
DECLIT
A f:,
CROSS
BM02f.l

PRO/Office Workstation
Programmer's Manual

Order No. AA-BM02A-TK

PRO/Office Workstation
Programmer's Manual

Order No. AA-BM02A-TK

April 1984

This document describes how to customize the PRO/Office Workstation.

REQUIRED SOFTWARE: PRO/Office Workstation V1.0
Professional Host Tool Kit V1.7 or later

or PRO/Tool Kit V1.0 or later
PRO/Communications V1.8 or later

TARGET OPERATING SYSTEM: P/OS V1.7 or later

SUGGESTED CONFIGURATION: Host VAX running VMS V3.4 or later
ALL-IN-1 V1.3 or later
Professional 350 connected to host

via Hardware, Modem, Gandalf, or
Micom Switch

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

First Printing, April 1984

The informatior:t in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software or equipment
that is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for manufacture or sale of items without written permission.

Copyright © 1984 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTIBUS MASSBUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT

mamaama PROSE Work Processor
PROSE PLUS

CHAPTER 1

1.1

1 .1 .1
1 .1 • 2
1.2
1.2.1
1 .2 .2
1.2.3
1.2.4

CHAPTER 2

2.1
2 .1 .1
2.1.2
2.1.3
2.1.4
2.2
2.3

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

CONTENTS

PREFACE ix

PROGRAMMER'S. OVERVIEW OF PRO/OFFICE WORKSTATION

PRO/OFFICE WORKSTATION AND PROFESSIONAL 350
• 1-2 ARCHITECTURE • . • • • • • • • • • • • •

Separation of Form and Function • • • • . •
Organization of PRO/Office Workstation • •

• • 1-2

PRO/OFFICE WORKSTATION AS AN APPLICATION • •
PRO/Office Workstation Installation Files
Installation Startup Procedure • • • • • • • •
Storage Requirements • • . • • • • • . • . • •
Finding the Electronic Release Notes • • •

USING THE FLOW CONTROL FACILITY

• 1-4
• 1-7
• 1-7
1-12
1-13
1-14

USING THE FLOW CONTROL CLI • •• •••• 2-3
Symbol Substitution in Command Line •••••• 2-4
Commands Grouped by Purpose • • • • • • • • 2-5
Using CLI Interactively ••••.••••••• 2-9
Using CLI Command Procedures • • . • • • • • • 2-10

THE FLOW STACK • • • • • • • • • • • • • 2-12
FLOW SYMBOLS ••••••••••••••••• 2-13

FLOW CONTROL FACILITY FUNCTIONS

GLOBAL QUALIFIERS • •• ••••••••• 3-2
ABORT OR STOP • • • • • • • • • • • • • • • • • • 3-5
ACTIVATE . . . • • . • • • • • • 3-6
ASSIGN • • • • • • • •• ••• •••••• 3-7
BLOCK •• • • • • • • • • • • • • • • • . 3-8
BLOCK/SUSPEND • • • • • • • • •• ••• • 3-9
CALL • • •• •• • • ••••••• 3-10
CLEAR • •• •• • • • • • • •• 3-13
COMMAND OR @ .•••••••••. ••• 3-14
CONTINUE • • • • • • • • 3-15
COpy • • • • • • • • • • • • • • • • •• 3-16
CREATE/DIRECTORY. • • • • • • • • • 3-17
DEFINE/APPLICATION • • • • • • • • • • • • • • • 3-18
DEFINE/COMMAND • • • • • • • • • • • • • 3-19
DEFINE/KEY •••••••••••••••••• 3-21
DEFINE/LOGICAL •• • • • • • • • • • 3-24
DEFINE/SYMBOL • • • • • • • 3-25
DEFINE/TAG ••• • •• •••••• 3-27
DELETE/APPLICATION •••••••• 3-28
DELETE/COMMAND •••••••••••••• 3-29

iii

3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68

DELETE/DIRECTORY
DELETE/KEY
DELETE/LOGICAL
DELETE/SYMBOL
DELETE/TAG
DIRECTORY OR SHOW DIRECTORY
DISMOUNT
DOC
EDT
EMIT
END
EXIT
EXTERNAL
FIELD
FIX
FORM
GOTO
HELP
IF THEN
INQUIRE
INSTALL
LET
MAIL
MENU
MOUNT
NETWORK
ON THEN
PURGE
REMOVE
RENAME
RUN/APPLICATION
RUN/TASK
SET DEFAULT
SET KEYPAD
SET VERIFY
SHOW APPLICATION
SHOW COMMAND
SHOW DEFAULT
SHOW KEY
SHOW LOGICAL
SHOW SYMBOL
SHOW TAG
TYPE OR SHOW FILE
UNBLOCK
UNBLOCK/RESUME
UNWIND
WAIT
WRITE SYS$OUTPUT

iv

'.

3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-41
3-42
3-43
3-44
3-46
3-48
3-50
3-51
3-52
3-54
3-56
3-58
3-59
3-60
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-73
3-74
3-75
3-76
3-77
3-78
3-79
3-80
3-81
3-82
3-83
3-84
3-85
3-86
3-87
3-88

CHAPTER 4

4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3

4.2.4
4.2.4.1
4.2.4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2
4.5
4.5.1
4.6

CHAPTER 5

5.1
5.1.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
5.4

CHAPTER 6

6.1

USING THE FORM INTERFACE FACILITY

TYPES OF FORMS • • • 4-2
Argume~t Forms ••••• •••
Menu Forms •• •••• ••••••

DISPLAYING FORMS • • • •
Specifying Tags • • • • • • • • • • • • • • •
Precedence of FI Qualifiers ••• • • • •
Displaying Forms Statically (/DEF=A1, FDT, or
GEN) •
Displaying Forms Dynamically (/DEF=PB) ••••

Dynamic Argument Forms ••••
Dynamic Menu Forms • • • • • • •

CUSTOMI ZING FMS FORMS •••• •••
Executing FED and FUT • • • • • •
Creating an FMS Form: A Sample Session • • • •
Specifying FMS Named Data (/DEF=A1, /DIS=FMS)
FMS Static Argument Forms • • • • • • • • • •
FMS Static Menu Forms ••• • • •

CUSTOMIZING FDT FORMS •••••••.•••••
Executing FDT • • • • • • • • • •
Specifying FDT Action Strings • • • • • • • •

CUSTOMIZING GENERIC FORMS (/DEF=GEN)
Displaying Generic Forms •••

CUSTOMIZING HELP FRAMES ••••••••••

USING THE DOCUMENT SERVICES FACILITY

• 4-4
• 4-5
• 4-6
• 4-7
4-10

4-11
4-12
4-14
4-15
4-16
4-16
4-17
4-19
4-21
4-23
4-25
4-25
4-25
4-27
4-30
4-30

ORGANIZATION OF THE DOCUMENT SERVICES DATABASE • • 5-1
Using Foreign Editors ••••••••••••• 5-6

ORGANIZATION OF THE DOCUMENT SERVICES TASKS • 5-8
INVOKING DOCUMENT SERVICES FUNCTIONS ••• 5-10

DOC CAB/$REQ=CREATE ••.••.••• 5-12
DOC CAB/$REQ=DELETE • •• •••• 5-13
DOC CAB/$REQ=SELECT • • • • • • • 5-14
DOC CREATE • • •• • • • • • • • • • • 5-15
DOC DELETE • • • • • • • • • • • • • • • • 5-18
DOC DISPLAY • • • • •• ••• 5-19
DOC EDIT • • • • • • • • • • • • • 5-20
DOC KILL • • • • • • • • • • • • • • • • • • • 5-21
DOC MODIFY • • • • • • • • • • • • • • 5-23
DOC PRINT • • • • • • • • • • • • • • • • 5-25
DOC SELECT • • ••• • 5-26
DOC foreigncmd •••••••••••••• 5-28

DOCUMENT SERVICES SYMBOLS • • • • • • • •• 5-29

USING THE SYMBOL SERVICES FACILITY

ORGANIZATION OF THE SYMBOL SERVICES DATABASE • • • 6-1

v

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.3
6.4

CHAPTER 7

7.1
7.2
7.2.1
7.2.1.1
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.4

CHAPTER 8

8.1
8.2
8.3
8.3.1
8.3.2

8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.5
8.6
8.6.1
8.6.2

8.7

DEFINING SYMBOLS 6- 2
/NODELETE ••.
/OVERRIDE •• • . . • •

• • • 6-5
• • . 6-6

/PROCESS •• .••• 6-7
/SYSTEM • •• .•. • • • • • • • • • • • • 6 - 8
/USER • • • . .
/VOLATILE ••. • • .

• • • • • • • • • • • • 6 - 9
. 6 -10

DELETING SYMBOLS • • .
REFERRING TO SYMBOLS

· 6-11
. .• .•. 6-11

USING THE MAIL SERVICES FACILITY

ORGANIZATION OF THE MAIL SERVICES DATABASE .. 7-1
ORGANIZATION OF THE MAIL SERVICES TASKS .•••• 7-2

VAX Command Procedures Used by Mail Services • • 7-6
Path Record Required by TMAIL . • . . • • 7-6

INVOKING MAIL SERVICES FUNCTIONS •• ••..• 7-7
MAIL ANSWER . • • . • • • • • . • . 7-9
MAIL BACKGROUND . . . • •. ..•.... 7-10
MAIL CREATE ••• • • • . • • • • • • 7-11
MAIL FORWARD •••.••••.•.•••.. 7-12
MAIL MORE • • • • • • . • . • • • • • 7-13
MAIL READ • •• .••• . • • 7-14
MAIL SEND . • • • • . • • 7-15

MAIL SERVICES SYMBOLS . • •• ..• 7-16

USING THE NETWORK SERVICES FACILITY

ORGANIZATION OF THE NETWORK SERVICES DATABASE •• 8-2
ORGANIZATION OF NETWORK SERVICES TASKS .••••. 8-8
INVOKING XLIB FUNCTIONS (PATH MAINTENANCE) • • • 8-10

Sample XLIB Session: Hardwired Connection 8-11
Sample XLIB Session: Ganda1f or Micom
Connection • • • . • • • • • • • • •

INVOKING NETWORK SERVICES FUNCTIONS • • • • • •
NETWORK CONNECT • • • • • • • • • • • • •
NETWORK DISCONNECT ••• • • •
NETWORK FINISH • • • • . • • • • •
NETWORK LOGIN • • • • • • • •. ••.
NETWORK LOGOUT • • • • • • • • . . • • • •
NETWORK START • • • • • • • • • •
NETWORK STOP • • . • • • • • • • • • •

REMOTE PRINTING OF DOCUMENTS ••••••••
COMMUNICATING WITH VAX ALL-IN-l ••••••••

VAX Command Procedures ••••. .•••
Sample Session: Running VAX ALL-IN-l Through
DTE •••••••• • • • • • • • • • • • • •

NETWORK SERVICES SYMBOLS ••••••.••••

vi

8-12
8-15
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-24
8-24

8-26
8-27

APPENDIX A ERROR MESSAGES

A .1
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9
A .10
A.ll
A.12
A.13
A .14

A.15
A.16
A.17
A.18

ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
COMMANDS
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED
ERRORS GENERATED

BY
BY
BY
BY
BY
BY
BY
BY
BY
BY
BY
BY
BY
BY . .
BY
BY
BY
BY

DSI · · · · · · · · · · · A-I
CDS · · · · · · · · · · · A-2
BASIC-PLUS-2 · · · · · · · · · A-3
LOGICAL HANDLING · · · · · A-3
TMAIL · · · · · · · · · · A-3
FLOW NETWORK COMMAND · A-6
FI . · · · · · · · · · · · A-6
FLOW CLI · · · · · · · · · · · A-8
FLOW · · · · · · · · · · · · · A-8
FLOW ROUTINES THAT CALL FI · · A-9
FMAIL · · · · · · · · A-9
PIP · · · · · · · · · · A-13
TYPE · · · · · · · · · · A-13
FLOW CALL OR EXTERNAL . . · · · · · · · · · · A-13
APPLICATION-RELATED COMMANDS A-13
SYMBOL-RELATED COMMANDS A-14
TASK-RELATED COMMANDS · · · A-14
FLOW VOLUME-RELATED COMMANDS A-IS

APPENDIX B LIST OF DEFAULT FORMS

INDEX

FIGURES

1-1 Layers of Professional 350 Resources • .••. 1-3
1-2 The PRO/Office Workstation Layer • . • •• •. 1-6
2-1 The Flow Control Facility 2-2
2-2 The Flow Stack • . • • • • • . •• ••. 2-13
3-1 The Flow Bus and the Software Bus • .• 3-11
4-1 Classification of Forms ••• ••• .•• 4-4
4-2 Example of an Argument Form . •. .•• . 4-5
4-3 Example of a Menu Form . . • . • • • • . . . • • • 4-6
4-4 Simple Three-Choice Menu and Named Data • • • • 4-20
4-5 FDT DISPLAY Form for Three-Choice Menu • 4-26
4-6 FDT ACTION Form • • . • . • • • • • • . 4-26
4-7 Example Generic Description File ••. 4-29
5-1 Document Services Database Organization • • • • . 5-2
5-2 Organization of the Document Services Facility. 5-10
7-1 Organization of the Mail Services Facility •••• 7-5
8-1 Organization of the Network Services Facility •• 8-9

vii

TABLES

1-1 PRO/Office Workstation Facilities •••.•.•. 1-
1-2 PRO/Office Workstation Installation File Tasks. 1-1
1-3 Other PRO/Office Workstation Installation Files 1-1
2-1 CLI Commands Grouped by Purpose • • • • • 2-
2-2 Symbols Used by Flow •.• ... •.. 2-1
3-1 Key Values . • . • . . •••.••• 3-2
4-1 Tag Qualifiers • • • • ••.•• 4-
5-1 Description of Document Header Keys • • . • • • • 5-
5-2 Symbols Used by Document Services • 5-2
6-1 Valid Combinations of Symbol Qualifiers ...•• 6-
6-2 Qualifiers for Deleting a Symbol . • . • . • . . 6-1
7-1 Symbols Used by Mail Services .• • . . . • . • 7-1
8-1 Network Services Terminology• 8-
8-2 Description of Path Record Fields . . • . • . • • 8-
8-3 Engaging and Disengaging Targets ...•.. 8-1
8-4 Symbols Used by Network Services • . 8-2

PREFACE

MANUAL OBJECTIVES

This manual describes how you can customize the PRO/Office
Workstation by using software supplied with both the Tool Kit and
PRO/Office Workstation.

INTENDED AUDIENCE

You should have some experience with the Professional Developer's
Tool Kit, especially with the utilities FMS, and DCL. Also, you
should have some experience programming on an RSX-ll or
RSX-Il/M-PLUS system.

STRUCTURE OF THIS DOCUMENT

The manual has eight chapters:

• Chapter 1, Programmer's Overview of PRO/Office Workstation,
introduces the product. It describes the relationship
between PRO/Office Workstation and the p/os operating system.
Also, the chapter provides details on PRO/Office Workstation
as an application installed on the Professional 350.

• Chapter 2, Using the Flow Control Facility, describes the
major component of PRO/Office Workstation. This chapter
illustrates the ways that you can invoke Flow functions.

• Chapter 3, Flow Control Functions, lists and describes all
the functions that Flow provides. We present the functions
in alphabetical order, providing format, description, and
examples for each.

• Chapter 4, Using the Form Interface Facility, describes the
facility that handles all form processing for PRO/Office
Workstation. This chapter describes how you display forms,
as well as how you customize them.

• Chapter 5, Using the Document Services Facility, describes
the facility that handles documents. We show you the
organization of the database that Document Services uses, and
we describe the special functions you can call to perform
Document Services tasks.

ix

• Chapter 6, Using the Symbol Services Facility, describes how
PRO/Office Workstation interprets symbols and performs symbol
substitution. Also, the chapter describes qualifiers you can
use when defining or deleting symbols.

• Chapter 7, Using the Mail Services Facility, describes the
functions you can use to send messages to a host VAX running
ALL-IN-I.

• Chapter 8, Using the Network Services Facility, describes
XCOM and XLIB, two tasks that manage communications between
the Professional 350 and a host VAX.

ASSOCIATED DOCUMENTS

• PRO/Tool Kit Command Language and Utilities Manual

• Tool Kit User's Guide

• P/OS System Reference Manual

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions.

Convention

[optional]

UPPERCASE

lowercase

Meaning

Square brackets indicate optional fields in a
command line. Do not include the brackets in
the command line. If the field appears in
lowercase type, you must substitute a legal
parameter if you include the field. Do not
confuse the square brackets in a command line
format with the square brackets that you use
to specify a file specification.

Any command line field in uppercase type
indicates that you should type the word or
letter exactly as shown.

You must substitute a value for any command
line field in lowercase type. Usually the
lowercase word identifies the type of
substitution required.

x

Convention

red ink

Meaning

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example: parameter [,parameter •..]

A vertical ellipsis in a
means that not all of
shown.

figure or example
the statements are

Indicates user input in examples.

Additionally, note that numeric values are decimal
specified otherwise.

unless

xi

CHAPTER 1

PROGRAMMER'S OVERVIEW OF PRO/OFFICE WORKSTATION

The PRO/Office Workstation provides standard office automation
functions on the Professional 350. Like DIGITAL's 32-bit
ALL-IN-l running on VAX, PRO/Office Workstation offers a
consistent, yet easily customized, user interface.

The main feature of PRO/Office Workstation is the local
processing and storage capability provided by the Professional
350. Some advantages of this feature are:

• Greater host CPU efficiency gained by local processing
(especially when running high-overhead tasks like text
editors).

• Consistent local system response regardless of the
number of users logged in to the host.

• Reduction of storage requirements on the host due to
local storage.

• Greater system security for documents that are locally
stored.

• Ability to run local applications.

When combined with ALL-IN-l running on VAX (as a host computer),
PRO/Office Workstation provides these advantages, as well as the
traditional office automation features.

This chapter introduces PRO/Office Workstation by describing its
relationship with p/OS, as well as its components and structure.

1-1

PRO/OFFICE WORKSTATION AND PROFESSIONAL 350 ARCHITECTURE

1.1 PRO/OFFICE WORKSTATION AND PROFESSIONAL 350 ARCHITECTURE

PRO/Office Workstation is a program that runs under the p/OS
operating system. It is an application that users install like
any other application.

However, unlike a typical application, PRO/Office Workstation is
capable of interconnecting and integrating other applications and
services that draw upon the resources of the Professional 350~
Figure 1-1 shows the Professional's resources in terms of layers.
Each layer builds upon the previous one. The uppermost layer is
PRO/Office Workstation.

In the figure, intersecting lines connect the PRO/Office
Workstation layer with underlying p/OS layers. These lines
illustrate the flexibility that allows users to access the
Professional's resources in many different ways. This
flexibility arises from a concept that is central to the
implementation of PRO/Office Workstation: the separation of form
and function.

1.1.1 Separation of Form and Function

As an example of the separation of form and function, consider
the various ways that a user might run a task. In each case, the
function is the same, but the form is different.

• Invoke the RUN function from PRO/Office Workstation's
command language interpreter.

• Press a function key that has been defined to invoke the
RUN function.

• Execute a command procedure that invokes the RUN
function.

• Enter a user-defined (dynamic) command that invokes the
RUN function.

• Select it from a PRO/Office Workstation menu.

• Select it from your own, custom-designed menu.

1-2

PRO/OFFICE WORKSTATION AND PROFESSIONAL 350 ARCHITECTURE

PRO/Office Workstation ~'

--- '/ '" ------ " / ",'" --- ,/ ~ --- , // -----', //
--~ -- ---

~

'"
'" ;'

--- ----.... - --.... '

plOS

plOS user services
DEC-supplied applications
3rd party applications
User-supplied applications

Development tools
Form management (FMS, FDT)
File management (RMS)
plos system services

Device drivers
Cluster libraries
Terminal subsystem

Professional 350 Hardware

....
.......

Figure 1-1: Layers of Professional 350 Resources

1-3

"

PRO/OFFICE WORKSTATION AND PROFESSIONAL 350 ARCHITECTURE

The last two examples in the previous list interpret the term
'form' in a literal sense. Literally, a form is a display of
information for the user, like a menu or a help frame.

PRO/Office Workstation uses the Professional's form utilities
FDT and FMS -- to create, store, modify, and display forms. You
can use these utilities to create forms that look the way you
want, without being tied to the functions they perform.

1.1.2 Organization of PRO/Office Workstation

The end-user interface of PRO/Office Workstation consists of
subsystems. A subsystem is the sum of PRO/Office Workstation
facilities that perform a task, such as processing a document or
or sending a mail message. The first four options on the Main
Menu constitute the PRO/Office Workstation subsystems:

1. Document Processing

2. Electronic Mail

3. Desk Management

4. Business Applications

While a subsystem is defined by a Main Menu option, a facility is
defined by its single functional capability. A facility is a
collection of PRO/Office Workstation software modules that
perform a single function. One subystem might invoke several
facilities. For example, the Electronic Mail Subsystem invokes
both the Form Interface Facility and the Mail Services Facility.
It is also true that several subsystems can invoke one facility.
For example, all the subsystems invoke the Form Interface
Facility.

Table 1-1 lists and briefly describes the PRO/Office Workstation
facilities.

1-4

PRO/OFFICE WORKSTATION AND PROFESSIONAL 350 ARCHITECTURE

Table 1-1: PRO/Office Workstation Facilities

Facility

Flow Control

Form Interface

Document Services

Symbol Services

Mail Services

Network Services

Description

The "operating system" of PRO/Office
Workstation. It provides access to all the
other facilities. Flo~ translates a subsystem
request for a facility into a function that
the facility understands. We describe these
functions in the chapter on Flow Control.

Manages the display and processing of forms,
including menus, from which novice users can
access functions performed by Flow. Controls
the flow of data into and out of fields
areas of forms through which interchange of
data takes place. Interprets special keyboard
keys that the user presses while in a field.
The Form Interface Facility uses the Forms
Management System (FMS) and the Frame
Development Tool (FDT).

A database management system that provides
functions to create, store, file, and modify
documents.

Defines and translates
PRO/Office Workstation.

all symbols in

Uses Document Services to create and store
messages, and uses Network Services to send
and recieve messages from remote systems.

Manages all communications between the
Professional 350 and other computers.
Controls all operations involving the
Professional's Communication Port, XKO:.

As described in Table 1-1, the Flow Control Facility is the
"operating system" of PRO/Office Workstation. It consists of a
set of software modules that perform functions and process
requests for the other PRO/Office Workstation facilities.

Figure 1-2 illustrates this organization. The
detail of PRO/Office Workstation as one of
Professional 350 resources.

1-5

figure shows
the layers

a
of

PRO/OFFICE WORKSTATION AND PROFESSIONAL 350 ARCHITECTURE

Oevelop.ent tooh
Fol'll lIanaQe.ent (FMS. FDT)
P'i le lIanaQe.ent (RMS)
P/OS .yste •• erVlce.

Device drivers
Cluster libraries
Tel'llinal sub.vst ..

Figure 1-2:

Form Interface
Document Services
Network Services
Symbol Services
Mail Services

Flow Control

The PRO/Office Workstation Layer

The remainder of this chapter describes PRO/Office Workstation as
an application installed on the Professional 350.

1-6

PRO/OFFICE WORKSTATION AS AN APPLICATION

1.2 PRO/OFFICE WORKSTATION AS AN APPLICATION

As mentioned earlier in this chapter, PRO/Office Workstation is
an application that users install on the Professional 350. The
following sections provide details about the application. Note
that the general information in the following sections pertains
to all applications; only details such as application filenames
and the contents of the installation file are unique to
PRO/Office Workstation.

1.2.1 PRO/Office Workstation Installation Files

The application diskettes contain directories and files that p/os
uses to install and execute PRO/Office Workstation. The main
application directory, as well as the installation file it
contains, uses the PRO/Office Workstation application name, OA:

[OA]OA.INS

If you use disk drive 1, you can search for this file on the
application diskettes by entering the Tool Kit/DCL command:

$ DIR DZl:[*]*.INS

When installation begins, p/OS searches the diskettes for this
directory and .INS file. Then p/OS:

• displays the application name,

• allows the user to change this name and specify a menu
on which to place it, and

• places the name on the requested menu.

Next, p/OS creates a directory and an empty file, to which it
copies the application directory and installation file. p/OS
names these:

[ZZAPnnnnn]ZZAPnnnnn.INS

Where:

nnnnn is a zero-filled, five-digit decimal integer representing
the number of currently installed applications plus one.

For example, if eight applications are currently installed, p/OS
uses 00009 for n and creates:

1-7

PRO/OFFICE WORKSTATION AS AN APPLICATION

[ZZAP00009]ZZAP00009.INS

P/OS maintains a table of installed applications in a file called
[ZZSYS]INSAPPL.SYS. During every installation, P/OS updates the
file. (Note that the names of all system directories on P/OS
begin with the letters ZZ.)

As the last step, P/OS reads the installation file. This file
directs the transfer of the other application files from
application diskettes to hard disk. p/OS performs the transfer.

The installation file uses special keywords that direct p/OS
during the installation:

NAME

FILE

MOUNT

INSTALL

ASSIGN HELP

Specifies the default application name as it
first appears to the user during installation.
The name can be as long as 40 characters, and can
contain any printable characters and spaces.

Specifies the name of a file for P/OS to copy
from the diskette onto the hard disk. The
/DELETE qualifier and the /KEEP qualifier (not
shown) determine whether or not p/OS deletes the
specified file if the user ever removes the
application.

Specifies the volume name of an additional
diskette for applications contained on multiple
diskettes. The MOUNT line determines whether or
not the user must insert the diskette during
installation (it might already be in the other
disk drive).

Indicates a task image (/TASK) or resident
library (/LIBRARY) that p/OS installs whenever
the user invokes this application. On P/OS, a
task can run only if it is installed. Also, a
resident library must be installed in order for a
task to refer to it.

Assigns a default help definition file and frame
ID to the application. The application uses this
information to display FDT help messages when the
user presses the HELP key.

1-8

RUN

PRO/OFFICE WORKSTATION AS AN APPLICATION

Specifies the first task that executes when the
user invokes the application.

The installation diskettes contain files in the
directories:

following

• [ZZAP •••]

The main application directory, whose name p/OS converts from
[OA] • This directory contains only the installation file
(.INS).

• [ZZFLOW]

Contains all tasks (except those belonging to
Services), form libraries, and command procedures.

• [ZZDOCO]

Network

Contains Mail Services and Document Services files, including
the default document database, mail queues (folders), message
templates used by Mail and Document Services, and
initialization files for the available text editors.

• [ZZOASYM]

Contains the system, process, and user
maintained by the Symbol Services Facility.

• [ZZXNET]

symbol tables

Contains tasks and other files that the Network Services
Facility uses.

Table 1-2 describes the task images contained in the installation
diskettes. Table 1-3 describes other installation files.

1-9

PRO/OFFICE WORKSTATION AS AN APPLICATION

Table 1-2: PRO/Office Workstation Installation File Tasks

Filename

CDS.TSK

DSI. TSK

EDT.TSK

FBOOT.TSK

FCSRES.TSK

FI.TSK

FLOW.TSK

FMAIL.TSK

FSYM.TSK

PIP.TSK

SB.TSK

SETVT.TSK

TMAIL.TSK

TYPE.TSK

Installed
Name

SWB$DS

F$DSI

EDT

FBOOT

FeRES

SWB$FI

FLOW

F$MAIL

FSYM

PIP

SWB$SB

SETVT

SWB$BM

TYPE

Description

Callable Document Services, a
component of the Document Services
Facility.

Document Services Interface, a
component of the Document Services
Facility.

The EDT editor, also used for WPS.

Task that enables or
automatic bootstrap
PRO/Office Workstation.

disables
into

Resident library used by PIP and
EDT.

The Form Interface Facility.

The Flow Control Facility.

Flow Mail, a component of the Mail
Services Facility.

Code executed for
function SHOW SYMBOL.

Peripheral Interchange
that performs file
functions for Flow.

the Flow

Program
control

Part of
Facility.

the Symbol Services

Task that sets the terminal to
VT100 mode. It is useful when you
execute FED from Flow command
level.

Transport-Level Mail, a component
of the Mail Services Facility.

Task that Flow invokes for SHOW
FILE and TYPE functions.

1-10

PRO/OFFICE WORKSTATION AS AN APPLICATION

Filename Installed Description
Name

XCOM.TSK XCOM Port controller task in the
Network Services Facility.

XLIB.TSK XLIB Path maintenance task in the
Network Services Facility.

Table 1-3: Other PRO/Office Workstation Installation Files

Filename

DEFDOC.COM

DEFSYM.COM

DEFUSER.COM

EDTINI.EDT

EDTSYS.EDT

GETRMS.COM

INSPROCOM.COM

INSTALL.COM

NOTES.MEM

OAFDT.FLB

OAFMS.FLB

OAHELP.FLB

Description

Defines initial document databases and
related symbols.

Defines default dynamic commands, function
kyes, symbols, and tags.

Defines user-oriented values, such as
profile information and preferred editor.

Initialization file used by EDT. See the
EDT command in Chapter 3.

Initialization file used by EDT. See the
EDT command in Chapter 3.

Command procedure that reads a record from
a specified RMS file and writes it to an
existing document file. Used for file
cabinet maintenance.

Copies the special PRO/Communications tasks
into DWl:[ZZCOMM].

First command procedure that Flow executes
after you have installed PRO/Office
Workstation.

Release notes for the current version of
the product.

Default FDT form library.

Default FMS form library for all PRO/Office
Workstation forms.

Default help frame library.

1-11

PRO/OFFICE WORKSTATION AS AN APPLICATION

Filename

PUTRMS.COM

SETBOOT.COM

SETNOBOOT.COM

SYMBOL.DAT

WPSINI.EDT

Description

Command procedure that writes an existing
document file to a specified RMS file. Used
for file cabinet maintenance.

Command procedure that calls
enable automatic bootstrap
Workstation.

FBOOT.TSK to
of PRO/Office

Command procedure that calls FBOOT.TSK to
disable automatic bootstrap of PRO/Office
Workstation.

Part of the Symbol Services Facility.

Initialization file
like WPS. See the EDT
3.

used to make EDT look
command in Chapter

1.2.2 Installation Startup Procedure

The first procedure that Flow executes after you have installed
the kit is [ZZFLOW]INSTALL.COM. This file performs
initialization for the Workstation. You should never modify this
file.

INSTALL.COM executes several command procedures, which you can
re-execute at any time to re-initialize the workstation. Also,
you can modify any of these procedures to customize the
installation. The procedures are:

• DEFDOC.COM

This procedure sets up the default document database for the
Document Services Facility. It also defines some symbols
that Document Services uses.

• DEFSYM.COM

This procedure defines all of the default Workstation
symbols, including dynamic commands, function keys, tags, and
symbols. You might want to rerun DEFSYM.COM if a user
inadvertently redefines any reserved symbols.

1-12

PRO/OFFICE WORKSTATION AS AN APPLICATION

• DEFUSER.COM

This procedure defines user-specific values,
information that is part of the user profile.

• INSPROCOM.COM

such as

This procedure copies certain PRO/Communications tasks that
the workstation uses into the directory DWl:[ZZCOMM].

Once installed, the Workstation does not require a startup
command file; however, you can easily define your own startup
command file by by defining the symbol FLOW$_STARTUP_FUNCTION.

For example:

> DEF/SYM FLOW$ STARTUP FUNCTION n@[COMMANDS]LOGIN.COM"

Flow would execute this file every time the user invokes the
PRO/Office Workstation application. LOGIN.COM could define
various symbols, tags, and logical names, and could perform other
startup processing.

1.2.3 Storage Requirements

Without any customization, PRO/Office Workstation requires
approximately 2000 contiguous blocks. You can reduce the storage
requirement by purging the system after installing the
application:

> PURGE [*J* .. *

NOTE

Purge the entire system only if you are certain
that the user needs only the latest versions of
all files on the system. A system purge can
delete important files.

The purge essentially removes files duplicated by PRO/Office
Workstation. For example, the system might have the PRO/Tool Kit
installed, in which case the purge deletes earlier versions of
those Tool Kit tasks that are shared with PRO/Office Workstation.

1-13

PRO/OFFICE WORKSTATION AS AN APPLICATION

1.2.4 Finding the Electronic Release Notes

PRO/Office Workstation provides release notes for every version;
these notes ensure that you are informed of any changes to the
product that could not be included in this manual.

You should always read the release notes. Print the following
file directly from the installation diskettes:

[ZZDOCO]NOTES.MEM

The installation procedure copies this file to a document in the
default Document Services database. You can look at the document
by finding

Folder: RELEASENOTES
Title: RELEASE NOTES version

Where:

version is the product's current version number.

1-14

CHAPTER 2

USING THE FLOW CONTROL FACILITY

The Flow Control Facility ("Flow") directs all activity in the
PRO/Office Workstation environment. Flow is the workstation's
"operating system." It consists of a set of software modules that
perform functions and process requests for the other PRO/Office
Workstation facilities.

You can directly access Flow through either of its
interfaces:

• Flow Menu System

user

The Menu System allows a novice user to request Flow
functions, such as running applications, by selecting items
from a menu. By default, all menus are FMS forms. By making
a menu selection, a user effectively sends FMS named data to
Flow for translation into Flow functions.

• Flow CLI

The eLI is a command language interpreter that is similar in
purpose and syntax to the DIGITAL Command Language (DCL).
Each eLI command represents a Flow function. The eLI is
designed as an interface for expert users.

Figure 2-1 illustrates the operation of Flow. Users access
Flow's functions through either the menu or eLI interface. Flow
processes the request by performing the function itself or by
passing the request on to another facility. The results of the
request travel back to the user interface, as shown by the
two-way arrows.

2-1

Flow Control Facility

FI DS NET

FI = Form Interface Facility
DS = Document Services Facility
NET= Network Services Facility
SYMS = Symbol Services Facility
MAIL = Mail Services Facility

Figure 2-1: The Flow Control Facility

SYM

CLI

MAIL

Flow's different user interfaces allow a user to choose the most
appropriate means of invoking Flow functions. A first-time user
might use the menu structure initially. After gaining experience
on the system, however, the user can invoke one-time Flow
functions from the PRO/Office Workstation Main Menu, or can
directly enter CLI command mode by pressing the INSERT HERE key
from any menu.

In general, however, the application programmer uses the Flow
Control CLI to invoke Flow functions.

2-2

USING THE FLOW CONTROL CLI

2.1 USING THE FLOW CONTROL CLI

The Flow Control CLI looks very much like a subset of DCL.
format of CLI commands is often the same as DCL commands.
section summarizes CLI format.

The
This

NOTE

CLI commands are Flow
terms 'CLI command'
interchangeably.

functions. We
and 'Flow

use the
function'

A CLI command consists of a command name that describes the
action Flow is to perform. Additionally, most commands include
one or more gvalifiers and parameters to further define Flow's
action. The qualifiers can themselves take arguments.

The general format of a CLI command is:

[$] [1 abe I :] c ornrn and [I qua 1 [= a r g] • • •] [par am [I qua 1 [= a r g]] • • .] • • •

Where:

$

label:

command

qual

arg

is the dollar sign symbol, which you should place
at the beginning of each command line that is in
a command procedure. If you specify the $ symbol
at the beginning of a command line entered
interactively, CLI ignores the symbol.

is the name of a point to which you can transfer
control within a command procedure. You use the
GOTO statement to transfer control.

is a Flow function.

is a valid qualifier for the particular command
or parameter.

is a valid argument for a particular qualifier.

As the format shows, a slash (I) always precedes a qualifier, a
space always precedes a parameter, and an equal sign (=) always
precedes an argument. You can use a tab or multiple spaces
wherever you can use a single space in a command line.

Some commands require that you include a qualifier, parameter, or
argument on the command line. If you fail to supply a required
command element, Flow prompts you for that required element. (In
some cases an omission causes an error rather than a prompt.)

2-3

USING THE FLOW CONTROL CLI

You can enter CLI commands that are minimally-unique; that is,
you need only type the abbreviated part of the command that
distinquishes it from any other CLI command. For example, you
can abbreviate the DIRECTORY command as DIR. Also, you can
abbreviate DELETE/CONFIRM as DEL/CONF.

2.1.1 Symbol Substitution in Command Line

Flow attempts to parse all symbol references. A symbol reference
can be any of the following:

• A character string beginning and ending
apostrophe, such as '$RESULT'.

with an

• A character string that you use in a context within
which Flow expects a symbol value to appear, such as the
IF, INQUIRE, WRITE, and LET functions in Flow. In these
cases, you do not use apostophes to force the
translation.

A symbol reference can appear anywhere within a Flow command
line, whether the command line appears interactively on the
terminal screen or within a command procedure. Flow passes a
symbol reference to the Symbol Services Facility for translation
into the equivalence value, if any.

Whenever you want to parse and translate a symbol, whether or not
it is within a quoted string, you must place one apostrophe on
each side of the symbol (except when Flow expects a symbol to
appear):

> DEFINE/SYMBOL SYMISCOMMAND "DIR"
> 'SYMISCOMMAND'

> DEF/SYMBOL ANOUN "NAME?"
> INQUIRE NAME "ENTER 'ANOUN?'"

> DEF/SYMBOL ANOUN "NAME?"
> WRITE SYS$OUTPUT ANOUN
> WRITE SYS$OUTPUT "ANOUN"

Translates to DIR

Prints ENTER NAME?

Prints NAME?
Prints "ANOUN"

If you want to include apostrophes or quotation marks in a quoted
string, then double them.

> INQUIRE NAME "ENTER' 'ANOUN' '"
> INQUIRE NAME "ENTER ""ANOUN"""

2-4

Prints ENTER 'ANOUN'
Prints ENTER "ANOUN"<

USING THE FLOW CONTROL CLI

An example of the LET functions follows.

> LET VALUE=lO
> LET TOTAL=VALUE+2

2.1.2 Commands Grouped by Purpose

Table 2-1 shows all the CLI commands grouped by purpose. Chapter
3 lists the commands alphabetically and describes each in detail.

Table 2-1: CLI Commands Grouped by Purpose

Purpose

Execution
Control

Procedure
Invocation

Name

CALL

CONTINUE

END

EXIT

EXTERNAL

GOTO

IF ••• THEN

ON ••• THEN

UNWIND

COMMAND
or
At sign (@)

2-5

Description

Invoke one of PRO/Office
Workstation's callable
facilities.

Noop

Exit the FLOW task.

Exit from the current Flow
function.

Invoke a PRO/Office
Workstation facility that is
callable only from Flow.

Transfer execution to a
labeled statement in a
command procedure.

Conditionally execute a
function.

Establish a trap for a
specified condition.

Exit stacked FLOW functions
until reaching the top
(first) function.

Enter command mode, accepting
commands from the terminal or
from a command procedure.

Purpose

Symbol
Handling

Keyboard
Handling

Dynamic
Command
Handling

Tag
Handling

Task
Handling

USING THE FLOW CONTROL CLI

Name

DEFINE/SYM

DELETE/SYM

INQUIRE

LET

SHOW/SYM

DEFINE/KEY

DELETE/KEY

SET [NO]KEYPAD

SHOW KEY

DEFINE/COM

DELETE/COM

SHOW COM

DEFINE/TAG

DELETE/TAG

SHOW TAG

ABORT or
STOP

2-6

Description

Create a symbol table entry
and assign an equivalence
name to it.

Delete a symbol definition
from the symbol table.

Interactively assign a value
to a symbol.

Assign the value of an
expression to a symbol.

Display a symbol definition
in a symbol table.

Assign a Flow function to a
specified key.

Remove a key definition
established with DEFINE/KEY.

Enable or disable escape
sequence recognition from the
keyboard.

Show one or all function key
definitions.

Define a dynamic Flow
command.

Delete a dynamic Flow
command.

Show one or all dynamic Flow
commands.

Define a Form Interface tag.

Delete a Form Interface tag.

Show one or all Form
Interface tags.

Connect to and then abort a
task.

Purpose

Application
Handling

Form
Handling

Document
Handling

USING THE FLOW CONTROL CLI

Name

ACTIVATE

BLOCK

BLOCK/SUSPEND

EMIT

FIX

INSTALL

REMOVE

RUN/TASK

UNBLOCK

UNBLOCK/RESUME

DEFINE/APPL

DELETE/APPL

RUN/APPL

SHOW APPL

FIELD

FORM

MENU

DOC

2-7

Description

Instruct P/OS to request a
task.

Stop the issuing task.

Suspend the issuing task.

Emit status.

Load and lock an installed
task or region in memory.

Install a task or library.

Remove (uninstall) a task or
library.

Run a task, installing it
beforehand and removing it
afterwards if necessary.

Unstop a task that stopped
itself with BLOCK.

Resume a task that suspended
itself with BLOCK/SUSPEND.

Define a symbol as a p/OS
installed application.

Delete a symbol defined as a
p/os installed application.

Run a Plos installed
application that you have
defined.

Show one or all currently
defined applications.

Input or output one field of
a form.

Display a specified form.

Display a specified menu.

Invoke a Document Services
function.

Purpose

Mail
Handling

Network
Services

Disk/File
Handling

Mis­
cellaneous

USING THE FLOW CONTROL CLI

Name

MAIL

NETWORK

COpy

DELETE/FILE

DIRECTORY
or
SHOW DIR

PURGE

RENAME

SHOW DEFAULT

TYPE
or
SHOW FILE

ASSIGN

CLEAR

CREATE/DIR

DEFINE/LOG

DELETE/DIR

DELETE/LOG

DISMOUNT

2-8

Description

Invoke a Mail Services
function.

Invoke a Network Services
function.

Create a copy of one or more
files.

Delete local files.

Display information for an
individual file or group of
files.

Delete all but the latest
versions of files, and
releases the storage that
they occupied.

Change the name, type, or
version number of an existing
file.

Display the current device
and directory name.

Display a file.

Associate a logical name with
a physical device name, a
complete file specification,
or another logical name.

Erase the terminal screen.

Create a directory.

Define a P/OS logical name.

Delete a directory.

Delete a P/OS logical name.

Declare a volume to be
offline.

USING THE FLOW CONTROL CLI

Purpose Name

EDT

HELP

MOUNT

SET [NO]VERIFY

SHOW LOGICAL

WAIT

WRITE

Description

Run the EDT editor.

Display a help screen.

Declare a volume to be
online.

Control whether or not Flow
displays command lines during
command procedure execution.

Show the equivalence value of
a logical name.

Suspend Flow for a number of
seconds.

Print a string or symbol
equivalence on the terminal
screen.

You can enter CLI commands interactively by typing a command
while in CLI mode, or you can store eLI commands in a command
file and then execute the command file. The following sections
describe both forms of entering CLI commands.

2.1.3 Using eLI Interactively

From the Main Menu you can invoke a single CLI command by
entering a dollar sign followed by the command, and then pressing
the RETURN key. To enter CLI command mode, simply press the
INSERT HERE key.

Once you receive the CLI prompt, you can enter CLI commands at
the keyboard. To execute a command, press either the RETURN or
DO key. Since Flow waits for a carriage return before processing
the command, you can use the DELETE key to edit the command line
before pressing RETURN or DO.

The maximum number of characters in a command line is 132.
However, you can enter the continuation character, a hyphen (-),
at the end of a command line to continue onto the next line.

2-9

USING THE FLOW CONTROL CLI

2.1.4 using CLI Command Procedures

A CLI command procedure is a text file containing CLI commands.
Flow reads the commands directly from the file, as if they were
entered from CLI command mode.

You can initiate a command procedure by either using the COMMAND
function or by using the at (@) sign before the filename. For
example, from CLI you can enter either:

> COMMAND procedurename! use COMMAND function

or

> @procedurename use at sign

The procedure invocation can appear anywhere that a Flow function
is allowed: for example, from the named data section of an FMS
form, stored in a dynamic command using DEFINE/COMMAND, or stored
in a keyboard function key using the DEFINE/KEY function.

• In Named Data:

Name Data

INP COMMAND procedurename

• In a Dynamic Command:

> DEFINE/COMMAND GO "COMMAND procedurename"

• In a Function Key:

> DEFINE/KEY 17 "COMMAND procedurename"

The default file type for command procedures is COM. Thus, the
following two command procedure invocations are the same:

> @TEST.COM
> @TEST

Note that if you merely specify a file name, without preceding it
with a directory, Flow searches the current directory only.

Each CLI command line within a command procedure except for
continuation lines must begin with a dollar sign symbol ($):

2-10

$ command
command

USING THE FLOW CONTROL CLI

line begins with $
no $ on line, therefore invalid

You can use a hyphen in a command procedure to continue a command
onto subsequent lines. However, you must not precede a
continuation line with the dollar sign. For example:

$ WRITE -
SYS$OUTPUT -
"THIS IS AN EXAMPLE"

$ EXIT

You can use the exclamation mark (!) to delimit comments within
your command procedure. When a comment begins a line, you must
still specify the dollar sign:

$ DIRECTORY !Comment after CLI command
$ A full-line comment

The nesting level for command procedures depends on the amount of
available stack space.

Normally, a command procedure executes synchronously; that is,
Flow attaches the terminal. However, you can force Flow to
process the command procedure asynchronously (in the background)
by defining a dynamic command such as SPAWN:

> DEF/COM SPAWN "RUN/TASK/GO [ZZFLOW]FLOW.TSK -
/NAME=SPAWN/CMD=""FLOW @"

Having defined the SPAWN command, you can execute a command
procedure in the background by specifying:

> SPAWN procname

Where:

procname is the name of your command procedure. It must
not include the at (@) sign or the COMMAND
function.

The dynamic command SPAWN operates by starting up a new Flow
task, called SPAWN (/NAME=SPAWN). When translating your
invocation of SPAWN, Flow automatically substitutes the procedure
name after the /CMD=""FLOW @ portion of the command's equivalence
string. The double quotes denote the beginning of the /CMD=
string; the final single quote matches the single quote before
the RUN command.

2-11

USING THE FLOW CONTROL CLI

The command procedure you execute in this manner must not run a
task that attaches the terminal, or you receive an error message.

Note that you do not have to specify the END statement at the end
of your spawned command procedure; Flow automatically terminates
itself.

2.2 THE FLOW STACK

Whenever you execute a Flow function, Flow pushes the function
invocation onto the Flow stack. The Flow stack is an area of
memory containing a list of Flow function invocations. Flow
maintains the stack to preserve the order of functions that you
have invoked.

Flow pops function invocations from the Flow stack when:

• You issue the EXIT, END, or UNWIND functions.

• The current function completes.

EXIT causes Flow to pop the current invocation from the stack,
resulting in the previous invocation becoming the current one
(except when the current invocation is already the first one).
END causes Flow to pop all invocations from the stack,
terminating Flow itself. UNWIND causes Flow to pop all but the
first invocation from the stack. The first invocation becomes
the current one.

Flow pops an invocation from the stack when the function
completes. Note that some functions, such as MENU, do not
complete unless the user explicitly uses EXIT, END, or UNWIND to
pop them from the stack. This is useful, for example, if you
ever have to trace a menu tree.

Figure 2-2 illustrates how the Flow stack operates. The figure
shows successive changes to the stack as a result of function
invocations:

I . The current stack contains four
order: MENU, MENU, MENU, and COM.
invoked these functions from menus,
function places the user in the eLI.

invocations in the
Assume that the user

and that the COM

2. During execution of the RUN function, the stack has a
new invocation, RUN/TASK. This invocation becomes the
current invocation.

2-12

--..

THE FLOW STACK

3. Immediately upon completing the RUN/TASK request, Flow
pops that invocation from the stack.

4. The EXIT function pops one MENU off the stack.

5. The UNWIND function pops subsequent invocations off the
stack until Flow reaches the first invocation, MENU.
Flow makes this the current invocation.

MENU MENU MENU MENU --I MENU

MENU MENU MENU MENU

MENU MENU MENU ~ MENU

COM COM
------ COM

--. RUN

Current >RUN/TASK >RUN/TASK >EXIT >UNWIND
Stack Completes

(1) (2) (3) (4) (5)

Figure 2-2: The Flow Stack

Note that in the figure the arrow (-» is the stack pointer. It
indicates the current function invocation.

2.3 FLOW SYMBOLS

Table 2-2 describes symbols that Flow uses.

Table 2-2: Symbols Used by Flow

Symbol

FLOW$ STARTUP FUNCTION

Description

Function executed to perform startup
(normally is "CONTINUE").

Filespec (dev:[dir]) of directory
containing command procedures.

Original application directory
(APPL$DIR in p/os).

2-13

Symbol

$RESULT

$STATUS

$CHOICE

$NAME

FLOW SYMBOLS

Description

Contains the Flow function executed
from FMS named data or FDT action
string when you execute MENU/RETURN.
Also can contain the exit status of
a task that has just executed.

Contains the Flow status of the last
executed Flow function.

User's actual input after executing
MENU/RETURN.

Name of the task last installed.

2-14

CHAPTER 3

FLOW CONTROL FACILITY FUNCTIONS

This chapter describes all the Flow functions, presenting them in
alphabetical order:

ABORT OR STOP
ACTIVATE
ASSIGN
BLOCK
BLOCK/SUSPEND
CALL
CLEAR
COMMAND
CONTINUE
COpy
CREATE/DIRECTORY
DEFINE/APPLICATION
DEFINE/COMMAND
DEFINE/KEY
DEFINE/SYMBOL
DEFINE/LOGICAL
DEFINE/TAG
DELETE/APPLICATION
DELETE/COMMAND
DELETE/DIRECTORY
DELETE/KEY
DELETE/SYMBOL
DELETE/LOGICAL
DELETE/TAG
DIRECTORY OR SHOW DIRECTORY
DISMOUNT
DOC
EDT
EMIT
END
EXIT
EXTERNAL
FIELD

3-1

FIX
FORM
GOTO
HELP
IF
INQUIRE
INSTALL
LET
MAIL
MENU
MOUNT
ON
PURGE
REMOTE
REMOVE
RENAME
REQUEST
RUN/APPLICATION
RUN/TASK
SET DEFAULT
SET KEYPAD
SET VERIFY
SHOW APPLICATION
SHOW COMMAND
SHOW DEFAULT
SHOW KEY
SHOW LOGICAL
SHOW SYMBOL
SHOW TAG
TYPE OR SHOW FILE
UNBLOCK
UNBLOCK/RESUME
UNWIND
WAIT
WRITE SYS_$OUTPUT

3.1 GLOBAL QUALIFIERS

Several qualifiers are global, that is, you can specify them on
any Flow function. Two of these qualifiers, /CLEAR[=mode] and
/[NO]PAUSE, affect the screen mode, which can be either:

• Menu Mode

The user invokes Flow functions via menus displayed on the
screen.

3-2

GLOBAL QUALIFIERS

• Command Mode

The user invokes Flow functions directly through the CLI.

The global qualifiers are:

/CLEAR[=mode]

Where:

mode can be either MENU or CMD, indicating which
screen mode the user is about to enter.

If you do not specify mode, then this qualifier refreshes
the terminal screen before and after executing the
function.

If you do specify mode, then this qualifier refreshes the
terminal screen as appropriate for the mode the user is
about to enter. For example, suppose you invoke the
following command:

> DIR/CLEAR=CMD

The /CLEAR=CMD qualifier indicates that you are entering
command mode. If you are currently in menu mode, Flow
clears the screen before executing the DIR, and redraws
the menu upon returning to menu mode. If you are already
in command mode, Flow ignores the qualifier.

As another example, suppose you invoke the following
command:

> MENU/CLEAR=MENU MAIN

If you are currently in command mode, Flow clears the
screen before executing the MENU command. If you are
already in menu mode, Flow ignores the qualifier.

/[NO] PAUSE

This qualifier causes Flow to pause and prompt the user
to press any function key to continue. How the qualifier
operates depends on the screen mode:

• If you are going from command mode to screen mode and
PAUSE is set, then Flow will pause. If NOPAUSE is
set, Flow will not pause.

3-3

IWARNING

IQUIET

GLOBAL QUALIFIERS

• If you are going from menu mode to command mode,
PAUSE and NOPAUSE have no effect.

Flow implicitly sets PAUSE whenever you are in command
mode and you write to SYS$OUTPUT or SYS$COMMAND.

Flow implicitly sets NOPAUSE whenever you are in command
mode and you read from SYS$INPUT or SYS$COMMAND.

Declare a WARNING condition, rather
condition, if the Flow function is
procedure and it fails.

than an ERROR
within a command

Do not print error message if the Flow function fails.
Some Flow functions are not affected by this qualifier
because they call p/os utilities (such as PIP).

3-4

ABORT OR STOP

3.2 ABORT OR STOP

Force an orderly end to a task that is running.

Format

ABORT task name

or

STOP taskname

Where:

taskname is the name of the task to be aborted.

Description

Flow first connects to the specified task, making Flow the task's
parent. (Aborting a parentless task crashes the system.)

plos Directive

ABRT$

Example

> RUN/TASK/GO my task
> ABORT my task

> ABORT TMAIL

3-5

ACTIVATE

3.3 ACTIVATE

Instruct plOS to activate a task (not a spawn).

Format

ACTIVATE instname

Where:

instname

Description

is the installed name of the task you are
activating.

plos activates and subsequently runs the specified task
contingent upon priority and memory availability. The ACTIVATE
function is the basic mechanism that running tasks use to
initiate other installed (dormant) tasks. ACTIVATE does not
attempt to install the specified task if it is not installed.

plos Directive

RQST$ -- Request Task

Example

> ACTIVATE TMAIL Wake up TMAIL to transfer mail

3-6

ASSIGN

3.4 ASSIGN

Associate a logical name with a physical device name, a complete
file specification, or another logical name.

Format

ASSIGN equivalence logname

Where:

equivalence is a string to which the new logical name refers.
Its maximum length is 512 bytes.

log name is the name of the logical that you are creating.
Its maximum length is 30 bytes.

Description

The difference between a symbol and a logical is that Flow stores
symbols in a symbol table that resides on disk. Consequently,
symbols are always available, even if you terminate PRO/Office
Workstation and later re-execute it. Logicals, however, are
handled by P/OS, which only temporarily stores them in main
memory. p/OS does not preserve logicals after terminating the
task in which you define them.

You can display a current logical assignment by invoking the SHOW
LOGICAL function. Also, you can delete a current logical by
invoking the DELETE/LOGICAL function.

See the DEFINE/LOGICAL function, which performs
operation in a different format.

p/OS System Routine

PROLOG

Examples

> ASSIGN "DW1:[USERFILES]TEST1.TSK"
> RUN/TASK TESTl
> DELETE/LOGICAL TESTl

3-7

TESTl

the same

BLOCK

3.5 BLOCK

Stop the issuing task.

Format

BLOCK

Description

To unblock a task that you stop using BLOCK, you must invoke the
UNBLOCK function from another task.

p/OS Directive

STOP$S

Example

> RUN/TASK/GO other task
>
> You continue processing.
>
> BLOCK Block yourself.

! <---- Later, other task unblocks you.

3-8

BLOCK/SUSPEND

3.6 BLOCK/SUSPEND

Suspend the issuing task.

Format

BLOCK/SUSPEND

Description

A task can suspend only itself, not another task. You can
restart the suspended task by invoking UNBLOCK/SUSPEND.

p/OS Directive

SPND$S

Example

> RUN/TASK/GO other task
>
> You continue processing.
>
> BLOCK/SUSPEND Suspend yourself.

! <---- Later, other task resumes you.

3-9

CALL

3.7 CALL

Invoke a facility via the Software Bus.

Format

CALL SWB$name[/qualifier •••]

Where:

SWB$name

Description

is the installed name of the task you want to
call. You can only CALL a PRO/Office Workstation
task whose installed name begins with SWB$.

For most facilities in PRO/Office Workstation, you can access
only a subset of the facility's total capability via such Flow
functions as MENU, DOC, MAIL, FIELD, and FORM. To access a
facility's total capability, you must invoke it via the Software
Bus by using the CALL function.

For example, you can invoke Callable Document Services (CDS)
directly, without having to use the Document Services Interface
(DSI) as an intermediary. This allows you greater control of the
document database than DSI provides.

Note that the Flow functions such as MAIL, FORM, and FIELD,
translate into an invocation of the EXTERNAL function. A simple
guideline to use in determining whether you should specify either
the CALL or EXTERNAL function is to inspect the installed name of
the task you want to invoke. If the task name begins with the
prefix F$, then you use EXTERNAL (or one of the functions that
translates into EXTERNAL); if the task name begins with the
prefix SWB$, then you use CALL. The Pro/Tool Kit SHOW TASKS
command allows you to see the names of installed tasks.

The reason for the naming convention of F$ and SWB$ involves the
means by which Flow communicates with the other facilities. Flow
uses two data structures to communicate with the other
facilities: the Flow Bus and the Software Bus. You access
modules that have installed task names beginning with F$ via the
Flow Bus from Flow. On the other hand, you access modules with
names beginning with SWB$ from any task (including Flow) via the
Software Bus.

3-10

CALL

Figure 3-1 illustrates the Flow Bus and the Software Bus. The
figure shows that Flow can communicate with the other facilities
by invoking EXTERNAL to access the Flow Bus, or by invoking CALL
to access the Software Bus. Any other task (an application that
you build, for example), can also communicate with the other
facilities by passing a parameter block on the Software Bus.
(Note that making calls from applications directly over the
Software bus is not supported in Version 1.0 of PRO/Office
Workstation.)

Flow Control
Facility

EXTERNAL F$task

CALL SWB$task

Software Bus

Flow Bus

FI DS NET

FI = Form Interface Facility
DS = Document Services Facility
NET= Network Services Facility
SYMS = Symbol Services Facility
MAIL = Mail Services Facility

SYM

Any Other Task
(Your Application)

Parameter Block

MAIL

Figure 3-1: The Flow Bus and the Software Bus

3-11

CALL

The qualifiers are:

/PREFIX=string

/DISPLAY

Examples

If the call is successful and you specified
qualifier, Flow defines all parameters
facility returns as symbols in the process
symbol names have the format

string+parameter_name

Where:

the /PREFIX
the called

table. The

string is the value you specify in the /PREFIX
qualifier.

parameter_name is the actual name of the parameter(s)
returned by the module called.

The plus sign (+) indicates concatenation of the string
and parameter_name.

Use /PREFIX to save the data returned from a module in a
"set" of parameters chosen by the caller. You can
specify the /DISPLAY qualifier to show all returned
parameters on the terminal screen/

This qualifier displays returned parameters on the
terminal screen.

> CALL SWB$DS
> CALL SWB$SB
> CALL SWB$FI

invoke CDS
invoke Symbol Table Facility
invoke the Form Interface Facility

> CALL SWB$DS/$REQ=GET//$NUM=52/PREFIX="CDS."
> WRITE SYS$OUTPUT "The author is 'CDS.AUT'."

3-12

CLEAR

3.8 CLEAR

Erase the terminal screen.

Format

CLEAR

Description

Invoking CLEAR is equivalent to writing the escape sequence <ESC>
[2 J (erase in display) to the terminal screen.

Example

> CLEAR

3-13

COMMAND OR @

3.9 COMMAND OR @

Cause Flow to accept commands either from SYS$INPUT or from a
command procedure.

Format

COMMAND [filespec]

or

@[filespec]

Where:

filespec is the file specification of a command procedure.

Description

If you specify the name of a command procedure, Flow accepts
commands from the file identified by filespec. In this case,
using COMMAND is equivalent to using the at sign (@).

If you do not specify the name of a command procedure, Flow
accepts commands from SYS$INPUT.

Examples

> COMMAND DWl:[COMMANDS]COMPRC.COM
> COMMAND

3-14

CONTINUE

3.10 CONTINUE

Cause Flow's execution to proceed.

Format

CONTINUE

Description

CONTINUE is appropriate in an error trap that you want Flow to
ignore, as follows:

> ON ERROR THEN CONTINUE

3-15

COpy

3.11 COpy

Create a new file from one or more existing files.

Format

COpy inputspec outputspec

inputspec Specifies the input file to be copied.

outputspec Specifies the output file to which the input file
is copied.

Description

You can change the name, type, and version number of the file
when you enter the outputspec parameter. Wildcards in the place
of the name and the type leave the name and type unchanged. If
you use a wildcard in either of the parameters, you must use a
wildcard in both.

COpy always creates the output file. For example, if you type:

> COPY FILEI.LIS FILE2.LIS

and FILE2 already exists, COpy will create a new version of the
file one higher than the existing version. If FILE2 does not
already exist, COpy will create a file with the name FILE2 and
extension .LIS. If you specify a version number for the output
file field, then a file of that version number is created. If
such a file already exists, the operation fails.

Wildcards are acceptable for output files if the destination is
another directory.

You can send copies to devices as well as to directories.

You can also use the COpy command to create multiple copies of
the same file with the same or different names.

Examples

> COpy MYFILE.DAT *.*
> COPY MYFILE.OAT OWl:
> COpy MYFILE.OAT DWl:[USERFILES]
> COPY MYFILE.OAT [USERFILES]

3-16

CREATE/DIRECTORY

3.12 CREATE/DIRECTORY

Create a new directory.

Format

CREATE/DIRECTORY [dev:]dirspec

Where:

dev is an optional device name, such as DW1: or DZ1:.

dirspec is a directory name enclosed in square brackets.

Description

This function crates a directory ona disk device.
occurs if the directory already exists.

p/OS System Routine

PRODIR

Examples

> eRE/DIR DW1:[MYDIR]

3-17

An error

DEFINE/APPLICATION

3.13 DEFINE/APPLICATION

Define a Flow symbol whose equivalence string is the name of an
application installed on p/OS.

Format

DEFINE/APPLICATION[/qualifier •••] appname

Where:

appname

Description

is the symbol that you want to represent an
application installed on the p/OS Main Menu. All
rules regarding symbols apply to appname. See
the description of SYMBOL/DEFINE for details.

Flow does the following:

o Displays all applications installed on p/OS.

o Allows you to select the application that appname will
represent.

In order to invoke a P/OS-installed application, you must first
use DEFINE/APPLICATION to make it known to Flow.

Once you have defined an application, you can invoke by using the
run command:

> RUN/APPLICATION appname

See Chapter 6 for a description of the following qualifiers that
you can specify for this function:

/NODELETE
/OVERRIDE
/PROCESS
/SYSTEM
/USER
/VOLATILE

Example

> DEF/APPL SUPERCOMP

3-18

DEFINE/COMMAND

3.14 DEFINE/COMMAND

Create a dynamic command.

Format

DEFINE/COMMAND[/qua1ifier .••] dyncommand equivalence

Where:

dyncommand is the name of the
defining. Note that
special kind of symbol.

dynamic command
this name is

you are
merely a

equivalence is any static command (function) listed in this
chapter.

Description

This function allows you to define your own commands, called
dynamic commands. Each dynamic command must resolve to a Flow
function, also called a static command.

Examples

The following example defines the dynamic command PIP. The
static command equivalence runs the Tool Kit PIP utility. Note
that the equivalence string uses the /CMD qualifier to
automatically pass parameters to PIP. Also note the double
quotes to distinguish the first delimiter of the /CMD qualifier
from the last delimiter of the DEFINE/COMMAND function.

> DEFINE/COMMAND PIP "RUN/TASK PIP/CMD=""PIP"
> PIP X/LI

Flow translates the command PIP X/LI as:

> RUN/TASK PIP/CMD="PIP X/LI"

NOTE

Flow functions have precedence over
functions.

3-19

dynamic

DEFINE/COMMAND

See Chapter 6 for a description of the following qualifiers that
you can specify for this function:

/NODELETE
/OVERRIDE
/PROCESS
/SYSTEM
/USER
/VOLATILE

3-20

DEFINE/KEY

3.15 DEFINE/KEY

Assign a Flow function to a specified key.

Format

DEFINE/KEY[/qualifier •••] keynumber equivalence

Where:

keynumber is the numeric value of the key that you are
defining.

equivalence

Description

is any Flow function or
invocation.

command procedure

This command lets you store a Flow function in a function key or
keypad key on the Professional's terminal keyboard. Once you
have defined a key, pressing it causes Flow to execute the stored
command(s).

Note that the Dumb Terminal Emulator (DTE) disables key
definitions that you have established with DEFINE/KEY.

Table 3-1 lists the numeric value of each function and keypad key
on the Professional 350 keyboard. You cannot define keys that
the table lists as reserved.

Table 3-1: Key Values

Key
Type

Function Keys

Key
Value

1

2

3

4

5

6

7

8

3-21

Key
Name

Reserved

Reserved

BREAK

SETUP

F5

Reserved

RESUME

CANCEL

DEFINE/KEY

Key Key Key
Type Value Name

9 MAIN SCREEN

10 EXIT

11 Fll

12 F12

13 F13

14 ADDTNL OPTIONS

15 HELP

16 DO

17 F17

18 F18

19 F19

20 F20

21 FIND

22 INSERT HERE

23 REMOVE

24 SELECT

25 PREV SCREEN

26 NEXT SCREEN

27 up arrow

28 left arrow

29 down arrow

30 right arrow

31 PFI

32 PF2

3-22

Key
Type

Keypad Keys

DEFINE/KEY

Key
Value

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Key
Name

PF3

PF4

minus

comma

period

ENTER

0

1

2

3

4

5

6

7

8

9

See Chapter 6 for a description of the following qualifiers that
you can specify for this function:

/NODELETE
/OVERRIDE
/PROCESS
/SYSTEM
/USER
/VOLATILE

Examples

> DEF/KEY 19 "DIR"
> DEF/KEY 20 "RUN DTE"

3-23

DEFINE/LOGICAL

3.16 DEFINE/LOGICAL

Associate a logical name to a physical device name, a complete
file specification, or another logical name.

Format

DEFINE/LOGICAL logname equivalence

Where:

logname

equivalence

Description

is the name of the logical that you are creating.
Its maximum length is 30 bytes.

is a string to which the new logical name refers.
Its maximum length is 512 bytes.

The difference between a symbol and a logical is that Flow stores
symbols in a symbol table that resides on disk. Consequently,
symbols are always available, even if you terminate PRO/Office
Workstation and later re-execute it. Logicals, however, are
handled by p/OS, which only temporarily stores them in main
memory. p/OS does not preserve logicals after terminating the
task in which you define them.

You can display a current logical assignment by invoking the SHOW
LOGICAL function. Also, you can delete a current logical by
invoking the DELETE/LOGICAL function.

See also the ASSIGN command, which performs the same operation in
a different format.

p/OS System Routine

PROLOG

Examples

> DEFINE/LOG TEST1 "DW1:[USERFILES]TEST1.TSK"
> RUN/TASK TEST1
> DELETE/LOGICAL TEST1

3-24

DEFINE/SYMBOL

3.17 DEFINE/SYMBOL

Create a symbol table'entry and assign an equivalence name to it.

Format

DEFINE/SYMBOL[/qualifier .••] symname equivalence

Where:

symname

equivalence

Description

is the name of the symbol that you are creating.
Its maximum length is 30 characters.

is a string to which the new symbol refers.
maximum length is 512 bytes.

Its

Flow strips spaces, tabs, and control characters from the symbol
name and the equivalence string. Additionally, Flow treats the
slash (/) in a equivalence string as a delimiter. To retain any
of these characters in the equivalence string, you must surround
the string with quotation marks.

Note you can specify quotation marks anywhere in the command
line. To represent quotation marks within a quoted equivalence
string, you must double the quotation marks within the string.

Also, note that Flow changes the equivalence string to all
uppercase characters. Again, you can surround the string with
quotation marks to override this.

You should not define the symbols that begin with the following
characters (they are reserved):

• FLOW$

• FI$

• OA$

• MAIL$

• XNET$

• DTF$

3-25

DEFINE/SYMBOL

• ORDA$

The difference between a symbol and a logical is that Flow stores
symbols in a symbol table that resides on disk. Consequently,
symbols are always available, even if you terminate PRO/Office
Workstation and later re-execute it. Logicals, however, are
handled by p/OS, which only temporarily stores them in main
memory. p/OS does not preserve logicals after terminating the
task in which you define them.

See Chapter 6 for a description of the following qualifiers that
you can specify for this function:

/NODELETE
/OVERRIDE
/PROCESS
/SYSTEM
/USER
/VOLATILE

Examples

> DEF/SYM/SYS FLOW$ STARTUP FUNCTION "@DWl:[COMMANDS]LOGIN.COM"
> DEF/SYM MYNAME "MARTY FRIEDMAN"

3-26

DEFINE/TAG

3.18 DEFINE/TAG

Define a tag for a Form Interface form.

Format

DEFINE/TAG[/qualifier •.•] tagname equivalence

Where:

tagname

equivalence

Description

is the name of the tag you are defining. Do not
include the dollar sign ($) in a tag; this symbol
delimits a tag from a form name in a complete
form specification. The maximum length of the
tagname is 30 bytes.

is a series of qualifiers that provide
information to FI about the tag. The maximum
length of the equivalence is 512 bytes.

See Table 4-1 in Chapter 4 for a desciption of the qualifiers you
can specify in the equivalence.

See Chapter 6 for a description of the following qualifiers that
you can specify on the DEFINE/TAG function:

/NODELETE
/OVERRIDE
/PROCESS
/SYSTEM
/USER
/VOLATILE

Example

> DEFINE/TAG MYDFLT "/LIB=MYLIB.FLB/FORM=MYMAIN/DEF=A1/DIS=FMS"
> FORM MYDFLT luse tag only

> DEFINE/TAG MYDFLT "/LIB=MYLIB.FLB/DEF=A1/DIS=FMS"
> FORM MYDFLT$MYMAIN luse tag in form specification

3-27

DELETE/APPLICATION

3.19 DELETE/APPLICATION

Delete a Flow symbol representing an application installed on the
p/OS Main Menu.

Format

DELETE/APPLICATION[/qualifier ••.] appname

Where:

appname

Description

is the symbol that you want to delete, having
previously defined it using DEFINE/APPLICATION.

You can look at DEFINE/APPLICATION and DELETE/APPLICATION as
special cases of DEFINE/SYMBOL and DELETE/SYMBOL. Here we refer
to special symbols that represent P/OS applications.

See Chapter 6 for information on the following qualifiers that
you can specify:

/OVERRIDE
/PROCESS
/SYSTEM
/USER

Example

> DEL/APPL/SYS SUPERCOMP

3-28

DELETE/COMMAND

3.20 DELETE/COMMAND

Delete a dynamic command definition.

Format

DELETE/COMMAND[/qualifier ..•] dyncommand

Where:

dyncommand

Description

is the symbol that you want to delete, having
previously defined it using DEFINE/COMMAND.

Once you have.deleted a dynamic command definition, you can no
longer refer to the dynamic command name.

See Chapter 6 for information on the following qualifiers that
you can specify:

/OVERRIDE
/PROCESS
/SYSTEM
/USER

Example

> DEL/COM/SYS SPAWN

3-29

DELETE/DIRECTORY

3.21 DELETE/DIRECTORY

Delete a directory.

Format

DELETE/DIRECTORY [dev:]dirspec

Where:

dev: is an optional device name, such as DWl: or
DZl:.

dirspec is a directory name enclosed in square brackets.

Description

This function deletes a directory from your system.

P/OS System Routine

PRODIR

Example

> DEL/OIR OWl: [MYDIR]

3-30

DELETE/KEY

3.22 DELETE/KEY

Remove a key definition established with DEFINE/KEY.

Format

DELETE/KEY[/qualifier •••] keynumber

Where:

keynumber

Description

is the keypad or function key value of the key
that you have previously defined with DEFINE/KEY.
See the description of DEFINE/KEY for details.

Use DEFINE/KEY to redefine a key whose definition you have
deleted.

See Chapter 6 for information on the following qualifiers that
you can specify:

/OVERRIDE
/PROCESS
/SYSTEM
/USER

Example

> DELETE/KEY/PROC 19

3-31

DELETE/LOGICAL

3.23 DELETE/LOGICAL

Delete a logical name definition.

Format

DELETE/LOGICAL logname

Where:

logname is the name of the logical to be deleted.

Description

Use the DEFINE/LOGICAL command to redefine a logical that you
have deleted.

P/os System Routine

PROLOG

Example

> DEL/LOG MYLOG

3-32

DELETE/SYMBOL

3.24 DELETE/SYMBOL

Delete a symbol definition from the symbol table.

Format

DELETE/SYMBOL[/qualifier •••] symname

Where:

symname

Description

Is the name of the symbol to be deleted.
maximum length is 30 characters.

Its

Use the DEFINE/SYMBOL command to redefine a symbol that you have
deleted.

See Chapter 6 for information on the following qualifiers that
you can specify:

/OVERRIDE
/PROCESS
/SYSTEM
/USER

Example

> DEL/SYM/SYS MYSYM

3-33

DELETE/TAG

3.25 DELETE/TAG

Remove a a tag name for a Form Interface form.

Format

DELETE/TAG[/qualifier ••.] tagname

Where:

tag name is the tag name of an FI form.

Description

See Chapter 4 for details on tags.

See Chapter 6 for information on the following qualifiers that
you can specify:

/OVERRIDE
/PROCESS
/SYSTEM
/USER

Example

> DEL/TAG/SYS MY TAG

3-34

DIRECTORY OR SHOW DIRECTORY

3.26 DIRECTORY OR SHOW DIRECTORY

Display information for an individual file or a group of files.

Format

DIRECTORY [filespec [,filespec] •••]

or

SHOW DIRECTORY [filespec [,filespec] •••]

Where:

filespec

Description

is the file specification for the file for which
you want information. You can specify none, one,
or several file specifications.

Specifies the file or files for which information should be
displayed. If you do not supply a filespec, a complete directory
for the default directory is displayed.

You can supply one or more filespecs, separated by commas. If
you do not supply a version number, only information on the most
recent versions is displayed.

You can use a wildcard in any field except the device field. The
default value of the filespec is *.*. See the examples below.

You can display another directory by supplying the directory name
in this field. You can also specify device names in the form
ddnn: in this field.

Examples

Since the default value of the filespec is *.*., the following
commands are equivalent (assuming that your current device and
directory are DWl:[USERFILES]):

> DIR
> DIR
> DIR
> DIR
> DIR

* * .
DWl:
DWl:[USERFILES]
[USERFILES]

3-35

DISMOUNT

3.27 DISMOUNT

Declare a volume to be logically dismounted.

Format

DISMOUNT dev:

Where:

dev:

Description

is the device on which the volume is currently
mounted.

This function allows you to manually dismount a volume.

plos System Routine

PROVOL

Examples

> DISMOUNT DZl:
> DISMOUNT OA:

3-36

DOC

3.28 DOC

Invoke a Document Services Facility function.

Format

DOC dsfunction

Where:

dsfunction

Description

is one of the Document
described in Chapter 5.

Services functions

This function allows you to manipulate the document database via
the Document Services Interface (DSI). For further information,
see Chapter 5.

Examples

> DOC CAB/REQ=SELECT
> DOC DISPLAY
> DOC EDIT/$NUM=34

! Select a file cabinet
! Display the current document

! Edit document 34 in current cabinet

3-37

EDT

3.29 EDT

Run the EDT editor.

Format

EDT [inputspec]

Where:

inputspec

Description

is the file specification of the file that you
want to edit. If the file does not exist, p/OS
creates it for you. If you do not specify
inputspec, EDT returns the EDT> prompt. This
allows you to enter commands in MCR format.

Flow installs EDT when you start up the PRO/Office Workstation
application.

The PRO/Office Workstation kit contains two EDT startup command
files:

• [1,2]EDTSYS.EDT

• 'FLOW$ EXE ACCOUNT'EDTINI.EDT. - -

When you invoke EDT, it always reads [1,2]EDTSYS.EDT first. This
file contains definitions for various keys, including editing
keypad keys, the HELP and DO keys, and some of the function keys
on the top row. Also, the file defines the FIND, INSERT HERE,
REMOVE, SELECT, PREVIO'US SCREEN, and NEXT SCREEN keys.

You can edit [1,2]EDTSYS.EDT, placing the following line at the
end of the file:

SET COMMAND EDTINI

This causes EDT to look in the
called EDTINI.EDT, which can
startup commands.

current directory for a file
contain more key definitions and

EDT supports the full DEC Multinational Character Set generated
by the Professional keyboard, including characters generated by
compose sequences. Also, EDT uses the MCR command line format
for specifying input and output files. See the EDT documentation
for a description of that command format.

3-38

EMIT

3.30 EMIT

Write a value to the symbol $RESULT.

Format

EMIT[/qualifier] integer

Where:

integer is a decimal, integer value.

Description

EMIT is a means of sending status information from an offspring
task to a parent task. The function allows you to synchronize a
parent and offspring task.

The qualifier is:

/NAME=taskname

Where:

taskname

Example

is the name of the task to which you wish
to emit information. The task must be a
parent of the emitting task (that is, it
must have spawned or be connected to the
emitting task).

Suppose you write a command procedure called EMITST.COM, as
follows:

> SET VERIFY
> ON ERROR THEN CONTINUE
> WRITE SYS$OUTPUT "BEGINNING EMITST.COM"
> WAIT 2
> WRITE SYS$OUTPUT "EMITTING STATUS"
> EMIT/NAME=FLOW 6
> WAIT 2
> WRITE SYS$OUTPUT "TERMINATING EMITST.COM"
> EXIT

Then, suppose you invoke this command procedure from Flow CLI, as
follows:

3-39

EMIT

RUN/TASK/GO/NAME=SPAWN [ZZFLOW]FLOW.TSK/CMD="@[COMMANDS]EMITST"

(Assume that the command procedure is in directory [COMMANDS].)

That CLI command creates an offspring Flow task (named SPAWN),
which executes the command procedure. The command procedure
emits the value 6 to the parent Flow task. The symbol $RESULT in
the parent process table will contain the value "6". Note that
the parent and the offspring continue running after the emit.
You can use this function to perform parallel processing.

3-40

END

3.31 END

Terminate the current Flow task.

Format

END

Description

END is useful when you have invoked more than one Flow task, and
you want to terminate the current Flow task. Note that you must
invoke END to terminate the first Flow task (the one installed by
the installation file during PRO/Office Workstation startup).

Example

Suppose a command procedure contains the statement:

> ON ERROR THEN END

If you execute the command procedure from an offspring Flow and
the ERROR condition arises, the offspring Flow terminates. You
would return to the parent Flow.

Note, however, that the END statement in a Flow task that you
spawned from a parent Flow is not required. An offspring Flow
task automatically terminates when the command file it is
executing completes.

3-41

EXIT

3.32 EXIT

Leave the current environment.

Format

EXIT

Description

Invoking EXIT causes you to pop the current Flow command from the
Flow stack. This brings you back to the Flow command just prior
to the one last executed.

Note that when the Flow stack contains only one command the
first command EXIT will re-execute that command.
Consequently, you cannot use EXIT to terminate the first Flow
function (either MENU MAIN, the command eqivalence of
FLOW$ FIRST FUNCTION, or the menu selected from the SUFIR menu).
To terminate the first Flow function, use the END command.

Example

> EXIT

3-42

EXTERNAL

3.33 EXTERNAL

Invoke a facility via the Flow Bus.

Format

EXTERNAL[/qualifier] F$name [servcom]

Where:

F$name is the installed name of the task you want to
invoke. Currently, these can be:

function

1. F$DS (invokes DSI
Interface)

Document

2. F$MAIL (invokes Flow Mail Services)

Services

is a facility function that you can pass to the
facility upon activating it.

Description

The DOC and MAIL functions both expand to the EXTERNAL function
specifying the appropriate task name. Use DOC and MAIL whenever
possible.

See Section 3.7 for a description of the Flow Bus, as well as a
description of the difference between the CALL and EXTERNAL
functions.

The qualifier is:

/INSTALL=filename.TSK

This qualifier installs, runs, and removes filename.TSK
just before executing F$name.

Example

The following function invokes the Document Services Interface
and passes it the Document Services command CREATE. This is
equivalent to using the function DOC CREATE.

> EXTERNAL F$DSI CREATE/.TIT="This is the title."

3-43

FIELD

3.34 FIELD

Control the input and output of field data on a form.

Format

FIELD[/qualifier ..•] formspec fieldname[/qualifier]

Where:

formspec

fieldname

Description

is the form specification of the form containing
the field that the Form Interface Facility
activates.

is the FMS name of an enterable field in the
specified form.

Calling the FIELD function
function and specifying
selected field.

is
the

equivalent to calling the FORM
/CHOICE qualifier to activate a

A form specification has the format:

tag$formname

Where:

tag

formname

is a tag you have defined with DEFINE/TAG.
example:

> DEFINE/TAG MYTAG "/LIB=LIBR.FLB/DEF=Al"

is the name of the desired form.

For

After defining the tag MYLIBR, you could invoke the FIELD command
as follows:

> FIELD MYTAG$MYFORM CHOICE/OUT="DATA_TO_DISPLAY"

The Form Interface Facility searches in the library LIBR.FLB for
the form called MYFORM.FRM, which contains a field ACHOICE. The
user can enter a choice in this field.

If you do not specify a tag, Flow translates the default tag,
DEFAULT. This tag contains the name of the default library,
OAFMS.FLB. For example, if you place MYFORM in the default
library, you could invoke the FIELD command without using a tag:

3-44

FIELD

> FIELD MYFORM ACHOICE

On the other hand, you can specify a library and a form in the
tag specification:

> DEFINE/TAG MYTAG "/LIB=OAFMS.FLB/FOR=MYFORM.FRM/DEF=AI"

Having defined such a tag, you could then invoke the FIELD
function without specifying a formname:

> FIELD MYTAG !specify a tag only

See Chapter 4 for details regarding tags.

The qualifiers are:

/SYMBOL=symbolname

/CLEAR

Specifies either of the following:

• a symbol into which the Form Interface places the
retrieved input if you specified /INPUT,

• a symbol from which
outputtext if you
qualifier /OUTPUT.

the Form Interface
also specify the

Clears the screen and draws the current form.

reads the
parameter

There are parameter qualifiers for the fieldname parameter:

/OUTPUT[=outputtext]

/INPUT

Causes the Form Interface to put outputtext in the
specified field. You must specify the /SYMBOL=symbolname
qualifier if you omit =outputtext from /OUTPUT.

Allows the Form Interface to get input from the specified
field.

3-45

FIX

3.35 FIX

Load and locks an installed task or region in memory.

Format

FIX[/qualifier] instname

Where:

instname is the installed name of the task that you want
to fix.

Description

Once a task is fixed in a memory partition, P/OS can service
subsequent requests for the task much more quickly than if the
task were not fixed. This is because a fixed task is
memory-resident and P/os does not have to load it from disk.

You canno~ fix an active task. However, you must install a task
before fixing it. Also, fixed tasks remain memory-resident even
after they exit or abort.

Not all tasks run properly when fixed. A task might require data
areas to contain certain values when loaded in from the disk.
The first time the task is run, these data areas might be
modified and the task can run unpredictably thereafter. Tasks
that initialize their data areas, and therefore do not have this
problem, are called serially reentrant.

You can fix an overlaid task. If its root segments are serially
reentrant, it will run correctly. However, since p/os must still
read the tasks's overlaid segments from disk (unless you built
the task using memory-resident overlays), you gain little by
fixing it.

The following qualifier is available:

IREGION

Specifies that you want to fix a common region rather
than a task.

3-46

p/os System Routine

PROTSK

Examples

> FIX test.tsk
> FIX

FIX

3-47

FORM

3.36 FORM

Invoke the Form Interface Facility, which displays the specified
form.

Format

FORM[/qualifier ..•] formname

Where:

formname is the name of a form as it appears either in an
FMS or FDT library.

Description

The FORM command invokes the Form Interface (FI), causing it to
display a form. FI opens the library containing the form, scans
the named data for form specifications (in the case of FMS),
displays the form, and then waits for input from any specified
fields.

You must specify a form; there is no default form. If you do not
specify a field (by specifying /CHOICE), then FI uses the default
field CHOICE.

The qualifiers are:

/FORM=formname

Specifies the name of the desired form (formname) within
an FMS or FDT library.

/LIBRARY=libname

Specifies the name of the FMS or FDT library (libname)
from which FI is to extract the form.

/FILE=filespec

Specifies a file specification containing form text for a
static form. See the chapter on the Form Interface
Facility for a description of static forms.

/DEFINITION

You can also specify this qualifier in a tag definition.
See Chapter 4 for a description of this qualifier.

3-48

/DISPLAY

Examples

FORM

You can also specify this qualifier in a tag definition.
See Chapter 4 for a description of this qualifier.

> FORM OA$PROFILE
> FORM/DEF=Al/DISP=FMS/LIB=OAFMS.FLB/FORM=PROFIL

3-49

GOTO

3.37 GOTO

Transfer execution to a labeled statement in a command procedure.

Format

GOTO label

Where:

label

Description

specifies an alphanumeric label appearing as the
first item (after the dollar sign) in a command
line. When Flow executes the GOTO command,
execution passes to the command following the
specified label.

The label must follow the GOTO statement in the current command
procedure. It must be terminated with a colon (:) and cannot
contain blanks. If the specified label does not exist, the
procedure exits.

Example

$ GOTO mylabel

3-50

HELP

3.38 HELP

Display help.

Format

HELP

Description

This function displays a frame that provides help on the eLI
commands.

Example

> HELP

3-51

IF ••. THEN

3.39 IF ••• THEN

Conditionally execute a command based on the value of an
expression.

Format

IF expression THEN command

Where:

expression is the test that Flow performs.

command is the function that Flow executes if the value
of the expression is true.

Description

Flow's expression evaluation consists of general logical
comparisons and a limited number of arithmetic functions. The
expression must resolve to a boolean value. Note that Flow does
not resolve--all arithmetic expressions to a boolean value.
Arithmetic operations support integers only.

Note that parenthetical ordering is not supportedi all operations
occur left to right.

Flow translates strings into all uppercase characters for
comparisons. Strings beginning with "Y" or "T" are logically
truei all others are false.

The specific operations you can use in an expression are

String logical operations:

.eqs. - equal string

.nes. - not equal string

.ges. - greater than or equal string

.gts. - greater than string

.les. - less than or equal string

.lts. - less than string

Integer logical operations:

.eq. - equal to

.ne. - not equal to

.ge. - greater than or equal to

.gt. - greater than

.le. - less than or equal to

.It. - less than

3-52

IF •.• THEN

.and. - logical AND of integer bits

.or. - logical OR of integer bits

.xor. - logical exclusive OR of integer bits

Integer arithmetic operations:

+ - add integers
subtract integers

* - mUltiple integers
/ - divide integers
.not. - complement of an integer

You can use IF to check the FLOW status from a command ($STATUS)
or the task exit status from a RUN/TASK command ($RESULT). You
can also use IF in conjunction with the LET command to build
loops with counters.

Note that any qualifiers you specify on this function must appear
after the THEN keyword, not the IF keyword. (Only the global
qualifiers described in Section 3.1 are available.)

Examples

$ IF a .eqs. b THEN/WARNING/QUIET CONTINUE
$ IF $STATUS .and. 1 THEN WRITE SYS$OUTPUT "Success!!!"
$ IF a .eqs. b THEN GOTO aequalsb
$ IF counter .It. 10 THEN GOTO loop
$ IF a*lO .eq. 500 THEN EXIT

The following are examples of ILLEGAL syntax:

$!mathematic, not logical expression:
$ IF a*10 THEN EXIT

$!Correct syntax is:
$ IF a*10 .and. 1 THEN EXIT

$!parentheses are not supported:
$ IF (a.eqs.b) .and. (c.ne.d) THEN GOTO label

$!Correct syntax is:
$ IF a.nes.b THEN GOTO nottrue
$ IF c.eq.d THEN GOTO nottrue

3-53

INQUIRE

3.40 INQUIRE

Interactively assign a value to a symbol during execution of a
command procedure.

Format

INQUIRE symbol [promptstr]

Where:

symbol

promptstr

Description

is the name of a symbol. It can be a symbol that
you have previously defined with SYMBOL/DEFINE,
or it can be a symbol that the INQUIRE function
defines for you (in the symbol process table).

is the prompt string that Flow displays on the
terminal screen upon executing the INQUIRE
command. If the prompt string contains any
lowercase characters, mUltiple blanks, or tabs,
or at sign (@) characters, enclose the entire
string in quotation marks ("promptstr tl

).

This function allows a procedure to display a prompt and assign a
string to a symbol. Note this is analogous to the MENU/RETURN
and FIELD commands, which use the Form Interface Facility to
perform the same operation.

The qualifier is:

/[NO] PUNCTUATION

Controls whether or not a colon (:) and a space follow
the prompt when Flow displays it on the terminal screen.
By default, Flow provides this punctuation. If you want
to suppress the colon and space, speckfy /NOPUNCTUATION.

See Chapter 6 for information on the other qualifiers that you
can specify:

/NODELETE
/OVERRIDE
/PROCESS
/SYSTEM
/USER
/VOLATILE

3-54

INQUIRE

Example

> DEFINE/SYMBOL CONT N
> INQUIRE CONT "Enter Y to continue: "
> IF .NOT. CONT THEN EXIT

3-55

INSTALL

3.41 INSTALL

Include a task image, common block, or library in the System Task
Directory, thus making it known to the system.

Format

INSTALL[/qualifier ••.] filespec

Where:

filespec is the file specification of the
common block, or library that
install. The default type is .TSK.

task image,
you want to

Description

Flow stores the installed name of a task, library, or region in
the symbol $NAME. Note that the RUN/APPLICATION function can
also install tasks, libraries, and regions. The installed name
of an image often differs from that of the file specification
name.

The symbol $NAME is actually defined through the Symbol Table
Facility, not as a special symbol in Flow. It is defined as a
volatile symbol in the process table.

An installed task is dormant until the p/OS executive requests it
to run. You can request an installed task to run by invoking the
RUN/TASK function.

Normally, if you attempt to install a task (or common or library)
with a name that is already in use, you raise the fatal ERROR
condition, causing an executing command procedure to abort.
However, by specifying the /WARNING qualifier you convert the
ERROR condition to a nonfatal WARNING condition. Note that this
conversion occurs only when the ERROR condition arises as a
result of your attempt to specify a name that is already in use.

The qualifiers are:

/NAME=instname

Specifies the name (instname) by which you can later
refer to the installed task. The Professional
Application Builder (PAB) sets this default during
linking. The /NAME qualifier overrides the PAB default.

3-56

IFIX

INSTALL

Causes Flow to call the p/os callable routine PROTSK to
fix the task, common block, or library in memory. See
the p/os System Reference Manual for further information
on PROTSK.

3-57

LET

3.42 LET

Assign the value of an expression to a symbol.

Format

LET symbol = expression

Where:

symbol

expression

is the name of a symbol. It can be a symbol that
you have previously defined with SYMBOL/DEFINE,
or it can be a symbol that the LET function
defines for you (in the symbol process table).

is an expression whose result you assign to the
symbol.

Description

Note that you 'can use combinations of the IF, LET, and GOTO
commands to form loops.

Examples

>
>
>
>

LET
LET
LET
LET

a
b
a
a

=
=
=
=

1+2+3+4
4*a
"This is nice"
$status .and. 1

! General arithmetic
! Use of symbols

! Note literal is uppercased
! Returns "T" or "F"

3-58

MAIL

3.43 MAIL

Invoke a Mail Services Facility function.

Format

MAIL msfunc

Where:

msfunc is one of the Mail Services Facility functions
described in Chapter 7.

Description

This function allows you to handle mail messages.
information, see Chapter 7.

Examples

> MAIL CREATE
> MAIL MORE

3-59

For further

MENU

3.44 MENU

Invoke the Form Interface Facility, which displays the specified
menu.

Format

MENU[/qualifier ...] menuname

Where:

menuname is the name of a menu as it appears either in an
FMS or FDT library.

Description

The MENU command invokes the Form Interface (FI), causing it to
display a menu. FI opens the library containing the form, scans
the named data for form specifications (in the case of FMS),
displays the form, and then waits for input from any specified
fields.

You must specify a form; there is no default form. If you do not
specify a field (by specifying /CHOICE), then FI uses the default
field CHOICE.

The qualifiers are:

/[NO]ALLOW

IF you specify /ALLOW, the Form Interface Facility lets
Flow attempt to process the user's choice if that choice
does not exist on the displayed menu. If you specify
/NOALLOW, Flow cannot process the choice, and no action
occurs for nonexistent choices.

/[NO] EXACT

If you specify /EXACT, the Form Interface Facility reads
the entire name of a menu selection as it is stored in
its form library. If the user's choice is not exactly
the same as the stored name, then no match occurs. If
you specify /NOEXACT, a match occurs when the user's
choice coincides with the first n letters of the stored
choice, where n is the length of the user's choice.

3-60

/[NO]KEY

/ONCE

/CHOICE

MENU

This qualifier enables or disables recognition of escape
sequences from the terminal keypad during display of the
menu.

Displays the requested menu, allows the user to make a
selection, processes the user's selection, but does not
return to the requested menu after processing the
selection.

The following example contrasts MENU and MENU/ONCE.

• Column 1 shows three menus, each invoked with the
MENU command. Upon unwinding the Flow stack (with
the EXIT or UNWIND function), FI returns each time to
the previous MENU invocation. The order of display
is A-B-C; the order of unwinding is C-8-A.

• Column 2 shows how MENU/ONCE causes FI to display
MENU B only once, skipping that menu when unwinding.
The order of display is A-B-Ci the order of unwinding
is C-A.

Column 1 Column 2
-------- --------

MENU A +-->MENU A
~ I

1
I

I v v
MENU B MENU/ONCE B
~ I

I

I
I v v

MENU C +--+MENU C

Specifies the name of a field in the form that will
accept user input.

/FORM=formname

Specifies the name of the desired form (formname) within
an FMS or FDT library.

3-61

MENU

/LIBRARY=libname

Specifies the name of the FMS or FDT library (libname)
from which FI is to extract the form.

/FILE=filespec

/RETURN

Specifies a file specification containing form text for a
static form. See the chapter on the Form Interface
Facility for a description of static forms.

Causes FI to return MENU operation information that Flow
stores in two symbols:

$RESULT contains the Flow function (FMS named data or FDT
action string) that would be invoked as a result
of the user's selection.

$CHOIC~ contains the actual characters the user entered
to make the selection.

When you specify /RETURN, FI does not execute the user's
choice; the switch only allows you to obtain the values
FI places in the $RESULT and $CHOICE.

You can also specify the following qualifiers:

/DEFINITION
/DISPLAY

See the section on tag qualifiers in Chapter 4 for a description
of these qualifiers.

3-62

MOUNT

3.45 MOUNT

Specify that a volume is on line.

Format

MOUNT dev:labelspec[/qualifier]

Where:

dev:

labelspec

Description

is the device on which you want to mount the
volume.

is the volumename enclosed in brackets.

You can mount FILES-II or foreign disk volumes.

The qualifier is:

/FOREIGN

This qualifier specifies that you are mounting a foreign
disk volume.

p/OS System Routine

PROVOL

Examples

To make sure that the required disk is mounted in DZI:, invoke
DISMOUNT and MOUNT as follows:

> DISMOUNT DZI:
> MOUNT DZI:mydisk

3-63

NETWORK

3.46 NETWORK

Invoke a Network Services function.

Format

NETWORK[/qualifier •••] nsfunc

Where:

nsfunc is a Network Services function.

Description

The NETWORK command runs the XCOM
Services Facility. See Chapter
Services functions you can perform.

task, part of the Network
8 for details on the Network

The qualifiers are:

/TIMEOUT=n

/TERMINAL

The value of n is the NETWORK call timeout.
default, n equals 60 seconds.

By

Run the Dumb Terminal Emulator (DTE) immediately
after executing the Network Services command, and
exit the emulator when the NETWORK command is
done.

The global qualifiers described at the beginning of this chapter
are also available.

Examples

> NET START
> NETWORK LOGIN MOSES::M FRIEDMAN
> NETWORK FINISH
> NETWORK STOP
> NET RUN MOSES::M_FRIEDMAN/CMD="PRINT 'OA$CURMES FILE'"

3-64

ON ••• THEN

3.47 ON •.• THEN

Establish a trap for a specified condition.

Format

ON condition THEN function

Where:

condition can be any of the following conditions:

• ERROR

• WARNING

function is any Flow function except ON.

Description

Use the ON function to establish an error trap. Execution of the
command in the ON function does not occur unless the specified
condition arises.

The ERROR and WARNING conditions can arise from any Flow function
within a command procedure. In order to successfully establish
an error trap, you must have executed the ON function prior to
executing the function that raises the specified condition.

Note that any qualifiers you specify on this function must appear
after the THEN keyword, not the ON keyword. (Only the global
qualifiers described in Section 3.1 are available.)

Examples

$ ON WARNING THEN/CLEAR CONTINUE
$ ON WARNING THEN CONTINUE
$ ON ERROR THEN EXIT
$ ON ERROR THEN GOTO error trap

3-65

qualifier position
ignore error trap
terminate
handle error

PURGE

3.48 PURGE

Delete all but the latest versions of files, and release the
storage space that the deleted files occupied. >Flow function

Format

PURGE [/qualifier] filespec [, filespec] •••

Where:

filespec is a file specification for a file you want to
purqe.

Description

PURGE is useful to clean up your directories.

The qualifiers are:

/CONFIRM

/LOG

This qualifier causes Flow to prompt you for confirmation
that it should delete the specified file(s).

This qualifier specifies that the deleted files be listed
on your terminal screen.

3-66

REMOVE

3.49 REMOVE

Delete a task name from the System Task Directory or delete a
region name from the Common Block Directory.

Format

REMOVE [/REGION] instname

Where:

instname

Description

is the installed name of the task you want to
remove.

To remove an active task, you must first abort the task.

If a task is fixed, REMOVE first unfixes it and then removes it.

The /REGION qualifier specifies that you want to remove a region
from the Common Block Directory.

P/OS System Routine

PROTSK

3-67

RENAME

3.50 RENAME

Change the name, type, or version number of an existing file8

Format

RENAME oldspec newspec

oldspec is the file specification prior to renaming.

newspec is the desired new file specification of the
file.

Description

You can use RENAME to change not only the name of a file, but the
file type or version number.

The output specification (newspec) of the RENAME command uses a
default filename and file extension of "*.*" Consequently,
assuming that your current device and directory are
DWl:[USERFILES], the following commands are equivalent:

> RENAME MYFILE.DAT *.*
> RENAME MYFILE.DAT DWl:
> RENAME MYFILE.DAT DWl:[USERFILES]
> RENAME MYFILE.DAT [USERFILES]

3-68

RUN/APPLICATION

3.51 RUN/APPLICATION

Run an installed and defined p/OS application.

Format

> RUN/APPLICATION [/qualifier] [appname]

Where:

appname is the name of the application you have
previously defined using the DEFINE/APPLICATION
function. Do not specify appname if you specify
the /SELECT qualifier.

Description

RUN/APPLICATION allows you to invoke an application installed on
p/OS. Flow invokes the task F$APPL to actually read the
application's installation file and run the application.

Note that you might run an application that attempts to install
tasks that are already installed. For example, if you attempt to
run the PRO/Tool Kit, you receive error messages saying that the
system cannot install PIP.TSK and EDT.TSK. You must remove these
tasks before attempting to run the application:

> REMOVE •.. PIP
> REMOVE ..• EDT
> RUN/APPLICATION toolkit

After running the application you must reinstall the tasks:

> INSTALL [ZZFLOW]PIP
> INSTALL [ZZFLOW]EDT

You can easily perform these operations in a command procedure.

The qualifier is:

/SELECT

Examples

This qualifier causes Flow to display all the
applications installed on the system. The user can press
the PREV SCREEN and NEXT SCREEN keys to scroll the form.

> RUN/APPL TOOLKIT
> RUN/APPLICATION/SELECT

3-69

RUN/TASK

3.52 RUN/TASK

Run a task, installing it beforehand and removing it afterwards
if necessary.

Format

RUN/TASK[/qualifier .••] filespec[/qualifier]

Where:

filespec

command

is the file specification of the .TSK file
containing the task image you want to run.

is a command that you can pass to the task you
are running.

Description

The RUN function allows you to execute a task. For example, you
can directly run the following p/OS (VI.7) tasks:

• C$DUTL (P/OS Disk Services)

• C$FUTL (P/OS File Services)

• C$PUTL (P/OS Print Services)

• C$SUTL (P/OS Setup)

• C$VUTL (p/OS View Message/Status Services)

• DTE (Dumb Terminal Emulator, part of PRO/Communications)

Flow returns the install/run status in the symbol $STATUS. Flow
returns the numeric string of the task's exit status in the
symbol $RESULT. (See an exception for the /GO qualifier.)

The symbol $STATUS exists only within Flow.

The command qualifiers are:

/NAME=taskname

This switch specifies the name of the task as installed
or as you want to install it before running it. If you
do not specify /NAME, then the RUN function uses the p/os
callable system routine PROTSK to determine the task
name. See the P/OS System Reference Manual for details
on PROTSK.

3-70

/GO

RUN/TASK

The /GO switch causes the specified task to run
asynchronously, in the background. Without /GO, the
RUN/TASK function installs the task synchronously (if
necessary), spawns the task, and then waits until the
task terminates or emits status (see the EMIT STATUS
function). However, with the /GO qualifier, the RUN/TASK
function does not wait for the spawned task to terminate
or emit status. Note you cannot access the symbols
$RESULT and $STATUS for a task run with /GO.

/STATUS

This switch causes Flow to use the status emitted by the
spawned task as the Flow status for the RUN operation.
If the low bit of the status is clear (the status is
even), Flow declares the error message:

TASK-E-TSKERR, Spawned task status is an error, STS

There is one parameter qualifier:

/CMD="command"

or

/COM="command"

This qualifier applies to the filespec parameter. /CMD
allows you to directly pass information to the task you
are invoking. Using /CMD requires that you understand
the task's call interface. You can use CMD in a a menu
(in FMS named ,data or FDT action strings) to allow a
user-selected option to be passed to the executing task.

Steps in running a task:

1. Spawn as already installed.

2. If previous step fails and name is three characters
long, spawn as ••• xxx.

3. If previous step fails, install and spawn using the
installed name. Remove when task completes.

3-71

RUN/TASK

p/os Directive

PROTSK

Example

The following example invokes the EDT editor and passes EDT the
name of the file to edit. Note that EDT is an installed task
with the taskname ••• EDT.

> RUN/TASK ..• EDT/CMD="EDT myfile.dat"

3-72

SET DEFAULT

3.53 SET DEFAULT

Change the default device and/or directory name.

Format

SET DEFAULT [ddnn:]dirspec

Where:

ddnn:

dirspec

Description

is the device name.

is the directory name
brackets.

enclosed in square

Flow applies
specifications
name.

the
that

new default to all subsequent file
do not explictly give a device or directory

P/OS System Routine

PROLOG

3-73

SET KEYPAD

3.54 SET KEYPAD

Enable or disables function keys and keypad keys on the
Professional 350 keyboard.

Format

SET [NO]KEYPAD

Description

If you specify SET KEYPAD, then Flow recognizes all function keys
and keypad keys. If you specify SET NOKEYPAD, then Flow does not
recognize these keys.

Note that SET [NO]KEYPAD has no effect while you are running the
Dumb Terminal Emulator (DTE).

3-74

SET VERIFY

3.55 SET VERIFY

Control whether or not Flow displays command lines in command
procedures.

Format

SET [NO]VERIFY [outputspec]

Where:

outputspec

Description

is a file specification representing the file to
which Flow sends the displayed command lines.

By default, when Flow processes command procedures executed
interactively, it does not display the command lines at the
terminal screen. However, Flow always displays system responses
and error messages.

SET VERIFY overrides the default setting, causing Flow to display
all lines in command procedures during execution. Flow performs
all symbol substitutions before displaying a line containing any
symbols; thus you see only the equivalence strings for symbols.

When you change the verification setting, it remains in effect
for all command procedures that you subsequently execute.

3-75

SHOW APPLICATION

3.56 SHOW APPLICATION

Display the equivalence string associated with
application.

Format SHOW APPLICATION[/qualifier] appname

Where:

a defined

appname is the name of a p/OS installed application, as
you have defined it using the DEFINE/APPLICATION
function.

Description

You define an application with the DEFINE/APPLICATION function.

The qualifier is:

/ALL

Shows all currently defined applications.

3-76

SHOW COMMAND

3.57 SHOW COMMAND

Display the equivalence string associated with a dynamic command.
You define dynamic command with the DEFINE/COMMAND function.

Format

SHOW COMMAND[/qualifier] [dyncommand]

Where:

dyncommand

Description

is the name of the dynamic command
equivalence string you want to see.

The qualifier is:

/ALL

Shows all currently defined dynamic commands.

Examples

> SHOW COM SPAWN
> SHOW COM/ALL

3-77

whose

SHOW DEFAULT

3.58 SHOW DEFAULT

Display the current default device and directory name.

Format

SHOW DEFAULT

Description

Flow supplies the current device and/or directory name whenever
you omit them from a file specification.

P/OS System Routine

PROLOG

3-78

SHOW KEY

3.59 SHOW KEY

Display one or all key definitions.

Format

SHOW KEY [quali f ier] [keynumber]

Where:

key number

Description

is the keypad or function key value of the key
that you have previously defined with DEFINE/KEY.
Table 3-1 lists these values.

If you omit the keynumber parameter, the SHOW KEY function
displays all the currently defined keys.

The qualifier is:

/ALL

Shows all currently defined keys.

Examples

> SHOW KEY 19
> SHOW KEY/ALL

3-79

SHOW LOGICAL

3.60 SHOW LOGICAL

Display the equivalence string associated with a logical name.
You define a logical with the DEFINE/LOGICAL command.

Format SHOW LOGICAL logname

Where:

log name

Description

is the name of the logical whose equivalence
string you want to see.

See DEFINE/LOGICAL for a description of the differences between
logicals and symbols.

3-80

SHOW SYMBOL

3.61 SHOW SYMBOL

Display the equivalence string associated with a symbol. You
define a symbol with the DEFINE/SYMBOL command.

Format

SHOW SYMBOL[/qualifier] [symname]

Where:

symname is the name of the symbol whose equivalence
string you want to see. Do not specify symname
if you specify the /ALL qualifier.

Description

The qualifier is:

/ALL

Specifies that Flow display all the current symbols in
the symbol table.

3-81

3.62 SHOW TAG

Display one or all tags defined for Form Interface forms.

Format

SHOW TAG[/qualifier] [tagname]

Where:

tag name is the tag name of an FI form.

Description

This function lists a tag you have defined with DEFINE/TAG. See
Chapter 4 for details on tags.

The qualifier is:

/ALL

Displays all the currently defined tags.

3-82

TYPE OR SHOW FILE

3.63 TYPE OR SHOW FILE

Display the contents of a file or group of files on the terminal
screen.

Format

TYPE filespec [, filespec] •••

or

SHOW FILE filespec [,filespec] •••

Where:

filespec

Description

is the file specification for the file that you
want to type.

You can use the HOLD SCREEN key to control the output as it
scrolls up the screen.

plos System Task

PIP.TSK

3-83

UNBLOCK

3.64 UNBLOCK

Unstop a task that was stopped with the BLOCK function.

Format

UNBLOCK instname

Where:

instname

Description

is the installed name of the task that you are
resuming.

UNBLOCK is the counterpart of BLOCK; UNBLOCK/RESUME is the
counterpart of BLOCK/SUSPEND.

P/OS System Directive

USTP$

Examples

> UNBLOCK SHAWN

3-84

UNBLOCK/RESUME

3.65 UNBLOCK/RESUME

Resume a task that was suspended with the BLOCK/SUSPEND function.

Format

UNBLOCK/RESUME instname

Where:

instname

Description

is the installed name of the task that you are
resuming.

UNBLOCK/RESUME is the counterpart of BLOCK/SUSPEND.

p/OS System Directive

RSUM$

Examples

> UNBLOCK/RESUME FLOW

3-85

UNWIND

3.66 UNWIND

Execute Flow's first function.

Format

UNWIND

Description

UNWIND is similar to EXIT in that both pop functions
Flow stack. UNWIND, however, returns you all the
first function on the Flow stack (EXIT pops functions
time). You can set the first function by defining
FLOW$_FIRST_FUNCTION. For example:

> DEFINE/SYMBOL FLOW$ FIRST FUNCTION "MENU EM"

from the
way to the
one at a
the symbol

UNWIND operates by popping successive invocations off the Flow
stack until reaching Flow's first function invocation. See
Chapter 2 for a description the Flow stack.

3-86

WAIT

3.67 WAIT

Suspend Flow for a number of seconds.

Format

WAIT secs

Where:

secs

Description

is the number of seconds for which you want to
suspend Flow.

This function is useful in synchronizing separate Flow tasks.

Example

> WAIT 10

3-87

WRITE SYS$OUTPUT

3.68 WRITE SYS$OUTPUT

Write a message to the terminal screen.

Format

WRITE SYS$OUTPUT message

Where:

message

Description

is either a quoted literal string or a symbol
(not in quotes or apostrophes).

If you enclose the message in quotation marks, Flow prints the
message exactly as it appears within the quotation marks. If you
do not use quotation marks, then Flow attempts to translate the
message as a symbol. You receive an error in this case if the
message is not a defined symbol.

Examples

> WRITE SYS$OTUPUT
> WRITE SYS$OUTPUT

"This is a message string."
asymbol

3-88

CHAPTER 4

USING THE FORM INTERFACE FACILITY

The Form Interface Facility (FI) handles display and processing
of all forms. PRO/Office Workstation allows you to use either of
the following Professional Tool Kit utilities to develop your
forms:

• Forms Management System (PRO/FMS)

• Frame Development Tool (FDT)

These utilities allow you to create, store, and modify forms.

All DIGITAL-supplied PRO/Office Workstation forms were designed
using PRO/FMS. However, if you like you can provide FDT forms
for your custom Workstation. Also, you can use generic forms,
which are forms that you can partially customize using standard
editors such as EDT and PROSE.

After describing the available types of forms, this chapter
describes how to display forms, and how you use FMS, FDT, or a
standard text editor to customize them. We have organized the
latter part of the chapter according to what utility you decide
to use in designing your forms:

• Section 4.3 describes how to customize FMS forms.

• Section 4.4 describes how to customize FDT forms.

• Section 4.5 describes how to customize generic forms.

(Note that the Tool Kit documentation contains complete
descriptions of PRO/FMS and FDT. This chapter describes these
utilities within the context of PRO/Office Workstation.)

The final section in this chapter describes how to write or
customize help frames for PRO/Office Workstation.

4-1

TYPES OF FORMS

4.1 TYPES OF FORMS

There are several levels of form classification in PRO/Office
Workstation.

If you were to consider what a form's appearance is to the user,
you could classify alr--PRO/Office Workstation forms into the
following categories*:

• Argument forms

This type of form typically has many active fields for
input/output. It is suited to fetching or displaying symbol
values, and for passing values to command procedures.

• Menu forms

This form has one active field for input, usually called the
CHOICE field. It is suited to displaying several options and
allowing user to select one.

Were you to consider when you specify the description of the
form's appearance, you could further classify forms into:

• Static

You specify all of the form description when you create the
form. Upon displaying the form, FI reads the description
from a file stored on disk.

• Dynamic

You specify most of the form description when you display the
form. Upon displaying the form, FI reads the description
from the command line you use to invoke Fl. Some description
is also stored on disk.

* The end-user documentation for PRO/Office Workstation calls an
argument form a form, and calls a menu form a menu. In this
manual, "form" has a broader meaning than in the User's Guide.

4-2

TYPES OF FORMS

Finally, consider how you define and display the form:

• Al/FMS

You define the form in the same way that VAX ALL-IN-1 does:
you use FMS, and store a form-type directive in the named
data. Also, you use the FMS form driver software to display
the form. This type of form is always static.

• FDT/FDT

You use FDT to define and display a form. This type of form
is always static.

• GENERIC/FHS

You use a standard text editor to define the form, and you
use the FMS driver to display the form. This type of form is
always static.

• PARAMETER BLOCK/FMS

You define the form by packing information into a parameter
block, and you display the form using the FMS driver. This
type of form is always dynamic.

Figure 4-1 illustrates the classification of forms, showing the
categories provided by PRO/Office Workstation. Sections
following the figure describe the two major categories; the
remainder of the chapter describes the sub-categories.

4-3

TYPES OF FORMS

Argument Menu

Static Dynamic Static Dynamic

A1/FMS PB/FMS PB/FMS

A1/FMS FDT/FDT GEN/FMS

Figure 4-1: Classification of For.ms

4.1.1 Argument Forms

WHAT

is the
description

WHEN

is the
description

given

HOW

is the
description
defined /
displayed

An argument form has many active fields for input and output. It
is suited to fetching or displaying values to assign to a symbol,
and for passing values to command procedures. From the user's
point of view, an argument form is meant to "be filled out," in
the way that one might fill out a loan application or
questionnaire. Of course, the difference here is that this is an
electronic form.

Figure 4-2 illustrates a typical argument form. The figure shows
a form that accepts setup information from a user. Note that
PRO/Office Workstation uses argument forms for all of its setup
modes.

4-4

FMUSER

TYPES OF FORMS

+4 ~3il J3er ~a!ld3:_~~ ~3i-~~-a~:e ~:~~ ••
F;;: :I;;.l,_e ·~:·~,..=~~",.:I-

This form allows ~ou to add, change, and delete user def­
initions for the mail user database. These definitions
are used to vall date the addressees for mall messages.

The Username must be identical to the addressee's ALL-IN-1
UsernaJne.

Username: M ... E~R I ... EDoI.I.M...,.ANIU.-___ _

Full Name: Mart~ Friedman

Path Name: i.UMOoQlS_E.IoI..S _____ _

Enter action: ADD, CHANGE, DELETE or INQUIRE
(press EXIT to exit)

Figure 4-2: Example of an Argument Form

You display an argument form using the FORM or FIELD functions in
Flow.

4.1.2 Menu Forms

Menu forms have one active field for input. The form displays
several options, one of which the user chooses. The active
field, usually called the CHOICE field, accepts the user's
choice. Menu forms are most useful in defining menu trees, which
guide the user through a series of options.

Figure 4-3 illustrates a typical menu form.

4-5

TYPES OF FORMS

MartI;; Friedman
*EMSU *

04-Apr-84

No unread messages

E Enable Automatic Mai 1 Pickup and Del i very
DIS Disable Automatic Mail Pickup and Oeliverlj
I Redef ine Automatic Mai I Pickup and Del i very Int.erval
RES Reset Mail to Initial Values

VA Setup Electronic Mail Username Validation

VI View Mail Error File
DEA Select a Dead Mail Message
DEL Delete Mail Error F He

N Define Mail Message Notification

Please enter Ijour choice and press RETURN

Figure 4-3: Example of a Menu Form

4.2 DISPLAYING FORMS

You request FI to display a form by issuing the MENU, FORM, or
FIELD function. Use the FORM or FIELD functions only to display
an argument form. Also, use the MENU function to display only a
menu form. The format of these functions is:

func[/qualifier ••.] formspec [fieldname[/qualifier]]

Where:

func

formspec

is MENU, FORM, or FIELD.

is a form specification, which indicates the
desired form in the format:

[tag[$[formname]]]

You can specify just the tag, just the formname,
or both delimited by a dollar sign. If you
specify just the formname (that is, you omit
tagS), FI supplies the default tag, called
DEFAULT. Section 4.2.1 describes tags.

4-6

DISPLAYING FORMS

You specify field name only for the FIELD command. See Chapter 3
for further details on these functions and their qualifiers.

Examples of the functions follow. Note that MAIN and XYZ in the
first two examples could be either formnames or tags. In the
second two examples, both MAIN and XYZ must be formnames.

> MENU MAIN
> FORM XYZ
> MENU MYTAG$MAIN
> FORM MYTAG$XYZ
> FIELD MYTAG$ABC

4.2.1 Specifying Tags

The Form Interface Facility uses a tag as part of any form
specification. A tag is a symbol whose equivalence contains
information that FI uses to perform a request. FI reads the tag
from the form specification when you invoke the MENU, FORM, or
FIELD command.

The following diagram shows the position of a tag and a tag
delimiter within a form specification •

• r----------tag delimiter

> MENU MYTAG$MYFORM

t t

~-------------------tag

The tag supplies such information as:

• How you have defined the form (/DEFINITION=defval).

• How you will display the form (/DISPLAY=disval).

• The name of the form library containing the
(/LIBRARY=libname).

4-7

form

DISPLAYING FORMS

You specify this information when you define a tag, using the
DEFINE/TAG Flow function. The format of DEFINE/TAG is:

DEFINE/TAG tagnarne equivalence

Where:

tag name

equivalence

is the name of the tag you are defining. Do not
include the dollar sign ($) in a tag; this symbol
delimits a tag from a formname in a complete form
specification.

is a series of
information to Fl.

qualifiers that provide

Table 4-1 lists all the tag qualifiers that you can specify in
the equivalence. Note that you can abbreviate the qualifiers to
their minimally-unique names.

Table 4-1: Tag Qualifiers

Tag Qualifier Description

/DEFINITION=defval Specifies how you define the form (defval):

•

•

Al -- You define the form using the FMS
utilities FED and FUT. The named data of
the form contains either a .MENU or .ARG
form-type directive. The form
description is stored statically in
named data.

FDT -- You define the form
The form description
statically in the frame
file.

4-8

using FDT •
is stored
description

DISPLAYING FORMS

Tag Qualifier Description

(Continued.) • GEN -- You define the form using a
standard text editor. The form
description is stored statically in an
ASCII file.

• PB -- You define the form in a parameter
block. FI reads the form description
from qualifiers you specify in the CLI
command line. You use the CALL function
to display the form.

/DISPLAY=disval Specifies how you display the form (disval):

• FMS -- You display the form using the
FMS form driver.

• FDT -- You display the form using FDT.

/LIBRARY=libname Specifies the name of the library (libname)
containing the specified form. You must
include the filename's extension (for
example, .FLB for an FMS form).

/FORM=formname

/FILE=filename

Specifies the name of the form that you want
to display. The formname must not include a
file extension (such as .FRM).---

For generic forms only. Specifies the name of
the generic description file that describes
your form.

Examples of tag definitions follow.

> DEFINE/TAG
> DEFINE/TAG
> DEFINE/TAG
> DEFINE/TAG

INPUT
DISPLAY
HELP
TEST

"/DEF=Al/FORM=INPUT"
"/DEF=Al"
"/DIS=FDT/LIB=MYHELP.HLP"
"/FORM=TEST/LIB=MYLIB.FLB"

4-9

DISPLAYING FORMS

If you do not specify a tag in a form specification, FI supplies
a default tag, DEFAULT. Consequently, FI interprets the Flow
command:

> MENU MYFORM

as

> MENU DEFAULT$MYFORM

PRO/Office Workstation defines the tag DEFAULT as follows:

> DEFINE/TAG DEFAULT
"/DEF=Al/DIS=FMS/LIB=DWl:[ZZFLOW]OAFMS.FLB"

4.2.2 Precedence of FI Qualifiers

FI qualifiers are those qualifiers that affect the action of the
Form Interface. These include qualifiers you can specify on
tags, on an FI request, or in the named data/action strings of a
static form. An FI request is simply the Flow command that you
use to display a form.

In some cases, you can specify the
different places. For example,
follows:

> DEF/TAG SAMPLE "/DEF=Al"

same FI qualifier in two
suppose you define a tag as

Then, suppose you invoke a form with the command:

> FORM/DEF=FDT SAMPLE$MYFORM

In this example, you have specified the /DEFINITION qualifier in
two places: the tag and the request. Here the definition you
gave in the request overrides the definition you gave in the tag.

Here's another example. Suppose you have created an FMS static
form whose named data contains the following information:

Name Data
1----1 1---I
.MENU /ALLOW/EXACT
WP MENU WP
DM MENU DM
EM MENU EM

4-10

DISPLAYING FORMS

Then, suppose you displayed the form using the following Flow
function:

> MENU/NOALLOW/NOEXACT myform

You have specified the FI qualifiers /[NO]ALLOW and /[NO] EXACT in
both the static area (named data) of the form, and in the
request. Again, the qualifier in the request prevails.

The following list shows the precedence of FI qualifiers, in
order of declining precedence from top to bottom:

1. Qualifier in the request.

2. Qualifier in the tag.

3. Qualifier in the static area (named data for FMS forms).

By providing this precedence, FI allows you to override a
particular qualifier at various levels when displaying a form.

4.2.3 Displaying Forms Statically (/DEF=Al, FDT, or GEN)

Displaying a form statically means that the form description used
by the Form Interface Facility is stored on disk:

• For FMS ALL-IN-l type forms (/DEF=Al), the form
description is stored in a form library. To display an
FMS form statically, the form description must contain a
named data section that completely describes all options
on the form. Section 4.3 describes FMS forms.

• For FDT forms (/DEF=FDT), the form description is stored
in a frame definition file. To display an FDT form, the
frame definition must contain action strings that
completely describe all options on the form. Section
4.4 describes FDT forms.

• For generic forms (/DEF=GEN), the form description is
stored partly in an FMS or FDT library and partly in a
standard ASCII file, called a generic description file.
This file must contain the TEXT and OPTION directives
completely describing all options on the form. Section
4.5 describes generic forms.

4-11

DISPLAYING FORMS

To display a form statically, simply invoke one of the commands
MENU, FORM, or FIELD, specifying the name of a form. As long as
the form's description is stored in an appropriate disk file, FI
displays the form statically.

4.2.4 Displaying Forms Dynamically (/DEF=PB)

To display a form dynamically, you must "manually" pack the
parameter block that Flow uses to communicate with Fl. A
parameter block is simply a piece of memory that software modules
use to communicate with each other.

You pack the parameter block by passing information directly to
FI from the Flow command line. To do this, you use the CALL
function instead of the MENU, FORM, or FIELD functions.

The information you supply in the parameter block includes:

• Request (MENU, FORM, FIELD)

• Definition is PB (/$DEF=PB)

• Library name

• Form name

• Contents of each field

The format of the CALL command when used to display a form
dynamically is:

CALL SWB$FI/qualifier •••

Where:

SWB$FI is the installed name of the Form Interface task.

/qualifier must include the qualifiers listed below.

The qualifiers you can specify for either dynamic argument forms
or dynamic menu forms follow. Sections 4.2.4.1 and 4.2.4.2
describe the qualifiers that are unique to each type of form.

4-12

DISPLAYING FORMS

/$REQUEST=reqname

This qualifier specifies the request that you want FI to
process. If you are displaying an argument form, use
/$REQ=FORM or /$REQ=FIELD. If you are displaying a menu
form, use /$REQ=MENU.

/$DEFINITION=PB

This qualifier has the same purpose as the equivalent tag
qualifier described in Table 4-1. To display a form
dynamically, you must specify /$DEFINITION=PB

/$DISPLAY=disval

This qualifier has the same purpose as the equivalent tag
qualifier described in Table 4-1. The value of disval
can only be FMS.

/$LIBRARY=libname

This qualifier has the
qualifier described in
supplies an FMS form
FMLIST. This form is
argument forms, you
description.

/$FORM=formname

same purpose as the equivalent tag
Table 4-1. PRO/Office Workstation
for dynamic menu forms, called
in library OAFMS.FLB. For dynamic
must create your own form

This qualifier has the same purpose as the equivalent tag
qualifier described Table 4-1. PRO/Office Workstation
supplies an FMS form for dynamic menu forms, called
FMLIST. This form is in library OAFMS.FLB. For dynamic
argument forms, you must create your own form
description.

4-13

DISPLAYING FORMS

4.2.4.1 Dynamic Argument Forms - For a dynamic argument form,
you must create a template form using FMS. (FDT argument forms
are not available.) However, you do not describe the form's
fields in the template form, as you would in a static argument
form. Instead, use the following qualifiers:

/PUT=fldnme,symnme

Where:

fldnme

symnme

is the name of a field on the form used
for output.

is the name of a symbol whose equivalence
value you want to display.

This qualifier allows you to display the equivalence
value of the symbol symnme in the field fldnme.

/GET=fldnme,symnme

Where:

fldnme

symnme

is the name of a field on the form used
for input.

is the name of a symbol to which the user
will assign an equivalence value.

This qualifier allows the user to enter an equivalence
value in the field fldnme, which FI assigns to the symbol
symnme.

/OUTPUT=fldnme,string

Where:

fldnme

string

is the name of a field on the form used
for output.

is a character string surrounded
quotation marks.

by

This qualifier allows you to display the specified string
in the field fldnme.

4-14

DISPLAYING FORMS

/INPUT=fldnme

Where:

fldnme is the name of a field on the form used
for input.

This qualifier allows you to read the user's input as a
character string from the field fldnme.

An example of dynamic argument forms invocation follows.
that you cannot specify /$DIS=FDT.

> CALL SWB$FI/$REQ=FORM/$DIS=FMS/$DEF=PB/$LIB=OAFMS.FLB -
_/$FORM=PROFIL/$INPUT=DEPT

Note

4.2.4.2 Dynamic Menu Forms - PRO/Office Workstation provides a
template menu form in OAFMS.FLB, called FMLIST. (FDT dynamic
forms are not available.) You supply the menu options in command
line qualifiers, and FI writes the options on the form.

To specfify the options on the command line, use the following
format:

/#option

Where:

option is a string that FI dynamically places on the
menu as an option.

FI places the first option you specify in option 1, the second
option in option 2, and so on.

An example of the CLI command line follows. Note that you cannot
specify /$DIS=FDT. Also, note that the /PREFIX qualifier
specifies a prefix string for parameters returned by Fl. Thus,
you could find out the user's choice by displaying the symbol
fmlist$CHOICE.

> CALL SWB$FI/$REQ=MENU/$DIS=FMS/$DEF=PB/$LIB=OAFMS.FLB -
_/$FORM=FMLIST/#DTE/#DIR/#EXIT/PREFIX=fmlist

4-15

CUSTOMIZING FMS FORMS

4.3 CUSTOMIZING FMS FORMS

An FMS form consists of static text and variable fields. You use
the FMS Form Editor (FED) to create a form, and to insert the
text and fields. FED also lets you assign form-wide display
attributes, as well as particular attributes for each field.
Additionally, you specify named data in a form. Named data
allows you to invoke Flow functions from an FMS form. (Section
4.3.3 describes named data.)

PRO/Office Workstation stores all forms in a form library. A
form library is a file that contains form description files and a
directory of names for each form description. PRO/Office
Workstation supplies you with the following form libraries:

OAFMS.FLB contains all forms that serve as
Workstation end-user interface.
library.

the PRO/Office
This is an FMS

OAFDT.FLB contains FDT forms that you might want to use.
You can place your own FDT forms here.

This library resides in the directory into which you installed
PRO/Office Workstation. Execute the CLI command SHOW SYMBOL
FLOW$_EXE_ACCOUNT to find the name of this directory.

The Tool Kit contains the Forms
Utility (FUT), which you use
manipulate FMS libraries.

4.3.1 Executing FED and FUT

Editor (FED)
to customize

and
FMS

the Forms
forms and

You can execute FED and FUT directly from Flow CLI, provided you
have installed the PRO/Tool Kit. The following steps show how to
use CLI to define a dynamic command that executes FED (follow the
same steps for FUT):

1. Determine what directory contains the PROFED task by
entering the CLI command:

> DIRECTORY [*]PROFED.TSK

2. Suppose you found that PROFED.TSK is installed in
directory [ZZAP00008]. Use this to define a dynamic
command that works from any directory:

> DEFINE/COMMAND FED "RUN/TASK [ZZAP00008]FED.TSK"

4-16

CUSTOMIZING FMS FORMS

3. To execute FED from Flow CLI, simply type:

> FED

Note that executing FED requires that your terminal "look like" a
VT100. If you get a FED error message saying that you must use a
VT100, execute the following Flow function:

> RUN/TASK [ZZFLOW]SETVT

See the Developer's Tool Kit document set for complete details on
FMS.

4.3.2 Creating an FMS Form: A Sample Session

The following sample session describes how you use the form
template MENU.FRM (supplied in the library OAFMS.FLB) as the
basis of a new form. Using the template is probably the easiest
and quickest means of creating a custom FMS form. If you are not
very familiar with FMS, this sample session should help you get
started.

1. Set your default directory to [ZZFLOW]:

> SET DEF [ZZFLOW]

2. Run PROFED. (You can do this from CLI by executing the
dynamic command FED as described in Section 4.3.1.

3. When you receive the FED> prompt, enter the name of the
default FMS form library, OAFMS.FLB, and press RETURN.

4. FED prompts you for a formnamei enter MENU and press
RETURN.

5. When you see the
command to allow
then press RETURN.

COMMAND: prompt, enter the FORM
you to define form-wide attributes,

6. Now you can change the name of the form from MENU to
whatever name you want. (Do not worry about losing
MENU.FRMi this procedure preserves the original template
for later use.) For this example use the name TEST.
Simply type TEST over the name MENU, then press the TAB
key to advance to subsequent fields in the display.
Change any attributes that you want for your new form.

4-17

CUSTOMIZING FMS FORMS

7. Return to the COMMAND: prompt by pressing the RETURN
key. Now you can edit the new form. Enter EDIT after
the COMMAND: prompt, then press RETURN.

8. Add your menu items to the new form while in FED edit
mode.

9. When you have entered your menu items, return to the
COMMAND: prompt by pressing the GOLD key and then the 7
key on the keypad.

10. Assign field attributes, or just look at the form's
field names, by entering ASSIGN ALL at the COMMAND:
prompt and pressing RETURN. FED displays the field name
and prompts you for attributes. For each field, you can
change field attributes by pressing the TAB key to
advance to subsequent attributes. You can process the
next field by pressing the RETURN key. When you have
processed the last field, FED returns you to the
COMMAND: prompt.

11. Place the named data for each menu option in the form by
specifying NAME when you have the COMMAND: prompt, then
pressing RETURN. For each option:

• Enter the option name (under the name column) and
press the TAB key once to go to the next field.

• Enter the Flow function (under the DATA column) that
you want to perform when the user selects the
associated option.

The .MENU directive contained in named data for the
MENU.FRM form specifies default qualifiers. Change
these only if you do not want the specified qualifiers.
For further information on named data, see Section
4.3.3.

12. Now enter the SAVE command to save the new form as
TEST.FRM. Press RETURN. Exit FED by entering CTRL-Z
when you get the FED> prompt.

13. You must still enter the form in a library. Invoke FUT
by executing a dynamic command as described earlier in
this chapter.

14. When you receive the FUT> prompt, enter the command:

FUT> OAFMS.FLB=OAFMS.FLB,TEST.FRM/RP

4-18

CUSTOMIZING FMS FORMS

This loads the form TEST.FRM into the form library
OAFMS.FLB. Exit FUT by entering CTRL-Z when you get the
FUT> prompt.

15. Now you can call up your new menu, TEST, by invoking the
MENU function from CLI:

> MENU TEST

For this invocation, FI uses the default tag, DEFAULT.

4.3.3 Specifying FMS Named Data (/DEF=Al, /DIS=FMS)

Named data is a means of entering non-FMS data within an FMS
form. ~med data consists of information that is associated and
stored with a form, but not displayed in the form.

FMS only stores and manages named data, passing it to FI for
interpretation. For example, suppose you create a simple menu
with three choices, as illustrated in Figure 4-4. The figure
shows the menu as you would see it while in FED's EDIT mode, and
the named data as you would see it while in FED's NAME mode.

When you display the form shown in Figure 4-4, FMS passes the
named data to Fl. In turn, FI interprets the named data. The
.MENU directive in the name section tells FI what type of form it
displays. The data associated with .MENU tell FI what fields are
active, and what the contents of each field should be. Below the
lines containing the .MENU information, the named data describes
the menu options and what Flow function to perform for each
option.

Whenever you use named data in an FMS form, you are defining a
static, ALL-IN-l type form (/DEF=Al). To distinguish between
argument forms and menu forms, you use either the .ARG directive
or the .MENU directive in the named data of a form. Sections
following the figure describe each type of form and the
associated directive.

4-19

CUSTOMIZING FMS FORMS

xxxxxxxxxxxxxxxxxxxxxx
PRO/Office Workstation

xxxxxxxxx
xxxxxx

COMMAND:

Name
1----1
.MENU
.MENUl
WP
DM
EM

d i g i t a

** Sample Menu **
PRO/Office Workstation
XXXXXXXXXXXXXXXXXXXXXX

WP Document Processing
EM Electronic Mail
DM Desk Management

1

Please enter selection and press RETURN:
XXX

Named Data Entry Form

Data
1---I
/ALL/GET=USER,OA$USER/GET=DATE,OA$DATE/GET=TIME,OA$TIME
/GET=MAIL,OA$MAIL COUNT DISPLAY
MENU WP --
MENU DM
MENU EM

Figure 4-4: Simple Three-Choice Menu and Named Data

4-20

CUSTOMIZING FMS FORMS

4.3.4 FMS Static Argument Forms

You specify the .ARG directive in named data to indicate a static
argument form.

Format (Named Data)

Name
\----\
.ARG
fldnme

Where:

fldnme

Data
\---I
/[NO] KEYPAD
[/qualifier •••]

is the name of a field on the form. You can
specify as many field names as there are fields
on the form.

Description

Use the static argument form primarily
processing, passing data through fields
symbol. Note that the INQUIRE function
similar operation.

to perform field
either to or from a

in Flow performs a

The qualifiers are:

/[NO] KEYPAD

/UPPER

/KEYPAD enables FI to interpret the escape sequences
generated by the numeric keypad. /NOKEYPAD disables FI
from interpreting these escape sequences. You can
specify this qualifier only in the data section of the
.ARG directive.

Converts to uppercase all data the user enters in the
associated field.

/GETSAVE=symbol

Place a value from the specified symbol into the
associated field.

4-21

CUSTOMIZING FMS FORMS

/PUTSAVE=symbol

/BLANK

/CLEAR

Example

Name
1----1
.ARG
fIdl
fld2
fld3
fld4
fld5
fld6

Place a value from the associated field into the
specified symbol.

Inhibits /GETSAVE on a non-blank field. That is, if a
value currently resides in a field, this qualifier
prohibits the user to enter another value into that
field. This qualifier is useful when you have defined a
default value for the field, using a FED field attribute.

Erase the value in the associated field before processing
a new value. Use this qualifier with /PUTSAVE. It
clears the field before allowing the user to enter any
values into that field.

Data
1---I
/KEYPAD ;function key sequences enabled
/GET=syml iplace value of syml into fldl
/BLANK iinhibit /GET if field is nonblank
/PUT=sym3 ;place value of fld3 into sym3
/CLEAR ;clear the field for each display
/PUT=sym5/UPPER ;uppercase input before assignment
/BLANK/GET=sym6 ;don't allow default to be changed

4-22

CUSTOMIZING FMS FORMS

4.3.5 FMS Static Menu Forms

You specify the .MENU directive in named data to indicate a
static menu form.

Format (Named Data)

Name Data
1----1 1---I
.MENU /qualifier ••.
[.MENUn /qualifier •••]

optnme function

Where:

optnme

.MENUn

is the name of a menu option on the form. You
can specify as many option names as there are
options on the form. function is the Flow
function to be associated with the corresponding
menu option. You can invoke a command procedure
here to effectively invoke more than one
function.

is a continuation of the .MENU directive, with
the n incremented by 1 for every additional line.
In the first .MENUn, n=l.

Description

You can use the static menu form as part of a menu tree, allowing
the user to select functions.

The qualifiers are:

/[NO] KEYPAD

/KEYPAD enables FI to interpret the escape sequences
generated by the numeric keypad. /NOKEYPAD disables FI
from interpreting these escape sequences. You can
specify this qualifier only in the data section of the
.ARG directive.

4-23

CUSTOMIZING FMS FORMS

/[NO] EXACT

/EXACT means that the user must enter the menu option
exactly as it appears on the menu. /NOEXACT means that
the user can enter a substring of the menu option, or can
enter the full option with trailing characters (FI
ignores the trailing characters).

/[NO]ALLOW

ALLOW means that if the user selects a menu option that
doesn't exist on your menu, FI passes the user's input to
Flow control for processing. NOALLOW means that FI
intercepts nonexistent menu options and returns an error
message.

/GET=fldnme,symnme

This qualifier causes FI to display the equivalence value
of the symbol symnme in the field fldnme. This is useful
in displaying values in the form that can change, such as
OA$USER and OA$TIME.

/CHOICE=fldnme

Example

Name
1----1
.MENU
.MENUI
WP
DM
EM
CMD
END

This qualifier specifies the name of the field (fldnme)
from which FI will read the user's choice.

Data
1---I
/KEYPAD/GET=USER,OA$USER/GET=DATE,OA$DATE/CHOICE=CHOICE
/GET=TIME,OA$TIME/GET=MAIL,OA$MAIL COUNT DISPLAY
MENU OAFMS$WP - -
MENU OAFMS$DM
MENU OAFMS$EM
COMMAND SYS$COMMAND
END

4-24

CUSTOMIZING FDT FORMS

4.4 CUSTOMIZING FDT FORMS

The Tool Kit contains the Frame Development Tool, which you use
to customize FDT forms. You can use FDT to create and display
only static menu forms; it supports neither dynamic forms nor
argument forms. You can also use FDT to create help frames.

4.4.1 Executing FDT

You can execute FED and FUT directly from Flow CLI, provided you
have installed the PRO/Tool Kit. The following steps show how to
use CLI to define a dynamic command that executes FED:

1. Dete~mine what directory contains the FDT task by
entering the CLI command:

> DIRECTORY [*]FDT.TSK

2. Suppose you found that FDT.TSK is installed in directory
[ZZAP00008] • Use this to define a dynamic command that
works from any directory:

> DEFINE/COMMAND FDT "RUN/TASK [ZZAP00008]FDT.TSK"

3. To execute FDT from Flow CLI, simply type:

> FDT

4.4.2 Specifying FDT Action Strings

Action strings are part of menu's frame definition, and are a
means of entering non-FDT data within an FDT form. An action
string consists of information that is associated and stored with
a form, but not displayed in the form.

FDT only stores and manages actions strings, passing them to FI
for interpretation. For example, suppose you create a simple
menu with three choices. Figure 4-5 shows such a menu as you
would see it in on the DISPLAY form. Figure 4-6 shows an action
string for the first choice as you would see it on the ACTION
form.

4-25

CUSTOMIZING FDT FORMS

Display for Single Choice Menu FRAMEI

PRO/Office Workstation

[Sample Menu
PRO/Office Workstation]

WP Document Processing
EM Electronic Mail
OM Desk Management

[Please enter selection and press RETURN:

Figure 4-5: FDT DISPLAY Form for Three-Choice Menu

Action Number 1 for Single Choice Menu FRAMEI

Description: WP Document Processing

Action Description
[ThiS choice will select the Word Processing menu.]

Option Keyword [WP
Option Help Frame [

Option Action String
[MENU WP]

Figure 4-6: FDT ACTION Form

4-26

CUSTOMIZING GENERIC FORMS (/DEF=GEN)

4.5 CUSTOMIZING GENERIC FORMS (/DEF=GEN)

A generic form is a form that consists partly of an FMS form and
partly of an ASCII description file. The FMS part of the form
is static; you cannot change it unless you use the appropriate
FMS editor. The description file, however, is a text file that
you can edit with any standard word processor, such as EDT or
PROSE.

The description file contains Form Interface directives and menu
text. (You can create only menu forms generically, not argument
forms.) The FI directives tell FI what options appear on the menu
and what actions to take when the user makes a selection. The
Form Interface functions that you can place in the description
file are:

• [NO]ALLOW

ALLOW means that if the user selects a menu option that
doesn't exist on your menu, FI passes the user's input to
Flow control for processing. NOALLOW means that FI
intercepts nonexistent menu options and returns an error
message.

• [NO] EXACT

EXACT means that the user must enter the menu option exactly
as it appears on the menu. NOEXACT means that the user can
enter a substring of the menu option, or can enter the full
option with trailing 'characters (FI ignores the trailing
characters).

• TEXT

TEXT has one required parameter:

TEXT "mnuopt"

Where:

mnuopt is the name of the menu option as it
appears on the form.

4-27

CUSTOMIZING GENERIC FORMS (/DEF=GEN)

• OPTION

OPTION has two required parameters:

OPTION

Where:

mnuopt

flowfun

• FORM

mnuopt flowfun

is the name of the menu option as FMS
receives it. This is the name part of
named data in an FMS form.

is the actual Flow function to perform
when the user selects the corresponding
mnuopt. This is the data part of named
data in an FMS form. in FDT.

FORM has two required parameters:

FORM formnme

Where:

form

libnme

libnme

is the name of the FMS form that that FI
uses as the template.

is the name of the FMS library containing
the template form.

You can also use an exclamation mark (1) to delimit comments.

4-28

CUSTOMIZING GENERIC FORMS (/DEF=GEN)

Figure 4-7 shows an example generic description file.

!--
This is a sample description file for a generic form. The
following line specifies the form and library that FI uses.
This function is optional because you could use a tag name
in the MENU command instead.

FORM GEN.DAT OAFMS.FLB

ALLOW means that if you enter a menu option that doesn't
exist, FI passes your entry to Flow for processing.
NOEXACT means that if you can type a substring or
"superstring" of the actual menu option.

ALLOW
NOEXACT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

FI displays the quoted data as menu options on the form.
You can use up to 12 fields. FI ignores excess text lines.

ED Run the EDT editor"
PIP RUN the Peripheral Interchange Processor, PIP"
INS Install another Flow task with the name F"
FLOW Run the Flow task named F"
EXIT Invoke the EXIT function"
Al Display the menu in BBB$MENU"

The ENDTEXT specification tells the program that there are
no more text lines after this point. This line is optional;
however, it does help performance if you use it.

ENDTEXT

OPTION
OPTION
OPTION
OPTION
OPTION
OPTION

The option lines translate the user's selection to a Flow
function There is no limit to the number of option lines.
ED EDT"
PIP RUN PIP"
INS INS FLOW/NAME=F"
FLOW RUN F"
EXIT EXIT"
Al MENU BBB$MENU"

!--
Figure 4-7: Example Generic Description File

4-29

CUSTOMIZING GENERIC FORMS (/DEF=GEN)

4.5.1 Displaying Generic Forms

To display a generic form, you use the MENU Flow function.
However, instead of specifying a formname, you specify the name
of the generic description file.

Also, you need to specify particular values for serveral of the
tag qualifiers. For example, you must use a tag that tells FI
that you want to display a generic form; otherwise, FI would
supply the default tag, DEFAULT, which indicates that you want to
display only a standard FMS form.

You can define a tag for displaying a generic form as follows:

> DEFINE/TAG GENERIC -
"/DEF=GEN/DIS=FMS/LIB= [ZZFLOW] OAFMS.FLB/FOR=GEN"

Then you can display a form whose description file is MYFILE.TXT
by invoking the command:

> MENU GENERIC$MYFILE.TXT

The tag GENERIC tells FI that you are displaying a generic form,
that FMS actually displays the form, and where to look for the
form.

4.6 CUSTOMIZING HELP FRAMES

The kit that you receive contains help frames in the following
FDT library:

[ZZFLOW]OAHELP.FLB

This library contains one help frame for each form that is in
[ZZFLOW]OAFMS.FLB. Each help frame has the same name as the form
from which it is called. (See Appendix B for a list of form
names supplied with the kit.)

Also, the library contains a general frame describing the syntax
of all the CLI functions. This frame is called CLI.

FI automatically opens [ZZFLOW]OAHELP.FLB as the default heiP
library; consequently, you must place all of your custom he p
frames in this library. When the user requests help, FI always
searches [ZZFLOW]OAHELP.FLB to find the appropriate frame.

4-30

CUSTOMIZING HELP FRAMES

To call a help frame from an FMS form, you must use the directive

.HELP.

in the name section of named data. The corresponding data
section for the .HELP. directive must contain the name of the
help frame in [ZZFLOW]OAHELP.FLB that FI will display.

The following example illustrates the named data entry form for a
menu called MAIN. The first line of named data contains the
.HELP. directive and its corresponding help frame, MAIN.

Note that you should generally give the same names to a form and
its corresponding help frame.

Name
1----1
.HELP.
.MENU
.MENUI
WP
DM
EM

Named Data Entry Form

Data
1---I
MAIN
/ALL/GET=USER,OA$USER/GET=DATE,OA$DATE/GET=TIME,OA$TIME
/GET=MAIL,OA$MAIL_COUNT_DISPLAY
MENU WP
MENU DM
MENU EM

For information on writing the help frames and storing them in a
library, see the FDT documentation in the Tool Kit document set.

4-31

CHAPTER 5

USING THE DOCUMENT SERVICES FACILITY

The Document Services Facility is a database management system
that manages user documents. The facility has its own functions
that you can invoke by using the DOC Flow function. This chapter
describes the organization of the database, as well as the
functions provided by the Document Services Facility.

5.1 ORGANIZATION OF THE DOCUMENT SERVICES DATABASE

Document Services provides a default database that consists of
the following files:

• DW1:[ZZDOCO]DEFAULT.DDB

This is the RMS index for the database, which users know as
the default file cabinet. The user can create alternative
file cabinets if desired. A file cabinet is an ISAM file
that contains one or more records representing headers for
the user's documents. Document Services locates a document
by searching a file cabinet for the document header •

• DW1:[ZZDOCO]nnnnnnnnn.OAD

This is the p/os file name for each actual document, where
nnnnnnnnn is a zero-filled, decimal integer representing the
document's order of creation. For example, a user's document
files have the names OOOOOOOOI.OAD, 000000002.0AD,
000000003.0AD, and so on.

Figure 5-1 illustrates the relationship between the DEFAULT.DDB
file and the .OAD files. The figure shows a database containing
three data files (OOOOOOOOl.0AD, etc.) and an index (DEFAULT.DDB)
containing three headers for those data files.

5-1

ORGANIZATION OF THE DOCUMENT SERVICES DATABASE

DEFAULT.DDB

Document
Files

Figure 5-1: Document Services Database Organization

Each document header (record) in DEFAULT.DDB contains keys that
enable Document Services to locate the desired document. The
primary key for any document is its reference number, a number
that Document Services assigns during document creation.
Secondary keys are the folder name and the document title.

The following record definition illustrates the structure of a
document header stored in DEFAULT.DDB. The maximum size of the
header is 416 bytes (216 fixed bytes plus 200 variable bytes for
the last field).

05 dsh$ refnum (04) longword (key o)
05 dsh$ folder (16) ascii (key 1)
05 dsh$ title (60) ascii -10 dsh$ title key (20) ascii (key 2)

10 dsh$ - title-ext (40) ascii -05 dsh$ _pointer (04) longword (key 3)
05 dsh$ filnam (40) ascii
05 dsh$ =keyword (20) ascii
05 dsh$ locate (01) ascii
05 dsh$=keep (01) ascii
05 dsh$ sacount (02) word
05 dsh$-dam (10) ascii
05 dsh$ status (10) ascii -05 dsh$ create - (08) date (yyyymmdd)
05 dsh$ last - (08) date (yyyymmdd)
05 dsh$ author (30) ascii
05 dsh$ =parameter_length (02) word
05 dsh$ _parameter_block (200) binary

Table 5-1 describes each key in the document header record.

5-2

ORGANIZATION OF THE DOCUMENT SERVICES DATABASE

Table 5-1: Description of Document Header Keys

Key

Refnum/
Docnum

Size

Long Word
Integer

Description

Reference/Document number (primary key).
This field serves two important
functions:

• Uniquely identifies every entry
within the file cabinet index.

• Orders the file so that the first
document reference in any folder is
always the most recently created.

You can specify a document number in a
qualifer for several of the Document
Services functions; this allows you to
identify a particular document in a file
cabinet. However, Document Services does
not store the document numbers. Instead,
it translates each document number into a
reference number.

The reference number is a very large
number that Document Services stores in
the header. This number is a translation
of the document number, which you can
specify in a qualifier for several of the
Document Services functions. Document
Services internally translates a document
number into a reference number, and then
uses the reference number to identify a
document.

The reason for this internal translation
pertains to the way that RMS performs key
searches. Document Services never
displays reference numbers.

The following example illustrates the
relationship between a reference number,
a document number, and document creation
date.

5-3

ORGANIZATION OF THE DOCUMENT SERVICES DATABASE

Key Size

(Continued.)

Folder

Title

Pointer

Filnam

Keyword

16 Bytes

60 Bytes

Long Word
Integer

40 Bytes

20 Bytes

Refnum
2 31-5
2 31-4
2 31-3
2 31-2
2 31-1

Description

Docnum
5
4
3
2
1

Creation-Date
5-May-1984
4-Apr-1983
3-Mar-1982
2-Feb-198l
l-Jan-1980

Document Services reuses a refnum value
only when deleting the most recent
document reference in the file cabinet
and subsequently creating a new document.
A refnum is unique only within its own
file cabinet. Also, no duplicates of the
refnum key are allowed.

Folder name (secondary key). This field
specifies the name of the file cabinet
folder that contains the referenced
document. The value of folder has no
impact on the actual location of the
document referred to; it is simply a
convenience to users and applications.
Note that folder values must be in
uppercase.

The user- or application- specified name
for the document. The title field
consists of two sub-fields. The first is
TITLE KEY, which is a secondary key
contaIning a non-numeric document name.
This sub-field allows duplicates. The
second sub-field is TITLE EXT, which
contains the remainder of -the title;
Document Services does not use this
portion as a key. Title is an optional
field.

Reserved.

The plos filename that Document Services
uses to point to the PIOS file containing
the text of the desired document.

Document keyword(s). This field contains
one or more user-defined keywords that
the user can search for in the body of
the document. Document Services maintains
the field for ALL index entries.

5-4

ORGANIZATION OF THE DOCUMENT SERVICES DATABASE

Key

Locate

Keep

Sacount

DAM

Size

1 Byte

1 Byte

1 Word
Integer

10 Bytes

(Continued.)

Description

Reserved.

Do not delete file flag. You set this
flag to ensure that the plos file
containing the document text should never
be deleted (DOC KILL). Setting keep to Y
causes DOC KILL to delete an index entry
without deleting the corresponding file.
Setting keep to N causes DOC KILL to
delete both the index entry and the
corresponding file.

Reserved.

Document
contain
Document
generally
wants to
document.

access method. This field can
a keyword that identifies a
Access Method (DAM). A DAM is

the text editor that the user
invoke to edit a particular

For example, if the user wants to edit a
file using the WPS editor keypad, then
entering WPS in this field causes
Document Services to invoke EDT with the
WPS keypad whenever the user edits the
document (DOC EDIT).

If the you do not specify a value for the
DAM field when creating a document, then
Document Services assigns the equivalence
value of the symbol OA $ EDITOR. If the
symbol OA $EDITOR is -undefined, then
Document Services assigns EDT to the DAM
field.

Reserved values for the DAM field are:

• PROSE - Accessible by PROSE editor.

• EDT - Accessible by EDT editor.

• WPS - Accessible by EDT editor with
WPS keypad.

• ASCII Accessible as any ASCII
file. By default, same as EDT.

5-5

Key

Status

Create

Last

Author

Param
Length

Param
Block

ORGANIZATION OF THE DOCUMENT SERVICES DATABASE

Size

10 Bytes

8 Bytes

8 Bytes

30 Bytes

2 Bytes

200 Bytes

Description

Reserved.

Document creation
contains the date
header was created.
yyyymmdd.

date. This field
that the document

The format is

Last modification date. This field
contains the date that the document was
last modified. The format is yyyymmdd.

Document author. This field contains the
name of the document's author.

Reserved.

Reserved.

5.1.1 Using Foreign Editors

A foreign editor is an editor that is not supplied with the
PRO/Office Workstation kit. You can customize Document Services
to use foreign editors, such as Supercomp-20.

To use a foreign editor, first choose a word (10 letters maximum
length) that you will use to denote the foreign editor. For
example, SUPER could indicate that a document is a Supercomp-20
spreadsheet. Then, use the DOC CREATE or DOC MODIFY command with
the I.DAM qualifier to enter this word as the DAM value for your
document. Document Services will use this DAM to determine which
editor it invokes when accessing the file.

After choosing the DAM name, you must define several dynamic
commands. The eqivalence for each command specifies the Flow
function to perform when you invoke the DOC command. Note that
you cannot use another DOC command within the equivalence for a
special dynamic command; this type of recursion is not allowed.

The dynamic commands are:

5-6

ORGANIZATION OF THE DOCUMENT SERVICES DATABASE

Document Services attempts to execute
whenever you edit (DOC EDIT) the
damname.

this dynamic command
document whose DAM is

Document Services attempts to execute this dynamic command
whenever you attempt to kill (DOC KILL) the document whose
dam is damname.

Document Services attempts to execute this dynamic command
whenever you attempt to print (DOC PRINT) the document whose
dam is damname.

• DSI$DAM damname DIS - -
Document Services attempts to execute this dynamic command
whenever you attempt to display (DO~ DISPLAY) the document
whose dam is damname.

Document Services attempts to execute this dynamic command
whenever you attempt to create (DOC CREATE) the document with
a dam of damname.

For the example using SUPER as the DAM, you would create dynamic
commands with the following names:

• DSI$DAM SUPER EDI - -

• DSI$DAM SUPER KIL - -

• DSI$DAM_SUPER_PRI

• DSI$DAM SUPER DIS - -

• DSI$DAM SUPER eRE - -

These commands allow you to define the action Document Services
takes for operations on a foreign editor. When DSI handles a
document with a foreign DAM, DSI first tries to execute the
appropriate dynamic command.

5-7

ORGANIZATION OF THE DOCUMENT SERVICES DATABASE

If DSI can't find the appropriate dynamic command definition and
the request was to edit the document, then DSI generates an error
(dsi$ spawn error). If the request were to PRINT or DISPLAY, and
th~ appropriate dynamic command isn't defined, then DSI attempts
to print or display the document as though it were an ASCII file.
KILL would simply destroy the file and document header record.
CREATE would create simply create the file.

5.2 ORGANIZATION OF THE DOCUMENT SERVICES TASKS

Document Services consists of two major software components:

• Document Services Interface (DSI)

DSI is a task that serves as the interface between the user
and the Document Services functions. When a user invokes a
Document Services function, such as DOC EDIT, Flow passes
this request to DSI. In turn, DSI might call the Form
Interface Facility to display a form requesting user input.
Then, to actually perform the Document Services function, DSI
calls the other major software component, Callable Document
Services.

• Callable Document Services (CDS)

CDS is the task that actually performs a Document Services
function. For functions that require manipulation of a
document header in a file cabinet, CDS opens the RMS file
containing the index, processes header information, and
closes the RMS file. In this regard, you can view CDS as an
RMS utility program. You can directly access CDS from Flow
by invoking the CALL function.

On the application diskettes, the DSI and CDS tasks are called
DSI.TSK and CDS.TSK.

As an example of the sequence of events involving DSI and CDS,
consider what happens when a user creates and edits a document:

1. From Flow, the user invokes DSI using the DOC CREATE command:

> DOC CREATE

2. DSI calls FI to display a form that prompts the user for the
title, keyword, and folder name for the new document.

5-8

ORGANIZATION OF THE DOCUMENT SERVICES TASKS

3. FI displays the form and retrieves the user's input, passing
that input back to DSI.

4. DSI assigns the p/OS filename for the new doucment to the
symbol OA$CURMES FILE. Then DSI calls CDS to perform the
Document Services-CREATE function. This creates the document
header in a file cabinet (OA$CABINET, unless specified
otherwise). CDS creates a new document number and p/OS
filename for the document, then enters the header values in
the database index (file cabinet).

5. If the DOC CREATE command specified /EDIT=Y (the default),
and the DAM is not foreign, then DSI invokes the DAM to edit
the document. I~he DAM is foreign, then DSI invokes the
dynamic command DSI$DAM damname EDI. In both cases, the
invoked editor creates the actual-P/OS file containing the
document text. The editor reads the p/os filespec from the
symbol OA$CURMES FILE. If no DAM is specified, then Document
Services attempts to invoke the editor specified in
OA$EDITOR.

Figure 5-2 illustrates the organization of the Document Services
Facility, showing DSI, CDS, and the file cabinet. The figure
shows that two way communication exists between DSI and CDS, and
that CDS has read/write access to the file cabinet. DSI,
however, can only read entries in the file cabinet.

5-9

ORGANIZATION OF THE DOCUMENT SERVICES TASKS

1
r J

Flow Control Facility

•

Read Only
DSI -

Read/
CDS DEFAULT.DDS

Write

Document Services Facility

Figure 5-2: Organization of the Document Services Facility

5.3 INVOKING DOCUMENT SERVICES FUNCTIONS

Document Services provides many functions that allow a user to
manipulate documents whose headers are stored in a file cabinet.
In general, you use the Flow DOC or EXTERNAL functions to access
these functions.

The DOC function actually translates into a call to DSI using the
EXTERNAL function. For example, the following function
invocations are equivalent:

> DOC CREATE
> EXTERNAL F$DSI CREATE

5-10

J
I

INVOKING DOCUMENT SERVICES FUNCTIONS

In the EXTERNAL function, the F$ prefix to the DSI taskname
indicates that you are calling a task that is accessible only to
Flow.

The format of the DOC function is:

DOC dsfunction[/qualifier •••]

Where:

dsfunction is any of the Document Services functions:

qualifier

• CAB

• CREATE

• DELETE

• SELECT

• EDIT

• DISPLAY

• PRINT

is any qualifier that is valid for the specified
operation.

The following sections describe each of the Document Services
functions.

NOTE

You must always use the Flow functions DOC or
CALL SWB$DS to access data in the Document
Services database. Never attempt such access via
your own program. The internal format of the
database might change in future versions of the
product.

5-11

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.1 DOC CAB/$REQ=CREATE

Create a file cabinet.

Format

DOC CAB/$REQ=CREATE[/qualifier ..•]

Description

The DOC CAB function allows you to perform operations on the file
cabinet itself, rather than on headers within a file cabinet.
DOC CAB/$REQ=CREATE creates a new file cabinet.

The qualifiers are:

/$CAB=cabname

The /$CAB qualifier specifies the p/os filename of the
cabinet you are creating. The cabname you specify can be
a complete file specification for the file cabinet.

Document Services requires the cabinet name in order to
create the cabinet. Consequently, if you do not specify
/$CAB, Document Services displays a form to retrieve the
cabinet name (unless you also specify /FORM=N, in which
case you receive an error).

/$TIT=title

The /$TIT qualifier specifies the title of the cabinet
you are creating.

Document
cabinet.
Document
(unless
receive

/FORM=Y or N

Services requires a
Consequently, if

Services displays a
you also specify

an error).

title in order to create the
you do not specify /$TIT,

form to retrieve the title
/FORM=N, in which case you

The /FORM qualifier specifies whether or not Document
Services should request FI to display a form that prompts
the user for the filename and title of the new cabinet.

By default, /FORM=Y. When /FORM=Y, Document Services
always requests FI to display the form (a filename or
title you specify appears as a default value on the
form). If you specify /FORM=N to suppress the form
display, you must also specify values for /$CAB and
/$TIT, or you receive an error message.

5-12

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.2 DOC CAB/$REQ=DELETE

Delete a file cabinet.

Format

DOC CAB/$REQ=DELETE[/qualifier ...]

Description

The DOC CAB function allows you to perform operations on the file
cabinet itself, rather than on headers within a file cabinet.
DOC CAB/$REQ=DELETE destroys all headers in an existing file
cabinet, kills all document files that the cabinet's headers
refer to (see DOC KILL), and then destroys the file cabinet
itself. The file cabinet and its headers cannot be recovered.

The qualifiers are:

/$CAB=cabname

The /$CAB qualifier specifies the p/OS filename of the
cabinet you are deleting. The cabname you specify can be
a complete file specification for the file cabinet.

If you do not specify /$CAB, Document Services attempts
to delete the current file cabinet.

5-13

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.3 DOC CAB/$REQ=SELECT

Select a file cabinet.

Format

DOC CAB/$REQ=SELECT

Description

The DOC CAB function allows you to perform operations on the file
cabinet itself, rather than on headers within a file cabinet.
DOC CAB/$REQ=SELECT allows you to specify a new current file
cabinet.

When you invoke this function, Document Services requests FI to
display a that lists all the file cabinets in ascending
alphabetic order, and allows the user to select one.

The form can have multiple screens. If the user presses the MAIN
SCREEN key while viewing the form, FI displays the first screen
of the form. If the user presses the EXIT key, Document Services
returns without performing the operation.

When you select a new current file cabinet, Document Services
assigns the p/os filespec of the new current cabinet to the
symbol OA$CABINET and the title of the cabinet to
OA$CABINET TITLE. Document Services assigns null to all other
Document Services symbols whose values depend on the current file
cabinet:

• OA$CURMES DAM

• OA$CURMES FILE

• OA$CURMES FOLDER

• OA$CURMES NBR

• OA$CURMES TITLE

Example

> DOC CAB/$REQ=SELECT

5-14

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.4 DOC CREATE

Create a header in the specified cabinet.

Format

DOC CREATE[/qualifier •.•]

Description

This function creates only a document's header; it does not
create the actual plos file. Document Services lets the editor
create the plos file the first time you edit the document.

Many of the qualifiers allow you to specify values for fields in
the new header (see the description of the header fields in Table
5-1).

The qualifiers are:

I.FOL=folname

The I.FOL qualifier specifies the name of the folder in
which you place the new document.

Document Services requires a folder name in order to
create the document header. Consequently, if you do not
specify I.FOL, Document Services displays a form to
retrieve the folder name (unless you also specify
IFORM=N, in which case you receive an error).

I.TIT=title

The I.TIT qualifier specifies the title of the document
you are creating.

Document Services requires a title in order to create the
document header. Consequently, if you do not specify
I.TIT, Document Services displays a form to retrieve the
title (unless you also specify IFORM=N, in which case you
receive an error).

5-15

INVOKING DOCUMENT SERVICES FUNCTIONS

/.FIL=filname

The /.FIL qualifier specifies the RMS filename of the new
document. This qualifier is optional.

/FORM=Y or N

The /FORM qualifier specifies whether or not Document
Services should request FI to display a form that prompts
the user for the cabinet, title, keywords, and folder for
the new document.

By default, /FORM=Y. When /FORM=Y, Document Services
always requests FI to display the form (a filename or
title you specify appears as a default value on the
form). If you specify /FORM=N to suppress the form
display, you must also specify values for /.TIT, /.FOL,
and /.KEY, or you receive an error message.

/.KEY=keywords

This qualifier allows you to enter keywords in the
keyword field of the header. By default, this field is
blank. See Table 5-1 for details on this field.

/.KEP=Y or N

This qualifier allows you to enter a Y(es) or N(o) value
in the keep field of the header. By default, /.KEP=N.
See Table 5-1 for details on this field.

/.DAM=dam

This qualifier allows you to enter a value in
Document Access Method (DAM) field in the header.
default, /.DAM="ASCII". See Table 5-1 for details
this field.

/.STA=status

the
By
on

This qualifier allows you to enter a value in the status
field of the header. By default this field is blank.
See Table 5-1 for details on this field.

5-16

INVOKING DOCUMENT SERVICES FUNCTIONS

/.AUT=author

This qualifier allows you to enter a value in the author
field of the header. By default this field is blank.
See Table 5-1 for details on this field.

/$CAB=cabname

The /$CAB qualifier specifies the p/os filename of the
cabinet in which you are creating the header. The
cabname you specify can be a complete file specification
for the file cabinet. If you do not specify /$CAB,
Document Services attempts to create the header in the
current file cabinet.

/EDIT=Y or N

This qualifier allows you to specify whether or not the
user will edit the document after having created its
header. By default, /EDIT=Y.

5-17

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.5 DOC DELETE

Place a document's header in the folder WASTEBASKET.

Format

DOC DELETE[/qualifier •••]

Description

Deleting a document doesn't erase that document. Instead,
deleting a document merely places its header in the WASTEBASKET
folder. Once its header is in the WASTEBASKET folder, a document
can be erased by "emptying the wastebasket" (see DOC KILL).

The qualifiers are:

/$CAB=cabname

If you specify /$CAB, you must also specify /$NUM. The
/$CAB qualifier sets the current file cabinet to cabname
before performing the operation. The cabname you specify
must be the name of an existing file cabinet. You can
provide a complete file specification for the file
cabinet. If you do not specify /$CAB, then Document
Services uses either the current file cabinet (as defined
by the symbol OA$CABINET), or the document specified by
/$NUM in the current file cabinet.

/$NUM=docnum

Examples

This qualifier allows you to specify the document number
of the document on which you perform the operation. The
number you specify, docnum, must refer to an existing
document number in either the current file cabinet, or in
the file cabinet specified in /$CAB.

> DOC DELETE/$CAB=MYCAB.DDB/$NUM=45
> DOC DELETE/$NUM=45
> DOC DEL/$CAB=CABBY.DDB/$NUM=8

5-18

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.6 DOC DISPLAY

Show a document on the terminal screen.

Format

DOC DISPLAY[/qualifier •••]

Description

The DISPLAY function invokes the TYPE
utility that Flow's TYPE function uses.
DISPLAY clears the screen.

utility, which is the
Before showing the file,

The qualifiers are:

/$CAB=cabname

If you specify /$CAB, you must also specify /$NUM. The
/$CAB qualifier sets the current file cabinet to cabname
before performing the operation. The cabname you specify
must be the name of an existing file cabinet. You can
provide a complete file specification for the file
cabinet. If you do not specify /$CAB, then Document
Services uses either the current file cabinet (as defined
by the symbol OA$CABINET), or the document specified by
/$NUM in the current file cabinet.

/$NUM=docnum

Examples

This qualifier allows you to specify the document number
of the document on which you perform the operation. The
number you specify, docnum, must refer to an existing
document number in either the current file cabinet, or in
the file cabinet specified in /$CAB.

> DOC DISPLAY/$CAB=MYCAB.DDB/$NUM=45
> DOC DIS/$NUM=18
> DOC DISPLAY

5-19

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.7 DOC EDIT

Invoke the editor indicated in the DAM field of a document's
header.

Format

DOC EDIT[/qualifier .•.]

Description

The qualifiers are:

/$CAB=cabname

If you specify /$CAB, you must also specify /$NUM. The
/$CAB qualifier sets the current file cabinet to cabname
before performing the operation. The cabname you specify
must be the name of an existing file cabinet. You can
provide a complete file specification for the file
cabinet. If you do not specify /$CAB, then Document
Services uses either the current file cabinet (as defined
by the symbol OA$CABINET), or the document specified by
/$NUM in the current file cabinet.

/$NUM=docnum

This qualifier allows you to specify the document number
of the document on which you perform the operation. The
number you specify, docnum, must refer to an existing
document number in either the current file cabinet, or in
the file cabinet specified in /$CAB.

/.DAM=dam

Examples

This qualifier allows you to override the value in the
DAM field in the header. By default~ Document Services
uses the the value stored in the DAM field. See Table
5-1 for details on the possible values for this
qualifier.

> DOC EDIT/$CAB=MYCAB.DDB/$NUM=45
> DOC EDIT
> DOC EDIT/$NUM=34 ! Document 34 in current cabinet

5-20

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.8 DOC KILL

Erase a document header and document file.

Format

DOC KILL[/qualifier ...]

Description

This operation is a companion to DOC DELETE. Where DOC DELETE
moves a document header into the WASTEBASKET folder to await
final deletion, KILL immediately erases the header and document
text file.

Note the effect of the keep field (/.KEP) on the operation of
this functions:

• If the value in the keep field is N, then DOC KILL
immediately erases the header and document text file •

• If the value in the keep field is Y, then DOC KILL
erases only the header, leaving the document text file
intact.

The qualifiers are:

/$CAB=cabname

If you specify /$CAB, you must also specify either /$NUM
or /.FOL. The /$CAB qualifier sets the current file
cabinet to cabname before performing the operation. The
cabname you specify must be the name of an existing file
cabinet. You can provide a complete file specification
for the file cabinet. If you specify neither /$CAB nor
/.FOL, then Document Services kills one of the following:

• The current document in the current file cabinet (as
defined by the symbol OA$CABINET).

• A document specified by /$NUM in the current file
cabinet.

/$NUM=docnum

This qualifier allows you to specify the document number
of the document on which you perform the operation. The
number you specify, docnum, must refer to an existing
document number in either the current file cabinet, or in
the file cabinet specified in /$CAB.

5-21

INVOKING DOCUMENT SERVICES FUNCTIONS

/.FOL=folname

Examples

This qualifier allows you to kill all the documents in a
specified folder. The value of folname must be the name
of an existing folder in either the current cabinet (if
you omit /$CAB) or in the cabinet specified by /$CAB.

> DOC KILL/$CAB=CAB6.DDB/$NUM=12
> DOC KILL/$NUM=34
> DOC KILL/.FOL=WASTEBASKET Empty the WASTEBASKET

5-22

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.9 DOC MODIFY

Display and modify selected fields in a document header.

Format

DOC MODIFY[/qualifier ••.]

Description

See Table 5-1 for details on the fields in the header that you
can modify.

The qualifiers are:

/$CAB=cabname

If you specify /$CAB, you must also specify /$NUM. The
/$CAB qualifier sets the current file cabinet to cabname
before performing the operation. The cabname you specify
must be the name of an existing file cabinet. You can
provide a complete file specification for the file
cabinet. If you do not specify /$CAB, then Document
Services uses either the current file cabinet (as defined
by the symbol OA$CABINET), or the document specified by
/$NUM in the current file cabinet.

/FORM=Y or N

The /FORM qualifier specifies whether or not Document
Services should request FI to display a form that prompts
the user for values of fields in the header, showing
those specified with qualifiers as defaults. By default,
/FORM=Y.

/$NUM=docnum

This qualifier allows you to specify the document number
of the document on which you perform the operation. The
number you specify, docnum, must refer to an existing
document number in either the current file cabinet, or in
the file cabinet specified in /$CAB.

5-23

INVOKING DOCUMENT SERVICES FUNCTIONS

/.FOL=folname

The /.FOL qualifier allows you to modify the name of the
folder in which you store the document.

/.TIT=title

The /.TIT qualifier allows you to modify the title of the
document.

/.FIL=filname

The /.FIL qualifier allows you to modify the RMS filename
of the document.

/.KEP=Y or N

This qualifier allows you to modify the Y(es) or N(o)
value in the keep field of the header.

/.DAM=dam

This qualifier allows you to modify a value in the
Document Access Method (DAM) field in the header.

/.KEY=keywords

This qualifier allows you to modify keywords in the
keyword field of the header.

/.STA=status

This qualifier allows you to modify a value in the status
field of the header.

/.AUT=author

This qualifier allows you to modify a value in the author
field of the header.

5-24

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.10 DOC PRINT

Queue a print request to the printer.

Format

DOC PRINT[/qualifier •..]

Description

Use this command to perform local printing, that is, to print a
document at the printer connected directly to your Professional.
For information on remote printing (printing a document on your
host), see Chapter 8, Section 8.5.

The qualifiers are:

/$CAB=cabname

If you specify /$CAB, you must also specify /$NUM. The
/$CAB qualifier sets the current file cabinet to cabname
before performing the operation. The cabname you specify
must be the name of an existing file cabinet. You can
provide a complete file specification for the file
cabinet. If you do not specify /$CAB, then Document
Services uses either the current file cabinet (as defined
by the symbol OA$CABINET), or the document specified by
/$NUM in the current file cabinet.

/$NUM=docnum

This qualifier allows you to specify the document number
of the document on which you perform the operation. The
number you specify, docnum, must refer to an existing
document number in either the current file cabinet, or in
the file cabinet specified in /$CAB.

5-25

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.11 DOC SELECT

Specify the current document.

Format

> DOC SELECT/BY=se1criterion[/qualifier •••)

Where:

selcriterion can be NUM, FOL, or TIT. See the qualifer
descriptions below for details.

Description

A user can perform other Document Services functions only on the
current document, whatever that document is. If the current
document is not the one desired, the user can SELECT a document
with this function, thereby making the specified document the
current one.

The SELECT function calls the Form Interface to display a form
that presents several documents and allows the user to choose
one. You can specify selection criteria with the /BY qualifier.
See the description of the qualifiers below.

The form can have multiple screens. To display the first screen
of the form, the user can press the MAIN SCREEN key. To exit
from the SELECT function without updating the current file
cabinet, the user can press the EXIT key.

You must specify the /BY qualifer.
follow.

/BY=selcriterion

Descriptions of qualifiers

This qualifier specifies the selection criteria that
Document Services uses when reading records for the form.
You must specify one of the following values for
selcriterion:

• NUM -- requests that Document Services display the
documents in reverse chronological order of creation.
The form shows the document number, followed by a
portion of the title. Document Services ignores
folders.

• FOL -- requests that Document Services display the
documents by folder name. The form shows the folder
names in ascending alphabetic order.

5-26

INVOKING DOCUMENT SERVICES FUNCTIONS

• TIT -- requests that Document Services display the
documents by title, in ascending alphabetic order.

/$CAB=cabname

The /$CAB qualifier sets the current file cabinet to
cabname before performing the operation. The cabname you
specify must be the name of an existing file cabinet.
You can provide a complete file specification for the
file cabinet. If you do not specify /$CAB, then Document
Services uses the current file cabinet, as defined by the
symbol OA$CABINET.

/.FOL=folname

Examples

This qualifier allows you to specify the folder from
which the user can select a document. Document Services
displays only the documents in the specified folder.

> DOC SEL/BY=NUM/$CAB=MYCAB.DDB
> DOC SEL/BY=FOL/$CAB=[CABINETS]CABl.DDB
> DOC SEL/BY=FOL

5-27

INVOKING DOCUMENT SERVICES FUNCTIONS

5.3.12 DOC foreigncmd

Execute a Document Services foreign command.

Format

DOC foreigncmd

Where:

foreigncmd

Description

is the name of your foreign command, as specified
as part of the symbol name DSI$COM_foreigncmd.

A Document Services foreign command is a command whose action you
have defined in a symbol equivalence. You define the action of
the foreign command in the equivalence of the symbol
DSI$COM_foreigncmd.

Foreign commands are a means for you to formulate your own
commands to handle documents.

There is no relationship between a foreign command and a foreign
DAM, except that you would likely want to define a set of foreign
commands for every foreign DAM that you use.

Example

Suppose you want to define the foreign command DOC XXX, which
would allow you to perform the XXX operation on a document. Your
first step is to define the symbol DSI$COM_foreigncmd:

> DEFINE/SYMBOL/SYSTEM DSI$COM XXX "@[COMMANDS]XXX"

Then you would create your command procedure [COMMANDS]XXX.COM.
This file can contain the actual Flow functions that Flow would
perform whenever you invoke the foreign command. Note that you
cannot invoke the DOC function as part of a foreign command.

You would invoke the foreign command XXX as follows:

> DOC XXX

5-28

INVOKING DOCUMENT SERVICES FUNCTIONS

Here's a more specific example. Suppose you want to put .TSK
files in a separate cabinet, and define a foreign command DOC
RUN. Define the foreign command as follows:

> DEFINE/SYMBOL/SYSTEM DSI$COM RUN "RUN OA$CURMES FILE"

5.4 DOCUMENT SERVICES SYMBOLS

Table 5-2 describes all the symbols that Document Services uses.

Table 5-2: Symbols Used by Document Services

Symbol

DSI$COM fcmd

OA$ CABINET

OA$ CABINET TITLE - -

OA$_CURMES_DAM

bA$ CURMES FILE - -

OA$ CURMES FOLDER

OA$ EDITOR

Description

The symbol in which you store the
associated operation for a foreign
command named fcmd.

The p/OS file specification of the
current file cabinet.

The title of the current
cabinet.

file

The DAM of the current document.

The p/OS file specification of the
current document.

The current folder.

The document number of the current
document.

The document title of the current
document.

The current preferred editor.

5-29

CHAPTER 6

USING THE SYMBOL SERVICES FACILITY

A symbol is a combination of a name and an equivalence value.
You define a symbol by associating a name with an equivalence
value in any of Flow's symbol-defining functions. Tags, dynamic
commands, key definitions, and application definitions are all
symbols, albeit special kinds of symbols.

The Symbol Services Facility ("Symbol Services") creates,
deletes, and translates symbols, and stores their definitions in
a symbol database. This chapter describes the symbol database,
the tasks that compose Symbol Services, and the qualifiers that
you can specify when performing operations on symbols.

6.1 ORGANIZATION OF THE SYMBOL SERVICES DATABASE

A symbol database consists of a collection of symbol tables. In
PRO/Office Workstation, a symbol table is an RMS index file
containing symbol definitions.

Symbol Services provides three kinds of symbol tables:

• Process Table

This kind of table contains symbol definitions used for tasks
(we use the terms "process" and "task" interchangeably). All
tasks share a single process table.

The p/OS filename for the process table is
DWl:[ZZOASYM]PRCPROCES.SYM.

6-1

ORGANIZATION OF THE SYMBOL SERVICES DATABASE

• User Table

This table stores symbols that contain information
to the Workstation user. Examples of this
information are the user's name, node, telephone
title, and department.

relevant
kind of

number,

The p/OS filename for the user table is
DWI:[ZZOASYM]USRUSER.SYM

• System Table

The system table contains symbol definitions that are valid
throughout a particular installation of PRO/Office
Workstation. These definitions are "global" in the sense
that any task or user on a particular system can access them.
Symbol Services creates one system table for a system.

The plos filename for the system table is
DWI:[ZZOASYM]SYSSYSTEM.SYM.

Note that Symbol Services places all the tables in the directory
[ZZOASYM] •

6.2 DEFINING SYMBOLS

You define a symbol by invoking any of Flow's symbol-defining
functions:

• DEFINE/APPLICATION

• DEFINE/COMMAND

• DEFINE/KEY

• DEFINE/SYMBOL

• DEFINE/TAG

• INQUIRE

• LET

• FIELD

6-2

DEFINING SYMBOLS

Both the name and equivalence contain a string of ASCII
characters. The maximum name length is 32 bytes; the maximum
equivalence length is 512 bytes. Symbol Services translates the
symbol name into uppercase ASCII characters without any blank,
tab, or carriage return characters.

You can optionally specify a valid abbreviation for a symbol name
when you define the symbol. To do this, you provide the full
symbol name with an asterisk (*) inserted at the position
representing your desired minimal abbreviation. Also, you must
specify the /OVERRIDE qualifier. For example:

> DEFINE/SYMBOL/OVERRIDE CON*NECT n@[COMMANDS]CONNECT n

Given the symbol CONNECT defined above, it is sufficient to
specify the three characters CON to fully identify the symbol.

Using symbol abbreviations can cause ambiguous symbol
definitions, which can be dangerous. This is because Symbol
Services deletes ambiguous definitions from the process table.
You might unintentionally delete one or more symbol definitions.

For example, assume you have defined a set of symbols whose names
begin with the same character (let's use nAn). Then, suppose you
subsequently define a symbol with an allowed minimum abbreviation
of jus ton e c h a r act e r (for e x am pIe, " A * B LE") • I nth i s cas e ,
defining A*BLE causes the complete set of symbols whose names
start with "A" to become ambiguous -- hence Symbol Services
deletes all of them.

You can specify several symbol qualifiers when you define a
symbol. The qualifiers are:

• /NODELETE

• /OVERRIDE

• /PROCESS

• /SYSTEM

• /USER

• /VOLATILE

6-3

DEFINING SYMBOLS

NOTE

Version 1.0 of PRO/Office Workstation does not
allow you to specify these qualifiers on the LET
or FIELD functions.

Table 6-1 shows valid paired combinations of these qualifiers.
At the intersection of a row and column, "Yes" or "No" indicates
whether or not you can specify the associated pair of qualifiers
in a particular invocation of a symbol-defining function.

Table 6-1: Valid Combinations of Symbol Qualifiers

Qualifier /NODEL /OVERR /PROCE /SYSTE /USER /VOLAT

/NODEL Yes Yes Yes Yes Yes

/OVERR No Yes Yes Yes Yes

/PROCE Yes Yes No No Yes

/SYSTEM Yes Yes No No Yes

IUSER Yes Yes No No Yes

IVOLAT No No Yes Yes Yes

The following sections describe the qualifiers.

6-4

DEFINING SYMBOLS

6.2.1 /NODELETE

The NODELETE attribute prohibits Symbol Services from deleting or
redefining the symbol unless you specify the /OVERRIDE qualifier
on the DELETE or a symbol-defining function.

If you attempt to delete or redefine a NODELETE symbol in the
table in which it is defined as NODELETE, without specifying the
/OVERRIDE qualifier, Symbol Services returns an error message.

Why Use It?

You might use certain symbols within your customized
that the user should never be able to delete.
suppose you define a symbol as follows:

> DEFINE/SYMBOL/SYSTEM/NODELETE GM$_DIVISION "BUICK"

Workstation
For example,

Such a symbol might be a field on various forms that your
customized Workstation displays. The symbol cannot be redefined
or deleted without explicitly specifying the /OVERRIDE qualifer:

> DEFINE/SYMBOL/SYSTEM/OVERRIDE GM$ DIVISION "CHEVROLET"
> DELETE/SYMBOL/SYSTEM/OVERRIDE GM$-DIVISION

6-5

DEFINING SYMBOLS

6.2.2 /OVERRIDE

This qualifier allows you to override /NODELETE attribute of a
symbol. It also lets you define a minimum abbreviation for a
symbol.

Why Use It?

Use this qualifier to redefine a symbol that you have previously
defined with the /NODELETE qualifier. You receive an error if
you try to delete such a symbol without specifying /OVERRIDE.

Also use /OVERRIDE to define a symbol with a minimum
abbreviation. You indicate the minimum abbreviation by placing
an asterisk just after the final character in the substring of
the symbol name.

For example, the abbreviation MYN in the following symbol
definition adequately represents the symbol MYNAME:

> DEFINE/SYMBOL/OVERRIDE MYN*AME "TIM OCONNOR"

Section 6.2.1 gives an example of /NODELETE and /OVERRIDE.

6-6

DEFINING SYMBOLS

6.2.3 /PROCESS

The /PROCESS qualifier forces Symbol Services to place the
specified definition in the process table. By default, if you do
not specify any of the qualifiers /PROCESS, /USER, /SYSTEM, or
/VOLATILE, Symbol Services places the definition in the process
table.

You can simultaneously define a symbol in a process table and
either a user table or the system table. However, unless you
explicitly specify the user or system table when you redefine or
delete a symbol, Symbol Services by default performs the
operation on the symbol defined in the process table.

See Section 6.4 for a description of the order in which Symbol
Services searches the tables to find a definition.

Why Use It?

You should obtain slightly greater system performance if your
symbols are defined in the process table rather than the system
table.

a user table for a single-user Workstation, or the system table
for a muliple-user Workstation.

The following examples are equivalent:

> DEFINE/SYMBOL/PROCESS hello "COMMAND [COMMANDS]HELLO"
> DEFINE/SYMBOL hello "COMMAND [COMMANDS]HELLO"

6-7

DEFINING SYMBOLS

6.2.4 /SYSTEM

The /SYSTEM qualifier forces Symbol Services to place the
specified symbol definition in the system table.

See Section 6.4 for a description of the order in which Symbol
Services searches the tables to find a definition.

Why Use It?

Put symbols that you do not frequently access in the system
table. Place those that you do frequently access in the process
table, for better performance.

6-8

DEFINING SYMBOLS

6.2.5 IUSER

The IUSER qualifier forces Symbol Services to place the specified
definition in the user table. The user, and all tasks spawned
from the user's initial Flow task, have complete access to
definitions located in the user table.

Why Use It?

The user table is a good place to store user-related information,
such as name, phone number, and badge number.

6-9

DEFINING SYMBOLS

6.2.6 /VOLATILE

The VOLATILE attribute prohibits Symbol Services from storing a
symbol in the process table on disk, where it would otherwise
reside. Instead, a volatile symbol exists only in main memory.
Consequently, when you delete a volatile symbol, a definition of
the symbol residing in the symbol database (in any table) becomes
active again.

You delete all volatile symbols defined by a task when you turn
off the Profess ion.al. Al ternati vely, you can use the
DELETE/SYMBOL function to delete a particular volatile symbol.

If Symbol Services finds no more room in the dynamic memory pool
when you define a volatile symbol, you receive a create error.

Why Use It?

Volatile symbols provide the highest performance; they are always
in memory and do not have to be read from disk.

Also, the VOLATILE attribute allows you to temporarily redefine
an existing symbol. For example, suppose you normally have
defined key F17 as follows:

> DEFINE/KEY 17 "RUN DTE"

Symbol Services places this key definition in the process table.

Now assume that you would temporarily like to use key 17 to run a
command procedure that you are testing. You can define the key
as a volatile symbol:

> DEFINE/KEY/VOLATILE 17 "COMMAND TESTPROC"

When you subsequently remove this volatile key definition, you
automatically regain the original definition ("RUN DTE"). To
remove the volatile definition:

• Invoke the DELETE/KEY function.

• Turn off the Professional.

6-10

DELETING SYMBOLS

6.3 DELETING SYMBOLS

You explicitly delete a symbol by invoking any the Flow DELETE
functions:

• DELETE/APPLICATION

• DELETE/COMMAND

• DELETE/KEY

• DELETE/SYMBOL

• DELETE/TAG

The DELETE functions remove a symbol definition from a specified
symbol table. If no table is specified, Symbol Services attempts
to delete the symbol from the process table.

Table 6-2 describes the qualifiers you can specify for the DELETE
functions.

Table 6-2: Qualifiers for Deleting a Symbol

Qualifier

/PROCESS

/SYSTEM

/USER

/OVERRIDE

Description

Deletes a symbol definition from the process
table only. This is the default.

Deletes a symbol definition from the system
table only.

Deletes a symbol from the user table only.

Allows you to delete a symbol defined with
/NODELETE.

6.4 REFERRING TO SYMBOLS

Flow passes all parsed symbol references to Symbol Services for
interpretation. Symbol Services attempts to translate a symbol
by searching the tables for its definition. The following list
shows the order, beginning from the top and ending at the bottom,
in which Symbol Services searches for a definition. Note that
Symbol Services maintains a symbol cache for improved
performance.

6-11

REFERRING TO SYMBOLS

1. Process Table:

a. Volatile symbol

b. Cached symbol

c. Nonvolatile symbol

2. User Table:

a. Volatile symbol

b. Cached symbol

~ c. Nonvolatile symbol

3. System Table:

a. Volatile symbol

b. Cached symbol

c. Nonvolatile symbol

If Symbol Services finds the appropriate definition at any point
in the search, it stops the search and uses the definition
located. Otherwise, the Facility returns an error.

6-12

CHAPTER 7

USING THE MAIL SERVICES FACILITY

The Mail Services Facility ("Mail Services") uses the databases
of two other facilities: Document Services (to store, retrieve,
and modify messages), and Network Services (to store path records
of message recipients). The Mail Services Facility has its own
functions that you can invoke by using the Flow function MAIL.

This chapter describes the Mail Services databases, the
organization of the Mail Services Tasks, and the functions that
allow you to perform Mail operations.

7.1 ORGANIZATION OF THE MAIL SERVICES DATABASE

Mail Services uses several folders in the Document Services
database; these are all in cabinet [ZZDOCO]DEFAULT.DDB, and are
called:

• READ

Contains messages received from the host computer that the
user has read.

• UNREAD

Contains messages received from the host computer that the
user has not read.

• CREATED

Contains messages that have been created, but not yet queued
for sending to the host computer.

7-1

ORGANIZATION OF THE MAIL SERVICES DATABASE

• PENDING PICKUP

Contains messages that are queued for sending to the host
computer. You can remove a message from this folder to avoid
its being sent. See Section 7.3.7 for details.

• SENT

Contains messages that Network Services has sent to the host
computer.

• DEAD MAIL

Contains messages that Network Services did not send to the
host due to errors in attempted transmission. These errors
generally involve the format of the message.

In addition to these folders, Mail Services uses these files:

• [ZZDOCO]FMTMPLT.DAT

A template file containing a heading for all mail messages.
You can indicate symbols to be translated in the displayed
text by surrounding the symbol names with angle brackets.

• [ZZDOCO]FMUSER.DAT

A validation file containing a list of valid addressees.
This file is maintained by the DTF task in Mail Services.

7.2 ORGANIZATION OF THE MAIL SERVICES TASKS

The Mail Services Facility consists of three major software
modules:

• Flow Mail (FMAIL)

FMAIL is a task that serves as the interface between the user
and Mail operations. FMAIL creates messages by calling
Document Services routines via DSI. Also, FMAIL reads
messages that the host VAX transmitted to the Professional,
in the folder UNREAD. Finally, FMAIL marks messages for
sending by placing them in folder PENDING PICKUP. (Note that
changing a document's folder merely involves changing the
folder field in its document header.) Once a message is in
the folder PENDING PICKUP, it can be sent to the host VAX by
Mail's other module, TMAIL.

7-2

ORGANIZATION OF THE MAIL SERVICES TASKS

• Transport-Level Mail (TMAIL)

TMAIL, in combination with the Network Services, is the task
that actually sends and receives messages. TMAIL
periodically reads messages from the folder PENDING PICKUP
and sends them to the host VAX, using Network Services
functions. TMAIL places messages successfully sent in the
folder SENTi it places messages not successfully sent in the
folder DEAD MAIL. Finally, FMAIL receives messages from the
host VAX and places them in the folder UNREAD. You can use
the MAIL BACKGROUND function to set the wakeup interval for
TMAIL.

• DTF

DTF is a task that maintains a list of valid addressees in a
validation file. This is an RMS indexed file located in
[ZZDOCO]FMUSER.DAT. When you SEND, FORWARD, or ANSWER a
message, FMAIL checks the users you enter in the TO: and CC:
fields against users stored in the validation file. Note
that the validation file provides a generic search
capability, thus allowing you to specify substrings of your
valid addressees in the TO: and CC: fields. TMAIL does not
send a message unless all addressees are valid. You can
invoke DTF as follows to to perform maintenance on the
validation file:

> INSTALL [ZZFLOW]DTF.TSK
> CALL DTF/$FORM=FMUSER/$LIB=OAFMS.FLB

As an example of the sequence of events involving FMAIL and
TMAIL, consider what happens when a user creates and sends a mail
message:

1. From Flow, the user invokes FMAIL using the MAIL (or
EXTERNAL) command. In command mode:

> MAIL CREATE

2. FMAIL calls FI to display a form that prompts the user
to fill in the TO:, CC:, and SUBJECT: fields of the
message heading.

3. FMAIL reads the validation file [ZZDOCO]FMUSER.DAT to
validate the adressees specified in the TO: and CC:
fields.

7-3

ORGANIZATION OF THE MAIL SERVICES TASKS

4. After the user enters data in the SUBJECT: field, FMAIL
calls Document Services to create a document. In this
case, the plOS filename for the document has the
extension .MSG rather than .OAD --- to distinguish
this document as a mail message. The call to Document
Services invokes the preferred editor (symbol
OA$EDITOR), and then places the new message in the
folder CREATED.

5. The user then wants to send the message, and invokes
FMAIL from Flow with the SEND function:

> MAIL SEND

6. FMAIL moves the current message from folder CREATED to
folder PENDING PICKUP.

7 • At a predetermined interval, TMAIL activates,
the message from the PENDING PICKUP folder.
can specify a wakeup interval for TMAIL
Electronic Mail Setup menu, which invokes the
Flow command:

> MAIL BACKGROUND/ENABLE=interval

See Section 7.3.2 for details.

reading
The user

via the
following

8. TMAIL invokes the Network Services task XCOM, using the
user's stored path record to login to the host VAX.
Once logged on to the VAX, TMAIL initiates the command
procedures PROAI.COM (start VAX ALL-IN-l) and
PROSEND.COM (send mail from PRO to VAX ALL-IN-l and
restart TMAIL on the Professional).

9. TMAIL transfers the message from the PENDING PICKUP
folder to the SENT folder.

10. TMAIL then "hibernates" until its next wakeup period
arrives.

Figure 7-1 illustrates the organization of the Mail Services
tasks, showing FMAIL and TMAIL, as well as the relationship to
Document Services and Communication Services. The foreground
area consists of those tasks that that can interact directly with
the user -- FMAIL and DSI.

7-4

ORGANIZATION OF THE MAIL SERVICES TASKS

1
T Flow Control Facility

•

DSI FMAIL

foreground

background
VAX

CDS - TMAIL~--4'" XCOM PFT~ Al

DEFAULT.DDB SYSSYSTEM.SYM

Figure 7-1: Organization of the Mail Services Facility

7-5

1
T

ORGANIZATION OF THE MAIL SERVICES TASKS

7.2.1 VAX Command Procedures Used by Mail Services

PRO/Office Workstation uses a number of command procedures to
communicate with VAX ALL-IN-I. Mail Services uses a subset of
these command procedures to send and receive mail messages:

• PROAI.COM

• PROSEND.COM

• PROREAD.COM

• PROMEXT.COM

• PROMEXT.DTR

For details on these command procedures, see Chapter 8, section
8.6.1.

7.2.1.1 Path Record Required by TMAIL - In order for TMAIL to
correctly send and receive mail using the command procedures, you
must define a path record named:

MAIL: : *

To define this path record, do either of the following:

• Display the form XNETSU by invoking the Flow command

> MENU XNETSU

Then select the menu option CREATE.

• Invoke XLIB CREATE as described in Chapter 8, Section
8.3.

Enter the following values for the "Select a library record"
portion of the XLIB session:

Select a library record

Enter Node?
Enter Object?

MAIL
*

7-6

ORGANIZATION OF THE MAIL SERVICES TASKS

Values you enter in the "Create a path record" portion of the
XLIB session depend on your connection to the host VAX (for
example, a hardwired or Gandalf connection). See Chapter 8 .for
details. A sample session for a hardwired connection follows.

Create a path record

FAC CODE?
FAC-NODE?

FAC OBJECT?
TGT NODE?
TGT-USER?

TGT PASSWORD?
TGT OBJECT?
TGT-DEVICE?

TGT PHONE?
TGT SPEED?

TGT TYPE?
TGT SYSTEM?
TGT-PARITY?

TGT BITS?

2
<CR>
XCOM
MYNODE
MY NAME
MYPSWRD
<CR>
XKO:
<CR>
9600
H
V
N
8

7.3 INVOKING MAIL SERVICES FUNCTIONS

The Mail Services Facility provides several functions that allow
a user to handle mail messages. In general, you use the Flow
MAIL or EXTERNAL function to access Mail Services functions.

The MAIL function actually translates into a call to FMAIL using
the EXTERNAL function. For example, the following function
invocations are equivalent:

> MAIL CREATE
> EXTERNAL F$MAIL CREATE

In the EXTERNAL function, the F$ prefix to the FMAIL taskname
indicates that you are calling a task that is accessible only
from Flow.

7-7

INVOKING MAIL SERVICES FUNCTIONS

The format of the MAIL function is:

MAIL msfunc[/qualifier]

Where:

msfunc is any of the Mail Services functions:

/qualifier

• ANSWER

• BACKGROUND

• CREATE

• FORWARD

• MORE

• READ

• SEND

is any qualifier that is valid for the specified
operation.

The following sections describe each of the Mail Services
functions.

NOTE

Mail Services functions send and receive only
messages that are in the default file cabinet,
[ZZDOCO]DEFAULT.DDB. Mail Services cannot access
messages that are in any other cabinet.

7-8

INVOKING MAIL SERVICES FUNCTIONS

7.3.1 MAIL ANSWER

Reply to a received message.

Format

MAIL ANSWER

Description

This function allows the user to answer a message that he or she
has received. FMAIL performs the following steps:

1. Scan the received message and place the author field
into a TO: field in the template. Place the subject
from the received message into the SUBJECT: field in
the template.

2. Call a Document Services routine to create a message.

3. Call a Document Services routine to place the created
message in folder CREATED.

Mail Services uses the author of the received message as the
value in the reply's single TO: field. The subject of the reply
is the same as the subject of the received message, with "In
Reply To" preceding it.

Forms Used by This Function

None.

7-9

INVOKING MAIL SERVICES FUNCTIONS

7.3.2 MAIL BACKGROUND

Enable or disable the wakeup time for TMAIL.

Format

MAIL BACKGROUND[/qualifier]

Description

Use this function to enable or disable automatic wakeups for
TMAIL.

When you establish a TMAIL wakeup time, TMAIL activates at the
time you specify, once per day. Upon activating, TMAIL places
received mail in folder UNREAD and attempts to send mail that is
in folder PENDING PICKUP.

The qualifiers are:

/DISABLE

Specifies that you want to disable TMAIL from
automatically activating. Note that you can manually
activate TMAIL simply by executing the function:

> ACTIVATE [ZZFLOW]TMAIL.TSK

This invocation of ACTIVATE runs TMAIL in the background.

/ENABLE=hh:mm

Where:

hh:mm is the absolute time that TMAIL will wake
up every day. Absolute time is based on
a 24-hour clock.

This qualifier specifies that you want to establish a
wakeup interval.

Forms Used by This Function

None.

Examples

> MAIL BACKGROUND/ENABLE=7:30
> MAIL BACKGROUND/ENABLE=22:00
> MAIL BACKGROUND/DISABLE

7-10

Wake up at 7:30 AM every day
Wake up at 10:00 PM every day
Disable automatic wakeup

INVOKING MAIL SERVICES FUNCTIONS

7.3.3 MAIL CREATE

Create a mail message.

Format

MAIL CREATE

Description

This function allows the user to create a mail message.
performs the following steps:

FMAIL

1. Accepts the following data via an FMS form:

• TO: - Usernames of people receiving the message.

• CC: - Usernames of people receiving "copies" of the
message.

• SUBJECT: - The subject of the message.

2. Call a Document Services routine to create the message
and edit it. FMAIL places the message in folder
CREATED. FMAIL also fills in the TO:, CC:, and SUBJECT:
fields of the message.

Forms Used by This Function

FMTO

FMLIST

Allows entry of usernames into the TO: and CC:
fields. Displayed using the tag FMAILF.

Menu that displays a list
Displayed using the tag FMAILM.

NOTE

of usernames.

The symbol FM$TEMPLATE must contain a valid and
existing file name, because Mail Services builds
the header of the message from this file.

Also, the symbols FMTO, FMCC, and FM$SUBJ must
be defined because they determine the string that
precedes the TO:, CC:, and SUBJ: fields in the
message file. Do not change the default
definitions of these symbols or mail will not
op~rate properly.

7-11

INVOKING MAIL SERVICES FUNCTIONS

7.3.4 MAIL FORWARD

Forward a mail message to other adressees.

Format

MAIL FORWARD

Description

This function forwards a message that the user has received.
FMAIL performs the following steps:

1. Build the list of users to whom you are forwarding the
message. This step includes validation of the usernames
against the validation file.

2. Call a Document Services function to create and edit the
message as a document.

3. Append the message to be forwarded at the end of the
list of addresees.

Like the MORE and CREATE functions, FORWARD builds the message
header from the standard template file. However, FORWARD appends
the received message to this header, forwarding it to users on
the new header. The function also allows the user to edit the
message to be forwarded.

Forms Used by This Function

FMTO

FMLIST

Allows entry of TO: and CC:
Displayed using the tag FMAILF.

Menu that displays a list
Displayed using the tag FMAILM.

NOTE

information.

of usernames.

The symbol FM$TEMPLATE must contain a valid and
existing file name, because Mail Services builds
the header of the message from this file.

Also, the symbols FMTO, FMCC, and FM$SUBJ must
be defined because they determine the string that
precedes the TO:, CC:, and SUBJ: fields in the
message file. Do not change the default
definitions of these symbols or mail wIll not
operate properly.

7-12

INVOKING MAIL SERVICES FUNCTIONS

7.3.5 MAIL MORE

Add more TO: and CC: information to an existing message.

Format

MAIL MORE

Description

This function allows the user to add additional TO: and CC:
information to an existing message. FMAIL performs the following
steps:

1. Obtain more TO: and CC: information from the user via
Fl.

2. Validate the additional names against the validation
list.

3. Parse the message, looking for the last TO:, then add
additional TO: fields.

4. Parse the message, looking for the last CC:, then add
additional CC: fields.

Forms Used by This Function

FMTO

FMLIST

Allows entry of TO: and CC:
Displayed using tag FMAILF.

Menu that displays a list
Displayed using tag FMAILM.

NOTE

information.

of usernames.

The symbol FM$TEMPLATE must contain a valid and
existing file name, because Mail Services builds
the header of the message from this file.

Also, the symbols FMTO, FMCC, and FM$SUBJ must
be defined because they determine the string that
precedes the TO:, CC:, and SUBJ: fields in the
message file. Do not change the default
definitions of these symbols or mail will not
operate properly.

7-13

INVOKING MAIL SERVICES FUNCTIONS

7.3.6 MAIL READ

Read an unread mail message.

Format

MAIL READ

Description

This function allows the user to read unread mail messages from
the folder UNREAD.

FMAIL performs the following steps:

1 •

2.

3.

4.

Get the first unread message from the folder UNREAD by
calling a Document Services routine. Set the message
read as the current message by calling another Document
Services routine.

Place the message in the folder READ.

Document Services decrements the value in the symbol
OA$MAIL COUNT, which indicates the number of messages In
folder UNREAD. Also, Document Services rebuilds the
string OA$MAIL_COUNT_DISPLAY.

Display the mail message using the Flow TYPE function.

Forms Used by This Function

None.

7-14

INVOKING MAIL SERVICES FUNCTIONS

7.3.7 MAIL SEND

Place a message in the outgoing queue.

Format

MAIL SEND

Description

This function transfers a message from folder CREATED to folder
PENDING PICKUP, to be sent by FMAIL at its predetermined wakeup
time. -

You can halt transmission of a message by using the Document
Services function DOC MOD to change the folder from
PENDING PICKUP to another folder. You could also use DOC DELETE
to place the message in the WASTEBASKET folder. You could even
use DOC KILL to remove the message and its header entirely.

There is a very short interval during which TMAIL might have sent
the message, but has not yet changed its folder name to SENT. If
you attempt to halt transmission during this interval, you will
fail.

Note that you can send any type of document that is in
DEFAULT.DDB. If there is an error during transmission, TMAIL
places the document in folder DEAD MAIL.

Forms Used by This Function

None.

7-15

MAIL SERVICES SYMBOLS

7.4 MAIL SERVICES SYMBOLS

Table 7-1 describes the symbols used by Mail Services.

Table 7-1: Symbols Used by Mail Services

Symbol

FM$TEMPLATE

FM$TO

FM$CC

FM$SUBJ

OA$MAIL COUNT

OA$MAIL COUNT DISPLAY - -

Description

This symbol holds the name of the
standard template file from which the
the user creates the message file.
Initially it has an equivalence value of
"[ZZDOCO]FMTMPLT.DAT".

This symbol contains the default string
that appears in the created message file
at the beginning of each TO: field.
Never redefine this symbol.

This symbol contains the default string
that appears in the created message file
at the beginning of each CC: field.
Never redefine this symbol.

This symbol contains the default string
that appears in the created message file
at the beginning of each SUBJECT: field.
Never redefine this symbol.

This symbol contains a numeric string
indicating the number of currently
unread messages (the number of messages
in folder UNREAD).

This symbol contains a phrase that tells
the user the number of currently unread
messages.

7-16

Symbol

TMAIL$ NOTIFY

TMAIL$ OBJECT

TMAIL$ READ

TMAIL$ SEND

TMAIL$ OFF

MAIL SERVICES SYMBOLS

Description

This symbol determines if and how the
user will be alerted that PRO/Office
Workstation has received mail. You can
define it as follows:

• TERMINAL -- TMAIL sends a message
to your terminal screen.

• MESSAGE -- TMAIL sends a message to
the P/OS message board.

• BOTH -- Equivalent to both TERMINAL
and MESSAGE.

• NONE
message.

TMAIL does not send a

By default, this symbol is defined as
MESSAGE.

If defined, this symbol overrides the
path name MAIL::*, which represents the
path record TMAIL uses for connection to
VAX.

If defined, this symbol
DCL command used on VAX
ALL-IN-l read procedure,
default:

overrides
to invoke

which is

@PROA1:PROAl "COMMAND PROREAD.COM"

If defined, this symbol
DCL command used on VAX
ALL-IN-l send procedure,
default:

overrides
to invoke

which is

@PROAl:PROAl "COMMAND PROSEND.COM"

the
the

by

the
the

by

You can define this symbol to enable or
disable the TMAIL task from running in
the background. An equivalence value of
nyn disables TMAILi any other value (or
if the symbol is undefined) causes TMAIL
to run normally when activated.

7-17

Symbol

OA$XKO RESERVED

TMAIL$ LOGIN

MAIL SERVICES SYMBOLS

Description

The TMAIL task creates this symbol in
conjunction with other programs or
procedures that use XKO:. If this symbol
is non-null, TMAIL is not currently
sending or receiving mail. When TMAIL is
active, however, this symbol exists with
a value of

TMAIL date time

After TMAIL completes, it redefines the
symbol to a null length.

Setting this symbol to an equivalence of
"N" prevents TMAIL from logging you out
if you happen to be logged into another
account. Instead, TMAIL stops running
and leaves you logged in.

If the symbol is
value other than
the following:

undefined or has a
"Y", then TMAIL does

1. Logs you out of your current
account (if this account is not
your mail account).

2. Log you into the mail account.

3. Carries out the mail processing
procedures.

4. Logs you out of the mail account.

7-18

Symbol

TMAIL$ LOGOFF

MAIL SERVICES SYMBOLS

Description

If TMAIL finds the user logged into the
mail account, then it creates this
symbol, giving it a value of "N". The
module that performs the logout after
mail processing then checks for the
definition of this symbol. If its
equivalence is "N" then it leaves the
user in the logged in state (the state
that the user was in before TMAIL
started up).

Note that the automatic background
running of TMAIL only occurs when the
user is working on the PRO. TMAIL does
not start up if the user is in terminal
emulation.

7-19

CHAPTER 8

USING THE NETWORK SERVICES FACILITY

The Network Services Facility {"Network Services"} enables users
to connect and login to remote systems through the Professional's
Communication Port (device XKO:). The facility provides the
following capabilities:

• Background file transfer from Professional to host, host
to Professional, or Professional to Professional.

• Distributed processing networks of cooperating personal
workstations and host systems.

• Automatic login to remote host system.

Table 8-1 describes some terms we use in this chapter. The
remainder of the chapter describes the Network Services database
and tasks, the functions that allow you to perform network
operations, and the symbols that the facility uses.

8-1

Table 8-1: Network Services Terminology

Node

Object

Target

Term Description

The name of a particular computer system.
Example: MOSES.

A process, task, program, or image that you
can execute on a remote system. Examples:
M_FRIEDMAN (process), MYPROG.TSK (task).

A remote system to which you can connect and
login. You identify a target by its
node::object combination. Example:
MOSES::M FRIEDMAN.

Account A user's account on a remote system. Example:

Path

MFRIEDMAN.

A record containing information necessary to
reach a target. The path name is usually the
same as the target name. Example:
MOSES::M FRIEDMAN.

Path Library A collection of paths stored for subsequent
recall. Example: DWl:[ZZOASYM]SYSSYSTEM.SYM
contains path records.

8.1 ORGANIZATION OF THE NETWORK SERVICES DATABASE

Network Services maintains a database whose data records consist
of paths. A path is a set of information that describes how
Network Services can connect and login to a target, and run
objects on the target. A path contains such information as:

• Node information (node name).

• User's account information (username, password).

• Circuit Information (circuit device and speed).

8-2

ORGANIZATION OF THE NETWORK SERVICES DATABASE

Network Services stores path information as symbols in a path
library. The path library itself consists of a portion of the
system symbol table, [ZZOASYM]SYSSYSTEM.SYM. To access the
symbols in the path library, you must treat them as paths by
using one of the Network Services tasks, called XLIB. Section
8.2 describes XLIB, as well as the other tasks provided by
Network Services.

Each path consists of a symbol whose equivalence value is a
412-byte (maximum length) string. When accessing a path, Network
Services maps the equivalence string onto a record definition, as
shown below:

map (path) &
string path_ block=412

map (path) &
string path dst nod=20 &

,string path= dst - obj=IO & -
&

,string path_fac_ cod=l &
,string fill=l &
,string path_fac_ nod=20 &
,string path_fac_ obj=lO &

&
,string path_tgt_ nod=20 &
,string path_tgt_ usr=30 &
,string path_tgt_psw=lO &
,string path_tgt_ obj=130 &
,string path_tgt_ dev=lO &
,string path_tgt_phn=40 &
,word path_tgt_ spd &
,string path_tgt_typ=l &
,string path_tgt_sys=l &
,string path_tgt_par=l &
,string path_tgt_ bit=l

Tabl~ 8-2 describes each field in the record definition.

Table 8-2: Description of Path Record Fields

Path
Node

Field Size

20
Bytes

Description

This is a name that defines your path
node. The combination of node::object
defines the name of a particular path
that Network Services uses for recall.

8-3

ORGANIZATION OF THE NETWORK SERVICES DATABASE

Field

(Continued.)

Path
Object

Facility
Code

Facility
Node

Facility
Object

Size

20
Bytes

1
Byte

20
Bytes

10
Bytes

Description

Usually, you specify your node name on
the target VAX· in this field (the same as
the value in the Target Node field).
However, you can specify any name you
want. Using XLIB, you specify this value
in response to the prompt "Enter Node?".

This is a name that defines your path
object. The combination of node::object
defines the name of a particular path
that Network Services uses for recall.

Usually, you specify your username on the
target VAX in this field (the same as the
value in the Target Object field).
However, you can specify any name you
want. Using XLIB, you specify this value
in the response to the prompt "Enter
Object?".

The facility code specifies how
Services communicates to the
system. There are three codes:

o Reserved.

1 Reserved.

Network
target

2 Use the XCOM task to reach remote
targets via the Communication Port.

Version 1.0 of PRO/Office Workstation
supports only code 2, XCOM. This is the
actual program that manages the
Communication Port on the Professional
350. You must specify 2 for this field in
response to the XLIB prompt "FAC CODE?".

Reserved.

The facility object is the name of the
facility object (program, task) you are
using for communication. In PRO/Office
Workstation, this is XCOM. Specify XCOM
in response to the XLIB prompt
"FAC OBJECT?".

8-4

Field

Target
Node

Target
Username

Target
Password

ORGANIZATION OF THE NETWORK SERVICES DATABASE

Size

20
Bytes

30
Bytes

10
Bytes

Description

The target node is the node you want to
reach. XCOM ensures that it connects to
the proper node based on this field. If
XCOM currently has the Communication Port
connected to another node, it will
disconnect and reconnect to the proper
one. If XCOM has the Communication Port
connected to the same node, it does not
disconnect and reconnect.

Note that you usually duplicate the value
you specify here in the Path Node field,
although that is not necessary. An
example of a node is the MOSES portion of
MOSES::M FRIEDMAN. Set this field to your
host node name in response to the XLIB
prompt "TGT NODE?".

The target username allows you to login
to the target system. This is your
username on the host.

Note that you usually duplicate the value
you specify here in the Path Object
field. An example of a username is the
M FRIEDMAN portion of MOSES::M FRIEDMAN.
Specify this value in response to the
XLIB prompt "TGT USER?".

The target password allows you to login
to the target system. This is your
password on the host. Specify this value
in response to the XLIB prompt
"TGT PASSWORD?".

8-5

Field

Target
Object

Target
Device

Target
Phone

Target
Speed

ORGANIZATION OF THE NETWORK SERVICES DATABASE

Size

130
Bytes

10
Bytes

40
Bytes

I-word
Integer

Description

The target object field specifies a DCL
command that XCOM invokes on the target
system after completing the login. You
can enter the value in this field either
through XLIB, or via the NETWORK RUN
command. For example, in XLIB enter your
DCL command in response to the prompt
"TGT OBJECT?".

Via the NETWORK RUN command, enter:

> NETWORK RUN CRVAXl::WOODS/CMD="DIR"

This command connects to the node and
logs in to the account specified by
CRVAXl::WOODS, and passes the DCL command
DIR as the target object (DCL command) to
be executed on the VAX.

The target device is the device through
which you connect to the target system.
For the Professional, this value is XKO:,
the device name of the Communication
Port. Enter the name in response to the
XLIB prompt "TGT DEVICE?".

The target phone field provides
information that XCOM uses during
connection. If your target type is A
(autodial modem), specify the phone
number of your host VAX. If your target
type is G (Gandalf) or I (Micom), specify
your node or class number. If your target
type is H (hardwired), then leave this
field blank by simply pressing the RETURN
key in response to the XLIB prompt
"TGT PHONE?".

The target speed specifies the baud rate
at which your host communicates. Enter
9600 in response to the XLIB prompt
"TGT SPEED?".

8-6

Field

Target
Type

Target
System

Target
Parity

Target
Bits Per
Character

ORGANIZATION OF THE NETWORK SERVICES DATABASE

Size

1
Byte

1
Byte

1
Byte

1
Byte

Description

The target type defines the port hardware
type. XCOM uses this field to determine
what it has to do when connecting and
disconnecting the port. Specify one of
the following codes in response to the
XLIB prompt "TGT_TYPE?":

A -- Autodial the attached DF03-AC modem,
using the contents of the target phone
field.

G -- Gandalf switch. Activate the switch,
search for "ENTER CLASS", reply with the
target phone field, and search for
"START".

H -- Hardwired.

I Micom switch. Activate the switch,
search for "ENTER CLASS", reply with the
target phone field, and search for "GO".

U -- User (manual) dial.

The target system field specifies the
operating system of the target computer.
XCOM uses this field to determine how to
login, logout, run, and finish objects.
Specify "V" (for VMS) in response to the
XLIB prompt "TGT_SYSTEM?".

Target parity defines the parity used for
the connection. Since XC OM always uses no
parity, you must set this field to "N" in
response to the XLIB prompt
"TGT PARITY?".

Target bits per character defines the
number of data bits in each character on
the connection. When making connections
to a host VAX, you should set it to "8"
in response to the XLIB prompt
"TGT BITS?".

8-7

ORGANIZATION OF NETWORK SERVICES TASKS

8.2 ORGANIZATION OF NETWORK SERVICES TASKS

The Networks Services Facility consists of two major software
components:

• The XLIB Task

XLIB is a task that manages
You invoke this task in
record. When you invoke
contents of each field
Table 8-2.

• The XCOM Task

path records in the path library.
order to create or modify a path

XLIB, it prompts you for the
in a path record, as described in

XCOM is a communication facility that provides communication
via the Professional's Communication Port. XCOM executes
routines that are part of Flow to read the information stored
in a path record, and uses that information to connect and
login to the target system. You invoke XCOM with the Flow
function NETWORK.

Figure 8-1 illustrates the organization of the Network Services
tasks. The figure shows XLIB and XCOM, which both access the
path library contained in [ZZOASYM]SYSSYTEM.SYS. Note that XCOM
uses Flow routines to read the path records, while XLIB reads the
path records directly.

8-8

ORGANIZATION OF NETWORK SERVICES TASKS

~ Flow Control Facility

XLIB Dynamic Command
(Path Maintenance)

Network
Services

XLIB

Path Library in
SYSSYTEM.SYM

NETWORK Flow Function
(Network Commands)

XCOM

Figure 8-1: Organization of the Network Services Facility

8-9

INVOKING XLIB FUNCTIONS (PATH MAINTENANCE)

8.3 INVOKING XLIB FUNCTIONS (PATH MAINTENANCE)

XLIB is the task that allows you to create and maintain path
records.

To invoke XLIB from eLI, you must first install the XLIB task:

> INSTALL [ZZFLOW]XLIB.TSK

Then you can create a dynamic command to invoke XLIB:

> DEFINE/COMMAND/SYS XLIB "RUN/TASK OWl: [ZZXNET]XLIB­
>_/NAME=XLIB/COM=""XLIB "

Finally, you can invoke the dynamic command XLIB as follows:

> XLIB libfunction

Where:

libfunction is a library function that you want XLIB to
perform.

The library functions are:

• CREATE (create a path record)

• DELETE (delete a path record)

• DISPLAY (display a specific path record)

• LIST (list all path records)

Assume that you want to create a path library to login to a
particular VAX. From CLI, enter the command:

> XLIB CREATE

XLIB then prompts you to "Select a Library Record" and then to
"Create a Path Record." XLIB writes the information you supply
into the new path record.

8-10

INVOKING XLIB FUNCTIONS (PATH MAINTENANCE)

8.3.1 Sample XLIB Session: Hardwired Connection

A sample XLIB session follows. The session assumes that:

• Your facility code is 2 for XCOM.

• Your facility object is XCOM.

• Your target node is MOSES.

• Your target username M FRIEDMAN.

• Your target password is XYZZY.

• Your target object is the DCL command @LOGIN.

• Your target device is XKO:.

• Your target speed is 9600.

• Your target ~ is a hardwired connection.

• Your target system a VAX running VMS.

• Your target parity is OFF.

• Your number of bits per character is 8.

Select a library record

Enter Node?
Enter Object?

MOSES
M FRIEDMAN

Create a path record

FAC CODE?
FAC-NODE?

FAC OBJECT?
TGT NODE?
TGT-USER?

TGT PASSWORD?
TGT OBJECT?
TGT-DEVICE?

TGT PHONE?
TGT-SPEED?

TGT TYPE?
TGT SYSTEM?
TGT-PARITY?

TGT BITS?

2
<CR>
XCOM
MOSES
M FRIEDMAN
xyzzy
@LOGIN
XKO:
<CR>
9600
H
V
N
8

8-11

INVOKING XLIB FUNCTIONS (PATH MAINTENANCE)

8.3.2 Sample XLIB Session: Gandalf or Micom Connection

A sample XLIB session follows. The session assumes that:

• Your facility code is 2 for XCOM.

• Your facility object is XCOM.

• Your target node is MOSES.

• Your target username M FRIEDMAN.

• Your target I2assword is XYZZY.

• Your target object is the DCL command @LOGIN.

• Your target device is XKO: •

• Your target I2hone is MOSES, the system name
enter when Gandalf prompts ENTER SYSTEM NAME.

• Your target sI2eed is 9600.

• Your target ~ is connection via a Gandalf

• Your target system a VAX running

• Your target I2arity is OFF.

• Your number of bits ~ character

Select a library record

Enter Node?
Enter Object?

MOSES
M FRIEDMAN

Create a path record

FAC CODE?
FAC-NODE?

FAC OBJECT?
TGT NODE?
TGT-USER?

TGT PASSWORD?
TGT OBJECT?
TGT-DEVICE?

TGT PHONE?
TGT-SPEED?

TGT TYPE?
TGT SYSTEM?
TGT-PARITY?

TGT BITS?

2
<CR)
XCOM
MOSES
M FRIEDMAN
xyzzy
@LOGIN
XKO:
MOSES
9600
G
V
N
8

8-12

VMS.

is 8 •

that

switch.

you

INVOKING XLIB FUNCTIONS (PATH MAINTENANCE)

NOTE

PRO/Office Workstation does not provide support
for every Gandalf or Micom switch, since most
switches are programmed in a unique way. If the
procedures we describe here for connecting via
Gandalf or Micom do not work for you, contact
your Software Services representative for
assistance in modifying the XCOM task.

If you are connected to your host with a Gandalf or Micom switch,
you must pay particular attention to following items:

• The prompt message that your switch emits to ask you for
your class (or system name).

• The actual class (or system name) that you supply to the
switch so that it can route you to your host machine.

• The start message that the switch emits once it has
connected you to the host.

For example, suppose the switch prompts you for a class when you
attempt to connect:

ENTER CLASS

When connecting you to your host, XCOM waits for this prompt.
XC OM compares the last word in the prompt with the equivalence in
either of the system symbols XCOM$GANDALF CLASS or
XCOM$MICOM CLASS. Thus, if the appropriate symbol (depending on
your switch) has an equivalence of CLASS, then XCOM can recognize
the prompt ENTER CLASS.

It is possible that your switch has been programmed to prompt you
for a system (node) name instead of a class number:

ENTER SYSTEM NAME

If you receive this prompt you must change the equivalence of the
appropriate symbol so that it is equal to the last word of the
prompt. In this case, invoke DEFINE/SYMBOL as follows:

> DEFINE/SYMBOL/SYSTEM XCOM$GANDALF CLASS "NAME"

or

> DEFINE/SYMBOL/SYSTEM XCOM$MICOM CLASS "NAME"

8-13

INVOKING XLIB FUNCTIONS (PATH MAINTENANCE)

After comparing the switch prompt with the symbol equivalence and
finding a match, XC OM can supply the switch with the required
value. XCOM reads this from the target phone field. Thus, you
must enter your normal response to the switch prompt when asked
for "TGT PHONE?" in XLIB. When connecting to the requested
machine,-XCOM will supply your switch with the value contained in
the target phone field.

Two other system symbols, XCOM$GANDALF START and
XCOM$MICOM_START, contain the switch's start messaije. The start
message is a message that your switch emits when it has
successfully connected to the requested machine. XCOM reads the
appropriate symbol to determine the expected start message. This
allows XC OM to know when' it is succesfully connected to the
target system, so that it can begin the login procedure.

You should set the value of the appropriate symbol to the last
word of your start message. For example, suppose your start
message is:

CLASS 555 START

In this case, your symbol should be defined as the follows:

> SYMBOL/DEFINE/SYSTEM XCOM$GANDALF START "START"

or

> SYMBOL/DEFINE/SYSTEM XCOM$MICOM START "START"

8-14

INVOKING NETWORK SERVICES FUNCTIONS

8.4 INVOKING NETWORK SERVICES FUNCTIONS

You invoke Network Services by invoking Flow's NETWORK function
and passing a subsystem function as a parameter. The format of
the NETWORK function is

NETWORK[/qualifier .••] nsfunc

Where:

nsfunc is one of the Network Services functions:

• CONNECT

• DISCONNECT

• FINISH

• LOGIN

• LOGOUT

• RUN

• START

• STOP

The qualifiers are:

/TIMEOUT=n

/TERMINAL

The value of n is the NETWORK call timeout.
default, n equals 60 seconds.

By

Run the Dumb Terminal Emulator (DTE) immediately
after executing the Network Services function,
and exit the Emulator when the NETWORK function
is done.

Also, you can specify any of the global qualifiers described at
the beginning of Chapter 3.

In order to invoke any of the Network Services functions, you
must first invoke NETWORK START.

Table 8-3 shows the how the functions allow you to engage and
disengage a target at varying levels. Sections following the
table describe all the the Network Services functions.

8-15

INVOKING NETWORK SERVICES FUNCTIONS

Table 8-3: Engaging and Disengaging Targets

Engage Disengage

CONNECT DISCONNECT

LOGIN LOGOUT

RUN FINISH

Description

The first level of engagement is
connecting to the target. Once
connected, you can login to an account
on the target. Once logged in, you can
run an object on the target.

The second level of enagement is
logging in to the target. You must be
connected in order to login. Once you
are logged in, you can run an object
on the target.

The final level of engagement is
running an object on the target. You
must be connected and logged in to do
this.

8-16

INVOKING NETWORK SERVICES FUNCTIONS

8.4.1 NETWORK CONNECT

Connect to a target.

Format

NETWORK CONNECT node::object

Where:

node::object

Description

is the node::object pair you specified as the
name of your path record in the "Select a Library
Record" portion of an XLIB session. This is the
name of your target.

The CONNECT function performs the first level of eng?gement to a
remote target. Once connected, you can LOGIN to the target and
then RUN an object.

Example

> NETWORK CONNECT MOSES::MFRIEDMAN

8-17

INVOKING NETWORK SERVICES FUNCTIONS

8.4.2 NETWORK DISCONNECT

Disconnect from a target.

Format

NETWORK DISCONNECT node::object

Where:

node::object is the node::object pair you specified as the
name of your path record in the "Select a Library
Record" portion of an XLIB session. This is the
name of your target.

Description

The DISCONNECT function disengages from a
target. If you are logged in or running
DISCONNECT also performs a LOGOUT and a FINISH.

Example

> NETWORK DISCONNECT MOSES::MFRIEDMAN

8-18

connected remote
an object, the

INVOKING NETWORK SERVICES FUNCTIONS

8.4.3 NETWORK FINISH

Stop a running object.

Format

NETWORK FINISH node::object

Where:

node::object

Description

is the node::object pair you specified as the
name of your path record in the "Select a Library
Record" portion of an XLIB session. This is the
name of your target.

The FINISH function only stops a running remote object. It does
not LOGOUT or DISCONNECT from the target.

Example

> NETWORK FINISH MOSES::MFRIEDMAN

8-19

INVOKING NETWORK SERVICES FUNCTIONS

8.4.4 NETWORK LOGIN

Login to a target.

Format

NETWORK LOGIN

Where:

node: :object

Description

node: : obj ect

is the node::object pair you specified as the
name of your path record in the "Select a Library
Record" portion of an XLIB session. This is the
name of your target.

The LOGIN function performs two levels of engagement to a remote
target: it connects and logs in. You can then issue the NETWORK
RUN command to run an object.

Example

> NETWORK LOGIN MOSES::MFRIEDMAN

8-20

INVOKING NETWORK SERVICES FUNCTIONS

8.4.5 NETWORK LOGOUT

Logout from a target.

Format

NETWORK LOGOUT node::object

Where:

node::object

Description

is the node::object pair you specified as the
name of your path record in the "Select a Library
Record" portion of an XLIB session. This is the
name of your target.

The LOGOUT function stops a running object and logs out from the
target. It does not DISCONNECT from the target.

Example

> NETWORK LOGOUT MOSES::MFRIEDMAN

8-21

INVOKING NETWORK SERVICES FUNCTIONS

8.4.6 NETWORK START

Begin XCOM processing.

Format

NETWORK START [dirspec]

Where:

dirspec

Description

is the directory name, enclosed in square
brackets. This is the directory on the local
system that contains subsystem tasks. By
default, this value is [ZZXNET].

The NETWORK START function allows you to install the XCOM task.
A warning occurs if. the task is already installed. Any other
errors cause the function to fail.

Example

Suppose you have already defined a path in a path library, as in
the example in the section 8.3.1. You can login to the target
system defined in that path by specifying the following commands:

> NETWORK START
> NETWORK/TERM LOGIN MOSES::M FRIEDMAN

8-22

!start up XCOM
!login, run DTE

INVOKING NETWORK SERVICES FUNCTIONS

8.4.7 NETWORK STOP

Stops the XCOM task.

Format

NETWORK STOP

Description

The NETWORK STOP command stops the XCOM task. It sends a Network
Services request to stop the task (not a plos stop). It does not
remove the background tasks.

You should not stop the subsystem unless it is actually active;
otherwise, mUltiple stop messages may be queued to XCOM when it
is not active. One method to correct this is to issue a NETWORK
START before every NETWORK STOP. NETWORK START commands are
harmless if the subsystem is already active.

Example

> NET START
> NET STOP

8-23

REMOTE PRINTING OF DOCUMENTS

8.5 REMOTE PRINTING OF DOCUMENTS

PRO/Office Workstation provides two command procedures that allow
you to print documents on a remote printer. These procedures
are:

• [VAXCOM]REMPRT.COM

You execute this command procedure on the VAX. You must
place this file in OALIB: on the VAX, and define the logical
PROAl: to point to OALIB:.

• [ZZFLOW]VAXPRINT.COM

Execute this command procedure from Flow to print remotely.
It executes the OALIB:REMPRT.COM procedure on the host VAX.

8.6 COMMUNICATING WITH VAX ALL-IN-1

This section describes several command procedures that Network
Services and Mail Services use to communicate with VAX ALL-IN-l.
Also, the section illustrates how you can login to a VAX ALL-IN-l
system from your Professional.

Note that you must have defined the following path record for
Mail Services to communicate with VAX ALL-IN-l:

MAIL::*

For more details, see Chapter 7, Section 7.2.1.1.

8.6.1 VAX Command Procedures

PRO/Office Workstation uses several command procedures to
communicate with VAX ALL-IN-l. The procedures execute on-VAX
under DCL. They are present on the PRO/Office Workstation kit in
OAI:[VAXCOM]*.*, but are not copied onto the PRO during
installation.

To properly invoke any of the command procedures, you must first
define the logical name PROAl: on the host VAX; this logical
must point to the OALIB: directory, where you must place all of
the command procedures.

8-24

COMMUNICATING WITH VAX ALL-IN-l

On VAX:

$ ASSIGN OALIS: PROAl:

A description of each file follows:

• PROAI.COM

Starts VAX ALL-IN-l to communicate with the workstation.
Invoked by the NETWORK RUN command from Flow on the PRO.

• PROCAL.COM

Performs the VAX ALL-IN-l calendar function.
NETWORK RUN command from Flow on the PRO.

• PROSEND.COM

Invoked by

Sends mail from the PRO to VAX ALL-IN-I. Invoked by the task
TMAIL on the PRO.

• PROREAD.COM

Reads mail from VAX ALL-IN-l and places it on the PRO.
Invoked by the task TMAIL on the PRO or PROSEND.COM on VAX.

• PROGETDOC.COM

Selects a VAX ALL-IN-l document and transfers it to the PRO.
Invoked by the procedure VAXGET.COM on the PRO.

• PROPUTDOC.COM

Inserts a document
ALL-IN-l database.
the PRO.

• PROMEXT.COM

from the PRO database into the VAX
Invoked by the procedure VAXPUT.COM on

Creates a Workstation-compatible mail validation file from
the VAX ALL-IN-l database. (Uses PROMEXT.DTR.)

• PROMEXT.DTR

Datatrieve procedure used by PROMEXT.COM.

Please note that the PROMEXT functionality requires that you have
Datatrieve installed on the VAX.

8-25

COMMUNICATING WITH VAX ALL-IN-I

8.6.2 Sample Session: Running VAX ALL-IN-l Through DTE

This section describes how to run ALL-IN-I on a host VAX via DTE.
DTE is the name of the PRO/Communications Dumb Terminal Emulator.

Define the XLIB dynamic command as shown earlier in this chapter.
Enter XLIB CREATE from CLI to create a path record. Make sure
that you respond to the "TGT OBJECT?" prompt by typing AI. We
are assuming that you would normally type Al on your VAX to start
up ALL-IN-I.

Al is the program name for ALL-IN-I on the VAX. XCOM allows you
to automatically execute a program (object) on the VAX. In this
case, we have chosen ALL-IN-l.

Now, build this function into a command file. You might want to
put the file in a directory called [COMMANDS] with other command
procedures. Call the file AI.COM and use EDT to create it:

$
$ DWI:[COMMANDS]AI.COM
$
$ CLEAR
$ WRITE SYS$OUTPUT "Calling ALL-IN-I ••• "
$ NETWORK/QUIET START
$ NETWORK/TERMINAL RUN node::object
$ NETWORK DISCONNECT

Test it by typing

> @[COMMANDS]AI.

NOTE

If your VAX is heavily loaded, you might get a
timeout error. At the > prompt, type NETWORK
STOP and then try again.

A word of caution: XCOM will cause a login sequence into your
VAX and then simulate your typing AI. VAX ALL-IN-I will begin
its start-up processing. At the same time, FLOW will run the
terminal emulator (due to the /TERMINAL qualifier). The timing
of these two events can cause unpredictable results. This would
occur, for example, if VAX ALL-IN-I performs its startup before
DTE performs its startup. However, there is a solution to this
problem.

8-26

COMMUNICATING WITH VAX ALL-IN-l

Instead of using "AI" as the TGTOBJECT, use @MYAl~ Then put the
DCL command file MYAl.COM in your VAX account:

$
$ MYAl.COM in your VAX account
$
$
$
$
$

This command file will wait 5 seconds before
invoking ALL-IN-l to close the window between
DTE and ALL-IN-l start-up processing.

$WAIT 00:00:05
$Al
$LO
$

!Wait 5 seconds
!Start up ALL-IN-l
!Log-off and get back to FLOW by
!pressing the EXIT key

The command procedure forces the VAX to wait 5 seconds before
executing the VAX ALL-IN-l startup processfng, thus ensuring that
DTE has begun execution.

If you like, you can use the DEFINE/KEY command to load the
command @DWl:[COMMANDS]Al into a function key. For example:

> DEFINE/KEY 19 n@DWl:[COMMANDS]Al n

Now you can invoke the procedure Al.COM by pressing the FI9
function key.

8.7 NETWORK SERVICES SYMBOLS

Table 8-4 describes the symbols that Network Services uses. Note
that, in particular, Network Services uses the first three
symbols shown in the table to determine the current state of the
Communication Port.

Table 8-4: Symbols Used by Network Services

Symbol

XNET$XCOM NODE

Description

This symbol contains the name of the
node to which the user is connected.
Network Services defines a non-null
equivalence for this symbol only if the
user is connected to the target system.
Otherwise the symbol is defined as null.

8-27

Symbol

XNET$XCOM USER

XNET$XCOM OBJECT

XCOM$GANDALF CLASS

XCOM$MICOM CLASS

XCOM$GANDALF START

XCOM$MICOM START

NETWORK SERVICES SYMBOLS

Description

This symbol contains the username of the
user who is connected and logged in to a
target. Network Services defines a
non-null equivalence for this symbol
only if the user is connected and logged
in to the target. Otherwise the symbol
is defined as null.

This symbol contains the name of an
object that is currently running on a
target. Network Services defines a
non-null equivalence for this symbol
only if the user is connected, logged
in, and running an object on the target.
Otherwise the symbol is defined as null.

This symbol must contain the last word
of the prompt that your Gandalf switch
emits when you are connecting to a
target.

This symbol must contain the last word
of the prompt that your Micom switch
emits when you are connecting to a
target.

This symbol must contain the last word
of the start message that your Gandalf
switch emits when you are connecting to
a target.

This symbol must contain the last word
of the start message that your Micom
switch emits when you are connecting to
a target.

8-28

APPENDIX A

ERROR MESSAGES

A.I ERRORS GENERATED BY DSI

INSUFDOCIN
INSUFCABIN
SELSIZERR
SELNOTHING
PREVMENUERR
MAXCACHE
BADCABDEL

CABDELFAIL
CABLOCFAIL
DELNOCAB
NOSYSCAB
KILNOFIL
NOCURCAB
NOSYSCAB
DOCKILFAIL
MODNODOC
DELNODOC
DISNODOC
PRTNOFIL
FI FAIL
BAD CREATE
KILFAIL
ILLCABREQ
NOPARM
BADCABCRE
MODFAIL
NOFOLD
EDNOFIL
NOUPDATE
BADDOC
CABOPN
CABGETFAIL
BADCABSEL

You must enter a title and a folder
Please enter a title and a filename
Can't fit all choices on screen
You have nothing to select
Cannot display previous menu
Too many options to display, Truncating
Unable to delete cabinet from System
cabinet
Unable to delete current cabinet
Unable to locate cabinet
You have no current cabinet to kill
You have no system cabinet
You have no current document to kill
You have no current cabinet to access
Unable to locate the system cabinet
Error is attempting to kill document
You have no current document to modify
You have no current document to delete
You have no current document to display
You have no current document to print
Unable to process form, exiting
Unable to create document
Unable to kill document
Unknown cabinet function specified
Insufficient information for create
Unable to create cabinet
Unable to change document
Unable to locate folder
You have no current document to edit
Unable to modify document
Unable to retrieve document
TTnable to access cabinet
Unable to retrieve cabinet
Unable to complete cabinet selection

A-I

DOCGETFAIL
SELSYM
SELFAIL
CDSFAIL
USRXIT
SELILLREQ
BADPBUNL

BADCMDLIN
BADPBADD
SYMFAIL
BADPBLOAD

NOCDSST

UNKNOWN COMMAND

DIRECTIVE ERROR
SPAWN ERROR
PRINTER MISC
PRINTER UNKNOWN
PRINT 0
PRINT-Il
PRINT-IO
PRINT 9
PRINT-S
PRINT-7
PRINT-6
PRINT 5
PRINT-4
PRINT-3
PRINT-2
PRINT-I

ERRORS GENERATED BY DSI

Unable to retrieve document
Unable to select document
Selection failed
Document server has had an error
Exiting by your request
Selection criterion not allowed
Can't unload a parameter from
parameter block
Flow couldn't start the editor
Unable to address Parameter Block
Symbol server has had an error
Unable to load a parameter into the
Parameter Block
Unable to retrieve status from the
document server
Document Services entered by unknown
command
Directive error spooling document
Unable to start (spawn) editor
Error accessing printer:
Unknown status code from print spool
Print request failure
Print job already active
Printer busy
Printer already attached
No print job is active
Print job is not paused
Print job already paused
Parameter out of range
Printer not connected
Undefined
Printer not connected and paused
Unable to connect to service task

A.2 ERRORS GENERATED BY CDS

BADSYM
SYMNOUPD
BP2ERR
BP2TXT
CABOPN
CABCRE
BADCAB
BADPRI
BADSEC
GETHDR
GDNERR

Unable to retrieve symbol
Unable to update the symbol
Basic-PIus-Two error data
Basic-PIus-Two error text:
Error opening cabinet
Error creating cabinet
Invalid cabinet
Invalid primary document header
Invalid secondary document header
Could not get document header
Could not get next document number in
cabinet

A-2

ERRCRE
ERRDEL
ERRGET
ERRMOD
NOCAB
NOREQ
ILLARG
ILLREQ
ILLNBR

ERRORS GENERATED BY CDS

Create operation failed
Delete operation failed
Retrieve operation failed
Modify operation failed
No cabinet argument in call
No request argument in call
Invalid argument in call
Invalid request
Numeric value is not numeric

A.3 ERRORS GENERATED BY BASIC-PLUS-2

BP2ERR
BP2TXT

Basic-PIus-Two error occurred:
Text of BP2 error:

A.4 ERRORS GENERATED BY LOGICAL HANDLING

LOG$NAME
LOG$VALUE
SETDEF$SPEC
LOGERR

Logical name:
Logical equivalence:
Default directory:
Error in prolog operation:

A.5 ERRORS GENERATED BY TMAIL

NEWMAIL

PROERR

New mail has been received.

When TMAIL has been activated and it finds new
mail it displays this message.

A mail error occured that has stopped Mail.

TMAIL starts up in the background and experiences
problems that cause it to discontinue. Possible
reasons might be

• Unable to log into VAX

• Getting timeouts

• Unable to run ALL-IN-l

A-3

SNDERR

FATAL

BUSERR

NOCDSSTAT

CDSERR

GETERR

MODFOL

ERRORS GENERATED BY TMAIL

A mail error has occured while sending mail.

TMAIL attempts to send a message from the PRO to
the addressees via VAX ALL-IN-l. If a user does
not have an ALL-IN-l profile on the VAX file then
a send error will occur. Also might be caused by
a message with an illegal format.

Fatal TMAIL error:

Software bus error:

A call to the software bus failed.

No status returned by CDS:

TMAIL calls Callable Document Services and no
status is returned to TMAIL. CDS should also
generate some errors as well.

An error was returned by CDS:

TMAIL calls Callable Document Services and and an
invalid status is returned to TMAIL. CDS should
generate some errors as well.

Error while reading file:

Error while reading the status files created on
the PRO containing info on the messages marked
for mailing. Possibly the file has a bad format
and TMAIL attempts to read past the EOF
marker.

Error modifying message folder:

TMAIL calls CDS to modify the folder name and an
error occurs.

A-4

OPNERR

PUTERR

CABERR

RUNERR

PATHERR

LGIERR

ERRORS GENERATED BY TMAIL

Error trying to open file:

An error is encountered when attempting to open
an RMS file. Check that the file has been
created in the correct manner (it may have been
created in a format not compatible with the most
recent OPEN statement).

Error writing to file:

Attempting to write a record to a file. The
record may be too long.

Error opening document cabinet

TMAIL calls DS to access mail messages and the
cabinet specified does not exist. Check that the
cabinet specified exists in [ZZDOCO]*.

Error trying to run ALL-IN-I on VAX:

Network Services finds the DCL prompt on the VAX
and attempts to run VAX ALL-IN-I. The error may
occur because the user is logged in to the wrong
account.

Error finding Network Services path:

The path specified in the XCOM call (mail::*) is
undefined. The user should define this path
record.

Error logging into VAX:

The XC OM call to log in to the VAX failed,
possibly due to a timeout error. For example, if
the VAX is exceptionally slow XCOM may time out
because it only waits for a certain number of
seconds to receive the 'username' prompt from
VAX.

Other TMAIL Errors:

RCVERR
NEWSTART

Mail error processing VAX data
Bad new message START:

A-5

NEWWARN
NEWERR
NEWUNREC
NEWADDERR
NOSTAT
STATERR
SNDSTART
SNDWARN
SNDERR
SNDUNREC

ERRORS GENERATED BY TMAIL

Warning for new message:
Error for new message:
Unrecognized new.br.i-16;line:
Error creating document for new message:
VAX Status file could not be found:
Error in VAX status data
Bad sent message START:
Warning for sent message:
Error for sent message:
Unrecognized line:

A.6 ERRORS GENERATED BY FLOW NETWORK COMMAND

PATHPROMPT
PATHERR
UNSPCOM
NOCOMMAND
NON ODE
ILLNUM
REQCOM
COMACT
NOTOPER
ERROR
FACILITY
WORDl
WORD2
WORD3
BADSTATE
INSTASK
TSKERR
PREINST

Please enter the NETWORK path:
The specified path is not defined
Not a valid NETWORK command
No NETWORK command specified
No required node name found
Illegal number in switch
XCOM not installed
XC OM already active
XCOM not running
NETWORK error:
NETWORK Facility:
Word 1 value:
Word 2 value:
Word 3 value:
FLOW state unrecognized
PROTSK error installing task:
Error values:
Task is already installed:

A.7 ERRORS GENERATED BY FI

Error - request is invalid

This means that the user entered an invalid
request. The only valid FI requests are MENU,
FORM, and FIELD. The error code for this error
is 16640. Retry the operation using a correct
request

A-6

INVAL DEF

INVAL DIS

NODIS

NO OEF

ARGERR

FILE ERR

PB EMPTY

LIBNOTOPEN

ERRORS GENERATED BY FI

Error - definition is invalid

The user has entered an invalid value for 10EF=.
Retry the operation using the correct definition
for the FI operation.

Error - display is invalid

The user has entered an invalid value for 10IS=.
Retry the operation using the correct display for
the FI operation.

Error - display not specified

The user has not specify 10IS= when it is
required. Check the tag that you are using for
the lOIS entry.

Error - function not specified

The user has not specify 10EF= when it is
required. Check the tag that you are using for
the 10EF entry.

Error calling , .ARG' routine

Probably an FMS error.

Error in file operation

Error - parameter block is empty

This error occurs if FI calls a dynamic form from
an application passing an empty parameter block.

Error - library not open

FI attempts to display a form without having a
form library open.

A-7

NO NDATA

ERRORS GENERATED BY FI

No named data entries for specified form

FI attempts to display an AI (/DEF=Al) type form
whose named data is empty. Use FED to change the
FMS form; add the correct entries to named data.

IMPURE AREA ERR Error in named data area of specified form

Other FI Errors

NOFORM
INVALINPUT
NOMENU
NOFILE
FORMERR
TOOMNYOPT
TOO LONG
NOFIELD
TOOMNYTXT
ALLOWNM
NOMATCH
INVALLINE

There is a problem reading the named data of the
current form. Check the named data in the form
using FED.

No Form Name Specified - Exiting
Invalid Input - Please Reenter
.MENU area missing
File Must be Specified in Argument - Exiting
Form Name Error - Default to , FORMI ,
Too Many Options - Ignored
Output Field Too Long - Truncated
Field Does not Exist on current form
Too many Text Messages - Ignored
No Match Found - Allow
No match found for choice - Please reenter
Invalid record found - Ignored

A.a ERRORS GENERATED BY FLOW eLI

ILLCMD
ERRINPROC
INPOPNERR
SYS$INPUT
REOPERR
CMDINPERR
ILLCMD
DFNERR
ILLOP
ILLIOP
ILLNBR
UNDSYM

Illegal or unrecognized command
Error forces procedure exit
Error opening sys$input,
Sys$input=
Error reopening sys$input,
Error inputing command
Command syntax error,
Error defining symbol
Illegal operation in expression
Illegal internal operation value
Variable is not a valid integer
Symbol in expression is not defined

A.9 ERRORS GENERATED BY FLOW

CMD$CMD
CPROMPT

<Flow version>
<CLI prompt>

A-8

FIRST FUNCTION
STARTUP FUNCTION

BASELEVEL
VER WRK
VER FLOW

PAUSE

PASSWD
ILLCMD
SUBNOTDEF
FOPINP
FOPOPN
FOPOUT
FOPFDT
EOF
BADREQ
BADSRV
BADSTATE
NOTIMP
NOS TACK

INIERR
BP2ERR
FTLBP2ERR
CLEAR

ERRORS GENERATED BY FLOW

menu oa$main
cont

<current baselevel>
<Worstation version message>
<Flow version message>

Press RESUME or any function key to
continue
Exit from password form - terminating •••
Illegal or unrecognized command
Undefined symbol for command substitution
FOP Input error
FOP Open error
FOP Output error
FOP Pro input error
End of file detected
FLOW request not recognized,
FLOW service not recognized,
FLOW State not recognized,
Service not implemented
FCB stack limit reached, use EXIT or
UNWIND
Flow initialization error
Basic-PIus-Two error,
Fatal Basic-PIus-Two error,
+155.+H+155.+J

A.IO ERRORS GENERATED BY FLOW ROUTINES THAT CALL FI

MNU$TAGNAM
STAERR
MNUERR

Please enter the form specification:
Form interface request failed,
Form interface operation failed

A.II ERRORS GENERATED BY FMAIL

ERR CALLING FI Error in call to Forms Interface

The module that allows you to enter data
in TO: and CC: fields has sent back an
error status to the caller. Other
error messages accompanying this message
should explain the exact problem.

A-9

ERR CALLING FMTO

ERR CALLING DS

ERR CALLING FMTMP

ERR CALLING DSCRE

ERR CALLING DSEDIT

ERR CALLING DOCMOD

ERRORS GENERATED BY FMAIL

Error in call to module FMTO

The calling routine receives an
status back from the "entering
CC:" module. Accompanying error
should indicate the cause of
that module.

invalid
TO: and
messages
error in

Error in call to Document Services

FMAIL makes a call to Document
which returns an invalid
Accompanying error messages
indicate the cause of the
Document Services.

Error in call to module FMTMP

Services,
status.

should
error in

The calling program receives an invalid
status back from the message-building
routine. Accompanying error messages
should indicate the cause of error in
that module.

Error in call to Document Services.

FMAIL receives an invalid status from
Document Services when attempting to do a
DOC CREATE. Accompanying error messages
should indicate the cause of error in
that module.

Error in call to Document Services

FMAIL receives an invalid status from
Document Services when attempting to do a
DOC EDIT. Accompanying error messages
should indicate the cause of error in
that module.

Error in call to Document Services

FMAIL receives an invalid status from
Document Services when attempting to do a
DOC MODIFY. Accompanying error messages
should indicate the cause of error in
that module.

A-IO

BP2 ERR

TEMPLATE SYM UNDEF

SWB ERR

FILERR

SUBJ SYMERR

TO SYMERR

CC SYMERR

ERRORS GENERATED BY FMAIL

Run time error occurred

A BASIC-PLUS-2 error occurred. The error
code received is the BASIC run-time
error. This error might occur by using
invalid files or files with an illegal
format. Look up the error code in the
basic run time errors

Template Symbol is undefined

The symbol FM$TEMPLATE, which holds the
name of the message template file, does
not exist in the symbol table. Fix this
by creating the symbol and giving it the
equivalence of the valid template file.

Software Bus error occurred

A calIon the software
invalid status. Check
retry.

bus returns
parameters

an
and

User not in Validation file -- bp2 error

Might be the result of a corrupt
validation file. Compare the addressees
on the validation file to the addresses
in the current message.

Subject symbol error

The symbol FM$SUBJECT, which holds the
field title SUBJECT:, is undefined.
Create this symbol.

To symbol error

The symbol FM$TO, which holds
title TO:, is undefined.
symbol.

CC symbol error

The symbol FM$CC, which holds
title CC:, is undefined.
symbol.

A-II

the field
Create this

the field
Create this

ERR TRN SYM

MSG ILL FORMAT

NULL KEY

NO SUCH USER

FM$ BADCAB

FM$_NOCAB

ERRORS GENERATED BY FMAIL

Symbol translation error

Symbol Services returns an invalid
status. Check for the existence of the
symbols it may be translating and create
the necessary symbols.

Mail message has illegal format

When attempting to
information to
message is found
format (possibly
correct subject
the message).

add more TO: and CC:
a mail message, the
to have an illegal

it does not have the
check the format of

Error accessing file -- null key found

The author entry in the header for the
message is null. Therefore the message
is invalid and cannot be operated on.
Modify the document's header information.

User does not exist on file

The addressee name or partial name does
not exist on the user validation file on
your PRO. If you really want to send
mail to this addressee, then you must
create an entry for him in the user
validation file.

Mail must be created in cabinet "DEFAULT"

Mail messages can only reside in the
default cabinet. Therefore, if the
current cabinet is anything other than
DEFAULT this error occurs. Can be
avoided by changing your default cabinet
to DEFAULT.

No current Cabinet

This error occurs when you attempt to
invoke a mail function without a current
cabinet set the current cabinet to
DEFAULT.

A-12

ERRORS GENERATED BY PIP

A.12 ERRORS GENERATED BY PIP

NOINPSP
NOOUTSP
NOTCOMMAND

No input file specification
No output file specification
Unrecognized command

A.13 ERRORS GENERATED BY TYPE

PROMPT

HELPI
HELP2
HELP3
HELP4
HELPS
HELP6
HELP7
EOD
INVAL
ERRORI
ERROR2
ERROR3
ERROR4
ERRORS
FILE
GETERR
EXIT

Please Press NEXT SCREEN, PREV SCREEN, MAIN
SCREEN, EXIT, PFl, or HELP
EXPLANATION OF FUNCTIONS
NEXT SCREEN - DISPLAYS NEXT PAGE OF FILE
PREV SCREEN - DISPLAYS PREVIOUS PAGE OF FILE
MAIN SCREEN - DISPLAYS FIRST PAGE OF FILE
EXIT - ENDS TYPE PROGRAM
PFI - 80/132 COLUMN TOGGLE
PRESS RETURN TO RESUME TYPING FILE
[End of Document]
INVALID FUNCTION
can't find
Error
(

) at line
On file
File:
in GETMCR call
Exiting •••

A.14 ERRORS GENERATED BY FLOW CALL OR EXTERNAL COMMANDS

NONZEROESB
SWBERR
NOMOREMDB
NOSTAT

Service/module terminated early
Software bus error ocurred,
FLOW external mdb stack exhausted
Service/module did not return status

A.IS ERRORS GENERATED BY APPLICATION-RELATED COMMANDS

NAME
NOSPEC
USREXI
PAIAPL
IMGEXC
SPWNERR
RUNDWN

Please enter FLOW application name
No application name has been given
User chose to exit operation
PAIAPL server incurred an error:
Install file has too many tasks or libraries
Error spawning task specified in RUN command,
Please wait while the application is
terminated •••

A-13

ERRORS GENERATED BY APPLICATION-RELATED COMMANDS

CTRLC
UNDEF
INSOPNERR
DEBOPNERR
VERCRELOG
VERINSTSK
VERDELLOG
VERREMTSK
VERABOTSK
CRELOG
INSTSK
DELLOG
REMTSK
ABOTSK
INSINPERR
ILLREQ

Application terminated by user Control-C
This application is not defined in FLOW,
Error opening application install file,
Error opening debug output file,
creating logical name
installing task or library
deleting logical name
removing task or library
aborting task
Error creating logical name
Error installing task or library
Error deleting logical name
Error removing task or library
Error aborting task
Error reading install file,
Illegal request made to f$appl,

A.l6 ERRORS GENERATED BY SYMBOL-RELATED COMMANDS

ILLCOM
CREERR
DELERR
GETERR
DEFSYM$NAM
DEFSYM$EQV
DEFCOM$NAM
DEFCOM$EQV
DEFKEY$NAM
DEFKEY$EQV
DEFTAG$NAM
DEFTAG$EQV
DEFAPP$NAM
DEFAPP$EQV

Illegal operation or symbol type
Error creating definition
Error deleting definition
Error translating definition
Symbol name:
Symbol equivalence:
Dynamic command name:
Dynamic command equivalence:
Function key number:
Function key equivalence:
Tag name:
Tag equivalence:
Application name:
P/OS application title:

A.17 ERRORS GENERATED BY TASK-RELATED COMMANDS

NONAME
SPWTSK
TSKERR
BASTATE
NOFILE
PREINS
NOTINS
PROT ASK
DIRERR

Task name not specified
Error running (spawning) task
Spawned task returned error
FLOW state not recognized
No file specification for install
Task already installed
Task not installed
PROTSK error
p/os Directive error

A-14

A.I8

DIRNAM
VOLNAM
VOLMOU
VOLDIS
MOUNT
DISMOU
DIRCRE
DIRDEL
USREXI

ERRORS GENERATED BY FLOW VOLUME-RELATED COMMANDS

ERRORS GENERATED BY FLOW VOLUME-RELATED COMMANDS

Directory specification:
Volume device label (ddu:label):
Volume mounted:
Volume dismounted:
Error mounting volume:
Error dismounting volume:
Error creating directory:
Error deleting directory:
User aborted operation

A-IS

Following is a
[ZZFLOW]OAFMS.FLB.
executing the FORM
(this depends on
menu-type form).

ACCTSU
APPL
APPLSU
BA
CMS
COMMSU
DEFLIS
DEFMEN
DM
DOCSEL
DSCCB
DSCDC
DSCOP
DSDCB
DSDCBW
DSDDC
DSDDCW
DSDFL
DSDFLW
DSEDCW
DSMDC
DSSCB
DSSDF
DSSFL
DSSNU
DSSTI
EM
EMSU
FCM
FILE

APPENDIX B

LIST OF DEFAULT FORMS

list of all the forms provided in
You can display any of these forms by

or MENU function, whichever is appropriate
whether the form is an argument-type form or a

B-1

FLOW
FLOWSU
FMLIST
FMTO
FMUSER
FORM
MAIN
MENU
MSGSEL
PASSWD
POS
PROFIL
SUCOM
SUEDIT
SUFIR
SUKEY
SUNOT
SUSYM
SUTAG
SYSSU
USERSU
WP
WSSU
XNET
XNETSU

B-2

-A-

ABORT
Flow function, 3-5

Account
definition, 8-1

ACTIVATE
Flow function, 3-6

ALL-IN-l
communicating with, 8-24
on VAX, 8-26
sample session, 8-26

Apostrophe
in quoted string, 2-4
in symbol translation, 2-4
on command line, 2-4

ASSIGN
Flow function, 3-7

Associated
documents, x

-B-

Background
command procedure execution,

2-11
BLOCK

Flow function, 3-8
BLOCK/SUSPEND

Flow function, 3-9

-C-

Callable Document Services (CDS)
description, 5-8

CDS
Description, 5-8

CLEAR
Flow function, 3-13

CLI command
continuation line, 2-9
dollar sign used in, 2-3
entered interactively, 2-9
equal sign used in, 2-3
executing from command

procedure, 2-10ff
executing interactively, 2-9

INDEX

INDEX

CLI command (Cont.)
format, 2-3
grouped by purpose (table), 2-5
interactive, 2-9ff
label used in, 2-3
maximum characters on command

1 ine, 2-9
minimal-uniqueness, 2-4
parameter, 2-3
prompting, 2-3
qualifier, 2-3
slash used in, 2-3
space used in, 2-3
stored in command file, 2-9
using DELETE key, 2-9
versus Flow function (note),

2-3
CLI command mode

DCL-like, 2-3
INSERT HERE key, 2-2
using, 2-3

COMMAND
Flow function, 3-14

Command mode
See CLI command mode
definition, 3-3

Command procedure
comments in, 2-11
default file type, 2-10
definition, 2-10
initiation of, 2-10

at sign (@), 2-10
COMMAND command, 2-10

nesting level, 2-11
synchronous vs. asynchronous

execution, 2-11
Command procedures

on VAX, 8-24
Comments

within command procedures, 2-11
Continuation line

in command procedure, 2-11
in interactive eLI, 2-9

CONTINUE
Flow function, 3-15

COPY
Flow function, 3-16

Index-l

INDEX

Create message
Mail Services, 7-3

CREATE/DIRECTORY
Flow function, 3-17

CREATED folder
Mail Services, 7-1

-D-

Database
Document Services Facility, 5-1
Network Services, 8-2
symbol, 6-1
Symbol Services Facility, 6-1

DEAD MAIL folder
MaTI Services, 7-2

DEFAULT
tag, 4-6

DEFAULT.DDB
Document Services Facility, 5-1
mail database, 7-1

DEFDOC.COM
installation file, 1-12

DEFINE/APPLICATION
Flow function, 3-18

DEFINE/COMMAND
Flow function, 3-19

DEFINE/KEY
Flow function, 3-21

DEFINE/LOGICAL
Flow function, 3-24

DEFINE/SYMBOL
Flow function, 3-25

DEFINE/TAG
Flow function, 3-27, 4-7

Defining
symbols, 6-2

DEFSYM.COM
installation file, 1-12

DEFUSER.COM
installation file, 1-13

DELETE/APPLICATION
Flow function, 3-28

DELETE/COMMAND
Flow function, 3-29

DELETE/DIRECTORY
Flow function, 3-30

DELETE/KEY
Flow function, 3-31

DELETE/LOGICAL
Flow function, 3-32

DELETE/SYMBOL
Flow function, 3-33

DELETE/TAG
Flow function, 3-34

Development
software, 1

DIRECTORY
Flow function, 3-35

Disk drive
DZ 1 :, 1-7

DISMOUNT
Flow function, 3-36

DOC
CREATE, 5-15
DELETE, 5-18
DISPLAY, 5-19
EDIT, 5-20
foreigncmd, 5-28
function, 5-10
KILL, 5-21
MODIFY, 5-23
PRINT, 5-25
SELECT, 5-26

DOC CAB
/$REQ=CRE, 5-12
/$REQ=DEL, 5-13
/$REQ=SEL, 5-14

Document
conventions, x
preface, ix
structure, ix

Document file name
Document Services Facility, 5-1

Document header
Document Services Facility, 5-2

Document header definition
Document Services Facility, 5-2

Document header keys
Document Services Facility, 5-3

Document Services Facility
CDS, 5-8
database, 5-1
DEFAULT.DDB, 5-1
definition, 5-lff
document file name, 5-1
document header, 5-2
DSI, 5-8
DSI$DAM damname CRE, 5-7
DSI$DAM-damname-EDI, 5-6
DSI$DAM-damname-KIL, 5-7
DSI$DAM-damname=PRI, 5-7

Index-2

INDEX

Document Services Facility
(Cont.)

foreign editors, 5-6
function CAB/$REQ=CRE, 5-12
function CAB/$REQ=DEL, 5-13
function CAB/$REQ=SEL, 5-14
function CREATE, 5-15
function DELETE, 5-18
function DISPLAY, 5-19
function DOC, 5-10
function EDIT, 5-20
function foreigncmd, 5-28
function KILL, 5-21
function MODIFY, 5-23
function PRINT, 5-25
function SELECT, 5-26
functions, 5-10
header keys (table), 5-3
header record definition, 5-2
nnnnnnnnn.OAD, 5-1
primary header keys, 5-2
reference number, 5-2
secondary header keys, 5-2
special dynamic commands, 5-6
symbols, 5-29
tasks, 5-8

Document Services Interface (DSI)
description, 5-8

Dollar sign ($)
in command procedure, 2-10
used in CLI command line, 2-3

DSI
Description, 5-8

DSI$DAM damname eRE
Document Services Facility, 5-7

DSI$DAM damname EDI
Document Servlces Facility, 5-6

DSI$DAM damname KIL
Document Services Facility, 5-7

DSI$DAM damname PRI
Document Services Facility, 5-7

DTE
via NETWORK, 8-15

DTF.TSK
Mail Services, 7-2, 7-3

Dynamic command
SPAWN, 2-11

-E-

EDT
Flow function, 3-38
using to customize forms, 4-1

EMIT
Flow function, 3-39

END
Flow function, 3-41

End-user interface
subsystems, 1-4

EXIT
Flow function, 3-42

EXTERNAL
Flow function, 3-43

-F-

Facilities
definition of, 1-4
Document Services, 5-1ff
Flow Control, 2-1ff
Form Interface (FI), 4-1ff
Mail Services, 7-1ff
Network Services, 8-1ff
Symbol Services, 6-1ff
table of, 1-5

FDT
and Form Interface Facility,

4-1
form utility, 1-4

FIELD
Flow function, 3-44

FIX
Flow function, 3-46

Flow Control Facility
definition, 1-5, 2-1ff, 2-1
figure, 1-5
one-time functions, 2-2
operation of, 2-1
stack, 2-12
symbols, 2-13
user interfaces, 2-1

Flow function
ABORT, 3-5
ACTIVATE, 3-6
ASSIGN, 3-7
BLOCK, 3-8
BLOCK/SUSPEND, 3-9
CLEAR, 3-13
COMMAND, 3-14

Index-3

Flow function (Cont.)
CONTINUE, 3-15
COPY, 3-16
CREATE/DIRECTORY, 3-17
DEFINE/APPLICATION, 3-18
DEFINE/COMMAND, 3-19
DEFINE/KEY, 3-21
DEFINE/LOGICAL, 3-24
DEFINE/SYMBOL, 3-25
DEFINE/TAG, 3-27
DELETE/APPLICATION, 3-28
DELETE/COMMAND, 3-29
DELETE/DIRECTORY, 3-30
DELETE/KEY, 3-31
DELETE/LOGICAL, 3-32
DELETE/SYMBOL, 3-33
DELETE/TAG, 3-34
DIRECTORY, 3-35
DISMOUNT, 3-36
EDT, 3-38
EMIT, 3-39
END, 3-41
EXIT, 3-42
EXTERNAL, 3-43
FIELD, 3-44
FIX, 3-46
FORM, 3-48
GOTO, 3-50
HELP, 3-51
IF, 3-52
INQUIRE, 3-54
INSTALL, 3-56
LET, 3-58
MAIL, 3-59
MENU, 3-60
MOUNT, 3-63
NETWORK, 3-64
ON, 3-65
PURGE, 3-66
REMOVE, 3-67
RENAME, 3-68
RUN/APPLICATION, 3-69
RUN/TASK, 3-70
SET DEFAULT, 3-73
SET KEYPAD, 3-74
SET VERIFY, 3-75
SHOW APPLICATION, 3-76
SHOW COMMAND, 3-77
SHOW DEFAULT, 3-78
SHOW DIRECTORY, 3-35
SHOW FILE, 3-83

INDEX

Flow function (Cont.)
SHOW KEY, 3-79
SHOW LOGICAL, 3-80
SHOW SYMBOL, 3-81
SHOW TAG, 3-82
STOP, 3-5
TYPE, 3-83
UNBLOCK, 3-84
UNBLOCK/RESUME, 3-85
UNWIND, 3-86
versus CLI command (note), 2-3
WAIT, 3-87
WRITE SYS$OUTPUT, 3-88

Flow stack
END, 2-12
EXIT, 2-12
UNWIND, 2-12

FMAIL
Mail Services, 7-2

FMS
and Form Interface Facility,

4-1
form utility, 1-4

FMTMPLT.DAT
Mail Services, 7-2

FMUSER.DAT
Mail Services, 7-2

Foreign editors
Document Services Facility, 5-6
Special dynamic commands, 5-6

FORM
Flow function, 3-48

Form
displaying, 4-6
information display, 1-4
of a user request, 1-2
separation from function, 1-2

Form Interface Facility
DEFAULT tag, 4-6
DEFINE/TAG, 4-7
definition, 4-1ff
FIELD function, 4-6
FORM function, 4-6
form specification, 4-6
MENU function, 4-6

Form specification
format, 4-6

Form utility
FED, 1-4
FUT, 1-4

Index-4

Function
requested by user, 1-2
separation from form, 1-2

-G-

Gandalf
switch, 8-12, 8-13

Global qualifiers
/CLEAR[=mode], 3-3
description, 3-2
/[NO]PAUSE, 3-3
/QUIET, 3-4
/WARNING, 3-4

GOTO
Flow function, 3-50

-H-

HELP
Flow function, 3-51

Hyphen (-)
see continuation line

-1-

IF
Flow function, 3-52

INQUIRE
Flow function, 3-54

INSERT HERE key
CLI command mode, 2-2

INSPROCOM.COM
installation file, 1-13

INSTALL
Flow function, 3-56

INSTALL.COM
installation file, 1-12

Installation
DEFDOC.COM, 1-12
DEFSYM.COM, 1-12
DEFUSER.COM, 1-13
INSPROCOM.COM, 1-13
INSTALL.COM, 1-12
startup, 1-12

Installation directory
ZZAPnnnnn, 1-7

Installation diskettes
files, 1-11
[0 A] 0 r [Z ZAP. • .], 1-9
task images, 1-9

INDEX

Index-5

Installation diskettes (Cont.)
[Z Z DOCO] , 1-9
[ZZFLOW], 1-9
[Z ZOASYM], 1-9
[Z ZXNET], 1-9

Installation file(s)
P/OS' keywords in, 1-8

ASSIGN HELP, 1-8
FILE, 1-8
INSTALL, 1-8
MOUNT, 1-8
NAME, 1-8
RUN, 1-9

P/OS reading of, 1-8
PRO/Office Workstation, 1-7

Installed applications
p/OS table of, 1-8

Intended
audience, ix

Invoking functions
Mail Services, 7-7

-L-

LET
Flow function, 3-58

-M-

MAIL
ANSWER, 7-9
BACKGROUND, 7-10
CREATE, 7-11
Flow function, 3-59
FORWARD, 7-12
MORE, 7-13
READ, 7-14
SEND, 7-15

MAIL function
Mail Services, 7-8

Mail Services Facility
create message, 7-3
CREATED folder, 7-1
database, 7-1
DEAD MAIL folder, 7-2
DEFAULT.DDB, 7-1
definition, 7-1ff, 7-1
DTF.TSK, 7-2, 7-3
FMAIL, 7-2
FMTMPLT.DAT, 7-2
FMUSER.DAT, 7-2

Mail Services Facility (Cont.)
folders, 7-1
function ANSWER, 7-9
function BACKGROUND, 7-10
function CREATE, 7-11
function FORWARD, 7-12
function MORE, 7-13
function READ, 7-14
function SEND, 7-15
invoking functions, 7-7
MAIL function, 7-8
.OAD extension, 7-4
PENDING PICKUP folder, 7-2
PROA1.COM, 7-6
PROMEXT.COM, 7-6
PROMEXT.DTR, 7-6
PROREAD.COM, 7-6
PROSEND.COM, 7-6
READ folder, 7-1
SEND folder, 7-2
symbols, 7-16
tasks, 7-2
TMAIL, 7-3
TMAIL wakeup, 7-4
UNREAD folder, 7-1
VAX command procedure, 7-6

Main
application directory, 1-7

Manual
Objectives, ix

MENU
Flow function, 3-60

Menu mode
definition, 3-2

Micom
switch, 8-12, 8-13

Mode
command, 3-3
menu, 3-2
screen, 3-2

MOUNT
Flow function, 3-63

-N-

Nesting level
of command procedures, 2-11

NETWORK
CONNECT, 8-17
DISCONNECT, 8-18
FINISH, 8-19

INDEX

NETWORK (Cont.)
Flow function, 3-64
function, 8-15
LOGIN, 8-20
LOGOUT, 8-21
START, 8-15, 8-22
STOP, 8-23

Network Services Facility
account, 8-1
ALL-IN-1, 8-24, 8-26
database, 8-2
definition, 8-1ff
description, 8-1
disengagement, 8-15
DTE and, 8-15
engagement, 8-15
function CONNECT, 8-17
function DISCONNECT, 8-18
function FINISH, 8-19
function LOGIN, 8-20
function LOGOUT, 8-21
function NETWORK, 8-15
function START, 8-15, 8-22
function STOP, 8-23
functions, 8-15
Gandalf switch, 8-12, 8-13
Micom switch, 8-12, 8-13
node, 8-1
object, 8-1
path, 8-1, 8-3
path library, 8-1, 8-3
path maintenance, 8-10
path record fields, 8-3
remote printing, 8-24
symbols, 8-27
target, 8-1
tasks, 8-8
terminology, 8-1
VAX command procedures, 8-24
XCOM, 8-8
XLIB, 8-3, 8-8, 8-10
XLIB CREATE, 8-10
XLIB DELETE, 8-10
XLIB DISPLAY, 8~10

XLIB dynamic command, 8-10
XLIB LIST, 8-10
XLIB session, 8-11, 8-12

nnnnnnnnn.OAD
Document Services Facility, 5-1

Node
definition, 8-1

Index-6

INDEX

/NODELETE
symbol qualifier, 6-5

-0-

[OAl
directory, 1-9

.OAD extension
Mail Services, 7-4

Object
definition, 8-1

Office automation
on VAX, 1-1
standard functions, 1-1

ON
Flow function, 3-65

/OVERRIDE
symbol qualifier, 6-6

-P-

p/OS
installation procedure, 1-7

Path
definition, 8-1, 8-3
record definition, 8-3

Path library
definition, 8-1, 8-3

Path maintenance
description, 8-10

Path record fields
description, 8-3

PENDING PICKUP folder
Mail Services, 7-2

Primary header keys
Document Services Facility, 5-2

Printing
remote, 8-24

PRO/Office Workstation
and Pro 350 Architecture, 1-2
application diskettes, 1-7
as an application, 1-7
electronic release notes, 1-14
end-user interface, 1-4
facility, 1-4
file duplication, 1-13
install purge, 1-13
installation file(s), 1-7
installation startup, 1-12
local processing/storage, 1-1
main application directory, 1-7

PRO/Office Workstation (Cont.)
main feature, 1-1
organization of, 1-4
startup, 1-13
storage requirements, 1-13
subsystems, 1-4

PROAl.COM
Mail Services, 7-6

/PROCESS
symbol qualifier, 6-7

Process
table, 6-1

filename, 6-1
Professional 350

layers, 1-2
resources, 1-2

PROMEXT.COM
Mail Services, 7-6

PROMEXT.DTR
Mail Services, 7-6

PROREAD.COM
Mail Services, 7-6

PROSE
using to customize forms, 4-1

PROSEND.COM
Mail Services, 7-6

PURGE, 3-66

-Q-

Qualifiers
global, 3-2

Quotation marks
in command line, 2-4
in equivalence string, 2-11

-R-

READ folder
Mail Services, 7-1

Reference number
Document Services Facility, 5-2

Release notes
finding, 1-14

Remote
printing, 8-24

REMOVE
Flow function, 3-67

RENAME
Flow function, 3-68

Index-7

INDEX

RUN/APPLICATION
Flow function, 3-69

RUN/TASK
Flow function, 3-70

-S-

Sample session
ALL-IN-l, 8-26
FMS, 4-17

'XLIB (Gandalf connection), 8-12
XLIB (hardwired connection),

8-11
XLIB (Micom connection), 8-12

Screen mode
command mode, 3-3
definition, 3-2
menu mode, 3-2

Secondary header keys
Document Services Facility, 5-2

SEND folder
Mail Services, 7-2

SET DEFAULT
Flow function, 3-73

SET KEYPAD
Flow function, 3-74

SET VERIFY
Flow function, 3-75

SHOW APPLICATION
Flow function, 3-76

SHOW COMMAND
Flow function, 3-77

SHOW DEFAULT
Flow function, 3-78

SHOW DIRECTORY
Flow function, 3-35

SHOW FILE
Flow function, 3-83

SHOW KEY
Flow function, 3-79

SHOW LOGICAL
Flow function, 3-80

SHOW SYMBOL
Flow function, 3-81

SHOW TAG
Flow function, 3-82

Software modules
in facilities, 1-4

Stack
Flow Control Facility, 2-12

Startup
FLOW$_STARTUP_FUNCTION, 1-13

STOP
Flow function, 3-5

Substitution
symbol, 2-4

Subsystem
definition of, 1-4

Symbol
abbreviation, 6-3
ambiguous, 6-3
database, 6-1
defining, 6-2
definition, 6-1
deleting, 6-11
deletion qualifiers, 6-11
Document Services Facility,

5-29
dynamic command as, 6-1
equivalence, 6-3
equivalence value, 6-1
key definition as, 6-1
parsing, 6-11
qualifier /NODELETE, 6-5
qualifier /OVERRIDE, 6-6
qualifier /PROCESS, 6-7
qualifier /SYSTEM, 6-8
qualifier /USER, 6-9
qualifier /VOLATILE, 6-10
reference, 2-4
referring to, 6-11
substitution, 2-4
table, 6-1
table search, 6-11
tag as, 6-1
translating, 6-3, 6-11

Symbol Services Facility
database, 6-1
defining symbols, 6-2
definition, 6-1ff
deleting symbols, 6-11
deletion qualifiers, 6-11
parsing, 6-11
process table, 6-1
qualifier /NODELETE, 6-5
qualifier /OVERRIDE, 6-6
qualifier /PROCESS, 6-7
qualifier /SYSTEM, 6-8
qualifier /USER, 6-9
qualifier /VOLATILE, 6-10
qualifier combinations, 6-4

Index-8

INDEX

Symbol Services Facility (Cont.)
qualifiers, 6-4
referring to symbols, 6-11
system table, 6-2
table search, 6-11
translating, 6-11
user table, 6-2

Symbols
Flow, 2-13
Mail Services, 7-16
Network Services, 8-27

/SYSTEM
symbol qualifier, 6-8

System
table, 6-2

-T-

Table
process, 6-1
system, 6-2
user, 6-2

Tag
definition, 4-7
delimiter, 4-7
qualifiers, 4-9
specifying, 4-7

Target
definition, 8-1
operating system, 1

Terminology
Network Services, 8-1

TMAIL
Mail Services, 7-3
wakeup, 7-4

TYPE
Flow function, 3-83

-u-

UNBLOCK
Flow function, 3-84

UNBLOCK/RESUME
Flow function, 3-85

UNREAD folder
Mail Services, 7-1

UNWIND
Flow function, 3-86

/USER
symbol qualifier, 6-9

Index-9

User
table, 6-2

User interfaces
Flow Control Facility, 2-1

CLI, 2-1
menu system, 2-1

-V-

VAX
ALL-IN-1, 1-1, 8-24, 8-26
command procedures, 8-24

Mail Services, 7-6
/VOLATILE

symbol qualifier, 6-10

-W-

WAIT
Flow function, 3-87

WRITE SYS$OUTPUT
Flow function, 3-88

-X-

XCOM
description, 8-8

XLIB
CREATE, 8-10
definition, 8-3
DELETE, 8-10
description, 8-8
DISPLAY, 8-10
dynamic command, 8-10
invoking, 8-10
LIST, 8-10
sample session, 8-11, 8-12

-Z-

[Z ZAP •••]
directory, 1-9

ZZAPnnnnn
installation directory, 1-7

[ZZDOCO]
directory, 1-9

[Z ZFLOW]
directory, 1-9

[ZZOASYM]
directory, 1-9

[ZZXNET]
directory, 1-9

INDEX

Index-10

READER'S COMMENTS

PRO/Office Workstation
Programmer's Manual
Order No. AA-BM02A-TK

NOTE: This form is for document comments only. DIGITAL
will use comments submitted on this form at the com­
pany's discretion. If you require a written reply and
are eligible to receive one under Software Perfor­
mance Aeport (SPA) service. submit your comments
on an SPA form.

Did you find this manual understandable. usable. and well-organized?
Please make suggestions for improvement.

0'1
C
o
i;j Did you find errors in this manual? If so. specify the error and the page number.
:;
u
Qj
r./)

1'0
Q)

a::

Please indicate the type of reader that you most nearly represent.
o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
DOther(p~asespeci~)~~~~~~~~~~~~~~~~~~~~~~~~~

Name _______________________ Date ------------

Organization __________________________________ _

Street ____________________________________ _

City _______________ State ________ Zip Code _______ _

or

Country

I
I
I
I
I Do ~ot Tear - Fold Here and Tape __ 1

mamaama I " III

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Professional 300 Series Publications
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET
_MAYNARD. MASSACHUSETTS 01754

No Postage
Necessary

If Mailed in the

United States

--- [)o Not Tear - Fold Here---

