
March 1978 

This document describes the system dependent features of 
BASIC-11/RT-11. In conjunction with the BASIC-11 
Language Reference Manual (DEC-11-LIBBB-A-O), this 
document provides the information required to write and 
run a BASIC program under the RT-11 operating system. 

BASIC-11/RT-11 
User's Guide 

Order No. DEC-11-LIBUA-A-D, DN1 

SUPERSESSION/UPOATE INFORMATION: 

OPERATING SYSTEM AND VERSION: 

SOFTWARE VERSION: 

This document in conjunction with the 
BASIC-11 Language Reference Manual 
(DEC-11-LIBBB-A-D) completely 
supersedes the BAS/CIR T-11 Language 
Reference Manual (DEC-11-LBACA-E-D), 
published October 1976. This document 
includes Update Notice No. 1. 

RT-11 V03 

BASIC-11/RT-11 V2 

To order additional copies of this document, contact the Software Distribution 
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754. 

digital equipment corporation • maynard, massachusetts 



First Printing, September 1977 
Revised, March 1978 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may only be used or copied in accordance with the terms of such 
license. 

No responsibility is assumed for the use or reliability of software on 
equipment that is not supplied by DIGITAL or its affiliated companies. 

Copyright @ 1977, 1978 by Digital Equipment Corporation 

The postage-prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in pre­
paring future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DEC US 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 
ASSIST-11 

DECsystem-lo 
DECtape 
DIBOL 
EDUSYSTEM 
FLIP CHIP 
FOCAL 
INDAC 
LAB-8 
DECSYSTEM-20 
RTS-8 

MASS BUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET-11 
TMS-11 
ITPS-10 



CONTENTS 

Page 

PREFACE v 

DOCUMENTATION CONVENTIONS vi 

CHAPTER 1 

1.1 
1. 2 
1. 2 .1 

1. 2. 2 
1. 2. 3 
1.3 
1. 4 
1. 5 
1. 6 

CHAPTER 2 

GETTING STARTED WITH BASIC-11/RT-ll 

OPTIONAL FEATURES 
STARTING BASIC 

Running BASIC With the Single Job Monitor 
or as the Background Job 
Running BASIC As the Foreground Job 
Running BASIC From an Indirect File 

STOPPING BASIC PROGRAMS (CTRL/C COMMAND) 
TERMINATING THE SESSION (BYE COMMAND) 
FLOATING POINT NUMBER PRECISION 
SYSTEM DEPENDENT ERROR MESSAGES 

FILES 

1-1 

1-1 
1-2 

1-2 
1-4 
1-5 
1-6 
1-7 
1-7 
1-8 

2-1 

2.1 FILE SPECIFICATION 2-1 
2.2 THE OPEN STATEMENT - SYSTEM DEPENDENT FEATURES 2-3 
2.3 LISTING YOUR FILE DIRECTORY 2-3 

CHAPTER 3 

3.1 
3.2 
3.3 

3.4 

3.5 
3.6 
3.6.1 
3.6.2 
3.6.3 
3.6.4 

CHAPTER 4 

INDEX 

4.1 
4.2 
4.3 
4.3.1 
4.3.2 
4.4 
4.4.1 
4.4.2 

UTILITY FUNCTIONS 

BASIC UTILITY FUNCTIONS 
SETTING THE TERMINAL MARGIN (TTYSET FUNCTION) 
CANCELING THE EFFECT OF CTRL/O 
(RCTRLO FUNCTION) 
DISABLING CTRL/C 
(RCTRLC AND CTRLC FUNCTIONS) 

TERMINATING YOUR PROGRAM (ABORT FUNCTION) 
SYSTEM FUNCTIONS 

Single Character Input 
Terminating BASIC 
Checking for CTRL/C 
Enabling Lower Case Support 

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

INTRODUCTION TO ASSEMBLY LANGUAGE ROUTINES 
FORMAT OF THE ASSEMBLY LANGUAGE ROUTINE 
ACCESSING THE ARGUMENTS - THE ARGUMENT LISTS 

Numeric Arrays 
Strings and String Arrays 

USING ROUTINES PROVIDED BY BASIC 
Error Handling and Message Routines 
Mathematical Operation and Function Routines 

3-1 

3-1 
3-1 

3-2 

3-3 
3-4 
3-5 
3-6 
3-6 
3-7 
3-7 

4-1 

4-1 
4-2 
4-4 
4-7 
4-7 
4-9 
4-9 
4-11 

Index-1 

iii 



FIGURE 

TABLE 

4-1 

4-2 
4-3 
4-4 

4-5 
4-6 

4-7 

2-1 
2-2 
2-3 
3-1 
4-1 
4-2 
4-3 

CONTENTS (Cont. ) 

FIGURES 

User Routine Name Table and Routine Name 
Formats 
Assembly Language Routine Argument Lists 
Format of the Argument Descriptor Word 
Format of Array and String Argument 
Descriptors 
State of Stack for Threaded Code Routines 
Argument List for Supplied 
Routines 
Argument List for Supplied 
Routines 

TABLES 

RT-11 Device Names 
Default File Names 
Default File Types 

Single-Precision 

Double-Precision 

Summary of System Functions 
Using String Access Routine 
BASIC Mathematical Operations 
BASIC Mathematical Functions 

iv 

Page 

4-2 
4-5 
4-6 

4-7 
4-14 

4-16 

4-16 

2-1 
2-2 
2-2 
3-6 
4-10 
4-13 
4-13 



PREFACE 

Before reading this manual, you should be familiar with the BASIC-11 
language and the RT-11 system. If necessary, read the following 
manuals before reading this User's Guide: 

e BASIC-11 Language Reference Manual (DEC-11-LIBBB-A-D) 

• Introduction to RT-11 

or 

• RT-11 System User's Guide 

Most features of BASIC-11/RT-ll V2 are the same as in other versions 
of BASIC-11. (DIGITAL's name for a family of BASICs for the PDP-11). 
These features are described in the BASIC-11 Language Reference Manual 
(DEC-11-LIBBB-A-D). 

This guide describes the system dependent features of BASIC-ll/RT-11. 
They are: 

• Procedure for starting BASIC 
• Effect of the CTRL/C key command 
• Accuracy of storing numbers 
• Format of error messages 
• Format of the file specification 
• Effects of parameters in the OPEN statement 
• Procedure for checking files 
• Effect of superseding files 
• Effects of the utility functions 
• Procedure for using assembly language routines 
• Procedure for terminating BASIC 

All BASIC users should read this guide excluding only Chapter 4. Only 
users who are adding assembly language routines to BASIC need to read 
Chapter 4. Chapter 4 assumes that you are an experienced RT-11 MACRO 
programmer. 

This guide assumes that you have linked BASIC 
procedur~ described in the BASIC-11/RT-ll 
(DEC-11-LIBTA-A-D) . 

v 

according to the 
Installation Guide 



DOCUMENTATION CONVENTIONS 

This section describes the documentation conventions, notations, and 
symbols used throughout this manual. 

The following symbols denote special terminal keys that you will use 
frequently when using BASIC. 

Symbol Meaning 

(CTRL/XJ While pressing the CTRL key, type the letter indicated 
after the slash. 

([ill Type the RETURN key. 

@) Type the ESCAPE key (ALTMODE on some terminals). 

(filD Type the DELETE key (RUBOUT on some terminals). 

In addition, this manual uses certain conventions when describing the 
format of statements, functions, and commands. 

These are: 

Convention 

[ J 

{ } 

Items in 
capital 
letters and 
special 
symbols 

Items in 
lower case 
letters 

Meaning 

The enclosed elements are optional. For example: 

[LET] variable=expression 

A choice of one 
possibilities, for 

IF relational 

element among two or more 
example: 

{

THEN statement } 
expression THEN line number 

GO TO line number 

Preceding element can be repeated as indicated. 
For example: 

line number CLOSE#exprl,#expr2, .•• 

Type these elements exactly as they appear in the 
format, for example: 

LET 
RUN 

# 

Items in capital letters are called keywords. 

Replace these elements according to the 
description provided in text. See below for list 
of commonly used lower case items. 

This list describes some lower case items commonly used in format 
descriptions. The general meaning of each item is given. Unless a 
specific format description places restrictions on an item, its 
general meaning applies. See the BASIC-11 Language Reference Manual 
for more information on these items. 

vi 



Lower Case 
Item 

expression 

file specification 

integer 

line number 

string 

variable 

Abbreviation Meaning 

expr Any valid BASIC-11 expression. 

int 

var 

It is always a numeric 
expression unless the 
description specifically states 
that it can be a numeric or 
string expression. For 
example: ( S*SIN (X)) "'y 

A file specification as 
described in Section 2.1 

Any positive integer number 
constant or any positive 
numeric constant that could be 
an integer if a percent sign 
were put after it. For 
example: 5%, 3%, 2, 7 

Any valid line number. 
example: 10, 100, 32767 

Any string expression. 
example: 
"ABC", C$+SEG$(A$,3,4) 

For 

For 

A floating point, integer or 
string variable. 

If more than one lower case word appears in a format, the words are 
numbered 1, 2, 3, etc. For example: 

CLOSE #exprl,#expr2,#expr3, •.. 

Throughout this manual, 
BASIC-ll/RT-11. 

the term BASIC means BASIC-11 or 

To differentiate between what BASIC prints and what you type, the user 
type-in is printed in red ink. For example: 

WHAT NUMBERS? 5,10 
THE SUM I!:> :l.~:5 

!=~EADY 

All user type-in is terminated by the RETURN key unless the text 
indicates a different terminator. 

vii 



CHAPTER 1 

GETTING STARTED WITH BASIC-ll/RT-11 

1.1 OPTIONAL FEATURES 

BASIC-ll/RT-11 has numerous optional features. If you include all 
optional features, any feature described in the BASIC-11 Language 
Reference Manual or in this guide is available. By excluding some or 
all optional features, you can increase the amount of memory available 
for programs or have faster program execution, or both. 

BASIC-ll/RT-11 has available the following optional features: 

Statements 

CALL 
PRINT USING 

Commands 

SUB 
RE SEQ 

Functions 

SQR 
SIN 
cos 
ATN 
LOG 
LOGlO 
EXP 

Miscellaneous 

SYS 
RCTRLO 
ABORT 
TTYS ET 
CTRLC 
RCTRLC 
TAB 
RND 

ABS 
SGN 
BIN 
OCT 
LEN 
ASC 
CHR$ 
POS 

• Double precision arithmetic 

• Long error messages 

SEG$ 
VAL 
TRM$ 
STR$ 
PI 
INT 
DAT$ 
CLK$ 

• Exponentiation (e.g., the expression A~B) 

• Ability to run BASIC as foreground or background job 

• Features affecting program space availability and program 
execution speed 

You must specify the inclusion or exclusion of some optional features 
at BASIC linking time. Others you select at BASIC run time. The 
features you can choose when you link BASIC are: 

1-1 



GETTING STARTED WITH BASIC-11/RT-ll 

• All optional statements 
• All optional commands 
e SQR, SIN, COS, ATN, EXP, LOG, and LOGlO functions 
• All miscellaneous optional features 

The features you can choose at run time are the following optional 
functions: 

SYS 
RCTRLO 
ABORT 
TTYS ET 
CTRLC 
RCTRLC 
TAB 
RND 

ABS 
SGN 
BIN 
OCT 
LEN 
ASC 
CHR$ 
POS 

SEG$ 
VAL 
TRM$ 
STR$ 
PI 
INT 
DAT$ 
CLK$ 

Before using BASIC you must link a version with the optional features 
you want. See the BASIC-11/RT-ll Installation Guide for instructions 
to link BASIC and for information about allowed program size and speed 
of execution tradeoffs. 

1.2 STARTING BASIC 

You can use BASIC with either the single-job (SJ), 
foreground/background (FB), or extended memory (XM) RT-11 V3 monitor. 
When using the FB or XM monitor, you can run BASIC as either the 
foreground or background job. 

Before starting BASIC, you must bootstrap RT-11 and enter the DATE and 
TIME commands. See the Introduction to RT-11 for a description of 
these procedures. 

1.2.1 Running BASIC With the Single Job Monitor or as the Background Job 

To run BASIC with the SJ monitor or as the background job, enter 
either the BASIC or the RUN command. The BASIC command runs the file 
BASIC.SAV on your system device. To enter the BASIC command, type: 

.BASIC 

To use another version of BASIC, type: 

.RUN file specification 

where: 

file specification specifies the file containing 
version of BASIC that you want. 

the 

For example, if you have a version of BASIC on device DXl: with file 
name BAS8K, and you want that version instead of the one in BASIC.SAV, 
you should enter: 

+RUN nx1:BAS8K 

If you specify a file that does not exist, RT-11 prints the message: 

?KMON-F-File not found 

1-2 



GETTING STARTED WITH BASIC-11/RT-ll 

If there is not enough room to run BASIC, one of the following 
messages is printed: 

NOT ENOUGH MEMORY FOR BASIC 

or 

?KMON-F-Not enoush memorw 

This error often results from a large foreground job that has not been 
unloaded. 

If there are no errors, BASIC prints an identifying message and 
inquires whether you want the optional functions that are selectable 
at run time. 

+BASIC 
BASIC-11/RT-11 V02-xx 
OPTIONAL FUNCTIONS <ALLv NONEv OR INDIVIDUAL>? 

To include all of the optional functions, type an A. To exclude all 
of the optional functions, type an N. (You must always terminate 
input to BASIC with the RETURN key.) In response to your A or N, BASIC 
includes or excludes all the functions and then prints the READY 
message. For example: 

OPTIONAL FUNCTIONS <ALLv NONEv OR INDIVIDUAL>?A 

F~EADY 

Typing only the RETURN key in response to the optional functions 
request is equivalent to typing A. 

If you want to choose among the optional functions individually, type 
an I. BASIC then prints an inquiry for each function individually. 
To include a function type a Y; otherwise type an N. Typing only the 
RETURN key in response to the function request is equivalent to typing 
Y. If you type anything else, BASIC repeats its request. After you 
have typed a Y or an N in response to each function inquiry, BASIC 
prints the READY message. For example: 

OPTIONAL FUNCTIONS CALL, NONE, OR INDIVIDUAL>? I 
BYW? N 
i:~CTF~l...OT· N 
ABCHrn N 
TTYSET'P N 
CTRLC I RCTRLC? N 
TAB? Y 
1:~ND? Y 
ABB'!1 Y 
~:;GN'!1 Y 
BIN'P Y 
OCT'l1 Y 
l...EN'!1 N 
ABC? N 
CHR!I>? N 
POf:)? N 
SEG!I>'!> N 
lJAl...'!1 N 
n;: M !~ '!1 N 
BTI:~$? N 
PI'P N 

1-3 



GETTING STARTED WITH BASIC-11/RT-ll 

INT? Y 
DAT$? N 
CLK$? N 

READY 

1.2.2 Running BASIC As the Foreground Job 

To run BASIC as the foreground job, use the FRUN command. Type: 

.FRUN file specification /N:number. 

where: 

file specification specifies the file containing BASIC 

number is the size of the 
number of words 
must be 1000. or 
point identifies 
not octal. 

user area (i.e., the 
to be reserved). It 

greater. The decimal 
the number as decimal, 

You must specify the user area size, or else no area will be reserved 
and BASIC will not be able to run. 

The user area will actually be approximately 100 words more than you 
request. For example, the following command reserves approximately 
3100 words . 

• FRLJN BAS1C/N:3000. 

If the file specified does not exist, RT-11 prints the message: 

?KMON-F-File not found 

If the number of words requested in the FRUN command is not large 
enough, BASIC prints the message: 

NOT ENOUGH MEMORY FOR BASIC 

If there are no errors, RT-11 prints a dot and the F> message to 
indicate that the next message is printed by the foreground job. 
BASIC then prints an identifying message and inquires whether you want 
the optional functions. For example: 

.FRUN BASIC/N:3000. 

F> 
BASIC-11/RT-11 V02-xx 
OPTIONAL FUNCTIONS CALL, NONE~ OR INDIVIDUAL>? 

Type a CTRL/F and then answer the optional function inquiry as 
described in the previous section. 

NOTE 

To use a device other than the system 
device, you must load the handler before 
you run BASIC in the foreground. See 
the RT-11 System User's Guide for more 
information about foreground jobs. 

1-4 



GETTING STARTED WITH BASIC-11/RT-ll 

1.2.3 Running BASIC From an Indirect File 

You can run BASIC and answer the initial dialogue by using an indirect 
file. You can only run BASIC in this way as the background job or in 
the single job monitor. This technique is useful when you select the 
optional functions individually. 

You cannot enter any BASIC command, program line, or immediate mode 
statement through an indirect file. 

To create the indirect file, direct the editor to create a file with a 
file type .COM that contains all anticipated responses to system 
queries. For example: 

~F~ EDIT 
*ElJMINl~:UN. COM @@ 
*II:\: DAElIC 
I 
N 
N 
N 
N 
N 
N 
y 
y 
y 
y 
y 

N 
N 
N 
N 
N 
N 
N 
N 
N 
y 

N 
N 
@@ 
*EX @@9 

To start BASIC, type an @ ("at" sign) followed by the file name. The 
complete initial dialogue is printed on the terminal. For example: 

,. rnM I Nl~l.JN 

~ i::: Dt1SIC 
BASIC-11/RT-11 vo2-xx 
OPTIONAL FUNCTIONS CALL, NONEv OR INDIVIDUAL)? I 
EYB'!, N 
1:::cTi:::1 ... Cl? N 
ABOF~T'l> N 
TTYBET? N 
CTRLC & RCTRLC? N 
T1~B? N 

1-5 



F\ND? y 

'~BS? y 
Sf:lNrf y 

HINT y 

ocn y 
1...ENT N 
MC? N 
CHli:~i? N 
PDB'!> N 
BEG!~'!> N 
VAi...? N 
Tl~M!Vf N 
STR$'P N 
PI'P N 
JNT'P Y 
DAH>? N 
CL.I\$? N 

GETTING STARTED WITH BASIC-11/RT-ll 

See the RT-11 System User's Guide for more information on using 
indirect files. 

1.3 STOPPING BASIC PROGRAMS (CTRL/C COMMAND) 

To stop execution of a BASIC program, use the CTRL/C command. If you 
type one CTRL/C, BASIC interrupts your program the next time it 
requests input. tf you type two consecutive CTRL/C's, BASIC 
interrupts your program immediately. After BASIC interrupts your 
program, it prints: 

STOP AT LINE xxxxx 

where: 

xxxxx is the number of the line that BASIC was executing when 
the CTRL/C command halted the program. 

However, if you were not executing a program line, BASIC prints: 

STOP 

i:~EADY 

When you type CTRL/C, the system prints ~c. For example: 

10 GD. TD :1.0 
F~l.JNNH 

'''C '"'C 
GTOP {:1T l ... INE :1.0 

NOTE 

CTRL/C does not return 
RT-11 monitor. You 
command (see Section 
control to RT-11. 

1-6 

control to the 
must type the BYE 

1.4) to return 



GETTING STARTED WITH BASIC-ll/RT-11 

1.4 TERMINATING THE SESSION (BYE COMMAND) 

To terminate a session with BASIC, type the BYE command. 
command returns control to the RT-11 monitor, which 
prompting period. For example: 

The BYE 
prints its 

BYE 

Once you have entered the BYE command you cannot use the RT-11 REENTER 
command to return to BASIC. Instead, you must restart BASIC as 
described in Section 1.2. If you want to reuse your BASIC program, 
save it before entering the BYE command. 

If you ran BASIC as the foreground job, you must unload it after you 
enter the BYE command. Type: 

.UNLOAD FG 

1.5 FLOATING POINT NUMBER PRECISION 

You can use BASIC with either single or double precision arithmetic. 
Single precision arithmetic allows floating point numbers to seven 
digits of precision. Thus, single precision BASIC stores the numbers 
1.000001 and 1.000000 (seven digits} differently but stores 1.0000001 
and 1.0000000 (eight digits} as the same number. Double prec1s1on 
arithmetic allows you to specify floating point numbers to 15 digits 
of precision. 

If you need more than seven digits of precision, you should use BASIC 
with double precision arithmetic. However, double precision BASIC has 
two disadvantages. 

1. It allows less BASIC program space, because BASIC 
requires more memory and because all floating 
constants, variables, and arrays require twice the 
that single precision would need. 

itself 
point 

memory 

2. Arithmetic operations and functions run more slowly with 
double precision than with single precision. 

The PRINT statement only prints six digits even when you are using 
double precision arithmetic. Consequently, if you want to print a 
number with more than six digits, you must use the PRINT USING 
statement or the STR$ function. The following example was run using 
double precision arithmetic. 

LISTNH 
10 X=4+237194237 
20 Y=6+9090909 
30 PRINT X*Y 
40 PRINT USING "11.ltllllt"YX*Y 
50 PRINT STRS<X*Y> 

READY 

1-7 



GETTING STARTED WITH BASIC-11/RT-ll 

RUNNH 

29.2752 
29.2751601 
29.275160144389 

READY 

Double precision compiLed BASIC uses the default file type .BAX while 
single precision compiled BASIC programs have the default file type 
.BAC. The different default file types are necessary because double 
precision BASIC cannot read a program compiled by single precision 
BASIC and vice versa. If you are using double precision BASIC and 
specify the file type of a program compiled by single precision BASIC 
or vice versa, the results are unpredictable. 

1.6 SYSTEM DEPENDENT ERROR MESSAGES 

Some of the error messages listed in the BASIC-11 Language Reference 
Manual either have special meaning in BASIC-11/RT-ll or are not 
produced by it. These error messages are 

?CANNOT DELETE FILE (?CDF) 
BASIC-11/RT-ll does not produce this message. 

?ERROR CLOSING CHANNEL (?ECC) 
BASIC-11/RT-ll does not produce this error message. 
occurs when BASIC-11/RT-ll is trying to close 
BASIC-11/RT-ll prints the ?CHANNEL I/O ERROR (?CIE). 

If an error 
a channel, 

?FILE ALREADY EXISTS (?FAE) 
BASIC-11/RT-ll does not produce this message. 

?FILE PRIVILEGE VIOLATION (?FPV) 
BASIC-11/RT-ll does not produce this message. 

?FILE TOO SHORT (?FTS) 
The file is too small to contain the output. 
in a data file, specify a larger FILESIZE. 
in a program file, delete unused files with 
and then retry. 

?ILLEGAL DEF (?IDF) 
BAISC-11/RT-ll does not produce this message. 

?ILLEGAL FILE LENGTH 

If the error occurs 
If the error occurs 

the UNSAVE command 

The FILESIZE specified was less than -1 (see Section 2.2). 

?ILLEGAL RECORD SIZE (?IRS) 
BASIC-11/RT-ll does not produce this message. 

?NOT A VALID DEVICE (?NVD) 
BASIC-11/RT-ll does not produce this message. 

?NOT ENOUGH ROOM (?NER) 
There is not enough room for the FILESIZE specified. 
unused files with the UNSAVE command. 

1-8 

Delete 



CHAPTER 2 

FILES 

2.1 FILE SPECIFICATION 

BASIC uses the standard RT-11 file specification. Its format is: 

[device:] [filename J [.type J 
where: 

device 

filename 

type 

Code 

CR: 

CTn: 

DLn: 

DMn: 

DPn: 

DSn: 

DTn: 

DXn: 

LP: 

MMn: 

MTn: 

PC: 

RF: 

is the device name. It can be any device name 
listed in Table 2-1 or any assigned device name (see 
the RT-11 User's Guide). 

is the one- to six-character name of the file. 

is the zero- to three-character type of the file. 

Table 2-1 
RT-11 Device Names 

Device 

Card Reader 

Cassette 

RLOl Disk 

RK06 Disk 

RP02 Disk 

RJS03/4 Disk 

DECtape 

RXll Diskette 

Line Printer 

TJU16 Magtape 

TMll Magtape 

Combined high-speed paper tape reader and punch 

RFll Disk 

(continued on next page) 

2-1 March 1978 

I 



Code 

RKn: 

TT: 

SYn: 

DK: 

RKOS Disk 

FILES 

Table 2-1 (Cont.) 
RT-11 Device Names 

Device 

Console Terminal Keyboard/Printer 

System device (the volume from 
monitor was bootstrapped) 

The default storage volume 

which the 

If you do not specify any of the elements of the file specification, 
BASIC uses a default value. 

The default device is DK:. The default for the file name and file 
type depends on the statement or command in which the file specif ica­
tion appears. Table 2-2 shows the file name defaults, and Table 2-3 
shows the file type defaults. 

Table 2-2 
Default File Names 

Statement or Command Default 

SAVE,REPLACE,COMPILE the current program name 

OLD,APPEND,CHAIN 
OVERLAY 

UNSAVE,OPEN,KILL 
NAME 

Statement or Command 

OPEN,KILL,NAME 

SAVE,REPLACE,UNSAVE 
APPEND 

COMPILE 

RUN,OLD 

the file name NONAME 

no default but prints 
the ?ILLEGAL FILE 
SPECIFICATION (?IFS) 
error message instead. 

Table 2-3 
Default File Types 

Single precision 
BASIC Default 

.DAT 

.BAS 

.BAC 

.BAC (and if a .BAC 
cannot be found .BAS) 

-

2-2 

Double precision 
BASIC Default 

.DAT 

.BAS 

.BAX 

.BAX (and if a 

.BAX cannot be 
found .BAS) 



FILES 

When you create a file whose file specification is the same as an 
existing file, the older file will be deleted (superseded) when the 
new file is closed. You can avoid unwanted deletions by using the 
SAVE command to save new files. If a SAVE command specifies a file 
name that already exists, BASIC-11 prints the following error message: 

?USE REPLACE <?RPL> 

This gives you an opportunity to decide whether you want to supersede 
the old file, or store the file under a different file specification. 

2.2 THE OPEN STATEMENT - SYSTEM DEPENDENT FEATURES 

The format of the OPEN statement is: 

[{ FOR INPUT}] 
OPEN strinq FOR OUTPUT AS FILE [#] exprl [DOUBLE BUF] 

[,RECORDSIZE expr2] [,MODE expr3] [,FILESIZE expr4] 

where: 

string 

exprl 

DOUBLE BUF 

RECORDSIZE expr2 

MODE expr3 

FILESIZE expr4 

is a file specification as described in 
Section 2 .1. 

is the channel number of the file. 
have any value between 1 and 12. 

It can 

causes the file to be double buffered. 
Double buffering increases the speed of some 
file operations but requires additional 
memory for the second buffer. 

is ignored if specified. 

is ignored if specified. 

if positive, specifies the maximum number of 
256-word blocks the file can occupy. If 
FILESIZE is missing or expr4 equals 0, it 
requests the standard BASIC-11/RT-ll file 
allocation (that is, either half the largest 
free area or all of the second-largest free 
area, whichever is larger). If expr4 equals 
-1, it requests the absolute largest free 
area. If expr4 is less than -1, the error 
message ?ILLEGAL FILE LENGTH appears. 

The elements of the OPEN statement described above are the system 
dependent elements. The other elements of the OPEN statement are 
described in the BASIC-11 Language Reference Manual. 

2.3 LISTING YOUR FILE DIRECTORY 

You must return control to the RT-11 monitor before listing your file 
directory. First save your current BASIC program (if you wish to 
reuse it later) and then enter the BYE command. The monitor prints 
the dot prompt. For example: 

2-3 



SAVE TEMP 

F~EADY 

BYE 

FILES 

Following the prompt, type the RT-11 DIRECTORY command. A simplified 
format of the RT-11 directory command (see the RT-11 System User's 
Guide for a complete description) is: 

DI F~ECTORY [/PF{ I NTEI:::] 

where: 

/PRINTER 

file specification 

file specification 

specifies that the directory is to be 
printed on the line printer. (If 
omitted, the directory is printed on the 
terminal.) 

specifies the files that you want 
listed. If you omit the file 
specification, all files are listed. 

The DIRECTORY command wildcard feature allows you to specify files 
with similar file names, or similar file types, or both. If you 
substitute an asterisk for the file name but specify a file type, all 
files with that file type are listed. For example, the following 
command lists all BASIC source programs on the line printer: 

.DIRECTORY/PRINTER *·BAS 

Similarly, if you substitute an asterisk for the file type, but 
specify a file name, all files with that file name are listed, 
regardless of file type. For example, the following command lists all 
files with the file name TEST: 

.DIRECTORY/PRINTER TEST.* 

If you specity a percent sign in place of any characters in a file 
name or file type (for example, TEST%%.BAS), then all the files whose 
specifiers match the other characters in the specification are listed 
(TESTAB.BAS, TESTOl.BAS, and TESTER.BAS would be listed, if they 
exist, for the specification TEST%%.BAS). 

To list all the BASIC programs and compiled BASIC programs, type: 

Note that this command also lists files with the file type .BAK and 
.BAT. Because the specification /PRINTER is absent, listing occurs on 
the terminal. 

After listing your directory, you can return to BASIC by using the 
BASIC command, then restore your saved program with the OLD command, 
and finally, delete the temporary file. For example: 

.BASIC 
BASIC-11/RT-11 V02-xx 
OPTIONAL FUNCTIONS CALLY NONE, OR INDIVIDUAL>? A 

READY 
OLD TEMP 

READY 
l.JNBAVE TEMP 

F~EADY 

2-4 



CHAPTER 3 

UTILITY FUNCTIONS 

3.1 BASIC UTILITY FUNCTIONS 

BASIC has utility functions to: 

• Change the terminal width (TTYSET) 

e Cancel the effect of CTRL/O (RCTRLO) 

• Disable CTRL/C (CTRLC and RCTRLC) 

• Terminate your program (ABORT) 

• Input a single character from your terminal (SYS) 

e Ter.minate BASIC (SYS) 

• Check if a CTRL/C has been typed (SYS) 

• Enable lower case support (SYS) 

In the following sections, BASIC-11 utility functions are shown in the 
context of a LET statement with a dummy target variable, as follows: 

[LET J variable 

where: 

variable 

utility function 

utility function 

is the target variable. 

is one of the functions described in this 
chapter. 

Actually, utility functions can appear in any arithmetic expression. 
The LET statement format is recommended bepause it is the simplest 
statement, and consequently, produces easier-to-read programs. 

3.2 SETTING THE TERMINAL MARGIN (TTYSET FUNCTION) 

Use the TTYSET function to set your terminal's right margin. BASIC 
prints on a line until a number or string would extend past the margin 
you set. BASIC then prints a return and line ~eed on the current line 
and prints the string or number on the next lire. 

The format of the TTYSET function is: 

[LET] variable=TTYSET(255%,expression) 

3-1 



where: 

variable 

255% 

expression 

UTILITY FUNCTIONS 

is the target variable and contains an undefined 
value after the statement is executed. 

is either a numeric constant (as specified in 
format) or an expression with an integer value of 
255 (for compatibility with other versions of 
BASIC). 

specifies the right margin of the terminal. The 
margin is set to the value of the expression minus 
1. If the expression equals 0, BASIC does not 
change the previous margin. 

For example, to set BASIC to print to the full width of an LA36 
DECwriter II (132 columns), type: 

A=TTYSET<255%~133%) 

To set BASIC to print to the full width of a VT50 display terminal (80 
columns), type: 

A=TTYSETC225%,81%) 

If you do not specify the TTYSET function, BASIC assumes a terminal 
with 72 columns. 

Ensure that the system's margin for your terminal is equal to or 
greater than the margin you specify in TTYSET. 

If the value of the expression is less than 0, equal to 1, or greater 
than 256, BASIC prints the ?ARGUMENT ERROR (?ARG) message. If the 
first argument has a value other than 255, BASIC prints the same 
message. 

3.3 CANCELING THE EFFECT OF CTRL/O (RCTRLO FUNCTION) 

BASIC stops terminal output when the CTRL/O key is typed; however, 
the RCTRLO function causes BASIC to resume printing. Use the RCTRLO 
function to ensure that certain data is printed on the terminal even 
if a CTRL/O has been typed. 

The format of the function is: 

[LET] variable=RCTRLO 

where: 

variable is the target variable and contains an undefined 
value after the statement is executed. 

Consider the following example: 

3-2 



UTILITY FUNCTIONS 

LISTNH 
10 REM PROGRAM TO INPUT DATA 
20 REM FROM FILE AND PRINT SUM 
30 OPEN "NUMBR" FOR INPUT AS FILE 11 
40 PRINT "DATA IN FILE:" 
50 IF END i1 THEN 100 
60 :CNPUT =U ~ D 
'70 PIUNT I:I 
80 'J'::::T+D 
190 GO TO ~50 
:I. 00 A::::RCTl::.:LO 
:1.10 PRINT 
120 PRINT "SUM="~T 

F~EADY 

l:O:UNNH 

4 
16 
:L 4'7 
26 

(CTRL/O) 

SUM:::: 4172 

F~EADY 

While BASIC executes the loop from line 50 to line 90 it prints out 
numbers. If CTRL/O is typed BASIC stops printing. But when BASIC 
executes line 100, BASIC resumes printing. 

3.4 DISABLING CTRL/C (RCTRLC AND CTRLC FUNCTIONS) 

In certain parts of the program you may need to override CTRL/C 
interrupts from the terminal. The RCTRLC function disables CTRL/C and 
prevents it from stopping the BASIC program. The CTRLC function 
enables the CTRL/C key command. 

The format of the functions are: 

[LET] var iable=RCTRLC 

[LET] var iable=CTRLC 

where: 

variable is the target variable; it contains an undefined 
value after the statement is executed. 

After BASIC executes the RCTRLC function, typing CTRL/C on the 
terminal does not stop the program. 

After BASIC executes the CTRLC function, typing CTRL/C stops the 
program. BASIC does not save any CTRL/C that is typed while CTRL/C is 
disabled. If the program encounters a CTRL/C function, and no prior 
RCTRLC function is in effect, the CTRL/C function has no effect. 

When BASIC prints the READY message, it automatically enables the 
CTRL/C key command. 

For example: 

3-3 



UTILITY FUNCTIONS 

l...ISTNH 
1000 REM DO NOT AL.LOW INTERRUPTS 
1 o :Lo A==~F~cT1:;:L.c 

1020 PRINT nNO INTERRUPTS" 
1030 FOR I= 1 TO 1000 \ S=St:C \ NEXT I 
1100 REM NOW AL.LOW INTERRUPTS 
:1.1 :1. o A=~:cT1:;:1...c 
1120 PRINT "INTERRUPTS OKAY• 
1130 FOR I = 1 TO 1000 \ S=S+I \ NEXT I 
~~27b7 END 

READY 
1:;:UNNH 

NO INTE1:;:1:~UPTS 

INTEF~RLJPTf:> OKAY 

STOP AT LINE 1130 

For information on a system function that determines if CTRL/C has 
been typed while CTRL/C is disabled, see Section 3.6.3. 

NOTE 

Once CTRL/C is disabled it is not 
possible to interrupt BASIC. Do not 
disable CTRL/C until your program is 
debugged. 

3.5 TERMINATING YOUR PROGRAM (ABORT FUNCTION) 

If you want a program to delete itself from memory when it terminates, 
use the ABORT function. The ABORT function is equivalent to an END 
statement except that ABORT can optionally delete your program from 
memory and change the program name to NONAME (equivalent to the SCR 
command) . 

The format of the ABORT function is: 

[LET J var iable=ABORT (expression) 

where: 

variable 

expression 

is the target variable; it contains an undefined 
value after the statement is executed. 

determines if the program is to be deleted from 
memory. If expression equals 0, BASIC does not 
delete the program. If expression equals 1, BASIC 
deletes the program. 

Consider the following examples: 

3-4 



UTILITY FUNCTIONS 

Delete from memory 
when program completed 

1...IBT 

ABORT 21-JUN-77 14:52:45 

:1.0 p1:~INT II :1.23 11 

20 A::::,~BOF~T (:I. ) 
30 PF~ I NT "4~36 R 

1:~EADY 

F~l.JNNH 

m::ADY 

l..IBT 

NDNAME 2:1. .... JUN .... '76 :l.4:~=5:3:30 

F~EADY 

3.6 SYSTEM FUNCTIONS 

Do not delete when 
program completed 

L. I BT 

ABORT 21-JUN-77 14:54:00 

10 Pl~INT ":1.2:3" 
20 A==~ABOF(f ( 0) 
:30 F'IUNT n 456 n 

F~EADY 
F~UNNH 

F~Ef.tDY 

LIST 

ABORT 21-JUN-76 14:54:30 

:I. 0 F'FU NT " :t 2::p 
20 A::::ABCH~T < 0) 
30 Pl~INT n 4~56 a 

F~EADY 

System functions perform system-dependent operations. 

The formats of the system functions are: 

[LErj variable= SYS(expressionl ,expression2 

where: 

variable 

expressionl 

expression2 

is the target variable. 

determines the function to be performed. 

is an optional argument used in some system 
functions. 

Table 3-1 summarizes the functions performed according to the 
specified value of expressionl. Any value of expressionl other than 
those specified causes BASIC to print the ?ARGUMENT ERROR (?ARG) 
message. 

3-5 



Value of 
expression! 

1 

4 

UTILITY FUNCTIONS 

Table 3-1 
Summary of System Functions 

Function Performed 

Processes input one character at a 
variable contains the ASCII value 
character typed at the terminal. 

time. Target 
of the next 

Terminates BASIC and returns control to 
monitor (equivalent to the BYE command). 

system 

6 Determines if CTRL/C has been typed while CTRL/C is 
disabled by RCTRLC function. Target variable equals 
1 if CTRL/C has been typed and equals 0 if CTRL/C has 
not been typed. 

7 Enables or disables lower case input from your 
terminal. If expression2 equals 0, lower case 
character input is allowed. If expression2 equals 1, 
lower case character input is converted to the 
equivalent upper case character input. 

3.6.l Single Character Input 

Use the single character input system function, SYS(l), to process 
input one character at a time. 

SYS(l) returns the seven-bit ASCII value of any character typed on the 
terminal except CTRL/C. (See the BASIC-11 Language Reference Manual 
for a list of the ASCII values.) If CTRL/C is typed when BASIC is 
executing SYS(l) and CTRL/C is enabled, then BASIC prints the STOP and 
READY messages. If CTRL/C is disabled, then BASIC continues executing 
SYS(l) and waits for another character. BASIC cannot process the 
character until you type the RETURN key. 

LISTNH 
10 PRINT "TYPE A CHARACTER! •; 
20 A=SYSC1) 
40 PRINT •THE ASCII VALUE OF ";CHRS<A>~· IS 8 ~A 

READY 
RUNNH 
TYPE A CHARACTER: Z 
THE ASCII VALUE OF Z IS 90 

READY 

3.6.2 Terminating BASIC 

To terminate BASIC from a BASIC program, use system function SYS(4). 
It is equivalent in effect to the BYE Command. 

For example: 

3-6 



L..I Sl'NH 
10 PRINT •GOODBYE• 
20 A::::SYS < 4 > 

READY 
FWNNH 
GOODBYE 

3.6.3 Checking for CTRL/C 

UTILITY FUNCTIONS 

If you have disabled CTRL/C with the RCTRLC function and want to check 
if CTRL/C has been typed, use system function SYS(6). The function 
returns a 1 if CTRL/C has been typed and a O if it has not been typed. 

For example: 

LISTNH 
10 A=RCTRLC \ REM Disable CTRL/C. 
30 B=SYSC6> \ REM Check for CTRL/C. 
40 IF B=l THEN 100 
50 PRINT asTILL EXECUTING" 
60 GO TD 30 
100 PRINT •PROGRAM TERMINATING• 
110 A=CTRLC REM Reenable CTRL/C. 
120 A:~:AI<OIH < :L > 

F~EADY 
FWNNH 

STil...I... EXECUTING 
STILL EXECUTING 
(CTRL/C) @::@ 
STILL EXECUTING 
PROGRAM TERMINATING 

3.6.4 Enabling Lower Case Support 

If you want to enter lower case characters at your terminal, use the 
system function SYS(7,expr2). The RT-11 system usually converts all 
lower case alphabetic characters to upper case. Executing the 
function SYS(7,0) causes RT-11 to stop converting lower case 
characters and to pass them unchanged. To cause RT-11 to resume 
converting lower case characters, you must execute the function 
bYS(7,l). After you exit from BASIC, the monitor continues to process 
:haracters as it did before BASIC was active. I 

The following example demonstrates how to enable and disable lower 
case. The program is first run to enable lower case by causing the 
function SYS(7%,0%) to be executed. After this the program is 
modified to allow the user to enter a lower case response. Finally, 
the modified form of the program is run1 this disables lower case. 
The modified program is then saved. 

3-7 March 1978 



UTILITY FUNCTIONS 

L.ISTNH 
10 REM PROGRAM TO CHANGE LOWER CASE CONVERSION 
20 PRINT •Do YOU WANT TO ENTER LOWER CASE CHARACTERS CY ORN>•; 
:30 INPUT A$ 
40 IF A$=•y• THEN 100 
50 IF A$<>•N• THEN 20 
60 A=SYSC7Z,1%> \ REM DISABLE LOWER CASE 
70 GO TO 3276'7 
100 A=SYSC7%r0%) \ REM ENABLE LOWER CASE 
32"767 END 

READY 
1:;:UNNH 

DO YOU WANT TO ENTER LOWER CASE CHARACTERS CY OR N>T Y 

READY 
4 1

.=.=_; :i. f a!~::;; n 1:; II Lht•n :I. 00 \ T'PITI Ch<·:·)Ck f 0 T' 1 OWP T' ca~:i<·:~ ~:I 

~:; u b '.'.'i 0 @ :.> 0 (~ i f a !!; < > " n " th E' n 2 0 \ F~ <-:·~ m Ch<-:.' ck f o r l ow<·:~ r ca s p n 
~;o IF A$<>•N• THEN if a$<:::·•n• thE:m 20 \Rem Check. for lower case n 

READY 
1.i. ,,, Lnh 
10 REM PROGRAM TO CHANGE LOWER CASE CONVERSION 
20 PRINT ·no YOU WANT TO ENTER LOWER CASE CHARACTERS CY ORN>•; 
:30 INPUT A$ 
40 IF At=•y• THEN 100 
45 IF AS=•w• THEN 100 \ REM Check for lower case Y 
50 IF AS<>"N" THEN IF AS<>•n" THEN 20 \ REM Check for lower case n 
60 A~SYSC7%Y1%) \ REM DISABLE LOWER CASE 
70 GO TO 3276"7 
100 A=SYSC7%,Q%) \ REM ENABLE LOWER CASE 
32767 END 

READY 
runnh 

DO YOU WANT TO ENTER LOWER CASt CHARACTERS CY OR N>? n 

REA[IY 
Sf"1 1JE l ... DWCHM 

READY 

If you type lower case letters when lower case is disabled, they are 
echoed as upper case. 

Note that BASIC converts lower case keywords and variable names to 
upper case characters but leaves string constants, strings entered at 
the terminal, and remarks unchanged. 

3-8 



CHAPTER 4 

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

4.1 INTRODUCTION TO ASSEMBLY LANGUAGE ROUTINES 

BASIC-11 allows you to add assembly language routines (ALRs) to expand 
or extend BASIC's capabilities. For example, you can write routines 
for communication with special devices (such as laboratory equipment) 
or to manipulate arrays. Once added to BASIC, such routines can be 
executed in immediate mode or in programs, by means of the CALL 
statement. (See the BASIC-11 Language Reference Manual.) applications 
programs. There are several advantages to doing this rather than 
doing all your programming in assembly language. They are: 

• Only the programmer writing the routine 
language. The application programmers 
BASIC. 

need 
need 

know assembly 
only to know 

• It is easier to write, debug, and modify BASIC programs than 
assembly language programs. You can write, execute, debug, 
and modify your program without leaving BASIC. 

• You can execute ALRs without writing a program, 
immediate mode CALL statements. 

NOTE 

This chapter assumes that you are an 
experienced MACR0-11 programmer and that 
you are familiar with your operating 
system and its utility programs 
(editors, MACRO assemblers, task 
builders, linkers, etc.) 

This chapter describes: 

• ALR format. 

• The procedure to access arguments. 

• Use of auxiliary routines provided by BASIC. 

using 

See the BASIC-11/RT-ll Installation Guide for the procedure to add the 
routines to BASIC. 

ALRs that use the FORTRAN IV call interface (as defined in RT-11 
FORTRAN IV User's Guide) can be called from either FORTRAN IV or RT-11 
BASIC. However, these ALRs must not access any routines or global 
locations in FORTRAN IV itself. 

4-1 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

4.2 FORMAT OF THE ASSEMBLY LANGUAGE ROUTINE 

To write an assembly language routine (ALR) that you can add to BASIC, 
you first must specify the name of the routine and its starting 
address in the user routine Name Table (see Figure 4-1). You must 
include a pointer for each ALR after the global location FTBL. Each 
pointer specifies the location of the routine name and starting 
address. A word containing all O's terminates the pointer list. 

1st character 
of routine name 
3rd character 

NOTE 

ALR names must not contain embedded 
blanks. For compatibility with FORTRAN, 
routine names longer than six ASCII 
characters should be avoided (although 
BASIC imposes no length restriction 
other than the limit of the program line 
size). 

Routine Name 

Number of characters 
in routine name 
2nd character of 

routine name 

User Routine Name Table 

Pointer to 1st routine name 

Pointer to 2nd routine name 

Pointer to 3rd routine name 

Pointer to starting address of routine 

Pointer to last routine name 

0 

Figure 4-1 User Routine Name Table and Routine Name Formats 

FTBL 

The BASIC software kit includes a file BSCLI.MAC, with global location 
FTBL. This file is the basis of the pointer table. You build the 
pointer table by adding entries between global location FTBL and the 
.WORD O entry, using the system editor. 

Normally, placing the ALR's routine name at the beginning of the 
routine is recommended. In this case the pointers in the user routine 
name table should be globals. For example, if you have written three 
routines named INITIT, ADDER, and CHKSTA, the routine name list should 
be: 

. 
• GL..ODI... FTADI 
• GL.OBI... INITNM, ADDNMv CHl<SNM 

FTAEn: • WC:HW FTBL 
FTF.!L: .wmrn INITNM v l.JSEF~ 1:~0UT I NE 

.wmrn (.:i[lflNM !1Nf.1MF l ... IST 

.wmrn CHl<BNM 

.wmrn () 

• END 

4-2 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

NOTE 

You should edit the items printed in red 
in this listing into the file BSCLI.MAC. 
The items printed in black are already 
in the file. 

The locations, INITNM, ADDNM, and CHKNM should be at the beginning of 
the INITIT, ADDER, and CHCKST, respectively. For example: 

:cNITNM t 

INITST: 

THE INIT F~OUT:r.NE 
• Gl...OBI... INITNM 
+BYTE 6 ;NUMBER OF CHARACTERS IN NAME 
.ASCII "INITIP 
.EVEN 
• WDFa:i IN ITST 

;sTART OF ROUTINE 

An alternative method is to add the routine name and starting address 
after the routine name table. In this case the starting addresses of 
the routines should be globals. Using the same examples as above, the 
routine name table should be: 

FTABit 
FTBL..: 

INITNM: 

ADDNM 

CHKSNM: 

• GLm::~L 
.Gl...OBI... 

.WORD 
• WOF.:D 
.wmrn 
• WOl:".:D 
.wm=w 
+BYTE 
• ASCII 
.EVEN 
• wo1:~n 
+BYTE 
• ASCII 
+EVEN 
• WOF~D 
+BYTE 
+ASCII 
.EVEN 
.wmrn 

+END 

FTAB:C 
INITST, ADDSTv CHKSST 
FTBI... 
INITNM 
ADDNM 
CHl\SNM 
0 
6 ~NUMBER OF CHARACTERS IN NAME 
II INITIT 11 

INITST 

n {~DDEF~ n 

ADDST 
b 
"CHKSTA" 

CHKSST 

Each ALR should start with the global address specified. For example: 

THE INITIT ROUTINE 
.Gl...OBI... INITST 

:cNITST t ~START OF ROUTINE 

You should use this alternative method when you are adding an ALR 
written for FORTRAN IV to BASIC. 

4-3 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

All the examples in.this chapter use the recommended method (where the 
routine name packet is at the start of the routine). 

Once you have defined the name and starting address of the routine, 
you can write the routine itself. The ALR can use the stack but it 
must ensure that the stack limit is not exceeded. BASIC puts the 
stack limit in R4 before transferring control to the ALR. If you use 
any of the mathematical operations or function routines provided by 
BASIC, ensure that there is enough free space on the stack before 
executing the routine (15 free words for single precision routines and 
30 free words for double precision routines). The ALR must end with 
an RTS PC instruction with the stack unchanged from its original 
state. The format of the INITIT routine is: 

INITNM: 

INITST: 

THE INIT ROUTINE 
+GLOBL INITNM 
BYTE 6 
.ASCII 
.EVEN 
.WORD 

"INITITa 

INITST 
;START OF ROUTINE 

MAIN BODY OF ROUTINE 

RTS PC ;END OF ROUTINE 

4.3 ACCESSING THE ARGUMENTS - THE ARGUMENT LISTS 

When BASIC executes the CALL statement, it evaluates the arguments and 
provides the routine with two lists. One contains pointers to the 
evaluated arguments and the other contains descriptors of the argument 
types. An assembly language routine (ALR) should ensure that the list 
contains the expected number and the right type of arguments. 

Argument checking ensures that errors in a BASIC program will not 
cause a fatal error in the ALR or in BASIC itself. If no argument 
checking is done and a CALL statement contains an incorrect data type, 
the ALR produces unpredictable results. For example, if the ALR 
expects an integer array and the CALL statement contains a string 
expression, the ALR could overwrite sections of the stack. If the ALR 
checks arguments for errors, it can protect itself from errors in 
BASIC programs. (There is no protection from errors in the ALR 
itself.) 

A FORTRAN-compatible ALR cannot check arguments unless it first checks 
and determines that the language calling it is BASIC, because FORTRAN 
does not provide an argument descriptor list. 

Before BASIC transfers control to the ALR, it evaluates the arguments 
in the CALL statement. It creates a list of pointers to the arguments 
and a list of argument descriptors. Figure 4-2 shows the argument 
descriptor lists that BASIC creates before it transfers control to the 
ALR. 

4-4 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

Argument Descriptor List 

Descriptor of 1st argument 

Descriptor of 2nd argument 

Pointer to descriptor List 

ID Byte Number of Arguments 

Pointer to 1st argument 

Pointer to 2nd argument 
Argument 

Pointer 

List 

Pointer to List 

Figure 4-2 Assembly Language Routine Argument Lists 

R5 

As shown in Figure 4-2, RS points to a word that specifies the number 
of arguments in the CALL statement and identifies the language calling 
the ALR. The argument pointer list starts at the next word and the 
pointer to the argument de~criptor list is stored in the previous 
word. 

Each byte of the word pointed to by RS is meaningful. The low-order 
byte contains the number of arguments. The high order byte identifies 
the language. If the calling language is BASIC, the high order byte 
has a value of 202. If the calling language is FORTRAN IV, the 
high-order byte has a value of 0. 

The pointers in the argument pointer list specify the location of the 
evaluated arguments. There are two exceptions, pointers for null 
arguments and pointers for string array arguments. 

If an argument is null then its 
argument but instead contains 
argument list with two adjacent 
produces a null argument. For 
produces the following arguments: 

pointer does not point to that 
a value of -1. A CALL statement 

commas or a terminating command 
example, CALL 11 INITIT 11 {A, B, , D,} 

A, B, null, D, and null. 

If the argument is a string array, then the pointer does not point to 
that argument but instead contains a value needed to access the string 
array. (See Section 4.3.2.) If the argument is an unsubscripted 
string or an element of a string array, the pointer specifies the 
location of the first character of the string. 

The argument descriptor list specifies the data type of each argument. 
It also indicates whether the argument is an array or not and whether 
the ALR can return a result in the argument. 

BASIC provides additional information for strings and arrays. In 
these cases the word in the argument descriptor list is a pointer to 
the descriptor word, which has the additional information after it. 
Figure 4-3 describes the format of the descriptor word. BASIC 
indicates if a word in the list is a pointer or a descriptor word by 
the value of the 0 bit. If the 0 bit is clear, then the word in the 
descriptor list is a pointer. If the 0 bit is set, then the word in 
the descriptor list is the descriptor word. Note that the descriptor 
word for strings and arrays has a value of 0 in the 0 bit. 

NOTE 

All numbers in this chapter that specify 
the contents of a word or a section of a 
word are octal numbers not decimal 
numbers. 

4-S 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

GI~ I 121 +.0 1 ·I~ 
Array Size of 

Data Type 

0 1·1 5 14
1

3 1]] 8 
Read Data Type More Than 
Only One Word 

Argument Type 

Single value 

Array 

Null 

Con 
Bit 

I 

tents of 
s 15-13 

0 

1 

0 

• 

Argum ent Type 

Variabl 

Expressi on 
Only) (Read 

Null 

Contents of 
Argument Type Bits 12-8 

I-- -~ r------
Integer 2 

Single Precision 4 
Floating Point 
Number 

Double Precision 10 
Floating Point 
Number 

String 2 

Null Argument 0 

Co 

Descriptor 

ntents of 
Bit 7 Argume nt Type 

0 Numeric Scalar 

1 Numeric Array 

String Sc alar 
1 

String Ar ray 

Null 

' 
Contents of 

Argument Type Bits 6-1 

Integer 11 

Single Precision 20 
Floating Point 
Number 

Double Precision 21 
Floating Point 
Number 

String 40 

Null Argument 77 

Figure 4-3 Format of the Argument Descriptor Word 

Contents of 
Bit 0 

0 

0 

0 

The ALR can return arguments only to variables and arrays. If the 
argument is an expression, constant, or element of a virtual array, 
the seventh bit of the argument descriptor word is set and the ALR 
must not return a value to that argument. 

Bits 12 through 8 of the argument descriptor word specify the size of 
the data type. The ALR does not need to check this information 
because each argument type (specified in bits 6 through 1) has a fixed 
size. The contents of bits 12 through 8 for a string argument can be 
ignored. 

BASIC provides additional information for array and string arguments. 
BASIC specifies the total number of bytes in the array, the number of 
subscripts, the high limit of the first subscript, and the high limit 
of the second subscript (if there are two subscripts). BASIC also 
provides a string reference pointer for string arguments. This 
pointer is used by routines provided by BASIC to access the string 
arguments. See Section 4.3.2 for a description of these routines. 
Figure 4-4 describes the format of array and string descriptors. 

4-6 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

Array 

Descriptor 

String { 
Descriptor 

0 

Descriptor Word 

0 

Array Size (bytes) 

1 Number of Subscripts 

0 

High limit of 1st subscript 

0 

High limit of 2nd subscript 

Descriptor word 

String reference pointer 

Argument Descriptor List 

Descriptor word for numeric scalar 

Descriptor word for numeric scalar 

Pointer to array descriptor 

Descriptor word for numeric scalar 

} If thm 

/ 
Pointer to string scalar descriptor 

Descriptor word for numeric scalar 

Figure 4-4 Format of Array and String Argument Descriptors 

4.3.1 Numeric Arrays 

If the CALL statement specifies an element of a numeric array, for 
example A (10), BASIC considers it a !-dimensional array starting with 
the specified element and ending with the last element of the array. 
BASIC considers it a one-dimensional array even if the entire array is 
two-a imens ional. 

BASIC and FORTRAN IV store arrays differently. BASIC array subscripts 
start at 0, but FORTRAN array subscripts start at 1. In BASIC arrays, 
the second subscript varies faster, but in FORTRAN IV arrays the first 
subscript varies faster. If you are designing a routine to be called 
from either BASIC or FORTRAN IV, you must consider these differences 
in the ALR. 

4.3.2 Strings and String Arrays 

This section describes the routines BASIC provides to allow the 
assembly language routine (ALR) to access strings. It also describes 
some example routines which use these string access routines. BASIC 
allows dynamic-length strings, whose length can change during program 
execution. The BASIC string access routines keep track of the 
location and size of strings. Consequently, an ALR cannot change a 
BASIC string without using the string access toutines. 

The procedures for accessing strings and for accessing elements of 
string arrays are different. Note that if the CALL statement 
specifies an element of a string array (for example, A$(10)), BASIC 
considers it a string scalar. Only if the entire array is passed (for 
example, A$()), does BASIC consider it a string array. 

4-7 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

The ALR must locate and retrieve the string reference pointer word and 
pass it to the string access routines. For a string argument, the 
string reference pointer is the word following the descriptor word. 
For a string array argument, The ALR must calculate the string 
reference pointer to access any element of the array. The string 
reference pointer is a word whose value is determined by the following 
formula: 

string reference pointer=2*offset+argument pointer 

where: off set is the position of the element in the 
array. 

argument pointer is the value for the string array in the 
list of argument pointers. (Note the 
argument pointer for a string array does 
not point to the argument itself.) 

The offset for an element of a one-dimensional array is equal 
value of its subscript. The offset for an element 

to the 
of a 

two-dimensional array is defined by this formula: 

offset=subscriptl*(maximum value of subscript2+l)+subscript2 

For example, consider two arrays A$(10) 
pointers of A and B respectively. 
following list are decimal.) 

Element 2*of fset+argument pointer 

A$(0) 2*0+A 
A$(4) 2*4+A 
8$(0,5) 2*(0*6+5)+B 
8$(1,5) 2*(1*6+5)+8 
B$(2,0) 2*(2*6+0)+8 

and 8$(3,5) 
(NOTE: All 

with argument 
numbers in the 

string reference pointer 

A 
8+A 

10+8 
22+8 
24+8 

The string access routines use the string reference pointer that the 
ALR provides to find and manipulate the string. 

BASIC provides four string access routines: 

$FIND 
$ALC 
$STORE 
$DEALC 

The $FIND routine returns the length of a string and a pointer to the 
first character. The $ALC routine allocates a temporary string. An 
ALR can only write characters directly to strings created by $ALC. 
The $STORE routine assigns the value of one string to a second string 
and changes the first string to a null string. The $DEALC routine 
deallocates space used by the temporary string on the stack. 

The ALR should use the following general procedure to manipulate a 
string argument and then return the resultant string. First, the ALR 
accesses the string argument by using the $FIND routine. Then it 
creates a temporary string with the $ALC routine. It then reads the 
characters of the string argument, manipulates them in the desired 
way, and writes the characters out to the temporary string. After 
this the ALR uses the $STORE routine to copy the temporary string to a 
string argument (which can be the original string). Finally, it uses 
the $DEALC routine to remove data placed on the stack by the $ALC 
routine. 

4-8 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

Table 4-1, "Using 
access routines. 
of the subroutine 
access routine. 
interpret them. 
or not you made 
access routine.) 

String Access Routines", describes the four string 
It describes the initial setup, including the format 
jump (JSR) instruction required to invoke the string 
It also describes the expected results and how to 

(In particular, it indicates how to determine whether 
a correct initial setup in preparation for the string 

If the ALR calls $FIND, $ALC, $STORE, and $DEALC, it must specify them 
as global locations. 

Before calling any of these routines, you must ensure that RS contains 
its initial value, the value it had when BASIC transferred control to 
the ALR. That is, RS must point to the word identifying BASIC and 
specifying the number of arguments. 

NOTE 

These routines require that a register 
contain the same value in bits 6-1 as an 
argument descriptor word for a string 
argument. You can ensure this by moving 
a value of 100 into the specified 
register (puts a value of 40 in bits 
6-1) or by moving an argument descriptor 
word in the specifed register. 

4.4 USING ROUTINES PROVIDED BY BASIC 

BASIC provides routines that handle error conditions, print messages 
on the terminal and perform mathematical operations and functions. 

4.4.1 Error Handling and Message Routines 

BASIC provides two error handling routines ($ARGER and $BOMB) and two 
message printing routines ($MSG and $CHROT). The $ARGER routine 
produces the fatal ?ARGUMENT ERROR (?ARG) message. The ALR should 
call $ARGER when it detects an incorrect argument. The $BOMB routine 
allows the ALR to specify its own fatal message. The $MSG routine 
prints any message on the terminal and then returns control to the 
ALR. The $CHROT routine prints any single character on the terminal 
and then returns control to the ALR. 

If the ALR calls $ARGER, $BOMB, $MSG, or $CHROT, it must specify them 
as global locations. 

Call the $ARGER routine by executing the instruction: 

JMP $ARGER 

The $ARGER routine prints the error message on the terminal in one of 
the following formats: 

?ARGUMENT ERROR AT LINE xxxxx 
?ARG AT LINE xxxxx 

where: 

xxxxx is the line number of the CALL statement. 

4-9 



.i:.. 
I 

I-' 
0 

Routine 

$FIND 
(return location 
and length of 
string) 

$ALC 
(allocate temporary 
string)* 

$STORE 
(store value of a 
string in a second 
string, make first 
string null) 

$DEALC 
(remove from stack 
the internal pointers 
produced by $ALC 
routine)* 

Table 4-1 

Using String Access Routine 

Program Setup 

RO+string reference 
pointer 

Rl+lOO 
RS+initial value 
Execute: JSR PC, $FIND 

RO+required string length 
Rl+lOO 
F.S+initial value 
Execute: JSR PC, $ALC 

RO+string reference pointer 
of string to be copied 

Rl+string reference pointer 
of receiving string 

R2+100 
RS+initial value 
Execute: JSR PC, $STORE 

Return stack to the state 
that it was immediately 
following $ALC routine. Do 
this by removing any words 
you have added to the stack 
since calling the $ALC 
routine; this ensures that 
the string reference pointer 
is in the SP. 
R2+100 
RS+initial value 
Execute: JSR PC, $DEALC 

Result With No Errors Detected 

RO = address of first string 
character 

Rl = length of string 
R2 = 100 
R3,R4,R5 unchanged 
C-bit = 0 (char) 
z-bit = 1 if a null string 

(Rl=O) 

RO = address of first string 
character 

Rl = length of string 
R2 = 100 
R3,R4,R5 unchanged 
C-bit = 0 
Z-bit = 1 if a null string (Rl=O) 
SP = string reference pointer 
stack contains several words of 

internal pointers. Remove these 
worus from the stack by the 
$DEALC routine 

R0,Rl,R2,R3,R4,R5 unchanged 
C-bit = 0 
string whose pointer was in 

RO is null 
string whose pointer was in 

Rl contains former value of 
the other string 

RO,Rl,R2,R3,R4,R5 unchanged 
C-bit = 0 
Stack returned to the state 

that existed before $ALC 
was called 

*Any temporary string created by $ALC must be removed by $DEALC before the ALR ends. 

Result With Errors Detected 

RO contains error code: 
if RO=l, Rl did not equal 100 
if R0=2, RS did not contain correct 

initial value 

R3,R4,R5 unchanged 
C-bit = 1 

RO contains error code: 
if RO=O, indicates insufficient 

free space for requested string 
if RO=l, Rl did not equal 100 
if R0=2, RS did not contain correct 

initial value 

R3,R4,R5 unchanged 
C-bit = 1 

RO contains error code: 
if RO=l, R2 did not equal 100 
if R0=2, R5 did not contain correct 

initial value 

Rl,R2,R3,R4,R5 unchanged 
C-bit = 1 

RO contains error code: 
if RO=l, R2 did not equal 100 
if R0=2, RS did not contain correct 

initial value 

Rl,R2,R3,R4,R5 unchanged 
C-bit = 1 
Stack 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

If the CALL statement was an immediate mode statement, then AT LINE 
xxxxx is not printed. Control then returns to BASIC, which prints the 
READY message. 

Call the $BOMB routine by executing the following instruction: 

Js1:< 
• ASCIZ 
+EVEN 

where: 

F~ :I. , !l>BOMH 
'message' 

message is the string of characters that you wish to print. 

The $BOMB routine prints the error message on the terminal in the 
form: 

?error message AT LINE xxxxx 

where: 

xxxxx is the line number of the CALL statement. 

If the CALL statement was an immediate mode statement, then AT LINE 
xxxxx is not printed. Control then returns to BASIC, which prints the 
READY message. 

Call the $MSG routine by executing the instruction: 

,.Jf:>F~ 1:<:1., $MSG 
+ASCII 'message' 
+BYTE :L ~::;' :I. 2 v 0 
• El..'EN 

where: 

;MUST HAVE CARRIAGE RETURN 
;AND LINE FEED AND END WITH 0 

message is the string of characters that you wish to print. 

The $MSG routine prints the message you specify on the terminal, and 
then returns control to the instruction that follows the .EVEN 
instruction. 

Call the $CHROT routine as follows: 

1. put the 8-bit ASCII code of the character in the low order 
byte of RU 

2. execute the instruction: 

$CHROT prints the character specified in RO on the terminal, and then 
returns control to the ALR. 

4.4.2 Mathematical Operation and Function Routines 

Assembly language routines (ALRs) can use BASIC's 
operation and function routine to perform operations 
that you can use in a BASIC program. ALRs can use the 
that BASIC itself uses to perform these operations and 
advantage of this is that the ALR need not duplicate 
already exist in BASIC. 

4-11 

mathematical 
and functions 
same routine 

functions. An 
routines that 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

NOTE 

Assembly language routines that use the 
FPll Floating Point unit are required to 
save and restore the FPO status. If the 
assembly language routine will modify 
the FPO status, it must preserve the FPO 
status on entry by executing the 
following instruction: 

ST FPS -(SP) 

and restore the status 
returning to the calling 
executing the instruction: 

LDFPS (SP)+ 

(prior to 
program) by 

Tables 4-2 and 4-3 describe the BASIC mathematical operations and 
functions. They show how each operation or function would appear in 
the BASIC language, and name the BASIC-provided routine that will 
perform it. Note that certain operations and functions require one 
routine for single precision arithmetic, a different routine for 
double precision arithmetic, and yet another for integer arithmetic. 

If you are running a BASIC system designed for double precision 
arithmetic, either the single or double precision routine names can be 
used. Either routine name will execute the double-precision routine: 
this fact allows you to use the same code for different systems 
regardless of precision. However, you must still be aware of which 
precision you are using, and ensure that the data manipulations in the 
program properly reflect the BASIC configuration on which programs are 
running. To be compatible with FORTRAN IV, you must use only the 
double precision routine names to execute the double precision 
routines. 

All routines that have a dollar sign ($) in their name must be called 
in threaded code mode. To call routines in threaded code mode, first 
call a special subroutine, $POLSH. After calling $POLSH, list the 
names of the threaded code routines you wish to call. In threaded 
code mode, each routine is executed in the order listed. All 
arguments and results are passed on the stack. Finally, list the name 
of a second special subroutine, $UNPOL, which ends threaded code mode. 

You must specify $POLSH, $UNPOL and any routine names you specify as 
globals. 

The call to $POLSH is in the following format: 

..JBF~ F~4, ~>POl ... SH 

Figure 4-5 describes the state of the stack before and after each 
threaded code routine. 

4-12 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

Operation 

Addition 

Subtraction 

Multiplication 

Division 

Exponentiation 

Function 

Data type 
conversion 

Table 4-2 
BASIC Mathematical Operations 

Operator 

+ 

-

* 

I 

A 

BASIC Meaning Equivalent 

Adds two floating C=A + B 
point numbers 

Subtracts one floating C=A - B 
point number from 
another 

Multiplies two floating C=A * I3 
point numbers 

Multiplies two integers C%=A%*B% 

Divides one floating C=l'. I B 
point number by 
another 

Divides one integer C%=A%/B% 
by another integer 

Raises a floating C=A A B 
point number by a 
floating point ex-
ponent. 

Raises a floating C=A A B% 
point number by an 
integer exponent. 

Raises an integer by C%=A%"B% 
an integer exponent. 

Table 4-3 
BASIC Mathematical Functions 

Description 
BASIC 

Equivalent 

Converts floating point number 
to integer 

B% = A 

Converts integer to floating B = A% 

Single-
Precision 

Routine 

$ADR 

$SBR 

$MLR 

$MLI 

$DVR 

$DVI 

XFF$ 

XFI$ 

XII$ 

Single­
Precision 

Routine 

$RI 

$IR 

Truncation Truncates a floating point 
number to a floating point 
whole number 

B=SGN(A)* $INTR 

Sine Finds the sine of a radian 
value 

Cosine 

Logarithm 

Finds the cosine of a 
radian value 

Finds the arctangent in 
radians of a number 

Finds the natural log 
(base e) of a number 

Finds the common log 
(base 10) of a number 

Square root Finds the square root of 
a number 

Exponential Finds the value of e 
raised to a number 

4-13 

INT (ABS (A) ) 

B=SIN (A) SIN 

B=COS (A) cos 

B=ATN (A) ATAN 

B=LOG (A) ALOG 

B=LOGlO (A) ALDGlO 

B=SQR(A) SQRT 

B=EXP (A) EXP 

Double 
Precision 

Routine 

$ADD 

$SBD 

$MLD 

$MLI 

$DVD 

$DVI 

XDD$ 

XDI$ 

XII$ 

Double 
Precision 

Routine 

$DI 

$ID 

$DINT 

DSIN 

DCOS 

DATAN 

DLOG 

DLOGlO 

DSQRT 

DEXP 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

Equivalent 
Routine BASIC Stack Before Stack After 

Names Statement Execution Execution 

$ADA C=A+B 
$SBA C=A-8 
$MLR C=A*B 
$DVR C=A/8 

Stack 

{ High-order FP word 
B 

Low-order FP word 
pointer 

c { 
High-order FP word 

tack 

A { High-order FP word Low-order FP word 
Low-order FP word 

$ADD C=A+8 
$SBD C=A-8 
$MLD C=A*8 
$DVD C=A/8 
XDD$ C=A"B 

HStack J High-order FP word 
Low-order FP word 

pointer 

Lower-order FP word 
Lowest-order FP word 
High-order FP word 

High-order FP word 
Stack 

Low-order FP word 
pointer 

c Lower-order FP word 
Low-order FP word Lowest-order FP word 
Lower-order FP word 
Lowest-order FP word 

$MU C%=A%*8% B% Integer word 
$DVI C%=A%/B% A% Integer word 

Stack 
C% Integer word 

pointer 

XII$ C%=A%"8% 

XF1$ C-A"B% 8% Integer word 

A { 
High-order word 
Low-order FP word 

Stack 

{ High-order FP word c 
Low-order FP word 

pointer 

XDI$ C=A"B% rlStack J Integer word 
pointer 

High-order FP word 
Low-order FP word 
Lower-order FP word 

8% 
Stack 

~ 
High-order FP word 

pointer 
Low-order FP word c 

l Lower-order FP word 
Lowest-order FP word 

Lowest-order F P word 

$RI B%=A 
A { High-order FP word 

Low-order F P word 

Stack 
8% Integer word 

pointer 

$DI 8%=A 

l 
High-order FP word 

A 
Low-order FP word 
Lower-order FP word 
Lowest-order FP word 

Stack 
8% Integer word 

pointer 

$1R B=A% A% Integer word { High-order FP word 
Stack 

B 
Low-order F P word 

pointer 

$ID B=A% A% Integer word 
Stack 

{ 
High-order FP word 

pointer 
Low-order FP word 

B 
Lower-order FP word 
Lowest-order FP word 

$1NTR B=SGN(A)* { High-order FP word 
INT(ABS(A)) A Low-order FP word 

Stack 

B { High-order FP word 
pointer 

Low-order FP word 

$DINT B=SGN(A)* 

~ 
High-order FP word 

INT(A8S(A)) Low-order FP word 
A 

l Lower-Order FP word 
Lowest-order FP word 

Stack 

l 
High-order FP word 

pointer 
Low-order FP word 

B 
Lower-order FP word 
Lowest-order FP word 

Note: FP stands for Floating Point 

Figure 4-5 State of Stack for Threaded Code Routines 

4-14 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

As examples, consider the following segments of routines: 

Segment 1 divides an integer stored in TEMPl by an integer stored in 
TEMP2 and stores the quotient in RESULT. 

SEGMENT :I. 

TEMP1! 
TEMF'2 
l~ESUl...T 

+ Gl...OBI... 
MOV 
MClV 
,Jf:>I:-.: 
• wo1:(D 
• wmrn 
MOV 

• .wo1:-.:ri 
• WOF\D 
• wmrn 

$POl...SH,$UNPOl...,$DVI 
TEMP :I. v ·- (SP) 
TEMP;.~,, .... < SP) 
F~4, $POL.SH 
H1VI 
~~UNPOI ... 
<SP)+vRESUl...T 

0 
() 

() 

YSET UP THE 
; STACI\ 
;ENTER THREADED CODE MODE 
;SPECIFY ROUTINE NAME 
vl...EAVE THREADED CODE MODE 
; STOF\'.E F<ESUL..T 

Segment 2 multiplies two single-precision floating point numbers, 
FLOATA and FLOATB, and stores the product in FLOATC . 

• Gl...OBL 
MOV 
MOV 
MOV 
MO'.J 
JSI~ 

+ WDF\D 
• wmrn 
MDV 
MDV 

SPOLSH,$UNPOl...,$Ml...R 
FLOr~TA+2 v ···· (SP) 
FLOATA v ··-<SP) 
FLOATB+2 v ··• (SP) 
Fl...OATB, ··• (SP) 
F\4, $POL.SH 
!~MLF\'. 

SUNPOI... 
<SP)+ v Fl ... OriTC 
<SP)+, Fl ... OATC+2 

FLOATA: +worm ()y 0 
FLOATB: +WORD OvO 
Fl...OATC! +WORD o,o 

; PUT Fl...01~TA 

;oN STACI\ 
?PUT FLOATB 
v ON SH1CI\ 
vENTER THREADED CODE MODE 
;SPECIFY ROUTINE NAME 
;1...EAVE THREADED CODE MODE 
; f:>TOF\E F<ESUI... T 
; IN Fl ... OATC 

Segment 3 converts a double-precision floating point number stored at 
FLOAT to an integer and stores it at INTMDW. 

vSEGMENT :3 
• Gl...OBL. 
MOV 
MDV 
MOV 
MOV 
,JSR 
• WOf(D 
~ WOF(D 
MOtJ 

FL.OAT: + wmrn 
INTMDW: • WClF\D 

$POl...SH,,SUNPOl...vSDI 
FLOAT+b' ···· (SP) 
FL.OAT+4, ···· (SP) 
Fl...DAT+2 v ····<SP) 
FL.01~T, ···· < ~3P) 
R4 v !~POL.SH 
!l>II I 
SUNPOI ... 
< ~;;p) + v I NTMDW 

Ov<hOvO 
0 

; PUT FL.DAT 
; ON STACI\ 
; l'~i:"::EP DO I NG IT 
vDONE 
;ENTER THREADED CODE MODE 
;SPECIFY ROUTINE NAME 
;1...EAVE THREADED CODE MODE 
v STOl:"\E F\ESUl ... T 

Although the foregoing examples have only one routine name after each 
call to $POLSH, you can specify any number of routine names. You must 
always follow the last of routine name with the $UNPOL routine. 

4-15 



The sine, 
routines 
list. An 
routine. 
routines, 

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

cosine, arctangent, logarithm, square root, and exponential 
each u~e an argument list similar to the BASIC CALL argument 
ALR must establish the argument list before calling the 

The format of the argument list for the single-precision 
SIN, COS, ATAN, ALOG, ALOGlO, SQRT, and EXP, is: 

High-order FP word 
Low-order FP word 

0 
Pointer to argument 

Pointer to list R5 

Figure 4-6 Argument List for Supplied Single-Precision Routines 

The format of the argument list for the double-precision routines, 
DSIN, DCOS, DATAN, DLOG, DLOGlO, DSQRT, and DEXP is: 

Lower-order FP word 
Lowest-order FP word 

0 
Pointer to argument 

Pointer to list R5 

Figure 4-7 Argument List for Supplied Double-Precision Routines 

In both cases, the routines are called by the instruction: 

JSR PC, routine name 

The single-precision routines return the result in RO and Rl; the 
high-order word is in RO and the low order word is in Rl. 

The double-precision routines return the result in RO, Rl, R2, and R3. 
The high-order word is in RO and the low, lower, and lowest order 
words are in Rl, R2, and R3, respectively. 

You must specify as global any routine name that you call. 

These routines do not preserve any registers. 

NOTE 

You should save the initial value of RS· 
before loading the pointer to the 
argument for these routines. You will 
need the saved value to execute any 
threaded code routine to access 
arguments. 

Consider the following segment of a routine that finds the square root 
of a single-precision floating point number, NUMl, and stores the 
result in NUM2: 

4-16 



USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

;SEGMENT WHICH FINDS SQUARE ROOT 

MW: 

TEMP!:.): 
TEMP:I.: 
NLJM :I. : 
Nl.JM2 ! 

• Gl ... OBI... 
MDV 
MDV 
MDV 
MO'J 
,JSI~ 

MW.J 
MDV 
MDV 
MOV 
MClV 

• WOFi:D 
• wmm 
• lJClFi:D 
• wn1:;:1:1 
• Fl...T2 
+Fl...T2 

r:;c~1:~T 

1:~ ::.:; v TEMP::.:; 
F~:I., TEMP:!. 
F~O l' TEMPO 
:I~ A Fi: G v F~ !~i 

PC !I SUF~T 
1:w, NUM2 
1:~ :I.' NUM2+2 
TEMP:=.:; v F~!~i 

TEMP:I. v R:L 
TEMPO, F\O 

:L 
Nl.JM:I. 
0 
() 

4 
() 

;SAVE OLD VALUE OF R5 
;SAVE ANY OTHER REGISTER 

; SET UP F<5 
¥CALI... l~OUTINE 
;STORE HIGH ORDER RESULT 
;STORE LOW ORDER RESULT 
9RESTORE SAVED 
ii F<EG I STEl~S 

The following example is a complete assembly language routine. 
routine can be called by the following statement: 

This 

The routine calculates the value of the expression SQR(A*A+B~2), 
assigns the value to C, and assigns the truncated value to C% • 

• TITLE HYF'OT 

+PSECT SUBRS,RO,I 

.Gl...OBL HYPTAB 
HYPTAB t • BYTE :::; 

.ASCII 'HYPOT' 

+EVEN 
• wrn:;:r.i HYPOT 

+Gl...OBL SARGER,$BOMB,$POl...SH,$UNPOL 
.Gl...OBL $MLR,XFI$v$ADR,SQRT,$RI 

HYF'CJT: CMPB 
BEO 

:I.()!~ t . .JMr· 
20!~: CMi::·B 

MDV 
f:)UB 
CMP 
BHii:; 
,J !:; r~ 
• r~!3C I :Z 
.EVEN 
M()lJ 

.J~:m 
BIC 
CMP 
BNE 
,J !:> r~ 

< r~:~;) +, =1~4 

<I~~=:;)+ Y :ft:202 

~;;p v F~3 
=11:30. , F~3 
F~3 v F~4 

fi Al:;:E Tl··IE:ru;: 4 Al:::GUMENTST 
; YEf:l. 
ONO, ISSUE ARGUMENT ERROR. 
fiARE WE BEING CALLED BY BASIC-11 
;WITH ARGUMENT DESCRIF'TORST 
?NO. 
fiYESv CHECK THAT THERE IS ENOUGH 
~STACK SPACE. 30. BYTES SHOULD BE 
Ii SUFFICIENT. 
!) !~UB'HMCT 3(). F1:w11 THE CUFmENT !:;p 'v'Al...UE. 

;1s IT BELOW THE LIMIT? 
30$ ONO. 
R1~$BOMB DYESv ISSUE MESSAGE • 
'STACK OVERFLOW IN HYPOT' 

.... 4 < F~~.'.'i) r 1~:4 

PC v GETD~:;c 
=II= :I. 6020 :I. v F:3 
:U: ::.~ 0 4 0 v F~ :·:~ 
:l.O!I; 
F'C' GETDi:;c 

PGET THE POINTER TO THE FIRST ELEMENT 
fiIN THE ARGUMENT DESCRIPTOR LIST • 
;GET THE DESCRIPTOR OF THE 1ST ARGUMENT. 
;IS IT A 2 WORD REAi... VALUET 

; NO. 
OYES, GET THE DESCRIPTOR OF THE 2ND ARGUMENT 

4-17 



BIC 
CMF' 
BNE 
.. H:m 
BIC 
CMF' 
BNE 
. .Jf:)F~ 
BIC 
CMP 
HNE 

,)()!~: MOV 
MOV 
MDV 
MDV 
MQl,} 
..Jf:)I:;: 
$MU~ 

$l.JNPOI... 
MDV 
MDV 
MDV 
MOV 

.JSR 
XFI$ 
$ADl1: 

$UNPOL 

MDV 
MDV 
n>T 
MDV 
M!Jl.,I 
MDV 
,.JSF\ 
CMF' 
MOV 
MDV 
MO'v1 

MDV 

MDV 
MDV 
• .JSl1: 
!rnI 
~;l.JNPOI... 

MDV 

F<T!3 

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC 

'"' :1. 6020 t v r~3 
:1~2040v1:~3 
:l.O!Ji 
PCvGETDSC 
:ff: :I. 6000 :I., F\3 
'"'2040 v r~3 
I. ()!I> 
i::·c Y GETDf:)C 
:Q: :I. 6 0 0 () :I. v 1:~ 3 
:O: :I. o::.~2 v F~3 
:l.O!I; 
< F~!'.'i) + Y 1:n 
2 <RJ) ~' .... <SP) 
rn3) ' .... ( !:;p) 
20U) , .... <GP> 
rn3> v .... < f:)P ) 
FH v !~PCll...!:>H 

< 11:5) +, Fn 
2 ( 11::3) , .... (!;)p) 

rn3) , .... <!:;P) 
:1:2, ·-<SP) 

R4, $F'Ol...SH 

r.;:~:;, ·-· < !3P) 
SP, 1:;::=5 
( 11:!'.'i) + 
F<5v-.. (!3P) 
=D::lv .... (SF') 

f:)P,f~~:i 

PC v sc:rnT 
<SP)+, <SP>+ 
<SP>+vF~5 
<Fo:!:-i)+vF\3 
F~O v < F~3) + 
F< :I. v <F\:'5) 

F<:I. '~.~ ( !:;p) 

F~ 0 ' <SP) 
F\4, !~POL.SH 

<SP)+ v Cr~< F~!'S) + 

PC 

;IS IT ALSO A 2 WORD REAi...? 

? NO. 
;GET THE DESCRIPTOR OF THE 3RD ARGUMENT. 
;rs IT A 2 WORD REAi... WITH WRITING ALLOWED? 

; NO. 
vGET THE DESCRIPTOR OF THE 4TH ARGUMENT. 

;rs IT AN INTEGER WITH WRITING ALLOWED? 
; NO. 
vPUSH THE :I.ST ARGUMENT ON THE STACK. 
; NOTE: 1...0W 011:DFF~ I!:; PUSHED FIR!:)T. 

vPUSH IT AGAIN BECAUSE WE WILL DO 
; A*A TO GET A'~2. 

;no THE MULTIPLY. 

vPUSH THE 2ND ARGUMENT. 

;pusH A 2 BECAUSE WE WILL USE REAL 
;ro INTEGER EXPONENTIATION. 

;SQUARE THE 2ND ARGUMENT. 
;ADD SQUARE OF 2ND ARGUMENT TO SQUARE 
;oF FIRST ARGUMENT. 

;NOW CREATE ON THE STACK THE ARGUMENTS 
;REQUIRED BY SQRT. 
; SAVE 11:5. 
;CREATE POINTER TO VALUE ON THE STACK. 

;SHOW ONLY 1 ARGUMENT TO SQRT 

;GET THE GQUARE ROOT. 
;REMOVE OLD ARGUMENTS FROM THE STACK. 
; 11:ESTOF\E R5. 
;POINT TO THE 3RD ARGUMENT. 
;STORE THE REAi... RESULT IN THE 
; 3Frn AF\Gl.JMENT. 
vNOTE! SQRT RETURNED ITS RESULT IN RO & R:I.+ 
;REPLACE THE SUM OF THE SQUARES 
;wITH ITS SQUARE ROOT. 

;CONVERT TO AN INTEGER. 

;sTORE THE INTEGER RESULT IN 
; THE 4TH MWUMENT. 
ii F~ETUF\N TO THE CAl...l ... EF~ • 

;GETDSC RETURNS THE NEXT ARGUMENT'S DESCRIPTOR WORD. 

~ INPUTf:): 
R4 POINTS TO THE WORD IN THE DESCRIPTOR LIST. 

; OUTPUT~:;! 
1:~3 CONTA I Nf:> THE DE!:;CF~ I F'TOF<: WOF<:D FOl1: THE CUl~:l:'.:ENT AF~GUMENT. 
F~ 4 I !:; U F· DATED T () P 0 I NT T 0 THE NEXT EI... EM ENT I N THE I... I ST • 

GETD!:;c;: MDV 
BIT 
BNE 
MD 1J 

:I. 0 ~Ii: F~T~:; 

.END 

F~(·:·)i:!d\:I 

<Fi:4)+vF~3 
,g, :I. Y F(:3 
:I. ()!J; 
< F<:3) , F<:3 
PC 

;GET THE DESCRIPTOR. 
ilIS IT A POINTER? 
; ND. 
;YESY GET THE ACTUAi... DESCRIPTOR. 

4-18 



ABORT function, 3-4 
$ALC routine, 4-8, 4-9, 4-10 
ALR, advantages of, 4-1 
ALR format, 4-2 
ALR, FORTRAN-compatible, 4-4 
$ARGER routine, 4-9 
Argument checking, 4-4 
Argument descriptor list, 4-4 
Argument descriptor word, 4-6 
Argument list, 4-4, 4-5 
Argument list, double precision, 

4-16 
Argument list, single precision, 

4-16 
Argument pointer, 4-8 
Argument pointer list, 4-4 
Array, numeric, 4-7 
Arrays, string, 4-7 
Assembly language routine, 4-1 
Assembly language routine, 

FORTRAN-compatible, 4-4 

.BAC file type, 1-8 
Background job, 1-2 
BASIC software kit, 4-2 
BASIC termination, 3-6 
.BAX file type, 1-8 
$BOMB routine, 4-9, 4-11 
BYE command, 1-7 

CALL statement, 4-1, 4-4 
Canceling CTRL/O, 3-2 
Checking for CTRL/C, 3-7 
$CHROT routine, 4-9, 4-11 
Command, BYE, 1-7 
Command, CTRL/C, 1-6 
Command, CTRL/F, 1-4 
Command, DIRECTORY, 2-4 
Command, FRUN, 1-4 
Command, RUN, 1-3 
CTRL/C checking, 3-7 
CTRL/C command, 1-6 
CTRL/C disabling, 3-3 
CTRLC function, 3-3 
CTRL/F command, 1-4 
CTRL key, vi 
CTRL/O canceling, 3-3 

Data type, 4-5 
$DEALC routine, 4-8, 4-9, 4-10 

INDEX 

Default device, 2-2 
Default file name, 2-2 
Default file type, 2-2 
DEL key, vi 
Descriptor list, argument, 4-4 
Descriptor, string argument, 4-7 
Device, default, 2-2 
Device names, 2-1 
DIRECTORY command, 2-4 
Disabling CTRL/C, 3-3 

Enabling lower case, 3-7 
Error handling routines, 4-9 
Error messages, 1-8 
ESC key, vi 

File directory listing, 2-3 
File name, default, 2-2 
File specification, 2-1 
File type, default, 2-2 
$FIND routine, 4-8, 4-9, 4-10 
Floating point precision, 1-7 
Foreground job, 1-4 
FRUN command, 1-4 
Function, ABORT, 3-4 
Function, CTRLC, 3-3 
Function, optional, 1-2 
Function, RCTRLC, 3-3 
Function, RCTRLO, 3-2 
Function, SYS, 3-5 
Function, TTYSET, 3-1 

Global address, 4-3 

Indirect file, 1-5 

LET statement, 3-1 
Link time feature selection, 

1-1 
Lower case characters, 3-7 

Mathematical routines, 4-11, 
4-12, 4-13 

Message routines, 4-9 
$MSG routine, 4-9, 4-11 

Index-1 



INDEX (CONT.) 

Name table, user routine, 4-2 
Numeric arrays, 4-7 

Off set, 4-8 
OPEN statement, 2-3 
Optional features, 1-1 

Pointer, argument, 4-8 
Pointer list, argument, 4-4 
Pointer, string reference, 

4-6, 4-8 
$POLSH routine, 4-12 
Precision, floating point, 1-7, 

4-16 
Program termination, 3-4 

RCTRLC function, 3-3 
RCTRLO function, 3-2 
RET key, vi 
Routine, $ALC, 4-8, 4-9, 4-10 
Routine, $ARGER, 4-9 
Routine, $BOMB, 4-9, 4-11 
Routine, $CHROT, 4-9, 4-11 
Routine, $DEALC, 4-8, 4-9, 4-10 
Routine, $FIND, 4-8, 4-9, 4-10 
Routine, $MSG, 4-9, 4-11 
Routine, $POLSH, 4-12 
Routine, $STORE, 4-8, 4-9, 4-10 
Routine, $UNPOL, 4-12 
Routine name, 4-2 
Routines, assembly language, 

4-1 
Routines, error handling, 4-9 
Routines, mathematical, 4-11, 

4-12, 4-13 
Routines, message, 4-9 
Routines, string access, 4-8, 

4-9 I 4-10 
Routines, threaded code, 4-12, 

4-14 

RUN command, 1-3 
Run time feature selection, 1-1 

Scalar, string, 4-7 
Single character input, 3-6 
Single job monitor, 1-2 
Software kit, BASIC, 4-2 
Stack limit, 4-4 
Starting address, routine, 4-3 
Starting BASIC, 1-2 
Statement, CALL, 4-1, 4-4 
Statement, LET, 3-1 
Statement, OPEN, 2-3 
Stopping BASIC programs, 1-6 
$STORE routine, 4-8, 4-9, 4-10 
String access routines, 4-8, 

4-9, 4-10 
String argument descriptor, 

4-7 
String arrays, 4-7 
String reference pointer, 4-6 
SYS functions, 3-5 
System functions, 3-5 

Terminal margin setting, 3-1 
Terminating BASIC, 3-6 
Terminating the program, 3-4 
Threaded code routine, 4-12, 

4-14 
TTYSET function, 3-1 

$UNPOL routine, 4-12 
User routine name table, 4-2 
Utility functions, 3-1 

Wildcard feature, 2-4 
Word, argument descriptor, 

4-6 

Index-2 



READER'S COMMENTS 

BASIC-11/RT-ll 
User's Guide 
DEC-11-LIBUA-A-D 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. Problems with software should be reported 
on a Software Performance Report (SPR) form. If you 
require a written reply and are eligible to receive 
one under SPR service, submit your comments on an SPR 
form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

0 Assembly language programmer 

0 Higher-level language programmer 

0 Occasional programmer (experienced) 

0 User with little programming experience 

0 Student programmer 

0 Non-programmer interested in computer concepts and capabilities 

Name Date-------------
Organization ________________________________ _ 

Street------------------------------------

Ci tY-------------- State _______ z ip Code _______ _ 
or 

Country 



- - DoNotTear-FoldHereandTape - - - - - - - - - -

~nmnomo 111 11 1 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45 

DIGITAL EQUIPMENT CORPORATION 

146 MAIN STREET 

MAYNARD, MASSACHUSETTS 01754 

No Postagg 
Necessary 

if Mailed in the 
United States 

· - - Do Not Tear - Fold Here - - - - - - - - - - - - - - - - - - - - - -



Update Notice No. 1 

BASIC-11/RT-ll User's Guide 

Order No. DEC-11-LIBUA-A-DNl 

March 1978 

NEW AND CHANGED INFORMATION 

This update includes information to reflect the 
release of BASIC-11/RT-ll Version 2 on the RLOl 
disk. 

Copyright @ 1978 Digital Equipment Corporation 

INSTRUCTIONS 

Place the following pages in the BASIC-11/RT-ll 
User's Guide as replacements for, or additions 
to, current pages. The changes made on replace­
ment pages are indicated in the outside margin 
by change bars (I ) for additions and by bullets 
( • ) for deletions. 

Old Page 

Title Page/Copyright 
2-1/2-2 
3-7/3-8 

New Page 

Title Page/Copyright 
2-1/2-2 
3-7/3-8 


	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	Index-1
	Index-2
	reply1
	replyB
	upd-1

