March 1978

This document describes the system dependent features of
BASIC-11/RT-11. In conjunction with the BAS/C-11
Language Reference Manual (DEC-11-LIBBB-A-D), this
document provides the information required to write and
run a BASIC program under the RT-11 operating system,

BASIC-11/RT-11
User’s Guide

Order No. DEC-11-LIBUA-A-D, DN1

SUPERSESSION/UPDATE INFORMATION: This document in conjunction with the
BASIC-11 Language Reference Manual
(DEC-11-LI1BBB-A-D) completely
supersedes the BAS/C/RT-11 Language
Reference Manual (DEC-11-LLBACA-E-D),
published October 1976. This document
includes Update Notice No. 1.

OPERATING SYSTEM AND VERSION: RT-11 VO3

SOFTWARE VERSION: BASIC-11/RT-11 V2

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754,

digital equipment corporation - maynard, massachusetts

First Printing, September 1977
Revised, March 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (©) 1977, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM=-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

CONTENTS

Page
PREFACE v
DOCUMENTATION CONVENTIONS vi
CHAPTER 1 GETTING STARTED WITH BASIC-11/RT-11 1-

.1 OPTIONAL FEATURES
.2 STARTING BASIC
2.1 Running BASIC With the Single Job Monitor
or as the Background Job 1-2
2.2 Running BASIC As the Foreground Job 1-4
.2.3 Running BASIC From an Indirect File 1-5
.3 STOPPING BASIC PROGRAMS (CTRL/C COMMAND) 1-6
.4 TERMINATING THE SESSION (BYE COMMAND) 1-7
+5 FLOATING POINT NUMBER PRECISION 1-7
.6 SYSTEM DEPENDENT ERROR MESSAGES 1-8
CHAPTER FILES 2-
2.1 FILE SPECIFICATION 2
2.2 THE OPEN STATEMENT - SYSTEM DEPENDENT FEATURES 2-
2.3 LISTING YOUR FILE DIRECTORY 2

CHAPTER 3 UTILITY FUNCTIONS

3-1
3.1 BASIC UTILITY FUNCTIONS 3-1
3.2 SETTING THE TERMINAL MARGIN (TTYSET FUNCTION) 3-1
3.3 CANCELING THE EFFECT OF CTRL/O

(RCTRLO FUNCTION) 3-2
3.4 DISABLING CTRL/C

(RCTRLC AND CTRLC FUNCTIONS)

TERMINATING YOUR PROGRAM (ABORT FUNCTION)

SYSTEM FUNCTIONS
1 Single Character Input
2 Terminating BASIC
3
4

Checking for CTRL/C
Enabling Lower Case Support

Wwwwwww
!

CHAPTER 4 USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

INTRODUCTION TO ASSEMBLY LANGUAGE ROUTINES
FORMAT OF THE ASSEMBLY LANGUAGE ROUTINE
ACCESSING THE ARGUMENTS - THE ARGUMENT LISTS
Numeric Arrays
Strings and String Arrays
USING ROUTINES PROVIDED BY BASIC
Error Handling and Message Routines
Mathematical Operation and Function Routines

o o
NS o
11 [I |

1

>
1
HOWOWNdISN [ol NNdooundsWw

[R S A
* o ¢ s o o o o

B bWwwwN -

LR S S S S S S
1

[\

INDEX Index-1

iii

CONTENTS (Cont.)

Page
FIGURES
FIGURE 4-1 User Routine Name Table and Routine Name
Formats 4-2
4-2 Assembly Language Routine Argument Lists 4-5
4-3 Format of the Argument Descriptor Word 4-6
4-4 Format of Array and String Argument
Descriptors 4-7
4-5 State of Stack for Threaded Code Routines 4-14
4-6 Argument List for Supplied Single-Precision
Routines 4-16
4-7 Argument List for Supplied Double-Precision
Routines 4-16
TABLES

TABLE RT-11 Device Names
Default File Names
Default File Types

2-1
2-2
2-2
Summary of System Functions 3-6
4-1
4-1
4-1

BB WhhNON
1
WNRFRFRPWNE

Using String Access Routine
BASIC Mathematical Operations
BASIC Mathematical Functions

iv

PREFACE

Before reading this manual, you should be familiar with the BASIC-11
language and the RT-11 system. If necessary, read the following
manuals before reading this User's Guide:

° BASIC-11 Language Reference Manual (DEC-11-LIBBB-A-D)

° Introduction to RT-11

or

° RT-11 System User's Guide

Most features of BASIC-11/RT-11 V2 are the same as in other versions
of BASIC-11l. (DIGITAL's name for a family of BASICs for the PDP-11l).
These features are described in the BASIC-11 Language Reference Manual
(DEC-11-LIBBB-A-D).

This guide describes the system dependent features of BASIC-11/RT-11.
They are:

Procedure for starting BASIC

Effect of the CTRL/C key command

Accuracy of storing numbers

Format of error messages

Format of the file specification

Effects of parameters in the OPEN statement
Procedure for checking files

Effect of superseding files

Effects of the utility functions

Procedure for using assembly language routines
Procedure for terminating BASIC

All BASIC users should read this guide excluding only Chapter 4. Only
users who are adding assembly language routines to BASIC need to read
Chapter 4. Chapter 4 assumes that you are an experienced RT-11 MACRO
programmer.

This guide assumes that you have 1linked BASIC according to the
procedure described in the BASIC-11/RT-11 1Installation Guide
(DEC-11-LIBTA-A-D).

DOCUMENTATION CONVENTIONS

This section describes the documentation conventions, notations, and
symbols used throughout this manual.

The following symbols denote special terminal keys that you will use
frequently when using BASIC.

Symbol Meaning
While pressing the CTRL key, type the letter indicated
after the slash.
Type the RETURN key.
Es0 Type the ESCAPE key (ALTMODE on some terminals).
@eD Type the DELETE key (RUBOUT on some terminals).

In addition, this manual uses certain conventions when describing the
format of statements, functions, and commands.

These are:
Convention Meaning
The enclosed elements are optional. For example:
[] [LET] variable=expression

A choice of one element among two or more

possibilities, for example:
THEN statement

IF relational expression<THEN line number

GO TO line number

e Preceding element can be repeated as indicated.
For example:

line number CLOSE#exprl,#expr2,...

Items in Type these elements exactly as they appear in the
capital format, for example:
letters and
special LET
symbols RUN
#

Items in capital letters are called keywords.

Items in Replace these elements according to the
lower case description provided in text. See below for list
letters of commonly used lower case items.

This list describes some lower case items commonly used in format
descriptions. The general meaning of each item is given. Unless a
specific format description places restrictions on an item, its
general meaning applies. See the BASIC-11 Language Reference Manual
for more information on these items.

vi

Lower Case Abbreviation Meaning

Item

expression expr Any valid BASIC-1l1 expression.
It is always a numeric
expression unless the
description specifically states
that it can be a numeric or
string expression. For
example: (5*SIN(X))"Y

file specification -—- A file specification as
described in Section 2.1

integer int Any positive integer number
constant or any positive
numeric constant that could be
an 1integer i1if a percent sign
were put after it. For
example: 5%, 3%, 2, 7

line number - Any valid 1line number. For
example: 10, 100, 32767

string - Any string expression. For
example:
"ABC", CS$+SEG$(AS$,3,4)

variable var A floating point, integer or

string variable.
If more than one lower case word appears in a format, the words are
numbered 1, 2, 3, etc. For example:
CLOSE #exprl, #expr2, #expr3,...

Throughout this manual, the term BASIC means BASIC-11 or
BASIC-11/RT-11.

To differentiate between what BASIC prints and what you type, the user
type-in is printed in red ink. For example:

FUNNH

WHAT NUMBERST D10
THE SUM T8 130

REALDY

All user type-in is terminated by the RETURN key unless the text
indicates a different terminator.

vii

CHAPTER 1

GETTING STARTED WITH BASIC-11/RT-11

1.1 OPTIONAL FEATURES

BASIC-11/RT-11 has numerous optional features. If you include all
optional features, any feature described in the BASIC-11 Language
Reference Manual or in this gquide is available. By excluding some or
all optional features, you can increase the amount of memory available
for programs or have faster program execution, or both.

BASIC-11/RT-11 has available the following optional features:

Statements

CALL

PRINT USING

Commands

SUB

RESEQ

Functions

SQR SYS ABS SEGS

SIN RCTRLO SGN VAL

cos ABORT BIN TRMS

ATN TTYSET OoCT STRS

LOG CTRLC LEN PI

LOG10 RCTRLC ASC INT

EXP TAB CHRS DATS
RND POS CLKS

Miscellaneous

e Double precision arithmetic

e Long error messages

e Exponentiation (e.g., the expression A"B)

e Ability to run BASIC as foreground or background job

e Features affecting program space availability and program
execution speed

You must specify the inclusion or exclusion of some optional features
at BASIC 1linking time. Others you select at BASIC run time. The
features you can choose when you link BASIC are:

GETTING STARTED WITH BASIC-11/RT-1l1

All optional statements

All optional commands

SQR, SIN, COS, ATN, EXP, LOG, and LOGl0 functions
All miscellaneous optional features

The features you can choose at run time are the following optional
functions:

SYS ABS SEGS
RCTRLO SGN VAL
ABORT BIN TRMS
TTYSET OCT STRS
CTRLC LEN PI

RCTRLC ASC INT
TAB CHRS DATS
RND POS CLKS

Before using BASIC you must link a version with the optional features
you want. See the BASIC-11/RT-11 Installation Guide for instructions
to link BASIC and for information about allowed program size and speed
of execution tradeoffs.

1.2 STARTING BASIC

You can use BASIC with either the single-job (sJ),
foreground/background (FB), or extended memory (XM) RT-11 V3 monitor.
When using the FB or XM monitor, you can run BASIC as either the
foreground or background job.

Before starting BASIC, you must bootstrap RT-11 and enter the DATE and
TIME commands. See the Introduction to RT-11 for a description of
these procedures.

1.2.1 Running BASIC With the Single Job Monitor or as the Background Job
To run BASIC with the SJ monitor or as the background job, enter
either the BASIC or the RUN command. The BASIC command runs the file
BASIC.SAV on your system device. To enter the BASIC command, type:
RASIO
To use another version of BASIC, type:
+RUN file specification
where:

file specification specifies the file containing the
version of BASIC that you want.

For example, if you have a version of BASIC on device DX1l: with file
name BAS8K, and you want that version instead of the one in BASIC.SAV,
you should enter:

SRUN DXL EBASBK
If you specify a file that does not exist, RT-11 prints the message:

PTRMON~F~File mot Found

GETTING STARTED WITH BASIC-11/RT-11

If there is not enough room to run BASIC, one of the following
messages is printed:

NOT ENOUGH MEMORY FOR BASIC
or
PRMON-F-Not enoush memory

This error often results from a large foreground job that has not been
unloaded.

If there are no errors, BASIC prints an identifying message and
inquires whether you want the optional functions that are selectable
at run time.

JRABIE
BRAGTO-11/7RT 11 VO2-XX
OFTIONAL FUNCTIONS (ALl.y NONE OR INDIVIDUALY®

To include all of the optional functions, type an A. To exclude all
of the optional functions, type an N. (You must always terminate
input to BASIC with the RETURN key.) In response to your A or N, BASIC
includes or excludes all the functions and then prints the READY
message. For example:

OFTIONAL FUNCTIONS (Ally NONE» OR INDIVIIUALDY?A
READY

Typing only the RETURN key in response to the optional functions
request is equivalent to typing A.

If you want to choose among the optional functions individually, type
an 1I. BASIC then prints an inquiry for each function individually.
To include a function type a Y; otherwise type an N. Typing only the
RETURN Kkey in response to the function request is equivalent to typing
Y. If you type anything else, BASIC repeats its request. After vyou
have typed a Y or an N in response to each function inquiry, BASIC
prints the READY message. For example:

OFTIONAL FUNCTIONS (aAll.» NONE» OR INDIVIDUAL® T
BYSE? N

RETRLOT N

ARODRTT N

TTYSET? N

CTRLEC & ROTRLOCT N

TORT?
RNDT
ARG T
GENT
BINT
ocTe
LENT
AGBLT
CHR$T N
FOET N

ZT A K=<

vaL? N
TRM$? N
GTRET N
FIP N

GETTING STARTED WITH BASIC-11/RT-11

INT? v
DATET N
CLKET N
REATY

1.2.2 Running BASIC As the Foreground Job

To run BASIC as the foreground job, use the FRUN command. Type:

where:
file specification specifies the file containing BASIC
number is the size of the user area (i.e., the

number of words to be reserved). It
must be 1000. or greater. The decimal
point identifies the number as decimal,
not octal.

You must specify the user area size, or else no area will be reserved
and BASIC will not be able to run.

The user area will actually be approximately 100 words more than you
request. For example, the following command reserves approximately
3100 words.

FRUMN BASTC/NIZ000.
If the file specified does not exist, RT-11 prints the message:
PIMON-F-~File not fourndg

If the number of words requested in the FRUN command is not large
enough, BASIC prints the message:

NOT ENOUGH MEMORY FOR BASIC

If there are no errors, RT-11 prints a dot and the F> message to
indicate that the next message 1is printed by the foreground job.
BASIC then prints an identifying message and inquires whether you want
the optional functions. For example:

FRUN RASTC/NII000.

B
BASTC~1L/RT-11 VOR-xX
OFTIONAL FUNCTIONS (ALLs NONEy OR INDIVIDUALD?

Type a CTRL/F and then answer the optional function inquiry as
described in the previous section.

NOTE

To use a device other than the system
device, you must load the handler before
you run BASIC in the foreground. See
the RT-11 System User's Guide for more
information about foreground jobs.

1-4

GETTING STARTED WITH BASIC-11/RT-11

1.2.3 Running BASIC From an Indirect File

You can run BASIC and answer the initial dialogue by using an indirect
file. You can only run BASIC in this way as the background job or in
the single job monitor. This technique is useful when you select the
optional functions individually.

You cannot enter any BASIC command, program line, or immediate mode
statement through an indirect file.

To create the indirect file, direct the editor to create a file with a
file type .COM that contains all anticipated responses to system
queries. For example:

JROEDTT
KEWMINRUN.COM ESD ESO
*TR BASIC

I

N

N

N

T -

ZzZ <<

ZZZZZTZZ

-~ Z

N
N

€9 €0

K*EX €SO €S9

To start BASIC, type an @ ("at" sign) followed by the file name. The
complete initial dialogue is printed on the terminal. For example:

«@MINRUN

BOBASTC

BAGLC-11L/RT-11 VOR2-XX

OFTIONAL FUNCTIONS (ALLy NONE» OR TNDIVIDUALYT ¥
GY&H? N

RCTRLOT N

ARCRTT N

TTYSGETY N

CTRLGC & ROTRLOCT N

TART N

GETTING STARTED WITH BASIC-11/RT-11

RNTIT?
ARST
HENT
BINT
acTe
LENT
ASET
CHR$? N
Q&
GEGHT N
VAaL? N
TRM$? N
GTRE? N
FI? N

INT® Y
DATST N
CLK$? N

ZZ< < <<

z

READY

See the RT-11 System User's Guide for more information on using
indirect files.

1.3 STOPPING BASIC PROGRAMS (CTRL/C COMMAND)
To stop execution of a BASIC program, use the CTRL/C command. TIf you
type one CTRL/C, BASIC interrupts vyour program the next time it
requests input. If you type two consecutive CTRL/C's, BASIC
interrupts your program immediately. After BASIC interrupts your
program, it prints:

STOF AT LINE xXxxX

READY

where:

XXXXX is the number of the line that BASIC was executing when
the CTRL/C command halted the program.

However, if you were not executing a program line, BASIC prints:
STOF
REATYY

When you type CTRL/C, the system prints "C. For example:

10 GO TO 10
FEUINNM

~oe
S5TOF AT LINE 10

READY

NOTE

CTRL/C does not return control to the
RT-11 monitor. You must type the BYE
command (see Section 1.4) to return
control to RT-11.

GETTING STARTED WITH BASIC-11/RT-11

1.4 TERMINATING THE SESSION (BYE COMMAND)

To terminate a session with BASIC, type the BYE command. The BYE
command returns control to the RT-11 monitor, which prints its
prompting period. For example:

BYE

Once you have entered the BYE command you cannot use the RT-11 REENTER
command to return to BASIC. Instead, you must restart BASIC as
described in Section 1.2, TIf you want to reuse your BASIC program,
save it before entering the BYE command.

If you ran BASIC as the foreground job, you must unload it after you
enter the BYE command. Type:

SUNLOATD FG

1.5 FLOATING POINT NUMBER PRECISION

You can use BASIC with either single or double precision arithmetic.
Single precision arithmetic allows floating point numbers to seven
digits of precision. Thus, single precision BASIC stores the numbers
1.000001 and 1.000000 (seven digits) differently but stores 1.0000001
and 1.0000000 (eight digits) as the same number. Double precision
arithmetic allows you to specify floating point numbers to 15 digits
of precision.

If you need more than seven digits of precision, you should use BASIC
with double precision arithmetic. However, double precision BASIC has
two disadvantages.

1. It allows less BASIC program space, because BASIC itself
requires more memory and because all floating point
constants, variables, and arrays require twice the memory
that single precision would need.

2. Arithmetic operations and functions run more slowly with
double precision than with single precision.

The PRINT statement only prints six digits even when you are using
double precision arithmetic. Consequently, if you want to print a
number with more than six digits, you must use the PRINT USING
statement or the STR$ function. The following example was run using
double precision arithmetic.

LISTNH

10 Xma 237194237

20 Ymb. 2090909

30 FRINT XXY

40 FRINT USING "o Sl dg " o XRY
GO FRINT STRS (XKY)

READY

GETTING STARTED WITH BASIC-11/RT-11

RUNNM

29,2752
29.2701601
29, 2751460144389

READY

Double precision compiled BASIC uses the default file type .BAX while
single precision compiled BASIC programs have the default file type
.BAC. The different default file types are necessary because double
precision BASIC cannot read a program compiled by single precision
BASIC and vice versa. If you are using double precision BASIC and
specify the file type of a program compiled by single precision BASIC
or vice versa, the results are unpredictable.

1.6 SYSTEM DEPENDENT ERROR MESSAGES

Some of the error messages listed in the BASIC-11 Language Reference
Manual either have special meaning in BASIC-11/RT-11 or are not
produced by it. These error messages are

?CANNOT DELETE FILE (?CDF)
BASIC-11/RT-11 does not produce this message.

?ERROR CLOSING CHANNEL (?ECC)
BASIC-11/RT-11 does not produce this error message. If an error
occurs when BASIC-11/RT-11 1is +trying to <close a channel,
BASIC-11/RT-11 prints the ?CHANNEL I/O ERROR (?CIE).

?FILE ALREADY EXISTS (?FAE)
BASIC-11/RT-11 does not produce this message.

?FILE PRIVILEGE VIOLATION (?FPV)
BASIC-11/RT-11 does not produce this message.

?FILE TOO SHORT (?FTS)
The file is too small to contain the output. If the error occurs
in a data file, specify a larger FILESIZE. If the error occurs
in a program file, delete unused files with the UNSAVE command
and then retry.

?ILLEGAL DEF (?IDF)
BAISC-11/RT-11 does not produce this message.

?ILLEGAL FILE LENGTH
The FILESIZE specified was less than -1 (see Section 2.2).

?ILLEGAL RECORD SIZE (?IRS)
BASIC-11/RT-11 does not produce this message.

?NOT A VALID DEVICE (?NVD)
BASIC-11/RT-11 does not produce this message.

?NOT ENOUGH ROOM (?NER)
There is not enough room for the FILESIZE specified. Delete
unused files with the UNSAVE command.

CHAPTER 2
FILES

2.1 FILE SPECIFICATION
BASIC uses the standard RT-1l1l file specification. 1Its format is:

[devicea [filename][.type]

where:
device is the device name. It can be any device name
listed in Table 2-1 or any assigned device name (see
the RT-11 User's Guide).
filename is the one- to six-character name of the file.
type is the zero- to three-character type of the file.
Table 2-1
RT-11 Device Names
Code Device
CR: Card Reader
CTn: Cassette
DLn: RLOl Disk
DMn: RK06 Disk
DPn: RP02 Disk
DSn: RJS03/4 Disk
DTn: DECtape
DXn: RX11l Diskette
LP: Line Printer
MMn: TJUl6 Magtape
MTn: » TM1ll Magtape
PC: Combined high-speed paper tape reader and punch
RF: RF11l Disk

(continued on next page)

2~-1 March 1978

FILES

Table 2-1 (Cont.)
RT-11 Device Names
Code Device
RKn: RKO5 Disk
TT: Console Terminal Keyboard/Printer
SYn: System device (the volume from which the
monitor was bootstrapped)
DK: The default storage volume
If you do not specify any of the elements of the file specification,

BASIC uses a default value.

the file name and file

depends on the statement or command in which the file specifica-

The default device is DK:. The default for
type
tion appears. Table 2-2

shows the file type defaults.

shows the file name defaults, and Table 2-3

Table 2-2
Default File Names
Statement or Command Default
SAVE,REPLACE,COMPILE the current program name
OLD,APPEND,CHAIN the file name NONAME
OVERLAY
UNSAVE,OPEN,KILL no default but prints
NAME the ?ILLEGAL FILE
SPECIFICATION (?IFS)
error message instead.
Table 2-3

Default File Types

Statement or Command

Single precision
BASIC Default

Double precision
BASIC Default

OPEN,KILL,NAME .DAT

SAVE, REPLACE ,UNSAVE .BAS

APPEND

COMPILE .BAC

RUN,OLD .BAC (and if a .BAC

cannot be found .BAS)

.DAT

.BAS

.BAX

.BAX (and if a
.BAX cannot be
found .BAS)

FILES

When you create a file whose file specification 1is the same as an
existing file, the older file will be deleted (superseded) when the
new file is closed. You can avoid unwanted deletions by using the
SAVE command to save new files. If a SAVE command specifies a file
name that already exists, BASIC-11 prints the following error message:

TUSE REPLACE (PR

This gives you an opportunity to decide whether you want to supersede
the old file, or store the file under a different file specification.

2.2 THE OPEN STATEMENT - SYSTEM DEPENDENT FEATURES
The format of the OPEN statement is:

[{ FOR INPUT
OPEN string ||FOR OUTPUT (| AS FILE [#] exprl [DOUBLE BUF]

[,RECORDSIZE expr2] [,MODE expr3] [,FILESIZE expr4]

where:

string is a file specification as described in
Section 2.1.

exprl is the channel number of the file. It can
have any value between 1 and 12.

DOUBLE BUF causes the file to be double buffered.
Double buffering increases the speed of some
file operations but requires additional
memory for the second buffer.

RECORDSIZE expr2 is ignored if specified.

MODE expr3 is ignored if specified.

FILESIZE expr4 if positive, specifies the maximum number of

256-word blocks the file can occupy. If
FILESIZE is missing or expr4 -equals 0, it
requests the standard BASIC-11/RT-11 file
allocation (that is, either half the largest
free area or all of the second-largest free
area, whichever is larger). If expr4 equals
-1, it requests the absolute largest free
area. If expr4 is less than -1, the error
message ?7ILLEGAL FILE LENGTH appears.

The elements of the OPEN statement described above are the system
dependent elements. The other elements of the OPEN statement are
described in the BASIC-1l1 Language Reference Manual.

2.3 LISTING YOUR FILE DIRECTORY

You must return control to the RT-1l1 monitor before listing your file
directory. First save your current BASIC program (if you wish to
reuse it later) and then enter the BYE command. The monitor prints
the dot prompt. For example:

FILES

SAVE TEMP

REATY

RYE
Following the prompt, type the RT-11 DIRECTORY command. A simplified
format of the RT-11 directory command (see the RT-11 System User's
Guide for a complete description) is:

DIRECTORY [/PRINTER] file specification

where:

/PRINTER specifies that the directory is to be
printed on the 1line printer. (If
omitted, the directory is printed on the
terminal.) ‘

file specification specifies the files that you want

listed. If you omit the file
specification, all files are listed.

The DIRECTORY command wildcard feature allows you to specify files
with similar file names, or similar file types, or both. If you
substitute an asterisk for the file name but specify a file type, all
files with that file type are listed. For example, the following
command lists all BASIC source programs on the line printer:

CNMIRECTORY/ZFPRINTER X RAS

Similarly, if you substitute an asterisk for the file type, but
specify a file name, all files with that file name are listed,
regardless of file type. For example, the following command lists all
files with the file name TEST:

SOIRECTORY/ZFPRINTER TEST. X

If you specify a percent sign in place of any characters 1in a file
name or file type {(for example, TEST%%.BAS), then all the files whose
specifiers match the other characters in the specification are 1listed
(TESTAB.BAS, TEST01l.BAS, and TESTER.BAS would be 1listed, if they
exist, for the specification TEST%%.BAS).

To list all the BASIC programs and compiled BASIC programs, type:
CTTRECTORY X RAZ

Note that this command also lists files with the file type .BAK and
.BAT. Because the specification /PRINTER is absent, listing occurs on
the terminal.

After listing your directory, you can return to BASIC by wusing the
BASIC command, then restore your saved program with the OLD command,
and finally, delete the temporary file. For example:

+ BASIC
BRASIC~11/RT-11 V02-XxX
OFTIONAL FUNCTIONS (ALLy NONEy OR INOIVIDUAL) T A

READY

QLD TEMP
REALRY
UNSAVE TEMF
REALY

CHAPTER 3

UTILITY FUNCTIONS

3.1 BASIC UTILITY FUNCTIONS
BASIC has utility functions to:
e Change the terminal width (TTYSET)
e Cancel the effect of CTRL/O (RCTRLO)
e Disable CTRL/C (CTRLC and RCTRLC)
e Terminate your program (ABORT)
e Input a single character from your terminal (SY¥S)
® Terminate BASIC (SYS)
o Check if a CTRL/C has been typed (S¥S)
o Enable lower case support (SYS)

In the following sections, BASIC-11l utility functions are shown in the
context of a LET statement with a dummy target variable, as follows:

@ET]variable = utility function
where:
variable is the target variable.
utility function is one of the functions described in this
chapter.

Actually, utility functions can appear in any arithmetic expression.
The LET statement format is recommended because it is the simplest
statement, and consequently, produces easier-to-read programs.

3.2 SETTING THE TERMINAL MARGIN (TTYSET FUNCTiON)

Use the TTYSET function to set your terminal's right margin. BASIC
prints on a line until a number or string would extend past the margin
you set. BASIC then prints a return and line [feed on the current line
and prints the string or number on the next line.

The format of the TTYSET function is:

ELEﬁ] variable=TTYSET (255%,expression)

UTILITY FUNCTIONS

where:

variable is the target variable and contains an wundefined
value after the statement is executed.

255% is either a numeric constant (as specified 1in
format) or an expression with an integer value of
255 (for compatibility with other versions of
BASIC).

expression specifies the right margin of the terminal. The

margin is set to the value of
1. If the expression equals
change the previous margin.

For example, to set BASIC to print to the full

DECwriter II (132 columns), type:
A=TTYSET (2B5%y 133%)

To set BASIC to print to the full width of a VT50
columns), type:

A=TTYSET(225%,81%)

the expression minus
0, BASIC does not

width of an LA36

display terminal (80

If you do not specify the TTYSET function, BASIC assumes a terminal
with 72 columns.
Ensure that the system's margin for your terminal 1is egqual to or
greater than the margin you specify in TTYSET.
If the value of the expression is less than 0, equal to 1, or greater
than 256, BASIC prints the ?ARGUMENT ERROR (?ARG) message. If the
first argument has a value other than 255, BASIC prints the same
message.
3.3 CANCELING THE EFFECT OF CTRL/O (RCTRLO FUNCTION)
BASIC stops terminal output when the CTRL/O key 1is typed; however,
the RCTRLO function causes BASIC to resume printing. Use the RCTRLO
function to ensure that certain data is printed on the terminal even
if a CTRL/O has been typed.
The format of the function is:
[LET] variable=RCTRLO

where:

variable is the target variable and contains an undefined

value after the statement is executed.

Consider the following example:

UTILITY FUNCTIONS

LIGTNH

10 REM FROGRAM TO INFUT DATA
20 REM FROM FILE AND PRINT SUM
0 OFEN "NUMBR®" FOR INFUT AS FILE #1
40 FRINT "DATA IN FILES"

S0 TF END #1 THEN 100

46O INFUT #1sDd

70 FRINT D

80 T=T+D

%0 GO TO SO

100 A=RCTRILO

L1 FRINT

120 FRINT "GUM="3T

READY
RUNNH

4
1é
147
26

SUM= 4172

READY
While BASIC executes the loop from line 50 to line 90 it prints out

numbers. If CTRL/O 1is typed BASIC stops printing. But when BASIC
executes line 100, BASIC resumes printing.

3.4 DISABLING CTRL/C (RCTRLC AND CTRLC FUNCTIONS)
In certain parts of the program you may need to override CTRL/C
interrupts from the terminal. The RCTRLC function disables CTRL/C and
prevents it from stopping the BASIC program. The CTRLC function
enables the CTRL/C key command.
The format of the functions are:

[LET] variable=RCTRLC

ﬁmmﬂ variable=CTRLC

where:

variable is the target variable; it contains an undefined
value after the statement is executed.

After BASIC executes the RCTRLC function, typing CTRL/C on the
terminal does not stop the program.

After BASIC executes the CTRLC function, typing CTRL/C stops the
program. BASIC does not save any CTRL/C that is typed while CTRL/C is
disabled. If the program encounters a CTRL/C function, and no prior
RCTRLC function is in effect, the CTRL/C function has no effect.

When BASIC prints the READY message, it automatically enables the
CTRL/C key command.

For example:

UTILITY FUNCTIONS

LISTNH

1000 REM DO NOT ALLOW INTERRUFTS
1610 TR
1020 FRINT "NO INTERRUFTS®

LO30 FOR I= 1 TO 1000 N\ 8=8+1 N\ NEXT I
LIOO REM NOW ALLOW INTERRUPTS

1110 TRI.C

1120 PRINT "INTERRUFTS OKAY"

1130 FOR T o= 1 TO 1000 N 8=8+1 N NEXT I
2767 END

REALY

RUNNHM

NO - INTERRUPTS
INTERRUFTS OKAY
GTOF AT LINE 1130
READY
For information on a system function that determines 1if CTRL/C has

been typed while CTRL/C is disabled, see Section 3.6.3.

NOTE

Once CTRL/C is disabled it is not
possible to interrupt BASIC. Do not
disable CTRL/C until your program 1is
debugged.

3.5 TERMINATING YOUR PROGRAM (ABORT FUNCTION)

If you want a program to delete itself from memory when it terminates,
use the ABORT function. The ABORT function is equivalent to an END
statement except that ABORT can optionally delete your program from
memory and change the program name to NONAME (equivalent to the SCR

command) .
The format of the ABORT function is:

ﬁET] variable=ABORT (expression)

where:
variable is the target variable; it contains an undefined
value after the statement is executed.
expression determines if the program is to be deleted from

memory. If expression equals 0, BASIC does not
delete the program. If expression equals 1, BASIC
deletes the program.

Consider the following examples:

UTILITY FUNCTIONS

Delete from memory Do not delete when
when program completed program completed
LIST LIST
ARORT 21~JUN-77 14152148 ARORT 201-JUN-77 14154100
1O FRINT 123" LO PRINT 123"
20 A=ARORT (1) 20 A=ARORT 0D
JO FRINT "a56" 30 FPRINT "454°
READY READY
RUNNH RLINNH
123 123
REATY READY
LITST LITGT
NONAME 21-JUN-76 14153830 ABRORT 20~ JUN-76 14154130

10 FRINT "123"
20 A=ARORT(0)
REALY %0 FRINT "454"

REALY

3.6 SYSTEM FUNCTIONS
System functions perform system—-dependent operations.
The formats of the system functions are:

ﬁﬂf] variable= SYS (expressionl ,expression2)

where:
variable is the target variable.
expressionl determines the function to be performed.
expression2 is an optional argument used in some system

functions.

Table 3-1 summarizes the functions performed according to the
specified value of expressionl. Any value of expressionl other than
those specified causes BASIC to print the ?ARGUMENT ERROR (?ARG)
message.

UTILITY FUNCTIONS

Table 3-1
Summary of System Functions

Value of Function Performed
expressionl
1 Processes input one character at a time. Target

variable contains the ASCII value of the next
character typed at the terminal.

4 Terminates BASIC and returns control to system
monitor (equivalent to the BYE command).

6 Determines if CTRL/C has been typed while CTRL/C is
disabled by RCTRLC function. Target variable equals
1 if CTRL/C has been typed and equals 0 if CTRL/C has
not been typed.

7 Enables or disables 1lower case input from your
terminal. If expression2 equals 0, 1lower case
character input is allowed. 1If expression2 equals 1,
lower case character input 1is converted to the
equivalent upper case character input.

3.6.1 Single Character Input

Use the single character input system function, SYS(l), to process
input one character at a time.

SYS (1) returns the seven-bit ASCII value of any character typed on the
terminal except CTRL/C. (See the BASIC-1ll Language Reference Manual
for a list of the ASCII values.) If CTRL/C 1is typed when BASIC is
executing SYS(l) and CTRL/C is enabled, then BASIC prints the STOP and
READY messages. If CTRL/C is disabled, then BASIC continues executing
SYS(1l) and waits for another <character. BASIC cannot process the
character until you type the RETURN key.

LISTNH

1O FRINT "TYPFE A CHARACTER? "3

20 A=SYS (1)

A0 FRINT "THE AGCILII VaLUE OF "5CHR$(AYS" I5"iA
REALY

RUNNH

TYFE & CHARACTER? 2

THE ASCII VALUE OF Z 18 90

REALY

3.6.2 Terminating BASIC

To terminate BASIC from a BASIC program, use system function SYS(4).
It is equivalent in effect to the BYE Command.

For example:

UTILITY FUNCTIONS

LISTNH
10 FRINT "GOODRYE*
20 A=8YSHE(4)

READRYY
RUNNH
GOODRYE

*

3.6.3 Checking for CTRL/C

If you have disabled CTRL/C with the RCTRLC function and want to check
if CTRL/C has been typed, use system function SYS(6). The function
returns a 1 if CTRL/C has been typed and a 0 if it has not been typed.

For example:

LISTNH

10 A=RCTRLC N REM Disable CTRL/C.
30 R=8Y8B(A) \ REM Check for CTRL/C.
40 IF R=1 THEN 100

S0 FRINT "STILL EXECUTING®

40 GO TO 30

100 PRINT *"PROGRAM TERMINATING®

110 A=CTRLC REM Reemnshle CTRIL/C.
120 A=ARORT (L)

READY
RUNNH

8TILL EXECUTING
STILL EXECUTING

STILL EXECUTING

FROGRAM TERMINATING

READY

3.6.4 Enabling Lower Case Support

If you want to enter lower case characters at your terminal, use the
system function SYS(7,expr2). The RT-1ll system usually converts all
lower case alphabetic characters to upper case. Executing the
function SYS(7,0) causes RT-11] to stop converting lower case
characters and to pass them unchanged. To cause RT=-11] ¢to resume
converting lower case characters, you must execute the function
$¥S(7,1). After you exit from BASIC, the monitor continues to process
haracters as it did before BASIC was active.

The following example demonstrates how to enable and disable lower
case. The program is first run to enable lower case by causing the
function SYS(7%,0%) to be executed. After this the program is
modified to allow the user to enter a lower case response. Finally,
the modified form of the program is run; this disables lower case.
The modified program is then saved.

3=-7 March 1978

LISTNH

UTILITY FUNCTIONS

10 REM FROGRAM TO CHANGE LOWER CASE CONVERSION

20 FRINT
30 INFUT A%

40 IF Ag="Y"
50 IF A$:N

THEN 100

THEN 20

60 A=8YS(7Zy1%) N\ REM DNISARLE LOWER CASE

70 GO TO 32767

100 A=8YG(7Zy0%) \ REM ENAELE LOWER CASE

32767 END

READY

FOLINNM

DO YOU WANT TO ENTER
REALY

45 0T adb="w" thern 100
sun 50 RRAOALF ab="n"

=50 IF A$ "N

READY

Lisbnn

10 REM FROGRAM TO CHANGE
IO YOU WANT TO ENTER LOWER

20 PRINT
30 INFUT A%

40 IF Ag=ty"
4% TIF Ag="w"
50 IF A%<H"N"

70 GO TO 32767
100
32767 END

REALRY

LY TRTR TR

[0 YOU WANT TO ENTER LOWER CASE CHARACTERS

READY
SAVE LOWCHM

READY

THEN
THEN 100 \ REM Chech
. THEN IF
60 A=8YS(7%y1%) N REM DISARLE

THEN if a$<s"r*

100

A=BYS(7%»0%Z) \ REM ENARLE

rem
thern 20 \ Rem Check
thern 20 \ Rem

A

Checl. for

Lower
for

LOWER CASE CHARACTERS (Y OR N7 Y

Case 9

Check

LOWER CASE CONVERSION

THEN

LOWER CASE

LOWER CASE

for lower case
20 \ REM Checl,

lower case n
for lower case n

b=

"IO YOU WANT TO ENTER LOWER CASE CHARACTERS (Y OR N)"j

CASE CHARACTERS (Y OR N)'"j

for lower case n

(Y OR ND? n

If you type lower case letters when lower case is disabled,
echoed as upper case.

Note that BASIC converts lower case keywords

upper
the terminal,

and

variable

they

names

are

to

case characters but leaves string constants, strings entered at
and remarks unchanged.

CHAPTER 4

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

4.1 INTRODUCTION TO ASSEMBLY LANGUAGE ROUTINES

BASIC-11 allows you to add assembly language routines (ALRs) to expand
or extend BASIC's capabilities. For example, you can write routines
for communication with special devices (such as laboratory egquipment)
or to manipulate arrays. Once added to BASIC, such routines can be
executed in immediate mode or in programs, by means of the CALL
statement. (See the BASIC-11 Language Reference Manual.) applications
programs. There are several advantages to doing this rather than
doing all your programming in assembly language. They are:

e Only the programmer writing the routine need know assembly
language. The application programmers need only to know
BASIC.

@ It is easier to write, debug, and modify BASIC programs than
assembly language programs. You can write, execute, debug,
and modify your program without leaving BASIC.

e You can execute ALRs without writing a program, using
immediate mode CALL statements.
NOTE
This chapter assumes that you are an
experienced MACRO-11 programmer and that
you are familiar with your operating
system and its utility programs
(editors, MACRO assemblers, task
builders, linkers, etc.)
This chapter describes:
e ALR format.
e The procedure to access arguments.

e Use of auxiliary routines provided by BASIC.

See the BASIC-11/RT-11 Installation Guide for the procedure to add the
routines to BASIC.

ALRs that use the FORTRAN IV call interface (as defined in RT-11
FORTRAN IV User's Guide) can be called from either FORTRAN IV or RT-11
BASIC. However, these ALRs must not access any routines or global
locations in FORTRAN IV itself.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

4.2 FORMAT OF THE ASSEMBLY LANGUAGE ROUTINE

To write an assembly language routine (ALR) that you can add to BASIC,
you first must specify the name of the routine and its starting
address in the user routine Name Table (see Figure 4-1). You must
include a pointer for each ALR after the global location FTBL. Each
pointer specifies the location of the routine name and starting
address. A word containing all O's terminates the pointer list.

NOTE

ALR names must not contain embedded
blanks. For compatibility with FORTRAN,
routine names longer than six ASCII
characters should be avoided (although
BASIC imposes no length restriction
other than the limit of the program line

size).
Routine Name User Routine Name Table
1st character Number of characters Point 1 .
of routine name in_routine name ointer to 1st routine name FTBL
3rd character 2nd character of Poi)
of routine name rautine name ointer to 2nd routine name
\/\/\/\/\/\/\/\/ Pointer to 3rd routine name
. Last character of L NN
0 if needed .
routine name
Pointer to starting address of routine

Pointer to last routine name

0

Figure 4-1 User Routine Name Table and Routine Name Formats

The BASIC software kit includes a file BSCLI.MAC, with global location
FTBL. This file 1is the basis of the pointer table. You build the
pointer table by adding entries between global location FTBL and the
.WORD O entry, using the system editor.

Normally, placing the ALR's routine name at the beginning of the
routine is recommended. 1In this case the pointers in the user routine
name table should be globals. For example, if you have written three
routines named INITIT, ADDER, and CHKSTA, the routine name list should
be:

+*

*

L GLOEL. FTART

 GLOEL, INITNMy ADONMy CHKSNM
FTART $ VWORD FTRI, e
FTEL ¢ CWORT INTTNM SUSER ROUTINE

CWORD ALITINM PNAME LIST

LWORT CHKSNM

WORT! 0

VENI

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

NOTE

You should edit the items printed in red
in this listing into the file BSCLI.MAC.
The items printed in black are already
in the file.

The locations, INITNM, ADDNM, and CHKNM should be at the beginning of
the INITIT, ADDER, and CHCKST, respectively. For example:

§ THE INIT ROUTINE
+GLOBL INTTNM
INTTNMS BYTE 6 FNUMBER OF CHARACTERS IN NAME
SASCIT "INITIT®
+EVEN
SWORD INITST
INITSTS FGTART OF ROUTINE

*

An alternative method is to add the routine name and starting address
after the routine name table. In this case the starting addresses of
the routines should be globals. Using the same examples as above, the
routine name table should be:

«GLORL FTART

« GLORL. INITET e ALDGSTs CHREST
FTART ¢ +WORD FTRI,
FTERL ¢ LWORD TNTTNM

+WORTD ATITINM

+WORT CHKESNM

« WORD O
INTTNMS JRYTE & FMUMBER OF CHARACTERS IN NAME

+ABCTT vINTTIT

«EVEN

<WORD INTTST
ADDNM +RBYTE b1

+ASCTT TANULER"

«EVEN

WORD ANDST
CHKSNM ¢ «RBYTE é

+ABCTT CCHKSTA®

«FVENM

+WORD CHREST

+
«FEND

Each ALR should start with the global address specified. For example:

THE TNITIT ROUTINE
« GLORL. INITST
INITST? FETART OF ROUTINE

.
-

*

You should use this alternative method when you are adding an ALR
written for FORTRAN IV to BASIC.

USING. ASSEMBLY LANGUAGE ROUTINES WITH BASIC

All the examples in’ this chapter use the recommended method (where the
routine name packet is at the start of the routine).

Once you have defined the name and starting address of the routine,
you can write the routine itself. The ALR can use the stack but it
must ensure that the stack limit is not exceeded. BASIC puts the
stack 1limit in R4 before transferring control to the ALR. If you use
any of the mathematical operations or function routines provided by
BASIC, ensure that there 1is enough free space on the stack before
executing the routine (15 free words for single precision routines and
30 free words for double precision routines). The ALR must end with
an RTS PC instruction with the stack unchanged from its original
state. The format of the INITIT routine is:

¥ THE TNIT ROUTINE
« GL.ORL. INITNM
INTTNMS BYTE é
«AGCTT TINITIT®
FEVEN
SWORD INITST
INITST? sHETART OF ROUTINE

+

&

MAIN RODY OF ROUTINE

*

B L e]

+

RTS FC END OF ROUTINE

4.3 ACCESSING THE ARGUMENTS - THE ARGUMENT LISTS

When BASIC executes the CALL statement, it evaluates the arguments and
provides the routine with two lists. One contains pointers to the
evaluated arguments and the other contains descriptors of the argument
types. An assembly language routine (ALR) should ensure that the list
contains the expected number and the right type of arguments.

Argument checking ensures that errors in a BASIC program will not
cause a fatal error in the ALR or in BASIC itself. If no argument
checking is done and a CALL statement contains an incorrect data type,
the ALR produces unpredictable results. For example, if the ALR
expects an integer array and the CALL statement contains a string
expression, the ALR could overwrite sections of the stack. If the ALR
checks arguments for errors, it can protect itself from errors in
BASIC programs. (There is no protection from errors in the ALR
itself.)

A FORTRAN-compatible ALR cannot check arguments unless it first checks
and determines that the language calling it is BASIC, because FORTRAN
does not provide an argument descriptor list.

Before BASIC transfers control to the ALR, it evaluates the arguments
in the CALL statement. It creates a list of pointers to the arguments
and a list of argument descriptors. Figure 4-2 shows the argument
descriptor lists that BASIC creates before it transfers control to the
ALR.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

Argument Descriptor List

Descriptor of 1st argument Pointer to descriptor List

1
Descriptor of 2nd argument {D Byte Number of Arguments 4——1 Pointer to List J R5
N TS T Pointer to 1st argument

Pointer to 2nd argument

Argument
P N N N e NP Pointer
I e N ¥ S Sl g Lt

Pointer to last argument

Descriptor of last argument

Figure 4~-2 Assembly Language Routine Argument Lists

As shown in Figure 4-2, R5 points to a word that specifies the number
of arguments in the CALL statement and identifies the language calling
the ALR. The argument pointer list starts at the next word and the
pointer to the argument descriptor 1list is stored in the previous
word.

Each byte of the word pointed to by R5 is meaningful. The 1low-order
byte contains the number of arguments. The high order byte identifies
the language. If the calling language is BASIC, the high order byte
has a value of 202, If the calling language is FORTRAN IV, the
high-order byte has a value of 0.

The pointers in the argument pointer list specify the location of the
evaluated arguments. There are two exceptions, pointers for null
arguments and pointers for string array arguments.

If an argument is null then its pointer does not point to that
argument but instead contains a value of -1. A CALL statement
argument list with two adjacent commas or a terminating command
produces a null argument. For example, CALL "INITIT" (A, B,, D,)
produces the following arguments: A, B, null, D, and null.

If the argument is a string array, then the pointer does not point to
that argument but instead contains a value needed to access the string
array. (See Section 4.3.2.) If the argument is an unsubscripted
string or an element of a string array, the pointer specifies the
location of the first character of the string.

The argument descriptor list specifies the data type of each argument.
It also indicates whether the argument is an array or not and whether
the ALR can return a result in the argument.

BASIC provides additional information for strings and arrays. In
these cases the word in the argument descriptor list is a pointer to
the descriptor word, which has the additional information after it.
Figure 4-3 describes the format of the descriptor word. BASIC
indicates if a word in the list is a pointer or a descriptor word by
the value of the 0 bit. If the 0 bit is clear, then the word in the
descriptor list is a pointer. 1If the 0 bit is set, then the word in
the descriptor list is the descriptor word. Note that the descriptor
word for strings and arrays has a value of 0 in the 0 bit.

NOTE

All numbers in this chapter that specify
the contents of a word or a section of a
word are octal numbers not decimal
numbers.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

15 141 13 12 11] 10 9 8 6 5 4 3 2 1
I A
Array Size of Read Data Type More Than
Data Type Onty One Word
Descriptor
Contents of Contents of Contents of
Argument Type Bits 15-13 Argument Type Bit 7 Argument Type Bit0
Single value 0 Variable 0 Numeric Scalar 1
Array 1 Expression 1 Numeric Array 0
(Read Only)
Null 0 String Scalar 0
Null 1
String Array 0
Null 1
Contents of Contents of
Argument Type Bits 12-8 Argument Type Bits 6-1
Integer 2 Integer 11
Single Precision 4 Single Precision 20
Floating Point Floating Point
Number Number
Double Precision 10 Double Precision 21
Floating Point Floating Point
Number Number
String 2 String 40
Null Argument 0 Null Argument 77
Figure 4-3 Format of the Argument Descriptor Word
The ALR can return arguments only to variables and arrays. If the
argument is an expression, constant, or element of a virtual array,
the seventh bit of the argument descriptor word is set and the ALR

must not return a value to that argument.

Bits 12 through 8 of the argument descriptor word specify the size of
the data type. The ALR does not need to check this information
because each argument type (specified in bits 6 through 1) has a fixed
size. The contents of bits 12 through 8 for a string argument can be
ignored.

BASIC provides additional information for array and string arguments.
BASIC specifies the total number of bytes in the array, the number of
subscripts, the high limit of the first subscript, and the high 1limit
of the second subscript (if there are two subscripts). BASIC also
provides a string reference pointer for string arguments. This
pointer 1is wused by routines provided by BASIC to access the string
arguments. See Section 4.3.2 for a description of these routines.
Figure 4-4 describes the format of array and string descriptors.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

Descriptor Word
0
Argument Descriptor List
Array Size (bytes)
Descriptor word for numeric scalar
Array 0 Number of Subscripts
Descriptor < o Descriptor word for numeric scalar
Pointer to array descriptor
High limit of 1st subscript
Descriptor word for numeric scalar
0 If there
are two Pointer to string scalar descriptor
High limit of 2nd subscript subscripts
\ Descriptor word for numeric scalar
) Descriptor word
String P
Descriptor . .
v String reference pointer

Figure 4-4 Format of Array and String Argument Descriptors

4.3.1 Numeric Arrays

If the CALL statement specifies an element of a numeric array, for
example A (10), BASIC considers it a l-dimensional array starting with
the specified element and ending with the last element of the array.
BASIC considers it a one-dimensional array even if the entire array is
two-dimensional.

BASIC and FORTRAN IV gtore arrays differently. BASIC array subscripts
start at 0, but FORTRAN array subscripts start at 1. In BASIC arrays,
the second subscript varies faster, but in FORTRAN IV arrays the first
subscript varies faster. If you are designing a routine to be called
from either BASIC or FORTRAN IV, you must consider these differences
in the ALR.

4.3.2 Strings and String Arrays

This section describes the routines BASIC provides to allow the
assembly language routine (ALR) to access strings. It also describes
some example routines which use these string access routines. BASIC
allows dynamic-length strings, whose length can change during program
execution. The BASIC string access routines keep track of the
location and size of strings. Consequently, an ALR cannot change a
BASIC string without using the string access routines.

The procedures for accessing strings and for accessing elements of
string arrays are different. Note that if the CALL statement
specifies an element of a string array (for example, AS$(10)), BASIC
considers it a string scalar. Only if the entire array is passed (for
example, A$()), does BASIC consider it a string array.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

The ALR must locate and retrieve the string reference pointer word and
pass it to the string access routines. For a string argument, the
string reference pointer is the word following the descriptor word.
For a string array argument, The ALR must calculate the string
reference pointer to access any element of the array. The string
reference pointer is a word whose value is determined by the following
formula:

string reference pointer=2*offset+argument pointer

where: offset is the position of the element in the
array.

argument pointer is the value for the string array in the

list of argument pointers. (Note the

argument pointer for a string array does
not point to the argument itself.)

The offset for an element of a one-dimensional array is equal to the
value of its subscript. The offset for an element of a
two-dimensional array is defined by this formula:

offset=subscriptl®* (maximum value of subscript2+l)+subscript?2
For example, consider two arrays A$(10) and B$(3,5) with argument

pointers of A and B respectively. (NOTE: All numbers in the
following list are decimal.)

Element 2*offset+argument pointer string reference pointer
AS (0) 2*0+A A
AS (4) 2%4+A 8+A
BS$S(0,5) 2% (0*6+5) +B 10+B
BS(1,5) 2% (1*6+5)+B 22+B
BS(2,0) 2% (2*6+0)+B 24+B

The string access routines use the string reference pointer that the
ALR provides to find and manipulate the string.

BASIC provides four string access routines:

SFIND
SALC
$STORE
$DEALC

The $FIND routine returns the length of a string and a pointer to the
first character. The SALC routine allocates a temporary string. An
ALR can only write characters directly to strings created by S$ALC.
The $STORE routine assigns the value of one string to a second string
and changes the first string to a null string. The $DEALC routine
deallocates space used by the temporary string on the stack.

The ALR should use the following general procedure to manipulate a
string argument and then return the resultant string. First, the ALR
accesses the string argument by using the §FIND routine. Then it
creates a temporary string with the $ALC routine. It then reads the
characters of the string argument, manipulates them 1in the desired
way, and writes the characters out to the temporary string. After
this the ALR uses the $STORE routine to copy the temporary string to a
string argument (which can be the original string). Finally, it uses
the $DEALC routine to remove data placed on the stack by the S$ALC
routine.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

Table 4-1, "Using String Access Routines", describes the four string
access routines. It describes the initial setup, including the format
of the subroutine jump (JSR) instruction required to invoke the string
access routine. It also describes the expected results and how to
interpret them. (In particular, it indicates how to determine whether
or not you made a correct initial setup in preparation for the string
access routine.)

If the ALR calls SFIND, S$ALC, $STORE, and $DEALC, it must specify them
as global locations.

Before calling any of these routines, you must ensure that R5 contains
its initial value, the value it had when BASIC transferred control to
the ALR. That is, R5 must point to the word identifying BASIC and
specifying the number of arguments.

NOTE

These routines require that a register
contain the same value in bits 6-1 as an
argument descriptor word for a string
argument. You can ensure this by moving
a value of 100 into the specified
register (puts a value of 40 in bits
6-1) or by moving an argument descriptor
word in the specifed register.

4.4 USING ROUTINES PROVIDED BY BASIC

BASIC provides routines that handle error conditions, print messages
on the terminal and perform mathematical operations and functions.

4.4.1 Error Handling and Message Routines

BASIC provides two error handling routines ($ARGER and S$BOMB) and two
message printing routines ($SMSG and S$CHROT). The $ARGER routine
produces the fatal ?ARGUMENT ERROR (?ARG) message. The ALR should
call S$ARGER when it detects an incorrect argument. The $BOMB routine
allows the ALR to specify its own fatal message. The $MSG routine
prints any message on the terminal and then returns control to the
ALR. The S$CHROT routine prints any single character on the terminal
and then returns control to the ALR.

If the ALR calls $ARGER, $BOMB, $MSG, or S$CHROT, it must specify them
as global locations.

Call the S$ARGER routine by executing the instruction:
SHF B ARGER

The S$ARGER routine prints the error message on the terminal in one of
the following formats:

TARGUMENT ERROR AT LINE XXXXX
TARG AT LINE XXXXX

where:

XXXXX is the line number of the CALL statement.

0T-%

Table 4-1

Using String Access Routine

Routine

Program Setup

Result With No Errors Detected

Result With Errors Detected

$FIND

(return location
and length of
string)

$ALC
(allocate temporary
string) *

SSTORE

(store value of a

string in a second
string, make first
string null)

$DEALC

(remove from stack
the internal pointers
produced by S$ALC
routine) *

RO+string reference
pointer

R1+<100

R5«initial value

Execute: JSR PC, S$FIND

RO«required string length
R1+<100

R5«initial value

Execute: JSR PC, SALC

RO<«string reference pointer
of string to be copied
Rlestring reference pointer

of receiving string
R2+«100
RS5<«initial value
Execute: JSR PC, $STORE

Return stack to the state
that it was immediately
following $ALC routine. Do
this by removing any words
you have added to the stack
since calling the $ALC
routine; this ensures that
the string reference pointer
is in the SP.

R2+«100

R5«initial value

Execute: JSR PC, S$DEALC

RO = address of first string

character
Rl = length of string
R2 = 100

R3,R4,R5 unchanged

C-bit = 0 (char)

Z-bit = 1 if a null string
(R1=0)

RO = address of first string
character

Rl = length of string

R2 = 100

R3,R4,R5 unchanged

C-bit = 0

Z-bit = 1 if a null string (R1=0)

SP = string reference pointer

stack contains several words of
internal pointers. Remove these
worus frem the stack by the
$DEALC routine

RO,R1,R2,R3,R4,R5 unchanged

C-bit =0

string whose pointer was in
RO is null

string whose pointer was in
Rl contains former value of
the other string

RO,R1,R2,R3,R4,R5 unchanged

C-bit = 0

Stack returned to the state
that existed before $ALC
was called

RO contains error code:
if RO=1, Rl did not equal 100
if R0=2, R5 did not contain correct
initial value

R3,R4,R5 unchanged
C-bit = 1

RO contains error cocde:
if RO=0, indicates insufficient
free space for requested string
if RO=1, Rl did not equal 100
if R0=2, R5 did not contain correct
initial value

R3,R4,R5 unchanged
C~bit = 1

RO contains error code:
if RO=1, R2 did not equal 100
if R0O=2, RS did not contain correct
initial value

R1,R2,R3,R4,R5 unchanged
C-bit = 1

RO contains error code:
if RO=1, R2 did not egqual 100
if R0=2, R5 did not contain correct
initial value

R1,R2,R3,R4,R5 unchanged
C-bit = 1
Stack

*Any temporary string

created by $ALC must be removed by $DEALC before the ALR ends.

0ISVd HLIM SANILNOY IODVNONYT XTHWISSY ONISN

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

If the CALL statement was an immediate mode statement, then AT LINE
XXXXX 1is not printed. Control then returns to BASIC, which prints the
READY message.

Call the $BOMB routine by executing the following instruction:

JER Ry $ROME
JABCTZ 'message’
+EVEN

where:
message is the string of characters that you wish to print.

The SBOMB routine prints the error message on the terminal in the
form:

Terror message AT LINE xxxxx
where:

XXXXX is the line number of the CALL statement.
If the CALL statement was an immediate mode statement, then AT LINE
XXXXX 1s not printed. Control then returns to BASIC, which prints the

READY message.

Call the $MSG routine by executing the instruction:

JER Ry $ME6G

+ABCIT 'message'

fBYTE 1%591200 FMUSBT HAVE CARRIAGE RETURN

+EVEN sAND LINE FEED ANIN END WITH ©
where:

message is the string of characters that you wish to print.

The $MSG routine prints the message you specify on the terminal, and
then returns control to the instruction that follows the .EVEN
instruction.

Call the S$CHROT routine as follows:

1. put the 8-bit ASCII code of the character in the 1low order
byte of RU

2. execute the instruction:
JER FCy$CHROT

SCHROT prints the character specified in RO on the terminal, and then
returns control to the ALR.

4,4.2 Mathematical Operation and Function Routines

Assembly language routines (ALRs) can use BASIC's mathematical
operation and function routine to perform operations and functions
that you can use in a BASIC program. ALRs can use the same routine
that BASIC itself uses to perform these operations and functions. An
advantage of this is that the ALR need not duplicate routines that
already exist in BASIC.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

NOTE

Assembly language routines that use the
FP1ll Floating Point unit are required to
save and restore the FPU status. If the
assembly language routine will modify
the FPU status, it must preserve the FPU
status on entry by executing the
following instruction:

STFPS - (SP)
and restore the status (prior to
returning to the calling program) by
executing the instruction:

LDFPS (SP) +

Tables 4-2 and 4-3 describe the BASIC mathematical operations and

functions. They show how each operation or function would appear in
the BASIC language, and name the BASIC-provided routine that will
perform it. Note that certain operations and functions require one

routine for single precision arithmetic, a different routine for
double precision arithmetic, and yet another for integer arithmetic.

If you are running a BASIC system designed for double precision
arithmetic, either the single or double precision routine names can be
used. Either routine name will execute the double-precision routine;
this fact allows you to use the same code for different systems
regardless of precision. However, you must still be aware of which
precision you are using, and ensure that the data manipulations in the
program properly reflect the BASIC configuration on which programs are
running. To be compatible with FORTRAN IV, you must use only the
double precision routine names to execute the double precision
routines.

All routines that have a dollar sign ($) in their name must be called
in threaded code mode. To call routines in threaded code mode, first
call a special subroutine, $POLSH. After calling $POLSH, 1list the
names of the threaded code routines you wish to call. 1In threaded
code mode, each routine 1is executed in the order listed. All
arguments and results are passed on the stack. Finally, list the name
of a second special subroutine, $UNPOL, which ends threaded code mode.

You must specify S$POLSH, SUNPOL and any routine names you specify as
globals.

The call to $POLSH is in the following format:
JER R4y $F0LSH

Figure 4-5 describes the state of the stack before and after each
threaded code routine.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

Table 4-2
BASIC Mathematical Operations
BASIC Single- Double
Operation Operator Meaning . Precision | Precision
Equivalent : -
Routine Routine
Addition + Adds two floating C=A + B $ADR $ADD
point numbers
Subtraction - Subtracts one floating C=A - B $SBR $SBD
point number from
another
Multiplication * Multiplies two floating| C=A * B SMLR SMLD
point numbers
Multiplies two integers| C%=A%*B% $MLI SMLI
Division / Divides one floating C=n / B $DVR $DVD
point number by
another
Divides one integer C%=A%/B% $DVI $DVI
by another integer
Exponentiation ~ Raises a floating C=A "~ B XFI'$ XDD$
point number by a
floating point ex-
ponent.
Raises a floating C=A "~ B% XFIS$ XDI$
point number by an
integer exponent.
Raises an integer by C%=A%"B% XII$ XIIS
an integer exponent.
Table 4-3
BASIC Mathematical Functions
BASTC Single- Double
Function Description Ecuivalent Precision | Precision
4 Routine Routine
Data type Converts floating point number B% = A $RI $DI
conversion to integer
Converts integer to floating B = A% $IR $ID
Truncation Truncates a floating point B=SGN (A) * SINTR SDINT
nunber to a floating point INT (ABS(A))
whole number
Sine Finds the sine of a radian B=SIN(A) SIN DSIN
value
Cosine Finds the cosine of a B=COS (A) Ccos DCOS
radian value
Finds the arctangent in B=ATN (A) ATAN DATAN
radians of a number
Logarithm Finds the natural log B=LOG (A) ALOG DLOG
(base e) of a number
Finds the common log B=LOG10 (A) ALDG10 DLOGL0
(base 10) of a number
Square root | Finds the square root of B=SQR(A) SQRT DSQRT
a number
Exponential | Finds the value of e B=EXP (A) EXP DEXP
raised to a number

Routine
Names

$ADR
$SBR

$SMLR
$DVR
$ADD
$SBD

$MLD

$DVD
XDD$

$mLi
$DVI
XH$

XFIi$

XDI$

$RI

$DI

$IR

$ID

$INTR

$DINT

USING ASSEMBLY LANGUAGE ROUTINES

Equivalent
BASIC
Statement

C%=A%*B% B%
C%=A%/B% A%
C%=A%"B%
C-A"B% B%

&
C=A"B% B%

A {
B%=A A {
B%=A

A {
B=A%
B=A%
B=SGN(A)x
INT(ABS(A)}
B=SGN(A)*
INT(ABS(A)) A

——p—

Stack Before
Execution

High-order FP word

Stack
-

Low-order FP word

pointer

High-order FP word

Low-order FP word

High-order FP word

Stack
-

Low-order FP word

pointer

Lower-order FP word

Lowest-order FP word

High-order FP word

Low-order FP word

Lower-order FP word

Lowest-order FP word

Integer word

Stack
-

Integer word

pointer

Stack

Integer word

High-order word

pointer

Low-order FP word

Integer word

Stack

High-order FP word

pointer

Low-order FP word

Lower-order FP word

Lowest-order FP word

Stack

High-order FP word

Low-order FP word

pointer

Stack

High-order FP word

Low-order FP word

pointer

Lower-order FP word

Lowest-order FP word

A% |Integer word

H Stack
pointer

A% I Integer word

I“‘ Stack

pointer

High-order FP word

Stack
|

Low-order FP word

pointer

Stack

High-order FP word

Low-order FP word

pointer

Lower-order FP word

Lowest-order FP word

Note: FP stands for Floating Point

Figure 4-5

WITH BASIC

Stack After
Execution

High-order FP word

Low-order FP word

Stack
.

pointer

High-order FP word

Low-order FP word

Stack

Lower-order FP word

Lowest-order FP word

pointer

C% | Integer word

° |

Stack
pointer

‘High-order FP word

Low-order FP word

Stack
pointer

High-order FP word

Low-order FP word

Stack

pointer

Lower-order FP word

Lowest-order FP word

B% [!nteger word

-

Stack
pointer

B% [Integer word

I<_

Stack
pointer

High-order FP word

Low-order FP word

Stack
pointer

High-order FP word

Low-order FP word

Stack
pointer

Lower-order FP word

Lowest-order FP word

High-order FP word

| ow-order FP word

Stack
pointer

High-order FP word

Low-order FP word

Stack
]

pointer

Lower-order FP word

Lowest-order FP word

State of Stack for Threaded Code Routines

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

As examples, consider the following segments of routines:

Segment 1 divides an integer stored in TEMP1l by an integer stored
TEMP2 and stores the quotient in RESULT.

§ SEGMENT 1

«GLORL.
MOV
MOV
JER
+WORD
+WORD
MOV

“

*
TEMFL: JWORND
TEMP2 «WORD
RESULT +WORD

$FOLEGH $UNFOL » $0VY

TEMF Ly~ (GF)
TEMPRy - (8F)
4y $F0OLSH
HOVI

HBUNFOL.
(SFY+y RESULT

0
0
O

Ir UF THE

T

NTI”I" THREADED CODE MODE
FECIFY ROUTINE NAME
EAVE THREADELD CORE MOOE
STORE RESULT

oy
)
\
y
.
]

X
§ &
$E
i
$l.
i

in

Segment 2 multiplies two single-precision floating point numbers,

FLOATA and FLOATB,

FOEGMENT 2

+ GL.ORL
MoV
MOV
MOV
MOV
JER
+WORD
« WORX
MOV
MOV

+

+

FLOATA! JWORD
FLOATES +WORD
FLOATCGCE JWORT

HFOLSHy SUNFOL. » $MILLK

FLOATALZ s~ (GF)
FLOATAy - (S5F)
FLOATR+2y - (8F)
FLOATE - (GF)
R4y $FOL.SH

$MLR

$UNFOL.

(BF Y+ FLOATC
(8P Es FLOATCHZ

Qv
Ov0
Oy0

and stores the product in FLOATC.

SRUT FLOATA
JON STACK

SFUT FLOATE

SON STACK

arNTrR THREADED CONE MODE
SPECIFY ROUTINE NAME
THREADEN COUE MOIE
SSTORE RESULT

PIN FLOATC

Segment 3 converts a double-precision floating point number stored
FLOAT to an integer and stores it at INTMDW.

FSEGMENT 3

+ GL.ORL.

MOV
MoV
MOV
MOV
JEBR
« WORD
<WORT
Moy

*

FLOATE JWORD
INTHMIOW?: «WORD

HFOLEH y SUNFOL » 10T

FLOATH6 - (SF)
FLOAT+4y~ (SF)
FLOAT+2y -~ (SF)
FLOAT s~ (BF)
Ry BFOLSH

$IT

SUNFOL.

CHF Y+ y TNTMIW

GeOs0v0
0O

FRUT FLOAT

ON STACK
SKEER DOING IT
5 NONE
SENTER THREADED COLE MODE
FEFECIFY ROUTINE NAME
FLEAVE THREADED CODRE MODE
FETORE RESULT

Although the foregoing examples have only one routine name after

call to $POLSH, you can specify any number of routine names.

always follow the last of routine name with the S$UNPOL routine.

at

each
You must

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

The sine, cosine, arctangent, logarithm, square root, and exponential
routines each uge an argument list similar to the BASIC CALL argument
list. An ALR must establish the argument 1list before <calling the
routine. The format of the argument list for the single-precision
routines, SIN, COS, ATAN, ALOG, ALOGl0, SQRT, and EXP, 1is:

0 | 1 l-—Pointer to list] R5

High-order FP word Pointer to argument
Low-order FP word

Figure 4-6 Argument List for Supplied Single-Precision Routines

The format of the argument list for the double-precision routines,
DSIN, DCOS, DATAN, DLOG, DLOGl0, DSQRT, and DEXP is:

0 | 1 «—]Pointer to list] R5

High-order FP word Pointer to argument
Low-order FP word
Lower-order FP word
Lowest-order FP word

Figure 4-7 Argument List for Supplied Double-Precision Routines

In both cases, the routines are called by the instruction:
JSR PC, routine name

The single-precision routines return the result in RO and RI1; the
high-order word is in RO and the low order word is in R1.

The double-precision routines return the result in RO, R1l, R2, and R3.
The high-order word 1is in RO and the low, lower, and lowest order
words are in R1l, R2, and R3, respectively.

You must specify as global any routine name that you call.

These routines do not preserve any registers.

NOTE

You should save the initial value of RS’
before loading the pointer to the
argument for these routines. You will
need the saved value to execute any
threaded code routine to access
arguments.

Consider the following segment of a routine that finds the square root
of a single-precision floating point number, NUMl, and stores the
result in NUM2:

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

FOEGMENT WHICH FINOS SQUARE ROOT

« GLORL. GART
MOV RSy TEMPS F$8AVE OLD VALUE OF R3
MOV Ris TEMFIL FEAVE ANY OTHER REGISTER
MOV RO» TEMPO
MOV ARGy RO FOET UP RE
JER FCy SQRT $0ALL ROUTINE
MOV ROy NUM2 FETORE HIGH ORDER RESULT
MOV Ri» NUM2+2 SETORE LOW ORDER RESULT
MOV TEMPSy RS FRESTORE SAVED
MOy TEMPLy R1 FREGISTERS
MOV TEMFOy RO

ARG ? <WORD 1
WORD NUMI

TEMPEG: JWORD 0

TEMFLY JWORD 0

NUMI 2 SFLTR 4

NUM2 2 HFLTR 0

The following example is a complete assembly language routine. This
routine can be called by the following statement:

CALL HYPOT(AYBYyCyCXY

The routine calculates the value of the expression SQR(A*A+B"2),
assigns ‘the value to C, and assigns the truncated value to C%.

LTITLE HYFOT
FEECT SUBRSyROy T

LGLORL HYFTAR
HYPTARY JRBYTE V]
CASCIT THYPOT

+EVEN
+WORD HYFQT

JOLORL $ARGER » $BROME y $FOL.SH v $UNFOL.
OLORL $MLRy XFTSy $ANRy BART » $RT

HYFOTY CHMPR (RS + v k4 FARE THERE 4 ARGUMENTES?
REQ 209 YIS .
1O%: JME BarGER NGOy TSHUE ARGUMENT ERROR.
20%3 MR RS+ #2202 FARE WE BEING © X ORY RASTO-1L
FWLTH ARGUMENT RIFTORST
EINE &O% FNO .

3 YE THAT THERE T8 ENQUEGH
§ 8 CE. 30 BYTES SHOULD RE
PEUFFTOTENT .

MOV By R3 FEUBTRACT Z0. FROM THE CURRENT SF VALUE .

SR 30 v R3S
Gt Ry R4 SIS IT RELOW THE LIMIT?
BHLE 30 SN0 .
JER Rl pROME PVESy IT88UE MESSAGE .
ABCTZ E8TACK OVERFLOW IN MYFOT
«EVEN

0% hanw =& R v A

JER By GETRSC
BIC *1é 1eR3
F2040» RI
1O FNC

F Gy GETRSE SYESy GET THE DESCRIFTOR OF THE 2D ARGUMENT

4-17

SOk

MOV
MO
MOV

JER

$MLR

$UNFQL.

MOV
MOV
MOV
MOV

JBR
XFI%
SANR

FUNFOL

MOV
MOV
TGT
MOV
MOV
MOV
JBR
CMF
MOV
MOV
MOV
MOV

MOV
MDY
JER

BRT

$UNFOL.

MOV

RTE

FEETOSE

FINFUTS S

i R POINTS

FOUTFUTS S
H k3
§ R4
GETHISC: MOV
RIT
BINE
MOV
RTE
e BN

1L04%:

Reeaciu

RETURNS

CONTATNG
IS UPNATED

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

#LHO201 » RF
E2040 ¢ R3
10%
FCeGETHSE
#1E0001L s RA
#2040 3
1O%

PO GETRSE
FLAHQOOL » RT3
HIOJ)vIK """

(QP)

(F. - (G
R4vPOLH

(RT>+yR3
”(I\K)v CHF
(R3E Yy
#2!“(3

py

R4 %1 0L.GH

r\‘.n B (‘?r)

f\Jv""(“)l)
Tl (GBF)
SRR

FCy BART
(SFY4y (S
(SFY+y RS
(REY+9R3
ROy (R3)+
iy (R3)

L 208

RO» CGFD

R4y $F0OLGH
(8F Y+ @RS+

PG
THE NEXT

TO OTHE WORI

THE I
TO ¥

(R4 -+ R
#LyR3E

1y v

LI

B
"

ARGUMENT 78 DESCRIFTOR

I

LR TOR

NT TO THE

FLGOIT ALBO A 2 WORD REALT

iNO .

FTOR OF THE JRI ARGUMENT .
AL WEITH WRITING

THE TESCRT
TT A 2 WORD F

NG

FEET THE DESCRIFTOR OF THE 4TH ARGUMENT.

§T8 INTEGER WITH WRITING ALLOWED?
FNO .

§FLUSH
FNOTE?2

IT AN

THE
LOW ORTEER

18T ARGUMENT ON THE
IS PUSHED FT

STACK .
6T,

FFPUSH IT AGATN SAUSE WE WILL DO

sAkA TO GET A2,
MULTIFLY .

00 THE

SEUSH ARGUMENT .

FFUSH A 2 RECAUSE WE WILL USE REAL
$TO INTEGER EXFONENTIATION.

FSQUARE THE 2NDIN ARGUMENT .
yALD SQUARE OF 2NDN ARGUMENT T0O SQUARE
$OF FIRST ARGUMENT.

FNOW CREATE ON THE STACK THE ARGUMENTS
FREQUIRED RY SQRT.
FOAVE RS,

SOREATE FOINTER TO VALUE ON THE STACK.

sEHOW ONLY 1 ARGUMENT TO SQRT
FGET THE
§REMOVE OLD

SRESTORE RS,
FFOENT TO THE 3RD
FOTORE THE REAL RESULT

$ AR ARGUMENT .

FNOTE D SART RETURNED ITS
§ REF LOTHE SUM QF THE

FWITH SAUARE ROOT .

SAUARE ROOT.
ARGUMENTS FROM THE STACK.
ARGUMENT o

IN THE

RESUL.T IN RO %
SOUARES

Ire

FOONVERT TO AN INTEGER.

SHTORE THE INTEGER RESULT IN
STHE 4TH ARGUMENT .
SRETURN TO THE CALLER.

WORT.

THE DESCRIFTOR LIST.

WORTH FOR THE CURRENT ARGUMENT .
NEXT ELEMENT IN THE LIST.

THE DESCRIPFTOR,
IT & FOINTERT

§GET
i8S
FNO

FYESy GET THE ACTUAL DESCRIFTOR.

AL LOWE

e

Fels

INDEX

ABORT function, 3-4 Default device, 2-2

$ALC routine, 4-8, 4-9, 4-10 Default file name, 2-2

ALR, advantages of, 4-1 Default file type, 2-2

ALR format, 4-2 DEL key, vi

ALR, FORTRAN-compatible, 4-4 Descriptor list, argument, 4-4
$SARGER routine, 4-9 Descriptor, string argument, 4-7
Argument checking, 4-4 Device, default, 2-2

Argument descriptor list, 4-~4 Device names, 2-1

Argument descriptor word, 4-6 DIRECTORY command, 2-4
Argument list, 4-4, 4-5 Disabling CTRL/C, 3-3

Argument list, double precision,

4-16
Argument list, single precision,

4-16 Enabling lower case, 3-7
Argument pointer, 4-8 Error handling routines, 4-9
Argument pointer list, 4-4 Error messages, 1-8
Array, numeric, 4-7 ESC key, vi

Arrays, string, 4-7
Assembly language routine, 4-1
Assembly language routine, . . L.
FORTRAN-compatible, 4-4 File directory listing, 2-3
File name, default, 2-2
File specification, 2-1
File type, default, 2-2

.BAC file type, 1-8 $FIND routine, 4-8, 4-9, 4-10
Background job, 1-2 Floating point precision, 1-7
BASIC software kit, 4-2 Foreground job, 1-4

BASIC termination, 3-6 FRUN command, l-4

.BAX file type, 1-8 Function, ABORT, 3-4

$BOMB routine, 4-9, 4-11 Function, CTRLC, 3-3

BYE command, 1-7 Function, optional 2

1-

’

Function, RCTRLC, 3-3
Function, RCTRLO, 3-2
Function, SYS, 3-5

CALL statement, 4-1, 4-4 Function, TTYSET, 3-1

Canceling CTRL/O, 3=2

Checking for CTRL/C, 3-7

H i 4- 4-11 .

ggmﬁgidfoggé?e1_7 % Global address, 4-3

Command, CTRL/C, 1-6

Command, CTRL/F, 1-4

Command, DIRECTORY, 2-4 . . _

Command, FRUN, 1-4 Indirect file, 1-5

Command, RUN, 1-3

CTRL/C checking, 3-7

CTRL/C command, 1-6 LET statement, 3-1

CTRL/C disabling, 3-3 Link time feature selection,

CTRLC function, 3-3 1-1

CTRL/F command, 1-4 Lower case characters, 3-7

CTRL key, vi

CTRL/O canceling, 3-3

Mathematical routines, 4-11,

4-12, 4-13
Data type, 4-5 Message routines, 4-9
$DEALC routine, 4-8, 4-9, 4-10 $SMSG routine, 4-9, 4-11

Index-1

INDEX (CONT.)

Name table, user routine, 4-2 RUN command, 1-3

Numeric arrays, 4-7 Run time feature selection, 1l-1
Offset, 4-8 Scalar, string, 4-7

OPEN statement, 2-3 Single character input, 3-6
Optional features, 1-1 Single job monitor, 1-2

Software kit, BASIC, 4-2
Stack limit, 4-4
Starting address, routine, 4-3

Pointer, argument, 4-8 Starting BASIC, 1-2
Pointer list, argument, 4-4 Statement, CALL, 4-1, 4-4
Pointer, string reference, Statement, LET, 3-1
4-6, 4-8 Statement, OPEN, 2-3
$POLSH routine, 4-12 Stopping BASIC programs, 1-6
Precision, floating point, 1-7, $STORE routine, 4-8, 4-9, 4-10
4-16 String access routines, 4-8,
Program termination, 3-4 4-9, 4-10

String argument descriptor,
String arrays, 4-7
RCTRLC function, 3-3 String reference pointer, 4-6
RCTRLO function, 3-2 sys functions, 3-5
RET key, vi System functions, 3-5
Routine, S$ALC, 4-8, 4-9, 4-10
Routine, $ARGER, 4-9
Routine, $BOMB, 4-9, 4-11

Routine, S$CHROT, 4-9, 4-11 Terminal margin setting, 3-1
Routine, $DEALC, 4-8, 4-9, 4-10 Terminating BASIC, 3-6
Routine, $FIND, 4-8, 4-9, 4-10 Terminating the program, 3-4
Routine, $MSG, 4-9, 4-11 Threaded code routine, 4-12,
Routine, $POLSH, 4-12 4-14

Routine, $STORE, 4~8, 4-9, 4-10 TTYSET function, 3-1

Routine, $UNPOL, 4-12
Routine name, 4-2
Routines, assembly language,

4-1 SUNPOL routine, 4-12
Routines, error handling, 4-9 User routine name table, 4-=2
Routines, mathematical, 4-11, Utility functions, 3-1

4-12, 4-13

Routines, message, 4-9
Routines, string access, 4-8,

4-9, 4-10 Wildcard feature, 2-4
Routines, threaded code, 4-12, Word, argument descriptor,
4-14 4-6

Index-2

NOTE:

BASIC-11/RT-11
User's Guide
DEC-11-LIBUA-A-D

READER'S COMMENTS

This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please

000000

Name

| ad

ndicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

Date

Organization

Street

City

State Zip Code
or
Country

— — — Do Not Tear - Fold Here and Tapg — — — — — — —_ - — _—_—— -

- — — Do Not Tear - Fold Here

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45
DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

Cut Along Dotted Line

Update Notice No. 1

BASIC-11/RT-11 User's Guide

Order No. DEC-1l1-LIBUA-A-DN1

March 1978

NEW AND CHANGED INFORMATION

This update includes information to reflect the
release of BASIC-11/RT-1l1l Version 2 on the RLO1l
disk.

copyright (©) 1978 Digital Equipment Corporation

INSTRUCTIONS

Place the following pages in the BASIC-1ll/RT-1l
User's Guide as replacements for, or additions
to, current pages. The changes made on replace-~
ment pages are indicated in the outside margin
by change bars () for additions and by bullets
(o) for deletions,

0ld Page New Page
Title Page/Copyright Title Page/Copyright
2-1/2-2 2-1/2-2

3-7/3-8 3-7/3-8

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	Index-1
	Index-2
	reply1
	replyB
	upd-1

