

Programming Techniques 10-21

SM = 1 + F(X)

and
F(X) = G(X).

Another use for a recursive function could be in calculating a factorial function, because

FACT(N) = FACT(N 1) * N.

Recursion should terminate when N = 1.

The macroprocessor within MACRO-II is itself recursive, since it can process nested
macrodefinitions and calls. For example, within a macrodefinition, other macros can be
called. When a macro call is encountered within definition, the processor must work
recursively (that is, it n:tust process one macro before it is finished with another and then
continue with the previous one). The stack is used for a separate storage area for the
variables associated with each call to the procedure.

&; long as nested definitions of macros are available, it is possible for a macro to call
itself. However, unless conditionals are used to terminate this expansion, an infinite loop
may be generated.

10.3.11 Processor Traps

Certain errors and programming conditions cause the KDJII-E processor to enter the
service state and trap to a fixed location. A trap is an interrupt generated by hardware.
Pending conditions are arbitrated according to a priority. The following list describes the
priority from highest to lowest.

Condition

Memory management
violation1(MMUERR)

Timeout error 1 (BUSERR)

Parity error1 (PARERR)

Trace (T) bit1

Stack overflow 1 (STKOVF)

Description

A memory management
violation causes an abort
and traps to location 2508.

No response from a bus device during
a bus transaction causes an abort
and traps to location 48.

A parity error signal received by the
processor during a bus transaction
causes an abort and traps to location
1148. ,

If PSW bit 4 is set at the end of instruction
execution, the processor traps to location 148.

If the KSP was pushed below 4008
during instruction execution, the
processor traps to location 48 at
the end of the instruction.

1 Nonmaskable software cannot inhibit the condition. MMUERR, BUSERR PARERR are mutually exclusive
when the processor is executing a program.

10-22 Programming Techniques

Condition

Power fail l (PFAIL)

IntelTUpt level 7 (BIRQ7)
IntelTUpt level 6 (BIRQ6)
Interrupt level 5 (BIRQ5)
Interrupt level 4 (BIRQ4)

Halt line

Description

If the power OK bus signal (BPOK H) was
negated during instruction execution) the
processor traps to location 248 at the
end of the instruction.

If device interrupt requests are
asserted and PSW <7:5> are properly
set, the processor at the end of the
present instruction execution
initiates an interrupt vector
sequence on the bus. These inputs
are maskable by PSW <7:5>.

PSW <'711> Levels Inhibited

7 All

6 6,5,4

5 5)4

4 4

0-3 None

If the BHALT L bus signal is asserted during the
service state, the processor enters ODT mode.

INonmaskable software cannot inhibit the condition. MMUERR, BUSERR PARERR are mutually exclusive
when the processor is executing a program.

10.3.11.1 Trap Instructions
Trap instructions provide for calls to emulators, 110 monitors, debugging packages, and
user-defined interpreters. When a trap occurs, the contents of the current PC and PSW
are pushed onto the processor stack and are replaced by the contents of a 2-word trap
vector containing a new PC and new PSw. The return sequence from a trap involves
executing an RTI or RT!' instruction, which restores the old PC and old PSW by popping
them from the stack. Trap vectors are located at permanently assigned fixed addresses.

The EMT (trap emulator) and TRAP instructions do not use the low-order byte of the
word in their machine language representation. This allows user information to be
transferred in the low-order byte. The new value of the PC, loaded from the vector
address of the TRAP or EMT instructions, is typically the starting address of a routine to
access and interpret this information. This routine is called a trap handler.

A trap handler must accomplish several tasks. It must save and restore all necessary
general purpose registers, interpret the low byte of the trap instruction and call the
indicated routine, serve as an interface between the calling program and this routine by
handling any data that needs to be passed between them, and finally, cause the return to
the main routine.

Programming Techniques 10-23

A trap handler can be useful as a patching technique. Jumping out to a patch area is
often difficult because a 2-word jump must be performed. However, the 1-word TRAP
instruction may be used to dispatch to patch· areas. A sufficient number of slots for
patching should first be reserved in the dispatch table of the trap handler. The jump
can then be accomplished by placing the address of the patch area into the table and
inserting the proper TRAP instruction where the patch is to be made.

10.3.11.2 Use of Macro calls
The trap handler can be used in a program to dispatch execution to anyone of several
routines. Macros may be defined to cause the proper expansion of a call to one of these
routines, as in the following example:

.MACRO SUB2 ARG

MOV ARG,RO

TRAP +1

.ENDM

When expanded, this macro sets up the one argument required by the routine in RO, and
then causes the trap instruction with the number 1 in the lower byte. The trap handler
should be written so that it recognizes a 1 as a call to SUB2. Notice that ARG here is
being transmitted to SUB2 from the calling program. It may be data required by the
routine or it may be a pointer to a longer list of arguments.

In an operating system environment like RT-ll, the EMT instruction is used to call the
system or monitor routines from a user program. The monitor of an operating system
necessarily contains coding for many functions, such as 110, file manipulation, and so
on. This coding is made accessible to the program through a series of macro calls that
expand into EMT instructions with low bytes, indicating the routine or group of routines
to which the desired routine belongs. Often a general purpose register is designated to be
used to pass an identification code to further indicate to the trap handler which routine
is desired. For example, the macro expansion for a resume execution command in RT-11
is as follows:

.MACRO .RSUM

CM3,2 .

. ENDM

CM3 is defined:
.MACRO CM3 CHAN, CODE

MOV CODE *400,RO

.IIF NB CHAN,BISB CHAN,RO

EMT374

.ENDM

Note that the EMT low byte is 374. This is interpreted by the EMT handler to indicate a
group of routines. Then the contents of RO (high byte) is tested by the handler to identify
exactly which routine within the group is being requested .,.....in this case routine number
2. (The CM3 call of the .RSUM is set up to pass the identification code.)

10-24 Programming Techniques

10.3.12 Conversion Routines
Almost all assembly language programs require the translation of data or results from
one form to another. Code that performs such a transformation is called a conversion
routine. Several commonly used conversion routines follow.

Almost all assembly language programs involve some type of conversion routine. Octal
to-ASCII, octal-to-decimal, and decimal-to-ASCII are a few of the most widely used.

Arithmetic multiply and divide routines are fundamental to many conversion routines.
Division is typically approached in one of two ways.

1. The division can be accomplished through a combination of rotates and subtractions.

Example:

The following example uses a 3-bit word:

DIV: MOV .a, (SP) ;SET UP DIGIT COUNTER

CLR (SP) ;CLEAR RESULT

1$ ASL (SP)

ASLR1

ROLRO

CMPRO,RS

BLT2$

2$

SUBRS,RO

INC (SP)

DEC 2 (SP)

BNE$l

Therefore, to divide 7 by 2:

RO = 000

R1 = 111

R3 = 010

C bit =0

Stack

;RO CONTAINS REMAINDER

;INCREMENT RESULT

;DECREMENT COUNTER

remainder

7 (multiplicand)

2 (multiplier)

011 counter

000 quotient

Following through the coding, the quotient, remainder, and dividend all shift left,
manipulating the most significant digit first, and so on.

At the conclusion of the routine:

RO = 001

Rl = 000

R3 = 010

Stack

000

011

remainder

counter

quotient

Programming Techniques 10-25

2. The second method of division works by repeated subtraction of the powers of the divisor,
keeping a count of the number of subtractions at each level.

Example:

'1b divide 22110 by 10, first try to subtract powers of 10 until a nonnegative value is
obtained, counting the number of subtractions of each power.

221

-1000

Negative, so go to the next lower power, and count for 103 = o.

221

-100

121 count for 1()2 = 1
-100

21 count
-100

=2

Negative, so reduce power, and count for 1()2 = 2.

21
-10

-11 count for 101 = 1

11
-10

1 count = 2

-10

Negative, so count for 101 = 2.

10-26 Programming Techniques

No lower power, so remainder is 1.

Answer = 022, remainder 1.

Multiplication is also approached in one of two ways.

1. Multiplication can be done with a combination of rotates and additions.

Example:

The following example uses a 3-bit word:

ADD

CLRRO

MOV#3,CNT

MOV
R1,MULT;

MORE:

NOW;

MULT:

CNT:

;HIGH HALF OF ANSWER

;SET UP COUNTER

;MULTIPLICAND

RORR2
BCCNOW
ADD MULT,RO
;IF INDICATED,

;MULTIPLICAND

RORRO
R04R1
DECCNT
BNEMORE

o
o

The following conditions exist for 6 X 3.

RO = 000

R1 = 110

R3 = 011

After the routine is executed:

RO = 010

R1 = 010

R2 = 100

CNT=O

high-order half of result

multiplicand'

multiplier

high-order half of result

low-order half of result

2. The
sec
ond
method
of
mul-
ti-
pli-
ca-
tion
is
repet
i-
tive
ad-
di
tion.

Example:

·MULT= 110

Multiplication of RO by 508(101000).

If RO contains 7:

After execution:

MUL50:

RO = 111

RO =
100011000

Programming Techniques 10-27

MOV RO, -(SP)
ASLRO
ASLRO
ADD (SP)+,RO
ASLRO
ASLRO
ASLRO
RETURN

(78 * 50s = 430s)

ASCII Conversions- The conversion of ASCII characters to the internal representation
of a number, as well as the conversion of an internal number to ASCII in 110 operations,
presents a challenge. The following routine takes the 16-bit word in Rl and stores the
corresponding 6 ASCII characters in the buffer addressed by R2.

OUT: MOV #5,RO ;LOOP COUNT

LOOP: MOV Rl,-(SP) ;COpy WORD INTO STACK

BIC #177770,@SP ;ONE OCTAL VALUE

ADD #'O,@SP ;CONVERT TO ASCII

MOVB (SP)+, -(R2) ;STORE IN BUFFER

ASR R1 ;SHIFT

ASR R1 ;RIGHT

10-28 Programming Techniques

ASR R1 ;THREE

DEC RO ;TEST IF DONE

BNE LOOP ;NO, DO IT AGAIN

BIC '177776,R1 ;GET LAST BIT

ADD 1f0,R1 ;CONVERT TO ASCII

MOVB R5, -{R2) ;STORE IN BUFFER

RTS PC ;DONE, RETURN

10.4 Programming the Processor Status Word
The current processor status can be read and written using several programming
techniques on the PSw. The PSW has an 110 address of 17777776. The KDJ11-E
and other PDP-II processots implement this address, whereas LSI-II and LSI-1li2
processors do not. One technique is to use the 110 address as a source or destination
address with any instruction.

CLR @'17777776
MOV @'17777776, RO

The first instruction clears the PSW and the second instruction moves the contents of the
PSW to general register o.

The PSW explicit address (17 777 776) can be accessed on a word or byte basis. The
KDJ11-E recognizes the PSW odd address (17 777 777) and the access result is identical
to an odd memory address reference.

Another technique is to use the two dedicated PSW instructions, MTPS and MFPS. These
instructions only reference the even byte. If memory management is enabled, certain
PSW bits are protected.

10.5 Programming Peripherals
Programming LSI-II bus compatible modules (devices) is simple. A special class of
instructions that deals with 110 operations is unnecessary. The bus structure permits
a unified addressing structure in which control, status, and data registers for devices
are directly addressed as memory locations. Therefore, all operations on these registers
(such as information transfer and data manipulation) are performed by normal memory
reference instructions.

The use of all memory reference instructions on device registers greatly increases the
flexibility of 110 programming. For example, information in a device register can be
compared directly with a value and a branch made on the result.

CMP RBUF, .101
BEQSERVICE

In this case, the program looks for 101 in the DLV11 receiver data buffer register
(RBUF) and branches if it finds it. There is no need to transfer the information into
an intermediate register for comparison.

Programming Techniques 10-29

When the character is of interest, a memory reference instruction can transfer
the character into a user buffer in memory or to another peripheral device. The
instruction MOV DRINBUF LOC transfers a character from the DRV11 data input
buffer (DRINBUF) into a user-defined location.

All arithmetic operations can be performed on a peripheral device register. For example,
the instruction ADD #10, DROUT BUF adds 10 to the DRV11 output buffer. All read
/write device registers can be treated as accumulators. There is no need to funnel all
data transfers, arithmetic operations, and comparisons through one or a small number of
accumulator registers.

10.6 PDP-11 Programming Examples
The programming examples that follow show how the instruction set, addressing modes,
and programming techniques can be used to solve some simple problems. The format
used is MACR0-11.

Program Program Op
Address Counter Label Code Operand Comments

;PROGRAMMING EXAMPLE
;SUBTRACT CONTENTS OF LOCS 700-
710
;FROM CONTENTS OF LOCS 1000-1010

000000 RO=%O

000001 Rl=%l

000002 R2=%2

000003 R3=%3

000004 R4=%4

000005 R5=%5

000006 SP=%6

000007 PC=%7

000500 .=500

000500 012706 START: MOV .#.,SP ;INIT STACK POINTER

000500

000504 012701 MOV #700,Rl

000700

000510 012702 MOV #712,R2

000712

000514 012703 MOV #1000,R3

001000

10-30 Programming Techniques

. Program Program Op
Address Counter Label Code Operand Comments

OQ0520 012704 MOV #1012,R4

001012

000524 005000 CLR RO

000526 005005 CLR R5

000430 062105 SUM1: ADD (R1)+,R5 ;START ADDING

000532 020102 CMP R1,R2 ;FINISHED ADDING?

000534 001375 BNE SUM 1 ;IF NOT BRANCH BACK

000536 062300 SUM2: ADD (R3)+,RO ;START ADDING

000540 020304 CMP RS,R4 ;FINISHED ADDING?

000542 001375 BNE SUM2 ;IF NOT BRANCH BACK

000544 160500 DIFF: SUB R5,RO ;SUBTRACT RESULTS

000546 000000 HALT ;THAT'S ALL FOLKS

000700 .=700

000700 000001 WORD 1,2,3,4,5

000702 000002

000704 000003

000706 000004

000710 000005

001000 .=1000

001000 000004 WORD 4,5,6,7,8

001002 000005

001004 000006

001006 000007

001010 000010

000500 END

Programming Techniques 10-31

Program. Program Op
Address Counter Label Code Operand Comments

START:

CHECK:

BPL
NEXT

INC
RO

NEXm

BNE
CHECK

HALT

VALUES:O

.END

RO=%O
Rl=%l
R2=%2
SP=%6
PC=%7

.=500

MOV'.,SP

MOV .VALUE,Rl

MOV
'VALUES+40.,R2

CLRRO

TST(Rl)+

CMP Rl,R2

;PROGRAM TO COUNT NEGATIVE
NUMBERS
;IN A TABLE
;20. SIGNED WORDS
;BEGINNING AT LOC VALUES
;COUNT HOW MANY ARE NEGATIVE
INRO

;SET UP STACK

;SET UP POINTER

;SET UP COUNTER

;TEST NUMBER

;POSITIVE?

;NO, INCREMENT
;COUNTER

;YES, FINISHED?

;NO, GO BACK

;YES, STOP

10-32 Programming Techniques

Program. Program Op
Address Counter Label Code Operand Comments

START:

CHECK:

NO:

RO=9bO
Rl=,*,l
R2=9b2
RS.9bS
SP.tH
PC-9b7

.-500

MOV'.,SP

MOV'16.,R1

MOV
'SCORES,R2

MOV
'AVERAGE,RS

CLRRO

CMP (R2)+,(RS)

BLENO

INCRO

DECR1

BNECHECK

HALT

AVERAGE:65.

;PROGRAM TO COUNT ABOVE
AVERAGE QUIZ SCORES
;LIST OF 16. QUIZ SCORES
;BEGINNING AT LOC SCORES
;KNOWN AVERAGE IN LOC AVERAGE
;COUNT IN RO SCORES ABOVE
AVERAGE

;SET UP STACK

;SET UP COUNTER

;SET UP POINTER

;COMPARE SCORE AND AVERAGE

;LESS THAN OR EQUAL
;TO AVERAGE?

;NO, COUNT

;YES, DECREMENT COUNTER

;FINISHED? NO, CHECK

;YES, STOP

SCORES· 25.,70.,100.,60.,80.,80.,40.

55.,75.,100.,65.,90.,70.,65.,70 .

. END

Program Program
Address Counter Label

START:

MOV

MOV

IN:

ECHO:

BPL

MOVB

MOVB

DEC

BNE

MOV

Programming Techniques 1 Q-33

Op
Code Operand Comments

RO=%O
Rl=%1
SP=%6
CR=15
LF=12
TKS=177560

TKB=TKS+2

TPS=TKB+2

TPB=TPS+2

.TITLE
ECHO

.=1000

MOV #.,SP

#SAVE+2,RO

#20.,Rl

TSTB @#TKS
BPL

IN

TSTB @#TPS

ECHO

@#TKB,@#TPB

@#TKB,(RO)+

Rl

IN

#SAVE,RO

;PROGRAMMING EXAMPLE
;ACCEPT (IMMEDIATE ECHO) AND
;STORE 20. CHARS
;FROM THE KEYBOARD, OUTPUT CR
&LF
;ECHO ENTIRE STRING FROM
STORAGE

;INITIALIZE STACK POINTER

;SA OF BUFFER
;BEYOND CR & LF

;CHARACTER COUNT

;CHAR IN BUFFER?
;IF NOT BRANCH BACK
;ANDWAIT

;CHECK TELEPRINTER
;READY STATUS

;ECHO CHARACTER

;STORE CHARACTER AWAY

;FINISHED INPUTTING?

;SA OF BUFFER INCLUDING
;CR&LF

10-34 Programming Techniques

. Program Program Op
Address Counter Label Code Operand Comments

MOV 122.,Rl ;COUNTER OF BUFFER
;INCLUDING CR & LF

OUT: TSTB @#TPS ;CHECK TELEPRINTER
;READY STATUS

BPL OUT

MOVB (RO)+,@lTPB ;OUTPUT CHARACTER

DEC Rl

BNE OUT ;FINISHED OUTPUTTING?

HALT

SAVE: .BYTE CR,LF

.=.+20,

.END

Program Program
Address Counter Label

Op
Code Operand Comment.

INPUT: MOV

IN:

OUT:

IBUFFER,RO

MOV I -lO.,Rl

TSTB@#TKS

BPLIN

TSTB@#TPS

BPLOUT

MOVB
@#TKB,@ITPB

MOVB
@#TKB,(RO)+

INCRl

BNEIN

RTSPC

;PROGRAMMING EXAMPLE
;SUBROUTINE TO INPUT TEN VALUES

;SETUPSAOF
;STORAGE BUFFER

;SET UP COUNTER

;TEST KYBD READY STATUS

;TEST TOO READY STATUS

;ECHO CHARACTER

;STORE CHARACTER

;INC COUNTER

;EXIT

Programming Techniques 10-35

Op Program Program.
Address Counter Label Code Ope~d Comments

SORT: MOV , -10.,R4

;PROGRAMMING EXAMPLE
;SUBROUTINE TO SORT TEN VALUES

NEXT: MOV COUNT,R3

MOV 'BUFFER+9.,RO

ADDR3,RO

MOVB (RO)+,R1

LOOP: CMPB (RO)+,R1

BGEGT

LT: MOVB -{RO),R2

MOVB R1,(RO)+

MOVR2,R1

GT: INC R3

BNELOOP

INSERT: MOVB R1,BUFFER+10.(R4)

INCR4

INC COUNT

BNENEXT

MOV'-
9.,COUNT

RTSPC

COUNT: .WORD -9.

;RESTORE LOCATION COUNT

;EXIT

LINE1: .ANCIIIINPUT ANY TEN SINGLE-DIGIT VALUES (0-9);PW
.ASCIYSORT AND OUTPUT THEM INI

LINE2: .ASCIYSMALLEST TO LARGEST ORDER)

BUFFER: .=.+10.

.ENDINITSP ;FINISHED!!!

Program Program
Address Counter Label

Op
Code Operand Comments

;PROGRAMMING EXAMPLE
;SUBROUTINE EXAMPLE
;INPUT TEN VALUES, SORT, AND
;OUTPUT THEM IN SMALLEST TO
LARGEST ORDER

10-36 Programming Techniques

Program Propam
Address Counter Label

INITSP:

Program Propam
Address Counter Label

Op
Code Operand Comments

RO=~O
R1~1
R2=~2
RS.~3
R4=9b4
RS=~5
SP=%6
PC=~7
TKS=177560
(address oftenninal control status register)
TKB=TKS+2 - (terminal data buffer register)
TPS=TKB+2 - (terminal output control and status registers)
TPB=TPS+2 - (terminal output data buffer)

.=3000

MOVt.,SP ;INITIALIZE STACK POINTER

JSRPC,CRLF ;00 TO CRLF SUBROUTINE

JSR RS, OUTPUT ;00 TO OUTPUT SUBROUTINE

LINE 1 ;SA OF LINE 1 BUFFER

69. ;NUMBER OF OUTPUTS

JSRPC,CRLF ;00 TO CRLF SUBROUTINE

JSR R5,OUTPUT ;00 TO OUTPUT SUBROUTINE

LINE2 ;SA OF LINE 2 BUFFER

26. ;NUMBER OF OUTPUTS

JSRPC,CRLF ;00 TO CRLF SUBROUTINE

JSR PC,INPUT ;00 TO INPUT SUBROUTINE

JSRPC,SORT ;00 TO SORT SUBROUTINE

JSRPC,CRLF ;00 TO CRLF SUBROUTINE

JSR R5,OUTPUT ;00 TO OUTPUT SUBROUTINE

BUFFER ;INPUT BUFFER AREA

10. ;NUMBER OF OUTPUTS

JSRPC,CRLF

HALT ;THE END!!!

Op
Code Operand Comment!!

;PROGRAMMING EXAMPLE
;SUBROUTINE TO OUTPUT A CR " LF

CRLF: TSTB @#TPS

BPLCRLF

;TEST TOO READY STATUS

Programming Techniques 10-37

Program Program
Address Counter Label

Op
Code Operand Comments

MOVB
#15,@#TPB

LNFD: TSTB @#TPS

BPLLNFD

MOVB
#12,@#TPB

RTSPC

OUTPUT: MOV (R5)+,RO

MOV (R5)+,R1

NEGR1

AGAIN: TSTB @#TPS

BPLAGAIN

MOVB (RO)+,@#TPB

INCR1

BNEAGAIN

RTSR5

;OUTPUT CARRIAGE RETURN

;TEST TTO READY STATUS

;OUTPUT LINE FEED

;EXIT

;SUBROUTINE TO OUTPUT A
;VARIABLE LENGTH MESSAGE

;PICK UP SA OF DATA BLOCK

;PICK UP NUMBER OF OUTPUTS

;NEGATE IT

;TEST TTO READY STATUS

;OUTPUT CHARACTER

;BUMP COUNTER

10.7 Looping Techniques
Looping techniques are illustrated in the program segments that follow. The segments
are used to clear a 50-word table.

LOOP:

1. Autoincrement (pointer address in general purpose register)

2.

RO=%O
MOVE #TBL,RO

CLR(RO)+
CMP RO,#TBL+100.
BNELOOP

Autodecrement (pointer and limit values in general purpose register)

10-38 Programming Techniques

LOOP:

3.

LOOP:

4.

LOOP:

5.

LOOP:

6.

LOOP:

RO=%O
Rl=%l
MOV#TBL,RO
MOV #TBL+lOO.,Rl

CLR-(Rl)
CMPRl,RO
BNELOOP

Counter (decrementing a general purpose register containing count)

RO=%O
Rl=%l
MOV#TBL,RO
MOV#50.,Rl

CLR(RO)+
DEeRl
BNELOOP

Index Register Modification (indexed mode, modifying index value)

RO=%O
CLRRO

CLRTBL(RO)
ADD#2,RO
CMP RO,#100.
BNELOOP

Faster Index Register Modification (storing values in general purpose register)

RO=%O
Rl=%l
R2=%2
MOV#2,Rl
MOV #100.,R2
CLRRO

CLRTBL (RO)
ADD Rl,RO
CMPRO,R2
BNE LOOP

Address Modification (indexed mode, modifying base address)

RO=%O
MOV#TBL,RO

CLR'O(RO)
ADD #2,LOOP+2
eMP LOOP+2,#100.
BNELOOP

A
Setup Parameters Worksheet

Two worksheets for each mode (video terminal or hardcopy) are provided for you to
record the original setup parameter selections and the new setup parameters selections
contained in the EEPROM of the KDJII-E CPU module:

• Fill out the original worksheet when you install a KDJII-E CPU module.

• Fill out the new worksheet when you change the parameter selections.

The information on these worksheets is used for programming any future replacement
KDJII-E CPU module.

Leave the worksheets with the system for future use.

Refer to Chapter 4 for more information on setup.

A-1

A-2 Setup Parameters Worksheet

A.1 Original Setup Menu Worksheet - Video Terminal suppon

KDJ11-E Monitor Version 1.06

Licensed to Digital Equipment
Corporation

Unibus System

Memory

EEprom

Time

Boot Dev. Unit Address

1

2

3

4

5

6

Lines Address / Vec Baud

Line 1 /

Line 2 /

Line 3 /

Line 4 /

Line 5 /

Line 6 /

Line 7 /

Disable UBA ROM .Yes/No

Enable USA lS-Bit Mode Yes/No

Memory Intern

Rom on 173000

Rom on 165000

Power up Mode

Restart Mode

Power-on Self-tests

Do not change

Yes/No

Yes/No

Rom/Auto/ODT/Trap 24

Rom/Auto/ODT/Trap 24

Yes/No

Select Self-tests Edit

User Boot Edit

Alternate Boot Block Yes/No

LTC Register Yes/No

Force Clock Interrupt Yes/No

Clock Frequency PS/50Hz/60Hz/SOOHz

Halt on Break Yes/No

Trap on Halt Yes/No

Ignore Battery Yes/No

Lines on 176500/176600/DIS

Data Stop Par

Setup Parameters Worksheet A-3

A.2 New Setup Menu Worksheet - Video Terminal Support
KDJ11-E Monitor Version 1.06

Licensed to Digital Equipment
Corporation

Unibus System

Memory

EEprom

Time

Boot Dev. Unit Address

1

2

3

4

5

6

Lines Address / Vee Baud

Line 1 /

Line 2 /

Line 3 /

Line 4 /

Line 5 /

Line 6 /

Line 7 /

Disable UBA ROM

Enable UBA 18-Bit Mode

Memory Intern

Rom on 173000

Rom on 165000

Power up Mode

Restart Mode

Power-on Self-tests

Select Self-tests

User Boot

Alternate Boot Block

LTC Register

Force Clock Interrupt

Clock Frequency

Halt on Break

Trap on Halt

Ignore Battery

Lines on

Data Stop Par

Yes/No

Yes/No

Do not change

Yes/No

Yes/No

Rom/Auto/ODT/Trap

Rom/Auto/ODT/Trap

Yes/No

Edit

Edit

Yes/No

Yes/No

Yes/No

PS/50Hz/60Hz/800Hz

Yes/No

Yes/No

Yes/No

176500/176600/DIS

24

24

A-4 Setup Parameters Worksheet

A.3 Original Worksheet - Hard Copy Printer suppon
KDJ11-E Monitor Version 1.06 30-July-1990
(C) Digital Equipment Corporation 1990

A Memory Intern (0) - 2MB (1) - 4MB

B Rom on 173000 (0) - No (1) - Yes

C Rom on 165000 (0) - No (1) - Yes

D Power-up Mode (0) - Dialog
(1) - Odt
(2) - Trap24
(3) - Auto

E Restart Mode (0) - Dialog
(1) - Odt
(2) - Trap24
(3) - Auto

F Power-on Self-tests (0) - No (1) - Yes

G Alternate Boot Block (0) - No (1) - Yes

H LTC Register (0) - No (1) - Yes

I Force Clock Interrupt (0) - No (1) - Yes

J Clock Frequency (0) - PIS
(1) - 50Hz
(2) - 60Hz
(3) - 800Hz

K Halt on Break (0) - No (1) - Yes

L Trap on Halt (0) - No (1) - Yes

M Ignore Battery (0) - No (1) - Yes

N Lines on (0) - DIS
(1) - 176500
(2) - 176600

0 Disable USA ,ROM (0) - No (1) - Yes

P Enable USA la-Bit Mode (0) - No (1) - Yes

Setup Parameters Worksheet A-5

A.4 New Worksheet - Hard Copy Printer Support
KDJ11-E Monitor Version 1.06 30-July-1990
(C) Digital Equipment Corporation 1990

A Memory Intern

B Rom on 173000

C Rom on 165000

D Power-up Mode

E Restart Mode

F Power-on Self-tests

G Alternate Boot Block

H LTC Register

I Force Clock Interrupt

J Clock Frequency

K Halt on Break

L Trap on Halt

M Ignore Battery

N Lines on

0 Disable USA ROM

P Enable USA 18-Bit Mode

(0) - 2MB

(0) - No

(0) - No

(0) - Dialoq
(1) - Odt
(2) - Trap24
(3) - Auto

(0) - Dialoq
(1) - Odt
(2) - Trap24
(3) - Auto

(0) - No

(0) - No

(0) - No

(0) - No

(0) - PIS
(1) - 50Hz
(2) - 60Hz
(3) - 800Hz

(0) - No

(0) - No

(0) - No

(0) - DIS
(1) - 176500
(2) - 176600

(0) - No

(0) - No

(1) - 4MB

(1) - Yes

(1) - Yes

(1) - Yes

(1) - Yes

(1) - Yes

(1) - Yes

(1) - Yes

(1) - Yes

(1) - Yes

(1) - Yes

(1) - Yes

A
ABSF instruction, 9-11
Absolute addressing mode, 7-18
AC bus loads definition, 5-24
ADC instruction, 8-25
ADDF instruction, 9-12
ADD instruction, 8-32
Addressing errors, 1-11
Addressing modes, 7-1
Address specification

entering octal digits, 3-7
KDJ11-E, 3--6
ODT timeout, 3-7
processor 110 addresses, 3-6
stack pointer selection, 3-7

ASHe instruction, 8--35
ASH instruction, 8-34
ASL instruction, 8-19
ASR instruction, 8-19
Autodecrement-deferred, 7-13
Autodecrement mode, 7-9
Autoincrement-deferred, 7-13
Autoincrement mode, 7-7

B
Baud rate selection, 2-6
BCC instruction, 8--46
BCS instruction, 8--46
BEQ instruction, .8-44
BGE instruction, 8-48
BGT instruction, 8-49
BHI instruction, 8-50
BHIS instruction, 8-51
BIC instruction, 8-38
BIS instruction, 8--39
BIT instruction, 8--37
BLE instruction, 8--49
BLO instruction, 8-51
BLOS instruction, 8--50
BLT instruction, 8--48
BMI instruction, 8--45
BNE instruction, 8--43
Boolean symbols, 9-10
Boot and diagnostic register set, 1-41
Boot command, 4-3

BPL instruction, 8-44
BPT instruction, 8-58
Branches, 8-41
BR instruction, 8-42
Bus cycle

DATI, 5-5
DATIO(B), 5-9
DATO(B), 5-7
PMI block data in, 6-9

Index

PMI data in/data in pause, 6-8
PMI data out/data out byte, 6-11
protocol, 5-4

Bus cycles
data transfer, 5-3

Bus device interrupt, 1-32
Bus device NPR, 1-32
Bus master, 5-2
Bus termination - KDJll-E, 5-25
Bus timeout errors, 1-11
BVC instruction, 8-45
Byte instructions, 8--8

C
CFCC instruction, 9-13
Clearing status registers following abort,

1-25
CLRF instruction, 9-13
CLR instruction, 8-13
CMPF instruction, 9-14
CMP instruction, 8-31
code

Position independent, 10-1
Use of addressing modes in

the construction of position
independent code, 10-1

Code
Comparison of position dependent and

position independent code, 10-3
COM instruction, 8-14
Command

diagnostic, 4-5
help, 4-8
list, 4-9
map, 4-10
setup, 4-11

Commands
TOY (hard copy), 4-35

Index 1

2 Index

Conditional branches (signed), 8-47
Conditional branches (unsigned), 8-50
Condi tion code operators, 8-69
Configuring multiple-backplane systems,

. 5-29
Configuring single-backplane systems,

5-29
Console ODT, 3-1

/ (ANSI 057)-slash, 3-3
$ (ASCII 044) or R (ASCII 122), 3-4
command set, 3-2
<CR> (ASCII 15)--carriage return, 3-3
<CTRL><SHIFT>S(ASCII 23)-binary

dump, 3-6
G (ASCII 107)-go, 3-5
<LF> (ASCII 12)-line feed, 3-4
P (ASCII 120)- proceed, 3-5
S (ASCII 123)-processor status word

designator, 3-4
ConsoleiSLU enable - disable, 2-7
Construction of a physical address 1-15
Control; functions '

external event interrupt request 5-23
Control functions '

DC power OK, 5-22
Initialization, 5-22
power-ok, 5-22
power status, 5-22
processor halt, 5-22

Conversion routines, 10-24
Coroutine

coroutine calls, 10--16
coroutines versus subroutines. 10--16
using coroutines, 10--17

Coroutines, 10--15
CPU error register, 1-7
CPU module

troubleshooting, 4-63
CSM instruction, 8-63

D
DATI bus cycle, 5-5
DC bus load definition, 5-24
DCJII-A microprocessor features 1-2
Decrement instruction, 8-15 '
DECXll, 4-46
Deferred (indirect)addressing 7-13
Destination operand, 7-2 '
Device priority, 5-17
Diagnostic programs, 4--45
Direct addressing, 7-4
DIVF instruction, 9-15
DIV instruction, 8-36
DMA

Direct Memory Access
Direct Memory Access 'lransaction,

5-12
double-operand addressing, 7-3
Double-operand instruction

format
ADD, 8-32

Double-operand instruction
format (Cont.)

ASH, 8-34
ASHC, 8-35
BIC,BICB, 8-38
BIS,BISB, 8-39
BIT,BITB, 8-37
CMP,CMPB, 8-31
DIV, 8-36
MOV,MOVB,8-30
MUL,8-36
SUB, 8-33
XOR, 8-40

Double-operand instruction set
list

E

condition code operators, 8-12
general, 8-10
jump and subroutine, 8-11
logical, 8-10
miscellaneous instruction set 8-12
miscellaneous program contr~l,

8-12
program control, 8-10
signed conditional branch, 8-11
trap and interrupt, 8-11
unsigned conditional branch, 8-11

EEPROM configuration parameters 2-7
EMT instruction, 8-57 •
Error detection

during boot command, 4-5
Error messages. 4-60

console terminal, 4-46

F
Floating exception code and addressing

registers, 9-6
Floating-point data, 9-2
Floating-point data formats, 9-1

formats
Floating-point data, 9-2
Floating-point data formats, 9-1
Floating point zero, 9-1
Nonvanishing floating-point

numbers, 9-1
Undefined variables, 9-2

Floating-point instruction
Format

ABSF/ABSD, 9-11
ADDF/ADDD, 9-12
CFCC, 9-13
CLRF/CLRD, 9-13
CMPF/CMPD, 9-14
DIVFIDIVD, 9-15
LDCDFILDCFD, 9-16
LDCIFILDCIDILDCLFILDCLD,

9-17
LDEXP, 9--18
LDFILDD, 9-19

Floating-point instruction
Fonnat (Cont.)

LDFPS, 9-19
MODFIMODD, 9-20
MULFIMULD, 9-22
NEGFINEGD, 9-23
SETD, 9-23
SETF, 9-24
SETI, 9-24
SETL, 9-24
STCFD/STCDF, 9-25
STCFIISTCFUSTCDIISTCDL,

. 9-26
STEXP, 9-27
STFPS, 9-28
STF/STD, 9-27
STST, 9-28
SUBF/SUBD, 9-29
TSTFITSTD, 9-30

Float~ng-po~nt instruction addressing, 9-7
FloatIng-pOInt status register (FPS) 9-2
Floating-point zero, 9-1 '
Force dialog mode, 2-6
Formats

types of
Floating-point data formats, 9-1

to 9-2
FPJ11, 1-1

G
General registers, 1-4

H
HALT instruction, 8-65
Hard copy commands

TOY, 4-35
Hard copy tenninal support, 4-2

Immediate mode, 7-17
INC instruction, 8-15
Index-deferred, 7-14
Index-mode, 7-11
Instruction fonnats, 8-4
Instructions

types of
double-operand, 8-30 to 8-40
Floating point, 9-9 to 9-30
miscellaneous, 8-65 to 8-68
Program control, 8-41 to 8-63
single-operand, 8-13 to 8-29

Instruction set
functional list of

double-operand, 8-10 to 8-12
single-operand, 8-9

Instruction set list, 8-1
Interrupt

nesting, 10-13

Index 3

Interrupt (Cont.)
service routines, 10-12

Interrupt protocol, 5-17
Interrupts, 1-8, 5-16, 10-12
Interrupts under memory management,

1-15
Interrupt vector timeouts 1-11
lOT instruction, 8-59 '

J
JMP instruction, 8-52
JSR instruction, 8-53
Jump and subroutine instructions, 8-52
Jumpers for +5 V power source selection

2-3 '

K
KDJ11-E

troubleshooting, 4-63
KDJ11-E CPU Module

troubleshooting, 4-63
KDJ11-E module features, 1-1
KDJ11-E serial line units, 1-33
Kernel protection, 1-4

L
LDCDF instruction, 9-16
LDCIF instruction, 9-17
LDEXP instruction, 9-18
LDF instruction, 9-19
LDFPS instruction, 9-19
Looping techniques, 10-37
LSI-II based systems, 2-8
LSI-II bus, 5-1
LSI bus signals, 6-2

M
Mapping, 16-bit, 1-12
Mapping, 18-Bit, 1-13
Mapping, 22-hit, 1-13
MARK instruction, 8-61
Memory management, 1-11

types of
registers, 1-17 to 1-24

Memory management register
Memory management register 0, 1-22
Memory management register 1, 1-23
Memory management register 2, 1-24
Memory management register 3, 1-24
Memory management registers, 1-17
Page address register, 1-20
Page descriptor register, 1-21

Memory mapping, 1-12
Memory pages - nonconsecutive, 1-27
Memory pages - stack, 1-28
Memory page - typical, 1-25
Menu

4 Index

Menu (Cont.)
map) 4-45
self-test) 4-42
setup) 4-36
user boot) 4-43

MFPD instruction) 8-68
MFPS instruction, 8-28
MFPl' instruction, 8-67
MODF instruction, 9-20
Module finger identificatioDt 2-9
Module installation procedure, 2-16
MOV instruction, 8-30
MTPD instruction, 8-67
MTPS instruction) 8-29
MULF instruction, 9-22
MUL instruction, 8-36
Multiple faults, 1-25
Multiple-precision, 8-24

N
NEGF instruction) 9-23
NEG instruction, 8-16
Nonvanishing floating-point numbers, 9-1
No SACK timeouts, 1-11

o
ODT

console command set, 3-2
entry conditions, 3-1
timeout, 3-7

Operation overview, 4-1

P
PMI

bus master signals) 6-1
interface, 6-1
interrupt protocol, 6-13
power-uplpower-down, 6-13
slave signals, 6-1
UNffiUS adapter signals) 6-1

PMI data transfers, 1-32, 6-8
PMI operation

in an LSI-II system, 6-5
in a UNffiUS system, 6-5

PMI protocol, 1-32
Position-independent, 7-17
Power supply loading, 5-31
Private memory interconnect, 1-32
Processor status word, 1-5
Processor traps, 10-21

trap instructions) 10-22
use of macro calls, 10-23

Program control instruction
format

BCC,8-46
BCS, 8-46
BEQ, 8-44
BGE, 8-48

Program control instruction
format (Cont.)

BOT, 8-49
BBI, 8-50·
BBIS, 8-51
BLE, 8-49
BLO, 8-51
BLOS,8-50
BLT, 8-48
BMI) 8-45
BNE,8-43
BPL) 8-44
BPl',8-58
B~ 8-42
BVC, 8-45
CSM, 8-63
EMT, 8-57
HALT) 8-65
lOT) 8-59
JMP,8-52
JS~ 8-53
MARK, 8-61
MFPD,MFPI, 8-68
MFPl') 8-67
MTPD,MTPI, 8-67
RESET, 8-66
RTI, 8-59
RTS, 8-55
RTT) 8-60
SOB, 8-56
SPL, 8-62
Trap, 8-58
WAIT, 8-66

Program controls (miscellaneous), 8-61
Program counter) 1-5
Program interrupt request register, 1-7
Programming

PDP-II examples, 10-29
peripherals, 10-28
the processor status word, 10-28

PSWoperators, 8-28

R
Recursion) 10-19
Red stack aborts, 1-11
Reentrancy, 10-13
Reentrant

reentrant code, 10-14
writing reentrant code, 10-15

Register - additional status (17777526),
1-46

Register - cache control (17777746), 1-30
Register - configuration and display

(17777524), 1-45 .
Register - control/status (17777520), 1-42
Register-deferred, 7-13
Register - hit/miss (17777752), 1-31
Register - line frequency clock and status

(17777546), 1-47 •
Register - Maintenance (17777750), 1-48

Register - memory system error
(17777744), 1-29

Register-mode, 7-5
Register - page address, 1-20
Register - page control (17777522), 1-44
Register - parity CSR (17772100), 1-31
Register - receiver data buffer (1777xxx2),

1--37
Register - receiver status register

(1777xxxO), 1--36
Register - transmitter data buffer

(177xxx6), 1--39
Register - transmitter status (1777xxx4),

1--38
Relative-addressing mode, 7-19
Relative-deferred addressing mode, 7-20
RESET instruction, 8-66'
Restricted LSI-II systems, 2-8
ROL instruction, 8-22
ROM, 4-1
ROM mode, 2-6
ROR instruction, 8-21
RTI instruction, 8-59
RTS instruction, 8-55
RTT instruction, 8-60

S
SBC instruction, 8-26
Self-test

KDJl1-E, 4-46
SETD instruction, 9-23
SETF instruction, 9-24
SETI instruction, 9-24
SETL instruction, 9-24
Setup

worksheet, A-I
Setup mode

command 10 - load EEPROM boot
program into memory, 4-31

command 11 - edit or create EEPROM
boot program, 4-31

command 12 - save a boot program in
the EEPROM, 4-33

command 13 - delete a saved EEPROM
boot program, 4-34

command 14 - enter ROM ODT, 4-34
command 1 - exit, 4-12
command 2 - select configuration

parameters, 4-12
command 3 - select diagnostic

configuration, 4-21
command 4 - select serial line

parameters, 4-23
command 5 - select boot parameters,

4-25
command 6 - list available boot

programs, 4-27
command 7 - factory setting, 4-29
command 8 - save the setup table in

the EEPROM, 4-30

Index 5

Setup mode (Cont.)
command 9 - load EEPROM data into

the setup table, 4-30
Shifts and rotates, 8-19
Single-operand addressing, 7-2
Single-operand instruction

format
ADC,ADCB, 8-25
ASL,ASLB, 8-19
ASR,ASRB, 8-19
CLR,CLRB, 8-13
COM, COMB, 8-14
DEC,DECB, 8-15
INC,INCB, 8-15
MFPS, 8-28
MTPS, 8-29
NEG,NEGB, 8-16
ROL,ROLB, 8-22
ROR,RORB, 8-21
SBC,SBCB, 8-26
SWAB, 8-23
SXT, 8-27
TST,TSTB, 8-17
TSTSET, 8-18
WRTLCK, 8-18

Single-operand instruction set
list

general, 8-9
multiple-precision, 8-9
PSW operators, 8-9
shift and rotate, ~

SOB instruction, 8-56
Source-operand, 7-3
Specification

signal level, 5-24
SPL instruction, 8-62
Stack

deleting items from a stack, 10-7
popping from a stack, 10-6
pushing onto a stack, 10-5
return from a subroutine, 10-11
stack use (examples), 10-9
stack uses, 10-8
subroutine linkage, 10-11

Stack limit protection, 1-4
Stack pointer, 1-4
Stacks, 10-5
STCFD instruction, 9-25
STCFI instruction, 9-26
STEXP instruction, 9-27
STF instruction, 9-27
STFPS instruction, 9-28
STST instruction, 9-28
SUBF instruction, 9-29
SUB instruction, 8-33
Sunset loops, 1-10
SWAB instruction, 8-23
Switchpack, 2-3
SXT instruction, 8-27

6 Index

T
~rminal interface, 3-1
'Thrms used in instruction definitions,

9-10
TOY Clock

programming information, 1-50
Time of Year, 1-49

TOY command
hard copy, 4-35

Transfer - bloclt data in, 1-33
Transfer - Data inlData in pause, 1-33
Transfer - data out/data out byte, 1-33
Transfening control to non-digital boot

modules (Q-bus), 4-4
Transfening control to non-digital boot

modules (UNIBUS), 4-4
Trap instruction, 8-58
Traps, 8-56

Reserved Instruction traps
trace traps, 8-63

Troubleshooting
CPU module, 4-63

TSTF instruction, 9-30
TST instruction, 8-17
TSTSET instruction, 8-18

U
Undefined variables, 9-2
UNIBUS based systems, 2-9

V
Virtual addressing, 1-14

W
WAIT instruction, 8-66
WRTLCK instruction, 8-18

X
XOR instruction, 8-40

