 1: ILDB-type pointer, that is, aimed at the 
character preceding the first character of the 
string 

word 2: EXP character count 

The character descriptor may not be modified by 
program. The character string itself must 
string of contiguous 7-bit ASCII characters. 

15-15 

the called 
consist of a 



WRITING USER PROGRAMS 

13. Type 17 - Hollerith 

A string of contiguous 7-bit ASCII characters left justified 
on the word boundary of the first word and terminated by a 
null character in the last word. 

The FORTRAN compiler emits constants that are padded with 
spaces to a word boundary, followed by a full-word containing 
zero. 

15.4.7 Interaction with COBOL 

FORTRAN programs 
conversely, the 
subprograms. 

can call COBOL 
COBOL programs 

programs as subprograms, and, 
can call FORTRAN programs as 

Note that I/O operations can be performed only in subprograms that are 
written in the same language as the main program. Also note that APR 
trap handling will be done in a manner consistent with the language 
used in the main program. 

15.4.7.1 Calling FORTRAN Subprograms from COBOL Programs - COBOL 
programmers may write subprograms in FORTRAN to use the conveniences 
and facilities provided by this language. The CbBOL verb ENTER is 
used to call FORTRAN subroutines. The form of ENTER is as follows: 

EWfER FORTRAN program name IuSING \ ~~~~~!i~~r-l I ~! ~~~~;!i~~~::!J 
[ lprocedure-name-1\ l {procedure-2 , 

The USING clause names the data within the COBOL program that is to be 
passed to the called FORTRAN subprogram. The passed data must be in a 
form acceptable to FORTRAN (see Table 14-1). 

NOTE 

G-floating double-precision does not exist as a data 
type in COBOL. 

The calling sequence used by COBOL in calling a FORTRAN subprogram is: 

MOVEI 16, address of first entry in argument list 
PUSHJ 17, subprogram address 

If the USING clause appears in the ENTER statement, the compiler 
creates an argument list that contains an entry for each identifier or 
literal in the order of appearance in the USING clause. It is 
preceded by a word containing, in its left half, the negative number 
of the number of entries in the list. If no USING clause is present, 
the argument list contains an empty word, and the preceding word is 
set to O. Each entry in the list is one 3n-bit word of the form: 

0-8 9-12 13-35 

a type address 

Bits 0-8 are reserved for DIGITAL. 

15-16 



WRITING USER PROGRAMS 

Bits 9-12 contain a type code that indicates the USAGE of the 
argument. 

Bits 13-35 contain the address of the argument of the first word 
of the argument; the address can be indexed or indirect. 

Following is a description of the types generated by COBOL, their 
codes, how the codes appear in the argument list, and the locations 
specified by the addresses. 

1. For I-word COMPUTATIONAL items 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 
FORTRAN 'rYPE: 

2 
XWD 100, address 
that of the argument itself 
INTEGER 

2. For 2-word COMPUTATIONAL items 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 

FORTRAN 'rYPE: 

11 
XWD 440, address 
that of the high-order word of 
argument 
Not allowed 

the 

3. For COMPUTATIONAL-l items 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 
FORTRAN TYPE: 

4 
XWD 200, address 
that of the argument itself 
REAL 

4. For DISPLAY-6 and DISPLAY-7 items 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 

WORDl: 

WORD2 : 

FORTRAN TYPE: 

15 
XWD 640, address 
that of a 2-word descriptor for the 

argument 
a byte pointer to the identifier or 

literal 
bit 0 is 1 if the item is numeric 
bit 1 is 1 if the item is signed 
bit 2 is 1 if the item is a figurative 

constant (including ALL) 
bit 3 is 1 if the item is a literal 
bits 4 through 11 are reserved for 

expansion 
bit 12 is 1 if the item has a PICTURE 

with one or more Ps just before the 
decimal point, that is, 99PPV. 

bits 13 through 17 are the number of 
decimal places. If bit 12 is 1, this 
is the number of Ps. 

bits 18 through 35 contain the size of 
the item in bytes. 
If FORTRAN is called, the string must be 
DISPLAY-7, nonnumeric, and either a 
figurative constant or literal. The bits 
0-17 of words must be zero. The FORTRAN 
type is then character. 

15-17 



WRITING USER PROGRAMS 

5. For procedure names (which cannot be used for calls to COBOL 
subprograms) 

CODE: 7 
IN ARGUMENT LIST: XWD 340, address 
ADDRESS: 
FORTRAN TYPE: 

that of the procedure 
External subprogram name 

The return from a subprogram (through POPJ 17,) is to the statement 
after the call. 

15.4.7.2 Calling COBOL Subroutines from FORTRAN Programs - To call 
COBOL subprograms use the CALL statement: 

CALL sub (args •.• ) 

where sub is a COBOL subprogram. 

15.4.8 Interaction with BLISS-36 

FORTRAN programs can call BLISS-36 routines as subprograms, and, 
conversely, BLISS-36 programs can call subprograms written in FORTRAN. 

BLISS routines called by FORTRAN programs must be able to coexist 
compatibly with FOROTS. For instance, they must use FUNCT. functions 
(see Section 18.6) for dynamic memory management within the section 
that FOROTS is in, since FOROTS assumes that it has control of that 
section. 

One problem that the BLISS routines can encounter is stack overflow. 
The size of the program stack as set up by FOROTS may be too small for 
BLISS routines which have several STACKLOCAL variables. The only 
supported way to increase the size of the stack is to use a copy of 
FORLIB that has been assembled with a larger stack. 

15.4.8.1 Calling FORTRAN Subprograms From BLISS-36 Programs - To call 
a FORTRAN subprogram from a BLISS-36 program, the FORTRAN subprogram 
must be declared an EXTERNAL ROUTINE in any module that contains a 
call to the subprogram. In addition, if the FORTRAN subprogram is a 
subroutine, it must be declared with a linkage type of FORTRAN SUB. 
If the FORTRAN subprogram is a function, then it must be declared-with 
a linkage of FORTRAN_FUNC. For example: 

EXTERNAL ROUTINE FOO: FORTRAN SUB, 
BAR: FORTRAN=FUNC; 

declares FOO to be 
called in this 
function. After 
appropriately, it 
BLISS. 

the name of a FORTRAN subroutine which will be 
module, and declares BAR to be the name of a FORTRAN 

the FORTRAN subprogram has been declared 
can be called just like any function written in 

15-18 



WRITING USER PROGRAMS 

15.4.8.2 Calling BLISS-36 Routines From FORTRAN - A BLISS-36 routine 
that is to be called from a FORTRAN program must have either the 
FORTRAN SUB linkage attribute (if the routine is to be used as a 
subroutTne) or the FORTRAN FUNC linkage attribute (if the routine is 
to be used as a funct ion) • 

The programmer that wishes to write a BLISS-36 routine to be called 
from FORTRAN must be familiar with the calling sequence used by 
FORTRAN to call subprograms (see Section 15.4.2), FORTRAN argument 
lists (see Section 15.4.4), and FORTRAN argument descriptors (see 
Sections 15.4.5 and 15.4.6). This knowledge is necessary because the 
values of the formal arguments of the BLISS-36 routine are the FORTRAN 
argument list entries that correspond to actual arguments of the BLISS 
routine. 

In general, the BLISS routines must be 
ADDRESSING MODE (INDIRECT) , or MACHOP calls must 
any instruction that references formals since all 
must be accessed through indirect addressing. 
because the FORTRAN compiler frequently sets the 
argument lists (see Section 15.4.4). 

compiled with 
be used to generate 

FORTRAN arguments 
This must be done 
indirect bit in 

See the BLISS-36 .~anguage Guid~ for more information. 

NOTE 

ADDRESSING_MODE (INDIRECT) can have far reaching 
effects on your program, which you should understand 
fully before using. 

15.4.9 LINK Overlay Facilities 

LINK provides several routines that are accessible directly from a 
FORTRAN program. These routines are presented here briefly, together 
with the FORTRAN specification of their parameters. In general, LINK 
performs these functions automatically. These routines are available 
only for your convenience. Full details of the use of the overlay 
facilities can be found in the LINK Reference Manual. 

NOTE 

Overlays are not allowed when 
addressing is used. 

TOPS-20 extended 

The following terms are used to describe the parameters to LINK 
overlay routines. 

File spec A character expression 
'dev:file.ext[directory] , 
'dev:(directory>file.typ.gen' 

consisting 
(TOPS-IO) , 

(TOPS-20) • 

of 
or 

Name A quoted string giving a link name, or an 
integer constant or variable giving a link 
number. 

List of link names A sequence of name items separated by commas. 

15-19 



WRITING USER PROGRAMS 

The routines available are: 

CLROVL Specifies a non-writable overlay. 

GETOVL(List of link names) Used to change the overlay 
structure in core. 

INIOVL(File spec) Used to specify the overlay file to 
be found if the load time 
specification is to be overridden. 

LOGOVL(File spec) Used to specify where the log file 
is to be written. If no arguments 
are given, the log file is closed. 

REMOVL(List of link names) Removes the specified links from 
core. 

RUNOVL(Name) 

SAOVL 

Loads the specified link 
transfers to that LINK. 

Specifies a writable overlay. 

and 

For a full description of these routines, refer to the LINK Reference 
Manual. 

NOTE 

The SAVE statement retains the values stored in a 
variable, array, or common block after execution of a 
RETURN or END statement in a subprogram. When 
overlays are used, the SAVE statement must be used to 
ensure retention of values. When the SAVE statement 
is used, it is not necessary to specify the LINK 
switch /OVERLAY:WRITABLE when loading a program (see 
Section 7.10). 

15.4.10 FOROTS and Overlay Memory Management 

For sharable FOROTS, the FOROTS static data area is several pages 
located at the top of FOROTS. FOROTS dynamic memory is allocated at 
runtime below FOROTS and in a downward direction (toward the user's 
program) . 

For nonsharable FOROTS (FOROTS loaded from FORLIB), the FOROTS data 
area is located in the low segment, so that it will be linked with 
variables used by the user's program. FOROTS dynamic memory is 
allocated at runtime starting at the page designated by the symbol 
STARTP in FORPRM.MAC, downward toward the user program. The 
distributed value for this page number is 577. If the user's program 
has two segments, FOROTS allocates memory down to the user's high 
segment, skips over the high segment, and begins allocating memory 
below the user's high segment toward the user's low segment. 

For both sharable and nonsharable FOROTS, when FOROTS can no longer 
allocate memory downward toward the user's low segment, it allocates 
memory starting at the top of memory downward. When FOROTS can no 
longer allocate any memory, it reports: 

?Memory full 

and returns to the monitor after attempting to close all files. 

15-20 



WRITING USER PROGRAMS 

Figure 15-1 illustrates the run-time memory layout. 

Page 

777 

600 

500 

o 

Reservl:!d for SORT, DBMS, and DDT 

FOROTS 

FOROTS Static Data 

FOROl S Dynamic Data -1- - - - - --

-1- - ------
Used fl)r Dynamic 
Character Concatenations 

User Program 

MR-S-3878-85 

Figure 15-1: Run-time Memory Layout for Section Zero 

FOROTS has a separate memory manager specifically designed for use by 
OVRLAY. This memory managE'r allocates memory at the top of the 
users's low segment. In general, user programs that use overlays 
should not use the FUNCT. calls GAD, COR, and RAD. OVRLAY expects to 
be able to use memory beginning at the top of the user's low segment, 
allowing for a special FOROTS scratch space allocated by the /SPACE 
switch. 

Under certain circumstances, notably when concatenating character 
expressions whose length is not known until runtime, FOROTS 
dynamically allocates a special scratch area using the FUNCT. COR 
function (see Section 18.6). This area is allocated the first time a 
dynamic concatenation is performed. 

The /SPACE switch to LINK determines the 
"dynamic concatenations" if overlays are 
given by LINK for this value is 4000 (octal). 
Manual.) 

15-21 

maximum size for such 
used. The default value 

(See the LINK Reference 



WRITING USER PROGRAMS 

You can allocate space for dynamic character concatenation using the 
ALCCHR subroutine (see Section 13.4.1.1). 

15.4.11 Extended Addressing Memory Layout (TOPS-20 only) 

The FORTRAN compiler must determine which psect every word of data or 
code should reside in. For non-extended addressing compilations, the 
data and code reside in either the low segment or the high segment. 
For extended addressing compilations, there are three segments 
(psects) in which the data and code can be allocated: 

1. The code psect corresponds to the non-extended high segment. 
The default name is .CODE •• 

2. The data psect corresponds to the non-extended low segment. 
The default name is .DATA •• 

3. The .LARG. psect is where large data resides. 
name of this psect cannot be changed.) 

(Note that the 

A data item can be placed in the .LARG. psect by either of the 
following ways: 

1. The data item is an array or any character scalar whose size 
is greater or equal to the value of the /EXTEND:DATA switch 
(default 10,000 words). (See Section 16.5). 

2. The data item is placed in a COMMON block or EQUIVALENCE 
group that is in the .LARG. psect. 

Table 15-2 describes the various memory allocations for extended and 
non-extended compilations. 

15-22 



WRITING USER PROGRAMS 

Table 15-2: Memory Allocations for !EXTEND and /NOEXTEND 

Item /NOEXTEND !EXTEND 

User subprogram Hiseg Code 

FORLIB Hiseg .CODE. 

Argument blocks Hiseg Code 

Compile-time constant Hiseg Code 
character descriptors 

Array dimension information Hiseg Code 

EFIWS N/A Code 

Symbol tables (from LINK) Lowseg or Hiseg .DATA. 

FORMAT statements Lowseg Data 

Constants Lowseg Data 

Small arrays and scalars Lowseg Data 

Large arrays Lowseg .LARG. 

COMMON variables Lowseg .LARG. 

Variables EQUIVALENCED to Lowseg .LARG. 
large arrays 

PDV N/A .DATA. 

NOTE 

When the sharable FOROTS is used, LINK loads 
/NOEXTEND high-segment into the low-segment. 
is done so that the sharable FOROTS can be used 
the high-segment (see Section 16.9) 

15-23 

(by default) 

(by default) 

the 
This 

as 





CHAPTER 16 

USING THE FORTRAN COMPILER 

This chapter explains how to use the FORTRAN compiler. Section 16.1 
describes using the FORTRAN-I0 compiler and Section 16.2 describes 
using the FORTRAN-20 compiler. 

16.1 USING THE FORTRAN-IO COMPILER 

This section describes how use the FORTRAN-I0 compiler. You should be 
familiar with the TOPS-IO operating system. The TOPS-IO Operating 
System provides commands that enable you to compile, execute, and 
debug FORTRAN programs. These commands are known as the COMPILE-Class 
commands. 

16.1.1 TOPS-IO COMPILE-Class Commands 

You can invoke the FORTRAN-IO compiler by using TOPS-IO COMPILE-Class 
commands. These commands enable you to compile, execute, and debug a 
program by giving the commands at TOPS-IO command level. 

The COMPILE-Class commands are: 

COMPILE 
LOAD 
EXECUTE 
DEBUG 

Example: 

.EXECUTE ROTOR. FOR 

The compiler switches OPTIMIZE, CREF, 
directly in COMPILE-Class commands 
locally. (See Section 16.1. 3 for 
switches.) 

Example: 

.EXECUTE/CREF Pl.FOR,P2.FOR/DEBUG 

and DEBUG may be specified 
and may be used globally or 
a description of FORTRAN-IO 

The other compiler swi tches mu~~t be passed in parentheses for each 
specific source file. 

16-1 



USING THE FORTRAN COMPILER 

Example: 

.EXECUTE Pl.FOR(INCLUDE) 

Refer to the TOPS-IO Operating System Commands Manual for further 
information about the COMPILE-Class commands. 

16.1.2 RUNNING THE FORTRAN-IO COMPILER 

On TOPS-lO, the command to run the FORTRAN compiler directly is: 

.R FORTRA 

The compiler responds with an asterisk (*), and is then ready to 
accept a command string. The form of the FORTRAN compiler command 
string is: 

object filespec, listing filespec=source filespec(s) 

You are given the following options: 

1. File specifications consist of an optional device name, a one 
to six character filename, an optional one to three character 
file extension, and an optional directory path specification. 
The path may include SFDs. 

2. You may specify more than one source file in the compilation 
command string. These files will be logically concatenated 
by the compiler and treated as one source file. 

3. More than one program unit may be contained in a single 
source file. 

4. A program unit may consist of more than one source file. 

5. If no object file is specified, no relocatable binary file is 
generated. 

6. If no listing file is specified, no listing is generated. 

7. If no extension is given, the defaults are the following for 
the respective files: 

.LST (listing) 

.REL (relocatable binary) 

.FOR (source) 

.CRF (cross reference) if the /CROSSREF switch is 
specified (see Section 16.1.3) 

16.1.3 TOPS-IO Compiler Command Switches 

Switches to the FORTRAN-I0 compiler 
command string. They are totally 
Table 16-1 lists the switches. 

16-2 

are accepted anywhere in the 
position and file independent. 



USING THE FORTRAN COMPILER 

Table 16-1: FORTRAN-IO Compiler Switches 

Switch 

/CROSSREF 

/DEBUG 

/DFLOATING 

/EXPAND 

/F66 

/F77 

/FLAG 

/GFLOATING 

/INCLUDE 

/LNMAP 

/MACROCODE 

/NOFLAG 

/NOF77 

/NOERRORS 

/NOWARN 

/OPTIMIZE 

/SYNTAX 

Meaning 

Generates a file with extension .CRF 
that can be input to the CREF program. 

Includes debugging information in your 
program (see Section 16.3). 

Indicates that double-precision 
numbers are stored in D-floating 
format. (See Sectio:1 3.4.) 

Includes the octal-formatted version 
of the object file in the listing. 

The FOHTRAN-66 standard rules apply for 
DO loops and EXTERNAL statements. (Same 
function as the /NOF77 switch.) 

The FOHTRAN-77 stan<lard rules apply for 
DO loops and EXTERNAL statements. 

Invokes the compatibility flagger (see 
Section 16.6). 

Indicates that double-precision 
numbers are stored in G-floating 
format .. (See Section 3.4.) 

CompilE~s a D in card column 1 as 
space. 

Produces a line number/octal location 
map in the listing only if /MACROCODE 
was not specified. 

Adds the mnemonic translation of the 
object code to the :.isting file. 

Indicates that no compatibility 
flagging will be done (seE! Section 
16.6) • 

The FORTRAN-66 standard rules apply for 
DO loops and EXTERNAL statements. (Same 
function as the /F6(1 swi tch.) 

Does not print error messages on the 
terminal. 

Suppresses warning nlessages (see 
Section 16.4). 

Performs global optjmization. 

Performs syntax check only. 

16-3 

De fa ul ts 

OFF 

NONE 

ON 

OFF 

OFF 

ON 

OFF 

OFF 

OFF 

OFF 

OFF 

ON 

OFF 

OFF 

NONE 

OFF 

OFF 



USING THE FORTRAN COMPILER 

Each switch must be preceded by a slash (/). Switch names need only 
contain those letters that are required to make the switch name 
unique. You are encouraged to use at least three letters to prevent 
conflict with switches in future implementations. 

Example: 

.R FORTRA 
*OFILE,LFILE=SFILE/MAC,S2FILE 

The /MAC switch will cause the ~ACRO code generated for SFILE and 
S2FILE to appear in LFILE.LST. 

All switches, used or implied, are printed at the top of each listing 
page. 

16-4 



USING THE FORTRAN COMPILER 

16.2 USING THE FORTRAN-20 COMPILER 

This section describes how to use the FORTRAN-20 compiler. You should 
be familiar with the TOPS-20 Operating System. The TOPS-20 Operating 
System provides commands that ~nable you to compile, execute, and 
debug FORTRAN program. These commands are known as the COMPILE-Class 
commands. 

16.2.1 TOPS-20 COMPILE-Class Commands 

The TOPS-20 COMPILE-Class commands enable you to initiate compilation, 
execution, and debugging of FORTRAN programs from TOPS-20 command 
level. 

The TOPS-20 COMPILE-Class commands are: 

COMPILE 
LOAD 
EXECUTE 
DEBUG 

Example: 

@EXECUTE ROTOR. FOR 

The following FORTRAN compiler switches (see Section 16.2.3) can be 
specified directly in a COMPILI:-Class command: 

/ABORT 
/BINARY 
/CROSS-REFERENCE 
/DEBUG 
/LIST 
/MACHINE-CODE: 
/NOWARNINGS 
/OPTIMIZE 
/WARNINGS 

NOTE 

When you specify the svllitches /BINARY, /DEBUG, 
/LIST, and !NOWARNINGS directly in a 
COMPI LE-Class comrland, the swi tches cannot have 
arguments as they can when running the compiler. 

All other switches must b(~ specified by using Language-switches, 
as shown in the following example: 

@COMPILE TEST.FOR/OPT/LANG:"/NOWARNINGS" 

Refer to the TOPS-20 Commands Reference Manual 
information about the COM1)ILE-Class commands. 

NOTE 

for 

You cannot use long TOPS-20 filenames with the 
COMPILE-Class commands. 

16-5 

more 



USING THE FORTRAN COMPILER 

16.2.2 RUNNING THE FORTRAN-20 COMPILER 

On TOPS-20, the command to run the FORTRAN compiler directly is: 

@FORTRA 

The compiler responds with the following prompt: 

FORTRAN> 

and is then ready to accept a command string. 

You can use the question mark to list the commands beginning with 
a specific letter or letters. Type the letter or letters 
followed by a question mark. (Refer to the TOPS-20 User's 
Guide.) 

You can type commands to the system by using either full input, 
recognition input, abbreviated input, or a combination of these 
methods. 

To give a command using full input, type the complete command 
name, arguments, or switches (if any), using a space to separate 
the fields. 

To give a command using recognition input, type a portion of the 
switch or filename and press the ESC key. You must type enough 
of the switch or filename to make it unique. Continue typing and 
pressing the ESC key until the switch or filename is complete. 
Recognition input requires less typing than full input, so you 
are less likely to make a mistake. You can use recognition in 
typing switches, switches arguments, and file specifications. 
When typing file specifications, you can also use CTRL/F to 
complete the rest of a partial file specification. 

To give a command using abbreviated input, type only enough of 
the switch or filename to distinguish one switch or filename from 
another. (Refer to the TOPS-20 User's Guide.) 

You should enter a command string in one of the following forms: 

1. [COMPILE]<source-file-spec> [switches] 

If no switches are specified, the compiler produces a .REL 
file, with the same filename as the source file. The user 
must use a /LISTING switch to get a listing file (see Section 
16.2.3 for a description of FORTRAN-20 compiler switches). 
COMPILE is optional if the command begins with a switch or 
begins with a file specification that cannot be confused with 
the words EXIT, HELP, TAKE, or COMPILE. 

16-6 



USING THE FORTRAN COMPILER 

2. [COMPI LE] < so urce- f i 1 e--s pec>+<source- f i 1 e-s pec>+ ••• 
[swi tches] 

The source files are ':reated as if they were concatenated 
together prior to the beginning of compilation. 

If no switches are specified, the compiler produces a .REL 
file, with the same filename as the last source file in the 
list. The user must Ilse a /LISTING switch to get a listing 
(see Section 16.2.3 for a description of FORTRAN-20 compiler 
switches). COMPILE is optional if the command begins with a 
switch or begins with a file specification that cannot be 
confused wi th the words EXI~{" HELP, TAKE, or COMPILE. 

3. TAKE <file-spec> [/ECIlO] 

The compiler reads the file specified as the command input 
stream. The TAKE command is legal within 'take' files. The 
m a x i mum n est i n g de p t his 1 0 't a k e ' f i 1 e s • 

The /ECHO switch optionally causes commands to be displayed 
on TTY: as they ar~ executed. The optional /NOECHO switch 
can be used on a nestl~d takE~ command to cancel the affect of 
the /ECHO switch while processing that nested command file. 

4. RUN <file-spec> [/OFF:3ET:<integer>] 

This command runs another program (for example, LINK). It 
causes an exit from the FORTRAN compiler and the start of 
execution of the prog~am indicated by the file specification, 
with the additional option of starting that program at an 
OFFSET relative to thl~ normal starting address. 

5. HELP 

This command prints il1formation on the user's terminal about 
how to use the FORTRAN compiler. 

6. EXIT 

This command exits from FORTRA. 

You are given the following options: 

1. Filename specificatio:1s consist of the following: 

An optional device name (the default device is DSK:) 

An optional dir~ctory name 

An up to 39 alphanumeric character filename 

An optional up to 39 alphanumeric character file type 

An optional g~neration number that identifies the 
version of the Eile 

An optional file attribute to specify distinctive 
characteristics of a file specification 

(Refer to the TOPS-20 User's Guide) 

16-7 



USING THE FORTRAN COMPILER 

NOTE 

LINK is restricted to 6-character filenames and 
3-character extensions. 

2. You may specify more than one source file in the compilation 
command string. These files will be concatenated by the 
compiler and treated as one source file. The name of the 
last source file is used as the default name of the object 
and listing files. If the last source file does not have a 
name (such as, TTY:), FORTRAN-OUTPUT is used as the default 
filename. 

3. More than one program unit may be contained in a single 
source file. 

4. A program unit may consist of more than one file. 

5. If no /LISTING switch is specified (see Section 16.2.3), no 
listing is generated. 

6. If no extension is given, the defaults are the following for 
the respective files: 

.LST (listing) if the /CROSSREF switch is not specified 

.CRF (cross reference) if the /CROSSREF switch is 
specified (see Section 16.2.3) 

.REL (relocatable binary) 

.FOR (source) 

16.2.3 TOPS-20 Compiler Commands Switches 

Switches to the FORTRAN-20 compiler 
command string. They are totally 
Table 16-2 lists the switches. 

16-8 

are accepted anywhere in the 
position and file independent. 



USING THE FORTRAN COMPILER 

Table 16-2: FORTRAN-20 Compiler Switches 

Switch 

/ABORT 

/BINARY[:relfile] 

/CROSS-REFERENCE 

/DEBUG [keys: ] 

/DFLOATING 

/ECHO-OPTION 

/EXPAND 

/EXTEND[keys:] 

/F66 

/F77 

/FLAG-NON-STANDARD 

/GFLOATING 

/INCLUDE 

/LISTING[:listfile] 

Meaning 

Causes the compiler to exit at the 
end of a compilation that contains 
errors. 

Indicates that a relocatable binary 
file is qenerated. You can 
optionally specify the file 
specification. 

Generates a file with extension 
.CRF that can be input to the 
CREF proqram. 

Includes debugging information in 
your proqram (see Section 16.3). 

Indicates that double-precision 
numbers are stored in D-floating 
format. (See SE~ction 3.4.) 

Echo switches selected from the 
SWITCH. Irn filE~. 

Includes the octal-formatted version 
of the object file in the listing. 

Indicates extended addressing. 
Programs can have up to 30 
sections of code and data (see 
Sec t ion :~ 6 • 5) • 

The FORTHAN-66 standard rules apply 
for DO loops and EXTERNAL state
ments. (Same function as the /NOF77 
switch.) 

The FORTHAN-77 standard rules apply 
for DO loops and EXTERNAL 
statements. 

Invokes t.he compatibility flagger 
(see Section 16.6). 

IndicateE; that double-precision 
numbers are stored in G-floating 
format. fSee Section 3.4.) 

Compiles a D in card column 1 as 
space. 

Indicates a list file will be 
generated. You can optionally 
specify the file specification. 

16-9 

Defaul ts 

OFF 

ON 

OFF 

NONE 

ON 

OFF 

OFF 

OFF 

OFF 

ON 

OFF 

OFF 

OFF 

OFF 



USING THE FORTRAN COMPILER 

Table 16-2: FORTRAN-20 Compiler Switches (Cont.) 

Switch Meaning Defaults 

ILNMAP Produces a line number/octal OFF 
location map in the listing only 
if IMACHINE-CODE was not specified. 

IMACHINE-CODE Adds the mnemonic translation of OFF 
the object code to the listing 
file. This command will cause 

a default ILISTING. 

INOBINARY Indicates that no relocatable OFF 
binary file is generated. 

INOF77 The FORTRAN-66 standard rules apply OFF 
for DO loops and EXTERNAL 
statements. (Same function as 
the IF66 switch.) 

INOFLAG-NON-STANDARD Indicates that no compatibility ON 
flagging will be done (see Section 
16.6) • 

INOERRORS Does not print error messages OFF 
on the terminal. 

INOEXTEND Indicates extended addressing ON 
is not in effect (see Section 16.5). 

INOWARN Suppresses warning messages (see NONE 
Section 16.4). 

IOPTIMIZE Performs global optimization. OFF 

IOPTION [:option] Only read lines from the SWITCH.INI OFF 
file that start with FORTRA:option. 

ISYNTAX Performs syntax check only. OFF 
~----____________________ L-________________________________________ -L __ . ______ ~ 

Each switch must be preceded by a slash (I). Switch names need only 
contain those letters that are required to make the switch name 
unique. You are encouraged to use at least three letters to prevent 
conflict with switches in future implementations. 

NOTE 

When using switches in control files, you are 
encouraged to type the full name of the switch. 

16-10 



USING TEE FORTRAN COMPILER 

Example: 

@FORTRA 
FORTRAN)SFILE+S2FILE/MAC/LIST:LFILE 

The /MAC switch will cause the MACRO code generated for SFILE and 
S2FILE to appear in LFILE.LST. An relocatable binary file will be 
created with the name S2FILE.REL. 

All switches, used or implied, are printed at the top of each listing 
page. 

16.3 THE /DEBUG SWITCH 

The /DEBUG switch tells FORTRAN to compile a series of debugging 
features into your program. Several of these features are 
specifically designed to be used with the FORTRAN debugging program 
(FORDDT). Refer to Chapter 17 for more information. By using the 
DEBUG switch arguments listed in Table 16-3, you can include specific 
debugging features. 

The form of the /DEBUG switch is: 

/DEBUG:arg 

or 

/DEBUG: (argl,arg2, ••• ) 

16-11 



USING THE FORTRAN COMPILER 

Table 16-3: Arguments to /DEBUG Switch 

Arguments Meaning 

~----------------+-----------------------------------------------------------~ 

DIMENSIONS 

TRACE 

LABELS 

INDEX 

BOUNDS 

ARGUMENTS 

NONE 

ALL 

Includes dimension information in .REL file for 
FORDDT. 

Generates references to FOR DDT required for its 
trace features (automatically activates LABELS). 

Generates a label for each statement of the form 
<line-number>L. (This option can be used without 
FOR DDT .) 

Forces DO LOOP indexes to be stored at the 
beginning of each iteration rather than held in a 
register for the duration of the loop. 

In addition, this switch 
values to be stored in memory 
the function. If this switch 
can set a FOR DDT pause on 
(see Section 13.4.4) and then 
be returned. 

forces all function 
prior to return from 
is specified, you 

the RETURN statement 
examine the value to 

Generates the bounds checking code for all array 
references and substring references. Bounds 
violations will produce run-time error messages. 
Note that the technique of specifying dimensions 
of 1 for subroutine arrays will cause bounds check 
errors. (You may use this option without FORDDT.) 

Generates type checking information at load time 
for actual argument types and associated dummy 
argument types. Type violations will produce 
non-fatal load-time error messages. This switch 
also performs type checking at compile-time for 
statement functions. 

Do not include any debug features. 

Enable all debugging aids. 
'"-________________ --L-_________________________________________ ----J 

Options available with the /DEBUG arguments are: 

1. No debug features - Either do not specify the /DEBUG switch 
or include /DEBUG:NONE. 

2. All debug features - Either /DEBUG or /DEBUG:ALL. 

3. Selected features - Either a series of modified switches, 
that is: 

/DEBUG:BOU/DEBUG:LAB 

or a list of modifiers 

/DEBUG: (BOU, LAB, ..• ) 

16-12 



4. 

USING TilE FORTRAN COMPILER 

Exclusion of features - If you wish all but one or 
modifiers and do not wish to list them all, you can use 
prefix "NO" before the swi.tch you wish to exclude. 
exclusion of one or more features implicitly includes all 
others, that is, /DEBUG:NOBOU is the same 
/DEBUG:(DIM,TRA,LAB,:ND,ARG) • 

two 
the 
The 
the 
as 

If you include more than one statement on 
first statement will receive a label 
reference (/DEBUG:TRACE). 

a single line, 
(/DEBUG:LABELS) 

only the 
or FORDDT 

NO'I'E 

If a source file contains line sequence numbers that 
occur more than once in the same subprogram, the 
/DEBUG option cannot be used. Also, the /DEBUG option 
and the /OPTIMIZE option cannot be used at the same 
time. 

The following formulas may be used to determine the increases in 
program size that will occur as at result of the addition of various 
/DEBUG options. 

DIMENSIONS 

'I'RACE 

LABELS 

INDEX 

BOUNDS 

ARGUMENTS 

For each array, 3+3*N words where N is the number 
of dimensions, and up to three constants for each 
dimension. 

One instruction per executable statement. 

No increase. 

One instruction per 
instruction for some 
index of the loop. 
subprogram. 

inner 
of the 

Also one 

loop plus one 
references to the 
instruction per 

For each array, the formula is the same as 
DIMENSIONS. 

For each reference to an array element, 5+N words 
additional words are generated, where N is the 
number of dimensions in the array. If you do not 
specify BOUNDS, approximately 1+3*(N-l) words will 
be used. For each reference to a substring, add 5 
words. 

No increa~;e. 

If the /DEBUG:ARGUMENTS switch argument is specified, type checking is 
performed at LINK time for calls to external programs and at compile 
time for calls to statement functions. Non-fatal error messages are 
issued at LINK time for the following cases: 

1. If the number of arguments in the called subprogram and the 
calling program unit are not equal. 

2. If the length of an array or character scalar actual argument 
is less than that of the corresponding dummy argument. (This 
is checked only if the length of the actual is known at 
compile time.) 

16-13 



III 
Co 
;., 

Eo< 

~ 
III 

E 
~ 
.( 
;., 
E 
E 
;:s 

Q 

USING THE FORTRAN COMPILER 

3. If the associations 'of actual argument data types with dummy 
argument data types are other than those indicated as legal 
in Table 16-4. 

4. If a non-routine name is 
expected, or a routine 
name is expected. 

passed where a routine name is 
name is passed where a non-routine 

Non-fatal error messages are issued at compile time for the 
cases (only for statement functions): 

following 

1. If a non-routine name is 
expected, or a routine 
name is expected. 

passed where a routine name is 
name is passed where a non-routine 

2. If the length of the actual character expression being passed 
to a statement function is less than that of the 
corresponding character expression dummy argument. 

Table 16-4: Legal Dummy and Actual Argument Associations 

Actual Argullwnt Type 

Alternate 

Heturn 

Label 

Iloublp 

Logical Intcger Heal D-tloating (i-tloating Complex Character (1<'1'11 IlolI('rith Oetal 

Alternate 

Return X 

Label 

Logical X :\ 

Integer X .\ 

Heal X \ 

D-tloating X 

G-floating X \" :'O.~ 

Complex X ,-

Character X 

X mdicates legal associations. All others will cause a warning to be issued if DEBUG:ARGUMENTS is specified. 

16.4 THE /NOWARN SWITCH 

The /NOWARN switch is used to suppress compiler warning messages. If 
this switch is used with no arguments, all warning messages are 
suppressed. The /NOWARN switch may also be used with arguments as 
shown in Table 16-5. 

16-14 



US ING THE FOR~rRAN COMPI LER 

Table 16-5: Arguments to /No\'lARN Switch 

Arguments Meaning 

ALL Suppress all warning messages. 

NONE Do not suppress warning messages. 

xxx 

For example, 

/NOWARN:LID 

Where xxx i~; the three character error 
for the el~ror mE~ssage to be suppressed. 
the three letters that follow %FTN, for 
%FTNABD. 

mnemonic 
This is 
example 

will suppress all warnings of an identifier having more than six 
characters. 

A list of arguments is also allowed. For example, 

/NOWARN: (LI D, DIM) 

would suppress both LID and DIM types of warning messages. 

(See Appendix C for a list of all compiler error mnemonics.) 

16.5 THE /EXTEND SWITCH (TOP!;-20 ONLY) 

Support for extended addressing is almost completely transparent; a 
program compiled with the /EXTEND switch will use extended addressing 
without requiring! changes to the FOHTRAN source program. 

When /EXTEND is specified, an-ays and COMMON blocks can extend across 
multiple sections. Executable code can also reside in multiple 
sections, with the restriction that a single subprogram must not cross 
a section boundary. 

The /EXTEND switch can be spE~cified without arguments to use the 
default extended address space layout. This is suitable for most 
applications in which the executable code fits within a single 
section, but which may employ data structures that require more than a 
section of memory. When such an application is compiled /EXTEND 
without further arguments, a default memory layout is used that 
depends on the default size settings for arrays and strings: 

16-15 



USING THE FORTRAN COMPILER 

Table 16-6: /EXTEND Default Memory Layout 

Section Pages Contents 
-

1 0-477 Executable code 
Argument blocks 
Literals 
Non-COMMON scalars 
Non-COMMON arrays smaller than 

10,000 words 
Non-COMMON strings smaller than 

10,000 words 
-

~ 
1 SOO-S77 FOROTS 

_. 

1 600-777 Reserved 
_. 

2-31 0-777 COMMON blocks 
Arrays larger than 10,000 words 
Strings larger than 10,000 words 

-. 

Additional arguments to /EXTEND (COMMON:, DATA:, PSECT:, and CODE), in 
conjunction with the /SET switch to LINK, can be supplied to override 
these defaults and direct specific placement of COMMON blocks, 
non-COMMON arrays and scalars, and executable code. For example, a 
decimal argument can be specified for the DATA: keyword, which 
overrides the 10,000 word default minimum size for large arrays and 
character scalars. /EXTEND:COMMON can be used to direct specific 
named COMMON blocks to non-default sections of extended memory. 
(Section 16.S.3 describes the /EXTEND arguments.) 

16.S.1 /EXTEND and Applications with Large Arrays 

The simplest usage of extended addressing is for applications in which 
the executable code fits in one section. These applications may have 
very large arrays or common blocks. In many cases, these applications 
can be compiled with the /EXTEND switch with no arguments, using the 
default memory layout in Table 16-6. 

In some cases, you may need to use the DATA or COMMON arguments to 
/EXTEND to redirect the placement of variables in areas when default 
placements cannot be used. Specifying a smaller /EXTEND:DATA size may 
be necessary if the total size of non-COMMON scalars and arrays causes 
them to overlap FOROTS pages. If such overlap occurs, program 
execution will terminate with the error messages: 

"?Can't get FOROIO.EXE" 

and 

"?Can't overlay existing pages" 

A smaller DATA size will force these data structures into a non-FOROTS 
section. 

16-16 



USING TEE FORTRAN COMPILER 

16.5.2 /EXTEND and Applications with Large Executable Code 

A more complex use of extended addressing is one where the 
application's executable code is larger than a section. In order to 
build an application that has more than one section of executable 
code, you have to specify which program units will be linked together 
in each section. 

When /EXTEND is specified, the extended code will be in three PSECTS, 
one analogous to the present hiseg, one analogous to the present 
lowseg, and one containing the large variables. If the user does not 
specify the extended addressing switch, FORTRAN will generate a TWOSEG 
REL file as it always has. The three PSECTS generated under /EXTEND 
are: 

1. The "large data area" psect (.LARG.) has a maximum size of 30 
sections. It will consist of user-specified COMMON blocks, 
arrays and character scalars that are larger than a 
user-specified size (or default). 

There is no restriction on the size of an individual array or 
COMMON block, beyond the restriction on the total size of the 
large data area. 

2. The "small data area" psect (default name .DATA.) of a 
program consists of Dser-specified COMMON blocks, and scalars 
and arrays that are smaller than a user-specified size (or 
default). If FORDDT is used, it will reside in the • DATA. 
psec t. 

3. The "executable code and sharable data area" psect (default 
name .CODE.) of a program consists of all executable code, 
argument blocks anc literals. Library functions and 
subroutines used by the program are placed in the .CODE. 
psect. This does not include space used by SORT, which 
occupies its own section. 

For each "executable code area" (code psect) there will be a 
corresponding "small data area" (data psect). The combined size of 
these two areas must not exceed 256K words. The default psect names 
.DATA. and .CODE. can be changed at compile time by the /EXTEND:PSECT 
command switch (see Section 16.5.3). 

16.5.2.1 /EXTEND PSECT Placement - The three psects will be set up 
according to the table below: 

Psect De fa ul t Attributes 
Origin 

data 1001000 Sing IE section, Non-zero section, 
Concatenated, Writable 

code 1300000 Single section, Non-zero section, 
Concatenated, Read-only 

• LARG. 2000000 Non-ZEro section, Concatenated, Writable 

-------

16-17 



USING THE FORTRAN COMPILER 

You can alter the default psect origins when loading programs by 
giving a /SET switch to LINK (see the LINK Reference Manual). This 
may be necessary if a program has' too much code or local data to fit 
in the regions allocated for them by the default psect origins. This 
would cause the psects to overlap, and would be indicated by a LINK 
warning message (%LNKPOV). Altering the defaults is also useful if 
the user wants to reserve one or more sections for some purpose (such 
as telling the monitor where dynamic libraries should be loaded). 

The first page (locations 000-777) of any section that contains code 
is reserved for use by FORDDT. The LINK /SET switch should not 
specify a psect origin less than 1000 for any such section. 

16.5.2.2 Building Large-Code Applications - When compiling large-code 
applications, the following considerations apply: 

1. The code and small data psects for a single program unit must 
always reside together in the same section, since the PC will 
not advance across section boundaries, and the small data 
area is assumed to be in the same section. 

2. You will need to use the 
specifies that the object 
assumes that all subprograms 
separate section. 

/EXTEND:CODE keyword. This 
code emitted by the compiler 
that it calls may be in a 

3. You must also use the PSECT argument to /EXTEND to specify 
the psect names for code and small data. If you wish to link 
the program units in several different compilations (source 
files) togeth~r in the same section, you should use the same 
psect names for those program units. 

At link-time, you must specify the starting address for each psect 
using the /SET switch, according to the following rules: 

1. The code and small data psects for a program unit must be 
linked in the same section with each other. 

2. If a section contains any executable code, page 0 of that 
section is reserved for FORDDT and FOROTS. 

16-18 



USING THE FORTRAN COMPILER 

3. You must always allo~ate space for the .CODE. and .DATA. 
psects, since FORLIB routines will be linked in these psects. 

4. Pages 500-577 of the section that contains .CODE. and .DATA. 
are reserved for FOROTS. 

5. Pages 600-777 are reserved for FOROTS I/O buffers and DDT. 

6. You must always allocate space for the .LARG. psect. 

16.5.3 Arguments to /EXTEND 

By using the /EXTEND switch al'guments listed in Table 16-7, you can 
include specific extended addlessing features. 

The form of the /EXTEND switch is: 

/EXTEND:arg 

or 

/EXTEND: (argl,arg2, ••• ) 

16-19 



USING THE FORTRAN COMPILER 

Table 16-7: Arguments to /EXTEND Switch 

Arguments Meaning 

CODE Specifies that the object code produced by the 
compiler has to assume that any subprogram that 
it calls could be in a separate section. NOCODE 
is the default. 

COMMON [ : name] 
or 
COMMON: (name, ••• ) 

Without a common block name specified, causes 
all common blocks that have not already been 
allocated by /EXTEND: [NO] COMMON to be allocated 
in the .LARG. psect. This is the default. 
Individual common blocks can be placed 
explicitly in .LARG. by putting their names in a 
list after COMMON:. When you explicitly place 
an individual common block in .LARG., any common 
blocks that have not already been allocated by 
/EXTEND: [NO] COMMON are placed in the small data 
psect. 

DATA[:decimal number] Specifies a decimal argument that is the minimum 
si ze (in words) for non-common arrays and 
character scalars, which will be allocated to 
the .LARG. psect. The default is 10,000. 

NOCODE 

NOCOMMON [:name] 
or 
NOCOMMON:(name, •.• ) 

NODATA 

Allows the compiler to assume that all of the 
code will be in the same section. A program 
compiled with the NOCODE argument cannot call 
any subprograms compiled with the CODE argument. 
This is the default. 

Without a common block name specified, causes 
all common blocks to be allocated in the data 
psect. Individual common blocks can be placed 
explicitly in the data psect by putting their 
names in a list after COMMON:. COMMON is the 
default. 

Specifies that all non-common 
reside in .DATA. This is 
DATA:I073741823, which excludes 
from .LARG. 

variables will 
equivalent to 
all variables 

PSECT[: [data psect] Allows users to set the code and data psect 
[:[code psect]]] names explicitly (the large data psect is always 

called .LARG.) If PSECT is specified with one 
argument, that argument becomes the name of the 
small data area psect. Any second argument 
becomes the name of the code psect. This allows 
separate program units to be put in separate 
psects, then the psect can be placed in 
different sections with the /SET switch at LINK 
time (see the LINK Reference Manual). 

NOTE 

When using the PSECT argument, the small data psect 
and code psect for any given program unit must be 
loaded into the same memory section. 

16-20 



USING THE FORTRAN COMPILER 

16.5.4 Linking ~rith TWOSEG RE~L Files 

If a main program unit compiled with /EXTEND is linked with subprogram 
units (FORTRAN or not) that were compiled for non-extended use, then 
LINK will automatically place the LOWSEG of non-extended units in the 
.DATA. psect, and the HISEG of such units into the .CODE. psect. 

A program compiled with /EXTEND can call a subprogram that is not 
compiled with /EXTEND; however, it is illegal for a subprogram that is 
not compiled with /EXTEND to call a subprogram that is. 

Programs that were compiled by old versions of FORTRAN-IO/20 (prior to 
Version 7) will not work if loaded in a non-zero section. 

Most MACRO routines written for non-extended use will require 
conversion to run in non-zero sections. Data structures accessed with 
IS-bit address fi.elds, indexed and indirect words, stack pointers and 
some monitor calls may need modification to perform correctly in 
extended sections. See the TOPS-20 Monitor Call User's Guide for more 
information concerning extend(~d MACHO progra~ 

16.6 THE /FLAG (/FLAG-NON-STANDARD) SWITCH 

The /Ii'LAG switch invokes the compatibility flagger. 

For TOPS-20 systems, 
/FLAG-NON-STANDARD and 
/FLAG and /NOFLAG work. 

NO"fE 

the full switch names are 
/NOFLAG-NON-STANDARD; however 

This feature provides warning messages for language elements used that 
are the following: 

• Extensions to the ANSI FORTRAN-77 standard 

• Features not found in VAX FORTRAN 

• Features that could ,::ause logically different results when 
used on the VAX FORTRAN system 

No'rE 

VAX FORTHAN is used 0:1 the VAX/VMS operating system. 

This allows the flagging of a~y element that could cause conversion 
problems for programs written on the TOPS-IO/20 system that might be 
compiled and executed on a VAX/VI~S system or an ANSI-compatible 
system. This includes problems that could occur at object time, as 
well as compilation incompatibilities. 

16-21 



USING THE FORTRAN COMPILER 

By using the FLAG switch arguments listed in Table 16-8, you can 
specify which features to flag. 

The form of the /FLAG switch is: 

/ F LA G [ : a r g ] 

or 

/ FLAG [ : (a rg 1 ,a rg 2, ••• ) ] 

Table 16-8: Arguments to /FLAG Switch 

Arguments Meaning 

ALL Gives warning messages for language elements 
incompatible with both FORTRAN-77 and VAX FORTRAN. 

ANSI Gives warning messages whenev~r a language element is 
an extension to the FORTRAN-77 standard. 

NOANSI Does not flag FORTRAN-77 extensions. 

NONE Does not flag. 

NOVMS Does not flag VAX incompatibilities. 

VMS Gives warning messages whenever a language element is 
incompatible with VAX FORTRAN. 

If no /FLAG switch is specified, no flagging is done. If no arguments 
are given with the /FLAG switch, then flagging is done for both 
FORTRAN-77 and VAX incompatibilities. 

The /NOFLAG switch indicates that no flagging will be done. 

16.7 READING A FORTRAN COMPILER LISTING 

When you request a listing from the FORTRAN compiler, it may 
the following information, depending on the switches 
compilation time: 

contain 
used at 

1. A printout of the source program plus an internal sequence 
number assigned to each line by the compiler. This internal 
sequence number is referenced in any error or war.ning 
messages generated during the compilation. If the input file 
is line-sequenced, the number from the file is used. If code 
is added by means of the INCLUDE statement, all INCLUDEd 
lines will have an asterisk (*) appended to their 
line-sequence number. 

2. A summary of the names and relative program locations (in 
octal) of scalars and arrays (including unreferenced 
character scalars and arrays) in the source program plus 
compiler-generated variables. 

16-22 



USING THE FORTRAN COMPILER 

3. All COMMON blocks and the relative locations (in octal) of 
the variables in each COMMON block. 

4. A listing of all equivalenced variables or arrays and their 
relative locations. Note that all equivalenced variables 
that are also in COM~ON are listed only as being in COMMON. 

5. A listing of the subprograms referenced (both user-defined 
and FORTRAN-defined library functions). 

6. A summary of temporary locations generated by the compiler. 

7. A heading on each page of the listing containing the program 
unit name (MAIN., .BLOCK, program, subroutine or function, 
principal entry), the input filename, the list of compiler 
switches, and the date and time of compilation. 

8. If you used the /MACRO switch, a mnemonic printout of the 
generated code (in a format similar to MACRO) is appended to 
the listing. This section has four fields: 

LINE: This column contains the internal sequence number 
of the line corresponding to the mnemonic code. It 
appears on the first line of the code sequence 
associated witt. that internal sequence number. An 
asterisk indicates a compiler inserted line. 

LOC: The relative location in the object program of the 
instruction. 

LABEL: Any program or compiler generated label. 
Program labels have the letter "pH appended. Labels 
generated by thE compiler are followed by the letter 
"M". Labels generated by the compiler and associated 
with the /DEBUG:LABELS switch consist of the internal 
sequence number followed by an "L". 

GENERATED CODE: The MACRO mnemonic code. 

If you use the /LNMAP switch and do NOT use the /MACRO 
switch, a line number/octal location map is appended to the 
listing. This section lists the line numbers In increments 
of 10 on subsequent lines and each number from 0 through 9 
for each line in adjacent columns. The numbers appearing 
inside the matrix are the relative octal locations of the 
statements in the FORTRAN program unit. 

For example, to find the relative octal location of line 
number 001043, find the row marked 001040 and then column 3 
on that line. The number in that place is the desired 
relative location. This listing can be very large and sparse 
for line-numbered files with large increments, such as those 
produced by the edit.or SOS on TOPS-IO (or the editor EDIT on 
TOPS-20) • 

NOTE 

A single FOR1'RAN line can produce mUltiple 
machine inst.ructions. In this case the line 
number map Ijsts only the first location. 

16-23 



USING THE FORTRAN COMPILER 

9. A list of all argument blocks generated by the compiler. A 
zero argument appears first followed by argument blocks for 
subroutine calls and function references (in order of their 
appearance in the program). Argument blocks for all I/O 
operations follow this. 

10. FORMAT statement listings. 

11. A summary of errors detected or warning messages issued 
during compilations. 

16.7.1 Compiler-Generated Variables 

In certain situations the compiler generates internal variables. 
Knowing what these variables represent can help you read the macro 
expansion. The variables are of the form: 

.letter digit digit digit digit 

The function of these variables can be determined by the first letter 
of the variable name as described below: 

Letter 

A 

D 

F 

I 

o 

Q 

R 

S 

For example: 

.SOOOI 

Function of Variable 

Register save area. 

Compile-time constant character descriptor 

Arithmetic statement function formal parameters. 

Result of a DO LOOP initial value expression or 
parameter of an adjustable dimensioned array. 

Result of a 
computation. 

common sUbexpression 

Temporary storage for expression values. 

or 

Result of reduced operator strength expression. 

constant 

Result of the DO LOOP step size expression of computed 
iteration count for a loop. 

You may find these variables on the listing under SCALARS and ARRAYS. 

The following examples show listings where all of these features are 
pointed out. 

16-24 



Example 1: 

Program 
Name 

Source 
Name 

USING TEE FORTRAN COMPILER 

Compiler Version 

MAiN. TI~l.FoR 
, 

FORTRAN V.l0(1601l)/F77/~ 5-AUG-82 10:26 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 100 
00018 C 
00019 
00020 10 
00021 

COMMON BLOCKS 

IMPLICIT INTEGER (A-Z) 
DIMENSION A(100,200) 

MACRO code listing included 

COMMON I~ ( 100 ,200) 
oPEN(UNIT=22,FILE='TIM.oAT') 
SUM1=0 
SUM2=0 
00 1 00 ~,= 1 ,200 
00100]=11100 
Kl=I*J 
IF (K1 .Ll. 500 .0R. Kl ,GT. 1500) K1=0 
A(I,J)=K1 
K2=I+J 
IF (K2 .EQ. 100 .0R. K2 .EQ. 200 .0R. K2 .EQ. 300) K2=K2+1 
B(I,J)=K2 
SUM1=SUM1+Kl 
SUM2=SUM2+K2 
CONTINUE 

WRITE(22 110)SUM1 ,SUM2 
FORMAT ( , SUM 1 = " 19, ' 
END 

SUM2= ' 119) 

/. CoMM. / (+47040 ) ___ --Relative addres:;es of each. variable ----------...., 

B +0 ~oIEXpLICIT "EFINITIONL "z" 

*K 1 *J 2 " J .SOOOl 47043 
*SUM2 47045 47046 47047 *SUMl 47050 

NAME OESeR I PToR ADDRESS START OF DATA LENGTH 
ADDR ( POS I TI ON) 

.SOOOO 47044 

t 
Relative address of each character data descriptor 

CHARACTER DATA L U*U NO EXPLICIT DEFINITION] 

'TIM1.DAT' .HSCHD+O 4~054~ 8-# of characters L Relative address of first character of string 

Character position of first character of string 

16-25 



USING THE FORTRAN COMPILER 

Internal sequence number on first instruction 
for this source Ii ne 

! Octal displacement of instruction 

~OC lABEL GENERATED LINE CODE 

0 JFCl 0,0 
JSP 16,RESET. 

2 0,0 
4 3 >(MOI.JE I 16,2M 

4 PUSHJ 17,OPEN. 
5 5 SETZB 2,SUM1 
6 6 MOI.JEM 2,SUM2 
7 7 MOI.JE 2,[777470000001] 

10 HlREM 2 , • SOOOO 
11 3M: 

HRRZM 2,J 
8 12 4M: 

MOI.JE 2.[777634000001] 
9 13 5M: 

MOI.JE 3,J 
14 I MULI 3,0 (2) 
15 MOI.JEM 3 ,1\ 1 

10 16 CAll 3,764 
17 CAllE 3,2734 
20 JRST 0,7M 
21 JRST 0,6M 

10 7M: 
SETZB 4 .1\1 

11 23 6M: . Compiler generated label 
MOI.JE I 3.144 

24 IMUl 3,J 
25 ADDI 3,0 (2) 
26 MOI.JE 4 .1\1 
27 MOI.JEM 4.A-145(3) 

12 30 MOI.JE 3,J 
31 ADDI 3.0 (2) 
32 MOI.JEM 3.1\2 

13 33 MOI.JE 5,1\2 
34 CAIE 5 .144 
35 CAIN 5.310 
36 JRST 0.8M 
37 10M: 

CAIN 5.454 
13 40 8M: 

ADS 3.1\2 
14 41 8M: 

MOI.JE I 3.144 
42 IMUL 3.J 
43 ADDI 3.0 (2) 
44 MOI.JE 5,1\2 
45 MDI.JEM 5.B-145(3) 

15 46 ADDM 4,SUM1 
16 47 ADDM 5.SUM2 
17 50 lOOP: • Program label 

AOBJN 2,5M 
51 HRRZM 2, I 
52 ADS 2,J 
53 AOSGE o , . SOOOO 
54 JRST 0,4M 

18 55 :-:MDI.JE I 16tl1M 
56 PUSHJ 17,DUT. 
57 :-:MOI.JE I 16 tl2M 
60 PUSHJ 17 , I DlST • 

21 61 :-:MDI.JE I 16 tl M 
6'"' PUSHJ 17,E>(IT. 

16-26 



USING THE FORTRAN COMPILER 

ARGUMnn BLOCKS :_--- Function, subnutine, and FOROTS argument blocks 

63 0, ,0 
64 1 M: 0, ,0 
65 777776, ,0 
66 2M: 436000 , ,26 
67 4066tW, , • H~;CHD+O 
70 777776, ,0 
71 11 M : 401000,,26 
72 4023tW, dOll 
73 777775 , ,0 
74 12M: 401100, ,SUrll 
75 401100, ,SUr12 
76 4000, ,0 

FORMAT STATEMENTS (11\' lOW SEGMENT) : 

20 

MAIN. 

Example 2: 

MAIN. 

47056 
47057 lOP: 

6 
(' SUM1= ',IB,' SUM2= 'dB) 

No err 0 r s de t e c ted J ..... o---------Summary of errors 

TIM1.FoR FORTRAN I,J. 10 ( 16(4) IF77 Il 

IMPLICIT INTEGER (A-Z) 
DIMENSION A(100,200) 
COMMON 5(100,200) 
oPEN(UNIT=22 ,FIlE= 'TIM .DAT') 
SUM1=0 
SUM2=0 
DO 100 _'=1,200 
DO 100 1=1,100 
Kl=I*J 

5-AUG-82 

IF (Kl .IT. 500 .0R. Kl GT. 1500) Kl=O 
A(I,J)=Kl 
K2=I+J 

10:28 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
OOOOB 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
0001B 
00020 
00021 

IF (K2 .EO. 100 .0R. K2 EO. 200 .0R. K2 .EO. 3(0) K2=K2+1 
B(I.J)=K2 
SUM1=SUM1+Kl 
SUM2=SUM2+K2 

100 CONTINUE 
C 

WRITE(22 dO)SUMl ,SUM2 
10 FoRMAT(' SUM1= 'dB,' SUM2=' dB) 

END 

COMMON BLOCKS 

I.CoMM./(+47040) 
B +0 

SCALAR!:; AND ARRAYS "*" NO E>~PLICIT CEFINITION - "'X," NOT REFERENCED 

2 
47045 47046 

LI NE NUMBER 10CTAl loCATI ON MAP_.---

: 0 2 3 

3 
47047 

.SOOOl 47043 
*SUMl 47050 

Requested with ILNMAP 

5 6 7 8 

.SOOOO 47044 

B 
------:---------------------------- .. ------------------------------------------
00000 3 5 6 7 12 13 
00010 16 23 30 33 41 46 47 50 55 
00020 61 
MAIN. [ No errors detected 

Line #11 starts at octal offset 23 (from the prevous example, note that line 11 uses locations 23 through 27, but 
only the first location is shown here). 

16-2:7 



Example 3: 

MAIN. 

USING THE FORTRAN COMPILER 

TIM1.FOR FORTRAN t,! .10 (1604) IF77/0PT 1M 5-AUG-82 

IMPLICIT INTEGER (A-Z) 
DIMENSION A(100,200) 
COMMON B(100,200) 
OPEN(UNIT=22,FILE='TIM1.DAT') 
SUM1=0 
SUM2=0 
DO 100 J= 1 ,200 
DO 100 1=1,100 
K1=I*J 
IF (K1 .LT. 500 .OR. K1 .GT. 15(0) K1=0 

K2=I+J 

10:30 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00008 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00018 
00020 
00021 

IF (K2 .EO. 100 .OR. K2 .EO. 200 .OR. K2 .EO. 3(0) K2=K2+1 
B(Id)=K2 
SUM1=SUM1+K1 
SUM2=SUM2+K2 

100 CONTINUE 
C 

10 

COMMON BLOCK S 

WRITE(22 dO)SUM1,SUM2 
FORMAT(' SUM1= ' d8,' 
END 

I.COMM./(+47040) 
B +0 

SUM2= ' d8) 

SCALARS AND ARRAYS "*" NO E:<PLICIT DEFINITION - "'X," NOT REFERENCED] 

*K1 

,.------Optimizer created variables --------, 

.R0001 2 .ROJoo 3 *J 4 A 1 
• SOOO 1 470t!5 .SOOOl 47046 *SUM2 47047 *1 47050 .00001 

*K2 47052 *SUM1 47053 

CHARACTER DATA [ "*" NO D(PLICIT DEFINITION 
NAME DESCR I PTOR ADDRESS START OF DATA LENGTH 

AD DR ( POS IT I ON) 

'TIM1.DAT' .HSCHD+O 47060(1) 8 

16-28 

5 
47051 



USING THE FORTRAN COMPILER 

LINE LOC LABEL GENERATED (ODE 

0 JFCL OtO 
JSP 1 '3 tRESET • 

2 o to 
LI 3 )<MOI.JE I li3tLlM 

LI PUSH~J 17tOPEN. 
6 5 SETZB 1 ,) t 11 

* 6 MOI.JEI 1~ ,1 LIL1 Asterisks indicate opt.imizer 
7 MOI.JEM 1.~ t • ROOO 1 generated statements 

7 10 MOI.JN I 1~t310 

11 MOI.JE I 7,1 
12 MOI.JEM 1 ~ t • SOOOO 

* 13 5M: 
MOI.JE 6t7 

8 ill MOI.JE 2 t [77763L100000 1 ] 

* 15 6M: 
MOI.IE I L1t(l(2) 

16 ADD L1t.ROOOl 
9 17 MOI.IE 5t6 
10 20 CAlL 5t76L1 

21 CAlLE 5t273L1 
22 JRST Ot8M 
23 JRST Ot7M 

10 2L1 8M: 
MOI.JE I 5tO 

11 25 7M: 
MOI.JH1 5tA-1L15(LI) 

12 26 MOI.JE 3 t 7 
27 ADDI 3 to (2) 

13 30 CAIE 3 t 1 LIL1 
31 CAIN 3 t31 0 
32 JRST o t 10M 
33 11 M: 

CAIN 3tLl5L1 
13 3L1 10M: 

ADDI 3,1 
ill 35 9M: 

MOI.JEM 3tB-1L15(4) 
15 36 ADD 11 t 5 
16 37 ADD 1) t 3 

* L10 ADD 6 t 7 
17 L11 100 P : 

AOBJN 2t6M 
L12 HRRZM 1 ~ ,1 LIL1 

* L13 MOI.JE I 1 ~ ,1L1L1 
LIL1 ADDM 1 ~ t • ROOO 1 

* L15 1 M: 
ADDI 7,1 

L16 AOSGE Ot.SOOOO 
L17 JRST Ot5M 
50 MOI.IEM 7 tJ 

* 51 MOI.IEM II tSUMl 

* 52 MOI.IEM 1)tSUM2 

* 53 MOI.JEM 5 t K 1 

* 5L1 MOI.IEM 3tK2 
19 55 )-<MOt.JE I 13 t 12M 

56 PUSHJ 17tOUT. 

* 57 )-<MOI.IE I 1,3,13M 

60 PUSHJ 17tIDLST. 
21 61 2M: 

)<MOI.JE I 13t3M 
62 PUSH,J 17 t D<IT. 

16-29 



ARGUMENT BLOCKS: 

63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 

3M: 

4M: 

12M: 

13M: 

USING THE FORTRAN COMPILER 

0, ,0 
0,,0 
777776, ,0 
436000, ,26 
406640, ,.HSCHD+O 
777776, ,0 
401000 , ,26 
402340,,10P 
777775, ,0 
401100"SUM1 
401100"SUM2 
4000, ,0 

FORMAT STATEMENTS (I N LOW SEGMENT) : 

20 

MAIN. 

6 47062 
47063 lOP: (' SUM1= ',18,' SUM2= ',18) 

[ No err a r s oj e te c t e oj 

16-30 



Example 4: 

MAIN. 

00001 
00002 
00003 
00004 
00005 
00008 
00007 
00008 
00008 
00010 
00011 
00012 
00013 
00014 
00015 
00018 
00017 
00018 
00018 
00020 
00021 

USING THE FORTRAN COMPILER 

TIM1.FoR FORTRAN I,J.1Cl(253C )/F77/M/E>:T 24-APR-85 

IMPLICIT INTEGER (A-Z) 
DIMENSICN A( 100 ,2(0) 
COMMON B( 100 ,200) 
oPEN(UNIT=22,FILE='TIM1.DAT') 
SUM1=0 
SUM2=0 
DO 100 J= 1 ,200 
001001=1,100 

K 1 = I*J 
IF (Kl .LT. 500 .0R. Kl .GT. 15(0) Kl=O 
A(I,J)=kl 

K2=I+J 
IF (K2 .EO. 100 .0R. K2 .E:). 200 .(JR. K2 .EO. 300) K2=K2+1 
B<I,J)=k2 

SUM1=SUl"ll+Kl 
SUM2 = SUI"12+K 2 

100 CONTINUE 
C 

10 

WRITE (2:'::: dO)SUMl ,SUM2 
FORMAT ( , SUM 1 = ' d ~~ , ' 

END 

SUM2= 'd8) 

COMMON BLOCKS [" I " STORED IN • LARG. 

I. CoMM. / (+47040 ! ) 
B + 0 tL. _________ Large com mon block 

18:27 

SCALARS AND ARRAYS "*" NO E>: PLI C IT [JEF I N IT I ON - "'X," NOT REFERENCED ] 
II ! II l,.l A R I A B L EST 0 r ~ E 0 IN. LA R G t ] 

• Large variable 
*K *J 2 ! A 0 

.SOOOl 3 .SOOOO 4 *SUM2 5 

*1 8 *K2 7 *SUMl 10 

CHARACT!::R DATA [ "*" NO E><PLICIT DEFINITION - "!" I,JARIABLE STORED IN .LARG. ] 
NAME DESCR 1 PTOR ADDRESS START OF DATA LENGTH 

ADDR ( PoS IT I ON) 

'TIM1.DAT' 

LINE 

5 
8 
7 

8 

8 

10 

10 

LoC 

0 

2 
3 
4 
5 
8 
7 
10 
11 

12 

13 

14 
15 
18 
17 
20 
21 

.HSCH[)+O 

LABEL 

><Mol,JE I 

3M: 

4M: 

5M: 

7M: 

14 ( 1 ) 8 

GENERATED COOL 

JFCL 0,0 
JSP 18,RESET. 

0,0 
i8,2M 
PUSHJ 17,oPEN. 
SETZB 2,SUMl 
Mol,JEM 2,SUM2 
Mol)E 2,[777470000001] 

HLREM 2 , • SOOOO 

HRRZM 2d 

Mol,JE 2,[777834000001] 

Mol)E 3d 
I MULI 3,0 (2) 

Mol,JEM 3 ,K 1 

CAlL 3,784 

CAlLE 3,27:::4 
JRST 0,7M 

JRST 0,8M 

SETZB 4 ,K 1 

16-31 



11 

12 

13 

13 

14 

15 
16 
17 

18 

21 

23 

24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 

6M: 

37 10M: 

40 

41 

42 
43 
44 
45 
46 
47 
50 

51 
52 
53 
54 
55 
56 
57 
60 
61 
62 

8M: 

8M: 

lOOP: 

ARGUMENT BLOCKS: 

63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 

1 M: 

2M: 

11M: 

12M: 

USING THE FORTRAN COMPILER 

MoVEI 
IMUL 
ADDI 
MOVE 
Mol,JEM 
Mol,JE 
AoDI 
Mol.'EM 
Mol.'E 
CAIE 
CAIN 
JRST 

3.t44 
3d 
3,0 (2) 
4,Kl 
4 ,@[ .EFIW A-145(3)] 
3,J 
3,(H2) 
3,K2 
5,K2 
5,144 
5,310 
0,8M 

CAIN 5,454 

ADS 3,K2 

Mol,JE I 
IMUL 
ADDI 
Mol.'E 
Mol.'EM 
ADDM 
AD OM 

3,144 
3,J 
3,0 (2) 

5,K2 
5 ,@[ .EFIW B-145(3)] 
4,SUMl 
5,SUM2 

AoBJN 2,5M 
HRRZM 2,1 
ADS 2,J 
AoSGE O,.SOOOO 
JRST (l,4M 
){Mol,JEI16.tlM 
PUSHJ 17,oUT. 
XMol.'EI16,12M 
PUSHJ 17,IOLST. 
){MOI.'E I 16 t1 M 
PUSHJ 17,E){IT. 

0, ,0 
0,,0 
777776 , ,0 
436100,,[000000000026] 
1I06GlIO, , • HSCHD+O 
777776, ,0 
1I01000, ,26 
1I02340, ,lOP 
777775, ,0 
401100, ,SUMI 
401100, ,SUM2 
1I000, ,0 

FORMAT STATEMENTS (I N LOW SEGMENT) : 

20 

MAIN. 

00001 
00002 
00003 

17 6 
20 lOP: ( I SUM 1 = I tI 8, I SUM2= I tI8) 

[ No errors detected] 

16-32 



USING THE FORTRAN COMPILER 

NOTE 

Note that in the scalars and arrays list, 'NO EXPLICIT 
DEFINITION' indicates that the variable was never 
explicitly defined, as in a TYPE or DIMENSION 
statement. Also, 'NOT REFERENCED' indicates that the 
variable was declared, but never used, and therefore 
was never allocated any storage in the program. 

Character variables that are declared, but not 
referenced, appear under the scalars and arrays 
section of the listing. No storage is allocated for 
either the character descriptor or the character data. 

16.8 ERROR REPORTING 

If an error occurs during the initial pass of the compiler (while the 
actual source code is being read and processed), an error message is 
printed on the listing immediately following the line in which the 
error occurred. When pertinent and possible, the error references the 
internal sequence number of the incorrect line. The error messages 
along with the statement in error are output to the user terminal. 

Example: 

TYPE DAY. FOR 
01000 
01100 
01200 
01300 
01400 
01500 100 
01600 C 
01700 
01800 200 
01900 

COMPILE DAY.FOR 
FORTRAN: DAY 

1=10 
IMPLICIT INTEGER (X) 
J=I**4 
Kl 
X=I+J+Kl 
CONTNUE 

TYPE 200,X 
FORMAT(lX,I8) 
END 

IMPLICI,]' INTEGER (X) 01100 
%FTNSOD 
01300 
?FTNNRC 
01500 
?FTNMSP 
01600 

LINE:OI100 IMPL]CIT statement out of order 
Kl 

LINE:01300 Statement not recognized 
100 CONTNUE 
LINE:01500 Statement name misspelled 

? 
?FTNICL LINE:01600 Illegal character C in label field 

?FTNFTL MAIN. 3 fatal errors and 1 warning 

If errors are detected after the initial pass of the compiler, they 
appear in the list file after the end of the source listing. They are 
output to your terminal without the statement in error, but they may 
reference its internal sequence number. 

16-33 



USING THE FORTRAN COMPILER 

16.8.1 Fatal Errors and Warning Messages 

There are two levels of messages, warning and fatal error. Warning 
messages are preceded by "%" and indicate a possible problem. The 
compilation will continue, and the object program may be correct. 
Fatal errors are preceded by a "?". If a fatal error is encountered 
in any pass of the compiler, the remaining passes will not be called, 
and no relocatable binary file will be generated. 

Additional errors that would be detected in later compiler passes may 
not become apparent until the first errors are corrected. It is not 
possible to generate a correct object program for a source program 
containing a fatal error. 

The format of messages is: 

?FTNxxx Line:n text 

or 

%FTNxxx Line:n text 

where: 

? 
% 
FTN 
xxx 
Line:n 
text 

indicates a fatal message 
indicates a warning message 
is the FORTRAN mnemonic 
is the 3-letter mnemonic for the error message 
is the optional line number where error occurred 
is the explanation of error 

The printing of fatal errors and warning messages on your terminal can 
be suppressed by the use of the /NOERRORS switch; however, messages 
will still appear on the listing. The /NOWARN switch will suppress 
warning messages on both the user terminal and in the listing. 
Specific warnings can be suppressed by using options to the /NOWARN 
switch (see Section 16.4). 

16.8.2 Message Summary 

At the end of the listing file and on the terminal, a message summary 
is printed after each program unit is compiled. This message has two 
forms: 

1. When one or more messages were issued 

?FTNFTL name 1 fatal error and no warnings 
name 2 fatal errors and no warnings 

%FTNWRN name no fatal errors and 1 warning 
name no fatal errors and 2 warnings 

or 

2. When no messages were issued 

name [No errors detected] 

where name is the program or subprogram name. Appendix C contains a 
complete list of fatal errors and warning messages. 

16-34 



USING THE FORTRAN COMPILER 

16.9 CREATING A SHARABLE HIGH SEGMENT FOR A FORTRAN PROGRAM 

For non-extended addressing programs, the FORTRAN compiler always 
generates two segment code for a program unit. However, by default, 
the linking loader loads all FORTRAN code into the low segment to 
allow the sharable run-time system to be bound to the program at 
run-time rather than at load-time. 

This default action of the loader can be overridden by using the LINK 
switch /OTS:NONSHAR when loading the program. If this switch is 
given, the linking loader loads the impure code (the data areas) in 
the low segment, loads the pure code (the machine instructions) in the 
high segment, and binds a private copy of the run-time system to the 
program at load-time. 

A program loaded with the /OTS:NONSHAR switch can be saved in order to 
produce an executable file with a sharable high segment using the 
TOPS-IO SSAVE command or the TOPS-20 EXEC SAVE command. (The LINK 
switches /SSAVE (TOPS-lO) or /SAVE (TOPS-20) can also be used to 
produce the sharable executable file.) This is an advantage if a large 
application program is to be run by several users simultaneously. The 
code unique to the program and the copy of the FORTRAN run-time system 
that is private to the program is shared between all the program's 
users. 

The possible benefits gained by the users of the application program 
sharing the high segment of their program containing both user and 
FOROTS code must be weighed against the loss of not sharing the common 
copy of FOROTS as all other users. 

(See the LINK Reference Manual.) 

16-35 





CHAPTER 17 

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

FORDDT is an interactive program used to debug FORTRAN programs and 
control their execution. By using the symbols created by the FORTRAN 
compiler, FORDDT allows you to examine and modify the data and FORMAT 
statements in your program, set breakpoints at any executable 
statement or routine, trace your program statement-by-statement, and 
make use of many other debugging techniques described in this chapter. 

Table 17-1 lists all the commands available to the user of FORDDT. 

Table 17-1: FORDDT Commands 

Command Purpose 

Control Commands 

CONTINUE 

DDT 

GOTO 

NEXT 

START 

STOP 

Data Access Commands 

ACCEPT 

TYPE 

CHARACTER 

Continues execution 
breakFoint. 

after a FOR DDT 

Enters DDT. 

Transfers control to some program statement 
within the open program unit. 

Traces execution of the program. 

Begins execution of the FORTRAN program. 

Terminates the program and returns 
monitor mode. 

Modifies variables or FORMAT statements. 

Displays variables. Declarative Commands 

to 

Defines dimensions of character arrays for 
FORDDT references. (This command is 
unnecessary if /DEBUG is specified at 
compile time. See Table 16-3.) 

17-1 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

Table 17-1: FORDDT Commands (Cont., 

~------------------------~----------------------------------------------------

Command Purpose 

~------------------------~-----------------------------------------------,------

DIMENSION 

DOUBLE 

GROUP 

MODE 

OPEN 

PAUSE 

PAUSE ON ERROR 

REMOVE 

REMOVE ON ERROR 

Other Commands 

LOCATE 

STRACE 

WHAT 

Defines dimensions of real and integer 
arrays for FORDDT references. (This 
command is unnecessary if /DEBUG is 
specified at compile time. See Table 
16-3.) 

Defines dimensions of double-precision and 
complex arrays for FORDDT references. 
(This command is unnecessary if /DEBUG is 
specified at compile time. See Table 
16-3.) 

Defines indirect lists for TYPE statements. 

Specifies format of typeout. 

Accesses program unit symbol table. 

Sets FORDDT breakpoints. 

Sets FORDDT breakpoints (for errors such as 
arithmetic overflows). 

Clears FORDDT breakpoints. 

Clears PAUSE ON ERROR breakpoints. 

Lists program unit names in which a given 
symbol is defined. 

Displays routine traceback 
program status. 

of current 

Displays current DIMENSION, GROUP, 
FORDDT breakpoint information. 

and 

~------------------------~----------------------------------------------------
The FORDDT commands are described in detail in Section 17.5. 

17.1 INPUT FORMAT 

FORDDT commands consist of alphabetic FORTRAN-like identifiers and 
need consist of only those characters required to make the command 
unique. If you wish to specify parameters, a space is required 
following the command name. Comments may be appended to command lines 
by preceding the comment with an exclamation point (!). 

17.1.1 Variables and Arrays 

FORDDT allows you to access and modify the data in your program using 
standard FORTRAN symbolic names. Variables are specified simply by 
name. For example: 

name 

17-2 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

where: 

name is a variable name. 

Array E~lernents are specified in the following formats: 

name 
n am e ( s 1 , ••• j' s n) 

where: 

name is the name of the array 

(sl, ••. ,sn) are the sub:5cripts of a particular array. The 
subscripts mllst be integer constants or variables. 

You may reference an entire ar~ay simply by typing the array name 
(without subscripts). You may specify a range of array elements by 
typing the first and last element in the chosen range, separated by a 
dash (-). 

The following examples show thl~ various ways of specifying variables 
and arrays to FORDDT: 

ALPHA 
ALPHA(7) 
ALPHA(PI) 
ALPHA(2)-ALPHA(5) 

17.1.2 Constant Conventions 

FORDDT accepts optionally signed numeric data in the standard FORTRAN 
input formats: 

1. INTEGER - A string of decimal digits. 

2. REAL - A string of decimal digits optionally including a 
decimal point. Standard engineering and double-precision 
exponent formats are ~lso accepted. 

3. OCTAL - }I.,. string of octal d:igits optionally preceded by a 
double quote ("). 

4. COMPLEX - An ordered pair of integer or real constants 
separated by a comma and enclosed in parentheses. 

5. LOGICAL - A Boolean argument, either .TRUE. or .FALSE. 

6. CHARACTER - A string of printable ASCII characters enclosed 
by apostrophes. 

7. HOLLERITH A stri~g of alphanumeric and/or special 
characters delimited by any alphanumeric or special 
character, excluding the space character, which does not 
occur with the strin'J itself. Such as, # 12AB#, where # is 
the delimiting character. 

17-3 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

17.1.3 Statement Labels and Source Line Numbers 

FORTRAN statement labels are input and output by straightforward 
numeric reference, such as 1234. However, source line numbers must be 
input to FORDDT with a number sign (#) preceding them. This mandatory 
sign distinguishes statement labels from source line numbers. 

PAUSE #3 !This causes a pause at source line number 3. 

PAUSE 3 !This causes a pause at the statement labeled 3. 

17.2 FORDDT AND THE FORTRAN /DEBUG SWITCH 

Most facilities of FORDDT are available without the FORTRAN /DEBUG 
features. However, if you do not use the /DEBUG switch when compiling 
a FORTRAN program, the trace features (NEXT command) will not be 
available, and several of the other commands will be restricted. 

Using the /DEBUG switch tells FORTRAN to compile extra information for 
debugging. (See Chapter 16 for more information.) These features are: 

1. /DEBUG:DIMENSIONS, which generates dimension information in 
the .REL file for all arrays dimensioned in the subprogram. 
The dimension information is automatically available to 
FORDDT if you wish to reference an array in a TYPE or ACCEPT 
command. This feature eliminates the need to specify 
dimension information for FOR DDT by using the DIMENSION 
command. 

2. /DEBUG:LABELS, which generates labels for every executable 
source line in the form <line-number>L. If these labels are 
generated, they may be used as arguments with the FORDDT 
commands PAUSE and GOTO. 

This switch also generates labels at the last location 
allocated for a FORMAT statement so that FORDDT can detect 
the end of the statement. These labels have the form 
<format-label>F. If they are generated, you can display and 
modify FORMAT statements by means of the TYPE and ACCEPT 
commands. 

Note that the :LABELS switch is automatically activated with 
the :TRACE switch, since labels are needed to accomplish the 
trace features. 

3. /DEBUG:TRACE, which generates a reference to FORDDT before 
each executable statement. This switch is required for the 
trace command NEXT to function. 

Note that if more than one FORTRAN statement is placed on a 
single input line, only the first statement has a FORDDT 
reference and line-number label associated with it. This 
also applies to the :LABELS switch. 

4. /DEBUG:INDEX, which forces the compiler to store in its 
respective data location, as well as a register, the index 
variable of all DO loops at the beginning of each loop 
iteration. You will then be able to examine DO loops by 
using FORDDT. If you modify a DO loop index using FORDDT, it 
will not affect the number of loop iterations because a 
separate loop count is used. 

17-4 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

In addition, this switch forces all function values to be 
stored in memory prior to return from the function. If this 
switch is specified, you can set a FORDDT pause on the RETURN 
statement (see Section 13.4.4) and then examine the value to 
be returned. 

5. /DEBUG:BOUNDS, which generates the bounds checking code for 
all arralY references. Bounds violations produce run-time 
e r ro r messag es. No te tha t the techn ique 0 f spec i fyi ng 
dimensions of 1 fOl" subroutine arrays causes bounds check 
errors. (You can use this option without FORDDT.) 

6~ /DEBUG:ARGUMENTS, which performs type checking at load time 
for actual argument types and associated dummy argument 
types. Type violations produce non-fatal, load-time error 
messages. This swj,tch also performs type checking at 
compile-time for statement functions. 

17.3 LOADING AND STARTING FORDDT 

1. On TOPS-10, the simplest method of debugging with FORDDT is: 

.DEBUG filespec{DEBUG) 

On TOPS-20, the corre~;ponding command is: 

@DEBUG filespec /DEBUG 

On both systems, FORDDT responds with: 

STARTING FORTRAN DDT 

Program name: 

When FOR DDT prompts you for a program name, type the same 
name specified in th~ PROGRAM statement of the program being 
debugged. If the PROGRAM sta temen tis not used in the 
program being debugged, FORDDT uses MAIN., and will not 
prompt for a program name. 

FORDDT next prints its command prompt: 

» 

The angle brackets indicate that FORDDT is ready to receive a 
command. 

2. If you are on TOPS-20, you can type a question mark to the 
prompt to get a list of all FORDDT commands, as follows: 

»? One 
ACCEPT 
GOTO 
OPEN 
TYPE 

of the following: 
CHARACTER CONTINUE 
GROUP HELP 
PAUSE REMOVE 
WHAT 

DDT 
LOCATE 
START 

DIMENSION DOUBLE 
MODE NEXT 
STOP STRACE 

Also on 'I'OPS-20, you can use· the ESCape key for recognition 
of FORDD'I' commands. For example: 

»CON<ESC>TINUE 

17-5 



3. 

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

On both systems, you need only type the unique abbreviation 
of a specific FOR DDT command. 

You may wish to load your compiled 
directly with the linking loader. 
accomplished implicitly in the DEBUG 
command sequence is as follows: 

On TOPS-la, to start LINK, type: 

.R LINK 

On TOPS-20, type: 

@LINK 

program and FOR DDT 
(Loading with LINK is 

command string.) The 

On both systems, when LINK prompts you with an asterisk, you 
can type a command string in any of the following forms: 

*filespec /DEB/G 

*filespec /DEB:{FORDDT}/G 
{FORTRA} 

*filespec /DEB: (DDT,{FORDDT})/G 
{FORTRA} 

*filespec /DEB: ({FORDDT} ,DDT)/G 
{FORTRA} 

(loads DDT) 

(loads FORDDT) 

(loads DDT 
and FORDDT) 

(loads FORDDT 
and DDT) 

In the last two command forms shown, the first debugging 
program specified (FORDDT or DDT) in the command string is 
the one you communicate with after the LINK command string 
is executed. 

See Section 17.9 for information on loading 
addressing programs. 

extended 

17.4 SCOPE OF NAME AND LABEL REFERENCES 

Each program unit has its own symbol table. When you initially enter 
FORDDT, you automatically open the symbol table of the main program. 
All references to names or labels through FOR DDT must be made with 
respect to the currently open symbol table. 

If you have given the main program a name other than MAIN. by using 
the PROGRAM statement (see Section 6.4.1), FORDDT asks for the defined 
program name. After you enter the program name, FORDDT opens the 
appropriate symbol table. At this point, symbol tables in programs 
other than the main program can be opened by using the OPEN command. 

References to statement labels, line numbers, FORMAT statements, 
variables, and arrays must have labels that are defined in the 
currently open symbol table. However, FORDDT will accept variable and 
array references outside the currently open symbol table, providing 
the name is unique with respect to all program units in the given load 
module. 

17-6 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

17.5 FORDDT COMMANDS 

This section gives a detailed description of all commands in FORDDT. 
The commands are given in alphabetical order: 

ACCEPT Allows you to change the contents of a FORTRAN 
variable, array, array element, array element range, or 
FORMAT statement. The command format is: 

ACCEPT namE'[/mode] value 

where: 

name 

mode 

value 

is the variable, array, array element, array 
eleme~t range, or FORMAT statement to be 
modified. 

is the format of the data value to be 
entered. The mode keyword must be preceded 
by a slash (/) and immediately follows the 
name. Intervening blanks are not allowed. 
(Note that /mode does not apply to FORMAT 
modification.) 

is the new value to be assigned. The format 
of the input value must correspond to the 
specified mode. 

DATA LOCATION MODIFICATION 

Data Modes 

The following data modes are accepted: 

Mode Meaning Example 

A ASCII (left-justified) /FOO/ 
C CHARACTEF( 'ABC' 
D DOUBLE-PF:EC IS ION 123.4567890 
F REAL 123.45678 
I INTEGER 1234567890 
0 OCTAL 7654321 
L LOGICAL • TRUE. or .FALSE • 
R RASCII (right-justified) \BAR\ 
S SYMBOLIC PS I ( 2,4) 
X COMPLEX (1.25,-78.E+9) 

If not specifie6, the default mode is REAL (F). 

1. Two-Word Va]ues 

For the data modes 
(R), and SYMBOLIC 
modifier on the 
indicates that the 
interpreted as two 

17-7 

ASCII (A), OCTAL (0), RASCII 
(S), FORDDT will accept a "/BIG" 
mode switch. This modifier 
variable and the value are to be 
words long. 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

Example: 

ACCEPT VAR/RASCII/BIG '1234567890' 

assumes that VAR is two words long and stores the 
given 10-character literal into it. 

The /BIG modifier can also be used to display more 
than the first 256 characters of long character 
strings. 

2. Character Variables 

A character variable can be initialized by using an 
ACCEPT command of the following form: 

ACCEPT VAR/C 'string' 

Note that length fo the variable is that which is 
specified in the source program. If the string is 
longer than the variable, the rightmost characters 
are truncated. If the string is shorter than the 
variable, it is stored left-justified and padded on 
the right with blanks. 

3. Initialization of Arrays 

If the name field of an ACCEPT contains an 
unsubscripted array name or a range of array 
elements, all elements of the array or the 
specified range are set to the given value. 

Example: 

ACCEPT ARRAY/F 1.0 

or 

ACCEPT ARRAY(5)-ARRAY{10)/F 1.0 

Note that this applies only to modes other than 
ASCII and RASCII. 

For character arrays, if the value has fewer 
characters than the length of the array element, 
the rightmost character positions of the element 
are initialized with spaces. If the value has more 
characters than the length of the array element, 
the value is truncated to the right. 

4. Long Literals 

When the value field of an ACCEPT contains an 
unsubscripted array name or range of array 
elements, and the specified data mode is ASCII, the 
value field is expected to contain a long literal 
string. ACCEPT stores the string linearly into the 
array or array range. If the array is not filled, 
the remainder of the array or range is filled with 
zeroes. If the literal is too long, the remaining 
characters are ignored. 

17-8 



CHARACTER 

CONTINUE 

. DDT 

USING ~rHE FORTRAN INTERAC~rIVE DEBUGGER (FORDDT) 

Example: 

ACCEPT ARRAY/ASCII 
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

5. FORMAT Stat(~ment Modification 

When the name field of an ACCEPT contains a label, 
FORDDT expt~cts this label to be a FORMAT statement 
label and that the value field contains a new 
format specification. 

Example: 

ACCEPT 10 (lHO,FIO.2,3(I2» 

The new specification cannot be longer than the 
space originally allocated to the FORMAT by the 
compiler. 'rhe remainder of the area is cleared if 
the new specification is shorter. 

Note that FOROTS performs some encoding of FORMAT 
statements when it processes them for the first 
time. If any I/O statement referencing the given 
FORMAT has been executed, the FORTRAN program has 
to be restal~ted (re-initializing FOROTS). 

Defines the dimensions 
result of this command 
command except that 
understood by FORDDT 
command fo rma t .~ s : 

of a character array. The 
is the same as for the DIMENSION 
the array so dimensioned is 

to be a character array. The 

CHARACTER arrayname ([Ll:]Ul[,[L2:]U2, ••. ]) 

NOTE 

This declal-ator cannot be used to specify 
element length. The length specified in the 
user progran will be used. 

Allows the progl-am to resume execution after a FORDDT 
pause. After a CONTINUE is executed, the program 
either runs to completion or until another pause is 
encountered. The command format is: 

CONTINUE [n] 

where the n is optional and, if omitted, is assumed to 
be 0 n e • I f a val u e i s pro v ide d, i t can be a n urn e ric 
constant or proqram variable, but it is treated as an 
integer. When the value n is specified, the program 
continues execution until the nth occurrence of this 
pause. For exarlple, 

CONTINUE 2() 

continues execution until the 20th occurrence of the 
pause, or until a different pause is encountered. 

Transfers control of the program to DDT, the standard 
system debugging program. Any files currently opened 
by FOROTS are unaffected, and a return to FORDDT is 
possible so that program execution may be resumed. 

17-9 



DIMENSION 

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

%FDDT is the global symbol used to return control to 
FORDDT. The command format is: 

%FDDT<ESC)G 

Your program will be in the same condition as before 
unless you have modified your core image with DDT. 

Sets, displays, or removes the user-defined dimensions 
of an array for FORDDT access purposes. These 
dimensions need not agree with those declared to the 
compiler in the source code. FORDDT allows you to 
redimension an array to have a larger scope than that 
of the source program. If this is done, a warning is 
given. 

NOTE 

The DIMENSION command cannot be used to declare 
double-precision, complex, or character arrays 
(see the CHARACTER and DOUBLE commands) • 

The command format is: 

DIMENSION name ([Ll:]Ul[,[L2:]U2, .•• ]) 

where: 

name 

([Ll:]Ul .•. ) 

For example: 

is the name of the array 

specifies the bounds of the 
array, where L is the lower 
bound and U is the upper 
bound. The default value of L 
is 1. The bounds must be 
integer constants or 
variables. 

DIMENSION ALPHA(7,5:6,10) 

FORDDT remembers the dimensions of the array until they 
are redefined or removed. 

The command: 

DIMENSION 

gives a full list of all the user-defined dimensions 
for all arrays. 

DIMENSION ALPHA 

displays the current information for the array ALPHA 
only. 

DIMENSION ALPHA/REMOVE 

removes any user-defined array information for the 
array ALPHA. 

17-10 



DOUBLE 

GOTO 

GROUP 

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

Defines the dimensions of a double-precision or complex 
array. The result of this command is the same as for 
the DIMENSION command except that the array so 
dimensioned is understood by FORDDT to be an array with 
two-word elements. 

The command format 1" c· • 
~) . 

DOUBLE arrayname ([Ll:]Ul[,[L2:]U2, ••• ]) 

Allows you to continue your program from a point other 
than the one at which it last paused. The GOTO allows 
you to continue at a statement label or source line 
number provided that the IDEBUG:LABELS switch has been 
used or the contents of a symbol previously ASSIGNed 
during the program execution has been used. 

Note that the program must be STARTed before this 
command can be used, and also note that a GOTO is not 
allowed after the <CTRL/C>, REENTER sequence (see 
Section 17.6). 

The command format 

GOTO n 

1" C" • 
~ .. 

SE'ts up a str ing of text for input to a TYPE command. 
You can store TYPE statements as a list of variables 
identified by the numbers 1 through 8. This feature 
el iminates the neE!d to retype the same 1 ist of 
variables each time you wish to examine the same group. 
Refer to the ~'YPE command for the proper format of the 
list. 

The command format is: 

GROUP [n list] 

where: 

n is the group number 1-8 

list is a list of group numbers preceded by a 
slash (I) and/or variable names to be 
typed when you give the command: TYPE 
In, where n is the group number. The 
validity of the list is not checked. 

GROUP 

with no arguments causes FOR DDT to type out the current 
contents of all the grroups. 

GROUP n 

types out thE! contents of the 
requested. 

particular 

Note that one group may refer to another. 

Fa r exampl e : 

GROUP 2 VAR2,VAH3 
GROUP 3 I ~'. ,/2 

17-11 

group 



LOCATE 

MODE 

NEXT 

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

Lists the program unit names in which a given symbol is 
defined. This is useful when the variable you wish to 
locate is not in the currently open program unit and is 
defined in more than one program unit. The command 
format is: 

LOCATE n 

where n may be any FORTRAN variable, array, label, line 
number, or FORMAT statement number. 

Defines the display format for succeeding FORDDT TYPE 
commands. You need type only the first character of 
the mode to identify it to FOR DDT because all 
characters after the first are ignored. The modes are: 

Mode Meaning 

C CHARACTER 
F REAL 
D DOUBLE-PRECISION 
X COMPLEX 
I INTEGER 
o OCTAL 
A ASCII (left-justified) 
R RASCII (right-justified) 
L LOGICAL 

Unless the MODE command is given, the default typeout 
mode is the REAL (F) format. 

The command format is: 

MODE list 

where list 
separated 
changed by 
one mode 
order: C, 

contains one or more of the mode identifiers 
by commas. The current setting can be 
issuing another MODE command. If more than 
is given, the values are typed out in the 
F, D, X, I, 0, A, R, L. 

A typical command string might be: 

MODE A,I,OCTAL 

Allows you to cause FOR DDT to trace source lines, 
statement labels, and entry point names during 
execution of your program. This command only provides 
trace facilities if the program is compiled with the 
FORTRAN /DEBUG switch. If this switch is not used, the 
NEXT command acts as a CONTINUE command. The command 
format is: 

NEXT [n] [/sw] 

where: 

n 

sw 

is a program variable or integer numeric 
value 

is one of the following switches 

/S= statement label 
/L= source line 
/E= entry point 

17-12 



OPEN 

PAUSE 

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

The default starting value of n is 1, a single 
statement trace. The default switch is /L. 

The command 

NEXT 20/L 

traces the execution of the next 20 source line numbers 
or until another pause is encountered. 

Note that if no argument is specified, the last 
argument given is used. 

For example: 

NEXT /E 

changes the tracing mode to trace only subprogram 
entries using the numeric argument previously supplied. 

Allows you to open a particular program unit of the 
loaded prograrr so that the variables are accessible to 
FORDDT. Any previously opened program unit is closed 
automatically when a new one is opened. Only global 
symbols, symbols in the currently open unit, and unique 
locals are available at anyone time. Note that 
starting FORDDT automatically opens the main program. 

The command format is: 

OPEN name 

where name is the subprogram name. 
arguments reopens the main program. 

OPEN with no 

Allows you to place a FORDDT breakpoint at a statement 
number, source line number, or subroutine entry point. 
Up to ten breakpoints may be set at anyone time. When 
a breakpoint is encountered, execution is suspended at 
that point and control is returned to FORDDT. The 
symbol table of that subprogram is also automatically 
opened. 

The command formats are: 

PAUSE 
PAUSE P 
PAUSE P AFTER n 
PAUSE p IF condition 
PAUSE p TYPING /g 
PAUSE P AFTER n TYPING /g 
PAUSE P IF condition TYPING /g 

where: 

P 

n 

g 

PAUSE 100 

is the point where the breakpoint is 
inserted 
is an integer constant, variable, or 
array element 
is a group number 

17-13 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

sets a breakpoint at statement label 100, causes 
execution to be suspended, and causes FORDDT to be 
entered on reaching 100 in the program. 

PAUSE #245 AFTER MAX(5) 

causes a break to occur at source line number 245 after 
encountering this point the number of times specified 
by MAX(5). Note that AFTER can not be abbreviated. 

PAUSE DELTA IF LIMIT(3,1) .GT.2.5E-3 

causes a FORDDT break to occur if the variable 
LIMIT(3,1) is greater than the value 2.5E-3. The IF 
can not be abbreviated, and the following FORTRAN 
logical connectives are allowed: 

.GT., .GE., .LT., .LE., .EQ., .NE. 

Double-precision comparisons and arithmetic operations 
are not allowed. However, comparisons can be made 
between variables, constants, and logical constants 
(such as .TRUE. and .FALSE.). 

PAUSE 505 TYPING /5 

sets a FORDDT breakpoint at label 505, and the 
variables in group 5 are displayed. The TYPING 
specification can not be abbreviated. 

PAUSE #24 AFTER 16 TYPING /3 

causes a break at source line number 24 after 16 times 
through; however, the contents of group 3 are displayed 
every time. 

Whe~ the TYPING option is used with the PAUSE command, 
control can be transferred to FORDDT at the next 
typeout by typing any character on the terminal. 

Note that pause requests remain after a (CTRL/C) 
REENTER sequence, a START command, or a (CTRL/C) START 
sequence. 

PAUSE ON ERROR Causes the program to enter FORDDT whenever an error 
occurs (such as an arithmetic overflow). It has the 
same command format as the PAUSE command. 

REMOVE Removes the previously set FORDDT breakpoints. 
command format is: 

REMOVE [p] 

Fo r exampl e, 

REMOVE L#123 

The 

removes a breakpoint from the program source line 
number 123. 

REMOVE ALPHA 

17-14 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

removes a breakpoint from the subroutine entry to 
ALPHA. 

REMOVE with no arguments 
breakpoints, and, in this 
REMOVE is allowed. 

removes all your FOR DDT 
case, no abbreviation of 

REMOVE ON ERROR Removes a PAUSE ON ERROR breakpoint. It has the same 
command format as the REMOVE command. 

START 

STOP 

STRACE 

TYPE 

Starts your program at the normal FORTRAN main program 
entry point. lhe command format is: 

START 

Terminates the program, closes all files 
FOROTS, and causes an exit to the monitor. 
command format is: 

STOP 

STOP IRETURN 

opened by 
The usual 

allows a 
devices 
issued. 

return to 
or closing 

monitor 
files 

mode without releasing 
so that a CONTINUE can be 

Displays a subprogram level traceback of the current 
state of the program. The command format is: 

STRACE 

Displays FORTRAN defined variables, arrays, or array 
elements on YOlr terminal. The command format is: 

TYPE list 

where list may be one or more variables or array 
references anc/or group numbers. These specifications 
must be separated by commas, and group numbers must be 
preceded by a slash (I). The command with no arguments 
uses the last argument list submitted to FORDDT. 

An array elemert range can also be specified. For 
example: 

TYPE PI(5)-PI(13) 

displays the values from PI(5) to PI(13) inclusive. If 
an unsubscripted array name is specified, the entire 
array is typed. 

There are several methods of choosing the form of 
typeout in conjunction with the MODE command: 

1. If you do not specify a format, the default is 
real. 

2. You can specify a format through the MODE command 
described jn this chapter. 

17-15 



WHAT 

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

4. 

3. You can change the format(s) previously designated 
by the MODE command by including print modifiers in 
the TYPE or GROUP string. The print modifiers are: 

A ASCII(left-justified) 
B LONG 
C CHARACTER 
D DOUBLE-PRECISION 
F REAL 
I INTEGER 
L LOGICAL 
o OCTAL 
R RASCII(right-justified) 
X COMPLEX 

If you type a variable in mode CHARACTER 
number of characters printed is equal to 
declared in the FORTRAN source prog ram, up to 
of 256 characters. The IB switch can 
override the 256 character max imum. 

(C) , the 
the length 

a max imum 
be used to 

The B switch may be used in conjunction with the A, 0, 
and R switches. This modifier indicates that the 
variable is to be interpreted as two words long. The B 
switch can also be used with the C switch to display 
more than the first 256 characters of long character 
strings. The B switch can not be used alone. 

The first print modifier specified in a string of 
variables determines the mode for the entire string 
unless another mode is placed directly to the right of 
a particular variable. For example, in: 

TYPE II K,L/O,M,N/A,/2 

the typeout mode is integer until another mode is 
specified. Therefore, 

K, M are integer - the default mode for group 2 is 
integer 
L is OCTAL 
N is ASCII 

Displays on your terminal the name of the currently 
open program unit, any currently active breakpoints, 
any group specifications, and any user-set array 
dimensions. The command format is: 

WHAT 

17.6 ENVIRONMENT CONTROL 

If a program enters an infinite loop, you can recover by 
<CTRL/C> (twice) REENTER sequence. This action causes 
simulate a pause at the point of reentry and allows you 
your run-away program. 

17-16 

typing a 
FORDDT to 

to control 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

Most commands can be used once the program has been reentered; 
howevE!r, GOTO, STRACE, TYPE, and ACCEPT cause transfer of control to 
routines external to FORDDT. No guarantee can be made to ensure that 
any of these commands following a (CTRL/C) REENTER sequence will not 
destroy the program integrity. The program must be returned to a 
stable state bE'fore any of these four commands can be issued. In 
order to restore program integrity, you should set a pause at the next 
label and then CONTINUE to it:. If the /DEBUG:TRACE switch is used, a 
NEXT 1. command can be issued to restore program integrity. 

17.7 FORTRAN /OPTIMIZE SWITCH 

You should never attempt to m;e FORDDT with a program that has been 
compiled with the /OPTIMIZE switch. The global optimizer causes 
variables to be kept in ACs. For this reason, attempts to examine or 
modify variables in optimized programs will not work. 

17.8 CALLING FORDDT 

FORDDT can be called directly from a user FORTRAN program. The 
appropriate statement is: 

CALL FORDDT 

where no argument is required. FORDDT must be loaded and initialized 
before a CALL to FORDDT is made. This is done by starting the program 
in debug mode prior to the first call (see Section 17.3, item 1). All 
FORDDT commands are allowed. A CONTINUE will resume normal execution 
of thE~ user program (similar ":0 a RETURN from a subroutine). 

Since FORDDT is defined as a global symbol, users 
should be careful if they decide to use FORDDT as a 
program, subroutine, or function name. 

17.9 FORDDT AND FORTRAN-2a EXTENDED ADDRESSING 

FORDDT VIa has been modified to be able to run in any section and 
access data and code in all sl~ctions. The user interface to FOR DDT is 
the same regardless of whether or not a program uses extended 
addressing. 

FORDDT VIa is section independent. The same FORDDT.REL will work in 
either section a or a non-zerl) section. 

If a program is loaded with the /DEBUG:FORDDT option, LINK loads 
FORDDT.REL with the prograln. FORDDT.REL is a single-segment module 
(it has only low segment code); therefore, when loaded with a FORTRAN 
object program that was compiled with the /EXTEND switch (see Section 
16.5), FORDDT, by default, is redirected to the .DATA. psect. 

17-17 



USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) 

FORDDT Version 10 will not be guaranteed to work with previous 
versions of FORTRAN-IO/20. 

FORDDT and FORLIB must be in the same section. Since they would by 
default go into the .DATA./.CODE. section, the user normally would not 
need to be concerned about this. However, you should be cautious when 
you use the LINK /REDIRECT switch. 

NOTE 

The first page of any section that contains code is 
reserved for FOR DDT and FOROTS. 

17-18 



CHAPTER 18 

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

This chapter describes the facilities that the FORTRAN Object Time 
System (FOROTS) provides for the FORTRAN user. FOROTS implements all 
standard FORTRAN I/O operations as set forth in the FORTRAN-77 
standard In addition it provides the user with capabilities and 
programming features beyond those defined in the ANSI standard. 

The primary function of FOROTS is to act as a direct interface between 
user-object programs and the TOPS-IO or TOPS-20 monitor during input 
and output operations. Other capabilities include: 

1. Job initialization 

2. Channel and memory management 

3. Error handling and reporting 

4. File management 

5. Formatting of data 

6. Mathematical library 

7. User library (nonmathematical) 

8. Specialized applications packages 

9. Overlay facilities 

FOROTS runs on any TOPS-IO or 1'OPS-20 system. FOROTS interfaces with 
all TOPS-IO or TOPS-20 peripheral devices. 

18.1 FEATURES OF FOROTS 

The following list briefly describes many specific features of FOROTS; 
more detailed information concerning the implementation of these 
f eat u r E! sis g i v e n 1 ate r i nth i~; c hap t e r • 

1. Your program can run :.n either batch or timesharing mode 
without requiring a program change. All differences between 
batch-mode and timesharing-mode operations are resolved by 
FOROTS. 

2., Your proglrams can access both directory and nondirectory 
devices in the same manner. 

3.. FOROTS helps provide complete data file compatibility between 
all system devices. 

18-1 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

4. FOROTS treats devices located at remote stations in the same 
way it treats local devices. 

5. Programs written for magnetic tape operations will run 
correctly on disk under FOROTS supervision. FOROTS simulates 
the commands needed for magnetic tape operations. 

6. You may change or specify object program device and file 
specifications with a FOROTS interactive dialogue. 

7. Non-FORTRAN binary data files may be read in IMAGE mode by 
FOROTS. 

8. FOROTS provides interactive program/operating system 
error-processing routines. These routines permit you to 
route the execution of the program to specific 
error-processing routines whenever designated types of errors 
are detected. 

9. An error traceback facility for fatal errors provides the 
active execution path (by subroutine calls) between the main 
program and the subroutine where the fatal error occurred. 

10. FOROTS provides a trap-handling system for arithmetic 
functions, including default values and error reports. 

11. FOROTS permits your program to switch from READ to WRITE on 
the same I/O device without loss of data or buffering. 

12. Although primarily designed for use with the FORTRAN-I0/20 
object programs, you can also use FOROTS as an independent 
I/O system, and as an I/O system for MACRO object programs. 

18.2 ERROR PROCESSING 

Whenever a run-time error is detected, the FOROTS error-processing 
system takes control of program execution. This system determines the 
class of the error and either outputs an appropriate message at the 
controlling terminal or branches the program to a predesignated 
processing routine. 

18.3 INPUT/OUTPUT FACILITIES 

On TOPS-I0, FOROTS uses monitor-buffered I/O for SEQUENTIAL, SEQINOUT, 
SEQIN, and SEQOUT files access, and uses dump mode I/O for 
DIRECT(RANDOM), RANDIN, and dump mode files access. 

On TOPS-20, FOROTS uses PMAP monitor calls for disk files access other 
than APPEND, and uses monitor-buffered I/O for all other file 
accesses. 

The following sections describe I/O data channel and access modes. 

18.3.1 Input/Output Channels Used By FOROTS (TOPS-I0 Only) 

FOROTS uses extended channels starting 
operations. User programs can request 
through the ALCHN. and FUNCT. routines. 

18-2 

at 
I/O 

channel 20 for I/O 
channels 0 through 17 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

When a request is made for an I/O channel, a table is scanned until a 
free channel is found. ThE! first free channel is assigned to the 
requesting program. On completion of the assigned transfer, control 
of the I/O channel is returned to FOROTS by using the DECHN. routine. 

lS.3.2 File Access 

Data can be transferred between processor storage and peripheral 
devices using either sequential or direct (random) access. 

lS.3.3 Closing Files After NOll-standard Termination 

When a FORTRAN program is aborted by <CTRL/C> or an error, open files 
cannot be closed with the monitor command CLOSE. The following 
command should be used: 

REENTER 

FOROTS then asks if you want the files to be closed. 
YES, then, the files are closed. 

If you answer 

lS.3.3.1 Sequential Access -- In a sequential-access transfer 
operation, the I"ecords involved are transferred in the same order as 
they appear in the source file. Each I/O statement executed transfers 
the record immediately following the last record transferred from the 
accessed source file. 

A type of the sequential access is available for output (write) 
operations. This type of access is called APPEND and is specified by 
the OPEN statement specifier ACCESS='APPEND' (see Section 11.3.1). 
APPEND lets you write a rE!cord immediately after the last logical 
record of the accessed file. During APPEND transfer, the records 
already in the accessed file remain unchanged; the only function 
performed is the appending of the transferred records to the end of 
the file. 

You must specify transfer type!; (other than SEQINOUT) by setting the 
ACCESS option of a FORTRAN OPEN statement to one of several possible 
arguments. For the sequential access, the arguments are: 

ACCESS='SEQIN' 
ACCESS='SEQOUT' 
ACCESS='SEQUENTIAL' 
ACCESS='SEQINOUT' 
ACCESS='APPEND' 

(file is opened for read-only access) 
(file is opened for output) 
(file is opened for input or output) 
(same as SEQUENTIAL) 
(sequential append access) 

NOTE 

A common way to append data to a file opened with 
SEQUENTIAL access is to read past the end of file, and 
then begin writing. The FORTRAN-77 standard requires 
that a BACKSPACE operation be done to back over the 
'end file reco rd' precE!d i ng the WRITE. 

lS-3 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

18.3.3.2 Direct (Random) Access Mode - Direct access permits records 
to be accessed and transferred from a source file in any desired 
order. Direct access can only be used with disk files that have been 
set up for direct access. Direct-access files must contain a 
specified number of identically sized records that may be individually 
accessed by a record number. 

Direct-access transfers may be done in either a read/write direction 
or a special read-only direction. You must specify random transfer 
direction by setting the ACCESS option of an OPEN statement (see 
Section 11.3.1) to one of several possible arguments. 

ACCESS='DIRECT' 
ACCESS='RANDOM' 
ACCESS='RANDIN' 

(direct read/write access) 
(same as DIRECT) 
(direct read-only access) 

18.4 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS 

The following sections describe the types of data files that are 
acceptable to FOROTS. 

18.4.1 ASCII Data Files 

Each record within an ASCII data file consists of a set of contiguous 
7-bit characters. A vertical paper-motion character (that is, a form 
feed, a vertical tab, or a line feed) terminates each set. Logical 
records may be split across physi~al blocks. There is no maximum 
length for logical records. 

18.4.2 FORTRAN Binary Data Files 

Each logical record in a FORTRAN binary data file contains data that 
the executing program can reference with either a READ or a WRITE 
statement. A logical record is preceded and ended by a control ~Nord 
and may have one or more control words embedded within it. In FORTRAN 
binary data files, there is no relationship between logical records 
and physical device block sizes. There is no implied maximum length 
for logical records. 

18.4.2.1 Format of Binary Files - A FOROTS binary file can contain 
three f~rms of Logical Segment Control Words (LSCW). These LSCWs give 
FOROTS the ability to distinguish ASCII files from binary files. The 
value in the high-order 9 bits of an LSCW tells what kind of LSCW it 
is: START, CONTINUE, or END. 

LSCW 
START 001+ the number of words in the segment including 

the START LSCW word (exclusive of the END 
LSCW) 

CONTINUE 002+ the number of words in the segment including 
the CONTINUE LSCW 

END 003+ the number of words in the whole record 
including all LSCWs 

18-4 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

If the access you specify for a file through the OPEN statement 
ACCESS=: argument is 'SEQIN' j 'SEQOUT', 'SEQUENTIAL', or 'SEQINOUT', 
all three LSCWs can appear in a record. If you specify a record size, 
all records are of the same length, and there are no CONTINUE LSCWs. 

The following examples illustrate the LSCW. The direct-access binary 
file contains only 001 and 003 LSCWs. 

C LOOK AT A BINARY FILl: AND SEE THE LOGICAL SEGMENT 
C CONTROL WORDS. 

OPEN (UNI T= 1, ACCESS= 'I>I RECT' ,MODE=' BINARY' , 
1 RECORDSIZE=100) 

1=5 
WRITE(l'l) (I, J=I,10) 

J=7 
WRITE(1'2) (J,K=l,IO) 
END 

18-5 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

0/ 001000,000145~Number of 100/ 000000,000000 
1/ 000000,000005 words in 101/ 000000,000000 
2/ 000000,000005 record 102/ 000000,000000 
3/ 000000,000005 counting 103/ 000000,000000 
4/ 000000,000005 START LSCW 104/ 000000,000000 
5/ 000000,000005 105/ 000000,000000 
6/ 000000,000005 106/ 000000,000000 
7/ 000000,000005 107/ 000000,000000 
10/ 000000,000005 110/ 000000,000000 
11/ 000000,000005 111/ 000000,000000 
12/ 000000,000005 112/ 000000,000000 
13/ 000000,000000 113/ 000000,000000 
14/ 000000,000000 114/ 000000,000000 
15/ 000000,000000 115/ 000000,000000 
16/ 000000,000000 116/ 000000,000000 
17/ 000000,000000 117/ 000000,000000 
20/ 000000,000000 120/ 000000,000000 
21/ 000000,000000 121/ 000000,000000 
22/ 000000,000000 122/ 000000,000000 
23/ 000000,000000 123/ 000000,000000 
24/ 000000,000000 124/ 000000,000000 
25/ 000000,000000 125/ 000000,000000 
26/ 000000,000000 126/ 000000,000000 
27/ 000000,000000 127/ 000000,000000 
30/ 000000,000000 130/ 000000,000000 
31/ 000000,000000 131/ 000000,000000 
32/ 000000,000000 132/ 000000,000000 
33/ 000000,000000 133/ 000000,000000 
34/ 000000,000000 134/ 000000,000000 
35/ 000000,000000 135/ 000000,000000 
36/ 000000,000000 136/ 000000,000000 
37/ 000000,000000 137/ 000000,000000 
40/ 000000,000000 140/ 000000,000000 
41/ 000000,000000 141/ 000000,000000 
42/ 000000,000000 142/ 000000,000000 
43/ 000000,000000 143/ 000000,000000 
44/ 000000,000000 144/ 000000,000000 
45/ 000000,000000 145/ 003000,000146~END LSCl..v 
46/ 000000,000000 146/ 001000,000145 containing 
47/ 000000,000000 147/ 000000,000007 the number 
50/ 000000,000000 150/ 000000,000007 of words in 
51/ 000000,000000 151/ 000000,000007 the record 
52/ 000000,000000 152/ 000000,000007 including 
53/ 000000,000000 153/ 000000,000007 all LSCWs. 
54/ 000000,000000 154/ 000000,000007 
55/ 000000,000000 155/ 000000,000007 
56/ 000000,000000 156/ 000000,000007 
57/ 000000,000000 157/ 000000,000007 
60/ 000000,000000 160/ 000000,000007 
61/ 000000,000000 161/ 000000,000000 
62/ 000000,000000 162/ 000000,000000 
63/ 000000,000000 163/ 000000,000000 
64/ 000000,000000 164/ 000000,000000 
65/ 000000,000000 165/ 000000,000000 
66/ 000000,000000 166/ 000000,000000 
67/ 000000,000000 167/ 000000,000000 
70/ 000000,000000 170/ 000000,000000 
71/ 000000,000000 171/ 000000,000000 
72/ 000000,000000 172/ 000000,000000 
73/ 000000,000000 173/ 000000,000000 
74/ 000000,000000 174/ 000000,000000 
75/ 000000,000000 175/ 000000,000000 
76/ 000000,000000 176/ 000000,000000 
77/ 000000,000000 177/ 000000,000000 

18-6 



200/ 
201/ 
202/ 
203/ 
204/ 
20:)/ 
206/ 
207/ 
210/ 
211/ 
212/ 
213/ 
214/ 
215/ 
216/ 
217/ 
220/ 
221/ 
222/ 
223/ 
224/ 
225/ 
226/ 
227/ 
230/ 
231/ 
232/ 
233/ 
234/ 
235/ 
236/ 
237/ 
240/ 
241/ 
242/ 
243/ 
244/ 
245/ 

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 

246/ 
247/ 
250/ 
251/ 
252/ 
253/ 
254/ 
255/ 
256/ 
257/ 
260/ 
261/ 
262/ 
263/ 
264/ 
265/ 
266/ 
267/ 
270/ 
271/ 
272/ 
273/ 
274/ 
275/ 
276/ 
277/ 
300/ 
301/ 
302/ 
303/ 
304/ 
305/ 
306/ 
307/ 
310/ 
311/ 
312/ 
313/ 

18-7 

000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
000000,000000 
003000,000146 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

On TOPS-I0, in the sequential-access binary file, the second record 
crosses the disk block boundary and contains an 002 (CONTINUE) LSCW. 

On TOPS-20, the CONTINUE LSCW occurs on buffer boundaries, whose size 
is determined by the BUFFERCOUNT keyword in the OPEN statement (see 
Section 11.3.5) (default is four pages, 4000 octal words). 

C LOOK AT A BINARY FILE AND SEE THE LOGICAL SEGMENT 
C CONTROL WORDS. 

OPEN(UNIT=l,MODE='BINARY') 

1=5 
WRITE(l) (I, J=l,lOO) 

J=7 
WRITE(l) (J,K=l,lOO) 
END 

18-8 



0/ 
1/ 
2/ 
3/ 
4/ 
5/ 
6/ 
7/ 
10/ 
11/ 
12/ 
13/ 
14/ 
15/ 
16/ 
17/ 
20/ 
21/ 
22/ 
23/ 
24/ 
25/ 
26/ 
27/ 
30/ 
31/ 
32/ 
33/ 
34/ 
35/ 
36/ 
37/ 
40/ 
41/ 
42/ 
43/ 
44/ 
45/ 
46/ 
47/ 
50/ 
51/ 
52/ 
53/ 
54/ 
55/ 
56/ 
57/ 
60/ 
61/ 
62/ 
63/ 
64/ 
65/ 
66/ 
67/ 
70/ 
71/ 
72/ 
73/ 
74/ 
75/ 
76/ 
77/ 

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

001000,000145 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000n05 
OOOOOO,OOOOOS 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 

100/ 
]01/ 
102/ 
103/ 
104/ 
105/ 
106/ 
107/ 
110/ 
111/ 
112/ 
113/ 
114/ 
115/ 
116/ 
117/ 
120/ 
121/ 
122/ 
123/ 
124/ 
125/ 
126/ 
127/ 
1 30/ 
131/ 
132/ 
133/ 
134/ 
135/ 
136/ 
137/ 
140/ 
141/ 
142/ 
143/ 
144/ 
145/ 
146/ 
147/ 
150/ 
151/ 
152/ 
153/ 
154/ 
155/ 
156/ 
157/ 
160/ 
161/ 
162/ 
163/ 
164/ 
165/ 
166/ 
167/ 
170/ 
171/ 
172/ 
173/ 
174/ 
175/ 
176/ 
177/ 

18-9 

000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
000000,000005 
003000,000146 
001000,000032~Number of 
000000,000007 words to 
000000,000007 next LSCW 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 



200/ 
201/ 
202/ 
203/ 
204/ 
205/ 
206/ 
207/ 
210/ 
211/ 
212/ 
213/ 
214/ 
215/ 
216/ 
217/ 
220/ 
221/ 
222/ 
223/ 
224/ 
225/ 
226/ 
227/ 
230/ 
231/ 
232/ 
233/ 
234/ 
235/ 
236/ 
237/ 
240/ 
241/ 
242/ 
243/ 
244/ 
245/ 

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

002000,000114~Continuc 246/ 
247/ 
250/ 
251/ 
252/ 
253/ 
254/ 
255/ 
256/ 
257/ 
260/ 
261/ 
262/ 
263/ 
264/ 
265/ 
266/ 
267/ 
270/ 
271/ 
272/ 
273/ 
274/ 
275/ 
276/ 
277/ 
300/ 
301/ 
302/ 
303/ 
304/ 
305/ 
306/ 
307/ 
310/ 
311/ 
312/ 
313/ 
313/ 

000000,000007 LSCW 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 

18-10 

000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
003000,000147 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

Image files contain no LSCWs. You can only backspace an IMAGE file 
that is created with a record size. 

C LOOK AT AN IMAGE MODE FILE AND SEE NO LOGICAL SEGMENT 
C CONTROL WORDS. 

OPEN{UNIT=l,MODE='IMAGE') 

I=5 
WRITE(l) (I, J=l,lOO) 

J=7 
WRITE(l) (J,K=l,lOO) 
END 

18-11 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

0/ 000000,000005 100/ 000000,000005 
1/ 000000,000005 101/ 000000,000005 
2/ 000000,000005 102/ 000000,000005 
3/ 000000,000005 103/ 000000,000005 
4/ 000000,000005 104/ 000000,000005 
5/ 000000,000005 105/ 000000,000005 
6/ 000000,000005 106/ 000000,000005 
7/ 000000,000005 107/ 000000,000005 
10/ 000000,000005 110/ 000000,000005 
11/ 000000,000005 111/ 000000,000005 
12/ 000000,000005 112/ 000000,000005 
13/ 000000,000005 113/ 000000,000005 
14/ 000000,000005 114/ 000000,000005 
15/ 000000,000005 115/ 000000,000005 
16/ 000000,000005 116/ 000000,000005 
17/ 000000,000005 117/ 000000,000005 
20/ 000000,000005 120/ 000000,000005 
21/ 000000,000005 121/ 000000,000005 
22/ 000000,000005 122/ 000000,000005 
23/ 000000,000005 123/ 000000,000005 
24/ 000000,000005 124/ 000000,000005 
25/ 000000,000005 125/ 000000,000005 
26/ 000000,000005 126/ 000000,000005 
27/ 000000,000005 127/ 000000,000005 
30/ 000000,000005 130/ 000000,000005 
31/ 000000,000005 131/ 000000,000005 
32/ 000000,000005 132/ 000000,000005 
33/ 000000,000005 133/ 000000,000005 
34/ 000000,000005 134/ 000000,000005 
35/ 000000,000005 135/ 000000,(100005 
36/ 000000,000005 136/ 000000,000005 
37/ 000000,000005 137/ 000000,000005 
40/ 000000,000005 140/ 000000,000005 
41/ 000000,000005 141/ 000000,000005 
42/ 000000,000005 142/ 000000,000005 
43/ 000000,000005 143/ 000000,000005 
44/ 000000,000005 144/ 000000,000007 
45/ 000000,000005 145/ 000000,000007 
46/ 000000,000005 146/ 000000,000007 
47/ 000000,000005 147/ 000000,000007 
50/ 000000,000005 150/ 000000,000007 
51/ 000000,000005 151/ 000000,000007 
52/ 000000,000005 152/ 000000,000007 
53/ 000000,000005 153/ 000000,000007 
54/ 000000,000005 154/ 000000,000007 
55/ 000000,000005 155/ 000000,000007 
56/ 000000,000005 156/ 000000,000007 
57/ 000000,000005 157/ 000000,000007 
60/ 000000,000005 160/ 000000,000007 
61/ 000000,000005 161/ 000000,000007 
62/ 000000,000005 162/ 000000,000007 
63/ 000000,000005 163/ 000000,000007 
64/ 000000,000005 164/ 000000,000007 
65/ 000000,000005 165/ 000000,000007 
66/ 000000,000005 166/ 000000,000007 
67/ 000000,000005 167/ 000000,000007 
70/ 000000,000005 170/ 000000,000007 
71/ 000000,000005 171/ 000000,000007 
72/ 000000,000005 172/ 000000,000007 
73/ 000000,000005 173/ 000000,000007 
74/ 000000,000005 174/ 000000,000007 
75/ 000000,000005 175/ 000000,000007 
76/ 000000,000005 176/ 000000,000007 
77/ 000000,000005 177/ 000000,000007 

18-12 



200/ 
201/ 
202/ 
203/ 
204/ 
205/ 
206/ 
207/ 
210/ 
211/ 
212/ 
213/ 
214/ 
215/ 
216/ 
217/ 
220/ 
221/ 
222/ 
223/ 
224/ 
225/ 
226/ 
227/ 
230/ 
231/ 
232/ 
233/ 
234/ 
235/ 
236/ 
237/ 
240/ 
241/ 
242/ 
243/ 

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 

244/ 
245/ 
246/ 
247/ 
250/ 
251/ 
252/ 
253/ 
254/ 
255/ 
256/ 
257/ 
260/ 
261/ 
262/ 
263/ 
264/ 
265/ 
266/ 
267/ 
270/ 
271/ 
272/ 
273/ 
274/ 
275/ 
276/ 
277/ 
300/ 
301/ 
302/ 
303/ 
304/ 
305/ 
306/ 
307/ 

18-13 

000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 
000000,000007 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

The following example illustrates the LSCWs for character data in 
binary files. 

C LOOK AT BINARY MODE FILE WITH CHARACTER DATA AND SEE THE 
C LOGICAL SEGMENT CONTROL WORDS 

OPEN (UNIT=l,MODE='BINARY') 

WRITE (1) 3, 'ABCDEF' ,4,'GHIJKL' 

WRITE (1) 'MNOPQR' ,'STUVWX' 
END 

0/ 001000,000007 
1/ 000000,000003 
2/ 406050,342212 
3/ 430000,000000 
4/ 000000,000004 
5/ 436211,145226 
6/ 460000,000000 
7/ 003000,000010 
10/ 001000,000004 
11/ 466351,750242 
12/ 512472,452654 
13/ 536600,000000 
14/ 003000,000005 

The following example illustrates the format of character data in 
image files. Image files contain no LSCWs. 

C LOOK AT IMAGE MODE FILE WITH CHARACTER DATA AND SEE 
C NO LOGICAL SEGMENT CONTROL WORDS 

OPEN (UNIT=I,MODE='IMAGE') 

WRITE (1) 3, 'ABCDEF' ,4, 'GHIJKL' 

WRITE (1) 'MNOPQR' ,'STUVWX' 
END 

0/ 000000,000003 
1/ 406050,342212 
2/ 430000,000000 
3/ 000000,000004 
4/ 436211,145226 
5/ 462331,647640 
6/ 506452,352252 
7/ 532573,000000 

18.5 USING FOROTS 

FOROTS has been designed to lend itself for use as an I/O system for 
programs written in languages other than FORTRAN. Currently, MACRO 
programmers may employ FOROTS as a general I/O system by writing 
simple MACRO calls that simulate the calls made to FOROTS by a FORTRAN 
compiler. The calls made to FOROTS are to routines that implement 
FORTRAN I/O statements such as READ, WRITE, OPEN, or CLOSE. 

FOROTS will provide automatic memory allocation, data conversion, I/O 
buffering, and device interface operations to the MACRO user. 

18-14 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

18.5.1 FOROTS Entry Points 

FOROTS provides the following entry points for 
FORTRAN compiler or a non-FORTRAN program. 
contained in FORLIB.REL. 

calls from either a 
These entry points are 

Table 18-1: FOROTS Entry Points 

Entry Point Function 

ALCHN. 

ALCOR. 

CLOSE. 

DBMS. 

DEC. 

DECHN. 

DECOR. 

ENC. 

EXIT. 

EXITI. 

FIN. 

FIND. 

FORER. 

FOROP. 

FUNCT. 

IFI. 

Allocates ar I/O channel for use by a MACRO 
subroutine (see Section 18.5.3.12) 

Allocates memory (see Section 18.5.3.11) 

Closes a fil~. In a FORTRAN program, this call is 
made when the CLOSE statement is ex~cuted (see 
Section 18.5.3.10) 

DBMS interface. 

DECODE routine. This call, coupled with an IOLIST 
call, handles decoding. 

Deallocates an I/O channel that was obtained from 
ALCHN (see SE'ction 18.5.3.12) 

Deallocates memory that was allocated by an ALCOR 
call (see Section 18.5.3.11) 

ENCODE rout i rle 

Closes all files, clears interrupt system, and 
terminates program execution. In a FORTRAN 
program, this call is made when an END statement is 
executed in t.he main program. 

Writes out buffers, closes and unmaps all files 

I/O list termination routine (see Section 18.5.3.9) 

FIND statement 

Err 0 r pro c e s ~; 0 r 

Miscellaneou~; FORO'I'S utilities 

OTS-independE~nt interface to provide common 
functions (J.ike memory and I/O channel management) 
for programs such as overlay handler and DBMS. 
FUNCT. is an interface that works the same way with 
FORTRAN, COBOL, and ALGOL run-time systems (see 
Section 18.6). 

In t ern a 1 f i 1 E~ i n put ( see Sec t ion 18. 5 • 3 • 2 ) 

18-15 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

Table 18-1: FOROTS Entry Points (Cont'd) 

Entry Point Function 

IFO. Internal file output (see Section 18.5.3.2) 

IN. 

IOLST. 

MTOP. 

NLI. 

NLO. 

OPEN. 

OUT. 

RESET. 

TB. 

TRACE. 

WTB. 

Formatted input routine (see Sections 18.5.3.1, 
18.5.3.5, 18.5.3.6, and 18.5.3.8) 

I/O list routine (see Section 18.5.3.9) 

REWIND, BACKSPACE, and ENDFILE statements (see 
Section 18.5.3.7). 

NAMELIST input routine (see Section 18.5.3.3) 

NAMELIST output routine (see Section 18.5.3.3) 

Opens a file. Connects FORTRAN Logical Unit Number 
to a file for I/O (see Section 18.5.3.10) 

Formatted output routine (see Sections 18.5.3.1, 
18.5.3.5, 18.5.3.6, and 18.5.3.8) 

Job initialization entry 

Binary input routine (see Sections 18.5.3.1 and 
18.5.3.5) 

Traces subroutine calls 

Binary output routine (see Sections 18.5.3.1 and 
18.5.3.5) 

~ ________________ L-___________________________________________________________ ~ 

18.5.2 Calling Sequences 

You must use the following general form for all calls made to FOROTS: 

XMOVEI 
PUSHJ 

where: 

ARGBLK 

16,ARGBLK 
17,Entry Point 
(control is returned here) 

is the address of a specifically formatted 
argument block that contains information needed by 
FOROTS to accomplish the desired operation. 

Entry Point is an entry point identifier (see Table 18-1) that 
specifies the entry point of the desired FOROTS 
routine. 

With three exceptions, all returns from FOROTS will be made to the 
program instruction immediately following the call (PUSHJ 17, entry 
point instruction). The exceptions are: 

1. An error return to a specified statement number, that is, 
READ or WRITE statement ERR=option (see Section 10.4.7), 

18-16 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

;~. An end-of-file return to a statement number, that is, READ or 
WRITE statement END=option (see Section 10.4.6), 

3. A fatal error that returns to the monitor. 

Sections 18.5.3.1 through 18.~i.3.12 give the MACRO calls and required 
argumE~nt block formats needed to initialize FOROTS and FOROTS I/O 
operations. 

18.5.3 MACRO Calls for FOROTB Functions 

The following sections describe the forms of the MACRO calls to FOROTS 
that are made by the FORTRAN compiler. The calls described are 
identified by the language statement that they implement. The 
following terms and abbreviations are used in the description of the 
argument block U\RGBLK) of each call: 

--.... ~ = pointer to the second word in the argument block (This 
is the address pointed to by the argument ARGBLK in the 
calling sequence.) 

II FORTRAN logical unit number 

n count of ASCII characters 

f FORMAT statement address 

list an Input/Outpu~ list 

name a NAMELIST naml; 

r. a variable specifyinq the logical record number for 
random access mode 

* list-directed [/0 (the FORMAT statement is not used) 

type type specification of a variable or constant 

The argument block for all I/O statements is a sequence of keyword 
specifiers. Bits 2-8 of each argument specify which argument is being 
supplied, as follows: 

1 UNIT 
:2 FMT address 
3 FMT size (in words) 
4 END= address 
5 ERR= address 
6 IOSTAT= address 
7 REC= 
10 NAMELIST table addre3s 
11 File-positioning function code 
12 ENCODE/DECODE array 3ddress 
13 Internal record length 

18-17 



---. 

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

The format of ARGBLK is: 

0-1 2-S 9-12 

(-count - negative of number 
block not including this one) 

ARGBLK: 1 a kwd type 

· · · · · · 1 a kwd type 
where: 

I = indirection bit 
y = IS-bit address or data 
kwd keyword number 

NOTE 

13 14-17 lS-35 

of words in a 

I a y 

I a y 

Future versions of FOROTS will not support argument 
blocks with index registers specified either in the 
arguments or in memory locations referenced indirectly 
by these arguments. Arguments must not reside in the 
ACs. In addition, so-called 'immediate' arguments 
(those with a type code of zero) will not be 
supported. 

18.5.3.1 Sequential-Access Calling Sequences - The READ and WRITE 
statements for formatted sequential data transfer operations and their 
calling sequences are: 

READ (u, f) 1 is t 

XMOVEI 16, ARGBLK 
PUSHJ 17, IN. 

and 

WR I T E ( u , f) 1 i s t 

XMOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

The following arguments must be specified in ARGBLK: 

1 UNIT 
2 FMT address 
3 FMT size 

The following may also appear: 

4 ERR 
5 END 
6 IOSTAT 

IS-IS 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

The READ and WRI'rE statements for unformatted sequential data transfer 
operations and their calling sequences are: 

READ(u) list 

XMOVEI 16, ARGBLK 
PUSHJ 17, R'rB. 

and 

WR I T E ( u) 1 i s t 

XMOVEI 16, ARGBLK 
PUSHJ 17, w'rB. 

The following arguments must be specified in ARGBLK: 

1 UNIT 

The following may also appear: 

4 END 
5 ERR 
6 IOSTAT 

18.5.3.2 Internal File Calling Sequences - The READ and WRITE 
statements for formatted sequential data transfer operations using 
internal files and their calling sequences are: 

READ ( u , f ) 1 i s t 

XMOVEI 16, ARGBLK 
PUSHJ 17, I1PI. 

,and 

WR I T E ( u , f ) lis t 

XMOVEI 16, ARGBLK 
PUSHJ 17, IlPO. 

The following arguments must be specified in ARGBLK: 

1 UNIT (must be a character scalar or array) 
2 FMT address 
3 FMT si:ze 

The following may also appear: 

4 ERR 
5 END 
6 IOSTAT 

18-19 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

18.5.3.3 NAMELIST I/O, Sequential-Access Calling Sequences - The READ 
and WRITE statements for NAMELIST-directed sequential data transfer 
operations and their calling sequences are: 

READ (u, name) 

XMOVEI 16, ARGBLK 
PUSHJ 17, NLI. 

and 

WRITE (u, name) 

XMOVEI 16, ARGBLK 
PUSHJ 17, NLO. 

The following arguments must be specified in ARGBLK: 

1 UNIT 
10 NAMELIST address 

The following may also appear: 

4 END 
5 ERR 
6 IOSTAT 

The NAMELIST table is generated from the FORTRAN NAMELIST statement. 
The first word of the table is the NAMELIST name; following that are a 
number of 2 word entries for scalar variables, and a number of (N+4) 
word entries for array variables, where N is the dimensionality of the 
array. 

The names you specify in the NAMELIST statement are stored, in SIXBIT 
format, first in the table. Each name is followed by a list of 
arguments associated with the name. The NAMELIST table is terminated 
by a zero entry. The name argument list can be in either a scalar or 
an array form. 

18.5.3.4 
reference 
example: 

Array Offsets and Factoring - Address calculations used 
a given array element involve factors and offsets. 

Array A is dimensioned 

DIMENSION A (Ll:Ul,L2:U2,L3:U3, •.• Ln:Un) 

The size of each dimension is represented by: 

Sl UI-Ll+1 
S2 U2-L2+1 

In order to calculate the address of an element referenced by: 

A (Il,I2,I3, ••• In) 

the following formula is used: 

to 
For 

A+(II-Ll)+(I2-L2)*Sl+(I3-L3)*S2*Sl+ .•• +(In-Ln)*S[n-l]* •.• *S2*Sl 

18-20 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

The terms are factored out depending on the dimensions of the array, 
not on the element referenced, to arrive at the formula: 

A+(-LI-L2*Sl-L3*S2*Sl ••• )+Il+I2*Sl+I3*S2*Sl ..• 

The parenthesized part of this formula is the offset for a 
single-precision array; it is referred to as the Array Offset. 

For each dimension of a given array, there is a corresponding factor 
by which a subscript in that position will be multiplied. From the 
last expression, one can determine the factor for dimension n to be: 

5[n-l]*S[n-2]* ••• *S2*Sl 

For double-precision and complex arrays, the expression becomes: 

A+2*(II-Ll)+2*(I2-L2)*Sl+2*(I3-L3)*S2+S1+ ••• 

Therefore, the array offset for a double-precision array is: 

2*(-LI-L2*Sl-L3*S2*Sl .•• ) 

and the factor for the nth dimension is: 

2*S[n-l]*S[n-2]* ••• *S2*Sl 

The factor for the first dimension of a double-precision array is 
always 2. The factor for the first dimension of a single-precision 
array is always 1. 

For character arrays, the offset is calculated in bytes instead of 
words. The byte offset from the start of a character array whose 
elements are of length X is: 

X* ( (II-Ll) + (I2-L2) *S2+ ••• ) 

This offset is X times the offset of a single-precision numeric array. 

NAMELIST Table 

I) 35 

NAMELIST name in SIXBIT 

NAIv1.ELIST entry 1 

NAIv1.ELIST en try 2 

NAJ.1ELIST entry n 

4000,,0 (FOROTS FIN. word) 

18-21 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

SCALAR ENTRY in a NAMELIST Table 

o 1 9-12 18-35 

SIXBIT/SCALAR NAME/ 

1 0 o Scalar addr 

ARRAY ENTRY in a NAMELIST Table 

0-1 1 2-8 
1 

9-12 1 13 1 14-17 
1 

18-35 

SIXBIT/ARRAY NAME/ 

1 0 I tDIMS I type I I I 0 I BASE ADDR 

ARRAY SIZE 

OFFSET 

Factor 1 

Factor 2 

· · · Factor n 

18.5.3.5 I/O Statements, Direct-Access Calling Sequences - The READ 
and WRITE statements for formatted direct-access data transfers and 
their calling sequences are: 

READ (u'r,f) list 

XMOVEI 16, ARGBLK 
PUSHJ 17, IN. 

and 

WR I T E ( u ' r , f ) 1 i s t 

XMOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

The following arguments must be specified in ARGBLK: 

1 UNIT 
2 FMT address 
3 FMT size 
7 REC 

18-22 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

The following may also appear: 

4 END 
5 ERR 
6 IOSTAT 

The READ and WRITE statements for unformatted direct-access transfers 
and their calling sequences a~e: 

READ (u'r) 

XMOVEI l6,ARGBLK 
PUSHJ P,RTB. 

and 

WRITE (u'r) 

XMOVEI l6,ARGBLK 
PUSHJ P,WTB. 

The following argument must be specified in ARGBLK: 

1 UNIT 
7 REC 

The following may also appear: 

4 END 
5 ERR 
6 IOSTAT 

18.5.3.6 Default Devices Statements, Calling Sequences - The FORTRAN 
statements that require thE! use of a reserved system default device 
and their calling sequences are: 

ACCEPT f, list 
READ f, list 
REREAD f, list 

XMOVEI 16, ARGBLK 
PUSHJ 17, IN. 

and 

PRINT f, list 
PUNCH f, list 
TYPE f, list 

XMOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

Default Device 

UNIT=-4 
UNIT~-5 

UNIT~-6 

UNIT~-3 

UNIT~-2 

UNIT~-l 

(TTY) 
(CDR) 
(REREAD) 

(LPT) 
(PTP) 
(TTY) 

The arguments for these calls are the same as for the standard 
formatted sequential READ and WRITE statements. 

18-23 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

18.5.3.7 Statements to Position Files - The formatted and unformatted 
FORTRAN statements that can be used to control the positioning of 
files and their calling sequences are: 

CALL: 

Function 
(FORTRAN Statement) 

SKIPFILE (u) 
BACKFILE (u) 
BACKSPACE (u) 
ENDFILE (u) 
REWIND (u) 
SKIPRECORD (u) 
UNLOAD (u) 

XMOVEI 16, ARGBLK 
PUSHJ 17, MTOP. 

FOROTS Code 

7 
3 
2 
4 
o 
5 
1 

The following arguments must be specified in ARGBLK: 

1 UNIT 
11 FOROTS code 

The following may also appear: 

4 END 
5 ERR 
6 IOSTAT 

NOTE 

For disk files, UNLOAD is the same as REWIND; BACKFILE 
and SKIPFILE are ignored. 

18.5.3.8 List-Directed Input/Output Statements - You may write any 
form of a sequential I/O statement as a list-directed statement by 
replacing the referenced FORMAT statement number with an asterisk (*). 

The list-directed forms of the READ and WRITE statements and their 
calling sequences are: 

READ (u, *) list 

XMOVEI 16, ARGBLK 
PUSHJ 17, IN. 

and 

WR I T E ( u, *) 1 i s t 

XMOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

The arguments for these calls are the same as for the standard 
formatted sequential READ and WRITE statements, except that the FORMAT 
statement address and FORMAT statement size must be specified as zero. 

18-24 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

18.5.3.9 Input/Output Data Lists - The compiler generates a calling 
sequence to the run-time system for the I/O list in a READ or WRITE 
statement. The argument block associated with the calling sequence 
contains the addresses of the variables and arrays to be transferred 
to or from an I/O buffer. 

The general form of an I/O list calling sequence is: 

XMOVEI 16, ARGBLK 
PUSHJ 17, IOLST. 

Any number of elements may be included in the ARGBLK. The end of the 
argument block is specified by a zero entry or a FIN entry. 

Mnemonic Name 

DATA 
SLIST 
ELIST 
FIN 
F77 SLIST 
F77 ELIST 

FOROTS Value 

1 
2 
3 
4 
5 
6 

The elements of an I/O list are: 

1. DATA 

The DATA element converts one sing1e- or double-precision or 
complex item from external to internal form for a READ 
statement and from internal to external form for a WRITE 
statement. Each DATA element has the following format: 

~EE 
~bb 

2. SLIST 

2 

e 

13 

I 

14-17 18-35 

a SCALAR 

The SLIST argument converts an entire array from internal to 
external form or vice versa, depending on the type of 
statement (that is, READ or WRITE) involved. An SLIST 
consist of a table of arguments that has the following form: 

0-1 2-8 9-12 13 14-17 18-35 
,--I--

1 a SLIST tyt: e I a #ELEMENTS 

1 a a tyt: e I a INCREMENT 

1 a a type I a BASE ADDRI 

18-25 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

For example, the sequence: 

DIMENSION A(100) ,B(100) 
READ(-,-)A 

or 

READ(-,-) (A(I) ,1=1,100) !only when the /OPT switch is used 

develops an SLIST argument of the form: 

0-1 2-8 9-12 13 14-17 18-35 

1 0 2 2 0 0 [144] 
1 0 0 2 0 0 [ 1 ] 
1 0 0 2 0 0 A 
0 0 4 0 0 0 0 

More than one base address may appear in a SLIST as long as 
the increment is the same. The sequence: 

DIMENSION A(100), B(100) 
WRITE (-,-) (A(I) ,B(I) ,1=100) !only when the /OPT 

switch is used 

develops an SLIST argument of the form: 

0-1 

1 0 
1 0 
1 0 
1 0 
0 0 

3. ELIST 

The SLIST 
specified 
different 
An ELIST 
following 

2-8 9-12 13 14-17 18-35 

2 2 0 0 [144 ] 
0 2 0 0 [ 1 ] 
0 2 0 0 A 
0 2 0 0 B 
4 0 0 0 0 

format permits only a single increment to be 
for a number of arrays, while the ELIST permits 

increments to be specified for different arrays. 
consists of a table of arguments that has the 

form: 

The format of the ELIST is: 

0-1 2-8 9-12 13 14-17 18-35 

1 0 ELIST type I 0 No. Elements to 
transfer 
increment 1 

1 0 0 type I 0 Base ADDR 1 
increment 2 

1 0 0 type I 0 Base ADDR 2 
increment N 

1 0 0 type I 0 Base AD DR N 

18-26 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

For example, the FORTRAN sequence: 

DIMENSION IC(6,100), IB(lOO) 
WRITE(-,-) (IB(I) ,IC(l,I) ,1=1,100) 

produces the ELIST: 

0-1 2-8 9-12 13 14-17 

1 0 3 2 0 0 
1 0 0 2 0 0 
1 0 0 2 0 0 
1 0 0 2 0 0 
1 0 0 2 0 0 
0 0 4 0 0 0 

18-35 

[144] 
[1 ] 
IB 

[6] 
IC 
0 

The increment may be zero. This could be produced by the 
sequence: 

WRITE(-,-) (K,I=l,lOO) !cnly when the /OPT switch is used 

Produces the ELIST: 

0-1 2-8 9-12 13 14-17 18-35 

1 0 3 2 0 0 [144 ] 

1 0 0 2 0 0 [0 ] 

1 0 0 2 0 0 K 

0 0 4 C 0 0 0 

4. FIN 

The end of an I/O list is indicated by a FIN 
the I/O processor interprets this element, it 
to FIN to terminate the I/O. This call must 
each I/O initialization call, including calls 
list. 

element. When 
performs a call 
be made after 
with a null I/O 

The FIN routine may be entered by an explicit call or by an 
argument in this I/O list argument block. Both calls can not 
be used. The FIN element has the following format: 

I :-: ~,=t._3_--L.._l_4_:_1_7--,_1_8_:_3_5_j....l 
EXPLICIT CALL: 

PUSHJ 17, FIN. 

18-2:7 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

5. F77 SLIST 

This is the same as SLIST except that if the numb€!r of 
elements is less than or equal to zero, no I/O is done. 

6. F77 ELIST 

This is the same as ELIST except that is the number of 
elements is less than or equal to zero, no I/O is done. 

18.5.3.10 OPEN and CLOSE Statements, Calling Sequences - The form and 
calling sequences for the OPEN and CLOSE FORTRAN statements are: 

OPEN statement call: 

XMOVEI 16, ARGBLK 
PUSHJ 17, OPEN. 

CLOSE statement call: 

XMOVEI 16, ARGBLK 
PUSHJ 17, CLOSE. 

where ARGBLK is: 

0-1 2-8 9-12 

Negative of 
the number 
of words in 
block not 
including 
this one. 

1 0 G type 
1 0 G type 
1 0 G type 

· · · · · · · · · · · · · · · · 1 0 G type 

13 14-17 18-35 

0 

I X H 
I X H 
I X H 

· · · · · · · · · · · · I X H 

The G field (bits 2 through 8) contains a value that defines the 
argument name; the H field (bits 18 through 35) contains an address 
that points to the value of the argument. Note that the G field 
values for OPEN and CLOSE statements are not the same as those for 
other I/O statements. 

18-28 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

The numeric codes that may appear in the G field are: 

G Field Open Argument G Field Open Argument 

01 DIALOG 27 FORM= 
02 ACCESS= 30 BYTESIZE= 
03 DEVICE= 31 PADCHAR= 
04 BUFFERCOUNT= 32 RECORDTYPE= 
05 BLOCKSIZE= 33 STATUS= 
06 FILE= 34 TAPEFORMAT= 
07 PROTECTION= 35 READONLY= 
10 DIRECTORY= 36 UNIT= 
11 LIMIT= 37 ERR= 
12 MODE= 40 EXIST= 
13 FILESIZE= 41 FORMATTED= 
14 RECORDSIZE= 42 NAMED= 
15 DISPOSE= 43 NEXTREC= 
16 VERSION= 44 NUMBER= 
17 Reserved 45 OPENED= 
20 Reserved 46 SEQUENTIAL= 
21 IOSTAT= 47 UNFORMATTED= 
22 ASSOCIATEVARIABLE= 50 NAME= 
23 PARITY= 51 Reserved 
24 DENSITY= 52 Reserved 
25 BLANK= 53 DIALOG= 
26 CARRIAGECONTROL= 

lS.5.3.11 Memory Allocation Routines - The memory management module 
is called to allocate or deallocate memory blocks. There are two 
entry points (ALCOR. and DECOR.) that control memory allocation and 
deallocation. 

When TOPS-20 extended addressing is in effect, ALCOR. and DECOR. can 
be used; however, memory will be allocated in FOROT's section instead 
of in the user's section. You can use the LINK switch 
/OTSEGMENT:NONSHARABLE to put FOROTS in the user's section. 

Use the ALCOR. entry to allocate the number of words specified in the 
argument block variable. Upon return, AC 0 will contain either the 
address of the allocated memory block or -1, which indicates that 
memory is not available. 

The calling sequence for an ALCOR. call is: 

XMOVEI 16, ARGBLK 
PUSHJ 17, ALCOR. 

where ARGBLK is: 

r-0 __ -_l ____ ~ __ 2_-S ______ ~1_9_-_1_2_~ 
-1 

l~served type E 
lS-29 

14-17 

0 

1S-35 

0 

Address of 
number of words 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

Use the DECOR. entry to deallocate a previously allocated block of 
memory; the argument variable must be loaded with the address of the 
memory block to be returned. 

If the number of desired words is N, ALCOR. actually removes N+2 words 
from free storage. The pointer returned points to the third word 
(word 2 as opposed to word 0) removed from free storage. The first 
two words are used by FOROTS to maintain linked lists of allocated 
(using ALCOR.) and free storage, and must not be modified. 

The calling sequence for a DECOR. call is: 

XMOVEI 16, ARGBLK 
PUSHJ 17, DECOR. 

where ARGBLK is: 

0-1 2-8 

-I 

_r-12 

1 0 Reserved type 

13 14-17 

-

I 0 

18-35 

---

0 

Pointer to word 
containing 
address of block 
to be returned 

.-

18.5.3.12 Channel Allocation and Deallocation Routines - You may 
allocate software channels in MACRO programs by means of calls to the 
ALCHN. routine and deallocate them by calls to the DECHN. routine. 
Values are returned in AC O. 

Use the ALCHN. entry to allocate a particular channel or the next 
available channel. The channel to be allocated is passed as an 
argument to ALCHN. Zero is passed as an argument to allocate the next 
available channel. Allowed channels are 1 through 17 (octal). If the 
channel requested is not available, or all channels are in use, ALCHN. 
returns with a -1 in AC O. In normal returns, AC 0 contains the 
assigned number. 

The calling sequence of an ALCHN. routine is: 

XMOVEI 16, ARGBLK 
PUSHJ 17, ALCHN. 

where ARGBLK is: 

0-1 2-8 

-1 

--... 1 0 Reserved 

9-12 13 14-17 

type I 0 

18-30 

18-35 

---
0 

--
Pointer to a word 
containing 
the channel # 
or zero 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

Use the DECHN. entry to deallocate a previously assigned channel. The 
channel to be released is passed as an argument to DECHN. If the 
channel to be deallocated was not assigned by ALCHN. and thus cannot 
be deassigned, AC 0 is set to -Ion return. 

The calling sequence for a DECHN. routine is: 

XMOVEI 16, ARGBLK 
PUSHJ 17, DECHN. 

where ARGBLK is: 

1 
1

9
-

12 
I 

0-1 2-8 13 14-17 18-35 
i 

-1 0 

Pointer to a word 
1 0 Reserved type [ 0 containing 

the channel # 
to be released 

18.6 FUNCTIONS TO FACILITATE OVERLAYS 

FOROTS provides a subroutine (FUNCT.) to serve as an interface with 
the LINK overlay handler. This subroutine consists of a group of 
functions that allow the overlay handler to perform I/O, memory 
management, and error message handling. These functions have only one 
entry point, FUNCT.; and they are called by the sequence: 

XMOVEI 16, ARGBLK 
PUSHJ 17, FUNCT. 

The format of the ARGBLK is: 

ARGBLK: 

where: 

type 
function code 
error prefix 
status 

-(n+3>"O 
IFIW 2,address of integer function code 
IFIW 17,address of 3-letter ASCII error prefix 
IFIW 2,address of status code on return 
IFIW type,address of first argument 

IFIW type,address of nth argument 

is the FORTRAN argument type (see Chapter 14) 
is the number of one of the required functions 
is ignored by FOROTS 
is undefined on the call and set on the return 
with cne of the values below. 

-1 Function not implemented 
o Successful return 
l •••• n Specific error message 

When TOPS-20 extended addressing is in effect, FUNCT. can be used; 
however, memory will be allocated in FOROTS's section instead of in 
the user's section. You can use the LINK switch 
/OTSEGMENT:NONSHARABLE to put FOROTS in the user's section. 

18-31 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

Table 18-2: Function Numbers and Function Codes 

Function 
Number Function 
(Octal) Mnemonic 

0 ILL 
1 GAD 
2 COR 

3 RAD 
4 GCH 
5 RCH 
6 GOT 

7 ROT 
10 RNT 

11 IFS 

12 CBC 

13 RRS 
14 WRS 
15 GPG 
16 RPG 

17 GPSI 
20 RPSI 
21 MPG 
22 UPG 

Function Description 

Illegal function; returns -1 status 
Gets a specific segment of memory 
Gets a given amount of memory from 
anywhere in the space allocated to the 
overlay handler 
Returns a specific segment of memory 
Gets an I/O channel 
Returns an I/O channel 
Gets memory from the space allocated to 
the object-time system 
Returns memory to the object-time system 
Gets the initial run time from the 
object-time system 
Gets the initial 
specification from 
system 

run 
the 

time file 
object-time 

Cuts back memory (if possible) to reduce 
job size 
Reads RETAIN status (DBMS) 
Writes RETAIN status (DBMS) 
Allocates memory on a page boundary 
Deallocates memory obtained by function 
15 
Gets TOPS-20 PSI channel 
Returns TOPS-20 PSI channel 
Gets a contiguous set of pages 
Returns a contiguous set of pages 

L-____________ -L ______________ ~ ____________________________________ . _________ . ____ ~ 

Each function of the FUNCT. subroutine is described below. The 
arguments described in each of the following functions are what should 
be in the addresses pointed to by the argument block described above. 

ILL (0) FUNCTION - This function is illegal. The argument block is 
ignored, and the status returned is -1. 

GAD (1) FUNCTION - This function gets memory from a specific address 
in the space allocated to the overlay handler. The arguments are: 

arg 1 
arg 2 

address of requested memory 
address of number of words of memory to allocate 

A call to GAD with arg 2 equal to -1 requests all available memory. 

On return, the status is one of the following: 

o 
1 
2 
3 

successful allocation 
not enough memory available 
memory not available at specified address 
illegal arguments (such as, address + size is greater 
than 256K) 

18-32 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

COR (2) FUNCTION - This function gets memory from any available space 
allocated to the overlay handler. The arguments are: 

undefined (address of allocated memory on return) 
address of siz~ of requested allocation 

On return, the status is one of the following: 

memory allocatE'd 
not enough memory available 

o 
1 
3 illegal argument (that is, size is greater than 256K) 

RAD (3) 
address 

function - This funct.ion returns 
within the space allocated to 

memory at the specified 
the overlay handler. The 

arguments are: 

arg 1 
arg 2 

address of memory to be return 
address of si ZE! of memory to be returned (in words) 

On return, the status is one of the following: 

successful return of memory 
me-mory cannot be returned 

o 
1 
3 illegal argument (that is,the address or the size is 

g reate r than 2~i6K) 

GCH (4) FUNCTION - This function gets an I/O channel. 
are: 

The arguments 

arg 1 undefined 
return) 
ignored 

(address of channel number allocated on 

arg 2 

On return, the status is one of the following: 

() 

1 
sllccessful channel allocation 
no I/O channels available 

RCH (5) FUNCTION - This function returns an 
arguments are: 

I/O channel. 

arg 1 
arg 2 

address of number of channel to be returned 
isrnored 

On return, the status is one of the following: 

o 
1 

channel releasl~d 

invalid channel number 

The 

GOT (6) FUNCTION - This function gets memory from the space allocated 
to the object-time system. The arguments are: 

arg 1 
arg 2 

undefined (address of allocated memory on return) 
address of sizl~ of mE~mory requested 

On return, the status is one of the following: 

o 
1 
3 

successful allocation 
not enough memory available 
illegal argument (such as, size is greater than 256K) 

18-33 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

This function differs from function 1 in that if the object-time 
system has two free memory lists, then function 1 is used to allocate 
space for links, and this function is used to allocate space for I/O 
buffers. Function 1 uses the free memory list for LINK, and function 
6 uses the list for the object-time system. 

ROT (7) FUNCTION - This function returns memory to the object-time 
system. The arguments are: 

arg 1 
arg 2 

address of memory to be returned 
address of size of memory to be returned (in words) 

On return, the status is one of the following: 

successful return of memory 
memory cannot be returned 

a 
1 
3 illegal argument (such as, the address or the size is 

greater than 256K) 

RNT (10) FUNCTION - This function returns the initial run time from 
the object-time system. (At the beginning of the program, the 
object-time system will have executed a RUNTIM UUO; that result is the 
time returned by RNT.) The arguments are: 

arg 1 undefined (contains address of initial run time on 
return) 

arg 2 ignored 

On return, the run time is in arg 1, and the status is O. The status 
is 0: 
IFS (11) FUNCTION (TOPS-IO only) - This function returns the initial 
run-time file specification from the object-time system. (This 
initial file specification is the one used to begin the program; that 
is, it was given with the system RUN command.) The arguments are: 

arg I 
arg 2 
arg 3 

undefined (address of SIXSIT device on return) 
undefined (address of SIXSIT filename on return) 
undefined (project-programmer number on return 
address of path block if run from SFD 

On return, the status is one of the following: 

a 
I 

successful return 
error 

or 

This function tells the overlay handler which file to read after the 
initial RUN command. 

CSC (12) FUNCTION - This function cuts back memory if possible, which 
reduces the size of the user job. There are no arguments. 

The returned status is: 

a always 

RRS (13) FUNCTION 
WRS (14) FUNCTION - These functions are reserved for use by DBMS. 

GPG (15) FUNCTION - This function gets memory on a page boundary. The 
arguments are the same as for FUNCTION 6, GOT. 

arg 1 
arg 2 

ignored 
address of number of words of memory to allocate 

18-34 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

On return, arg 1 has the address of the allocated memory. It will be 
on a page boundary. (That is, it will be a multiple of 1000 octal.) 

On return, the status is one of the following: 

o 
1 
3 

successful 
not enough memory available 
illegal argument 

RPG (16) FUNCTION - This function returns memory obtained by FUNCTION 
15. The arguments are the sarre as for FUNCTION 7, ROT. 

arg 1 
arg 2 

address of memcry to be returned 
address of SiZE of memory to be returned (in words) 

On return, the status is one of the following: 

o 
1 
3 

successful return of memory 
was not allocated 
i 11 ega 1 a r g urn e r, t 

GPSI (17) FUNCTION - This function gets the TOPS-20 PSI channel. It 
assigns a software interrupt channel number. GPSI provides only 
controlled access to the PSI tables. It arranges that the tables 
exist and that SIR and EIR have been done, but does not do AIC or any 
other JSYS necessary to set up the channel (ATI or MTOPR, for 
example) • 

arg 1 

arg 2 
arg 3 

address of channel number to allocate, or -1 to 
allocate any user-assignable channel 
address of lev~l number 
address of int~rrupt routine (if the FORTRAN program is 
running on a system that supports extended addressing, 
the interrupt Ioutine address may be a 30-bit address 
in any section, including section o. Otherwise, the 
interrupt addr~ss must be an 18-bit address.) 

On return, the status is one of the following: 

o 

1 
2 
3 

allocated OK (arg 1 is the channel number if -1 was 
sent) 
requested channel was already assigned 
no free channe]s 
arg ument error 

RPSI (20) FUNCTION - This function returns the TOPS-20 PSI channel. 
It returns a PSI channel allocated by FUNCTION 17. RPSI provides only 
controlled access to the PSI tables. It removes the given channel 
from the tables. This function does not do DIC or any other JSYS 
necessary to remove an interrupt condition from a channel. 

arg 1 address of charlnel number to return 

On return, the status is one () f the following: 

0 01< 
1. channel was not. allocated 
3 argument error 

MPG (21) FUNCTION - This function gets a contiguous set of pages. The 
pages requested are always allocated from the section FOROTS is in. 
The user cannot depend upon this call to either create or destroy the 
pages. 

18-35 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

arg 1 first page number to allocate. The page number must be 
in the range ° to 777. 

arg 2 number of pages to allocate 

On return, the status is one of the following: 

° 1 
3 

successful allocation of all given pages 
one or more pages were already allocated 
illegal argument (bad page number or count) 

UPG (22) FUNCTION- This function returns a contiguous set of pages. 
The pages returned are considered to be in the section FOROTS is in. 
The user cannot depend upon this call to either create or destroy the 
pages. 

arg 1 first page number to deallocate. The page number must 
be in the range 9 to 777 

arg 2 number of pages to deallocate 

On return, the status is one of the following: 

° successful deallocation of all given pages 
1 one or more pages was not allocated by MPG 
3 illegal argument (bad page number or count) 

18.7 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS 

You make FORTRAN logical and physical device assignments at run time, 
or standard system assignments are made according to a FOROTS Device 
Table, that is, DEVTB. Table 10-3 in Section 10.4.3 shows the 
standard assignments contained by the Device Table. 

18.8 FOROTS AND INQUIRE BY FILE STATEMENT 

See Section 11.7 for a description of the INQUIRE statement. 

If no device is given for the FILE= specifier, FOROTS uses DSK: as the 
default. If no extension is given, FOROTS uses .DAT. For TOPS-20, if 
no generation number is given, FOROTS uses a generation number of 0. 

FOROTS determines if the device specified is a disk. 
a disk, the following happens: 

If the device is 

• FOROTS determines if a file exists with the file 
specification given in the INQUIRE statement. It returns the 
answer (either .TRUE. or .FALSE.) in the variable specified 
by the EXIST= specifier, if any. If such a file exists, 
FOROTS 'expands' the file specification as follows: 

• A logical name is translated into a physical device name. 

• For TOPS-20, the file specification, which is overlaid by 
the user-specified directory, filename, extension, and 
generation. 

• For TOPS-20, an actual file generation number is 
substituted for a generation number of 0, -1, or -2, 

18-36 



USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS) 

The resultant file specification, in string form, 
the 'full (expanded) file string.' 

is called 

• FOROTS searches for a match between the file specification 
given in the INQUJ:RE statement and a file specification 
associated with a logical unit for which there is a 
"connection." This is to determine the values to be returned 
for the INQUIRE spec~.fiers OPENED= and NUMBER= (see Section 
11.7.3). FOROTS looks at all FORTRAN logical units for which 
there is a connection in ascending order, starting with zero. 

FOROTS compares the j~ile specification given in the INQUIRE 
statement (with FILE= defaults applied) with the exact file 
specification given in the OPEN statement (with FILE= 
defaults applied) if the following is true: 

• The file does not exist on the directory. 

• An OPEN statement: has been executed and STATUS='UNKNOWN' 
and ACCESS='SEQUI:NTIAL' (see Section 11.3.1). 

• No data transfer statements have been executed using the 
unit. 

If the file exists, FOROTS compares the full file string 
associated with the unit wi.th the full (expanded) file string 
given in the INQUIRE statement. The file exists if the 
following is true: 

• An OPEN has bE!en executed wi th STATUS other 
'UNKNOWN' or ACCESS other than 'SEQUENTIAL'. 

• An I/O transfer ~;tatement has been executed. 

than 

If neither of these two comparisions are successful, FOROTS 
returns the curren1: unit number in the variable specified 
with the NUMBER= specifier,. and returns 'YES' in the variable 
specified with the OPENED= specifier. If the same file is 
connected on several units, the matching technique described 
will rE!turn the snallest unit number for which there is a 
match. 

For non-disk devices specifiecl in the INQUIRE statement file string 
specification, FOROTS looks a1: all the FORTRAN logical units for which 
there is a connection in ascending order, starting with zero. 

If the device in the file str~ng specified in the INQUIRE statement is 
not the user's controlling terminal, FOROTS expands the file 
specification given in the IN(~UIRE statement by translating a logical 
name given as the device :.nto its corresponding physical name. It 
then compares the device part of this expanded file specification with 
the dE!vice part of the full (E!xpanded) file string associated with the 
logical unit. 

If the device is the user's controlling terminal (device 'TTY'), 
FOROTS determines if the device associated with the logical unit is 
also the user's controlling terminal. 

18-37 





CHAPTEIR 19 

USING THg FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY) 

19.1 INTRODUCTION 

The FORRTF library subroutines are designed to allow the timesharing 
FORTRAN user to do real-time programming on TOPS-IO systems. These 
subroutines, described in Section 19.3, are listed below: 

LOCK 
R'rIN IT 
CONECT 
R'rSTRT 
BLKRW 
RTREAD 
RTWRIT 
STATO 
STATI 
RTSLP 
RTWAKE 
DISMIS 
DISCON 
UNLOCK 

With these subroutines, the timesharing job can dynamically connect 
real-time devices to the priority Interrupt (PI) system, respond to 
these devices at interrupt level, remove the devices from the PI 
system, and change their PI level. Use of these routines requires 
that you have real-time privileges and are able to lock your job in 
core. The privilege bits required are: 

JP.RTT (bit 13) - real-time privileges 
JP.LCK (bit 14) - locking privileges 

The number of real-time devices that can be handled at one time is an 
assembly-time constant (RTDEVN) in the FORRTF source. The 
DIGITAI...-d i str ibuted so ftware h,3S RTDEVN equal to 2, but it can be 
changed (up to 6) by editing the statement IRTDEVN==2" in FORRTF.MAC 
and reassembling. 

The error messages output by F~RRTF can be in either full message 
format or coded format (refer to Table 19-1). Use of the code and 
format saves over 100 words of run-time core. If core is limited, 
reassembly of FORRTF.MAC with the assembly-time constant SHORT changed 
from the DIGITAL-distributed a (full format) to -1 (coded format) 
accomplishes the core saving. 

On multiprocessor systems, the real-time traps apply only to the 
processor specified by t~e job's CPU specification. If the 
specification indicates more tnan one processor, the specification is 
changed to indicate CPUO. Note that the priority interrupt channel is 
only for the indicated CPU. 

19-1 



USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY) 

19.2 USING FORRTF 

Users of FORTRAN-IO real-time software must consider the following: 

1. Use of memory 

2. Device control in block or single mode 

3. Priority-interrupt levels 

4. Masks 

19.2.1 Memory 

The job being executed must be locked in memory with the LOCK 
subroutine (see Section 19.3.1). Any data being read into memory can 
only be read into the low segment and above the protected job data 
area (the first 140 locations). The BLKRW subroutine (see Section 
19.3.5) tests the validity of the locations specified to receive data 
in block reading to ensure that no overwritings occur. 

However, when in block mode, the block pointer must be reset before 
dismissing the end-of-block interrupt; otherwise, all memory could be 
overwritten. 

19.2.2 Modes 

Real-time jobs can control their devices in one of two ways: block 
mode or single mode. In block mode, an entire block of data is read 
or written before the user-interrupt routine is run; whereas, in 
single mode, the user-interrupt program is run every time the device 
interrupts. 

There are two types of block mode: fast-block mode and normal-block 
mode requires that a PI channel be mode. A device in fast-block 

dedicated entirely to itself. 

19.2.3 Priority-Interrupt Levels 

Priority-interrupt levels 1 through 6 are legal depending on the 
system configuration. The lower the number of the level, the higher 
the priority of that level. Programs that execute for a long time 
should not be put on high-priority interrupt levels, since they could 
cause other real-time programs on lower levels to lose data. 
Specification of the PI level as zero for a particular device causes 
the device to be removed from the PI system. 

19.2.4 Masks 

For a description of the bits included in the startmsk and intmsk 
parameters of RTSTRT and the status word in STATO and STATI, see the 
DECsystem-10 Hardware Reference Manual. 

19-2 



USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-I0 ONLY) 

19.3 SUBROUTINES 

Each of the 14 subroutines associated with FORTRAN real-time software 
is described briefly in Sections 19.3.1 through 19.3.14. These 
subroutines have been programmed to be compatible with programs 
written according to the TOPS-10 Monitor Calls Manual. 

19.3.1 LOCK 

LOCK locks the job in memory and allocates and initializes the 
internal controlling tables for all real-time devices. LOCK must be 
called before any of the other real-time routines, and must be called 
exactly once. 

The form of the LOCK subroutine is: 

CALL LOCK 

19.3.2 RTINIT 

RTINIT initializes the internal tables controlling a real-time device. 
RTINIT must be called for each individual device being used. 

The form of the RTINIT subroutine is: 

CALL RTINIT (unit, dev, pi, trpadr, intmsk) 

where: 

unit 

dev 

pi 

tr pad r 

is the real-timE device unit number (any number from I 
to RTDEVN). This number is not connected in any way 
with the FORTRAN logical unit number. 

is the device code for the real-time device (see the 
DECsystem-l_Q Hardware Reference Manual) • 

is the priority-interrupt level on which the real-time 
device is to be run. Each individual device in 
fast-block mode must have a level dedicated to itself. 
If the level is equal to zero, the device will be 
removed from the priority-interrupt system altogether. 

If it is necessary to connect one device to several 
levels simultaneously, a negative value for PI tells 
the system not to remove any other occurrences of the 
device from any other (or the same) PI level. (Note 
that this count~. as another real-time device.) 

is the address of a FORTRAN entry to which real-time 
interrupts are to trap. This can be a function or 
subroutine subprogram. Any variables that must be 
shared betwe~n the user-level code and the 
interrupt-level routine must be passed by means of 
COMMON. Passing them as parameters causes disastrous 
results. 

19-3 



USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY) 

intmsk 

19.3.3 CONECT 

is the mask of all interrupting flags for the real-time 
device. This is actually set up by RTSTRT and should 
be zero whenever the real-time device is inactive (that 
is, in a call to RTINIT, except in the case of 
fast-block mode). In fast-block mode, intmsk must be 
set to -1. 

CONECT tells the system to connect a real-time device to the proper PI 
level and sets up several elements of the device-controlling tables. 
Every device must be CONNECTED. 

The form of the CONECT subroutine is: 

CALL CONECT (unit, mode) 

where: 

unit 

mode 

19.3.4 RTSTRT 

is the real-time device unit number (see RTINIT). 

is either: 

-2, write a block of data, fast mode; then interrupt. 
-1, write a block of data, normal mode; then interrupt. 
0, interrupt every word 
+1, read a block of data, normal mode; then interrupt. 
+2, read a block of data, fast mode; then interrupt. 

RTSTRT can be used to start a real-time device, as well as to stop it 
and zero its interrupt mask. A device must be started to be used and 
should be stopped before it is disconnected. The form of the RTSTRT 
subroutine is: 

CALL RTSTRT (unit, startmsk, intmsk) 

where: 

unit 

startmsk 

intmsk 

19.3.5 BLKRW 

is the real-time device unit number (see RTINIT). 

is the flags necessary to start the device (see 
the DECsystem-lO Hardware Reference Manual). If 
the device is being stopped, this parameter should 
be zero. 

is the mask of all interrupting bits for the 
particular device (see the DECsystem-lO Hardware 
Reference Manual). If the device is in fast-block 
mode and being started, intmsk should equal -1; 
if, however, the device in any mode is being 
stopped, the parameter must be o. 

BLKRW is used with either of the block modes. It sets up the size and 
starting address of the data block being handled. A new count and 
starting address must be set up each time the current one runs out. 

19-4 



USING THE: FORTRAN REAL-TIME SOFTWARE (TOPS-I0 ONLY) 

The form of the BLKRW subroutine is: 

CF.LL BLKRW (unit, count, blkadr) 

where: 

unit 

count 

bl kad r 

19.3.6 RTREAD 

is the real-tim~ device unit number (see RTINIT). 

is the number of words to be read or written. 

is the array into which the data is to be written or 
fro m w h i chi t i~; tab e' rea d • 

RTREAD, used with a device in single mode, reads a single word of data 
from the device. 

The form of the RTREAD subroutine is: 

CALL RTREAD (unit, datadr) 

where: 

unit 

datadr 

19.3.7 RTWRIT 

is the real-tim~ device unit number (see RTINIT). 

is the address of the location in which to store the 
data read. 

RTWRIT sends a single word of data to a real-time device in single 
mode. 

The form of the RT'WRIT subrouti ne is: 

CALL RTWRIT (unit, datadr) 

where: 

unit 

datadr 

19.3.8 STATO 

is the real-tim~ device unit number (see RTINIT). 

is the location of the data word to be sent to the 
device. 

STATO sends the specified status word to the status register of a 
real-time device. 

The form of the STATO subroutine is: 

CALL STATO (unit, statadr) 

19-5 



USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY) 

where: 

unit is the real-time device unit number (see RTINIT). 

statadr is the location of the word of status bits to be sent 
to the real-time device. 

19.3.9 STATI 

STATI reads the current device status bits into the location specified 
for inspection by the FORTRAN program. 

The form of the STATI subroutine is: 

CALL STATI (unit, adr) 

where: 

unit is the real-time device unit number (see RTINIT). 

adr is the location into which the device status bits are 
to be read. 

19.3.10 RTSLP 

RTSLP is called from the timesharing level and causes the FORTRAN job 
to sleep until RTWAKE is called from interrupt level. The program 
goes to sleep for the specified number of seconds (up to 60). When it 
wakes up, it checks to see if RTWAKE has been called from interrupt 
level. If RTWAKE has been called, RTSLP returns to the calling 
program; otherwise the job goes back to sleep again. 

The form of the RTSLP subroutine is: 

CALL RTSLP (time) 

where: 

time is the length of sleep time in seconds. 

19.3.11 RTWAKE 

RTWAKE is called at interrupt level to wake up the FORTRAN program. 

The form of the RTWAKE subroutine is: 

CALL RTWAKE 

19.3.12 DISMIS 

DISMIS dismisses the interrupt 
user-interrupt routine must be 
causes its execution to begin. 

currently being processed. The 
sure to dismiss the interrupt that 

The form of the DISMIS subroutine is: 

CALL DISMIS 

19-6 



USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY) 

19.3.13 nISCON 

nISCON disconnects a real-time device from its PI level. All devices 
should be disconnected through calls to nISCON before the job is 
terminated. 

The form of the nISCON subrout~ne is: 

CALL nISCON (unit) 

where: 

unit is the real-time device unit number (see RTINIT). 

19.3.14 UNLOCK 

UNLOCK unlocks the job from core. When execution of a job is 
complete, the job is automatically unlocked before the return to the 
monitor. The UNLOCK subroutine provides a method to unlock a job 
before execution is complete. Note that all real-time device handling 
must be finished before the job is unlocked. 

The form of the UNLOCK subroutine is: 

CALL UNLOCK 

19.3.15 Error Messages 

Table 19-1 lists real-time software error messages, including the code 
format, the full message format, and the subroutine in which the 
messag(~ occurs. 

19-7 



USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY) 

Table 19-1: Error Messages - Code Format and Full Message Format 

~------------~------------------------------------------~-------------.~ 

Code Format 

1 

A 

2 

Full Message Format 

?ILLEGAL UNIT NUMBER. 
TO HANDLE MORE DEVICES, 
REASSEMBLE FORRTF WITH A 
LARGER 
?ERROR COMES FROM THE 
SUBROUTINE "subroutine name" 

?RTINIT MUST BE CALLED BEFORE 
CONECT 

Subroutine in 
which message 
occurs 

"RTDEVN" 

CONECT 

~------------~--------------------------'----------'-------r-----------------

3 ?CONECT MUST BE CALLED BEFORE 
RTSTRT OR BLKRW 

RTSTRT,BLKRW 

~------------~-------------------------------------------+-------------.----
4 

A 
?REAL TIME BLOCK OUT OF BOUNDS 
?END OF BLOCK TOO HIGH 
[such as, overwrites some program 
or in high segment] 

B ?END OF BLOCK TOO LOW, 
such as, start address less 
than 140 

BLKRW 

~------------~-----------------------------------------.--+--------------.----

5 

6 

?JOB CANNOT BE LOCKED IN 
CORE 

A ?JOB NOT PRIVILEGED 
B ?NOT ENOUGH CORE AVAILABLE 

FOR LOCKING 

A 
B 

?APR ERROR AT INTERRUPT 
LEVEL 
?PDL OVERFLOW 
?ILLEGAL MEMORY REFERENCE 

LOCK 

~------------~------------------------------------'-------r-------------'----
7 

8 

?RTTRP ERROR 
realtime trap error of the 
following sort 

A ?ILLEGAL PI NUMBER 
PI channel not available 

B ?TRAP ADDRESS OUT OF BOUNDS 
C ?SYSTEM LIMIT FOR REALTIME 

DEVICES EXCEEDED 
D ?JOB NOT LOCKED IN CORE OR NOT 

PRIVILEGED 
E ?DEVICE ALREADY IN USE BY 

ANOTHER JOB 

A 

B 

o ?OCCURRED IN THE DISCON 
ROUTINE 

1 ?OCCURRED IN THE CONECT 
ROUTINE 

?NOT ENOUGH CORE AVAILABLE 
FOR THE CONTROL BLOCKS 
?NOT ENOUGH CORE AVAILABLE 

DISCON 

CONECT 

LOCK 

~------------~~----------------------------------------~-------------.----

19-8 



l\PPENDIX A 

SUMMARY OF FORTRAN STATEMENTS 

This appendix summarizes the forms of all FORTRAN statements and 
provides a section referenCE! where each statement is described in 
detail. 

Form Section Reference 

ACCEPTIFMT= n,END = sll,ERR= sl[,IOSTA':' = iosliliolistl Section 10.8 
ACCEPTIFMT= *[,END = s][,ERR = sJ[,IOSTA'f = iosjHiolistj 
ACCEPT f1,iolist] 
ACCEPT *r,iolistl 

ASSIGN s to i Section 8.3 

BACKFILE un Section 11.8.8 
BACKFILE (UNIT = unr ,ERR = ]r ,IOSTAT = io:; l) 
BACKFILE (un[,ERR ,= s][JOSTAT = ios1) 

BACKSPACE un Section 11.8.4 
BACKSPACE (UNIT = un[,ERR= s][,IOSTAT c: iosl) 
BACKSPACE (unf,ERR=s][,IOSTAT=:iosj) 

BLOCK DATA [sub] Section 13.1 

CALL sub r( fa1 [,a2]. .. ])] Section 13.4.2.2 

CHARACTER[*LEN[,]]v[*LEN]r,vf*LENII Section 7.2.2 

CLOSE (doselist) Section 10.16 

COMMON [lrcb]/1nlistf[,]/[eb]/nlist1... Section 7.4 

COMPLEX v Lv ... ] Section 7.2 

CONTINUE Section 9.4 

DATA nhst/clistl [[,]nlist/clist/J... Section 7.9 

DECODE(c,f,a/,ERR= sll ,IOSTAT = ios])liolistl Section 10.12 

DIMENSION a(d) [,a(d) ... l Section 7.1 

DO s [,1 i = e1,e21,e31 

DO s r,1 WHILE (e) 

DOUBLE PRECISION v [, v ... ] 

ELSE 

ELSE IF (e) THEN 

ENCODE:(c,f,a[,ERR = s]1 ,IOSTAT = ioslHiolist 

END 

A-I 

Section 9.3.1 

Section 9.3.2 

Section 7.2 

Section 9.2.4 

Section 9.2.4 

Section 10.12 

Section 9.7 



SUMMARY OF FORTRAN STATEMENTS 

Form 

~_:"-IJ) no 

END IF 

ENDFILE un 
ENDFILE (UNIT = un[,ERR = s][,IOSTAT = ios]) 
ENDFILE (un[,ERR = s][,IOSTAT = ios]) 

ENTRY en [(d1 [,d2 ... ])] 

EQUIVALENCE (nlist) [,(nlist) ... ] 

EXTERN AL proc [,proc]. ... 

FIND (UNIT"'un.REC-"'rnl.ERR sll JOSTAT '" iosl) 
FIND (un'rnl.l<:RR - sll.IOSTAT~ iosl) 

FORMAT (fs) 

fun ([arg1,arg2 ... argnJ) 

[typ 1 FUNCTION fun a arg1 r ,arg21. .. 1) 

GO TO i [[,](s [,s] ... )] 

GO TO s 

GO TO (s [,s]. . .)[,] e 

INCLUDE filespec. switch 

IF (e) st 

IF (e) sl, s2, s3 

IF (e) sl, s2 

IF (e) THEN 

IMPLICIT type (a [,a ... m,type (a[,a ... ]) ... 
IMPLICIT NONE 

INQUIRE (FILE = fil,flist1) 
INQUIRE ([UNIT =] u,ulistl 

INTEGER v [,v ... ] 

INTRINSIC fun[ ,fun1 

LOGICAL v Lv ... ] 

;'\iAMELIST ifIameilistl!namc.lisil. .. 

OPEN (openlist) 

PARAMETER (p=c [,p=c ... ]) 
PARAMETER p=c[.p"--cl 

PAUSE [n] 

PHINT( FMT = fI.ERR - s II JOSTAT =, ins I Ii iolist I 
I'RINT(FMT -;'I.ERR - sll.lOSTAT-c iosilliolistl 
PRINT n,iolist] 
PRINT *f,iolist1 

PROGRAM name 

F :NCH(FMT'- f1.ERR-slI.lOSTAT=iosilliolistl 
P 'NCH(F!\lT",-,c"'I.ERR-slI.lOSTAT josilliolistl 
" T!'JCH fI.iolistl 
I' "NCII;'I.iohstl 

A-2 

Section Reference 

Section 9.4 

Section 9.2.4 

Section 11.8.5 

Section 13.4.3 

Section 7.5 

Section 7.6 

Section 11.8.1 

Section 12.1.1 

Section 13.3.4 

Section 13.3.2 

Section 9.1.3 

Section 9.1.1 

Section 9.1.2 

Section 6.4.2 

Section 9.2.2 

Section 9.2.1 

Section 9.2.3 

Section 9.2.4 

Section 7.3 

Section 11.7.1 
Section 11.7.2 

Section 7.2 

Section 7.7 

Section 7.2 

Section 12.7 

Section 10.14 

Section 7.8 

Section 9.6 

Section 10.10 

Section 6.4.1 

Section 10.11 



SUMMARY OF FORTRAN STATEMENTS 

Form 

READ(UNIT = un,FMT = fl ,END = s][,ERR = ~;][ ,IOSTA'T = ios l)[iolist] 
READ( un,FMT = fl ,END = s][ ,ERR = ~;]l,IOSTA 'T = ios])[iolist] 
READ( un, fl ,END = s]l,ERR = s]l,IOSTA'T = ios])[iolist] 
READ(UNIT = un,FMT = *f ,END = s]f ,ERR = .,][,IOSTAT = ios])[iolist] 
READ( un,FMT = *[ ,END = s][ ,ERR = ., H ,IOSTAT = ios])[iolist] 
READ( un, *LEND = s][,ERR = .,][,IOSTAT = ios])[iolist] 
READ( UNIT = un,FMT = name I ,END = slf ,ELR -0. sH ,IOSTAT= ios 1) 
READ( un,FMT = namel ,END = s If ,ELR .=.c sll ,IOSTAT = ios]) 
READ( un, namel ,END = 8 ]f,Ef:,R -=c s 1f,IOSTAT -= ios]j 
READ f[ ,iolist 1 
READ *[ ,iolist1 
READ(UNIT = * ,FMT = fl ,END = s][ ,ERR = s]l ,IOSTAT = ios])[iolist] 
READ(UNIT= *,FMT= *[,END = s][,ERR= s][,IOSTAT= ios])[iolist] 
READ(UNIT = un[,END == sl[,ERR = s][,IOSTAT = ios])[iolist] 
READ( un[,END =:= s][,ERR = s][,IOSTAT = ios])[iolist] 
READ(UNIT = un,FMT = f,REC = rn[,ERR = s ILIOSTAT = ios])[iolist] 
READ( un,FMT = f,REC = rnl,ERR = s II ,lOST AT = ios])[iolist] 
READ( un, f,REC = rn[,ERR = s][ ,IOSTAT = ios])[iolist] 
READ( un'rn.FMT = f [,ERR = 811 ,10STAT =. iosllliolistl 
READ( un'rn, f [,ERR=sll,IOSTAT=:ios1)[iolistl 
READ(UNIT = un,REC = rnl ,ERR = sJ[ ,IOSTAT = ios])[iolist] 
READ( un,REC = rnl,ERR = s][,IOSTAT = ios])[iolist] 
READ( un'rn I,ERR=sl[,IOST.AT =ios])liolistl 

REAL v [,v ... 1 

REREAD(FMT = fl ,END" s][,ERR= sl[,IOST.\.T = ios1lliolist1 
REREADWMT = *1 ,END·~ sll ,ERR -- f',11 ,IOST-\T ,= ios1j[iolist1 
REREAD fl ,iolist1 
REREAD *[ jolist 1 

RETURN lel 

REWIND un 
REWIND (UNIT = unl,ERR = s][ ,lOST AT = ios)) 
REWIND (unl,ERR = s]l,lIOSTAT = ios]) 

SAVE la Lal ... l 

SKIPFILE un 
SKIPFILE (UNIT = unl ,E RR = s ] I ,I OST AT -'-' i )8 I) 
SKIPFILE (unl.ERR - sll,IOSTAT - ios]) 

SKIPRECORD un 
SKIPRECORD (UNIT =- lllli ,ERR -=- s 11 JOSTA r ios I) 
SKIPRECORD (unl.ERR·'-. sll .lOSTAT= ios1) 

STOP In] 

SUBROUTINE sub l( Id1 [,d21. .. l)] 

TYPEIF'MT= fl ,ERR - s]1 ,IOSTAT = i()sl)fioli~t1 

TYPE(FMT = *[ ,ERR --' s II ,IOSTAT _oc i08 111 ioli:it I 
TYPE f1 .iolist] 
TYPE *I.iolist 1 

v = e 

UNLOAD un 
UNLOAD (UNIT = unl ,ERR = s 11 .lOST A T ~ it·s 1) 
UNLOAD (unl, ERR -- s II ,lOST A T = ios I) 

A-3 

Section Reference 

Section 10.5 

Section 7.2 

Section 10.7 

Section 13.4.4 

Section 11.8.2 

Section 7.10 

Spction 11.8.7 

Section 11.8.6 

Section 9.5 

Section 13.4.2.1 

Section 10.9 

Section 8.2 

Section 11.8.3 



SUMMARY OF FORTRAN STATEMENTS 

Form 

WRITE(UNIT = un,FMT = f1 ,ERR = s]!,I OST A T = ios 1)1 iolist I 
WRITE( un,FMT = fl ,ERR-' sll ,10STAT = ioslHiolist] 
WRITE( un, fl ,ERR - sJ[ ,10STAT = ios111iolist1 
WRITE(UNIT= un,FMT= *I,ERR _c sH,IOSTAT-=-- ioslliiolistl 
WRITE( un,FMT = *1 ,ERR - sJ[ ,10STAT= ios])(iolistl 
WRITE( un, *1 ,ERR = s]1 ,10STAT = ios])1 iolist 1 
WRITE( UNIT =- un.FMT = namel ,ERR -=. s 1I ,10STAT = ios 1) 
WRITE( un,FMT = namel.ERR '-- sll ,10STAT= iosl) 
WRITE( un. namel,ERR-sll.IOSTAT=-iosj) 
WRITE fl ,iolist 1 
WRITE*I.iolist1 
WRITE(UNIT = *,FMT = fl ,ERR= sll ,IOSTAT = iosj)[iolistl 
WRITE(UNIT = *,FMT = *1 ,ERR = sll ,10STA1' = iosj)[iolistl 
WRITE(UNIT = unl ,ERR= s](,10STAT = ioslliiolistl 
WRITE( unl ,ERR = sll ,10STAT= iosl)liolist] 
WRITE(UNIT = un,FMT = f,REC = rnl ,ERR = sJ[,10STAT = ioslHiolistl 
WRITE( un,FMT = f,REC = rn(,ERR·cc sl[ ,IOSTAT = ioslJ(iolistl 
WRITE( un, f,REC - rnl ,ERR= sJ/ ,10STAT = ios111iolist1 
WRITE( un'rn,FMT'-'- f I ,ERR'"" sl/ ,10STAT:.;o ios]ll iolistl 
WRITE( un'rn, f I ,ERR = 81/ ,10STAT = ioslliiolistl 
WRITE(UNIT= un,REC -'- rnl,ERR=sll,lOSTAT= iosJ)liolistl 
WRITE( un,REC - rnl ,ERR = sll ,IOSTAT = iosJHiolist] 
WRITE( un'rn [,ERR=slIJOSTAT""iosj)lioli::3tl 

A-4 

Section Reference 

Section 10.6 



APPENDIX B 

ASCII-1968 CHARACTER CODE SET 

The character code set defined 
American National Standard for 
given in this appendix. 

in the X3.4-l968 Version of the 
Information Interchange (ASCII) is 

B-1 



ASCII-1968 CHARACTER CODE SET 

ASCII CODE 

Control Characters 

Even 
Parity 7-Bit 7-Bit 

Bit Decimal Octal Character Class l Remarks 

0 000 000 NUL Null, tape feed. Control (Ii (control shift p2). 

001 001 SOli CC Start of heading [SaM, start of message] . Control A. 

002 002 STX CC Start of text [EOA, end of address]. Control B. 

0 003 003 ETX CC End of text [EOM, end of message] . Control C. 

004 004 EaT CC End of transmission: shuts off TWX machines and disconnects some 
data sets. Control D. 

0 005 005 ENQ CC Enquiry [WRU, "Who arc you?"]. Triggers identification ("lIere 
is ... ") at remote station ifso equipped. Control E. 

0 006 006 ACK CC Acknowledge [RU, "Arc you ... ?"]. Control f. 

I 007 007 BEL Bell (audible or attention signal). Control C. 

1 008 010 BS FE Backspace. Control II. 

0 009 011 liT FF Horizontal tabulation. Control I. 

0 010 012 LfJ FE Line feed. Control J. 

1 011 013 VT3 FE Vertical tabulation. Control K. 

0 012 014 fF 3 FE Form feed (to top of next page). Control L. 

013 015 CR fE Carriage return (to beginning of line). Control M. 

014 016 SO Shi ft out; change character set or change ribbon color to red. 
Control N. 

0 015 017 SI Shift in; ret urn to standard character set or color. Control O. 

I 016 020 OLE CC Data link escape [DeO]. Control P. 

0 017 021 DCl Device control I, turns transmitter (reader) on. Control Q (X ON). 

0 018 022 DC2 Device control 2, turns punch or auxiliary on. Control R (TAPE, 
AUX ON). 

1 019 023 DC3 Device control 3, turns transmitter (reader) off. Control S (X OFF). 

0 020 024 DC4 Device control 4 (stop), turns punch or auxiliary off. Control T 
(TAPE, AUX OFF). 

021 025 NAK CC Negative acknowledge [ERR, error]. Control U. 

I 022 026 SYN CC Synchronous idle [SYNC] . Control V. 

0 023 027 ETB CC End of transmission block [LEM, logical end of medium]. Control W. 

0 024 030 CAN Cancel [Sol. Control X. 

025 031 EM End of medium [SI]' Control Y. 

026 032 SUB Substitute [S2]' Control Z. 

0 027 033 ESC Escape, prefix [S3]' Control [ (control shift K2). 

1 028 034 FS IS File separator [S4]' Control \ (control shift L2). 

0 029 035 CS IS Croup separator [Ss]' Control] (control shift M2). 

0 030 036 RS IS Record separator [S 6]' Control ~ (control shift N2). 

031 037 US IS Unit separator [S?]. Control - (control shift 0 2). 

1 CC communication control, FE format effector, IS information separator. 
20n LT33, LT35 and similar units. 
3 Includes a carriage return on some equipment, but not on standard DEC units. 

8-2 



ASCII-1968 CHARACTER CODE SET 

Even 
Parity 

Bit 

1 

o 
o 

o 
1 
1 

o 
o 

o 
1 

o 
o 
1 

o 

1 

o 
1 

o 
o 

1 

o 
o 

o 

o 

Figures 

7-Bit 7-Bit 
Decimal Octal Character 

032 040 SP 

033 041 

034 

035 

036 

037 

038 

039 

042 

043 

044 

045 

046 

047 

040 050 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

056 

057 

058 

059 

060 

061 

062 

063 

051 

052 

053 

054 

055 

056 

057 

060 

061 

062 

063 

064 

065 

066 

067 

070 

071 

072 
073 

074 

075 

076 

077 

# 
$ 

% 
& 

* 
+ 

fIJI 

1 
2 

3 

4 

5 

6 

7 

8 
9 

< 

> 

I Zero-slash absent on many units. 

Even 
Parity 

Bit 

1 

o 
o 
1 

o 
1 

1 
o 
o 

o 
1 

o 
o 
1 

o 

o 
1 

o 
o 
1 
1 

o 
o 
1 

o 
1 

1 
o 

Graphic Characters 

Upper Case 

7-Bit 7-Bit 
Decimal Octal Character 

064 100 (a 

065 101 A 

066 

067 

068 

069 

070 

071 

072 
073 

074 

075 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

091 

092 

093 

094 

095 

102 

103 

104 

105 

106 

107 

110 

III 

112 
113 

114 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

130 

131 

132 

133 

134 

135 

136 

137 

B 
C 
D 
E 
F 
G 
II 

K 

L 

M 

N 
a 
P 
Q 

R 
S 

T 
U 
V 

W 

x 
y 

z 
[ 
\2 

I 

Lower Case 

Even 
Parity 7-Bit 7-Bit 

Bit Decimal Octal Character3 

o 096 140 ,2 

I 

o 
I 

o 
o 

o 
o 
I 

o 

I 

o 
1 

o 
o 
I 

o 

I 

o 
o 

1 
o 
1 

o 
o 

097 141 

098 142 

099 143 

100 144 

101 145 

102 146 

103 147 

104 150 

105 151 

106 152 
107 153 

108 154 

109 155 

110 156 

111 157 

112 160 

113 161 

114 162 

115 163 

116 164 

117 165 

118 166 

119 167 

120 170 

121 171 

122 172 

123 173 

124 174 

125 175 

126 176 

127 177 

a 

b 
c 

d 

e 

g 
h 

j 
k 

1 
m 

n 

o 

p 

q 

1I 

v 

w 

x 

y 

z 

.........,2,5 

2 Under study by responsible American National Standards Committee for possible change at next revision of ASCII 
(ca. 1982). 

3 Codes 140-173 first defined in 1965. For a full ASCII character set the operating system accepts codes 140-176 as 
lower case. For a program requiring a character ;;et that lacks lower case, the operating system translates input codes 
140-174 into the corresponding upper case codes (100-134) and translates both 175 and 176 into 033, escape. 
Early versions of the DECsystem-l0 Monitor l(sed 175 as the escape code and translated both 176 and 033 to it. 

4 Unassigned control character (usually ALT MODE) before 1965. Code generated by ALT MODE key on some DEC 
units, especially earlier ones; on some more reccnt units, the ALT key generates the standard escape code, 033. 

5 Control character ESC before 1965; code generated by ESC key on some DEC units designed at that time. 

6 Delete, rub out (not part oflower case set). 

8-3 



ASCII-1968 CHARACTER CODE SET 

Remarks on Special Graphic Characters 

SP Space - normally nonprinting. 

Exclamation point. 

" Quotation mark, diaeresis. 

# Number sign. £ on some (non-DEC) units. 

$ Dollar sign. 

% Percent. 

& Ampersand. 

Apostrophe, closing single quotation mark, 
acute accent. " in appearance on some DEC 
units. 

Opening parenthesis. 

Closing parenthesis. 

* Asterisk. 

+ Plus. 

Comma, cedilla. 

Hyphen, minus. 

Period, decimal point. 

Slant, slash, solid us. 

Colon. 

Semicolon. 

< Less than. 

Equals. 

8-4 

> Greater than. 

Question mark. 

(a Commercial at. ' 1965-67, but never on DEC 
units. 

Opening bracket. Shift K on LT33, LT35 and 
similar units. 

\ Reverse slant. ~ 1965-67, but never on DEC 
units. Shift L on LT33, LT35 and similar units. 

Closing bracket. Shift M on LT33, LT35 and 
similar units. 

Circumflex, upward arrow head. t before 1965, 
but used until 1972 on DEC units. 

Underline, underscore. - before 1965, but used 
until 1972 on DEC units. 

Grave accent, opening single quotation mark. 
(a 1965-67, but never on DEC units. 

Opening brace. 

Vertical line. Control character ACK before 
1965;--'1965-67, but never on DEC units; 
: in appearance 1968-19-77, but generally not 
on DEC units. 

Closing brace. Unassigned control character 
(usually ALT MODE) before 1965. 

Overline, tilde, general accent. Control char· 
after ESC before 1965; I 1965-67, but never 
on DEC units. 



APPENDIX C 

COMPILER MESSAGES 

The FORTRAN compiler issues tvlO tYPE~S of messages: warning and fatal 
error. While compiling thE! progrram, if the compiler encounters a 
situation that does not prevent it from completing the compilation, 
but does warrant your knowing about, it prints a warning message and 
continues compilation. If, however ,. the problem in your program is 
such that compilation cannot continue, the compiler prints a 
fatal-error message and stops compilation of the program. Whenever a 
fatal error is generated a relocatable object module will not be 
prod uced • 

Compiler messages are printed in the following form: 

?FTNxxx LINE:n text 
or 
%FTNxxx LINE:n flag: text 

where: 

? indicates a fatal message 
~; indicates a warning message 
FTN is the FORTRAN mnemonic 
xxx is the 3-letter mnemonic for the error message 
Line:n is the optional ljne number where the error occurred 
text is the explanation of error 
flag: is the prefix for warning messages generated when the 

compatibility flagger is invoked. This prefix describes 
the type of incompatibility the message refers to, and can 
be one of the fol]owing: 

• Extension to Fortran-77: 

• VMS incompatibility: 

• F'ortran-77 and VMS: 

See Section 16.6 for more information on the compatibility flagger. 

Square brackets ([ ]) in this appendix signify variables and are not 
output on the terminal. 

C-l 



COMPILER MESSAGES 

Fatal Errors 

Each fatal error in the following list is preceded by ?FTN on the user 
terminal and on listings. They are presented here in alphabetical 
order. 

ABD 

AHE 

AOA 

ASA 

ATL 

AWN 

BOV 

CER 

CEL 

CEN 

CEX 

CFF 

CFL 

CNE 

CPE 

[symbolname] has already been defined [definition] 

The usage given conflicts with current information about the 
symbol. For example, a symbol defined in an EQUIVALENCE 
statement cannot be referenced as a subprogram name. 

IF' at line [number] already has ELSE 

Assumed-size arrays only allowed in subprograms 

Assumed-size arrays cannot be used 

ARRAY [name] too large 

The total amount of memory necessary to accommodate this 
array is greater than 5l2P. 

Array reference [name] has wrong number of subscripts 

The array was defined to have more or fewer dimensions than 
the given reference. 

Statement too large to classify 

To determine statement type, some portion of the statement 
must be examined by the compiler before actual semantic and 
syntactic analysis begins. During this classification, the 
entire portion of the required statement must fit into the 
internal statement buffer (large enough for a normal 20-line 
statement) • 

This error message is issued when the portion of a given 
statement required for classification is too large to fit in 
the buffer. Once FORTRAN-IO/20 has classified a statement, 
there is no explicit restriction on its length. 

Compiler error in routine [name] 

Submit an SPR for any occurrence of this message. 

Character entry points must have the same length 

Character expression used where numeric expression required 

Constant or constant expression required 

Cannot find file 

The file referenced in an INCLUDE statement was not found. 

Reference to character function [name] must have a fixed 
length 

Character and numeric entry points cannot be mixed 

Checksum or parity error in 
[ name] 

C-2 

[source/listing/object] fil e 



CQL 

CSA 

CSF 

DDA 

DDN 

DFC 

DFD 

DIA 

DID 

DLN 

DNL 

DPR 

DSF 

DTI 

DVE 

ECS 

ECT 

EDN 

EID 

ElL 

ElM 

ENF 

ETF 

EXB 

FEE 

COMPILER MESSAGES 

No closing quote in ~haracter constant 

Can't split string a~ross numeric and character variables 

Illegal statement function reference in CALL statement 

[symbolname] is duplicate dummy argument 

DO loops too deeply nested - reduce nesting 

Variable dimension [name] must be scalar, defined as formal 
or in COMMON 

Double [type] name illegal 

Duplicate fields were encountered in an INCLUDE 
specification. 

DO index variable [name] is already active 

file 

In any nest of DO loops, a given index variable may not be 
defined for more than one loop. 

Cannot initialize a dummy parameter in DATA 

Optional data value list not supported 

The extended FORTRAN statement form that allows data 
to be defined in type specification statements 
supported by FORTRAN-IO/20. 

values 
is not 

Implied DO specification without 
variables 

associated 

Dummy parameter [name] referenced before definition 

Argument [name] is same as FUNCTION name 

list 

The dimensions of [arrayname] must be of the type integer 

Cannot use dummy variable in EQUIVALENCE 

of 

[variable] 
statement 

EQUIVALENCE-d to COMMON is illegal in SAVE 

Attempt to enter [symbolname] into COMMON twice 

Expression too deeply nested to compile 

ENTRY statement illegal inside a block IF or DO loop 

Expression illegal in an input list 

ENTRY statement illegal in main program 

Label [number] must refer to an executable statement, not a 
FORMAT 

Enter failure [number] [filespec] 

EQUIVALENCE extends COMMON block [name] backwards 

Found [symbol] when expecting either [symbol] or [symbol] 

General syntax error message. 

C-3 



FER 

FID 

FNE 

FWE 

IAC 

IAL 

IAN 

IBD 

IBK 

ICL 

ICN 

IDN 

IDS 

IDT 

IDV 

IED 

IFD 

IFE 

IFS 

I ID 

IIP 

IIS 

ILF 

IND 

COMPILER MESSAGES 

[file error text] 

An error has occured when processing a command 
specification. 

Can't initialize character function name 

file 

Label [number] must refer to a FORMAT, not an executable 
statement 

Found [symbol] when expecting [symbol] 

Illegal ASCII character [character] in source 

Incorrect argument type for library function [name] 

Illegal assignment between character and numeric data 

Illegal substring bound in DATA statement 

Illegal statement in BLOCK DATA subprogram 

Illegal character [character] in label field 

Illegal combination of character and numeric data 

DO loop at line: [ n urn be r ] i sill eg all y n est e d 

You are attempting to terminate a DO loop before terminating 
one or more loops defined after the given one. 

Implicit DO indices may not be subscripted 

Lllegal or misspelled data type 

Implied DO index is not a variable 

Inconsistent EQUIVALENCE declaration 

The given EQUIVALENCE declaration would cause some symbolic 
name to refer to more than one physical location. 

INCLUDEd files must reside on disk 

[INCLUDE file error] 

This error occured while trying to open the specified 
INCLUDE file on the DECSYSTEM-20. 

Illegal format specifier 

Non-integer implied DO index 

Illegal implicit specification parameter 

Incorrect INCLUDE switch 

Illegal statement after logical IF 

Refer to Section 9.2.2 for restrictions on logical IF object 
statements. 

Improper nesting: DO at line [number] has not terminated 

C-4 



INI 

INN 

IOC 

IOD 

ION 

IOR 

IQB 

IQN 

ISD 

ISN 

ISS 

ITL 

IUT 

IVC 

IVH 

IVP 

IXM 

IXS 

IZM 

KA 

KAS 

LAD 

LED 

LFA 

LGB 

LLS 

LND 

COMPILER MESSAGES 

Improper nesting: ]"F at line [number] has not terminated 

INCLUDE statements may not be nested 

Illegal operator fOl character data 

Illegal statement used as object of DO 

Numeric operand of concatenation operator 

Substring bound out of range 

INQUIRE - both UNIT and FILE keywords were specified 

INQUIRE - neither U~IT nor FILE keywords were specified 

Illegal subscript expression in DATA statement 

Subscript expressions may be formed only 
indexes and constants combined with +, -

[symbolname] is not [symbol type] 

with implicit 
*, or I. 

The symbol cannot be used in the attempted manner. 

[variable] illegal in SAVE statement 

Illegal transfer into loop to label [number] 

Program units may not be terminated within INCLUDEd files 

Invalid character constant 

Invalid hollerith constant 

Invalid PPN 

Illegal mixed mode arithmetic 

DO 

Complex and double-precision cannot appear in the same 
expression. 

Illegal [OPEN specifier] specifier 

Illegal [datatype] size modifier [number] 

FORTRAN will not run on a KA 

FORTRAN can not compile for a KA 

Label [number] al ready defined at line: [number] 

Illegal list directed [statement type] 

Label arguments illegal in FUNCTION or array reference 

Lower bound greater than upper bound for array [name] 

Label too large or too small 

Labels cannot be 0 or greater than five digits. 

Label [number] must refer to a 
declaration 

C-5 

[statement] , not a 



LNI 

LTL 

MCE 

MSP 

MST 

MWL 

NCC 

NCF 

NEX 

NFS 

NGS 

NIF 

NIO 

NIR 

NIU 

NLF 

NLS 

NMD 

NNA 

NNF 

NNN 

NRC 

NUO 

NWB 

NWD 

NYI 

OAG 

COMPILER MESSAGES 

List directed I/O with no I/O list 

Too many items in list - reduce number of items 

In rare instances, a combination of long lists in a single 
statement can exhaust the syntax stack. 

More than 1 COMMON variable in EQUIVALENCE group 

Statement name misspelled 

[OPEN specifier] must be [integer or array] 

Attempt to define multiple RETURN without formal label 
arguments 

Can't store numeric constant in character variable 

Not enough core for the file specs. 
[number] 

No exponent after D or E in constant 

No filename specified 

Total K needed 

The INCLUDE statement requires a filename. 

Cannot get segment [segment name] - error code [GETSEG error 
code] 

This message means the system is unable to GETSEG one of the 
compiler segments on the DECsystem-lO. 

No matching IF 

NAMELIST directed I/O with I/O list 

Repeat count must be an unsigned integer 

Non-integer unit number in I/O statement 

Wrong number of arguments for library function [name] 

[variable] may not be declared length star 

No matching DO 

NAMELIST not allowed in ENCODE, DECODE, and REREAD 

No statement number on FORMAT 

NML= must specify a NAMELIST 

Statement not recognized 

.NOT. is a unary operator 

Numeric variable must be aligned on word boundary 

Incorrect use of * or? in [filespec] 

Not yet implemented 

Octal or logical argument illegal to generic function 

C-6 



OBO 

OPW 

OUB 

PD6 

PIC 

PN4 

PRF 

PTL 

QEF 

RDE 

RFC 

RIC 

RUS 

SAD 

SMC 

SNC 

SNL 

SOR 

STD 

TDO 

TFL 

UCE 

UEC 

UFC 

UKW 

UMP 

UNS 

COMPI LER fJIESSAGES 

[variable] may only be specified once 

OPEN/CLOSE parameter" [name] is of wrong type 

Only upper bound of last dimension of [arrayname] may be 
asterisk 

FORTRAN will not rurl on PDP6 

The DO parameters of" [index name] must be integer constants 

Project number must be 4 in ppn 

This error is for DI:CsystE!m-IO file specifications on the 
DECSYS'I'EM-20. 

Pro t e c t ion fa i I u rei n urn b e r ] [ f i I e s pe c ] 

Program too large 

The program unit ta~es up more than 5l2P. 

Quota exceeded or disk full [number] [filespec) 

Rib 0 r d ire c tor y err 0 r [ n urn be r ] [ f i I e s pe c ] 

[function name] is a recursive function call 

Complex constant cannot be used to represent the real or 
imaginary part of a complex constant 

Relational expression illegal as UNIT specifier 

Array [name] - signed dimensions may appear only as constant 
range limits 

Size modifier conflict for variable [name] 

Substring of non-character variable 

[statement name] statements may not be labeled 

Subscript out of range 

Statement [number] is a declaration 

[symbol type] type declaration out of order 

Too many FORMAT labEls specified 

User core exceeded at location [address] in phase [segment] 
while processing statement [number] 

Label [number] previously used in executable context 

Label [number] previously used in FORMAT context 

Unrecognized keyword 

Unmatched parentheses 

UNIT may not be specified 

C-7 



COMPILER MESSAGES 

USI [symbol type] [symbol name] used incorrectly 

The given symbol cannot be used in this way. 

VNA Subscripted variable in EQUIVALENCE, but not an array 

VSE EQUIVALENCE subscripts must be integer constants 

VSO Variable dimension allowed in subprograms only 

WIF [I/O type] is illegal with internal files 

ZLD Zero-trip DO loop illegal in DATA statement 

Warning Messages 

Each warning message in the following list is preceded by %FTN on the 
user terminal and on listings. They are presented here in 
alphabetical order. 

ACB 

ADS 

AGA 

AIL 

AIS 

ANS 

CAl 

CAO 

CAP 

CCC 

CCN 

CIS 

CNM 

CNS 

COS 

COV 

CSM 

Argument out of range of CHAR, high order bits ignored 

Variable [name] already declared in SAVE statement 

Opt - object variable, of assigned GOTO without optional 
list, was never assigned 

Illegal length argument for ICHAR, first character used 

Extension to Fortran-77: Apostrophe in I/O specifier 

VMS incompatibility: ASSOCIATEVARIABLE not set by VMS on 
OPEN 

COMPLEX expression used in arithmetic IF 

Consecutive arithmetic operators illegal 

Extension to Fortran-77: Consecutive arithmetic operators 

Fortran-77 and VMS: Carriage control character 

CHARACTER constant used where numeric expression required 

Conflicting INCLUDE switches 

Character and numeric variables mixed 

Extension to Fortran-77: Concatenation with variable of 
non-specific length 

Extension to Fortran-77: Comment on statement 

Extension to Fortran-77: Assigned variable appears 
character expression 

Extension to Fortran-77: Comma field separator is missing 

C-8 

in 



CTR 

CUO 

DEB 

DFN 

011 

DIM 

DIS 

DOW 

OPE 

OWE 

OWL 

DXB 

EDD 

EDS 

EDS 

EDX 

EOC 

EXD 

FAR 

FIF 

FIN 

FMR 

FMT 

COMPILER MESSAGES 

Complex terms used in a relational other than EQ or NE 

The result of the other relational operators with complex 
operands is undefined. 

Constant underflow or overflow 

This message is issued when overflow or underflow is 
detected as the result of building constants or evaluating 
constant expressions at compile time. 

Extension to Fortran-77: DEBUG lines 

VMS incompatibility: Default file name on VMS differs from 
Fortran-IO/20 

Previous declaration of intrinsic function is ignored 

possible DO index modification inside loop 

A program that does this may be incorrectly compiled by the 
optimizer, since it assumes that indexes are never modified. 
Note that the number of iterations is calculated at the 
beginning of the loop and is never affected by modification 
of the index within the loop. 

Opt - program is disconnected - optimization discontinued 

Submit an SPR if this message occurs. 

Extension to Fortran-77: DO WHILE statement 

VMS incompatibil i ty: Di ffE~rent precedence in exponentiation 

Fortran-77 and VMS: Default widths with edit descriptor 
[descriptor] 

Extension to Fortran-77: DO without statement label 

DATA st.atement exceE~ds bounds of array [name] 

Extension to Fortran-77: END DO statement 

Extension to Fortrall-77: DECODE statement 

Extension to Fortran-77: ENCODE statement 

Fortran-77 and VMS: FORMAT edit descriptor [descriptor] 

Fortran-77 and VMS: Exponential operator A 

Extension to Fortran-77: Transfer of control into DO loop at 
label [label] 

Extension to Fortran-77: F'ormat in numeric array 

Extension to Fortran-77: [function name] is not an intrinsic 
function in Fortran-77 

Extension to Fortran-77: FIND statement 

Multiple RETURNs defined in a FUNCTION 

VMS incompatibility: Keyword FMT instead of NML 

C-9 



FNA 

FNG 

FNS 

FOO 

HCP 

HCN 

HCU 

IAT 

ICC 

ICD 

ICS 

ION 

IFL 

IMN 

INC 

INS 

INS 

INS 

COMPILER MESSAGES 

A function without an argument list 

Extension to Fortran-77: [function name] is not a generic 
function in Fortran-77 

Extension to Fortran-77: 
subroutine 

[name] is not a FORTRAN-77 

Statement function declared out of order or array not 
dimensioned 

VMS incompatibility: Hollerith constant padded with spaces 

Hollerith constant used where numeric expression required 

Extension to Fortran-77: Hollerith constant 

Illegal type for argument [number] for statement function 

Illegal character, continuation field of initial line 

Continuation lines cannot follow comment lines. 

Inaccessible code. Statement deleted 

The optimizer will delete statements that cannot be reached 
during execution. 

Illegal character in line sequence number 

Opt - illegal DO nesting - optimization discontinued 

A GO TO within a DO loop goes to the ending statement of an 
inner, nested DO loop. The line number printed out with the 
warning message is that of the OUTER DO. 

DO 20 

GO TO 10 

DO 10 

10 CONTINUE 

20 CONTINUE 

Opt - infinite loop. Optimization discontinued 

IMPLICIT NONE 

Extension to Fortran-77: INCLUDE statement 

VMS incompatibility: /NOCREF switch 

VMS incompatibility: /CREF switch 

VMS incompatibility: Default for VMS is /NOLIST 

C-IO 



IUA 

KIS 

KWU 

KWV 

LID 

LNC 

LNE 

LOL 

LSP 

MBD 

MLN 

MSL 

MVC 

NAM 

NDP 

NEC 

NED 

NIB 

NIG 

NIK 

NIS 

NIX 

NLC 

NLK 

NOD 

NOF 

NPC 

NPP 

NSC 

COMPILER MESSAGES 

Illegal use of an array - use scalar variable instead 

Obsolete switch /KI 

Fortran·-77 and VMS: Keyword [keyword name] 

Fortran-77 and VMS: Keyword value for [keyword name] 

Identifier [name] more than six characters 

The remaining characters are ignored. 

Fortran·-77 and VMS: Non-numeric operand in numeric context 

VMS incompati bi 1 i ty: L.og ical and numer ic variables 
EQUIVALENCE-d 

VMS incompatibility: List .of labels 

Extension to Fortran-77: [data type] length specifier 

IMPLICIT NONE - [variable] must be explicitly declared 

Fortran·--77 and VMS: Mixing logical and numeric 

Fortran-77 and VMS: Multi-statement line 

Number of variables [is less than/is greater than] 
numbers of constants in DATA statement 

Extension to Fortran-77: NAMELIST statement 

the 

Fortran-77 and VMS: No decimal places with edit descriptor 

Extension to Fortran-77: Numeric expression in character 
context 

No END statement in program 

Extension to Fortran-77: Non-integer substring bounds 

Extension to Fortran-77: Non-integer as index to computed 
GOTO 

Extension to Fortran-77: Non-integer used with [keyword] 

Extension to Fortran-77: Non-integer subscript 

Extension to Fortran-77: Non-integer as index to RETURN 

Fortran·-77 and VMS: Non-lo9ical operand in logical context 

Extension to Fortran-77: Use of NAMELIST 

Global optimization not supported with /DEBUG - /OPT ignored 

No output file given 

VMS incompatibility: Null padding before [symbolic name] 

Extension to Fortran-77: No parentheses around PARAMETER 
list 

Fortran-77 and VMS: Non-standard character in column 1 

C-ll 



OCU 

OHC 

010 

010 

PAV 

PLP 

PPS 

PSR 

PWS 

RDI 

RIM 

RLC 

RLC 

RLX 

SBC 

SEP 

SID 

SMD 

SNN 

SOD 

SOR 

SPN 

SRO 

SVN 

TLF 

TSI 

VAl 

COMPILER MESSAGES 

Fortran-77 and VMS: Octal constant 

Octal or hexadecimal constant 

Extension to Fortran-77: [statement name] statement 

Fortran-77 and VMS: [statement name] statement 

PARAMETER used as associative variable 

PARAMETER list must be enclosed in parentheses 

PROGRAM statement parameters ignored 

Used for compatibility purposes. 

Pound sign (#) in random access - use REC= or apostrophe (') 
instead 

Fortran-77 and VMS: PRINT (Specifiers) statement 

Attempt to redeclare implicit type 

RETURN statement illegal in main program 

Extension to Fortran-77: & used with return label 

Fortran-77 and VMS: $ used with return label 

Fortran-77 and VMS: Return label [label] 

Extension to Fortran-77: Substring bounds not constant 

VMS incompatibility: [symbolic name] is the same as program 
name or entry point 

Slash (I) in dimension bound - use colon (:) instead 

Extension to Fortran-77: Single subscript with 
multi-dimensioned array [array name] 

VMS incompatibility: [symbolic name] is the same as NAMELIST 
name 

[name] statement out of order 

Fortran-77 and VMS: Subscript out of range for array [array 
name] 

VMS incompatibility: [symbol ic name] is the same as 
PARAMETER name 

Fortran-77 and VMS: Symbolic relational operator [operator] 

VMS incompatibility: [symbolic name] is same as variable or 
function name 

Fortran-77 and VMS: Two-branch logical IF 

Type of symbolic constant ignored 

[name] already initialized 

C-12 



VFS 

VGF 

VIF 

VND 

VNF 

VNG 

VNI 

VNS 

VSD 

WDU 

WNA 

WOP 

XCR 

XEN 

XOR 

ZMT 

COMPILER MESSAGES 

VMS incompatibility: [function name] is a Fortran-supplied 
routine on VMS 

VMS incompatibility: [function name] is a generic function 
on VMS 

VMS incompatibil i ty: 
function on VMS 

[function name] 

FUNCTION return value is never defined 

is an intrinsic 

VMS incompatibility: [function name] 
function on VMS 

is not an intrinsic 

VMS incompatibility: 
f unct ion on VMS 

[func t i on name] 

Opt - variable [name] is not initialized 

is not a generic 

The optimizer analysis determined that the given variable 
was never initialized prior to its use in a calculation. 

VMS incompatibility: [subroutine name] is not a VMS-supplied 
subroutine 

VMS incompatibility: Subroutine [subroutine name] may differ 

Fortran·-77 and VMS: wRITE wi th defaul t uni t 

Wrong number of argu~ents for statement function 

Opt - warnings given in phase 1. 
incorrect 

Optimized code may be 

One or more of the messages issued prior to this message 
resulted from situations that violate assumptions made by 
the optimizer, and thus may cause it to generate code that 
does not execute as 1esired. 

Extraneous carriage return 

Carriage return was not immediately preceded or followed by 
a line termination character. 

Fortran--77 and VMS: [* or ,&] with external name 

Extension to Fortran-77: Logical .XOR. operator 

Size modifier [number] treated as [data type] 

This message is issued when one of the data type size 
modifiers that is accepted only for compatibility is used. 

Internal Compiler Errors 

An internal compiler error is an attempt by either the compiler or the 
monitor to document an err~r inside the FORTRAN compiler. An 
occurrence of an internal compiler error signifies that something is 
wrong with the FORTRAN compiler. 

C-13 



COMPILER MESSAGES 

Monitor-detected internal errors are of the form: 

? Internal compiler error 
? [message] at location [address] in phase [segment] 
? While processing statement [line-number] 

where [message] can be one of the following for TOPS-IO: 

Illegal memory reference 
A read or write was attempted to a non-existent page 

Stack exhausted 
Monitor detected PDL overflow 

Memory protection violation 
Illegal reference to high segment 

or where [message] can be one of the following for TOPS-20: 

Illegal memory reference 
A read was attempted to a non-existent page 

Non-existent memory write 
A write was attempted to a non-existent page 

Illegal memory read 
A memory read failed 

Illegal memory write 
A memory write failed 

Stack exhausted 
Monitor detected PDL overflow 

Compiler-detected errors are of the form: 

? Internal compiler error-processing statement [line-number] 
? Call to [routine-name] from [address] 

Submit an SPR if you receive an internal compiler error. 

At the end of program unit compilation, the compiler prints an error 
summary line, which is one of the following: 

[ No error detected ] 
%FTNWRN no warning(s) 
%FTNWRN [warning count] warnings(s) 
?FTNFTL [fatal count] fatal error(s) and no warning(s) 
?FTNFTL [fatal count] fatal error(s) and [warning count] 
warning (s) 

C-14 



APPENDIX D 

FOROTS ERROR MESSAGES 

Errors detected at run time by FOROTS fall into the following 
categories: 

1. System errors (SYS) - errors internal to FOROTS 

2. Open errors (OPN) - I/O errors that occur during a file OPEN 
and CLOSE 

3. Arithmetic fault 
calculations 

errors (APR) - errors in numer ic 

4. Library errors (LIB) - errors generated by FORLIB library 
routines 

5. Data errors (DAT) - errors in data conversion on I/O 

6. Device I~rrors (DEV) - I/O hardware errors 

7. Compatibility errors 
compatibility flagger 

(COM) - errors generated by 

The messages generated by FOROTS contain the following elements: 

the 

1. A 3-letter code that identifies the type of message (TOPS-IO 
only) 

2. The message itself, which describes 
encountered 

what FOROTS has 

3. For I/O errors, two integer values which are retrieved by the 
ERRSNS subroutine 

4. For compatibility errors, a prefix precedes the message that 
describes the type of incompatibility the messages refers to; 
one of the following: 

• Extenstion to FORTRAN-77: 

• VMS incompatibility: 

• FORTRAN-77 and VMS: 

See Section 16.6 for more information on the compatibility 
flagger .. 

D-1 



FOROTS ERROR MESSAGES 

The 3-letter code (TOPS-I0 only) and the message are, by default, 
printed at your terminal when an error occurs; the two ERRSNS values 
are stored within the arguments you have supplied for the ERRSNS 
subroutine. If you do not include a call to the ERRSNS subroutine in 
your program, your program cannot have access to the two ERRSNS 
values. (For instructions on how to use the ERRSNS subroutine, see 
Section 13.4.1.15.) 

Table D-l contains a list of all the 3-letter message codes and the 
ERRSNS values that are generated by FOROTS. 

Table D-l: FOROTS Error Codes 

1st 2nd 
Value Value(5) Code(l) Meaning 

-

0 No error detected 
0 No error detected 

1 Arithmetic trap 
n (7 ) IDC ( 3 ) Integer divide check 

---
2 Input Conversion Error 

n (7) IOV (3 ) Integer overflow 
---

3 Input Conversion Error 
n (7) FOV (3 ) Floating overflow 

4 Arithmetic trap 
n (7 ) FOV (3 ) Floating overflow 

-
5 Arithmetic trap 

n (7) FDC ( 3 ) Floating divide check 

6 Arithmetic trap 
n (7 ) FUN (3) Floating underflow 

7 Input Conversion Error 
n (7 ) FUN (3) Floating underflow 

---
9 Output Conversion Error 

0 FTS (3 ) Output field width too 
small 

-
21 FORLIB errors and warnings 

104 IDU DIVERT: illegal to divert 
to unit 

105 UNO DIVERT: unit not open 
106 NOF DIVERT: unit not open for 

formatted I/O 
107 CWU DIVERT: Can't write to 

unit 
108 CLE Concatenation result longer 

than expected 
109 ICE Illegal length character 

expression 
110 NCS No character stack 

allocated 

D-2 



FOROTS ERROI~ MESSAGES 

Table D-l: FOROTS Error Codes (Cont'd) 

1st 
Value 

22 

23 

24 

25 

2nd 
Va 1 ue (5) 

112 

113 
114 
11 ~; 

116 

117 

lIE: 

119 
120 
121 

122 
123 

124 

126 

509 

532 
583 

584 

590 

113 
114 

-1 

302 
510 

512 
517 

536 

536 

Code (1) 

AQS 

SSE (3) 
SRE (3) 
TMA 

CGP 

CRP (1) 

NSS (2) 

CFS (2) 
CGS (2) 
CPP (3) 

IPN 
CCS 

ECS 

ALZ 

DMA (2,3) 

ETL ': 3) 

ARC ': 3) 
FVM (3) 

RIF (3) 

DQW (2,3) 

SSE f 3) 
SRE f 3 ) 

EOF 

BBF 
RNR 

IRN 
RTL 

CBI 

CSI 

D-3 

Meaning 

First argument of SORT must 
be a quoted string 
Substring range error 
Subscript range error 
Too many arguments in call 
to SORT 
Can't get pages 600:677 for 
SORT 
Can't return pages 600:677 
after call to SORT 
No free section available 
for SORT 
Can't find SYS:SORT.EXE 
Can't get SYS:SORT.EXE 
Can't preallocate pages 
600:677 for SORT 
Illegal page number 
Not enough memory for 
creating character stack 
Not enough memory for 
expanding character stack 
Argument less than or equal 
to zero 
Must give lower and upper 
bounds to dump in non-zero 
sections 

I/O warnings 
Attempt to WRITE beyond 
fixed-length record 
Ambiguous repeat count 
Format and variable type do 
not match 
Reading into FORMAT 
non-standard 
Disk full or quota exceeded 
- Please EXPUNGE, then type 
CONTINUE 

FORLIB bounds 
warnings 
Substring range error 
Subscript range error 

End of file 
End of file 

Record or record 
error 

check 

number 

Bad format binary file 
Attempt to read a record 
that has not been written 
Illegal record number 
Record too large - memory 
full 
Cannot backspace image file 
with no RECORDSIZE 
Cannot skiprecord image 
file with no RECORDSIZE 



FOROTS ERROR MESSAGES 

Table D-l: FOROTS Error Codes (Cont.) 

1st 
Value 

2nd 
Val ue (5) 

570 

572 

573 

576 

577 

Code(l) 

ICD 

RSM 

FCL 

WBA 

SLN 

Meaning 

Non-digit 
delimiter 

in record 

Record size different from 
that specified in OPEN 
Unexpected continuation 
LSCW found 
Attempt to WRITE beyound 
variable or array 
Record length negative or 
zero 

~------+------~------~------------------.---I 

26 
502 

535 

541 

542 

550 
595 

CSF (2,3) 

BS I (3 ) 

UOA (3) 

NCK (3) 

CQF (1,3) 
OGX (1,3) 

OPEN/CLOSE warnings 
Can't set FORTRAN carriage 
control attribute 
BLOCKSIZE ignored: device 
is not a magnetic tape 
Unknown OPEN keyword, 
ignored 
OPEN-only keyword 
in CLOSE, ignored 
Cannot QUEUE file 
Galaxy version 
supported 

specified 

2 not 

~-------+--------~r-'----------4-------------------------------~ 

28 

30 

J 
J 
250+n 
250+n 
250+n 

J 

240 

240 

240 

242 
243 

244 

245 
248 

249 

250+n 
405 

503 

C LF (2) 
RNM (2) 
CLS (1) 
DEL (1) 
RNM (1) 

APP (2) 

FRR 

RRI 

RRR 

NFC (1) 
CIR 

RLB 

NSD 
lAC 

IDM 

OPN (1) 
PPN (2) 

CEF (2) 

CLOSE error 
Cannot CLOSE file 
Cannot RENAME file 
"Close" FILOP. error n (4) 
"Delete" FILOP. error n (4) 
"Rename" FILOP. error n (4) 

OPEN error 
Cannot set up to append to 
magnetic tape file 
/RECORDTYPE:FIXED requires 
/RECORDSIZE 
Random I/O requires 
RECORDSIZE specifier in 
OPEN statement 
Random I/O requires 
/RECORDSIZE 
Too many OPEN units 
/CARRIAGECONTROL:TRANSLATED 
illegal with this 
/RECORDTYPE 
/RECORDSIZE larger than 
/BLOCKSIZE 
No such device 
Specified ACCESS illegal 
for this device 
Specified MODE is illegal 
for this device 
Cannot OPEN file 
JSYS error - PPN cannot be 
translated 
End of command file 
encountered ~ ______ -i ______ L-________ L-____________________________ ~ 

D-4 



FOROTS ERROR MESSAGES 

Table 0-1: FOROTS Error Codes (Cont.) 

··----r-

1st 2nd 
Value Va 1 ue (5) 

506 
540 

569 

585 

31 
31 ~) 

31 ~) 

593 

594 

32 
239 

33 
321 

322 

323 

323 

323 

323 

32~1 

32~i 

326 

327 

39 
310 

Code(l) 

ICA 
SDO 

TFM 

IAV 

CDR 

CDS 

POI 

CDF 

IUN 

CFC (3) 

CFF (3) 

CFR (2,3) 

CFX (2,3) 

CFR (1,3) 

CFX (1,3) 

CFK (3) 

CFT (3) 

CFO (3) 

CFG (3) 

RBR 

Meaning 

Incompatible attributes 
Same device open on another 
unit with conflicting 
spec i fiers 
Tape format conflicts with 
OPEN statement or default 
Illegal value for OPEN 
spec i fier 

Mixed ACCESS modes 
Can't do direct I/O to 
sequential file 
Can't do sequential I/O to 
direct file 
Illegal for DIRECT (RANDOM) 
files 
Can't determine whether 
formatted or unformatted 

Illegal logical unit number 
Illegal unit number 

Compatibility error 
FORTRAN-77 and VMS: 
Carriage control character 
VMS incompatibility: 
Intrinsic routine invoked 
incompatibly 
FORTRAN-77 extension: 
FORTRAN-20 supplied routine 
invoked 
FORTRAN-77 and VMS: 
FORTRAN-20 supplied routine 
invoked 
FORTRAN-77 extension: 
FORTRAN-IO supplied routine 
invoked 
FORTRAN-77 and VMS: 
FORTRAN-IO supplied routine 
invoked 
FORTRAN-77 and VMS: Keyword 
[keyword] 
FORTRAN-77 and VMS: 

spaces Trailing 
record 
FORTRAN-77 
Overlap 
assignments 

of 

in output 

extension: 
character 

FORTRAN-77: and VMS: G 
format descriptor used with 
character 

REREAD error 
REREAD not proceeded 
READ 

by 



FOROTS ERROR MESSAGES 

Table D-l: FOROTS Error Codes (Cont.) 

1st 
Value 

45 

47 

62 

64 

81 

2nd 
Val ue (5) 

241 

241 
241 
533 
539 
544 

545 
546 
547 
548 

551 

263 

554 

301 
306 

524 

538 
552 
553 
575 

583 

307 

501 
508 
574 
579 
581 
582 

599 

Code(l) 

ESV 

USW (1) 
ASW (1) 
DLT 
EDS/EDA (2) 
NDI (1) 

IPP (1) 
TMF (1) 
NS I (1) 
IDD (1) 

NQS (1) 

CDT 

CWL 

ILF 
DLF 

RIC 

IRC 
IHC 
IFW 
UDT 

FVF 

ILC 

UNS 
IOL 
IMV 
I DI (1 ) 
DLL (1) 
IWI 

ICE 

D-6 

Meaning 

OPEN/CLOSE statement syntax 
errors 
Unknown or ambiguous 
keyword 
Unknown swi tch 
Ambiguous switch 
Dialog string too long 
Error parsing DIALOG string 
No device specified with 
.. : " 
Illegal PPN 
Too many SFDs 
Null SFD 
Illegal character in DIALOG 
str ing 

PADCHAR must be single 
character in double quotes 

WRITE on READ-only file 
Cannot WRITE to READ-only 
file 
Cannot write a file with 
MODE=LINED 

Syntax error in FORMAT 
Illegal character in FORMAT 
Data in I/O list but not in 
FORMAT 
Reading into character 
format illegal 
Illegal repeat count 
Illegal Hollerith constant 
Illegal field width 
Undefined data type or 
internal FOROTS error 
Format and variable type do 
not match 

Input conversion error 
Illegal character in data 

FOROTS calling errors 
Unit not specified 
Bad I/O list 
Illegal MTOP value 
Illegal DUMP mod~ I/O list 
Dump mode I/O list too long 
Illegal to initiate another 
I/O statement 
Illegal length for 
character expression 



FOROTS ERROR MESSAGES 

Table 0-1: FOROTS Error Codes (Cont.) 

1st 
Value 

96 

97 

98 

2nd 
Va 1 ue (5) 

J 
J 
530 
537 

537 

587 

309 
513 

514 
515 

516 
519 

521 
522 

580 
596 

597 

598 

J 
J 
J 
250+n 
250+n 
400 
586 
590 

Code(l) 

I LM (2) 
UMO (2,3) 
UTE (1) 
UTO (1) 

UTO (1,3) 

ITE (1) 

VNN 
NEQ 

NRP 
ILN 

I LS 
CCC 

RPE 
SNV 

NLS 
NEC 

ISS 

SNQ 

ISW (2) 
IOE (2) 
OSW (2) 
ISW (1) 
OSW (1) 
IOE (1) 
MFU 
DQE (2) 

B LK (3,6) 

CCP (1,6) 
CDP (1,6) 
CGD (6) 
DBM (6) 
DST (1,6) 

D-7 

Meaning 

Error in magnetic tape 
operations 
Unexpected MTOPR% error (2) 
Error trying to set tape 
Unexpected TAPOP. error 
Unexpected TAPOP. error 
trying to set parameters 
Unexpected TAPOP. error 
trying to set parameters 
Tape is not usable by your 
job 

NAMELIST data errors 
Variable not in namelist 
"=" not found in namelist 
data 
Missing right paren 
Variable or namelist does 
not start with letter 
Illegal subscript 
Cannot convert constant to 
correct type 
Illegal repeat count 
Sign with null value 

Null string illegal 
Found character when 
expecting ":" 
Substring descriptor 
illegal 
String not within single 
quotes 

Unclassifiable device 
errors 
Cannot switch to input 
General purpose I/O error 
Cannot switch to output 
Cannot switch to input 
Cannot switch to output 
General-purpose I/O error 
Memory full 
Disk full or quota exceeded 

No ERRSNS values 

Blocks allocated but not 
deallocated 
Cannot create page 
Cannot destroy page 
Can't get DBMS 
DBMS not loaded 
Error in dialog string 



FOROTS ERROR MESSAGES 

Table D-1: FOROTS Error Codes (Cont.) 

1st 2nd 
Value Val ue (5) Code(l) 

EFS (6 ) 
FFX (6 ) 

IEM (6 ) 
IJE (2,6) 
MFU (6 ) 
NOR ( 3 ,6) 
PAG (3,6) 

PGD (6 ) 

POV (6) 
SNH (6) 
TDT (6) 

(1) TOPS-I0 only 

(2) TOPS-20 only 

Meaning 

Enter correct file specs 
FOROP function code exceeds 
range 
Error in memory management 
"Impossible" JSYS error 
Memory full 
Error number out of range 
Pages allocated but not 
deallocated 
Deallocating more pages 
than allocated 
PDL overflow 
Internal FOROTS error 
Trap occured during trap 
processing 

(3) This is a warning, not an error. The error cannot be 
trapped with an ERR= branch, but IOSTAT and ERRSNS will be 
set. 

(4) See the TOPS-IO Monitor Calls Manual for the list of 
FILOP. error codes and their meanings. 

( 5 ) " J " mea n s the TOP S - 2 0 J S Y S err 0 r cod e • Th i s n urn b e r will 
be between 600000 and 610000 (octal). 

(6) No ERRSNS values 

(7) Where n is the number of times the error occurs 

APR and LIB errors are usually reported as warnings, and the program 
continues. The number of APR and LIB errors listed on the user's 
terminal can be changed by the FORTRAN Library Subroutine ERRSET (see 
Section 13.4.1.14). The I/O errors either cause messages to be 
printed on the terminal or can be trapped by an error exit argument 
(ERR=statement number) on OPEN, READ, WRITE, and CLOSE. 

The FORTRAN Library Subroutine ERRSNS (see Section 13.4.1.15) aLlows 
you to find out which I/O error occurred. When called, ERRSNS rE!turns 
one or two integer values that describe the status of the last I/O 
operation performed by FOROTS. (The second integer value is 
optional.) For example, 

CALL ERRSNS (I,J) 

calls this subroutine. J, the second integer value, is optional. 

D-8 



FOROTS ERROR MESSAGES 

D.l ALPHABETICAL DESCRIPTION OF FOROTS MESSAGES 

This section contains alphabetical descriptions of each warning and 
fatal error message that is generated by FOROTS during program 
execution. Each message is first listed; then is followed by a brief 
description of how it is generated; followed by, in some cases, a 
recovery procedure; and finally, where applicable, followed by the 
ERRSNS values associated with the message. 

ALZ? Arg umen t less than or E~qual to zero 

Cause: An argument (sllch as a memory size) was specified with 
a value less than or equal to zero. 

Recovery: Specify the correct value for the argument. 

ERRSNS val UE!S: First Value = 21 Second Value = 125 

APP? Can't setup to append to magtape file <JSYS error) 
onl y) 

(TOPS-20 

Ca use: The MTOPR% JSYS failed trying to position the magnetic 
tape with the function .MOFWF or .MOBKR. 

Recovery: Use the information provided to determine a recovery. 

ERRSNS valUES: First Value = 30 Second Value = JSYS error 
number 

AQS? First argument to SORT must be a quoted string 

Cause: The SORT routine detected that the first argument was 
of type CHARAC~'ER, but the string was not word aligned. 

Recovery: If the first argument to the SORT program is of type 
CHARACTER, it must be word aligned and terminated by an 
ASCII null. The most. reliable way to generate such an 
argument is to use a character constant. 

ERRSNS values: First Vc:lue 21 Second Value = 112 

ARC % Ambiguous repeat count 

Cause: In a FORMAT statement, a number between two format 
specifiers can be considered belonging to either one. 

Recovery: Insert a comma before or after the number, depending on 
which specifier the number belongs with. 

ERRSNS values: Fir s t Va 1 ue = 22 Second Value = 532 

D-9 



FOROTS ERROR MESSAGES 

ASW? Ambiguous switch /<sw> (TOPS-I0 only) 

Cause: In dialog mode, a switch was specified, but not enough 
of the switch was given to uniquely specify which 
switch was intended. 

Recovery: Retype the line, completely specifying which switch you 
mean. 

ERRSNS values: First Value 45 Second Value 241 

BBF? Bad format binary file 

Cause: The control information stored in a binary file is 
incorrect. The file cannot be read using 
MODE='BINARY'. This error can be caused when the file 
you are reading was not written by FORTRAN using 
MODE='BINARY' • 

Recovery: Make sure that you are using the correct file and 
mode. Any file can be read with MODE='IMAGE'. 
Section 11.3.19) 

ERRSNS values: First Value 25 Second Value 302 

BLK % Pages allocated but not deallocated 

Ca use: Internal FOROTS error in memory management. 

Recovery: Submit an SPR and include your program. 

BSI % Blocksize ignored: device is not a magnetic tape 

data 
(See 

Cause: A BLOCKSIZE specifier was given in an OPEN statement 
(see Section 11.3.4) but was not used because the 
device being opened is not a magnetic tape. 

ERRSNS values: First Value = 26 Second Value = 535 

CBI? Can't BACKSPACE IMAGE file with no RECORDSIZE 

Cause: An OPEN statement with the MODE='IMAGE' specifier (but 
not the RECORDSIZE= specifier) was executed prior to a 
BACKSPACE statement that referred to the open unit. 

Recovery: If you are using fixed-length records, specify the 
RECORDSIZE parameter in the OPEN statement (see Section 
11.3.27). Otherwise, the BACKSPACE cannot be done. 

ERRSNS values: First Value = 25 Second Value = 536 

D-I0 



FOROTS ERROR MESSAGES 

CCC? Can't convert constant to correct type 

Ca use: In NAMELIST input, a variable was assigned a value that 
does not match. For example, if C is a complex 
variable, the input: 

C=.TRUE. 

is in error, since .TRUE. is not a legal complex 
number. 

Recovery: Correct the error in the source program. 

ERRSNS values: First Value = 97 Second Value = 519 

CCP? Can't create page <n> (PAGE. error <n» (TOPS-IO only) 

Cause: FOHOTS attempted to use a page of memory for some task, 
but was unabl~ to. The monitor error code gives the 
reason. This can be caused by erroneous MACRO 
subroutines. If no such cause is found, it is an 
internal FOROTS error. 

CCS? Not enough memory for creating character stack 

Ca use: A character stack was requested that was larger than 36 
sections (larqer that the maximum virtual memory 
aVcdlable) • 

Recovery: Specify correct call argument. 

ERRSNS values: First Value = :21 Second Value 124 

CDF? Can't determine whether formatted or unformatted 

Cause: The specified file has had both formatted and 
unformatted I/O operations (or OPENs) performed on it. 

Recovery: Use I/O operations and OPENs with the same FORM= 
specifier. 

ERRSNS values: First Value 31 Second Value 594 

CDP? Can't destl~oy page <n> (PAGE. error <n» (TOPS-IO only) 

Ca use: FOHOTS attempted to use a page of memory for some task, 
but was unabll~ to. The monitor error code gives the 
reason. This can be caused by erroneous MACRO 
subroutines. If no such cause is found, it is an 
internal FOROTS error. 

CDR? Can't do direct I/O to ::iequential file 

Cause: An attempt was made to perform I/O to a file that is 
already open in a conflicting mode. 

Recovery: Open file in the appropriate mode. 

ERRSNS values: Fir s t Va:!. u e = 3 1 Second Value 315 

D-ll 



FOROTS ERROR MESSAGES 

CDS? Can't do sequentail I/O to direct file 

Cause: An attempt was made to perform I/O to a file that is 
already open in a conflicting mode. 

Recovery: Open file is the appropriate mode. 

ERRSNS values: First Value = 31 Second Value 315 

CDT? Can't <read/write> an <input/output>-only file 

Cause: An attempt was made to perform I/O to a file, but the 
file is not open for I/O in the appropriate direction. 

Recovery: Open the file with ACCESS='SEQINOUT' or 'RANDOM', as 
appropriate. It is not possible to open a file for 
APPEND access and then read from it. (See Section 
11.3.1.) 

ERRSNS values: Fi rst Val ue 47 Second Value 263 

CEF? End of command file encountered (TOPS-20 only) 

Ca use: An indirect file was specified as 
and the end of the file was 
terminator character (line-feed). 

a DIALOG argument, 
encountered before a 

Recovery: Edit the file and insert a line-feed. 

ERRSNS values: First Value = 30 Second Value 503 

CFC % Fortran-77 and VMS: Carriage control character 

Cause: A carriage-control character was used that is 
incompatible with ANSI FORTRAN and VAX FORTRAN. 

Recovery: If you want the program to be 
FORTRAN or VAX FORTRAN, 

compa ti bl e 
use a 

wi th ANSI 
compatible 

carriage-control character. 

ERRSNS values: First Value = 33 Second Value 321 

CFF % VMS incompatibility: Intrinsic routine invoked incompatibly 

Ca use: An intrinsic routine was invoked in a 
incompatible with VAX FORTRAN (such as use 
EXTERNAL statement for an intrinsic function). 

method 
of an 

Recovery: If you want the program to be compatible with VAX 
FORTRAN, change to a method of invoking intrinsic 
routines that is compatible with VAX. 

ERRSNS values: First Value = 33 Second Value 322 

D-12 



FOROTS ERROR MESSAGES 

CFG % Fortran-77 and VMS: G format descriptor used with character 

Ca use: The G format descriptor was used with character data, 
which is an extension to ANSI FORTRAN and VAX FORTRAN. 

Recovery: If you want the program compatible with ANSI FORTRAN or 
VAX FORTRAN, do not use the G format descriptor to edit 
character data. 

ERRSNS values: First Value 33 Second Value 327 

CFK % Fortran-77 and VMS: Keyword [keyword] 

Cause: An OPEN or CLOSE: keyword was used that is incompatible 
wi th ANSI FORTRJ,N and VAX FORTRAN. 

Recovery: If you want the program compatible with ANSI FORTRAN or 
VAX FORTRAN, USE a compatible OPEN or CLOSE keyword. 

ERRSNS values: First Value = 33 Second Value = 324 

CFO % Fortran-77 extension: Overlap of character assignments 

Cause: A character assignment statement was used in which the 
character positions defined in the character variable, 
array element or substring on the left of the equal 
sign are refer~nced in the character expression on the 
right of the equal sign. This is incompatible with 
ANSI FORTRAN. 

Recovery: If you want the program to be compatible with ANSI 
FORTRAN, use a character assignment statement that does 
not overlap the character expression and the character 
variable, array element, or substring. 

ERRSNS values: Fir s t Va 1 ue = 33 Second Value 326 

CFR % Fortran-77 extension: 
(TOPS-20 only) 

FORTRAN-20 supplied routine invoked 

CFR % Fortran-77 extension: 
(TOPS-IO only) 

FORTRAN-IO supplied routine invoked 

Ca use: A FORTRAN-IO/20-supplied subroutine was invoked that is 
not available with ANSI FORTRAN. 

Recovery: If you want your program to be compatible to ANSI 
FORTRAN, use a compatible subroutine. 

ERRSNS values: First Value = 33 Second Value 323 

CFS? Can't find SYS:SORT.EXE - <JSYS error> (TOPS-20 only) 

Ca use: The file SORT.EXE cannot be found on SYS:. A monitor 
supplied error message will give more detail. 

Recovery: Use the information provided by the 
determine the proper course of action. 

ERRSNS values: First Value = 21 Second Value 

D-13 

monitor to 

119 



FOROTS ERROR MESSAGES 

CFT % Fortran-77 and VMS: Trailing spaces in output record 

Cause: Your program contains a FORMAT that specifies trailing 
blanks (X format and $ format). In this case, 
FORTRAN-IO/20 preserves the trailing spaces. 

Recovery: If you want the program compatible with ANSI FORTRAN 
and VAX FORTRAN, do not use this form of the FORMAT 
statement. 

ERRSNS values: First Value 33 Second Value 325 

CFX % Fortran-77 and 
(TOPS-20 only) 

VMS: FORTRAN-20 supplied routine invoked 

CFX % Fortan-77 and VMS: 
only) 

FORTRAN-IO supplied routine invoked (TOPS-IO 

Cause: A FORTRAN-IO/20-supplied subroutine was invoked that is 
not available with ANSI FORTRAN or VAX FORTRAN. 

Recovery: If you want the program to be compatible with ANSI 
FORTRAN or VAX FORTRAN, use a compatible subroutine. 

ERRSNS values: First Value = 33 Second Value = 323 

CGP? Can't get pages 600:677 for SORT 

Cause: The SORT subroutine brings the SORT program into core 
in pages 600 through 677. Some of these pages were 
already occupied by programs or data at the time that 
SORT was called. 

Recovery: Decrease the size of your program. Having fewer files 
open or using a BUFFERCOUNT=l specifier in OPEN 
statement may help (see Section 11.3.5). If this does 
not help, you can segment the program by using LINK's 
overlay facility (see the LINK Reference Manual). 

ERRSNS values: First Value = 21 Second Value = 116 

CGS? Can't get SYS:SORT.EXE - <JSYS error> (TOPS-20 only) 

Ca use: The file SORT.EXE was found on SYS:, however for some 
reason it could not be merged into your program in 
order to sort files. A monitor supplied error message 
will give more detail. 

Recovery: Use the information provided by the 
determine the proper course of action. 

ERRSNS values: First Value = 21 Second Value 

monitor 

120 

CIR? /CARRIAGECONTROL:TRANSLATED illegal with this /RECORDTYPE 

Ca use: 

Recovery: 

ERRSNS values: First Value 30 Second Value 243 

D-14 

to 



FOROTS ERROR MESSAGES 

CLE? Concatenation result larger than expected 

Cause: The specified substring bounds are out of range. 

Recovery: Specify legal substring bounds. 

ERRSNS values: First Va]ue = 21 Second Value 108 

CLS? CLOSE failed, <I/O error message> (TOPS-IO only) 

Cause: A CLOSE UUO. or FILOP. CLOSE function failed. 

Recovery: Use the informat.ion provided to determine a recovery. 

ERRSNS values.: First Value = 28 Second Value = 250+n 

CPP % Can't preallocate pages fiOO:677 for SORT 

Ca use: A call to 
preallocate 
allocated. 

the SRTINI subroutine 
SOHT's pages because 

was 
they 

unable to 
were already 

Recovery: Decrease the si~e of your program. Having fewer files 
open or using a BUFFERCOUNT=l specifier in the OPEN 
statement may help (sE!e Section 11.3.5). 

ERRSNS values: First Value = 21 Second Value 121 

CQF % Can't queue file: QUEUE. VUO ERROR <N> (TOPS-lO only) 

Cause: This error may occur \lihen executing a CLOSE statement 
in which the DI~)POSE specifier is given with one of the 
values: 'LIST', 'PRINT', or 'PUNCH', and GALAXY 
release 4 is running. (See Section 11.5.4.) 

Recovery: Refer to the TOPS-H) Monitor Calls Manual for an 
ex pIa nat ion 0 f ~: h e QUE U E. err 0 r n urn be r < n> • 

ERRSNS values: Fir s t Va :~ ue = 26 Second Value = 550 

CRP? Can't return pages 600:1)77 after call to SORT (TOPS-IO only) 

Cause: Before the SORT subroutine returns to the user, it 
tries to deallocate the pages that the SORT program 
resides in. Th,= pages could not be deallocated. This 
is not expected to occur. 

Recovery: Submit an SPR. 

ERRSNS values: First Value 21 Second Value 117 

D-15 



FOROTS ERROR MESSAGES 

CSF % Can't set FORTRAN carriage control attribute (TOPS-20 only) 

Cause: You are running a TOPS-20 system that does 
Edit 2981, which allows support for the 
carriage-control attribute. 

not have 
FORTRAN 

Recovery: Autopatch the monitor to include Edit 2981. 

ERRSNS values: First Value = 26 Second Value = 502 

CSI? Can't skiprecord image file with no RECORDSIZE 

Cause: A SKIPRECORD statement was executed for a file opened 
with MODE=IMAGE, and the file did not have a 
RECORDSIZE(RECL) specified. Since there are no record 
markers in IMAGE mode files, FOROTS cannot determine 
how far to skip. 

Recovery: Add a RECL= specifier (see Section 11.3.27) to the OPEN 
statement. 

ERRSNS values: First Value 25 Second Value 536 

CWL? Can't write a file with MODE='LINED' 

Cause: The program attempted to execute an output operation 
such as a WRITE statement after an OPEN statement for 
the same unit. The OPEN statement contained a 
MODE='LINED' specifier. 

Recovery: Change the OPEN statement specifier to MODE='ASCII'. 
(See Section 11.3.20.) 

ERRSNS values: First Value = 47 Second Value 554 

CWU? DIVERT: Can't write to unit <n> 

Cause: DIVERT file is not opened for output. 

Recovery: Open DIVERT file for output. 

ERRSNS values: First Value = 21 Second Value 107 

DBM? DBMS not loaded 

Cause: A DBMS call to a sharable FOROTS was attempted without 
DBMS. 

Recovery: The system manager must build DBMS into sharable FOROTS 
or remove the file from FORLIB that directs the DBMS 
call to the sharable FOROTS. 

D-16 



FOROTS ERROR MESSAGES 

DEL? Can't delete file:(FILOP. error message> (TOPS-IO only) 

Ca use: The "DELETE" FILOP. failed. The file is not deleted. 

Recovery: Usually you can correct the problem when the program is 
finished and delete the file with the monitor DELETE 
command. 

ERRSNS values: First Value 28 Second Value 250+n 

DLF % Data in 10 list but not in format 

Cause: An I/O statement has requested data to be 
but the FORMAT statement does not 
descriptor that would translate the data. 

transferred, 
specify any 

Recovery: Fi~ the FORMAT statement. 
following descriptors: 

It must contain one of the 

A,B,E,F,G,I,L,O,Q,R,Z 

ERRSNS values: First Value = 62 Second Value 306 

DLL? DUMP mode I/O list too long (TOPS-IO only) 

Ca use: The I/O list sfecified for a DUMP mode READ or WRITE 
statement is too long for the FOROTS internal DUMP mode 
control list. 

Recovery: Split the I/O list across two or more READ or WRITE 
statements. 

ERRSNS values: First Value 81 Second Value 581 

DMA % Must give lower and upper bounds to dump in non-zero sections 
(TOPS-20 only) 

Ca use: A call to PDUMP or DUMP was made without specifying 
memory bounds. In section zero, this is interpreted as 
'all of memory'. For extended addressing, lower and 
upper bounds must be specified. 

Recovery: Specify lower and upper bounds for memory_ 

ERRSNS values: First Vclue = 21 Second Value = 126 

DQE? Disk full or quota exc~eded 

Cause: The disk quota for the disk on which a file is being 
written is e~hausted, or the entire disk structure is 
full. If this error is encountered while running under 
batch, the program is aborted and an attempt is made to 
close all files. If this error is encountered while 
timesharing, t.he user is requested to type an EXPUNGE 
command and then a CONTINUE command. 

Recovery: EXPUNGE or create more room on the specified disk 
structure. 

ERRSNS values: First Value 98 Second Value 590 

D-17 



FOROTS ERROR MESSAGES 

DQW % Disk full or quota exceeded - Please EXPUNGE, then type CONTINUE 
(TOPS- 20 onl y) 

Cause: The file or files being written on the disk have either 
exhausted your disk quota or filled the structure. 

Recovery: FOROTS leaves the terminal at EXEC level so that you 
have more options to use to provide space on the disk 
structure. You can type CONTINUE to resume processing 
if you don't reset the current fork. 

ERRSNS values: First Value = 22 Second Value 590 

DSS % DISPOSE='SAVE' assumed - device is not a disk 

Cause: A DISPOSE value other than 'SAVE' was specified 
file on a device other than disk. (See 
11.3.13.) 

ERRSNS values: First Value 26 Second Value 549 

DST? Error in dialog string (TOPS-IO only) 

Cause: A syntax error in the DIALOG= specifier. 

fa r a 
Section 

Recovery: Correct the error in the program or in DIALOG mode. 
(See Section 11.5.3.) 

DTL % Dialog string too long 

Cause: The argument to DIALOG= cannot be parsed because it is 
too long. 

Recovery: Use a shorter string. 

ERRSNS values: First Value = 45 Second Value 533 

ECS? Not enough memory for expanding character stack 

Cause: More memory than is available on a KLI0 was requested 
by either a dynamic concatenation (concatenation of 
character variables of length*) or by a call to the 
ALCCHR subroutine. 

Recovery: Reduce the size of your concatenation or argument to 
ALCCHR. If you are running extended addressing, you 
can present parts of the character stack by invoking 
SORT and dynamic libraries at the beginning of the 
program. 

ERRSNS values: First Value 21 Second Value 124 

EDS/EDA? Error in DIALOG string - <message> (TOPS-20 only) 

Ca use: A syntax error in the DIALOG= specifier. 
11.5.3.) 

(See Section 

Recovery: Retype the specifier correctly in DIALOG mode. 

ERRSNS values: First Value = 45 Second Value = 539 

D-18 



FOROTS ERROR MESSAGES 

EFS [ Enter correct file specs ] 

Cause: 

TOPS-IO 
TOPS-20 

Dialog mode. You should respond to this message by 
entering any information you wish to change about the 
indicated file. This can include the device, filename, 
directory, or any OPEN parameter. The form of a 
response is: 

DEV:FILE.EXT[DIRECTORY] /SWITCH:VAL /SWITCH:VAL 
DEV:<DIRECTORY)FILE.EXT.GEN /SWITCH:VAL /SWITCH:VAL 

All parts of this specification are optional. 

EOF? End of file 

Cause: An input statement has attempted to read more data than 
the file contains. 

Recovery: Use an END= specifier in the READ statement, or 
lengthen the file. 

ERRSNS values: Fi rst Va I ue 24 Second Value -1 

ESV? <unknown/ambiguous> keyword value /<switch>:<value> (TOPS-20 
only) 

Ca use: A switch entered in dialog mode was not recognized or 
was not specified uniquely. 

Recovery: Retype the line, specifying the correct switch. 

ERRSNS values: First Value = 45 Second Value = 241 

ETL % Attempt to write beyond fixed-length record 

Cause: In an ENCODE statement, the format specified more 
characters than the string will hold. The excess 
characters are ignored. (See Section 10.12.) 

Recovery: Shorten the format or lengthen the string. 

ERRSNS values: First Value = 22 Second Value = 509 

FCL? Found unexpected continuation LSCW 

Cause: A RECL(RECORDSIZE) has been specified in an OPEN 
statement, and FOROTS has encountered a continuation 
(type 2) logical segment control word (LSCW). This 
type LSCW is never written in fixed-length binary 
records. 

Recovery: Remove the RECL(RECORDSIZE) specification in the OPEN 
statement. 

ERRSNS values: First Value 25 Second Value 573 

D-19 



FOROTS ERROR MESSAGES 

FDC % Floating divide check 

Ca use: The program contains a floating-point division in which 
the divisor is too small compared to the dividend to 
yield a result that is in the floating-point range. 

Recovery: Correct program so 
floating-point range. 

that division is wi. thin 

ERRSNS values: First Value = 5 Second Value n 
where n is 
the number 
of times the 
error occurs 

FFX? FOROP. function code exceeds range 

Cause: A library routine has called for an operation that is 
not available. This can be caused by using a 
mismatched FOROTS and FORLIB, or by an erroneous MACRO 
subroutine. 

Recovery: Make sure the versions of FOROTS.EXE and FORLIB.REL 
that you are loading from are matching versions. If 
this doesn't help, find the subroutine causing the 
problem and alter or remove the erroneous call. 

FOV % Floating overflow 

Cause: A REAL or DOUBLE PRECISION number was read that is too 
large in magnitude (see Chapter 3). This is only a 
warning and does not stop execution of the program. 
The results of a calculation that overflows are set to 
the largest representable number with the sign of the 
correct result. 

Recovery: Modify the data so that its values fall in the range of 
values that can be represented for the data type. 

ERRSNS values: First Value = 3 or 4 Second Value = n 

FRR? /RECORDTYPE:FIXED requries /RECORDSIZE 

where n is 
the number 
of times the 
error occurs 

Ca use: A RECORDTYPE='FIXED' was specified in an OPEN statement 
without a RECORDSIZE (RECL) specifier. 

Recovery: Specify RECL in the OPEN statement 
11.3.27) • 

ERRSNS values: First Value 30 Second Value 

D-20 

(see Section 

240 



FOROTS ERROR MESSAGES 

FTS % Output field width too small 

Ca use: The field width specified in a FORMAT statement was not 
large enough to allow the printing of the value being 
output. For example, this error would occur if the 
number 100 is output with the format specifier "12". 

ERRSNS values: First Value = 9 Second Value = a 

FUN % Floating underflow 

Cause: A REAL or DOUBLE PRECISION number was read that is too 
small in magnitude (see Chapter 3). This only a 
warning and does not stop execution of the program. 
The result of a calculation that underflows is set to 
zero. 

Recovery: Modify the data so that its values fall in the range of 
values that can be represented for the data type. 

ERRSNS values: First Value = 6 or 7 Second Value = n 
where n is 
the number 
of times the 
error occurs 

FVF? Format and variable type do not match 

Ca use: An attempt was made to READ or WRITE character data 
with other than A or G format. 

Recovery: Specify A or G edit descriptors when reading character 
data. 

ERRSNS values: First Value 62 Second Value 583 

FVM % Format and variable type do not match 

Cause: An I/O statement has been executed that uses a format 
edit descriptor with a type that does not match the I/O 
list item being processed. 

Recovery: Specify the appropriate format edit descriptor for the 
I/O list item. 

ERRSNS values: First Value 22 Second Value 583 

lAC? /ACCESS illegal for this device 

Ca use: An attempt was made to OPEN a device for which the 
access specified (or implied) is illegal. 

Recovery: Change the ACCESS specifier in the OPEN statement or 
data transfer statement. (See Section 11.3.1.) 

ERRSNS values: First Value = 30 Second Value = 248 

D-21 



FOROTS ERROR MESSAGES 

IAV? Illegal value for OPEN specifier 

Cause: An OPEN statement specifier has a value illegal for 
that specifier. 

Recovery: Specify a legal value for that OPEN specifier. 

ERRSNS values: First Value = 30 Second Value = 585 

ICA? Incompatible attributes 

Ca use: An illegal combination of open attributes has been 
specified. 

Recovery: Change one or more of the conflicting specifiers. 

ERRSNS values: First Value = 30 Second Value = 506 

ICD? Non-digit in record delimiter 

Cause: The format of the tape being read is not 'D' 
(DELIMITED). The Record Control Word (RCW) contained a 
non-digit, or the data on the tape is incompatible. 

Recovery: Specify the correct TAPEFORMAT in the OPEN statement. 

ERRSNS values: First Value = 25 Second Value = 570 

ICE? Illegal length for character expression 

Ca use: A program has specified a zero length or negative 
length character substring as an I/O list element. 

Recovery: Fix program to specify a positive length substring. 

ERRSNS values: First Value = 81 Second Value = 599 

IDC % Integer divide check 

Cause: Program contains an integer division by O. 

Recovery: Correct division in program. 

ERRSNS values: First Value = 1 Second Value 

IDD? Illegal character <chr> (TOPS-IO only) 

n 
where n is 
the number 
of times the 
error occurs 

Cause: An illegal character was encountered in dialog mode. 

Recovery: Retype the response without illegal characters. 

ERRSNS values: First Value = 45 Second Value = 548 

D-22 



FOROTS ERROR MESSAGES 

IDI? Illegal DUMP mode I/O list (TOPS-IO only) 

Cause: An I/O list entry has been specified whose entry size 
(number of words) is different from its increment. 
This can only happen if an implied DO loop is specified 
for the I/O list, the index increment is set to a value 
other than 1, and the program is compiled with 
/OPTIMIZE. 

Recovery: Use an index increment of 1, or do not compile the 
program with /OPTIMIZE. 

ERRSNS values: First Value = 81 Second Value 579 

10M? /MODE:<mode> illegal for this device 

Ca use: Not all devices can do I/O in all modes. For example, 
terminals cannot do binary I/O. 

Recovery: Change the MODE= specifier or the device. 
11.3.19.) 

ERRSNS values: Fi rst Va 1 ue 30 Second Value 

IOU? DIVERT: illegal to divert to unit <n> 

Cause: Unit specified is an input-only device. 

Recovery: Specify a unit for which output is legal. 

(See Section 

249 

ERRSNS values: First Value = 21 Second Value = 104 

IEM? FOROTS internal error in memory management 

Cause: This is an internal error that is not expected to 
occur. It means that the memory management routines 
have detected a problem with their control information. 

Recovery: Submit an SPR. 

IFW? Illegal field width 

Ca use: An illegal (negative) field width was specified in a 
FORMAT statement. 

Recovery: Specify a legal field width in the FORMAT statement. 

ERRSNS values: First Value = 62 Second Value = 553 

IHC? Illegal Hollerith constant 

Ca use: A Eormat specification contains an H edit descriptor 
that is not preceded by a length or does not contain 
enough characters. 

Recovery: Use the correct format for an H edit descriptor. (See 
Section 12.4.2.) 

ERRSNS values: First Value 62 Second Value 552 

0-23 



FOROTS ERROR MESSAGES 

IJE? "Impossible" JSYS error at <PC) - <JSYS ERROR) (TOPS-20 only) 

ILC ? 

ILF ? 

ILM ? 

Ca use: 

Recovery: 

Illegal 

Ca use: 

Recovery: 

This is an internal FOROTS error that is not expected 
to occur. A monitor call failed that was not expected 
to. A monitor-supplied error message may be of 
assistance in avoiding the problem. 

Submit an SPR. 

character in data 

A format descriptor that requires a number found a 
nonnumeric character. 

Fix the input data or FORMAT statement. 

ERRSNS values: First Value = 64 Second Value 307 

Illegal character in format 

Ca use: A format specification contains a character with no 
defined meaning. 

Recovery: Correct the error in the fo rma t list and rerun the 
program. 

ERRSNS val ues: First Value 62 Second Value 301 

Unexpected MTOPR% ERROR (TOPS-20 only) 

Cause: An error was encountered during a file operation that 
FOROTS did not expect. 

Recovery: This type of error should not happen. Please submit an 
SPR. 

ERRSNS values: First Value 96 Second Value JSYS error 
number 

ILN? Variable or namelist does not start with letter 

ILS ? 

Ca use: 

Recovery: 

NAMELIST input contains something other than a legal 
variable or NAMELIST name in a context where a variable 
or NAMELIST name is required. 

Correct the source program with a legal variable or 
NAMELIST name. (See Section 12.6.) 

ERRSNS values: First Value = 97 Second Value 515 

Illegal subscript 

Ca use: In NAMELIST I/O, an illegal subscript was given for an 
array. 

ERRSNS values: First Value 97 Second Value 516 

D-24 



FOROTS ERROR MESSAGES 

IMV? Illegal MTOP value 

Ca use: A MARCO program has issued an MTOP call to FOROTS with 
an illegal valuE for the function. 

Recovery: Specify a legal function value in the call. 

ERRSNS values: First Value = 81 Second Value = 574 

IOE? <IO error message> 

Cause: An I/O error has occurred. The monitor error code is 
given, along with an interpretation of the probable 
meaning of the error bits. This message normally 
indicates that the data recorded on an external device 
has been damaged and cannot be read correctly. 

ERRSNS values: First Va]ue = 98 Second Value = 400 (TOPS-IO) 

JSYS error 
number 
(TOPS-20) 

IOL? Bad format IO list 

Cause: The code generated 
not. understood 
erroneous entry in 
probably indicates 
in FOROTS. 

by the compiler for an I/O list is 
by this version of FOROTS. The 

the I/O list is ignored. This 
an internal error in the compiler or 

Recovery: Locate the prob~em area of the I/O list and simplify 
it. 

ERRSNS values: Fir s t Va ::. ue Bl Second Value 508 

IOV % Integer overflow 

Cause: An attempt was made to read data that was out of range 
for an integer variable. 

ERRSNS values: First Value = 2 Second Value o 

IPP? Illegal PPN (TOPS-IO only) 

Ca use: A directory specification starts with something that is 
not a legal PPN specification. The forms of legal PPNs 
a rE~ : 

[n,n], [n,l, [,n], or [,] 

where n represents a 1- to 6-digit octal number. 

Recovery: Use a legal dir~ctory specification. 

ERRSNS values: First Value = 45 Second Value 545 

D-25 



FOROTS ERROR MESSAGES 

IPN? Illegal page number <n> 

Cause: A call to TOPMEN or SRTINI has specified a page number 
outside the range 1:777. 

Recovery: Specify a correct page number 

ERRSNS values: First Value = 21 Second Value 122 

IRC? Illegal repeat count 

Ca use: An illegal repeat count was given in 
statement. 

a FORMAT 

Recovery: Correct the FORMAT statement. 

ERRSNS values: First Value = 62 Second Value 538 

IRN? Illegal record number <n> 

Ca use: A direct-access I/O statement has specified a record 
number that is zero or negative. 

Recovery: Correct the invalid record number in the program. 

ERRSNS values: First Value = 25 Second Value = 512 

ISS? Illegal substring descriptor 

Cause: An I/O statement refers to an illegal substring 
delimiter (substring not within bounds of string). 

Recovery: Correct the substring specifier. 

ERRSNS values: First Value = 97 Second Value 597 

ISW? Can't switch to input 

Cause: A file that was being written cannot be open for 
output. The file is either protected against reading, 
or has been deleted before the OPEN for read is 
executed. 

Recovery: Specify correct protection for OPEN write. 

ERRSNS values: First Value = 98 Second Value = 250+n 
(TOPS-IO) 

JSYS error 
number 
(TOPS-20) 

ITE? Tape is not usable by your job (TOPS-IO only) 

Cause: A tape unit was specified or implied that is not owned 
by your job, and is probably owned by another job. 

Recovery: ASSIGN the drive or MOUNT the tape. 

ERRSNS values: First Value = 96 Second Value 587 

D-26 



FOROTS ERROR MESSAGES 

IUN? Illegal unit number <n> 

Cause: An I/O statement has specified a unit number that is 
negative or too large. 

Recovery: Change the UNIT specifier value and rerun the program. 

ERRSNS values: First Value = 32 Second Value = 239 

IWI? Illegal to initiate another I/O statement while processing 
<I/O statement) 

Cause: An I/O statement, STOP statement, or PAUSE statement 
has been initiated while processing another I/O 
statement (such as in a function reference used as an 
I/O list element), or while within a subroutine called 
as a result of an I/O error through ERRSET. 

Recovery: Remove the offending I/O statement, STOP statement, or 
PAUSE statement. 

ERRSNS values: First Value 81 Second Value 582 

MFU? Memory full 

Cause: There is insufficient memory to complete execution of 
the program. 

Recovery: Some memory can be saved by opening fewer files at a 
time, by using BUFFERCOUNT=l in OPEN statements, and by 
using minimal tape block sizes. If these techniques do 
not help, you can segment the program using LINK's 
overlay facility (see the LINK Reference Manual). 

NCA? No memory available for character stack 

Cause: For non-overlay programs, this message indicates that 
the- memory manager has allocated all available space 
bet.ween the uselo's 10\<1 segment and FOROTS. For overlay 
programs, this messages indicates that /SPACE:O has 
be€~n speci fied to LINK. 

Recovery: For non-overlay programs, LINK with /OTS:NONSHARE. For 
overlay programs, specify at least 1000 to the /SPACE 
switch in LINK (see the LINK Reference Manual). 

ERRSNS values: First Value = 21 Second Value = III 

NCK % <keyword> in CLOSE is medningless - ignored 

Ca use: Options have be~n included in the CLOSE statement that 
are meaningless for closing the file. 

Recovery: Use valid CLOSE options. (See Section 10.17.) 

ERRSNS values: First Value = 26 Second Value = 542 

D-27 



FOROTS ERROR MESSAGES 

NCS? No character stack allocated - compiler error 

Cause: An internal compiler error has occurred. 

Recovery: Submit an SPR. 

ERRSNS values: First Value 21 Second Value 110 

NOI? No device specified with ":" (TOPS-I0 only) 

Ca use: An OPEN statement has specified a null device name. 

ERRSNS values: First Value = 45 Second Value = 544 

NEC? Found "<chr>" when expecting ":" 

Cause: Substring parameters not separated by":" 

Recovery: Insert a ":" between substring parameters. 

ERRSNS values: First Value = 97 Second Value = 596 

NEQ? Found "<chr>" when expecting "=" 

Ca use: NAMELIST input found an illegal character in a context 
that requires an equal sign. 

Recovery: Replace illegal character with equal sign. 

ERRSNS values: First Value = 97 Second Value = 513 

NFC? Too many open units (TOPS-IO only) 

Cause: On TOPS-I0 monitors before version 7.00, at most, only 
16 units can be open at the same time. 

Recovery: Arrange the program so that it never needs to have more 
than 16 simultaneously open units. 

ERRSNS values: First Value = 30 Second Value 242 

NLS? Null string illegal 

Cause: An attempt was made to input to a zero length string 
during list-directed input. 

Recovery: Insert characters into the string, or remove the string 
delimiting quotes. 

ERRSNS values: First Value 97 Second Value 580 

NQS? PAOCHAR must be single char in double quotes (TOPS-IO only) 

Cause: In dialog mode, the PAOCHAR specifier must be followed 
by the pad character in double quotes. 

ERRSNS values: Fir s t Va 1 ue = 45 Second Value 551 

0-28 



FOROTS ERROR MESSAGES 

NRP? Missing right paren 

Cause: In NAMELIST or list-directed complex input, the closing 
right parenthesis that ends a complex number was not 
found. 

ERRSNS values: First Value 97 Second Value 514 

NSD? No such device <dev> 

Ca use: The specified device does not exist. 

Recovery: Change the device name to one that does exist. 

ERRSNS values: First Value = 30 Second Value = 245 

NSI? Null SFD (TOPS-IO only) 

Cause: A directory specification contains a null SFD. 

ERRSNS values: First Value = 45 Second Value = 547 

NSS? No free section available for SORT (TOPS-20 only) 

Cause: SORT runs it its own section on machines 
extended addressing. There are no 

that support 
free sections 

available. 

Recovery: There are 31 sections normally available when a 
FORTRAN program runs. If your application 
trying to use e~tended addressing, this error 
not occur, and you should submit an SPR. 

ERRSNS values: First Va]ue = 2:1 Second Value = 118 

OGX % Galaxy version 2 not supported (TOPS-IO only) 

simple 
is not 
should 

Cause: Your system is using an unsupported version of GALAXY. 

Recovery: Inform the system administrator to upgrade to the 
supported version of GALAXY. 

ERRSNS values: First Value = 26 Second Value 595 

OPN? Can't OPEN file 

Ca use: The specified fj.le could not be opened. The reason 
given is taken from the monitor error code (see the 
TOPS-IO Monitor Calls Manual) • 

ERRSNS values: First Va:.ue = 30 Second Value 250+n 

D-29 



FOROTS ERROR MESSAGES 

OSW? FILOP. error n - can't switch to output 

Ca use: An attempt to open a file for write access which has 
previously been open for read-only access failed. 

Recovery: Change protection code; remove other file access. 

ERRSNS values: First Value = 98 Second Value = 250+n 
(TOPS-IO) 

PAG % Pages allocated but not deallocated 

JSYS error 
number 
(TOPS-20) 

Ca use: Internal FOROTS error in memory management. 

Recovery: Submit an SPR and include your program. 

PGD? Deallocating more pages than allocated 

Cause: Internal FOROTS error in memory management. 

Recovery: Submit an SPR and include your program. 

POI? <file positioning operation) Illegal for DIRECT (RANDOM) file 

Cause: A file positioning operation (such 
BACKSPACE) was attempted on a 
DIRECT(RANDOM) access. 

Recovery: Remove the file positioning statement. 

ERRSNS values: First Value = 31 Second Value 

PPN? <JSYS error> (TOPS-20 only) 

as REWIND 
file open 

593 

or 
for 

Cause: A TOPS-20 OPEN statement has specified a PPN instead of 
a directory name, but the PPN has no matching 
directory. 

Recovery: Specify the correct PPN, or better yet, specify the 
directory name instead. 

ERRSNS values: First Value = 30 Second Value 405 

RBR? REREAD not preceded by READ 

Cause: A REREAD statement was encountered before any READ 
statement. A READ must be executed first so there is 
something to reread. 

Recovery: Cause a READ statement to be executed first. 

ERRSNS values: First Value = 39 Second Value = 310 

D-30 



FOROTS ERROR MESSAGES 

RLB? /RECORDSIZE larger than /BLOCKSIZE 

Cause: A RECORDSIZE was specified in an OPEN statement that is 
larger than the specified or implied BLOCKSIZE. 

Recovery: Correct either RECORDSIZE or BLOCKSIZE, or specify 
BLOCKSIZE if it is not specified. 

ERRSNS values: First Value = 30 Second Value 244 

RIC? Reading into character format illegal 

Ca use: An attempt was made to READ into a character format. 

Recovery: Correct program to avoid this construct. READ 
character variable and use this variable 
concatenated with other character expressions) 
modifiable format. 

into a 
(perhaps 

for a 

ERRSNS values: Fi rst Va] ue 62 Second Value 524 

RIF % Reading into FORMAT nonst.andard 

Cause: A READ statement. was executed that reads data into a 
Hollerith or quoted string in a FORMAT statement. This 
is a practice contrary to the ANSI standard and is 
likely not to work in future releases of FORTRAN-IO/20. 

Recovery: READ into character variables and use (perhaps 
concatenated wit.h character constants) as the FORMAT. 

ERRSNS values: First Va]ue = 22 Second Value = 584 

RNM? Can't rename file 

Cause: An attempt to rename the specified file failed. 

Recovery: Change file protection, remove other file access. 

ERRSNS values: First Value = 28 

RNR? Record <n> has not been written 

Second Value = 250+n 
(TOPS-IO) 

JSYS error 
number 
(TOPS-20) 

Ca use: In direct-acces~; input, an attempt was made to read a 
record that was never written. This may indicate the 
USE~ of an incorrect rE~cord number. 

Recovery: Make sure you al~e requesting the correct record. 

ERRSNS values: First Va:Lue = 25 Second Value = 510 

D-31 



FOROTS ERROR MESSAGES 

RPE? Illegal repeat count 

Cause: In NAMELIST or list-directed input, a repeated constant 
was found, but the repeat count is not a positive 
integer. 

Recovery: Correct the input and try again. 

ERRSNS values: First Value = 97 Second Value 521 

RR1? Random I/O requires RECORDSIZE specifier in OPEN statement 

Cause: Direct-access I/O was attempted to a file that has not 
been opened with the RECL or RECORDSIZE specifier to 
give the size of the record(s). 

Recovery: Specify a record size. The record size is in 
characters for formatted files, words for unformatted 
files. (See Section 11.3.27.) 

ERRSNS values: First Value = 30 Second Value 240 

RRR? Random IO requires /RECORDSIZE 

Ca use: An OPEN statement was attempted that specified 
ACCESS=DIRECT(RANDOM) with no record size specified 

Recovery: Specify a record size. 

ERRSNS values: First Value = 30 Second Value 240 

RSM? Record size different from that specified 

Ca use: A record size found in a binary record is different 
than that specified in the OPEN statement. 

Recovery: Specify the correct record size in the OPEN statement. 

ERRSNS values: First Value = 25 Second Value = 572 

SDO? Same device open on unit with conflicting specifiers 

Ca use: An OPEN statement was attempted for a device for which 
another OPEN or data transfer statement had been 
already executed, and the file specifications were in 
conflict. 

Recovery: Change file specifications 

ERRSNS values: First Value = 30 Second Value 540 

SLN? Record length negative or zero 

Ca use: An ENCODE or DECODE statement was initiated that has a 
negative or zero value for the record (string) length. 

Recovery: Correct program to specify a legal record length. 

ERRSNS values: First Value = 25 Second Value = 577 

D-32 



FOROTS ERROR MESSAGES 

SNH? Internal FOROTS error at <PC> 

Ca use: This error is Dot expected to occur. 
consistency check has found a bug. 

An in te rnal 

Recovery: Please submit an SPR if you get this message. 

SNQ? String not within singl~ quotes 

Cause: A character date\ item read as list-directed or NAMELIST 
input is not enclosed in single quotes. 

Recovery: Enclose charactE~r data item in single quotes. 

ERRSNS values: First Va:.ue = 97 Second Value = 598 

SNV? Sign with null value 

Cause: List-directed Ol~ NAMELIST input contains a + or - sign 
not followed by a value. 

Recovery: COI-rect the input and try again. 

ERRSNS values: Fir s t Va :~ u e = 97 Second Value 522 

SRE % Subscript range error - subscript <n> of array <name> on line 
<n> 

Cause: An illegal subs~ript or range has been specified for an 
array reference. 

Recovery: Specify a legal array reference. 

ERRSNS values: First Value = 23 Second Value 114 

SSE % Substring range error <var(bound» on line <n> 

Cause: An illegal substring bound or range has been specified 
in a character expression. 

Recovery: Specify a legal reference. 

ERRSNS values: First Value = 23 Second Value 113 

TFM? Tape format conflicts with OPEN statement or default 

Cause: The actual format of the tape (either CORE-DUMP or 
INDUSTRY) conflicts with the format specified in the 
OPEN statement or by the monitor. At this point, the 
file is already opened in the wrong format. 

Recovery: Specify the correct TAPEFORMAT in the OPEN statement or 
with the EXEC. 

ERRSNS values: First Value 30 Second Value 569 

0-33 



FOROTS ERROR MESSAGES 

TMA? Too many arguments in call to SORT 

Cause: When the first argument in a call to SORT is a 
character constant, the argument list must be copied in 
order to convert the argument to a Hollerith constant. 
At most, 10 arguments can be copied. 

Recovery: Change the first argument to a Hollerith constant, or 
use less than 10 arguments. 

ERRSNS values: First Value = 21 Second Value 115 

TMF? Too many SFDs (TOPS-IO only) 

Cause: A directory specification contains more than five SFDs. 

Recovery: Specify the correct directory. 

ERRSNS values: First Value = 45 Second Value 546 

UDT? Undefined data type or internal FOROTS error 

Cause: Internal FOROTS error. 

Recovery: Submit an SPR. 

ERRSNS values: Fi rst Val ue 62 Second Value 575 

UME? Unexpected MTCHR error <n> (TOPS-I0 only) 

Cause: This message is not expected to occur. It indicates 
that a MTCHR UUO has failed. The monitor-supplied 
error code may give some indication of the reason. 

Recovery: Submit an SPR. 

ERRSNS values: First Value 96 Second Value 531 

UMO % <JSYS error> trying to set tape <density/parity/data mode> 
(TOPS-20 onl y) 

Cause: It was not possible to set the indicated parameter of 
the tape. The monitor error message gives the reason. 

Recovery: Make sure you are using a drive that supports the 
requested operations. 

ERRSNS values: First Value = 96 

UNO? DIVERT: unit <n> is not open 

Second Value JSYS error 
number 

Ca use: The file to which error messages are diverted must be 
opened for output before DIVERT is called. 

Recovery: Open the file for output before calling DIVERT. 

ERRSNS values: First Value = 21 Second Value = 105 

D-34 



FOROTS ERROR MESSAGES 

UNS? Unit not specified 

Cause: A call was made to FOROTS which did not contain a unit 
number. 

Recovery: Correct calling code. 

ERRSNS values: First Value = 81 Second Value 501 

UOA % Unknown OPEN keyword <n>, ignored 

Cause: The compiler has generated an OPEN call that contains 
an unknown keyword. 'rhe keyword is ignored. 

Recovery: Make sure you are using the correct versions of the 
compiler, FORLIS, and FOROTS. 

ERRSNS values: First Value = 26 Second Value 541 

USW? Unknown switch /<sw> (TOPS-IO only) 

Cause: In dialog mode, an unknown switch was specified. 

Recovery: Retype the line, specifying the correct switch. 

ERRSNS values: First Value = 45 Second Value = 241 

UTE? Unexpected TAPOP error <n> (TOPS-IO only) 

Ca use: This message is not expected to occur. It indicates 
that a TAPOP UUO has failed. The monitor-supplied 
error code may give some indication of the reason. 

Recovery: Submit an SPR. 

ERRSNS values: First Value 96 Second Value 530 

UTO % UnexpectedTAPOP. error <n> trying to set <density/parity/data 
mode/blocksize> (TOPS-IO only) 

Ca use: It is not possible to set the indicated parameter of 
the tape. The monitor error message gives the reason. 

Recovery: Make sure you are using a drive that supports the 
requested operation. 

ERRSNS values: First Value = 96 Second Value 537 

VNN? Variable <var> not in namelist 

Ca use: NAMELIST input contains an assignment to a variable 
that is not in the namelist. 

Recovery: Correct the input and try again. 

ERRSNS values: First Vc,lue = 97 Second Value 309 

D-35 



FOROTS ERROR MESSAGES 

WBA? Attempt to WRITE beyond variable or array 

Ca use: An attempt was made to write beyond the end of a 
character variable or array with an internal file WRITE 
statement. 

Recovery: Correct program to stay within limits of character 
variable or array. 

ERRSNS values: First Value 25 Second Value 576 

D-36 



APPENDIX E 

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES 

FORDDT responds with two levels of messages - fatal error and warning. 
Fatal error messages indicate that the processing of a given command 
has been terminated. Warning messages provide helpful information. 
The format of these messages is: 

?FDTxxx text 
or 
% FDTxxx tex t 

where: 

? indicates a fatal message 
% indicates a warning message 
FDT is the FOR DDT mnemonic 
xxx is the 3-letter mnemonic for error message 
text is the explanation of error 

Square brackets ([ ]) in this section signify variables and are not 
output on the terminal. 

Fatal Errors 

The fatal errors in the following list are each preceded by ?FDT on 
the user terminal. They are listed in alphabetical order. 

BDF 

BOI 

CCN 

CFO 

CNU 

[symbol] 
[symbol] 

is undefined 
is multiply defined 

Bad octal input 

An illegal characte~ was detected in an octal input value. 

Cannot continue 

A pause has been placed on some form of 
causing FORDDT to loop; should never 
FORTRAN-compiled programs .. 

Core file overflow 

skip instruction 
be encountered in 

The storage area fOl~ GROUP text has been exhausted. 

The command [name] 1S not unique 

More letters of the command are required to distinguish it 
from the other commands. 

E-l 



CSH 

DNA 

DTO 

FCX 

FNI 

FNR 

IAF 

IAT 

ICC 

IER 

IGN 

INV 

IPN 

IRS 

ITM 

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES 

Cannot START here 

The specified entry point is not an acceptable FORTRAN main 
program entry point. 

Double-precision comparisons not allowed 

Dimension table overflow 

FORDDT does not have the space to record any more array 
dimensions until some are removed. 

Format capacity exceeded 

An attempt was made to specify a FORMAT statement requiring 
more space than was originally allocated by the FORTRAN 
compiler. 

Formal not initialized, please retype 

There was a reference to a formal parameter of some 
subprogram that was never executed. 

[array name] is a formal and may not be redefined 

Formal parameters may not be DIMENSIONed. 

Illegal argument format [rest of user line] 

The parameters to the given command were not specified 
properly. Refer to the documentation for correct format. 

Illegal argument type = [number] 

An unrecognized subprogram argument type was detected. 
Submit an SPR if this message occurs. 

Comparison of two constants is not allowed 

A conditional test involves two constants. 

Internal FORDDT error [number] 

Internal FORDDT error - please report through an SPR. 

Invalid group number 

Group numbers must be integers and in the range one through 
eight. 

Invalid value [rest of user line] 

A syntax error was detected in the numeric parameter. 

Illegal program name 

Illegal range specification 

The particular range specified for an array is not defined. 

Illegal type modifier - S 

The mode S is only valid for ACCEPT statements. 

E-2 



IWI 

JSE 

LGU 

LNF 

MCD 

MLD 

MSN 

NAL 

NAR 

NDT 

NFS 

NFV 

NGF 

NPH 

NSP 

INTEHACTIVE DEBUGGER (FORDDT) ERROR MESSAGES 

I/O within I/O error 

An attempted TYPE or ACCEPT command cannot be executed 
because a fatal "I/O within I/O" error from FOROTS would 
result, since the user program is currently processing an 
IOLST call. 

[JSYS error message] 

Error reading program name (on TOPS-20 or some other FORDDT 
input) • 

[array name] lower subscript .GE. upper 

The lower bound of any given dimension must be less than or 
equal to the upper bound. 

[label] is not a FORMAT statement 

Compile program with the DEBUG switch to type a FORMAT 
statement 

[array name] multi-level array definition not allowed 

The same array cannot be 
means of the [dimensions] 

More subscripts needed 

dimensioned more than once (by 
construct) in a single command. 

The array is defined to have more dimensions than were 
specified in the given reference. 

Not allowed 

An attempt has been made to modify something other than data 
or a FORMAT. 

Not after a reenter 

The given command is not allowed until program integrity has 
been restored by means of a CONTINUE or NEXT command. 

DDT not loaded 

Cannot find FORTRAN start address for [program name] 

Main program symbols are not loaded. 

[symbol] is not a FORTRAN variable 

Names must be 6-character alphanumeric strings beginning 
with a letter. 

Cannot GOTO a FORMAT statement 

Cannot insert a PAUSE here 

An attempt has been made to place a breakpoint at other than 
an executable statement or subprogram entry point. 

[symbol] no such PAUSE 

An attempt has been made to REMOVE a breakpoint that was 
never set up. 

E-3 



NUD 

PAR 

PRO 

RGR 

SER 

STL 

TMS 

URC 

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES 

[symbol] not a user-defined array 

An attempt has been made to remove dimension information for 
an array that was never defined. 

Parentheses required, please retype 

Parentheses are required for the specification of FORMAT 
statements and complex constants. 

Too many PAUSE requests 

The PAUSE table has been exhausted. The maximum limit is 
10. 

Recursive group reference 

A group may not reference itself. 

Subscript error 

The subscript specified is outside the range of its defined 
dimensions. 

[array name] size too large 

An attempt has been made to define an array larger than 
256K. 

Too many subscripts [dimensions] 

The array is defined to have fewer dimensions than are 
specified in the given element reference. 

Unrecognized command [command] 

Warning Messages 

Each warning message is preceded by %FDT on your terminal. The 
warning messages are listed here in alphabetical order. 

ABX 

CAB 

CHI 

ECI 

EOH 

IOE 

[array name] compiled array bounds exceeded 

FORDDT has detected another symbol defined in the specified 
range of the array. Note that this will occur in certain 
EQUIVALENCE cases and can be ignored at that time. 

Cannot allocate buffer for help file 

Characters ignored: "[text]" 

The portion of the command string included in "text" was 
thought to be extraneous and was ignored. 

Buffer full - excess characters ignored 

Error opening help file 

I/O error reading help file 

E-4 



IWI 

NAA 

NHF 

NSL 

NST 

POV 

SCA 

SPO 

WSP 

XPA 

INTEHACTIVE DEBUGGER (FORDDT) ERROR MESSAGES 

I/O within I/O 

FORDDT has PAUSEd at a breakpoint while the user program is 
currently processing an IOLST call. TYPE and ACCEPT 
commands cannot be PJ~ocessE~d at this breakpoint. 

[symbol] is not an aJ~ray 

Cannot find help file; I'm sorry I can't help you 

No symbols loaded 

FORDDT cannot find the symbol table. 

Not STAHTed 

The specified command requ:lres that a START be previously 
issued to ensure tha~ the program is properly initialized. 

Program overlayed by [program name] 
Program overlayed by *** 

The symbol table is different from the last time FOR DDT had 
control. The program name is printed only if it has 
changed" otherwise ,.***, is printed. 

Supersedes compiled ~rray dimension 

The FowrRAN generated dimension is being superseded for the 
g iven al~ray. 

Variable is single-precision only 

Writing to shared page 

Attempt to exceed pr~gram area with [symbol name] 

An attempt has been made to access memory outside the 
currently defined pr~gram space. 

E-5 





APPENDIX F 

FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

The FORTRAN subroutine library contains a set of subroutines that are 
used with plotting devices. To successfully use these routines, a 
plotter must be connected to your system. The FORTRAN software 
contains the following plotter subroutines: 

PLOTS 

AXIS 

CAXIS 

LINE 

MKTBL 

NUMBER 

PLOT 

SCALE 

SETABL 

SYMBOL 

WHERE 

The PLOTS subroutine initializes the plotter or reports if 
the plotter is not available. This must be the first 
plotter subroutine specified. (See Section F.I.) 

The AXIS subroutine ciraws an axis with tic marks and scale 
values at I-inch increments. An identifying label may also 
be plotted along the axis. (See Section F.2.) 

The CAXIS subroutine performs the same functions as the AXIS 
subroutine. (See Section F.3.) 

The LINE subroutine draws a line through the 
specified. (See Section F.4.) 

points 

The MKTBL subroutine specifies a special character set. 
(See Section F.S.) 

The NUMBER subroutine causes floating-point numbers to be 
plotted as text. (See Section F.6.) 

The PLOT subroutine lnoves the plotter pen to a new position. 
Raising and lowering the pen is also specified in the PLOT 
subroutine. (See Se=tion F.7.) 

The SCALE subroutine selects scale values for the AXIS or 
CAXIS subroutine. (See Section F.8.) 

The SETABL subroutine specifies a character set. 
Section F.9.) 

(See 

The SYMBOL subroutine raises the plotter pen, moves it to 
the position specified by x and y, and plots a string of 
characters. (See Section F.IO.) 

The WHERE subroutine reports on the current position of the 
plotter pen. (See Section F.II.) 

F-l 



PLOTS 
Subroutine 

FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

F.l PLOTS SUBROUTINE 

The PLOTS subroutine initializes the plotter or reports if the plotter 
is not available. This must be the first plotter subroutine 
specified. 

The form of the PLOTS subroutine is: 

CALL PLOTS(i[,steps]) 

where: 

i is an integer variable, which is set to -1 if the 
plotter is not available, or set to a if the plotter is 
available. 

The plotter may not be available because: the system 
does not have a plotter; the plotter is in use by 
another user; the plotter is turned off; or the plotter 
is being spooled, but you are trying to write to it 
directly. 

steps is an optional floating-point variable or constant that 
specifies the number of steps (per inch) used by the 
plotter. The default is 100 steps per inch, and may be 
changed by the installation. Commonly, plotters plot 
100 steps per inch, 200 steps per inch, or 100 steps 
per centimeter (about 254 steps per inch). 

AXIS 
Subroutine 

F.2 AXIS SUBROUTINE 

The AXIS subroutine draws an axis with tic marks and scale values at 
I-inch increments. An identifying label may also be plotted along the 
axis. 

NOTE 

The AXIS subroutine is provided for compatibility with 
previous versions of FORTRAN-IO/20. The AXIS 
subroutine uses a numeric array to contain the label 
that is plotted along the axis. The CAXIS subroutine 
(see Section F.3) allows a character expression to 
contain the label. 

F-2 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

The form of the AXIS subroutine is: 

CALL AXIS{x,y,asc,nasc,size,theta,xmin,dx) 

where: 

x,y 

asc 

nasc 

size 

theta 

xmin 

dx 

is a variable or constant pair that specifies the 
starting point of the axis. 

is the name of a numeric array that contains a label 
that is plotted along the axis. 

is an integer constant or variable that specifies 
number of characters contained in array asc. If 
is negative, the label in the array is placed on 
clockwise side of the axis. If nasc is positive, 
tic marks, label, and scale values are placed on 
counterclockwise side of the axis. 

is a constant or variable that specifies the length 
the axis in inches. 

the 
nasc 

the 
the 
the 

of 

is a constant or variable that specifies the angle at 
which the axis is plotted. The value of theta is 
usually 0.0 or 90.0. 

is a variable or constant that specifies the value of 
the scale at the beginning of the axis. 

is a variable or constant that specifies the change in 
scale for a I-inch increment. 

NOTE 

The proper values for xmin and dx may be 
determined by calling the SCALE subroutine (see 
Section F.8). 

CAXIS 
Subroutine 

F.3 CAXIS SUBROUTINE 

The CAXIS subroutine draws an axis with tic marks and scale values at 
I-inch increments. An identifying label may also be plotted along the 
axis. 

The form of the CAXIS subroutine is: 

CALL CAXIS{x,y,asc,sign,size,theta,xmin,dx) 

F-3 



where: 

x,y 

asc 

sign 

size 

theta 

xmin 

dx 

FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

is a variable or constant pair that specifies the 
starting point of the axis. 

is the name of a character expression that contains a 
label that is plotted along the axis. 

If nasc is negative, the label in the array is placed 
on the clockwise side of the axis. If nasc is 
positive, the tic marks, label, and scale values are 
placed on the counterclockwise side of the axis. 

is a constant or variable that specifies the length of 
the axis in inches. 

is a constant or variable that specifies the angle at 
which the axis is plotted. The value of theta is 
usually 0.0 or 90.0. 

is a variable or constant that specifies the value of 
the scale at the beginning of the axis. 

is a variable or constant that specifies the change in 
scale for a I-inch increment. 

NOTE 

The proper values for xmin and dx may be 
determined by calling the SCALE subroutine (see 
Section F.8). 

LINE 
Subroutine 

F.4 LINE SUBROUTINE 

The LINE subroutine draws a continuous line through a set of points. 

The form of the LINE subroutine is: 

CALL LINE(x,y,n,k) 

where: 

x is the name of an array that contains the floating-point 
x-coordinates of the points to be plotted. 

Y is the name of an array that contains the floating-point 
y-coordinates of the points to be plotted. 

F-4 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

n is an integer constant or variable that specifies the total 
number of points to be plotted. 

k is an integer constant or variable that equals the number of 
elements of x and y. Since single-precision one-dimensional 
arrays are usually used, this value is usually 1. 

MKTBL 
Subroutine 

F.S MKTBL SUBROUTINE 

The MKTBL subroutine defines a special character set to be used when 
plotting; the SETABL subroutine (see Section F.9) enables you to use 
the character set defined by the MKTBL subroutine. 

The form of the MKTBL subroutine is: 

CALL MKTBL(setnumber,tableaddress) 

where: 

setnumber 

tableaddress 

is an integer variable from 1 to 10 that specifies 
the numeric identifier of the character set, for 
example, the number of the ASCII character set is 
1. If the character set cannot be defined by a 
call to MKTBL, a value of zero is returned in this 
variable. 

is a constant or variable that specifies the 
starting address of a character table that has 128 
(200 octaJ) consecutive words. Each character 
table word contains the number of strokes (line 
segments) for the character in the left half, and 
the addr~ss of the table of strokes in the right 
half. Se~ Section F.S.l for a description of 
these tabJes. 

F.S.l Character Tables 

The next sections describe how to define and organize a character set 
table. The charc3lcter set, called by the MKTBL subroutine, enables you 
to create and use a character set other than the default character set 
that is used to plot characters. (Usually the default character set 
is ASC I I.) 

To create your own character set, you need to create a character table 
and a character stroke table. These two tables are descr ibed in 
Sections F.S.l.l and F.S.l.2, respectively. 

F-5 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

F.S.l.l Creating a Character Table - A character table contains 128 
entries (200 octal). Each entry in the character table, regardless of 
whether the table is defined in the plotter subroutine library or by 
you through a call to the MKTBL subroutine, indicates the character to 
be plotted for the ASCII character that has that numerical value. 

Figure F-l is a diagram of an entry word in a character table. 

Strokes Address 

~~ 
18 bits 18 bits 

MnS1752·81 

Figure F-l: Plotter Character Table Entry 

As shown in Figure F-l, each entry in the character table contains the 
number of strokes (line segments) required to plot the character in 
its left half and an address reference in the right half of the word. 
The address in the right half of the entry references an entry in the 
character stroke table for the character set. The character stroke 
table is described in the next section. 

F.S.l.2 Creating a Stroke Table - Each character in the character 
table has a corresponding character stroke table. The purpose of the 
character stroke table is to define the number and type of strokes 
(drawn line segments) it takes to produce a character in the character 
table. 

Figure F-2 is a diagram of an entry in a character stroke table. 

I pen x y 

I I 
\ 

"" 
I 

Three 5-bit bytes MH c; 1~'<~81 

Fig ure F-2: Character Stroke Table Entry 

As shown in Figure F-2, each stroke is 
stroke table by three 5-bit bytes. 
three bytes are: 

described in the character 
The possible values for these 

Byte 

1 

2 

3 

o 
1 

Value and Meaning 

pen is raised (off the paper) 
pen is lowered (on the paper) 

x-coordinate value at end of stroke 

y-coordinate value at end of stroke 

F-6 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

When determining the height and width of each character to be plotted, 
consider the following conventions: 

1. Characters are drawn within a grid that is IS units high by 
eight units wide. 

2. Characters are generally plotted six units above the base 
line. Two units are generally left blank to the right of 
each character; one cnit is generally left blank on top of 
each character. The spacing above, below, and on either side 
of each character provides adequate spacing between 
characters and between lines. 

3. The plotter starts drawing each character at the lower left 
corner of the character grid. If the grid is set up in the 
conventional manner, the lower left corner is grid position 
(0,6). Normal width characters end at the lower right corner 
of the character grid after allowing spacing between 
characters. 

The last coordinate in each character grid is usually (8,6). 
The character grid for the next character has as its origin 
(0,0) at the ending coordinate in the previous grid (8,6). 

4. Accents, circumflexes, underscores, and other characters that 
are to be plotted in the same character grid as another 
character should end at the same grid position as they began. 
By doing this, for example, the ASCII character that 
represents the accent character is plotted before the 
character that is thE! letter to be accented. 

F.S.l.3 Sample Character Stroke Table - In this sample, you want to 
plot the Greek letter beta as a normal sized character. When plotted, 
the letter is drawn on a IS x 8 unit grid above the base line, 
allowing for spacing between c:haracters and between lines. 

The strokes (line segments) for beta, including the invisible 
segments, are then determined. The character will be plotted more 
smoothly if as many of the liIle segments as possible are connected, 
and if doubled segments are avoided. Note that stroke 9 (the return 
stroke for the crossbar of the beta) and stroke IS (moving the pen to 
ending point (8,6) are not visible; the pen is raised. 

F-7 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

15 
4 

Y ~ 
6 

2 8,9 lh 
10 N° 

11 

~4 1V 15 

1/ 13 ~ 
V Base Line 

5 

° 5 
rv'In S 1754·81 

Figure F-3: Sample Character Stroke Table 

If the address at the beginning of the table that includes the 
character in Figure F-3 is called GREEK, then the FORTRAN call to set 
up the table could be: 

IGREEK=4 
CALL MKTBL (IGREEK, GREEK) 

The above call to the MKTBL subroutine defines the GREEK character 
table to be the fourth character table. To use the GREEK table for 
plotting, use the FORTRAN call: 

CALL SETABL (IGREEK, IFLAG) 

The entry in the character table for beta is: 

RADIX ~ DIO iVALUES IN DECIMAL 
BETA: IS"TBETA iCHARACTER TABLE ENTRY FOR BETA 

Note that the character table entry for beta contains the starting 
address of the character stroke table (TBETA) in its right half. 

The character stroke table for beta is: 

SEEN==1 iIF 'SEEN' THEN THE STROKE MARKS THE PAPER 
UNSEEN==O iIF 'UNSEEN' THEN THE STROKE IS INVISIBLE 
RADIX ~DIO iALL VALUES ARE IN DECIMAL 

TBETA: BYTE{S) SEEN,2,8,SEEN,2,13 
BYTE{S) SEEN,3,14,SEEN,S,14 
BYTE{S) SEEN,6,13,SEEN,6,12 
BYTE{S) SEEN,S,II,SEEN,2,11 
BYTE{S) UNSEEN,S,11,SEEN,6,IO 
BYTE{S) SEEN,6,9,SEEN,S,8 
BYTE(S) SEEN,3,8,SEEN,2,9 
BYTE{S) UNSEEN,8,6 

F-8 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

F.S.I.4 FORTRAN- and User-Defined Character Sets - The standard ASCII 
character set is always defined and is character set I for calls to 
the SETABL subroutine, unless character set 1 is redefined by a user 
call to the MKTBL subroutine. If SETABL is not called, the ASCII 
character set is the default. 

The Cyrillic (Russian) character set is available as character set 2, 
and the Feanorian character set is available as character set 3 
(unless character sets 2 or 3 has been redefined by a user call to the 
MKTBL subroutine). In order to use these character sets, the user 
program must contain an EXTERNAL statement for variable PLOTF 
(Feanorian) or PLOTC (Cyrillic). 

User-defined character sets should use character sets 4 through 10 to 
avoid conflicts with the standard character sets. 

NUMBER 
Subroutine 

F.6 NUMBER SUBROUTINE 

The NUMBER subroutine causes floating-point numbers to be plotted as 
text. 

The form of the NUMBER subroutine is: 

CALL NUMBER(x,y,size,fnum,theta,ndigit) 

where: 

x,y 

size 

fnum 

theta 

ndigit 

are variables or constants that specify the x and y 
coordinates of the point to be plotted. The specified 
point is the lower left corner of the first character 
to be plotted. 

is a variable or constant that specifies the size (in 
inches) of the digits to be plotted. The specified 
value should be a multiple of .08 inches (or 
centimeters if plotter is metric) if a small value is 
used. 

is a variable or constant that is the floating-point 
number to be plotted. 

is a variable or constant that specifies the direction 
(in degrees) of the base line on which the characters 
are plotted. 

is a variable or constant that specifies the number of 
digits to be p~.otted to the right of the decimal point. 
If ndigit is negative, only the integer part of the 
n urn be r i s plot ted; the res u 1 t i ng in t eg e r i s r 0 u nd ed • 

F-9 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

PLOT 
Subroutine 

F.7 PLOT SUBROUTINE 

The PLOT subroutine moves the plotter pen to a new position. Raising 
and lowering the pen is also specified in the PLOT subroutine. 

NOTE 

The plotter is not released after completion of the 
specified movement. 

The form of the PLOT subroutine is: 

CALL PLOT(x,y,penup/down) 

where: 

x,y 

penup/down 

SCALE 
Subroutine 

are the variables or constants that specify the x 
and y coordinates for the point to which the pen 
will be moved. 

is an integer constant or variable that specifies 
whether the pen is on the paper or above the 
paper. The possible values for this variable are: 

3 raise pen before movement 
2 lower pen before movement 
1 leave pen in current state (raised or lowered) 

-1, -2, or -3 same as corresponding positive 
values except that on completion 
of the indicated motion, the new 
pen position is taken as a new 
origin and the output buffer is 
sent to the plotter. Using the 
negative values is helpful if you 
are plotting consecutive 
characters in the same program. 

F.B SCALE SUBROUTINE 

The SCALE subroutine scales values for the AXIS subroutine. 

The form of the SCALE subroutine is: 

CALL SCALE(x,n,s,xmin,dx) 

F-IO 



where: 

x 

n 

s 

xmin 

dx 

FORTRAN-SUPPL1ED PLOTTER SUBROUTINES 

is an array nam~ of a one-dimensional floating-point 
array to be scaled for the AXIS subroutine. 

is an integer C(lnstant or variable that specifies the 
length of the at"ray in words (36-bit). 

is a constant or variable that specifies the length (in 
inches) of the desired axis. 

is a constant or variable that specifies the smallest 
element in an"ay x." The value of xmin will be the 
value of the scale at the beginning of the axis. 

i sac 0 n s tan t 0 I" va ria b 1 e t hat 
scale for a I-inch interval 
plotted in inches. 

equals the change in 
so that array x can be 

SETABL 
Subroutine 

F.9 SETABL SUBROUTINE 

The SETABL subroutine enables fOU to select the character set that is 
used to plot characters. 

The form of the SETABL subroutine is: 

CALL SETABL (setnum,status) 

where: 

setnum 

status 

is an integer constant or variable that equals the 
number of the character set. The standard ASCII 
character set is defined to be set 1 and is the 
default. Character sets are defined by the MKTBL 
subroutine (see Section F. 5) • 

is an integer variable whose value after the call to 
the SETABL subroutine is either 0, if the character set 
specified in setnum is valid, or -1, if the character 
set specified by setnum is invalid. 

NOTE 

If you use a character set other than the 
character sets defined by default in the 
plotter subroutine library, you must call the 
MKTBL subroutine before calling the SETABL 
subroutine. 

F-II 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

SYMBOL 
Subroutine 

F.IO SYMBOL SUBROUTINE 

The SYMBOL subroutine plots a specified string of characters (from 
either the default character set or the character set specified by the 
last successful call to the SETABL subroutine) . 

The form of the SYMBOL subroutine is: 

CALL SYMBOL(x,y,size,asc,theta[,nasc]) 

where: 

x 

y 

size 

asc 

theta 

nasc 

is a constant or variable that equals the x coordinate 
of the lower left corner of the first character to be 
plotted. 

is a constant or variable that equals the y coordinate 
of the lower left corner of the first character to be 
plotted. The plotter pen is raised and moved to 
pos i t ion x,y before the string of characters is 
plotted. 

is a constant or variable that specifies the height (in 
inches) of the character to be plotted. The specified 
value should be a multiple of .08 inches (or 
c en tim e t e r s i f yo u h a v e a met ric plot t e r) • 

is the name of a character expression or numeric array 
that contains the ASCII characters to be plotted. 

is a constant or variable that specifies the direction 
(in degrees) of the base line on which the characters 
are to be plotted. 

is an integer constant or variable that is equal to the 
number of characters in numeric array asc that are to 
be plotted. This is ignored if a character expression 
is specified for asc. 

WHERE 
Subroutine 

F.Il WHERE SUBROUTINE 

The WHERE subroutine reports on the current position of the plotter 
pen, in inches, relative to the origin. 

F-12 



FORTRAN-SUPPLIED PLOTTER SUBROUTINES 

NOTE 

The plotter origin is set by a call to the AXIS 
subroutine or a call to the PLOT subroutine that has a 
negative value for the penup/down variable. Also, the 
WHERE subroutine does not allow you to determine 
whether the plotter pen is raised or lowered. 

The form of the WHERE subroutine is: 

CALL WHERE(x,y) 

where: 

x is a variable in which the subroutine returns the x 
coordinate of the current print position. 

y is a variable in which the subroutine returns the y 
coordinate of the current pen position. 

F-13 





INDEX 

A ed i t i ng, 12 - 3 9 
ABORT switch, 16-9 
ACCEPT 

seq u e n t i alL i s t - d ire c ted, 1 (! - 4 1 
ACCEPT statement, 10-40 

sequential FORMAT-statement, 
10-40 

Access 
direct, 10-6, 18-4 
sequential, 10-5, 18-3 

ACCESS specifier 
in INQUIRE, 11-43 
in OPEN, 11-6 

Accumulator usage, 15-11 
Actual arguments, 13-49 

Length of character, 13-51 
Adjustable dimensions, 7-3 
ALCCHR subroutine, 13-24 
ALL with DEBUG, 16-12 
ALL with FLAG, 16-22 
ALL with NOWARN, 16-15 
.AND. logical operator, 5-8 
ANSI standard, 1-1 
ANSI with FLAG, 16-22 
Apostrophe editing, 12-16 
Argument lists, 15-12 
Argument types, 15-14 
Argumen ts 

Actual, 13-49 
Dummy, 13-49 

Arguments to FLAG, 16-22 
ARGUMENTS with DEBUG, 16-12 
Arithmetic assignment statement, 

8-1 
Arithmetic constant expressions, 

5-5 
Arithmetic expressions, 5-1 

writing, 5-2 
Arithmetic IF statement, 9-3 
Arithmetic operations, 5-2 
Arithmetic operator3, 5-2 
Array declarator, 4-4, 7-1 
Array element subscript, 4-3 
Array elements 

order of stored, 4-5 
Array names, 4-3 
Arrays, 4-3 

assumed-size, 7-4 
dimensioning, 4-4 
Dimensioning dummy, 15-5 

ASCII character code, B-1 
ASCII data files, 18-4 
ASSIGN statement, 8-3 
Assigned GO TO statement, 9-3 
Assignment statement, 8-1 

ar i thmetic, 8-1 
character, 8-4 

Assignment statements 
logical, 8-3 

Assignments 
mixed~mode, 8-2 

ASSOCIATEVARIABLE specifier 
in OPEN, 11-8 

Assumed-size arrays, 7-4 
AXIS subroutine, F-2 

BACKFILE statement, 11-57 
BACKSPACE statement, 11-55 
Binary data files, 18-4 
BINARY switch, 16-9 
Bit data constants, 7-23 
Bit manipulation functions, 13-14 
Blank lines, 2-7 
BLANK specifier 

in INQUIRE, 11-44 
in OPEN, 11-9 

BLISS-36 
calling routines, 15-19 
Interaction with, 15-18 

BLKRW subroutine, 19-4 
BLOCK DATA statement, 14-1 
Block data subprograms, 14-1 
Block IF constructs 

indexed, 9-9 
Block IF statements, 9-5 
BLOCKSIZE specifier 

in OPEN, 11-10 
BN editing, 12-28 
Boolean values, 3-6 
BOUNDS with DEBUG, 16-12 
BUFFERCOUNT specifier 

in OPEN, 11-10 
BZ editing, 12-28 

CALL statement, 13-44 
Calling BLISS-36 routines, 15-19 
Calling COBOL subroutines, 15-18 
Calling FORDDT, 17-17 
Calling sequencEs 

FOROTS, 18-16 
Carriage-control specifiers, 12-9 
CARRIAGECONTROL specifier 

in INQUIRE, 11-44 
in OPEN, 11-11 

CAXIS subroutine, F-3 
CBC function, 18-34 
CDABS function, 13-25 
CDCOS subroutine, 13-25 
CDEXP subroutine, 13-26 
CDLOG subroutine, 13-26 
CDSIN subroutine, 13-27 
CDSQRT subroutine, 13-28 
Channel allocation routines, 

18-30 
Channel deallocation routines, 

18-30 
Character assignment statement, 

8-4 

Ind ex--l 



Character code 
ASCII, B-1 

Character comparison functions, 
13-14 

Character constant expressions, 
5-7 

Character constants, 3-4 
Character expressions, 5-6 
Character intrinsic functions, 

13-12 
Character set, 2-1 

FORTRAN-defined, F-9 
User-defined, F-9 

Character substrings, 4-6 
Character tables, F-5 
Character type specification 

s ta temen ts, 7-6 
CHARACTER*len, 7-6 
CHKDIV subroutine, 13-28 
CLOSE 

DEVICE specifier in, 11-36 
DIALOG specifier in, 11-36 
DIALOG= specifier in, 11-37 
DIRECTORY specifier in, 11-36 
DISPOSE specifier in, 11-37 
ERR specifier in, 11-39 
FILE specifier in, 11-36 
Implicit, 11-34 
IOSTAT specifier in, 11-39 
LIMIT specifier in, 11-39 
NAME specifier in, 11-36 
PROTECTION specifier in, 11-36 
STATUS specifier in, 11-40 
UNIT specifier in, 11-41 

CLOSE specifiers 
Summary of, 11-35 

CLOSE statement, 11-34 
CLOSE statement specifiers, 11-34 
CLRFMT subroutine, 13-29 
CLROVL in LINK, 15-20 
COBOL 

calling subroutines, 15-18 
Interaction with, 15-16 

CODE with EXTEND, 16-20 
Colon editing, 12-24 
Commands 

COMPILE, 16-1, 16-5 
DEBUG, 16-1, 16-5 
EXECUTE, 16-1, 16-5 
FORDDT, 17-1, 17-7 
LOAD, 16-1, 16-5 

Comment lines, 2-5 
Common block, 7-9 
Common block name, 7-9 
COMMON statement, 7-8 
Common storage, 7-9 
COMMON with EXTEND, 16-20 
Compilation control statements, 

6-4 
COMPILE command, 16-1, 16-5 
Compiler 

Running FORTRAN-I0, 16-2 
Running FORTRAN-20, 16-6 

Compiler (Cont.) 
using, 16-1 

Compiler errors 
internal, C-13 

Compiler generated label, 16-23 
Compiler generated variables, 

16-24 
Compiler listing, 16-22 
Compiler messages, C-l 
Compiler switches 

FORTRAN-I0, 16-2 
FORTRAN-20, 16-9 

Compiling programs, 16-1, 16-5 
Complex constants, 3-4 
Complex editing, 12-36 
Computed GO TO statements, 9-2 
Concatenation operator, 5-6 
CONNECT subroutine, 19-4 
Constant expressions, 5-15 

arithmetic, 5-5 
character, 5-7 
integer, 5-5 
logical, 5-10 

Constant folding, 15-8 
Constant propagation, 15-8 
Constants, 3-1 

bit data, 7-23 
character, 3-4 
complex, 3-4 
double-octal, 3-5 
double-precision, 3-2 
Hollerith, 3-6 
integer, 3-1 
logical, 3-6 
octal, 3-5 
real, 3-2 
statement label, 3-7 

Continuation lines, 2-4 
CONTINUE LSCW, 18-4 
CONTINUE statement, 9-17 
Control information list, 10-9 
Control statements, 9-1 
COR function, 18-33 
CROSSREF switch, 16-3, 16-9 

D editing, 12-32 
D-floating double-precision 

format, 3-3 
Data access, 10-5 
Data magnitude on G-format, 12-35 
DATA statement, 7-21 
Data transfer operations, 10-5 
Data transfer statements, 10-1 
Data transfers 

Formatted, 12-1 
formatted, 10-6 
unformatted, 10-8 

DATA with EXTEND, 16-20 
DATE subroutine, 13-29 
DEBUG 

and FORDDT, 17-4 
DEBUG arguments 

ALL, 16-12 

Index- 2 



DEBUG arguments (Cont.) 
ARGUMENTS, 16-12 
BOUNDS, 16-12 
DIMENSIONS, 16-12 
INDEX, 16-12 
LABELS, 16-12 
NONE, 16-12 
TRACE, 16-12 

DEBUG command, 16-1, 16-5 
Debug lines, 2-6 
DEBUG switch, 16-3, 16-9, 16-11 
Debugger 

FORDDT, 17-1 
Debugging programs, 16-1, 16-5 
DECODE statement, 10-51 
Default memory layout 

/EXTEND, 16-15 
Deferred OPEN statement, 11-2 
DENSITY specifier 

in OPEN, 11-12 
Device assignments 

logical, 10-12 
Device control statements, 10-1, 

11-52 
DEVICE specifier 

in CLOSE, 11-36 
in OPEN, 11-13 

Devices 
real-time, 19-1 

DFLOATING switch, 16-3, 16-9 
DIALOG specifier 

in CLOSE, 11-36 
in OPEN, 11-13 

DIALOG= specifier 
in CLOSE, 11-37 
in OPEN, 11-14 

Dimension declarator, 7-2 
DIMENSION statement, 7-1 
Dimensioning arrays, 4-4 
Dimensioning dummy arrays, 15-5 
DIMENSIONS with DEBUG, 16-12 
Direct access, 10-6 
direct access, 18-4 
Direct FORMAT-statement READ, 

10-27 
Direct FORMAT-statement WRITE, 

10-33 
DIRECT specifier 

in INQUIRE, 11-44 
Direct unformatted READ, 10-30 
Direct unformatted WRITE, 10-36 
DIRECTORY specifier 

in CLOSE, 11-36 
in OPEN, 11-14, 11-16 

DISCON subroutine, 19-7 
DISMIS subroutine, 19-6 
DISPOSE specifier 

in CLOSE, 11-37 
in OPEN, 11-16 

DIVERT subroutine, 13-30 
DO iteration control, 9-12 
DO lists 

implied, 10-22 

DO loop extended range, 9-15 
DO loop iterations, 15-2 
DO loops 

Floating-point, 15-2 
DO statements 

nested, 9-14 
DO WHILE statement, 9-13 
Dollar sign editing, 12-22 
Double-octal constants, 3-5 
Double-precision constants, 3-2 
Double-precision format 

D-floating, 3-3 
G-floating, 3-3 

DTOG function, 13-19 
DTOGA subroutine, 13-30 
Dummy arguments, 13-49 

Length of character, 13-51 
DUMP subroutine, 13-30 

E ( e x po n e n t i a 1 not a t ion), 3 - 2 
E editing, 12-32 
ECHO-OPTION switch, 16-9 
Edit descriptors 

FORMAT-statement, 12-6 
Nonrepeatable, 12-8 
numer ic, 12-29 
Repeatable, 12-7 

Ed i ting 
A, 12-39 
Apostrophe, 12-16 
BN, 12-28 
BZ, 12-28 
Colon, 12-24 
complex, 12-36 
D, 12-32 
Dollar sign, 12-22 
E, 12-32 
F, 12-32 
G, 12-33 
H, 12-17 
I, 12-31 
L, 12-38 
N urn e ric, 1 2 - 2 9 
o (octal), 12-36 
P, 12-25 
Positional, 12-18 
Q, 12-29 
R, 12-40 
S, 12-24 
Slash, 12-23 
SP, 12-24 
SS, 12-24 
T, 12-19 
TL, 12-20 
TR, 12-20 
X, 12-21 
Z (hexadecimal), 12-37 

ELSE IF THEN statement, 9-5 
ELSE statement, 9-5 
Embedded format specifications, 

12-15 
ENCODE statement, 10-51 
END DO statement, 9-17 

Index-3 



END IF statement, 9-5 
END LSCW, 18-4 
END statement, 9-20 
END= specifier, 10-17 
ENDFILE statement, 11-55 
Entry points 

FOROTS, 18-15 
ENTRY statement, 13-45 
EQUIVALENCE and extended 

addressing, 7-17 
EQUIVALENCE statement, 7-11 
.EQV. logical operator, 5-8 
ERR specifier 

in CLOSE, 11-39 
in INQUIRE, 11-45 
in OPEN, 11-17 

ERR= specifier, 10-18 
Error codes 

FOROTS, D-2 
Error messages 

FORDDT, E-l 
FOROTS, D-l 
real-time, 19-7 

Error processing 
FOROTS, 18-2 

Error reporting, 16-33 
Errors 

fatal, C-2 
Fatal compiler, 16-34 

ERRSET subroutine, 13-31 
ERRSNS subroutine, 13-32 
ERRSNS values, D-2 
Evaluation of expressions, 5-13 
Executable statements, 1-1, 6-1 
EXECUTE command, 16-1, 16-5 
Executing programs, 16-1, 16-5 
EXIST specifier 

in INQUIRE, 11-45 
EXIT subroutine, 13-33 
EXPAND switch, 16-3, 16-9 
Expressions 

ar i thmetic, 5-1 
arithmetic constant, 5-5 
character, 5-6 
character constant, 5-7 
constant, 5-15 
evaluation of, 5-13 
integer constant, 5-5 
log ical, 5-7 
logical constant, 5-10 
mixed-mode, 5-15 
relational, 5-11 

EXTEND 
applications with large arrays, 

16-16 
applications with large code, 

16-17 
EXTEND arguments, 16-19 

CODE, 16-20 
COMMON, 16-20 
DATA, 16-20 
NOCOMMON, 16-20 
NODATA, 16-20 

EXTEND arguments (Cont.) 
PSECT, 16-20 

EXTEND psect placement, 16-17 
EXTEND switch, 16-9, 16-15 
Extended addressing, 16-15 

and EQUIVALENCE, 7-17 
and FORDDT, 17-17 
default memory layout, 16-15 
memory layout, 15-22 

Extended range DO loop, 9-15 
External functions, 13-18 

FORTRAN-supplied, 13-18 
user-defined, 13-20 

EXTERNAL statement, 7-17 

F editing, 12-32 
F66 switch, 16-3, 16-9 
F77 switch, 16-3, 16-9 
Fatal compiler errors, 16-34 
Fatal errors, C-2 
FFUNIT subroutine, 13-33 
Field 

line continuation, 2-3 
remark, 2-4 
statement, 2-4 
statement label, 2-3 

File control statements, 10-1, 
11-1 

File identifier 
internal, 10-13 

FILE specifier 
in CLOSE, 11-36 
in OPEN, 11-18 

Files 
ASCII data, 18-4 
binary data, 18-4 
internal, 10-7, 10-49 
linking TWOSEG REL, 16-21 
non-FORTRAN, 15-10 

FILESIZE specifier 
in OPEN, 11-18 

FIND statement, 11-53 
FLAG a rg umen ts 

ALL, 16-22 
ANSI, 16-22 
NOANSI, 16-22 
NONE, 16-22 
NOVMS, 16-22 
VMS, 16-22 

FLAG switch, 16-3, 16-21 
FLAG switch arguments, 16-22 
FLAG-NON-STANDARD switch, 16-9 
Floating-point 

DO loops, 15-2 
FORDDT 

and extended addressing, 17-17 
calling, 17-17 
load ing, 17-5 
starting, 17-5 

FORDDT and DEBUG, 17-4 
FORDDT commands, 17-1, 17-7 
FORDDT debugger, 17-1 
FORDDT error messages, E-l 

Index-4 



FORM specifier 
in INQUIRE, 11-45 
in OPEN, 11-19 

format control, 12-11 
Format editing, 12-16 
Format list 

I/O list interaction, 12-11 
format list, 12-3 
Format specifications 

embedded, 12-15 
Format specifier, 10-13 
FORMAT statement, 12-2 
FORMAT-statement ACCEPT 

sequential, 10-40 
FORMAT-statement edit descriptors, 

12-6 
FORMAT-statement formatting, 

10-14, 12-2 
FORMAT-statement PRINT 

sequential, 10-45 
FORMAT-statement PUNCH 

sequential, 10-48 
FORMAT-statement READ 

direct, 10-27 
equential, 10-26 

FORMAT-statement REREAD 
sequential, 10-38 

FORMAT-statement TYPE 
sequential, 10-43 

FORMAT-statement WRITE 
direct, 10-33 
sequential, 10-32 

Formatted data transfers, 10-6, 
12-1 

Formatted input, 12-14 
Formatted output, 12-15 
Formatted READ transfers, 10-2~ 
FORMATTED specifier 

in INQUIRE, 11-45 
Formatted WRITE transfers, 10-31 
Formatting 

FORMAT-statement, 10-14, 12-2 
list-directed, 10-16, 12-41 
NAMELIST-statement, 10-16, 

12-44 
FOROTS, 18-1 

and INQUIRE by file, 18-36 
MACRO calls for, 18-17 
RESET in, 15-11 
sharable, 15-10 
using, 18-14 

FCROTS calling sequences, 18-16 
FOROTS entry points, 18-15 
FOROTS error codes, D-2 
FOROTS error messages, D-l 
FOROTS error processing, 18-2 
FOROTS features, 18-1 
FOROTS input/output facility, 

18-2 
FOROTS memory management, 15-20 
FORRTF subroutine, 19-1 
FORTRAN-I0 

compiler switches, 16-2 

FORTRAN-I0 (Cont.) 
running the compiler, 16-2 

FORTRAN-I0/20, 1-1 
]~ORTRAN-20 

Running the compiler, 16-6 
FORTRAN-20 compiler 

using, 16-5 
FORTRAN-20 compiler switches, 

16-9 
FORTRAN-77 standard, 1-1 
FORTRAN-defined character set, 

F-9 
FORTRAN-supplied external 

functions, 13-18 
FORTRAN-supplied plotter 

subroutines, F-l 
FORTRAN-supplied subroutines, 

13-24 
Function effects, 15-10 
FUNCTION statement, 13-20 
Function subprogram, 13-20 
Function subprograms 

using, 13-21 
Functions, 13-1 

bit manipulation, 13-14 
CBC, 18-34 
CDABS, 13-25 
character comparison, 13-14 
character intrinsic, 13-12 
COR, 18-33 
DTOG, 13-19 
External, 13-18 
FORTRAN-supplied external, 

13-18 
GAD, 18-32 
GCH, 18-33 
Generic, 13-2 
GOT, 18-33 
GPG, 18-34 
GPSI, 18-35 
GTOD, 13-19 
IFS, 18-34 
ILL, 18-32 
Intrinsic, 13-1 
LSNGET, 13-19 
MPG, 18-35 
RAD, 18-33 
RAN, 13-19 
RANS, 13-19 
RCH, 18-33 
RNT, 18-34 
ROT, 18-34 
RPG, 18-35 
RPSI, 18-35 
RRS, 18-34 
SECNDS, 13-19 
Spec i fic, 13-2 
Statement, 13-15 
TIM2GO, 13-19 
UPG, 18-36 
user-defined external, 13-20 
Using intrinsic, 13-2 
Using statement, 13-16 

Index--5 



Functions (Cont.) 
WRS, 18-34 

Functions for overlays, 18-31 

G editing, 12-33 
G-floating double-precision 

format, 3-3 
G-format 

Data magnitude on, 12-35 
GAD function, 18-32 
GCH function, 18-33 
Generic functions, 13-2 
GETOVL in LINK, 15-20 
GFLOATING switch, 16-3, 16-9 
Global optimization, 15-6 
Global register allocation, 15-9 
GO TO statement 

assigned, 9-3 
GO TO statements, 9-1 

computed, 9-2 
unconditional, 9-2 

GOT function, 18-33 
GPG function, 18-34 
GPSI function, 18-35 
GTOD function, 13-19 
GTODA subroutine, 13-34 

H editing, 12-17 
Hierarchy of operators, 5-14 
High segment 

sharable, 16-35 
Hollerith constants, 3-6 

I editing, 12-31 
I/O 

optimization, 15-9 
I/O 1 ist, 10-20 
I/O list and format list 

interaction, 12-11 
IF statement 

arithmetic, 9-3 
logical two-branch, 9-4 

IF statements, 9-3 
block, 9-5 
logical, 9-4 

IF THEN statement, 9-5 
IFS function, 18-34 
ILL function, 18-32 
ILL subroutine, 13-34 
Implicit CLOSE, 11-34 
Implicit OPEN, 11-3 
IMPLICIT statements, 7-7 
Implied DO lists, 10-22 
INCLUDE statement, 6-4 
INCLUDE switch, 16-3, 16-9 
Index variable, 9-11 
INDEX with DEBUG, 16-12 
INIOVL in LINK, 15-20 
Initial lines, 2-4 
Initial tab, 2-3 
INITIALIZE specifier 

in OPEN, 11-18 

Input 
formatted, 12-14 
NAMELIST-controlled, 12-45 

Input/output facility 
FOROTS, 18-2 

Input/output statements, 10-1 
INQUIRE by file and FOROTS, 18-36 
INQUIRE specifiers 

ACCESS, 11-43 
BLANK, 11-44 
CARRIAGECONTROL, 11-44 
DIRECT, 11-44 
ERR, 11-45 
EXIST, 11-45 
FORM, 11-45 
FORMATTED, 11-45 
IOSTAT, 11-46 
NAME, 11-46 
NAMED, 11-47 
NEXTREC, 11-47 
NUMBER, 11-47 
OPENED, 11-48 
RECL, 11-48 
RECORDSIZE, 11-48 
RECORDTYPE, 11-48 
SEQUENTIAL, 11-49 
UNFORMATTED, 11-49 

INQUIRE statement, 11-42 
by file, 11-42 
by unit, 11-43 

INQUIRE statement specifiers, 
11-43 

Integer constant expressions, 5-5 
Integer constants, 3-1 
Interaction with BLISS-36, 15-18 
Interaction with COBOL, 15-16 
Internal compiler errors, C-13 
Internal file identifier, 10-13 
Internal files, 10-7,· 10-49 
Internal READ 

statement, 10-50 
Internal WRITE statement, 10-50 
Intrinsic functions, 13-1 

character, 13-12 
Using, 13-2 

INTRINSIC statement, 7-18 
IOSTAT specifier, 10-19 

in CLOSE, 11-39 
in INQUIRE, 11-46 
in OPEN, 11-20 

Iteration control 
DO, 9-12 

Keywords, 1-1 

L editing, 12-38 
Labels 

compiler generated, 16-23 
LABELS with DEBUG, 16-12 
Large arrays 

and extended addressing, 16-16 
Large code applications, 16-18 

Index-6 



Large executable code 
and extended addressing, 16-17 

LEGAL subroutine, 13-34 
Length of character actual 

arguments, 13-51 
Length of character dummy 

a r g urn en t s, 1 3 -- 51 
Length specification, 7-6 
LIMIT specifier 

in CLOSE, 11-39 
in OPEN, 11-21 

Line continuation field, 2-3 
LINE subroutine, F-4 
Line types, 2-4 
Line-sequence number, 16-22 
Line-sequenced source files, 2-7 
Lines 

blank, 2-7 
comment, 2-5 
continuation, 2-4 
debug, 2-6 
initial, 2-4 
multi-statement, 2-5 

LINK 
CLROVL subroutine, 15-20 
GETOVL subroutine, 15-20 
INIOVL subroutine, 15-20 
LOGOVL subroutine, 15-20 
REMOVL subroutine, 15-20 
RUNOVL subroutine, 15-20 
SAOVL subroutine, 15-20 

LINK overlay facilities, 15-19 
LINK overlay handler, 18-31 
Linking TWOSEG REI... files, 16-21 
List-directed ACCEPT 

sequential, 10-41 
List-directed formatting, 10-16 
list-directed formatting, 12-41 
List-directed PRINT 

sequential, 10-46 
List-directed PUNCH 

sequential, 10-48 
List-directed READ 

sequential, 10-27 
List-directed REREAD 

sequential, 10-39 
List-directed TYPE 

sequential, 10-44 
List-directed WRITE 

sequential, 10-34 
LISTING switch, 16-9 
LNMAP switch, 16-3, 16-10 
LOAD command, 16-1, 16-5 
Loading FORDDT, 17-5 
Loading programs, 16-1, 16-5 
LOCK subroutine, 19-3 
Logical assignment statements, 

8-3 
Logical constant expressions, 

5-10 
Logical constants, 3-6 
Logical device assignments, 10-12 
Logical expressions, 5-7 

Logical IF statements, 9-4 
Logical operators, 5-8 
Logical segment control words, 

18-4 
Logical two-branch IF statement, 

9-4 
Logical unit identifier, 10-11 
LOGOVL in LINK, 15-20 
LSCW, 18-4 

CONTINUE, 18-4 
END, 18-4 
START, 18-4 

LSNGET function, 13-19 

MACHINE-CODE switch, 16-10 
MACRO calls for FOROTS, 18-17 
MACROCODE switch, 16-3 
Memory allocation routines, 18-29 
Memory layout 

extended addressing, 15-22 
Memory management 

FOROTS, 15-20 
Over 1 a y, 1 5 - 2 0 

Message summary, 16-34 
Messages 

compiler, C-l 
warning, 16-34, C-8 

Mixed-mode assignments, 8-2 
Mixed-mode expressions, 5-15 
Mixed-mode operations, 5-3 
MKTBL subroutine, F-5 
MODE specifier 

in OPEN, 11-21 
MPG function, 18-35 
Multi-statement lines, 2-5 
MVBITS subroutine, 13-35 

Name 
Common block, 7-9 

NAME specifier 
in CLOSE, 11-36 
in INQUIRE, 11-46 
in OPEN, 11-23 

NAMED specifier 
in INQUIRE, 11-47 

NAMELIST statement, 12-44 
NAMELIST-controlled input, 12-45 
NAMELIST-controlled output, 12-46 
NAMELIST-statement formatting, 

10-16, 12-44 
NAMELIST-statement READ 

sequential, 10-28 
NAMELIST-statement WRITE 

sequential, 10-35 
Names 

array, 4-3 
symbolic, 4-1 
variable, 4-2 

.NEQV. logical operator, 5-8 
Nested Block IF constructs, 9-9 
Nested DO statements, 9-14 
NEXTREC specifier 

in INQUIRE, 11-47 

Index·-7 



NOANSI with FLAG, 16-22 
NOBINARY switch, 16-10 
NOCOMMON with EXTEND, 16-20 
NODATA with EXTEND, 16-20 
NOERRORS switch, 16-3, 16-10 
NOEXTEND switch, 16-10 
NOF77 switch, 16-3, 16-10 
NOFLAG switch, 16-3 
NOFLAG-NON-STANDARD switch, 16-10 
non-FORTRAN files, 15-10 
non-FORTRAN programs, 15-10 
NONE with 

DEBUG, 16-12 
NONE with FLAG, 16-22 
NONE with NOWARN, 16-15 
Nonexecutable statements, 1-1, 

6-2 
Nonrepeatable edit descriptors, 

12-S 
.NOT. logical operator, 5-S 
NOVMS with FLAG, 16-22 
NOWARN arguments 

ALL, 16-15 
NONE, 16-15 

NOWARN switch, 16-3, 16-10, 16-14 
NUMBER specifier 

in INQUIRE, 11-47 
NUMBER subroutine, F-9 
Numeric edit descriptors, 12-29 
Numeric editing, 12-29 
Numeric type specification 

statements, 7-5 

o (octal) editing, 12-36 
Object time system, lS-l 
Octal constants, 3-5 
OPEN 

ACCESS specifier in, 11-6 
ASSOCIATEVARIABLE specifier in, 

11-S 
BLANK specifier in, 11-9 
BLOCKSIZE specifier in, 11-10 
BUFFERCOUNT specifier in, 11-10 
CARRIAGECONTROL specifier in, 

11-11 
DENSITY specifier in, 11-12 
DEVICE specifier in, 11-13 
DIALOG specifier in, 11-13 
DIALOG= specifier in, 11-14 
DIRECTORY specifier in, 11-14, 

11-16 
DISPOSE specifier in, 11-16 
ERR specifier in, 11-17 
FILE specifier in, II-IS 
FILESIZE specifier in, II-IS 
FORM specifier in, 11-19 
Implicit, 11-3 
INITIALIZE specifier in, 11-18 
IOSTAT specifier in, 11-20 
LIMIT specifier in, 11-21 
MODE specifier in, 11-21 
NAME specifier in, 11-23 
PADCHAR specifier in, 11-24 

OPEN (Cont.) 
PARITY specifier in, 11-24 
PROTECTION specifier in, 11-25, 

11-27 
READONLY specifier in, 11-28 
RECL specifier in, 11-2S 
RECORDSIZE specifier in, 11-2S 
RECORDTYPE specifier in, 11-29 
STATUS specifier in, 11-30 
TAPEFORMAT specifier in, 11-32 
TYPE specifier in, 11-30 
VERSION specifier in, 11-34 

OPEN statement, 11-1 
deferred, 11-2 
on connected unit, 11-4 

OPEN statement specifiers, 11-4 
Summary of, 11-6 

OPENED specifier 
in INQUIRE, 11-48 

Operations 
arithmetic, 5-2 

Operators 
arithmetic, 5-2 
concatenation, 5-6 
hierarchy of, 5-14 
log ical, 5-S 
relational, 5-11 

Optimization 
Global, 15-6 
I/O, 15-9 

Optimization techniques, 15-6 
OPTIMIZE switch, 16-3, 16-10, 

17-17 
OPTION switch, 16-10 
.OR. logical operator, 5-8 
Order of stored array elements, 

4-5 
Ordering of statements, 6-2 
Output 

formatted, 12-15 
NAMELIST-controlled, 12-46 

OVERFL subroutine, 13-35 
Overlay facilities 

LINK, 15-19 
Overlay handler 

LINK, 18-31 
Overlay memory management, 15-20 
Overlays 

Functions for, 18-31 

P editing, 12-25 
PADCHAR specifier 

in OPEN, 11-24 
PARAMETER statement, 7-20 
Parenthetical subexpressions, 

5-13 
PARITY specifier 

in OPEN, 11-24 
PAUSE statement, 9-19 
PDUMP SUbroutine, 13-36 
PLOT subroutine, F-I0 
PLOTS subroutine, F-2 
Positional editing, 12-18 

Index-S 



PRINT 
sequential FORMAT-statement, 

10-45 
sequential List-'directed, 10--46 

PRINT statement, 10-45 
Priority interrupt levels, 19-2 
Priority interrupt system, 19-~. 
PROGRAM statement, 6-4 
Prog rams 

compiling, 16-1, 16-5 
debugg ing, 16-5 
executing, 16-5 
load ing, 16-1, 16-5 
non-FORTRAN, 15-10 
source, 1-1 
wr i t i ng, 1 5-1 

Programs debugging, 16-1 
Programs executing, 16-1 
PROTECTION specifier 

in CLOSE, 11-36 
in OPEN, 11-25, 11-27 

Psect placement 
/EXTEND, 16-17 

PSECT with EXTEND, 16-20 
PUNCH 

sequential FORMAT-statement, 
10-48 

sequential List--directed, 10--48 
PUNCH statement, 10-47 

Q editing, 12-29 
QUIETX Subroutine r 13-36 

R editing, 12-40 
RAD function, 18-33 
RAN function, 13-19 
RANS function, 13-19 
RCH function, 18-33 
READ 

direct FORMAT-statement, 10-17 
direct unformatted, 10-30 
sequential FORMAT-statement, 

10-26 
sequential List-directed, 10·-27 
sequential NAMELIST-statement, 

10-28 
Sequential unformatted, 10-29 

READ statement, 10-24 
internal, 10-50 

READ transfers 
formatted, 10-26 
unformatted, 10-29 

READONLY specifier 
in OPEN, 11-28 

Real constants, 3-2 
Real-time devices, 19-1 
Real-time error messages, 19-7 
Real-time software, 19-1 
RECL spec i f ier 

in INQUIRE, 11-48 
in OPEN, 11-28 

Record specifier, 10-13 

RECORDSIZE specifier 
in INQUIRE, 11-48 
in OPEN, 11-28 

RECORDTYPE specifier 
in INQUIRE, 11-48 
in OPEN, 11-29 

Register allocation 
Global, 15-9 

Relational expressions, 5-11 
Relational operators, 5-11 
Remark field, 2-4 
Remarks, 2-6 
REMOVL in LINK, 15-20 
Reordering computations, 15-4 
Repeat specification, 7-22 
Repeatable edit descriptors, 12-7 
REREAD 

sequential FORMAT-statement, 
10-38 

sequential List-directed, 10-39 
REREAD statement, 10-37 
RESET in FOROTS, 15-11 
RETURN statement, 13-47 
REWIND statement, 11-54 
RNT function, 18-34 
ROT function, 18-34 
Routines 

calling BLISS-36, 15-19 
channel allocation, 18-30 
channel deallocation, 18-30 
memory allocation, 18-29 

RPG function, 18-35 
RPSI function, 18-35 
RRS function, 18-34 
RTINIT subroutine, 19-3 
RTREAD subroutine, 19-5 
RTSLP subroutine, 19-6 
RTSTRT subroutine, 19-4 
RTWAKE subroutine, 19-6 
RTWRIT subroutine, 19-5 
Running the FORTRAN-10 compiler, 

16-2 
Running the FORTRAN-20 compiler, 

16-6 
RUNOVL in LINK, 15-20 

S ed i ting, 12-24 
SAOVL in LINK, 15-20 
SAVE statement, 7-24 
SAVFMT subroutine, 13-37 
SAVRAN subroutine, 13-37 
SCALE subroutine, F-I0 
SECNDS function, 13-19 
Sequential access, 10-5, 18-3 
Sequential FORMAT-statement 

PUNCH, 10-48 
Sequential FORMAT-statement 

ACCEPT, 10-40 
Sequential FORMAT-statement PRINT, 

10-45 
Sequential FORMAT-statement READ, 

10-26 

Index--9 



Sequential FORMAT-statement 
REREAD, 10-38 

Sequential FORMAT-statement TYPE, 
10-43 

Sequential FORMAT-statement WRITE, 
10-32 

Sequential List-directed ACCEPT, 
10-41 

Sequential List-directed PRINT, 
10-46 

Sequential List-directed PUNCH, 
10-48 

Sequential List-directed READ, 
10-27 

Sequential List-directed REREAD, 
10-39 

Sequential List-directed TYPE, 
10-44 

Sequential List-directed WRITE, 
10-34 

Sequential NAMELIST-statement 
READ, 10-28 

Sequential NAMELIST-statement 
WRITE, 10-35 

SEQUENTIAL specifier 
in INQUIRE, 11-49 

Sequential unformatted READ, 
10-29 

Sequential unformatted WRITE, 
10-36 

SETABL subroutine, F-ll 
SETRAN subroutine, 13-38 
Sharable high segment, 16-35 
SKIPFILE statement, 11-57 
SKIPRECORD statement, 11-56 
Slash editing, 12-23 
Software 

Re a 1- tim e, 1 9-1 
SORT subroutine, 13-38 
Source files 

line-sequenced, 2-7 
Source program, 1-1 
SP editing, 12-24 
Specific functions, 13-2 
Specification statements, 7-1 
Specifiers 

Carriage-control, 12-9 
CLOSE statement, 11-34 
END=, 10-17 
ERR=, 10-18 
format, 10-13 
INQUIRE statement, 11-43 
IOSTAT, 10-19 
OPEN statement, 11-4 
record, 10-13 

SRTINI subroutine, 13-39 
SS editing, 12-24 
START LSCW, 18-4 
Starting FORDDT, 17-5 
Statement block, 9-8 
Statement definition, 2-2 
Statement field, 2-4 
Statement format, 2-2 

Statement functions, 13-15 
Using, 13-16 

Statement label constants, 3-7 
Statement label field, 2-3 
Statement numbers, 2-3 
Statements 

ACCEPT, 10-40 
arithmetic assignment, 8-1 
arithmetic IF, 9-3 
ASSIGN, 8-3 
assigned GO TO, 9-3 
ass i g nm e nt, 8 -1 
BACKFILE, 11-57 
BACKSPACE, 11-55 
BLOCK DATA, 14-1 
block IF, 9-5 
CALL, 13-44 
character assignment, 8-4 
character type specification, 

7-6 
CLOSE, 11-34 
COMMON, 7-8 
compilation control, 6-4 
computed GO TO, 9-2 
CONTINUE, 9-17 
control, 9-1 
DATA, 7-21 
data transfer, 10-1 
DECODE, la-51 
Device control, 10-1, 11-52 
DIMENSION, 7-1 
DO WHILE, 9-13 
ELSE, 9-5 
ELSE IF THEN, 9-5 
ENCODE, la-51 
END, 9-20 
END DO, 9-17 
END IF, 9-5 
ENDFILE, 11-55 
ENTRY, 13-45 
EQUIVALENCE, 7-11 
executable, 1-1, 6-1 
EXTERNAL, 7-17 . 
File control, 10-1, Ll-l 
FIND, 11-53 
FORMAT, 12-2 
FUNCTION, 13-20 
GO TO, 9-1 
IF, 9-3 
IF THEN, 9-5 
IMPLICIT, 7-7 
INCLUDE, 6-4 
indexed DO, 9-10 
Input/output, 10-1 
INQUIRE, 11-42 
internal READ, 10-50 
internal WRITE, la-50 
INTRINSIC, 7-18 
logical assignment, 8-3 
logical IF, 9-4 
logical two-branch IF, 9-4 
N AM ELI S T, 1 2 - 4 4 
nested DO, 9-14 

Index-l0 



Statements (Cont.) 
nonexecutable, 1-1, 6-2 
numeric type specification, '7-5 
OPEN, 11-1 
order ing of, 6-2 
PARAMETER, 7-20 
PAUSE, 9-19 
PRINT, 10-45 
PROGRAM, 6-4 
PUNCH, 10-47 
READ, 10-24 
REREAD, 10-37 
RETURN, 13-47 
R EW I N D , 11- 54 
SAVE, 7-24 
SKIPFILE, 11-57 
SKIPRECORD, 11-56 
specification, 7-1 
STOP, 9-18 
SUBROUTINE, 13-43 
Summary of, A-I 
TYPE, 10-42 
type specification, 7-4 
unconditional GO TO, 9-2 
UNLOAD, 11-54 
WRITE, 10-30 

STATI subroutine, 19-6 
STATO subroutine, 19-5 
STATUS specifier 

in CLOSE, 11-40 
in OPEN, 11-30 

STOP statement, 9-18 
Storage 

common, 7-9 
Subexpressions 

parenthetical, 5-13 
Subprogram 

function, 13-20 
subroutine, 13-22 

Subprograms 
Block data, 14-1 

Subroutine calls 
writing, 15-11 

SUBROUTINE statement, 13-43 
Subroutine subprogram, 13-22 
Subroutines, 13-1, 13-22 

ALCCHR, 13-24 
AXIS, F-2 
BLKRW, 19-4 
calling COBOL, 15-18 
CAXIS, F-3 
CDC 0 S , 1 3 - 2 5 
CDEXP, 13-26 
CDLOG, 13-26 
CDS IN, 13-27 
CDSQRT, 13-28 
CHKDIV, 13-28 
CLRFMT, 13-29 
CONNECT, 19-4 
DATE, 13-29 
DISCON, 19-7 
DISMIS, 19-6 
DIVERT, 13-30 

Subroutines (Cont.) 
DTOGA, 13-30 
DUMP, 13-30 
ERRSET, 13-31 
ERRSNS, 13-32 
EXIT, 13-33 
FFUNIT, 13-33 
FORRTF, 19-1 
FORTRAN-supplied, 13-24 
FORTRAN-supplied plotter, F-l 
GTODA, 13-34 
ILL, 13-34 
LEGAL, 13-34 
LINE, F-4 
LOCK, 19-3 
MKTBL, F-5 
MVBITS, 13-35 
NUMBER, F-9 
OVERFL, 13-35 
PDUMP, 13-36 
PLOT, F-10 
PLOTS, F-2 
programming considerations, 

15-3 
QUITEX, 13-36 
RTINIT, 19-3 
RTREAD, 19-5 
RTSLP, 19-6 
RTSTRT, 19-4 
RTWAKE, 19-6 
RTWRIT, 19-5 
SAVFMT, 13-37 
SAVRAN, 13-37 
SCALE, F-10 
SETABL, F-l1 
SETRAN, 13-38 
SORT, 13-38 
SRTINI, 13-39 
STATI, 19-6 
STATO, 19-5 
SYMBOL, F-12 
TIME, 13-39 
TOPMEM, 13-40 
TRACE, 13-41 
UNLOCK, 19-7 
user-defined, 13-42 
WHERE, F-12 

Subscript 
array element, 4-3 

Substrings 
character, 4-6 

Summary of CLOSE specifiers, 
11-35 

Summary of OPEN statement 
specifiers, 11-6 

Summary of statements, A-I 
Switches 

ABORT, 16-9 
BINARY, 16-9 
CROSSREF, 16-3, 16-9 
DEBUG, 16-3, 16-9, 16-11 
DFLOATING, 16-3, 16-9 
ECHO-OPTION, 16-9 

Index--ll 



Switches (Cont.) 
EXPAND, 16-3, 16-9 
EXTEND, 16-9 
F66, 16-3, 16-9 
F77, 16-3, 16-9 
FLAG, 16-3, 16-21 
FLAG-NON-STANDARD, 16-9 
FORTRAN-20 compiler, 16-9 
GFLOATING, 16-3, 16-9 
INCLUDE, 16-3, 16-9 
LISTING, 16-9 
LNMAP, 16-3, 16-10 
MACHINE-CODE, 16-10 
MACROCODE, 16-3 
NOBINARY, 16-10 
NOERRORS, 16-3, 16-10 
NOEXTEND, 16-10 
NOF77, 16-3, 16-10 
NOFLAG, 16-3 
NOFLAG-NON-STANDARD, 16-10 
N OWARN, 16 - 3, 16 -1 0, 16 -1 4 
OPTIMIZE, 16-3, 16-10, 17-17 
OPTION, 16-10 
SYNTAX, 16-3, 16-10 

SYMBOL subroutine, F-12 
Symbolic names, 4-1 
SYNTAX switch, 16-3, 16-10 

T editing, 12-19 
TAPE FORMAT specifier 

in OPEN, 11-32 
TIM2GO function, 13-19 
TIME subroutine, 13-39 
TL editing, 12-20 
TOPMEM subroutine, 13-40 
TR editing, 12-20 
TRACE subroutine, 13-41 
TRACE with DEBUG, 16-12 
TYPE 

sequential FORMAT-statement, 
10-43 

sequential List-directed, 10-44 
Type declaratars, 7-5 
Type specification statements, 

7-4 
character, 7-6 
n urn e ric, 7 - 5 

TYPE specifier 
in OPEN, 11-30 

TYPE statement, 10-42 

unconditional GO TO statements, 
9-2 

Unformatted data transfers, 10-8 
to ASCII devices, 10-8 

Unformatted READ 
direct, 10-30 
sequential, 10-29 

Unformatted READ transfers, 10-29 

UNFORMATTED specifier 
in INQUIRE, 11-49 

Unformatted WRLTE 
direct, 10-36 
sequential, 10-36 

Unformatted WRITE transfers, 
10-35 

Unit identifier 
logical, 10-11 

UNIT specifier 
in CLOSE, 11-41 

UNLOAD statement, 11-54 
UNLOCK subroutine, 19-7 
UPG function, 18-36 
User-defined character set, F-9 
User-defined external functions, 

13-20 
User-defined subroutines, 13-42 
Using FOROTS, 18-14 
Using FORRTF, 19-2 
Using function subprograms, 13-21 
Using intrinsic functions, 13-2 
Using statement functions, 13-16 
Using the compiler, 16-1 
Using the FORTRAN-20 compiler, 

16-5 

Variable names, 4-2 
Variables, 4-2 

compiler generated, 16-24 
VERSION specifier 

in OPEN, 11-34 
VMS with FLAG, 16-22 

Warning messages, 16-34, C-8 
WHERE subroutine, F-12 
WRITE 

direct FORMAT-statement, 10-33 
direct unformatted, 10-36 
sequential FORMAT-statement, 

10-32 
sequential List-directed, 10-34 
sequential NAMELIST-statement, 

10-35 
sequential unformatted, 10-36 

WRITE statement, 10-30 
internal, 10-50 

WRITE transfers 
formatted, 10-31 
unformatted, 10-35 

Writing arithmetic expressions, 
5-2 

Writing programs, 15-1 
Writing subroutine calls, 15-11 
WRS function, 18-34 

X editing, 12-21 

Z (hexadecimal) editing, 12-37 

Index-12 



READER'S COMMENTS 

TOPS-10/TOPS--20 
FORTRAN Language Manual 

AA-N383B-TK 

NOTE: This form is for documen1 comments only. DIGITAL will use comments submitted on 
this form at the company's discretion. If you require a written reply and are eligible to 
receive one under Software Performance Report (SPR) service, submit your com
ments on an SPR form. 

Did you find this manual understandablE, usable, and well-organized? Please make sugges
tions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of reader that you most nearly represent. 

[J Assembly language programmer 
[J Higher-level lan~]uage programmer 
[J Occasional programmer (experinnced) 
[J User with little programming experience 
o Student programmer 
[J Other (please specify)~~~_~~~~~~~~~~~~.~~~~~~~ 

Name Date ~ ___________ _ 

Organization ~ __ ~ _____ ~ _______ Telephone ___ ~ _____ _ 

Street __________ _ 

City _______ ,~ __ _ _ ____ ~ State ____ Zip Code ___ _ 

or Country 



--~.--000 

~.ot oTear

o
-F~HDere and Tape - - - - - - - - - - - - - - - - - - - - - -r fl-ll1--------~~~~;:;~~-

~ w ~ if Mailed in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE PUBLICATIONS 

200 FOREST STREET MR01-2/L 12 

MARLBOROUGH, MA 01752 

• • 

• 

- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -- -


