
Document Number:

Document Name:

Date:

Maintainer:

DEC-ll-LBACA-D-DN2

Change Notice to
BASIC/RTll Language
Reference Manual

May, 1975

Software Documentation

First Printing, May 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @ 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DEC COMM GLC-8 OS/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

ii

PREFACE

This document is a change notice to the BASIC/RT-11 Language Reference

Manual (DEC-11-LBACA-D-D). Appendix H was omitted from the manual and

is included in this change notice. Pages 5-27, 7-3, 8-8, 8-17, 9-3, E-3,

F-2, F-5, I-6, J-2, and J-3 contained technical errors which have been

fixed in this notice.

All changes are marked by bars in the outer margin and the date of the

change in the lower left hand corner. Any previous change bars on a

revised page have been deleted.

Insert APPENDIX H after APPENDIX G. The pages:

5-27

7-3/7-4

8-7/8-8

8-17

9-3/9-4

E-3/E-4

F-1/F-2

F-5

I-5/I-6

J-l/J-2

J-3/J-4

replace the equivalent pages in the BASIC/RT-11 Language Reference

Manual.

May, 1975 iii

The program in memory is now:

10 DIM A(lOO)
20 FOR I = 0 TO 100
30 LET A(I) = SQR(I)
40 NEXT I
50 DEF FNS(I) = SQR (A(I))
60 OPEN "LP:" AS FILE #1

100 PRINT #1: "FIRST OVERLAY"
110 FOR J = 1 TO 100
120 PRINT #1: FNS (J) I

130 NEXT J
140 STOP
900 OVERLAY "OVl"
910 GO TO 100

Control now passes to statement 910, which is the first statement fol
lowing statement 900 in the merged program.

Execution at statement 100 causes

"FIRST OVERLAY"

to be printed, followed by the fourth roots of the numbers from 0 to
100.

Finally, "STOP AT LINE 140" is output at the terminal.

An overlay statement executed in the immediate mode (without a line
number) will act like an OLD command, except that the program cur
rently in core is not scratched. Instead, the program lines in the
specified file will be edited into the program, just as if they were
typed in via the console.

A very useful application of this feature is when the BASIC programmer
has a "library" of GOSUB subroutines to edit into his program. The
procedure is as follows.

Type in the BASIC program as if there were subroutines at specific
(high) statement numbers such as 1000, 2000, etc. Then SAVE the pro
gram. The next step is to resequence the required library routines
using th~ BASIC program RESEQ (see Chapter 10) so that they begin at
the correct statement numbers. Then read in the saved program again
with the OLD command. Finally, edit in the subroutines with immediate
mode OVERLAY statements such as

OVERLAY "SUB!"
OVERLAY "SUB2"

Finally, a REPLACE command will update the saved program.

May, 1975

NOTE

Execution of the OVERLAY statement may
cause the data pointer to change. Any
program employing both the OVERLAY and
DATA statements should have a RESTORE
statement executed after the OVERLAY
statement. This will cause the data
pointer to be at the start of the first
DATA statement in the merged program.
The OVERLAY statement changes the data
pointer only in versions of BASIC/RT-11
before version lB.

5-27

7.2 OLD COMMAND

The OLD connnand (OLD) erases the contents of the storage area (SCRATCH
and CLEAR) and inputs the program via the specified device.

The form of the connnand is:

OLD 11 dev:filnam.ext 11

If the file descriptor (dev:filnam.ext) is not specified as part of the
OLD connnand, BASIC prints:

OLD FILE NAME--

and waits for the file description and the return key. Type the name
of the file containing the BASIC program {do not enclose the filename
in quotation marks). If a filename is not entered, BASIC assumes the
name NONAME.

In the examples of OLD connnands that follow, the computer printout is
underlined

OLD
OLD FILE NAME--TESTl

clears user area and inputs program TESTl.BAS from Disk (DK).

-OLD "DTl:PROGl"

clears user area and inputs program PROGl.BAS from DECtape unit 1.

OLD "PR:RESEQ"

clears user area and inputs the program RESEQ from the high speed paper

tape reader.

7.3. LIST/LISTNH COMMANDS

The LIST command prints the specified lines of the user program cur
rently in memory on the terminal. The program name, date and the
BASIC version number are output as a header line for the lines being
listed. The form of the LIST command is:

LIST statement no.-statement no.
-

Several variations of the LIST command can be used:

May, 1975

LIST statement no.

LIST-statement no.

LIST statement no.
LIST statement no.-END

Lists only the specified line.

Lists from the beginning of the pro
gram to and including the specified
line.

Lists from the specified line to the
end of the program.

7-3

LIST statement no.-statement no.
Lists the specified section of the
program.

If no statement number is specified, the entire program is listed. If
the statement number specified does not exist, the first line of the
program is listed.

Typing LIST followed by the statement number causes the header line
and the line specified to be listed. The LISTNH command also prints
the lines currently in core but suppresses the header line.

Type CTRL/O (depress the CTRL key and type the o key) to suppress an
undesired listing. BASIC returns to the READY message when command
execution is complete.

The lines listed may differ slightly from those entered because:

1. Certain characters while acceptable to BASIC are stored in a
standard manner when they appear outside of quotation marks.

Character Character
typed stored

1)
[(

=< <=
=> >=
>< <>

2. Literals are stored to 24 bits of accuracy. Those with more
than 24 bits are truncated to 24 bits.

3. Although literal storage is 24 bits, output is truncated to 6
decimal digits.

4. Literals are output in standard BASIC format, regardless of
how they were input, for example,

s.

Examples:

10 LET X=3.0+l.0000001
20 PRINT X-1E7
LIST
10 LET X=3+1
20 PRINT X-l.OOOOOE+07

Spaces in the input program
strings and REM statements.
program with spaces inserted to

are ignored, except within
The LIST command prints the

separate keywords and line
numbers from numeric information. The listed program is
therefore easier to read. In the case of an IF ••• GO TO
statement, no space is typed before the GO TO keyword.

LISTNH 100 lists line 100.

7-4

8.4 SYSTEM ROUTINES IN BASIC

The routines described below are all global symbols and are available
to the user functions:

Routine Name
(Global)

BOMB

ERRPDL

ERRSYN

ERRARG

EVAL

May, 1975

Call

TRAP 0
.ASCII 'MESSAGE'
.EVEN

JMP ERRPDL

JMP ERRSYN

JMP ERRARG

JSR PC,EVAL

Description

This routine stops execution of
the BASIC program and types the
message:

?MESSAGE AT LINE xxxx

If the $LONGER option is specified,
the '?' character is omitted.
BASIC then types the READY message.

Called when the stack pointer (SP)
goes below the value in R4. Causes
execution to halt and types out
?ETC AT LINE xxxxx. There are 20
extra "buffer" words on the stack.
If the user routine will definitely
not use more than this many words
on the stack, the routine need not
check for a stack overflow.

Syntax error. Stops execution and
prints out ?SYN AT LINE xxxxx.

Argument error. Stops execution
and prints out ?ARG AT LINE xxxxx.

Evaluate expression. Rl points to
the start of the expression in the
code. EVAL sets the carry bit as
follows:

carry = 0: The expression is
numeric.

The value of the expression is
contained in the floating
accumulator (FACl and FAC2).

carry = ·l: A string expression.

If the string is non-null, the top
of the stack is an indirect pointer
to the string. (See section 8.6
for the format of string
variables.)

If the string is null, the top of
the stack is the value 177777.

In both cases, R1 is moved to point
to the byte following the
expression in the code. If it
detects an error in the expression,
EVAL branches to the appropriate
error routine.

8-7

Routine Name
(Global)

GET VAR

MSG

STOVAR

STOSVAR

May, 1975

Call

JSR PC,GETVAR

JSR Rl,MSG
.ASCIZ 'MESSAGE'
• EVEN

JSR PC,STOVAR

JSR PC,STOSVAR

Description

Address variable or array element.
R2 must contain the address of the
symbol table entry for the variable
and Rl must point to the next byte
beyond the second byte of the sym
bol table offset on call. GETVAR
looks up and saves the address of
the variable reference, so that a
subsequent STOVAR or STOSVAR will
store a value in the addressed vari
able. GETVAR destroys the FAC when
addressing an array element; Rl is
left unchanged unless the variable
is subscripted, in which case Rl is
advanced past the right parenthesis.
To address the symbol table entry,
precede the GETVAR call with the
code:

MOVB (Rl)+,R2 ;FIRST BYTE OF
;OFFSET

BMI ESYN ;IF NEGATIVE, ERROR
SWAB R2
BISB (Rl)+,R2 ;GET 2ND HALF OF

;OFFSET
ADD (RS) ,R2 ;ADD BASE OF SYMBOL

;TABLE

Print message on console. Prints
the ASCII characters specified after
the JSR instruction up to the 0-byte .
MSG prints only those characters
specified in the calling sequence
plus padding characters specific to
the terminal in use. The calling
program must insert a carriage re
turn where required. MSG clears
the CTRL/O condition.

Store numeric variable. Stores the
FAC in the variable or array element
last referenced by GETVAR. If it
was a string variable, STOVAR stops
execution O'f. the program, and pro
duces the ?NS.Mi.error message.

Store string variable. Stores the
top of the stack in the variable or
array element last referenced by
GETVAR, and pops one word from the
stack. If it was a numeric variable,
STOSVAR stops execution of the pro
gram and produces the ?NSM error
message.

8-8

The module defining the background routine should now be of the form

.CSECT BKGMOD

.GLOBL BKG
BKG: 1START OF BACKGROUND ROUTINE

RTS PC
.END

The BKGMOD object module should be linked with FTBL, PERVEC, RTINT,
~e appropriate LPS and GT object modules, and the BASIC object
modules.

May, 1975 8-17

Table 9-1 (Cont.)
BASIC Error Messages

AJ;>brevia -I
ti on Message Explanation

?NBF

?NER

· ?NPR

?NSM

?OOD

?OVF

?PTB

?RBG

?RPL

?SOB

?SSO

?STL

?SYN

May, 1975

I
I NEXT BEFORE FOR AT LINE xxxxx
I The NEXT statement corresponding to

a FOR statement precedes the FOR
statement.

NOT ENOUGH ROOM

·NO PROGRAM

There is not enough room on the se
lected device for the specified num
ber of output blocks.

The RUN com..~and has been specified,
but no program has been typed in.

NUMBERS AND STRINGS MIXED AT LINE xxxxx

I
String and numeric variables may not
appear in the same expression, nor
may they be set = to each other; for
example, A$=2.

OUT OF DATA AT LINE xxxxx

OVERFLOW AT LINE xxxxx

PROGRAM TOO BIG

The data list was exhausted and a
READ requested additional data.

The result of a computation is too
large for the computer to handle.

The line just entered caused the
program to exceed the user code area.

RETURN BEFORE GOSUB AT LINE xxxxx

USE REPLACE

A RETURN was encountered before exe
cution of a GOSUB statement.

File already exists. Use REPLACE
command.

SUBSCRIPT OUT OF BOUNDS AT LINE xxxxx
The subscript computed is greater
than 32,767 or is outside the bounds
defined in the DIM statement.

STRING STORAGE OVERFLOW AT LINE xxxxx
There is not enough core available to
store all the strings used in the
program.

STRING TOO LONG AT LINE xxxxx
The maximum length of a string in a
BASIC statement is 255 characters.

SYNTAX ERROR AT LINE xxxxx
The program has encountered an unrec
ognizable statement. Common examples
of syntax errors are misspelled com
mands and unmatched parentheses, and
other t ra hical errors.

(Continued on next page)

9-3

Abbrevia
tion Message

Table 9-1 {Cont.)

BASIC Error Messages

Explanation

?TLT LINE TOO LONG TO TRANSLATE

?UFN

?ULN

?WLO

I ?tER

Lines are translated as entered and the
line just entered exceeds the area
available for translation.

UNDEFINED FUNCTION AT LINE xxxxx
The function called was not
the program or was not
BASIC.

defined by
loaded with

UNDEFINED LINE NUMBER AT LINE xxxxx

WRITE LOCKOUT

t ERROR AT LINE xxxxx

The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

Tried to write on a sequential
virtual file opened for input only.

or

The program tried to compute the value
AtB, where A is less than 0 and B is not
an integer. This produces a complex
number which is not represented in
BASIC.

When the message ?DNR AT LINE xxxxx is printed because the device
referenced is not on-line, turn the device on and issue a GO TO xxxxx
statement. Execution of the program resumes at the line (xxxxx)
specified. This message may also indicate that a program file does
not contain any legal BASIC program lines.

When the message ?OOD AT LINE xxxxx is printed because the file
referenced by an INPUT#l statement is not ready, prepare the file and
issue a GO TO statement to resume execution.

Function Errors

The following errors can occur when a function is called improperly.

?ARG

?SYN

The argument used is the wrong type. For
example, the argument was numeric and the
function expected a string expression.

The wrong number of arguments was used in a
function, or the wrong character was used to
separate them. For example, PRINT SIN(X,Y)
will produce a syntax error.

In addition, the functions give the errors listed below.

FNa (•••) ?UFN

RND or RND (X)

SIN (X)

The function a has not been defined (function
cannot be defined by an immediate mode
statement).

No errors

No errors

9-4

Abbrevia
tion

?OOD

?OVF

?PTB

?RBG

?RPL

?SOB

?SSO

?STL

?SYN

?TLT

?UFN

?ULN

?WLO

May, 1975

Message Explanation

I OUT OF DATA AT LINE xxxxx

I
The data ~ist was exhausted and a READ
requested additional data.

I OVERFLOW AT LINE xxxxx The result of a computation is too
large for the computer to handle.

PROGRAM TOO BIG The line just entered caused the pro
gram to exceed the user code area.

RETURN BEFORE GOSUB AT LINE xxxxx

USE REPLACE

A RETURN was encountered before execu
tion of a GOSUB statement.

File already exists. Use REPLACE com
mand.

SUBSCRIPT OUT OF BOUNDS AT LINE xxxxx
The subscript computed is greater than
32,767 or is outside the bounds defined
in the DIM statement.

STRING STORAGE OVERFLOW AT LINE xxxxx
There is not enough core available to
store all the strings used in the pro
gram.

STRING TOO LONG AT LINE xxxxx

SYNTAX ERROR AT LINE

The maximum length of a string in a
BASIC statement is 255 characters.

xxxxx
The program has encountered an unrec
ognizable statement. Common examples
of syntax errors are misspelled com
mands and un.~atched parentheses: and
other typographical errors.

translated as entered and the
entered exceeds the area
for translation.

UNDEFINED FUNCTION AT LINE xxxxx
The function called was not defined by
the program or was not loaded with
BASIC.

UNDEFINED LINE NUMBER AT LINE xxxxx
The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

WRITE LOCKOUT AT LINE xxxxx
Tried to open a read-only device for
output, or tried to write on a sequen
tial or virtual file opened for input
only.

E-3

Abbrevia
tion Message Explanation

?tER +ERROR AT LINE xxxxx

Function Errors

The program tried to compute the value
AtB, where A is less than 0 and B is not
an integer. This produces a complex
number which is not represented in
BASIC.

The following errors can occur when a function is called improperly.

?ARG

?SYN

The argument used is the wrong type. For
example, the argwnent was numeric and the
function expected a string expression.

The wrong number of argwnents was used in a
function, or the wrong character was used to
separate them. For example, PRINT SIN(X,Y)
produces a syntax error.

In addition, the functions give the errors listed below.

FNa (•••) ?UFN

RND or RND(X)

SIN (X)

COS (X)

SQR(X) ?ARG

ATN(X)

EXP (X) ?tER

LOG(X) ?ARG

ABS (X)

INT {X)

SGN (X)

TAB(X) ?ARG

LEN(A$)

ASC(A$) ?ARG

CHR$ (X) ?ARG

The function a has not been defined (function
cannot be defined by an immediate mode
statement).

No errors

No errors

No errors

X is negative

No errors

X is greater than 87

X is negative or 0

No errors

No errors

No errors

X is not in the range O~x<256

No errors

A$ is not a string of length 1

X is not in the range O~x<256

E-4

APPENDIX F

ASSEMBLING AND LINKING BASIC

F.l ASSEMBLING BASIC/RTll

The source program of BASIC/RTll consists of three source files:
A 16K system is required to assemble BASIC.

BASICL.MAC
BASICH.MAC
FPMP.MAC

It is necessary to create the files BASICR, BASICE, and BASICX which
consist of onlv one line of code each. They specify the conditionals
~eces~~ry-to-as;ernble BASICL into the three object modules BASICR.OBJ,
BASICE.OBJ and BASICX.OBJ.

They are created using the EDIT program, as follows:

@) Represents the Altmode key
.R EDIT
*EWBASICR.MAC @@
*IBASICR=l

@EX@@

.R EDIT
*EWBASICE .MAC @@
*IBASICE=l

@EX@@

.R EDIT
*EWBASICX .MAC @@
*IBASICX=l
@EX@@

If any other options are desired, include the conditionals for them
in these files. For example:

$NOSTR=l
$LONGER=!
$NOVF=l
$NOPOW=l
$STKSZ=n

;NO STRINGS
;LONG ERROR MESSAGES
;NO VIRTUAL MEMORY FILES
;NO POWER-FAIL OPTION
;PROGRAM STACK SIZE
;IN BYTES (DEFAULT IS
;200 (OCTAL) BYTES

If BASIC is to run on an 8K system, the $NOSTR conditional must be
specified.

For example, to create a BASIC with no strings, no virtual memory files,
and a stack size of 300 (octal) the BASICR, BASICE, and BASICX files
should be created using the EDIT program, as follows

• R EDIT
*EWBASICR.MAC @@
*IBASICR=l
$NOSTR=l
$NOVF=l
$STKSZ=300
@EX@@

F-1

I
I
I
I
I
I

r

.R EDIT
*EWBASICE.MAC @ ©
*IBASICE=l
$NOSTR=l
$NOVF=l
~TKSZ=300

_VEX©©

.R EDIT
*EWBASICX.MAC © ©
*IBASICX=l
$NOSTR=l
$NOVF=l
$STKSZ=300

G Ex©©

@ represents the Altmode key.

To assemble Basic, type the following as input to the MACRO Assembler:

*BASICR=BASICR,BASICL
*BASICE=BASICE,BASICL
*BASICX=BASICX,BASICL
*BASICH=BASICH
*FPMP=FPMP

This produces the five object modules

BASICR

BAS ICE

BASICX

FPMP

BASICH

BASIC Root section

BASIC Edit overlay

BASIC Execution overlay

~loating ~9int ~ath ~ackage

BASIC High section, with once-only
code and optional functions

F.1.1 Floating Point Math Package

Assembly of the FPMP source file produces a "standard" FPMP for BASIC,
which runs on any PDP-11, but will not make use of special arithmetic
hardware. All of the routines needed for the full complement of BASIC
arithmetic functions are included. A non-standard FPMP may be speci
fied, as outlined in the table below:

Parameter

MIN

May, 1975

FPMP Assembly Parameters

Default Value

undefined

Description

Define to eliminate code for BASIC
functions SIN, COS, SQR, and ATN.
When linked, the functions are
listed as "undefined references".
However, when executed by a BASIC
program, they produce a ?UFN
(UNDEFINED FUNCTION) error.

F-2

To link BASIC with the user functions in a non-overlay system, type
this command string to the Linker:

~BASIC=BASICR,FPMP,BASICE,BASICX/B:4~~/C

~FUN1,FUN2[,GETARG] ,BASICH

GETARG is the general argument interface module listed in Appendix H.
In an overlay system, there are two possible ways in which to link
BASIC with the user functions.

If the user function routines contain no data which must be preserved
from one function call to the next, that is, if the code for the
routines may be refreshed at the beginning of each function call, then
the routines may be incorporated into the execution overlay by using
this LINK command string:

*BASIC,BASIC=BASICR,FPMP,FUN1/T/B:4~~/C
TRANSFER ADDRESS
GO
*BASICE/0:1/C
*BASICX,FUN2[,GETARG]/O:l/C
~BASICH/0:2

In this case, the function routines (in the module FUN2) occupy space
in the first overlay segment which is normally unused, since the Edit
overlay segment (BASICE) is about 250 words longer in the 8K no-string
system than the Execution overlay segment (BASICX) • These first 250
words of storage are "free" in this case.

In the case where FUN2 may not be read in anew whenever it is used,
type this command string to the Linker:

*BASIC=BASICR,FPMP,FUN1,FUN2/T/B:4~~/C
TRANSFER ADDRESS
GO
*BASICE/0:1/C
*BASICX[,GETARG]/0:1/C
~BASICH/0:2

There are three additional object modules (FPMP.FPU, FPMP.EAE, FPMP.EIS)
which allow BASIC/RTll to be linked for special arithmetic hardware.

Processor Replace FPMP.OBJ With

EAE hardware FPMP.EAE

PDP-11/40 extended FPMP.EIS
processor or PDP-11/45
processor

PDP-11/45 FPU FPMP.FPU
hardware

May, 1975 F-5

APPENDIX H

GETARG, STORE, SSTORE LISTING

GETAPG, STORE, SSTORE : SUBROUTINES FOR
LINKAGE OF ASSeMeLER SUBROUTINES TO BASIC

r

•TI TL.E
.GL06L.
,GL.08L
.GLOSL
.GLOBL
• IFNOF
.GL08L
.ENOC
.csECT

J$NOSTR • ,
R0=X0
Rt=X1
R2d?
~3•X3
R4•X4
RS•XS
SP•Xb
PC:•X'7
NVAL•4

,IFOF

.ENOC
,TEXT•377
FAC1=40
F'AC2•42
V•RSA\1•22

May, 1975

GETARG 29•AUG•73
GEH~G, STORE
EVAL, GETVAR, ERRARG, ERRSVN
,LPAf'i, ,COMMA, ,RPAR, ,EOL
STOVAR, .SQUOT, ,OQUOT
$NOSTw
SSTORE, STOSVAR
;$NOSTR
GET

1

J$NQSTR

;DELETE •1• TO •SSEMBLE FOR
;BASIC WITH NO STRINGS

H-1

, __ _

SUBROUTINE 'GETARG« CALLEO SY MOV #T•BLE,R0
JSR PC,GETARG
,BYTE N1,N2,,,.,0
,EVEN

, ,
' , , ,
' , , ,
'

GET1:

GET2:

MOV
MOVB
BLE
CMP~

BNE
SR
CMPS
BNE
CMP
BHI
ASL
MOV
MOV
MOV

May, 1975

WHERE TABLE IS T~E ADDRESS OF A
TABLE TO MOLD THE ARG REFERENCES,
Ni,N2.ETC, INDICATE THE ARG TYPES:
1 INPUT NUMERIC EXPRESSION, 2

2

(THE EXPRESSION VALUE) ARE
STORED IN TABLE,
OUTPUT NUMERIC VARIABLE, 3 WORDS
ARE STORED IN TABLE.

STRING VERSION ONLY:
! INPUT STRING EXPRESSION, NO WORDS

4

ARE STORED IN TABLE, THE STRING
POINTER IS ON T~E STACK.
OUTPUT STRING VARIABLE. 3 WORDS
ARE STORED IN TABLE.

NO ST~lNG VERSION:
3 INPUT STRING LITERAL. 2 WORDS

ARE STORED IN TABLE. WORD 1 CON•
TAINS THE START OF THE ASCII ST~ING.
WORD 2 CONTAINS THE LENGTH OF THE
STRING IN BVTES,

CHECKS THE SYNTAX OF THE CALLING
STATEMENT AND FINDS THE REQUESTED
•RGUMENT REFERENCES, STORING THEM
CONSECUTIVELY lN TABLE.

CSP)+,R3 JADDR OF CALL IN R3
(R!)+,~2 JGET 1ST BYTE IN R2
GET~ ,NO ARGS• EXIT
CR1)+ 1 #,LPAR ICHECK STARTING 'C'
GETERS JNO, SYNTAX ERROR
GET2 JENTER LOOP
(R1)+,#,COMMA JCHECK '•'BETWEEN ARGS
GETcRS JNO, SYNTAX ERROR
R2,#NVAL JCHECK VALID BVTE
GETE~A
R2
R0,R0S
R3,~3S

•SAVE REGS

8RT•B•2(R2),PC •BRANCH TO ROUTINE

H-2

, NUMERIC EXPRESSION
NUMEXP: JSR PC,EVAL JEVALUATEl

BCS GETER A 1STRlNG IS BAD
MOV R0S,R0 1RESTORE T~8L.E POINTER
MOV FAC1CR5),(R0)+
MOV FAC2 (R'Sl, (R0l + JSAVE VALUE
SR NXTARG , STRING EXPRESSION

STREXP:
.IFNOF !NOS TR
JSR PC,EVAL. JEVAL.UATE£
8.CC GETER A 1NUMERIC IS BAO
MOV R0S,R0 JR ES TORE TABl..E POINTER
BR NXT ARG
.ENOC J!NOSTR
.IFOF sNOST~
MOV6 CR1)+,~CSP) JL.OOK FOR STRING L.ITERAL.
CMPS CSP), •.sr.woT 'CMECI< QUOTE CHAR.
BEQ STR1
CMPB CSP),#.DQUOT
8 NE. GE TE RS

STR 1: CMP8 (R1l+,i.TEXT ICl'fECK .TEXT TOKEN NEXT
BNE GE TE RS
MO\/ R0S,R0 J RESTORE TABLE POINTER
"'40V R1,(R0)+ JSAVE STRING ADDRESS IN TABLE
C~R R2 JNOW FINO L.ENGTrt

STR2: TST8 CR1' + ;El\!O OF STRING IS BVTE 00
SE_Q STFB
INC Re JCOUNT
SR STR2

STR3: MOV R2, (R0l+ JUVE L.ENGTH IN UBL.E
CMPB (SP)+, (R1)+ JCHECI< MATCHING CL.OSE QUOTE
SNE GETERS
8 lo(NXhRG
,END.C ;$NOSTR , NUMERIC TA~GET VAR U.6L.E

NUMV•R: CLR .(SP) 1REMEM8ER IT'S NUMERIC
.IFNOF SNOSTR
BR v•~1

• STRING TARGET VMlIAB!..E ,
STRVAfO MOV R2,.CSP) JREMEMBER IT'S STRING

.ENOC J $NOS TR
VAR1: MOVB (R1)+,R2 JGET $VMTAB REF IN R2

BMI GE'TE~S
SWAB R2
BISR (R1)+,R2
ADO (R5),R2
JSR PC:,GETVAR JAOORESS V~RUBLE
MOV R0S,R0 pRESTORE UBL.E POINT.ER
MO\' R5,R2 I ADDRESS VARS AV
•DD #VARSAV,R2
MOV CR2', R3 JSAVE A. COPY
MDV (Ri?) +, (RCll) + JMOVE 3 WORDS INTO TABLE
MO\i (R2)+, (R0l+
MOV CR2), (R0) +
TST (SP)• JSTRING OR NUM
~NE V•R2
CMP (R3),#•1 ,NUMERIC, CHECK TYPE AGREES
BEQ GETER•
BR NXTARG

VAR21 CMP (R3) 11 *•1
8NE GeTEIU

May, 1975 H-3

, GO TO NE)(T ARGUMENT
NXT ARG: MOV Fl3S,R3

MOV6 (R3)+,H2 JGET NEXT BVTE IN R2
SGT GET1 I 1..00P TI L.L. 8 VTE IS 0
CMPB CR1)+,#.RPAR JCHEC:K CL.OSING ,) f

8NE GETERS
GETX: CMPS (R1)+,#.EOL. JAND ENO•L.INE TOKEN

BNE GETERS
INC R3 JMAl<E SURE R3 IS EVEN
ASR R3
ASL R3
JMP c P.3'

R0S: .WORD 0
~35: .WORD 0
GETERA: JMP ERRM~G
GETERS: JMP ERR SYN
eRTAS: .WORD NUMF.XP

,WORO NUMVAR
.~ORO STRE)tP
,IFNOF SNOSTR
,wORO ST~VAR
,ENDC JSNOSTR

May, 1975 H-4

, __ _

I SUBROUTINE 'STORE' CALLED BY JSR PC,STORE
J R0 POINTS TO 3•WORD ARG REFERENCE
J SET UP BY GETVAR
; SAVES THE VA~UE OF iHE FAC
J IN THE SPECIFIED NUMERIC VARIABLE
STORE: MQV RS,R2 JAOORESS VARSAV

AOO #VARSAV,R2
MOV CR0)+,CR2)+ JMOVE FROM TABLE TO USER ARE~
MOV (R0)+,(R2)+
MOV CR0),(R2)
JSR PC,STOVAR JSTORE IT
~TS PC

.IFNOF SNOSTQ

1---· ~ SUBROUTINE ~ssTOQE' CALLED BV JSR PC,SSTORE
J R0 POINTS TO 3•WORD ARG REFERENCE
, SET UP ev GETVAR
J ST~ING POINTER IS AT TME TOP OF STK
J SAVES THE STRING •T TOP OF STK
I IN THE SPECIFIED STRING VARIABLE
SSTORE: MOV

ADO
MOV
MOV
MOV
MOV
MOV
MOV
JSR
RTS
.ENOC
.ENO

May, 1975

R5,R2
#VARSAV,R2
(R0)+, CR2)+
CR0) +, CR2) +
CR121), CR2)
(SP),R3
2(SP),(5Pj
rU,2CSPl
PC,STOSVAR
PC
J!NOSTR

rAODRESS VARSAV
;MOYE FROM TBL TO USER AREA

JSWITCH ~ETUR~ & STRING PTR

JSTORE STRING
rRETURN

H-5

I.3.2 "ACC"(BUF)

Access entire buffer BUF. This command resets all buffer pointers of
the array BUF to allow full access to it by the RDB and PUTD commands.
The PUTD pointer is placed at the end of the array and the RDB pointer
is placed at the beginning.

Example:

Allow full access to the array Hand the array A(ll).

10 DIM A{25) ,H(20)
20 CALL "USE"(A(l),A(ll),A(31),A,H)
30
40

100 CALL "ACC"(H)
110 CALL "ACC"(A(ll))
120
130

I. 3 • 3 " RDB" (B UF , var)

Return the next data point from the specified buffer. Returns values
of 65535>=var>=O for good data. Bad data (defined as overrun) is
returned as a minus one. If no data exists yet, a minus 2 will be
returned.

When the referenced buffer refers to analog saI!lpling (RTS function),
the values returned are in the range 4095>=var>=O.

When the referenced buffer refers to a clocked histogram sampling
(HIST function), the values returned are in the range 65535>=var>=O.
These values are either the number of ticks accumulated or the number
remaining depending on the clock mode.

When the referenced buffer refers to a Digital I/O operation (DRS
function), a value between 65535>=var>=0 is returned from the next
position in the specified buffer.

Example:

Assume that the array X has 100 data values previously entered by an
RTS command. Print out the data making sure that data overrun did not
occur and that 100 data points were indeed taken.

100 FOR I=l TO 100
110 CALL "RDB"(X,Z)
120 IF Z >= 0 GO TO 160
130 IF Z =-2 GO TO 180
140 PRINT "BAD DATA AT EVENT"~!

_ 150 GO TO 190
160 PRINT Z

I-5

170 GO TO 190
180 PRINT "NO DATA AT EVENT";!
190 NEXT I

I. 4 MODULE 1 (A/D CONVERSION AND NUMERIC READOUTS)

I.4.1 "ADC"(chan,var)

Initiate an A/D conversion from the specified channel (O<=chan<=lS),
wait for it to complete, and return the conversion as a floating point
result in "var" (O<=var<=4095). The A/D cannot be currently involved
in a Real-Time Sampling (RTS) operation.

Example:

Sample the A/D from channels 4 and 5 and save the results in the
arrays A4 and AS respectively. Assume 100 samples are to be taken.

10 DIM A4(100),A5(100)
20 FOR I=l TO 100
30 CALL "ADC"(4,A4(I))
40 CALL "ADC"(S,AS(I))
50 NEXT I

I.4.2 "RTS"(BUF,sc,nsc,npts,mode)

Perform real time buffered/clocked sampling of the A/D. The A/D can
be enabled in a variety of options depending on the mode specified.
The normal mode of operation (mode=O) causes the A/D to sample
whenever Schmitt trigger 1 fires. A mode of 2 causes the A/D to
sample whenever the ·clock overflows. To enable other options, merely
add their code number to the mode. The following list describes
options available (all options are normally disabled) :

Code

+l
+2
+4
+8

Option

Enable burst mode (used only with OMA)
Enable clock, disable Schmitt trigger 1
Enable dual sample and hold
Enable OMA

The A/D will be started by a clock overflow or the firing of Schmitt
trigger 1. Pointers are used to determine if good data exists in the
buffer arrays or if data wraparound occurs. Since data is stored in
circular buffers (excluding OMA operations), pointers are used to
ensure that the incoming data rate does not exceed the removal rate.
Data returned as minus 2 (-2) indicates that data overrun occurred.
The buffer pointers are reset initially before the sampling operation
begins.

A/D channels are sampled on every clock overflow or firing of
trigger 1 with the result stored in consecutive data cells.
stored in a format identical to that read from the A/D. When a

May 1975 I-6

Schmitt
Data is

clock

APPENDIX J

GT GRAPHICS SUPPORT

J.l INTRODUCTION

BASIC is provided with GT Graphics support for the GT44 and GT40
Display Processors. The support consists of a collection of routines
accessible by the CALL statement. These routines allow BASIC programs
to have complete control of the display processor.

Points, vectors, text, and graph data may all be combined through
simple CALL statements. · The screen may easily be scaled to any
coordinates. Portions of the display may be controlled independently
through use of the subpicture feature. Special graphic routines allow
the display of an entire array of data by one call statement. The
area of core that is allocated to the display buffer may be
dynamically controlled.

When operating in the RT-11 environment, any display may be saved as a
file on a mass storage device with the exception of graph arrays.
This file may later be restored which will cause the original display
to appear on the screen without the BASIC program originally needed to
create it.

Support is provided for a real-time clock. The graphics support
package will link with and support the Laboratory Peripheral System
support that is also provided with BASIC.

The hardware required for use of the BASIC GT Graphics support is a
GT40 or GT44 processor, a VTll display screen, 16K or more of core
rr.emory, and a user's terminal. In addition to the peripheral
input/output device needed to support the BASIC system (disk, DECtape,
cassette, or paper tape), the calls to TIME and TIMR require a
real-time clock. The core required for the Graphics support itself is
approximately 2.SK in a core resident form and 2.lK in an overlay
form.

The documentation for BASIC with Graphics support is provided in two
parts the BASIC Manual (BASIC/RTll Language Reference Manual) and this
appendix. All information concerning BASIC arithmetic, strings,
operations, functions, statements, and commands may be found in the
BASIC Manual. This appendix describes the use of the BASIC calls to
the GT Graphic routines. A general description of the CALL statement
may be found in section 8.1 of the BASIC/RTll Language Reference
Manual.

The GT Support is supplied in the BASIC kit in the following files:

GTB.OBJ

GTC.OBJ

PERVEC.MAC

Main GT object module

GT object module that may be linked in an overlay
(otherwise it is linked in core)

Vector definition source file

J-1

FTBL.MAC Function table

BASINT.MAC Interface Module

RTINT.MAC Interface Module for BASIC/RTll VOl

PTSINT.MAC Interface Module for BASIC/PTS VOl

PERPAR.MAC Parameter file

GTNLPS.OBJ Module linked with GT when LPS support is not
also linked

For instructions to build a load module of BASIC with GT support see
Section J.3. Software for BASIC/RTll with GT support that is provided
on DECtape, cassette and DECpack disk also contains two running ver
sions of BASIC:

BASGT.SAV
BGTLPS.SAV

BASIC with GT support
BASIC with GT and LPS support

BASGT.SAV is a non-overlaying version of BASIC with GT support.
BGTLPS.SAV is a non-overlaying version of BASIC with GT and LPS support.
BASGT.SAV is loaded by the following RT-11 monitor connnand:

.R BASGT

To load a version of BASIC with GT and LPS support the following
connnand should be given:

.R BGTLPS

At this point the standard BASIC initial dialogue will occur. See
Chapter 1 of the BASIC/RTll Language Reference Manual for a descrip
tion of the initial dialogue. As part of the initial dialogue BASIC
will print:

USER FNS LOADED

This message will be printed whenever BASIC has had GT support linked
with it. BASIC will terminate the initial dialogue by printing:

READY

May, 1975

NOTE

BASIC with GT support should not be run
by the RT-11 monitor after GTON, a pro
gram supplied with RT-11 (version 1 only) ,
has been run. GTON causes RT-11 to print
all information on the graphic display
screen and any attempt by BASIC with GT
support to use the display screen causes
the computer to halt. If this happens,
the monitor must be rebooted. To avoid
this, when GTON has been run, do not run
BASIC until the monitor has been rebooted
by either a hardware bootstrap or the
PIP reboot connnand. See Section 4.13 of

J-2

the RT-11 System Reference Manual for a
description of the PIP conunand. BASIC/
RT-11 VOlB with GT support is
compatible with the RT-11 {version
2 or later) GT ON monitor command.

J.1.1 Documentation Conventions

The following chart describes the documentation conventions used in
the description of the GT calls in this Appendix.

CONVENTION

Square Brackets

Lower case letter or
lower case letter
followed by a digit
(a,b,xO,yl)

Lower case letter
followed by a dollar
sign, (a$,x$)

Upper case letter
(A,·B,X,Y)

Y axis

X axis

MEANING

Optional arguments are enclosed.

Value to be supplied by user -- may be
any valid arithmetic expression.

String to be supplied by user may be
string constant (enclosed in quotes) or
variable (A$).

Numeric variable whose value will be
determined by call or an array name.

The vertical axis

The horizontal axis

J.2 DISPLAY PROCESSOR CONTROL ROUTINES - CALL SUMMARY

BASIC programs can control the GT44 display processor by the use of
the twenty-nine routines that are supplied with GT support for BASIC.
A complete description of the BASIC call statement may be found in
section 8.1 of the BASIC/RTll Language Reference Manual.

The format of the CALL statement is:

CALL "name" (argument list)
or

LET A$="name"
CALL (A$) (argument list)

The following chart summarizes the names, argument lists, and effects
of the graphic calls supplied with the GT graphic support.

Call Argument List

AGET (A(i), Z)

May, 1975 J-3

Effect

Unscales element i of the graphic
array A and stores in Z.

Call

APNT

APUT

DCNT

DFIX (n)

DON (t)

DSAV

DSTP

ERAS

ESUB

FIGR

Argument List

{x,y [,l,i,f,t])

(A (i) 1 b)

Effect

Positions beam at point
represented by (x,y) after
scaling. Optional changing of
l,i,f, and t parameters. 1 is
light pen sensitivity, i is
intensity, f is flash, and t is
line type.

Assigns element i of the graphic
array A the scaled value of b.
Dynamically changes display of
array A.

Restores to the screen display
stopped by call to DSTP.

Eliminates old display buffer if
it exists and creates a display
buffer of n words. Closes all
open BASIC files.

Turns on subpicture with tag t
that had been turned off with a
call to OFF.

[{"[dev:]filname[.ext]")] Compacts the display file by
eliminating references to erased
subpictures and graphics arrays
and if a file is specified
creates a copy of the graphic
display on a file on DECtape or
disk. Display may then be
restored to the screen at any
time by a call to RSTR. DK: is
the default device. DPY is the
default extension.

[(t)]

{A[,l,i,f,t])

J-4

Stops display of the entire
display buffer. Display may be
restored by a call to DCNT.

Erases subpicture with the tag.
If t is not specified this call
erases the tracking object
created by a call to TRAK.

Terminates subpicture created by
a call to SUBP {with one
argument).

Creates vectors from array A to
form figure. See section J.2.8
concerning the cautions required
when using graphic array calls.
Optional changing of l,i,f, and t
parameters.

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes software newsletters for the various DIGITAL products.
Newsletters are published monthly, and keep the user informed .about cus
tomer software problems and solutions, new software products, documenta
tion corrections, as well as programming notes and techniques.

There are two similar levels of service:

The Software Dispatch
The Digital Software News

The Software Dispatch is part of the Software Maintenance Service. This
service applies to the following software products:

PDP-9/15
RSX-llD
DOS/BATCH
RSTS-E
DECsystem-10

A Digital Software News for the PDP-11 and a Digital Software News for
the PDP=8/12 are available to any customer who has purchased PDP-11 or
PDP-8/12 software.

A collection of existing problems and solutions for a given software
system is published periodically. A customer receives this publication
with his- initial software kit with the delivery of his system. This
collection would be either a Software Dispatch Review or Software Per
formance Sununary depending on the system ordered.

A mailing list of users who receive software newsletters is also main
tained by Software Communications. Users must sign-up for the news
letter they desire. This can be done by either completing the form sup
plied with the Review or Summary or by writing to:

SOFTWARE PROBLEMS

Software Communications
P.O. Box F
Maynard, Massachusetts 01754

Questions or problems relating to DIGITAL=s software should be reported
as follows:

North and South American Submitters:

Upon completion of Software Performance Report (SPR) form remove last
copy and send remainder to:

Software Communications
P.O. Box F
Maynard, Massachusetts 01754

The acknowledgement copy will be returned along with a blank SPR form
upon receipt. The acknowledgement will contain a DIGITAL assigned SPR
number. The SPR number or the preprinted number should be referenced in
any future correspondence. Additional SPR forms may be obtained from
the above address.

All International Submitters:

Upon completion of the SPR form, reserve the last copy and send the re
mainder to the SPR Center in the nearest DIGITAL office. SPR forms are
also available from our SPR Centers.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In the
United States, send orders to the nearest distribution center.

Digital Equipment Corporation
Software Distribution Center
146 Main Street

Digital Equipment Corporation
Software Distribution Center
1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States,
Digital Field Sales Office or

orders should be directed to the nearest
representative.

USERS SOCIETY

DECUS, Digital Equipment Computers Users Society, maintains a user ex
change center for user-written programs and technical application infor
mation. The Library contains approximately 1,900 programs for all
DIGITAL computer lines. Executive routines, editors, debuggers, special
functions, games, maintenance and various other classes of programs are
available.

DECOS Program Library Catalogs are routinely updated and contain lists
and abstracts of all programs according to computer line:

PDP-8, FOCAL-8, BASIC-8, PDP-12
PDP-7/9, 9, 15
PDP-11, RSTS-11
PDP-6/10, 10

Forms and information on acquiring and submitting programs to the DECUS
Library may be obtained from the DECUS off ice.

In addition to the catalogs, DECUS also publishes the following:

DECUSCOPE

PROCEEDINGS OF
THE DIGITAL
EQUIPMENT USERS
SOCIETY

MINUTES OF THE
DECsystem-10
SESSIONS

COPY-N-Mail

LUG/SIG

-The Society's technical newsletter, published bi-monthly,
aimed at facilitating the interchange of technical in
formation among users of DIGITAL computers and at dis
seminating news items ~oncerning the Society. Circula
tion reached 19,000 in May, 1974.

-Contains technical papers presented at DECUS Symposia
held twice a year in the United States, once a year
in Europe, Australia, and Canada.

-A report of the DECsystem-10 sessions held at the two
United States DECUS Symposia.

-A monthly mailed communique among DECsystem-10 users.

-Mailing of Local User Group {LUG) and Special Interest
Group {SIG) communique, aimed at providing closer
communication among users of a specific product or
application.

Further information on the DECUS Library, publications, and other DECUS
activities is available from the DECUS offices listed below:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DECUS EUROPE
Digital Equipment Corp. International
(Europe)
P.O. Box 340
1211 Geneva 26
Switzerland

1.~
1-£
I g>
1..2
lo

18
I Q>

Cl)

10
Q)

IC:

Change Notice To Basic
RT-11 Language Reference Manual
DEC-ll-LBACA-D..-DN 2

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) •

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where, should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly' language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

0 Non-programmer interested in computer concepts and capabilities

Name Date-------------

Organization------------------------------~

Street---------------------------------~
City ______________ state _______ Zip Code ______ __

or
Country

If you do not require a written reply, please check here. O

----~----~--~--Fold llere--

·-- Do Not Tear - Fold Here and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~nmnamn
Software Communications
P. o. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

	001
	002
	003
	05-27
	07-03
	07-04
	08-07
	08-08
	08-17
	09-03
	09-04
	E-03
	E-04
	F-01
	F-02
	F-05
	H-01
	H-02
	H-03
	H-04
	H-05
	I-05
	I-06
	J-01
	J-02
	J-03
	J-04
	replyA
	replyB
	replyC
	replyD

