P/OS System Reference Manual

Order No. AA-N620A-TK
Order No. AD-N620A-T1
Order No. ADN620A-T2

October 1983

This manual describes the Professional Operating System (P/OS). It allows
system and application programmers to use the operating system resources
to optimize the performance of applications written for the Professional.

DEVELOPMENT SYSTEM: VAX/VMS V3.2 or later
RSX-11M V4.1 or later
RSX-11M-PLUS V2.1 or later
P/OS V1.7

SOFTWARE: Professional Host Tool Kit V1.7
PRO/Tool Kit V1.0

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

First Printing, December 1982
Updated, September 1983
Updated, December 1983

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may ap-
pear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment

Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for the manufacture or sale of items without written permission.

Copyright © 1982 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTIBUS MASSBUS RSTS

DEC PDP RSX

DECmate P/OS Tool Kit
DECsystem-10 PRO/BASIC UNIBUS
DECSYSTEM-20 Professional VAX

DECUS PRO/FMS VMS

DECwriter PRO/RMS vT

DIBOL PROSE Work Processor

(gl [t[al1] Rainbow

CONTENTS

CHAPTER 1 P/OS SYSTEM OVERVIEW

1.1 WHAT IS PJOS? e 1-1
1.2 THE APPLICATION ENVIRONMENTccoiiiiiiiiiiieeeeee e 1-2
1.3 PHYSICAL, VIRTUAL, AND LOGICAL ADDRESSING.........cc.cc.u..... 1-3
1.4 APPLICATION DESIGN SUGGESTIONS..........coiiiiriciceceeeeeee, 1-3
1.4.1 Use Cooperating TasKSccooveeriiieiniiiiiiieceiee e 1-3
1.4.2 Use Shared Librariescccceeoeriiiniiiiiceiicncsee e 1-4
1.4.3 Use Disk-Resident Overlays...........ccccocoviiiiiiiiiiiiiiicc e 1-4
144 Use Memory-Resident Overlays............ccccooviiiiiiiiniiiiiiieciines 1-4
1.4.5 Use Cluster Librariescccoooiiiiiiiiiiiicceee 1-4
1.5 CHECKPOINTING ..ot 1-5

CHAPTER 2 FILE SYSTEM OVERVIEW

21 WHAT IS RM S et e e ee s 2-1
2141 Data StOrageceovvieeiiiie ettt 2-1
21.2 File SHrUCIUIE . 2-3
2.1.21 Record FOrmats......ccooeeviiieiiiieeeceee e 2-3
2122 File Organizations........c.cccoeeiviiiiiiiiiieceee e 2-3
21.2.3 ACCESS MOGES ..o 2-4
2.2 ASSOCIATED DOCUMENTS ..ot 2-5
CHAPTER 3 USING SYSTEM DIRECTIVES

3.1 DIRECTIVE PROCESSINGcoiiiiiiieeeeeeteeeeeee et 3-2
3.2 ERROR RETURNS ..ottt e e e e e e 3-3
3.3 USING THE DIRECTIVE MACROS. ... e 3-4
3.3.1 Macro Name ConventionScooeviveiiiiiie e e 3-6
3.3.1.1 L 1o 1 1 EUTO RO TR 3-6
3.3.1.2 BC FOIM e et eae e naees 3-7
3.3.1.3 BS FOIM e e e e e etaae e e eanaeeeeans 3-7
3.3.2 DIRS MACTO .ot e et ee e aee e eaaeeeaaea s 3-8
3.33 Optional Error Routine Address...........cccvveiiiiiiiiiiiiiiiie e, 3-8
3.34 SymbOliC OFfSEES ..eovuiiiiiieiiieccccc e 3-8
3.35 Examples of Macro Calls.........ccceevveeriiiiiiiiiiiicn e 3-9
3.4 FORTRAN SUBROUTINES ..ottt e e 3-10
3.4.1 UsiNg SUDroutingsScooceiiiiiiiiiiiiic s 3-10
3.4.1.1 Optional Arguments..........coceeeviiiiiiiiiiicc e, 3-11
3.4.1.2 TaSK NAMES....coooiiiiiiiieeeeeere e e e e e e e eeees 3-11
3413 Integer ArgumentS........ccocveiiiiiiiiiiiiie e 3-11
3414 GETADR SUDIOULINGvvvveieeeeeee et 3-12
342 The Subrouting CallSuueeeeiiiieieeeeeeeeeeeeee e 3-12
343 Error CONAItIONS ...eeeeeeeie e 3-15
344 AST Service ROULINEScovvviiiiiiiieiiieeee e eeeeeeeeeeeeenenaens 3-15
3.5 TASK STATES ...t e e e et e e e e e e e eraesaaees 3-16
3.5.1 Task State TranSItioONSveeiieeiiiee e e 3-17
3.6 DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS 3-18
3.7 DIRECTIVE CATEGORIES ..ottt e 3-19
3.71 Task Execution Contro! Directives...........ccooovveieiieeiiiiiieinceneenennn. 3-19
3.7.2 Task Status Control Directives........cooeeeeieeiiiiiiiiiiiiiiniiiiiiiiiiiie, 3-20

3.7.3 Informational DireCtivesooovviviiiiieeeeee e 3-20

3.74 Event-Associated DireCtivescccooeevviiieeiieiiciie e 3-20
3.75 Trap-Associated DIireCtives............ooooiviiiiiiiiii e, 3-22
3.7.6 I/O- and Intertask Communications-Related Directives............ 3-22
3.7.7 Memory Management Directives............cccoeveeieeiieieicccic 3-22
3.7.8 Parent/Offspring Tasking Directivescccccceeveeieiiiiicin. 3-22
38 DIRECTIVE CONVENTIONS ... 3-24
CHAPTER 4 LOGICAL NAMES

4.1 LOGICAL NAMES AND EQUIVALENCE NAMESccccooveiiienn, 4-1
411 The Logical Name Tabie.........cccceeviiiiiiiiiiiiee e, 4-1
41.2 Duplicate Logical Name.........ccccccocviiiiiiiiniiiiniicees e, 4-2
4.2 RMS TRANSLATION OF LOGICAL NAMES.........cccoiiiiiiiiecieee, 4-2
421 RMS and Default Directories..........ccceevvvieeeieeeiiiecceceeee e, 4-2
43 FILES-11 ACP USE OF LOGICAL NAMEScccccocviiiiviieiieciec, 4-3
4.4 LOGICAL NAME CREATION ...ocoiiiiiieiieis e 4-3
45 LOGICAL NAME TRANSLATION....coiiiieiir e 4-3
4.6 LOGICAL NAME DELETIONooiiiiiiiiitieeceeeeee e 4-3
47 SETTING UP A DEFAULT DIRECTORY STRING........cccecoveviieenen. 4-4
4.8 RETRIEVING A DEFAULT DIRECTORY STRING........cccoovvvienieanen. 4-5

CHAPTER 5 SIGNIFICANT EVENTS, EVENT FLAGS,
SYSTEM TRAPS, AND STOP-BIT

SYNCHRONIZATION

5.1 SIGNIFICANT EVENTS ... 5-1
5.2 EVENT FLAGS ...ttt e 5-2
53 SYSTEM TRAPSt 5-4
5.3.1 Synchronous System Traps (SSTS) ...ovevviviiieiiiiiieeeiee e, 5-4
5.3.2 SST Service ROUINEScoooviiieiiiiiiie e 5-5
5.3.3 Asynchronous System Traps (ASTS) ...ccccovveeirireiciecee e, 5-6
534 AST Service ROULINEScooiviiiiiiiiiiiiiee e 5-7
5.4 STOP-BIT SYNCHRONIZATIONcoiiiiiiiiiiiiiie e 5-10
CHAPTER 6 PARENT/OFFSPRING TASKING

6.1 DIRECTIVE SUMMARYooiiiiiiiiiiiee et 6-1
6.1.1 Parent/Offspring Tasking Directivescccccceeviiiiiiniiiceeece. 6-1
6.1.2 Task Communication Directives...........cceeiiiniiiiiiiiene 6-2
6.2 CONNECTING AND PASSING STATUS ..o 6-3
CHAPTER 7 MEMORY MANAGEMENT DIRECTIVES

71 ADDRESSING CAPABILITY OF A SYSTEM TASKccoooiiniiiinee 7-1
7141 AdAress MappinNgccooeiiiiriiiiie e 7-2
71.2 Virtual and Logical Address Space.......cc.cccccouvviciiiiriiiiiieccnennnnnn. 7-2
7.2 VIRTUAL ADDRESS WINDOWS........cooiiiiiiiiieniieeeee e 7-2
7.3 REGIONS ... et 7-3
7.3.1 Shared REGIONS.......ooicuiiiiiiieiee et 7-7
7.3.2 Attaching t0 REgIONS.........oooiiiiiiiieiieiiie e 7-7
7.3.3 Region Protection............coooiiiiiiiee e 7-7
7.4 DIRECTIVE SUMMARYooiiiiiiie e 7-8
7.41 Create Region Directive (CRRGS$).......ccccoveviiiiiiiiiieeee. 7-8

iv

742 Attach Region Directive (ATRGS).......cccoovveiivieiiieeiieeeieerenee, 7-8

743 Detach Region Directive (DTRGS).......ccccovvverieieiicieceeieereenan, 7-8
744 Create Address Window Directive (CRAWS)ccccoveeveereennn. 7-8
7.4.5 Eliminate Address Window Directive (ELAWS).........cccoceevvevnnee. 7-8
7.4.6 Map Address Window Directive (MAPS).......c...cceevvvevueeeveenennen. 7-9
7.4.7 Unmap Address Window Directive (UMAPS).........c.cccvvevvvenenne.. 7-9
7.4.8 Send By Reference Directive (SREF$)........c.cccoevveviieriecieirieian, 7-9
7.4.9 Receive By Reference Directive (RREFS)..........c.ccovevvivirinienen. 7-9
7.4.10 Get Mapping Context Directive (GMCXS$).........cccoevevrierrrieniennn. 7-9
7.4.11 Get Region Parameters Directive (GREGS$)............cccovvevvveennnnn. 7-9
7.5 USER DATA STRUCTURES ..ottt 7-9
751 Region Definition BloCk (RDB)cccovveeiiiiieeeiiiieeeieeeeeee 7-10
7511 Using Macros to Generate an RDBcccoecieiennne. 7-12
7512 Using Fortran to Generate an RDB.............ccccccoeeeenninn, 7-13
7.5.2 Window Definition Block (WDBccocceiiiiiiiiiiiiiiiiiieecee 7-15
7521 Using Macros to Generate a WDB.................cccooo. 7-16
7522 Using Fortran to Generate a WDBc..ccccoeviiiinnnne 7-17
753 Assigned Values or Settingsccccoooiiiiiiiiiiiiiic 7-18
7.6 PRIVILEGED TASKS ...t 7-19

CHAPTER 8 CALLABLE SYSTEM ROUTINES
8.1 GENERAL CONVENTIONS FOR ALL CALLABLE SYSTEM

ROUTINES ...t 8-2
8.1.1 PDP-11 R5 Calling SequencCe............ccccuviiiiiiiiiiiiiiiiiciccce 8-2
8.1.2 Conventions for Callable System ServiCces........cccccooeiiiiiiiieann, 8-3
8.1.3 Status Control Block Format..........cccccooviiiiiiii 8-3
8.2 PROATR .ottt ettt 8-4
8.2.1 Status Codes Returned by PROATRcccooiiiiiiiiiiiiiii, 8-6
8.3 PRODIR ...ttt 8-6
8.3.1 Status Codes Returned by PRODIRcccooiiiiiiiiiiiiiiie 8-7
8.4 PROFBI ...t 8-7
8.4.1 Status Codes Returned by PROFBI.............coooiiiiiiii, 8-10
8.5 PROLOG ...t 8-11
8.5.1 Creating or Translating a Logical Name...................ccooen. 8-12
8.5.2 Deleting a Logical name and Set/Show ... 8-13
8.5.3 Status Codes Returned by PROLOG............c..coooiiiiiiis 8-15
8.6 PROTSK .ottt 8-16
8.6.1 INSEAIl @ TASK c.vviiiiiieiiee e 8-16
8.6.2 Remove a Task, Region, or COommoNccccoieiriiiininnnene, 8-18
8.6.3 Fix a Task, Region, or Common in Memorycoooeene 8-18
8.6.4 Install/Run/Remove an Offspring Task............cc.coooiiiininnn 8-19
8.6.5 Status Codes Returned by PROTSKcccccoiiiiiiiiiiis 8-21
8.7 PROVOWL ...ttt 8-22
8.7.1 Status Codes Returned by PROVOLcccoiiiiiiiiis 8-26

CHAPTER 9 DIRECTIVE DESCRIPTIONS

9.1 FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS............c.coene 9-1
9.11 ABRTS—ADOM TASK ..cvviiviiiiiiiiieeie et 9-3
9.1.2 ALTPS—ARET Priority.....cooiiiiiiiiieiceicee e 9-5
9.1.3 ALUNS—ASSIGN LUN ..ot 9-7
9.1.4 ASTX$S—AST Service Exit ($S form recommended) 9-9
9.15 ATRGS—AACHh REGIONoiiiiiiiiiiiieecciccee e 9-12

9.1

.6

9.1.7
9.1.8
9.1.9

9.1
9.1

9.1

9.1.
15

9.1
9.1
9.1

9.1
9.1

.10
11
9.1.
13

12

14

16

A7
.18
19

9.1.20

9.1.21
9.1.22
9.1.23
9.1.24
9.1.25
9.1.26
9.1.27
9.1.28
9.1.29
9.1.30
9.1.31
9.1.32
9.1.33
9.1.34
9.1.35
9.1.36
9.1.37
9.1.38
9.1.39

9.1
9.1
9.1
9.1
9.1

.40
41
42
.43
44

9.1.45

9.1

.46

9.1.47
9.1.48
9.1.49
9.1.50
9.1.51
9.1.52
9.1.53

CLEF$—Clear Event Flag.........cc.oooeoioeeoeeoeeeeeeeeeeeeeeee 9-14

CLOG$—Create Logical Name Stringccccocooeveeeeeeneeenn. 9-17
CMKT$—Cancel Mark Time RequestS............c..ccoeoveeveeereenn.. 9-17
CNCTE—CONNECL.....cvieiieeceeeee e 9-19
CRAWS$—Create Address WindOWc.ccoovvveveccieeeeenn., 9-21
CRRG3$—Create RegIONcccooveuiiiiieiieiieeeieeeeeeee 9-25
CSRQ$—Cancel Time Based Initiation Requests..................... 9-28
DECL$S—Declare Significant Event ($S Form

Recommended)cccoiiiiiiieiiiiie e 9-30
DLOG$—Delete Logical Name...........c..ccoevveeveeeieiieieeeeeee 9-31
DSARS$S or IHAR$S—Disable (or Inhibit)

AST Recognition ($S Form Recommended)............cccccoovn..... 9-33
DSCP$S—Disable Checkpointing ($S Form

ReCOMMENAEA) ...oevvieeiiiiiiiieeeeeee e 9-35
DTRG$—Detach RegioN.......c..coeiiiiiiiiieieiececceieee e 9-36
ELAW$—Eliminate Address WiNndOWcc.cceveeiieeeenenn 9-38
EMSTS—EmMit Statusoooooviiieiieeeeceeeeeeeeeeeee e 9-40
ENAR$S—Enable AST Recognition ($S Form

Recommended)ccoooviiiiiiiiiiiee e 9-42
ENCP$S—Enable Checkpointing ($S Form Recommended) ...9-43
EXIFS—EXit If. oot 9-44
EXIT$S—Task Exit ($S Form Recommended)............c.ccocuoe... 9-46
EXSTS—EXit With Statusc.ccoeeeiiiiiiiiceeceeee e, 9-48
EXTKS—EXIENd TASK ..ccveiiviiiviiieiccteeete et 9-50
FEAT$—Test for specified system featurec.ccccueenenen. 9-52
GDIR$—Get Default DIir€Ctorycccvvvererieriiiiereieeseseenes 9-55
GLUNS$—Get LUN Information..........cccceeevievieeiiiiiiiee e 9-57
GMCR$—Get Command LiNeccocevvirieieieiiireciee e 9-60
GMCX$—Get Mapping Context.........ccecveevirieiieiieciesieeie e 9-62
GPRT$—Get Partition Parametersc.occooeeviveveenieniecieaennns 9-65
GREGS$—Get Region Parameters..........ccocoevveiiinencneeseeene 9-67
GTIM$—Get Time Parameters..........cccevceeveeiieiecie e 9-69
GTSK$—Get Task Parameterscooecveveeeeeeeecieceeeeneee, 9-71
MAP$—Map Address WindOW..........ccoeveniiininieiincnnceeiee 9-73
MRBKTS—MaArk TimMevvviiiiiiieiiiiie e 9-76
QIO$—Queue /O REQUEST.........ccuerveriiieieieeiieeeeieiesie e 9-80
QIOW$—Queue 1/O Request and Waitccceceeiiiieneniennns 9-83
RCST$—Receive Data Or StOPccovoevvreeieeieiecie e 9-85
RCVD$—Receive Data..........occeeviviiieiiiiieiie e 9-87
RCVX$—Receive Data Or EXit.........cccooeeviineiniiiiiiniinec e 9-89
RDAF$—Read All Event FIags........ccccvevieiiiiiiniiiiiccce 9-92
RDEF$—Read Event Flag.........cooereiiininieciciiiiccccc e 9-93
RDXF$—Read Extended Event Flagsccccocvviiiniiiinenne. 9-94
RPOI$—Request and Pass Offspring Information................... 9-96
RQSTS—REqUESt TASK ..veeiiviiiiiieciiieiiee e e 9-99
RREF$—Receive By Reference..........c.ccoccevveciniiinceniccncns 9-101
RSUMS—RESUME TaASK.......coeeviiiieieicrieeie et 9-104
RUNS—RUN TaSK c..ooiiiieiiiiiciie et 9-105
SDATS—SeNnd Dataccooovrvieeiiiciecieeee e 9-109
SDIR$—Setup Default Directory String..........cccccevevviieriennnnn. 9-111
SDRC$—Send, Request and ConNectcccceeevevececnenn. 9-113
SDRP$—Send Data Request and Pass Offspring

CONrol BIOCK.......ieiiiiiie ittt 9-116

vi

9.1.54
9.1.55
9.1.56
9.1.57
9.1.58
9.1.59
9.1.60
9.1.61
9.1.62
9.1.63
9.1.64
9.1.65
9.1.66
9.1.67
9.1.68
9.1.68A
9.1.69
9.1.70
9.1.71
9.1.72
9.1.73
9.1.74
9.1.75
9.1.76
9.1.77

9.1.78
9.1.79

SETF$—Set EVent FIAQ........coooveeeieeieeee e 9-119
SFPA$—Specify Floating Point Processor Exception AST....9-120
SPND$S—Suspend ($S Form Recommended)....................... 9-122
SPWNS—SPaWN ...oooiiiiiiiicceeeeeeee e 9-123
SRDA$—Specify Receive Data AST.............ccoooeveieeneee. 9-127
SREX$—Specify Requested Exit AST Directive 9-129
SREF$—Send By Referencecccoooovoeiecciice 9-132
SRRA$—Specify Receive-by-Reference AST 9-135
STIM$—Set System TiMeccooovioviiieiieeeeeeeeeeeeeeeeee 9-137
STLO$—Stop For Logical OR Of Event Flags..................... 9-140
STOP$S—Stop ($S Form Recommended)............ccoevvevveen... 9-142
STSE$—Stop For Single Event Flagccocoooevoveeeiie. 9-143
SVDB$—Specify SST Vector Table For Debugging Aid 9-144
SVTK$—Specify SST Vector Table For Task........................ 9-146
SWSTE—Switch Stateccoovvieiiiiiiiiecieee 9-148
TLOG$—Translate Logical Namec...ccoooioveioiceienen, 9-150
UMAP$—Unmap Address WiNndOW.............c..ccooveiveeenen. 9-150.2
USTPS—UNSIOP TaSK.....oiiiieiioieieeceeeee e 9-152
VRCD$—Variable Receive Data.................ccccooooooeiician. 9-153
VRCS$—Variable Receive Data Or Stopc..cc.c.co...... 9-155
VRCX$—Variable Receive Data Or EXit................c..c..cocoo.... 9-157
VSDA$—Variable Send Datacccoovovieiiiiiieiiie, 9-159
VSRC$—Variable Send, Request and Connect..................... 9-161
WIMP$—What's In My Professional.................c..cccoveeeeeennnn., 9-163
WSIG$—Wait For Significant Event ($S Form

Recommended) ... 9-167
WTLO$—Wait For Logical OR Of Event Flagsc......... 9-169
WTSE$—Wait For Single Event Flag..........ccocooiviiirniiinnn 9-171

CHAPTER 10 SYSTEM INPUT/OUTPUT CONVENTIONS

10.1 PHYSICAL, LOGICAL, AND VIRTUAL 1/Occcciiiiiiiiiic, 10-2
10.2 SUPPORTED DEVICES.......oiiiiiii it 10-2
10.3 LOGICAL UNITS .o 10-3
10.3.1 Logical Unit NUMDer ... 10-3
10.3.2 Logical Unit Tablecooveiiiiiiiiic e 10-3
10.3.3 Changing LUN ASSIGNMeNts.........ccoocoiiiiiiiciiiin i 10-4
10.4 ISSUING AN I/O REQUESTooiiiiiii e 10-4
10.4.1 QIO MACro FOrMatcoouiiiiiiiieiiee e 10-6
10.4.2 Significant EVENtS..........oociiiiiiiiii 10-8
10.4.3 SYSIEM TTAPS 1o 10-9
10.5 DIRECTIVE PARAMETER BLOCKS ..., 10-10
10.6 I/O-RELATED MACROScooiiiiiiiiiiiiii e 10-11
10.6.1 The QIO$ Macro: Issuing an 1/O Request..........ccooceeveeece. 10-12
10.6.2 The QIOW$ Macro: Issuing an I/O Request

and Waiting for an Event Flag...............cccoi 10-13
10.6.3 The DIR$ Macro: Executing a Directive................cccoocooe 10-13
10.6.4 The .MCALL Directive: Retrieving System Macros................ 10-13
10.6.5 The ALUNS$ Macro: Assigning a LUN ... 10-14
10.6.5.1 Physical Device Names............cccccooiiiiiiiiie 10-15
10.6.5.2 Pseudo-Device Names..........cccccooviiiiiiiiiiiiiiieccn 10-15
10.6.6 The GLUN$ Macro: Retrieving LUN Information..................... 10-16
10.6.7 The ASTX$S Macro: Terminating AST Service....................... 10-18

vii

10.6.8 The WTSE$ Macro: Waiting for an Event Flag 10-18

10.7 STANDARD I/O FUNCTIONScooiiiiiiiieeeeieeee e, 10-19
10.7.1 I0.ATT: Attaching to an 1/O Device...........ccccccoveiiieniecnennnnen. 10-20
10.7.2 I0.DET: Detaching from an |/O Device............ccccoceevurnnrnnnn. 10-21
10.7.3 10.KIL: Canceling /O Requestscccccuveeriiiiiniiieiinieiiieeas 10-21
10.7.4 10.RLB: Reading a Logical BIOCK.............ccccerviaviiiniiiiianinns 10-22
10.7.5 10.RVB: Reading a Virtual BIOCK...........ccccccoviiniiininnicnceen, 10-22
10.7.6 10.WLB: Writing a Logical BIOCKccccceeviiiiiniiiiniiieiii, 10-22
10.7.7 I0.WVB: Writing a Virtual BIOCKcccccoevieiiiiiiiiniiciec, 10-23
10.8 1/O COMPLETION ..ottt 10-23
10.9 RETURN CODES.......ooiiitiee ettt ettt 10-24
10.9.1 Directive CONAItioNSccoiviiiriiiiiiiiciic e 10-25
10.9.2 1/0O Status ConditioNS.........cccueeeeiiiiiiiiie e 10-26
CHAPTER 11 DISK DRIVERS

11.1 RX50 DESCRIPTION L...ooiiiiiiieeie ettt 1141
11.2 RD50 AND RD51 DESCRIPTION.....ccociiiiiiiiiiie e 11-1
11.3 GET LUN INFORMATION MACRO....cccccoiiiiiiiieiieenee e 11-2
11.4 OVERVIEW OF 1/O OPERATIONS. ..ottt 11-2
11.4.1 Physical [/O Operations...........cccoouviiiiiieienieceiiec e 11-3
11.4.2 Logical /O Operations.........c..cccocueeiiienieiiieiiesie e 11-3
11.4.3 Virtual 1/O Operationsccceoveveeeiciieiiiieeiiiee et 11-4
115 QIO MACRO ..ottt 11-4
11.5.1 Standard QIO FUNCHIONSccovviiiiiiieiiiicie e 11-4
11.6 STATUS RETURNS ..ottt 11-6
CHAPTER 12 THE TERMINAL DRIVER

121 INTRODUCTION ..ottt 1241
12.2 GET LUN INFORMATION MACRO.....cccciiiiiiieiceiic e 12-2
123 QIO MACRO ...t 12-3
12.3.1 SUbfUNCHION BitScciiiiiiiiiiieecee e 12-4
12.3.2 Device-Specific QIO FUNCtiONS..........cccoveiiriiiiiiiiiiniiieeccee, 12-5
12.3.2.1 O AT A et 12-7
12.3.2.2 IO ATTITF.ESQ ...oiiiiieiieeeeeeee et 12-8
12.3.2.3 JO.CCO et 12-8
12.3.2.4 SF.GMUC ...t 12-8
12.3.2.5 TO.GTS et 12-11
12.3.2.6 O RAL ..ot 12-12
12.3.2.7 IO RNE ..ot 12-13
12.3.2.8 ORPR ..ottt 12-13
12.3.2.9 I0.RPRITF.BIN ..ottt 12-13
12.3.2.10 IO RS T e 12-13
12.3.2.11 SF.SMC ..ot 12-14
12.3.2.12 O R T T et 12-14
12.3.2.13 TOWAL oo 12-15
12.3.2.14 TOWBT ..ottt 12-15
12.3.2.15 JOWSD e 12-15
12.3.2.16 O RSD et 12-15
12.4 STATUS RETURNS ..ottt 12-16
12.5 CONTROL CHARACTERS AND SPECIAL KEYS......ccccccvevviiennnnne 12-18
12.5.1 Control Characters...........ccoooveiiieiiieie et 12-18
12.5.2 INTERRUPT/DO AST Information..........cccccceeeeeeiiiiiiiiicccinnnen, 12-19

viii

12.5.3 SPeCial K@YSceiiiiiiiiieiieie et 12-20

12.6 ESCAPE SEQUENCES.........ccoiiieeeieeeeeveeeee e 12-21
12.6.1 DefiNItiONeiiiiiiieee e 12-21
12.6.2 PrerequISItes.........oooviiiieiiiiiiie et 12-22
12.6.3 CharacteriStiCS.....cuuvvieeriiiiee e 12-22
12.6.4 Escape Sequence Syntax Violations................ccccevvveevevieeenne. 12-22
12.6.4.1 DEL (177) ot 12-22
12.6.4.2 Control Characters (0-037)........cccoovvieeviivieeeeiieeeeeen 12-22
12.6.4.3 FUull BUfer ..o 12-22
12.7 VERTICAL FORMAT CONTROL....c.oooiviiiieeciieeeceeeeee e 12-23
12.8 TYPE-AHEAD BUFFERING.........ooooiiiieieceeeeeeeee e 12-24
129 FULL-DUPLEX OPERATIONcccviiiiiiiiiiieee e 12-25
12.10 INTERMEDIATE INPUT AND OUTPUT BUFFERING.................... 12-25
12.11 TERMINAL-INDEPENDENT CURSOR CONTROL........cccccecvvene.. 12-25
12.12 PROGRAMMING HINTS ... 12-26
CHAPTER 13 THE XK COMMUNICATIONS DRIVER

13.1 INTRODUCTION ..ottt 13-1
13.2 GET LUN INFORMATION MACRO.....ccooiiiiiiiieeeeeeieee e 13-1
13.3 QIO MACRO ..o 13-2
13.3.1 Device-Specific QIO FUNCtioNS..........eeevviiiiiiiieeee 13-4
13.3.11 IO ANS e 13-4
13.3.1.2 O AT A e 13-4
13.3.1.3 JOBRK e 13-4
13.3.1.4 JO.CON e 13-4
13.3.1.5 SFE.GMC .. e 13-5
13.3.1.6 TOHNG ..o 13-8.1
13.3.1.7 O LTl e 13-8.1
13.3.1.8 JO.ORG ... o 13-9
13.3.1.9 JOLRAL .o 13-9
13.3.1.10 IORNE . oo 13-9
13.3.1.11 SFE.SMC .. e 13-9
13.3.1.12 JO.TRM e 13-9
13.3.1.13 O U T e 13-9
13.3.1.14 TOWAL Lo 13-9
13.4 STATUS RETURNSo 13-10
13.5 FULL-DUPLEX OPERATIONootiiiiiieiiii et 13-11
13.6 UNSOLICITED EVENT PROCESSING........ccooouiiiiiiiiiiiiiieccee 13-11
13.6.1 XTULUL e 13-11
13.7 TIME-OUT L 13-11
13.7.1 REAA FEQUESTSveeeeiieeiiee et 13-12
13.7.2 TO.CON e 13-12
13.7.3 JO.ORG ... 13-12
13.8 XON/XOFF SUPPORT ..ottt 13-12
APPENDIX A STANDARD ERROR CODES

APPENDIX B SUMMARY OF I/O FUNCTIONS

B.1 DISK DRIVERt B-1
B.2 TERMINAL DRIVERooiiiioiieee e B-2
B.2.1 Subfunction Bits for Terminal-Driver Functionsc...c.e. B-2

APPENDIX C 1/O FUNCTION AND STATUS CODES

CA1 1/O STATUS CODESoiiiiiiiiecet s C-1
CiA1 1/O Status Error Codes.........ooviieiiniiiieiieeiieiecece e C-2
c1.2 I/O Status Success COAEScccereiriiiiiiiieiiieiieeeecie e C-3
Cc.2 DIRECTIVE CODES ..., C-4
c.21 Directive Error Codescccvemiiiiiiiieniieeiie e C-4
c22 Directive SUCCESS COAES.........eeiiiiiiiiiieiieeie e, C-4
Cc3 1/O FUNCTION CODES ...ttt C-4
C.3.1 Standard 1/O Function Codes...........ccccceerviiivanieaniiiie e, C-4
c3.2 Specific Terminal I/O Function Codesccccooevvviiviieeenncnnn, C-5
C33 Subfunction BitSc.cooiiiiiiiiiie C-6
APPENDIX D FACILITY AND ERROR CODES

D.1 SUB-FACILITY CODESoiiiiiiiiiiee et D-1
D.2 FATAL ERROR CODES ..ottt D-2
D3 BUGCHECK ...ttt e D-2
INDEX

FIGURES

3-1 Directive Parameter Block (DPB) Pointer on the Stack 3-4
3-2 Directive Parameter Block (DPB) on the Stackccccccceeeviiiiinnin, 3-5
7-1 Virtual Address WIiNdOWScccoeeiiiiiiiiiiiiiiiceceeeee e 7-4
7-2 Region Definition BIOCK............coooiiiiiiiiiiiiiic 7-5
7-3 Mapping Windows to REGIONS........ccocuiiiiiiiiiiiiciiiiccc e, 7-6
7-4 Region Definition BIOCK.........cccoiiiiiiiiiiiiiciiecccc e 7-11
7-5 Window Definition BIOCKccoooiiiiiiiiiiiiiieccieeeee e 7-14
10-1 QIO Directive Parameter BIOCK...........cceuvviiiiiiiiiiiiiiiiiiiiiiceee, 10-11
TABLES

3-1 Fortran Subroutines and Corresponding Macro Calls 3-13
3-2 Directives Not Available as Subroutines.............cc.ccccocoiiiinnis 3-15
3-3 System Directives that can be Issued by Nonprivileged Tasks......3-19
3-4 Task Execution Control DireCtivescceeeeeeiiiiiiiiiniiiiiieeeiieeennn 3-20
3-5 Task Status Control Dir€Ctivesc..eeveeviiiiiiiiiiiiiiieeceeee e 3-21
3-6 Informational DireCtives.........cooiiiiiiiiiiiiii e 3-21
3-7 Event Associated DireCtivescoocceeeiiiiiiiiiiiiiiic e 3-21
3-8 Trap Associated DireCtivescccceevviiiiiiiiiiiiiiiicicciccce, 3-22
3-9 I/0- and Intertask Communications Related Directives 3-23
3-10 Memory Management DireCtivesccccooiieiiiiiiiiiiiiiic 3-23
3-11 Parent/offspring Tasking Directivesccccceeiiiiiiiiiiiiiiiiis 3-24
5-1 Trap VeCtor Table........cooouiiiiiiiiiiiiiiice e 5-5
6-1 Directive Examples For Intertask Synchronization............................ 6-4
7-1 Bits of the Region Status Word................cccoociiiii 7-11
7-2 RDB Array FOrmat.......cc.eoeiiiiiiiiiiei e 7-14
7-3 WDB FOIMAL ...ttt e e e 7-15
7-4 WDB Array FOrmatcooiiiiiiiiiiiiiiiiieiiic e 7-18
8-1 Accessible File Attributes ..o 8-5
8-2 PROFBI Status COdES.......cccoviiiiiieeieiiiieee e 8-10
8-3 PROLOG status Codesccoouuiiiiiiieiiiiieeciie e 8-16

8-4
8-5
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
10-1
10-2
10-3
10-4
10-5
10-6
11-1
11-2
11-3
11-4
12-1
12-2
12-3
12-4
12-5

12-6

12-7

12-8

12-9
12-10
12-11
12-12
13-1
13-2
13-3

13-4
13-5
13-6
13-7

PROTSK Status CodeScovveeiiiiiiieeeeeeeeeee et 8-21
PROVOL Status COAeS ..o 8-26
Region Definition Block Parameters............ccccceeeeeeiiiveeccieeiecennene. 9-13
Window Definition Block Parametersccooocvvvvivieeeeceeecnnnee 9-22
Region Definition Block Parameters................cccocveeeiiiiionienicneene 9-26
Region Definition Block Parameters..............c.ccociieviiiniiiniirenen, 9-37
Window Definition Block Parameters..........ccccooevivviiiieeeeiiiciinen. 9-38
System Feature Symbolsocoiiiniiiiniii e, 9-53
Window Definition Block Parametersccccooeeeeiiiiiiiieece 9-63
Window Definition Block Parameters..........ccccoooooiiiiiiiiiiiiiiiiiii. 9-74
Window Definition Block Parameters................c.oooooviiieeniiiiiennn. 9-102
Window Definition Block Parameterscccccccvvvvvevviivivieeiveiiinnnnn, 9-133
Window Definition Block Parameters..........cc.cccoooeeiiiiiiiieeeeeini, 9-150.2
The Configuration Table Output Buffer Format............................ 9-165
Physical Device Namescccccciiviiiiiiiiiii e 10-15
Pseudo Device NamMeScccooeeeeiiiieieiiiiiiee e 10-15
Get LUN Informationcccooiiiiiie e 10-17
Binary Status COAesccoiiiiiiiiiiiiiiicteet e 10-25
Directive ConditioNS.........ccooovieieiiiiiiiiii 10-25
1/O Status ConditioNSccooeeieiiiii 10-27
Standard Disk DeVICES ... 111
Buffer Get LUN Information for DiskS...........ooovvieeiiiiiiiiiiie 11-2
Standard QIO Functions for DiskSoovvieiiiiiiiiiiiiiiiiiiiiiiiiiiies 11-4
Disk Status REetUINS . ..oovvviiiiiiiie e 11-6
Buffer Get LUN Information For Terminals................ccccoeeeeeiiiiiinnnn. 12-2
Standard and Device-Specific QIO Functions for Terminals 12-3
Definition of Subfunction Bit...................c.c 12-5
Summary of Subfunction Bits..............cccooii 12-6
Driver-Terminal Characteristics

for SF.GMC and SF.SMC Functionscccccoiiiiiiiiiie, 12-9
TC.TTP (Terminal Type) Values Set

by SF.SMC and Returned by SF.GMC...................c 12-10
Receiver and Transmitter Speed

Values (TC.RSP, TC.XSP) ..ot 12-11
Information Returned by Get

Terminal Support (I0.GTS) QIO ...t 12-12
Terminal Status REtUINSoooiiiiiiii e 12-17
Terminal Control CharactersS.........oooooiiiiii 12-19
Special Terminal KeYS. ..o 12-21
Vertical Format Control Characters.........cccoooeviiiiiiiniiciinei, 12-23
Buffer Get LUN Information for XK Driver.............ccocveiiiiiieiiininnnnn. 13-2
Standard and Device Specific QIO Functions...................cco 13-2
XK Driver Characteristics for SF.GMC and SF.SMC

FUN I ONS ettt 13-5
TC.FSZ and TC.PAR Relationship......cc.cccccoeiiiiiiiiiiii 13-6
Receiver and Transmitter Speed Values (TC.RSP, TC.XSP).......... 13-7
XK Driver Status Returns. ... 13-10
Unsolicited EVENt TYPESoiiiiiiiiiiiiiiiceeiee e 13-11

Xi

PREFACE

MANUAL OBJECTIVES AND INTENDED AUDIENCE

The P/OS System Reference Manual describes the base system software sup-
porting the Professional 300 Series personal computer. This manual is for ex-
perienced system programmers and applications programmers who use the
P/OS (the Professional Operating System) system resources to optimize the
performance of applications programs written for the Professional. This manual
is especially helpful for programmers who have experience with RSX-11M-
PLUS systems. Applications programmers using high-level languages (such as
PRO/BASIC-PLUS-2) may also find this manual useful.

STRUCTURE OF THIS DOCUMENT

Chapter 1 is an overview of the P/OS system. It contrasts P/OS features with
RSX-11M-PLUS features (on which P/OS has been based). The chapter also
provides applications design suggestions.

Chapters 2 through 7 describe the types of system directives, logical names,
and task execution control mechanisms.

Chapter 8 defines the callable system utilities.

Chapter 9 describes all of the system directives in detail.

Chapter 10 is a detailed discussion of input and output conventions.
Chapter 11 describes the P/OS disk drivers (device handlers).
Chapter 12 describes the P/OS terminal driver.

Chapter 13 describes the P/OS communications driver.

The four appendixes cover system error messages and /O function and status
codes.

ASSOCIATED DOCUMENTS

Please refer to the other manuals in the Tool Kit Documentation Set for more
information on developing applications for the Professional.

xiii

CONVENTIONS USED IN THIS DOCUMENT

The following conventions apply in this manual:

Convention

UPPERCASE
WORDS AND
LETTERS

lowercase words

[optional]

Meaning

Uppercase words and letters, used in examples, indi-
cate that you should type the word or letter exactly as
shown.

Lowercase words and letters, used in examples, indi-
cate that you are to substitute a word or value.

Square brackets indicate optional entries in a command
line. Note that when an option is entered, the brackets
are not included in the command line. Square brackets
also are a part of the User File Directory (UFD) and User
Identification Code (UIC) syntax. When you use a UFD
or UIC (in a file specification, for example), brackets are
required syntax elements; that is, they do not indicate
optional entries.

A horizontal ellipsis indicates that the preceding item
can be repeated one or more times. For example:

file-spec|,file-spec...]

A vertical ellipsis indicates that not all of the statements
in an example are shown.

Xiv

CHAPTER 1
P/OS SYSTEM OVERVIEW

This chapter provides a brief overview of P/OS, contrasts P/OS with RSX-11M-
PLUS, and provides application design suggestions.

1.1 WHAT IS P/OS?

P/OS is a multitasking, real-time, resource-sharing operating system. It is
based on the RSX-11M-PLUS operating system. Some RSX-11M-PLUS soft-
ware features remain the same on P/OS, some have been removed, some have
changed, and some new software features have been added. The principal dif-
ference between P/OS and RSX is that the normal RSX user interface has been
replaced by a menu system. Furthermore, some of the RSX utilities carried over
to P/OS are now program callable routines.

Summary of Differences

RSX-11M-PLUS features not available on P/OS:
Group global event flags

Virtual terminals and batch processing
Alternate CLI support

External task headers

MCR and LOAD

VMR

Indirect Command Processor

TDX (catchall)

HELLO, BYE, ACNT

Console Logging

1-1

1-2 P/OS SYSTEM OVERVIEW

Error logging

System accounting

Shadow recording

Queue Manager (QMQG)

File Control Services (FCS)

Disk swapping

System generation

System reconfiguration (CON and HRC)
Checkpointing for common regions (CPRC$)
Prototype Task Control Blocks in secondary pool

RSX-11M-PLUS features modified for P/OS:

Terminal driver

SAVE

System utilities (FMT, BAD, INI, INSTALL, FIX, REMOVE, UFD)
GET TIME

New P/OS features:

Logical name directives

Segmented libraries

RMS V2.0

Switch State directive (SWST$)

Automatic volume mounting and dismounting

Enhanced higher-level language interface to the system and the utilities
(POSSUM library).

1.2 THE APPLICATION ENVIRONMENT

A healthy understanding of how the operating system works can help you write
applications programs that maximize the system’s resources. A thorough un-
derstanding of the system takes time and experience. However, the following
sections discuss aspects of the system that will help you begin to understand it.

To fully understand the information provided in the following sections, you
should be familiar with the terminology used here (such as common regions and
task regions). Please refer to the RSX-11M/M-PLUS Task Builder Manual for
detailed explanations of these terms.

P/OS SYSTEM OVERVIEW 1-3

1.3 PHYSICAL, VIRTUAL, AND LOGICAL ADDRESSING

The primary addressing mechanism of the Professional is the 16-bit computer
word. This means that the maximum amount of physical memory that a task
may access at a single point in time is limited to 32K words. However, the pres-
ence of hardware memory management enables a task, using the P/OS mem-
ory management (PLAS) directives, to access more than 32K words.

Physical addresses are single locations in memory. Virtual addresses are the
addresses within a task. Logical addresses are the actual physical memory ad-
dresses that the task can access. Physical and virtual address spaces are con-
tiguous. However, a task’s logical address space need not be contiguous in
physical memory. (See Chapter 2 of the RSX-11M/M-PLUS Task Builder Man-
ual for a complete discussion of addressing concepts.)

Using P/OS system features to manipulate logical address space allows you to
make use of more than 32K words of virtual address space. Furthermore, the
multitasking capabilities of P/OS allow you to design applications that can con-
sist of multiple, cooperating, concurrent tasks.

1.4 APPLICATION DESIGN SUGGESTIONS

The following sections list suggestions for designing applications that make the
most efficient use of the P/OS multitasking, resource-sharing capabilities. In
particular, these suggestions may help you to design programs that might oth-
erwise exceed the 32K word virtual address space limitation of a task.

1.4.1 Use Cooperating Tasks

An application is a task or set of tasks that perform a needed function or set of
functions. The application may consist of multiple, cooperating tasks that pass
context (variables) between tasks by using data packets, command lines, and
shared memory. A task may be requested using the following system directives:

O SPWN$—useful when passing a command line and there is a need to
receive status from the cooperating task.

O RPOI$—useful when passing a command line and there is no need to
receive status from the cooperating task.

O SDRC$ and VSRC$—useful when passing data packets and there is a
need to receive status from the cooperating task.

O RQST$—useful when simply requesting a task and there is no need to
receive status from the cooperating task.

Additional context may be passed using the SDAT$, VSDAS, and SREF$. See
Chapters 6 and 9 for more details on using these directives.

1-4 P/OS SYSTEM OVERVIEW

1.4.2 Use Shared Libraries

A shared library is a block of code that resides in memory and can be used by
any number of tasks. Since the library routines are available to any task, you
save physical memory by having only one copy of these routines in memory
rather than duplicating them in each task. Furthermore, when the library is not
being accessed (mapped) by any task, the system writes the library out to disk
and removes it from memory to make room for other tasks as necessary. (If the
library is read-only, the system removes the library region from memory but
does not write it out to disk.) Chapter 5 of the RSX-11M/M-PLUS Task Builder
Manual discusses shared libraries.

1.4.3 Use Disk-Resident Overlays

You can divide an application task into pieces called segments. Several seg-
ments of a task share a given section of the task’s virtual address space, but
only one segment may be in memory at one time. Segments are individually
read from the disk into a section of the task’s address space as needed, over-
writing a previously read segment. A task constructed of disk-resident overlays
reduces the memory and virtual address space needed by the task. Chapters 3
and 4 of the RSX-11M/M-PLUS Task Builder Manual discuss segments and
disk-resident overlays in detail.

1.4.4 Use Memory-Resident Overlays

Memory-resident overlays are different from disk-resident overlays in that all of
the task’s segments are present in physical memory at the same time. A seg-
ment is mapped into a section of the task’s virtual address space as needed by
using memory management directives. As it maps each new segment, the
task’s logical address space changes as it maps each new segment into the
task’s virtual address space and unmaps the previous segment.

A task constructed of memory-resident overlays reduces the virtual address
space needed by the task but does not reduce the physical memory require-
ments. However, tasks constructed of memory-resident overlays are faster
since they do not involve disk 1/O. Chapters 3 and 4 of the RSX-11M/M-PLUS
Task Builder Manual discuss memory-resident overlays in detail.

1.4.5 Use Cluster Libraries

A cluster library is both a function and a structure that allows tasks to dynami-
cally map memory-resident, shared libraries at run time. The advantage of using
cluster libraries is that they save task virtual address space by using the same
section of task virtual address space to map independent memory-resident,
shared libraries. Chapter 5 of the RSX-11M/M-PLUS Task Builder Manual de-
scribes cluster libraries at length.

P/OS SYSTEM OVERVIEW 1-5

1.5 CHECKPOINTING

Checkpointing is the process of writing a task or common to a file on a disk to
make room for a higher priority task or common competing for memory. Given
that a task or common is capable of being checkpointed, tasks and commons
compete for memory based on their respective priorities. (The priority value of a
common region is equal to one greater than the highest priority task mapped to
that common region.)

Two types of task states affect the possibility that a task or common can be
checkpointed. The first type prevents a checkpoint from occurring at all. The
second type enhances the possibility that a task or common will be check-
pointed.

The following conditions prevent a checkpoint from occurring:

O A noncheckpointable region (specified at task-build time)
O Atask region with checkpointing disabled (DSCP$)

OO Anexiting task
O

A region with resident, mapped tasks—that is, all currently mapped
tasks must be checkpointed before the region itself is eligible for check-
pointing

O A region with outstanding 1/O
The following conditions increase the possibility of a task or region being
checkpointed:

O A stopped task has an effective memory priority of zero

O A checkpointable task doing synchronous terminal 1/O (since the task’s
terminal I/O is buffered and the task is stopped until the I/O completes)

O Atask which previously had checkpointing disabled can issue the En-
able Checkpointing directive (ENCP$)

CHAPTER 2
FILE SYSTEM OVERVIEW

This chapter is an overview of the file system supported on P/OS. It is intended
as an introduction to the Record Management System (RMS).

2.1 WHAT IS RMS?

RMS (Record Management Services) is a set of routines that allows programs
to store, retrieve, and process (modify and delete) records and files. RMS pro-
vides the connection between a program and the stored data the program re-
quires.

The ability to store and retrieve information and the ability to process that infor-
mation readily and in an orderly fashion requires that the information be stored
in an orderly fashion, such as records. A record is a logical unit of data; that is,
an item or collection of related items.

To keep the records of one type separate from records of another type, records
are organized into files. A file contains groups of records of the same type. One
or more files, depending on the amount of data, contain all the records of a spe-
cific type.

How the data is used helps determine how the records are stored in and re-
trieved from files—that is, access.

2.1.1 Data Storage

The data that your programs use is typically stored on mass storage devices
called disks. P/OS supports both a hard disk and flexible diskettes. The operat-
ing system software controls the disk devices, and allows your programs to ac-
cess the data stored on them. Each device is governed by a device driver—the
software that handles the 1/0.

2-1

2-2 FILE SYSTEM OVERVIEW

The Files-11 Ancillary Control Processor (FCP) is the software that catalogues
and maintains files on the disks and makes 1/O requests to the device drivers.

The smallest unit of information stored on a disk is a bit. A bit is an area of disk
surface for which the magnetic orientation can be changed to one of two values,
conventionally designated 0 and 1.

Information is usually grouped into units of 8 bits, called bytes. Bytes are used,
for example, to represent alphanumeric characters in memory with the DEC
Multinational Character Set. Other ways of representing data, particularly nu-
meric data, may require 2 or more bytes. A word, for example, consists of 2
bytes (or 16 bits).

Data is stored hierarchically on a disk, as follows. A sector consists of 512 8-bit
bytes. A track consists of all the sectors at a single radius on one disk platter,
and a cylinder consists of all the tracks at the same radius on all the platters.
The disk drive can access all tracks on a single cylinder without changing posi-
tion, which affects speed of data access.

The FCP imposes a logical structure on each disk. It treats the disk as a single,
logically contiguous, series of data units, called blocks. A block contains 512
8-bit bytes. Logical blocks are numbered sequentially, from 0 to n-1, where n is
the number of blocks on the disk.

On disk, a file is simply a series of blocks, which contain your data organized
into records. The FCP treats each file as a device, ignoring any blocks on the
disk except those in the file being processed.

The blocks in a file, however, need not be logically contiguous. As files are cre-
ated or extended, the file processor may allocate blocks to the file that are not
next to each other on the disk. The blocks in a file, then, are virtually contig-
uous. Virtual blocks are numbered sequentially in a file from 1 to n, where n is
the last block in a file.

Note that a Virtual Block Number (VBN) and a Logical Block Number (LBN) refer
to the same physical unit of disk storage space. But although a virtual block
also has an LBN, a logical block has a VBN only if it is allocated to a file.

To access files, the system translates VBNs to LBNs and makes an 1/O request
to the device driver. The device driver, in turn, translates the LBNs to the phys-
ical location (cylinder, track, and sector) that is to be read or written.

Disk storage allows random access. Also called direct access, this means that a
specific record can be located and retrieved without a search of all the records
that precede it in the file. The time needed to access a record may therefore be
improved.

In addition, disk storage allows access sharing. This means that more than one
task can access a disk at a time, and more than one task can be allowed to open
the same file at one time.

FILE SYSTEM OVERVIEW 2-3

2.1.2 File Structure

The operating system software (that is, the file processor, and device drivers)
handle files. Your programs, however, must be able to access the records
within the files so they can process the data within the records.

RMS allows you to define the internal structure of files (the size and arrange-
ment of records within files) and provides operations that allow your programs
to read and write records in files. RMS thus provides the interface between the
operating system and your programs.

You define the internal structure of a file when you create it by selecting:

O Record format
O File organization

O Access modes

2.1.2.1 Record Formats —RMS does not handle, or process, data within re-
cords. Your program does that. However, to retrieve and store records for your
program, RMS must know how large that record is. Five record formats, there-
fore, are available so you can define for RMS what size your data records are:

O Fixed length—every record is the same size.

O Variable length—records can be of different lengths up to a maximum
size that you specify.

O Variable length with fixed control (VFC)—a fixed-length control area
precedes a variable-length data area in each record.

O Stream—arecord consists of a continuous series of DEC multinational
characters delimited by a special character called a terminator.

O Undefined—a file with undefined records may have either no record for-
mat or may contain records that are not in one of the four formats just
described.

RMS’s support of stream and undefined records provides compatibility with
non-RMS files or other DEC systems.

2.1.2.2 File Organizations —The arrangement of records in files directly af-
fects how quickly and easily RMS can access those records. Your selection of
file organization, therefore, should take access mode into consideration. (The
next section introduces access modes.)

RMS makes three file organizations available:
O Sequential—in a sequential file, records are arranged within the file in

the order in which they were written. You can add records to and delete
records from a sequential file only at the physical end of the file.

2-4 FILE SYSTEM OVERVIEW

0 Relative—a relative file consists of a series of cells of a fixed size. The
cells are numbered consecutively from 1 to n, where n is the number of
cells in the file. The cell numbers are known as relative record numbers
(RRN).

Eachrecord in the file is stored in a cell and is accessed by the cell's
relative record number. Because records are stored by relative record
number, they may not be stored in the order that they are written.

O Indexed—in an indexed file, records are arranged in ascending order by
key. A key is a data field within the record that RMS uses to determine
the order in which to access the records. This allows a record to be
identified by its contents, not by its position.

When you create an indexed file, you must define one field of the record
as the primary key. A key is defined by its location within the record and
its length. When a record is stored in that file, RMS inserts the record in
order by the value that is to be stored in the primary key field - that is,
after a record with a lower or equal value in the primary key field and
before a record with a higher value in the primary key field.

You can optionally define other record fields as alternate keys. These
keys specify alternate access orders for the retrieved records.

For each field defined as a primary or alternate key, RMS constructs an
index. A primary index contains the values in the primary key fields, the
first alternate index contains the values in the first alternate key field,
and so on. Each index entry points to the one data record associated
with that key value.

Thus, each key value provides a logical access path to locate a specific
record or set of records within a file. The indexes also allow your pro-
gram to retrieve the records in a specific order. RMS stores the indexes
in the file itself.

2.1.2.3 Access Modes —The access modes are the methods that RMS-11
uses to store and retrieve the contents of files. The contents of files can consist
of either records or blocks.

Record access modes

O For sequential access, record storage and retrieval begins at a point in
the file and continues with consecutive records through the file. Your
program issues a series of requests to RMS-11 to successively retrieve
the next record in the file.

0 For RFA access, RMS-11 uses the record file address (RFA) as an
identifier to gain direct access to a specific record in a file, without a
successive search of all the records that precede it. The RFA is a
unique record identifier that RMS-11 establishes for every record that it
writes to a disk file. The RFA remains valid for the record. If a record is
deleted, its RFA is not reused.

When RMS-11 stores a record in a file, it establishes the RFA for that
record and returns the RFA information to your program. Your program
can then use the RFA to retrieve the record.

FILE SYSTEM OVERVIEW 2-5

Note that because only RMS-11 can establish the RFA, you cannot
store a record by RFA (that is, specify an RFA for the record).

O For key access, your program specifies an identifier that allows
RMS-11 to gain direct access to a specific record, without a successive
search of all the records that precede it. For sequential files with
fixed-record format or for relative files, this identifier is a relative record
number (RRN). For indexed files, this identifier is a key value.

If the identifier is a relative record number, RMS-11 stores or retrieves
the record in that cell in a relative file, or in that position in a sequential
file.

If the identifier is a key value, RMS-11 stores or retrieves the record
associated with that key value in an indexed file. You can also specify
that all records are to be retrieved in order by primary or alternate key
value.

Block access modes

[0 For sequential access, RMS-11 stores and retrieves data as a
consecutive series of 512-byte blocks. Your program issues a series of
requests to successively store or retrieve the next block in the file. This
means that RMS-11 can process not only files of any RMS-11
organization but non-RMS-11 files as well.

O For VBN access, your program specifies the virtual block number (VBN)
as the identifier of the block to be accessed. RMS-11 uses the block
number to gain direct access to the specified block, without a search of
all the blocks that precede it.

2.2 ASSOCIATED DOCUMENTS

More detailed information on using RMS is available in the the following RMS
manuals:

RSX-11M/M-PLUS RMS-11: An Introduction presents the major con-
cepts of RMS-11, including record formats, file organizations, and re-
cord access modes.

The RSX-11M/M-PLUS RMS-11 User’s Guide provides detailed infor-
mation for both MACRO-11 and high-level language programmers on
file and task design using RMS-11.

The RSX-11M/M-PLUS RMS-11 Macros and Symbols manual is a ref-
erence document for MACRO-11 programmers describing the macros
and symbols that make up the interface between a MACRO-11 program
and the RMS-11 operation routines.

In addition, the RSX-11M/M-PLUS RMS-11 Mini-Reference Insertis a
quick-reference guide for users who are familiar with RMS-11 and its
documentation. Also, two other manuals are available which are PRO/
RMS-11: An Introduction and PRO/RMS-11 Macro Programmer's
Guide.

CHAPTER 3
USING SYSTEM DIRECTIVES

When a task requires the Executive to perform an operation, the task issues a
system directive to make the request. System directives allow you to control the
execution and interaction of tasks. If you are a MACRO-11 programmer, you
usually issue directives in the form of macros defined in the system macro Ii-
brary. If you are a Fortran programmer, you must issue system directives in the
form of calls to subroutines contained in the system object module library.
These are the libraries provided in the Tool Kit. Programs written in other
higher-level languages that provide support for the PDP-11 standard R5 calling
conventions for Fortran may also make use of these calls (see Section 8.1.1).
Check your language reference manual and user’s guide to determine if you are
using that format.

System directives enable tasks to:

O Obtain task and system information

Measure time intervals

Perform I/O functions

Spawn other tasks

Communicate and synchronize with other tasks
Manipulate a task’s logical and virtual address space
Suspend and resume execution

Exit

O o o0ooogoo0oo

Directives are implemented by the EMT 377 instruction. EMT 0 through EMT
376 are considered to be non-RSX EMT synchronous system traps. They cause
the Executive to abort the task unless the task has specified that it wants to
receive control when such traps occur.

3-1

3-2 USING SYSTEM DIRECTIVES

If you are a MACRO-11 programmer, use the system directive macros supplied
in the system macro library for directive calls, rather than hand-coding calls to
directives. Then you need only reassemble your program to incorporate any
changes in the directive specifications.

Sections 3.1, 3.2, and 3.5 are intended for all users. Section 3.3 specifically de-
scribes the use of macros, while Section 3.4 describes the use of Fortran sub-
routine calls. Programmers using other supported languages should refer to the
appropriate language reference manual supplied by DIGITAL.

3.1 DIRECTIVE PROCESSING
Processing a system directive involves four steps:

1. Ausertask issues a directive with arguments that are used only by the
Executive. The directive code and parameters that the task supplies to
the system are known as the Directive Parameter Block (DPB). The
DPB can be either on the user task’s stack or in a user task’s data sec-
tion.

2. The Executive receives an EMT 377 generated by the directive macro
(or a DIR$ macro) or Fortran subroutine.

3. The Executive processes the directive.

The Executive returns directive status information to the task’s Direc-
tive Status Word (DSW).

Note that the Executive preserves all task registers when a task issues a direc-
tive.

The user task issues an EMT 377 (generated by the directive) together with the
address of a DPB or a DPB itself, on the top of the user task’s stack. When the
stack contains a DPB address, the Executive removes the address after pro-
cessing the directive, and the DPB itself remains unchanged. When the stack
contains the actual DPB rather than a DPB address, the Executive removes the
DPB from the stack after processing the directive.

The first word of each DPB contains a Directive ldentification Code (DIC) byte
and a DPB size byte. The DIC indicates which directive is to be performed; the
size byte indicates the DPB length in words. The DIC is in the low-order byte of
the word, and the size is in the high-order byte.

The DIC is always an odd-numbered value. This allows the Executive to deter-
mine whether the word on the top of the stack (before EMT 377 was issued)
was the address of the DPB (even-numbered value) or the first word of the DPB
(odd-numbered value).

The Executive normally returns control to the instruction following the EMT. Ex-
ceptions to this are directives that result in an exit from the task that issued
them and an Asynchronous System Trap (AST) exit.

USING SYSTEM DIRECTIVES 3-3

The Executive also ciears or sets the Carry bit in the Processor Status Word
(PSW) to indicate acceptance or rejection, respectively, of the directive. The
DSW, addressed symbolically as $DSW?, is set to indicate a more specific
cause for acceptance or rejection of the directive. The DSW usually has a value
of +1 for acceptance and a range of negative values for rejection. (Exceptions
to this rule are multiple success return codes for directives such as CLEF$,
SETF$, and GPRT$, among others). The Executive associates DSW values with
symbols, using mnemonics that report either successful completion or the
cause of an error (see Section 3.2). The Instrument Society of America (ISA)
Fortran calls, CALL START and CALL WAIT, are exceptions, since ISA requires
positive numeric error codes. See Sections 9.1.36 and 9.1.49 for details; the
specific return values are listed there with each directive.

In the case of successful Exit directives, the Executive does not, of course, re-
turn control to the task. If an Exit directive fails, however, control returns to the
task with an error status in the DSW.

On Exit, the Executive frees task resources as follows:

0O Detaches all attached devices.

[0 Flushes the AST queue and despecifies all specified ASTs.
O Flushes the receive and receive-by-reference queues.
O

Flushes the clock queue for outstanding Mark Time requests for the

task.

O Closes all open files (files open for write access are locked).

O Detaches all attached regions except in the case of a fixed task, where
no detaching occurs."

O Runs down the task’s 1/O.

[0 Disconnects from interrupts.

O Breaks the connection with any offspring tasks.

O Frees the task’s memory if the task was not fixed.

If the Executive rejects a directive, it usually does not clear or set any specified
event flag. Thus, the task may wait indefinitely if it indiscriminately executes a
Wait For directive corresponding to a previously issued Mark Time directive that
the Executive has rejected. You should always ensure that a directive has been
completed successfully.

3.2 ERROR RETURNS

As stated earlier, the Executive associates the error codes with mnemonics that
report the cause of the error. In the text of this manual, the mnemonics are used
exclusively. The macro DRERR$, which is expanded in Appendix A, provides a
correspondence between each mnemonic and its numeric value.

1. The Task Builder resolves the address of $DSW.

3-4 USING SYSTEM DIRECTIVES

Appendix A also gives the meaning of each error code. In addition, each direc-
tive description in Chapter 9 contains specific, directive-related interpretations
of the error codes.

3.3 USING THE DIRECTIVE MACROS

If you are programming in MACRO-11, you must decide how to create the DPB
before you issue a directive. The DPB may either be created on the stack at run
time (see Section 3.3.1.3, which describes the $S form of directive) or created in
a data section at assembly time (see Sections 3.3.1.1 and 3.3.1.2, which de-
scribe the $ form and $C form, respectively). If parameters vary and the code
must be reentrant, the DPB must be created on the stack.

Figures 3-1 and 3-2 illustrate the alternative directives and also show the rela-
tionship between the stack pointer and the DPB.

MOV # ADDR,-(SP) DPB
EMT 377
[}
DPB
ITEMS INCREASING
MEMORY
SP e ADDRESS OF DPB — SIZE DIC ADDRESSES
STACK
GROWTH
ZK-305-81
Figure 3-1

Directive Parameter Block (DPB) Pointer on the Stack

USING SYSTEM DIRECTIVES 3-5

MOV XX,-(SP)
PUSH REQUIRED
DPB ITEMS ON THE

STACK IN
REVERSE ORDER
MOV (PC)+,-(SP)
.BYTE DIC,SIZE |
EMT 377
DPB
ITEMS
INCREASING
SPp ———— SIZE DIC MEMORY
ADDRESSES
STACK
GROWTH
ZK-306-81
Figure 3-2

Directive Parameter Block (DPB) on the Stack

3-6 USING SYSTEM DIRECTIVES

3.3.1 Macro Name Conventions

When you are programming in MACRO-11, you use system directives by includ-
ing directive macro calls in your programs. The macros for the system direc-
tives are contained in the System Macro Library (RSXMAC.SML). The .MCALL
assembler directive makes these macros available to a program. The .MCALL
arguments are the names of all the macros used in the program. For example:

; CALLING DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
; AND ISSUING THEM.

.MCALL MRKT$S,WTSES$S

Additional .MCALLs or code

MRKT$S #1,#1,#2, ,ERR ;sMARK TIME FOR 1 SECOND
WTSE$S #1 sWAIT FOR MARK TIME TO COMPLETE

Macro names consist of as many as four letters, followed by a dollar sign ($)
and, optionally, a C or an S. The optional letter or its absence specifies which of
three possible macro expansions the programmer wants to use.

3.3.1.1 $ Form —The $ form is useful for a directive operation that is to be
issued several times from different locations in a non-reentrant program seg-
ment. The $ form is most useful when the directive is issued several times with
varying parameters (one or more but not all parameters change), or in a reent-
rant program section when a directive is issued several times even though the
DPB is not modified. The $ form produces only the directive’s DPB and must be
issued from a data section of the program. The code for actually executing a
directive that is in the $ form is produced by a special macro, DIR$ (discussed in
Section 3.3.2).

Because execution of the directive is separate from the creation of the direc-
tive's DPB:

1. A $form of a given directive needs to be issued only once (to produce
its DPB).

2. A DIR$ macro associated with a given directive can be issued several
times without incurring the cost of generating a DPB each time it is is-
sued.

3. Thedirective’s parameters can be easily accessed and changed by la-
beling the start of the DPB and using the offsets defined by the direc-
tive.

USING SYSTEM DIRECTIVES 3-7

When a program issues the $ form of macro call, the parameters required for
DPB construction must be valid expressions for MACRO-11 data storage
instructions (such as .BYTE, .WORD, and .RAD50). You can alter individual pa-
rameters in the DPB. You might do this if you want to use the directive many
times with varying parameters.

3.3.1.2 $C Form —Use the $C form when a directive is to be issued only once.
The $C form eliminates the need to push the DPB (created at assembly time)
onto the stack at run time. Other parts of the program, however, cannot access
the DPB because the DPB address is unknown. Note, in the $C form of the
macro expansion (see Section 3.3.5), that the new value of the assembler’s lo-
cation counter redefines the DPB address $$$ each time an additional $C direc-
tive is issued.

The $C form generates a DPB in a separate p-section? called DPB.. The DPB
is first followed by a return to the user-specified p-section, then by an instruc-
tion to push the DPB address onto the stack, and finally by an EMT 377. To
ensure that the program reenters the correct p-section, you must specify the
p-section name in the argument list immediately following the DPB parameters.
If the argument is not specified, the program reenters the blank (unnamed) p-
section.

The $C form also accepts an optional final argument that specifies the address
of a routine to be called (by a JSR instruction) if an error occurs during the ex-
ecution of the directive (see Section 3.3.2).

When a program issues the $C form of a macro call, the parameters required
for DPB construction must be valid expressions for MACRO-11 data storage
instructions (such as .BYTE, .WORD, and .RAD50). (This is not true for the p-
section argument and the error routine argument, which are not part of the
DPB.)

3.3.1.3 $S Form —Program segments that need to be reentrant and use DPBs
with dynamic parameters should use the $S form. Only the $S form produces
the DPB at run time. The other two forms produce the DPB at assembly time.

In this form, the macro produces code to push a DPB onto the stack, followed
by an EMT 377. In this case, the parameters must be valid source operands for
MOV-type instructions. For a 2-word Radix-50 name parameter, the argument
must be the address of a 2-word block of memory containing the name. Note
that you should not use the Stack Pointer (or any reference to the Stack Pointer)
to address directive parameters when the $S form is used.? (In the example in
Section 3.3.1, the error routine argument ERR is a target address for a JSR in-
struction; see Section 3.3.3.)

2. Refer to the PDP-11 Language Reference Manual for a description of p-sections (program sections).

3. Subroutine or macro calls can use the stack for temporary storage, thereby destroying the positional
relationship between SP and the parameters.

3-8 USING SYSTEM DIRECTIVES

Note that in the $S form of the macro, the macro arguments are processed from
right to left. Therefore, when using code of the form:

MACROS$S, ,(R4)+,(R4)+
the result may be obscure.

3.3.2 DIR$ Macro

The DIR$ macro allows you to execute a directive with a DPB previously de-
fined by the $ form of a directive macro. This macro pushes the DPB address
onto the stack and issues an EMT 377 instruction.

The DIR$ macro generates an Executive trap using a previously defined DPB:

Macro Call: DIR$ adr,err

Note: adr and err are optional.

adr The address of the DPB. (The address, if specified, must be a
valid source address for a MOV instruction.) If this address is
not specified, the DPB or its address must be on the stack.

err The address of the error return (see Section 3.3.3). If this error
' return is not specified, an error simply sets the Carry bit in the
Processor Status Word.

Note: DIR$ is not an Executive directive and does not behave as one. There
are no variations in the spelling of this macro.

3.3.3 Optional Error Routine Address

The $C and $S forms of macro calls and the DIR$ macro can accept an optional
final argument; note that the DIR$ macro is not an Executive directive (DIR$C
and DIR$S are not valid macro calls). The argument must be a valid assembler
destination operand that specifies the address of a user error routine. For ex-
ample, the DIR$ macro

DIR$ #DPB, ERROR

generates the following code:

Mov #DPB, -(SP)
EMT 377

BCC .+6

JSR PC,ERROR

Since the $ form of a directive macro does not generate any executable code, it
does not accept an error routine address argument.

3.3.4 Symbolic Offsets

Most system directive macro calls generate local symbolic offsets describing
the format of the DPB. The symbols are unique to each directive, and each is
assigned an index value corresponding to the offset of a given DPB element.

USING SYSTEM DIRECTIVES 3-9

Because the offsets are defined symbolically, you can refer to or modify DPB
elements without knowing the offset values. Symbolic offsets also eliminate the

need to rewrite programs if a future release of the system changes a DPB
specification.

All $ and $C forms of macros that generate DBPs longer than one word gener-
ate local offsets. All informational directives including the $S form, generate lo-
cal symbolic offsets for the parameter block returned as well.

If the program uses either the $ or $C form and has defined the symbol $$$GLB
(for example $$$GLB=0), the macro generates the symbolic offsets as global
symbols and does not generate the DPB itself. The purpose of this facility is to
enable the use of a DPB defined in a different module. The symbol $$$GLB has
no effect on the expansion of $S macros.

When using symbolic offsets, you should use the $ form of directives.

3.3.5 Examples of Macro Calls
The following examples show the expansions of the different macro call forms:

1. The $ form generates a DPB only, in the current p-section.
MRKTS$ 1,5,2,MTRAP

generates the following code:

.BYTE 23.,5 ;5 ‘’MARK-TIME’’ DIC & DPB SIZE
.WORD 1 ; EVENT FLAG NUMBER

.WORD 5 ; TIME INTERVAL MAGNITUDE
.WORD 2 ; TIME INTERVAL UNIT (SECONDS)
.WORD MTRAP ; AST ENTRY POINT ADDRESS

2. The $C form generates a DPB in p-section DPB. and generates the
code to issue the directive in the specified section.

MRKT$C 1,5,2,MTRAP,PROG1,ERR

generates the following code:

.PSECT DPB.

$$8=. ; DEFINE TEMPORARY SYMBOL
.BYTE 23.,5 ; “’MARK-TIME’’ DIC & DPB SIZE
.WORD 1 ; EVENT FLAG NUMBER

.WORD 5 ; TIME INTERVAL MAGNITUDE
.WORD 2 s TIME INTERVAL UNIT (SECONDS)
.WORD MTRAP ;s AST ENTRY POINT ADDRESS
.PSECT PROG1 ; RETURN TO THE ORIGINAL PSECT
MoV #$$$,-(SP) ; PUSH DPB ADDRESS ON STACK
EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ; BRANCH ON DIRECTIVE ACCEPTANCE

JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

3-10 USING SYSTEM DIRECTIVES

3. The $S form generates code to push the DPB onto the stack and to is-
sue the directive.

MRKT$S #1,#5,#2,R2,ERR

generates the following code:

MoV R2,-(SP) ; PUSH AST ENTRY POINT

mMov #2,-(SP) ; TIME INTERVAL UNIT (SECONDS)

MOV #5,-(SP) ; TIME INTERVAL MAGNITUDE

mMov #1,-(SP) ; EVENT FLAG NUMBER

Mov (PCY+,-(SP) ; AND “’MARK-TIME‘‘ DIC & DPB SIZE
.BYTE 23.,5 ; ON THE STACK

EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

4. The DIR$ macro issues a directive that has a predefined DPB.

DIRS$ R1,(R3) ; DPB ALREADY DEFINED. DPB ADDRESS IN R1.

generates the following code:

MOV R1,-(SP) ; PUSH DPB ADDRESS ON STACK

EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+4 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC, (R3) ; ELSE, CALL ERROR SERVICE ROUTINE

3.4 FORTRAN SUBROUTINES

The system provides a set of Fortran subroutines to perform system directive
operations. In general, one subroutine is available for each directive. (Excep-
tions are the Mark Time and Run directives. The description of Mark Time in-
cludes both CALL MARK and CALL WAIT. The description of Run includes both
CALL RUN and CALL START.)

All the subroutines described in this manual can be called by Fortran programs
compiled by the FORTRAN-77 compiler.

These subroutines can also be called from programs written in the MACRO-11
assembly language by using PDP-11 FORTRAN calling sequence conventions.
These conventions are described in your Fortran user’s guide.

The directive descriptions in Chapter 9 describe the Fortran subroutine calls, as
well as the macro calls. .

3.4.1 Using Subroutines

All the subroutines described in this manual are in the system object module
library. You call these subroutines by including the appropriate CALL statement
in the Fortran program. When the program is linked to form a task, the Task
Builder first checks to see whether each specified subroutine is user defined. If
a subroutine is not user defined, the Task Builder automatically searches for it
in the system object module library. If the subroutine is found, it is included in
the linked task.

USING SYSTEM DIRECTIVES 3-11

3.4.1.1 Optional Arguments —Many of the subroutines described in this man-
ual have optional arguments. In the subroutine descriptions associated with the
directives, optional arguments are designated as such by being enclosed in
square brackets ([]). An argument of this kind can be omitted if the comma that
immediately follows it is retained. If the argument (or string of optional argu-
ments) is last, it can simply be omitted, and no comma need end the argument
list. For example, the format of a call to SUB could be the following:

CALL SUB (AA,[BB],[CC],DD[,[EE][,FF]])

In that event, you may omit the arguments BB, CC, EE, and FF in one of the
following ways:

1. CALLSUB (AA,,DD,)
2. CALL SUB (AA,,,DD)

In some cases, a subroutine will use a default value for an unspecified optional
argument. Such default values are noted in each subroutine description in
Chapter 9.

3.4.1.2 Task Names —In Fortran subroutines, task names may be up to six
characters long. Characters permitted in a task name are the letters A through
Z, the numerals 0 through 9, and the special characters dollar sign ($) and pe-
riod (.). Task names are stored as Radix-50 code, which permits as many as
three characters to be encoded in one word. (Radix-50 is described in detail in
your Fortran user’s guide.)

Fortran subroutine calls require that a task name be defined as a 2-word vari-
able or array that contains the task name as Radix-50 code. This variable may
be REAL, INTEGER*4, or an INTEGER*2 array of two elements.

This variable may be defined at program compilation time by a DATA statement,
which gives the real variable an initial value (a Radix-50 constant).

For example, if a task name CCMF1 is to be used in a system directive call, the
task name could be defined and used as follows:

DATA CCMF1/SRCCMF 1/

CALL REQUES (CCMF1)

A program may define task names during execution by using the IRAD50 sub-
routine or the RAD50 function as described in your Fortran user’s guide. The
equivalent data format is available for other higher-level languages.

3.4.1.3 Integer Arguments —All the subroutines described in this manual as-
sume that integer arguments are INTEGER*2-type arguments. The
FORTRAN-77 system normally treats an integer variable as one storage word,

3-12 USING SYSTEM DIRECTIVES

provided that its value is within the range -32768 through +32767. However, if
you specify the /I4 option switch when compiling a program, ensure that all inte-
ger array arguments used in these subroutines are explicitly specified as type
INTEGER*2.

3.4.1.4 GETADR Subroutine —Some subroutine calls include an argument de-
scribed as an integer array. The integer array contains some values that are the
addresses of other variables or arrays. Since the Fortran language does not
provide a means of assigning such an address as a value, you must use the
GETADR subroutine as follows:

Calling Sequence
CALL GETADR(ipm,[arg1],[arg2],...[argn])

ipm An array of dimension n.

argt,...argn Arguments whose addresses are to be inserted in ipm.
Arguments are inserted in the order specified. If a null
argument is specified, then the corresponding entry in ipm
is left unchanged. When the argument is an array name,
the address of the first array element is inserted into ipm.

Example

DIMENSION IBUF(80),10SB(2), IPARAM(6E)

CALL GETADR C(IPARAM(C1),IBUFC1))
IPARAM(2)=80
CALL QIO CIREAD,LUN,IEFLAG,,I0SB,IPARAM,IDSW)

In this example, CALL GETADR enables you to specify a buffer address in the
CALL QIO directive (see Section 9.1.37).

3.4.2 The Subroutine Calls

Table 3-1 is a list of the Fortran subroutine calls (and corresponding macro
calls) associated with system directives (see Chapter 9 for detailed descrip-
tions).

For some directives, notably Mark Time (CALL MARK), both the standard For-
tran subroutine call and the ISA standard call are provided. Other directives,
however, are not available to Fortran tasks (for example, Specify Floating Point
Exception AST [SFPA$] and Specify SST Vector Table For Task [SVTK$]).

USING SYSTEM DIRECTIVES 3-13

Table 3-1
Fortran Subroutines and Corresponding Macro Calls

Directive Macro Call Fortran Subroutine
Abort Task ABRT$ CALL ABORT
Alter Priority ALTP$ CALL ALTPRI
Assign LUN ALUNS$ CALL ASNLUN
Attach Region ATRG$ CALL ATRG
Cancel Time Based Initiation Requests CSRQ$ CALL CANALL
Cancel Mark Time Requests CMKT$ CALL CANMT
Clear Event Flag CLEF$ CALL CLREF
Create Logical Name String CLOG$ CALL CRELOG
Connect CNCT$ CALL CNCT
Create Address Window CRAWS CALL CRAW
Create Region CRRG$ CALL CRRG
Declare Significant Event DECL$S CALL DECLAR
Disable AST Recognition DSAR$S CALL DSASTR
Disable Checkpointing DSCP$S CALL DISCKP
Detach Region DTRG$ CALL DTRG
Delete Logical Name String DLOG$ CALL DELLOG
Eliminate Address Window ELAWS CALL ELAW
Emit Status EMST$ CALL EMST
Enable AST Recognition ENAR$S CALL ENASTR
Enable Checkpointing ENCP$S CALL ENACKP
Exit If EXIF$ CALL EXITIF
Exit With Status EXST$ CALL EXST
Extend Task EXTK$ CALL EXTTSK
Feature Test for Specification FEAT$ CALL FEAT
Get Default Directory String GDIR$ CALL GETDDS
Get LUN Information GLUNS$ CALL GETLUN
Get Mapping Context GMCX$ CALL GMCX
Get MCR Command Line GMCRS$ CALL GETMCR
Get Partition Parameters GPRT$ CALL GETPAR
Get Region Parameters GREG$ CALL GETREG
Get Task Parameters GTSK$ CALL GETTSK
Get Time Parameters GTIM$ CALL GETTIM
Inhibit AST Recognition IHAR$S CALL INASTR
Map Address Window MAP$ CALL MAP
Mark Time MRKT$ CALL MARK

CALL WAIT (ISA Standard call)

3-14 USING SYSTEM DIRECTIVES

Table 3-1(Cont.)

Directive Macro Call Fortran Subroutine
Queue 1/0 Request Qlo$ CALL QIO
Queue I/O Request And Wait Qlow$ CALLWTQIO
Read All Event Flags RDAF$ RDXF$ CALL READEF (Only a single,
local, or common, event flag can
be read by a Fortran task)
Read Single Event Flag RDEF$ CALL READEF
Receive By Reference RREF$ CALL RREF
Receive Data RCVD$ CALL RECEIV
Receive Data Or Exit RCVX$ CALL RECOEX
Receive Data Or Stop RCST$ CALL RCST
Request and Pass Offspring RPOI$ CALL RPOI
Information
Request RQST$ CALL REQUES
Resume RSUM$ CALL RESUME
Run RUNS$ CALL RUN
Send By Reference SREF$ CALL SREF
Send Data SDAT$ CALL SEND
Send, Request And Connect SDRC$ CALL SDRC
Send Data Request and Pass OCB SDRP$ CALL SDRP
Set Default Directory String SDIR$ CALL SETDDS
Set Event Flag SETF$ CALL SETEF
Set System Time STIM$ CALL SETTIM
Spawn SPWN$ CALL SPAWN
Specify Requested Exit AST SREX$ CALL SREX
Stop STOP$S CALL STOP
Stop For Logical OR Of Event Flags STLO$ CALL STLOR
Stop For Single Event Flag STSE$ CALL STOPFR
Suspend SPND$S CALL SUSPND
Task Exit EXIT$S CALL EXIT
Unmap Address Window UMAP$ CALL UNMAP
Unstop USTP$ CALL USTP
Variable Receive Data VRCD$ CALL VRCD
Variable Receive Data Or Exit VRCX$ CALL VRCX
Variable Receive Data Or Stop VRCS$ CALL VRCS
Variable Send Data VSDA$ CALL VSDA
Variable Send, Request and Connect VSRC$ CALLVSRC
Wait For Single Event Flag WTSE$ CALL WAITFR
Wait For Logical OR Of Event Flags WTLO$ CALL WFLOR
Wait For Significant Event WSIG$S CALL WFSNE
What's In My Professional WIMP$ CALL WIMP

USING SYSTEM DIRECTIVES 3-15

Table 3-2 shows the directives that are not available as Fortran subroutines.

Table 3-2
Directives Not Available as Subroutines

Directive Macro Call
AST Service Exit ASTX$S
Connect To Interrupt Vector CINT$
Specify Floating Point Exception AST SFPAS$.
Specify Receive By Reference AST SRRA$
Specify Receive Data AST SRDA$
Specify SST Vector Table For SVDB$
Debugging Aid

3.4.3 Error Conditions

Each subroutine call includes an optional argument that specifies the integer to
receive the Directive Status Word (ids). When you specify this argument, the
subroutine returns a value that indicates whether the directive operation suc-
ceeded or failed. If the directive failed, the value indicates the reason for the
failure. The possible values are the same as those returned to the Directive Sta-
tus Word (DSW) in MACRO-11 programs except for the two ISA calls, CALL
WAIT and CALL START. The ISA calls have positive numeric error codes (see
Sections 9.1.36 and 9.1.49).

3.4.4 AST Service Routines

The following Fortran callable routines provide support for ASTs in Fortran pro-
grams:

CALL CNCT CALL SPAWN
CALL SDRC CALL SREX

Whenever you specify a Fortran AST routine to one of the system library rout-
ines listed above, the AST routine is replaced by an internal routine that saves
the general purpose registers and calls the specified Fortran routine using a co-
routine call when the AST occurs. After the Fortran routine completes, by way
of a RETURN statement, the internal routine restores the general purpose reg-
isters and issues an ASTX$ directive.

Use great caution when coding an AST service routine in Fortran. The following
types of Fortran operations may not be performed at AST state:

O Fortran I/O of any kind—This includes ENCODE and DECODE state-
ments and internal file 1/O. Fortran /O is not reentrant; therefore the
information in the impure data area may be destroyed.

3-16 USING SYSTEM DIRECTIVES

O Floating-point operations—The floating-point processor’s context is
not saved while in AST state. Since the scientific subroutines use
floating-point operations, they may not be called at AST state.

O Traceback information in the generated code—Use of traceback infor-
mation corrupts the error recovery in the Fortran run time library. Any
Fortran modules that will be called at AST state must be compiled with-
out traceback. See your Fortran user’s guide for more information.

O Virtual array operations—Use of virtual arrays at AST state remaps the
current array such that any operations at non-AST state will not be ex-
ecuted correctly.

O Subprograms—May not be shared between AST processing and nor-
mal task processing

O EXIT or STOP statements with files open—Fortran flushes the task’s
buffers, which could be in an intermediate state. Therefore, data might
be lost if any output files are open when the EXIT or STOP is executed.

You can EXIT or STOP at AST state if no output files are open.

Since the message put out by STOP uses a different mechanism from
the normal Fortran I/O routines, the act of putting out this message
does not corrupt impure data in the run time system. Therefore, you can
issue a STOP statement at AST state unless there are output files open.

Note also the following:

O Any execution time error at AST state will corrupt the program.

0 Use extreme care if the Fortran task is overlayed. Both the interface
routine and the actual code of the Fortran AST routine must be located
in the root segment. Any routines that are called at AST state must also
be in the root segment.

O ASTs from other higher-level languages are not supported at all.

3.5 TASK STATES

The Executive recognizes the existence of a task only after it has been success-
fully installed and has an entry in the System Task Directory (STD). Once a task
is known to the system, it exists in one of two states: dormant or active. Some
system directives cause a task to change from one state to another.

The Executive recognizes a task immediately after it has been installed; how-
ever, the task at that point is dormant. A dormant task has an entry in the STD,
but no request has been made to activate it.

A task is active from the time it is requested until the time it exits. Requesting a
task means issuing the RQST$, RUN$, SPWN$, SDRCS$, VSRC$, RPOIS$, or
SDRP$ macro. An active task is eligible for scheduling, whereas a dormant task
is not.

USING SYSTEM DIRECTIVES 3-17

The three substates of an active task are as follows:

1.

Ready-to-run—A ready-to-run task competes with other tasks for CPU
time on the basis of priority. The highest priority ready-to-run task ob-
tains CPU time and thus becomes the current task.

Blocked—A blocked task is unable to compete for CPU time for syn-
chronization reasons or because a needed resource is not available.
Task priority effectively remains unchanged, allowing the task to com-
pete for memory space.

Stopped—A stopped task is unable to compete for CPU time because
of pending 1/O completion, event flag(s) not set, or because the task
stopped itself. When stopped, a task’s priority effectively drops to zero
and the task can be checkpointed by any other task, regardless of that
task’s priority. If an AST occurs for the stopped task, its normal task
priority is restored only for the duration of the AST routine execution;
once the AST is completed, task priority returns to zero.

3.5.1 Task State Transitions

This section describes the eight task state transitions.

O o oooo0oao

O 0O

Dormant to Active—The following directives cause the Executive to
activate a dormant task:

RUNS

RQST$

SPWN$

SDRC$

VSRC$

RPOI$

SDRP$

Ready-to-Run to Blocked—The following events cause an active,
ready-to-run task to become blocked:

A SPNDS$ directive

An unsatisfied Wait For condition

Checkpointing of a task out of memory by the Executive

Ready-to-Run to Stopped—The following events cause an active,
ready-to-run task to become stopped:

A STOP$S directive is executed, or an RCST$, SDRP$, or VRCS$
directive is issued when no data packet is available.
An unsatisfied Stop For condition.

An unsatisfied Wait For condition while the task has outstanding
buffered 1/0O.

3-18 USING SYSTEM DIRECTIVES

Blocked to Ready-to-Run—The following events return a blocked task
to the ready-to-run state:

O An RSUMS$ directive issued by another task

A Wait For condition is satisfied

O

0 The Executive reads a checkpointed task into memory

Stopped to Ready-to-Run—The following events return a stopped task
to the ready-to-run state, depending upon how the task became
stopped:

O Atask stopped by the STOP$, RCST$, or VRCSS$ directive becomes
unstopped by USTP$ directive execution.

O A Wait For condition is satisfied for a task with outstanding buffered
1/0.

O Atask stopped for an event flag becomes unstopped when the
specified event flag becomes set.

Active to Dormant—The following events cause an active task to
become dormant:

O AnEXIT$S, EXIF$, RCVX$, or VRCX$ directive, or a RREF$ directive
that specifies the exit option

O An ABRTS$ directive

O A Synchronous System Trap (SST) for which a task has not specified a

service routine

Blocked to Stopped—The following event causes a task that is blocked
due to an unsatisfied Wait For condition to become stopped:

00 The task initiates buffered I/O at AST state and then exits from AST
state.

Stopped to Blocked—The following event causes a task that is stopped
due to an unsatisfied Wait For condition and outstanding buffered 1/O to
return to a blocked state:

O Completion of all outstanding buffered 1/O

3.6 DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS

Nonprivileged tasks cannot issue certain Executive directives, except for those
shown in Table 3-3:

- USING SYSTEM DIRECTIVES 3-19

Table 3-3
System Directives That Can Be Issued by Nonprivileged Tasks

Directive Macro Call Comments

Abort Task ABRT$ A nonprivileged task can only
abort tasks with the same Tl: as
the task issuing the directive.

Alter Priority ALTP$ A nonprivileged task can only
alter its own priority to values
less than or equal to the task’s
installed priority.

Cancel Time Based Initiation Requests CSRQ$ Cannot be issued by a
nonprivileged task except for

tasks with the same Tl: as the
issuing task.

Switch State ‘ SWST$ Cannot be issued by a
nonprivileged task.

3.7 DIRECTIVE CATEGORIES

This section groups the directives by function into the following eight categor-
ies:

Task execution control

Task status control

Informational

Event-associated

Trap-associated

I/O- and intertask communications-related

Memory management

® N o g A~ W h =

Parent/offspring tasking

3.7.1 Task Execution Control Directives

The task execution control directives deal principally with starting and stopping
tasks. Each of these directives (except Extend Task) results in a change of the
task's state (unless the task is already in the state being requested). Table 3-4
shows the task execution control directives.

3-20 USING SYSTEM DIRECTIVES

Table 3-4
Task Execution Control Directives

Directive
Macro Name
ABRT$ Abort Task
CSRQ$ Cancel Time Based Initiation Requests
EXIT$S Task Exit ($S form recommended)
EXTK$ Extend Task
RQST$ Request Task
SPND$S Suspend ($S form recommended)
SWST$ Switch State

3.7.2 Task Status Control Directives

Two task status control directives alter the checkpointable attribute of a task. A
third directive changes the running priority of an active task. Table 3-5 shows
the task status control directives.

3.7.3 Informational Directives

Several directives provide the issuing task with system information and param-
eters such as the time of day, the task parameters, the console switch settings,
and partition or region parameters. Table 3-6 shows the informational direc-
tives.

3.7.4 Event-Associated Directives

The event and event flag directives provide inter- and intratask synchronization
and signaling and the means to set the system time. You must use these direc-
tives carefully since software faults resulting from erroneous signaling and syn-
chronization are often obscure and difficult to isolate. Table 3-7 shows the
event-associated directives.

3.7.5 Trap-Associated Directives

The trap-associated directives provide trap facilities that allow transfer of con-
trol (software interrupts) to the executing tasks. Table 3-8 shows the trap-
associated directives.

USING SYSTEM DIRECTIVES 3-21

Table 3-5
Task Status Control Directives

Directive
Macro Name
ALTP$ Alter Priority
DSCP$S Disable Checkpointing ($S form recommended)
ENCP$S Enable Checkpointing ($S form recommended)

Table 3-6
Informational Directives

Directive
Macro Name
GPRT$ Get Partition Parameters
GREG$ Get Region Parameters
GTIM$ Get Time Parameters
GTSK$ Get Task Parameters

Table 3-7
Event-Associated Directives

Directive
Macro Name
CLEF$ Clear Event Flag
CMKT$ Cancel Mark Time Requests
DECLS$S Declare Significant Event ($S form recommended)
EXIF$ Exit If
MRKT$ Mark Time
RDEF$ Read Single Event Flag
SETF$ Set Event Flag
STIM$ Set System Time
STLO$ Stop For Logical ‘OR’ of Event Flags
STOPS$S Stop ($S form recommended)
STSE$ Stop For Single Event Flag
USTP$ Unstop
WSIG$S Wait For Significant Event ($S form recommended)
WTLO$ Wait For Logical OR Of Event Flags

WTSE$ Wait For Single Event Flag

3-22 USING SYSTEM DIRECTIVES

Table 3-8
Trap-Associated Directives

Directive
Macro Name
ASTX$S AST Service Exit ($S form recommended)
DSAR$S Disable AST Recoghnition ($S form recommended)
ENARS$S Enable AST Recognition ($S form recommended)
IHAR$S Inhibit AST Recogpnition ($S form recommended)
SFPAS Specify Floating Point Processor Exception AST
SRDA$ Specify Receive Data AST
SREA$ Specify Requested Exit AST
SREX$ Specify Requested Exit AST (extended)
SRRA$ Specify Receive-By-Reference AST
SVDB$ Specify SST Vector Table For Debugging Aid
SVTK$ Specify SST Vector Table For Task

3.7.6 1/0- and Intertask Communications-Related Directives

The I/O- and intertask communications-related directives allow tasks to access
I/O devices at the driver interface level or interrupt level, to communicate with
other tasks in the system, and to retrieve the MCR command line used to start
the task. Table 3-9 shows the 1/O- and intertask communications-related direc-
tives.

3.7.7 Memory Management Directives

The memory management directives allow a task to manipulate its virtual and
logical address space, and to set up and control dynamically the window-to-
region mapping assignments. The directives also provide the means by which
tasks can share and pass references to data and routines. Table 3-10 shows
the memory management directives.

3.7.8 Parent/Offspring Tasking Directives
Parent/offspring tasking directives permit tasks to start other tasks, and to con-

nect to other tasks in order to receive status information. Table 3-11 shows the
parent/offspring tasking directives.

Table 3-9
I/O- and Intertask Communications-Related Directives

USING SYSTEM DIRECTIVES 3-23

Directive
Macro Name
ALUNS Assign LUN
CINTS Connect To Interrupt Vector
CLOGS Create Logical Name String
DLOG$ Delete Logical Name String
GDIR$ Get Default Directory String
GLUNS Get LUN Information
GMCRS$ Get MCR Command Line
QI0$ Queue 1/O Request
QIoOwW$ Queue 1/O Request And Wait
RCVD$ Receive Data
RCVX$ Receive Data Or Exit
SDAT$ Send Data
SDIR$ Set Default Directory String
VRCD$ Variable Receive Data
VRCS$ Variable Receive Data Or Stop
VRCX$ Variable Receive Data Or Exit
VSDA$ Variable Send Data

Table 3-10
Memory Management Directives

Directive
Macro Name
ATRG$ Attach Region
CRAWS Create Address Window
CRRG$ Create Region
DTRG$ Detach Region
ELAWS Eliminate Address Window
GMCX$ Get Mapping Context
MAP$ Map Address Window
RREF$ Receive By Reference
SREF$ Send By Reference

UMAPS$ Unmap Address Window

3-24 USING SYSTEM DIRECTIVES

Table 3-11
Parent/Offspring Tasking Directives

Directive
Macro Name
CNCT$ Connect
EMST$ Emit Status
EXST$ Exit With Status
RPOI$ Request and Pass Offspring Information
SDRC$ Send, Request, And Connect
SDRP$ Send Data, Request and Pass OCB
SPWN$ Spawn
VSRC$ Variable Send, Request, and Connect

3.8 DIRECTIVE CONVENTIONS

The following are conventions for using system directives:

1.

In MACRO-11 programs, unless a number is followed by a decimal
point (.), the system assumes the number to be octal.

In Fortran programs, use INTEGER*2 type unless the directive descrip-
tion states otherwise.

In MACRO-11 programs, task and partition names can be from one
through six characters long and should be represented as two words in
Radix-50 form.

In Fortran programs, specify task and partition names by a variable of
type REAL (single precision) that contains the task or partition name in
Radix-50 form. To establish Radix-50 representation, either use the
DATA statement at compile time, or use the IRAD50 subprogram or
RADS50 function at run time.

Device names are two characters long and are represented by one
word of ASCII code.

Some directive descriptions state that a certain parameter must be pro-
vided even though the system ignores it. Such parameters are included
for future extension to the system.

In the directive descriptions, square brackets ([]) enclose optional pa-
rameters or arguments. To omit optional items, either use an empty
(null) field in the parameter list or omit a trailing optional parameter.

Logical Unit Numbers (LUNs) can range from 1 through 2554,

Event flag numbers range from 1 through 64,o. Numbers from 1 through
324 denote local flags. Numbers from 33 through 64 denote common
flags.

Note that the Executive preserves all task registers when a task issues a direc-

tive.

CHAPTER 4
LOGICAL NAMES

A logical name is a character string used to represent a file or device by other
than its specific physical name. Logical names allow you to write programs that
are independent of the physical devices or files used in input or output oper-
ations. The CLOG$ and DLOGS$ directives perform the following logical name
functions:

O Create alogical name string (CLOG$)
00 Delete alogical name string (DLOG$)

(See the description of these directives later in this chapter.)

4.1 LOGICAL NAMES AND EQUIVALENCE NAMES

A logical name string always refers to an associated equivalence name string.
The system provides a logical name facility that translates a logical name and
returns its equivalence string. Within the strict context of the logical name fa-
cility, the logical name and its equivalence name are simply byte strings. The
only restrictions to logical name strings and equivalence names strings are:

O The string length must not exceed 255 bytes.

O There must be an equivalence name string for each logical name string
entered in the logical name table.

4.1.1 The Logical Name Table
The system stores logical name strings and their equivalence strings in a single

logical name table. The logical name table contains names that cooperating
tasks can use. The system uses this table when translating logical names.

4-1

4-2 LOGICAL NAMES

4.1.2 Duplicate Logical Names

The logical name table can contain multiple equivalence strings for the same
logical name. However, each duplicate logical name must be distinguished by a
unique modifier. The mod argument to the CLOGS directive serves that pur-
pose, allowing a maximum of 255,4 duplicate logical names. See the description
of the CLOGS$ directive in Chapter 9. You may specify mod argument identifier
values 128 through 256,; identifier values 0 through 127 are reserved for sys-
tem use.

Note: Duplicate logical names are possible only when the user tasks handle
the logical name translations. Within the context of the system software (such
as RMS and volume mounting procedures), the only recognized value for the
mod argument is 0.

If a newly created logical name duplicates an existing logical name having the
same value for the mod argument, the system supersedes the old logical name
definition with the new one.

Any number of logical names can have the same equivalence name. Further-
more, the number of logical names possible is limited only by the amount of
available secondary pool in the system.

4,2 RMS TRANSLATION OF LOGICAL NAMES

As part of I/O processing in program execution, RMS translates logical names
and returns their equivalence names. The following conventions govern RMS
translation of logical names:

O RMS translates only those logical names occurring within the context of
a valid device specification.

O RMS continues to do translations of logical name strings until it encoun-
ters an equivalence name string beginning with an underscore (), until
it fails to translate a string, until it encounters an equivalence name
string not ending with a colon (:), or until it reaches the maximum num-
ber of translations allowed.

0 RMS does a maximum of eight translations for a given logical name. If
the number of logical name translations exceeds the maximum, RMS
issues an error.

4.2.1 RMS and Default Directories

The system provides a special case of logical names known as a default direc-
tory. The default directory is a character string stored in the system secondary
pool. If RMS encounters an input string with no specified directory, or if the in-
put string contains a pair of closed empty brackets—the explicit request for the
default directory—RMS returns the default directory string.

LOGICAL NAMES 4-3

4.3 FILES-11 ACP USE OF LOGICAL NAMES

The Files-11 ACP creates logical names when it mounts a file-structured disk.
The ACP creates a logical name using the volume label specified at the time the
volume was initialized. It creates an equivalence string that returns the name of
the physical device on which the volume is mounted.

The ACP also creates a second logical name when mounting a file-structured
disk using the physical device name as the logical name and the volume label as
the equivalence name. For example:

LOGICAL NAME FINANCE: DDnnn:
EQUIVALENCE NAME . +DDnnn: FINANCE:

An application program can reference the disk with the volume label FINANCE
by using the logical name FINANCE:. RMS translates the logical name to deter-
mine the actual physical device. Similarly, an application programmer can use
the logical name scheme in the example to determine the volume that is cur-
rently mounted.

4.4 LOGICAL NAME CREATION

Use the CLOG$ directive to create a logical name string and the associated
equivalence name string (see Chapter 9). The length of each logical name string
can be a maximum of 255,y characters (bytes). Creation of the logical name
string requires the use of the secondary pool which is of limited size.

The following example shows how to create a logical name with the CLOG$ di-
rective.

.MCALL CLOGS$,DIRS
LNAME : .ASCII /EXPENSES:/ ;LOGICAL NAME STRING
LNAMSZ= .-LNAME ;SIZE OF LOGICAL NAME STRING
ENAME : .ASCII /FINANCE:/ ;EQUIVALENCE NAME STRING
ENAMSZ= . -ENAM sDEFINE SIZE OF EQUIVALENCE
;NAME STRING
.EVEN
NAMVOL : CLOGS ,LT.USR,LNAME,LNAMSZ,ENAME ,ENAMSZ
START: DIRS #NAMVOL sCREATE LOGICAL NAME

4.5 LOGICAL NAME TRANSLATION

A subroutine called PROLOG is available in POSSUM that allows the translation
of logical names. This subroutine is callable from MACRO and high-level lan-
guages. (See Chapter 8.)

4.6 LOGICAL NAME DELETION
Use the DLOGS$ directive to delete entries from the logical name table. When

you code a call to the DLOGS$ directive, you can delete a single logical name
from the table, or you can delete all the logical names in the table.

4-4 LOGICAL NAMES

The following example deletes a single logical name entry from the logical name
table:

.MCALL DLOG$,DIRS$
NAME : .ASCII /TMONK/
NAMESZ= . -NAME
.EVEN
NAMDEL : DLOGS ,LT.USR,NAME ,NAMESZ
START: DIRS #NAMDEL ;DELETE LOGICAL NAME

On the other hand, the example below deletes all the logical name entries in the
user logical name table:

.MCALL DLOGS$,DIRS
DELALL: DLOGS ,LT.USR
START: DIRS$ #DELALL ;DELETE LOGICAL NAME

See the DLOG$ directive description in Section 9.1.14 for more details on delet-
ing logical names.

4.7 SETTING UP A DEFAULT DIRECTORY STRING

Use the SDIR$ macro to establish a default directory.

The following example shows how to use the SDIR$ macro to set up a default
directory string:

.MCALL SDIRS$,DIRS
DDSNAM: .ASCII /0s0L0S1/
DDSSZ= . -DDSNAM

.EVEN
SETNAM: SDIRS$,DDSNAM,DDSSZ

START: DIRS #SETNAM ;ESTABLISH DEFAULT DIRECTORY

LOGICAL NAMES 4-5

4.8 RETRIEVING A DEFAULT DIRECTORY STRING

Use the GDIR$ directive to retrieve a default directory string. The system re-
turns the default directory string to the specified user buffer along with the

length of the string.

The following example shows how to use the GDIR$ macro to retrieve the de-

fault directory string:

.MCALL
DDSNAM: .BLKB
DDSSZ= . -DDSNAM

.EVEN
GETNAM: GDIRS
START: DIRS$

GDIR$,DIRS

100. sDEFINE BUFFER FOR DEFAULT
sDIRECTORY STRING
;CALCULATE BUFFER SIZE

,DDSNAM,DDSSZ
#GETNAM ;GET DEFAULT DIRECTORY STRING

CHAPTER 5

SIGNIFICANT EVENTS, EVENT FLAGS,
SYSTEM TRAPS, AND STOP-BIT
SYNCHRONIZATION

This chapter introduces the concept of significant events and describes the
ways in which your code can make use of event flags, synchronous and asyn-
chronous system traps, and stop-bit synchronization.

5.1 SIGNIFICANT EVENTS

A significant event is a change in system status that causes the Executive to
reevaluate the eligibility of all active tasks to run. (For some significant events,
specifically those in which the current task becomes ineligible to run, only those
tasks of lower priority are examined.) A significant event is usually caused (ei-
ther directly or indirectly) by a system directive issued from within a task. (All of
the system directives named in this chapter are described in detail in Chapter 9.)

Significant events include the following:

O An1/O completion

O Ataskexit

O The execution of a Send Data directive

O The execution of a Send Data, Request and Pass OCB directive

O The execution of a Send, Request, and Connect directive

O The execution of a Send By Reference or a Receive By Reference di-
rective

O The execution of an Alter Priority directive

O The removal of an entry from the clock queue (for example, resulting

from the execution of a Mark Time directive or the issuance of a resche-
duling request)

O The execution of a Declare Significant Event directive

5-1

5-2 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

O The execution of the round-robin scheduling algorithm at the end of a
round-robin scheduling interval

[0 The execution of an Exit, an Exit With Status, or an Emit Status directive

5.2 EVENT FLAGS

Event flags are a means by which tasks recognize specific events. (Tasks also
use Asynchronous System Traps (ASTs) to recognize specific events. See Sec-
tion 5.3.3.) In requesting a system operation (such as an I/O transfer), a task
may associate an event flag with the completion of the operation. When the
event occurs, the Executive sets the specified flag. Several examples later in
this section describe how tasks can use event flags to coordinate task execu-
tion.

Sixty-four event flags are available to enable tasks to distinguish one event from
another. Each event flag has a corresponding unique Event Flag Number (EFN).
Numbers 1 through 32 form a group of local flags that are unique to each task
and are set or cleared as a result of that task’s operation. Numbers 33 through
64 form a second group of flags that are common to all tasks, hence their name
“common flags.” Common flags may be set or cleared as a result of any task’s
operation. The last eight flags in each group, local flags (25 through 32) and
common flags (57 through 64), are reserved for use by the system.

Tasks can use the common flags for intertask communication or their own local
event flags internally. They can set, clear, and test event flags by using Set
Event Flag (SETF$), Clear Event Flag (CLEF$), and Read All Event Flags
(RDAFS$) directives.

Caution: Take great care when setting or clearing event flags, especially com-
mon flags. Erroneous or multiple setting and clearing of event flags can resultin
obscure software faults. A typical application program can be written without
explicitly accessing or modifying event flags, since many of the directives can
implicitly perform these functions. The Send Data (SDATS$), Mark Time
(MRKT$), and the 1/O operations directives can all implicitly alter an event flag.

Examples 1 and 2 illustrate the use of common event flags (33 through 64) to
synchronize task execution. Examples 3 and 4 illustrate the use of local flags (1
through 32).

Example 1

Task B clears common event flag 35 and then blocks itself by issuing a
Wait For directive that specifies common event flag 35.

Subsequently another task, Task A, specifies event flag 35 in a Set
Event Flag directive to inform Task B that it may proceed. Task A then
issues a Declare Significant Event directive to ensure that the Executive
will schedule Task B.

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-3

Example 2

To synchronize the transmission of data between Tasks A and B, Task
A specifies Task B and common event flag 42 in a Send Data directive.

Task B has specified flag 42 in a Wait For directive. When Task A’s
Send Data directive has caused the Executive to set flag 42 and to
cause a significant event, Task B proceeds and issues a Receive Data
directive because its Wait For condition has been satisfied.

Example 3

A task contains a Queue 1/O Request directive and an associated Wait
For directive; both directives specify the same local event flag. When
the task queues its I/O request, the Executive clears the local flag. If the
requested 1/O is incomplete when the task issues the Wait For directive,
the Executive blocks the task.

When the requested 1/O is completed, the Executive sets the local flag
and causes a significant event. The task then resumes its execution at
the instruction that follows the Wait For directive. Using the local event
flag in this manner ensures that the task does not manipulate incoming
data until the transfer is complete.

Example 4

A task specifies the same local event flag in a Mark Time and an associ-
ated Wait For directive. When the Mark Time directive is issued, the Ex-
ecutive first clears the local flag and subsequently sets it when the
indicated time interval has elapsed.

If the task issues the Wait For directive before the local flag is set, the
Executive blocks the task, which resumes when the flag is set at the
end of the proper time interval. If the flag has been set first, the directive
is a no-op and the task is not blocked.

Specifying an event flag does not mean that a Wait For directive must be issued.
Event flag testing can be performed at any time. The purpose of a Wait For di-
rective is to stop task execution until an indicated event occurs. Hence, it is not
necessary to issue a Wait For directive immediately following a Queue I/O Re-
quest directive or a Mark Time directive.

If a task issues a Wait For directive that specifies an event flag that is already
set, the blocking condition is immediately satisfied and the Executive immedi-
ately returns control to the task.

Tasks can issue Stop For directives instead of Wait For directives. When this is
done, an event flag condition not satisfied will result in the task’s being stopped
instead of being blocked until the event flag(s) is set. A task that is blocked still
competes for memory resources at its running priority. A task that is stopped
competes for memory resources at priority 0.

5-4 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

The simplest way to test a single event flag is to issue the directive CLEF$ or
SETF$. Both these directives can cause the following return codes:

IS.CLR Flag was previously clear
IS.SET Flag was previously set

For example, if a set common event flag indicates the completion of an opera-
tion, a task can issue the CLEF$ directive both to read the event flag and simul-
taneously to reset it for the next operation. If the event flag was previously clear
(the current operation was incomplete), the flag remains clear.

5.3 SYSTEM TRAPS

System traps are transfers of control (also called software interrupts) that pro-
vide tasks with a means of monitoring and reacting to events. The Executive
initiates system traps when certain events occur. The trap transfers control to
the task associated with the event and gives the task the opportunity to service
the event by entering a user-written routine.

There are two kinds of system traps:

1. Synchronous System Traps (SSTs)—SSTs detect events directly asso-
ciated with the execution of program instructions. They are synchro-
nous because they always recur at the same point in the program when
trap-causing instructions occur. For example, an illegal instruction
causes an SST.

2. Asynchronous System Traps (ASTs)—ASTs detect events that occur
asynchronously to the task’s execution. That is, the task has no direct
control over the precise time that the event—and therefore the trap
—may occur. For example, the completion of an 1/O transfer may cause
an AST to occur.

A task that uses the system trap facility issues system directives that establish
entry points for user-written service routines. Entry points for SSTs are speci-
fied in a single table. AST entry points are set by individual directives for each
kind of AST. When a trap condition occurs, the task automatically enters the
appropriate routine (if its entry point has been specified).

5.3.1 Synchronous System Traps (SSTs)
SSTs can detect the execution of:

O lllegal instructions
0O Instructions with invalid addresses
O Trapinstructions (TRAP, EMT, IOT, BPT)

The user can set up an SST vector table, containing one entry per SST type.
Each entry is the address of an SST routine that services a particular type of
SST (a routine that services illegal instructions, for example). When an SST oc-
curs, the Executive transfers control to the routine for that type of SST. If a cor-
responding routine is not specified in the table, the task is aborted.

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-5

The SST routine enables the user to process the failure and then return to the
interrupted code. Note that if a debugging aid and the user’s task both have an
SST vector enabled for a given condition, the debugging aid vector is refe-
renced first to determine the service routine address.

SST routines must always be reentrant if there is a possibility that an SST can
occur within the SST routine itself. Although the Executive initiates SSTs, the
execution of the related service routines is indistinguishable from the task’s
normal execution. An AST or another SST can therefore interrupt an SST rou-
tine.

5.3.2 SST Service Routines

The Executive initiates SST service routines by pushing the task’s Processor
Status (PS), Program Counter (PC), and trap-specific parameters onto the
task’s stack. After removing the trap-specific parameters, the service routine
returns control to the task by issuing an RTI or RTT instruction. Note that the
task’s general purpose registers RO through R5 and SP are not saved. If the
SST routine makes use of them, it must save and restore them itself.

To the Executive, SST routine execution is indistinguishable from normal task
execution, so that all directive services are available to an SST routine. An SST
routine can remove the interrupted PS and PC from the stack and transfer con-
trol anywhere in the task; the routine does not have to return control to the point
of interruption. Note that any operations performed by the routine (such as the
modification of registers or the DSW, or the setting or clearing of event flags)
remain in effect when the routine eventually returns control to the task.

A trap vector table within the task contains all the service routine entry points.
You can specify the SST vector table by means of the Specify SST Vector Table
For Task directive or the Specify SST Vector For Debugging Aid directive. The
trap vector table has the following format shown in Table 5-1.

Table 5-1
Trap Vector Table

Associated
Word Offset Vector Trap
0 S.COAD 4 Nonexistent memory error
1 S.CSGF 250 Memory protect violation
2 S.CBPT 14 T-bit trap or execution of a BPT instruction
3 S.CIOT 20 Execution of an 10T instruction
4 S.CILI 10 Execution of a reserved instruction
5 S.CEMT 30 Execution of a non-RSX EMT instruction

6 S.CTRP 34 Execution of a TRAP instruction

5-6 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

Depending on the reason for the SST, the task’s stack may also contain addi-
tional information, as follows:

Memory protect violation (complete stack)

SP+10 PS

SP-+06 PC

SP+04 Memory protect status register (SR0)
SP+02 Virtual PC of the faulting instruction (SR2)
SP+00 Instruction backup register (SR1)’

TRAP instruction or EMT other than 377 (and 376 in the case of
unmapped tasks and mapped privileged tasks) (complete stack)

SP+04 PS
SP+02 PC
SP+00 Instruction operand (low-order byte) multiplied by 2,

non-sign-extended

All items except the PS and PC must be removed from the stack before the SST
service routine exits.

5.3.3 Asynchronous System Traps (ASTs)

The primary purpose of an AST is to inform the task that a certain event has
occurred (for example, the completion of an I/O operation). As soon as the task
has serviced the event, it can return to the interrupted code.

Some directives can specify both an event flag and an AST; with these direc-
tives, ASTs can be used as an alternative to event flags or the two can be used
together. Therefore, you can specify the same AST routine for several direc-
tives, each with a different event flag. Thus, when the Executive passes control
to the AST routine, the event flag can determine the action required.

AST service routines must save and restore all registers used. If the registers
are not restored after an AST has occurred, the task’s subsequent execution
may be unpredictable.

Although it cannot distinguish between execution of an SST routine and task
execution, the Executive is aware that a task is executing an AST routine. An
AST routine can be interrupted by an SST routine, but not by another AST rou-
tine.

1. For details of SR0, SR1, and SR2, see the section on the memory management unit in the microcomputers
processor handbook.

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-7

The following notes describe general characteristics and uses of ASTs:

O Ifan AST occurs while the related task is executing, the task is inter-
rupted so that the AST service routine can be executed.

O Ifan AST occurs while another AST is being processed, the Executive
queues the latest AST (First-In-First-Out or FIFO). The task then pro-
cesses the next AST in the queue when the current AST service is com-
plete (unless AST recognition was disabled by the AST service routine).

O If an AST suspends a task, the task remains stopped or suspended
after the AST routine is executed, unless the task is explicitly resumed
or unstopped either by the AST service routine itself, or by another task.

O If an AST occurs while the related task is waiting (or stopped) for an
event flag to be set (a Wait For or Stop For directive), the task continues
to wait after execution of the AST service routine unless the event flag
is set upon AST exit.

O If an AST occurs for a checkpointed task, the Executive queues the AST
(FIFO), brings the task into memory, and then activates the AST.

O The Executive allocates the necessary dynamic memory when an AST
is specified. Thus, no AST condition lacks dynamic memory for data
storage when it actually occurs. The AST reuses the storage allocated
for 1/O and Mark Time directives. Therefore, no additional dynamic stor-
age is required.

O Two directives, Disable AST Recognition and Enable AST Recognition,
allow a program to queue ASTs for subsequent execution during critical
sections of code. (A critical section might be one that accesses data
bases also accessed by AST service routines, for example.) If ASTs oc-
cur while AST recognition is disabled, they are queued (FIFO) and then
processed when AST recognition is enabled.

5.3.4 AST Service Routines

When an AST occurs, the Executive pushes the task’s Wait For mask word, the
DSW, the PS, and the PC onto the task’s stack. This information saves the state
of the task so that the AST service routine has access to all the available Execu-
tive services. The preserved Wait For mask word allows the AST routines to
establish the conditions necessary to unblock the waiting task. Depending on
the reason for the AST, the stack may also contain additional parameters. Note
that the task’s general purpose registers RO through R5 and SP are not saved.
If the AST service routine makes use of them, it must save and restore them
itself.

The Wait For mask word comes from the offset T.EFLM in the task’s Task Con-
trol Block (TCB). The value of the Wait For mask word and the event flag range
to which it corresponds depend on the last Wait For or Stop For directive issued
by the task. For example, if the last such directive issued was Wait For Single
Event Flag 42, the mask word has a value of 10005 and the event flag range is
from 33 through 48. Bit 0 of the mask word represents flag 33, bit 1 represents
flag 34, and so on.

5-8 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

The Wait For mask word is meaningless if the task has not issued any type of
Wait For or Stop For directive.

Your code should not attempt to modify the Wait For mask while in the AST
routine. For example, putting a zero in the Wait For mask results in an unclea-
rable Wait For state.

After processing an AST, the task must remove the trap-dependent parameters
from its stack; that is, everything from the top of the stack down to, but not in-
cluding, the task’s Directive Status Word. It must then issue an AST Service Exit
directive with the stack set as indicated in the description of that directive (see
Section 9.1.4). When the AST service routine exits, it returns control to one of
two places: another AST or the original task.

There are 8 variations on the format of the task’s stack, as follows:

1. If atask needs to be notified when a Floating Point Processor exception
trap occurs, it issues a Specify Floating Point Processor Exception AST
directive. If the task specifies this directive, an AST occurs when a
Floating Point Processor exception trap occurs. The stack contains the
following values:

SP+12 Event flag mask word
SP+10 PS of task prior to AST
SP+06 PC of task prior tc AST
SP+04 Task’'s DSW

SP+02 Floating exception code
SP+00 Floating exception address

Note: Refer to the Microcomputers and Memories handbook for a description
of the FPU exception code values.

2. If atask needs to be notified when it receives either a message or a
reference to a common area, it issues either a Specify Receive Data
AST or a Specify Receive By Reference AST directive. An AST occurs
when the message or common reference is sent to the task. The stack
contains the following values:

SP+06 Event flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+00 Task’'s DSW

3. When atask queues an 1/O request and specifies an appropriate AST
service entry point, an AST occurs upon completion of the I/O request.
The task’s stack contains the following values:

SP+10 Event flag mask word
SP+06 PS of task prior to AST
SP+04 PC of task prior to AST

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-9

SP+02
SP+00

Task’s DSW

Address of 1/O status block for /O request (or
zero if none was specified)

4. When a task issues a Mark Time directive and specifies an appropriate
AST service entry point, an AST occurs when the indicated time interval
has elapsed. The task’s stack contains the following values:

SP+10
SP+06
SP+04
SP+02
SP+00

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task’'s DSW

Event flag number (or zero if none was speci-
fied)

5. An offspring task, connected by a Spawn, Connect, or Send, Request
And Connect directive, returns status to the connected (parent) task(s)
upon exiting by the Exit AST. The parent task’s stack contains the fol-

lowing values:
SP+10
SP+06
SP+04
SP+02
SP+00

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task’s DSW

Address of exit status block

6. If adirective aborts a task when the Specify Requested Exit AST
(SREA$) is in effect, the abort AST is entered. The task’s stack contains

the following values:
SP+06
SP+04
SP+02
SP+00

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task’s DSW

7. If adirective aborts a task when the Extended Specify Requested Exit
AST (SREX$) is in effect, the abort AST is entered. The task’s stack
contains the following values:

SP+12
SP+10
SP+06
SP+04
SP+02
SP+00

Event flag mask word

PS of task prior to AST

PC of task prior to AST

DSW of task prior to AST

Trap dependent parameter

Number of bytes to add to SP to clean stack

5-10 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

8. Ifataskissues a QIO IO.ATA function to the terminal driver, unsolicited
terminal input will cause entry into the AST service routine. Upon entry
into the routine, the task’s stack contains the following values:

SP+10 Event flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task’s DSW

SP+00 Unsolicited character in low byte; parameter 2

in the high byte

5.4 STOP-BIT SYNCHRONIZATION

Stop-bit synchronization allows tasks to be checkpointed during terminal (buf-
fered) 1/O or while waiting for an event to occur (for example, an event flag to be
set or an Unstop directive to be issued). You can control synchronization be-
tween tasks by the setting of the task’s Task Control Block (TCB) stop bit.

When the task’s stop bit is set, the task is blocked from further execution, its
priority for memory allocation effectively drops to zero, and it may be check-
pointed by any other task in the system, regardless of priority. If checkpointed,
the task remains out of memory until its stop bit is cleared, at which time the
task becomes unstopped, its normal priority for memory allocation becomes re-
stored, and it is considered for memory allocation based on the restored prior-

ity.

If the stopped task receives an AST, the task becomes unstopped until it exits
the AST routine. Memory allocation for the task during the AST routine is based
on the task’s priority before the stopped state. Note that a task cannot be
stopped when an AST is in progress, but the AST routine can issue either an
Unstop or Set Event Flag directive to reference the task. This causes the task to
remain unstopped after it issues the AST Service Exit directive.

There are three ways in which a nonprivileged task can be stopped and three
corresponding ways it can become unstopped. Only one method for stopping a
task can be applied at a time.

1. Ataskis stopped whenever itis in a Wait For state and has outstanding
buffered /0. A task is unstopped when the buffered 1/O is completed or
when the Wait For condition is satisfied.

2. You can stop a task for event flag by issuing the Stop For Single Event
Flag directive or the Stop For Logical OR Of Event Flags directive. In
this case, the task can only be unstopped by setting the specified event
flag.

3. You can stop a task by issuing the Stop or the Receive Data Or Stop
directive. In this case, the task can only be unstopped by issuing the
Unstop directive.

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-11

You cannot stop a task when an AST is in progress (AST state). Any directives
that can cause a task to become stopped are illegal at the AST state.

When a task is stopped for any reason at the task state, the task can still receive
ASTs. If the task is checkpointed, it becomes eligible for entrance back into
memory when an AST is queued for it. The task retains its normal priority in
memory while it is at the AST state or has ASTs queued. Once the task has
exited the AST routine with no other ASTs queued, the task is again stopped
and effectively has zero priority for memory allocation.

You can use five directives for stop-bit synchronization:

1.

Stop—This directive stops the issuing task and cannot be issued at the
AST state.

Receive Data Or Stop and Variable Receive Data Or Stop—These di-
rectives attempt to dequeue send data packets from the specified task
(or any task if none is specified). If there is no such packet to be de-
queued, the issuing task is stopped. These directives cannot be issued
at the AST state.

Stop For Logical OR Of Event Flags —This directive stops the issuing
task until the specified flags in the specified group of local event flags

become set. If any of the specified event flags are already set, the task
does not become stopped. This directive cannot be issued at the AST

state.

Stop For Single Event Flag—This directive stops the issuing task until
the indicated local event flag becomes set. If the specified event flag is
already set, the task does not become stopped. This directive cannot be
issued at the AST state.

Unstop—This directive unstops a task that has become stopped by the
Stop or Receive Data Or Stop directive.

CHAPTER 6
PARENT/OFFSPRING TASKING

Parent/offspring tasking allows you to establish and control the relationships
between a governing (parent) task and any subordinate (offspring) tasks. A par-
ent task starts or connects to another an offspring task.

One application for the parent-offspring task relationship is a multitask applica-
tion. In such an application, the main task controlling the application requires
other tasks to perform subfunctions for the application. With parent/offspring
tasking, you can set up the necessary relationships between the parent task
and its offspring to control processing.

Starting (or activating) offspring tasks is called “‘spawning” Spawning also in-
cludes the ability to establish task communications; a parent task can be noti-
fied when an offspring task exits and can receive status information from the
offspring task.

Status returned from an offspring task to a parent task indicates successful
completion of the offspring task or identifies specific error conditions.

6.1 DIRECTIVE SUMMARY

This section summarizes the directives for parent/offspring tasking and inter-
task communication.

6.1.1 Parent/Offspring Tasking Directives
There are two classes of parent/offspring tasking directives:

1. Spawning—Directives that create a connection between tasks

2. Chaining—Directives that transfer a connection

6-1

6-2 PARENT/OFFSPRING TASKING

Three directives can connect a parent task to an offspring task:

1.

Spawn—This directive requests activation of, and connects to, a spe-
cific offspring task.

An offspring task spawned by a parent task can return current status
information or exit status information to a connected parent task.

Spawn directive options include:
Queuing a command line for the offspring task
Establishing the offspring task’s TI: (terminal)
For privileged tasks, designating any terminal as the offspring TI:

Connect—This directive establishes task communications for synchro-
nizing with the exit status or emit status issued by a task that is already
active.

Send, Request, and Connect—This directive sends data to the speci-
fied task, requests activation of the task if it is not already active, and
connects to the task.

Two directives support task chaining:

1.

Request and Pass Offspring Information—This directive allows an
offspring task to pass its parent connection to another task, thus mak-
ing the new task the offspring of the original parent. The RPOI$ direc-
tive offers all the options of the Spawn directive.

Send Data, Request and Pass Offspring Control Block—This directive
sends a data packet for a specified task, passes its parent connection
to that task, and requests the task if it is not already active.

A parent task can use the Spawn and Connect directives to connect to more
than one offspring task. In addition, the parent task can use the directives in any
combination to multiply connect to offspring tasks.

An offspring task can be connected to multiple parent tasks. An appropriate
data structure, the Offspring Control Block (OCB), is produced (in addition to
those already present) each time a parent task connects to the offspring task.

6.1.2 Task Communication Directives

Two directives in an offspring task return status to connected parent tasks:

1.

Exit With Status—This directive in an offspring task causes the offspr-
ing task to exit, passing status words to all connected parent tasks con-
nected by a Spawn, Connect, or Send, Request, and Connect directive.

Emit Status—This directive causes the offspring task to pass status
words to either the specified connected task or all connected parent
tasks if no task is explicitly specified.

When status is passed to tasks in this manner, the parent task no longer re-
mains connected.

PARENT/OFFSPRING TASKING 6-3

Standard offspring task status values that can be returned to parent tasks are
listed as follows:

EX$WAR 0 Warning Task succeeded, but irregularities are possible
EX$SUC 1 Success Results should be as expected
EX$ERR 2 Error Results are unlikely to be as expected

EX$SEV 4 Severe Error One or more fatal errors detected, or task
aborted

These symbols are defined in DIRSYM.MAC. They become defined locally
when the EXST$ macro is invoked. However, the exit status may be any 16-bit
value.

6.2 CONNECTING AND PASSING STATUS

Offspring task exit status can be returned to connected (parent) task by issuing
the Exit With Status directive. Offspring tasks can return status to one or more
connected parent tasks at any time by issuing the Emit Status Directive. Note
that only connected parent-offspring tasks can pass status.

The means by which a task connects to another task are indistinguishable once
the connect process is complete. For example, Task A can become connected
to Task B in one of the following ways:

O Task A spawned Task B when Task B was inactive.
O Task A connected to Task B when Task B was active.

O Task Aissued a Send, Request, And Connect directive to Task B when
Task B was either active or inactive.

O Task A either spawned or connected to Task C, which then chained to
Task B by means of either an RPOI$ directive or an SDRP$ directive.

Regardless of the way in which Task A became connected to Task B, Task B
can pass status information back to Task A, set the event flag specified by Task
A, or cause the AST specified by Task A to occur in any of the following ways.
Note that once offspring task status is returned to one or more parent tasks, the
parent tasks become disconnected.

O Task Bissues a successful exit directive. Task A receives a status of
EX$SUC.

0 Task Bis aborted. Task A receives a severe error status of EX$SEV.

O Task Bissues an Exit With Status directive and return status to Task A
upon completion of Task B.

O Task Bissues an Emit Status directive specifying Task A. If Task A is
multiply connected to Task B, the OCBs that contain information about
these multiple connections are stored in a FIFO queue. The first OCB is
used to determine which event flag, AST address, and exit status block
to use.

6-4 PARENT/OFFSPRING TASKING

O Task Bissues an Emit Status directive to all connected tasks (no task
name specified).

If a task specifies another task in a Spawn, Connect, or Send, Request, and
Connect directive and then exits, and if status is not yet returned, the OCB re-
presenting this connect remains queued. However, the OCB is marked to indi-
cate that the parent task has exited. When this OCB is subsequently dequeued
by an Emit Status directive, or any type of exit, no action is taken since the par-
ent task has exited. This procedure is followed to help a multiply connected task
to remain synchronized when parent tasks unexpectedly exit.

Examples of using directives for intertask synchronization are provided (macro
call form for directives are shown) in Table 6-1. Task A is the parent task and
Task B is the offspring task.

Table 6-1
Directive Examples for Intertask Synchronization

Task A Task B Action
SPWN$ EXST$ Task A spawns Task B. Upon Task B completion, Task B returns
status to Task A.
CNCT$ EXST$ Task A connects to active Task B. Upon Task B completion, Task
B returns status to Task A.
SDRC$ RCVXS$, Task A sends data to Task B, requests Task B if it is not active,
EMST$ and connects to Task B. Task B receives the data, does some pro-

cessing based on the data, returns status to Task A (possibly set-
ting an event flag or declaring an AST), and becomes
disconnected from Task A.

$SDRCS$, RCSTS, Task A sends data to Task B, requests Task B if it is not active,

USTP EMST$ connects to Task B, and unstops Task B (if Task B previously
could not dequeue the data packet). Task B receives the data,
does some processing based on the data, and returns status to
Task A (possibly setting an event flag or declaring an AST).

SDATS, RCST$ Task A queues a data packet for Task B and unstops Task B;

USTP$ Task B receives the data.

SPWN$ RPOI$ Task A spawns Task B. Task B chains to Task C by issuing an
SDRP$ RPOI$ or an SDRPS$ directive. Task A is now Task C’s parent.

Task A is no longer connected to Task B.

CHAPTER 7
MEMORY MANAGEMENT DIRECTIVES

Within the framework of memory management directives, this chapter dis-
cusses the concepts of extended logical address space, regions, and virtual ad-
dress windows.

7.1 ADDRESSING CAPABILITY OF A SYSTEM TASK

Without overlays, a task cannot explicitly refer to a location with an address
greater than 177777 (32K words). The 16-bit word size imposes this restriction
on a task’s addressing capability. Overlaying a task means that it must first be
divided into segments: a single root segment, which is always in memory; and
any number of overlay segments, which can be loaded into memory as re-
quired. Unless a task uses the memory management directives described in this
chapter, the combined size of the task segments concurrently in memory can-
not exceed 32K words.

When resident task segments cannot exceed a total of 32K words, a task re-
quiring large amounts of data must access that data on disk. Data is disk-based
not only because of limited memory space but also because transmission of
large amounts of data between tasks is only practical by means of disk. An
overlaid task, or a task that needs to access or transfer large amounts of data,
incurs a considerable amount of transfer activity over that caused by the task’s
function.

Task execution could obviously be faster if all or a greater portion of the task
were resident in memory at run time. The system includes a group of memory
management directives that provide the task with this capability. The directives
overcome the 32K-word addressing restriction by allowing the task to dynami-
cally change the physical locations that are referred to by a given range of ad-
dresses. With these directives, a task can increase its execution speed by
reducing its disk 1/O requirements at the expense of increased physical memory
requirements.

7-1

7-2 MEMORY MANAGEMENT DIRECTIVES

7.1.1 Address Mapping

In a mapped system, you do not need to know where a task resides in physical
memory. Mapping, the process of associating task addresses with available
physical memory, is transparent to the user and is accomplished by memory
management hardware. When a task references a location (virtual address), the
memory management hardware determines the physical address in memory.
The memory management directives use the hardware to perform address
mapping at a level that you can see and control.

7.1.2 Virtual and Logical Address Space

The three concepts defined here (physical address space, logical address
space, and virtual address space) provide a basis for understanding the func-
tions performed by the memory management directives:

O Physical Address Space—A task’s physical address space is the entire
set of physical memory addresses.

O Logical Address Space—A task’s logical address space is the total
amount of physical memory to which the task has access rights. This
includes various areas called regions (see Section 7.3). Each region oc-
cupies a contiguous block of memory.

O Virtual Address Space—A task’s virtual address space corresponds to
the 32K-word address range imposed by the 16-bit word length. The
task can divide its virtual address space into segments called virtual ad-
dress windows (see Section 7.2).

If the capabilities supplied by the memory management directives were not
available, a task’s virtual address space and logical address space would di-
rectly correspond; a single virtual address would always point to the same logi-
cal location. Both types of address space would have a maximum size of 32K
words. However, the ability of the memory management directives to assign or
map a range of virtual addresses (a window) to different logical areas (regions)
enables you to extend a task’s logical address space beyond 32K words.

7.2 VIRTUAL ADDRESS WINDOWS

To manipulate the mapping of virtual addresses to various logical areas, you
must first divide a task’s 32K of virtual address space into segments. These
segments are called virtual address windows. Each window encompasses a
contiguous range of virtual addresses, which must begin on a 4K-word bound-
ary (that is, the first address must be a multiple of 4K). The number of windows
defined by a task can vary from 1 through 23. For all tasks, window 0 is not
available to you. The size of each window can range from a minimum of 32
words through a maximum of 32K words.

MEMORY MANAGEMENT DIRECTIVES 7-3

A task that includes directives to manipulate address windows dynamically
must have window blocks set up in its task header. The Executive uses window
blocks to identify and describe each currently existing window. You can specify
the required number of additional window blocks—that is, the number of win-
dows created by the memory management directives—to be set up by the Task
Builder. (See the RSX-11M/M-PLUS Task Builder Reference Manual) The
number of blocks that you specify should equal the maximum number of win-
dows that will exist at any one time when the task is running.

A window'’s identification is a number from 0 through 15,4 for user windows; it is
an index to the window’s corresponding window block. The address window
identified by 0 is the window that maps the task’s header and root segment. The
Task Builder automatically creates window 0, which is mapped by the Executive
and cannot be specified in any directive.

Figure 7-1 shows the virtual address space of a task divided into four address
windows (windows 0, 1, 2, and 3). The shaded areas indicate portions of the
address space that are not included in any window (9K through 12K and 23K
through 24K). Addresses that fall within the ranges corresponding to the
shaded areas cannot be used.

When a task uses memory management directives, the Executive views the re-
lationship between the task’s virtual and logical address space in terms of win-
dows and regions. Unless a virtual address is part of an existing address
window, reference to that address will cause an illegal address trap to occur.
Similarly, a window can be mapped only to an area that is all or part of an exist-
ing region within the task’s logical address space (see Section 7.3).

Once a task has defined the necessary windows and regions, it can issue mem-
ory management directives to perform operations such as the following:

O Map a window to all or part of a region

0 Unmap a window from one region to map it to another region

O Unmap a window from one part of a region in order to map it to another
part of the same region

7.3 REGIONS

A region is a portion of physical memory to which a task has (or potentially may
have) access. The current window-to-region mapping context determines that
part of a task’s logical address space that the task can access at one time. A
task’s logical address space can consist of various types of regions:

[0 Task region—A contiguous block of memory in which the task runs

O Static common region—An area, such as a global common area.

0 Dynamic region—A region created dynamically at run time by issuing
the memory management directives

O Shareable region—A read-only portion of multiuser tasks that are in
shareable regions

Note: Static common regions are dynamically loaded whenever needed.

7-4 MEMORY MANAGEMENT DIRECTIVES

VIRTUAL
ADDRESS
SPACE

32K

WINDOW 3 3 (8K) 28K

MIITOOING >«

~20K

WINDOW 2 2 (11K)
~16K

i

- 8K
WINDOW 1 1 (5K)

4K

WINDOW 0 0 (4K)

0K

= virtual address
window

ﬂ = unused virtual
address space ZK-307-81

Figure 7-1
Virtual Address Windows

Tasks refer to a region by means of a region ID returned to the task by the Ex-
ecutive. A region ID from 0 through 23 refers to a task’s static attachment. Re-
gion ID 0 always refers to a task’s task region. Region ID 1 always refers to the
read-only (pure code) portion of multiuser tasks. All other region IDs are actu-
ally addresses of the attachment descriptor maintained by the Executive in the
system dynamic storage area.

Figure 7-2 shows a sample collection of regions that could make up a task’s
logical address space at some given time. The header and root segment are
always part of the task region. Since a region occupies a contiguous area of
memory, each region is shown as a separate block.

Figure 7-3 illustrates a possible mapping relationship between the windows
and regions shown in Figures 7-1 and 7-2.

MEMORY MANAGEMENT DIRECTIVES 7-5

LOGICAL
ADDRESS
SPACE

STATIC COMMON
REGION

STATIC COMMON
REGION

TASK’'S HEADER

ZK-308-81

Figure 7-2
Region Definition Block

7-6 MEMORY MANAGEMENT DIRECTIVES

——>5K{

8K
VIRTUAL
ADDRESS
SPACE
32K
WINDOW 3 3 (8K) 28K
NODOOOOI2<
20K
WINDOW 2 2 (11K)
16K
> 11K
MIHMM_QK
F8K
WINDOW 1 1 (5K)
————————— FAK
WINDOW & A (4K) = 4K {
}IK
Legend:

D = virtual address

window
HIHHI]] = unused virtual
address space

= pointer to area
—_—

mapped by a window

Figure 7-3
Mapping Windows to Regions

LOGICAL
ADDRESS
SPACE

DYNAMIC REGION

STATIC COMMO
REGION

-

STATIC COMMON
REGION

7//
7

% = ped areas of
% Inc;:ipcal a;dress space

E:I = unmapped portions of
logical address space

ZK-309-81

MEMORY MANAGEMENT DIRECTIVES 7-7

7.3.1 Shared Regions

Address mapping not only extends a task’s logical address space beyond 32K
words, it also allows the space to extend to regions that have not been linked to
the task at task-build time. One result-is an increased potential for task interac-
tion by means of shared regions. For example, a task can create a dynamic re-
gion to accommodate large amounts of data. Any number of tasks can then
access that data by mapping to the region. Another result is the ability of tasks
to use a greater number of common routines. Thus, tasks can map to required
routines at run time, rather than linking to them at task-build time.

7.3.2 Attaching to Regions

Attaching is the process by which a region becomes part of a task’s logical ad-
dress space. A task can map only a region that is part of the task’s logical ad-
dress space. There are three ways to attach a task to a region:

1. All tasks are automatically attached to regions that are linked to them at
task-build time.

2. Atask canissue a directive to attach itself to a named static common
region or a named dynamic region.

3. Atask can request the Executive to attach another specified task to any
region within the logical address space of the requesting task.

Attaching identifies a task as a user of a region and prevents the system from
deleting a region until all user tasks have been detached from it. (It should be
noted that fixed tasks do not automatically become detached from regions upon
exiting.)

Note: Each Send By Reference directive issued by a sending task creates a
new attachment descriptor for the receiving task. However, multiple Send By
Reference directives referencing the same region require only one attachment
descriptor. After the receiving task issues a series of Receive By Reference di-
rectives and receives all pending data requests, the task should detach the re-
gion to return the attachment descriptors to the pool.

You can avoid multiple attachment descriptors when sending and receiving data
by reference. Setting the WS.NAT bit in the Window Definition Block (see Sec-
tion 7.5.2) causes the Executive to create a new attachment descriptor for that
region only if necessary (that is, if the task is currently not attached to the re-
gion).

7.3.3 Region Protection

A task cannot indiscriminately attach to any region. Each region has a protec-
tion mask to prevent unauthorized access. The mask indicates the types of ac-
cess (read, write, extend, delete) allowed for each category of user (system,
owner, group, world). The Executive checks that the requesting task’s User
Identification Code (UIC) allows it to make the attempted access. The attempt
fails if the protection mask denies that task the access it wants.

7-8 MEMORY MANAGEMENT DIRECTIVES

To determine when tasks may add to their logical address space by attaching
regions, the following points must be considered (note that all considerations
presume there is no protection violation):

00 Any task can attach to a named dynamic region, provided the task
knows the name. In the case of an unnamed dynamic region, a task can
attach to the region only after receiving a Send By Reference directive
from the task that created the region.

O Any task canissue a Send By Reference directive to attach another
task to any region. The task region itself may not be one of the regions
involved. The reference sent includes the access rights with which the
receiving task attaches to the region. The sending task can only grant
access rights that it has itself.

0 Any task can map to a named static common region.
7.4 DIRECTIVE SUMMARY

This section briefly describes the function of each memory management direc-
tive. Chapter 9 defines all the directives in detail.

7.4.1 Create Region Directive (CRRG$)

The Create Region directive creates a dynamic region in a designated system-
controlled partition and optionally attaches the issuing task to it.

7.4.2 Attach Region Directive (ATRGS$)

The Attach Region directive attaches the issuing task to a static common region
or to a named dynamic region.

7.4.3 Detach Region Directive (DTRG$)

The Detach Region directive detaches the issuing task from a specified region.
Any of the task’s address windows that are mapped to the region are automati-
cally unmapped.

7.4.4 Create Address Window Directive (CRAWS)

The Create Address Window directive creates an address window, establishes
its virtual address base and size, and optionally maps the window. Any other
windows that overlap with the range of addresses for the new window are first
unmapped and then eliminated.

7.4.5 Eliminate Address Window Directive (ELAWS$)

The Eliminate Address Window directive eliminates an existing address win-
dow, unmapping it first if necessary.

MEMORY MANAGEMENT DIRECTIVES 7-9

7.4.6 Map Address Window Directive (MAP$)

The Map Address Window directive maps an existing window to an attached
region. The mapping begins at a specified offset from the start of the region and
goes to a specified length. If the window is already mapped elsewhere, the Ex-
ecutive unmaps it before carrying out the map assignment described in the di-
rective.

7.4.7 Unmap Address Window Directive (UMAP$)

The Unmap Address Window directive unmaps a specified window. After the
window is unmapped, its virtual address range cannot be referenced until the
task issues another mapping directive.

7.4.8 Send By Reference Directive (SREF$)

The Send By Reference directive inserts a packet containing a reference to a
region into the receive queue of a specified task. The receiver task is automati-
cally attached to the region referred to.

7.4.9 Receive By Reference Directive (RREF$)

The Receive By Reference directive requests the Executive first to select the
next packet from the receive-by-reference queue of the issuing task, and then
to make the information in the packet available to the task. Optionally the direc-
tive can map a window to the referenced region or cause the task to exit if the
queue does not contain a receive-by-reference packet.

7.4.10 Get Mapping Context Directive (GMCX$)

The Get Mapping Context directive causes the Executive to return to the issuing
task a description of the current window-to-region mapping assignments. The
description is in a form that enables the user to restore the mapping context
through a series of Create Address Window directives.

7.4.11 Get Region Parameters Directive (GREGS$)

The Get Region Parameters directive causes the Executive to supply the
issuing task with information about either its task region (if no region ID is given)
or an explicitly specified region.

7.5 USER DATA STRUCTURES

Most memory management directives are individually capable of performing a
number of separate actions. For example, a single Create Address Window di-
rective can unmap and eliminate as many as seven conflicting address win-
dows, create a new window, and map the new window to a specified region.

7-10 MEMORY MANAGEMENT DIRECTIVES

The complexity of the directives requires a special means of communication be-
tween the user task and the Executive. The communication is achieved through
data structures that:

O ‘Allow the task to specify which directive options it wants the Executive
to perform

O Permit the Executive to provide the task with details about the outcome
of requested actions

There are two types of user data structures that correspond to the two key ele-
ments (regions and address windows) manipulated by the directives. The struc-
tures are called:

The Region Definition Block (RDB)
The Window Definition Block (WDB)

Every memory management directive, except Get Region Parameters, uses one
of these structures as its communications area between the task and the Ex-
ecutive. Each directive issued includes in the DPB a pointer to the appropriate
definition block. The task assigns symbolic address offset values that point to
locations within an RDB or a WDB. The task can change the contents of these
locations to define or modify the directive operation. After the Executive has
carried out the specified operation, it assigns values to various locations within
the block to describe the actions taken and to provide the task with information
useful for subsequent operations.

7.5.1 Region Definition Block (RDB)

Figure 7-4 illustrates the format of an RDB. In addition to the symbolic offsets
defined in the diagram, the region status word R.GSTS contains defined bits
that may be set or cleared by the Executive or the task. Table 7-1 shows the
bits and their definitions.

These symbols are defined by the RDBDF$ macro, as described in Section
7.5.1.1.

The three memory management directives that require a pointer to an RDB are:

Create Region (CRRGS$)
Attach Region (ATRGS)
Detach Region (DTRG$)

When a task issues one of these directives, the Executive clears the four high-
order bits in the region status word of the appropriate RDB. After completing
the directive operation, the Executive sets the RS.CRR or RS.UNM bit to indi-
cate to the task what actions were taken. The Executive never modifies the
other bits.

Array
Element

irdb (1)

irdb (2)

irdb (3)

irdb (4)

irdb (5)

irdb (6)

irdb (7)

irdb (8)

Figure 7-4

Symbolic
Offset

R.GID

R.GSIZ

R.GNAM

R.GPAR

R.GSTS

R.GPRO

Region Definition Block

Table 7-1

Bits of the Region Status Word

MEMORY MANAGEMENT DIRECTIVES 7-11

Byte
Block Format Offset
0
REGION ID
2
SIZE OF REGION (32W BLOCKS)
4
NAME OF REGION (RAD50) — ©
10
REGION'S MAIN PARTITION NAME (RADS0) —_1 12
14
REGION STATUS WORD
16
REGION PROTECTION WORD
2K-310-81

Bits

Definition

RS.CRR=100000

RS.UNM=40000

RS.MDL=200

RS.NDL=100

RS.ATT=40

RS.NEX=20

RS.DEL=10

RS.EXT=4

RS.WRT=2

RS.RED=1

Region was successfully created.

At least one window was unmapped on a detach.

Mark region for deletion on last detach. When a region is created
by a CRRGS$ directive, the region is normally marked for deletion
on last detach. However, if RS.NDL is set when the CRRG$ direc-
tive is executed, the region is not marked for deletion. Subsequent
execution of a DTRG$ directive with RS.MDL set marks the region
for deletion.

Created region is not to be marked for deletion on last detach.
Attach to created region.

Created region is not extendable.

Delete access desired on attach.

Extend access desired on attach.

Write access desired on attach.

Read access desired on attach.

7-12 MEMORY MANAGEMENT DIRECTIVES

7.5.1.1 Using Macros to Generate an RDB —The system provides two
macros, RDBDF$ and RDBBKS, to generate and define an RDB. RDBDF$ de-
fines the offsets and status word bits for a region definition block; RDBBK$
then creates the actual region definition block.

The format of RDBDFS$ is:
RDBDF$

Since RDBBK$ automatically invokes RDBDF$, you need specify only RDBBK$
in a module that creates an RDB. The format of the call to RDBBKS is:

RDBBK$ siz,nam,par,sts,pro

siz The region size in 32-word blocks.

nam The region name (RAD50).

par The name of the partition in which to create the region (RAD50).
sts Bit definitions of the region status word.

pro The region’s default protection word.

The sts argument sets specified bits in the status word R.GSTS. The argument
normally has the following format:

<bit1[! ... Ibitn]>
bit A defined bit to be set.
The argument pro is an octal number. The 16-bit binary equivalent specifies the

region’s default protection as follows:

BITS 15 12 11 8 7 43 0
WORLD | GROUP | OWNER | SYSTEM

Each of these four categories has four bits, with each bit representing a type of
access:

BITS 3 2 1 0

DELETE | EXTEND | WRITE | READ

MEMORY MANAGEMENT DIRECTIVES 7-13

A bit value of 0 indicates that the specified type of access is to be allowed; a bit
value of 1 indicates that the specified type of access is to be denied.

The macro call

RDBBK$ '
102.,ALPHA,GEN,<RS.NDL!IRS.ATTIRS.WRT!RS.RED>,167000

expands to:

.WORD 0

.WORD 102.
.RADS50 /ALPHA/
.RADS0 /GEN/

.WORD 0
.WORD RS.NDL!RS.ATT!RS.WRT!RS.RED
.WORD 167000

If a Create Region directive pointed to the RDB defined by this expanded macro
call, the Executive would create a region 1027 32-word blocks in length, named
ALPHA, in a partition named GEN. The defined bits specified in the sts argu-
ment tell the Executive:

O Notto mark the region for deletion on the last detach
O To attach region ALPHA to the task issuing the directive macro call
0 Togrant read and write access to the attached task
The protection word specified as 167000g assigns a default protection mask to

the region. The octal number, which has a binary equivalent of 1110 1110 0000
0000, grants access as follows:

System (1110) All access
Owner (1110) All access
Group (0000) Read access only
World (0000) Read access only

If the Create Region directive is successful, the Executive will first return to the
issuing task a region ID value in the location accessed by symbolic offset
R.GID, and then will set the defined bit RS.CRR in the status word R.GSTS.

7.5.1.2 Using Fortran to Generate an RDB —When programming in Fortran,
you must create an 8-word, single-precision integer array as the RDB to be sup-
plied in the subroutine calls:

CALL ATRG (Attach Region directive)
CALL CRRG (Create Region directive)
CALLDTRG (Detach Region directive)

(See the PDP-11 FORTRAN-77 Language Reference Manual for information on
the creation of arrays.)

7-14 MEMORY MANAGEMENT DIRECTIVES

Table 7-2 shows the RDB array format.

Table 7-2
RDB Array Format

Word Comment

irdb(1) Region ID

irdb(2) Size of the region in 32-word blocks

irdb(3), irdb(4) Region name (2 words in Radix-50 format)

irdb(5), irdb(6) Name of the partition that contains the region (2 words in Radix-50 format)
irdb(7) Region status word

irdb(8) Region protection code

You can modify the region status word irdb(7) by setting or clearing the appro-
priate bits. See the list in Section 7.5.1 that describes the defined bits. The bit
values are listed beside the symbolic offsets.

Note that Hollerith text strings can be converted to Radix-50 values by calls to
The Fortran library routine IRAD50 (see the appropriate Fortran user’s guide).

Array Symbolic Byte
Element Offset Block Format Offset

0

W.NID

iwdb (1) W.NAPR BASE APR WINDOW 1D

2
iwdb (2) W.NBAS VIRTUAL BASE ADDRESS (BYTES)

4
iwdb (3) WINSIZ WINDOW SIZE (32W BLOCKS)

6
iwdb (4) W.NRID REGION ID

10
iwdb (5) W.NOFF OFFSET IN REGION (32W BLOCKS)

12
iwdb (6) W.NLEN LENGTH TO MAP (32W BLOCKS)

14
iwdb (7) W.NSTS WINDOW STATUS WORD

16
iwdb (8) W.NSRB SEND/RECEIVE BUFFER ADDRESS (BYTES)

7K-311-81
Figure 7-5

Window Definition Block

MEMORY MANAGEMENT DIRECTIVES 7-15

7.5.2 Window Definition Block (WDB)

Figure 7-5 illustrates the format of a WDB. The block consists of a number of
symbolic address offsets to specific WDB locations. One of the locations is the
window status word W.NSTS, which contains defined bits that can be set or
cleared by the Executive or the task. The bits and their definitions are shown in

Table 7-3.

Table 7-3
WDB Format

Bit

Definition

WS.CRW=100000

WS.UNM=40000

WS.ELW=20000

WS.RRF=10000

WS.NBP=4000

WS.BPS=4000

WS.RES=2000

WS.NAT=1000

WS.64B=400

WS.MAP=200

WS.RCX=100

WS.DEL=10

WS.EXT=4

WS.WRT=2

WS.RED=1

Address window was successfully created.

At least one window was unmapped by a Create Address Window, Map
Address Window, or Unmap Address Window directive.

At least one window was eliminated in a Create Address Window or
Eliminate Address Window directive.

Reference was successfully received.

Do not bypass cache for CRAWS directives.
Always bypass cache for MAP$ directives.
Map only if resident.

Create attachment descriptor only if necessary (for Send By Reference
directives).

Defines the task’s permitted alignment boundaries—O0 for 256-word
(512-byte) alignment, 1 for 32-word (64-byte) alignment.

Window is to be mapped in a Create Address Window or Receive By Ref-
erence directive.

Exit if no references to receive.

Send with delete access.

Send with extend access.

Send with write access or map with write access.
Send with read access.

These symbols are defined by the WDBDF$ macro, as described in Sec-
tion7.5.2.1.

7-16 MEMORY MANAGEMENT DIRECTIVES

The following directives require a pointer to a WDB:

Create Address Window (CRAWS$)
Eliminate Address Window (ELAW$)
Map Address Window (MAP$)
Unmap Address Window (UMAP$)
Send By Reference (SREF$)
Receive By Reference (RREF$)

When a task issues one of these directives, the Executive clears the four high-
order bits in the window status word of the appropriate WDB. After completing
the directive operation, the Executive can then set any of these bits to tell the
task what actions were taken. The Executive never modifies the other bits.

7.5.2.1 Using Macros to Generate a WDB —The system provides two
macros, WDBDF$ and WDBBKS, to generate and define a WDB. WDBDF$ de-
fines the offsets and status word bits for a window definition block; WDBBK$
then creates the actual window definition block.

The format of WDBDF$ is:
WDBDF$

Since WDBBK$ automatically invokes WDBDF$, you need specify only
WDBBKS$ in a module that generates a WDB. The format of the call to WDBBK$
is:

WDBBKS$ apr,siz,rid,off,len,sts,srb

apr A number from 0 through 7 that specifies the window’s base Active
Page Register (APR). The APR determines the 4K boundary on which
the window is to begin. APR 0 corresponds to virtual address 0, APR 1
to 4K, APR 2 to 8K, and so on.

siz The size of the window in 32-word blocks.
rid A region ID.
off The offset (in 32-word blocks) within the region to be mapped.

len The length (in 32-word blocks) within the region to be mapped (defaults
to the value of siz).

sts The bit definitions of the window status word.

srb A send/receive buffer virtual address.

The argument sts sets specified bits in the status word W.NSTS. The argument
normally has the following format:

<bit1[! ... bitn]>

bit A defined bit to be set.

The macro call
WDBBK$ 5
expands to:

.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

If a Create Addres
panded macro call,

O Create awi

MEMORY MANAGEMENT DIRECTIVES 7-17

,76.,0,50.,,<WS.64BIWS.MAPIWS . WRT>

0,5 (Window ID returned in low-order byte)
0 (Base virtual address returned here)
76.

0

50.

WS.64BIWS.MAP WS . WRT
0

s Window directive pointed to the WDB defined by the ex-
the Executive would:

ndow 76,4 blocks long beginning at APR 5-virtual address

20K or 1200004

O Map the window with write access (<WS.MAP!WS.WRT>) to the
issuing task’s task region (because the macro call specified 0 for the

region ID)

0 Start the map 504 blocks from the base of the region, and map an area

either equa

I to the length of the window—76,o—or to the length remain-

ing in the region, whichever is smaller (because the macro call defaulted
the len argument) and align the window on a 64-byte boundary.

O Return values to the symbolic W.NID (the window’s ID) and W.NBAS
(the window’s virtual base address)

7.5.2.2 Using Fortran to Generate a WDB —You must create an 8-word,

single-precision int

eger array as the WDB to be supplied in the subroutine calls:

CALL CRAW (Create Address Window directive)
CALL ELAW (Eliminate Address Window directive)
CALL MAP (Map Address Window directive)
CALL UNMAP (Unmap Address Window directive)
CALL SREF (Send By Reference directive)

CALL RREF (Receive By Reference directive)

(See the PDP-11 FORTRAN-77 Language Reference Manual for information on
the creation of arrays.)

7-18 MEMORY MANAGEMENT DIRECTIVES

Table 7-4 shows the WDB array format.

Table 7-4
WDB Array Format

Word Contents

iwdb(1) Bits 0 through 7 contain the window ID; bits 8 through 15 contain the window’s base
APR.

iwdb(2) Base virtual address of the window.

iwdb(3) Size of the window in 32-word blocks.

iwdb(4) Region ID.

iwdb(5) Offset length (in 32-word blocks) within the region at which map begins.

iwdb(6) Length (in 32-word blocks) mapped within the region.

iwdb(7) Window status word.

iwdb(8) Address of send/receive buffer.

You can modify the window status word iwdb(7) by setting or clearing the ap-
propriate bits. See the list in Section 7.5.2 that describes the defined bits. The
bit values are listed alongside the symbolic offsets.

The contents of bits 8 through 15 of iwdb(1) must normally be set without de-
stroying the value in bits 0 through 7 for any directive other than the Create Ad-
dress Window.

A call to GETADR (see Section 3.4.1.4) can be used to set up the address of the
send/receive buffer. For example:

CALL GETADR(IWDB,,,,,,,,|JRCVB)

This call places the address of buffer IRCVB in array element 8. The remaining
elements are unchanged. The subroutines SREF and RREF also set this value.
If you use the SREF and RREF routines, you do not need to use GETADR.

7.5.3 Assigned Values or Settings

The exact values or settings assigned to individual fields within the RDB or the
WDB vary according to each directive. Fields that are not required as input can
have any value when the directive is issued. Chapter 6 describes which offsets
and settings are relevant for each memory management directive. The values
assigned by the task are called input parameters, whereas those assigned by
the Executive are called output parameters.

MEMORY MANAGEMENT DIRECTIVES 7-19

7.6 PRIVILEGED TASKS

When a privileged task maps to the Executive and the I/O page, the system nor--
mally dedicates five or six APRs to this mapping. A privileged task can issue
memory management directives to remap any number of these APRs to re-
gions. Take great care when using the directives in this way, because such re-
mapping can cause obscure bugs to occur. When a directive unmaps a window
that formerly mapped the Executive or the 1/O page, the Executive restores the
former mapping.

Note: Tasks should not remap APRO. Remapping APRO causes information
such as the DSW, overlay structures, or language runtime systems to become
inaccessible.

CHAPTER 8
CALLABLE SYSTEM ROUTINES

The system provides a set of callable routines that are invoked by the PDP-11
standard R5 calling sequence. The routines themselves are provided in a resi-
dent library called POSSUM, against which you must task build your programs.
A program calls a routine in the POSSUM library to have a specified service
executed. Some of the routines use a separate task in the system called a
server. This chapter describes each callable routine as well as the name of any
server that a particular routine may require.

POSSUM can be included as part of a cluster of libraries with RMSRES and

other libraries. See the RSX-11M/M-PLUS Task Builder manual for details on
cluster libraries.

Note: When you link programs to run on the Professional, invoke the Task
Builder using the name PAB (Professional Application Builder) rather than TKB.

You can provide one of two options in your task build command file to include
the POSSUM library in your task:

Use the following Task Builder format to link a task to the POSSUM resident
library:

LIBR=POSSUM:RO

Use this Task Builder format to link a task to a cluster library which includes the
POSSUM resident library:

CLSTR=POSSUM,0THER:RO
8.1 GENERAL CONVENTIONS FOR ALL CALLABLE SYSTEM ROUTINES
This section defines the general mechanism used for calling all the defined sys-

tem routines in the POSSUM resident library.

8-1

8-2 CALLABLE SYSTEM ROUTINES

8.1.1 PDP-11 R5 Calling Sequence

Your program must use register 5 (R5) to pass the address of an argument list
that resides in your task’s data space. The argument list itself is of variable
length, so that only the necessary arguments are passed.

The general MACRO-11 coding sequence of the call follows.

Instruction space coding sequence:

MoV #ARGLST,RS ; address of the argument list to pass
JSR PC,SUB ; call the subroutine

Data space coding sequence:

ARGLST: .BYTE NUMBER, 0 ; NUMBER is the number of arguments
; following in the list
.WORD ADDR 1 ; address of first argument
; other arguments
.WORD ADDRnN ; the nth argument

For higher level languages that support the R5 calling sequence (such as
BASIC-PLUS-2 or FORTRAN-77), see your language reference manual or user
guide for correct syntax. The examples in this chapter assume BASIC-PLUS-2
as the high level language being used. All examples assume a higher level lan-
guage call. -

In BASIC-PLUS-2, you can invoke the previous MACRO-11 call as follows:
120 CALL SUB BY REF (ADDR1%,...,ADDRn%)

BP2 internally formats an R5 calling block and issues the call to the system rou-
tine for you.

8.1.2 Conventions for Callable System Services

All of the routines documented in this chapter have specific conventions that
you must follow for programming success:

O Allarguments passed to the system routines are by reference. This
means that you are passing the address of the value in your program to
the routine in POSSUM.

O Every routine shares a common format in that the first argument is the
address of an 8-word Status Control Block found in your program to
which the routines return completion status. The Status Control Block
is always eight words in length, so care must be taken to allocate the
proper amount of space in your program.

O Everyroutine requires a request parameter. All of the routines are multi-
purpose and this 1-word request parameter is the method for specify-
ing which option(s) to execute.

CALLABLE SYSTEM ROUTINES 8-3

O When specifying either a device or file name string as a required ele-
ment in an argument list, always specify the accompanying size field in
bytes. (A byte corresponds to one ASCII character.)

O The system services preserve registers R0O-R4. This is of no concern to
higher level language programmers since the languages preserve inter-
nal registers around the call.

8.1.3 Status Control Block Format

The 8-word Status Control Block has the following format:

Word 0 is the count of the number of status (error) parameters passed
back to the Status Control Block upon completion of the routine

Word 1 is the overall call status. This is a 1-word value defined as fol-

lows:

+1

Success

Directive Status Error. The actual $DSW error is in word 3.

A QIO error. The contents of the 2-word QIO status block
are in words 3 and 4.

An RMS error. The RMS STS and STV fields are returned
in words 3 and 4.

Server specific error. The contents of words 3 through 8
are defined by each routine.

Interface error. An error occured when trying to interpret
the argument block. Currently, one of the following values
would be in word 3.

—1 Feature not supported. The code is not yet complete
to execute the documented feature.

—2 Impure area is invalid, or missing. Ususally indicates
that you have not correctly taskbuilt your program.

-3 Invalid number of parameters (too few or too many).

Word 2-7 is as defined above

8.2 CALLABLE TASK ROUTINES

The POSSUM resident library contains routines that perform specific functions.

Those routines are:

O PROATR gets or sets file attributes

[0 PRODIR creates or deletes a directory

0O PROFBI formats, initializes, and checks for bad blocks on disks

8-4 CALLABLE SYSTEM ROUTINES

O PROLOG translates, creates, and deletes a logical name

O PROVOL mounts, dismounts, bootstraps, and/or writes the bootblock
on avolume

The following sections describe each callable routine in detail.

8.3 PROATR

The PROATR routine provides a means of accessing certain file attributes.
Given a file ID or a file specification and an attribute list, the GET function uses
the attribute list to determine which attributes to read and where to store the
associated information. Conversely, the SET function writes the attribute infor-
mation specified in the attribute list to the file.

The PROATR routine provides two forms of accessing file attributes. You can
use PROATR to:

[0 Get attributes of a file
[0 Set attributes of a file

The PROATR routine does not require a server to execute.

To get or set file attributes, invoke the PROATR routine with the following argu-
ments:

STATUS, REQUEST, ATTRIBUTE_LIST, FILE_ID, LUN

where:
STATUS The address of the 8-word Status Control Block
REQUEST The address of a word containing the decimal value of the

operation to be performed (see Section 8.3.1)
ATTRIBUTE_LIST The address of the attribute list (see Section 8.3.1)

FILE_ID The address of a buffer that contains a 3-word Files-11
FID
LUN The address of a buffer that contains the LUN number

used to obtain the file ID (see Section 8.3.1)

8.3.1 How to Specify the REQUEST Argument in PROATR

PROATR uses the decimal value specified in the REQUEST argument to deter-
mine, first, whether to get ur set file attributes and, second, whether the input
file descriptor is a file ID or an ASCII file specification.

When specifying this argument, use the combined values of the desired func-
tion plus the input file descriptor or ASCII file specification as described below.

CALLABLE SYSTEM ROUTINES 8-5

Function

0
1

Get file attributes
Set file attributes

Input File Descriptor

0

Notes

The contents of the buffer address specified in the FILEID argument is a
3-word Files-11 FID (file ID). In this case, the address specified in the
LUN argument contains the specific LUN used to obtain the file ID.

The contents of the buffer address specified in the FILEID argument is
an ASCII file name specification. In this case, the address specified in
the LUN argument contains the size of the file.

The file identification block is a 3-word block containing the file number,
the file sequence number, and a reserved word.

FID: File number
+2: File sequence number
+4: Reserved

The attribute list contains a variable number of entries terminated by an
byte containing all zeroes. The maximum number of entries in the
attribute list is six.

An entry in the attribute list has the following format:

.BYTE Attribute type, Attribute size
.WORD Pointer to the attribute buffer

Table 8-1 is a list of the accessible file attributes.

Table 8-1
Accessible File Attributes

Attribute Attribute
Code Type Size in Octal Bytes
1 File owner
2 Protection 4
3 File characteristics 2
4 Record 1/O area 40
5 File name, type, version 12
number 6 File type 4
7 Version number 2
1 Statistics block 12
16 Placement control 16

Note: The file name contained in the header is not associated with the name in
a directory entry except by convention. Therefore, you cannot use the file ID to
get the file name as specified in the directory; the name that the ACP returns is
the name contained in the header.

8-6 CALLABLE SYSTEM ROUTINES

8.3.2 PRODIR

The PRODIR routine provides two forms of directory manipulation. You can use
PRODIR to:

O Create a directory on a device

O Delete a directory on a device
The name of the server used to execute PRODIR is CREDEL. This server must
be installed in your system to perform any of indicated services. Otherwise,
PRODIR returns a directive error in the Status Control Block (see Section 8.1.3).

To create or delete a directory, invoke the PRODIR routine with the following
arguments:

STATUS, REQUEST, FILE_NAME, FILE_SIZE
where:

STATUS The address of the 8-word Status Control Block

REQUEST The address of a word containing the decimal value indicating
. which operation (CREATE or DELETE) to perform (see Section
8.3.3)

FILE_NAME The address of a buffer containing an ASCII device and direc-
tory specification

The device specification takes the form ddn:
where:

dd the device name

n the device unit number

The directory specification takes the one of the following forms:

[ggg,mmm]such as [301,3]
or

[gggmmm] such as [301003]
or

[name] such as [WILEY]
where:
ggg group
mmm member
FILE_SIZE The address of a byte value containing the length of the string in
FILE_NAME
The following is a sample BP2 call to PRODIR:

100 CALL PRODIR BY REF
(STATUS%(),REQUEST%,DFILES$,LEN(DFILE$))

CALLABLE SYSTEM ROUTINES 8-7

8.3.3 Using the REQUEST Argument for Creating or Deleting a Directory

PRODIR uses the value specified in the REQUEST argument to determine
whether to create or delete a directory, as follows:

1 CREATE directory
2 DELETE directory

Example 8-1 shows how to access PRODIR from a BASIC-PLUS-2 program.

Example 8-1: How to Access PRODIR from a BASIC-PLUS-2 Program

10 ! PROGRAM TO CREATE/DELETE DIRECTORIES

20 DIM STATUS%(7), REQG$(2)

25 REQ$(1)=""Create’’ \ REQ$(2)=’‘Delete’’

30 PRINT “‘Create or Delete (C/D) :7’; \ LINPUT #0,REQ$ &

\ REQUESTXZ = 1 \ IF LEFT$(REQG$,1) = ““C’’ THEN 40 ELSE &
IF LEFT$C(REQS$,1)«<>’“D’’ THEN 20 ELSE REQUESTZ = 2

40 PRINT ‘’Name of Directory to ‘’/;REQ$C(REQUESTZ);’" :’"; &

\ LINPUT #0,DFILES

100 CALL PRODIR BY REF (STATUSZ%Z(),REQUESTX,DFILES$,LENCDFILES$))

110 FOR K=0 TO 7 \ PRINT “’STATUS’’;K,STATUSZC(K) \ NEXT K

999 END

See the BASIC-PLUS-2 Documentation Supplement for a description of the
command and overlay descriptor files for BASIC-PLUS-2 programs.

8.4 PROFBI

The PROFBI routine provides the mechanism for preparing media for use on
the system. The PROFBI routine allows you to:

O Formatavolume

OO0 Check a volume for bad blocks

O Initialize a volume
To format or initialize a volume or check it for bad blocks invoke the PROFBI
routine with the following arguments:

STATUS, REQUEST, DEVICE_SPEC, DEVICE_SIZE,
ATTRIBUTE_LIST, ATTRIBUTE_SIZE

where:
STATUS The address of the 8-word Status Control Block. The last

six words of the Status Control Block contain the volume
label when a volume is successfully initialized

8-8 CALLABLE SYSTEM ROUTINES

REQUEST The address of a word containing the decimal value indi-

cating the operation to be performed (see Section 8.4.1)

Note: . When preparing the hard disk, specify the REQUEST code either for for-
mat or bad, but not for both. Either code will perform both functions on RD-50-
type devices in the same operation.

DEVICE_SPEC The address of a buffer containing a character string

which is the device specification of the volume to be for-
matted, initialized, or checked for bad blocks

DEVICE_SIZE The address of a word containing the length of the string

in DEVICE_SPEC

ATTRIBUTE_LIST The address of the attribute list. The attribute listis a

buffer of legal attributes, predominantly intended for use
by Macro programmers (see Notes). Legal attributes in
PROFBI are:

1 Volume label
2 ACS buffer

ATTRIBUTE_SIZE The address of a word containing the total size of the attri-

8.4.1

bute list

Note: The contents of the buffer for the ATTRIBUTE_LIST argument are op-
tional. That is, you must specifiy the argument but the buffer need not contain a
volume label or an ACS specification.

Using the REQUEST Argument in PROFBI

The PROFBI routine uses the decimal value specified in the REQUEST argu-
ment to determine which operation to perform. Specify in the REQUEST argu-
ment the value listed below that corresponds to the operation you desire:

1

Notes

Format a volume (only works for the hard disk)
Check a volume for bad blocks

Initialize a volume

The minimum length of DEVICE_SPEC is four characters—the
3-character device mnemonic followed by a colon (such as DW1:). The
device portion of DEVICE_SPEC must end with a colon.

If you are initializing a volume, part of the device specification can be
the volume label which may be up to 12 characters (in the form
DW1:SPECTROSCOPY). You may also specify the volume label in the
attribute list instead. If you specify the volume label in both the
DEVICE_SPEC argument and the ATTRIBUTE_LIST argument, the
DEVICE_SPEC argument overrides the ATTRIBUTE_LIST argument.

CALLABLE SYSTEM ROUTINES 8-9

If you omit the volume label when initializing a volume, PROFBI creates
a default volume label using the date and time the volume was
initialized. The default volume label format is:

DDMMMYYHHMMS

DEVICE_SPEC may also be a logical name string. The logical name
string must end with a colon. The number of logical name translations
cannot exceed eight. A ninth translation results in an error condition.

PROFBI requires the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments when initializing a volume or checking it for
bad blocks. The DEVICE_SPEC argument is necessary when
formatting a volume.

The ATTRIBUTE_LIST argument is the means of specifying optional
parameters. The attribute list for PROFBI is simply a buffer of legal
attributes. The high byte in the first word of the attribute list specifies
the attribute type. The low byte specifies the size of the attribute list
buffer in bytes.

You can use the attribute list as an alternate way to specify a volume
label. That is, you can omit the volume label in the DEVICE_SPEC

~argument and specify it in the ATTRIBUTE_LIST. However, if you

specify the volume label in both arguments, PROFBI overrides the
ATTRIBUTE_LIST specification with the label specified in
DEVICE_SPEC.

The attribute list for PROFBI also contains two additional, contiguous
words as the Allocate Checkpoint Space (ACS) buffer. The high byte in
the first word of the ACS buffer (2) identifies it as the ACS buffer. The
low byte in the buffer specifies the number of bytes in that buffer. The
second word in the ACS block identifies the number of blocks in the
checkpoint file.

8.4.2 Status Codes Returned by PROFBI

The status codes returned by PROFBI are listed in Table 8-2:

Table 8-2
PROFBI Status Codes

Status

code Comment

+1 SUCCESS

-1 ILLEGAL DEVICE

-2 DEVICE NOT IN SYSTEM

-3 FAILED TO ATTACH DEVICE

-4 BLOCK ZERO BAD—DISK UNUSABLE

-5 AT LEAST ONE LBN (0 THROUGH 25) IS BAD CANNOT INITIALIZE—DISK
UNUSABLE

-6 BAD BLOCK FILE OVERFLOW

8-10 CALLABLE SYSTEM ROUTINES

Table 8-2(Cont.)

Status

Code Comment

-7 UNRECOVERABLE ERROR

-8. DEVICE WRITE-LOCKED

-9. DEVICE NOT READY

-10. FAILED TO WRITE BAD BLOCK FILE

-11. PRIVILEGE VIOLATION

-12. DEVICE IS AN ALIGNMENT CARTRIDGE

-13. FATAL HARDWARE ERROR

-14. ALLOCATION FAILURE

-15. I/O ERROR SIZING DEVICE

-16. ALLOCATION FOR SYS FILE EXCEEDS VOLUME LIMIT

-17. HOMEBLOCK ALLOCATE WRITE ERROR

-18. BOOTBLOCK WRITE ERROR—DISK UNUSABLE

-19. INDEX FILE BITMAP I/O ERROR

-20. BAD BLOCK HEADER I/O ERROR

-21. MFD FILE HEADER |/O ERROR

-22. NULL FILE HEADER I/O ERROR

-23. CHECKPOINT FILE HEADER I/O ERROR

-24. MFD WRITE ERROR

-25. STORAGE BITMAP FILE HEADER I/O ERROR

-26. FAILED TO READ BAD BLOCK DESCRIPTOR FILE

-27. VOLUME NAME TOO LONG

-28. UNRECOGNIZED DISK TYPE

-29. PREALLOCATION INSUFFICIENT TO FILL FIRST INDEX FILE HEADER

-30. PREALLOCATED TOO MANY HEADERS FOR SINGLE HEADER INDEX FILE

-31. PREALLOCATION INSUFFICIENT TO FILL FIRST AND SECOND INDEX FILE
HEADERS

-32. BAD BLOCK LIMIT EXCEEDED FOR DEVICE

-33. DRIVER NOT RESIDENT

-34. BITMAP TOO LARGE—INCREASE CLUSTER FACTOR

-35. STORAGE BITMAP I/O ERROR

-36. HOMEBLOCK 1/O ERROR

-37. INDEX FILE HEADER i/O ERROR

-38. DISMOUNT OF DEVICE FAILED

-39. CANNOT MOUNT DEVICE FOREIGN

-40. CANNOT MOUNT DEVICE FILES-11

-41. CANNOT FORMAT DZ—PREFORMATTED

-42. CANNOT DETACH DEVICE

-43. CHECKPOINT FILE HEADER OVERFLOW—SPECIFY SMALLER
CHECKPOINT FILE

-44. NON-ALPHANUMERIC CHARACTER(S) IN VOLUME NAME—ILLEGAL

CALLABLE SYSTEM ROUTINES 8-11

8.5 PROLOG

The PROLOG routine provides five forms of logical name manipulation. You can
use PROLOG as follows:

O Create alogical name for a device specification

O Delete a logical name for a device specification

0O Translate a logical name to a device specification

O Set the default directory and/or device

[0 Show the default directory and device

The name of the server used to execute PROLOG is SUMLOG. This server
must be installed in your system to perform any of the indicated services. Other-
wise, PROLOG returns a directive error in the Status Control Block (see Section
8.1.3).

Caution: Do not use logical or directory names with this routine that are used
by the P/OS system.

8.5.1 Creating or Translating a Logical Name

To create or translate a logical name, invoke the PROLOG routine with the fol-
lowing arguments:

STATUS, REQUEST, LOGICAL_NAME, LOGICAL_NAME_SIZE,
EQUIVALENCE, EQUIVALENCE_SIZE

where:

STATUS The address of the 8-word Status Control Block

REQUEST The address of a word containing the decimal
value indicating the operation (CREATE or
TRANSLATE) to perform (see Section 8.3.3)

LOGICAL_NAME The address of a buffer containing an ASClI
string (which can contain alphanumeric charac-
ters only)

LOGICAL_NAME_SIZE The address of a byte value containing the
length of the string in LOGICAL_NAME

EQUIVALENCE The address of a buffer containing an ASCII de-

vice specification
The device specification takes the form ddn:
where:

dd the device name
n the device unit number

EQUIVALENCE_SIZE For CREATE: The address of a byte value con-
taining the length of the string in EQUIV-
ALENCE. For TRANSLATE: The address for a
byte value containing the length of the EQUIV-
ALENCE buffer.

8-12 CALLABLE SYSTEM ROUTINES

For the TRANSLATE function, the EQUIVALENCE argument is an output argu-
ment returned by PROLOG. The length of the string returned in the EQUIV-
ALENCE buffer is returned in the third word of STATUS.

8.5.2 Deleting a Logical Name and Set/Show

To delete a logical name or to set or show the default device and/or directory,
invoke the PROLOG routine with the following arguments:

STATUS, REQUEST, LOGICAL_NAME, LOGICAL_NAME_SIZE

where:
STATUS The address of the 8-word Status Control Block
REQUEST The address of a word containing the decimal

value indicating the operation (DELETE, SET
OR SHOW) to perform (see Section 8.3.3)

LOGICAL_NAME The address of a buffer containing an ASCII
string (which can contain alphanumeric charac-
ters only). The user must have already created
the LOGICAL_NAME.

LOGICAL_NAME_SIZE For SET and DELETE: The address of a byte
value containing the length of the string in
LOGICAL_NAME. For SHOW: The address of a
byte value containing the length of the LOGI-
CAL_NAME buffer.

For the SET DEFAULT function, the LOGICAL_NAME string may contain a di-
rectory specification of the form

USERDISK:[DIRECTORY]

where USERDISK: is the logical name with the directory specification appended
to it.

The directory specification takes one of the following forms:

[ggg,mmm] such as [301,3]
or

[gggmmm] such as [301003]

or
[name] such as [WILEY]
where:
999 group
mmm number

Note: When issuing a call for the SET DEFAULT function, note that the user
can specify either the logical name or the directory. If you specify both, then
both the default device and directory are changed. If you only specify one, the
other does not change.

CALLABLE SYSTEM ROUTINES 8-13

For both the DELETE and SET DEFAULT functions, there is no output argu-
ment; PROLOG returns the call status in the Status Control Block.

For the SHOW DEFAULT function, LOGICAL_NAME is an output argument re-
turned by PROLOG. The LOGICAL_NAME also contains the default directory

string. The length of the string returned in LOGICAL_NAME is returned in the
third word of STATUS.

The following is a sample BASIC-PLUS-2 call to PROLOG:

100 CALL PROLOG BY REF
(STATUS%(),REQUEST%,DLOGS,LEN(DLOGS),EQV$,LEN(EQV$))

8.5.3 Using the REQUEST Argument for Create, Translate, Delete, Set or
Show

PROLOG uses the value specified in the REQUEST argument to determine
whether to create, translate, delete, set or show as follows:

1 SET DEFAULT

2 SHO DEFAULT

3 CREATE logical

4 TRANSLATE logical
5 DELETE logical

Most error returns from PROLOG are Directive Status errors (see CLOG$ and
DLOGS$ logical name directives in Chapter 9).

Table 8-3

Status

Code Comment

+1 SUCCESSFUL INSTALL

-1 TASK NAME IN USE

-3 SPECIFIED PARTITION TOO SMALL -
-4 TASK AND PARTITION BASE MISMATCH

-7 LENGTH MISMATCH COMMON BLOCK

-8. BASE MISMATCH COMMON BLOCK

-9. TOO MANY COMMON BLOCK REQUESTS
-11. CHECKPOINT AREA TOO SMALL

-13. NOT ENOUGH APRS FOR TASK IMAGE

—14. FILE NOT A TASK IMAGE

—-15. BASE ADDRESS MUST BE ON 4K BOUNDARY
—16. ILLEGAL FIRST APR

—18. COMMON BLOCK PARAMETER MISMATCH

8-14 CALLABLE SYSTEM ROUTINES

Table 8-3(Cont.)

Status

Code Comment

—20. COMMON BLOCK NOT LOADED

—22. TASK IMAGE VIRTUAL ADDRESS OVERLAPS COMMON BLOCK
—23. TASK IMAGE ALREADY INSTALLED

—24. ADDRESS EXTENSIONS NOT SUPPORTED

—26. CHECKPOINT SPACE TOO SMALL, USING CHECKPOINT FILE
-27. NO CHECKPOINT SPACE, ASSUMING NOT CHECKPOINTABLE
-29. ILLEGAL UIC

-30. NO POOL SPACE

-31. ILLEGAL USE OF PARTITION OR REGION

-32. ACCESS TO COMMON BLOCK DENIED

-33. TASK IMAGE 1/O ERROR

—34. TOO MANY LUNS

-35. ILLEGAL DEVICE

-36. TASK MAY NOT BE RUN

-37. TASK ACTIVE

-39. TASK FIXED

—40. TASK BEING FIXED

—41. PARTITION BUSY

—43. COMMON/TASK NOT IN SYSTEM

—44. REGION OR COMMON FIXED

—45. CANNOT DO RECEIVE

—47. INVALID REQUEST

—48. CANNOT RETURN STATUS

—49. ERROR ENCOUNTERED ON FILE OPEN OPERATION

-50. ERROR ENCOUNTERED ON FILE CLOSE OPERATION

-51. CANNOT GET FILE LBN TO PROCESS LABEL BLOCKS

8.6 PROVOL

The PROVOL routine provides a twofold service. You can use the PROVOL rou-
tine to mount or dismount disk volumes. You can also use PROVOL to write a
bootblock on a volume and/or bootstrap a volume.

To mount or dismount a volume, write a bootblock on a volume, or bootstrap a
volume, invoke the PROVOL routine with the following arguments:

STATUS, REQUEST, DEVICE_SPEC, DEVICE_SIZE,
ATTRIBUTE_LIST, ATTRIBUTE_SIZE

where:

STATUS

REQUEST

DEVICE_SPEC

DEVICE_SIZE

ATTRIBUTE_LIST

ATTRIBUTE_SIZE

CALLABLE SYSTEM ROUTINES 8-15

The address of the 8-word Status Control Block.
When mounting or dismounting a volume, the last six
words of the Status Control Block contain the vol-
ume label (provided that the operation is successful)

The address of a word containing the decimal value
indicating the operation to be performed (see Section
8.6.1)

The address of a buffer containing a character string
which is the device specification of the volume to be
mounted, dismounted, bootstrapped, or on which a
bootblock is to be written

The address of a word containing the length of the
string in DEVICE_SPEC

The address of the attribute list. The attribute listis a
buffer of legal attributes, predominantly intended for
use by Macro programmers (see Notes). Legal attri-
butes in PROVOL are:

1 Volume label

The address of a word containing the size of the attri-
bute list

Note: The contents of the buffer for the ATTRIBUTE_LIST argument are op-
tional. That is, you must specifiy the argument but the buffer need not contain a

volume label.

8.6.1 Using the REQUEST Argument in PROVOL

The PROVOL routine uses the decimal value specified in the REQUEST argu-
ment to determine which operation to perform. Specify in the REQUEST argu-
ment the value listed below that corresponds to the operation you desire:

0 Mount a volume
1 Mount a foreign volume
2 Dismount a volume
10 Bootstrap a volume
11 Write a bootblock on a volume
12 Write a bootblock on a volume and bootstrap it
Notes

1. The minimum length of DEVICE_SPEC is four characters—
the-three-character device mnemonic followed by a colon (such as
DW1:). The device portion of DEVICE_SPEC must end with a colon.

8-16 CALLABLE SYSTEM ROUTINES

Part of the device specification can be the volume label which may be
up to 12 characters. If you omit the volume label from DEVICE_SPEC,
PROVOL gets the label from the specified disk by default. Whenever
you specify a volume label in a DEVICE_SPEC argument (when
mounting a volume, for example), the specified label must match the
label on the volume; otherwise, the operation fails.

2. DEVICE_SPEC may also be a logical name string. In this case, the
logical name string must end with a colon. The number of logical name
translations cannot exceed eight. A ninth translation results in an error
condition.

3. PROVOL requires the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments when mounting or dismounting a volume.
The specified volume label must match the label on the volume for the
operation to be successful. PROVOL ignores the volume label if
mounting or dismounting a ‘‘foreign’’ volume.

4. PROVOL stores the volume label in the last six words of the Status
Control Block when a mount or dismount is successful.

5. PROVOL uses the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments to bootstrap a volume. The DEVICE_SPEC
string may be a logical name.

6. When writing a bootblock to a volume, PROVOL requires a complete
device, directory and file name specification. If you omit the file name,
PROVOL uses the default directory and file name of [1,54]RSX11M.SYS.

7. The ATTRIBUTE_LIST argument is the means of specifying optional
parameters. The attribute list for PROVOL is simply a buffer of legal
attributes. The high byte in the first word of the attribute list specifies
the attribute type. The low byte specifies the size of the buffer in bytes.

You can use the attribute list as an alternate way to specify a volume
label. That is, you can omit the volume label in the DEVICE_SPEC
argument and supply it in the ATTRIBUTE_LIST argument. However, if
you specify the volume label in both arguments, PROVOL overrides the
ATTRIBUTE_LIST specification with the label specified in
DEVICE_SPEC.

CHAPTER 9
DIRECTIVE DESCRIPTIONS

This chapter defines each of the system directives. The chapter describes each
directive’s function and use. For each directive there is also a description of the
names of the corresponding macro and Fortran calls, the associated param-
eters, and possible return values of the Directive Status Word (DSW).

The descriptions generally show the $ form of the macro call, although the $C
and $S forms are also valid forms of the directive macro. (The QIO directive
documents the QIO$ form, although the QIO$S and QIO$C forms are also
valid.) Where the $S form of a macro requires less space and performs as fast
as a DIR$ (because of a small Directive Parameter Block), the documentation
shows the $S form of the macro expansion.

In addition to the directive macros themselves, you can use the DIR$ macro to
execute a directive if the directive has a predefined Directive Parameter Block
(DPB). See Sections 3.3.1.1 and 3.3.2 for further details.

9.1 FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes most or all of the following elements:

Fortran Call

This shows the Fortran subroutine call, and defines each parameter. Programs
written in other higher-level languages which provide support for the PDP-11
standard R5 calling conventions for Fortran may also make use of these calls.
Check your language reference manual and user’s guide to determine if you are
using that format.

9-1

9-2 DIRECTIVE DESCRIPTIONS

Macro Call

This shows the macro call, defines each parameter, and gives the defaults for
optional parameters in parentheses following the definition of the parameter.
Since zero is supplied for most defaulted parameters, only nonzero default val-
ues are shown.

Macro Expansion

Most of the directive descriptions expand the $e form of the macro. Where the
$S form is the recommended form for a directive, the documentation shows that
form of the macro expansion instead. Section 3.3.5 illustrates expansions for all
three forms and for the DIR$ macro.

Definition Block Parameters
Only the memory management directive descriptions include these parameters.

This section describes all the relevant input and output parameters in the Re-
gion or Window Definition Block (see Section 7.5).

Local Symbol Definitions

Macro expansions usually generate local symbol definitions with an assigned
value equal to the byte offset from the start of the DPB to the corresponding
DPB element. This section lists those symbols. The length in bytes of the ele-
ment pointed to by the symbol appears in parentheses following the symbol’s
description. Thus:

A.BTTN task name (4)

defines A.BTTN as pointing to a task name in the Abort Task DPB; the task
name has a length of four bytes.

DSW Return Codes

This section lists all valid return codes.

Notes

The notes presented with some diréective descriptions expand on the function,
use, and/or consequences of using the directives. Always read the notes care-
fully.

DIRECTIVE DESCRIPTIONS 9-3

ABRT$

9.1.1 ABRT$—Abort Task

The Abort Task directive instructs the system to terminate the execution of the
indicated task. ABRT$ is intended for use as an emergency or fault exit.

A task must be privileged to issue the Abort Task directive (unless it is aborting
a task with the same TI:).

Fortran Call
CALL ABORT (tsk[,ids])

tsk name of the task to be aborted (RAD50)

ids directive status
Macro Call
ABRT$ tsk

tsk name of the task to be aborted (RAD50)

Macro Expansion
ABRT$ ALPHA

.BYTE 83.,3 ;ABRT$ MACRO DIC, DPB SIZE=3 WORDS
.RADS0 /ALPHA/ ;TASK ““ALPHA’’

Local Symbol Definitions

A.BTTN task name (4)

DSW Return Codes

I1S.SUC successful completion

IE.INS task not installed

IE.ACT task not active

IE.PRI issuing task is not privileged (multiuser protection systems
only)

IE.ADP part of the DPB is out of the issuing task’s address space

IE.SDP directive Identification Code (DIC) or DPB size is invalid

9-4 DIRECTIVE DESCRIPTIONS

Notes

1. When atask is aborted, the Executive frees all the task’s resources. In
particular, the Executive:

O

O
|
O

O O

O 0O 0o o

O

Detaches all attached devices.
Flushes the AST queue and despecifies all specified ASTs.
Flushes the receive and receive-by-reference queue.

Flushes the clock queue for outstanding Mark Time requests for
the task.

Closes all open files (files open for write access are locked).

Detaches all attached regions except in the case of a fixed task,
where no detaching occurs.

Runs down the task’s 1/O.
Disconnects from interrupt vectors.
Breaks the connection with any offspring tasks.

Returns a severe error status (EX$SEV) to the parent task when a
connected task is aborted.

Frees the task’s memory if the aborted task was not fixed.

2. Ifthe aborted task had a requested exit AST specified, the task will
receive that AST instead of being aborted. No indication that this has
occurred is returned to the task that issued the abort request.

3. When the aborted task actually exits, the Executive declares a
significant event.

DIRECTIVE DESCRIPTIONS 9-5

ALTPS$

9.1.2 ALTP$—Alter Priority

The Alter Priority directive instructs the system to change the running priority of
a specified active task to either a new priority indicated in the directive call, or to
the task’s default (installed) priority if the call does not specify a new priority.

The specified task must be installed and active. The Executive resets the task's
priority to its installed priority when the task exits.

If the directive call omits a task name, the Executive defaults to the issuing task.
The Executive reorders any outstanding I/O requests for the task in the 1/O
queue and reallocates the task’s partition. The partition reallocation may cause
the task to be checkpointed.

A nonprivileged task can issue ALTP$ only for itself, and only for a priority equal

to or lower than its installed priority. A privileged task can change the priority of
any task to any value less than 250.

Fortran Call
CALL ALTPRI ([tsk],[ipri][,ids])

tsk active task name

ipri a 1-word integer value equal to the new priority, a number from 1
through 250(10)

ids directive status

Macro Call
ALTPS [tsk][,pri]

tsk active task name

pri new priority, a number from 1 through 250(10)

Macro Expansion

ALTPS$ ALPHA, 75.
.BYTE 9.,4 ;ALTP$ MACRO DIC, DPB SIZE=4 WORDS
.RAD50 /ALPHA/ ; TASK ALPHA

.WORD 75. sNEW PRIORITY

9-6 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

ALTTN task name (4)

ALTPR priority (2)

DSW Return Codes

IS.SUC successful completion

IE.INS task not installed

IE.ACT task not active

IE.PRI issuing task is not privileged

IE.IPR invalid priority

IE.ADP part of the DPB is out of the issuing task’s address space

IE.SDP DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-7

ALUNS

9.1.3 ALUN$—Assign LUN

The Assign LUN directive instructs the system to assign a physical device unit
to a logical unit number (LUN). It does not indicate that the task has attached
itself to the device.

The actual physical device assigned to the logical unit is dependent on the logi-
cal assignment table. The Executive first searches the logical assignment table
for a device name match. If it finds a match, the Executive assigns the physical
device unit associated with the matching entry to the logical unit. Otherwise, the
Executive searches the physical device tables and assigns the actual physical
device unit named to the logical unit. The Executive does not search the logical
assignment table for slaved tasks.

When a task reassigns a LUN from one device to another, the Executive can-
cels all 1/O requests for the issuing task in the previous device queue.

Fortran Call

CALL ASNLUN (lun,dev,unt[,ids])

lun logical unit number

dev device name (format: 1A2)
unt device unit number

ids directive status

Macro Call

ALUNS lun,dev,unt

fun logical unit number
dev device name (two characters)
unt device unit number

Macro Expansion

ALUNS 7,TT,0 sASSIGN LOGICAL UNIT NUMBER

.BYTE 7,4 ;ALUNS$ MACRO DIC, DPB SIZE=4 WORDS
.WORD 7 ;LOGICAL UNIT NUMBER 7

.ASCII /TT/ ;DEVICE NAME IS TT (TERMINAL)

.WORD 0 ;DEVICE UNIT NUMBER=0

9-8 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

A.LULU logical unit number (2)

A.LUNA physical device name (2)

A.LUNU physical device unit number (2)

DSW Return Codes

IS.SUC successful completion

IE.LNL LUN usage is interlocked (see Note 1 below)
IE.IDU invalid device and/or unit

IE.ILU invalid logical unit number

IE.ADP part of the DPB is out of the issuing task’s address space
IE.SDP DIC or DPB size is invalid

Notes

1.

A return code of IE.LNL indicates that the specified LUN cannot be
assigned as directed. Either the LUN is already assigned to a device
with a file open for that LUN, or the LUN is currently assigned to a
device attached to the task, and the directive attempted to change the
LUN assignment. If a task has a LUN assigned to a device and the task
has attached the device,-.the LUN can be reassigned, provided that the
task has another LUN assigned to the same device.

DIRECTIVE DESCRIPTIONS 9-9

ASTXS$S
9.1.4 ASTX$S—AST Service Exit ($S Form Recommended)

The AST Service Exit directive instructs the system to terminate execution of an
AST service routine.

If another AST is queued and ASTs are not disabled, then the Executive imme-
diately effects the next AST. Otherwise, the Executive restores the task’s pre-
AST state. See Notes.

Fortran Call

Neither the Fortran language nor the ISA standard permits direct linking to sys-
tem trapping mechanisms. (Refer to Section 3.4.4 for more information on this
subject). Therefore, this directive is not available to Fortran tasks.

Macro Call
ASTXS$S [err]
err error routine address

Macro Expansion

ASTX$S ERR
MOV (PCY+,-(SP) ;PUSH DPB ONTO THE STACK
.BYTE 115.,1 ;ASTX$S MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE
JSR PC,ERR ;CALL ROUTINE ““ERR‘‘ IF DIRECTIVE
; UNSUCCESSFUL

Local Symbol Definitions

None

DSW Return Codes

IS.SUC successful completion

IE.AST directive not issued from an AST service routine

IE.ADP part of the DPB or stack is out of the issuing task’s address

space
IE.SDP DIC or DPB size is invalid

9-10 DIRECTIVE DESCRIPTIONS

Notes

A return to the AST service routine occurs if, and only if, the directive is
rejected. Therefore, no Branch On Carry Clear instruction is generated
if an error routine address is given. (The return occurs only when the
Carry bitis set.)

When an AST occurs, the Executive pushes, at minimum, the following
information onto the task’s stack:

SP+06 event flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+00 DSW of task prior to AST

The task stack must be in this state when the AST Service Exit directive
is executed.

In addition to the data parameters, the Executive pushes supplemental
information onto the task stack for certain ASTs. For I/O completion,
the stack contains the address of the I/O status block; for Mark Time,
the stack contains the Event Flag Number; for a floating-point
processor exception, the stack contains the exception code and
address.

DIRECTIVE DESCRIPTIONS 9-11

These AST parameters must be removed from the task’s stack prior to
issuing an AST exit directive. The following example shows how to
remove AST parameters when a task uses an AST routine on 1/O
completion:

; EXAMPLE PROGRAM

; LOCAL DATA
I0SB: .BLKW 2 ;1/0 STATUS DOUBLEWORD
BUFFER: .BLKW 30. ;1/0 BUFFER

; START OF MAIN PROGRAM

START: . ;PROCESS DATA

QIOW$C 10.WVB,2,1,,10SB,ASTSER,<BUFFER,60.,40>
;PROCESS & WAIT

EXITS$S ;EXIT TO EXECUTIVE
; AST SERVICE ROUTINE

ASTSER: ;PROCESS AST

TST (SP)+ ;REMOVE ADDRESS OF 1/0 STATUS BLOCK
ASTX$S ;AST EXIT

The task can alter its return address by manipulating the information on
its stack prior to executing an AST exit directive. For example, to return
to task state at an address other than the pre-AST address indicated on
the stack, the task can simply replace the PC word on the stack. This
procedure may be useful in those cases in which error conditions are
discovered in the AST routine; but you should use extreme caution
when doing this alteration since AST service routine bugs are difficult to
isolate.

Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as the DIR$ macro.

9-12 DIRECTIVE DESCRIPTIONS

ATRGS$

9.1.5 ATRG$—Attach Region

The Attach Region directive attaches the issuing task to a static common region
or to a named dynamic region. (No other type of region can be attached to the
task by means of this directive.) The Executive checks the desired access
specified in the region status word against the owner UIC and the protection
word of the region. If there is no protection violation, the Executive grants the
desired access. If the region is successfully attached to the task, the Executive
returns a 16-bit region ID (in R.GID), which the task uses in subsequent map-
ping directives.

You can also use the directive to determine the ID of a region already attached
to the task. In this case, the task specifies the name of the attached region in
R.GNAM and clears all four bits described below in the region status word
R.GSTS. When the Executive processes the directive, it checks that the named
region is attached. If the region is attached to the issuing task, the Executive
returns the region ID, as well as the region size, for the task’s first attachment to
the region. You may want to use the Attach Region directive in this way to deter-
mine the region ID of a common block attached to the task at task-build time.

Fortran Call
CALL ATRG (irdb[,ids])

irdb an 8-word integer array containing a Region Definition Block (see
Section 7.5.1.2)

ids directive status
Macro Call |
ATRG$ rdb .
rdb region Definition Block (RDB) address
Macro Expansion
ATRG$ RDBADR

.BYTE 57.,2 ;ATRG$ MACRO DIC, DPB SIZE=2 WORDS
.WORD RDBADR ;RDB ADDRESS

Table 9-1

Region Definition Block Parameters

DIRECTIVE DESCRIPTIONS 9-13

Input Parameters

Array

Element Offset

irdb(3)(4) R.GNAM

irdb(7) R.GSTS
Bit
RS.RED
RS.WRT
RS.DEL

Description
Name of the region to be attached

Bit settings’ in the region status word (specifying desired
access to the region):

Definition
1 if read access is desired

1 if write access is desired RS.EXT 1 if extend access is
desired

1 if delete access is desired

Clear all four bits to request the region ID of the named region if it is already
attached to the issuing task.

Output Parameters

irdb(1) R.GID
irdb(2) R.GSIZ

ID assigned to the region

Size in 32-word blocks of the attached region

Local Symbol Definition

A.TRBA region Definition Block address (2)

DSW Return Codes

IS.SUC successful completion

IE.UPN an attachment descriptor cannot be allocated

IE.PRI privilege violation

IE.NVR invalid region ID

IE.PNS specified region name does not exist

IE.HWR region had parity error or load failure

IE.ADP part of the DPB or RDB is out of the issuing task’s address
space

IE.SDP DIC or DPB size is invalid

1. If you are a FORTRAN programmer, refer to Section 7.5.1 to determine the bit values represented by the

symbolic names described.

9-14 DIRECTIVE DESCRIPTIONS

CLEF$

9.1.6 CLEF$—Clear Event Flag

The Clear Event Flag directive instructs the system to report an indicated event

flag’s polarity and then clear it.

Fortran Call
CALL CLREF (efn[,ids])

efn event flag number

ids directive status

Macro Call
CLEF$ efn

efn event flag number

Macro Expansion

CLEFS$ 52.
.BYTE 31.,2
.WORD 52.

Local Symbol Definitions

;CLEF$ MACRO DIC, DPB SIZE=2 WORDS

sEVENT FLAG NUMBER 52.

C.LEEF event flag number (2)

DSW Return Codes

IS.CLR successful completion; flag was already clear

IS.SET successful completion; flag was set

IE.IEF invalid event flag number (EFN<1 or EFN>64)

IE.ADP part of the DPB is out of the issuing task’s address space

IE.SDP

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-15

CLOGS$

9.1.7 CLOG$—Create Logical Name String

The Create Logical Name String directive establishes the relationship between
a logical name string and an equivalence name string. The maximum length for
each string is 255,¢ characters. If you create a logical name string with the same

name as an existing logical name string, the new definition supersedes the old
one.

Fortran Call
CALL CRELOG (mod,itbnum,Ins,Inssz,iens,ienssz,idsw)

mod the modifier of the logical name within a table

itbnum the logical name table number:
user (LT.USR)=2

reserved for future use:

task (LT.TSK)

group (LT.GRP)

system (LT.SYS)
Ins character array containing the logical name string
Inssz size (in bytes) of the logical name string
iens character array containing the equivalence name string
ienssz size (in bytes) of the equivalence name string

idsw integer to receive the Directive Status Word

Macro Cali
CLOG$ mod,tbnum,Ins,Inssz,ens,enssz

mod the modifier of the logical name within a table

tbnum the logical name table number:
user (LT.USR)=2

reserved for future use:

task (LT.TSK)

group (LT.GRP)~

system (LT.SYS)
Ins character array containing the logical name string
Inssz size (in bytes) of the logical name string
iens character array containing the equivalence name string

ienssz size (in bytes) of the equivalence name string

9-16 DIRECTIVE DESCRIPTIONS

Macro Expansion

CLOGS
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
.WORD

MOD, TBNUM,LNS,LNSSZ,ENS,ENSSZ

207.,7 ;CLOG$ MACRO DIC, DPB SIZE = 7 WORDS

0 ; SUBFUNCTION

MOD ;LOGICAL NAME MODIFIER

TBNUM ;LOGICAL NAME TABLE NUMBER

0 ;RESERVED FOR FUTURE USE

LNS ;ADDRESS OF LOGICAL NAME BUFFER

LNSSZ ;BYTE COUNT OF LOGICAL NAME STRING

ENS ;sADDRESS OF EQUIVALENCE NAME BUFFER
ENSSZ ;BYTE COUNT OF EQUIVALENCE NAME STRING

Local Symbol Definitions

C.LENS address of Equivalence name string (2)

C.LESZ byte count of equivalence name string (2)

C.LFUN subfunction (1)

C.LLNS address of logical name string (2)

C.LLSZ byte count of logical name string (2)

C.LMOD logical name modifier (1)

C.LTBL logical table number (1)

DSW Return Codes

IS.SUC successful completion of service

IS.SUP successful completion of service; a new equivalence name
string superseded a previously specified name string

IE.UPN insufficient dynamic storage is available to create the logical
name

IE.IBS the length of the logical or equivalence string is invalid; each
string length must be greater than 0 but not greater than 2554,
characters

IE.ITN invalid table number specified

IE.ADP part of the DPB or user buffer is out of the issuing task’s

IE.SDP

address space, or the user does not have proper access to that

region
DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-17

CMKT$

9.1.8 CMKT$—Cancel Mark Time Requests

The Cancel Mark Time Requests directive instructs the system to cancel a spe-
cific Mark Time Request or all Mark Time requests that have been made by the
issuing task.

Fortran Call
CALL CANMT ([efn][,ids])

efn event flag number

ids directive status

Macro Call
CMKTS$ [efn,ast,err]

err error routine address
efn event flag number

ast mark time AST address

Macro Expansion

CMKTS$ 52.,MRKAST,ERR ;NOTE: THERE ARE TWO IGNORED ARGUMENTS

.BYTE 27.,3 ;CMKT$ MACRO DIC, DPB SIZE=3 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.
.WORD MRKAST ;ADDRESS OF MARK TIME REQUEST AST ROUTINE

Note: The above example will cancel only the Mark Time requests that were
specified with efn 52 or the AST address MRKAST. If no ast or efn parameters
are specified, all Mark Time requests issued by the task are canceled, and the
DPB size will equal 1.

Local Symbol Definitions

C.MKEF event flag number (2)

C.MKAE Mark Time Request AST routine address (2)

DSW Return Codes

IS.SUC successful completion

IE.ADP part of the DPB is out of the issuing task’s address space

|IE.SDP DIC or DPB size is invalid

9-18 DIRECTIVE DESCRIPTIONS

Notes

If neither the efn nor ast parameters are specified, all Mark Time
Requests issued by the task are canceled. In addition, the DPB size will
be one word. (When either the efn and/or ast parameters are specified,
the DPB size will be three words.)

If both efn and ast parameters are specified (and nonzero), only Mark
Time Requests issued by the task specifying either that event flag or
AST address are canceled.

If only one efn or ast parameter is specified (and nonzero), only Mark
Time Requests issued by the task specifying the event flag or AST
address are canceled.

DIRECTIVE DESCRIPTIONS 9-19

CNCT$

9.1.9 CNCT$—Connect

The Connect directive synchronizes the task issuing the directive with the exit
or emit status of another task (offspring) that is already active. Execution of this
directive queues an Offspring Control Block (OCB) to the offspring task, and
increments the issuing task’s rundown count (contained in the issuing task’s
Task Control Block). The rundown count is maintained to indicate the combined
total'number of tasks presently connected as offspring tasks and the total num-
ber of virtual terminals the task has created. The exit AST routine is called when
the offspring exits or emits status with the address of the associated exit status
block on the stack.

Fortran Call

CALL CNCT (rtname,[iefn],[iast],[iesb],[iparm][,ids])

rtname single-precision, floating-point variable containing the offspring
task name in Radix-50 format

iefn event flag to be set when the offspring task exits or emits status

iast name of an AST routine to be called when the offspring task

exits or emits status

Note: Refer to Section 3.4.4 for important guidelines on using Fortran AST
service routines.

iesb name of an 8-word status block to be written when the offspring
task exits or emits status
Word 0 offspring task exit status
Word 1 system abort code
Word 2-7 reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WX8 and the
event flag number in the iefn parameter above.

iparm <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>