
BASIC-11
Laboratory E~xtensions

User's Cluide
Order No. DEC-11-LBEPA-A-D

BASIC-11
L.aboratory E:xtensions

User's Guide
Order No. DEC-11-LBEPA-A-D

digital equipment corporation · maynard, massachusetts

First Printing, May 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright ~ 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

2/77-26

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-IO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-II

PREFACE

CHAPTER 1

CHAPTER 2

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4

2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5

2.6
2.6.1
2.6.2

2.6.3
2.6.4
2.6.5
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2. 7 . 5
2.7.6
2.8

APPENDIX A

APPENDIX B

B.l
B.l.l
B.2
8.2.1
B.3
B.3.l

CONTENTS

INTRODUCTION

LABORATORY PERIPHERAL SYSTEM SUPPORT
(LPSll, ARll, and DRll-K)

GENEHAL FEATURES
DESCRIPTION OF ROUTINES
MODULE LPSO (REQUIRED MODULE)

Defining the Buffer (USE)
Allowing Access to a Buffer (ACC)
Returning Data from a Buffer (RDB)

MODULE LPSI (A/D CONVERSION AND
NUMEHIC READOUT)

Analog to Digital Conversion (ADC)
Real-Time Sampling (RTS)
Display on the Light Emitting Diodes (LED)
Returning A/D Data from Buffer (CVSG)

MODULE LPS2 (REAL-TIME CLOCK)
Setting the Clock Rate (SETR)
Setting the Clock to Rate and Time (SETC)
Histograms - Timed Schmitt Trigger (HIST)
Delaying Program Execution (WAIT)
Returning Current Software Clock Tick Value
(R~~IM)

MODULE LPS3 (DIGITAL I/O)
Reading the Digital Input Register (DIR)
Writing to the Digital Output Register
(DOR)
Digital Readout Sampling (DRS)
Relay Control (REL)
Read/Write Data From/Into Register (IPK)

MODULE LPS4 (DISPLAY)
Defining the Display Buffer (CLRD)
Putting Data into Display Buffer (PUTD)
Background Display Routine (DIS)
Display Buffer (FSH)
Displaying X,Y Data (DXY)
Flashing X,Y Data (FXY)

HARDWARE REQUIRED FOR LPS COMMANDS

COMMAND SU~lMARY

BUILDING LOAD MODULES

BASIC/RT-ll
LPS Support

BASIC/CAPS-II
LPS Support

BASIC/PTS-ll
LPS Support

iii

Page

v

1-1

2-1

2-1
2-1
2-3
2-3
2-5
2-6

2-7
2-7
2-8
2-11
2-12
2-12
2-12
2-14
2-15
2-16

2-16
2-17
2-17

2-19
2-19
2-21
2-21
2-22
2-22
2--23
2-23
2-25
2-25
2-26
2-27

A-I

8-1

B-1
8-1
B-ll
8-11
B-23
8-23

APPENDIX C

GLOSSARY

INDEX

TABLE 2-1
2-2
2-3
2-4

CONTENTS (Cont.)

ERROR MESSAGES

TABLES

Mode Options in RTS Sampling
Mode for Values of m
Selecting the Clock Rate
Selecting the Clock Mode

iv

C-l

Glossary-l

Index-l

2-10
2-10
2-13
2-14

PREFACE

This manual describes the extensions for use with the BASIC/RT-II,
BASIC/PTS-II, and BASIC/CAPS-II systems. The extensions enable you to
utilize PDP-II lab peripherals such as LPSII, ARII, and DRII-K.
Unless stated otherwise, the descriptions of all routines in this
manual apply to the systems mentioned above.

The routines for these peripherals are provided in library form that
can be linked with a user program. The user should have a programming
knowledge of BASIC and some understanding of the peripherals.

The following table describes the documentation conventions used in
this manual.

Convention

<LF)

<CR)

or CTRL

®
Square Brackets

Lower case letter or
lower case letter
followed by a digit
(a,b,xO,yl)

Lower case letter
followed by a dollar
sign (a$,x$·)

Upper case letter
(A,B,X,Y)

Y axis

x axis

Meaning

Line feed

Carriage return

Used with special system control
characters. Depress CTRL key while
striking designated character.

Altmode

Optional arguments are enclosed.

Value to be supplied by user. May
be any valid arithmetic expression.

String to be supplied by user. May
be string constant (enclosed in
quotes) or variable (A$).

Numeric variable whose value will
be determined by call or an array
name.

The vertical axis.

The horizontal axis.

The following manuals are necessary references for this manual:

RT-II System Reference Manual
DEC-II-ORUGA-C-D

v

BASIC-II Language Reference Manual
DEC-II-LIBBA-B-D

BASIC/RT-II Language Reference Manual
DEC-II-LBACA-D-D

BASIC/PTS User's Manual
DEC-II-LPTBA-A-D

BASIC/CAPS-II User's Manual
DEC-II-LIBCA-A-D

LPSII User's Guide
DEC-II-HLPGA-C-D

ARII User's Guide
DEC-II-HARUG

DRII-K Interface User's Guide and Maintenance Manual
EK-DRIIK-MM-OOI

vi

CHAPTER I

INTRODUCTION

BASIC Extensions support the RT-II, CAPS-II, and PTS-II systems, and
the following hardware:

LPSII Laboratory Peripheral System
ARII Analog Real-Time-Interface
DRII-K Digital Input/Output Interface

The Laboratory Peripheral System (LPS) support can utilize LPSII, ARII
and DRII-K to sample and display data from analog to digital
converters, digital input/output, or external events. LPS support
contains 23 routines to control LPSII, ARII and DRII-K. These 23
routines are divided into five categories according to their function.
Each category is supplied as a module. The first module, LPSO, is the
main module which contains all necessary support routines for using
the other four modules. This module is required but the other four
are optional.

The support for the peripherals consists of a library of routines that
can be controlled by a user program through a CALL statement. The
format of the CALL statement is:

CALL "name"(argument list)

Under BASIC/CAPS-II, the routines can also be called by a statement of
the form:

name(argument list)

The function and limitation of each routine is described in detail in
the following chapter.

1-1

CHAPTER 2

LABOHA'I'ORY PERIPHERAL SYSTEM SUPPORT
(LPSII, ARII, DRII-K)

2.1 GENERAL FEATURES

Laboratory Peripheral System support for BASIC-II allows a user to
utilize the LPS hardware which includes LPSll, ARll and up to 16
DRII-K. LPS support enables the sampling and displaying in a
real-time environment of a variety of data from analog to digital
converters, digital input/output, and external events. Sampling is
controlled by crystal clocks and/or Schmitt triggers~ it is possible
to specify such parameters as sampling rate and response time thus
allowing maximum flexibility.

NOTE

In a multiple DRII-K system, there must
be a difference of lO(octal) between
each unit in the interrupt and vector
address. The status register address
decreases by lO(octal) while the vector
address increases by 10 (octal) .

All LPS routines are issued by the BASIC CALL statement allowing
experienced PDP-II assembly language programmers to easily include or
modify the routines to meet particular (or special) requirements.

2.2 DESCRIPTION OF ROUTINES

The BASIC Extensions contain 23 routines to control the following
options on the LPSll hardware:

LPSAD-12

LPSAD-NP

LPSAG

LPSAG-VG

LPSAM
LFSSH

LPSKW

LPSVC

12-bit ADC, sample and hold, 8-channel
multiplexer, and LED (light emitting diodes)
6-digit programmable decimal readout display.
Direct memory access (DMA) option for the LPSAD-12
ADC.
Four differential preamplifiers with +or-IV input.
Maximum of 4 LPSAGs per LPSll-S system.
Four independently selectable multigain
differential preamplifiers.
8-channel expansion multiplexer.
Second sample and hold for a dual sample and hold
confiquration.
Programmable real-time clock and two Schmitt
triggers.
Display control including two l2-bit DACS. This

2-1

LPSDR

LABORATORY PERIPHERAL SYSTEM SUPPORT

controller is capable of handling Digital's VR14
and VR20 scopes.
l6-bit buffered digital I/O with drive
capabilities and two programmable normally open
(n.o.) relays. LPSDR cannot be used if DRll-K is
used.

The 23 routines are divided into 5 categories according to their
function. Each category is supplied as a separate module.

The following list is a summary of the routines available for
controlling LPS hardware and a brief description of each:

MODULE LPSO (This module is always required.)

USE Defines array(s) to be used for storage of
data.

ACC Allows access to an entire array.
RDB Returns the next data point from a specified

buffer.

MODULE LPSI (ANALOG TO DIGITAL CONVERSION)

ADC

RTS

LED

CVSG

Initiates an A/D conversion on a specified
channel and returns the result to the user.
Performs real-time buffered/clocked sampling
of the A/D.
Displays a numeric value on the Light
Emitting Diodes.
Returns the next data value and gain in two
separate variables.

MODULE LPS2 (REAL-TIME CLOCK)

SETR Sets clock running at a designated rate and
mode.

SETC Sets clock running at a designated rate and
initiates some action after a specified
number of seconds have elapsed.

HIST Performs histogram sampling using a timed
Schmitt trigger.

wAIT Waits for a specified event to occur.
RTIM Returns the value of the internal software

clock counter.

MODULE LPS3 (DIGITAL I/O)

DIR Reads Digital Input register.
DOR Writes Digital Output register.
DRS Performs sampling of the Digital Input

register.
REL Closes or opens one of two relays.
IPK Reads a value from a register or writes a

value into a register.

MODULE LPS4 (DISPLAY)

CLRD

PUTD

Defines display buffer and optionally clear
or scale the data in it.
Puts data into data buffer.

2-2

DIS

FSH

DXY

FXY

LABOHA'l'ORY PERIPHERAL SYSTEM SUPPORT

Displays data with incrementing x and
variable y whenever BASIC is waiting for I/O.
Displays a single complete sweep of data with
incrementing x and variable y.
Displays data with variable x and y values
whenever BASIC is waiting for I/O.
Displays a single complete sweep of data with
variable x and y values.

Module LPSO is the main module and contains not only the USE, ACC, and
RDB routines, but also all necessary support routines for the other
modules. Therefore, it must be included, although the other modules
are optional.

Data buffers used by the LPS routines differ from the normal arrays in
BASIC in that they use only one word of storage per data element
rather than two. This is because all LPS data is no larger than
2**16-1 and can be stored as unsigned 16-bit data. All data buffers
must be defined by a USE routine before they are accessed by any other
LPS routines. The USE routine allows the user to partition and make
equivalent arrays for ease in displaying and manipulating common data.
All data buffers defined in the USE routine are circular with internal
pointers keeping track of where data is to be placed next and/or
retrieved.

2.3 MODULE LPSO ~:2UIRED MODULE)

2.3.1 Defining the Buffer (USE)

The USE routine defines buffer areas for use with the ACC, RDB, RTS,
HIST, DRS, CLRD, PUTD, DIS, FSH, DXY and FXY routines. This routine
sets up internal pointers allowing circular buffering and data overrun
and/or nonexistent data checking. A maximum of five buffers may be
specified, all of which must be given in a single USE statement. All
areas defined in the USE statement must have been previously
dimensioned in a DIM statement.

The format of the USE call is:

where

CALL "USE" (AI: (i)], [B[(j)], •••• ,C[(f)]])

A,B,C

i , j , f

are the names of previously dimensioned array(s).
May be 5 different arrays or array names may be
repeated.
represents a valid subscript for the array or 0
which indicates the entire array.

The USE routine defines buffer areas required for storage of data.
These areas may be a partitioned array which can be made equivalent to
one large array. The following examples illustrate all aspects of the
USE routine. Note that the size of an area defined in a DIM statement
is one half that desired. This is because BASIC uses two words to
store data whereas the LPS data is stored in one word.

2-3

LABORATORY PERIPHERAL SYSTEM SUPPORT

Example:

Define areas A, B, and C to have 100, 200, and 300 data points
respectively.

10 DIM A(50)yB(100).C(150)
20 CALL "USE"(A.B.C)

Example:

Define area A to consist of three parts, the first having 10 data
points and the second and third having 20 each. Then define a final
area having access to all of the array A (including the zero subscript
element) .

NOTE

Read the USE statement from left to
right establishing the separate areas
based on previously defined members of
the same array. Only when the starting
address of the next array is less than
the previous one will entire access to
the array be allowed by the following
array.

The subscripts in the declaration are used to define pseudo partition
names which can be used in other LPS statements which require arrays.

:1.0 DIlvj (~(2:::j)

2 0 C: (~11" .. 1... "l..I ~:; E" .: t1 (:I.) !J A (11) y (.) (:":} :1") y A)

In this example, each declaration of the array A has a unique
description. A, which is equivalent to A(O), is different than A(l) ,
A(ll), and A(3l). The following figure illustrates the partitioning
of the array A due to the preceding example.

A (1) C
C

A(O) OR A
A(ll)

A(31) C

In the example, the partitioning occurs as follows: A(l) defines a
buffer array starting at position A{l) in the array A and ending at
the last position in the array. Since A{ll) is declared immediately
following it, the end of the array for A{l) is redefined to be one
less than the A{ll) position. At this point, A{l) goes from the 1st
position in the array to the lOth, and A{ll) goes from the 11th

2-4

LABOF:ATORY PEJ:UPHERAL SYSTEM SUPPORT

position in the array to the 50th. When A(31) is declared immediately
following A(ll), A(ll) is redefined to go from the 11th position in
the array to the 30th and A(31) goes from the 31st position to the
50th. Now the partitioned array consists of three parts. The first
part is called A(l) and is 10 locations in size. The second part is
called A(ll) and is 20 locations in size. The third part is called
A(31) and is also 20 locations in size. The final declaration in the
example is A or A(O) (both are equivalent), which allows access to the
entire array A. This happens because the position in the array A of
A(O) is less than the last declaration in the USE statement, i.e.,
A(31), and a new partitioning is started. This new partitioning
begins at A(O) and proceeds until the end of the array A. The rules
to continue from this point are the same as previously discussed and
further partitioning could be defined if necessary. Note that every
declaration in the USE statement must be unique, i.e., a statement of
the form USE(A,A(O)) results in the first array A having an area of
zero length. Since the second array is not unique in name, any
reference to it later by other LPS statements actually refers to the
array A and not A(O). Since A has zero length, the buffer declaration
is useless.

2.3.2 Allowing Access to a Buffer (ACC)

The ACC routine allows full access to the specified array by the RDB
routine. The form of the call is:

where

CALL "ACC"(A[(i)])

A[(i)] is a buffer previously declared in a call to the
USE routine.

A call to ACC resets all buffer pointers of the array A to allow full
access to it by the HDB and PUTD routines. The PUTD pointer is placed
at the end of the array and the RDB pointer is placed at the
beginning. Since the PUTD pointer is placed at the end of the array,
the buffer is considered full.

Example:

Allow full access to the array H and the buffer area of array A.

10 DIM A(25) ,H(20)
20 CALL "USE" (A(l) ,A(ll) ,A(31) ,A,H)
30
40

100 CALL "ACC" (H)
110 CALL "ACC" (1\ (11))
120
130

2-5

LABORATORY PERIPHERAL SYSTEM SUPPORT

2.3.3 Returning Data from a Buffer (RDB)

A call to the RDB routine returns the next data value from the
specified buffer in the target variable. The value returned from RDB
contains the data value with the gain in the most significant digits.
The returned data is formatted. The form of the call is:

where

CAL L "RD B" (A [(i)] ,B)

A[(i)]

B

is a buffer previously defined in a call to the
USE routine.
is the target variable.

A call to the RDB routine returns values in B of 65535 to a for good
data. A -1 will be returned if the data is bad (defined as software
data overrun). A -2 will be returned if there is no data. A -3 will
be returned if a hardware data overrun occurs.

A ring buffer is the specified buffer used by the RDB, RTS, HIST,
PUTD, and DRS routines. Data is withdrawn from the ring buffer by the
RDB routine but inserted into the ring buffer by the RTS, HIST, PUTD,
or DRS routine. Two pointers which are invisible to the users point
to the last data added and the next to be withdrawn.

If either pointer passes beyond the buffer, it is reset to the
beginning of the buffer. If a RDB routine is ex~cuted when no data is
available, the pointer is not advanced.

If a software data overrun occurs (that is, when there is no room in
the ring buffer for data from the RTS, HIST, PUTD or DRS routine),
then all subsequent calls on the RDB routine will return a -1. This
will occur if the ring buffer is not large enough to contain all the
data or the data is not removed from the ring buffer as fast as it is
added.

When the referenced buffer contains analog sampling data (RTS
function), the values returned in B are in the range a to 4095 for the
LPSll and a to 1023 for the ARll, with the gain in the .most
significant bits.

When the referenced buffer contains a clocked histogram sampling (HIST
function), the values returned in B are in the range a to 65535.
These values are either the number of ticks accumulated or the number
remaining depending on the clock mode.

When the referenced buffer refers to digital I/O data (DRS function),
a value between a to 65535 is returned in B from the next position in
the specified buffer.

Example:

Assume that the array X has 100 data values previously entered by an
RTS routine. Print out the data making sure that data overrun did not
occur and that 100 data points were indeed taken.

·1 (1 f= 0 f;;~ 1 =1.. TO ·1 (1 (1

::::'0 CHI ! " r;:' r:, r:: I' ~~.: : ..,. :. '-
?r.1 t F Z:::·=~1 Tf-! r·J '1::(1
,1. ;::1 1. F ::::>=-'1 Tf-! ~.J ?(l

"': ~::! I F Z =_.::.:: Tf..J r·J ·~O

2-6

LABORA'rORY PERIPHERAL SYSTEM SUPPORT

60 I~ Z=-~ TH~N 110
'? (,1 F' FU ~JT II ~~ HJ G f:: U F ~ F.: ~~ 0 V F f;,~ RUN .' SA t'1 F' LIN G TOO FA S T ".i I
F:(1 GO TO 15~J
go F'~~HJT II~JO r:IRTA AT EVFNT .,.'ETI!.i I
:1 (1(1 GO TO 14(1
110 PRINT "HRRDWRRE DRTA OVERRUN, SRMPLING TOO FRST"; I
1.2(1 GO TO V5(1
13:(1 Pf;,~It-JT Z
·1 ':H::1 ~J F ~.::r I
1. 5(1 CONT HJUE
1.6(1 ~~H)

2.4 MODULE LPSl~) CONVERSION AND NUMERIC READOUTS)

2.4.1 Analog to ~L tal Conversion (ADC)

The ADC routine initiates an AID conversion from the specified
channel, waits for it to complete, and returns the conversion as a
floating point result in A (in the range 0 to 4095 for the LPSll and
1023 for the ARll). The AID cannot be currently involved in a
real-time sampling (RTS) operation.

The form of the call is:

where
CALL II ADC II (bl,A[,i])

b

A

i

specifies the channel and must be in the range
from 0 to 63 for LPSll and 0 to 15 for ARll.

is the target variable and will contain the
floating point conversion from the analog input.

The value returned is as follows:

A=data/gain (where gain=1,4,16,64) For LPSll
with gain.

A=data When the ARll is in
bipolar mode. A is
always positive.

A=-data When the ARll is in
unipolar mode. A is
always negative.

specifies the gain setting for the requested AID
conversion on an LPSll, or th.e range (bipolar or
unipolar) on an ARll.

i=O software auto-gain ranging

=1 gain of 1 for LPSll (-5V to +5V) ~ bipolar
range for ARll (-2.5V to +2.5V).

=2 gain of 4 for LPSll (-1.25V to +1.24V) ~
unipolar range for ARll (0 to +5V).

2-7

LABORATORY PERIPHERAL SYSTEM SUPPORT

=3

=4

gain of 16 for LPSll (-0.3V to +0.3V) ;
illegal for ARll.

gain of 64 for LPSll (-0.078V to +0.078V) ;
illegal for ARll.

The default value is 1.

NOTE

On an LPSll, the LPSAG option must
be present when i is not equal to
1, otherwise the value returned in
the target variable will be
unspecified (i.e., dependent on
hardware) .

Example:

Sample the A/D from channels 4 and 5, use a gain of 1, and save the
results in arrays A4 and A5 respectively. Assume 100 samples are to
be taken.

10 DIM A4(100)vA5(100)
20 FOR I~l TO 100
30 CALL nADC"(4vA4(I»
40 CALL "ADC n (5vA5(I»
~:50 NEXT I

2.4.2 Real-Time Sampling (RTS)

The RTS routine performs real time buffered/clocked sampling of the
A/D.

The form of the call is:

where

CALL II RTS II (A [(i)] , c 1 , c 2 , n , m [, i])

A[(i)]

cl

c2

is a buffer previously defined in a call to the
USE routine. The sampling will be stored in this
buffer. The data pointers in the ring buffer
will be reset before sampling is begun.

determines the first channel to be sampled. Must
have a value between 0 and 15 for ARll or LPSll
with gain other than 1 specified; or 0 to 63 for
LPSll with no gain or gain equal to 1. This
value must be between 0 and 7 when dual sample
and hold is required.

determines the number (or number of pairs) of
sequential channels which will be sampled. The
maximum is 16 for ARll or LPSll with gain other

2-8

n

m

i

LABORA~:ORY Pl!:RIPHERAL SYSTEM SUPPORT

than 1 specified; and 64 for LPSll with no gain
or gain equal to 1.

NOTE

The sum of Cl and C2 cannot be greater
the 64.

determines the total number of samplings.

determines the mode of sampling.

specifies the gain setting for the requested AID
conversion.

whE~n

i=O software auto-gain ranging

=1 gain of 1 for LPSll (-5V to +5V); bipolar
range for ARll (-2.5V to +2.5V).

=2 gain of 4 for LPSll (-1.25V to +1.25V);
unipolar range for ARll (0 to +5V).

=3 gain of 16 for LPSll (-0.3V to +0.3V);
illegal for ARll.

=4 gain of 64 for LPSll (-0.078V to +0.078V);
illegal for ARll.

The default value is 1. When (cl + c2) is greater
than 16, it is illegal for i to be equal to zero
or greater than 1.

NOTE

On an LPSll u the LPSAG option must be
present when i is not equal to 1,
otherwise the value returned in the target
variable will be unspecified (i.e.,
dependent on hardware).

The AID can be enabled in a variety of modes depending on the options
specified. The normal mode of operation (m=O) causes the AID to
sample whenever Schmitt trigger 1 fires for the LPSll or external
start for the ARll. To enable other options, merely add their code
number to the mode. The following table describes options available
(all options are normally disabled) :

2-·9

LABORATORY PERIPHERAL SYSTEM SUPPORT

Table 2-1
Mode Options in RTS Sampling

-
Code Option

0 Normal operation, reads on Schmitt trigger 1 for
LPSll or external start for ARll.

+1 Enable burst mode (used only with DMA)
+2 Enable clock, disable Schmitt trigger 1 (used with

LPSAD12, LPSKW or ARll)
+4 Enable dual sample and hold for LPSll only (used with

LPSSH)
+8 Enable DMA for LPSll only (used with LPSAD-NP)

The burst mode can be used with Direct Memory Access only and the dual
sample and hold mode can be used with the Direct Memory Access. The
dual sample and hold, and DMA options can only be used on the LPSll.
The following table lists all possible values for m and the modes
enabled.

Table 2-2
Mode for Values of m

m Mode
LPSll ARll

0 0 Schmitt trigger 1 or external start
2 2 Clock
4 Dual Sample and Schmitt trigger 1
6 Dual Sample and Clock
8 DMA and Schmitt trigger 1
9 DMA and Burst

10 DMA and Clock
11 DMA and Burst
12 DMA, Dual Sample, and Schmitt trigger 1
13 DMA, Dual Sample, and Burst
14 DMA, Dual Sample, and Clock
15 DMA, Dual Sample, and Burst

-

The AID is started by a clock overflow or the firing of Schmitt
trigger 1 (external start fo~ ARll). Pointers are used to determine
if data exists in the buffer arrays or if data wrap-around occurs.
Since data is stored in circular buffers (excluding DMA operations) ,
pointers are used to ensure that the incoming data rate does not
exceed the removal rate. Data returned as -1 indicates ring buffer
overrun; data returned as -2 indicates no data exist; data returned
as -3 indicates hardware overrrun (interrupt service too slow). The
buffer pointers are reset initially before the sampling operation
begins.

AID channels are sampled on every clock overflow or firing of Schmitt
trigger 1 (external start for ARll) with the result stored in
consecutive data cells. Data is stored in a format identical to that
read from the AID (bits 0-11 for data and bits 11-12 for gain). When
a clock overflow or Schmitt trigger firing occurs, the AID samples the
first channel specified by cl and then samples the next c2 minus 1
consecutive channels. Sampling then continues until n clock overflows
or Schmitt triggers have been received. If n is specified as zero,
any previous RTS sampling will be disabled.

In dual sample and hold mode, parameter c2 is the number of pairs of
channels to read per sampling. Parameter n defines the number of
samplings. There are 2*C2 elements per sampling.

2-10

]~ABO:RA'rORY PERIPHERAL SYSTEM SUPPORT

DMA operations may use dual sample and hold. DNA allows direct
hardware storage of A/D results from only one channel into a specified
buffer array. A maximum of 4096 data may be taken at anyone time
with removal of data allowed only when the buffer is completely
filled.

NOTE

When DMA is used with dual sample and
hold, the parameter C2 must be 1, BASIC
automatically assigns the value of 1 to
C2 and any other number that is assigned
to C2 will be ignored.

RTS operations do not interfere with sampling operations other than
ADC (i.e., DRS and HIST routines) and all can be in progress
simultaneously. You must set up the clock by making a call to the
SETR routine before calling the RTS routine.

Example:

Set up the A/D to read data from channels 0 through 3 and store the
results in the array A. Schmitt triggers are to be used to fire the
A/D. Note that a dimension of 100 allows 200 data points. Since 4
channels are to be sampled, 50 Schmitt triggers will be required to
complete the request.

:I.,,) n I ~/i (:~I (:I. () 0)
::? 0 c: tl L.I... "U ~:; F " (('I ::.

30 CAL~I... "RTS"(A,O,4,100*2/4,O)

2.4.3 Display on the Light Emitting Diodes (LED)

A call to the LED routine displays the floating point value of the
specified expression on the LEDs (Light Emitting Diodes) of the LPSII.
Up to six positive or five negative digits can be displayed in the
LEDs. An optional decimal point can also be included. Numbers which
cannot be accurately displayed (i.e., E numbers or 6-digit negative
numbers) are shown as all minus signs.

This routine acts as a NOP (no-operation) when $ARII is defined in
PERPAR.MAC for an ARII system.

The form of the call is:

CALL "LEDiI(a)

where

a the expression or the value to be displayed.

Example:

2-11

LABORATORY PERIPHERAL SYSTEM SUPPORT

Display the value 5.632 on the LEDs.

:::,~O C"::il...l... II LE'n II ((~ ,)

or

:I. () Ct)I...I.., II LED II .: ~:s (, 63:?)

2.4.4 Returning AID Data from Buffer (CVSG)

The CVSG routine returns the unformatted data value sampled by the RTS
routine in one variable and the gain in a separate variable. A-I
will be returned if the data is bad (defined as overrun). A -2 will
be returned if there is no data. A -3 will be returned when a
hardware data overrun occurs.

The form of the call is:

where

CALL i'CVSG il (V,I)

v

I

is the target variable and contains the floating
point conversion from the analog input in the
range 0 to 4095 for LPSll and 0 to 1023 for ARll.

returns the gain setting of the requested AID
conversion.

when

=1 gain of 1 for LPSll (+or -5V) ; bipolar
range for ARll (+or-2.5V).

=2 gain of 4 for LPSll (+or-l. 25V) ; unipolar
range for ARll (0 to +5V) •

=3 gain of 16 for LPSll (+or-.3V) ; illegal
for ARll.

=4 gain of 64 for LPSll (+0 r - • 078 V) ; illegal
for ARll.

2.5 MODULE LPS2 (REAL-TIME CLOC15l

2.5.1 Setting the Clock Rate (SETR)

A call to the SETR routine sets the clock running in the specified

2-12

LABOHATORY PERIPHERAL SYSTEM pUPPORT

mode and at the designated rate. The interrupt enable is always set
(except mode 8 and above).

The form of the call is:

CALL "SETR 'II (r ,m,p)

where
r

m

p

determines the rate of the clock.

determines the mode of the clock.

is the preset value of the clock counter. The
preset value must be less than 65535 (decimal) for
the LPSKW and 255 (decimal) for the ARII.

The following preset values are illegal for the indicated rates in
interrupt mode.

Rate

1

2

3

Illegal preset values

<150
<180 (for systems with memory management option)

<15
<18 (for system with memory management option)

==1

NOTE

All values of rate and preset are legal in
interrupt mode.

The following tables describe the rates and modes determined by the
values of rand m.

Values of r

o
1
2
3
4
5
6
7

Table 2-3
Selecting the Clock Rate

Hate

No rate selected
1 MHz
100 kHz
10 kHz
1 kHz
100 Hz
Schmitt trigger 1 (external event for ARll)
Line frequency (50 Hz or 60 Hz)

2-13

LABORATORY PERIPHERAL SYSTEM SUPPORT

Table 2-4
Selecting the Clock Mode

Values of m Mode

a

1

2

3

Single interval mode. Counter counts from preset value to
overflow and stops.

Repeated interval mode. Counter counts from preset value to
overflow, transfers buffer/preset register to the counter,
and begins again.

External event timing mode. The counter is free running,
and a pulse from Schmitt trigger 2 transfers contents from
the counter to the buffer/preset register and then continues
counting. Not valid for ARII.

Event timing from zero base mode is the same as mode 2
except when the transfer of the counter to the buffer/preset
register is done, the counter is cleared and the count
begins from zero. Not valid for ARll.

4,5,6,7 Start clock only after Schmitt trigger 1 fires. Mode is
then determined by the value of m-4. Not valid for ARll.

8 to 15 Indicates the operation of the clock in a non-interrupt mode
has been added for faster A/D data acquisition. To get the
value of m, just add 8 to the value of the interrupt mode.
For example:

m=0+8 indicates single interval non-interrupt mode clock
operation.

m=1+8 indicates repeated interval non-interrupt mode
clock operation.

Example:

Set the clock running to interrupt once every second.
frequency is used and the clock mode is 1.

CALL IISETR"(5,1,100)

A 100 Hz

Each programmable clock interrupt causes a 16-bit software clock
(counter) to be incremented by one. When the maximum count of 65535
is reached, the next interrupt causes a reset to zero. This clock may
be retrieved by the RTIM and DRS routines.

2.5.2 Setting the Clock to Rate and Time (SETC)

A call to the SETC routine sets clock to specified rate and time.

The form of the call is:

CALL "SETC"(r,t)

2-14

where

r

LABORATORY PERIPHERAL SYSTEM SUPPORT

determines the clock rate as
Table 2-3, and may be 4,5, or 7.

described in

t is the time in seconds that the clock runs before
issuing an interrupt.

The clock status register is set to rate determined by r and runs for
t seconds. A clock interrupt then occurs which can be used to
initiate any of the clock controlled functions. The time argument is
evaluated as ticks equal time in seconds multiplied by the clock rate
specified, e.g., if the clock rate was 10kHz, then ticks equal time in
seconds multiplied by 10kHz. The ticks are entered into the clock
preset/buffer register. The clock always runs in mode o.

Example:

Set the clock to interrupt in 10 seconds using a 100 Hz frequency.

CALL "SETC"(5,10)

2.5.3 Histograms - Timed Schmitt Trigger (HIST)

The HIST routine inputs values from the clock preset/buffer register
and stores them into the specified buffer whenever Schmitt trigger 2
fires. The clock must be in mode 2 or 3 for the data to be
meaningful.

The form of the call is:

where

CALL "HIST" (~r[(i)] ,n)

T[{i)]

n

is a buffer previously defined in a call to the
USE routine.

determines the total number of data points stored.

The RDB function is used to retrieve the data. The data pointers in
the ring buffer are reset before the sampling operation begins.

If n is given as zero, the HIST sampling will be disabled.

HIST operations do not interfere with other sampling operations (i.e.,
RTS and DRS) and all can be in progress simultaneously.

HIST routine acts as a NOP (no-operation) when $ARll is defined in
PERPAR.MAC for an ARll system.

Example:

Collect a timed histogl:am between external events (Schmitt trigger 2)
and store the results in array T. The clock runs at 1 kHz and 100
intervals are required.

:1.0 filii T(~:.'.iO)

20 C(~II...I... 11 UnE: 11 (T)
J ~) C A 1...1... II H I B T 11 (T ~ :I. 00)
·40 CtlLI... 11 :::;ETI:~ " (-4 y :3 y :I.)

2-15

LABORATORY PERIPHERAL SYSTEM SUPPORT

2.5.4 Delaying Program Execution (WAIT)

A call to WAIT disables further program execution until the specified
event occurs.

The form of the call is:

where

n

Example:

CALL IWAIT"(n)

specifies the event that must occur for program
execution to continue.

Values of n are:

n=O wait for clock to overflow only.
n=l Wait for Schmitt trigger 1 (external event

for ARll) to fire (for clock rate = 6 only).
n=2 Wait for clock to overflow or Schmitt trigger

1 to fire.
n>2 Returns immediately.
n<O Wait for Schmitt trigger 1 (external event

for ARll) to fire (a call to the SETR or SETC
routine must be made prior to this).

Wait for clock to overflow.

10 CALL "WAIT"(O)

2.5.5 Returning Current Software Clock Tick Value (RTIM)

A call to the RTIM routine returns the l6-bit integer value of the
internal software clock counter maintained by the programmable clock.

The form of the call is:

where

CALL II RTIM" (s, t)

s

t

specifies whether the internal clock counter is to
be cleared or not. The counter is cleared when s
is equal to 0; otherwise it is unaltered.

is the l6-bit integer value of the internal clock
counter.

2-16

LABORATORY PERIPHERAL SYSTEH SUPPORT

2.6 MODULE LPS3 (DIGITAL I/O)

The user should read the LPSll Laboratory Peripheral System User's
Guide in order to fully understand the hardware latching mechanism
before using these modules.

The interrupt control logic permits the LPSDR-A or the DRll-K to
perform an interrupt operation. The switches and jumpers on this
logic can be arranged so that vector address can be assigned other
than those configured as standard on the module for alignment.

One method of causing interrupts to the Unibus uses the two control
lines between the DRIl-K and the external device. If the input
interrupt enable (bit 6 of the status register) is set, a negative
transition (+3 v to ground) of the EXTERNAL DATA READY pulse will
generate an interrupt to the Unibus, with a vector address of 300. A
bus request is made on the BR level that corresponds with the level of
the priority plug in the logic (the standard level for the DRll-K
interface is BR4; this may be changed on the priority plug if
desired). The control line method of interrupting is logically ORed
into the DRll-K interrupt control, and is disabled by internal
clamping circuitry if not desired. The device will continue
interrupting as long as the line is held low.

The second and most preferred method of interrupting is to use the
individual input lines. Each input (IN15:INOO) is buffered by a
flip-flop that will set on a negative transition (+3 v to ground).
Switches for the buffered bits on the hardware option make it possible
to wire-OR each bit onto a common interrupt line. When the input
interrupt enable (bit 6 of the status register) is set and a switch is
on, the transition of the associated bit causes an interrupt to the
Unibus. The bits are read under program control by reading the input
register, and are cleared by moving data Is to the bits to be cleared.
The input interrupt enable is cleared when an input interrupt is
accepted by the Unibus; when reset, it will retrigger the interrupt
circuit if any other input bits were set during the program service
subroutine, so that new interrupting bits will not be lost.

2.6.1 Reading the Digital Input Register (DIR)

A call to DIR reads the Digital Input Register and converts it to a
floating point number. The form of the call is:

where

CALL II DIR" (i , V, S [,m [, j]])

i

V

S

determines the type of floating point conversion.

is the target variable. It is the value in the
input register ANDed with ffi.

contains the returned digital Control
Register (CSR) setting.

2-17

Status

LABORATORY PERIPHERAL SYSTEM SUPPORT

m indicates the 16-bit mask. The default value is
-1.

j indicates the number of the DRII-K unit on a
multiple DRII-K system. The default value is O.
The maximum legal value is determined by the
parameter $NUMBER in PERPAR.MAC at the assembly
time of PERVEC.MAC module.

If i=O, input is four Binary Coded Decimal (BCD) digits converted to a
floating point number and the result is in the range 0 to 9999. If
i<>O, then the binary result read from the register 1S directly
converted to a floating point number and the result is in the range 0
to 65535. The Digital Input Register is read via an internal load
request and does not respond to interrupts. The input word is
immediately written back into the input register to clear those bits
which were obtained from the register. The result is returned in V.

The new CSR register setting is returned in S.

Example:

1 REM THIS PROGRAM TESTS THE "DIR"v"DOR" AND "DRS" MODULES ALONG WITH
2 REM SETRvWAIT AND RDB. THE INPUT AND THE OUTPUT DIGITAL CABLES MUST BE
3 REM CONNECTED TO EACH OTHER.
,4 I1111 X(;'50)
::) 0:::::1.
6 CALL "DOR"(:l.v65535vN)
'/ CtlLL "U~:;E"(X)

10 FOR 1=:1. TO 16
20 CALL "DOR"(O,O,N)
30 CALL "DIR"(1,YvN1)
-40 P I:~ I NT N y Y
~,)O 0::::0*2
(~)O NEXT I
160 CALL "DOR"(1,65535,N)
:L 6 ~,) C 011... I.. "D l:~ S " (X y 1 y ;'50 v 0 y N)
170 CALL "SETR"(5v1,100)
:I. 7~,:j M::::O
:l.HO 0::::0
:1.85 FOR 1=:1. TO 30
:1.90 CALL "DOR"(:I.,65535,N)
:1.95 CALL "DOR"(M,O,N)
200 0=0+4096+256+16+1
205 CALL "WAIT"(O)
:210 NEXT I
2:1. :::,i GOSLIB 300
220 STOP
~OO FOR J=l TO 30
305 CALL "RDB"(X,Y)
3:1.0 PRINT J,Y
3:l :::j NEXT ,.1
:320 I:~ETUF;:N

::50() END

2-18

LABORA~~ORY PERIPHERAL SYSTEM SUPPORT

2.6.2 Writing to the Digital Outpu! Register (DOR)

A call to DOR can either set or clear selected bits in the Digital
Output Register. The form of the call is

where

CALL "DOR" (m I' n , R [, j])

m

n

R

j

determines whether bits are to be set (when m=O)
or cleared (when m is not equal to 0).

determines which bits are to be set or cleared.

contains the floating point equivalent to the new
value in the Digital Output Register.

indicates the number of the DRll-K unit on a
multiple DRll-K system. The default value is O.
The maximum legal value is determined by the
parameter $NUMBER in PERPAR.MAC at the assembly
time of PERVEC.MAC module.

If a bit in the binary representation of n is 1, the corresponding bit
of the Digital Output Register will be cleared or set (depending on
the value of m). If a bit in the binary representation of n is 0, the
corresponding bit of the Digital Output Register will not be changed.
The BASIC-II BIN and OCT functions are very useful in setting or
clearing the registers.

Example:

Turn on (set) bits 1 and 2 of the Digital Output Register.

40 CALL "DOR"(O,BIN'llO',N) ClE~ar Digital Output Register.

40 CALL "DOR"(1,OCT'177777' ,N)

or

40 CALL "DOR"(l,-l,N)

2.6.3 Digital Readout Sampling (DRS)

A call to the DRS routine samples the Digital Input Register in a
similar fashion as the RTS function.

The form of the call is:

CALL "DRS" (A[(i)] ,ml,n,m2,R[,T[,m[,j]]])

where

2-19

A [(i)]

ml

n

m2

R

T

m

j

LABORATORY PERIPHERAL SYSTEM SUPPORT

is a buffer previously defined in a call to the
USE routine.

determines the mode by which the Digital Input
Register is to be read.

determines the total number of samplings.

determines whether the sampling is clock driven.

contains the returned setting of the digital
Control Status Register (CSR).

describes the address of the buffer to store the
current clock TICK value on every data interrupt
when m2 is not equal to zero.

indicates the l6-bit mask. The default value is
-1.

indicates the number of the DRll-K unit on a
multiple DRll-K system. The default value is O.
The maximum legal value is determined by the
parameter $NUMBER in PERPAR.MAC at the assembly
time of PERVEC.MAC module.

When m2 is equal to 0, each time the clock fires (Schmitt trigger, or
external event for ARll) , the Digital Input Register is read.

If ml is equal to zero the Digital Input Register will be treated as
Binary Coded Decimal and will be converted to binary. If ml is not
equal to zero the Digital Input Register will be input directly as a
binary number. This number is stored in the circular buffer specified
by A[(i)]. When DRS is first called, it resets the pointers of the
buffer to the beginning.

If n is given as zero, the DRS sampling will be disabled. The DRS
call 1S driven by digital clock when m2 is not equal to zero.
Whenever a new value is received in the input register, the value is
immediately read in and stored in the buffer. The value of the l6-bit
software clock is stored in the buffer specified by T. The input data
word is immediately written back into the input register, and the
active bit which have been sampled are cleared.

The new setting of the digital Control Status Register is returned in
R.

Example:

Read the Digital Input Register once everyone tenth of a second for
100 readings and store the results in array A.

lO DI~·l I~I(~:.:;O)

20 CALL "USE"(A)
30 CALL "DRS"(A,O,lOOvOvN)
40 CALL "SETR"(5vl,10)

2-20

LABORATORY PEJ.~IPHERAL SYSTEM SUPPORT

2.6.4 Relay Control (REL)

A call to the REL routine opens or closes the specified relay.

The REL routine acts as a NOP (no-operation) when $ARll is defined in
PERPAR.MAC for an ARll system.

The form of the call is:

where

CALL "REL"(a,b)

a

b

specifies the relay and may be equal to 1 or 2.

determines the operation. Relay is opened if
equal to 0, otherwise it is closed.

Example:

Open relay 1 and close relay 2.

:1. () 0 C tiLl... II F(E I... II (1 ? 0)
110 CALI... "REI... II (2y1)

2.6.5 Reading/Writing Data From/Into Memory (IPK)

The IPK routine can be called to read a value from a specified address
or place a value into a specified address. The form of the call is:

where

CALL IIIPK"(s,a,V)

s

a

indicates whether the value is a word or a byte.
If s is even, the word value supplied in V will be
read from or written into the even address
register. If s is odd, the byte value supplied in
V will be read from or written into the odd
address register.

A. call such as CALL II IPK" (0,64, V) reads into
variable V the value at location 64 in memory.

specifies the address where the value V is read
from or written into. This address must be even
when the value of s is even. This address can be
specified as an octal string, integer constant or
integer variable.

A. call such as CALL II IPK"
because the address is
?ARG will result.

2-21

(2,73,100) is illegal
odd; the error message

v

LABORATORY PERIPHERAL SYSTEM SUPPORT

is the value to be read from or written into the
address register.

NOTE

This routine should not be used except to
read from or write into the I/O page or to
read from memory. Writing into memory can
cause serious consequences (program being
wiped out, etc.).

2.7 MODULE LPS4 (DISPLAY)

The routines in this module require the LPSVC or ARll with the VR14
interfaced through it. The VTll cannot be used with these routines.

2.7.1 Defining the Display Buffer (CLRD)

A call to the CLRD routine defines the display buffer having fixed
delta x values.

The form of the call is:

CALL "CLRD" (A[(i)] ,a,b)

where

A((i)]

a

b

is a buffer previously defined by a call to the
USE routine.

specifies the size of the buffer to be displayed.

specifies the scale.

The buffer to be displayed should contain single word values. Values
in the range 409S)=value)=0 are displayed while values outside this
are not. The size of the buffer, a, is the number of Y points to
display and must be less than or equal to the number of points defined
in the DIM statement and the call to the USE routine. The delta x is
calculated as 4096/a and can be fractional.

If b, the scale, equals 0, CLRD will set all buffer values to -1
(non-displayable values). If scale does not equal 0, CLRD bypasses
the clearing of the array and the original data is multiplied by b.
In either case, the PUTD pointers are reset to point to the beginning
of the array. Data is entered into the array through the PUTD
function; however, a CLRD must be issued before data is initially
transferred to the array.

A CLRD routine must be issued at least once before issuing the DIS,
FSH, or DXY functions which can display the buffer defined by CLRD.

Example:

2-22

I,ABOHATORY PERIPHERAL SYSTEM SUPPORT

Set up the array C to be used as a display buffer having 256 points.

1 () DIM C (:1.20)
20 CALI... II USE II (C)<
30 CALI... IICI...RD II (Cy256yO)

2.7.2 Putting Data into Display Buffer (PUTD)

A call to the PUTD routine puts a data value into the specified
buffer. Repeated calls to PUTD will cause the buffer to be filled
sequentially.

The form of the call is:

CALL "PUTD"(A.[(i)],b)

where

A[(i)]

b

is a buffer previously defined by the USE routine.

is the value to be inserted.
O<=b<=65535.

Must be in range

This function does not initiate a display, but rather just enters data
into the specified array.

Example:

Remove 100 data points from the specified digital sampling buffer D,
and transfer them to the buffer Z.

80 DIM D(50)yX(50)
90 CALI... "USE"(DyX)
100 FOR I=1 TO 100
110 CALL IIRDB"(DyX)
120 CALL "PUTD"(ZyX)
:1.30 NEXT I

2.7.3 Background Display Routine (DIS)

A call to the DIS routine displays data from the buffer whenever BASIC
is idle. Data is not displayed by DIS or DXY routines under RT-ll FB
system because BASIC is never idle. Data is displayed under RT-ll SJ
system (version 2 or later) only when I/O is taking place.

The form of the call 1· c· • ...) .
CALL "DIS" (AI: (i)] ,a,b [,n]) where

A[(i)] is a display buffer previously defined by the USE
and CLRD routines.

2-23

LABORATORY PERIPHERAL SYSTEM SUPPORT

a determines the starting point of the display.

b determines the frequency of points in the buffer
that are to be displayed.

n specifies the number of data point to display.
The default value is all remaining elements of the
array.

The points displayed start with the point a in the buffer and proceed
in increments of b. If b is equal to 1, consecutive points starting
with the a one are displayed. If b is equal to 2, every other point
is displayed, etc.

Example:

Display data from buffer E beginning at the 12th data point and
displaying every 3rd point of the remaining array elements.

20 DIN E(:l.OO)
40 C(~I ... L "USE"(E)
60 CALI... "CLRD"(E,200,0)
80 REM BUFFER MAY BE FILLED HERE
100 CALL "DIS"(E,:l.2,3)
120 REM OR MAY BE FILLED HERE

Example:

5 REM THIS PROGRAM TESTS THE ROUTINES-USE,CLRDvPUTDvDIS,FSH-ALONG WITH
:1.0 F~Erj BETF~YAND ['Jf.1IT
15 PRINT "PROGRAM TO TEST CLRD,PUTDvDIS AND FSH."
50 CALL "SETR"(5,:I.,10)
:tOO DIp'j A(:l.OO)
200 CALL "USE"(A)
300 CALL "CLRD"(A,:l.OO,O)
400 FOR I~l TO :1.00
500 CALL "PUTD"(A,I)
.500 NEXT I
/00 CALI... nDIsn(f~,l,:I.)

'/1.0 INPUT D
750 CALI... "DIS"(A,l,:l.v75)
·.?i~)O INPUT D
780 CALL "DIS"(Ayl,1.,50)
BOO INPUT D
900 IF D=OGO TO 2000
950 FOR S=:I. TO 99
975 FOR 1=:1. TO 50
? El 0 F (] I:;: D :::: :I. Tn :1. 00
:1.000 CALI... "FSH"(A,SvI,D)
:to:I.O CALI... "lNAIT" (0)

:1. ():~:.~~5 NEXT It
1030 NEXT J
:I. O~::jO NEXT S
:1.100 en TO BOO
:?OOO ~:)TClP

2-24

L}\BORATORY PEHIPHERAI. SYSTEM SUPPORT

2.7.4 Display Buffer (FSH)

The FSH routine is identical to the DIS routine except that the data
points in the buffer are completely displayed only once when this call
is executed. The next BASIC statement is then executed.

The form of the call is:

where

CALL IFSH"(A[(i)],a,b[,n])

A[(i)]
a
b
n

have the
same
meaning
as in DIS.

Example:

Using the previous example, display 100 cycles of the array E.

100 FOR 1=1 TO 100
110 CALL "FSH"(E,12y3)
:1.20 NEXT I

2.7.5 Displaying X,Y Data (DXY)

A call to the DXY routine displays points from two buffers as x and y
values. These buffers are displayed whenever BASIC is idle. Data is
displayed under RT-II SJ system (version 2 or later) only when I/O is
taking place.

The form of the call is:

where

CALL "DXY" (X[(i)] ,Y[(j)] ,a,b[,n])

X[(i)]

Y[(j)]

a

b

n

is a buffer previously defined by. a call to the
USE routine and contains the x values.

is a buffer previously defined by calls to the USE
and CLRD routines and contains the y values.

determines the starting point in both buffers

determines the frequency of the points in each
buffer to be displayed.

specifies the number of data points to display.
The default value is all remaining elements of the
array.

2-25

LABORATORY PERIPHERAL SYSTEM SUPPORT

The buffer containing the x values, X[(i)] does not have to be
initialized by a call to CLRD, but it may be convenient to do so to
initialize all values so that they are non-displayable. The buffer
containing the y values must be initialized by a call to CLRD although
the value of delta x is not used.

As in the other display routines the a determines the location of the
first point to be displayed in each buffer and b determines the
frequency of points to be displayed. If b equals one, consecutive
values are taken from the two buffers. If b equals two, every other
value in each buffer will be used to create the display.

Example:

Generate fiducial marks on the display screen of a 256-point display
every 16 points. Marks will be 10 points in height. Data will be
generated into the arrays X and Y.

5 R~M THIS PROGRAM TFSTS -~XY AND FXY- ROUTINES
1 0 P~: I ~H II TFST pJ;.:OG~~At·1 FO~~ [:r~:'r' AND F~:'r' ~~OUT I ~~ES II
?0 DIM X(128),Y(128)
:::0 CALL II USF II (>c:, 'r')
40 CAl L "CI,,~~r;,1I (~.::} 256,. ~n
5 ff CAL L II C U~~ r:r II ('r', 2 51S, (1)

60 FOR 1=16 TO 25~ STFP 16
7(f I='O~~ .J=1 TO iff
~:0 CALL "PUTr:r" (>::, I)
q(f CAL L IIpUTr;." ('r' .. ,J)

l€f(1 ~JE~'::T .J
'1.1 (1 p.~ F ~.::r
'1.20 CALL II r:r~<'r'" (>::., ""., 1,. 1:>
1.3:(1 STOP
1.4ff ENC'

2.7.6 Flashing X-Y Data (FXY)

The FXY routine is the same as DXY routine except that the X and Y
values are displayed only once when this call is made.

The form of the call is:

Example:

CALL "FXY" (X[(i)] ,Y[(j)] ,a,b[,n])

X[(i)]
Y[(j)]
a
b
n

Have the
same
meaning
as in
DXY.

5 R~M THIS PROGRAM TI='5TS -DXY AND I='XY- ROUTINES
'1 (1 p~: I t·n II T~ST P~'OG~:Rt'1 FOR D~<',.' ANC' F::-::'r' ~:OUT I NESII
?0 ~TM X(128),Y(128)
":;:(1 CRU_ .. US~ II (>::. 'r'::'
,1 (1 r:RI_I_ II CLJ;.·r:r II .:: ~.::! 256. (1)

~ (1 CAI_L "cl_~'r)" ('r'. 2:i6,. (1)

2-26

LABOFtATORY PERIPHERAL SYSTEM SUPPORT

~0 ~OR 1=16 TO 256 STEP 16
:·''.::1 ~O£;,: . .T=·1 TO 1'.::1
~:~1 CAI .• I 10 PUTtl " .;: >:: I I)
9(1 CRI.I_ "PUTCI" ('rl .. J)
1 Of1 ~~F~~:T .. T
'11€1 ~JJ='~'::T I
1.2(1 CAI_L II O>::'r"l C~:I 'rl , 1.. 1)
1. 3:f1 I t·JPUT r:1
1 4(1 CAl..L II (:1 >::'rlII (>::.' 'rl .. 1.. 1.. 25::'
1.5'.::1 1 W:'UT [;.
1 6(1 CAU_ II r;.~-':'rlll (K. 'rl .. 1.. 1.. 50)
1 7'.::1 I t·JPUT r;.
180 I~ D=0GO TO 26B
190 ~OR 5=1 TO 99
200 ~OR 1=1. TO 50
210 ~OR D=l TO 100
::-~2(1 CRI '- "~>::'r"l n·:: I 'rl. S. L r;.::.
;::'3:(1 N~~-::T D
;::'4(1 ~JF~-::T I
;::'5'.::1 ~J~>::T S
::-::60 STOP
;::~70 F.:~H:I

2.8 HARDWARE REQUIRED FOR LPS COMMANDS

The following summary describes the hardware necessary to fully
utilize the LPS system.

Command

USE
ACC
RDB
ADC
RTS

LED
CVSG
SETR
SETC
HIST
WAIT
RTIM
DIR
DOR
DRS
REL
IPK
CLRD
PUTD
DIS
FSH
DXY
FXY

Nonie
Nonie
None

Hardware Required

LPSAD-12, LPSAM (for additional 8 channels)
LPSAD-12, LPSAD-NP (for DMA operations)
LPSAM (for additional 8 channels)
LPSSH (for dual sample and hold)
LPSKW (for real-time clocking and Schmitt
tri9gers)
LPSAG-VG (for multi-gain)
LPS.l~D-12
Nonie
LPSKW
LPSKW
LPSKW
LPSKW
LPSKW
LPSDR
LPSDR
LPSDR
LPSDR
l\Ion'e
None
None
LPSVC
LPSVC
LPSVC
LPSVC

The routines that require the ARll are ADC, RTS, SETR, SETC, WAIT, and
RTIM.

2-27

LABORATORY PERIPHERAL SYSTEM SUPPORT

The routines that require the VR14 in addition to the ARll are DIS,
FSH, DXY, and FXY.

The routines that require the DRII-K are DIR, DOR, and DRS.

2.9 EXAMPLE PROGRAMS

1 REM THIS PROGRAM TESTS THE "ADC" MODULE
2 REM IT REQUIRES 2 INPUTS: CHANNEL I AND IGAIN FROM CONSOLE
3 REM A CHANNEL I EQUAL TO -1 TERMINATES PROGRAM
:to INPUT C
20 INPUT G
30 IF C=-l THEN 100
40 CALL UADC"(CvV)
50 PRINT VvABS(V)
60 CALL HADC"(C,Vl,l)
70 PRINT Vl,ABS(Vl)
80 CALL "ADC"CC,V2,G)
90 PRINT V2,ABS(V2)
9~~j GO TO :1.0
lOO END

**
1 REM THIS PROGRAM TESTS THE DRS MODULE TIME LOG FEATURE
3 DIM ZC:'~O)

-4 DIM X C30)
~~i O::~ :1.

6 CALL "DOR"(l,65535,N)
8 CALL "USE"(X,Z)
10 FOR I=1 TO :1.6
20 CALL "DOR"(O,O,N)
30 CALL "DIR"(l,Y,Nl)
40 PF:INT NyY
~;.)O 0::::0*2
60 NEXT I
160 CALL "DOR"(l,65535,N)
:t65 CALL "DRS"(X,1,30,1,N,Z,7)
166 PRINT "********",N,"***********"
170 CALL "SETR"(4,l,l)
:I. ? ~.:; M :::: ()
:I. H 0 0 :::: ()
185 FOR 1=1 TO 30
:1.90 CALL "DOR"(l,65535,N)
:1.95 CALL "DOR"(M,O,N)
2()O O::::O+2~:5t')+ :1. 6+:1.
21.0 NEXT J
2 :1. ~::; GOSUB :'500
22() STOP
300 FOR J=:I. TO 30
J05 CALL "RDB"(X,Y)
306 CALL "RDB"(Z,Y:t)
:3 :1. () P r~ I NT J, Y y Y :1.
31.::) NEXT J
:320 RETUr::N
::j()O END

*
'1 (1 ,"~Ft'1 n-l IS PPOGPFlt'1 TF.:STS THE II PTS" t'10C'ULE
?0 PFM IT PF.:QUIPFS J INPUTS: STARTING CHANNEL #, NUMBEP OF CHANNELS
?0 PFM AN~ IGRIN FPOM CONSOLF
40 PFM A STAPTING CHRNNFL # FQUAL TO -1 TEPMINATES PPOGPAM
":~(1 ['It'·, A(2(1)

2-28

LABORJ\TORY PERIPHERAL SYSTEM SUPPORT

6£1 CRI.I. IIIISEII(R)
7(1 I ~JPUT S
R0 IF S=-1 THEN 150
9(1 I ~JPUT ~J

1 (1£1 J NPUT G
1 1£1 CALI. II SF.:r~: II (~5, i., 1£1(1)
1 2£1 CAI.L "~:TS II (A, S., N, 2£1, 2., G)
1. 3:£1 GOSUF.: ?£1€r
1.4£1 GO TO 5£1
1 5£1 STOP
168 RFM@@@
17£1 CALI .. "Rr)F..: 1I (A, Z)
1.88 TF Z(0 THFN 170
1.9£1 f;.~FTUR~J

?€1£1 FOJ::: I =1 TO 4
~~1£1

:::'2£1
::~3£1

:::'4£1
:::'5£1
:::'6£1
~~7£1

:::'8£'1
29£1

GOSUF.:
R1=Z
GOSUF:
R2=7
GOSUF:
A3:=Z
G05UB
A4=Z
G05UF:

-:::€1£1 A5=Z

17€1

17e.1

17£1

17e)

17e~

~18 PRINT A1,A2,R3,A4,A5
:1:2£1 NF~·::r I
-:1:3:£1 f;.:FTURN
":1:4£1 F.:~H)

1 REM THIS PROGRAM TESTS THE "RTS" & "CVSG" ROUTINES
2 REM IT REQUIRES 3 INPUTS: STARTING CHANNEL I~ NUMBER OF CHANNELS
3 REM AND IGAIN FROM CONSOLE
4 REM A STARTING CHANNEL I EQUAL TO -1 TERMINATES PROGRAM
:to DIM A(20)
20 CALL "USE" (A)
30 INPUT S
40 IF S=-l THEN 100
~:50 INPUT N
60 INPUT G
70 CALL "SETR"(5~lYl00)

80 CALL "RTS"(AvSvNv20v2vG)
90 GOSUB 22()
95 GO TO 10
100 STOP
101 REM@@@
20() CALL "CVSGn(Z,V)
210 IF Z=-2 THEN 200
21!7j I:~ETUF~N

220 FOI:;: I ::~:I. TO 4

240
2~)()

260
2?O
27~5

2BO
290

GOSUB
Al~::Z

V:I.::~V

GOSUE!
A2::::Z
V2::::t)
{;JOSUB
(.l:~::~Z

l"l3::::V
GOGUB
A4::::Z

2()()

2()()

200

200

2-29

LABORATORY PERIPHERAL SYSTEM SUPPORT

295 V4=V
300 GOSUB 200
310 A5=Z
315 V5=V
320 PRINT Al,A2,A3,A4,A5
325 PRINT V1,V2,V3,V4,V5
350 NEXT I
400 RETURN
1000 END

*
1 REM THIS PROGRAM TESTS THE uRTIMu MODULE ALONG WITH SETR AND WAIT
2 REM THE LAST 10 VALUES PRINTED WILL BE 0 THRO' 9.
10 INPUT S
20 IF 8=-1 THEN 1000
30 CALL "RTIMH(O,V)
40 PRINT V
50 CALL ·SETR"(5,1,100)
60 FOR 1=1 TO 10
70 CALL BRTIM 8 (1,V)
80 PRINT V
90 CALL "WAIT· CO)
100 NEXT I
110 GO TO 10
1000 STOP

*

2-30

APPENDIX A

COMMAND SUMMARY

The following list is a summary of the routines available for
controlling LPS hardware and a brief description of each:

CALL ARGU~lENT LIST

USE (A[(i)][B[(j)] ••• C[(f)]])

ACC

RDB

(A[(i)])

(A[(i)], B]

EFFECT

Defines array(s) to be used for
storage of data.

Allows access to an entire array.

Returns the next data point from a
specified buffer.

ADC (b,A[,i]) Initiates an A/D conversion on a
specified channel and return the
result to the user.

RTS (A[(i)], cl,c2,n,m[,i]) Performs real-time buffered/clocked

LED (a)

CVSG (V, I)

SETR (r ,m,p)

SETC (r , t)

HIST (T[(i)] lIn)

WAIT (n)

RTIM (s,t:)

DIR (i , V, S ["m [, j]])

DOR (m,n,R[,j])

A-I

sampling of the A/D.

Displays a numeric value on the
Light Emitting Diodes.

Returns the next data value and
gain in two separate variables.

Sets clock running at a designated
rate and mode.

Sets clock running at a designated
rate and initiates some action
after a specified number of seconds
have elapsed.

Performs histogram sampling using a
timed Schmitt trigger.

Waits for a specified event to
occur.

Returns the value of the internal
software clock counter.

Reads Digital Input register.

writes Digital Output register.

COMMAND SUMMARY

CALL ARGUMENT LIST EFFECT

DRS (A [(i)] , m 1 , n 2 , m 2, R [, T [, m [, j]]])

REL (a,b)

IPK (s , a, V)

CLRD (A[(i)] ,a,b)

PUTD (A[(i)] ,b)

DIS (A[(i)], a,b[,n])

Performs sampling of the Digital
Input register.

Closes or opens one of two relays.

Reads a value from a register or
writes a value into a register.

Defines
optionally
data in it.

display
clears or

buffer
scales

Puts data into data buffer.

and
the

Displays data with constant x and
variable y whenever BASIC is
waiting for I/O.

FSH (A[(i)] ,a,b[,n]) Displays a complete sweep of data
with constant x and variable y.

DXY (X[(i)] ,Y[(j)] ,a,b[,n]) Displays data with variable x and y
values whenever BASIC is waiting
for I/O.

FXY (X[(i)] ,Y[(j)] ,a,b[,n]) Displays data with variable X and Y
values respectively only once.

A-2

APPENDIX B

BUILDING LOAD MODULES

B.l BASIC/RT-ll~

B.l.l LPS Support

The software supplied supports the standard hardware configuration
only. The standard hardware configuration is determined by the
address of the device hardware register and vectors. The standard
LPSll or ARll register is at 170400 (octal) and the vector is at 340
(octal). The standard DRII-K register is at 167770 (octal) and vector
is at 300 (octal).

The supplied software has to be reassembled and relinked if the
hardware configuration does not correspond to the above. To redefine
the hardware register and vector address, just edit the source file
PERPAR.MAC.

The LPS Support for BASIC/RT-ll is supplied in ten binary relocatable
files (on DECpack disk, DEC tape , floppy disk, or 9-track magtape).
These files are:

LPSO.OBJ

LPSl.OBJ

ARDl.OBJ

LPS2.0BJ

ARD2.0BJ

LPS2C.OBJ

ARD2C.OBJ

LPS3.0BJ
ARD3.0BJ

LPS4.0BJ

Hequ:lred

Optional

Optional

One is required

Optional
Optional

Optionall

LPS kernel module for LPSII or
ARll and DRII-K
Analog to digital conversion
for LPSII
Analog to digital conversion
for ARll and DRII-K
Real-time clock (60 Hz line
frequency) for LPSll
Real-time clock for ARll (60
Hz line frequency) and DRII-K
Real-time clock (50 Hz line
frequency) for LPSll
Real-time clock (50 Hz line
frequency) for ARll and DRII-K
Digital input/output for LPSll
Digital input/output for ARll
and DRII-K
Display for LPSll or ARll and
DRII-K

The following files are also provided in source form in all kits:

FTBL.MAC
PERVEC.MAC
RTINT.MAC
PERPAR.MAC

Function Tab~e Module
Vector Definition Module
Interface Module
Parameter

To build a load module BASLPS.SAV (BASIC with LPSll support) or

B-1

BUILDING LOAD MODULES

BASARD.SAV (BASIC with ARll and DRll-K support), first transfer all
BASIC Extensions binaries (including sources) and BASIC files to the
system device with PIP. The parameter file PERPAR.MAC is then edited
and assembled with FTBL.MAC, PERVEC.MAC, and RTINT.MAC. The three
object modules produced are then linked with the LPS and BASIC object
modules to produce a load module.

NOTE

All of the procedures in this section
assume that an unaltered PERPAR.MAC is
being edited. It is recommended that a
copy of the original PERPAR.MAC be made
and saved for future use.

If the display module is not included in the LPS support to be linked,
another background routine may be linked wi th BASIC, but- it must be
defined in this module. See Section 8.8.1 of the BASIC/RT-ll Language
Reference Manual for instructions to define the background routine.

For the LPS routines to be accessible from the BASIC CALL statement,
the routine must be defined in a System Function Table as described in
Section 8.2 of the BASIC/RT-ll Language Reference Manual. FTBL.MAC is
a function table in source form. If any user-written assembly
language routines are also linked with BASIC and LPS software, the
routines must be defined in this function table. See Section 8.2.1 of
the BASIC/RT-ll Language Reference Manual for instructions to add the
assembly language routine definitions to the Function Table.

NOTE

Since only one .DEVICE programmed
request can be active, a special routine
SDEVHD has been added to BASIC (in the
FTBL.MAC module) to maintain a dynamic
device list. This routine is required
so that abnormal termination of BASIC
(e.g., typing CTRL/C) will return the
system to its normal state, usually by
disabling interrupts.

When writing new assembly language
routines for BASIC that would normally
use the RT-ll .DEVICE programmed
request, use the following code instead:

.GLOBL SDEVHD
MOV #LIST,RO
JSR PC,SDEVHD

If the .DEVICE list exceeds a block of
30 octal words, the error message "?DSP"
will result. The size of the block can
be changed by defining "DSPSIZ=X" in the
PERPAR.MAC file.

PERVEC.MAC is the vector definition module. It defines the hardware
addresses of the status registers and the interrupt vectors. The
standard hardware address for the LPSll and the ARll is 170400 (octal)

B-2

BUILDING LOAD MODULES

and interrupt vector is 340 (octal). The standard hardware address
for the LPSll digital I/O is LPS register+lO (octal) and interrupt
vector is at LPS vector+lO (octal) r for the DRII-K they are at 167770
(octal) and 300 (octal) respectively.

There are some LPSll hardware systems with the interrupt vector at
location 300 (octal). To assemble PERVEC with the interrupt vector at
300 (octal) it is necessary to delete the semicolon before the $V=O
definition in PERPAR.MAC. If the interrupt vectors are at other
locations then correct the interrupt addresses by using the system
editor to define $V in PERPAR equal to the interrupt address minus 300
(octal). For example, if the LPSll interrupt vectors start at 320
(octal), define $V=20 (octal).

If the registers and interrupt vector of DRII-K are located at
non-standard address, then OFFSTI and OFFST2 in PERPAR.MAC must be
redefined. For example, if the register and interrupt vector
addresses are at 167750 (octal) and 360 (octal), define OFFSTl=-20
(octal) and OFFST2=60 (octal).

In a multiple DRII-K system there must be a difference of 10 (octal)
between each unit in the interrupt and vector addresses. The status
register address decreases by 10 (octal) while the vector address
increases by 10 (octal). For example, in a 2 DRII-K system, when the
first DRII-K is at 167750 and 360 (octal), the second one must be at
167740 and 370 (octal).

PERPAR.MAC is a parameter file, a listing follows:

.TITLE PERPAR PERIPHERAL SUPPORT PACKAGE PARAMETER MODULE.

DEC-II-LBPAA-C BASIC KERNEL V02-01

COPYRIGHT (C) 1974,1975

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

THE INFORMATION I~ THIS DOCUMENT IS SUBJECT TO
CHANGE WITHOUT NOTICE A~D SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.
DIGITAL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT
MAY APPEAR IN THIS DOCUMENT

THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A
LICENSE FOR USE ON A SINGLE COMPUTER SYSTEM A~D

CAN BE COPIED (WITH INCLUSION OF DIGITAL'S COPYRIGHT
NnTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT AS MAY
OTHERWISE BE PROVIDED IN WRITING BY DIGITAL.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT
WHICH IS NOT SUPPLIED BY DIGITAL.

THE CONDITIONALS CONTAINED IN THIS MODULE AFfEC1 THE ASSEMRLY
OF THE FUNCTION T~,BLE MODULE "FTBL.~AC".

TO OBTAIN THE DESIRED CONDITIONAL DEFINITIONCS),
REMOVE (USING AN EDITOR) THE
SEMI-COLON APPEARING BEFOPE THE CONDITIONAL.

B-3

1SLSIl1=0

:SCAPS=O

;SDISK=O
.IFNDF SDrSK

SSTRNG=O

SRTV2=0

.ENDC

.IFDf

• ENDC

SDISK

.IFDF SRTV2
GVECT=354
CONFIG=300

;DSPSIZ=X

BUILDING LOAD MODULES

;DEFINE FOR LSI-l1

;DEFINE FOR CAPS-ll SYSTEM

:DEFINE FOR RT-l1

:DO NOT DEFINE FOR PTS BASIC WITHOUT
:STRINGS,- DEFINED FOR PTS VOl WITH STRINGS

;ASSUMES RT-11 VERSION 2 IS USED.
;DO NOT DEFINE FOR RT-l1 VOl-15 •
: SDISK

;THESE ARE DISPLACEMENTS USED FOR VERSION 2
:DISPL. TO VT11 VECTOR IN RMON
:DISPL. TO CONFIGURATION WORD IN RMON

;DEFINE 'X'= TO REQUIRED SIZE OF .DEVICE LIST IN FTBL.MAC

:SLPS=O
;SAR11=0

SLPS=O

. ,

.ENDC

.IFDF

.ENDC

;SDR11K=0

.IFDF
OFFST1=0

OFFST2=0

• ENDC

SAR11

SDR11K

; SRTV2
:DEFINE FOR LPS11
; DEFINE' FOR AR 11

;IMPLICIT DEFINITION
;AR11 SUBSET OF LPS11

;DEFINE FOR DRI1K

;THE STANDARD DRI1-K REGISTER IS AT 167770
;DEFINE X, WHERE OFFST1=X, FOR NON-STANDARD
;CONFIGURATION. E.G. FOR REGISTER ADDRESS AT
:167750 DEFINE X=-20.
;THE STANDARD DR11-K VECTOR IS AT 300. DEFINE
:X, WHERE OFFST2=X FOR NON-STANDARD CONFIGURATIO
;E.G. FOR VECTOR AT 330, DEFINE X=30 •

;DEFINE "X" EQUAL TO TOTAL NUMBER OF DR11-K'S IN SYSTEM

;SNUMBR=X

.IFNDF SNUMBR
SNUMBR = 1

;SV=O

SADC=O
SCLK=O
$010=0
$OIS=O

.ENOC

.IFDF SLPS

• ENOC

:DEFINE FOR MULTIPLE DR11-K SYSTEM

:DEFINE FOR LPS WITH VECTORS STARTING
AT 300. DEFAULT SETTING IS VECTORS AT
340. SET SV = ANY OTHER DISPLACEMENT IF

VECTORS START AT DISPLACEMENTS
OTHER THAN 0 OR 40 FROM
VECTOR 300

:INCLUDE AID ROUTINES.
:INCLUDF CLOCK ROUTINES.
:INCLUDF DIGITAL 10 ROUTINES
;INCLUDF DISPLAY ROUTINES •
: SLPS

B-4

. ,
;SPLOT=O

BUILDING LOAD MODULES

DEFINE FOP PLOT SUPPORT
NOT E--SDISK MUST ALWAYS BE DEFINED FOR

LV11 SUPPORT •

• IFDr SPLOT

;SLV11=O

;SVTll=O

SLV11=O
SVT11=O
.ENDC

.IrDr
SCLOCK=O

.ENDC . ,
;SVT55=O

.F-OT

SVTll

INCLUDE LVII SUPPORT
INCLUDE VT11 SUPPORT
SPLOT

DEFINE rOR LVII SUPPOPT

;FOR VTll

;FOR SYSTEM CLOCK (KWllL)
; SVT11

:DEFINE FOR VT55

To link the LPS module with BASIC it is necessary to delete the
semicolon (~) before $ARll (for ARll only), $LPS (for LPS only) and
$DRllK (for DRll-K only) statements. If any of the four optional
modules are not to be included, a semicolon must be inserted before
the appropriate conditional.

Parameter Insert semicolon before parameter if:

$ADC=O
$CLK=O

$DIO=O
$DIS=O

module LPSI or ARDI is not to be included.
module LPS2{LPS2C) or ARD2{ARD2C) is not to be
included.
module LPS3 or ARD3 is not to be included.
module LPS4 is not to be included.

NOTE

If DRll-K is used on a system. LPSDR
must not be used. The total number of
DRll-K is defined in the PERPAR.MAC
parameter file by $NUMBR=X, where X can
have a maximum of 16.

Using the system assembler, the sources are assembled in the following
combinations to produce the needed object modules:

Object Files Source Files

FTBL
PERVEC
RTINT

PERPAR,FTBL
PERPAR,PERVEC
PERPAR,RTINT

B-5

BUILDING LOAD MODULES

After these modules have been reassembled, the LPS support can be
linked with the BASIC object modules with only the desired optional
LPS modules included in the LINK command strings.

For long programs that do not use string variables, the LPS support
may be linked with the no string object modules BASNSR, BASNSX, and
BASNSE. This no string version of BASIC with LPS support has more
free core for program array storage.

After BASLPS or BASARD has been linked, it may be loaded by the
following monitor command:

.R BASLPS (or BASARD)

At this point the standard BASIC initial dialogue begins. See Chapter
1 of the BASIC/RT-II Language Reference Manual for a description of
the initial dialogue.

When editing PERPAR~MAC, $DISK=O should be enabled for BASIC/RT-ll,
$LPS=O should be enabled for BASIC with LPSII support, $ARll=O should
be enabled for BASIC with ARII support, and $DRlIK=O for DRll-K
support. $ADC=O, $CLK=O, $DIO=O, and $DIS=O should be disabled
whenever the appropriate optional LPS module (or ARll) is not to be
included. For hardware address other than the standard, make changes
as described in paragraph about PERVEC.MAC.

The procedures for building the following load modules are described
in this section:

BASIC/RT-II

BASIC/RT-II

with complete LPSII support

with complete LPSII support and LPS interrupt
vectors at location 300 (octal).

BASIC/RT-II for ARII and DRII-K (at hardware addresses 167750
and 360 (octal)) support, with the ADC, DIO, CLK,
and DIS optional modules.

Linking instructions for both overlaying and non-overlaying versions
are given for each. Since all editing instructions assume an original
PERPAR.BAK, the edit back-up file, is renamed PERPAR.MAC to allow any
future load modules to be built from an un-edited PERPAR.MAC.

To build a load module BASLPS.SAV with complete configuration under
RT-ll including LPS support and all four optional modules, enter the
following command strings:

.~~ r:r:.IT
*Et:PEf;;~F'Rf;;~. t'1RC~~
*= r:; $ C' I 5 I::: =. €"<ll€1 A r:<I()
* r: i $ U::' 5 = t"<ll€1 A C®®
*E>:~

. ~~ t'lRC~~O
*r:Tr:::L=.PFf;;~F'Af;;~, FTF:I_
~RRORS DFTr:CT~D: 0
r:f;;~r:E CO~~F: 1?€16:::'. l,JOf;;~[)S

*=pr:RVr:C=PFRPAR,PFRVFC
~RRORS ~r:T~CTr:D: ~

r:REr: CORF: 12419. WORDS

B-6

BUILDING LOAD MODULES

*RTINT=PFRPAR,RTINT
~RRORS D~TFCT~D· 0
FRFE COR~: 12568. WORDS

• f;.~ PI P
*PERPAR MAC=PERPRR. RAK/R
* ... ·C

The following instructions will create a BASLPS.SAV with overlaying
which has the maximum usable area.

• f;.~ LINK
*8ASLPS,8ASLPS=RRSICR,FPMP,FT8L.PERVEC,RTINT/8:400/T/C
TRANSFFR ADDRESS =
GO
*IPS'!:1, I. PSt.. LPS2, LPS3: .. LPS4/C
*I=:AS I CF /0: l.· ... C
*F:AS I C~(:/O : l/C
*F:RS I CH/O: 2

To link a non-overlaying BASLPS.SAV which will have increased
execution speed the following commands should be given to link:

· ~~ I IW:::
*RRSLPS,RASLPS=8RSICR, FPMP,BASICE, 8ASICX/8:4A0/C
*FTRI ,PERV~C.RTINT/C
*LPS'!:1, I.PS1 , l PS2 .. I. PS3:, LPS4 .. BAS I CH

Complete configuration for building a load module with interrupt
vector at location 300 (octal) - These instructions are the same as
the preceding instructions except that a $V=O parameter definition in
PERPAR.MAC will be enabled.

• f;.~ F[:tIT
*FF:PFJ::~PAJ::~. t'1AC~~)
*F; $D I SK=(~1Ar:<oo
*F j $1_PS=€'@€1Ar.:(fti)
*F; $V=€~1Ar:~
*F>:(OO

• f;.: ~1ACJ;,~0

*FTBL=PFJ;,'PRJ:::, FTF:t.
FRRORS D~TFCTFD: 0
FREE CORF: j2058 WORDS

*P~RVFC=P~RPAR,PFRVEC

ERRORS DFTFCTED: 0
FREF COR~: 12439 WORDS

*RTINT=PFRPAR,RTINT
~RRORS DFTFCTFD: 0
FREE CORF: 125~4 WORDS

* ... ·c

B-7

BUILDING LOAD MODULES

.~' PI P
>t:PERPAR. MAC=PFRPAR. 8RK/R
* '". r:

The following procedure can create the overlaying version.

• f;:~ '_PH::
*F.:RSI.PS, F:ASI_PS=:F:AS I C~~} FPt"lP .. FTBL., PEf;,~\"EC .. f;,~T I NT /E:: 4~1~1/T /C
TRRNSFFR RDDRESS =
GO
>t:IPS€1. ,-PSi. 1 .• PS2 .. LPS3:. I. PS4/C
>t:F:AS I CI::/O: 1/C
*F:RS I C>::/O . 1,''C
*F.:ASICH/0:2

To create the non-overlaying version the following link commands
should be given:

• ~~ Llr'JK
*F:ASI .. PS .. RASLPS=F.:RS I Cf;,~ .. FPt"lP .. BAS I CE., BAS I C::-c:/B: 400/C
>t:FTRL,PERVFC,RTINT/C
>1-:1 PS€1. LPS1. LPS2, I PS3: .• I PS4, BAS I CH

*
Partial Configuration - To build a load module BASARD.SAV under RT-ll
for ARll and DRII-K support (at hardware address 167750 and 360
(octal) which includes the ADC, DIO, CLK, and DIS routines, enter the
following command strings:

· R ECrI T
*FBPE!::~PAf;,~ t'1AC~~
*F; $D I SK=€-®€1Rr;~
*F.; $AF.~11=€~1Rr:(f4)
*F; $r)F.~11K=(q)€1Ar.:<f4)
*I:>:®i)

• f;:~ F r:or T
>l-:FF.:PEf;,~VFC. t'1AC~~
*FOFFST1=€~r:-2€1$®
>l-:FOFFC:T2=€$-C6€-«®
*E ~.:t11l>

· F.~ t'1AC~~O
*FTBL=PERPAR, FTRt
FRRORS DFT~CTFD: 0
FRFE CORF: 12054. WORDS

*PFRVFC=PFRPRR,PFRVFC
FRRORS DFTFCTFD: 0
F~'EE COF.~F: 124;::'3:. L·JOF.~[:15

*RTINT=PFRPAR .. RTINT
ERRORS DFTI:CTFD: 0
FREF CORF: 12560. WORDS

B-8

BUILDING LOAD MODULES

• r;.~ PI P
*PFRPAR MAC=PERPAR. BAK/R
*PERVEC. MAC=PFRV~C. BAK/R
*'"'C

,J;,~ LIW:::
*RASARD,RASARD=BASICR,FPMP,FT8L,PERVEC,RTINT/B:400/T/C
TRANSFFR ADDRESS =
GO
*LPS0, Ar;.~D1. AR!':r2 .. Alt;;·r.:'~l: .. LPS4/C
*E:ASICFlO:1/C
*F.:AS T C~~:/O : 1,.'·C
*J::AS T CH/O: 2

*
This procedure will create an overlaying version of BASLPS.SAV. The
following command strings may be used to link a non-overlaid version
of BASIC with equivalent LPS support:

• J;,~ '- H~K
*E:ASARD,RASARD=RA5ICR,FPMP,8ASICE,BASICX/B:400/C
*FTRl,PFRVEC,RTINTIC
*1 PS€1, Ar;.~r.:I1. Ar;.~1)2. A:f;.~D:!: .• LPS4. BAS I CH

*
The Laboratory Peripheral System support may also be purchased in
source form. The following nine source files are provided in the
BASIC Extensions package.

LPSO.MAC
LPSl.MAC
LPS2.MAC
LPS3.MAC
LPS4.MAC
PTBL.MAC
PERVEC.MAC
RTINIT.MAC
PERPAR.MAC

The following tablE~ liBts the assembly parameters for each module:

Source File

LPSO.MAC

LPSl.MAC

LPS2.MAC

LPS3.MAC

LPS4.MAC

ConcH tional s

None

$AlRll

CYC50

$A1Rll

$A1Rll

None

Define for Systems with:

ARll hardware

50 Hz line frequency
(60 Hz is default)
ARll hardware

ARll hardware

B-9

BUILDING LOAD MODULES

Source File

FTBL.MAC

PERVEC.MAC

RTINT.MAC

Conditionals

$ADC
$CLK
$DIO
$DIS
$LPS
$ARll
$VTll
$DISK
$VT55

$LPS
$V

$VTll
$ARll
$DRllK
$NUMBR=X
OFFSTI

OFFST2

$DIS

Define for Systems with:

LPSI (ARDI for ARll)
LPS2 (ARD2 for ARll)
LPS3 (ARD3 for ARll)
LPS4
$LPSO (all systems with LPS support)
ARll support
VTll support
RT-ll
VT55 support

LPSll hardware
LPS (or ARll) interrupts not at location
340 (octal)
VTll support
ARll hardware
DRll-K hardware
Multiple (X) DRll-K hardware
First DRll-K interrupt address not at
167770 (octal)
First DRll-K vector address not at 300
(octal)

LPS4

The conditional $RTV2 is present in all modules to force subtitles in
assembly listings and enable RT-ll V02 system macro processing.

To assemble the LPS from the sources all the LPS files should be
transferred to the system device using PIP, and then the following
command should be given to the RT-ll MACRO assembler; if the line
current is 50 Hz, the following commands should be used before calling
MACRO:

. ~~ FDIT
*F.WPA~~At'1 t'1RC($®
* I [:'r'C50=(1

Cf.A)
*F>:(OO

.~: t'1RC~:O

*'_PS(1=PF~:PR~:, '_PSf.1
FRRORS DETECTED: 0
F~~EF CO~:F: 1 2144. l·~O~~[:'S

*LF'S1=PE~:PR~: .• '_PS1
FRRORS DETFCTF.D: 0
FREF CORE: 11980. WORDS

*L.PS2=PEJ;.:PAJ;.:, LPS2
FRRORS DFTECTED: 0
F~~EF COF.'F: 1 2152. WO~~r:'S

*'-PS2C=PEF.:PR~~ .. PR~:Rt·1.. LPS2
ERRORS DETECTED: 0
F~:FF CO~~E: 1:::'148. ~JO~:DS

*1 PS7~=PF~:PR~: .• LPS3:
ERRORS DETFCTED: 0
FREF CORF: 1?072. WORDS

(for LPSll only - define $LPS in
PERPAR.MAC -)

(for 60 Hz clock)

(for 50 Hz clock)

B-lO

BUILDING LOAD MODULES

*1. F'S4=PFF.~PAF.~ .. 1 ... PS4
FRRORS DFTFCTED: 0
FREE CORE: 12004. WORDS

*ARD1=PERPAR,1 PS1
ERRORS DFTFCTED: A
F J;.~F F COJ;,~F: 119E:V1, lo,fO~~r:.s

*AJ;,~[)2:::PE~~PA~~, LPS2
FRRORS DETFCTFD: 0
FJ;.~FF COl~~F: 12152. lo,fORr:.S

*Af;,~r)2c=pF.RPRJ;.~. PRF.~Flt·1.. I_PS2
FRRORS DFTFCTED: e
FF.~F.F COf;,~E: 12148. l·JOf;.~[:IS

*AF.~DJ:=PEF.~PAR. I ... PSJ:
ERRORS DFTECTFD: 0
FREF CORF: 1207? WORDS

(for ARll& DRII-K only-define
$ARll& $DRIIK in PERPAR.MAC)

(for 60 Hz clock)

(for 50 Hz clock)

Following is a listing of PERVEC.MAC which contains the interrupt
vector location for the LPS and GT44 hardware:

.TITLF: PERVEC Vf:CTOR DE:F'Il'iiTION MODULE ~'OR HASIC SUPPORT PACKAGr~S.

nEC-l1-LBPVA-H BASIC KERNEl. V02-01

COPYRIGHT (Cl 1974,1975

DIGITAL EQUIPMENT COHPORATIO~
MAYNARD, MASSACHUSETTS 01754

THE INfORMATION IN THIS DOCUMENT IS SUHJECT TO
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT HY DIGITAL EQUIPMENT CURPORATION.
DEC At)SUNES flJO RESPONSJ~lLITY FOR ANY ERRORS 'tHAT
MAY APPKAk IN THIS DOCUMENT.

THIS SOFTWAR~ IS FURNISHED TO PURCHASER UND~R A
LICENSE FUR USE ON A SINGLE COrvlPUTER SYSTEfvl AND
CAN BE COPIE:D (WITH INCLUSION UF' DEC'S COPYRIGHT
NOTICE) ONLY fOR USE IN SUCH SYSTEt-l, EXCEPT AS MAY
OTHERWIS~ BE PRUVIDED IN WRITING RY DEC.

DEC ASSIJf"1ES NO HESPO~,S181LITY FOR THE USE
OR RELIAHILITY OF IT5 SOFTWARE ON EQUIPMENT
WHICH IS NOT SUPPLIED BY DEC.

THIS MUDULE DEFIN~S THE HARDWARE ADRESSES USED BY
S 1I C H H A R 0 v.l A R £ AS THE .. 1, P S", .. A R 1. 1 ", " DR 1 1 - K " ,
'f HE" V T 1 1 " (G l' 4 0) A I\i nTH E: "lJ V 1 I " •
1 F THE VECTORS FOR THESE DE:V ICES SHOULD CHANGE
TH IS MODULE.: MUST BE EDITED TO REFLECT THE CHANG£:o:.

DEFINE.: SLPS
SAHll

FOR LPS/ARl1 SUPPURT IN PERPAR
FOR AR11 MODS.

B-ll

BUILDING LOAD MODULES

; IF SYSTEt<1 HAS ORI1-K, SNUMBR fv1UST BE DEfINE:O I::QUAL 1'0 TOTAL NUlv1RER
;OF DRI1-K'S IN SYSTEM.

DEfINE SDRI1K & $NUMHR FUR DR1I-K

********* NOTE *********
I FOR 1 1 - K (S) J S (A R E) PRE SEN 'f INS Y S T F t-1 A 1. 0 N G Vol 1 1 H T H b: [I P oS 1 1
THE LPSDR CANNOT RE US~D.

.IfDF SLPS

.J.FHDf SV
SV=40
• ~~NDC
• G L U 8 L L P SAD, {J P SAD R , L P S 0 R , L P S D ""1 A
• Gl;OHL, LPSCKS, IJPSP8, LPSDRS, LPSD 18
.GLUbL LP5DOR,DRSTOF
• GI,ORL LPIJ I 55, LPn [5X, LPD 1 S Y
.GLOBL CKLIVA,CKLIP,DRSIVA,DRSIP,LPSIVA,LPSIP

DEVICE EQUATES:

LPSAD = 170400 ;LPS AID STATUS REG.
LPSAOB = 170402 ;LPS AID RUFFER LED fU<G"
LPSCKS = 170404 ;LPS CLOCI< STATUS REG.
LPSPB = 170406 ;LPS CLOCI< BUFFER PRESb.;T 1·(; •

• If"NDF SAR11
LPSDR = 170410 ;LPS DIGITAL JIO STATUS REG.
LPSDHS = LPSDR
LPSDIB = 170412 :LPS DIGITAlJ INPUT kEG.
LPSDOR = 170414 :LPS DIGITAL OlJTPUT REG.
IJPDISS = 170416 :LPS DISPLAY STATUS BEG.
IJPD I SX = 170420 ;LPS DISPLAY REG .. X
LPDISY = 170422 ;LPS DISPLAY R~~G • Y

.ENDC
• I FD~' SARli

LPDISS = 170410
LPDISX = 170412
LPDISY = 170414

• E:N DC
LPS[)r~A = 170436 : LPS Or·1A REGG.

DEFINE "OFFST1" IF ORI1-K NOT AT STANDARD LOCATJO~. ALI! DRI1-K'S
MUST BE NEXT TU EACH OTHER(REGIST~R ADDRESS OJff~PE~CE=-lO ONLY)

.IFDF $DRllK
OFFST1=0
LPSDR = 167770+0f'FSTI
LPSDRS = LPSDR

'LPSDJb = 167772+0FFSTl
LPSDOR = 1 6 7 7 7 4 + 0 F f'- S T 1

• Er~ DC
.IFG $NUM8R-l

OFFST1=0
LPSDR = Ib7770+0fFSTl
LPSDRS = IJPSDR
LPSDIH = 167772+0FfSTl
LPSOOR = 167774+0FFST1

.FNDC

B-12

BUILDING LOAD MODULES

: INTERRUPT VECTOR PAIRS:

CKLIVA =
CKLIP =

.IFNDF

DRSIVA =
DRSIP =

.ENDC

304+SV
306+SV

SAWl1

310+SV
312+SV

;ADR. OF CLOCK INTERRUPT VECTOR
;ADR. OF CLOCK INT. PRIORITY

;ADR. OF DRS INPUT INT. VECTOR
;ADR. OF DRS INPUT INT. PPIORITY.

DEFINE "OFFST2" IF DRll"K NOT AT STANDARD VECTOR LOCATION •

• IrDF
OFFST2=O
DRSIVA =
ORSIP =

.ENDC

LPSIVA =
LPSIP =

.ENOC

.IFOF

.GLOBL
TSR =
XLOC =
YU)C =
TVEC =

.ENDC

.IFDF

.GLOIiL

OPC =
DSR =
DISX =
DISY =
GTVECT =

;GTVECT:
;GTVECT+4:
;GTVECT+I0:

LVCS
LVDB

.ENDC

.IFDF

=
=
.ENDC

SDR11K

300+0FF1 ST2
302+0FFST2

300+SV ;ADR. OF THE AID INT. VECTOR.
302+SV ;ADR. OF THE INT.PRIORITY.

1 SLPS

STABLT ;PROTOTYPE WRITING TABLET
TSR,TINT,TVEC,XLOC,YLOC
164040 ;WRITING TABLET CSR
TSRt2 ;X LOCATION OF TURTLE
XLOC+2 ;Y LOCATION Of TURTLE
270 ;INTERRUPT VECTOR

SVl'11 ;GT40
DPC,DSR,DISX,DISY,GTVECT

172000
DPC+2
DSR· .. 2
DISX+2
320

; SVT11

SLV:ll

177!j14
LVCS+2

;VTll DISPLAY PC
;VT11 DISPLAY STATUS REG
;VT11 X STATUS REG
;VT11 Y STATUS REG
;JWR. OF VT11 [GT40 (GT44) J INTERRUPT
;VECTOR LIST. REDEFINING GTVECT
;REDEFINES THE ENTIRE SET
;OF DISPLAY PROCESSOR INT. VECTORS.
;DISPLAY STOP VECTOR
;IJIGHT PEN HIT VECTOR
;DISPLAY TIME OUT VECTOR

LV11 SUPPORT

LV11 STATUS REGISTER
LV11 DATA BUFFER

;THE FOLLOWING ARE GLORAL CONSTANTS WHICH ARE RED~fl~ED BASED ON
:THE S¥STEM CONFIGURATIONCLIKE LPS/AR11 ETC.) •

• Gl, (l B L S L P IS 1 1 , $ L PSI 2 , $ L P S 1 3 ;FOk LPSl MODULE

B-13

SLPS11:
.If'NDF
.WORD

SLPS13=6000
.ENDC
.IFDF
.WORD

SLPS13=1000
.ENDC

SL.PS12:
.IFNDF
.WORD
.WORD
.ENDC
.1FDE'
.wORD
• \-JORD
.ENDC

• CaJOBI,
SLPS21:

.IF'NDf·
• ~'I}URD
.ENDC
.IFDI"
.WORD
• U,JDC

.GLllBL
SLPS31:

.WORD

.WORD
• WllkD

.GLOBL
SLPS32: 177777

177777

• GIJOBL
.IFNDF

SLPS41: .WORD
SLPS42: .WORD
SLPS43: .WORD
SLPS44: .WORD

.ENDC

.IFOF
SLPS41: .1AJORD
SLPS42: • vJORD
SLPS43: • v.lORO
Sl,PS44 : • ~JORD

.ENDC

BUILDING LOAD MODULES

SAR 11
77,4

SARlI
17,2

SARI!
77,100
177777,17,4

SARlI
17,20
177777,2,2

SLPS21

SARlI
7,17,177777

SARlI
7,11,377

;LPS
;77=63.=CHAN, 4=IGAIN
;FOR AUTO-GAIN RANGE CHECKING

;LPS
;77=63.=CHAN, 100=64.=NSC
;177777=65535.=NPTS, 17=15.=MODE, 4=IGAIN

;ARII
;17=15.=CHAN, 20=16.=NSC
;177777=65535.=NPTS, 2=MOOE, 2=IGAI~

; FOR LPS2 r-l00ULE

:LPS
;7=RATE, 17=15.=MOOE, 177777=65535.=PRESET

;ARll
;7=RATE, 11=9.=MODE, 377=255.=PRESET

SLPS31 ;FOR LPS3 MODULE

177777
177777
SNUMBR-I

SLPS32

;177777=65535.=N
;177777=65535.=MASK
:NUMBER OF DRII-KIS IN SYSTEM. DEFAULT=1

;177777=65535.=SW
;177777=65535.=VAP(WRITEl

SLPS41,SLPS42,SLPS43,SLPS44 ;FOR LPS4 MODUL~
SARli ;LPS
10000 ;10000=4096.=XMAX/YMAX
7777 ;7777=4095.=N
7777 :7777=4095.=1
177777 ;177777=65535.=NP

SARlI
2000
1777
1777
177777

;ARl1
;2000=1024.=XMAX/YMAX
;1777=1023.=N
~1777=1023.=I
:177777=65535.=NP

.GLOBL DRSON,ORSTOF ;DIGITAL I/O STORAGE VARIES WITH
:TOTAL NUMBER Of DRI1-K'S IN SYSTEM

DRSON:
• vJ(lRO
• ~JORD
.WOHD
.WORD
.WORD
• \fJORD

o
o
o
o
o
o

;DRSON:O:
;BCDON:2:
~DRSRUF:4:

:DHSNPT:6:
; f"1 flo S K : 1 () :
:DRT8UF:12:

B-14

DRS OPERATION 1 r .. } PROGRESS
PCD/BINARY SWITCH
DRS BUFFER DESCRIPTOR ADD.
DRS NU~BER OF POINTS
DRS MASK FOR INPUT
DRS TIME BUfFER D~SC.

BUILDING LOAD MODULES

DRSTOF=.-DRSON . ,
.IF'G S NUt-1BR '·1
.WORD 0 :DRSON:O: DRS Upr::RAT IUN IN PROGRESS
.WORD 0 : BCD01\1: 2: BCD/BINARY S~~ITCH

.WORD 0 :DRSBUF:4: DRS BUrFF.:R Dt~SCR IP'l'OR ADD •
• WORD 0 ;DRSNPT:6: DRS NUMBFR or POINTS
.WORD 0 ;MASK:I0: DPS MASK FOR INPUT
.WORD 0 :DRTBUF:12: DRS TIME BUF"F'EF< DEse.
.ENDC
.IFG SNUMBR··2
.WORD 0 :DRSON:O: DRS OPERATION IN PROGRESS
.WORD 0 ;8COOI\I:2: BCD/BINARY SWITCH
.WORD 0 :ORSBUF:4: DRS BUFFER DESCRIPTOR ADD •
• WORD 0 :ORSNPT:6: DRS NUMBER OF POINTS
.WORD 0 :MASK:l0: DRS t-1ASK FUR I~JPUT

.WORD 0 :DRTBUF:12: DRS TIMt: BUF~'ER DESC •
• ENOC
.1t'G SNUMBR··3
.WORD 0 :DRSON:O: DRS OPERATION IN PROGRE:SS
.WORD 0 :BCDON:2: 8CD/BINARY SWITCH
.WORD 0 :ORSBUF:4: DRS BUFFER DESCRIPTOR ADD.
.WORD 0 :ORSNPT:6: DRS NUfY1BER OF POINTS
.WORD 0 :MASK:I0: DRS MASK FOR INPUT
.WORD 0 :DRTBUF:12: DRS TIME BUFFER DESC •
• ENOC
.IFG SNLJMBR'''4
.WORD 0 :DRSON:O: DRS OPERATION IN PROGRESS
.WORD 0 :BCDON:2: BCD/BINARY SWITCH
.WORD 0 ; DRSBUF': 4: DRS BUF'FER DESCRIPTOR ADD.
.WORD 0 ;DRSNPT:6: DRS NUMBER UF POINTS
.WORD 0 :MASK:l0: DRS MASK FOR INPUT
.WORD 0 ;DRTBUF:12: DRS TI~lE BUFFER Dr~SC •
• ENDC
.IFG SNLJMBR'-S
.WORD 0 :DRSON:O: DRS OPERATION IN PROGRr~SS

.WORD 0 :BCDON:2: RCD/BINARY SWITCH

.WORD 0 :ORSBUF:4: DRS BUF'FER DESCRIPTOR ADD •
• WORD 0 ;DRSNPT:6: DRS NUfvlbF::R (IF POINTS
.WORD 0 ;MASK:I0: DRS l'lASK FOR INPUT
.WORD 0 ;DRTBUF:12: DRS Tl~iE BUFF"£R DESC.
.ENDC
.IfG SNUMBP'-6
.WORD 0 :DRSON:O: DRS OPERATION -IN PROGRESS
.WORD 0 ;BCDON:2: BCD/BINARY SWITCH
.WORD 0 ;DRSBllF:4: DRS BUF'·I'EP DE:SCR I PTOR ADD.
.WORD 0 ;DRSNP'f:6: DRS NUr.H1ER OF POINTS
.WORD 0 :~ASK:I0: DRS MASK FUR INPUT
.WORD 0 ;DRTBUF:12: DRS Tl r.1E BUFFFR DESC.
.ENDC
.IFG SNlHABR'''7
.WORD 0 ;DRSON:O: DRS OPERATION I ~; PROGRESS
.WORD 0 ;8CDON:2: BCD/BINARY SWITCH
.WORD 0 :DRSBUF:4: uRS BUFfER DESCRIPTOR ADD.
.WORD 0 ;DRSNPT:6: Df<S NlJfv1R~R OF POINTS
.WORD 0 ;MASK:l0: DPS MASK FOR INPUT
.WURO 0 ;DRTBUF:12: DRS TIr-lf BUFFER DFSC.
.ENDC
.IFG SNUMhR'-10
.WORD 0 :DRSON:O: DRS OPEHATION 11\1 PROGRESS
.WORD 0 ;BCDON:2: ReD/bINARY SWITCH
.WORD 0 ;DRSBUF:4: (JRS RUffER DE:SCRIPTOH A.D!) •
• WURD 0 ;DRSNPT:6: DRS Nllr,~BER (W POIhTS

B-15

BUILDING LOAD MODULES

.WORO 0 ;MASJ(:10: ORS f';lASK FOR INPUT
• ~I}ORD 0 ;DRTRUf:12: DRS 11('-11£ BUFF'~~H DE:SC.
.ENDC
.IFG S N U r~ P, R - 1 1
.WORD 0 ;nRSON:O: DRS OPERATION IN PROGRESS
• v.JORD 0 ;BCDON:2: BCD/BINARY SIt.JlTCH
.WOPD 0 ;DRSBUF:4: DRS BUFFER DESCRIPTOR ADD.
.WORD 0 :DRSNPT:6: DRS NUMBER OF POINTS
• \AJORD 0 ;r.1ASK:l0: DRS ~IAS" FOR INPUT
.WURD 0 ; 0 R T B U (0' : 1 2 : DRS TIME bUFfE.:R DEse.
.ENDC
.IF'G SNUMRR-12
.WORD 0 ;DRSON:O: DRS OPERATION IN PROGRESS
• !fJORD 0 ;BCDON:2: BCD/BINARY SWITCH
.wORD 0 ;DRSBUF:4: DRS BurFt:R DESCRIPTOR ADD.
.WORD 0 ;DRSNPT:6: DRS NUMBER (W POINTS
.ItJORD 0 ;MASK:I0: DRS MASK FOR INPUT
.WORD 0 ;DRTBUF:12: DRS TIME BUFFER DESC.
.ENDC
.IFG SNUMBR-13
.WORD 0 ;DRSON:O: DRS OPt:RATION IN PROGRESS
.WORD 0 ;BCDON:2: BCD/I:HNARY SWITCH
.wORD 0 ;DRSBUF:4: DRS BUF'FER DESCRIPTOR ADO.
.WORD 0 :DRSNPT:6: DRS NUMBER OF POINTS
.WORD 0 ;MASK:I0: DRS r"'lASK FOR INPUT
.WORD 0 ;DRTBUF:12: DF<:S TIttlE BUFFER DEse.
• E:t~DC
.IrG SNUt4BR-14
.WORD 0 ;DRSON:O: DRS OPERATION IN PROGRESS
.WORD 0 :BCDON:2: BCD/BINARY SWITCH
• ~JORD 0 ;DRSBUF:4: DRS BUFFER DESCRIPTOR AD)).
.WORD 0 ;DRSNPT:6: DRS NUMBER OF' POINTS
.WORD 0 ;MASf<:10: DRS MASK FOR INPUT
• ~'JLJRl) 0 ;DRTBUF:12: DRS Tl~lE: BUFFER OESC.
.ENDC
.IfG SNUMBR-15
.WOHD 0 ;DRSON:O: DRS OPERATION IN PROGRESS
.WORD 0 ;BCDON:2: BCD/BINARY SWITCH
.WORD 0 ;DRSBUF:4: DRS BUFfER DESCRIPTOR ADD.
.WORD 0 ;DRSNPT:6: DRS NUMBER OF POINTS
.WORD 0 ;MASK:l0: DRS MASK FOR INPUT
.WORD 0 ;DRTBUF:12: DRS 'rIME BI.lfi'f'KR DESC.
.EI\IDC

.END

B.2 BASIC/CAPS-II

B.2.1 LPS Support

The Laboratory Peripheral System (LPS) support for BASIC is supplied
in ten binary files.

LPSO.OBJ Required

LPSl.OBJ Optional

ARDl.OBJ Optional

B-16

LPS kernel module for LPSll or
ARll and DRII-K.
Analog to digital conversion
for LPSll.
Analog to digital conversion
for ARll and DRII-K.

LPS2.0BJ

ARD2.0BJ

LPS2C.OBJ

ARD2C.OBJ

LPS3.0BJ

ARD3.0BJ

LPS4.0BJ

BUILDING LOAD MODULES

One is required

Optional

Optional

Optional

Real-time clock (60 Hz line
frequency) for LPSll.
Real-time clock (60 Hz line
frequency) for ARll and
DRII-K.
Real-time clock (50 Hz line
frequency) for LPSll.
Real-time clock (50 Hz line
frequency) for ARll and
DRII-K.
Digital input/output for
LPSll.
Digital input/output for ARll
and DRII-K.
Display for LPSll or ARll and
DRII-K.

The standard BASIC/CAPS binary kit contains all the object modules
required to link a version of BASIC/CAPS that contains LPS support
(with all four optional LPS modules) .

There are also the following files which are provided in source form
in all kits:

FTBL.PAL

PERVEC.PAL

BASINT.PAL

PERPAR.PAL

Function Table Module

Vector Definition Module

Inberface Module

Parameter file

NOTE

BASIC with LPS support requires a PDP-II
with 16K or more of memory. The
procedures in this section assume the
user has at least 16K of memory and has
reconfigured his CAPS-II system, along
with PAL and LINK, for 16K.

To create a version of BASIC/CAPS with complete LPS support, no GT
support, and a standard hardware configuration, it is only necessary
to link the supplied object modules.

TO create a customized version of BASIC/CAPS with LPS support, the
parameter file PERPAR.PAL is edited and assembled with FTBL.PAL,
PERVEC.PAL and BASINT. The three object modules produced are then
linked with the LPS and BASIC object modules to produce a load module.

NOTE

All of the procedures in this section
assume that an unaltered PERPAR.PAL is
being edited. It is recommended that a
copy of the original PERPAR.PAL be made
and saved for future use.

B-17

BUILDING LOAD MODULES

The BASINT.PAL interface module should be used with all versions of
BASIC/CAPS. If the display module is not included in the LPS support
to be linked, another background routine may be linked with BASIC but
it must be defined in this module.

For the LPS routines to be accessible from the BASIC CALL statement,
the routine must be defined in a System Function Table. FTBL.PAL is a
function table in source form. If any user-written assembly language
routines are also linked with BASIC the routines must be defined in
this function table.

PERVEC.PAL is the vector definition module. It defines the hardware
addresses of the status registers and the interrupt vectors. The
standard hardware address for the LPS (or ARll) interrupt vector is
340 (octal). In PDP-IIEIO machines with LPS (or ARll) support,
however, the interrupt vector is location 300 (octal). To assemble
PERVEC with the interrupt vector at 300 (octal) it is necessary to
delete the semicolon before the $V=O definition in PERPAR.PAL. If the
interrupt locations are at another location in memory, correct the
interrupt addresses by using the system editor to define $V in PERPAR
equal to the interrupt address minus 300 (octal). For example, if the
LPS (or ARll) interrupt vectors start at 320 (octal) define $V=20
(octal) . A listing of PERVEC.PAL is printed at the end of section
B.l.2. To link the LPS (or ARll) module with BASIC it is necessary to
delete the semicolon (i) before the $LPS=O (or $ARll=O) statement in
PERPAR.PAL. If any of the four optional modules are not to be
included, a semicolon (i) must be inserted before the appropriate
conditional.

Parameter Insert before parameter if

$ADC=O module LPSI or ARDI is not to be included.

$CLK=O module LPS2 (LPS2C) or ARD2 (ARD2C) is not to be
included.

$DIO=O module LPS3 or ARD3 is not to be included.

$DIS=O module LPS4 is not to be included.

Using the system assembler PAL, the sources are assembled in the
following combinations to produce the needed LPS object modules:

Object File Source Files

FTBL PERPAR, FTBL

PERVEC PERPAR, PERVEC

BASINT PERPAR, BASINT

After these modules have been assembled, the LPS support may be linked
with the BASIC object modules with only the desired optional LPS
modules included in the LINK command strings.

After BASLPS has been linked it may be loaded by the following monitor
command:

.R BASLPS

At this point the standard BASIC initial dialogue occurs.

B-18

BUILDING LOAD MODULES

As part of the initial dialogue, BASIC prints:

USER FNS LOADED

This message occurs whenever BASIC has been linked with LPS support.

When editing PERPAR.PAL, $LPS=O should be enabled for BASIC with any
LPS support (or $ARII for ARll support), and $ADC=O, $CLK=O, $DIO=O,
and $DIS=O should be disabled whenever the appropriate optional LPS
module is not to be included. In addition, $V=O should be enabled for
any PDP-II with LPS (or ARll) hardware interrupt located at 300
(octal) instead of 340 (octal). Most PDP-IIEIO with LPS (or ARll)
require the defining of the $V=O assembly parameter. For hardware
addresses other than 300 or 340, define $V as described in paragraph
about PERVEC.PAL. Linking BASIC/CAPS with LPS Support

The procedures for building the following load modules are described
below:

BASIC/CAPS

BASIC/CAPS

BASIC/CAPS

with complete LPS support.

with complete LPS support and LPS
vectors at location 300 (octal).

with only the ADC and DIS optional
modules.

interrupt

display

Since all editing instructions assume an original PERPAR.PAL, a copy
of the original file should be preserved to allow any future load
modules to be built from an unedited PERPAR.PAL.

In all the following examples the user can substitute the module LPS2C
for the module LPS2 if the line frequency is 50 Hz instead of 60 Hz.

Complete Configuration

To build a load module BASLPS.SLO under CAPS-II including LPS support
and all four optional modules, enter the following command strings:

(MOUNT A SCRATCH CASSETTE ON DRIVE 1)

.z :1.:
(TYPE <CR»

.z 1:
(MOUNT A SECCOND SCRATCH CASSETTE ON DRIVE 1)

.I~ EDIT
*EW1: PERPAR + LP~:~

(WHEN CASSETTE ON DRIVE 0 REWINDS, MOUNT
CASSETEE CONTAINING PERPAR.PAL ON DRIVE 0)

*ERO: F'ERF'AR + PAI..®=~~
*F; $CAPS::::(~)AI:(M)
*F; $LPS::::<$>AI(i:()
*EX$~)

.R PAl ... 1. 6

l.?

B-19

PASS 2

O?

l?

000000 ERRORS

l?

l '~

PASS 2

:I.?

:I.?

000000 ERF~ORS

1?

1?

PASS 2

1?

1?

000000 ERRORS

*'"'C

.R LINI\

BUILDING LOAD MODULES

(Mount CAPS-II system cassette on unit 0)
(Mount scratch cassette on unit 1)

(Mount BASIC object module cassette containing
BASICR.OBJ
on unit 1)

(When unit 0 has rewound, mount zeroed scratch
cassette
on unit 0)

*l:BASLPS.SLO~LP:=O:BASICR,FPMPpBASICE,BASICX,BASICS/B :400/C

,FTBL/P,PERVEC,BASINT,LPSO/P,LPS1,LPS2~LPS3,LPS4~BASICHIP

(Mount cassette with FTBL.OBJ on unit 0)

O'~ (Mount cassette with LPSO.OBJ on unit 0)

O'~ (LOAD MAP PRINTED)

PAS~:; 2

(Mount cassette with FTBL.OBJ on unit 0)

B-20

O'l

O?

*"'C

BUILDING LOAD MODULES

(Mount cassette with LPSO.OBJ on unit 0)

(Mount cassette with BASICH.OBJ on unit 0)

(Done. Cassette on unit 0 contains a new
BASLPS.SLO
which is BASIC/CApe plus all LPS support-interrupt
vectors
at 340 (octal)).

Complete Configuration
Interrupt vectors at location 300 (octal)

These instructions are the same as the preceding instructions
except that a $V=O parameter definition in PERPAR.PAL is
enabled.
To change the interrupt vector location, the file PERPAR.PAL
must be edited to enable the $V=O parameter definition. The
new PERPAR is then used to reassemble PERVEC.PAL to
redefine the vector locations.

Z :1,:

t Z :1.:

~R EDIT

® represents the ALTMODE key
(Mount CAPS-II system cassette on unit O)
(Mount scratch cassette on unit I)

(Mount a second scratch cassette on unit I)

*EW:I.: PEI:~PAF~ ~ L.P~~

(Mount BASIC object cassette containing PERPAR.PAL
on unit O)

*EI~O: PEF~PAH ~ PAL(lli}\~OOD
*F; ~~CAPS::~<XID:)A[~
*F; ~1;L.PB::::(XiX)AI:~ * F P $ V:::: <Xlli)O (.~ [GOOlD
*EX~~~~

(Mount CAPS-II system cassette on unit O)

~ R PAL.:1.6

*FTBI ... /p:::::L : PEI:~PAI:;: .I...PB/P II FTBL. ~ PAI.../P

:L '~ (Type any keyboard character)

(Mount cassette with FTBL.PAL on unit 1)

PASS 2

(Mount second scratch cassette on unit O)

:I. '~ (Mount cassette with new PERPAR.PAL on unit I)

:I.'r (Mount cassette with FTBL.PAL on unit 1)

OO()()OO EI~F~c)I:~B

*PEI:~lJEC:::::1. : PEHPAF~. LPB/P II PEf::VEC ~ PAI.../P

(Mount cassette with PERPAR.LPS on unit I)

(Mount cassette with PERVEC.PAL on unit I)

B-21

BUILDING LOAD MODULES

PASS 2

(Mount cassette with PERPAR.LPS on unit 1)

(Mount cassette with PERVEC.PAL on unit 1)
(Now the cassette on unit 0 has a new PERVEC.OBJ)

*BASINT=l:PERPAR.LPS/P,BASINT.PAL/P

1?

11

t?

1.1

000000 EI:;:ROf~B

.1:;: LINI(

(Mount cassette with PERPAR.LPS on unit 1)

(Mount cassette with BASINT.PAL on unit 1)
(Cassette on unit 0 now contains a new BASINT.OBJ)

(Mount cassette with PERPAR.LPS on unit 1)

(Cassette on unit 0 now contains a new BASINT.OBJ)

(Mount CAPS-II system cassette on unit 0)
(Mount cassette containing BASICR.OBJ on unit 1)

(When unit 0 has rewound, mount cassette with new
PERPAR.PAL on unit 1)

(Mount cassette with BASICR.OBJ on unit 0)

*1:BABLPB.SLO,LP:=BABICRyFPMP,BASICEyBASICX,BABICS/B:4OO/C
,FTBL/P,PERVECyBASINT,LPSO/PyLPBlyLPS2yLPS3,LPS4yBASICHIP

o 'i) (Mount cassette with new FTBL.OBJ on unit 0)

O"~ (Mount cassette with LPSO.OBJ on unit 0)

O~) (Mount cassette with BASICH.OBJ on unit 0)

(LOAD MAP PRINTED)
PASB ")

~: ..

O? (Mount cassette with new FTBL.OBJ on unit 0)

O? (Mount cassette with LPSO.OBJ on unit 0)

01 (Mount cassette with BASICH.OBJ on unit 0)

*,.'C (Done. New version of BASLPS.SLO with LPS
interrupt vectors at 300 is on cassette 1)

Partial Configuration

To build a load module BASLPS.SLO of BASIC/CAPS which includes only
the ADC and display routines, enter the following command strings:

(Mount CAPS-II system cassette on unit 0)
(Mount scratch cassette on unit 1)

B-22

BUILDING LOAD MODULES

.7. :I.:
(Mount second scratch cassette on unit 1)

~ 7. :1.:

.1:;: EDIT
*EW:I. : PEF~PAI:~ + I...P~
*EI:;:O : PEI:;:PAI~. PAI..~~
*EHO: PEI~:PAI:~. PAI..(lli)I:~OOD
* F Ii ~I; CAP S :::: <X!lDO A I:GOOD
*F V ~~I...PB::::($)AX:~

*F$CI...I\::~(~)AI ~
*F$DIO::~(~OAI P®ID
*E~

(Mount CAPS-II system cassette on unit 0)

For ARII support, enter the following command strings after mounting
second scratch cassette on unit 1:

.R PAI...:L6

:1.'1) (Type any keyboard character)

:I.? (Mount cassette with FTBL.PAL on unit 1)

PASS 2

(Mount second scratch cassette on unit 0)

(Mount cassette with new PERPAR.PAL on unit 1)

(Mount cassette with FTBL.PAL on unit 1)

(Cassette on unit 0 now contains a new FTBLL.OBJ)

*PEHVEC=:I.:PEHPAH.LPS/P,PEHVEC.PAL/P

:1.'1' (Mount cassette with PERPAR.LPS on unit 1)

(Mount cassette with PERVEC.PAL on unit 1)

(Mount cassette with PERPAR.LPS on unit 1)

(Mount cas set with PERVEC.PAL on unit 1)
(Now the cassette on unit 0 has a new PERVEC.OBJ)

*BASINT=:LIPERPAR.I...PS/PyBASINT.PAL/P

1 'i>

PASS 2

:1. '~

(Mount cassette with PERPAR.LPS on unit 1)

(Mount cassette with BASINT.PAL on unit 1)
(Cassette on unit 0 now contains a new BASINT.OBJ)

B-23

BUILDIlJG LOAD l>10DULES

(Mount CAPS-II system cassette on unit 0)
cassette containing BASICR.OBJ on unit 1)

(Mount

(When unit a has rewound, mount cassette
containing new PERPAR.PAL on unit 0)

*1:BASLPS.SLO,LP:=BASICRyFPMPyBASICE,BASICX,BASICS/B:4OO/C
,FTBL/PYPERVEC~BASINTYLPSO/P,LPS1,LPS4,BASICH/P

O? (Mount cassette with new FTBL.OBJ on unit 0)

() '!~ (Mount cassette with LPSO.OBJ on unit 0)

() '!~ (Hount cassette with BASICH.OBJ on unit 0)

(LOAD HAP PRINTED)
PASS ::.~

() 1~ (Mount cassette with new FTBL.OBJ on unit 0)

(),.~ (Mount cassette with LPSO.OBJ on unit 0)

O? (Nount cassette with BASICH.OBJ on unit 0)

*···'C (Done. New version of BASLPS.SLO with only
and display routines, interrupt vectors at 340,
on cassette 1)

Assembling LPS, ARll Support from the Sources

ADC
is

The Laboratory Peripheral System support may also be purchased in
source form. The following nine source files are provided. (The
source files for FTBL, BASINT, PERPAR, and PERVEC are provided with
the binary kit.)

LPSO.PAL
LPSl.PAL
LPS2.PAL
LPS3.PAL
LPS4.PAL
FTBL.PAL
PERVEC.PAL
BASINT.PAL
PERPAR.PAL

The following table lists the assembly parameters for each module:

Source File

LPSO.PAL

LPSl.PAL

LPS2.PAL

LPS3.PAL

LPS4.PAL

Conditionals

None

$ARII
$CAPS

CYC50

$ARII
$CAPS

$ARII

None

Define for Systems with:

ARII hardware
PTS hardware

50 Hz line frequency
(60 Hz is default)
ARll hardware
PTS hardware

ARII hardware

B-24

BUILDING LOAD MODULES

Source File

FTBL.PAL

PERVEC.PAL

BASINT.PAL

Conditionals ---------
$ADC
$CLK
$DIO
$DIS
$LPS
$AEll
$V'l'll
$DISK
$V'1~55

$LPS
$V

$V'1~ll
$AHll
$DHllK
$NUMBR=X
OFFSTI

OFFST2

$DIS

Define for Systems with:

LPSI (ARDI for ARll)
LPS2 (ARD2 for ARll)
LPS3 (ARD3 for ARll)
LPS4
$LPSO (all systems with LPS support)
ARll support
V'l'll suppor t
RT-ll
VT55 support

LPSll hardware
LPS interrupts not at location 340
(octal)
VTll support
ARll hardware
DRll-K hardware
Multiple (X) DRll-K hardware
First DRll-K interrupt address not at
167770 (octal)
First DRll-K vector address not at 300
(octal)

LPS4

To assemble the LPS object modules from the sources, use the following
command strings:

.:./:;: EDIT * El.·.J :I. ~ F'(l F: (l!"i • P(ll..GX.J) * I CYC~.:50:::::?
@ill)
*E>~

*:I.:LF'SO.OBJ=O:PERF'AR.LPS/F'vLPSO.PAL/P

o'!'

o'!'

O'i'

*:1. t I ... P n:l. • (] B ".1 :::: () : P E I~~ P A I:~ • L P B I P y I... P S:l. • PAL I P

0'1'

B-25

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPSO.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPSO.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPSl.PAL
on unit 0)

BUILDING LOAD MODULES

OT

O?

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPSl.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPS2.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPS2.PAL
on unit 0)

For line frequency of 50 Hz, use LPS2C instead of LPS2.

o'!'

0'1'

*1:LPS3.0BJ=O:PERPAR.LPS/P?LPS3tPAL/P

0'1'

PASS 2

O'~

B-26

(Mount cassette with
PERPAR.PAL and PARAM.PAL on
unit 0)

(Mount cassette with LPS2.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL and PARAM.PAL on
uni t 0)

(Mount cassette with LPS2.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPS3.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL on unit 0)

BUILDING LOAD HODULES

()'~

*1:LPS4.0BJ=O:PERPAR~LPS/PvLPS4+PAL/P

() '~

OT

PASS 2

0','

O'i'

(Mount cassette with LPS3.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPS4.PAL
on unit 0)

(Mount cassette with
PERPAR.PAL on unit 0)

(Mount cassette with LPS4.PAL
on unit 0)

For ARll support, assemble the ARD files instead of LPS files:

*1:ARD1.0BJ=PERPAR.ARD/P?LPS1.PAL/P

() 'f

() 'i'

B-27

(Mount cassette with
PERPAR.ARD on unit 0)

(Mount cassette with LPSl.PAL
on unit 0)

(Mount cassette with
PERPAR.ARD on unit 0)

(Mount cassette with LPSl.PAL
on unit 0)

(Mount cassette with
PERPAR.ARD on unit 0)

(Mount cassette with LPS2.PAL
on unit 0)

(Mount cassette with
PERPAR.ARD on unit 0)

(Mount cassette with LPS2.PAL
on unit 0)

BUILDING LOAD MODULES

*1:ARD2C.OBJ~O:PERPAR.ARD/PYPARAM.PAL/F,LPS2.PAL/P

O'~

O'r

() '1'

o!'

*1:ARD3.0BJ~PERPAR.ARD/P,LPS3.PAL/P

o!'

O'~

OOO()()O EF:F:DF:B

(Mount
PERPAR.ARD
uni to)

cassette with
and PARAM.PAL on

(Mount cassette with LPS2.PAL
on unit 0)

(Mount cassette with
PERPAR.ARD and PARAM.PAL on
unit 0)

(Mount cassette with LPS2.PAL
on unit 0)

(Mount cassette with
PERPAR.ARD on unit 0)

(Mount cassette with LPS3.PAL
on unit 0)

(Mount cassette with
PERPAR.ARD on unit 0)

(Mount cassette with LPS3.PAL
on unit 0)

Building a load module may now be accomplished by following the
instructions in the preceding paragraphs.

B.3 BASIC/PTS-ll

B.3.1 LPS Support

The LPS support for paper tape is supplied in twelve binary tapes:

LPSO.OBJ Required LPS kernel module for LPSll or
ARll and DRII-K

LPS1.OBJ Optional Analog to digital conversion
for LPSll

ARD1.OBJ Optional Analog to digital conversion
for ARll and DRII-K

B-28

LPS2.0BJ

ARD2.0BJ

LPS2C.OBJ

ARD2C.OBJ

LPS3.0BJ
ARD3.0BJ

LPS4.0BJ

PTSSTR
PTSNST

BUILDING LOAD MODULES

One is required

Optional
Optional

Optional

One is
required

Real-time clock (60 Hz line
frequency) for LPSII
Real-time clock (60 Hz line
frequency) for ARII and DRII-K
Real-time clock (50 Hz line
frequency) for LPSII
Real-time clock (50 Hz line
frequency) for ARII and DRII-K
Digital input/output for LPSII
Digital input/output for ARII
and DRII-K
Display for LPSII or ARII and
DRII-K
Patch for BASIC with strings
Patch for BASIC without
strings

The following files are provided in source form:

FTBL.MAC
PERVEC.MAC
PTSINT.MAC
PERPAR.MAC

Function Table Module
Vector Definition Module
Interface Module
Parameter

To build a load module BASLPS (BASIC with LPS support), the parameter
file PERPAR.MAC is edited and then assembled with FTBL, PERVEC and the
appropriate interface module. The six object modules produced are
then linked with the LPS and BASIC object modules to produce a load
module. The specific instructions that are given to the system
programs (editor, assembler, and linker) are given in the examples
that follow the general description of load module building.

The two patch tapes, PTSSTR and PTSNST, alter one location in BASICL
to permit the LPS scope to be refreshed by a background routine, a
routine that is active while BASIC waits for input. A patch tape
should only be used with BASIC/PTS VOl. The Patch tape used should be
linked after the last LPS tape. PTSNST should be linked when BASICL
without strings is linked and PTSSTR should be linked when BASICL with
strings is linked.

NOTE

All of the procedures in this section
assume that an unaltered PERPAR is being
edited. It is recommended that a copy
of the original PERPAR be made and saved
for future use.

The BASINT interface module should be used with all versions of BASIC
except BASIC/PTS VOl which should have PTSINT used in the place of
BASINT.

For the LPS routines to be accessible from the BASIC CALL statement,
the routine must be defined in a System Function Table. FTBL.MAC is a
function table in source form. If any user-written assembly language
routines are also linked with BASIC the routines must be defined in
this function table.

PERVEC is the vector definition module. It defines the hardware
addresses of the status registers and the interrupt vectors. The
standard hardware address for the LPS interrupt vector is 340 (octal).

B-29

BUILDING LOAD MODULES

In PDP-llElO machines with LPS support, however, the interrrupt vector
is location 300 (octal). To assemble PERVEC with the interrupt vector
at 300 (octal) it is necessary to delete the semicolon before the $V=O
definition in PERPAR.MAC. If the interrupt locations are at another
location in memory then correct the interrupt addresses by using the
system editor to define $V in PERPAR equal to the interrupt address
minus 300 (octal). For example, if the LPS interrupt vectors start at
320 (octal) define $V=20 (octal).

To link the LPS module with BASIC, it is necessary to delete the
semicolons (;) before the $LPS=O statement. If any of the four
optional modules are not to be included, a semicolon (;) must be
inserted before the appropriate conditional.

Parameter Insert before parameter if

$ADC=O module LPSI or ARll is not to be included.

$CLK=O module LPS2 (LPS2C) or ARll is not to be included.

$DIO=O module LPS3 or ARll is not to be included.

$DIS=O module LPS4 or ARll is not to be included.

$STRNG=O no string version of BASICL is to be linked.

Using the system assembler, the sources are assembled in the following
combinations to produce the needed LPS object modules:

Object File Source Files

FTBL PERPAR,FTBL

PERVEC PERPAR, PERVEC

BASINT or PERPAR, BASINT

PTSINT PERPAR, PTSINT

After these modules have been assembled, the LPS support may be linked
with the BASIC object modules with only the desired optional LPS
modules included in the LINK command strings.

Example Load Buildings

Examples are given for building a load module for the following three
systems:

1. BASIC with strings, with complete LPS (or ARll) support, and
with the LPS (or ARll) interrupt vectors located at 340
(octal) .

2. BASIC without strings with complete LPS (or ARll) support and
with the LPS (or ARll) interrupt vectors located at 300
(octal) .

3. BASIC with strings, with a partial LPS (or ARll)
configuration (one that includes the ADC, DIS, and CLK but
does not include the 010), and with the LPS (or ARll)
interrupt vectors located at 340 (octal).

B-30

BUILDING LOAD MODULES

To build a load module called BASLPS.LDA, the following instructions
should be followed:

Load ED-II (the PDP-II Paper Tape Software Text Editor) which is used
to edit a source paper tape, PERPAR, which describes the required
options. Place the supplied PERPAR.MAC in the high speed paper tape
reader then follow one of these three procedures:

1. For a load module of BASIC including strings with support for
a complete configuration of the LPS (all four optional
modules) and with the LPS interrupt vectors at location 340
(octal), the following instructions should be given to the
editor:

*H
;$CAPS=0
;$CAPS=0
*0A

*H
;$LPS=0
;$LPS=0
*0A

*
At this point, the punch has the edited PERPAR.

2. Or for a load module of BASIC with no strings, with support
for a complete configuration of the LPS and with the LPS
vectors located at 300 (octal), the following instructions
should be given to the editor:

*H
;$CAPS=0
;$CAPS=0
*0A

B-31

*H
$ST~:NG=f1

$ST~:NG=f1

*0A

*H
; $LP5=f1
; $LPS=f1
*f1A

*H
; $V=0
; $V=0
*0A

*0

*lP

*

BUILDING LOAD MODULES

At this point the punch has the edited PERPAR.

3. Or to build a load module of BASIC with strings for a partial
configuration of the LPS, one that includes the ADC, DIS, and
CLK but excludes the DIO with the LPS interrupts at 340
(octal), the following instructions should be given the
editor:

*I H

*H
,i $CAPS=O
; $CAPS=f1
*0A

*H
,i $LPS=0
,i $LPS=f1
*f1A

*H
$[)1 0=0
$OIO=(1

B-32

BUILDI~G LOAD MODULES

*
At this point, the punch has the edited PERPAR.

Load PAL-lIS. It is used to generate FTBL, PERVEC, and PTSINT object
tapes. When PAL-II has been loaded, put the edited PERPAR tape in the
high-speed reader and answer the following questions.

PAL-lIS

*S H
*B H
*L P
*T P

The PERPAR tape is now read.

EOF?

END?

EOF?

When EOF? is printed, remove the PERPAR tape and
the FTBL source tape in the high-speed reader.
type carriage return.

When END? is printed, remove the FTBL source tape
insert the PERPAR tape in the high-speed reader.
ready, type a carriage return.

put
Then

and
When

When EOF? is printed, remove the PERPAR tape and
replace it with the FTBL source tape. (Note that both
tapes are loaded twice in the assembly process.)

000000 ERRORS

PAL-lIS

*S

PAL-lIS

When *S is printed, the new FTBL object tape is in the
high-speed punch and may be removed. It is this tape
(called FTBL) that will be used in the linking process
to generate a new load module.

These steps are then repeated using the PERPAR and PERVEC tapes to
produce a PERVEC object tape and then repeated again using the PERPAR
and PTSINT tapes to produce a PTSINT object tape.

Building the load module is accomplished by using LINK-lIS. The
bottom address specified should be 400.

Link the object tapes in the following order.

BASICL.OBJ

B-33

FPMP.OBJ
PTSINT.OBJ
PERVEC.OBJ
FTBL.OBJ
LPSO.OBJ

BUILDING LOAD MODULES

LPSI.OBJ or ARDI.OBJ
LPS2.0BJ or ARD2.0BJ (for 60 Hz line frequency)
LPS2C.OBJ or ARD2C.OBJ (for 50 Hz line frequency)
LPS3.0BJ or ARD3.0BJ
LPS4.0BJ
PTSNST
BASICH.OBJ

If $STRNG was left unchanged when editing PERPAR, BASleL with strings
must be used. If a semicolon was inserted before $STRNG, BASleL for
no string must be used.

Exclude the optional files for which a semicolon was inserted before
the appropriate conditional in PERPAR. In the example given for a
configuration not including the DIO, do not include LPS3.0BJ in the
linking process.

To assemble the LPS from the sources the following procedure should be
followed:

Load PAL-lIS. It is used to generate LPSO, LPSI, LPS2, LPS3, and LPS4
binary tapes. Put the LPSO source tape in the high speed reader.
Enter the following commands

PAL-lIS
*S H
*B H
*L P
*T P
END?
000000

PAL-lIS
*S

The tape is now read.
Re-insert the tape in the reader, press <CR)

Repeat this procedure for the LPSI, LPS2(LPS2C), LPS3, and LPS4 source
tapes or if the line frequency is 50 Hz, LPS2 should be assembled by
the following procedure (LPSO, LPSI,LPS3, and LPS4 are still assembled
as described above). Load ED-II (the PDP-II Paper Tape Software
Editor) with the absolute loader, then create a parameter tape as
follows:

*1 H

*0 H

*1
CYC50=0

*B

*/P

*4T

*

.EOT

B-34

BUILDING LOAD MODULES

Load the PAL-lIS assembler and insert the tape created by the above
commands. Follow this procedure:

PAL-lIS
*S H
*B H
*L P
*T P
EOF?
END?

EOF?
000000

PAL-lIS
*S

Insert the LPS2 source tape and press <CR).
Insert the tape created by the editor and press
<CR).
Insert the LPS2 source tape and press <CR).

At this point the LPS2 binary tape is in the
high-speed punch.

The following table lists the assembly parameters for each module:

Source File

LPSO.MAC

LPSI.MAC

LPS2.MAC

LPS3.MAC

LPS4.MAC

VT55.MAC
Source File

FTBL.MAC

PERVEC.MAC

Conditionals

None

$ARll
$CAPS

CYC50

$ARII
$CAPS

$ARII

None

VT55
Conditionals

$ADC
$CLK
$DIO
$DIS
$LPS

$VTII
$DISK
$VT55

$LPS
$V

$VTII
$ARll
$DRllK
$NUMBR=X

OFFSTI

OFFST2

B-35

Define for Systems with:

ARII hardware
PTS hardware

50Hz line frequency (60
Hz is default)
ARll hardware
PTS hardware

ARll hardware

VT55 terminal
Define for Systems with:

LPSI
LPS2
LPS3
LPS4
$LPSO (all systems with
LPS support)
VTll support
RT-ll
VT55 support

LPSll hardware
LPS interrupts not at
location 340 (octal)
VTll support
ARll hardware
DRll-K hardware
Multiple (X) DRll-K
hardware
First DRll-K interrupt
address not at 167770
(octal)
First DRll-K vector

BUILDING LOAD MODULES

address not at 300
(octal)

PTSINT.MAC $DIS LPS4

'ra include ARII, simply define $ARII in addition to $CAPS symbols in
PERPAR source tape.

B-36

APPENDIX C

ERROR MESSAGES

This appendix summarizes the error messages that may occur when using
BASIC Extensions call routines. See Appendix P of the RT-II System
Reference Manual for all error messages that may occur under the RT-II
system.

?ADC ERROR AT LINE XXXXX
BASIC Ext Fatal Cannot issue ADC command

operation is underway.
while an RTS

?ARG ERROR AT LINE XXXXX

?BUF

?DEV

?DSP

?DVO

?NOR

BASIC Fatal Arguments in a function call do not match
(in number or in type) the argument defined
for the function.

ERROR AT LINE XXXXX
BASIC Ext Fatal Buffer name given in LPS command has not

been previously defined in a USE statement.

ERR-C
BASIC Ext Non-·fatal The device specified is illegal.

ERROR AT LINE XXXXX
BASIC Ext Fatal .DEVICE list space overflow. Redefine

DSPSIZ in PERPAR.MAC and reassemble
FTBL.MAC.

ERROR AT LINE XXXXX
BASIC Fatal Program attempted to divide some quantity

by O.

ERROR AT LINE XXXXX
BASIC Ext Fatal Number out of range.

?SYN ERROR AT LINE XXXXX
BASIC Fatal The program has encountered an

unrecognizable statement. Common syntax
errors are mispelled commands and unmatched
parentheses, and other typographical
errors.

?UNF ERROR FUNCTION AT LINE XXXXX
BASIC Fatal The function called was not defined by the

program or was not loaded with BASIC.

C-I

Term

Analog

Auto-gain

Bipolar

Buffer

Clock

DMA

Gain

Global

Initialize

Library
Routine

Mass Storage

Overflow

Parameter

GLOSSARY

Definition

Numbers represented by directly measurable quantities
(as voltages, resistances, or rotations).

Software determination of the best switch gain value to
use sampling analog data using the LPSAM-SG option.

Refers to a signal that is either positive or negative
with respect to system ground.

A temporary storage area which may be a special
register or an area of storage.

A time-keeping or frequency-measuring device within the
computer system.

Direct Memory Access. The DMA is attached to any
PDP-II allowing memory data storage or retrieval at
memory cycle speeds without processor intervention.

An increase in signal power.
output power to input power.

Gain in the ratio of

A value defined in one program module and used in
others. Globals are often referred to as "entry
points" in the module in which they are defined and
"externals" in the other modules which use them.

To set counters, switches, addresses and variables to
zero or other starting values.

A collection of standard routines which can be
incorporated into larger programs.

Pertaining to a device such as a disk or DEC tape which
stores large amounts of data readily accessible to the
central processing unit.

A condition that occurs when a mathematical operation
yields a result whose magnitude is larger than the
program is capable of handling.

A variable or an arbitrary constant appearing in a
mathematical expression, each value of which restricts
or determines the specific form of the expression.

Glossary-l

Preamplifier

Source file

GLOSSARY

An electronic circuit or device that detects and
sufficiently amplifies weak signals.

A file to be used as input to a translating program
such as MACRO or BASIC.

Glossary-2

AID Conversion, 2-7
ACC, 2-2, 2-5
ADC, 2-1, 2~2, 2-7
Array, 2-3
Auto-gain, 2-7

Background Display Routine, 2-23
Buffer,

defining the display, 2-22
display, 2-25
putting data into display,

2-23
ring, 2-6, 2-8, 2-15

Burst Mode, 2-10

Channel, 2-8
Clock, 2-1, 2-10
Clock,

internal, 2-16
Clock Mode, 2-14
CLRD, 2-2, 2 -22
Control,

relay, 2-21
Conversion,

AID, 2-7
CVSG, 2-2, 2-12

DACS, 2-2
Data,

flashing, 2-26
returning, 2-6

Data from memory,
reading, 2-21

Data into display buffer,
putting, 2-23

Data into memory,
writing, 2-21

Data overrun, 2-6
Defining the display buffer, 2-22
Digital readout, 2-19
DIM, 2-3
DIR, 2-2, 2-17
DIS, 2-3, 2-23
Display buffer, 2-25

defining the, 2-22
putting data into, 2-23

Display routine,
background, 2-23

DMA, 2-1, 2-11
DOR, 2-2, 2-19

INDEX

DRS, 2 - 2, 2 -19
DXY, 2-3, 2-25

Flashing data, 2-26
FSH, 2-3, 2-25
FXY, 2-3, 2-26

Hardware, 2-27
HIST, 2-2, 2-16
Histograms, 2-15

Internal clock, 2-16
Interrupt Mode, 2-13
IPK" 2-2, 2-21

LED, 2-1, 2-2, 2-11
Light Emitting Diodes, 2-11
LPSO, 2-3
LPS1, 2-7
LPS2, 2-12
LPS3, 2-17
LPS4, 2-22
LPSAD-12, 2-1
LPSAD-NP, 2-1
LPSAG, 2-1, 2-8
LPSAG-VG, 2-1
LPSAM, 2-1
LPSDR, 2-2
LPSKW, 2-2, 2-13
LPSSH, 2-1
LPSVC, 2-2

Memory,
reading data from, 2-21
writing data into, 2-21

Mode,
Burst, 2-10
Clock, 2-14
Interrupt, 2-13

Numeric readouts, 2-7

Index-l

INDEX (Cont.)

Overflow, 2-16
Overrun,

data, 2-6

PUTD, 2-2, 2-23
Putting data into display

buffer, 2 -2 3

RDB, 2-2, 2-6
Reading data from memory, 2-21
Readout,

digital, 2-19
Readouts,

numeric, 2-7
Real-time sampling, 2-7, 2-8
REL, 2-2, 2-21
Relay control, 2-21
Retrigger, 2-17
Returning data, 2-6
Ring buffer, 2-6, 2-8, 2-15
Routine,

background display, 2-23
RTIM, 2-2, 2-16
RTS, 2-2

Sampling,
real-time, 2-7, 2-8

Schmitt Trigger, 2-1, 2-10
Schmitt Trigger,

timed, 2-15
SETC, 2-2, 2-14
SETR, 2-2, 2-12, 2-13
Subscript, 2-3
SVSG, 2-12

Target variable, 2-6, 2-7, 2-17
Timed Schmitt Trigger, 2-15

USE, 2-2, 2-3

Variable,
target, 2-6, 2-7, 2-17

WAIT, 2-2, 2-16
Writing data into memory, 2-21

Index-2

READER'S COMMENTS

BASIC-II
Laboratory Extensions
User's Guide
EC-II-LBEPA-A-D

NOTE: This form is for document conunents only. Problems
with software should be reported on a Software
Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language prograInITlE~r

o Higher-level language progranuner

o Occasional programmer (experienced)

o User with lit-tIe progranuning experience

o Student progri:unrner

o Non-programmer interested in computer concepts and capabilities

Name Date ____________ _

Organization

Street _____ _

Ci ty _______ , _ ___ State ________ Zip Code _______ _
or

Country

If you require a written reply, please check here. 0

.-.. -- Fold Here --

.-.• --- Do Not Tear - Fold Here and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS J
PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	C-01
	C-02
	Glossary-01
	Glossary-02
	Index-01
	Index-02
	replyA
	replyB
	xBack

