
P/OS System Reference Manual

Order No. AA-N620A-TK
Order No. AD-N620A-T1
Order No. ADN620A-T2

October 1983

This manual describes the Professional Operating System (P/OS). It allows
system and application programmers to use the operating system resources
to optimize the performance of applications written for the Professional.

DEVELOPMENT SYSTEM: VAX/VMS V3.2 or later
RSX-11 M V4.1 or later
RSX-11 M-PLUS V2.1 or later
P/OS V1 .7

SOFTWARE: Professional Host Tool Kit V1 .7
PRO/Tool Kit V1 .0

DIGIT AL EQUIPMENT CORPORATION
Maynard. Massachusetts 01754

First Printing, December 1982
Updated, September 1983
Updated, December 1983

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may ap­
pear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for the manufacture or sale of items without written permission.

Copyright © 1982 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS RSTS
DEC PDP RSX
DECmate P/OS Tool Kit
DECsystem-10 PRO/BASIC UNIBUS
DECSYSTEM-20 Professional VAX
DECUS PRO/FMS VMS
DECwriter PRO/RMS VT
DIBOL PROSE Work Processor
mamaama Rainbow

CONTENTS

CHAPTER 1 P/OS SYSTEM OVERVIEW

1.1 WHAT ISP/OS? .. 1-1
1.2 THE APPLICATION ENVIRONMENT .. 1-2
1.3 PHYSICAL, VIRTUAL, AND LOGICAL ADDRESSING 1-3
1.4 APPLICATION DESIGN SUGGESTIONS .. 1-3
1.4.1 Use Cooperating Tasks .. 1-3
1 .4.2 Use Shared libraries .. 1-4
1.4.3 Use Disk-Resident Overlays ... 1-4
1.4.4 Use Memory-Resident Overlays ... 1-4
1.4.5 Use Cluster libraries .. 1-4
1.5 CHECKPOINTING .. 1-5

CHAPTER 2 FILE SYSTEM OVERVIEW

2.1 WHAT IS RMS? ... 2-1
2.1.1 Data Storage ... 2-1
2.1.2 File Structure ... 2-3
2.1.2.1 Record Formats .. 2-3
2.1.2.2 File Organizations ... 2-3
2.1.2.3 Access Modes .. 2-4
2.2 ASSOCIATED DOCUMENTS .. 2-5

CHAPTER 3 USING SYSTEM DIRECTIVES

3.1
3.2
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.1.3
3.4.1.4
3.4.2
3.4.3
3.4.4
3.5
3.5.1
3.6
3.7
3.7.1
3.7.2

DIRECTIVE PROCESSING .. 3-2
ERROR RETURNS .. 3-3
USING THE DIRECTIVE MACROS ... 3-4

Macro Name Conventions .. 3-6
$ Form ... 3-6
$C Form .. 3-7
$S Form .. 3-7

DIR$ Macro ... 3-8
Optional Error Routine Address ... 3-8
Symbolic Offsets ... 3-8
Examples of Macro Calls .. 3-9

FORTRAN SUBROUTINES ... 3-10
Using Subroutines ... 3-10

Optional Arguments .. 3-11
Task Names .. 3-11
Integer Arguments .. 3-11
GET ADA Subroutine .. 3-12

The Subroutine Calls .. 3-12
Error Conditions .. 3-15
AST Service Routines ... 3-15

TASK STATES ... 3-16
Task State Transitions .. 3-17

DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS 3-18
DIRECTIVE CATEGORIES .. 3-19

Task Execution Control Directives ... 3-19
Task Status Control Directives ... 3-20

iii

3. 7 .3 Informational Directives .. 3-20
3. 7 .4 Event-Associated Directives ... 3-20
3. 7 .5 Trap-Associated Directives ... 3-22
3. 7 .6 1/0- and Intertask Communications-Related Directives 3-22
3. 7. 7 Memory Management Directives .. 3-22
3.7.8 Parent/Offspring Tasking Directives .. 3-22
3.8 DIRECTIVE CONVENTIONS .. 3-24

CHAPTER 4 LOGICAL NAMES

4.1 LOGICAL NAMES AND EQUIVALENCE NAMES 4-1
4.1.1 The logical Name Tabie .. 4-1
4.1.2 Duplicate Logical Name .. 4-2
4.2 RMS TRANSLATION OF LOGICAL NAMES 4-2
4.2.1 RMS and Default Directories .. 4-2
4.3 FILES-11 ACP USE OF LOGICAL NAMES .. 4-3
4.4 LOGICAL NAME CREATION .. 4-3
4.5 LOGICAL NAME TR/1,NSLAT!ON .. 4-3
4.6 LOGICAL NAME DELETION ... 4-3
4.7 SETTING UP A DEFAULT DIRECTORY STRING 4-4
4.8 RETRIEVING A DEFAUl T DIRECTORY STRING 4-5

CHAPTER 5 SIGNIFICANT EVENTS, EVENT FLAGS,
SYSTEM TRAPS, AND STOP-BIT
SYNCHRONIZATION

5.1 SIGNIFICANT EVENTS .. 5-1
5.2 EVENT FLAGS , ... 5-2
5.3 SYSTEM TRAPS .. 5-4
5.3.1 Synchronous System Traps (SSTs) ... 5-4
5.3.2 SST Service Routines : ... 5-5
5.3.3 Asynchronous System Traps (ASTs) ... 5-6
5.3.4 AST Service Routines , ... 5-7
5.4 STOP-BIT SYNCHRONIZATION ... 5-10

CHAPTER 6 PARENT/OFFSPRING TASKING

6.1 DIRECTIVE SUMMARY......... . .. 6-1
6.1.1 Parent/Offspring Tasking Directives .. 6-1
6.1.2 Task Communication Directives ... 6-2
6.2 CONNECTING AND PASSING STATUS .. 6-3

CHAPTER 7 MEMORY MANAGEMENT DIRECTIVES

7.1 ADDRESSING CAPABILITY OF A SYSTEM TASK 7-1
7.1.1 Address Mapping , ... 7-2
7 .1.2 Virtual and Logical Address Space7 -2
7.2 VIRTUAL ADDRESS WINDOWS ... 7-2
7.3 REGIONS : ... 7-3
7.3.1 Shared Regions ... 7-7
7.3.2 Attaching to Regions ... 7-7
7.3.3 Region Protection .. 7-7
7.4 DIRECTIVE SUMMARY ... 7-8
7 .4.1 Create Region Directive (CRRG$) .. 7-8

iv

7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.2
7.5.2.1
7.5.2.2
7.5.3
7.6

Attach Region Directive (ATRG$) ... 7-8
Detach Region Directive (DTRG$) .. 7-8
Create Address Window Directive (CRAW$) 7-8
Eliminate Address Window Directive (ELAW$) 7-8
Map Address Window Directive (MAP$) 7-9
Unmap Address Window Directive (UMAP$) 7-9
Send By Reference Directive (SREF$) ... 7-9
Receive By Reference Directive (RAEF$) 7-9
Get Mapping Context Directive (GMCX$) 7-9
Get Region Parameters Directive (GREG$) 7-9

USER DATA STRUCTURES ... 7-9
Region Definition Block (ROB) ... 7-1 O

Using Macros to Generate an ROB 7-12
Using Fortran to Generate an RDB 7-13

Window Definition Block (WDB .. 7-15
Using Macros to Generate a WDB 7-16
Using Fortran to Generate a WDB 7-17

Assigned Values or Settings .. 7-18
PRIVILEGED TASKS ... 7-19

CHAPTER 8 CALLABLE SYSTEM ROUTINES

8.1 GENERAL CONVENTIONS FOR ALL CALLABLE SYSTEM
ROUTINES ... 8-2

8.1 .1 PDP-11 RS Calling Sequence ... 8-2
8.1.2 Conventions for Callable System Services 8-3
8.1.3 Status Control Block Format.. .. 8-3
8.2 PROA TR ... 8-4
8.2.1 Status Codes Returned by PROATR ... 8-6
8.3 PRODIR .. 8-6
8.3.1 Status Codes Returned by PRO DIR .. 8-7
8.4 PROFBI .. 8-7
8.4.1 Status Codes Returned by PROFBl ... 8-10
8.5 PRO LOG .. 8-11
8.5.1 Creating or Translating a Logical Name 8-12
8.5.2 Deleting a Logical name and Set/Show 8-13
8.5.3 Status Codes Returned by PROLOG ... 8-15
8.6 PROTSK ... 8-16
8.6.1 Install a Task ... 8-16
8.6.2 Remove a Task, Region, or Common 8-18
8.6.3 Fix a Task, Region, or Common in Memory 8-18
8.6.4 Install/Run/Remove an Offspring Task 8-19
8.6.5 Status Codes Returned by PROTSK ... 8-21
8.7 PROVOL ... 8-22
8. 7 .1 Status Codes Returned by PROVOL ... 8-26

CHAPTER 9 DIRECTIVE DESCRIPTIONS

9.1 FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS 9-1
9.1.1 ABRT$-Abort Task ... 9-3
9.1.2 AL TP$-Alter Priority .. 9-5
9.1.3 ALUN$-Assign LUN .. 9-7
9.1.4 ASTX$S-AST Service Exit ($S form recommended) 9-9
9.1.5 ATRG$-Attach Region .. 9-12

v

9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13

9.1.14
9.1.15

9.1.16

9.1.17
9.1.18
9.1.19
9.1.20

9.1.21
9.1.22
9.1.23
9.1.24
9.1.25
9.1.26
9.1.27
9.1.28
9.1.29
9.1.30
9.1.31
9.1.32
9.1.33
9.1.34
9.1.35
9.1.36
9.1.37
9.1.38
9.1.39
9.1.40
9.1.41
9.1.42
9.1.43
9.1.44
9.1.45
9.1.46
9.1.47
9.1.48
9.1.49
9.1.50
9.1.51
9.1.52
9.1.53

CLEF$-Clear Event Flag ... 9-14
CLOG$-Create Logical Name String 9-17
CMKT$-Cancel Mark Time Requests 9-17
CNCT$-Connect. ... 9-19
CRAW$-Create Address Window .. 9-21
CRRG$-Create Region ... 9-25
CSRQ$-Cancel Time Based Initiation Requests 9-28
DECL$S-Declare Significant Event ($S Form
Recommended) ... 9-30
DLOG$-Delete Logical Name ... 9-31
DSAR$S or IHAR$S-Disable (or Inhibit)
AST Recognition ($S Form Recommended) 9-33
DSCP$S-Disable Checkpointing ($S Form
Recommended) ... 9-35
DTRG$-Detach Region ... 9-36
ELAW$-Eliminate Address Window ... 9-38
EMST$-Emit Status .. 9-40
ENAR$S-Enable AST Recognition ($S Form
Recommended) ... 9-42
ENCP$S-Enable Checkpointing ($S Form Recommended) ... 9-43
EXIF$-Exit If .. 9-44
EXIT$S-Task Exit ($S Form Recommended) 9-46
EXST$-Exit With Status ... 9-48
EXTK$-Extend Task ... 9-50
FEAT$-Test for specified system feature 9-52
GDIR$-Get Default Directory ... 9-55
GLUN$-Get LUN Information ... 9-57
GMCR$-Get Command Line .. 9-60
GMCX$-Get Mapping Context ... 9-62
GPRT$-Get Partition Parameters .. 9-65
GREG$-Get Region Parameters .. 9-67
GTIM$-Get Time Parameters ... 9-69
GTSK$-Get Task Parameters .. 9-71
MAP$-Map Address Window ... 9-73
MRKT$-Mark Time ... 9-76
010$-Queue 1/0 Request... .. 9-80
QIOW$-Queue 1/0 Request and Wait 9-83
RCST$-Receive Data Or Stop ... 9-85
RCVD$-Receive Data ... 9-87
RCVX$-Receive Data Or Exit... .. 9-89
RDAF$-Read All Event Flags ... 9-92
RDEF$-Read Event Flag .. 9-93
RDXF$-Read Extended Event Flags 9-94
RPOl$-Request and Pass Offspring Information 9-96
RQST$-Request Task .. 9-99
RREF$-Receive By Reference ... 9-101
RSUM$-Resume Task .. 9-104
RUN$-Run Task ... 9-105
SDAT$-Send Data .. 9-109
SDI R$-Setup Default Directory String 9-111
SDRC$-Send, Request and Connect 9-113
SDRP$-Send Data Request and Pass Offspring
Control Block ... 9-116

vi

9.1.54
9.1.55
9.1.56
9.1.57
9.1.58
9.1.59
9.1.60
9.1.61
9.1.62
9.1.63
9.1.64
9.1.65
9.1.66
9.1.67
9.1.68
9.1.68A
9.1.69
9.1.70
9.1.71
9.1.72
9.1.73
9.1.74
9.1.75
9.1.76
9.1.77

9.1.78
9.1.79

SETF$-Set Event Flag .. 9-119
SFPA$-Specify Floating Point Processor Exception AST 9-120
SPND$S--Suspend ($S Form Recommended) 9-122
SPWN$-Spawn ... 9-123
SRDA$-Specify Receive Data AST.. 9-127
SREX$-Specify Requested Exit AST Directive 9-129
SREF$-Send By Reference ... 9-132
SRRA$-Specify Receive-by-Reference AST 9-135
STIM$-Set System Time .. 9-137
STL0$-Stop For Logical OR Of Event Flags 9-140
STOP$S-Stop ($S Form Recommended) 9-142
STSE$-Stop For Single Event Flag 9-143
SVDB$-Specify SST Vector Table For Debugging Aid 9-144
SVTK$-Specify SST Vector Table For Task 9-146
SWST$-Switch State .. 9-148
TLOG$-Translate Logical Name .. 9-150
UMAP$-Unmap Address Window 9-150.2
USTP$-Unstop Task ... 9-152
VRCD$-Variable Receive Data ... 9-153
VRCS$-Variable Receive Data Or Stop 9-155
VRCX$-Variable Receive Data Or Exit.. 9-157
VSDA$-Variable Send Data ... 9-159
VSRC$-Variable Send, Request and Connect.. 9-161
WIMP$-What's In My Professional .. 9-163
WSIG$-Wait For Significant Event ($S Form
Recommended) ... 9-167
WTL0$-Wait For Logical OR Of Event Flags 9-169
WTSE$-Wait For Single Event Flag 9-171

CHAPTER 10 SYSTEM INPUT/OUTPUT CONVENTIONS

10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6
10.6.1
10.6.2

PHYSICAL, LOGICAL, AND VIRTUAL 1/0 10-2
SUPPORTED DEVICES ... 10-2
LOGICAL UNITS .. 10-3

Logical Unit Number ... 10-3
Logical Unit Table ... 10-3
Changing LUN Assignments ... 10-4

ISSUING AN 1/0 REOUEST .. 10-4

10.6.3
10.6.4
10.6.5
10.6.5.1
10.6.5.2
10.6.6
10.6.7

010 Macro Format .. 10-6
Significant Events .. 10-8
System Traps .. 10-9

DIRECTIVE PARAMETER BLOCKS ... 10-10
1/0-RELATED MACROS .. 10-11

The 010$ Macro: Issuing an 1/0 Request.. 10-12
The OIOW$ Macro: Issuing an 1/0 Request
and Waiting for an Event Flag .. 10-13
The DIR$ Macro: Executing a Directive 10-13
The .MCALL Directive: Retrieving System Macros 10-13
The ALUN$ Macro: Assigning a LUN 10-14

Physical Device Names .. 10-15
Pseudo-Device Names ... 10-15

The GLUN$ Macro: Retrieving LUN lnformation 10-16
The ASTX$S Macro: Terminating AST Service 10-18

vii

10.6.8 The WTSE$ Macro: Waiting for an Event Flag 10-18
10.7 STANDARD 1/0 FUNCTIONS ... 10-19
10.7.1 10.ATT: Attaching to an 1/0 Device .. 10-20
10.7.2 10.DET: Detaching from an 1/0 Device 10-21
10.7.3 10.KIL: Canceling 1/0 Requests ... 10-21
10.7.4 10.RLB: Reading a Logical Block ... 10-22
10.7.5 10.RVB: Reading a Virtual Block .. 10-22
10.7.6 10.WLB: Writing a Logical Block .. 10-22
10.7.7 10.WVB: Writing a Virtual Block ... 10-23
10.8 1/0 COMPLETION .. 10-23
10.9 RETURN CODES ... 10-24
10.9.1 Directive Conditions .. 10-25
10.9.2 1/0 Status Conditions .. 10-26

CHAPTER 11 DISK DRIVERS

11.1 RXSO DESCRIPTION ... 11-1
11.2 ROSO AND RD51 DESCRIPTION .. 11-1
11.3 GET LUN INFORMATION MACRO ... 11-2
11.4 OVERVIEW OF 1/0 OPERATIONS .. 11-2
11.4.1 Physical 1/0 Operations .. 11-3
11.4.2 Logical 1/0 Operations .. 11-3
11.4.3 Virtual 1/0 Operations ... 11-4
11.5 010 MACRO .. 11-4
11.5.1 Standard 010 Functions ... 11-4
11.6 STATUS RETURNS ... 11-6

CHAPTER 12 THE TERMINAL DRIVER

12.1 INTRODUCTION .. 12-1
12.2 GET LUN INFORMATION MACR0 ... 12-2
12.3 010 MACRO .. 12-3
12.3.1 Subfunction Bits .. 12-4
12.3.2 Device-Specific 010 Functions ... 12-5
12.3.2.1 IO.ATA ... 12-7
12.3.2.2 10.ATT!TF.ESO ... 12-8
12.3.2.3 10.CCO .. 12-8
12.3.2.4 SF .GMC ... 12-8
12.3.2.5 10.GTS .. 12-11
12.3.2.6 10.RAL ... 12-12
12.3.2.7 10.RNE .. 12-13
12.3.2.8 10.RPR .. 12-13
12.3.2.9 IO.RPR!TF.BIN .. 12-13
12.3.2.10 IO.RST ... 12-13
12.3.2.11 SF.SMC ... 12-14
12.3.2.12 IO.RTT ... 12-14
12.3.2.13 IO.WAL .. 12-15
12.3.2.14 IO.WBT .. 12-15
12.3.2.15 10.WSD ... 12-15
12.3.2.16 10.RSD .. 12-15
12.4 STATUS RETURNS ... 12-16
12.5 CONTROL CHARACTERS AND SPECIAL KEYS 12-18
12.5.1 Control Characters .. 12-18
12.5.2 INTERRUPT/DO AST lnformation .. 12-19

viii

12.5.3 Special Keys .. 12-20
12.6 ESCAPE SEOUENCES .. 12-21
12.6.1 Definition .. 12-21
12.6.2 Prerequisites .. 12-22
12.6.3 Characteristics ... 12-22
12.6.4 Escape Sequence Syntax Violations .. 12-22
12.6.4.1 DEL(177) .. 12-22
12.6.4.2 Control Characters (0-037) ... 12·22
12.6.4.3 Full Buffer ... 12-22
12.7 VERTICAL FORMAT CONTROL.. ... 12-23
12.8 TYPE-AHEAD BUFFERING ... 12-24
12.9 FULL-DUPLEX OPERATION ... 12-25
12.10 INTERMEDIATE INPUT AND OUTPUT BUFFERING 12-25
12.11 TERMINAL-INDEPENDENT CURSOR CONTROL 12-25
12.12 PROGRAMMING HINTS ... 12-26

CHAPTER 13 THE XK COMMUNICATIONS DRIVER

13.1 INTRODUCTION .. 13-1
13.2 GET LUN INFORMATION MACR0 ... 13-1
13.3 010 MACRO .. 13-2
13.3.1 Device-Specific 010 Functions ... 13-4
13.3.1.1 IC.ANS .. 13-4
13.3.1.2 10.ATA ... 13-4
13.3.1.3 10.BRK .. 13-4
13.3.1.4 IC.CON .. 13-4
13.3.1.5 SF.GMC ... 13-5
13.3.1.6 IO.HNG ... 13-8.1
13.3.1.7 10.LTI .. 13-8.1
13.3.1.8 IO.ORG .. 13-9
13.3.1.9 10.RAL ... 13-9
13.3.1.10 IO.RNE .. 13-9
13.3.1.11 SF.SMC ... 13-9
13.3.1.12 IO.TRM .. 13-9
13.3.1.13 IO.UTl .. 13-9
13.3.1.14 IO.WAL .. 13-9
13.4 STATUS RETURNS ... 13-10
13.5 FULL-DUPLEX OPERATION ... 13-11
13.6 UNSOLICITED EVENT PROCESSING .. 13-11
13.6.1 XTU.Ul ... 13-11
13.7 TIME-OUT .. 13-11
13.7.1 Read requests ... 13-12
13.7.2 IO.CON ... 13-12
13.7.3 10.0RG .. 13-12
13.8 XON/XOFF SUPPORT ... 13-12

APPENDIX A STANDARD ERROR CODES

APPENDIX B SUMMARY OF 1/0 FUNCTIONS

B.1 DISK DRIVER .. 8-1
B.2 TERMINAL DRIVER .. 8-2
8.2.1 Su bf unction Bits for Terminal-Driver Functions 8-2

ix

APPENDIX C 1/0 FUNCTION AND STATUS CODES

C.1 1/0 STATUS CODES .. C-1
C.1.1 1/0 Status Error Codes .. C-2
C.1.2 1/0 Status Success Codes .. C-3
C.2 DIRECTIVE CODES .. C-4
C.2.1 Directive Error Codes .. C-4
C.2.2 Directive Success Codes ... C-4
C.3 1/0 FUNCTION CODES .. C-4
C.3.1 Standard 1/0 Function Codes .. C-4
C.3.2 Specific Terminal 1/0 Function Codes .. C-5
C.3.3 Subfunction Bits ... C-6

APPENDIX D FACILITY AND ERROR CODES

D.1 SUB-FACILITY CODES .. D-1
0.2 FATAL ERROR CODES ... D-2
0.3 BUGCHECK .. D-2

INDEX

FIGURES

3-1 Directive Parameter Block (DPB) Pointer on the Stack 3-4
3-2 Directive Parameter Block (DPB) on the Stack 3-5
7-1 Virtual Address Windows .. 7-4
7 -2 Region Definition Block ... 7 -5
7-3 Mapping Windows to Regions .. 7-6
7-4 Region Definition Block ... 7-11
7-5 Window Definition Block ... 7-14
10-1 010 Directive Parameter Block ... 10-11

TABLES

3-1 Fortran Subroutines and Corresponding Macro Calls 3-13
3-2 Directives Not Available as Subroutines .. 3-15
3-3 System Directives that can be Issued by Nonprivileged Tasks 3-19
3-4 Task Execution Control Directives ... 3-20
3-5 Task Status Control Directives ... 3-21
3-6 Informational Directives ... 3-21
3-7 Event Associated Directives ... 3-21
3-8 Trap Associated Directives ... 3-22
3-9 1/0- and Intertask Communications Related Directives 3-23
3-10 Memory Management Directives .. 3-23
3-11 Parent/offspring Tasking Directives ... 3-24
5-1 Trap Vector Table .. 5-5
6-1 Directive Examples For Intertask Synchronization 6-4
7-1 Bits of the Region Status Word .. 7-11
7-2 ROB Array Format ... 7-14
7-3 WDB Format .. 7-15
7-4 WDB Array Format .. 7-18
8-1 Accessible File Attributes .. 8-5
8-2 PROFBI Status Codes ... 8-10
8-3 PRO LOG status Codes ... 8-16

x

8-4
8-5
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9·9
9-10
9-11
9-12
10-1
10-2
10-3
10-4
10-5
10-6
11-1
11-2
11-3
11-4
12-1
12-2
12-3
12-4
12-5

12-6

12-7

12-8

12-9
12-10
12-11
12-12
13-1
13-2
13-3

13-4
13-5
13-6
13-7

PROTSK Status Codes ... 8-21
PROVOL Status Codes ... 8-26
Region Definition Block Parameters ... 9-13
Window Definition Block Parameters ... 9-22
Region Definition Block Parameters ... 9-26
Region Definition Block Parameters ... 9-37
Window Definition Block Parameters ... 9-38
System Feature Symbols .. 9-53
Window Definition Block Parameters ... 9-63
Window Definition Block Parameters ... 9-7 4
Window Definition Block Parameters ... 9-102
Window Definition Block Parameters ... 9-133
Window Definition Block Parameters .. 9-150.2
The Configuration Table Output Buffer Format.. 9-165
Physical Device Names ... 10-15
Pseudo Device Names .. 10-15
Get LUN information ... 10-17
Binary Status Codes ... 10-25
Directive Conditions ... 10-25
1/0 Status Conditions .. 10-27
Standard Disk Devices .. 11-1
Buffer Get LUN Information for Disks .. 11-2
Standard 010 Functions for Disks ... 11-4
Disk Status Returns .. 11-6
Buffer Get LUN Information For Terminals 12-2
Standard and Device-Specific 010 Functions for Terminals 12-3
Definition of Subfunction Bit .. 12-5
Summary of Su bf unction Bits ... 12-6
Driver-Terminal Characteristics
for SF.GMC and SF.SMC Functions .. 12-9
TC.TIP (Terminal Type) Values Set
by SF.SMC and Returned by SF.GMC ... 12-10
Receiver and Transmitter Speed
Values (TC.ASP, TC.XSP) ... 12-11
Information Returned by Get
Terminal Support (10.GTS) 010 .. 12-12
Terminal Status Returns ... 12-17
Terminal Control Characters ... 12-19
Special Terminal Keys ... 12-21
Vertical Format Control Characters .. 12-23
Buffer Get LUN Information for XK Driver 13-2
Standard and Device Specific 010 Functions 13-2
XK Driver Characteristics for SF.GMC and SF.SMC
Functions .. 13-5
TC.FSZ and TC.PAR Relationship .. 13-6
Receiver and Transmitter Speed Values (TC.RSP, TC.XSP) 13-7
XK Driver Status Returns .. 13-10
Unsolicited Event Types .. 13-11

xi

PREFACE

MANUAL OBJECTIVES ANO INTENDED AUDIENCE

The P/OS System Reference Manual describes the base system software sup­
porting the Professional 300 Series personal computer. This manual is for ex­
perienced system programmers and applications programmers who use the
P /OS (the Professional Operating System) system resources to optimize the
performance of applications programs written for the Professional. This manual
is especially helpful for programmers who have experience with RSX-11 M­
PLUS systems. Applications programmers using high-level languages (such as
PRO/BASIC-PLUS-2) may also find this manual useful.

STRUCTURE OF THIS DOCUMENT

Chapter 1 is an overview of the P/OS system. It contrasts P/OS features with
RSX-11 M-PLUS features (on which P/OS has been based). The chapter also
provides applications design suggestions.

Chapters 2 through 7 describe the types of system directives, logical names,
and task execution control mechanisms.

Chapter 8 defines the callable system utilities.

Chapter 9 describes all of the system directives in detail.

Chapter 10 is a detailed discussion of input and output conventions.

Chapter 11 describes the P/OS disk drivers (device handlers).

Chapter 12 describes the P /OS terminal driver.

Chapter 13 describes the P/OS communications driver.

The four appendixes cover system error messages and 1/0 function and status
codes.

ASSOCIATED DOCUMENTS

Please refer to the other manuals in the Tool Kit Documentation Set for more
information on developing applications for the Professional.

xiii

CONVENTIONS USED IN THIS DOCUMENT

The following conventions apply in this manual:
Convention Meaning

UPPERCASE Uppercase words and letters, used in examples, indi-
WORDS AND cate that you should type the word or letter exactly as
LETTERS shown.

lowercase words

[optional]

Lowercase words and letters, used in examples, indi­
cate that you are to substitute a word or value.

Square brackets indicate optional entries in a command
line. Note that when an option is entered, the brackets
are not included in the command line. Square brackets
also are a part of the User File Directory (UFO) and User
Identification Code (UIC) syntax. When you use a UFD
or UIC (in a file specification, for example), brackets are
required syntax elements; that is, they do not indicate
optional entries.

A horizontal ellipsis indicates that the preceding item
can be repeated one or more times. For example:

file-spec[, file-spec ...]

A vertical ellipsis indicates that not all of the statements
in an example are shown.

xiv

CHAPTER l
P /OS SYSTEM OVERVIEW

This chapter provides a brief overview of P /OS, contrasts P /OS with RSX-11 M­
PLUS, and provides application design suggestions.

1.1 WHAT ISP/OS?

P/OS is a multitasking, real-time, resource-sharing operating system. It is
based on the RSX-11 M-PLUS operating system. Some RSX-11 M-PLUS soft­
ware features remain the same on P/OS, some have been removed, some have
changed, and some new software features have been added. The principal dif­
ference between P /OS and RSX is that the normal RSX user interface has been
replaced by a menu system. Furthermore, some of the RSX utilities carried over
to P/OS are now program callable routines.

Summary of Differences

RSX-11M-PLUS features not available on P/OS:

Group global event flags

Virtual terminals and batch processing

Alternate CU support

External task headers

MCR and LOAD

VMR

Indirect Command Processor

TDX (catchall)

HELLO, BYE, ACNT

Console Logging

1-1

1-2 P/OS SYSTEM OVERVIEW

Error logging

System accounting

Shadow recording

Queue Manager (QMG)

File Control Services (FCS)

Disk swapping

System generation

System reconfiguration (CON and HRC)

Checkpointing for common regions (CPRC$)

Prototype Task Control Blocks in secondary pool

RSX-11M-PLUS features modified for P/OS:

Terminal driver

SAVE

System utilities (FMT, BAD, INI, INSTALL, FIX, REMOVE, UFD)

GET TIME

New P /OS features:

Logical name directives

Segmented libraries

RMS V2.0

Switch State directive (SWST$)

Automatic volume mounting and dismounting

Enhanced higher-level language interface to the system and the utilities
(POSSUM library).

1.2 THE APPLICATION ENVIRONMENT

A healthy understanding of how the operating system works can help you write
applications programs that maximize the system's resources. A thorough un­
derstanding of the system takes time and experience. However, the following
sections discuss aspects of the system that will help you begin to understand it.

To fully understand the information provided in the following sections, you
should be familiar with the terminology used here (such as common regions and
task regions). Please refer to the RSX-11 M/M-PLUS Task Builder Manual for
detailed explanations of these terms.

P/OS SYSTEM OVERVIEW 1-3

1.3 PHYSICAL, VIRTUAL, AND LOGICAL ADDRESSING

The primary addressing mechanism of the Professional is the 16-bit computer
word. This means that the maximum amount of physical memory that a task
may access at a single point in time is limited to 32K words. However, the pres­
ence of hardware memory management enables a task, using the P/OS mem­
ory management (PLAS) directives, to access more than 32K words.

Physical addresses are single locations in memory. Virtual addresses are the
addresses within a task. Logical addresses are the actual physical memory ad­
dresses that the task can access. Physical and virtual address spaces are con­
tiguous. However, a task's logical address space need not be contiguous in
physical memory. (See Chapter 2 of the RSX-11M/M-PLUS Task Builder Man­
ual for a complete discussion of addressing concepts.)

Using P/OS system features to manipulate logical address space allows you to
make use of more than 32K words of virtual address space. Furthermore, the
multitasking capabilities of P /OS allow you to design applications that can con­
sist of multiple, cooperating, concurrent tasks.

1.4 APPLICATION DESIGN SUGGESTIONS

The following sections list suggestions for designing applications that make the
most efficient use of the P/OS multitasking, resource-sharing capabilities. In
particular, these suggestions may help you to design programs that might oth­
erwise exceed the 32K word virtual address space limitation of a task.

1.4.1 Use Cooperating Tasks

An application is a task or set of tasks that perform a needed function or set of
functions. The application may consist of multiple, cooperating tasks that pass
context (variables) between tasks by using data packets, command lines, and
shared memory. A task may be requested using the following system directives:

O SPWN$-useful when passing a command line and there is a need to
receive status from the cooperating task.

O RPO/$-useful when passing a command line and there is no need to
receive status from the cooperating task.

O SORG$ and VSRC$-useful when passing data packets and there is a
need to receive status from the cooperating task.

D RQST$-useful when simply requesting a task and there is no need to
receive status from the cooperating task.

Additional context may be passed using the SDAT$, VSDA$, and SREF$. See
Chapters 6 and 9 for more details on using these directives.

1-4 P/OS SYSTEM OVERVIEW

1.4.2 Use Shared Libraries

A shared library is a block of code that resides in memory and can be used by
any number of tasks. Since the library routines are available to any task, you
save physical memory by having only one copy of these routines in memory
rather than duplicating them in each task. Furthermore, when the library is not
being accessed (mapped) by any task, the system writes the library out to disk
and removes it from memory to make room for other tasks as necessary. (If the
library is read-only, the system removes the library region from memory but
does not write it out to disk.) Chapter 5 of the RSX-11 M/M-PLUS Task Builder
Manual discusses shared libraries.

1.4.3 Use Disk-Resident Overlays

You can divide an application task into pieces called segments. Several seg­
ments of a task share a given section of the task's virtual address space, but
only one segment may be in memory at one time. Segments are individually
read from the disk into a section of the task's address space as needed, over­
writing a previously read segment. A task constructed of disk-resident overlays
reduces the memory and virtual address space needed by the task. Chapters 3
and 4 of the RSX-11 M/M-PLUS Task Builder Manual discuss segments and
disk-resident overlays in detail.

1.4.4 Use Memory-Resident Overlays

Memory-resident overlays are different from disk-resident overlays in that all of
the task's segments are present in physical memory at the same time. A seg­
ment is mapped into a section of the task's virtual address space as needed by
using memory management directives. As it maps each new segment, the
task's logical address space changes as it maps each new segment into the
task's virtual address space and unmaps the previous segment.

A task constructed of memory-resident overlays reduces the virtual address
space needed by the. task but does not reduce the physical memory require­
ments. However, tasks constructed of memory-resident overlays are faster
since they do not involve disk 1/0. Chapters 3 and 4 of the RSX-11 M/M-PLUS
Task Builder Manual discuss memory-resident overlays in detail.

1.4.5 Use Cluster Libraries

A cluster library is both a function and a structure that allows tasks to dynami­
cally map memory-resident, shared libraries at run time. The advantage of using
cluster libraries is that they save task virtual address space by using the same
section of task virtual address space to map independent memory-resident,
shared libraries. Chapter 5 of the RSX-11 M/M-PLUS Task Builder Manual de­
scribes cluster libraries at length.

P/OS SYSTEM OVERVIEW 1-5

1.5 CHECKPOINTING

Checkpointing is the process of writing a task or common to a file on a disk to
make room for a higher priority task or common competing for memory. Given
that a task or common is capable of being checkpointed, tasks and commons
compete for memory based on their respective priorities. (The priority value of a
common region is equal to one greater than the highest priority task mapped to
that common region.)

Two types of task states affect the possibility that a task or common can be
checkpointed. The first type prevents a checkpoint from occurring at all. The
second type enhances the possibility that a task or common will be check­
pointed.

The following conditions prevent a checkpoint from occurring:

D A noncheckpointable region (specified at task-build time)

D A task region with checkpointing disabled (DSCP$)

D An exiting task

D A region with resident, mapped tasks-that is, all currently mapped
tasks must be checkpointed before the region itself is eligible for check­
pointing

D A region with outstanding l/O

The following conditions increase the possibility of a task or region being
checkpointed:

D A stopped task has an effective memory priority of zero

D A checkpointable task doing synchronous terminal 1/0 (since the task's
terminal 1/0 is buffered and the task is stopped until the 1/0 completes)

D A task which previously had checkpointing disabled can issue the En­
able Checkpointing directive (ENCP$)

CHAPTER 2
FILE SYSTEM OVERVIEW

This chapter is an overview of the file system supported on P/OS. It is intended
as an introduction to the Record Management System (RMS).

2.1 WHAT IS RMS?

RMS (Record Management Services) is a set of routines that allows programs
to store, retrieve, and process (modify and delete) records and files. RMS pro­
vides the connection between a program and the stored data the program re­
quires.

The ability to store and retrieve information and the ability to process that infor­
mation readily and in an orderly fashion requires that the information be stored
in an orderly fashion, such as records. A record is a logical unit of data; that is,
an item or collection of related items.

To keep the records of one type separate from records of another type, records
are organized into files. A file contains groups of records of the same type. One
or more files, depending on the amount of data, contain all the records of a spe­
cific type.

How the data is used helps determine how the records are stored in and re­
trieved from files-that is, access.

2.1.1 Data Storage

The data that your programs use is typically stored on mass storage devices
called disks. P/OS supports both a hard disk and flexible diskettes. The operat­
ing system software controls the disk devices, and allows your programs to ac­
cess the data stored on them. Each device is governed by a device driver-the
software that handles the 1/0.

2-1

2-2 FILE SYSTEM OVERVIEW

The Files-11 Ancillary Control Processor (FCP) is the software that catalogues
and maintains files on the disks and makes 1/0 requests to the device drivers.

The smallest unit of information stored on a disk is a bit. A bit is an area of disk
surface for which the magnetic orientation can be changed to one of two values,
conventionally designated 0 and 1 .

Information is usually grouped into units of 8 bits, called bytes. Bytes are used,
for example, to represent alphanumeric characters in memory with the DEC
Multinational Character Set. Other ways of representing data, particularly nu­
meric data, may require 2 or more bytes. A word, for example, consists of 2
bytes (or 16 bits).

Data is stored hierarchically on a disk, as follows. A sector consists of 512 8-bit
bytes. A track consists of all the sectors at a single radius on one disk platter,
and a cylinder consists of all the tracks at the same radius on all the platters.
The disk drive can access all tracks on a single cylinder without changing posi­
tion, which affects speed of data access.

The FCP imposes a logical structure on each disk. It treats the disk as a single,
logically contiguous, series of data units, called blocks. A block contains 512
8-bit bytes. Logical blocks are numbered sequentially, from 0 to n-1, where n is
the number of blocks on the disk.

On disk, a file is simply a series of blocks, which contain your data organized
into records. The FCP treats each file as a device, ignoring any blocks on the
disk except those in the file being processed.

The blocks in a file, however, need not be logically contiguous. As files are cre­
ated or extended, the file processor may allocate blocks to the file that are not
next to each other on the disk. The blocks in a file, then, are virtually contig­
uous. Virtual blocks are numbered seque'ntially in a file from 1 to n, where n is
the last block in a file.

Note that a Virtual Block Number (VBN) and a Logical Block Number (LBN) refer
to the same physical unit of disk storage space. But although a virtual block
also has an LBN, a logical block has a VBN only if it is allocated to a file.

To access files, the system translates VBNs to LBNs and makes an 1/0 request
to the device driver. The device driver, in turn, translates the LBNs to the phys­
ical location (cylinder, track, and sector) that is to be read or written.

Disk storage allows random access. Also called direct access, this means that a
specific record can be located and retrieved without a search of all the records
that precede it in the file. The time needed to access a record may therefore be
improved.

In addition, disk storage allows access sharing. This means that more than one
task can access a disk at a time, and more than one task can be allowed to open
the same file at one time.

FILE SYSTEM OVERVIEW 2-3

2.1.2 File Structure

The operating system software (that is, the file processor, and device drivers)
handle files. Your programs, however, must be able to access the records
within the files so they can process the data within the records.

RMS allows you to define the internal structure of files (the size and arrange­
ment of records within files) and provides operations that allow your programs
to read and write records in files. RMS thus provides the interface between the
operating system and your programs.

You define the internal structure of a file when you create it by selecting:

D Record format

D File organization

0 Access modes

2.1.2.1 Record Formats -RMS does not handle, or process, data within re­
cords. Your program does that. However, to retrieve and store records for your
program, RMS must know how large that record is. Five record formats, there­
fore, are available so you can define for RMS what size your data records are:

0 Fixed length-every record is the same size.

D Variable length-records can be of different lengths up to a maximum
size that you specify.

0 Variable length with fixed control (VFC)-a fixed-length control area
precedes a variable-length data area in each record.

0 Stream-a record consists of a continuous series of DEC multinational
characters delimited by a special character called a terminator.

O Undefined-a file with undefined records may have either no record for­
mat or may contain records that are not in one of the four formats just
described.

RMS's support of stream and undefined records provides compatibility with
non-RMS files or other DEC systems.

2.1.2.2 File Organizations -The arrangement of records in files directly af­
fects how quickly and easily RMS can access those records. Your selection of
file organization, therefore, should take access mode into consideration. (The
next section introduces access modes.)

RMS makes three file organizations available:

O Sequential-in a sequential file, records are arranged within the file in
the order in which they were written. You can add records to and delete
records from a sequential file only at the physical end of the file.

2-4 FILE SYSTEM OVERVIEW

D Relative-a relative file consists of a series of cells of a fixed size. The
cells are numbered consecutively from 1 ton, where n is the number of
cells in the file. The cell numbers are known as relative record numbers
(RRN).

Each record in the file is stored in a cell and is accessed by the cell's
relative record number. Because records are stored by relative record
number, they may not be stored in the order that they are written.

D Indexed-in an indexed file, records are arranged in ascending order by
key. A key is a data field within the record that RMS uses to determine
the order in which to access the records. This allows a record to be
identified by its contents, not by its position.

When you create an indexed file, you must define one field of the record
as the primary key. A key is defined by its location within the record and
its length. When a record is stored in that file, RMS inserts the record in
order by the value that is to be stored in the primary key field - that is,
after a record with a lower or equal value in the primary key field and
before a record with a higher value in the primary key field.

You can optionally define other record fields as alternate keys. These
keys specify alternate access orders for the retrieved records.

For each field defined as a primary or alternate key, RMS constructs an
index. A primary index contains the values in the primary key fields, the
first alternate index contains the values in the first alternate key field,
and so on. Each index entry points to the one data record associated
with that key value.

Thus, each key value provides a logical access path to locate a specific
record or set of records within a file. The indexes also allow your pro­
gram to retrieve the records in a specific order. RMS stores the indexes
in the file itself.

2.1.2.3 Access Modes -The access modes are the methods that RMS-11
uses to store and retrieve the contents of files. The contents of files can consist
of either records or blocks.

Record access modes

D For sequential access, record storage and retrieval begins at a point in
the file and continues with consecutive records through the file. Your
program issues a series of requests to RMS-11 to successively retrieve
the next record in the file.

D For RFA access, RMS-11 uses the record file address (RFA) as an
identifier to gain direct access to a specific record in a file, without a
successive search of all the records that precede it. The RFA is a
unique record identifier that RMS-11 establishes for every record that it
writes to a disk file. The RFA remains valid for the record. If a record is
deleted, its RFA is not reused.

When RMS-11 stores a record in a file, it establishes the RFA for that
record and returns the RFA information to your program. Your program
can then use the RFA to retrieve the record.

FILE SYSTEM OVERVIEW 2-5

Note that because only RMS-11 can establish the RFA, you cannot
store a record by RFA (that is, specify an RFA for the record).

D For key access, your program specifies an identifier that allows
RMS-11 to gain direct access to a specific record, without a successive
search of all the records that precede it. For sequential files with
fixed-record format or for relative files, this identifier is a relative record
number (RRN). For indexed files, this identifier is a key value.

If the identifier is a relative record number, RMS-11 stores or retrieves
the record in that cell in a relative file, or in that position in a sequential
file.

If the identifier is a key value, RMS-11 stores or retrieves the record
associated with that key value in an indexed file. You can also specify
that all records are to be retrieved in order by primary or alternate key
value.

Block access modes

D For sequential access, RMS-11 stores and retrieves data as a
consecutive series of 512-byte blocks. Your program issues a series of
requests to successively store or retrieve the next block in the file. This
means that RMS-11 can process not only files of any RMS-11
organization but non-RMS-11 files as well.

D For VBN access, your program specifies the virtual block number (VBN)
as the identifier of the block to be accessed. RMS-11 uses the block
number to gain direct access to the specified block, without a search of
all the blocks that precede it.

2.2 ASSOCIATED DOCUMENTS

More detailed information on using RMS is available in the the following RMS
manuals:

RSX-11 M/M-PLUS RMS-11: An Introduction presents the major con­
cepts of RMS-11, including record formats, file organizations, and re­
cord access modes.

The RSX-11 M/M-PLUS RMS-11 User's Guide provides detailed infor­
mation for both MACR0-11 and high-level language programmers on
file and task design using RMS-11.

The RSX-11 M/M-PLUS RMS-11 Macros and Symbols manual is a ref­
erence document for MACR0-11 programmers describing the macros
and symbols that make up the interface between a MACR0-11 program
and the RMS-11 operation routines.

In addition, the RSX-11 M/M-PLUS RMS-11 Mini-Reference Insert is a
quick-reference guide for users who are familiar with RMS-11 and its
documentation. Also, two other manuals are available which are PRO/
RMS-11: An Introduction and PRO/RMS-11 Macro Programmer's
Guide.

CHAPTER 3
USING SYSTEM DIRECTIVES

When a task requires the Executive to perform an operation, the task issues a
system directive to make the request. System directives allow you to control the
execution and interaction of tasks. If you are a MACR0-11 programmer, you
usually issue directives in the form of macros defined in the system macro li­
brary. If you are a Fortran programmer, you must issue system directives in the
form of calls to subroutines contained in the system object module library.
These are the libraries provided in the Tool Kit. Programs written in other
higher-level languages that provide support for the PDP-11 standard RS calling
conventions for Fortran may also make use of these calls (see Section 8.1.1).
Check your language reference manual and user's guide to determine if you are
using that format.

System directives enable tasks to:

D Obtain task and system information

D Measure time intervals

D Perform 1/0 functions

D Spawn other tasks

D Communicate and synchronize with other tasks

D Manipulate a task's logical and virtual address space

D Suspend and resume execution

D Exit

Directives are implemented by the EMT 377 instruction. EMT 0 through EMT
376 are considered to be non-RSX EMT synchronous system traps. They cause
the Executive to abort the task unless the task has specified that it wants to
receive control when such traps occur.

3-1

3-2 USING SYSTEM DIRECTIVES

If you are a MACR0-11 programmer, use the system directive macros supplied
in the system macro library for directive calls, rather than hand-coding calls to
directives. Then you need only reassemble your program to incorporate any
changes in the directive specifications.

Sections 3.1, 3.2, and 3.5 are intended for all users. Section 3.3 specifically de­
scribes the use of macros, while Section 3.4 describes the use of Fortran sub­
routine calls. Programmers using other supported languages should refer to the
appropriate language reference manual supplied by DIGITAL.

3.1 DIRECTIVE PROCESSING

Processing a system directive involves four steps:

1. A user task issues a directive with arguments that are used only by the
Executive. The directive code and parameters that the task supplies to
the system are known as the Directive Parameter Block (DPB). The
DPB can be either on the user task's stack or in a user task's data sec­
tion.

2. The Executive receives an EMT 377 generated by the directive macro
(or a DIR$ macro) or Fortran subroutine.

3. The Executive processes the directive.

4. The Executive returns directive status information to the task's Direc­
tive Status Word (DSW).

Note that the Executive preserves all task registers when a task issues a direc­
tive.

The user task issues an EMT 377 (generated by the directive) together with the
address of a DPB or a DPB itself, on the top of the user task's stack. When the
stack contains a DPB address, the Executive removes the address after pro­
cessing the directive, and the DPB itself remains unchanged. When the stack
contains the actual DPB rather than a DPB address, the Executive removes the
DPB from the stack after processing the directive.

The first word of each DPB contains a Directive Identification Code (DIC) byte
and a DPB size byte. The DIC indicates which directive is to be performed; the
size byte indicates the DPB length in words. The DIC is in the low-order byte of
the word, and the size is in the high-order byte.

The DIC is always an odd-numbered value. This allows the Executive to deter­
mine whether the word on the top of the stack (before EMT 377 was issued)
was the address of the DPS (even-numbered value) or the first word of the DPS
(odd-numbered value).

The Executive normally returns control to the instruction following the EMT. Ex­
ceptions to this are directives that result in an exit from the task that issued
them and an Asynchronous System Trap (AST) exit.

USING SYSTEM DIRECTIVES 3-3

The Executive also clears or sets the Carry bit in the Processor Status Word
(PSW) to indicate acceptance or rejection, respectively, of the directive. The
DSW, addressed symbolically as $DSW1, is set to indicate a more specific
cause for acceptance or rejection of the directive. The DSW usually has a value
of + 1 for acceptance and a range of negative values for rejection. (Exceptions
to this rule are multiple success return codes for directives such as CLEF$,
SETF$, and GPRT$, among others). The Executive associates DSW values with
symbols, using mnemonics that report either successful completion or the
cause of an error (see Section 3.2). The Instrument Society of America (ISA)
Fortran calls, CALL START and CALL WAIT, are exceptions, since ISA requires
positive numeric error codes. See Sections 9.1.36 and 9.1.49 for details; the
specific return values are listed there with each directive.

In the case of successful Exit directives, the Executive does not, of course, re­
turn control to the task. If an Exit directive fails, however, control returns to the
task with an error status in the DSW.

On Exit, the Executive frees task resources as follows:

D Detaches all attached devices.

D Flushes the AST queue and despecifies all specified ASTs.

D Flushes the receive and receive-by-reference queues.

D Flushes the clock queue for outstanding Mark Time requests for the
task.

D Closes all open files (files open for write access are locked).

D Detaches all attached regions except in the case of a fixed task, where
no detaching occurs.1

D Runs down the task's 1/0.

D Disconnects from interrupts.

D Breaks the connection with any offspring tasks.

D Frees the task's memory if the task was not fixed.

If the Executive rejects a directive, it usually does not clear or set any specified
event flag. Thus, the task may wait indefinitely if it indiscriminately executes a
Wait For directive corresponding to a previously issued Mark Time directive that
the Executive has rejected. You should always ensure that a directive has been
completed successfully.

3.2 ERROR RETURNS

As stated earlier, the Executive associates the error codes with mnemonics that
report the cause of the error. In the text of this manual, the mnemonics are used
exclusively. The macro DREAR$, which is expanded in Appendix A, provides a
correspondence between each mnemonic and its numeric value.

1. The Task Builder resolves the address of $DSW.

3-4 USING SYSTEM DIRECTIVES

-Appendix A also gives the meaning of each error code. In addition, each direc­
tive description in Chapter 9 contains specific, directive-related interpretations
of the error codes.

3.3 USING THE DIRECTIVE MACROS

If you are programming in MACR0-11, you must decide how to create the DPB
before you issue a directive. The DPB may either be created on the stack at run
time (see Section 3.3.1.3, which describes the $S form of directive) or created in
a data section at assembly time (see Sections 3.3.1.1 and 3.3.1.2, which de­
scribe the $form and $C form, respectively). If parameters vary and the code
must be reentrant, the DPB must be created on the stack.

Figures 3-1 and 3-2 illustrate the alternative directives and also show the rela­
tionship between the stack pointer and the DPB.

MOV
EMT

ADDR,-(SP)
377

DPB

DPB

SP---• ADDRESS OF DPB SIZE

ITEMS

I DIC

INCREASING
MEMORY
ADDRESSES

Figure 3-1

STACK
GROWTH

l
Directive Parameter Block (DPB) Pointer on the Stack

ZK-305-81

MOV XX,-(SP)

PUSH REQUIRED

DPB ITEMS ON THE
STACK IN

REVERSE ORDER

MOV
.BYTE

EMT

Figure 3-2

(PC)+,-(SP)

DIC,SIZE
377

SP __ ___,_

Directive Parameter Block (DPS) on the Stack

USING SYSTEM DIRECTIVES 3-5

DPB

ITEMS

SIZE 1
STACK

GROWTH

l

DIC
INCREASING
MEMORY

ADDRESSES

ZK-306-81

3-6 USING SYSTEM DIRECTIVES

3.3. 1 Macro Name Conventions

When you are programming in MACR0-11, you use system directives by includ­
ing directive macro calls in your programs. The macros for the system direc­
tives are contained in the System Macro Library (RSXMAC.SML). The .MCALL
assembler directive makes these macros available to a program. The .MCALL
arguments are the names of all the macros used in the program. For example:

CALLIHG DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
AHO ISSUIHG THEM .

. MCALL MRKT$S,WTSE$S

Additional .MCALLs or code

MRKTSS 11,11,12, ,ERR
WTSESS 11

;MARK TIME FOR 1 SECOHD
;WAIT FOR MARK TIME TO COMPLETE

Macro names consist of as many as four letters, followed by a dollar sign ($)
and, optionally, a Coran S. The optional letter or its absence specifies which of
three possible macro expansions the programmer wants to use.

3.3.1.1 $ Form - The $ form is useful for a directive operation that is to be
issued several times from different locations in a non-reentrant program seg­
ment. The $ form is most useful when the directive is issued several times with
varying parameters (one or more but not all parameters change), or in a reent­
rant program section when a directive is issued several times even though the
DPB is not modified. The$ form produces only the directive's DPB and must be
issued from a data section of the program. The code for actually executing a
directive that is in the$ form is produced by a special macro, DIR$ (discussed in
Section 3.3.2).

Because execution of the directive is separate from the creation of the direc­
tive's DPB:

1. A $ form of a given directive needs to be issued only once (to produce
its DPB).

2. A DIR$ macro associated with a given directive can be issued several
times without incurring the cost of generating a DPB each time it is is­
sued.

3. The directive's parameters can be easily accessed and changed by la­
beling the start of the DPB and using the offsets defined by the direc­
tive.

USING SYSTEM DIRECTIVES 3-7

When a program issues the $form of macro call, the parameters required for
DPB construction must be valid expressions for MACR0-11 data storage
instructions (such as .BYTE, .WORD, and .RAD50). You can alter individual pa­
rameters in the DPS. You might do this if you want to use the directive many
times with varying parameters.

3.3.1.2 $C Form -Use the $C form when a directive is to be issued only once.
The $C form eliminates the need to push the DPB (created at assembly time)
onto the stack at run time. Other parts of the program, however, cannot access
the DPB because the DPB address is unknown. Note, in the $C form of the
macro expansion (see Section 3.3.5), that the new value of the assembler's lo­
cation counter redefines the DPB address $$$ each time an additional $C direc­
tive is issued.

The $C form generates a DPB in a separate p-section2 called DPB .. The DPB
is first followed by a return to the user-specified p-section, then by an instruc­
tion to push the DPB address onto the stack, and finally by an EMT 377. To
ensure that the program reenters the correct p-section, you must specify the
p-section name in the argument list immediately following the DPB parameters.
If the argument is not specified, the program reenters the blank (unnamed) p­
section.

The $C form also accepts an optional final argument that specifies the address
of a routine to be called (by a JSR instruction) if an error occurs during the ex­
ecution of the directive (see Section 3.3.2).

When a program issues the $C form of a macro call, the parameters required
for DPB construction must be valid expressions for MACR0-11 data storage
instructions (such as .BYTE, .WORD, and .RAD50). (This is not true for the p­
section argument and the error routine argument, which are not part of the
DPB.)

3.3.1.3 $5 Form -Program segments that need to be reentrant and use DPBs
with dynamic parameters should use the $S form. Only the $S form produces
the DPB at run time. The other two forms produce the DPB at assembly time.

In this form, the macro produces code to push a DPB onto the stack, followed
by an EMT 377. In this case, the parameters must be valid source operands for
MOY-type instructions. For a 2-word Radix-50 name parameter, the argument
must be the address of a 2-word block of memory containing the name. Note
that you should not use the Stack Pointer (or any reference to the Stack Pointer)
to address directive parameters when the $S form is used.3 (In the example in
Section 3.3.1, the error routine argument ERR is a target address for a JSR in­
struction; see Section 3.3.3.)

2. Refer to the PDP-11 Language Reference Manual for a description of p-sections (program sections).

3. Subroutine or macro calls can use the stack for temporary storage, thereby destroying the positional
relationship between SP and the parameters.

3-8 USING SYSTEM DIRECTIVES

Note that in the $S form of the macro, the macro arguments are processed from
right to left. Therefore, when using code of the form:

MACRO$S,,CR4>+,CR4>+

the result may be obscure.

3.3.2 DIR$ Macro

The DIR$ macro allows you to execute a directive with a DPB previously de­
fined by the $ form of a directive macro. This macro pushes the DPB address
onto the stack and issues an EMT 377 instruction.

The DIR$ macro generates an Executive trap using a previously defined DPB:

Macro Call: DIR$ adr,err

Note: adr and err are optional.

adr The address of the DPB. (The address, if specified, must be a
valid source address for a MOV instruction.) If this address is
not specified, the DPB or its address must be on the stack.

err The address of the error return (see Section 3.3.3). If this error
return is not specified, an error simply sets the Carry bit in the
Processor Status Word.

Note: DIR$ is not an Executive directive and does not behave as one. There
are no variations in the spelling of this macro.

3.3.3 Optional Error Routine Address

The $C and $S forms of macro calls and the DIR$ macro can accept an' optional
final argument; note that the DIR$ macro is not an Executive directive (DIR$C
and DIR$S are not valid macro calls). The argument must be a valid assembler
destination operand that specifies the address of a user error routine. For ex­
ample, the DIR$ macro

DIR$ IDPB,ERROR

generates the following code:

MDV #OPB,-CSP>
EMT 377
BCC . +6
JSR PC,ERROR

Since the$ form of a directive macro does not generate any executable code, it
does not accept an error routine address argument.

3.3.4 Symbolic Offsets

Most system directive macro calls generate local symbolic offsets describing
the format of the DPB. The symbols are unique to each directive, and each is
assigned an index value corresponding to the offset of a given DPB element.

USING SYSTEM DIRECTIVES 3-9

Because the offsets are defined symbolically, you can refer to or modify DPS
elements without knowing the offset values. Symbolic offsets also eliminate the
need to rewrite programs if a future release of the system changes a DPS
specification.

All $ and $C forms of macros that generate DBPs longer than one word gener­
ate local offsets. All informational directives including the $S form, generate lo­
cal symbolic offsets for the parameter block returned as well.

If the program uses either the$ or $C form and has defined the symbol $$$GLB
(for example $$$GLB=O), the macro generates the symbolic offsets as global
symbols and does not generate the DPS itself. The purpose of this facility is to
enable the use of a DPS defined in a different module. The symbol $$$GLB has
no effect on the expansion of $S macros.

When using symbolic offsets, you should use the $ form of directives.

3.3.5 Examples of Macro Calls

The following examples show the expansions of the different macro call forms:

1. The$ form generates a DPS only, in the current p-section.

MRKH 1,5,2,MTRAP

generates the following code:

.BYTE 23. '5

.WORD 1

.WORD 5

.WORD 2

.WORD MT RAP

''MARK-TIME'' DIC & DPB SIZE
EVENT FLAG NUMBER
TIME INTERVAL MAGNITUDE
TIME INTERVAL UNIT <SECONDS>
AST ENTRY POINT ADDRESS

2. The $C form generates a DPS in p-section DPS. and generates the
code to issue the directive in the specified section.

MRKHC 1,5,2,MTRAP,PROG1,ERR

generates the following code:

.PSECT DPB.
$$$z • DEFINE TEMPORARY SYMBOL
.BYTE 23. ,s ''MARK-TIME'' DIC & DPB SIZE
.WORD 1 EVENT FLAG NUMBER
.WORD s TIME INTERVAL MAGNITUDE
.WORD 2 TIME INTERVAL UNIT <SECONDS>
.WORD MT RAP AST ENTRY POINT ADDRESS
.PSECT PROG1 RETURN TO THE ORIGINAL PSECT
MDV 1$$$,-CSP> PUSH DPB ADDRESS ON STACK
EMT 377 TRAP TO THE EXECUTIVE
BCC . +6 BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ELSE, CALL ERROR SERVICE ROUTINE

3-10 USING SYSTEM DIRECTIVES

3. The $S form generates code to push the DPB onto the stack and to is­
sue the directive.

MRKHS ""1,15,#2,R2,ERR

generates the following code:

MDV R2,-CSP)
MDV #2,-CSP)
MDV #5,-CSP>
MDV #1,-CSP)
MDV CPC)+,-CSP)
.BYTE 23. '5
EMT 377

BCC • +6

JSR PC,ERR

PUSH AST ENTRY POINT
TIME INTERVAL UNIT (SECONDS>
TIME INTERVAL MAGNITUDE
EVENT FLAG NUMBER
AND ''MARK-TIME'' DIC & DPB SIZE
ON THE STACK
TRAP TD THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

4. The DIR$ macro issues a directive that has a predefined DPB.

DIR$ R1,(R3>

generates the following code:

MDV
EMT
BCC
JSR

R1,-(5P)
377
.+4

PC,CR3)

3.4 FORTRAN SUBROUTINES

DPB ALREADY DEFINED. DPB ADDRESS IN R1.

PUSH DPB ADDRESS ON STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

The system provides a set of Fortran subroutines to perform system directive
operations. In general, one subroutine is available for each directive. (Excep­
tions are the Mark Time and Run directives. The description of Mark Time in­
cludes both CALL MARK and CALL WAIT. The description of Run includes both
CALL RUN and CALL START.)

All the subroutines described in this manual can be called by Fortran programs
compiled by the FORTRAN-77 compiler.

These subroutines can also be called from programs written in the MACR0-1 i
assembly language by using PDP-11 FORTRAN calling sequence conventions.
These conventions are described in your Fortran user's guide.

The directive descriptions in Chapter 9 describe the Fortran subroutine calls, as
well as the macro calls.

3.4.1 Using Subroutines

All the subroutines described in this manual are in the system object module
library. You call these subroutines by including the appropriate CALL statement
in the Fortran program. When the program is linked to form a task, the Task
Builder first checks to see whether each specified subroutine is user defined. If
a subroutine is not user defined, the Task Builder automatically searches for it
in the system object module library. If the subroutine is found, it is included in
the linked task.

USING SYSTEM DIRECTIVES 3-11

3.4.1.1 Optional Arguments -Many of the subroutines described in this man­
ual have optional arguments. In the subroutine descriptions associated with the
directives, optional arguments are designated as such by being enclosed in
square brackets ([]). An argument of this kind can be omitted if the comma that
immediately follows it is retained. If the argument (or string of optional argu­
ments) is last, it can simply be omitted, and no comma need end the argument
list. For example, the format of a call to SUB could be the following:

CALL SUB (AA,[BB],[CC],DD[,[EE][,FF]])

In that event, you may omit the arguments BB, CC, EE, and FF in one of the
following ways:

1. CALL SUB (AA,,,00,,)

2. CALL SUB (AA,,,00)

In some cases, a subroutine will use a default value for an unspecified optional
argument. Such default values are noted in each subroutine description in
Chapter 9.

3.4.1.2 Task Names -In Fortran subroutines, task names may be up to six
characters long. Characters permitted in a task name are the letters A through
Z, the numerals 0 through 9, and the special characters dollar sign ($) and pe­
riod (.). Task names are stored as Radix-50 code, which permits as many as
three characters to be encoded in one word. (Radix-50 is described in detail in
your Fortran user's guide.)

Fortran subroutine calls require that a task name be defined as a 2-word vari­
able or array that contains the task name as Radix-50 code. This variable may
be REAL, INTEGER*4, or an INTEGER*2 array of two elements.

This variable may be defined at program compilation time by a DAT A statement,
which gives the real variable an initial value (a Radix-50 constant).

For example, if a task name CCMF1 is to be used in a system directive call, the
task name could be defined and used as follows:

DATA CCMF1/SRCCMF1/

CALL REQUES CCCMF1>

A program may define task names during execution by using the IRAD50 sub­
routine or the RAD50 function as described in your Fortran user's guide. The
equivalent data format is available for other higher-level languages.

3.4.1.3 Integer Arguments -All the subroutines described in this manual as­
sume that integer arguments are INTEGER*2-type arguments. The
FORTRAN-77 system normally treats an integer variable as one storage word,

3-12 USING SYSTEM DIRECTIVES

provided that its value is within the range -32768 through +32767. However, if
you specify the /14 option switch when compiling a program, ensure that all inte­
ger array arguments used in these subroutines are explicitly specified as type
INTEGER*2.

3.4.1.4 GETADR Subroutine --Some subroutine calls include an argument de­
scribed as an integer array. The integer array contains some values that are the
addresses of other variables or arrays. Since the Fortran language does not
provide a means of assigning such an address as a value, you must use the
GETADR subroutine as follows:

Calling Sequence

CALL GETADR(ipm,[arg1],[arg2J, ... [argn])

ipm An array of dimension n.

arg1 , ... argn Arguments whose addresses are to be inserted in ipm.
Arguments are inserted in the order specified. If a null
argument is specified, then the corresponding entry in ipm
is left unchanged. When the argument is an array name,
the address of the first array element is inserted into ipm.

Example

DIMENSION !BUFC80),!0SB(2),JPARAMC6)

CALL GETADR C!PARAM(1J,!BUFC1>>
IPARAMC2)=80
CALL Q!O (IREAD,LUN, IEFLAG,, IOSB, !PARAM, !DSW)

In this example, CALL GETADR enables you to specify a buffer address in the
CALL 010 directive (see Section 9.1.37).

3.4.2 The Subroutine Calls

Table 3-1 is a list of the Fortran subroutine calls (and corresponding macro
calls) associated with system directives (see Chapter 9 for detailed descrip­
tions).

For some directives, notably Mark Time (CALL MARK), both the standard For­
tran subroutine call and the ISA standard call are provided. Other directives,
however, are not available to Fortran tasks (for example, Specify Floating Point
Exception AST [SFPA$] and Specify SST Vector Table For Task [SVTK$]).

USING SYSTEM DIRECTIVES 3-13

Table 3-1
Fortran Subroutines and Corresponding Macro Calls

Directive Macro Call Fortran Subroutine

Abort Task ABRT$ CALL ABORT

Alter Priority ALTP$ CALLALTPRI

Assign LUN ALUN$ CALLASNLUN

Attach Region ATRG$ CALLATRG

Cancel Time Based Initiation Requests CSRQ$ CALLCANALL

Cancel Mark Time Requests CMKT$ CALLCANMT

Clear Event Flag CLEF$ CALLCLREF

Create Logical Name String CLOG$ CALLCRELOG

Connect CNCT$ CALLCNCT

Create Address Window CRAW$ CALL CRAW

Create Region CRAG$ CALLCRRG

Declare Significant Event DECL$S CALLDECLAR

Disable AST Recognition DSAR$S CALLDSASTR

Disable Checkpointing DSCP$S CALLDISCKP

Detach Region DTRG$ CALL DTRG

Delete Logical Name String DLOG$ CALLDELLOG

Eliminate Address Window ELAW$ CALL ELAW

Emit Status EMST$ CALL EMST

Enable AST Recognition ENAR$S CALLENASTR

Enable Checkpointing ENCP$S CALLENACKP

Exit If EXIF$ CALL EXITIF

Exit With Status EXST$ CALL EXST

Extend Task EXTK$ CALLEXTTSK

Feature Test for Specification FEAT$ CALL FEAT

Get Default Directory String GDIR$ CALLGETDDS

Get LUN Information GLUN$ CALLGETLUN

Get Mapping Context GMCX$ CALLGMCX

Get MCR Command Line GMCR$ CALLGETMCR

Get Partition Parameters GPRT$ CALLGETPAR

Get Region Parameters GREG$ CALLGETREG

Get Task Parameters GTSK$ CALLGETTSK

Get Time Parameters GTIM$ CALLGETTIM

Inhibit AST Recognition IHAR$S CALLINASTR

Map Address Window MAP$ CALL MAP

MarkTime MRKT$ CALL MARK

CALL WAIT (ISA Standard call)

3-14 USING SYSTEM DIRECTIVES

Table 3-1(Cont.)

Directive Macro Cal/ Fortran Subroutine

Queue 1/0 Request 010$ CALLQIO

Queue 1/0 Request And Wait QIOW$ CALLWTQIO

Read All Event Flags ROAF$ RDXF$ CALL READEF (Only a single,
local, or common, event flag can
be read by a Fortran task)

Read Single Event Flag RDEF$ CALL READEF

Receive By Reference RREF$ CALL RREF

Receive Data RCVD$ CALLRECEIV

Receive Data Or Exit RCVX$ CALLRECOEX

Receive Data Or Stop RCST$ CALLRCST

Request and Pass Offspring RP01$ CALLRPOI

Information

Request ROST$ CALLREQUES

Resume RSUM$ CALL RESUME

Run RUN$ CALL RUN

Send By Reference SREF$ CALL SREF

Send Data SDAT$ CALL SEND

Send, Request And Connect SDAC$ CALLSDRC

Send Data Request and Pass OCB SOAP$ CALL SOAP

Set Default Directory String SDIR$ CALLSETDDS

Set Event Flag SETF$ CALLSETEF

Set System Time STIM$ CALLSETTIM

Spawn SPWN$ CALL SPAWN

Specify Requested Exit AST SREX$ CALLSREX

Stop STOP$S CALL STOP

Stop For Logical OR Of Event Flags STLO$ CALLSTLOR

Stop For Single Event Flag STSE$ CALLSTOPFR

Suspend SPND$S CALLSUSPND

Task Exit EXIT$S CALL EXIT

Unmap Address Window UMAP$ CALLUNMAP

Unstop USTP$ CALL USTP

Variable Receive Data VRCD$ CALLVRCD

Variable Receive Data Or Exit VRCX$ CALLVRCX

Variable Receive Data Or Stop VRCS$ CALLVRCS

Variable Send Data VSDA$ CALLVSDA

Variable Send, Request and Connect VSRC$ CALLVSRC

Wait For Single Event Flag WTSE$ CALL WAITFR

Wait For Logical OR Of Event Flags WTLO$ CALLWFLOR

Wait For Significant Event WSIG$S CALLWFSNE

What's In My Professional WIMP$ CALL WIMP

USING SYSTEM DIRECTIVES 3-15

Table 3-2 shows the directives that are not available as Fortran subroutines.

Table 3-2
Directives Not Available as Subroutines

Directive

AST Service Exit

Connect To Interrupt Vector

Specify Floating Point Exception AST

Specify Receive By Reference AST

Specify Receive Data AST

Specify SST Vector Table For
Debugging Aid

3.4.3 Error Conditions

Macro Call

ASTX$S

CINT$

SFPA$

SRRA$

SRDA$

SVOB$

Each subroutine call includes an optional argument that specifies the integer to
receive the Directive Status Word (ids). When you specify this argument, the
subroutine returns a value that indicates whether the directive operation suc­
ceeded or failed. If the directive failed, the value indicates the reason for the
failure. The possible values are the same as those returned to the Directive Sta­
tus Word (DSW) in MACR0-11 programs except for the two ISA calls, CALL
WAIT and CALL START. The ISA calls have positive numeric error codes (see
Sections 9.1.36 and 9.1.49).

3.4.4 AST Service Routines

The following Fortran callable routines provide support for ASTs in Fortran pro­
grams:

CALLCNCT

CALLSDRC

CALL SPAWN

CALLSREX

Whenever you specify a Fortran AST routine to one of the system library rout­
ines listed above, the AST routine is replaced by an internal routine that saves
the general purpose registers and calls the specified Fortran routine using a co­
routine call when the AST occurs. After the Fortran routine completes, by way
of a RETURN statement, the internal routine restores the general purpose reg­
isters and issues an ASTX$ directive.

Use great caution when coding an AST service routine in Fortran. The following
types of Fortran operations may not be performed at AST state:

D Fortran 1/0 of any kind-This includes ENCODE and DECODE state­
ments and internal file 1/0. Fortran 1/0 is not reentrant; therefore the
information in the impure data area may be destroyed.

3-16 USING SYSTEM DIRECTIVES

D Floating-point operations-The floating-point processor's context is
not saved while in AST state. Since the scientific subroutines use
floating-point operations, they may not be called at AST state.

D Traceback information in the generated code-Use of traceback infor­
mation corrupts the error recovery in the Fortran run time library. Any
Fortran modules that wilt be called at AST state must be compiled with­
out traceback. See your Fortran user's guide for more information.

D Virtual array operations-Use of virtual arrays at AST state remaps the
current array such that any operations at non-AST state will not be ex­
ecuted correctly.

D Subprograms-May not be shared between AST processing and nor­
mal task processing

D EXIT or STOP statements with files open-Fortran flushes the task's
buffers, which could be in an intermediate state. Therefore, data might
be lost if any output files are open when the EXIT or STOP is executed.

You can EXIT or STOP at AST state if no output files are open.

Since the message put out by STOP uses a different mechanism from
the normal Fortran 1/0 routines, the act of putting out this message
does not corrupt impure data in the run time system. Therefore, you can
issue a STOP statement at AST state unless there are output files open.

Note also the following:

D Any execution time error at AST state will corrupt the program.

D Use extreme care if the Fortran task is overlayed. Both the interface
routine and the actual code of the Fortran AST routine must be located
in the root segment. Any routines that are called at AST state must also
be in the root segment.

D ASTs from other higher-level languages are not supported at all.

3.5 TASK STATES

The Executive recognizes the existence of a task only after it has been success­
fully installed and has an entry in the System Task Directory (STD). Once a task
is known to the system, it exists in one of two states: dormant or active. Some
system directives cause a task to change from one state to another.

The Executive recognizes a task immediately after it has been installed; how­
ever, the task at that point is dormant. A dormant task has an entry in the STD,
but no request has been made to activate it.

A task is active from the time it is requested until the time it exits. Requesting a
task means issuing the ROST$, RUN$, SPWN$, SDRC$, VSRC$, RPOI$, or
SDRP$ macro. An active task is eligible for scheduling, whereas a dormant task
is not.

USING SYSTEM DIRECTIVES 3-17

The three substates of an active task are as follows:

1. Ready-to-run-A ready-to-run task competes with other tasks for CPU
time on the basis of priority. The highest priority ready-to-run task ob­
tains CPU time and thus becomes the current task.

2. Blocked-A blocked task is unable to compete for CPU time for syn­
chronization reasons or because a needed resource is not available.
Task priority effectively remains unchanged, allowing the task to com­
pete for memory space.

3. Stopped-A stopped task is unable to compete for CPU time because
of pending 1/0 completion, event flag(s) not set, or because the task
stopped itself. When stopped, a task's priority effectively drops to zero
and the task can be checkpointed by any other task, regardless of that
task's priority. If an AST occurs for the stopped task, its normal task
priority is restored only for the duration of the AST routine execution;
once the AST is completed, task priority returns to zero.

3.5.1 Task State Transitions

This section describes the eight task state transitions.

D

D

D

D

D

D

D

Dormant to Active-The following directives cause the Executive to
activate a dormant task:

RUN$

ROST$

SPWN$

SDRC$

VSRC$

RPOI$

SDRP$

Ready-to-Run to Blocked-The following events cause an active,
ready-to-run task to become blocked:

D A SPND$ directive

D An unsatisfied Wait For condition

O Checkpointing of a task out of memory by the Executive

Ready-to-Run to Stopped~ The following events cause an active,
ready-to-run task to become stopped:

D A STOP$S directive is executed, or an RCST$, SDRP$, or VRCS$
directive is issued when no data packet is available.

D An unsatisfied Stop For condition.

D An unsatisfied Wait For condition while the task has outstanding
buffered 1/0.

3-18 USING SYSTEM DIRECTIVES

Blocked to Ready-to-Run-The following events return a blocked task
to the ready-to-run state:

D An RSUM$ directive issued by another task

D A Wait For condition is satisfied

D The Executive reads a checkpointed task into memory

Stopped to Ready-to-Run-The following events return a stopped task
to the ready-to-run state, depending upon how the task became
stopped:

D A task stopped by the STOP$, RCST$, or VRCS$ directive becomes
unstopped by USTP$ directive execution.

D A Wait For condition is satisfied for a task with outstanding buffered
1/0.

D A task stopped for an event flag becomes unstopped when the
specified event flag becomes set.

Active to Dormant-The following events cause an active task to
become dormant:

D An EXIT$S, EXIF$, RCVX$, or VRCX$ directive, or a RREF$ directive
that specifies the exit option

D An ABRT$ directive

D A Synchronous System Trap (SST) for which a task has not specified a
service routine

Blocked to Stopped-The following event causes a task that is blocked
due to an unsatisfied Wait For condition to become stopped:

D The task initiates buffered 1/0 at AST state and then exits from AST
state.

Stopped to Blocked-The following event causes a task that is stopped
due to an unsatisfied Wait For condition and outstanding buffered 1/0 to
return to a blocked state:

D Completion of all outstanding buffered 1/0

3.6 DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS

Nonprivileged tasks cannot issue certain Executive directives, except for those
shown in Table 3-3:

Table 3-3
System Directives That Can Be Issued by Nonprivileged Tasks

Directive Macro Call

Abort Task ABRT$

Alter Priority ALTP$

Cancel Time Based Initiation Requests CSRQ$

Switch State SWST$

3.7 DIRECTIVE CATEGORIES

USING SYSTEM DIRECTIVES 3-19

Comments

A nonprivileged task can only
abort tasks with the same Tl: as
the task issuing the directive.

A nonprivileged task can only
alter iis own priority to values
less ti1an or equal to the task's
installed priority.

Cannot be issued by a
nonprivileged task except for
tasks with the same Tl: as the
issuing task.

Cannot be issued by a
nrnmP11Pn task.

This section groups the directives by function into the
ies:

eight

1 . Task execution control

2. Task status control

3. Informational

4. Event-associated

5. Trap-associated

6. 1/0- and intertask communications-related

7. Memory management

8. Parent/offspring

3.7.1 Task Execution Control Directives

The task execution control directives deai principally with and
tasks. Each of these directives (except Extend resuits in a change of the
task's state (unless the task is already in the state requested). Table 3-4
shows the task execution control directives.

3-20 USING SYSTEM DIRECTIVES

Table 3-4
Task Execution Control Directives

Macro

ABRT$

CSRO$

EXIT$S

EXTK$

ROST$

SPND$S

SWST$

Directive
Name

Abort Task

Cancel Time Based Initiation Requests

Task Exit ($S form recommended)

Extend Task

Request Task

Suspend ($S form recommended)

Switch State

3.7.2 Task Status Control Directives

Two task status control directives alter the checkpointable attribute of a task. A
third directive changes the running priority of an active task. Table 3-5 shows
the task status control directives.

3.7.3 Informational Directives

Several directives provide the issuing task with system information and param­
eters such as the time of day, the task parameters, the console switch settings,
and partition or region parameters. Table 3-6 shows the informational direc­
tives.

3.7.4 Event-Associated Directives

The event and event flag directives provide inter- and intratask synchronization
and signaling and the means to set the system time. You must use these direc­
tives carefully since software faults resulting from erroneous signaling and syn­
chronization are often obscure and difficult to isolate. Table 3-7 shows the
event-associated directives.

3.7.5 Trap-Associated Directives

The trap-associated directives provide trap facilities that allow transfer of con­
trol (software interrupts) to the executing tasks. Table 3-8 shows the trap­
associated directives.

USING SYSTEM DIRECTIVES 3-21

Table 3-5
Task Status Control Directives

Macro

ALTP$

DSCP$S

ENCP$S

Directive
Name

Alter Priority

Disable Checkpointing ($S form recommended)

Enable Checkpointing ($S form recommended)

Table 3-6
Informational Directives

Macro

GPRT$

GREG$

GTIM$

GTSK$

Directive
Name

Get Partition Parameters

Get Region Parameters

Get Time Parameters

Get Task Parameters

Table 3-7
Event-Associated Directives

Macro

CLEF$

CMKT$

DECL$S

EXIF$

MRKT$

RDEF$

SETF$

STIM$

STLO$

STOP$S

STSE$

USTP$

WSIG$S

WTLO$

WTSE$

Directive
Name

Clear Event Flag

Cancel Mark Time Requests

Declare Significant Event ($S form recommended)

Exit If

Mark Time

Read Single Event Flag

Set Event Flag

Set System Time

Stop For Logical 'OR' of Event Flags

Stop ($S form recommended)

Stop For Single Event Flag

Unstop

Wait For Significant Event ($S form recommended)

Wait For Logical OR Of Event Flags

Wait For Single Event Flag

3-22 USING SYSTEM DIRECTIVES

Table 3-8
Trap-Associated Directives

Macro

ASTX$S

DSAR$S

ENAR$S

IHAR$S

SFPA$

SRDA$

SREA$

SREX$

SRRA$

SVOB$

SVTK$

Directive
Name

AST Service Exit ($S form recommended)

Disable AST Recognition ($S form recommended)

Enable AST Recognition ($S form recommended)

Inhibit AST Recognition ($S form recommended)

Specify Floating Point Processor Exception AST

Specify Receive Data AST

Specify Requested Exit AST

Specify Requested Exit AST (extended)

Specify Receive-By-Reference AST

Specify SST Vector Table For Debugging Aid

Specify SST Vector Table For Task

3.7.6 1/0- and Intertask Communications-Related Directives

The 1/0- and intertask communications-related directives allow tasks to access
1/0 devices at the driver interface level or interrupt level, to communicate with
other tasks in the system, and to retrieve the MCR command line used to start
the task. Table 3-9 shows the 1/0- and intertask communications-related direc­
tives.

3.7.7 Memory Management Directives

The memory management directives allow a task to manipulate its virtual and
logical address space, and to set up and control dynamically the window-to­
region mapping assignments. The directives also provide the means by which
tasks can share and pass references to data and routines. Table 3-10 shows
the memory management directives.

3.7.8 Parent/Offspring Tasking Directives

Parent/offspring tasking directives permit tasks to start other tasks, and to con­
nect to other tasks in order to receive status information. Table 3-11 shows the
parent/offspring tasking directives.

USING SYSTEM DIRECTIVES 3-23

Table 3-9
1/0- and Intertask Communications-Related Directives

Directive
Macro Name

ALUN$ Assign LUN

CINT$ Connect To Interrupt Vector

CLOG$ Create Logical Name String

DLOG$ Delete Logical Name String

GDIR$ Get Default Directory String

GLUN$ Get LUN Information

GMCR$ Get MCR Command Line

QIO$ Queue 1/0 Request

QIOW$ Queue 1/0 Request And Wait

RCVD$ Receive Data

RCVX$ Receive Data Or Exit

SDAT$ Send Data

SDIR$ Set Default Directory String

VRCD$ Variable Receive Data

VRCS$ Variable Receive Data Or Stop

VRCX$ Variable Receive Data Or Exit

VSDA$ Variable Send Data

Table 3-10
Memory Management Directives

Directive
Macro Name

ATRG$ Attach Region

CRAW$ Create Address Window

CRRG$ Create Region

DTRG$ Detach Region

ELAW$ Eliminate Address Window

GMCX$ Get Mapping Context

MAP$ Map Address Window

RREF$ Receive By Reference

SREF$ Send By Reference

UMAP$ Unmap Address Window

•

3-24 USING SYSTEM DIRECTIVES

Table 3-11
Parent/Offspring Tasking Directives

Macro

CNCT$

EMST$

EXST$

RPOI$

SORG$

SDRP$

SPWN$

VSRC$

Directive
Name

Connect

Emit Status

Exit With Status

Request and Pass Offspring Information

Send, Request, And Connect

Send Data, Request and Pass OCB

Spawn

Variable Send, Request, and Connect

3.8 DIRECTIVE CONVENTIONS

The following are conventions for using system directives:

1. In MACR0-11 programs, unless a number is followed by a decimal
point(.), the system assumes the number to be octal.

In Fortran programs, use INTEGER*2 type unless the directive descrip­
tion states otherwise.

2. In MACR0-11 programs, task and partition names can be from one
through six characters long and should be represented as two words in
Radix-50 form.

In Fortran programs, specify task and partition names by a variable of
type REAL (single precision) that contains the task or partition name in
Radix-50 form. To establish Radix-50 representation, either use the
DATA statement at compile time, or use the IRAD50 subprogram or
RAD50 function at run time.

3. Device names are two characters long and are represented by one
word of ASCII code.

4. Some directive descriptions state that a certain parameter must be pro­
vided even though the system ignores it. Such parameters are included
for future extension to the system.

5. In the directive descriptions, square brackets ([])enclose optional pa­
rameters or arguments. To omit optional items, either use an empty
(null) field in the parameter list or omit a trailing optional parameter.

6. Logical Unit Numbers (LUNs) can range from 1 through 25510.

7. Event flag numbers range from 1 through 6410. Numbers from 1 through
3210 denote local flags. Numbers from 33 through 64 denote common
flags.

Note that the Executive preserves all task registers when a task issues a direc­
tive.

CHAPTER 4
LOGICAL NAMES

A logical name is a character string used to represent a file or device by other
than its specific physical name. Logical names allow you to write programs that
are independent of the physical devices or files used in input or output oper­
ations. The CLOG$ and DLOG$ directives perform the following logical name
functions:

D Create a logical name string (CLOG$)

D Delete a logical name string (DLOG$)

(See the description of these directives later in this chapter.)

4.1 LOGICAL NAMES AND EQUIVALENCE NAMES

A logical name string always refers to an associated equivalence name string.
The system provides a logical name facility that translates a logical name and
returns its equivalence string. Within the strict context of the logical name fa­
cility, the logical name and its equivalence name are simply byte strings. The
only restrictions to logical name strings and equivalence names strings are:

D The string length must not exceed 25510 bytes.

D There must be an equivalence name string for each logical name string
entered in the logical name table.

4.1.1 The Logical Name Table

The system stores logical name strings and their equivalence strings in a single
logical name table. The logical name table contains names that cooperating
tasks can use. The system uses this table when translating logical names.

4-1

4-2 LOGICAL NAMES

4.1.2 Duplicate Logical Names

The logical name table can contain multiple equivalence strings for the same
logical name. However, each duplicate logical name must be distinguished by a
unique modifier. The mod argument to the CLOG$ directive serves that pur­
pose, allowing a maximum of 25510 duplicate logical names. See the description
of the CLOG$ directive in Chapter 9. You may specify mod argument identifier
values 128 through 25610; identifier values 0 through 127 are reserved for sys­
tem use.

Note: Duplicate logical names are possible only when the user tasks handle
the logical name translations. Within the context of the system software (such
as RMS and volume mounting procedures), the only recognized value for the
mod argument is 0.

If a newly created logical name duplicates an existing logical name having the
same value for the mod argument, the system supersedes the old logical name
definition with the new one.

Any number of logical names can have the same equivalence name. Further­
more, the number of logical names possible is limited only by the amount of
available secondary pool in the system.

4.2 RMS TRANSLATION OF LOGICAL NAMES

As part of 1/0 processing in program execution, RMS translates logical names
and returns their equivalence names. The following conventions govern RMS
translation of logical names:

D RMS translates only those logical names occurring within the context of
a valid device specification.

D RMS continues to do translations of logical name strings until it encoun­
ters an equivalence name string beginning with an underscore(_), until
it fails to translate a string, until it encounters an equivalence name
string not ending with a colon (:), or until it reaches the maximum num­
ber of translations allowed.

D RMS does a maximum of eight translations for a given logical name. If
the number of logical name translations exceeds the maximum, RMS
issues an error.

4.2.1 RMS and Default Directories

The system provides a special case of logical names known as a default direc­
tory. The default directory is a character string stored in the system secondary
pool. If RMS encounters an input string with no specified directory, or if the in­
put string contains a pair of closed empty brackets-the explicit request for the
default directory-RMS returns the default directory string.

LOGICAL NAMES 4-3

4.3 FILES-11 ACP USE OF LOGICAL NAMES

The Files-11 ACP creates logical names when it mounts a file-structured disk.
The ACP creates a logical name using the volume label specified at the time the
volume was initialized. It creates an equivalence string that returns the name of
the physical device on which the volume is mounted.

The ACP also creates a second logical name when mounting a file-structured
disk using the physical device name as the logical name and the volume label as
the equivalence name. For example:

LOGICAL NAME FINANCE: DDnnn:

EQUIVALENCE NAME. +DDnnn: FINANCE:

An application program can reference the disk with the volume label FINANCE
by using the logical name FINANCE:. RMS translates the logical name to deter­
mine the actual physical device. Similarly, an application programmer can use
the logical name scheme in the example to determine the volume that is cur­
rently mounted.

4.4 LOGICAL NAME CREATION

Use the CLOG$ directive to create a logical name string and the associated
equivalence name string (see Chapter 9). The length of each logical name string
can be a maximum of 25510 characters (bytes). Creation of the logical name
string requires the use of the secondary pool which is of limited size.

The following example shows how to create a logical name with the CLOG$ di­
rective.

.MCALL CLOG$,DIR$
LNAME: .ASCII /EXPENSES:/ ;LOGICAL NAME STRING
LNAMSZ• .-LNAME ;SIZE OF LOGICAL NAME STRING
ENAME: .ASCII /FINANCE:/ ;EQUIVALENCE NAME STRING
ENAMSZ• . -ENAM ;DEFINE SIZE OF EQUIVALENCE

;NAME STRING
.EVEN

NAMVOL: CLOG$,LT.USR,LNAME,LNAMSZ~ENAME,ENAMSZ

START: DIR$ INAMVOL ;CREATE LOGICAL NAME

4.5 LOGICAL NAME TRANSLATION

A subroutine called PRO LOG is available in POSSUM that allows the translation
of logical names. This subroutine is callable from MACRO and high-level lan­
guages. (See Chapter 8.)

4.6 LOGICAL NAME DELETION

Use the DLOG$ directive to delete entries from the logical name table. When
you code a call to the DLOG$ directive, you can delete a single logical name
from the table, or you can delete all the logical names in the table.

4-4 LOGICAL NAMES

The following example deletes a single logical name entry from the logical name
table:

NAME:
NAMESZ=

DLOG$,DIRS
/TMONK/

NAMDEL:

.MCALL

.ASCII

.-NAME

.EVEN

DLOG$
DIR$

,LT.USR,NAME,NAMESZ
START: "NAMDEL ;DELETE LOGICAL NAME

On the other hand, the example below deletes all the logical name entries in the
user logical name table:

DELALL:
START:

.MCALL
DLOG$
DIR$

DLOG$,DlR$
,LT.USR
*'DELA LL ;DELETE LOGICAL NAME

See the DLOG$ directive description in Section 9.1.14 for more details on delet­
ing logical names.

4.7 SETTING UP A DEFAULT DIRECTORY STRING

Use the SDIR$ macro to establish a default directory.

The following example shows how to use the SDIR$ macro to set up a default
directory string:

DDSNAM:
DDSSZ=

SE TN AM:
START:

.MCALL

.ASCII

.-DDSNAM
• EVEN

SDIR$
DIR$

SD!RS,D!R$
/£SOLOSJ/

,DDSNAM,DDSSZ
#SETNAM ;ESTABLISH DEFAULT DIRECTORY

LOGICAL NAMES 4-5

4.8 RETRIEVING A DEFAULT DIRECTORY STRING

Use the GDIR$ directive to retrieve a default directory string. The system re­
turns the default directory string to the specified user buffer along with the
length of the string.

The following example shows how to use the GDIR$ macro to retrieve the de­
fault directory string:

.MCALL GDlR$,DlR$
DDSNAM: .BLKB 100 . ; DEF !NE BUFFER FOR DEFAULT

;DIRECTORY STRING
DDSSZ= .-DDSNAM ;CALCULATE BUFFER SIZE

.EVEN
GETNAM: GD!R$,DDSNAM,DDSSZ
START: DIR$ #GETNAM ;GET DEFAULT DIRECTORY STR l NG

CHAPTER 5
SIGNIFICANT EVENTS, EVENT FLAGS,
SYSTEM TRAPS, AND STOP-BIT
SYNCHRONIZATION

This chapter introduces the concept of significant events and describes the
ways in which your code can make use of event flags, synchronous and asyn­
chronous system traps, and stop-bit synchronization.

5.1 SIGNIFICANT EVENTS

A significant event is a change in system status that causes the Executive to
reevaluate the eligibility of all active tasks to run. (For some significant events,
specifically those in which the current task becomes ineligible to run, only those
tasks of lower priority are examined.) A significant event is usually caused (ei­
ther directly or indirectly) by a system directive issued from within a task. (All of
the system directives named in this chapter are described in detail in Chapter 9.)

Significant events include the following:

0 An 1/0 completion

D A task exit

D The execution of a Send Data directive

D The execution of a Send Data, Request and Pass OCB directive

D The execution of a Send, Request, and Connect directive

D The execution of a Send By Reference or a Receive By Reference di­
rective

D The execution of an Alter Priority directive

D The removal of an entry from the clock queue (for example, resulting
from the execution of a Mark Time directive or the issuance of a resche­
duling request)

D The execution of a Declare Significant Event directive

5-1

5-2 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

0 The execution of the round-robin scheduling algorithm at the end of a
round-robin scheduling interval

0 The execution of an Exit, an Exit With Status, or an Emit Status directive

5.2 EVENT FLAGS

Event flags are a means by which tasks recognize specific events. (Tasks also
use Asynchronous System Traps (ASTs) to recognize specific events. See Sec­
tion 5.3.3.) In requesting a system operation (such as an 1/0 transfer), a task
may associate an event flag with the completion of the operation. When the
event occurs, the Executive sets the specified flag. Several examples later in
this section describe how tasks can use event flags to coordinate task execu­
tion.

Sixty-four event flags are available to enable tasks to distinguish one event from
another. Each event flag has a corresponding unique Event Flag Number (EFN).
Numbers 1 through 32 form a group of local flags that are unique to each task
and are set or cleared as a result of that task's operation. t\Jumbers 33 through
64 form a second group of flags that are common to all tasks, hence their name
"common flags." Common flags may be set or cleared as a result of any task's
operation. The last eight flags in each group, locai flags (25 through 32) and
common flags (57 through 64), are reserved for use by the system.

Tasks can use the common flags for intertask communication or their own local
event flags internally. They can set, clear, and test event flags by using Set
Event Flag (SETF$), Clear Event Flag (CLEF$), and Read All Event Flags
(ROAF$) directives.

Caution: Take great care when setting or clearing event flags, especially com­
mon flags. Erroneous or multiple setting and clearing of event flags can result in
obscure software faults. A typical application program can be written without
explicitly accessing or modifying event flags, since many of the directives can
implicitly perform these functions. The Send Data (SDAT$), Mark Time
(MRKT$), and the 1/0 operations directives can all implicitly alter an event flag.

Examples 1 and 2 illustrate the use of common event flags (33 througl1 64) to
synchronize task execution. Examples 3 and 4 illustrate the use of local flags (1
through 32).

Example 1

Task B clears common event flag 35 and then blocks itself by issuing a
Wait For directive that specifies common event flag 35.

Subsequently another task, Task A, specifies event flag 35 in a Set
Event Flag directive to inform Task B that it may proceed. Task A then
issues a Declare Significant Event directive to ensure that the Executive
will schedule Task B.

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-3

Example 2

To synchronize the transmission of data between Tasks A and B, Task
A specifies Task Band common event flag 42 in a Send Data directive.

Task B has specified flag 42 in a Wait For directive. When Task A's
Send Data directive has caused the Executive to set flag 42 and to
cause a significant event, Task B proceeds and issues a Receive Data
directive because its Wait For condition has been satisfied.

Example 3

A task contains a Queue 1/0 Request directive and an associated Wait
For directive; both directives specify the same local event flag. When
the task queues its 1/0 request, the Executive clears the local flag. If the
requested 1/0 is incomplete when the task issues the Wait For directive,
the Executive blocks the task.

When the requested 1/0 is completed, the Executive sets the local flag
and causes a significant event. The task then resumes its execution at
the instruction that follows the Wait For directive. Using the local event
flag in this manner ensures that the task does not manipulate incoming
data until the transfer is complete.

Example4

A task specifies the same local event flag in a Mark Time and an associ­
ated Wait For directive. When the Mark Time directive is issued, the Ex­
ecutive first clears the local flag and subsequently sets it when the
indicated time interval has elapsed.

If the task issues the Wait For directive before the local flag is set, the
Executive blocks the task, which resumes when the flag is set at the
end of the proper time interval. If the flag has been set first, the directive
is a no-op and the task is not blocked.

Specifying an event flag does not mean that a Wait For directive must be issued.
Event flag testing can be performed at any time. The purpose of a Wait For di­
rective is to stop task execution until an indicated event occurs. Hence, it is not
necessary to issue a Wait For directive immediately following a Queue 1/0 Re­
quest directive or a Mark Time directive.

If a task issues a Wait For directive that specifies an event flag that is already
set, the blocking condition is immediately satisfied and the Executive immedi­
ately returns control to the task.

Tasks can issue Stop For directives instead of Wait For directives. When this is
done, an event flag condition not satisfied will result in the task's being stopped
instead of being blocked until the event flag(s) is set. A task that is blocked still
competes for memory resources at its running priority. A task that is stopped
competes for memory resources at priority 0.

5-4 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

The simplest way to test a single event flag is to issue the directive CLEF$ or
SETF$. Both these directives can cause the following return codes:

IS.CLR

IS.SET

Flag was previously clear

Flag was previously set

For example, if a set common event flag indicates the completion of an opera­
tion, a task can issue the CLEF$ directive both to read the event flag and simul­
taneously to reset it for the next operation. If the event flag was previously clear
(the current operation was incomplete), the flag remains clear.

5.3 SYSTEM TRAPS

System traps are transfers of control (also called software interrupts) that pro­
vide tasks with a means of monitoring and reacting to events. The Executive
initiates system traps when certain events occur. The trap transfers control to
the task associated with the event and gives the task the opportunity to service
the event by entering a user-written routine.

There are two kinds of system traps:

1. Synchronous System Traps (SSTs)-SSTs detect events directly asso­
ciated with the execution of program instructions. They are synchro­
nous because they always recur at the same point in the program when
trap-causing instructions occur. For example, an illegal instruction
causes an SST.

2. Asynchronous System Traps (ASTs)-ASTs detect events that occur
asynchronously to the task's execution. That is, the task has no direct
control over the precise time that the event-and therefore the trap
-may occur. For example, the completion of an 1/0 transfer may cause
an AST to occur.

A task that uses the system trap facility issues system directives that establish
entry points for user-written service routines. Entry points for SSTs are speci­
fied in a single table. AST entry points are set by individual directives for each
kind of AST. When a trap condition occurs, the task automatically enters the
appropriate routine (if its entry point has been specified).

5.3.1 Synchronous System Traps (SSTs)

SSTs can detect the execution of:

D Illegal instructions

D Instructions with invalid addresses

D Trap instructions (TRAP, EMT, IOT, BPT)

The user can set up an SST vector table, containing one entry per SST type.
Each entry is the address of an SST routine that services a particular type of
SST (a routine that services illegal instructions, for example). When an SST oc­
curs, the Executive transfers control to the routine for that type of SST. If a cor­
responding routine is not specified in the table, the task is aborted.

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-5

The SST routine enables the user to process the failure and then return to the
interrupted code. Note that if a debugging aid and the user's task both have an
SST vector enabled for a given condition, the debugging aid vector is refe­
renced first to determine the service routine address.

SST routines must always be reentrant if there is a possibility that an SST can
occur within the SST routine itself. Although the Executive initiates SS Ts, the
execution of the related service routines is indistinguishable from the task's
normal execution. An AST or another SST can therefore interrupt an SST rou­
tine.

5.3.2 SST Service Routines

The Executive initiates SST service routines by pushing the task's Processor
Status (PS), Program Counter (PC), and trap-specific parameters onto the
task's stack. After removing the trap-specific parameters, the service routine
returns control to the task by issuing an RTI or RTT instruction. Note that the
task's general purpose registers RO through RS and SP are not saved. If the
SST routine makes use of them, it must save and restore them itself.

To the Executive, SST routine execution is indistinguishable from normal task
execution, so that all directive services are available to an SST routine. An SST
routine can remove the interrupted PS and PC from the stack and transfer con­
trol anywhere in the task; the routine does not have to return control to the point
of interruption. Note that any operations performed by the routine (such as the
modification of registers or the OSW, or the setting or clearing of event flags)
remain in effect when the routine eventually returns control to the task.

A trap vector table within the task contains all the service routine entry points.
You can specify the SST vector table by means of the Specify SST Vector Table
For Task directive or the Specify SST Vector For Debugging Aid directive. The
trap vector table has the following format shown in Table 5-1.

Table 5-1
Trap Vector Table

Associated
Word Offset Vector Trap

0 S.COAD 4 Nonexistent memory error

S.CSGF 250 Memory protect violation

2 S.CBPT 14 T-bit trap or execution of a BPT instruction

3 S.CIOT 20 Execution of an IOT instruction

4 S.CILI 10 Execution of a reserved instruction

5 S.CEMT 30 Execution of a non-RSX EMT instruction

6 S.CTRP 34 Execution of a TRAP instruction

5-6 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

Depending on the reason for the SST, the task's stack may also contain addi­
tional information, as follows:

Memory protect violation (complete stack)

SP+10

SP+06

SP+04

SP+02

SP+OO

PS

PC

Memory protect status register (SRO)

Virtual PC of the faulting instruction (SR2)

Instruction backup register (SR1)1

TRAP instruction or EMT other than 377 (and 376 in the case of
unmapped tasks and mapped privileged tasks) (complete stack)

SP+04

SP+02

SP+OO

PS

PC

Instruction operand (low-order byte) multiplied by 2,
non-sign-extended

All items except the PS and PC must be removed from the stack before the SST
service routine exits.

5.3.3 Asynchronous System Traps (ASTs)

The primary purpose of an AST is to inform the task that a certain event has
occurred (for example, the completion of an 1/0 operation). As soon as the task
has serviced the event, it can return to the interrupted code.

Some directives can specify both an event flag and an AST; with these direc­
tives, ASTs can be used as an alternative to event flags or the two can be used
together. Therefore, you can specify the same AST routine for several direc­
tives, each with a different event flag. Thus, when the Executive passes control
to the AST routine, the event flag can determine the action required.

AST service routines must save and restore all registers used. If the registers
are not restored after an AST has occurred, the task's subsequent execution
may be unpredictable.

Although it cannot distinguish between execution of an SST routine and task
execution, the Executive is aware that a task is executing an AST routine. An
AST routine can be interrupted by an SST routine, but not by another AST rou­
tine.

1. For details of SRO, SR1, and SR2, see the section on the memory management unit in the microcomputers
processor handbook.

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-7

The following notes describe general characteristics and uses of ASTs:

D If an AST occurs while the related task is executing, the task is inter­
rupted so that the AST service routine can be executed.

D If an AST occurs while another AST is being processed, the Executive
queues the latest AST (First-In-First-Out or FIFO). The task then pro­
cesses the next AST in the queue when the current AST service is com­
plete (unless AST recognition was disabled by the AST service routine).

D If an AST suspends a task, the task remains stopped or suspended
after the AST routine is executed, unless the task is explicitly resumed
or unstopped either by the AST service routine itself, or by another task.

D If an AST occurs while the related task is waiting (or stopped) for an
event flag to be set (a Wait For or Stop For directive), the task continues
to wait after execution of the AST service routine unless the event flag
is set upon AST exit.

D If an AST occurs for a checkpointed task, the Executive queues the AST
(FIFO), brings the task into memory, and then activates the AST.

D The Executive allocates the necessary dynamic memory when an AST
is specified. Thus, no AST condition lacks dynamic memory for data
storage when it actually occurs. The AST reuses the storage allocated
for 1/0 and Mark Time directives. Therefore, no additional dynamic stor­
age is required.

D Two directives, Disable AST Recognition ~nd Enable AST Recognition,
allow a program to queue ASTs for subsequent execution during critical
sections of code. (A critical section might be one that accesses data
bases also accessed by AST service routines, for example.) If ASTs oc­
cur while AST recognition is disabled, they are queued (FIFO) and then
processed when AST recognition is enabled.

5.3.4 AST Service Routines

When an AST occurs, the Executive pushes the task's Wait For mask word, the
DSW, the PS, and the PC onto the task's stack. This information saves the state
of the task so that the AST service routine has access to all the available Execu­
tive services. The preserved Wait For mask word allows the AST routines to
establish the conditions necessary to unblock the waiting task. Depending on
the reason for the AST, the stack may also contain additional parameters. Note
that the task's general purpose registers RO through RS and SP are not saved.
If the AST service routine makes use of them, it must save and restore them
itself.

The Wait For mask word comes from the offset T.EFLM in the task's Task Con­
trol Block (TCB). The value of the Wait For mask word and the event flag range
to which it corresponds depend on the last Wait For or Stop For directive issued
by the task. For example, if the last such directive issued was Wait For Single
Event Flag 42, the mask word has a value of 10008 and the event flag range is
from 33 through 48. Bit 0 of the mask word represents flag 33, bit 1 represents
flag 34, and so on.

5-8 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

The Wait For mask word is meaningless if the task has not issued any type of
Wait For or Stop For directive.

Your code should not attempt to modify the Wait For mask while in the AST
routine. For example, putting a zero in the Wait For mask results in an unclea­
rable Wait For state.

After processing an AST, the task must remove the trap-dependent parameters
from its stack; that is, everything from the top of the stack down to, but not in­
cluding, the task's Directive Status Word. It must then issue an AST Service Exit
directive with the stack set as indicated in the description of that directive (see
Section 9.1.4). When the AST service routine exits, it returns control to one of
two places: another AST or the original task.

There are 8 variations on the format of the task's stack, as follows:

1. If a task needs to be notified when a Floating Point Processor exception
trap occurs, it issues a Specify Floating Point Processor Exception AST
directive. If the task specifies this directive, an AST occurs when a
Floating Point Processor exception trap occurs. The stack contains the
following values:

SP+12 Event flag mask word

SP+10 PS of task prior to AST

SP+06 PC of task prior to AST

SP+04 Task's DSW

SP+02 Floating exception code

SP+OO Floating exception address

Note: Refer to the Microcomputers and Memories handbook for a description
of the FPU exception code values.

2. If a task needs to be notified when it receives either a message or a
reference to a common area, it issues either a Specify Receive Data
AST or a Specify Receive By Reference AST directive. An AST occurs
when the message or common reference is sent to the task. The stack
contains the following values:

SP+06 Event flag mask word

SP+04 PS of task prior to AST

SP+02

SP+OO

PC of task prior to AST

Task's DSW

3. When a task queues an 1/0 request and specifies an appropriate AST
service entry point, an AST occurs upon completion of the 1/0 request.
The task's stack contains the following values:

SP+ 10 Event flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-9

SP+02

SP+OO

Task's DSW

Address of 1/0 status block for 1/0 request (or
zero if none was specified)

4. When a task issues a Mark Ti_me directive and specifies an appropriate
AST service entry point, an AST occurs when the indicated time interval
has elapsed. The task's stack contains the following values:

SP+ 10 Event flag mask word

SP+06 PS of task prior to AST

SP+04

SP+02

SP+OO

PC of task prior to AST

Task's DSW

Event flag number (or zero if none was speci­
fied)

5. An offspring task, connected by a Spawn, Connect, or Send, Request
And Connect directive, returns status to the connected (parent) task(s)
upon exiting by the Exit AST. The parent task's stack contains the fol­
lowing values:

SP+10

SP+06

SP+04

SP+02

SP+OO

Event flag mask word

PS of task prior to AST

PC of task prior to AST

Task's DSW

Address of exit status block

6. If a directive aborts a task when the Specify Requested Exit AST
(SREA$) is in effect, the abort AST is entered. The task's stack contains
the following values:

SP+06

SP+04

SP+02

SP+OO

Event flag mask word

PS of task prior to AST

PC of task prior to AST

Task's DSW

7. If a directive aborts a task when the Extended Specify Requested Exit
AST (SREX$) is in effect, the abort AST is entered. The task's stack
contains the following values:

SP+ 12 Event flag mask word

SP+ 10 PS of task prior to AST

SP+06

SP+04

SP+02

SP+OO

PC of task prior to AST

DSW of task prior to AST

Trap dependent parameter

Number of bytes to add to SP to clean stack

5-10 SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION

8. If a task issues a QIO 10.ATA function to the terminal driver, unsolicited
terminal input will cause entry into the AST service routine. Upon entry
into the routine, the task's stack contains the following values:

SP+ 10 Event flag mask word

SP+06 PS of task prior to AST

SP+04

SP+02

SP+OO

PC of task prior to AST

Task's DSW

Unsolicited character in low byte; parameter 2
in the high byte

5.4 STOP-BIT SYNCHRONIZATION

Stop-bit synchronization allows tasks to be checkpointed during terminal (buf­
fered) 1/0 or while waiting for an event to occur (for example, an event flag to be
set or an Unstop directive to be issued). You can control synchronization be­
tween tasks by the setting of the task's Task Control Block (TCB) stop bit.

When the task's stop bit is set, the task is blocked from further execution, its
priority for memory allocation effectively drops to zero, and it may be check­
pointed by any other task in the system, regardless of priority. If checkpointed,
the task remains out of memory until its stop bit is cleared, at which time the
task becomes unstopped, its normal priority for memory allocation becomes re­
stored, and it is considered for memory allocation based on the restored prior­
ity.

If the stopped task receives an AST, the task becomes unstopped until it exits
the AST routine. Memory allocation for the task during the AST routine is based
on the task's priority before the stopped state. Note that a task cannot be
stopped when an AST is in progress, but the AST routine can issue either an
Unstop or Set Event Flag directive to reference the task. This causes the task to
remain unstopped after it issues the AST Service Exit directive.

There are three ways in which a nonprivileged task can be stopped and three
corresponding ways it can become unstopped. Only one method for stopping a
task can be applied at a time.

1. A task is stopped whenever it is in a Wait For state and has outstanding
buffered 1/0. A task is unstopped when the buffered 1/0 is completed or
when the Wait For condition is satisfied.

2. You can stop a task for event flag by issuing the Stop For Single Event
Flag directive or the Stop For Logical OR Of Event Flags directive. In
this case, the task can only be unstopped by setting the specified event
flag.

3. You can stop a task by issuing the Stop or the Receive Data Or Stop
directive. In this case, the task can only be unstopped by issuing the
Unstop directive.

SIGNIFICANT EVENTS, EVENT FLAGS, SYSTEM TRAPS, STOP BIT SYNCHRONIZATION 5-11

You cannot stop a task when an AST is in progress (AST state). Any directives
that can cause a task to become stopped are illegal at the AST state.

When a task is stopped for any reason at the task state, the task can still receive
ASTs. If the task is checkpointed, it becomes eligible for entrance back into
memory when an AST is queued for it. The task retains its normal priority in
memory while it is at the AST state or has ASTs queued. Once the task has
exited the AST routine with no other ASTs queued, the task is again stopped
and effectively has zero priority for memory allocation.

You can use five directives for stop-bit synchronization:

1. Stop-This directive stops the issuing task and cannot be issued at the
AST state.

2. Receive Data Or Stop and Variable Receive Data Or Stop-These di­
rectives attempt to dequeue send data packets from the specified task
(or any task if none is specified). If there is no such packet to be de­
queued, the issuing task is stopped. These directives cannot be issued
at the AST state.

3. Stop For Logical OR Of Event Flags - This directive stops the issuing
task until the specified flags in the specified group of local event flags
become set. If any of the specified event flags are already set, the task
does not become stopped. This directive cannot be issued at the AST
state.

4. Stop For Single Event Flag-This directive stops the issuing task until
the indicated local event flag becomes set. If the specified event flag is
already set, the task does not become stopped. This directive cannot be
issued at the AST state.

5. Unstop-This directive unstops a task that has become stopped by the
Stop or Receive Data Or Stop directive.

CHAPTER 6
PARENT /OFFSPRING TASKING

Parent/offspring tasking allows you to establish and control the relationships
between a governing (parent) task and any subordinate (offspring) tasks. A par­
ent task starts or connects to another an offspring task.

One application for the parent-offspring task relationship is a multitask applica­
tion. In such an application, the main task controlling the application requires
other tasks to perform subfunctions for the application. With parent/offspring
tasking, you can set up the necessary relationships between the parent task
and its offspring to control processing.

Starting (or activating) offspring tasks is called "spawning" Spawning also in­
cludes the ability to establish task communications; a parent task can be noti­
fied when an offspring task exits and can receive status information from the
offspring task.

Status returned from an offspring task to a parent task indicates successful
completion of the offspring task or identifies specific error conditions.

6.1 DIRECTIVE SUMMARY

This section summarizes the directives for parent/offspring tasking and inter­
task communication.

6.1.1 Parent/Offspring Tasking Directives

There are two classes of parent/offspring tasking directives:

1. Spawning-Directives that create a connection between tasks

2. Chaining-Directives that transfer a connection

6-1

6-2 PARENT/OFFSPRING TASKING

Three directives can connect a parent task to an offspring task:

1. Spawn-This directive requests activation of, and connects to, a spe­
cific offspring task.

An offspring task spawned by a parent task can return current status
information or exit status information to a connected parent task.

Spawn directive options include:

Queuing a command line for the offspring task

Establishing the offspring task's Tl: (terminal)

For privileged tasks, designating any terminal as the offspring Tl:

2. Connect-This directive establishes task communications for synchro­
nizing with the exit status or emit status issued by a task that is already
active.

3. Send, Request, and Connect-This directive sends data to the speci­
fied task, requests activation of the task if it is not already active, and
connects to the task.

Two directives support task chaining:

1. Request and Pass Offspring Information-This directive allows an
offspring task to pass its parent connection to another task, thus mak­
ing the new task the offspring of the original parent. The RPOI$ direc­
tive offers all the options of the Spawn directive.

2. Send Data, Request and Pass Offspring Control Block-This directive
sends a data packet for a specified task, passes its parent connection
to that task, and requests the task if it is not already active.

A parent task can use the Spawn and Connect directives to connect to more
than one offspring task. In addition, the parent task can use the directives in any
combination to multiply connect to offspring tasks.

An offspring task can be connected to multiple parent tasks. An appropriate
data structure, the Offspring Control Block (OCB), is produced (in addition to
those already present) each time a parent task connects to the offspring task.

6.1.2 Task Communication Directives

Two directives in an offspring task return status to connected parent tasks:

1. Exit With Status-This directive in an offspring task causes the offspr­
ing task to exit, passing status words to all connected parent tasks con­
nected by a Spawn, Connect, or Send, Request, and Connect directi,ve.

2. Emit Status-This directive causes the offspring task to pass status
words to either the specified connected task or all connected parent
tasks if no task is explicitly specified.

When status is passed to tasks in this manner, the parent task no longer re­
mains connected.

PARENT/OFFSPRING TASKING 6-3

Standard offspring task status values that can be returned to parent tasks are
listed as follows:

EX$WAR 0

EX$SUC 1

EX$ERR 2

EX$SEV 4

Warning Task succeeded, but irregularities are possible

Success Results should be as expected

Error Results are unlikely to be as expected·

Severe Error One or more fatal errors detected, or task
aborted

These symbols are defined in DIRSYM.MAC. They become defined locally
when the EXST$ macro is invoked. However, the exit status may be any 16-bit
value.

6.2 CONNECTING AND PASSING STATUS

Offspring task exit status can be returned to connected (parent) task by issuing
the Exit With Status directive. Offspring tasks can return status to one or more
connected parent tasks at any time by issuing the Emit Status Directive. Note
that only connected parent-offspring tasks can pass status.

The means by which a task connects to another task are indistinguishable once
the connect process is complete. For example, Task A can become connected
to Task Bin one of the following ways:

0 Task A spawned Task B when Task B was inactive.

D Task A connected to Task B when Task B was active.

D Task A issued a Send, Request, And Connect directive to Task B when
Task B was either active or inactive.

D Task A either spawned or connected to Task C, which then chained to
Task B by means of either an RPOI$ directive or an SDRP$ directive.

Regardless of the way in which Task A became connected to Task B, Task B
can pass status information back to Task A, set the event flag specified by Task
A, or cause the AST specified by Task A to occur in any of the following ways.
Note that once offspring task status is returned to one or more parent tasks, the
parent tasks become disconnected.

D Task B issues a successful exit directive. Task A receives a status of
EX$SUC.

o Task Bis aborted. Task A receives a severe error status of EX$SEV.

o Task B issues an Exit With Status directive and return status to Task A
upon completion of Task B.

o Task B issues an Emit Status directive specifying Task A. If Task A is
multiply connected to Task B, the OCBs that contain information about
these multiple connections are stored in a FIFO queue. The first OCB is
used to determine which event flag, AST address, and exit status block
to use.

6-4 PARENT/OFFSPRING TASKING

D Task B issues an Emit Status directive to all connected tasks (no task
name specified).

If a task specifies another task in a Spawn, Connect, or Send, Request, and
Connect directive and then exits, and if status is not yet returned, the OCB re­
presenting this connect remains queued. However, the OCB is marked to indi­
cate that the parent task has exited. When this OCB is subsequently dequeued
by an Emit Status directive, or any type of exit, no action is taken since the par­
ent task has exited. This procedure is followed to help a multiply connected task
to remain synchronized when parent tasks unexpectedly exit.

Examples of using directives for intertask synchronization are provided (macro
call form for directives are shown) in Table 6-1. Task A is the parent task and
Task B is the offspring task.

Table 6-1
Directive Examples for Intertask Synchronization

Task A

SPWN$

CNCT$

SDRC$

$SDRC$,
USTP

SDAT$,
USTP$

SPWN$

TaskB

EXST$

EXST$

RCVX$,
EMST$

RCST$,
EMST$

RCST$

RPO!$
SDRP$

Action

Task A spawns Task B. Upon Task B completion, Task 8 returns
status to Task A.

Task A connects to active Task 8. Upon Task 8 completion, Task
8 returns status to Task A.

Task A sends data to Task B, requests Task B if it is not active,
and connects to Task B. Task B receives the data, does some pro­
cessing based on the data, returns status to Task A (possibly set­
ting an event flag or declaring an AST), and becomes
disconnected from Task A.

Task A sends data to Task 8, requests Task 8 if it is not active,
connects to Task 8, and unstops Task B (if Task B previously
could not dequeue the data packet). Task 8 receives the data,
does some processing based on the data, and returns status to
Task A (possibly setting an event flag or declaring an AST).

Task A queues a data packet for Task 8 and unstops Task B;
Task 8 receives the data.

Task A spawns Task 8. Task B chains to Task C by issuing an
RPOI$ or an SDRP$ directive. Task A is now Task C's parent.
Task A is no longer connected to Task 8.

CHAPTER 7
MEMORY MANAGEMENT DIRECTIVES

Within the framework of memory management directives, this chapter dis­
cusses the concepts of extended logical address space, regions, and virtual ad­
dress windows.

7.1 ADDRESSING CAPABILITY OF A SYSTEM TASK

Without overlays, a task cannot explicitly refer to a location with an address
greater than 177777 (32K words). The 16-bit word size imposes this restriction
on a task's addressing capability. Overlaying a task means that it must first be
divided into segments: a single root segment, which is always in memory; and
any number of overlay segments, which can be loaded into memory as re­
quired. Unless a task uses the memory management directives described in this
chapter, the combined size of the task segments concurrently in memory can­
not exceed 32K words.

When resident task segments cannot exceed a total of 32K words, a task re­
quiring large amounts of data must access that data on disk. Data is disk-based
not only because of limited memory space but also because transmission of
large amounts of data between tasks is only practical by means of disk. An
overlaid task, or a task that needs to access or transfer large amounts of data,
incurs a considerable amount of transfer activity over that caused by the task's
function.

Task execution could obviously be faster if all or a greater portion of the task
were resident in memory at run time. The system includes a group of memory
management directives that provide the task with this capability. The directives
overcome the 32K-word addressing restriction by allowing the task to dynami­
cally change the physical locations that are referred to by a given range of ad­
dresses. With these directives, a task can increase its execution speed by
reducing its disk 1/0 requirements at the expense of increased physical memory
requirements.

7-1

7-2 MEMORY MANAGEMENT DIRECTIVES

7.1.1 Address Mapping

In a mapped system, you do not need to know where a task resides in physical
memory. Mapping, the process of associating task addresses with available
physical memory, is transparent to the user and is accomplished by memory
management hardware. When a task references a location (virtual address), the
memory management hardware determines the physical address in memory.
The memory management directives use the hardware to perform address
mapping at a level that you can see and control.

7. 1.2 Virtual and Logical Address Space

The three concepts defined here (physical address space, logical address
space, and virtual address space) provide a basis for understanding the func­
tions performed by the memory management directives:

D Physical Address Space-A task's physical address space is the entire
set of physical memory addresses.

D Logical Address Space-A task's logical address space is the total
amount of physical memory to which the task has access rights. This
includes various areas called regions (see Section 7.3). Each region oc­
cupies a contiguous block of memory.

D Virtual Address Space-A task's virtual address space corresponds to
the 32K-word address range imposed by the 16-bit word length. The
task can divide its virtual address space into segments called virtual ad­
dress windows (see Section 7.2).

If the capabilities supplied by the memory management directives were not
available, a task's virtual address space and logical address space would di­
rectly correspond; a single virtual address would always point to the same logi­
cal location. Both types of address space would have a maximum size of 32K
words. However, the ability of the memory management directives to assign or
map a range of virtual addresses (a window) to different logical areas (regions)
enables you to extend a task's logical address space beyond 32K words.

7.2 VIRTUAL ADDRESS WINDOWS

To manipulate the mapping of virtual addresses to various logical areas, you
must first divide a task's 32K of virtual address space into segments. These
segments are called virtual address windows. Each window encompasses a
contiguous range of virtual addresses, which must begin on a 4K-word bound­
ary (that is, the first address must be a multiple of 4K). The number of windows
defined by a task can vary from 1 through 23. For all tasks, window 0 is not
available to you. The size of each window can range from a minimum of 32
words through a maximum of 32K words.

MEMORY MANAGEMENT DIRECTIVES 7-3

A task that includes directives to manipulate address windows dynamically
must have window blocks set up in its task header. The Executive uses window
blocks to identify and describe each currently existing window. You can specify
the required number of additional window blocks-that is, the number of win­
dows created by the memory management directives-to be set up by the Task
Builder. (See the RSX-11 M/M-PLUS Task Builder Reference Manual.) The
number of blocks that you specify should equal the maximum number of win­
dows that will exist at any one time when the task is running.

A window's identification is a number from 0 through 1510 for user windows; it is
an index to the window's corresponding window block. The address window
identified by O is the window that maps the task's header and root segment. The
Task Builder automatically creates window 0, which is mapped by the Executive
and cannot be specified in any directive.

Figure 7 -1 shows the virtual address space of a task divided into four address
windows (windows 0, 1, 2, and 3). The shaded areas indicate portions of the
address space that are not included in any window (9K through 12K and 23K
through 24K). Addresses that fall within the ranges corresponding to the
shaded areas cannot be used.

When a task uses memory management directives, the Executive views the re­
lationship between the task's virtual and logical address space in terms of win­
dows and regions. Unless a virtual address is part of an existing address
window, reference to that address will cause an illegal address trap to occur.
Similarly, a window can be mapped only to an area that is all or part of an exist­
ing region within the task's logical address space (see Section 7.3).

Once a task has defined the necessary windows and regions, it can issue mem­
ory management directives to perform operations such as the following:

D Map a window to all or part of a region

0 Unmap a window from one region to map it to another region

O Unmap a window from one part of a region in order to map it to another
part of the same region

7.3 REGIONS

A region is a portion of physical memory to which a task has (or potentially may
have) access. The current window-to-region mapping context determines that
part of a task's logical address space that the task can access at one time. A
task's logical address space can consist of various types of regions:

o Task region-A contiguous block of memory in which the task runs

O Static common region-An area, such as a global common area.

D Dynamic region-A region created dynamically at run time by issuing
the memory management directives

O Shareable region-A read-only portion of multiuser tasks that are in
shareable regions

Note: Static common regions are dynamically loaded whenever needed.

7-4 MEMORY MANAGEMENT DIRECTIVES

VIRTUAL
ADDRESS

SPACE

32K

WINDOW3 3(8K) 28K

mnmrnm 24K

20K

WINDOW2 2 (11K)

16K

12K

SK

WINDOW 1 1 (5K)

4K

WINDOWO 0 (4K)

OK

D = virtual address

window

• =unused virtual

address space ZK-307-81

Figure 7-1
Virtual Address Windows

Tasks refer to a region by means of a region ID returned to the task by the Ex­
ecutive. A region ID from 0 through 23 refers to a task's static attachment. Re­
gion ID 0 always refers to a task's task region. Region ID 1 always refers to the
read-only (pure code) portion of multiuser tasks. All other region IDs are actu­
ally addresses of the attachment descriptor maintained by the Executive in the
system dynamic storage area.

Figure 7-2 shows a sample collection of regions that could make up a task's
logical address space at some given time. The header and root segment are
always part of the task region. Since a region occupies a contiguous area of
memory, each region is shown as a separate block.

Figure 7-3 illustrates a possible mapping relationship between the windows
and regions shown in Figures 7-1 and 7-2.

Figure 7-2
Region Definition Block

MEMORY MANAGEMENT DIRECTIVES 7-5

LOGICAL
ADDRESS

SPACE

ZK-308-81

7-6 MEMORY MANAGEMENT DIRECTIVES

VIRTUAL
ADDRESS

SPACE

32K

WINDOW3 3 (SK) 28K

rnmmmmrn 24K

20K

WINDOW 2 2 (11K)

16K

rn• 12K

BK

WINDOW1 1 (5K)

------- 4K

WINDOW.£1 Ji (-4K)

K

Legend:

D = virtual address
window

• = unused virtual
address space

--- = pointer to area .
mapped by a window

Figure 7-3
Mapping Windows to Regions

11K

LOGICAL
ADDRESS

SPACE

STATIC COMMON

REGION

TASK

~ = mapped areas of
logical address space

D = unmapped portions of
logical address space

ZK-309-81

MEMORY MANAGEMENT DIRECTIVES 7-7

7 .3.1 Shared Regions

Address mapping not only extends a task's logical address space beyond 32K
words, it also allows the space to extend to regions that have not been linked to
the task at task-build time. One result-is an increased potential for task interac­
tion by means of shared regions. For example, a task can create a dynamic re­
gion to accommodate large amounts of data. Any number of tasks can then
access that data by mapping to the region. Another result is the ability of tasks
to use a greater number of common routines. Thus, tasks can map to required
routines at run time, rather than linking to them at task-build time.

7.3.2 Attaching to Regions

Attaching is the process by which a region becomes part of a task's logical ad­
dress space. A task can map only a region that is part of the task's logical ad­
dress space. There are three ways to attach a task to a region:

1. All tasks are automatically attached to regions that are linked to them at
task-build time.

2. A task can issue a directive to attach itself to a named static common
region or a named dynamic region.

3. A task can request the Executive to attach another specified task to any
region within the logical address space of the requesting task.

Attaching identifies a task as a user of a region and prevents the system from
deleting a region until all user tasks have been detached from it. (It should be
noted that fixed tasks do not automatically become detached from regions upon
exiting.)

Note: Each Send By Reference directive issued by a sending task creates a
new attachment descriptor for the receiving task. However, multiple Send By
Reference directives referencing the same region require only one attachment
descriptor. After the receiving task issues a series of Receive By Reference di­
rectives and receives all pending data requests, the task should detach the re­
gion to return the attachment descriptors to the pool.

You can avoid multiple attachment descriptors when sending and receiving data
by reference. Setting the WS.NAT bit in the Window Definition Block (see Sec­
tion 7.5.2) causes the Executive to create a new attachment descriptor for that
region only if necessary (that is, if the task is currently not attached to the re­
gion).

7 .3.3 Region Protection

A task cannot indiscriminately attach to any region. Each region has a protec­
tion mask to prevent unauthorized access. The mask indicates the types of ac­
cess (read, write, extend, delete) allowed for each category of user (system,
owner, group, world). The Executive checks that the requesting task's User
Identification Code (UIC) allows it to make the attempted access. The attempt
fails if the protection mask denies that task the access it wants.

7-8 MEMORY MANAGEMENT DIRECTIVES

To determine when tasks may add to their logical address space by attaching
regions, the following points must be considered (note that all considerations
presume there is no protection violation):

D Any task can attach to a named dynamic region, provided the task
knows the name. In the case of an unnamed dynamic region, a task can
attach to the region only after receiving a Send By Reference directive
from the task that created the region.

D Any task can issue a Send By Reference directive to attach another
task to any region. The task region itself may not be one of the regions
involved. The reference sent includes the access rights with which the
receiving task attaches to the region. The sending task can only grant
access rights that it has itself.

D Any task can map to a named static common region.

7.4 DIRECTIVE SUMMARY

This section briefly describes the function of each memory management direc­
tive. Chapter 9 defines all the directives in detail.

7 .4.1 Create Region Directive (CRRG$)

The Create Region directive creates a dynamic region in a designated system­
controlled partition and optionally attaches the issuing task to it.

7 .4.2 Attach Region Directive (ATRG$)

The Attach Region directive attaches the issuing task to a static common region
or to a named dynamic region.

7 .4.3 Detach Region Directive (DTRG$)

The Detach Region directive detaches the issuing task from a specified region.
Any of the task's address windows that are mapped to the region are automati­
cally unmapped.

7 .4.4 Create Address Window Directive (CRAW$)

The Create Address Window directive creates an address window, establishes
its virtual address base and size, and optionally maps the window. Any other
windows that overlap with the range of addresses for the new window are first
unmapped and then eliminated.

7.4.5 Eliminate Address Window Directive (ELAW$)

The Eliminate Address Window directive eliminates an existing address win­
dow; l.mmapping it first if necessary.

MEMORY MANAGEMENT DIRECTIVES 7-9

7.4.6 Map Address Window Directive (MAP$}

The Map Address Window directive maps an existing window to an attached
region. The mapping begins at a specified offset from the start of the region and
goes to a specified length. If the window is already mapped elsewhere, the Ex­
ecutive unmaps it before carrying out the map assignment described in the di­
rective.

7.4.7 Unmap Address Window Directive (UMAP$)

The Unmap Address Window directive unmaps a specified window. After the
window is unmapped, its virtual address range cannot be referenced until the
task issues another mapping directive.

7.4.8 Send By Reference Directive (SREF$)

The Send By Reference directive inserts a packet containing a reference to a
region into the receive queue of a specified task. The receiver task is automati­
cally attached to the region referred to.

7.4.9 Receive By Reference Directive (RREF$)

The Receive By Reference directive requests the Executive first to select the
next packet from the receive-by-reference queue of the issuing task, and then
to make the information in the packet available to the task. Optionally the direc­
tive can map a window to the referenced region or cause the task to exit if the
queue does not contain a receive-by-reference packet.

7.4.10 Get Mapping Context Directive (GMCX$)

The Get Mapping Context directive causes the Executive to return to the issuing
task a description of the current window-to-region mapping assignments. The
description is in a form that enables the user to restore the mapping context
through a series of Create Address Window directives.

7.4.11 Get Region Parameters Directive (GREG$)

The Get Region Parameters directive causes the Executive to supply the
issuing task with information about either its task region (if no region ID is given)
or an explicitly specified region.

7.5 USER DATA STRUCTURES

Most memory management directives are individually capable of performing a
number of separate actions. For example, a single Create Address Window di­
rective can unmap and eliminate as many as seven conflicting address win­
dows, create a new window, and map the new window to a specified region.

7-10 MEMORY MANAGEMENT DIRECTIVES

The complexity of the directives requires a special means of communication be­
tween the user task and the Executive. The communication is achieved through
data structures that:

D Allow the task to specify which directive options it wants the Executive
to perform

D Permit the Executive to provide the task with details about the outcome
of requested actions

There are two types of user data structures that correspond to the two key ele­
ments (regions and address windows) manipulated by the directives. The struc­
tures are called:

The Region Definition Block (ROB)

The Window Definition Block (WDB)

Every memory management directive, except Get Region Parameters, uses one
of these structures as its communications area between the task and the Ex­
ecutive. Each directive issued includes in the DPB a pointer to the appropriate
definition block. The task assigns symbolic address offset values that point to
locations within an ROB or a WOB. The task can change the contents of these
locations to define or modify the directive operation. After the Executive has
carried out the specified operation, it assigns values to various locations within
the block to describe the actions taken and to provide the task with information
useful for subsequent operations.

7.5.1 Region Definition Block (ROB)

Figure 7-4 illustrates the format of an ROB. In addition to the symbolic offsets
defined in the diagram, the region status word R.GSTS contains defined bits
that may be set or cleared by the Executive or the task. Table 7-1 shows the
bits and their definitions.

These symbols are defined by the ROBOF$ macro, as described in Section
7.5.1.1.

The three memory management directives that require a pointer to an RDS are:

Create Region (CRRG$)

Attach Region (A TRG$)

Detach Region (DTRG$)

When a task issues one of these directives, the Executive clears the four high­
order bits in the region status word of the appropriate ROB. After completing
the directive operation, the Executive sets the RS.CRR or RS.UNM bit to indi­
cate to the task what actions were taken. The Executive never modifies the
other bits.

Array Symbolic
Element Offset

irdb (1) A.GIO

irdb (2) R.GSIZ

irdb (3)

R.GNAM

irdb (4)

irdb (5)

A.GPAR

irdb (6)

irdb (7) R.GSTS

irdb (8) R.GPRO

Figure 7-4
Region Definition Block

Table 7-1
Bits of the Region Status Word

Bits

RS.CRR=100000

RS.UNM=40000

RS.MDL=200

RS.NDL=100

RS.ATT=40

RS.NEX=20

RS.DEL=10

RS.EXT=4

RS.WRT=2

RS.RED=1

MEMORY MANAGEMENT DIRECTIVES 7-11

Block Format

REGION ID

SIZE OF REGION (32W BLOCKS)

NAME OF REGION (RAD50)

REGION'S MAIN PARTITION NAME (RAD50)

REGION STATUS WORD

REGION PROTECTION WORD

Definition

Region was successfully created.

At least one window was unmapped on a detach.

-

-

Byte
Offset

0

2

4

6

10

12

14

16

ZK-310-81

Mark region for deletion on last detach. When a region is created
by a CRRG$ directive, the region is normally marked for deletion
on last detach. However, if RS.NOL is set when the CRRG$ direc­
tive is executed, the region is not marked for deletion. Subsequent
execution of a DTRG$ directive with RS.MDL set marks the region
for deletion.

Created region is not to be marked for deletion on last detach.

Attach to created region.

Created region is not extendable.

Delete access desired on attach.

Extend access desired on attach.

Write access desired on attach.

Read access desired on attach.

7-12 MEMORY MANAGEMENT DIRECTIVES

7.5.1.1 Using Macros to Generate an ROB -The system provides two
macros, RDBDF$ and RDBBK$, to generate and define an RDB. RDBDF$ de­
fines the offsets and status word bits for a region definition block; RDBBK$
then creates the actual region definition block.

The format of RDBDF$ is:

RDBDF$

Since RDBBK$ automatically invokes RDBDF$, you need specify only RDBBK$
in a module that creates an RDS. The format of the call to RDBBK$ is:

RDBBK$ siz,nam,par,sts,pro

siz The region size in 32-word blocks.

nam The region name (RAD50).

par The name of the partition in which to create the region (RAD50).

sts Bit definitions of the region status word.

pro The region's default protection word.

The sts argument sets specified bits in the status word R.GSTS. The argument
normally has the following format:

<bit1 [! ... ! bitn]>

bit A defined bit to be set.

The argument pro is an octal number. The 16-bit binary equivalent specifies the
region's default protection as follows:

BITS 15 12 11 8 7 4 3 0

I WORLD GROUP OWNER I SYSTEM I

Each of these four categories has four bits, with each bit representing a type of
access:

BITS 3 2 0

DELETE I EXTEND WRITE READ

MEMORY MANAGEMENT DIRECTIVES 7-13

A bit value of 0 indicates that the specified type of access is to be allowed; a bit
value of 1 indicates that the specified type of access is to be denied.

The macro call

RDBBK$
102.,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT!RS.RED>,167000

expands to:

.WORD 0

.WORD 102 .

. RADSO /ALPHA/

. RADSO /GEti/

.WORD 0

.WORD RS.NDL!RS.ATT!RS.WRT!RS.RED

.WORD 167000

If a Create Region directive pointed to the RDB defined by this expanded macro
call, the Executive would create a region 10210 32-word blocks in length, named
ALPHA, in a partition named GEN. The defined bits specified in the sts argu­
ment tell the Executive:

D Not to mark the region for deletion on the last detach

D To attach region ALPHA to the task issuing the directive macro call

D To grant read and write access to the attached task

The protection word specified as 1670008 assigns a default protection mask to
the region. The octal number, which has a binary equivalent of 1110 1110 0000
0000, grants access as follows:

System (1110)

Owner (1110)

Group (0000)

World (0000)

All access

All access

Read access only

Read access only

If the Create Region directive is successful, the Executive will first return to the
issuing task a region ID value in the location accessed by symbolic offset
R.GID, and then will set the defined bit RS.CAR in the status word R.GSTS.

7.5.1.2 Using Fortran to Generate an ROB -When programming in Fortran,
you must create an 8-word, single-precision integer array as the ROB to be sup­
plied in the subroutine calls:

CALLATRG

CALLCRRG

CALL DTRG

(Attach Region directive)

(Create Region directive)

(Detach Region directive)

(See the PDP-11 FORTRAN-77 Language Reference Manual for information on
the creation of arrays.)

7-14 MEMORY MANAGEMENT DIRECTIVES

Table 7-2 shows the RDB array format.

Table 7-2
ROB Array Format

Word Comment

irdb(1) Region ID

irdb(2) Size of the region in 32-word blocks

irdb(3), irdb(4) Region name (2 words in Radix-50 format)

irdb(S), irdb(6) Name of the partition that contains the region (2 words in Radix-50 format)

irdb(7) Region status word

irdb(8) Region protection code

You can modify the region status word irdb(7) by setting or clearing the appro­
priate bits. See the list in Section 7 .5.1 that describes the defined bits. The bit
values are listed beside the symbolic offsets.

Note that Hollerith text strings can be converted to Radix-50 values by calls to
The Fortran library routine IRADSO (see the appropriate Fortran user's guide).

Array Symbolic
Element Offset

W.NID
1wdb 11) W.NAPR

iwdb 121 W.NBAS

iwdb (3) W:NSIZ

iwdb 141 W.NRID

iwdb 151 W.NOFF

iwdb (6) W.NLEN

1wdb 171 W.NSTS

1wdb 18) W.NSRB

Figure 7-5
Window Definition Block

Block Format

BASE APR WINDOW ID

VIRTUAL BASE ADDRESS (BYTES)

WINDOW SIZE (32W BLOCKS)

REGION ID

OFFSET IN REGION (32W BLOCKS)

LENGTH TO MAP (32W BLOCKS)

WINDOW STATUS WORD

SEND/RECEIVE BUFFER ADDRESS (BYTES)

Byte
Offset

0

2

4

6

10

12

14

16

ZK-311-81

MEMORY MANAGEMENT DIRECTIVES 7-15

7.5.2 Window Definition Block (WDB)

Figure 7-5 illustrates the format of a WDB. The block consists of a number of
symbolic address offsets to specific WDB locations. One of the locations is the
window status word W.NSTS, which contains defined bits that can be set or
cleared by the Executive or the task. The bits and their definitions are shown in
Table 7-3.

Table 7-3
WDB Format

Bit

WS.CRW=100000

WS.UNM=40000

WS.ELW=20000

WS.RRF=10000

WS.NBP=4000

WS.BPS=4000

WS.RES=2000

WS.NAT=1000

WS.64B=400

WS.MAP=200

WS.RCX=100

WS.DEL=10

WS.EXT=4

WS.WRT=2

WS.RED=1

Definition

Address window was successfully created.

At least one window was unmapped by a Create Address Window, Map
Address Window, or Unmap Address Window directive.

At least one window was eliminated in a Create Address Window or
Eliminate Address Window directive.

Reference was successfully received.

Do not bypass cache for CRAW$ directives.

Always bypass cache for MAP$ directives.

Map only if resident.

Create attachment descriptor only if necessary (for Send By Reference
directives).

Defines the task's permitted alignment boundaries-0 for 256-word
(512-byte) alignment, 1for32-word (64-byte) alignment.

Window is to be mapped in a Create Address Window or Receive By Ref­
erence directive.

Exit if no references to receive.

Send with delete access.

Send with extend access.

Send with write access or map with write access.

Send with read access.
These symbols are defined by the WDBDF$ macro, as described in Sec­
tion 7 .5.2.1.

7-16 MEMORY MANAGEMENT DIRECTIVES

The following directives require a pointer to a WDB:

Create Address Window (CRAW$)
Eliminate Address Window (ELAW$)
Map Address Window (MAP$)
Unmap Address Window (UMAP$)
Send By Reference (SREF$)
Receive By Reference (RREF$)

When a task issues one of these directives, the Executive clears the four high­
order bits in the window status word of the appropriate WDB. After completing
the directive operation, the Executive can then set any of these bits to tell the
task what actions were taken. The Executive never modifies the other bits.

7.5.2.1 Using Macros to Generate a WDB -The system provides two
macros, WDBDF$ and WDBBK$, to generate and define a WDB. WDBDF$ de­
fines the offsets and status word bits for a window definition block; WDBBK$
then creates the actual window definition block.

The format of WDBDF$ is:

WDBDF$

Since WDBBK$ automatically invokes WDBDF$, you need specify only
WDBBK$ in a module that generates a WDB. The format of the call to WDBBK$
is:

WDBBK$ apr,siz,rid,off,len,sts,srb

apr A number from 0 through 7 that specifies the window's base Active
Page Register (APR). The APR determines the 4K boundary on which
the window is to begin. APR 0 corresponds to virtual address 0, APR 1
to 4K, APR 2 to SK, and so on.

siz The size of the window in 32-word blocks.

rid A region ID.

off The offset (in 32-word blocks) within the region to be mapped.

len The length (in 32-word blocks) within the region to be mapped (defaults
to the value of siz).

sts The bit definitions of the window status word.

srb A send/receive buffer virtual address.

The argument sts sets specified bits in the status word W.NSTS. The argument
normally has the following format:

<bit1 [! ... !bitn]>

bit A defined bit to be set.

MEMORY MANAGEMENT DIRECTIVES 7-17

The macro call

WDBBK$ 5,76.,0,50.,,<WS.64B!WS.MAP!WS.WRT>

expands to:

.BYTE

.WORD

. WORD

0,5
0

76 .
.WORD 0
.WORD SO .
. WORD 0

(Window ID returned in low-order byte)
(Base virtual address returned here)

.WORD WS.64B!WS.MAP!WS.WRT

.WORD 0

If a Create Address Window directive pointed to the WDB defined by the ex­
panded macro call, the Executive would:

D Create a window 7610 blocks long beginning at APR 5-virtual address
20K or 1200008

D Map the window with write access (<WS.MAP!WS.WRT>) to the
issuing task's task region (because the macro call specified 0 for the
region ID)

D Start the map 5010 blocks from the base of the region, and map an area
either equal to the length of the window-7610-or to the length remain­
ing in the region, whichever is smaller (because the macro call defaulted
the len argument) and align the window on a 64-byte boundary.

D Return values to the symbolic W.NID (the window's ID) and W.NBAS
(the window's virtual base address)

7 .5.2.2 Using Fortran to Generate a WDB -You must create an 8-word,
single-precision integer array as the WDB to be supplied in the subroutine calls:

CALL CRAW

CALLELAW

CALL MAP

CALL UNMAP

CALLSREF

CALLRREF

(Create Address Window directive)

(Eliminate Address Window directive)

(Map Address Window directive)

(Unmap Address Window directive)

(Send By Reference directive)

(Receive By Reference directive)

(See the PDP-11 FORTRAN-77 Language Reference Manual for information on
the creation of arrays.)

7-18 MEMORY MANAGEMENT DIRECTIVES

Table 7-4 shows the WDB array format.

Table 7-4
WDB Array Format

Word

iwdb(1)

iwdb(2)

iwdb(3)

iwdb(4)

iwdb(S)

iwdb(6)

iwdb(7)

iwdb(8)

Contents

Bits 0 through 7 contain the window ID; bits 8 through 15 contain the window's base
APR.

Base virtual address of the window.

Size of the window in 32-word blocks.

Region ID.

Offset length (in 32-word blocks) within the region at which map begins.

Length (in 32-word blocks) mapped within the region.

Window status word.

Address of send/receive buffer.

You can modify the window status word iwdb(7) by setting or clearing the ap­
propriate bits. See the list in Section 7.5.2 that describes the defined bits. The
bit values are listed alongside the symbolic offsets.

The contents of bits 8 through 15 of iwdb(1) must normally be set without de­
stroying the value in bits 0 through 7 for any directive other than the Create Ad­
dress Window.

A call to GETADR (see Section 3.4.1.4) can be used to set up the address of the
send/receive buffer. For example:

CALL GETADR(IWDB,,,,,,,,IRCVB)

This call places the address of buffer IRCVB in array element 8. The remaining
elements are unchanged. The subroutines SREF and RREF also set this value.
If you use the SREF and RREF routines, you do not need to use GETADR.

7 .5.3 Assigned Values or Settings

The exact values or settings assigned to individual fields within the ROB or the
WDB vary according to each directive. Fields that are not required as input can
have any value when the directive is issued. Chapter 6 describes which offsets
and settings are relevant for each memory management directive. The values
assigned by the task are called input parameters, whereas those assigned by
the Executive are called output parameters.

MEMORY MANAGEMENT DIRECTIVES 7-19

7.6 PRIVILEGED TASKS

When a privileged task maps to the Executive and the 1/0 page, the system nor-.
mally dedicates five or six APRs to this mapping. A privileged task can issue
memory management directives to remap any number of these APRs to re­
gions. Take great care when using the directives in this way, because such re­
mapping can cause obscure bugs to occur. When a directive unmaps a window
that formerly mapped the Executive or the 1/0 page, the Executive restores the
former mapping.

Note: Tasks should not remap APRO. Remapping APRO causes information
such as the DSW, overlay structures, or language runtime systems to become
inaccessible.

CHAPTER 8
CALLABLE SYSTEM ROUTINES

The system provides a set of callable routines that are invoked by the PDP-11
standard RS calling sequence. The routines themselves are provided in a resi­
dent library called POSSUM, against which you must task build your programs.
A program calls a routine in the POSSUM library to have a specified service
executed. Some of the routines use a separate task in the system called a
server. This chapter describes each callable routine as well as the name of any
server that a particular routine may require.

POSSUM can be included as part of a cluster of libraries with RMSRES and
other libraries. See the RSX-11 M/M-PLUS Task Builder manual for details on
cluster libraries.

Note: When you link programs to run on the Professional, invoke the Task
Builder using the name PAB (Professional Application Builder) rather than TKB.

You can provide one of two options in your task build command file to include
the POSSUM library in your task:

Use the following Task Builder format to link a task to the POSSUM resident
library:

LIBR=POSSUM:RO

Use this Task Builder format to link a task to a cluster library which includes the
POSSUM resident library:

CLSTR=POSSUM,OTHER:RO

8.1 GENERAL CONVENTIONS FOR ALL CALLABLE SYSTEM ROUTINES

This section defines the general mechanism used for calling all the defined sys­
tem routines in the POSSUM resident library.

8-1

8-2 CALLABLE SYSTEM ROUTINES

8.1.1 PDP-11 RS Calling Sequence

Your program must use register S (RS) to pass the address of an argument list
that resides in your task's data space. The argument list itself is of variable
length, so that only the necessary arguments are passed.

The general MACR0-11 coding sequence of the call follows.

Instruction space coding sequence:

MDV
JSR

#ARGLST,RS
PC,SUB

Data space coding sequence:

ARGLST: .BYTE NUMBER,O

.WORD ADDR1

.WORD ADDRn

addre55 of the argument li5t to pa55
call the 5ubroutine

NUMBER i5 the number of argument5
following in the li5t
addre55 of fir5t argument
other argument5
the nth argument

For higher level languages that support the RS calling sequence (such as
BASIC-PLUS-2 or FORTRAN-77), see your language reference manual or user
guide for correct syntax. The examples in this chapter assume BASIC-PLUS-2
as the high level language being used. All examples assume a higher level lan­
guage call.

In BASIC-PLUS-2, you can invoke the previous MACR0-11 call as follows:

120 CALL SUB BY REF CADDR1X, ... ,ADDRnX>

BP2 internally formats an RS calling block and issues the call to the system rou­
tine for you.

8. 1.2 Conventions for Callable System Services

All of the routines documented in this chapter have specific conventions that
you must follow for programming success:

D All arguments passed to the system routines are by reference. This
means that you are passing the address of the value in your program to
the routine in POSSUM.

D Every routine shares a common format in that the first argument is the
address of an 8-word Status Control Block found in your program to
which the routines return completion status. The Status Control Block
is always eight words in length, so care must be taken to allocate the
proper amount of space in your program.

D Every routine requires a request parameter. All of the routines are multi­
purpose and this 1-word request parameter is the method for specify­
ing which option(s) to execute.

CALLABLE SYSTEM ROUTINES 8-3

D When specifying either a device or file name string as a required ele­
ment in an argument list, always specify the accompanying size field in
bytes. (A byte corresponds to one ASCII character.)

D The system services preserve registers RO-R4. This is of no concern to
higher level language programmers since the languages preserve inter­
nal registers around the call.

8.1.3 Status Control Block Format

The 8-word Status Control Block has the following format:

WordO

Word 1

Word 2-7

is the count of the number of status (error) parameters passed
back to the Status Control Block upon completion of the routine

is the overall call status. This is a 1-word value defined as fol­
lows:

+1 Success

-1 Directive Status Error. The actual $DSW error is in word 3.

-2 A QIO error. The contents of the 2-word QIO status block
are in words 3 and 4.

-3 An RMS error. The RMS STS and STV fields are returned
in words 3 and 4.

-4 Server specific error. The contents of words 3 through 8
are defined by each routine.

-5 Interface error. An error occured when trying to interpret
the argument block. Currently, one of the following values
would be in word 3.

-1 Feature not supported. The code is not yet complete
to execute the documented feature.

-2 Impure area is invalid, or missing. Ususally indicates
that you have not correctly taskbuilt your program.

-3 Invalid number of parameters (too few or too many).

is as defined above

8.2 CALLABLE TASK ROUTINES

The POSSUM resident library contains routines that perform specific functions.
Those routines are:

D PROA TR gets or sets file attributes

D PRODIR creates or deletes a directory

D PROFBI formats, initializes, and checks for bad blocks on disks

8-4 CALLABLE SYSTEM ROUTINES

D PROLOG translates, creates, and deletes a logical name

D PROVOL mounts, dismounts, bootstraps, and/or writes the bootblack
on a volume

The following sections describe each callable routine in detail.

8.3 PROATR

The PROATR routine provides a means of accessing certain file attributes.
Given a file ID or a file specification and an attribute list, the GET function uses
the attribute list to determine which attributes to read and where to store the
associated information. Conversely, the SET function writes the attribute infor­
mation specified in the attribute list to the file.

The PROATR routine provides two forms of accessing file attributes. You can
use PROA TR to:

D Get attributes of a file

D Set attributes of a file

The PROATR routine does not require a server to execute.

To get or set file attributes, invoke the PROATR routine with the following argu­
ments:

STATUS, REQUEST, ATTRIBUTE_LIST, FILE_ID, LUN

where:

STATUS

REQUEST

The address of the 8-word Status Control Block

The address of a word containing the decimal value of the
operation to be performed (see Section 8.3.1)

ATTRIBUTE_LIST The address of the attribute list (see Section 8.3.1)

FILE_ID

LUN

The address of a buffer that contains a 3-word Files-11
FID

The address of a buffer that contains the LUN number
used to obtain the file ID (see Section 8.3.1)

8.3.1 How to Specify the REQUEST Argument in PROATR

PROA TR uses the decimal value specified in the REQUEST argument to deter­
mine, first, whether to get Jr set file attributes and, second, whether the input
file descriptor is a file ID or an ASCII file specification.

When specifying this argument, use the combined values of the desired func­
tion plus the input file descriptor or ASCII file specification as described below.

CALLABLE SYSTEM ROUTINES 8-5

Function

O Get file attributes

1 Set file attributes

Input File Descriptor

0 The contents of the buffer address specified in the FILEID argument is a
3-word Files-11 FID (file ID). In this case, the address specified in the
LUN argument contains the specific LUN used to obtain the file ID.

2 The contents of the buffer address specified in the FILEID argument is
an ASCII file name specification. In this case, the address specified in
the LUN argument contains the size of the file.

Notes

1. The file identification block is a 3-word block containing the file number,
the file sequence number, and a reserved word.

FID: File number
+2: File sequence number
+4: Reserved

2. The attribute list contains a variable number of entries terminated by an
byte containing all zeroes. The maximum number of entries in the
attribute list is six.

An entry in the attribute list has the following format:

.BYTE Attribute type, Attribute size

.WORD Pointer to the attribute buffer

Table 8-1 is a list of the accessible file attributes.

Table 8-1
Accessible File Attributes

Attribute
Code

2

3

4

5

7

11

16

Attribute
Type Size in Octal Bytes

File owner 6

Protection 4

File characteristics 2

Record 1/0 area 40

File name, type, version 12
number 6 File type 4

Version number 2

Statistics block 12

Placement control 16

Note: The file name contained in the header is not associated with the name in
a directory entry except by convention. Therefore, you cannot use the file ID to
get the file name as specified in the directory; the name that the ACP returns is
the name contained in the header.

8-6 CALLABLE SYSTEM ROUTINES

8.3.2 PRODIR

The PRODIR routine provides two forms of directory manipulation. You can use
PRODIR to:

D Create a directory on a device

D Delete a directory on a device

The name of the server used to execute PRODIR is CREDEL. This server must
be installed in your system to perform any of indicated services. Otherwise,
PRODIR returns a directive error in the Status Control Block (see Section 8.1.3).
To create or delete a directory, invoke the PRODIR routine with the following
arguments:

STATUS, REQUEST, FILE_NAME, FILE_SIZE

where:

STATUS The address of the 8-word Status Control Block

REQUEST The address of a word containing the decimal value indicating
which operation (CREATE or DELETE) to perform (see Section
8.3.3)

FILE_NAME The address of a buffer containing an ASCII device and direc­
tory specification

FILE_SIZE

The device specification takes the form ddn:

where:

dd the device name

n the device unit number

The directory specification takes the one of the following forms:

[ggg,mmm] such as [301,3]
or

[gggmmm] such as [301003]
or

[name] such as [WILEY]

where:

ggg group

mmm member

The address of a byte value containing the length of the string in
FILE_NAME

The following is a sample BP2 call to PRODIR:

100 CALL PRODIR BY REF
(ST ATUS%(),REQU EST%, DFI LE$, LEN(DFILE$))

CALLABLE SYSTEM ROUTINES 8-7

8.3.3 Using the REQUEST Argument for Creating or Deleting a Directory

PROD!R uses the value specified in the REQUEST argument to determine
whether to create or delete a directory, as follows:

CREATE directory

2 DELETE directory

Example 8-1 shows how to access PRODIR from a BASIC-PLUS-2 program.

Example 8-1: How to Access PRODIR from a BASIC-PLUS-2 Program

10 ! PROGRAM TO CREATE/DELETE DIRECTORIES
20 DIM STATUS%(7), REQ$(2)
25 REQ$(1)=''Create'' \ REQ$(2)=''Delete''
30 PRINT ''Create or Delete CC/D) :''; \ LlNPUT #Q,REQ$ &
\ REQUEST%= 1 \ IF LEFTSCREQS,1) = ''C'' THEN 40 ELSE &

IF LEFT$CREQ$,1)<>''D'' THEN 20 ELSE REQUEST%= 2
40 PRINT "Name of Directory to ";REQSCREQUEST%);" : "; &

\ LINPUT #O,DFILE$
100 CALL PROD!R BY REF CSTATUS%C>,REQUEST%,DF!LE$,LENCDFJLE$))
110 FOR K=O TO 7 \ PRINT ''STATUS'';K,STATUSXCK) \ NEXT K
999 END

See the BASIC-PLUS-2 Documentation Supplement for a description of the
command and overlay descriptor files for BASIC-PLUS-2 programs.

8.4 PROFBI

The PROFBI routine provides the mechanism for preparing media for use on
the system. The PROFBI routine allows you to:

D Format a volume

D Check a volume for bad blocks

D Initialize a volume

To format or initialize a volume or check it for bad blocks invoke the PROFBI
routine with the following arguments:

where:

STATUS, REQUEST, DEVICE_SPEC, DEVICE_SIZE,
ATTRIBUTE_LIST, ATTRIBUTE_SIZE

STATUS The address of the 8-word Status Control Block. The last
six words of the Status Control Block contain the volume
label when a volume is successfully initialized

8-8 CALLABLE SYSTEM ROUTINES

REQUEST The address of a word containing the decimal value indi­
cating the operation to be performed (see Section 8.4.1)

Note: When preparing the hard disk, specify the REQUEST code either for for­
mat or bad, but not for both. Either code will perform both functions on RD-50-
type devices in the same operation.

DEVICE_SPEC The address of a buffer containing a character string
which is the device specification of the volume to be for­
matted, initialized, or checked for bad blocks

DEVICE_SIZE The address of a word containing the length of the string
in DEVICE_SPEC

ATTRIBUTE_LIST The address of the attribute list. The attribute list is a
buffer of legal attributes, predominantly intended for use
by Macro programmers (see Notes). Legal attributes in
PROFBI are:

1 Volume label

2 ACS buffer

ATTRIBUTE_SIZE The address of a word containing the total size of the attri­
bute list

Note: The contents of the buffer for the ATTRIBUTE-LIST argument are op­
tional. That is, you must specifiy the argument but the buffer need not contain a
volume label or an ACS specification.

8.4.1 Using the REQUEST Argument in PROFBI

The PROFBI routine uses the decimal value specified in the REQUEST argu­
ment to determine which operation to perform. Specify in the REQUEST argu­
ment the value listed below that corresponds to the operation you desire:

1 Format a volume (only works for the hard disk)

2 Check a volume for bad blocks

4 Initialize a volume

Notes

1. The minimum length of DEVICE_SPEC is four characters-the
3-character device mnemonic followed by a colon (such as DW1 :). The
device portion of DEVICE_SPEC must end with a colon.

If you are initializing a volume, part of the device specification can be
the volume label which may be up to 12 characters (in the form
DW1 :SPECTROSCOPY). You may also specify the volume label in the
attribute list instead. If you specify the volume label in both the
DEVICE_SPEC argument and the ATTRIBUTE_LIST argument, the
DEVICE_SPEC argument overrides the ATTRIBUTE_LIST argument.

CALLABLE SYSTEM ROUTINES 8-9

2. If you omit the volume label when initializing a volume, PROFBI creates
a default volume label using the date and time the volume was
initialized. The default volume label format is:

DDMMMYYHHMMS

3. DEVICE_SPEC may also be a logical name string. The logical name
string must end with a colon. The number of logical name translations
cannot exceed eight. A ninth translation results in an error condition.

4. PROFBI requires the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments when initializing a volume or checking it for
bad blocks. The DEVICE_SPEC argument is necessary when
formatting a volume.

5. The ATTRIBUTE_LIST argument is the means of specifying optional
parameters. The attribute list for PROFBI is simply a buffer of legal
attributes. The high byte in the first word of the attribute list specifies
the attribute type. The low byte specifies the size of the attribute list
buffer in bytes.

You can use the attribute list as an alternate way to specify a volume
label. That is, you can omit the volume label in the DEVICE_SPEC
argument and specify it in the ATIRIBUTE_LIST. However, if you
specify the volume label in both arguments, PROFBI overrides the
ATIRIBUTE_LIST specification with the label specified in
DEVICE_SPEC.

6. The attribute list for PROFBI also contains two additional, contiguous
words as the Allocate Checkpoint Space (ACS) buffer. The high byte in
the first word of the ACS buffer (2) identifies it as the ACS buffer. The
low byte in the buffer specifies the number of bytes in that buffer. The
second word in the ACS block identifies the number of blocks in the
checkpoint file.

8.4.2 Status Codes Returned by PROFBI

The status codes returned by PROFBI are listed in Table 8-2:

Table 8-2
PROFBI Status Codes

Status
code Comment

+1 SUCCESS

-1 ILLEGAL DEVICE

-2 DEVICE NOT IN SYSTEM

-3 FAILED TO ATTACH DEVICE

-4 BLOCK ZERO BAD-DISK UNUSABLE

-5 AT LEAST ONE LBN (0 THROUGH 25) IS BAD CANNOT INITIALIZE-DISK
UNUSABLE

-6 BAD BLOCK FILE OVERFLOW

8-10 CALLABLE SYSTEM ROUTINES

Table 8-2 (Cont.)

Status
Code Comment

~ UNRECOVERABLE ERROR

-8. DEVICE WRITE-LOCKED

-9. DEVICE NOT READY

-10. FAILED TO WRITE BAD BLOCK FILE

-11. PRIVILEGE VIOLATION

-12. DEVICE IS AN ALIGNMENT CARTRIDGE

-13. FATAL HARDWARE ERROR

-14. ALLOCATION FAILURE

-15. 1/0 ERROR SIZING DEVICE

-16. ALLOCATION FOR SYS FILE EXCEEDS VOLUME LIMIT

-17. HOMEBLOCK ALLOCATE WRITE ERROR

-18. BOOTBLOCK WRITE ERROR-DISK UNUSABLE

-19. INDEX FILE BITMAP 1/0 ERROR

-20. BAD BLOCK HEADER 1/0 ERROR

-21. MFD FILE HEADER 1/0 ERROR

-22. NULL FILE HEADER 1/0 ERROR

-23. CHECKPOINT FILE HEADER 1/0 ERROR

-24. MFD WRITE ERROR

-25. STORAGE BITMAP FILE HEADER 1/0 ERROR

-26. FAILED TO READ BAD BLOCK DESCRIPTOR FILE

-27. VOLUME NAME TOO LONG

-28. UNRECOGNIZED DISK TYPE

-29. PREALLOCATION INSUFFICIENT TO FILL FIRST INDEX FILE HEADER

-30. PREALLOCATED TOO MANY HEADERS FOR SINGLE HEADER INDEX FILE

-31. PREALLOCATION INSUFFICIENT TO FILL FIRST AND SECOND INDEX FILE
HEADERS

-32. BAD BLOCK LIMIT EXCEEDED FOR DEVICE

-33. DRIVER NOT RESIDENT

-34. BITMAP TOO LARGE-INCREASE CLUSTER FACTOR

-35. STORAGE BITMAP 1/0 ERROR

-36. HOMEBLOCK 1/0 ERROR

-37. INDEX FILE HEADER 1/0 ERROR

-38. DISMOUNT OF DEVICE FAILED

-39. CANNOT MOUNT DEVICE FOREIGN

-40. CANNOT MOUNT DEVICE FILES-11

-41. CANNOT FORMAT DZ-PREFORMATTED

-42. CANNOT DETACH DEVICE

-43. CHECKPOINT FILE HEADER OVERFLOW-SPECIFY SMALLER
CHECKPOINT FILE

-44. NON-ALPHANUMERIC CHARACTER(S) IN VOLUME NAME-ILLEGAL

PROLOG

The PROLOG routine
use PROLOG as follows:

five forms of

CALLABLE SYSTEM ROUTINES 8-i 1

name manipulation. You can

D Translate a name to a device specification

D Set U1e default device

D Show the default

The name of u-ie server usecl to execute PROLOG is Tr1is server
must be installed in your to perform any of the indicated services. Other-

PROLOG returns a directive error in trie Status Control Block Section

Caution: Do not use logical or directory names with this routine that are used
by the P/OS system.

8.5.1 or

To creat(3 or translate a

ST

where:

STATUS

REQUEST

LOGICAL_NAME_SIZE

EQUiVALENCE

EQUIVALENCE_SIZE

Name

name, invoke the PROLOG routine with the fol-

The address of the 8-word Status Control Block

The address of a word containing tt1e decimal
the An,crci1t1n

to

The address of a buffer
(which can contain

ters only)

Ti1e address of a buffer
vice

charac-

an ASCII de-

The device takes tl1e form ddn:

where:

dd the device name
n tt'1e device unit number

For CREATE: The address of a value con-
the length of the in EQUIV-

ALEi;JCE. For TRANSLATE: The address for a
value the of the EQUIV-

ALENCE buffer.

8-12 CALLABLE SYSTEM ROUTINES

For the TRANSLATE function, the EQUIVALENCE argument is an output argu­
ment returned by PROLOG. The length of the string returned in the EQUIV­
ALENCE buffer is returned in the third word of STATUS.

8.5.2 Deleting a Logical Name and Set/Show

To delete a logical name or to set or show the default device and/or directory,
invoke the PROLOG routine with the following arguments:

STATUS, REQUEST, LOGICALNAME, LOGICALNAME_SIZE

where:

STATUS The address of the 8-word Status Control Block

REQUEST

LOGICALNAME

The address of a word containing the decimal
value indicating the operation (DELETE, SET
OR SHOW) to perform (see Section 8.3.3)

The address of a buffer containing an ASCII
string (which can contain alphanumeric charac­
ters only). The user must have already created
the LOGICALNAME.

LOGICALNAME_SIZE For SET and DELETE: The address of a byte
value containing the length of the string in
LOGICALNAME. For SHOW: The address of a
byte value containing the length of the LOGl­
CALNAME buffer.

For the SET DEFAULT function, the LOGICALNAME string may contain a di­
rectory specification of the form

USERDISK:[DIRECTORY]

where USERDJSK: is the logical name with the directory specification appended
to it.

The directory specification takes one of the following forms:

[ggg,mmm] such as [301,3]

or

[gggmmm] such as [301003]

or

[name] such as [WI LEY]

where:

ggg group

mmm number

Note: When issuing a call for the SET DEFAULT function, note that the user
can specify either the logical name or the directory. If you specify both, then
both the default device and directory are changed. If you only specify one, the
other does not change.

CALLABLE SYSTEM ROUTINES 8-13

For both the DELETE and SET DEFAULT functions, there is no output argu­
ment; PROLOG returns the call status in the Status Control Block.

For the SHOW DEFAULT function, LOGICALNAME is an output argument re­
turned by PROLOG. The LOGICALNAME also contains the default directory
string. The length of the string returned in LOGICALNAME is returned in the
third word of ST A TUS.

The following is a sample BASIC-PLUS-2 call to PROLOG:

100 CALL PROLOG BY REF
(ST ATUS%(),REQUEST%, DLOG$, LEN(DLOG$), EQV$, LEN(EQV$))

8.5.3 Using the REQUEST Argument for Create, Translate, Delete, Set or
Show

PROLOG uses the value specified in the REQUEST argument to determine
whether to create, translate, delete, set or show as follows:

1 SET DEFAULT

2 SHO DEFAULT

3 CREATE logical

4 TRANSLATE logical

5 DELETE logical

Most error returns from PROLOG are Directive Status errors (see CLOG$ and
DLOG$ logical name directives in Chapter 9).

Table 8-3

Status
Code Comment

+1 SUCCESSFUL INSTALL

-1 TASK NAME IN USE

-3 SPECIFIED PARTITION TOO SMALL

-4 TASK AND PARTITION BASE MISMATCH

-7 LENGTH MISMATCH COMMON BLOCK

-8. BASE MISMATCH COMMON BLOCK

-9. TOO MANY COMMON BLOCK REQUESTS

-11. CHECKPOINT AREA TOO SMALL

-13. NOT ENOUGH APRS FOR TASK IMAGE

-14. FILE NOT A TASK IMAGE

-15. BASE ADDRESS MUST BE ON 4K BOUNDARY

-16. ILLEGAL FIRST APR

-18. COMMON BLOCK PARAMETER MISMATCH

8-14 CALLABLE SYSTEM ROUTINES

Table 8-3 (Cont.)

Status
Code Comment

-20. COMMON BLOCK NOT LOADED

-22. TASK IMAGE VIRTUAL ADDRESS OVERLAPS COMMON BLOCK

-23. TASK IMAGE ALREADY INSTALLED

-24. ADDRl;:SS EXTENSIONS NOT SUPPORTED

-26. CHECKPOINT SPACE TOO SMALL, USING CHECKPOINT FILE

-27. NO CHECKPOINT SPACE, ASSUMING NOT CHECKPOINT ABLE

-29. ILLEGAL UIC

-30. NO POOL SPACE

-31. ILLEGAL USE OF PARTITION OR REGION

-32. ACCESS TO COMMON BLOCK DENIED

-33. TASK IMAGE 1/0 ERROR

-34. TOO MANY LUNS

-35. ILLEGAL DEVICE

-36. TASK MAY NOT BE RUN

-37. TASK ACTIVE

-39. TASK FIXED

-40. TASK BEING FIXED

-41. PARTITION BUSY

-43. COMMON/TASK NOT IN SYSTEM

-44. REGION OR COMMON FIXED

-45. CANNOT DO RECEIVE

-47. INVALID REQUEST

-48. CANNOT RETURN STATUS

-49. ERROR ENCOUNTERED ON FILE OPEN OPERATION

-50. ERROR ENCOUNTERED ON FILE CLOSE OPERATION

-51. CANNOT GET FILE LBN TO PROCESS LABEL BLOCKS

8.6 PROVOL

The PROVOL routine provides a twofold service. You can use the PROVOL rou­
tine to mount or dismount disk volumes. You can also use PROVOL to write a
bootblack on a volume and/or bootstrap a volume.

To mount or dismount a volume, write a bootblock on a volume, or bootstrap a
volume, invoke the PROVOL routine with the following arguments:

STATUS, REQUEST, DEVICE_SPEC, DEVICE_SIZE,
ATTRIBUTE_LIST, ATTRIBUTE_SIZE

where:

STATUS

REQUEST

DEVICE_SPEC

DEVICE_SIZE

ATTRIBUTE_LIST

ATTRIBUTE_SIZE

CALLABLE SYSTEM ROUTINES 8-15

The address of the 8-word Status Control Block.
When mounting or dismounting a volume, the last six
words of the Status Control Block contain the vol­
ume label (provided that the operation is successful)

The address of a word containing the decimal value
indicating the operation to be performed (see Section
8.6.1)

The address of a buffer containing a character string
which is the device specification of the volume to be
mounted, dismounted, bootstrapped, or on which a
bootblack is to be written

The address of a word containing the length of the
string in DEVICE_SPEC

The address of the attribute list. The attribute list is a
buffer of legal attributes, predominantly intended for
use by Macro programmers (see Notes). Legal attri­
butes in PROVOL are:

1 Volume label

The address of a word containing the size of the attri­
bute list

Note: The contents of the buffer for the ATTRIBUTE~LIST argument are op­
tional. That is, you must specifiy the argument but the buffer need not contain a
volume label.

8.6. i Using the REQUEST Argument in PROVOL

The PROVOL routine uses the decimal value specified in the REQUEST argu­
ment to determine which operation to perform. Specify in the REQUEST argu­
ment the value listed below that corresponds to the operation you desire:

0 Mount a volume

Mount a foreign volume

2 Dismount a volume

10 Bootstrap a volume

11 Write a bootblock on a volume

12 Write a bootblack on a volume and bootstrap it

Notes

1. The minimum length of DEVICE_SPEC is four characters­
the-three-character device mnemonic followed by a colon (such as
DW1 :). The device portion of DEVICE_SPEC must end with a colon.

8-16 CALLABLE SYSTEM ROUTINES

Part of the device specification can be the volume label which may be
up to 12 characters. If you omit the volume label from DEVICE_SPEC,
PROVOL gets the label from the specified disk by default. Whenever
you specify a volume label in a DEVICE_SPEC argument (when
mounting a volume, for example), the specified label must match the
label on the volume; otherwise, the operation fails.

2. DEVICE_SPEC may also be a logical name string. In this case, the
logical name string must end with a colon. The number of logical name
translations cannot exceed eight. A ninth translation results in an error
condition.

3. PROVOL requires the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments when mounting or dismounting a volume.
The specified volume label must match the label on the volume for the
operation to be successful. PROVOL ignores the volume label if
mounting or dismounting a "foreign" volume.

4. PROVOL stores the volume label in the last six words of the Status
Control Block when a mount or dismount is successful.

5. PROVOL uses the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments to bootstrap a volume. The DEVICE_SPEC
string may be a logical name.

6. When writing a bootblack to a volume, PROVOL requires a complete
device, directory and file name specification. If you omit the file name,
PROVOL uses the default directory and file name of [1,54]RSX11 M.SYS.

7. The ATTRIBUTE_LIST argument is the means of specifying optional
parameters. The attribute list for PROVOL is simply a buffer of legal
attributes. The high byte in the first word of the attribute list specifies
the attribute type. The low byte specifies the size of the buffer in bytes.

You can use the attribute list as an alternate way to specify a volume
label. That is, you can omit the volume label in the DEVICE_SPEC
argument and supply it in the ATTRIBUTE_LIST argument. However, if
you specify the volume label in both arguments, PROVOL overrides the
ATTRIBUTE_LIST specification with the label specified in
DEVICE_SPEC.

CHAPTER 9
DIRECTIVE DESCRIPTIONS

This chapter defines each of the system directives. The chapter describes each
directive's function and use. For each directive there is also a description of the
names of the corresponding macro and Fortran calls, the associated param­
eters, and possible return values of the Directive Status Word (DSW).

The descriptions generally show the$ form of the macro call, although the $C
and $S forms are also valid forms of the directive macro. (The QIO directive
documents the 010$ form, although the QIO$S and QIO$C forms are also
valid.) Where the $S form of a macro requires less space and performs as fast
as a DIR$ (because of a small Directive Parameter Block), the documentation
shows the $S form of the macro expansion.

In addition to the directive macros themselves, you can use the DIR$ macro to
execute a directive if the directive has a predefined Directive Parameter Block
(DPB). See Sections 3.3.1.1 and 3.3.2 for further details.

9.1 FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes most or all of the following elements:

Fortran Call

This shows the Fortran subroutine call, and defines each parameter. Programs
written in other higher-level languages which provide support for the PDP-11
standard RS calling conventions for Fortran may also make use of these calls.
Check your language reference manual and user's guide to determine if you are
using that format.

9-1

9-2 DIRECTIVE DESCRIPTIONS

Macro Call

This shows the macro call, defines each parameter, and gives the defaults for
optional parameters in parentheses following the definition of the parameter.
Since zero is supplied for most defaulted parameters, only nonzero default val­
ues are shown.

Macro Expansion

Most of the directive descriptions expand the $e form of the macro. Where the
$S form is the recommended form for a directive, the documentation shows that
form of the macro expansion instead. Section 3.3.5 illustrates expansions for all
three forms and for the DIR$ macro.

Definition Block Parameters

Only the memory management directive descriptions include these parameters.
This section describes all the relevant input and output parameters in the Re­
gion or Window Definition Block (see Section 7.5).

Local Symbol Definitions

Macro expansions usually generate local symbol definitions with an assigned
value equal to the byte offset from the start of the DPB to the corresponding
DPB element. This section lists those symbols. The length in bytes of the ele­
ment pointed to by the symbol appears in parentheses following the symbol's
description. Thus:

A.BTTN task name (4)

defines A.BTTN as pointing to a task name in the Abort Task DPB; the task
name has a length of four bytes.

DSW Return Codes

This section lists all valid return codes.

Notes

The notes presented with some directive descriptions expand on the function,
use, and/or consequences of using the directives. Always read the notes care­
fully.

DIRECTIVE DESCRIPTIONS 9-3

ABRT$

9.1.1 ABRT$-Abort Task

The Abort Task directive instructs the system to terminate the execution of the
indicated task. ABRT$ is intended for use as an emergency or fault exit.

A task must be privileged to issue the Abort Task directive (unless it is aborting
a task with the same Tl:).

Fortran Call

CALL ABORT (tsk[,ids])

tsk name of the task to be aborted (RAD50)

ids directive status

Macro Call

ABRT$ tsk

tsk name of the task to be aborted (RAD50)

Macro Expansion

ABRTS ALPHA
.BYTE 83. ,3
.RADSO /ALPHA/

;ABRTS MACRO DIC, DPB SIZE•3 WORDS
;TASK ''ALPHA''

Local Symbol Definitions

A.BTTN task name (4)

DSW Return Codes

ts.sue
IE.INS

IE.ACT

IE.PAI

IE.ADP

IE.SOP

successful completion

task not installed

task not active

issuing task is not privileged (multiuser protection systems
only)

part of the DPB is out of the issuing task's address space

directive Identification Code (DIC) or DPB size is invalid

9-4 DIRECTIVE DESCRIPTIONS

Notes

1. When a task is aborted, the Executive frees all the task's resources. In
particular, the Executive:

D Detaches all attached devices.

D Flushes the AST queue and despecifies all specified ASTs.

D Flushes the receive and receive-by-reference queue.

0 Flushes the clock queue for outstanding Mark Time requests for
the task.

D Closes all open files (files open for write access are locked).

D Detaches all attached regions except in the case of a fixed task,
where no detaching occurs.

D Runs down the task's 1/0.

0 Disconnects from interrupt vectors.

D Breaks the connection with any offspring tasks.

D Returns a severe error status (EX$SEV) to the parent task when a
connected task is aborted.

D Frees the task's memory if the aborted task was not fixed.

2. If the aborted task had a requested exit AST specified, the task will
receive that AST instead of being aborted. No indication that this has
occurred is returned to the task that issued the abort request.

3. When the aborted task actually exits, the Executive declares a
significant event.

DIRECTIVE DESCRIPTIONS 9-5

ALTP$

9.1.2 ALTP$-Alter Priority

The Alter Priority directive instructs the system to change the running priority of
a specified active task to either a new priority indicated in the directive call, or to
the task's default (installed) priority if the call does not specify a new priority.

The specified task must be installed and active. The Executive resets the task's
priority to its installed priority when the task exits.

If the directive call omits a task name, the Executive defaults to the issuing task.

The Executive reorders any outstanding 1/0 requests for the task in the 1/0
queue and reallocates the task's partition. The partition reallocation may cause
the task to be checkpointed.

A nonprivileged task can issue AL TP$ only for itself, and only for a priority equal
to or lower than its installed priority. A privileged task can change the priority of
any task to any value less than 250.

Fortran Call

CALL AL TPRI ([tsk],[ipri][,ids])

tsk active task name

ipri a 1-word integer value equal to the new priority, a number from 1
through 250(10)

ids directive status

Macro Call

AL TP$ [tsk][,pri]

tsk active task name

pri new priority, a number from 1 through 250(10)

Macro Expansion

ALTPS
.BYTE
.RAD50
.WORD

ALPHA, 75.
9.,4 ;ALTP$ MACRO DIC, DPB SIZE=4 WORDS
/ALPHA/ ;TASK ALPHA
75. ;NEW PRIORITY

9-6 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

A.LTTN

A.LTPR

task name (4)

priority (2)

DSW Return Codes

is.sue
IE.INS

IE.ACT

IE.PAI

IE.IPR

IE.ADP

IE.SOP

successful completion

task not installed

task not active

issuing task is not privileged

invalid priority

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-7

ALUN$

9.1.3 ALUN$-Assign LUN

The Assign LUN directive instructs the system to assign a physical device unit
to a logical unit number (LUN). It does not indicate that the task has attached
itself to the device.

The actual physical device assigned to the logical unit is dependent on the logi­
cal assignment table. The Executive first searches the logical assignment table
for a device name match. If it finds a match, the Executive assigns the physical
device unit associated with the matching entry to the logical unit. Otherwise, the
Executive searches the physical device tables and assigns the actual physical
device unit named to the logical unit. The Executive does not search the logical
assignment table for slaved tasks.

When a task reassigns a LUN from one device to another, the Executive can­
cels all 1/0 requests for the issuing task in the previous device queue.

Fortran Call

CALL ASNLUN (lun,dev,unt[,ids])

Jun

dev

unt

ids

Macro Call

logical unit number

device name (format: 1 A2)

device unit number

directive status

ALUN$ lun,dev,unt

lun

dev

unt

logical unit number

device name (two characters)

device unit number

Macro Expansion

ALUN$ 7,TT,O ;ASSIGN LOGICAL UNIT NUMBER
.BYTE 7,4 ;ALUN$ MACRO DIC, DPB SIZE=4
.WORD 7 ;LOGICAL UNIT NUMBER 7
.ASCII /TT I ;DEVICE NAME IS TT CTERM!NAU
.WORD 0 ;DEVICE UN IT NUMBER= 0

WORDS

9-8 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

A.LULU

A.LUNA

A.LU NU

logical unit number (2)

physical device name (2)

physical device unit number (2)

DSW Return Codes

is.sue
IE.LNL

IE.IOU

IE.ILU

IE.ADP

IE.SOP

Notes

successful completion

LUN usage is interlocked (see Note 1 below)

invalid device and/or unit

invalid logical unit number

part of the DPS is out of the issuing task's address space

DIC or DPS size is invalid

1. A return code of IE.LNL indicates that the specified LUN cannot be
assigned as directed. Either the LUN is already assigned to a device
with a file open for that LUN, or the LUN is currently assigned to a
device attached to the task, and the directive attempted to change the
LUN assignment. If a task has a LUN assigned to a device and the task
has attached the device, the LUN can be reassigned, provided that the
task has another LUN assigned to the same device.

DIRECTIVE DESCRIPTIONS 9-9

ASTX$S

9.1.4 ASTX$S-AST Service Exit ($S Form Recommended)

The AST Service Exit directive instructs the system to terminate execution of an
AST service routine.

If another AST is queued and ASTs are not disabled, then the Executive imme­
diately effects the next AST. Otherwise, the Executive restores the task's pre­
AST state. See Notes.

Fortran Call

Neither the Fortran language nor the ISA standard permits direct linking to sys­
tem trapping mechanisms. (Refer to Section 3.4.4 for more information on this
subject). Therefore, this directive is not available to Fortran tasks.

Macro Call

ASTX$S [err]

err error routine address

Macro Expansion

ASTX$S
MOV
.BYTE
EMT
JSR

ERR
CPC)+,-CSP>
115. , 1
377
PC,ERR

;PUSH DPB ONTO THE STACK
;ASTX$S MACRO DIC, DPB SIZE=1 WORD
;TRAP TO THE EXECUTIVE
;CALL ROUTINE ''ERR'' IF DIRECTIVE
;UNSUCCESSFUL

Local Symbol Definitions

None

DSW Return Codes

is.sue
IE.AST

IE.ADP

IE.SOP

successful completion

directive not issued from an AST service routine

part of the DPB or stack is out of the issuing task's address
space

DIC or DPB size is invalid

9-10 DIRECTIVE DESCRIPTIONS

Notes

1. A return to the AST service routine occurs if, and only if, the directive is
rejected. Therefore, no Branch On Carry Clear instruction is generated
if an error routine address is given. (The return occurs only when the
Carry bit is set.)

2. When an AST occurs, the Executive pushes, at minimum, the following
information onto the task's stack:

SP+06 event flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+OO DSW of task prior to AST

The task stack must be in this state when the AST Service Exit directive
is executed.

In addition to the data parameters, the Executive pushes supplemental
information onto the task stack for certain ASTs. For 1/0 completion,
the stack contains the address of the 1/0 status block; for Mark Time,
the stack contains the Event Flag Number; for a floating-point
processor exception, the stack contains the exception code and
address.

DIRECTIVE DESCRIPTIONS 9-11

These AST parameters must be removed from the task's stack prior to
issuing an AST exit directive. The following example shows how to
remove AST parameters when a task uses an AST routine on 1/0
completion:

EXAMPLE PROGRAM

LOCAL DATA

lOSB: .BLKW
BUFFER: . BLKW

2

30.

; START OF MAIN PROGRAM

;J/O STATUS DOUBLEWORD
; I /0 BUFFER

START: ;PROCESS DATA

QIOW$C 10.WVB,2, 1,, IOSB,ASTSER,<BUFFER,60. ,40>

; PROCESS & WA IT

EX!HS ;EXIT TO EXECUTIVE

AST SERVICE ROUTINE

ASTSER: ;PROCESS AST

TST CSP>+ ;REMOVE ADDRESS OF I/O STATUS BLOCK
ASTX$S ;AST EXIT

3. The task can alter its return address by manipulating the information on
its stack prior to executing an AST exit directive. For example, to return
to task state at an address other than the pre-AST address indicated on
the stack, the task can simply replace the PC word on the stack. This
procedure may be useful in those cases in which error conditions are
discovered in the AST routine; but you should use extreme caution
when doing this alteration since AST service routine bugs are difficult to
isolate.

4. Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as the DIR$ macro.

9-12 DIRECTIVE DESCRIPTIONS

ATRG$

9.1.5 ATRG$-Attach Region

The Attach Region directive attaches the issuing task to a static common region
or to a named dynamic region. (No other type of region can be attached to the
task by means of this directive.) The Executive checks the desired access
specified in the region status word against the owner UIC and the protection
word of the region. If there is no protection violation, the Executive grants the
desired access. If the region is successfully attached to the task, the Executive
returns a 16-bit region ID (in R.GID), which the task uses in subsequent map­
ping directives.

You can also use the directive to determine the ID of a region already attached
to the task. In this case, the task specifies the name of the attached region in
R.GNAM and clears all four bits described below in the region status word
R.GSTS. When the Executive processes the directive, it checks that the named
region is attached. If the region is attached to the issuing task, the Executive
returns the region ID, as well as the region size, for the task's first attachment to
the region. You may want to use the Attach Region directive in this way to deter­
mine the region ID of a common block attached to the task at task-build time.

Fortran Call

CALL ATRG (irdb[,ids])

irdb an 8-word integer array containing a Region Definition Block (see
Section 7 .5.1.2)

ids directive status

Macro Call

ATRG$ rdb.

rdb region Definition Block (ROB) address

Macro Expansion

ATRG$ RDEADR
. BYTE 57., 2

.WORD RDEADR
;ATRG$ MACRO DIC, DPE SIZE=2 WORDS
;RDE ADDRESS

DIRECTIVE DESCRIPTIONS 9-13

Table 9-1
Region Definition Block Parameters

Input Parameters

Array
Element

irdb(3)(4)

irdb(7)

Output Parameters

irdb(1)

irdb(2)

Offset

R.GNAM

R.GSTS

Bit

RS.RED

RS.WAT

RS.DEL

Description

Name of the region to be attached

Bit settings 1 in the region status word (specifying desired
access to the region):

Definition

1 if read access is desired

1 if write access is desired RS.EXT 1 if extend access is
desired

1 if delete access is desired

Clear all four bits to request the region ID of the named region if it is already
attached to the issuing task.

R.GID

R.GSIZ

ID assigned to the region

Size in 32-word blocks of the attached region

Local Symbol Definition

A.TR BA region Definition Block address (2)

DSW Return Codes

rs.sue
IE.UPN

IE.PR!

IE.NVR

IE.PNS

IE.HWR

IE.ADP

IE.SOP

successful completion

an attachment descriptor cannot be allocated

privilege violation

invalid region ID

specified region name does not exist

region had parity error or load failure

part of the DPB or ROB is out of the issuing task's address
space

DIC or DPB size is invalid

1. If you are a FORTRAN programmer, refer to Section 7.5.1 to determine the bit values represented by the
symbolic names described.

9-14 DIRECTIVE DESCRIPTIONS

CLEF$

9.1.6 CLEF$-Clear Event Flag

The Clear Event Flag directive instructs the system to report an indicated event
flag's polarity and then clear it.

Fortran Call

CALL CLREF (efn[,ids])

efn event flag number

ids directive status

Macro Call

CLEF$ efn

efn event flag number

Macro Expansion

CLEF$ 52.
. BYTE 31., 2
.WORD 52.

Local Symbol Definitions

C.LEEF event flag number (2)

DSW Return Codes

;CLEF$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52.

IS.CLR

IS.SET

IE.IEF

IE.ADP

IE.SOP

successful completion; flag was already clear

successful completion; flag was set

invalid event flag number (EFN<1 or EFN>64)

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-15

CLOG$

9. 1. 7 CLOG$-Create Logical Name String

The Create Logical Name String directive establishes the relationship between
a logical name string and an equivalence name string. The maximum length for
each string is 25510 characters. If you create a logical name string with the same
name as an existing logical name string, the new definition supersedes the old
one.

Fortran Call

CALL CRELOG (mod,itbnum,lns,lnssz,iens,ienssz,idsw)

mod

itbnum

Ins

lnssz

iens

ienssz

idsw

Macro Call

the modifier of the logical name within a table

the logical name table number:
user (L T.USR) = 2

reserved for future use:
task (LT.TSK)
group (L T.GRP)
system (LT.SYS)

character array containing the logical name string

size (in bytes) of the logical name string

character array containing the equivalence name string

size (in bytes) of the equivalence name string

integer to receive the Directive Status Word

CLOG$ mod,tbnum,lns,lnssz,ens,enssz

mod

tbnum

Ins

lnssz

iens

ienssz

the modifier of the logical name within a table

the logical name table number:
user (L T.USR) = 2

reserved for future use:
task (LT.TSK)
group (LT.GAP),
system (LT.SYS)

character array containing the logical name string

size (in bytes) of the logical name string

character array containing the equivalence name string

size (in bytes) of the equivalence name string

9-16 DIRECTIVE DESCRIPTIONS

Macro Expansion

CLOG$
.BYTE
.BYTE
.BYTE

MOD,TBNUM,LNS,LNSSZ,ENS,ENSSZ
207.,7 ;CLOG$ MACRO DIC, DPB SIZE= 7 WORDS
0 ;SUBFUNCTION
MOD ;LOGICAL NAME MODIFIER

.BYTE TBNUM

.BYTE 0

.WORD LNS

.WORD LNSSZ

. WORD ENS

.WORD ENSSZ

;LOGICAL NAME TABLE NUMBER
;RESERVED FOR FUTURE USE
;ADDRESS OF LOGICAL NAME BUFFER
;BYTE COUNT OF LOGICAL NAME STRING
;ADDRESS OF EQUIVALENCE NAME BUFFER
;BYTE COUNT OF EQUIVALENCE NAME STRING

Local Symbol Definitions

C.LENS

C.LESZ

C.LFUN

C.LLNS

C.LLSZ

C.LMOD

C.LTBL

address of Equivalence name string (2)

byte count of equivalence name string (2)

subfunction (1)

address of logical name string (2)

byte count of logical name string (2)

logical name modifier (1)

logical table number (1)

DSW Return Codes

is.sue
IS.SUP

IE.UPN

IE.IBS

IE.ITN

IE.ADP

IE.SOP

successful completion of service

successful completion of service; a new equivalence name
string superseded a previously specified name string

insufficient dynamic storage is available to create the logical
name

the length of the logical or equivalence string is invalid; each
string length must be greater than 0 but not greater than 25510

characters

invalid table number specified

part of the DPB or user buffer is out of the issuing task's
address space, or the user does nof have proper access to that
region

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-17

CMKT$

9.1.8 CMKT$-Cancel Mark Time Requests

The Cancel Mark Time Requests directive instructs the system to cancel a spe­
cific Mark Time Request or all Mark Time requests that have been made by the
issuing task.

Fortran Call

CALL CANMT ([efn][,ids])

efn event flag number

ids directive status

Macro Call

CMKT$ [efn,ast,err]

err error routine address

efn event flag number

ast mark time AST address

Macro Expansion

CMKH 52.,MRKAST,ERR ;NOTE: THERE ARE TWO IGNORED ARGUMENTS
.BYTE 27.,3
. WORD 52.
.WORD MRKAST

;CMKTS MACRO DIC, DPB SIZE=3 WORDS
;EVENT FLAG NUMBER 52 .
;ADDRESS OF MARK TIME REQUEST AST ROUTINE

Note: The above example will cancel only the Mark Time requests that were
specified with efn 52 or the AST address.MRKAST. If no ast or efn parameters
are specified, all Mark Time requests issued by the task are canceled, and the
DPB size will equal 1.

Local Symbol Definitions

C.MKEF

C.MKAE

event flag number (2)

Mark Time Request AST routine address (2)

DSW Return Codes

is.sue
IE.ADP

IE.SOP

successful completion

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

9-18 DIRECTIVE DESCRIPTIONS

Notes

1. If neither the efn nor ast parameters are specified, all Mark Time
Requests issued by the task are canceled. In addition, the DPB size will
be one word. (When either the efn and/or ast parameters are specified,
the DPB size will be three words.)

2. If both efn and ast parameters are specified (and nonzero), only Mark
Time Requests issued by the task specifying either that event flag or
AST address are canceled.

3. If only one efn or ast parameter is specified (and nonzero), only Mark
Time Requests issued by the task specifying the event flag or AST
address are canceled.

DIRECTIVE DESCRIPTIONS 9-19

CNCT$

9.1.9 CNCT$-Connect

The Connect directive synchronizes the task issuing the directive with the exit
or emit status of another task (offspring) that is already active. Execution of this
directive queues an Offspring Control Block (OCB) to the offspring task, and
increments the issuing task's rundown count (contained in the issuing task's
Task Control Block). The rundown count is maintained to indicate the combined
total' number of tasks presently connected as offspring tasks and the total num­
ber of virtual terminals the task has created. The exit AST routine is called when
the offspring exits or emits status with the address of the associated exit status
block on the stack.

Fortran Call

rtname

iefn

iast

iesb

iparm

ids

CALL CNCT (rtname,[iefn],[iast],[iesb],[iparm][,ids])

single-precision, floating-point variable containing the offspring
task name in Radix-SO format

event flag to be set when the offspring task exits or emits status

name of an AST routine to be called when the offspring task
exits or emits status

Note: Refer to Section 3.4.4 for important guidelines on using Fortran AST
service routines.

name of an 8-word status block to be written when the offspring
task exits or emits status

WordO

Word 1

Word 2-7

offspring task exit status

system abort code

reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WX8 and the
event flag number in the iefn parameter above.

name of a word to receive the status block address when an
AST occurs

integer to receive the Directive Status Word

Macro Call

~name

ef n

CNCT$ tname,[efn],[east],[esb]

name (RADSO) of the offspring task to be connected

the event flag to be cleared on issuance and set when the
offspring task exits or emits status

9-20 DIRECTIVE DESCRIPTIONS

east

esb

address of an AST routine to be called when the offspring task
exits or emits status

address of an 8-word status block to be written when the
offspring task exits or emit status

Word 0 offspring task exit status

Word 1 system abort code

Word 2-7 reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WX8 and the
event flag number in the efn parameter above.

Macro Expansion

CNCH
.BYTE
.RADSO
.BYTE
.BYTE
.WORD
.WORD

ALPHA,1,CONAST,STBUF
143.,6 ;CNCT$ MACRO DIC, DPB SIZE•6 WORDS
ALPHA ;OFFSPRING TASK NAME
1 ; EVENT FLAG NO • 1
16. ;EXIT STATUS BLOCK CONSTANT
CON AST
STBUF

;AST ROUTINE ADDRESS
;EXIT STATUS BLOCK ADDRESS

Local Symbol Definitions

C.NCTN

C.NCEF

C.NCEA

C.NCES

task name (4)

event flag (2)

AST routine address (2)

exit status block address (2)

DSW Return Codes

is.sue
IE.UPN

IE.INS

IE.ACT

IE.IEF

IE.ADP

IE.SOP

Note

successful completion

insufficient dynamic memory to allocate an offspring control
block

the specified task was a command line interpreter

the specified task was not active

invalid event flag number (EFN<O or EFN>64)

part of the DPB or exit status block is not in the issuing task's
address space

DIC or DPB size is invalid

1. Do not change the virtual mapping of the exit status block while the
connection is in effect. Doing so may cause obscure errors since the
exit status block is always returned to the virtual address specified
regardless of the physical address to which it is mapped.

DIRECTIVE DESCRIPTIONS 9-21

CRAW$

9.1.10 CRAW$-Create Address Window

The Create_Address_Window directive creates a new virtual address window
by allocating a window block from the header of the issuing task and establish­
ing its virtual address base and size. (Space for the window block has to be
reserved at task-build time by means of the WNDWS keyword. Execution of this
directive unmaps and then eliminates any existing windows that overlap the
specified range of virtual addresses. If the window is successfully created, the
Executive returns an 8-bit window ID to the task.

The 8-bit window ID returned to the task is a number from 1 through 23, which
is an index to the window block in the task's header. The window block de­
scribes the created address window.

If WS.MAP in the window status word is set, the Executive proceeds to map the
window according to the Window Definition Block (WDB) input parameters.

A task can specify any length for the mapping assignment that is less than or
equal to both the window size specified when the window was created, and the
length remaining between the specified offset within the region and the end of
the region.

If W.NLEN is set to 0, the length defaults to either the window size or the length
remaining in the region, whichever is smaller. (Because the Executive returns
the actual length mapped as an output parameter, the task must clear that off­
set before issuing the directive each time it wants to default the length of the
map.)

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W.NSTS):

D If WS.64B = 0, the offset specified in W.NOFF must represent a multiple
of 256 words (512 bytes). Because the value of W.NOFF is expressed in
units of 32-word blocks, the value must be a multiple of 8.

D If WS.64B = 1, the task can align on 32-word boundaries; the program­
mer can therefore specify any offset within the region.

Fortran Call

CALL CRAW (iwdb[,ids])

iwdb an 8-word integer array containing a Window Definition Block (see
Section 7.5.2.2)

ids directive status

9-22 DIRECTIVE DESCRIPTIONS

Macro Call

CRAW$wdb

wdb Window Definition Block address

Macro Expansion

CRAW$
.BYTE

.WORD

Table 9-2

WDBADR
117. '2
WDBADR

;CRAWS MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Window Definition Block Parameters

Input Parameters

Array
Element Offset

iwdb(1), W.NAPR

bits 8-15

iwdb(3) W.NSIZ

iwdb(4) W.NRID

iwdb(5) W.NOFF

iwdb(6) W.NLEN

iwdb(7) W.NSTS

Description

base APR of the address window to be created

desired size, in 32-word blocks, of the address window

ID of the region to which the new window is to be mapped, or 0 for
task region (to be specified only if WS.MAP=1)

offset in 32-word blocks from the start of the region at which the
window is to start mapping (to be specified only if WS.MAP=1).

Note: If WS.648 in the window status word equals 0, the value
specified must be a multiple of 8.

length in 32-word blocks to be mapped, or 0 if the length is to
default to either the size of the window or the space remaining in
the region, whichever is smaller (to be specified only if
WS.MAP=1)

bit settings2 in the window status word:

Bit

WS.MAP

WS.WRT

WS.648

Definition

1 if the new window is to be mapped

1 if the mapping assignment is to occur with write
access

0 for 256-word (512-byte) alignment; or 1 for
32-word (64-byte) alignment

2. If you are a Fortran programmer, refer to Section 7.5.2 to determine the bit values represented
by the symbolic names described.

Table 9-2 (Cont.)

Output Parameters

Array Offset
Element

iwdb(1), W.NID

bits 0-7

iwdb(2) W.NBAS

iwdb(6) W.NLEN

iwdb(7) W.NSTS

DIRECTIVE DESCRIPTIONS 9-23

Description

ID assigned to the window

virtual address base of the new window

length, in 32-word blocks, actually mapped by the window

bit settings2 in the window status word:

Bit

WS.CRW

WS.UNM

WS.ELW

WS.RRF

WS.RES

WS.NAT

WS.648

WS.MAP

WS.RCX

WS.DEL

WS.EXT

WS.WRT

WS.RED

Definition (if bit= 1)

address window was successfully created

at least one window was unmapped

at least one window was eliminated

reference was successfully received

map only if resident

create attachment descriptor only if necessary
(for Send By Reference directives)

define the task's permitted alignment boundaries
- 0 for 256-word (512-byte) alignment; or 1 for
32-word (64-byte) alignment

window is to be mapped

exit if no references to receive

send with delete access

send with extend access

send with write access or map with write access

send with read access

2. If you are a Fortran programmer, refer to Section 7.5.2 to determine the bit values represented
by the symbolic names described.

9-24 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

C.RABA window Definition Block address (2)

DSW Return Codes

is.sue
E.PRI

IE.NVR

IE.ALG

IE.WOY

IE.ADP

IE.SOP

successful completion

requested access denied at mapping stage

invalid region ID

task specified either an invalid base APR and window size
combination, or an invalid region offset and length combination
in the mapping assignment; or WS.648 = 0 and the value of
W.NOFF is not a multiple of 8

no window blocks available in task's header

part of the DPB or WDB is out of the issuing task's address
space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-25

CRRG$

9. 1.11 CRRG$-Create Region

The Create Region directive creates a dynamic region in a system-controlled
partition and optionally attaches it to the issuing task.

If RS.A TT is set in the region status word, the Executive attempts to attach the
task to the newly created region. If no region name has been specified, the
user's program must set RS.ATT (see the description of the Attach Region di­
rective).

By default, the Executive marks a dynamically created region for deletion when
the last task detaches from it. To override this default condition, set RS.NOL in
the region status word as an input parameter. Be careful in considering to over­
ride the delete-on-last-detach option. An error within a program can cause the
system to lock by leaving no free space in a system-controlled partition.

If the region is not given a name, the Executive ignores the state of RS.NOL. All
unnamed regions are deleted when the last task detaches from them.

Named regions are put in the Common Block Directory (CBD). However, mem­
ory is not allocated until the Executive maps a task to the region.

The Executive returns an error if there is not enough space to accommodate the
region in the specified partition. (See Notes.)

Fortran Call

CALL CRRG (irdb[,ids])

irdb an 8-word integer array containing a Region Definition Block (see
Section 7.5.1.2)

ids directive status

Macro Call

CRRG$rdb

rdb Region Definition Block address

Macro Expansion

CRRG$ RDBADR
.BYTE 55. ,2
.WORD RDBADR

;CRRG$ MACRO DIC, DPB SIZE = 2 WORDS
;RDB ADDRESS

9-26 DIRECTIVE DESCRIPTIONS

Table 9-3
Region Definition Block Parameters

Input Parameters

Array
Element Offset

irdb, R.GSIZ

irdb(3)(4) R.GNAM

irdb(5)(6) R.GPAR

irdb(7) R.GSTS

irdb(8) R.GPRO

Output Parameters

irdb(1)

irdb(2)

irdb(7)

R.GID

R.GSIZ

R.GSTS

Description

size, in 32-word blocks, of the region to be created

name of the region to be created, or O for no name

name of the system-controlled partition in which the region is
to be allocated, or 0 for the partition in which the task is running

bit settings3 in the region status word:

Bit Definition (if bit= 1)

RS.CAR region was successfully created

RS.UNM at least one window was unmapped on a
detach

RS.MDL mark region for deletion on last detach

RS.NOL the region should not be deleted on last
detach

RS.A TT created region should be attached

RS.NEX created region is not extendible

RS.RED read access is desired on attach

RS.WAT write access is desired on attach

RS.EXT extend access is desired on atiach

RS.DEL delete access is desired on attach

protection word for the region (DEWR,DEWR,DEWR,DEWR)

ID assigned to the created region (returned if RS.ATT=1)

size in 32-word blocks of the attached region (returned if
RS.ATT=1)

bit settings4 in the reg.ion status word:

Bit Definition

RS.CAR 1 if the region was successfully created

3. If you are a Fortran programmer, refer to Section 7.5.1 to deiine the bit values represented by the symbolic
names described.

4. If you are a FORTRAN programmer, refer to section 7.5.1 to determine the bit values represented by the
symbolic names described.

DIRECTIVE DESCRIPTIONS 9-27

Local Symbol Definitions

C.RRBA region Definition Block address (2)

DSW Return Codes

is.sue
IE.UPN

IE.HWA

IE.PAI

IE.PNS

IE.ADP

IE.SOP

Notes

successful completion

a Partition Control Block (PCB) or an attachment descriptor
could not be allocated, or the partition was not large enough to
accommodate the region, or there is currently not enough
continuous space in the partition to accommodate the region

the directive failed in the attachment stage because a region
parity error was detected

attach failed because desired access was not allowed

specified partition in which the region was to be allocated does
not exist; or no region name was specified and RS.A TT = 0

part of the DPB or ROB is out of issuing task's address space

DIC or ROB size is invalid

1 . The Executive does not return an error if the named region already
exists. In this case, the Executive clears the RS.CAR bit in the status
word R.GSTS. If RS.ATT has been set, the Executive attempts to attach
the already existing named region to the issuing task.

2. The protection word (see R.GPRO above) has the same format as that
of the file system protection word. There are four categories, and the
access for each category is coded into four bits. From low order to high
order, the categories follow this order: system, owner, group, world.
The access code bits within each category are arranged (from low order
to high order) as follows: read, write, extend, delete. A bit that is set
indicates that the corresponding access is denied.

The issuing task's UIC is the created region's owner UIC.

In order to prevent the creation of common blocks that are not easily
deleted, the system and owner categories are always forced to have
delete access, regardless of the value actually specified in the
protection word.

9-28 DIRECTIVE DESCRIPTIONS

CSRQ$

9.1.12 CSRQ$-Cancel Time Based Initiation Requests

The Cancel Time Based Initiation Requests directive instructs the system to
cancel all time-synchronized initiation requests for a specified task, regardless
of the source of each request. These requests result from a Run directive.

Fortran Call

CALL CANALL (tsk[,ids])

tsk task name

ids directive status

Macro Call

CSRQ$ tsk

tsk scheduled (target) task name

Macro Expansion

CSRQ$ ALPHA
.BYTE 25.,3
.RADSO /ALPHA/

Local Symbol Definitions

C.SRTN target task name (4)

DSW Return Codes

successful completion

task is not installed

;CSRQ$ MACRO DIC, DPB SIZE•3 WORDS
;TASK ''ALPHA''

is.sue
IE.INS

IE.PR! the issuing task is not privileged and is attempting to cancel
requests made by another task

IE.ADP

IE.SOP

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-29

Note

1. If you specify an error routine address when using the $C or $S macro
form, you must include a null argument. For example:

CSRQ$S #THAME,,ERR ;CANCEL REQUESTS FOR ''ALPHA''

TtiAME: . RADSO /ALPHA/

9-30 DIRECTIVE DESCRIPTIONS

DECL$S

9.1.13 DECL$5-Declare Significant Event ($5 Form Recommended)

The Declare Significant Event directive instructs the system to declare a signifi­
cant event.

Declaration of a significant event causes the Executive to scan the Active Task
List from the beginning, searching for the highest priority task that is ready to
run. Use this directive with discretion to avoid excessive scanning overhead.

Fortran Call

CALL DE CLAR ([,ids])

ids directive status

Macro Call

DECL$S [,err]

err error routine address

Macro Expansion

DEC US ,ERR
MDV CPC>+,-CSP>
.BYTE 35. '1
EMT 377
BCC . +6
JSR PC,ERR

Local Symbol Definitions

None

DSW Return Codes

;NOTE: THERE IS ONE IGNORED ARGUMENT
;PUSH DPB ONTO THE STACK
;DECL$S MACRO DIC, DPB SIZE•1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE ''ERR''

is.sue
IE.ADP

IE.SOP

successful completion

Note

part of the DPS is out of the issuing task's address space

DIC or DPS size is invalid

1. The $S form of the macro is recommended because this directive
requires only a 1-word DPS.

DIRECTIVE DESCRIPTIONS 9-31

DLOG$

9.1.14 DLOG$-Delete Logical Name

The Delete Logical Name directive deletes a logical name from the logical name
table and returns to the system the resources used by that logical name. You
should delete logical names when they are no longer needed. If you do not
specify the the logical name string buffer address, DLOG$ deletes all of the logi­
cal names within the specified logical name table.

Fortran Call

CALL DELLOG (mod,itbnum,lns,lnssz,idsw)

mod

itbnum

the modifier of the logical name within a table

the logical name table number:
user (L T.USR) 2

reserved for future use:
task (L T.TSK)
group (LT.GRP)
system (LT.SYS)

Ins character array containing the logical name string

lnssz size (in bytes) of the logical name string

idsw integer to receive the Directive Status Word

Macro Call

DLOG$ mod,tbnum,lns,lnssz

mod

tbnum

the modifier of the logical name within a table

the logical name table number:
user (L T.USR) 2

Reserved for future use:
task (L T.TSK)
group (L T.GRP)
system (LT.SYS)

Ins character array containing the logical name string

lnssz size (in bytes) of the logical name string

9-32 DIRECTIVE DESCRIPTIONS

Macro Expansion

DLOG$
.BYTE

mod,tbnum,lns,lnssz

207. '5
• BYTE 2

. BYTE MOD

.BYTE TBNUM

. BYTE 0

.WORD LNS

.WORD LNSSZ

;DLOG$ MACRO DIC, DPB SIZE s 5 WORDS
;SUBFUNCTION CODE FOR DELETION
;LOGICAL NAME MODIFIER
;LOGICAL NAME TABLE NUMBER
;RESERVED FOR FUTURE USE
;ADDRESS OF THE LOGICAL NAME BUFFER
;BYTE COUNT OF THE LOGICAL NAME STRING

local Symbol Definitions

D.LFUr~

D.LLNS

D.LLSZ

D.LMOD

D.LTBL

subfunction (1)

address of logical name string (2)

byte count of logical name string (2)

logical name modifier (1)

logical table number (1)

DSW Return Codes

is.sue
IE.LNF

IE.IBS

IE.ITN

IE.ADP

IE.SOP

Notes

successful completion

the specified logical name string was not found

the length of the logical or equivalence string is invalid. Each
string length must be greater than 0 but not greater than 25510

characters

invalid table number specified

part of the DPB or user buffer is out of the issuing task's
address space, or the user does not have proper access to that
region

DIC or DPS size is invalid

1. This directive disables only the recognition of ASTs; the Executive still
queues the ASTs. They are queued FIFO and will occur in that order
when the task reenables AST recognition.

2. Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as that of the DIR$ macro.

DIRECTIVE DESCRIPTIONS 9-33

DSAR$S/IHAR$S

9.1.15 DSAR$S or IHAR$S-Disable (or Inhibit) AST Recognition ($S Form
Recommended)

The Disable (or Inhibit) AST Recognition directive instructs the system to dis­
able recognition of ASTs for the issuing task. The ASTs are queued as they oc­
cur and are effected when the task reenables AST recognition. There is an
implied disable AST recognition directive whenever an AST service routine is
executing. When a task's execution is started, AST recognition is enabled. (See
Notes.)

Fortran Call

CALL DSASTR [(ids)]
or

CALL INASTR [(ids)]

ids directive status

Macro Call

DSAR$S [err]

err error routine address

Macro Expansion:

DSAR$S ERR
MDV CPC>+,-CSP>
.BYTE 99., 1

EMT 377
BCC . +6

JSR PC,ERR

Local Symbol Definitions

None

DSW Return Codes

;PUSH DPB ONTO THE STACK
;DSARSS MACRO DIC, DPB SIZE=1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE ''ERR''

is.sue
IE.ITS

IE.ADP

IE.SOP

successful completion

AST recognition is already disabled

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

9-34 DIRECTIVE DESCRIPTIONS

Notes

1. This directive disables only the recognition of ASTs; the Executive still
queues the ASTs. They are queued FIFO and will occur in that order
when the task reenables AST recognition.

2. Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as that of the DIR$ macro.

DIRECTIVE DESCRIPTIONS 9-35

DSCP$S

9.1.16 DSCP$S-Disable Checkpointing ($S Form Recommended)

The Disable Checkpointing directive instructs the system to disable checkpoint­
ing for a task that has been installed as a checkpointable task. Only the affected
task can issue this directive. A task cannot disable the ability of another task to
be checkpointed.

Fortran Call

CALL DISCKP [(ids)]

ids directive status

Macro Call

DSCP$S [err)

err error routine address

Macro Expansion

DSCP$S ERR
MDV <PC>+,-(SP>
.BYTE 95., 1
EMT 377
BCC ,+6
JSR PC,ERR

Local Symbol Definitions

None

DSW Return Codes

;PUSH DPB ONTO THE STACK
;DSCP$S MACRO DIC, DPB SIZE=1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE ''ERR''

is.sue
IE.ITS

IE.CKP

IE.ADP

IE.SOP

successful completion

Notes

task checkpointing is already disabled

issuing task is not checkpointable

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. When a checkpointable task's execution is started, checkpointing is
enabled (that is, the task can be checkpointed).

2. Because this directive requires only a 1-word DPS, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as that of the DIR$ macro.

9-36 DIRECTIVE DESCRIPTIONS

DTRG$

9.1.17 DTRG$-Detach Region

The Detach Region directive detaches the issuing task from a specified, pre­
viously attached region. Any of the task's windows that are currently mapped to
the region are automatically unmapped.

If RS.MDL is set in the region status word when the directive is issued, the task
marks the region for deletion on the last detach. A task must be attached with
delete access to mark a region for deletion.

Fortran Call

CALL DTRG (irdb[,ids])

irdb an 8-word integer array containing a Region Definition Block (see
Section 7.5.1.2)

ids directive status

Macro Call

DTRG$ rdb

rdb Region Definition Block address

Macro Expansion

DTRG$ RDBADR
. BYTE 59. , 2

.WORD RDBADR
;DTRG$ MACRO DIC, DPB SIZE=2 WORDS
;RDB ADDRESS

Local Symbol Definitions

D.TRBA region Definition Block address (2)

DSW Return Codes

is.sue
IE.PRI

IE.NVR

IE.ADP

IE.SOP

successful completion

the task, which is not attached with delete access, has
attempted to mark the region for deletion on the last detach, or
the task has outstanding 1/0

the task specified an invalid region ID or attempted to detach
region 0 (its own task region)

part of the DPD or RDB is out of the issuing task's address
space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-37

Table 9-4
Region Definition Block Parameters

Input Parameters

Array
Element

irdb(1)

irdb(7)

Offset

R.GID

R.GSTS

Output Parameters

irdb(7) R.GSTS

Description

ID of the region to be detached

bit settings5 in the region status word:

Bit

RS.MDL

Definition

1 if the region should be marked for deletion
when the last task detaches from it

bit settings6 in the region status word:

Bit

RS.UNM

Definition

1 if any windows were unmapped

5. If you are a Fortran programmer, refer to Section 7 .5.1 to determine the bit values represented by the symbolic
names described.

6. If you are a Fortran programmer, refer to Section 7 .5.1 to determine the bit values represented by the symbolic
names described.

9-38 DIRECTIVE DESCRIPTIONS

ELAW$

9.1.18 ELAW$-Eliminate Address Window

The Eliminate Address Window directive deletes an existing address window,
unmapping it first if necessary. Subsequent use of the eliminated window's ID is
invalid.

Fortran Cali

CALL ELAW (iwdb[,ids])

iwdb an 8-word integer array containing a Window Definition Block (see
Section 7.5.2.2)

ids directive status

Macro Cail

ELAW$wdb

wdb Window Definition Block address

Macro Expansion

ELAW$
.BYTE
.WORD

Table 9-5

WDBADR
119. '2
WDBADR

;ELAW$ MACRO DIC, DPB S!ZE=2 WORDS
;WDB ADDRESS

Window Definition Block Parameters

Input Parameters

Array
Element

iwdb(1)
bits 0-7

Offset

W.NID

Output Parameters

iwdb(7) W.NSTS

Description

ID of the address window to be eliminated

Bit settings 7 in the window status word:

Bit

WS.ELW

WS.UNM

Definition

1 if the address window was successfully
eliminated

1 if the address window was unmapped

7. If you are a Fortran programmer, refer to Section 7.5.2 to determine the bit values represented by the symbolic
names described.

DIRECTIVE DESCRIPTIONS 9-39

Local Symbol Definitions

E.LABA Window Definition Block address (2)

DSW Return Codes

is.sue
IE.NVW

IE.ADP

IE.SOP

successful completion

invalid address window ID

part of the DPB or WDB is out of the issuing task's address
space

DIC or DPB size is invalid

9-40 DIRECTIVE DESCRIPTIONS

EMST$

9.1.19 EMST$-Emit Status

The Emit Status directive returns the specified 16-bit quantity to the specified
connected task. It possibly sets an event flag or declares an AST if previously
specified by the connected task in a Send, Request And Connect, a Spawn, or a
Connect directive. If the specified task is multiply connected to the task issuing
this directive, the first (oldest) Offspring Control Block (OCB) in the queue is
used to return status. If no task name is specified, this action is taken for all
tasks that are connected to the issuing task at that time. In any case, whenever
status is emitted to one or more tasks, those tasks no longer remain connected
to the task issuing the Emit Status directive.

Fortran Call

CALL EMST ([rtname],status[,ids])

rtname

status

ids

Macro Call

name of a task connected to the issuing task to which the status
is to be emitted

a 16-bit quantity to be returned to the connected task

integer to receive the Directive Status Word

EMST$ [tname],status

tname

status

name of a task connected to the issuing task to which the status
is to be emitted

16-bit quantity to be returned to the connected task

Macro Expansion

EMSH
.BYTE
.RADSO
.WORD

ALPHA,STWD
147. , 4

ALPHA
STWD

;EMST$ MACRO DIC, DPB SIZE•4 WORDS
;HAME OF CONNECTED TASK TO RECEIVE STATUS
;VALUE OF STATUS TO BE RETURHED

Local Symbol Definitions

E.MSTN

E.MSST

task name (4)

status to be returned (2)

DIRECTIVE DESCRIPTIONS 9-41

DSW Return Codes

is.sue
IE.ITS

IE.ADP

IE.SOP

successful completion

the specified task is not connected to the issuing task

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

9-42 DIRECTIVE DESCRIPTIONS

ENAR$S

9.1.20 ENAR$S-Enable AST Recognition ($S Form Recommended)

The Enable AST Recognition directive instructs the system to recognize ASTs
for the issuing task; that is, the directive nullifies a Disable AST Recognition di­
rective. ASTs that were queued while recognition was disabled are effected at
issuance. When a task's execution is started, AST recognition is enabled.

Fortran Call

CALL ENASTR [(ids)]

ids directive status

Macro Call

ENAR$S [err]

err error routine address

Macro Expansion

ENAR$S ERR
MDV CPC>+,-CSP>
.BYTE 1 0 1 . , 1
EMT 377

BCC .+6
JSR PC,ERR

Local Symbol Definitions

None

DSW Return Codes

;PUSH DPB ONTO THE STACK
;ENAR$S MACRO DIC, DPB SIZE=1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE ''ERR''

is.sue
IE.ITS

IE.ADP

IE.SOP

successful completion

Note

AST recognition is not disabled

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as that of the DIR$ macro.

DIRECTIVE DESCRIPTIONS 9-43

ENCP$S

9.1.21 ENCP$S-Enable Checkpointing ($S Form Recommended)

The Enable Checkpointing directive instructs the system to make the issuing
task checkpointable after its checkpointability has been disabled; that is, the di­
rective nullifies a DSCP$S directive. This directive cannot be used to enable
checkpointing of a task that was built noncheckpointable.

Fortran Call

CALL ENACKP [(ids)]

ids directive status

Macro Call

ENCP$S [err]

err error routine address

Macro Expansion

ENCP$S ERR
MOV CPC)+,-CSP)
.BYTE 97. '1
EMT 377

BCC • +6

JSR PC,ERR

local Symbol Definitions

None

DSW Return Codes

;PUSH DPB ONTO THE STACK
;ENCP$S MACRO DIC, DPB SlZE=1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE ''ERR''

is.sue
IE.ITS

successful completion

IE.ADP

IE.SOP

Note

checkpointing is not disabled or task is connected to an
interrupt vector

part of the DPS is out of the issuing task's address space

DIC or DPB size is invalid

1. Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as that of the DIR$ macro.

9-44 DIRECTIVE DESCRIPTIONS

EXIF$

9.1.22 EXIF$-Exit If

The Exit If directive instructs the system to terminate the execution of the
issuing task if, and only if, an indicated event flag is not set. The Executive re­
turns control to the issuing task if the specified event flag is set. See Notes.

Fortran Call

CALL EXITIF (efn[,ids])

efn event flag number

ids directive status

Macro Call

EXIF$ efn

efn event flag number

Macro Expansion

EXIFS 52.
.BYTE 53. ,2
. WORD 52.

Local Symbol Definitions

E.XFEF event flag number (2)

DSW Return Codes

;EXIFS MACRO DIC, DPB SIZE•2 WORDS
;EVENT FLAG NUMBER 52 .

IS.SET

IE.IEF

IE.ADP

IE.SOP

indicated EFN set; task did not exit

Notes

invalid event flag number (EFN<1 or EFN>64)

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. The Exit If directive is useful in avoiding a possible race condition that
can occur between two tasks communicating by means of the Send and
Receive directives. The race condition occurs when one task executes
a Receive directive and finds its receive queue empty; but before the
task can exit, the other task sends it a message. The message is lost

DIRECTIVE DESCRIPTIONS 9-45

because the Executive flushed the receiver task's receive queue when it
decided to exit. This condition can be avoided if the sending task
specifies a common event flag in the Send directive and the receiving
task executes an Exit If specifying the same common event flag. If the
event flag is set, the Exit If directive returns control to the issuing task,
signaling that something has been sent.

2. A Fortran program that issues the Exit If call must first close all files by
issuing Close calls. To avoid the time overhead involved in closing and
reopening files, the task should first issue the appropriate test or Clear
Event Flag directive. If the Directive Status Word indicates that the flag
was not set, then the task can close all files and issue the call to Exit If.

3. On Exit, the Executive frees task resources. In particular, the Executive:

D Detaches all attached devices

D . Flushes the AST queue and despecifies all specified ASTs

D Flushes the receive and receive-by-reference queues

D Flushes the clock queue for any outstanding Mark Time requests
for the task

D Closes all open files (files open for write access are locked)

D Detaches all attached regions, except in the case of a fixed task

D Runs down the task's 1/0

D Disconnects from interrupt vectors

D Breaks the connection with any offspring tasks

D Returns a success status (EX$SUC) to any parent tasks

D Frees the task's memory if the exiting task was not fixed

4. If the task exits, the Executive declares a significant event.

9-46 DIRECTIVE DESCRIPTIONS

EXIT$S

9.1.23 EXIT$S-Task Exit ($S Form Recommended)

The Task Exit directive instructs the system to terminate the execution of the
issuing task.

Fortran Call

See Note 5.

Macro Call

EXIT$S [err]

err error routine address

Macro Expansion

EX IHS ERR
MDV CPC)+,-CSP>
.BYTE 51.,1
EMT 377
JSR PC,ERR

Local Symbol Definitions

None

DSW Return Codes

;PUSH DPB ONTO THE STACK
;EXIT$S MACRO DIC, DPB SIZE=1 WORD
;TRAP TO THE EXECUTIVE
;CALL ROUTINE ''ERR''

IE.ADP

IE.SOP

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

Notes

1. A return to the task occurs if, and only if, the directive is rejected.
Therefore, no Branch on Carry Clear instruction is generated if an error
routine address is given, since the return will only occur with carry set.

2. Exit causes a significant event to be declared.

3. On Exit, the Executive frees task resources. In particular, the Executive:

D Detaches ·a11 attached devices

D Flushes the AST queue and despecifies all specified ASTs

D Flushes the receive and receive-by-reference queues

DIRECTIVE DESCRIPTIONS 9-47

D Flushes the clock queue for any outstanding Mark Time requests
for the task

D Closes all open files (files open for write access are locked)

D Detaches all attached regions, except in the case of a fixed task,
where no detaching occurs

D Runs down the task's 1/0

D Disconnects from interrupt vectors

D Breaks the connection with any offspring tasks

D Returns a success code (EX$SUC) to any parent task

D Frees the task's memory if the exiting task was not fixed

4. Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as that of the DIR$ macro.

5. You can terminate Fortran tasks with the STOP statement or with CALL
EXIT. CALL EXIT is a Fortran OTS routine that closes open files and
performs other cleanup before it issues an EXIT$S directive (or an
EXST$ directive in FORTRAN-77). Fortran tasks that terminate with the
STOP statement result in a message being displayed on the task's Tl:.
This message includes task name (as it appears in the Active Task List),
the statement causing the task to stop, and an optional character string
specified in the STOP statement. Tasks that terminate with CALL EXIT
do not display a termination message.

For example, a Fortran task containing the following statement:

20 STOP 'THIS FORTRAN TASK'

exits with the following message displayed on the tasks Tl: (TTO in this
example):

TTO - STOP THIS FORTRAN TASK

9-48 DIRECTIVE DESCRIPTIONS

EXST$

9.1.24 EXST$-Exit With Status

The Exit With Status directive causes the issuing task to exit, passing a 16-bit
status back to all tasks connected (by the Spawn, Connect, or Send, Request
And Connect directive). If the issuing task has no connected tasks, then the di­
rective simply performs a Task Exit. No format of the status word is enforced by
the Executive; format conventions are a function of the cooperation between
parent and offspring tasks. However, if an offspring task aborts for any reason,
a status of EX$SEV is returned to the parent task. This value is interpreted as a
"severe error" by batch processors. Furthermore, if a task performs a normal
exit with other tasks connected to it, a status of EX$SUC (successful comple­
tion) is returned to all connected tasks.

Fortran Call

CALL EXST (istat)

is tat a 16-bit quantity to be returned to parent task

Macro Call

EXST$ status

status a 16-bit quantity to be returned to parent task

Macro Expansion

EXSH STWD
.BYTE

.WORD
29. '2
STWD

;EXSTS MACRO DIC, DPB SIZE•2 WORDS
;VALUE OF STATUS TO BE RETURNED

Local Symbol Definitions

E.XSTS value of status to be returned (2)

DSW Return Codes

No status is returned if the directive is successfully completed since the direc­
tive causes the issuing task to exit.

IE.ADP

IE.SOP

part of the DPS is out of the issuing task's address space

DIC or DPS size is invalid

DIRECTIVE DESCRIPTIONS 9-49

Notes

1. The executive does the following to free a task's resources on Exit:

D Detaches all attached devices

D Flushes the AST queue and despecifies all specified ASTs

D Flushes the Receive and Receive-by-reference queues

D Flushes the clock queue for any outstanding Mark Time requests
for· the task

D Closes all open files (files open for write access are locked)

D Detaches all attached regions except in the case of a fixed task

D Runs down the task's 1/0

D Disconnects from interrupt vectors

D Breaks the connection with any offspring tasks

D Returns the specified exit status to any parent tasks

D Frees the task's memory if the exiting task was not fixed

2. If the task exits, the executive declar~s a significant event.

9-50 DIRECTIVE DESCRIPTIONS

EXTK$

9.1.25 EXTK$-Extend Task

The Extend Task directive instructs the system to modify the size of the issuing
task by a positive or negative increment of 32-word blocks. If the directive does
not specify an increment value or specifies an increment value of zero, the Ex­
ecutive makes the issuing task's size equal to its installed size. The issuing task
and cannot have any outstanding 1/0 when it issues the directive. The task must
also be checkpointable to increase its size; if necessary, the Executive check­
points the task, and then returns the task to memory with its size modified as
directed.

The Executive does not change any current mapping assignments if the task
has memory-resident overlays. However, if the task does not have memory­
resident overlays, the Executive attempts to modify, by the specified number of
32-word blocks, the mapping of the task to its task region.

If the issuing task is checkpointable but has no preallocated checkpoint space
available, a positive increment may require dynamic memory and extra space in
a checkpoint file sufficient to contain the task.

There are several constraints on the size to which a task can extend itself using
the Extend directive:

D A task that does not have memory-resident overlays cannot extend
itself beyond 32K minus 32 words.

D A task that has preallocated checkpoint space in its task image file can­
not extend itself beyond its installed size.

D A task that has memory-resident overlays cannot reduce its size below
the highest window in the task partition.

Fortran Call

CALL EXTTSK ([inc][,ids])

inc a positive or negative number equal to the number of 32-word blocks by
which the task size is to be extended or reduced

ids directive status

Macro Call

EXTK$ [inc]

inc a positive or negative number equal to the number of 32-word blocks by
which the task size is to be extended or reduced

DIRECTIVE DESCRIPTIONS 9-51

Macro Expansion

EXTK$ 40

. BYTE 89., 3

.WORD 40

.WORD 0

;EXTK$ MACRO DIC, DPB SiZE=3 WORDS
;EXTEND INCREMENT, 40(8) BLOCKS (1K
; l.JORDS)

;RESERVED WORD

Local Symbol Definitions

E.XTIN extend increment (2)

DSW Return Codes

ISSUC

IE.UPN

IE.ITS

IE.ALG

IE.RSU

IE.IOP

IE.CKP

IE.NSW

IE.ADP

IE.SOP

successful completion

insufficient dynamic memory, or insufficient space in a
checkpoint file

the issuing task is not running in a system controlled partition

the issuing task attempted to reduce its size to less than the
size of its task header; or tlle task tried to increase its size
beyond 32K words; or the task tried to increase its size to the
extent that one virtual address window would overlap another;
or the task !1as memory-resident overlays and it attempted to
reduce its size below the highest window mapped to the task
partition

other tasks are attached to this task partition

1/0 is in progress for this task partition

the issuing task is not checkpointable and specified a positive
integer

attempt to extend to larger than installed size (when checkpoint
space is allocated in Hie task)

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

9-52 DIRECTIVE DESCRIPTIONS

FEAT$

9.1.26 FEAT$-Test for Specified System Feature

The Features directive tests for the presence of a specific system software or
hardware option (such as floating point support or the presence of the Com­
mercial Instruction Set).

Fortran Call

isym

ids

CALL FEAT (ISYM,[,ids])

symbol for the specified system feature

directive status

Macro Call

FEAT$ sym

sym symbol for the specified system feature

Macro Expansion

FEATS FESPOS
.BYTE 177.,2
.WORD FESPOS

;FEAT$ MACRO DIC, DPB SIZE•2 WORDS
;Feature identifier

Local Symbol Definitions

F.EAF feature identifier (2)

DSW Return Codes

IS.CLR

IS.SET

IE.ADP

IE.SOP

successful completion; feature not present

successful completion; feature present

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-53

Table 9-6
System Feature Symbols

Symbol

FE$EXT

FE$MUP

FE$EXV

FE$DRV

FE$PLA

FE$CAL

FE$PKT

FE$EXP

FE$LSI

FE$0FF

FE$FDT

FE$X25

FE$DYM

FE$CEX

FE$MXT

FE$NLG

FE$DAS

FE$LIB

FE$MP

FE$EVT

FE$ACN

FE$SDW

FE$POL

FE$WND

FE$DPR

FE$1RR

FE$GGF

FE$RAS

FE$AHR

FE$RBN

FE$SWP

FE$STP

FE$CRA

FE$XCR

FE$EIS

Meaning

22-BIT EXTENDED MEMORY SUPPORT (BIT 1)

MUL Tl USER PROTECTION SUPPORT

EXECUTIVE IS SUPPORTED TO 20K WORDS

LOADABLE DRIVER SUPPORT

PLAS SUPPORT

DYNAMIC CHECKPOINT SPACE ALLOCATION

PREALLOCATION OF 1/0 PACKETS

EXTEND TASK DIRECTIVE SUPPORT

PROCESSOR IS AN LSl-11

PARENT/OFFSPRING TASKING SUPPORT

FULL-DUPLEX TERMINAL DRIVER SUPPORT

X.25 CEX IS LOADED

DYNAMIC MEMORY ALLOCATION SUPPORTED

COM EXEC IS LOADED

MCR EXIT AFTER EACH COMMAND MODE

LOGINS DISABLED - MUL Tl USER SUPPORT

KERNEL DATA SPACE SUPPORTED (BIT 1710)

SUPERVISOR MODE LIBRARIES SUPPORT

SYSTEM SUPPORTS MULTIPROCESSING

SYSTEM SUPPORTS EVENT TRACE FEATURE

SYSTEM SUPPORTS CPU ACCOUNTING

SYSTEM SUPPORTS SHADOW RECORDING

SYSTEM SUPPORTS SECONDARY POOLS

SYSTEM SUPPORTS SECONDARY POOL FILE WINDOWS

SYSTEM HAS A SEPERATE DIRECTIVE PARTITION

INSTALL, RUN, AND REMOVE SUPPORT

GROUPGLOBALEVENTFLAGSUPPORT

RECEIVE/SEND DATA PACKET SUPPORT

ALT. HEADER REFRESH AREA SUPPORT

ROUND ROBIN SCHEDULING SUPPORT

EXECUTIVE LEVEL DISK SWAPPING SUPPORT

EVENT FLAG MASK IS IN THE TCB(1=YES)

SYSTEM SPONTANEOUSLY CRASHED(1=YES) (BIT 3310)

SYSTEM CRASHED FROM XDT(1=YES)

SYSTEM REQUIRES EXTENDED INSTRUCTION SET

9-54 DIRECTIVE DESCRIPTIONS

Table 9-6 (Cont.)

Symbol

FE$STM

FE$UDS

FE$PRO

FE$XHR

FE$AST

FE$11S

FE$CLI

FE$TCM

FE$PMN

FE$WAT

FE$RLK

FE$SHF

FE$CXD

FE$POS

HF$UBM

HF$EIS

HF$CIS

HF$FPP

HF$NVR

HF$1NV

HF$CLK

HF$1TF

HF$BRG

Meaning

SYSTEM HAS SET SYSTEM TIME DIRECTIVE

SYSTEM SUPPORTS USER DATA SPACE

SYSTEM SUPPORTS SECONDARY POOL PROTO TCBS

SYSTEM SUPPORTS EXTERNAL TASK HEADERS

SYSTEM HAS AST SUPPORT

RSX-11 S SYSTEM

MULTIPLE CLI SUPPORT

SYSTEM HAS SEPERATE TERMINAL DRIVER POOL

SYSTEM SUPPORTS POOL MONINTORING

SYSTEM HAS WATCHDOG TIMER SUPPORT

SYSTEM SUPPORTS RMS RECORD LOCKING

SYSTEM SUPPORTS SHUFFLER TASK

COMM EXEC IS DEALLOCATED (NON-1/D ONLY) (BIT 4910)

SYSTEM IS AP/OS SYSTEM (1=YES)

PROCESSOR HAS UNIBUS MAP (1=YES) (BIT 1)

PROCESSOR HAS EXTENDED INSTRUCTION SET

PROCESSOR SUPPORTS COMMERCIAL INSTRUCTION SET

PROCESSOR HAS NO FLOATING POINT UNIT (1=YES)

XT NONVOLATILE RAM PRESENT (1=YES) (BIT 1710)

NON-VOLATILE RAM PRESENT (1=YES)

P/OS CLOCK IS PRESENT

INVALID TIME FORMAT IN NONVOLATILE RAM

P/OS BRIDGE MODULE PRESENT

DIRECTIVE DESCRIPTIONS 9-55

GDIR$

9.1.27 GDIR$-Get Default Directory

The Get Default Directory directive retrieves the default directory string, return­
ing it and the string length to a user-specified buffer.

Fortran Call

mod

iens

ienssz

irsize

idsw

CALL GETDDS (mod,iens,ienssz,[irsize],[idsw])

the modifier of the logical name within a table

character array containing the equivalence name string

size (in bytes) of the equivalence name string

buffer address of the returned equivalence string size

integer to receive the Directive Status Word

Macro Call

mod

ens

enssz

rsize

GDIR$ mod,ens,enssz,rsize

the modifier of the logical name within a table

buffer address of the equivalence name string

size (in bytes) of the equivalence name string

buffer address to which the size of the equivalence name string
is returned

Macro Expansion

GDIR$
.BYTE
.BYTE

mod,ens,enssz,rsize

207. ,6

4

.BYTE MOD

.WORD 0

.WORD ms

.WORD rnssz

.WORD RSIZE

Local Symbol Definitions

;GDIR$ MACRO DIC AND DPB SIZE
;SUBFUNCTION CODE FOR GET DEFAULT
;DIRECTORY
;LOGICAL NAME MODIFIER
;RESERVED
;BUFFER ADDRESS OF EQUIVALENCE NAME
;BYTES COUNT OF EQUIVALENCE STRING
;BUFFER ADDRRESS FOR RETURNED EQUIVALENCE
; STRING

G.DENS

G.DESZ

G.DFUN

address of equivalence name buffer (2)

byte count of equivalence string (2)

subfunction code (1)

9-56 DIRECTIVE DESCRIPTIONS

G.DMOD

G.DRSZ

logical name modifier (1)

buffer address for returned equivalence string (2)

DSW Return Codes

is.sue
IE.RBS

IE.LNF

IE.IBS

IE.ADP

IE.SOP

successful completion of service

the resulting equivalence name string is too large for the buffer
to receive it

the specified logical name string was not found

the length of the logical or equivalence string is invalid; each
string length must be greater than 0 but not greater than 25510

characters

part of the DPB or user buffer is out of the issuing task's
address space, or the user does not have proper access to that
region

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-57

GLUN$

9.1.28 GLUN$-Get LUN Information

The Get LUN Information directive instructs the system to fill a 6-word buffer
with information about a physical device unit to which a LUN is assigned. If re­
quests to the physical device unit have been redirected to another unit, the in­
formation returned will describe the effective assignment.

Fortran Call

CALL GETLUN (lun,dat[,ids])

lun

dat

ids

Macro Call

logical unit number

a 6-word integer array to receive LUN information

directive status

GLUN$ lun,buf

lun

buf

Buffer Format

WordO

Word 1

Word2

logical unit number

address of 6-word buffer that will receive the LUN information

name of assigned device

unit number of assigned device and flags byte (flags byte
equals 200 if the device driver is resident or 0 if the driver is not
loaded)

first device characteristics word:

BitO

Bit 1

Bit2

Bit3

Bit4

Bit 5

Bit 6

record-oriented device
(DV.REC, 1 =yes)[FD.REC]8

carriage-control device
(DV.CCL, 1 =yes)[FD.CCL]

terminal device (DV.TTY,1=yes)[FD.TTY]

directory (file-structured) device
(DV.DIR, 1 =yes)[FD.DIR]

reserved for future use

sequential device (DV.SQD, 1=yes)[FD.SQD]

mass storage device (DV.MSD, 1 =yes)

8. Bits with associated symbols have the symbols shown in square brackets. These symbols can be defined for
use by a task by means of the FCSBT$ macro.

9-58 DIRECTIVE DESCRIPTIONS

Word3

Word4

Words

Bit?

Bit8

Bit9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

reserved for future use

reserved for future use

unit software write-locked (DV .SWL, 1 =yes)

reserved for future use

reserved for future use

pseudo device (DV.PSE, 1 =yes)

device mountable as a communications channel
(DV.COM,1=yes)

device mountable as a Files-11 device
(DV.F11, 1 =yes)

device mountable (DV.MNT,1=yes)

second device characteristics word

third device characteristics word (words 3 and 4 are device
driver specific)

fourth device characteristics word (normally buffer-size)

Macro Expansion

GLUNS 7,LUNEUF
.BYTE 5,3
.WORD 7
.WORD LUNEUF

Local Symbol Definitions

G.LULU

G.LUBA

logical unit number (2)

buffer address (2)

;GLUN$ MACRO DIC, OPE SIZE=3 WORDS
;LOGICAL UNIT NUMBER 7
;ADDRESS OF 6-WORD BUFFER

The following offsets are assigned relative to the start of the LUN information
buffer:

G.LUNA

G.LUNU

G.LUFB

G.LUCW

device name (2)

device unit number (1)

flags byte (1)

four device characteristics words (8)

DSW_ Return Codes

is.sue
IE.ULN

IE.ILU

successful completion

unassigned LUN

invalid logical unit number

IE.ADP

IE.SOP

Note

None

DIRECTIVE DESCRIPTIONS 9-59

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

9-60 DIRECTIVE DESCRIPTIONS

GMCR$

9.1.29 GMCR$-Get Command Line

The Get Command Line directive instructs the system to transfer an 80-byte
command line to the issuing task.

Fortran Call

CALL GETMCR (buf[,ids])

buf an 80-byte array to receive command line

ids directive status

Macro Call

GMCR$

Macro Expansion

GMCR$
.BYTE 127.,41.
.BLKW 40.

;GMCR$ MACRO DIC, DPB SIZE•41. WORDS
;80. CHARACTER MGR COMMAND LINE BUFFER

Local Symbol Definitions

G.MCRS command line buffer (80)

DSW Return Codes

+n

IE.AST

IE.ADP

IE.SOP

successful completion; n is the number of data bytes
transferred (excluding the termination character). The
termination character is, however, in the buffer

no command line exists for the issuing task, or the task has
already issued one or more Get Command Line directives and
has retrieved the entire command line

part of the DPS is out of the issuing task's address space

DIC or DPS size is invalid

DIRECTIVE DESCRIPTIONS 9-61

Notes

1. The GMCR$S form of the macro is not supplied, since the DPB receives
the actual command line.

2. The system processes all lines to:

D Convert tabs to a single space

D Convert multiple spaces to a single space

D Convert lowercase to uppercase

D Remove all trailing blanks

The terminator (<RETURN> or <ESC>) is the last character in the line.

3. If the character before the terminator is a hyphen, there is at least one
continuation line present. Therefore, you must issue another GMCR$
directive to obtain the rest of the command line.

9-62 DIRECTIVE DESCRIPTIONS

GMCX$

9.1.30 GMCX$-Get Mapping Context

The Get Mapping Context directive causes the Executive to return a description
of the current window-to-region mapping assignments. The returned descrip­
tion is in a form that enables the user to restore the mapping context through a
series of Create Address Window directives. The macro argument specifies the
address of a vector that contains one Window Definition Block (WDB) for each
window block allocated in the task's header, plus a terminator word.

For each window block in the task's header, the Executive sets up a WDB in the
vector as follows:

1. If the window block is unused (that is, if it does not correspond to an
existing address window), the Executive does not record any informa­
tion about that block in a WDB. Instead, the Executive uses the WDB to
record information about the first block encountered that corresponds
to an existing window. In this way, unused window blocks are ignored in
the mapping context description returned by the Executive.

2. If a window block describes an existing unmapped address window, the
Executive fills in the offsets W.NID, W.NAPR, W.NBAS, and W.NSIZ
with information sufficient to recreate the window. The window status
word W.NSTS is cleared.

3. If a window block describes an existing· mapped window, the Executive
fills in the offsets W.NAPR, W.NBAS, W.NSIZ, W.NRID, W.NOFF,
W.NLEN, and W.NSTS with information sufficient to create and map the
address window. WS.MAP is set in the status word (W.NSTS) and, if the
window is mapped with write access, the bit WS.WRT is set as well.

Note that in no case does the Executive modify W.NSRB.

The terminator word, which follows the last WDB filled in, is a word equal to the
negative of the total number of window blocks in the task's header. It is thereby
possible to issue a TST or TSTB instruction to detect the last WDB used in the
vector. The terminating word can also be used to determine the number of win­
dow blocks built into the task's header.

When Create Address Window directives are used to restore the mapping con­
text, there is no guarantee that the same address window IDs will be used. The
user must therefore be careful to use the latest window IDs returned from the
Create Address Window directives.

Fortran Call

CALL GMCX (imcx[,ids})

imcx an integer array to receive the mapping context; the size of the array is
8*n+ 1 where n is the number of window blocks in the task's header; the
maximum size is 8*24+ 1 =193 words.

ids directive status

DIRECTIVE DESCRIPTIONS 9-63

Macro Call

GMCX$wvec

wvec the address of a vector of n Window Definition Blocks, followed by a
terminator word; n is the number of window blocks in the task's header

Macro Expansion

GMCXS
.BYTE
.WORD

Table 9-7

VECADR
113. '2
VECADR

;GMCXS MACRO DIC, DPB SIZE=2 WORDS
;WDB VECTOR ADDRESS

Window Definition Block Parameters

Input Parameters

None

Output Parameters

Array
Element

iwdb(1)
bits 0-7

iwdb(1)
bits 8-15

iwdb(2)

iwdb(3)

iwdb(4)

iwdb(5)

iwdb(6)

iwdb(7)

Offset

W.NID

W.NAPR

W.NBAS

W.NSIZ

W.NRID

W.NOFF

W.NLEN

W.NSTS

Description

ID of address window

Base APR of the window

Base virtual address of the window

Size, in 32-word blocks, of the window

ID of the mapped region, or no change if the window is
unmapped

Offset, in 32-word blocks, from the start of the region at which
mapping begins, or no change if the window is unmapped

Length, in 32-word blocks, of the area currently mapped within
the region, or no change if the window is unmapped

Bit settings9 in the window status word (all 0 if the window is
not mapped):

Bit

WS.MAP

WS.WRT

Definition

1 if the window is mapped

1 if the window is mapped with write
access

Note: The length mapped (W.NLEN) can be less than the size of the window
(W.NSIZ) if the area from W.NOFF to the end of the partition is smaller than the
window size.

9. If you are a Fortran programmer, refer to Section 7.5.2 to determine the bit values represented by the symbolic
names described.

9-64 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

G.MCVA address of the vector (wvec) containing the window definition
blocks and terminator word (2)

DSW Return Codes

is.sue
IE.ADP

IE.SOP

Note

None

successful completion

address check of the DPS or the vector (wvec) failed

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-65

GPRT$

9.1.31 GPRT$-Get Partition Parameters

The Get Partition Parameters directive instructs the system to fill an indicated
3-word buffer with partition parameters. If a partition is not specified, the parti­
tion of the issuing task is assumed.

Fortran Cail

CALL GETPAR ([prt],buf[,ids])

prt partition name

but a 3-word integer array to receive partition parameters

ids directive status

Macro Call

GPRT$ [prt],buf

prt partition name

buf address of a 3-word buffer

Buffer Format

Word 0 partition physical base address expressed as a multiple of 32
words (partitions are always aligned on 32-word boundaries);
therefore, a partition starting at 400008 will have 4008 returned
in this word.

Word 1

Word2

partition size expressed as a multiple of 32 words.

partition flags word; this word is returned equal to 0 to indicate
a system-controlled partition, or equal to 1 to indicate a
user-controlled partition.

Macro Expansion

GPRH ALPHA,DATBUF
. BYTE 65., 4
.RADSO /ALPHA/
.WORD DATBUF

Local Symbol Definitions

G.PRPN

G.PRBA

partition name (4)

buffer address (2)

;GPRT$ DIC, DPB S!ZE=4 WORDS
;PARTITION ''ALPHA''
;ADDRESS OF 3-WORD BUFFER

9-66 DIRECTIVE DESCRIPTIONS

The following offsets are assigned relative to the start of the partition param­
eters buffer:

G.PRPB

G.PRPS

G.PRFW

partition physical base address expressed as an absolute 32-
word block number (2)

partition size expressed as a multiple of 32-word blocks (2)

partition flags word (2)

DSW Return Codes

Successful completion is indicated by a cleared Carry bit, and the starting ad­
dress of the partition is returned in the DSW. The returned address is virtual and
is always zero if it is not the task partition. Unsuccessful completion is indicated
by a set Carry bit and one of the following codes in the DSW:

IE.INS

IE.ADP

IE.SOP

Notes

specified partition not in system

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

1. A variation of this directive exists called Get Region Parameters. When
the first word of the 2-word partition name is 0, the Executive interprets
the second word of the partition name as a region ID. If the 2-word
name is 0,0, it refers to the task region of the issuing task.

2. Omission of the partition-name argument returns parameters for the
issuing task's unnamed subpartition, not for the system-controlled
partition.

DIRECTIVE DESCRIPTIONS 9-67

GREG$

9.1.32 GREG$-Get Region Parameters

The Get Region Parameters directive instructs the Executive to fill an indicated
3-word buffer with region parameters. If a region is not specified, the task re­
gion of the issuing task is assumed.

This directive is a variation of the Get Partition Parameters directive.

Fortran Call

CALL GETREG ([rid],buf[,ids])

rid region id

but a 3-word integer array to receive region parameters

ids directive status

Macro Call

GREG$ [rid],buf

rid region ID

buf address of a 3-word buffer

Buffer Format

WordO

Word 1

Word2

region base address expressed as a multiple of 32 words
(regions are always aligned on 32-word boundaries); thus, a
region starting at 10008 will have 108 returned in this word

region size expressed as a multiple of 32 words

region flags word; this word is returned equal to 0 if the region
resides in a system-controlled partition, or equal to 1 if the
region resides in a user-controlled partition

Macro Expansion

GREG$ RID,DATBUF
. BYTE 65., 4
.WORD 0

. WORD RID

.WORD DATBUF

;GREG$ MACRO DIC, DPB SIZE=4 WORDS
;WORD THAT DISTINGUISHES GREG$

;FROM GPRH
;REGION ID
;ADDRESS OF 3-WORD BUFFER

9-68 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

G.RGID

G.RGBA

region ID (2)

buffer address

The following offsets are assigned relative to the start of the region parameters
buffer:

G.RGRB

G.RGRS

G.RGFW

region base address expressed as an absolute 32-word block
number (2)

region size expressed as a multiple of 32-word blocks (2)

region flags word (2)

DSW Return Codes

Successful completion is indicated by carry clear, and the starting address of
the region is returned in the DSW. The returned address is virtual and is always
zero if it is not the task region. Unsuccessful completion is indicated by carry
set and one of the following codes in the DSW:

IE.NVR

IE.ADP

IE.SOP

invalid region ID

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-69

GTIM$

9.1.33 GTIM$-Get Time Parameters

The Get Time Parameters directive instructs the system to fill an indicated 8-
word buffer with the current time parameters. All time parameters are delivered
as binary numbers. The value ranges (in decimal) are shown below in the buffer
format.

Fortran Call

CALL GETTIM (ibfp[,ids])

ibfp an 8-word integer array

Macro Call

GTIM$ buf

buf address of 8-word buffer

Buffer Format

year (since 1900)

month (1-12)

day (1-31)

hour (0-23)

minute (0-59)

second (0-59)

WordO

Word 1

Word2

Word3

Word4

Word5

Word6

Word?

tick of second (Fixed rate of 64.)

ticks per second (Fixed rate of 64.)

Macro Expansion

GTIM$ DATBUF
.BYTE 61. ,2
.WORD DATBUF

;GTIM$ DIC, DPB SIZE•2 WORDS
;ADDRESS OF 8.-WORD BUFFER

9-70 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

G.TISA buffer address (2)

The following offsets are assigned relative to the start of the time parameters
buffer:

G.TIYR year (2)

G.TIMO month (2)

G.TIDA day (2)

G.TIHR hour (2)

G.TIMI minute (2)

G.TISC second (2)

G.TICT clock Tick of Second (2)

G.TICP clock Ticks per Second (2)

DSW Return Codes

is.sue
IE.ADP

IE.SOP

Note

successful completion

part of the DPS or buffer is out of the issuing task's address
space

DIC or DPS size is invalid

1 . The format of the time buffer is compatible with that of the buffers used
with the Set System Time directive.

DIRECTIVE DESCRIPTIONS 9-71

GTSK$

9.1.34 GTSK$-Get Task Parameters

The Get Task Parameters directive instructs the system to fill an indicated 16-
word buffer with parameters relating to the issuing task.

Fortran Call

CALL GETTSK (buf[,ids])

buf a 16-word integer array to receive the task parameters

ids directive status

Macro Call

GTSK$ buf

buf address of a 16-word buffer

Buffer Format

WordO

Word 1

Word2

Word3

Word4

Word5

Word6

Word?

Word 10

Word 11

Word 12

Word 13

Word 14

Word 15

Word 16

Word 17

issuing task's name in Radix-50 (first half)

issuing task's name in Radix-50 (second half)

partition name in Radix-50 (first half)

partition name in Radix-50 (second half)

undefined in the system

undefined in the system

run priority

User Identification Code (UIC) of issuing task (the task's default
UIC)10

number of logical 1/0 units (LUNs)

undefined in the system

undefined in the system

(address of task SST vector tables)11

(size of task SST vector table in words)11

size (in bytes) either of task's address window 0 in mapped
systems, or of task's partition in unmapped system (equivalent
to partition size)

system on which task is running:

11 the P /OS system always returns this code

protection UIC

10. See note in ROST$ description on contents of words 07 and 17.

11. Words 13 and 14 will contain valid data if word 14 is not zero. If word 14 is zero, the contents of word 13 are
meaningless.

9-72 DIRECTIVE DESCRIPTIONS

Macro Expansion

GTSK$ DATBUF
. BYTE 63., 2
.WORD DATBUF

;GTSK$ MACRO DIC, DPB SIZE = 2 WORDS
;ADDRESS OF 16-WORD BUFFER

Local Symbol Definitions

G.TSBA buffer address (2)

The following offsets are assigned relative to the task parameter buffer:

G.TSTN task name (4)

G.TSPN partition name (4)

G.TSPR priority (2)

G.TSGC UIC group code (1)

G.TSPC UIC member code (1)

G.TSNL number of logical units (2)

G.TSVA task's SST vector address (2)

G.TSVL task's SST vector length in words (2)

G.TSTS task size (2}

G.TSSY system on which task is running (2) .
G.TSDU protection UIC (2)

DSW Return Codes

is.sue
IE.ADP

IE.SOP

successful completion

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB is invalid

DIRECTIVE DESCRIPTIONS 9-73

MAP$

9.1.35 MAP$-Map Address Window

The Map Address Window directive maps an existing window to an attached
region. The mapping begins at a specified offset from the start of the region. If
the window is already mapped elsewhere, the Executive unmaps it before carry­
ing out the mapping assignment described in the directive.

For the mapping assignment, a task can specify any length that is less than or
equal to both:

D The window size specified when the window was created

D The length remaining between the specified offset within the region and
the end of the region

A task must be attached with write access to a region in order to map to it with
write access. To map to a region with read-only access, the task must be at­
tached with either read or write access.

If W.NLEN is set to 0, the length defaults to either the window size or the length
remaining in the region, whichever is smaller. (Since the Executive returns the
actual length mapped as an output parameter, the task must clear that param­
eter in the WDB before issuing the directive each time it wants to default the
length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W.NSTS):

o If WS.64B = 0, the offset specified in W.NOFF must represent a multiple
of 256 words (512 bytes). Because the value of W.NOFF is expressed in
units of 32-word blocks, the value must be a multiple of 8.

D If WS.64B = 1, the task can align on 32-word boundaries; the program­
mer can therefore specify any offset within the region.

Fortran Call

CALL MAP (iwdb[,ids])

iwdb an 8-word integer array containing a Window Definition Block (see
Section 7 .5.2.2)

ids directive status

Macro Call

MAP$wdb

wdb window Definition Block address

9-74 DIRECTIVE DESCRIPTIONS

Macro Expansion

MAP$
.BYTE
.WORD

Table 9-8

WDBADR
121. ,2
WDBADR

;MAP$ MACRO DIC, DPB SIZE•2 WORDS
;WDB ADDRESS

Window Definition Block Parameters

Input Parameters

Array
Element Offset

iwdb(1) W.NID
bits 0-7

iwdb(4) W.NRID

iwdb(5) W.NOFF

iwdb(6) W.NLEN

iwdb(7) W.NSTS

Output Parameters

iwdb(6)

iwdb(7)

W.NLEN

W.NSTS

WS.UNM

Description

ID of the window to be mapped.

ID of the region to which the window is to be mapped, or 0 if the
task region is to be mapped.

Offset, in 32-word blocks, within the region at which mapping is to
begin. Note that if WS.64B in the window status word equals 0, the
value specified must be a multiple of 8.

Length, in 32-word blocks, within the region to be mapped, or O if
the length is to default to either the size of the window or the
space remaining in the region from the specified offset, whichever
is smaller.

Bit settings 12 in the window status word:

Bit

WS.WRT

WS.64B

Definition

1 if write access is desired

0 for 256-word (512-byte) alignment, or 1 for
32-word (64-byte) alignment

Length of the area within the region actually mapped by the
window

Bit settings 13 in the window status word:

1 if the window was unmapped first

12. If you are a Fortran programmer, refer to Section 7.5.2 to determine the bit values represented by the symbolic
names described.

13. If you are a Fortran programmer, refer to Section 7.5.2 to determine the bit values represented by the symbolic
names described.

DIRECTIVE DESCRIPTIONS 9-75

Local Symbol Definitions

M.APBA window Definition Block address (2)

DSW Return Codes

is.sue
IE.PAI

IE.NVR

IE.NVW

IE.ALG

IE.HWA

IE.ITS

IE.ADP

IE.SOP

Notes

successful completion

privilege violation

invalid region ID

invalid address window ID

task specified an invalid region offset and length combination in
the Window Definition Block parameters; or WS.648 = 0 and
the value of W.NOFF is not a multiple of 8

region had a parity error or a load failure

WS.RES was set and region is not resident

part of the DPB or WDB is out of the issuing task's address
space

DIC or DPB size is invalid

1 . When the Map Address Window directive is issued, the task may be
blocked until the region is loaded.

2. Bit WS.RES in word W.NSTS of the Window Definition Block, when set,
specifies that the region should be mapped only if the region is resident.

9-76 DIRECTIVE DESCRIPTIONS

MRKT$

9.1.36 MRKT$-Mark Time

The Mark Time directive instructs the system to declare a significant event after
an indicated time interval. The interval begins when the task issues the direc­
tive; however, task execution continues during the interval. If an event flag is
specified, the flag is cleared when the directive is issued, and set when the sig­
nificant event occurs. If an AST entry point address is specified, an AST (see
Section 5.3.3) occurs at the time of the significant event. When the AST occurs,
the task's PS, PC, directive status, Wait For mask words, and the event flag
number specified in the directive are pushed onto the issuing task's stack. If
neither an event flag number nor an AST service entry point is specified, the
significant event still occurs after the indicated time interval. (See Notes.)

Fortran Calls

CALL MARK (efn,tmg,tnt[,ids])

efn event flag number

tmg time interval magnitude (see Note 5)

tnt time interval unit (see Note 5)

ids directive status

The 15A standard call for delaying a task for a specified time interval is also
provided:

CALL WAIT (tmg,tnt[,ids])

tmg time interval magnitude (see Note 5)

tnt time interval unit (see Note 5)

ids directive status

Macro Call

MRKT$ [efn],tmg,tnt[,ast]

efn event flag number

tmg time interval magnitude (see Note 6)

tnt time interval unit (see Note 6)

ast AST entry point address

DIRECTIVE DESCRIPTIONS 9-77

Macro Expansion

MRKT$ 52.,30.,2,MRKAST
.BYTE 23.,5 ;MRKT$ MACRO DIC, DPB SIZE•5 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52 .
. WORD 30. ;TIME MAGNITUDE•30 .
. WORD 2
.WORD MRKAST

Local Symbol Definitions

event flag (2)

time magnitude (2)

time unit (2)

;TIME UNIT•SECONDS
;ADDRESS OF MARK TIME AST ROUTINE

M.KTEF

M.KTMG

M.KTUN

M.KTAE AST entry point address (2)

DSW Return Codes

is.sue
IE.UPN

IE.ITI

IE.IEF

IE.ADP

IE.SOP

For CALL MARK and MRKT$

successful completion

insufficient dynamic memory

invalid time parameter

invalid event flag number (EFN<O or EFN>64)

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

For CALL WAIT

The system provides the following positive error codes to be returned for ISA
calls:

1 successful completion

2 insufficient dynamic storage

3 specified task not installed

94 invalid time parameters

98 invalid event flag number

99 part of DPB out of task's range

100 DIC or DPB size invalid

9-78 DIRECTIVE DESCRIPTIONS

Notes

1. Mark Time requires dynamic memory for the clock queue entry.

2. If an AST entry point address is specified, the AST service routine is
entered with the task's stack in the following state:

SP+ 10 event flag mask word14

SP+06 PS of task prior to AST

SP+04

SP+02

SP+OO

PC of task prior to AST

DSW of task prior to AST

event flag number or zero (if none was
specified in the Mark Time directive)

The event flag number must be removed from the task's stack before
an AST Service Exit directive is executed.

3. If the directive is rejected, the specified event flag is not guaranteed to
be cleared or set. Consequently, if the task indiscriminately executes a
Wait For directive and the Mark Time directive is rejected, the task may
wait indefinitely. Care should always be taken to ensure that the
directive was successfully completed.

4. If a task issues a Mark Time directive that specifies a common event
flag and then exits before the indicated time has elapsed, the event flag
is not set.

5. The Executive returns the code IE.Ill (or 94) in the Directive Status
Word if the directive specifies an invalid time parameter. The time
parameter consists of two components: the time interval magnitude and
the time interval unit, represented by the arguments tmg and tnt,
respectively.

A legal magnitude value (tmg) is related to the value assigned to the
time interval unit (tnt). The unit values are encoded as follows:

For an ISA Fortran call (CALL WAIT):

O ticks. A tick occurs for each clock interrupt at a rate of 64(10) ticks
per second

milliseconds. The subroutine converts the specified magnitude to
the equivalent number of system clock ticks. On systems with line
frequency clocks, millisecond Mark Time requests can only be
approximations.

For all other Fortran and macro calls:

ticks. A tick occurs for each clock interrupt at a rate of 64(10) ticks
per second.

14. The event flag mask word preserves the Wait For condition of a task prior to AST entry. A task can, after an
AST, return to a Wait For state. Because these flags and the other stack data are in the use task, they can be
modified. Such modification is strongly discouraged, however, since the task can easily fault on obscure
conditions. For example, clearing the mask word results in a permanent Wait For state.

DIRECTIVE DESCRIPTIONS 9-79

For both types of Fortran calls and all macro calls:

2 seconds

3 minutes

4 hours

The magnitude is the number of units to be clocked. The following
list describes the magnitude values that are valid for each
In no case can the value of tmg exceed 24 hours. The list
both Fortran and macro calls.

If tnt = 0, 1, or 2,
15 bits.

can be value with a maximum of

If tnt = 3, can have a maximum value of "I

If tnt = 4, tmg can riave a maximum value of

6. The minimum time interval is one tick. If you a time interval of
zero, it will be converted to one tick.

9-80 DIRECTIVE DESCRIPTIONS

QIO$

9.1.37 010$-Queue 1/0 Request

The Queue 1/0 Request directive instructs the system to place an 1/0 request
for an indicated physical device unit into a queue of priority-ordered requests
for that device unit. The physical device unit is specified as a logical unit number
(LUN) assigned to the device.

The Executive declares a significant event when the 1/0 transfer completes. If
the directive call specifies an event flag, the Executive clears the flag when the
request is queued and sets the flag when the significant event occurs.

The 1/0 status block is also cleared when the request is queued and is set to the
final 1/0 status when the 1/0 request is complete. If an AST service routine entry
point address is specified, the AST occurs upon 1/0 completion, and the task's
Wait For mask word, PS, PC, DSW, and the address of the 1/0 status block are
pushed onto the task's stack.

The description below deals solely with the Executive directive. (See Notes.)

Fortran Call

CALL 010 (fnc,lun,[efn],[pri],[isb],[prl)[,ids])

fnc 'l/O function code (see Appendix C)

lun logical unit number

efn event flag number

pri ·priority; ignored, but must be present

isb a 2-word integer array to receive final 1/0 status

prl a 6-word integer array containing device-dependent parameters to be
placed fn parameter words 1 through 6 of the DPS. Fill in this array by
using the GETADR routine (see Section 3.4.1.4)

ids directive status

Macro Call

010$ fnc,lun,[efn),[pri),[isb],[ast],[prl]

fnc 1/0 function code (see Appendix C)

lun logical unit number

efn event flag number

pri priority; ignored, but must be present

isb address of 1/0 status block

ast address of entry point of AST service routine

prl parameter list of the form <P1 , ... P6>

DIRECTIVE DESCRIPTIONS 9-81

Macro Expansion

QIO$
.BYTE
.WORD

IO.RVB,7,52.,,IOSTAT,IOAST,<IOBUFR,512.>
1,12. ;QIO$ MACRO DIC, DPB SIZE•12
IO.RVB ;FUHCTIOH•READ VIRTUAL BLOCK

.WORD 7

.BYTE 52.,0

.WORD IOSTAT

.WORD I OAST

. WORD I OBUFR

.WORD 512.

. WORD 0

.WORD 0

. WORD 0

.WORD 0

;LOGICAL UNIT HUMBER 7
;EFH 52., PRIORITY IGNORED
;ADDRESS OF 2-WORD I/O STATUS BLOCK
;ADDRESS OF I/O AST ROUTINE
;ADDRESS OF DATA BUFFER
;BYTE COUHT•512.
;ADDITIONAL PARAMETERS ...
; ... HOT USED IH ...
; ... THIS PARTICULAR ...
;~ .. INVOCATION OF QUEUE I/O

Local Symbol Definitions

Q.IOFN

Q.IOLU

Q.IOEF

Q.IOPA

Q.IOSB

Q.IOAE

Q.IOPL

1/0 function code (2)

logical unit number (2)

event flag number (1)

priority (1)

address of 1/0 status block (2)

address of 1/0 done AST entry point (2)

parameter list (6 words) (12)

DSW Return Codes

is.sue
IE.UPN

IE.ULN

IE.HWA

IE.PAI

IE.ILU

IE.IEF

IE.ADP

IE.SOP

successful completion

insufficient dynamic memory

unassigned LUN

device driver not loaded

task other than despooler attempted a write logical block
operation.

invalid LUN

invalid event flag number (EFN<O or EFN>64)

part of the DPB or 1/0 status block is out of the issuing task's
address space

DIC or DPB size is invalid

9-82 DIRECTIVE DESCRIPTIONS

Notes

1. If the directive call an AST point address, the task enters
the AST service routine with its stack in tr1e following state:

SP+10

SP+06

SP+04

SP+02

SP+OO

event mask word

PS of task to AST

DSW of task to AST

status or zero, if none
was in tt1e 010 directive

The address of the 1/0 status which is a trap-dependent
parameter, must be removed from the task's stack before an AST
Service Exit directive is executed.

2. If the directive is event is not guaranteed to
be cleared or set. if the task indiscriminately executes a
Wait For or Stop For directive and the 010 directive is rejected, the task
may wait indefinitely. Care should be taken to ensure that the
directive was

3. Tasks or regions cannot normally be
for two reasons:

with 1/0 outstanding

D the data, transfers
directly to or from the

D If an 1/0 status b!ock address is specified, the directive status is
returned directly to the 1/0 status block.

The Executive waits until a task has no outstanding 1/0 before initiating
checkpointing in all cases the one described below.

Drivers that buffer 1/0 cl1eck for the conditions for a task:

D That the task is

D That is enabled

If those two conditions are the driver and/or the Executive
buffers the and the task is checkpointable
with this If the task also entered a Wait For state
when the 1/0 was issued the directive) or
subsequently enters a Wait For state, the task is stopped. Any
competing task waiting to be loaded into the partition can
checkpoint the of priority. If the stopped
task is checkpointed, the executive does not bring it back into
memory until the state is terminated completion of
buffered 1/0 or satisfaction of the Wait For condition.

Not all drivers buffer 1/0
one that does.

The terminal driver is an example of

4. Any task that is linked to a common (read-only) area can issue 010 write
requests from that area.

DIRECTIVE DESCRIPTIONS 9-83

QIOW$

9.1.38 QIOW$-Queue 1/0 Request and Wait

The Queue 1/0 Request And Wait directive is identical to the Queue 1/0 Request
in all but one respect. If the Wait variation of the directive specifies an event flag,
the Executive automatically effects a Wait For Single Event Flag directive. If an
event flag is not specified, however, the Executive treats the directive as if it
were a simple Queue 1/0 Request.

The following description lists the Fortran and macro calls with the associated
parameters,.as well as the macro expansion. Consult the description of Queue
1/0 Request for a definition of the parameters, the local symbol definitions, the
DSW return codes, and explanatory notes.

Fortran Call

CALL WTQIO (fnc,lun,[efn],[pri],[isb],[prl][,ids])

fnc 1/0 function code (see Appendix C)

lun logical unit number

efn event flag number

pri priority; ignored, but must be present

isb a 2-word integer array to receive final 1/0 status

prl a 6-word integer array containing device-dependent parameters to be
placed in parameter words 1 through 6 of the DPB

ids directive status

Macro Call

QIOW$ fnc,lun ,[efn],[pri],[isb],[ast][,prl]

fnc 1/0 function code (see Appendix C)

lun logical unit number

efn event flag number

pri priority; ignored, but must be present

isb address of 1/0 status block

ast address of entry point of AST service routine

prl parameter list of the form <P1 , ... P6>

9-84 DIRECTIVE DESCRIPTIONS

Macro Expansion

QIOW$
. BYTE
WORD
.WORD
.BYTE
.WORD
.WORD
.WORD
. WORD
. WORD
. WORD
. WORD
.WORD

IO.RVB,7,52.,,IOSTAT,IOAST,<IOBUFR,512.>
3, 12. ;GIO$ MACRO DIC, DPB SIZE=12 .
IO.RVB ;FUNCTION=READ VIRTUAL BLOCK
7

52. '0
IOSTAT
IOAST
IOBUFR
512.
0
0

0
0

;LOGICAL UNIT NUMBER 7
;EFN 52., PRIORITY IGNORED
;ADDRESS OF 2-WORD I/O STATUS BLOCK
;ADDRESS OF I/O AST ROUTINE
;ADDRESS OF DATA BUFFER
;BYTE COUNT=512 .
;ADDITIONAL PARAMETERS ...
; ... NOT USED IN ...
; ... THIS PARTICULAR ...
; ... INVOCATION OF QUEUE I I 0

DIRECTIVE DESCRIPTIONS 9-85

RCST$

9.1.39 RCST$-Receive Data Or Stop

The Receive Data Or Stop directive instructs the system to dequeue a 13-word
data block for the issuing task; the data block was queued for the task with a
Send Data Directive or a Send, Request And Connect directive.

A 2-word task name of the sender (in Radix-50 format) and the 13-word data
block are returned in an indicated 15-word buffer. The task name is contained in
the first two words of the buffer.

If no data has been sent, the issuing task is stopped. In this case, the sender
task is expected to issue an Unstop directive after sending data. A success sta­
tus code of IS.SUC indicates that a packet has been received. A success status
code of IS.SET indicates that the task was stopped and has been unstopped.
The directive must then be reissued to retrieve the packet.

When a slave task issues the Receive Data or Stop directive, it assumes the UIC
and Tl: terminal of the task that sent the data.

Fortran Call

CALL RCST ([rtname],ibuf[,ids])

rtname

ibuf

ids

Macro Call

sender task name (if not specified, data may be received from
any task)

address of 15-word buffer to receive the sender task name and
data

integer to receive the Directive Status Word

RCST$ [tname],buf

tname

but

sender task name (If not specified, data may be received from
any task)

address of 15-word buffer to receive the sender task name and
data

Macro Expansion

RCS TS
.BYTE
.RADSO
.WORD

ALPHA,TSKBUF
139. '4
ALPHA
TSKBUF

;RCST$ MACRO DIC, DPB SIZE=4 WORDS
;DATA SENDER TASK NAME
;BUFFER ADDRESS

9-86 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

R.CSTN

R.CSBF

task name (4)

buffer address (2)

DSW Return Codes

is.sue
IS.SET

IE.AST

IE.ADP

IE.SOP

Note

successful completion

no data was received and task was stopped (note that the task
must be Unstopped before it can see this status)

the issuing task is at AST state

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. The Receive Data Or Stop directive is treated as a 1310 word Variable
Receive Data Or Stop directive.

DIRECTIVE DESCRIPTIONS 9-87

RCVD$

9.1.40 RCVD$-Receive Data

The Receive Data directive instructs the system to dequeue a 13-word data
block for the issuing task; the data block has been queued (FIFO) for the task by
a Send Data Directive.

A 2-word sender task name (in Radix-50 form) and the 13-word data block are
returned in an indicated 15-word buffer, with the task name in the first two
words.

When a slave task issues the Receive Data directive, it assumes the UIC and Tl:
terminal of the task that sent the data.

Fortran Call

CALL RECEIV ([tsk],buf[,,ids])

tsk sender task name (if not specified, data may be received from any task)

buf a 15-word integer array for received data

ids directive status

Macro Call

RCVD$ [tsk],buf

tsk sender task name (if not specified, data may be received from any task)

buf address of 15-word buffer

Macro Expansion

RCVD$
.BYTE
.RADSO
.WORD

ALPHA,DATBUF
75. '4
/ALPHA/
DATBUF

local Symbol Definitions

R.VDTN

R.VDBA

sender task name (4)

buffer address (2)

DSW Return Codes

;TASK NAME AND BUFFER ADDRESS
;RCVD$ MACRO DIC, DPB S!ZE=4 WORDS
;SENDER TASK NAME
;ADDRESS OF 15.-WORD BUFFER

is.sue
IE.ITS

successful completion

no data currently queued

9-88 DIRECTIVE DESCRIPTIONS

IE.ADP

IE.SOP

Notes

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

1. The Receive Data directive is treated as a 1310 word Variable Receive
Data directive.

2. If the sending task specifies a common event flag in the Send Data
directive, the receiving task may use that event flag for synchronization.
However, between the time that the receiver issues this directive and
the time the receiver issues its next instruction, the sender can send
data and set the event flag. If the next instruction is an Exit directive,
any data sent during this time will be lost because the Executive flushes
the task's receive list as part of exit processing. Therefore, use the Exit
If directive or the Receive Data or Exit directive in order to avoid the
race condition.

DIRECTIVE DESCRIPTIONS 9-89

RCVX$

9.1.41 RCVX$-Receive Data Or Exit

The Receive Data Or Exit directive instructs the system to dequeue a 13-word
data block for the issuing task; the data block has been queued (FIFO) for the
task by a Send Data directive.

A 2-word sender task name (in Radix-50 form) and the 13-word data block are
returned in an indicated 15-word buffer, with the task name in the first two
words.

If no data has been sent, a task exit occurs. To prevent the possible loss of
Send packets, the user should not rely on 1/0 rundown to take care of any out­
standing 1/0 or open files; the task should assume this responsibility.

When a slave task issues the Receive Data Or Exit directive, it assumes the UIC
and Tl: of the task that sent the data. (See Notes.)

Fortran Call

CALL RECOEX ([tsk],buf[,,ids])

tsk sender task name (if not specified, data may be received from any task)

but a 15-word integer array for received data

ids directive status

Macro Call

RCVX$ [tsk],buf

tsk sender task name (if not specified, data may be received from any task)

buf address of 15-word buffer

Macro Expansion

RCVXS
.BYTE

.RADSO

.WORD

ALPHA,DATBUF
77. ,4

/ALPHA/
DATBUF

Local Symbol Definitions

R.VXTN

R.VXBA

sender task name (4)

buffer address (2)

;TASK NAME AND BUFFER ADDRESS
;RCVXS MACRO DIC, DPB SIZE=4 WORDS
;SENDER TASK NAME
;ADDRESS OF 15.-WORD BUFFER

9-90 DIRECTIVE DESCRIPTIONS

DSW Return Codes

is.sue
IE.ADP

IE.SOP

Notes

successful completion

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

1. A Fortran program that issues the RECOEX call must first close all files
by issuing CLOSE calls.

To avoid the time overhead involved in the closing and reopening of
files, the task should first issue the RECEIV call. If the directive status
indicates that no data were received, then the task can close all files and
issue the call to RECOEX. The following example illustrates the same
overhead saving in MACRO:

RCVBUF: . BLKW
START: RCVX$C

CALL

PROC:

Process

RCVD$C

BCC
CALL

JMP

15 •

,RCVBUF
OPEN

packet

,RCVBUF

PROC
CLOSE

START

of data

Receive buffer
Attempt to receive message
call user subroutine to
open files.

Attempt to receive another
message
If CC successful receive
call user subroutine to
close files
and prepare for possible
task exit
Make one last attempt
at receiving

2. If no data have been sent, that is, if no Send Data directive has been
issued, the task exits. Send packets may be lost if a task exits with
outstanding 1/0 or open files (see third paragraph of this section).

3. The Receive Data Or Exit directive is useful in avoiding a possible race
condition that can occur between two tasks communicating by the Send
and Receive directives. The race condition occurs when one task
executes a Receive directive and finds its receive queue empty; but
before the task can exit, the other task sends it a message. The
message is lost because the Executive flushes the receiving task's
receive queue when it exits. This condition can be avoided by the
receiving task's executing a Receive Data Or Exit direcHve. If the
receive queue is found to be empty, a task exit occurs before the other
task can send any data; thus, no loss of data can occur.

DIRECTIVE DESCRIPTIONS 9-91

4. On Exit, the Executive trees task resources. In particular, the Executive:

D Detaches all attached devices

D Flushes the AST queue and despecifies all specified ASTs

D Flushes the receive and receive-by-reference queues

D Flushes the clock queue for outstanding Mark Time requests for
the task

D Closes all open files (files open for write access are locked)

D Detaches all attached regions except in the case of a fixed task,
where no detaching occurs

D Runs down the task's 1/0

D Disconnects from interrupt vectors

D Returns a success status (EX$SUC) to any parent tasks

D Breaks the connection with any offspring tasks

D Frees the task's memory if the exiting task was not fixed

5. If the task exits, the Executive declares a significant event.

6. The Receive Data Or Exit directive is treated as a 13-word Variable
Receive Data Or Exit directive.

9-92 DIRECTIVE DESCRIPTIONS

ROAF$

9.1.42 RDAF$-Read All Event Flags

The Read All Event Flags directive instructs the system to read all 64 event flags
for the issuing task and record their polarity in a 64-bit (4-word) buffer.

Fortran Call

A Fortran task can read only one event flag. The call is:

CALL READEF (efn[,ids])

efn event flag number

ids directive status

The Executive returns the status codes IS.SET (+02) and IS.CLR (00) for For­
tran calls in order to report event flag polarity.

Macro Call

ROAF$ buf

Buffer Format

Word 0

Word 1

Word2

Word3

task Local Flags 1-16

task Local Flags i 7 -32

task Common Flags 33-48

task Common Flags 49-64

Macro Expansion

RDAF$
.BYTE

.WORD

FLGBUF
39., 2

FLGBUF
;RDAF$ MACRO DIC, DPB S!ZE=2 WORDS
;ADDRESS OF 4-WORD BUFFER

Local Symbol Definitions

R.DABA buffer address (2)

DSW Return Codes

is.sue
IE.ADP

IE.SOP

successful completion

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-93

RDEF$

9.1.43 ROEF$-Read Event Flag

The Read Event Flag directive tests an indicated event flag and reports its po­
larity in the DSW.

Fortran Call

CALL READEF (iefn[,ids])

iefn integer containing an Event Flag Number

ids integer variable to receive the Directive Status Word

Macro Call

RDEF$ efn

efn event flag number

Macro Expansion

RDEF$ 6
. BYTE 37., 2

.WORD 6

Local Symbol Definitions

The following symbol is locally defined with its assigned value equal to the byte
offset from the start of the DPB to the DPB element:

R.DEEF event flag number (length of 2 bytes)

OSW Return Codes

IS.CLR

IS.SET

IE.IEF

IE.ADP

IE.SOP

flag was clear

flag was set

invalid event flag number (event flag number <1 or >64)

part of DPB is out of issuing task's address space

DIC or DPB size is invalid

9-94 DIRECTIVE DESCRIPTIONS

RDXF$

9.1.44 RDXF$-Read Extended Event Flags

The Read Extended Event Flags directive instructs the system to read all local
and common event flags for the issuing task and record their polarity in a 96-bit
(6-word) buffer.

Fortran Call

A Fortran task can read only one event flag. The call is:

CALL READEF (efn[,ids])

efn event flag number

ids directive status

The Executive returns the status codes IS.SET (+02) and IS.CLR (00) for For­
tran calls to report event flag polarity.

Macro Call

RDXF$ buf

Buffer Format

WordO

Word 1

Word2

Word3

Word4

Words

task Local Flags 1-16

task Local Flags 17 -32

task Common Flags 33-48

task Common Flags 49-64

reserved for future use

reserved for future use

Macro Expansion

RDXF$
.BYTE
.WORD

FLGBUF
39. '3
FLGBUF

Local Symbol Definitions

R.DABA buffer address (2)

;RDXF$ MACRO DIC, DPB SIZE=3 WORDS
;ADDRESS OF 6-WORD BUFFER

DIRECTIVE DESCRIPTIONS 9-95

DSW Return Codes

is.sue
IS.CLR

IE.ADP

IE.SOP

successful completion

group global event flags do not exist; words 4 and 5 of the
buffer contain 0

part of the DPS or buffer is out of the issuing task's address
space

DIC or DPS size is invalid

9-96 DIRECTIVE DESCRIPTIONS

RPOI$

9.1.45 RPOl$-Request and Pass Information

The Request and Pass Information directive instructs the system to
chain to it passing any or all of the parent request the

connections from the task. Optionally, the direc­
task. Only a privileged task may tive can pass a command line

specify the UIC and Tl: of tt1e

Fortran Call

tname

iugc

iumc

iparen

ibuf

ibfl

isc

idnam

iunit

itask

name o"I an
UIC of the

name of thB "'""r""y
UIC of the

[isc],

t!1e actual name (in Radix-50) of the
chained to

the group code number for the
chain task

the member code number for the

i*4 the Radix-50 name
this name is returned in the information

subroutine

name of an array that contains the command line text for the
chained task

name of an that contains the number of bytes in the
comrnanc.i in tt1e ibuf array

the actions of this directive request when
the bit definitions of this byte (only the low order byte

in the call is ever used) are as follows:

RP.OEX = 1 ~~8 force this task to exit on successful execution
of HPOI directive

RP.OAL = 1 pass all of this task's connections to the
task default is none)

RP.ONX = 2 pass U1e first connection in the queue if there is
one

name of an
task's T!

name of an
task's Tl: device

the ASCII device name of the

the unit number of the requested

name of an array which contains the Radix-50 name the
tas!< is to run under

any task may a new name for the requested task.
the task (specified in the tname parameter)

must be installed in the ... tsk format.

ocbad

ids

Macro Call

DIRECTIVE DESCRIPTIONS 9-97

reserved for future use

name of an integer to receive the Directive Status Word

RPOI$ tname,,,[ugc],[umc],[parent],[bufadr],[buflen], [sc],
[dnam],[unit],[task],[ocbad]

tname

ugc

umc

parent

bufadr

bu fl en

SC

name of task to be chained to

group code for UIC of the requested task

member code for UIC of the requested task

name of issuing task's parent task whose connection is to be
passed; if not specified, all connections are passed

address of buffer to be given to the requested task

length of buffer to be given to requested task

flags byte:

RP.OEX - (200) force issuing task to exit

RP.OAL-(1) pass all connections (default is none)

RP.ONX - (2) pass the first connection in the queue, if there is
one

dnam ASCII device name for Tl:

unit unit number of task Tl:

task radix-50 name that the requested task is to run under.

ocbad

Any task may specify a new name for the requested task.
However, the requested task (specified in the tname parameter)
must be installed in the ... tsk format.

reserved for future use

Local Symbol Definitions

R.POTK

R.POUM

R.POUG

R.POPT

R.POBF

R.POBL

R.POUN

R.POSC

R.PODV

R.POTN

radix-50 name of task to be chained to (2)

UIC member code (1)

UIC group code

name of parent whose OCB should be passed (4)

address of command buffer (2)

length of command (2)

unit number of task Tl: (1)

flags byte (1)

ASCII device name for Tl: (2)

radix-50 name of task to be started (4)

9-98 DIRECTIVE DESCRIPTIONS

Macro Expansion

RPOIS tname,,,ugc,umc,ptsk,buf,buflen,sc,dev,unit,task,ocbad
.BYTE 11,16 ;DIC 11 DPB SIZE • 16. words
.RADSO /tname/
.BLKW 3
.BYTE umc
.BYTE ugc
.RADSO ptsk
.WORD ocbad
.WORD buf
.WORD buflen
.ASCII /dev/
.BYTE unit
.BYTE SC

;MAME OF TASK TO CHAIM TO
;RESERVED
;UIC MEMBER CODE
;UIC GROUP CODE
:MAME OF TASK WHOSE DCB SHOULD BE PASSED
;ADDRESS OF DCB
;ADDRESS OF BUFFER TO SEMD
;LEMGTH OF BUFFER
;ASCII MAME OF TI: OF REQUESTED TASK
;UMIT MUMBER OF TI: DEVICE
;PASS BUFFER AS SEMD PACKET OR COMMAMD
;CODE

DSW Return Codes

IE.UPN

IE.INS

IE.ACT

IE.IOU

IE.NVR

IE.ALG

IE.PNS

IE.ADP

IE.SOP

there is insufficient dynamic memory to allocate an Offspring
Control Block, command line buffer, Task Control Block, or
Partition Control Block

the specified task was not installed but no command line was
specified

the specified task was already active and it was not a command
line interpreter

the specified virtual terminal unit does not exist or was not
created by the issuing task

there is no Offspring Control Block from the specified parent
task

either a parent name or an offspring control block address was
specified and the pass all connections flag or the pass next
connection flag was set

the Task Control Block cannot be created in the same partition
as its prototype

part of the DPS, exit status block, or command line is out of the
issuing task's address space

DIC or DPS size is invalid

DIRECTIVE DESCRIPTIONS 9-99

RQST$

9.1.46 RQST$-Request Task

The Request Task directive instructs the system to activate a task. The task is
activated and subsequently runs contingent upon priority and memory availabil­
ity. The Request Task directive is the basic mechanism used by running tasks
to initiate other installed (dormant) tasks. The Request Task directive is a fre­
quently used subset of the Run directive. See Notes.

Fortran Call

CALL REOUES (tsk,[opt][,ids])

tsk task name

opt a 4-word integer array

opt(1) partition name first half; ignored, but must be present

opt(2) partition name second half; ignored, but must be present

opt(3) priority; ignored, but must be present

opt(4) user Identification Code

ids directive status

Macro Call

ROST$ tsk,[prt],[pri][,ugc,umc]

tsk task name

prt partition name; ignored, but must be present

pri priority; ignored, but must be present

ugc UIC group code

umc UIC member code

Macro Expansion

RQSH
.BYTE
.RADSO
.WORD
.WORD
.BYTE

ALPHA, , , 20, 10
11., 7

/ALPHA/
0,0
0

10,20

Local Symbol Definitions

R.OSTN

R.QSPN

task name (4)

partition name (4)

;RQSTS MACRO DIC, DPB SIZE=7 WORDS
;TASK ''ALPHA''
;PARTITION IGNORED
;PRIORITY IGNORED
;UIC UNDER WHICH TO RUN TASK

9-100 DIRECTIVE DESCRIPTIONS

R.QSPR

R.QSGC

R.QSPC

priority (2)

U IC group (1)

UIC member (1)

DSW Return Codes

is.sue
IE.UPN

IE.INS

IE.ACT

IE.ADP

IE.SOP

Notes

successful completion

insufficient dynamic memory

task is not installed

task is already active

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. The requested task must be installed in the system.

2. If the partition in which a requested task is to run is already occupied,
the Executive places the task in a queue of tasks waiting for that
partition. The requested task then runs, depending on priority, and
resource availability, when the partition is free.

If the current occupant of the partition is checkpointable, has
checkpointing enabled, and is of lower priority than the requested task,
it is written to disk when its current outstanding 1/0 completes; the
requested task is then read into the partition.

3. Successful completion means that the task has been declared active,
not that the task is actually running.

4. The requested task acquires the same Tl: assignment as that of the
requesting task.

5. The requested task always runs at the priority specified in its task
header.

6. A task that executes in a system-controlled partition requires dynamic
memory for the Partition Control Block used to describe its memory
requirements.

7. Each active task has two UICs: a protection UIC and a default UIC.
These are both returned when a task issues a Get Task Parameters
directive (GTSK$). The UICs are used in the following way:

D The protection UIC determines the task's access rights for
opening files and attaching to regions. When a task attempts to
open a file, the system compares the task's protection UIC against
the protection mask of the specified UFO; the comparison
determines whether the task is to be considered for system,
owner, group, or world access.

DIRECTIVE DESCRIPTIONS 9-101

RREF$

9.1.47 RREF$-Receive By Reference

The Receive By Reference directive requests the Executive to dequeue the next
packet in the receive-by-reference queue of the issuing (receiver) task. Option­
ally, the task exits if there are no packets in the queue. The directive may also
specify that the Executive proceed to map the referred region.

If successful, the directive declares a significant event.

Each reference in the task's receive-by-reference queue represents a separate
attachment to a region. If a task has multiple references to a given region, it is
attached to that region the corresponding number of times. Because region at­
tachment requires system dynamic memory, the receiver task should detach
from any region that it was already attached to in order to prevent depletion of
the memory pool. That is, the task needs to be attached to a given region only
once.

If the Executive does not find a packet in the queue, and the task has set
WS.RCX in the window status word (W.NSTS), the task exits. If WS.RCX is not
set, the Executive returns the DSW code IE.ITS.

If the Executive finds a packet, it writes the information provided to the corre­
sponding words in the Window Definition Block. This information provides suffi­
cient information to map the reference, according to the sender task's
specifications, to a previously created address window.

If the address of a 10-word receive buffer has been specified (W.NSRB in the
Window Definition Block), then the sender task name and the eight additional
words passed by the sender task (if any) are placed in the specified buffer. If the
sender task did not pass any additional information, the Executive writes the
sender task name and eight words of zero.

If the WS.MAP bit in the window status word has been set to 1, the Executive
transfers control to the Map Address Window directive to attempt to map the
reference.

When a task that has unreceived packets in its receive-by-reference queue exits
or is removed, the Executive removes the packets from the queue and deallo­
cates them. Any related flags are not set.

Fortran Call

CALL RAEF (iwdb,[isrb][,ids])

iwdb an 8-word integer array containing a Window Definition Block (see
Section 7.5.2.2)

isrb a 10-word integer array to be used as the receive buffer. If the call omits
this parameter, the contents of iwdb(8) are unchanged.

ids directive status

9-102 DIRECTIVE DESCRIPTIONS

Macro Call

RREF$ wdb

wdb Window Definition Block address

Macro Expansion

RREF$
.BYTE

.WORD

Table 9-9

WDBADR
81. '2
WDBADR

;RREFS MACRO DIC, DPB SIZE•2 WORDS
;WDB ADDRESS

Window Definition Block Parameters

Input Parameters

Array
Element Offset

iwdb(1} W.NID
bits 0-7

iwdb(7) W.NSTS

iwdb(8) W.NSRB

Output Parameters

iwbd(4) W.NRID

Description

ID of an existing window if region is to be mapped

Bit settings 15 in the window status word:

Bit

WS.MAP

WS.RCX

Definition

1 if received reference is to be mapped

1 if task exit desired when no packet is found in
the queue

Optional address of a 10-word buffer to contain the sender task
name and additional information

Region ID (pointer to attachment description)

15. If you are a Fortran programmer, refer to Section 7.5.2 to determine the bit values represented by the symbolic
names described.

DIRECTIVE DESCRIPTIONS 9-103

Local Symbol Definitions

R.REBA window Definition Block address (2)

DSW Return Codes

is.sue
18.HWR

IE.ITS

IE.ADP

IE.SOP

successful completion

region has incurred a parity error

no packet found in the receive-by-reference queue

address check of the DPB, WDB, or the receive buffer
(W.NSRB) failed

DIC or DPB size is invalid

9-104 DIRECTIVE DESCRIPTIONS

RSUM$

9.1.48 RSUM$-Resume Task

The Resume Task directive instructs the system to resume the execution of a
task that has issued a Suspend directive.

Fortran Call

CALL RESUME (tsk[,ids])

tsk task name

ids directive status

Macro Cail

RSUM$ tsk

tsk task name

Macro Expansion

RSUM$
.BYTE

.RADSO

ALPHA
47., 3

/ALPHA/

Local Symbol Definitions

R.SUTN task name (4)

DSW Return Codes

successful completion

task is not installed

task is not active

task is not suspended

;RSUM$ MACRO DIC, DPB SIZE=3 WORDS
;TASK ''ALPHA''

is.sue
IE.INS

IE.ACT

IE.ITS

IE.ADP

IE.SOP

part of the DPS is out of the issuing task's address space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-105

RUN$

9.1.49 RUN$-Run Task

The Run Task directive causes a task to be requested at a specified time, and
optionally to be requested periodically. The scheduled time is specified in terms
of delta time from issuance. If the smg, rmg, and rnt parameters are omitted,
Run is the same as Request Task except that:

1. Run causes the task to become active one clock tick after the directive
is issued.

2. The system always sets the Tl: device for the requested task, to CO:.

See Notes.

Fortran Call

CALL RUN (tsk,[opt],[smg] ,snt,[rmg] ,[rnt][, ids])

tsk task name

opt a 4-word integer array

opt(1) partition name first half; ignored, but must be present
opt(2) partition name second half; ignored, but must be present
opt(3) priority; ignored, but must be present
opt(4) user Identification Code

smg schedule delta magnitude

snt schedule delta unit (either 1, 2, 3, or 4)

rmg reschedule interval magnitude

rnt reschedule interval unit

ids directive status

The ISA standard call for initiating a task is also provided:

CALL START (tsk,smg,snt[,ids])

tsk task name

smg schedule delta magnitude

snt schedule delta unit (either 0, 1, 2, 3, or 4)

ids directive status

Macro Call

RUN$ tsk,[prt],[pri],[ugc],[umc],[smg],snt[,rmg,rnt]

tsk task name

9-106 DIRECTIVE DESCRIPTIONS

prt partition name; ignored, but must be present

pri priority; ignored, but must be present

ugc UIC group code

umc UIC member code

smg schedule delta magnitude

snt ·schedule delta unit (either 1, 2, 3, or 4)

rmg reschedule interval magnitude

rnt reschedule interval unit

Macro Expansion

RUN$
BYTE
.RADSO
.WORD
.WORD
.BYTE
.WORD
.WORD
. WORD
.WORD

ALPHA,, ,20,10,20.,3,10. ,3
17.,11. ;RUN$ MACRO DIC, DPB S!ZE=11. WORDS
/ALPHA/ ;TASK ''ALPHA''
0, 0

0

10,20
20.
3

1 0 .

3

;PARTITION IGNORED
;PRIORITY IGNORED
;U!C TO RUN TASK UNDER
;SCHEDULE MAGNITUDE=20
;SCH. DELTA TIME UNIT=MiNUTE <=3)
;RESCH. INTERVAL MAGNITUDE=10 .
;RESCH. INTERVAL UNIT=M!NUTE (=3>

Local Symbol Definitions

R.UNTN task name (4)

R.UNPN partition name (4)

R.UNPR priority (2)

R.UNGC U IC group code (1)

R.UNPC UIC member code (1)

R.UNSM schedule magnitude (2)

R.UNSU schedule unit (2)

R.UNRM reschedule magnitude (2)

R.UNRU reschedule unit (2)

DSW Return Codes

is.sue
IE.UPN

IE.ACT

IE.INS

For CALL RUN and RUN$:

successful completion

insufficient dynamic memory

multiuser task name specified

task is not installed

IE.PR!

IE.ITI

IE.ADP

IE.SOP

DIRECTIVE DESCRIPTIONS 9-107

nonprivileged task specified a UIC other than its own.

invalid time parameter

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

For CALL START:

The system provides the following positive error codes to be returned for ISA
calls:

2 insufficient dynamic storage

3 specified task not installed

94 invalid time parameter

98 invalid event flag number

99 part of DPB is out of task's address space

100 DIC or DPB size is invalid

Notes

1. A nonprivileged task cannot specify a UIC that is not equal to its own
protection UIC. A privileged task can specify any UIC.

2. The target task must be installed in the system.

3. If there is not enough room in the partition in which a requested task is
to run, the Executive places the task in a queue of tasks waiting for that
partition. The requested task then runs, depending on priority and
resource availability, when the partition is free. Another possibility is
that checkpointing may occur. If the current occupant of the partition is
checkpointable, has checkpointing enabled, is of lower priority than the
requested task, or is stopped for terminal input, it is written to disk
when its current outstanding 1/0 completes. The requested task is then
read into the partition.

4. Successful completion means the task has been made active; it does
not mean that the task is actually running.

5. The Executive returns the code IE.ITI in the DSW if the directive
specifies an invalid time parameter. A time parameter consists of the
time interval magnitude, and the time interval unit.

A legal magnitude value (smg or rmg) is related to the value assigned to
the time interval unit snt or rnt.

The unit values are encoded as follows:

For an ISA Fortran call (CALL ST ART):

0 ticks-a tick occurs for each clock interrupt tick rate of 6410 ticks
per second

milliseconds-the subroutine converts the specified magnitude to
the equivalent number of system clock ticks

9-108 DIRECTIVE DESCRIPTIONS

For all other Fortran and all macro calls:

1 ticks-a tick occurs for each clock interrupt tick rate of 6410 ticks
per second

For both types of Fortran calls and all macro calls:

2 seconds

3 minutes

4 hours

DIRECTIVE DESCRIPTIONS 9-109

SDAT$

9. 1.50 SDA T$-Send Data

The Send Data directive instructs the system to declare a significant event and
to queue (FIFO) a 13-word block of data for a task to receive.

Note: When a local event !lag is specified, the indicated event flag is set for
the sending task; a significant event is always declared.

Fortran Call

CALL SEND (tsk,buf,[efn][,ids])

tsk task name

bui 13-word integer array of data to be sent

efn event flag number

ids directive status

Macro Cali

SDAT$ tsk,buf[,efn]

tsk task name

bur address of 13-word data buffer

efn event flag number

Macro Expansion

SDAH

.BYTE

.RAD50

.WORD

. WORD

ALPHA,DATBUF,52.
71. ,5 ;SDAH MACRO DIC, DPB SIZE=5 WORDS
/ALPHA/
DATBUF
52.

;RECEIVER TASK NAME
;ADDRESS OF 13.-WORD BUFFER
;EVENT FLAG NUMBER 52 .

Local Symbol Definitions

S.DATN

S.DABA

S.DAEF

task name (4)

buffer address (2)

event flag number (2)

DSW Return Codes

is.sue

IE.INS

IE.UPN

successful completion

receiver task is not installed

insufficient dynamic memory

9-110 DIRECTIVE DESCRIPTIONS

IE.IEF

IE.ADP

IE.SOP

Notes

invalid event flag number (EFN<O or EFN>64)

part of the DPS or data block is out of the issuing task's
address space

DIC or DPS size is invalid

1. Send Data requires dynamic memory.

2. If the directive specifies a local event flag, the flag is local to the sender
(issuing) task.

Normally, the event flag is used to trigger the receiver task into some
action. For this purpose, the event flag must be common (33 through
64) rather than local. (Refer to the descriptions of the Receive Data
directive and the Exit IF directive.)

3. The Send Data directive is treated as a 13-word Variable Send Data
directive.

DIRECTIVE DESCRIPTIONS 9-111

SDIR$

9.1.51 SDIR$-Setup Default Directory String

The Setup Default Directory String directive establishes a single default direc­
tory string for the system. (See the Get Default Directory directive.)

Fortran Call

mod

iens

ienssz

idsw

CALL SETDDS (mod,iens,ienssz,[idsw])

the modifier of the logical name within a table

character array containing the equivalence name string

size (in bytes) of the equivalence name string

integer to receive the Directive Status Word

Macro Call

mod

ens

enssz

SDIR$ mod,ens,enssz

the modifier of the logical name within a table

buffer address of the equivalence name string

size (in bytes) of the equivalence name string

Macro Expansion

SDIRS mod,ens,enssz
.BYTE 207.,5
.BYTE 3

. BYTE MOD

.WORD 0

.WORD ENS

.WORD ENSSZ

Local Symbol Definitions

;SDIRS MACRO DIC, DPB SIZE ~ 5 WORDS
;SUBFUNCTIDN CODE FDR SET DEFAULT
;DIRECTORY
;LOGICAL NAME MODIFIER
;RESERVED
;BUFFER ADDRESS OF EQUIVALENCE NAME
;BYTES COUNT OF EQUIVALENCE STRING

$.DENS

S.DESZ

S.DFUN

S.DMOD

address of equivalence name buffer (2)

byte count of equivalence name string (2)

subfunction code (1)

logical name modifer (1)

9-112 DIRECTIVE DESCRIPTIONS

DSW Return Codes

is.sue
IS.SUP

IE.UPN

IE.IBS

IE.ADP

IE.SOP

successful completion of service

successful completion of service; a new equivalence name
string superseded a previously specified name string

insufficient dynamic storage is available to create the logical
name

" the length of the logical or equivalence string is invalid; each
string length must be greater than 0 but not greater than 255 10
characters

part of the DPB or user buffer is out of the issuing task's
address space, or the user does not have proper access to that
region

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-113

SDRC$

9.1.52 SDRC$-Send, Request and Connect

The Send, Request And Connect directive performs a Send Data to the speci­
fied receiver task. This action causes the Executive to declare a significant
event and to queue (FIFO) a 13-word block of data for the receiver task. The
SDRC$ directive then Requests the receiver task for execution if the task is not
already active. It then Connects to the receiver task (making it an offspring of
the sender) by queueing an Offspring Control Block (OCB) to the receiver task's
Task Control Block (TCB) and incrementing the rundown count in the sending
(parent) task's TCB.

The rundown count is used to inform the Executive that the parent task has one
or more offspring tasks; cleanup is necessary if the parent task exits with
offspring tasks still active. The rundown count is decremented when the offspr­
ing task exits. The OCB contains the TCB address as well as sufficient informa­
tion to effect all of the specified exit events when the offspring task exits.

If an AST address is specified, an exit AST routine is effected when the offspr­
ing task exits with the address of the tasks's exit status block on the stack. The
AST routine must remove this word from the stack before issuing the AST Ser­
vice Exit directive.

Fortran Call

rtname

ibuf

iefn

iast

iesb

iparm

ids

CALL SDRC (rtname, ibuf,[iefn],[iast],[iesb],[iparm][,ids])

target task name of the offspring task to be connected

name of 13-word send buffer

event flag to be set when the offspring task exits or emits status

name of an AST routine to be called when the offspring task
exits or emits status

Note: Refer to Section 3.4.4 for important guidelines on using Fortran AST
service routines.

name of an 8-word status block to be written when the offspring
task exits or emits status

Word 0

Word 1

Word 2-7

offspring task exit status

system abort code

reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WXB and the
event flag number in the iefn parameter above.

name of a word to receive the status block address when an
AST occurs

integer to receive the Directive Status Word

9-114 DIRECTIVE DESCRIPTIONS

Macro Call

SDRC$ tname,buf,[efn],[east],[esb]

tname

buf

efn

east

esb

target task name of the offspring task to be connected

address of 13-word send buffer

the event flag to be cleared on issuance and set when the
offspring task exits or emits status

address of an AST routine to be called when the offspring task
exits or emits status

address of an 8-word status block to be written when the
offspring task exits or emits status

WordO

Word 1

Word 2-7

offspring task exit status

system abort code

reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WXB and the
event flag number in the efn parameter above.

Macro Expansion

SDRC$
.BYTE
.RADSO
.WORD
.BYTE
. BYTE
.WORD
.WORD

ALPHA,BUFFR,2,SDRCTR,STBLK
141., 7 ;SDRC$ MACRO DIC, DPB SIZE=7 WORDS
ALPHA ;TARGET TASK NAME
BUFFR ;SEND BUFFER ADDRESS
2 ;EVENT FLAG NUMBER = 2
16 . ;EXIT STATUS BLOCK CONSTANT
SDRCTR ;ADDRESS OF AST ROUTINE
STELK ;ADDRESS OF STATUS BLOCK

Local Symbol Definitions

S.DRTN

S.DRBF

S.DREF

S.DREA

S.DRES

task name (4)

buffer address (2)

event flag (2)

AST routine address (2)

status block address (2)

DSW Return Codes

is.sue
IE.UPN

successful completion

insufficient dynamic memory to allocate a send packet,
Offspring Control Block, Task Control Block, or Partition
Control Block

IE.INS

IE.IEF

IE.ADP

IE.SOP

Notes

DIRECTIVE DESCRIPTIONS 9-115

the specified task is an ACP or has the no-send attribute

an invalid event flag number was specified (EFN<O or EFN>64)

part of the DPB or exit status block is not in the issuing task's
address space

DIC or DPB size is invalid

1. The virtual mapping of the exit status block should not be changed
while the connection is in effect. Doing so may result in obscure errors.

2. If the directive is rejected, the state of the specified event flag is
indeterminate.

9-116 DIRECTIVE DESCRIPTIONS

SDRP$

9. 1.53 SDRP$-Send Data Request and Pass Offspring Control Block

This directive instructs the system to send a send data packet for the specified
task, chain to the requested task, and request it if it is not already active.

Fortran Call

CALL SDRP (task,ibuf,[ibfl],[iefn],[iflag],[iparen],[iocbad] [,ids])

task

ibuf

ibfl

iefn

iflag

iparen

iocbad

ids

Macro Call

name of an array (REAL,INTEGER,1*4) that contains the
Radix-50 name of the target task

name of an integer array containing the data to be sent

name of an integer containing the number of words (integers) in
the array to be sent. This argument may be in the range of 1
through 255(10). If this argument is not specified, a default
value of 13(10) is assumed.

name of an integer containing the number of the event flag that
is to be set when this directive is executed successfully.

name of an integer containing the flag bits controlling the
execution of this directive. They are defined as follows:

SD.REX= 128. force this task to exit upon successful
execution of this directive

SD.RAL = 1 pass all connections to the requested task
(default is pass none); if you specify this flag, do
not specify the parent task name

SD.RNX = 2 pass the first connection in the queue, if there is
one, to the requested task; if you specify this
flag, do not specify the parent task name

name of an array containing the Radix-50 name of the parent
task whose connection should be passed to the target task. The
name of the parent task was returned in the information buffer
of the GTCMCI subroutine.

reserved for future use

name of an integer to receive the contents of the Directive
Status Word

SDRP$ task,bufadr,[buflen],[efn],[flag],[parent],[ocbad]

task

bufadr

buflen

name of task to be chained to

address of buffer to be given to the requested task

length of buffer to be given to requested task

efn

flag

parent

ocbad

DIRECTIVE DESCRIPTIONS 9-117

event flag

flags byte controlling the execution of this directive. The flag
bits are defined as follows:

SD.REX= 128. force this task to exit upon successful
completion of this directive

SD.RAL = 1 pass all connections to the requested task
(default is pass none); if you specify this flag, do
not specify the parent task name

SD.RNX = 2 Pass the first connection in the queue, if there is
one, to the requested task; if you specify this
flag, do not specify the parent task name

name of issuing task's parent task whose connection is to be
passed; if not specified, all connections or no connections are
passed depending on the flag byte

reserved for future use

Macro Expansion

SOAP$ task,bufadr,[buflen],[efn],[flag],[parent],[ocbad]

.BYTE

.RADSO

.WORD

.BYTE

.WORD

.RADSO

.WORD

141. ,9.

/task/

BUFADR
EFN,FLAG
BUFLEH
/PARENT I
OCBAD

;DIC• 141, DPB LENGTH •9 WORDS
;TASK NAME IN RADIX-SO
;BUFFER ADDRESS
;EVENT FLAG, FLAGS BYTE
;BUFFER LENGTH
;PARENT TASK NAME
;ADDRESS OF OCB

Local Symbol Definitions

S.DRTK

S.DRAD

S.DREF

S.DRFL

S.DRBL

S.DRPT

S.DROA

radix-50 name of task to be chained to

send data buffer address

event flag

flags byte:

SD.REX - (200) force task to exit (task issuing directive)

SD.RAL - (1) pass all connections to the requested task
(default is pass none); if you specify this flag, do
not specify the parent task name

SD.RNX - (2) pass the first connection in the queue, if there is
one, to the requested task; if you specify this
flag, do not specify the parent task name

length of send data packet (up through 25510 words)

name of parent whose OCB should be passed

reserved for future use.

9-118 DIRECTIVE DESCRIPTIONS

DSW Return Codes

IE.NVR

IE.ALG

IE.IBS

IE.UPN

IE.INS

IE.IEF

IE.ADP

IE.SOP

Note

no Offspring Control Block from specified parent

either a parent name or an OCB address was specified and the
pass all connections flag was set

length of send packet is illegal. The send packet may be up
through 25510 bytes long

insufficient dynamic memory to allocate a send packet,
Offspring Control Block, Task Control Block, or partition control
block

the specified task is an ACP or has the no-send attribute

an invalid event flag number was specified (EFN <0 or EFN >64)

part of the DPS or exit status block is out of the issuing task's
address space

DIC or DPS size is invalid

1. If the directive is rejected, the state of the specified event flag is
indeterminate.

DIRECTIVE DESCRIPTIONS 9-119

SETF$

9.1.54 SETF$-Set Event Flag

The Set Event Flag directive instructs the system to set an indicated event flag
that reports the flag's polarity before setting.

Fortran Call

CALL SETEF (efn[,ids])

efn event flag number

ids directive status

Macro Call

SETF$ efn

efn event flag number

Macro Expansion

SETF$

.BYTE

. WORD

52.
33., 2

52.

Local Symbol Definitions

S.ETEF event flag number (2)

DSW Return Codes

flag was clear

flag was already set

;SETF$ MACRO DIC, DPB SlZE=2 WORDS
;EVENT FLAG NUMBER 52 .

IS.CLR

IS.SET

IE.IEF

IE.ADP

IE.SOP

invalid event flag number (EFN<1 or EFN>64)

Note

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. Set Event Flag does not declare a significant event; it merely sets the
specified flag.

9-120 DIRECTIVE DESCRIPTIONS

SFPA$

9.1.55 SFPA$-Specify Floating Point Processor Exception AST

The Specify Floating Point Processor Exception AST directive instructs the sys­
tem to record one of the two following cases:

D Floating Point Processor exception ASTs for the issuing task are de­
sired, and the Executive is to transfer control to a specified address
when such an AST occurs for the task.

D Floating Point Processor exception ASTs for the issuing task are no
longer desired.

When an AST service routine entry point address is specified, subsequent
Floating Point Processor exception ASTs occur for the issuing task, and control
will be transferred to the indicated location at the time of the AST's occurrence.
When an AST service entry point address is not specified, subsequent Floating
Point Processor exception ASTs do not occur until the task issues a directive
that specifies an AST entry point. See Notes.

Fortran Call

Not supported

Macro Call

SFPA$ [ast)

ast AST service routine entry point address

Macro Expansion

SFPA$
.BYTE
.WORD

FLTAST
11 1 . '2

Fl_ TAST
;SFPA$ MACRO DIC, DPB SIZE=2 WORDS
;ADDRESS OF FLOATING POINT AST

Local Symbol Definitions

S.FPAE AST entry address (2)

DSW Return Codes

is.sue

IE.UPN

IE.ITS

IE.AST

successful completion

insufficient dynamic memory

AST entry point address is already unspecified or task was built
without floating-point support (FP switch not specified in Task
Builder .TSK file specification)

directive was issued from an AST service routine, or ASTs are
disabled

IE.ADP

IE.SOP

Notes

DIRECTIVE DESCRIPTIONS 9-121

part of the DPS is out of the issuing task's address space

DIC or DPS size is invalid

1. A Specify Floating Point Processor Exception AST requires dynamic
memory.

2. The Executive queues Floating Point Processor exception ASTs when a
Floating Point Processor exception trap occurs for the task. No
subsequent ASTs of this kind can be queued for the task until the first
one queued has actually been effected.

3. The Floating Point Processor exception AST service routine is entered
with the task stack in the following state:

SP+ 12 event flag mask word

SP+10 PS of task prior to AST

SP+06 PC of task prior to AST

SP+04 DSW of task prior to AST

SP+02 floating exception code

SP+OO floating exception address

The task must remove the floating exception code and address from the
task's stack before an AST Service Exit directive is executed.

4. This directive cannot be issued either from an AST service routine or
when ASTs are disabled.

5. This directive applies only to the Floating Point Processor.

9-122 DIRECTIVE DESCRIPTIONS

SPND$S

9.1.56 SPND$S-Suspend ($S Form Recommended)

The Suspend directive instructs the system to suspend the execution of the
issuing task. A task can suspend only itself, not another task. The task can be
restarted by a Resume directive.

Fortran Call

CALL SUSPND [(ids)]

ids directive status

Macro Call

SPND$S [err]

err error routine address

Macro Expansion

SPND$S ERR
MDV CPC)+,-CSP>
.BYTE 45. '1
EMT 377

BCC . +6
JSR PC,ERR

Local Symbol Definitions

None

DSW Return Codes

;PUSH DPB ONTO THE STACK
;SPNDSS MACRO DIC, DPB SIZE=1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE ''ERR''

IS.SPD

IE.ADP

IE.SOP

successful completion (task was suspended)

Notes

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. A suspended task retains control of the system resources allocated to
it. The Executive makes no attempt to free these resources until a task
exits.

2. A suspended task is eligible for checkpointing unless it is fixed or
declared to be noncheckpointable.

3. Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended; it requires less space and executes with the
same speed as that of the DIR$ macro.

DIRECTIVE DESCRIPTIONS 9-123

SPWN$

9.1.57 SPWN$-Spawn

The Spawn directive requests a specified task for execution, optionally queuing
a command line and establishing the task's Tl: as a physical terminal.

When this directive is issued, an Offspring Control Block (OCB) is queued to the
offspring TCB and a rundown count is incremented in the parent task's TCB.
The rundown count is used to inform the Executive that the task is a parent task
and has one or more offspring tasks; cleanup is necessary if a parent task exits
with active offspring tasks. The rundown count is decremented when the
spawned task exits. The OCB contains the TCB address as well as sufficient
information to effect all of the specified exit events when the offspring task
exits.

If a command line is specified, it is buffered in the Executive pool and queued
for the offspring task for subsequent retrieval by the offspring task with the Get
Command Line directive. Maximum command line length is 25510 characters.

If an AST address is specified, an exit AST routine is effected when the
spawned task exits with the address of the task's exit status block on the stack.
The AST routine must remove this word from the stack before issuing the AST
Service Exit directive.

Fortran Call

CALL SPAWN (rtname,[iugc],[iumc),[iefn],[iast],[iesb],
(iparm],[icmlin],[icmlen),[iunit],[dnam][,ids])

rtname name (RADSO) of the offspring task to be spawned

iugc group code number for the UIC of the offspring task

iumc member code number for the UIC of the offspring task

iefn event flag to be set when the offspring task exits or emits status

iast name of an AST routine to be called when the offspring task
exits or emits status

iesb

Note: Refer to Section 3.4.4 for important guidelines on using Fortran AST
service routines.

name of an 8-word status block to be written when the offspring
task exits or emits status

Word 0

Word 1

Word 2-7

offspring task exit status

system abort code

reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WX8 and the
event flag number in the iefn parameter above

9-124 DIRECTIVE DESCRIPTIONS

iparm

icmlin

icmlen

iunit

dnam

ids

name of a word to receive the status block address when the
AST occurs

name of a command line to be queued for the offspring task

length of the command line (25510 characters maximum)

unit number of terminal to be used as the Tl: for the offspring
task; if a value of 0 is specified, the Tl: of the issuing task is
propagated; a task must be privileged in order to specify a Tl:
other than the parent task's Tl:

device name mnemonic

integer to receive the Directive Status Word

Macro Call

tname

ugc

umc

efn

east

esb

cmdlin

cmdlen

unum

dnam

SPWN$ tname,,,[ugc],[umc],[efn],[east],[esb],[cmdlin], [cmdlen],
[unum],[dnam]

name (RAD50) of the offspring task to be spawned

group code number for the UIC of the offspring task

member code number for the UIC of the offspring task

the event flag to be cleared on issuance and set when the
offspring task exits or emits status

address of an AST routine to be called when the offspring task
exits or emits status

address of an 8-word status block to be written when the
offspring task exits or emits status

Word O offspring task exit status

Word 1 system abort code

Word 2-7 reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WX8 and the
event flag number in the efn parameter above.

address of a command line to be queued for the offspring task

length of the command line (maximum length is 25510)

unit number of terminal to be used as the Tl: for the offspring
task; if a value of 0 is specified, the Tl: of the issuing task is
propagated; a task must be privileged in order to specify a Tl:
other than the parent task's Tl:

device name mnemonic; if not specified, the default is Tl:

DIRECTIVE DESCRIPTIONS 9-125

Macro Expansion

SPWN$ ALPHA,,,3,7,1,ASTRUT,STBLK,CMDLIN,72.,0
.BYTE 11.,13. ;SPWN$ MACRO DIC, DPB SIZE=13 WORDS
.RADSO ALPHA ;NAME OF TASK TO BE SPAWNED
.BLKW 3 ;RESERVED
.BYTE 7,3 ;UMC = 7 UGC = 3
.BYTE 1 ;EVENT FLAG HUMBER = 1

.BYTE 16.

.WORD ASTRUT

.WORD STELK

.WORD CMDLIH

.WORD 72 .

. WORD 2

;EXIT STATUS BLOCK CONSTANT
;AST ROUTINE ADDRESS
;EXIT STATUS BLOCK ADORES
;ADDRESS OF COMMAND LINE
;COMMAND LINE LENGTH = 72. CHARACTERS
;TERMINAL UNIT NUMBER =O

Note: One additional parameter (device name) can be added for a hardware
terminal name. For example, TTO: would have the same macro expansion
shown above, plus the following:

.ASCII /TT/ ;ASCII DEVICE NAME

The DPB size will then be 14 words.

Local Symbol Definitions

S.PWTN task name (4)

S.PWXX reserved (6)

S.PWUM user member code (1)

S.PWUG user group code (1)

S.PWEF event flag number (2)

S.PWEA exit AST routine address (2)

S.PWES exit status block address (2)

S.PWCA command line address (2)

S.PWCL command line length (2)

S.PWVT terminal unit number (2)

S.PWDN device name (2)

DSW Return Codes

is.sue
IE.UPN

IE.INS

IE.ACT

successful completion

insufficient dynamic memory to allocate an Offspring Control
Block, command line buffer, Task Control Block, or Partition
Control Block

the specified task was not installed

the specified task was already active

9-126 DIRECTIVE DESCRIPTIONS

IE.PRI

IE.IOU

IE.IEF

IE.ADP

IE.SOP

Notes

nonprivileged task attempted to specify an offspring task's Tl:
to be different from its own

the specified terminal unit does not exist or the specified Tl:
device is not a terminal

invalid event flag number (EFN<O or EFN>64)

part of the DPB, exit status block, or command line is out of the
issuing task's address space

DIC or DPB size is invalid

1. If the UIC is defaulted, that task is requested to run under the UIC of the
parent task. See the notes for the Request Task (ROST$) directive for
more information about task UICs.

2. The virtual mapping of the exit status block should not be changed
while the connection is in effect. Doing so may cause obscure errors.

3. The types of operations that a Fortran AST routine may perform are
extremely limited Please refer to Chapter 3 for a list of restrictions.

DIRECTIVE DESCRIPTIONS 9-127

SRDA$

9.1.58 SRDA$-Specify Receive Data AST

The Specify Receive Data AST directive instructs the system to recor'd one of
the following two cases:

D Receive data ASTs for the issuing task are desired, and the Executive
transfers control to a specified address when data has been placed in
the task's receive queue

, D Receive data ASTs for the issuing task are no longer desired.

When the directive specifies an AST service routine entry point, receive data
ASTs for the task subsequently occur whenever data has been placed in the
task's receive queue; the Executive transfers control to the specified address.

When the directive omits an entry point address, the Executive disables receive
data ASTs for the issuing task. Receive data ASTs do not occur until the task
issues another Specify Receive Data AST directive that specifies an entry point
address. (See Notes.)

Fortran Call

Neither the Fortran language nor the ISA standard permits direct linking to sys­
tem trapping mechanisms; therefore, this directive is not available to Fortran
tasks.

Macro Call

SRDA$ [ast]

ast AST service routine entry point address

Macro Expansion

SR DAS RECAST
.BYTE 107.,2

.WORD RECAST

Local Symbol Definitions

S.RDAE AST entry address (2)

DSW Return Codes

;SRDA$ MACRO DIC, DPB SJZE=2 WORDS
;ADDRESS OF RECEIVE AST

is.sue
IE.UPN

IE.ITS

successful completion

insufficient dynamic memory

AST entry point address is already unspecified

9-128 DIRECTIVE DESCRIPTIONS

IE.AST

IE.ADP

IE.SOP

Notes

directive was issued from an AST service routine, or ASTs are
disabled

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. A Specify Receive Data AST requires dynamic memory.

2. The Executive queues receive data ASTs when a message is sent to the
task. No future receive data ASTs will be queued for the task until the
first one queued has been effected.

3. The task enters the receive data AST service routine with the task stack
in the following state:

SP+06

SP+04

SP+02

SP+OO

event flag mask word

PS of task prior to AST

PC of task prior to AST

DSW of task prior to AST

No trap-dependent parameters accompany a receive data AST;
therefore, the AST Service Exit directive must be executed with the
stack in the same state as when the AST was effected.

4. This directive cannot be issued either from an AST service routine or
when ASTs are disabled.

DIRECTIVE DESCRIPTIONS 9-129

SREX$

9.1.59 SREX$-Specify Requested Exit AST Directive

The Specify Requested Exit AST directive allows the task issuing the directive
to specify the AST service routine to be entered if an attempt is made to abort
the task by a directive. This directive allows a task to enter a routine for clean­
up instead of abruptly aborting.

If an AST address is not specified, any previously specified exit AST is can­
celed.

Pri,vileged tasks enter the specified AST routine each time an abort is issued.
However, subsequent exit ASTs will not be queued until the first exit AST has
occurred.

Nonprivileged tasks enter the specified AST routine only once. Subsequent at­
tempts to abort the task will actually abort the task.

Fortran Call

ast

ipblk

ipblkl

dummy

ids

CALL SREX (ast,ipblk,ipblkl,[dummy][,ids])

name of the externally declared AST subroutine

Note: Refer to Section 3.4.4 for important guidelines on using Fortran AST
service routines.

name of an integer array to receive the trap-dependent
parameters

number of parameters to be returned into the ipblk array

reserved for future use

name of an optional integer to receive the Directive Status Word

Macro Call

ast

dummy

SREX$ [ast][,dummy]

AST service routine entry point address

reserved for future expansion

Macro Expansion

SREX$ RE QA ST
.BYTE 167.,3
.WORD REQAST
.WORD 0

;SREXS MACRO DIC, DPB SIZE•3 WORDS
;EXIT AST ROUTINE ADDRESS
;RESERVED FOR FUTURE EXPANSION

Note: The DPB length for the SREX$ form of the directive is three words.

9-130 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

S.REAE exit AST routine address (2)

DSW Return Codes

is.sue
IE.UPN

IE.AST

IE.ITS

IE.ADP

IE.SOP

Notes

successful completion

insufficient dynamic storage

directive was issued from an AST service routine, or ASTs are
disabled

ASTs already not desired, or nonprivileged task attempted to
respecify or cancel the AST after one had already occurred

Part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. The issuing task can use the information returned on the stack for this
directive to decide how to handle the abort attempt.

After specifying a requested exit AST using the SREX$ form of the
directive, the issuing task will enter the AST service routine if any
attempt is made to abort the task. Nonprivileged abort attempts must
originate from the same Tl: as that of the issuing task.

When the AST service routine is entered and the AST has been
specified using the SREX$ directive, the task's stack is in the following
state:

SP+12

SP+10

SP+06

SP+04

SP+02

SP+OO

event flag mask word

PS of task prior to AST

PC of task prior to AST

DSW of task prior to AST

trap-dependent parameter

number of bytes to add to SP to clean stack (4)

The trap-dependent parameter is formatted as follows:

Bit O 0 if the abort attempt was privileged

1 if the abort attempt was nonprivileged

Bit 1 O if the ABRT$ directive was issued

Bits 1 through 15 are reserved for future use

The task must remove the trap-dependent parameters from the stack
before an AST Service Exit directive is executed. The recommended
method is to add the value stored in SP+OO to SP. This is also the only
recommended way to access the non-trap-dependent parameters on
the stack.

DIRECTIVE DESCRIPTIONS 9-131

2. The event flag mask word at the bottom of the stack preserves the Wait
For conditions of a task prior to AST entry. A task can, after an AST,
return to a Wait For state. Because these flags and other stack data are
in the user task, they can be modified. However, modifying the stack
data may cause unpredictable results. Therefore, such modification is
not recommended.

3. Please see Chapter 3 for a list of restrictions on operations that can be
performed in a Fortran AST routine.

9-132 DIRECTIVE DESCRIPTIONS

SREF$

9.1.60 SREF$-Send By Reference

The Send By. Reference directive inserts a packet containing a reference to a
region into the receive-by-reference queue of a specified (receiver) task. The
Executive automatically attaches the receiver task for each Send By Reference
directive issued by the task to the specified region (the region identified in
W.NRID of the Window Definition Block). The attachment occurs even if the re­
ceiver task is already attached to the region, unless bit WS.NAT in W.NSTS of
the Window Definition Block is set. The successful execution of this directive
causes a significant event to occur.

The send packet contains:

D A pointer to the created attachment descriptor, which becomes the re­
gion ID to be used by the receiver task

D The offset and length words specified in W.NOFF and W.NLEN of the
Window Definition Block (which the Executive passes without checking)

D The receiver task's permitted access to the region, contained in the win­
dow status word W.NSTS

D The sender task name

D Optionally, the address of an 8-word buffer that contains additional in­
formation (If the packet does not include a buffer address, the Execu­
tive sends 8 words of 0.)

The receiver task automatically has access to the entire region as specified in
W.NSTS. The sender task must be attached to the region with at least the same
types of access. By setting all the bits in W.NSTS to 0, the receiver task can
default the permitted access to that of the sender task.

If the directive specifies an event flag, the Executive sets the flag in the sender
task (when the receiver task acknowledges the reference) by issuing the Re­
ceive By Reference directive. When the sender task exits, the system searches
for any unreceived references that specify event flags, and prevents any invalid
attempts to set the flags. The references themselves remain in the receiver
task's receive-by-reference queues.

Fortran Call

CALL SREF (tsk,[efn],iwdb,[isrb][,ids])

tsk a single-precision, floating-point variable containing the name of the
receiving task in Radix-50 format

efn event flag number

iwdb an 8-word integer array containing a Window Definition Block (see
Section 7.5.2.2)

DIRECTIVE DESCRIPTIONS 9-133

isrb an 8-word integer array containing additional information (If specified,
the address of isrb is placed in iwdb(S); if isrb is omitted, the contents of
iwdb(S) remain unchanged)

ids directive status

Macro Call

SREF$ task,wdb[,efn]

task name of the receiver task

wdb Window Definition Block address

efn event flag number

Macro Expansion

SREFS
.BYTE
.RADSO
.WORD
.WORD

ALPHA,WDBADR,48.
69.,5 ;SREFS MACRO DIC, DPB SIZE•S WORDS
/ALPHA/ ;RECEIVER TASK HAME
48. ;EVENT FLAG HUMBER
WDBADR ;WDB ADDRESS

Table 9-10
Window Definition Block Parameters

Input Parameters

Array
Element Offset

iwdb(4) W.NRID

iwdb(5) W.NOFF

iwdb(6) W.NLEN

iwdb(7) W.NSTS

iwdb(S) W.NSRB

Output Parameters

None

Description

ID of the region to be sent by reference

Offset word, passed without checking

Length word, passed without checking

Bit settings 16 in window status word (the receiver task's permitted
access):

Bit

WS.RED

WS.WRT

WS.EXT

WS.DEL

Definition

1 if read access is permitted

1 if write access is permitted

1 if extend access is permitted

1 if delete access is permitted

Optional address of an 8-word buffer containing additional
information

16. If you are a Fortran programmer, refer to Section 7 .5.2 to determine the bit values represented by the symbolic
names described.

9-134 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

S.RETN

S.REBA

S.REEF

receiver task name (4)

Window Definition Block base address (2)

event flag number (2)

DSW Return Codes

is.sue
IE.UPN

IE.INS

IE.PRI

IE.NVR

IE.IEF

IE.HWR

IE.ADP

IE.SOP

Notes

successful completion

a send packet or an attachment descriptor could not be
allocated

the sender task attempted to send a reference to an Ancillary
Control Processor (ACP) task, or task not installed

specified access not allowed to sender task itself

invalid region ID

invalid event flag number (EFN<O or EFN>64)

region had load failure or parity error

the address check of the DPB, the WDB, or the send buffer
failed

DIC or DPB size is invalid

1. For the user's convenience, the ordering of the SREF$ macro
arguments does not directly correspond to the format of the DPB. The
arguments have been arranged so that the optional argument (efn) is at
the end of the macro call. This arrangement is also compatible with the
SDAT$ macro.

2. Because region attachment requires system dynamic memory, the
receiver task should detach from any region to which it was already
attached, in order to prevent depletion of the memory pool; that is, the
task needs to be attached to a given region only once.

DIRECTIVE DESCRIPTIONS 9-135

SRRA$

9.1.61 SARAS-Specify Receive-by-Reference AST

The Specify Receive-By-Reference AST directive instructs the system to record
one of the following two cases:

D Receive-by-reference ASTs for the issuing task are desired, and the Ex­
ecutive transfers control to a specified address when such an AST oc­
curs.

D Receive-by-reference ASTs for the issuing task are no longer desired.

When the directive specifies an AST service routine entry point, receive-by­
reference ASTs for the task will occur. The Executive will transfer control to the
specified address.

When the directive omits an entry point address, the Executive prevents the oc­
currence of receive-by-reference ASTs for the issuing task. Receive-by­
reference ASTs will not occur until the task issues another Specify Receive-By­
Reference AST directive that specifies an entry point address. See Notes.

Fortran Call

Neither the Fortran language nor the ISA standard permits direct linking to sys­
tem trapping mechanisms; therefore, this directive is not available to Fortran
tasks.

Macro Call

SARA$ [ast]

ast AST service routine entry point address (0)

Macro Expansion

SRRA$ RECAST
.BYTE 21. ,2

.WORD RECAST

Local Symbol Definitions

S.RRAE:AST entry address (2)

DSW Return Codes

;SRRA$ MACRO DIC, DPB SIZEz2 WORDS
;ADDRESS OF RECEIVE AST

is.sue
IE.UPN

IE.ITS

successful completion

insufficient dynamic memory.

AST entry point address is already unspecified

9-136 DIRECTIVE DESCRIPTIONS

IE.AST

IE.ADP

IE.SOP

Notes

directive was issued from an AST service routine, or ASTs are
disabled

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. Specify Receive-By-Reference AST requires dynamic memory.

2. The Executive queues receive-by-reference ASTs when a message is
sent to the task. Future receive-by-reference ASTs will not be queued
for the task until the first one queued has been effected.

3. The task enters the receive-by-reference AST service routine with the
task stack in the following state:

SP+06 event flag mask word

SP+04 PS of task prior to AST

SP+02

SP+OO

PC of task prior to AST

DSW of task prior to AST

No trap-dependent parameters accompany a receive-by-reference
AST; therefore, the AST Service Exit directive must be executed with
the stack in the same state as when the AST was effected.

4. This directive cannot be issued either from an AST service routine or
when ASTs are disabled.

DIRECTIVE DESCRIPTIONS 9-137

STIM$

9.1.62 STIM$-Set System Time

The Set System Time directive instructs the system to set the system's internal
time to the specified time parameters. Optionally, the Set System Time directive
returns the system's current internal time to the issuing task before setting the
system time to the specified values.

All time parameters must be specified as binary numbers.

A task must be privileged to issue this directive.

When this directive changes the system time by a specified amount, it also ef­
fectively changes the time of anything resident on the clock queue by the same
amount. Thus, the time synchronization of events is maintained.

Fortran Call

CALL SETTIM (ibufn[,ibufp[,ids]])

ibufn an 8-word integer array (new time specification buffer)

ibufp an 8-word integer array-previous time buffer

ids directive status

Macro Call

STIM$ bufn,[bufp]

bufn address of 8-word new time specification buffer

bufp address of 8-word buffer to receive the previous system time
parameters

Buffer Format

WordO

Word 1

Word2

Word3

Word4

Words

Word6

year (since 1900)

month (1-12)

day (1-n, where n is the highest day possible for the given
month and year)

hour (0-23)

minute (0-59)

second (0-59)

tick of second (0-n, where n is the frequency of the system
clock minus one); if the next parameter (ticks per second) is
defaulted, this parameter is ignored

9-138 DIRECTIVE DESCRIPTIONS

Word? ticks per second (must be defaulted or must match the
frequency of the system clock at 64. ticks per second); this
parameter is used to verify the intended granularity of the ''tick
of second'' parameter

Note: If any of the specified new time parameters are defaulted (equal to -1),
the corresponding previous system time parameters will remain unchanged and
will be substituted for the defaulted parameters during argument validation.

Macro Expansion

STIM$ NEWTIM,OLDTIM
.BYTE 61., 3
.WORD NEWT IM
.WORD OLDTIM

;STIMS DIC, DPS SIZE•3 WORDS
;ADDRESS OF 8.-WORD INPUT BUFFER
;ADDRESS OF 8.-WORD OUTPUT BUFFER

Local Symbol Definitions

S.TIBA

S.TIBO

input buffer address (2)

output buffer address (2)

The following offsets are assigned relative to the start of each time parameters
buffer:

S.TIYR year (2)

S.TIMO month (2)

S.TIDA day (2)

S.TIHR hour (2)

S.TIMI minute (2)

S.TICS second (2)

S.TICT clock tick of second (2)

S.TICP clock ticks per second (2)

DSW Return codes

is.sue
IE.PRI

IE.ITI

successful completion

the issuing task is not privileged

one of the specified time parameters is out of range, or both the
tick-of-second parameter and the ticks-per-second parameter
were specified and the ticks-per-second parameter does not
match the system's clock frequency; the system time at the
moment the directive is issued (returned in the second buffer)
can be useful in determining the cause of the fault if any of the
specified time parameters were defaulted

IE.ADP

IE.SOP

Notes

DIRECTIVE DESCRIPTIONS 9-139

part of the DPS or one of the buffers is out of the issuing task's
address space

DIC or DPB size is invalid

1 . The buffers used in this directive are compatible with those of the Get
Time Parameters (GTIM$) directive.

2. The second buffer (previous time) is only filled in if the directive was
successfully executed or if it was rejected with an error code of IE.IT!.

9-140 DIRECTIVE DESCRIPTIONS

STLO$

9.1.63 STLO$-Stop For Logical OR Of Event Flags

The Stop For Logical OR Of Event Flags directive instructs the system to stop
the issuing task until the Executive sets one or more of the indicated event flags
from one of the following groups:

GR O local flags 1-16

GR 1 local flags 17-32

GR 2 common flags 33-48

GR 3 common flags 49-64

The task does not stop itself if any of the indicated flags are already set when
the task issues the directive. This directive cannot be issued at AST state.

A task that is stopped for one or more event flags can only become unstopped
by setting the specified event flag; it cannot become unstopped with the Unstop
directive.

Fortran Call

CALL STLOR (ief1 ,ief2,ief3, ... ief(n))

ief1 ... ief(n) list of event flag numbers

Macro Call

STLO$ grp, msk

grp desired group of event flags

msk a 16-bit mask word

Macro Expansion

1, 47
137. ,3

STLO$
.BYTE
.WORD
.WORD 47

Local Symbol Definitions

S.TLGR

S.TLMS

group flags (2)

mask word (2)

;STLO$ MACRO DIC, DPB SIZE•3 WORDS
;GROUP 1 FLAGS <FLAGS 17-32>
;MASK WORD • 47 <FLAGS 17, 18, 19, 22>

DIRECTIVE DESCRIPTIONS 9-141

DSW Return Codes

is.sue
IE.AST

IE.IEF

IE.ADP

IE.SOP

Notes

successful completion

the issuing task is at AST state

an event flag group other than 0 through 3 was specified, or the
event flag mask word is zero

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. There is a one-to-one correspondence between bits in the mask word
and the event flags in the specified group; that is, if group 1 were
specified (as in the above macro expansion example), bit O in the mask
word would correspond to event flag 17, bit 1 to event flag 18, and so
forth.

2. The Executive does not arbitrarily clear event flags when Stop For
Logical OR Of Event Flags conditions are met. Some directives (Queue
1/0 Request, for example) implicitly clear a flag; otherwise, they must be
explicitly cleared by a Clear Event Flag directive.

3. The argument list specified in the Fortran call must contain only event
flag numbers that lie within one event flag group. If event flag numbers
are specified that lie in more than one group, or if an invalid event flag
number is specified, a fatal Fortran error is generated.

4. Tasks stopped for event flag conditions cannot be unstopped by
issuing the Unstop directive; tasks stopped in this manner can only be
unstopped by meeting event flag conditions.

5. The grp operand must always be of the form n regardless of the macro
form used. In all other macro calls, numeric or address values for $S
form macros have the form:

#n
For STLO$S this form of the grp argument would be:

n

9-142 DIRECTIVE DESCRIPTIONS

STOP$S

9.1.64 STOP$S-Stop ($S Form Recommended)

The Stop directive stops the issuing task. This directive cannot be issued at
AST state. A task stopped in this manner can only be unstopped by another
task that issues an Unstop directive directed to the task or the task issuing an
Unstop directive at AST state.

Fortran Call

CALL STOP ([ids])

ids integer to receive the Directive Status Word

Macro Call

STOP$S

Macro Expansion

STOP$S
MDV CPC>+,-CSP>
.BYTE 131., 1
EMT 377

Local Symbol Definitions

None

DSW Return Codes

;PUSH DPB ONTO THE STACK
;STOP$ MACRO DIC, DPB SIZE=1 WORD
;TRAP TO THE EXECUTIVE

IS.SET

IE.AST

IE.ADP

IE.SOP

successful completion

the issuing task is at AST state

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-143

STSE$

9.1.65 STSE$-Stop For Single Event Flag

The Stop For Single Event Flag directive instructs the system to stop the issuing
task until the specified event flag is set. If the flag is set at issuance, the task is
not stopped. This directive cannot be issued at the AST state.

A task that is stopped for one or more event flags can only become unstopped
by setting the specified event flag. The Unstop directive cannot be used to
unstop the task.

Fortran Call

iefn event flag number

ids integer to receive Directive Status Word

Macro Cali

STSE$ efn

efn event flag number

Macro Expansion

STSE$ 7
. BYTE 135. , 2

.WORD 7

Local Symbol Definitions

S.TSEFevent flag number

DSW Return Codes

;STSE$ MACRO DIC, DPB SIZE=2 WORDS
;LOCAL EVENT FLAG NUMBER = 7

IS.SUC

IE.AST

IE.lEF

IE.ADP

IE.SOP

successful completion

Note

None

the issuing task is at AST state

invalid event flag number (EFN<1 or EFN>64)

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

9-144 DIRECTIVE DESCRIPTIONS

SVOB$

9.1.66 SVDB$-Specify SST Vector Table For Debugging Aid

The Specify SST Vector Table For Debugging Aid directive instructs the system
to record the address of a table of SST service routine entry points for use by
an intratask debugging aid (ODT, for example).

To deassign the vector table, omit the parameters adr and len from the macro
call.

Whenever an SST service routine entry is specified in both the table used by the
task and the table used by a debugging aid, the trap occurs for the debugging
aid, not for the task.

Fortran Call

Neither the Fortran language nor the ISA standard permits direct linking to sys­
tem trapping mechanisms; therefore, this directive is not available to Fortran
tasks.

Macro Call

SVOB$ [adr][,len]

adr address of SST vector table

len length of (number of entries in) the table in words

The vector table has the following format:

Word 0

Word i

Word2

Word3

Word4

Word 5

Word 6

Word?

odd address of nonexistent memory error

memory protect vio'lation

T-bit trap or execution of a BPT instruction

execution of an IOT instruction

execution of a reserved instruction

execution of a non-RSX EMT instruction (see Note)

execution of a TRAP instruction

reserved for future use

A 0 entry in the table indicates that the task does not want to process the corre­
sponding SST.

Macro Expansion

SVDB$ SSTTBL,4
.BYTE 103.,3
.WORD SSTTBL
.WORD 4

;SVDB$ MACRO DIC, DPB SIZE=3 WORDS
;ADDRESS OF SST TABLE
;SST TABLE LENGTH=4 WORDS

DIRECTIVE DESCRIPTIONS 9-145

Local Symbol Definitions

S.VDTA

S.VDTL

table address (2)

table length (2)

DSW Return Codes

IS.SUC

IE.ADP

IE.SOP

Note

successful completion

part of the DPB or table is out of the issuing task's address
space

DIC or DPB size is invalid

1. A non-RSX EMT instruction is any EMT instruction not normally used by
the system (EMT 1 through 375).

9-146 DIRECTIVE DESCRIPTIONS

SVTK$

9.1.67 SVTK$-Specify SST Vector Table For Task

The Specify SST Vector Table For Task directive instructs the system to record
the address of a table of SST service routine entry points for use by the issuing
task.

To deassign the vector table, omit the parameters adr and len from the macro
call.

Whenever an SST service routine entry is specified in both the table used by the
task and the table used by a debugging aid, the trap occurs for the debugging
aid, not for the task.

Fortran Call

Neither the Fortran language nor the ISA standard permits direct linking to sys­
tem trapping mechanism; therefore, this directive is not available to Fortran
tasks.

Macro Call

SVTK$ [adr][,len]

adr address of SST vector table

len length of (that is, number of entries in) the table in words

The vector table has the following format:

WordO

Word 1

Word2

Word3

Word4

Words

Word6

Word?

odd address of nonexistent memory error

memory protect violation

T-bit trap or execution of a BPT instruction

execution of an IOT instruction

execution of a reserved instruction

execution of a non-RSX EMT instruction (See Note)

execution of a TRAP instruction

reserved for future use

A O entry in the table indicates that the task does not want to process the corre­
sponding SST.

Macro Expansion

SVTK$ SSTTBL,4
.BYTE 105. ,3
.WORD SSTTBL
.WORD 4

;SVTKS MACRO DIC, DPB SIZE=3 WORDS
;ADDRESS OF SST TABLE
;SET TABLE LENGTH•4 WORDS

DIRECTIVE DESCRIPTIONS 9-147

Local Symbol Definitions

S.VTTA

S.VTTL

table address (2)

table length (2)

DSW Return Codes

is.sue
IE.ADP

IE.SOP

Note

successful completion

part of the DPB or table is out of the issuing task's address
space

DIC or DPB size is invalid

1. A non-RSX EMT instruction is any EMT instruction not normally used by
the system (EMT 1 through 375).

9-148 DIRECTIVE DESCRIPTIONS

SWST$

9.1.68 SWST$-Switch State

The SWST$ directive makes it possible for a privileged task that is not itself
mapped to the Executive to map subroutines that require access to the Execu­
tive. The subroutines must be written in position-independent code (PIC). Ad­
dress references must use absolute mode or PC-relative mode. (See the
PDP-11 MACR0-11 Reference Manual.)

The SWST$ directive maps the subroutine through APRS (that is, it uses virtual
addresses 120000 through 137777 octal). Therefore, the subroutine must fall
within the limits of 4K words of the base virtual address specified in the direc­
tive. The subroutine itself is executed as part of the SWST$ directive and is,
therefore, in system state during its execution. Local data references must also
be within the 4K word limit.

Fortran Call

There is no Fortran call for the SWST$ directive.

Macro Call

base

addr

SWST$$ base,addr

the base virtual address within the task for mapping the
subroutine through APRS

virtual address of the subroutine to be executed in system state
by the directive

Macro Expansion

SWST$ BASE,ADDR
.BYTE 175.,3
.WORD· BASE

.WORD ADDR

Local Symbol Definitions

;SWST$ MACRO DIC, DPB SIZE • 3 WORDS
;BASE VIRTUAL ADDRESS FOR MAPPING
;THE SUBROUTINE THROUGH APRS
;VIRTUAL ADDRESS OF THE SUBROUTINE
;EXECUTED AT SYSTEM STATE

S.WBAS

S.WADD

base virtual address for mapping the subroutine through APRS

virtual address of the subroutine executed at system state

DSW Return Codes

is.sue
IE.PRI

successful completion

the issuing task is not privileged

IE.MAP

IE.ADP

IE.SOP

Notes

DIRECTIVE DESCRIPTIONS 9-149

the specified system state routine is greater than 4K words
from the specified base

part of the DPS is out of the issuing task's address space

DIC or DPS size is invalid

· 1. User mode register contents are preserved across the execution of the
kernel mode subroutine. Contents of the user mode registers are
passed into the kernel mode registers. Contents of the kernel mode
registers are discarded when the subroutine has completed execution.

2. User mode registers appear at the following octal stack offsets when
executing the specified subroutine in kernel mode:

User mode RO at S.WSRO Offset on kernal stack
User mode R1 at S.WSR1 Offset on kernal stack
User mode R2 at S.WSR2 Offset on kernal stack
User mode R3 at S.WSR3 Offset on kernal stack
User mode R4 at S.WSR4 Offset on kernal stack
User mode RS at S.WSRS Offset on kernal stack

If you wish to return any register values to the user mode registers, you
must store the desired values on the stack using the above offsets.

3. Virtual address values passed to system state in a register must be
realigned through kernal APRS. For example, if RS contains address n,
and the base virtual address in the DPS is 1000(8), the value in RS must
be aligned using the formula:

n+ 120000+base virtual address
Therefore, the resultant value is n+ 121000.

4. The system state subroutine should exit by issuing an RTS PC
instruction. This causes a successful directive status to be returned as
the directive is terminated.

Caution: Keep in mind that the memory management unit rounds the base
address to the nearest 32-word boundary.

9-150 DIRECTIVE DESCRIPTIONS

UMAP$

9.1.69 UMAP$-Unmap Address Window

The Unmap Address Window directive unmaps a specified window. After the
window has been unmapped, references to the corresponding virtual ad­
dresses are invalid and cause a processor trap to occur.

Fortran Call

CALL UNMAP (iwdb[,ids])

iwdb an 8-word integer array containing a Window Definition Block (see
Section 7.5.2.2)

ids directive status

Macro Call

UMAP$wdb

wdb Window Definition Block address

Macro Expansion

UMAP$
.BYTE

.WORD

Table 9-11

WDBADR
123. '2
WDBADR

;UMAP$ MACRO DIC, DPB SIZE•2 WORDS
;WDB ADDRESS

Window Definition Block Parameters

Input Parameters

Array
Element

iwdb(1)
bits 0-7

Offset

W.NID

Output Parameters

iwdb(7) W.NSTS

Description

ID of the window to be unmapped

Bit settings 17 in the window status word:

Bit

WS.UNM

Definition

1 if the window was successfully unmapped

17. If you are a higher-level language programmer, refer to Section 7.5.2 to determine the bit values represented
by the symbolic names described.

DIRECTIVE DESCRIPTIONS 9-151

Local Symbol Definitions

U.MABA Window Definition Block address (2)

DSW Return Codes

is.sue
IE.ITS

IE.NVW

IE.ADP

IE.SOP

successful completion

the specified address window is not mapped

invalid address window ID

DPB or WDB out of range

DIC or DPB size is invalid

9-152 DIRECTIVE DESCRIPTIONS

USTP$

9.1.70 USTP$-Unstop Task

The Unstop Task directive unstops the specified task that has stopped itself by
either the Stop or the Receive Data Or Stop directive. It does not unstop tasks
stopped for event flag or tasks stopped for buffered 1/0. If the Unstop directive
is issued to a task previously stopped by means of the Stop or Receive Or Stop
directive while at task state, and the task is presently at AST state, the task only
becomes unstopped when it returns to task state.

It is the responsibility of the unstopped task to determine if it has been validly
unstopped.

The Unstop directive does not cause a significant event.

Fortran Call

rtname

ids

CALL USTP (rtname[,ids])

name of task to be unstopped

integer to receive directive status information

Macro Call

USTP$tname

tname name of task to be unstopped

Macro Expansion

USTP$ ALPHA
.BYTE 133. ,3
.RADSO /ALPHA/

;USTP$ MACRO DIC, DPB SIZE=3 WORDS
;NAME OF TASK TD BE UNSTOPPED

Local Symbol Definitions

U.STTN task name (4)

DSW Return Codes

is.sue
IE.INS

IE.ACT

IE.ITS

IE.ADP

IE.SOP

successful completion

the specified task is not installed in the system

the specified task is not active

the specified task is not stopped, or it is stopped for event flag
or buffered 1/0

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-153

VRCD$

9.1.71 VRCD$-Variable Receive Data

The Variable Receive Data directive instructs the system to dequeue a variable­
length data block for the issuing task; the data block has been queued (FIFO)
for the task by a Variable Send Data directive. When a sender task is specified,
only data sent by the specified task is received.

Buffer size can be 25610 words maximum. If no buffer size is specified, the
buffer size is 1310 words. If a buffer size greater than 25610 is specified, an
IE.IBS error is returned.

A 2-word sender task name (in Radix-50 form) and the data block are returned
in the specified buffer, with the task name in the first two words. For this rea­
son, the storage you allocate within the buffer should be two words greater than
the size of the data portion of the message specified in the directive.

Variable-length data blocks are transferred from the sending task to the receiv­
ing task by means of buffers in the secondary pool.

Fortran Call

CALL VRCD ([task],bufadr,[buflen][,ids])

task

buf

buflen

ids

sender task name

address of buffer to receive the sender task name and data

length of buffer

integer to receive the Directive Status Word.

If the directive was successful, it returns the number of words transferred into
the user buffer. If the directive encounters an error during execution, it returns
the error code in the ids parameter.

Any error return of the form IE.XXX is a negative word value. If the status is
positive, the value of the status word is the number of words transferred includ­
ing the task name. For example, if you specify a buffer size of 13 in the VRCD$
call, the value returned in the Directive Status Word is 15 (13 words of data plus
the two words needed to return the task name).

Macro Call

VRCD$ [task],bufadr[,buflen]

task

bufadr

buflen

sender task name

buffer address

buffer size in words

9-154 DIRECTIVE DESCRIPTIONS

Macro Expansion

VRCD$
.BYTE
.RADSO
.WORD

SHDTSK,DATBUF,BUFSIZ
75. ,6
/SHDTSK/
DATBUF

;VRCD$ MACRO DIC, DPB SIZE•6 WORDS
;SEHDER TASK HAME
;ADDRESS OF DATA BUFFER

DIRECTIVE DESCRIPTIONS 9-155

VRSC$

9.1.72 VRSC$-Variable Receive Data Or Stop

The Variable Receive Data Or Stop directive instructs the system to dequeue a
variable-length data block for the issuing task; the data block has been queued
(FIFO) for the task by a Variable Send Data directive. If there is no such packet
to be dequeued, the issuing task is stopped. In this case, another task (the
sender task) is expected to issue an Unstop directive after sending the data.
When stopped in this manner, the directive status returned is IS.SET, indicating
that the task was stopped and that no data has been received; however, since
the task must be unstopped in order to see this status, the task can now reissue
the Variable Receive Data Or Stop directive to actually receive the data packet.

When a sender task is specified, only data sent by the specified task is received.

Buffer size can be 25610 words maximum. If no buffer size is specified, the
buffer size is 13910 words. If a buffer size greater than 25610 is specified, an
IE.IBS error is returned.

A 2-word sender task name (in Radix-50 form) and the data block are returned
in the specified buffer, with the task name in the first 2 words. For this reason,
the storage you allocate within the buffer should be two words greater than the
size of the data portion of the message specified in the directive.

Variable-length data blocks are transferred from the sending task to the receiv­
ing task by means of buffers in the secondary pool.

Fortran Call

CALL VRCS ([task],bufadr,[buflen][,ids])

task

buf

buflen

ids

sender task name

address of buffer to receive the sender task name and data

length of buffer

integer to receive the directive status word

If the directive was successful, it returns the number of words transferred into
the user buffer. If the directive execution encountered an error, it returns the
error code in the ids parameter.

Any error return of the form IE.XXX is a negative word value. If the status is
positive, the value of the status word is the number of words transferred includ­
ing the taskname. For example, if you specify a buffer size of 13 in the VRCS$
call, the value returned in the directive status word is 15 (13 words of data plus
the two words needed to return the taskname).

9-156 DIRECTIVE DESCRIPTIONS

Macro Call

VRCS$ [task],bufadr[,buflen]

task

bufadr

bu fl en

sender task name

buffer address

buffer size in words

Macro Expansion

VRCS$
.BYTE
.RADSO
.WORD
.WORD

SNDTSK,DATBUF,BUFSIZ
139.,6 ;VRCS$ MACRO DIC, DPB SIZE•6 WORDS
/SNDTSK/ ;SENDER TASK NAME
DATBUF
BUFSIZ

;ADDRESS OF DATA BUFFER
;BUFFER SIZE

Local Symbol Definitions

R.VSTN

R.VSBA

R.VSBL

R.VSTI

sender task name (4)

buffer address (2)

buffer length (2)

reserved (2)

DSW Return Codes

is.sue
IE.INS

IE.RBS

IE.IBS

IE.ADP

IE.SOP

successful completion

specified task not installed

receive buffer is too small

invalid buffer size specified (greater than 255.)

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-157

VRCX$

9.1.73 VRCX$-Variable Receive Data Or Exit

The Variable Receive Data Or Exit directive instructs the system to dequeue a
variable-length data block for the issuing task; the data block has been queued
(FIFO) for the task by a Variable Send Data directive. When a sender task is
specified, only data sent by the specified task is received.

A 2-word sender task name (in Radix-50 form) and the data block are returned
in the specified buffer, with the task name in the first two words. For this rea­
son, the storage you allocate within the buffer should be two words greater than
the size of the data portion of the message specified in the directive.

If no data has been sent, a task exit occurs. To prevent the possible loss of
send data packets, the user should not rely on 1/0 rundown to take care of any
outstanding 1/0 or open files; the task should assume this responsibility.

Buffer size can be 25610 words maximum. If no buffer size is specified, the
buffer size is 1310 words. If a buffer size greater than 25610 is specified, an
IE.IBS error is returned.

Variable-length data blocks are transferred from the sending task to the receiv­
ing task by means of buffers in the secondary pool.

Fortran Call

CALL VRCX ([task],bufadr,[buflen][,ids])

task

buf

buflen

ids

sender task name

address of buffer to receive the sender task name and data

length of buffer

integer to receive the directive status word

If the directive was successful, it returns the number of words transferred into
the user buffer. If the directive execution encountered an error, it returns the
error code in the ids parameter.

Any error return of the form IE.XXX is a negative word value. If the status is
positive, the value of the status word is the number of words transferred includ­
ing the taskname. For example, if you specify a buffer size of 13 in the VRCX$
call, the value returned in the directive status word is 15 (13 words of data plus
the two words needed to return the taskname).

9-158 DIREC:flVE DESCRIPTIONS

Macro Call

VRCX$ [task],bufadr[,buflen)

task

bufadr

buflen

sender task-name

buffer address

buffer size in words

Macro Expansion

VRCXS
.BYTE
.RADSO
.WORD
.WORD

SNDTSK,DATBUF,BUFSIZ
77. ,6

/SNDTSK/
DATBUF
BUFSIZ

;VRCXS MACRO DIC, DPB SIZE•6 WORDS
;SENDER TASK NAME
;ADDRESS OF DATA BUFFER
;BUFFER SIZE

Local Symbol Definitions

R.VXTN

R.VXBA

R.VXBL

R.VXTI

sender task name (4)

buffer address (2)

buffer length (2)

reserved (2)

DSW Return Codes

IS.SUC

IE.INS

IE.RBS

IE.IBS

IE.ADP

IE.SOP

successful completion

specified task not installed

receive buffer is too small

invalid buffer size specified (greater than 255.)

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-159

VSDA$

9.1.74 VSOA$-Variable Send Data

The Variable Send Data directive instructs the system to queue a variable­
length data block for the specified task to receive.

Buffer size can be 25610 words maximum. If no buffer size is specified, the
buffer size is 1310 words. If a buffer size greater than 25610 is specified, an
IE.IBS error is returned.

When an event flag is specified, a significant event is declared if the directive is
successfully executed, and the indicated event flag is set for the sending task.

Variable-length data blocks are transferred from the sending task to the receiv­
ing task by buffers in the secondary pool.

Fortran Call

CALL VSDA (task,bufadr,[buflen],(efn][,ids])

task

buf

buflen

ef n

ids

Macro Call

receiver task name

address of buffer to receive the receiver task name and data

length of buffer

event flag number

integer to receive the directive status word

VSDA$ task,bufadr[,buflen][,efn]

task

bufadr

buflen

receiver task name

buffer address

buffer size in words

Macro Expansion

VSDA$
.BYTE
.RADSO
.WORD
.WORD
.WORD

RECTSK,DATBUF,BUFSIZ,4
71.,8 ;VSDAS MACRO DIC, DPB SIZE•B WORDS
/RECTSK/ ;RECEIVER TASK HAME
DATBUF ;ADDRESS OF DATA BUFFER
4 ;EVEHT FLAG 4
BUFSIZ ;BUFFER SIZE

9-160 DIRECTIVE DESCRIPTIONS

L9cal Symbol Definitions

S.DATN

S.DABA

S.DAEF

S.DABL

S.DATI

sender task name (4)

buffer address (2)

event flag number (2)

buffer length (2)

reserved (2)

DSW Return Codes

is.sue
IE.UPN

IE.INS

IE.IBS

IE.IEF

IE.ADP

IE.SOP

successful completion

insufficient dynamic storage

specified task not installed

invalid buffer size specified (greater than 255.)

invalid event flag number (EFN<O or EFN>64)

part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS 9-161

VSRC$

9.1.75 VSRC$-Variable Send, Request and Connect

The Variable Send, Request and Connect directive perf.orms a Variable Send
Data to the specified task, requests the task if it is not already active, and then
connects to the task. The receiver task normally returns status by the Emit Sta­
tus or the Exit With Status directive.

Buffer size can be 25610 words maximum. If no buffer size is specified, the
buffer size is 1310 words. If a buffer size greater than 25610 is specified, an
IE.IBS error is returned.

Fortran Call

rtname

ibuf

ibuflen

iefn

iast

iesb

CALL VSRC (rtname, ibuf,[ibuflen],[iefn],[iast],[iesb],
[iparm][,ids])

target task name of the offspring task to be connected

name of send buffer

length of the buffer

event flag to be set when the offspring task exits or emits status

name of an AST routine to be called when the offspring task
exits or emits status

name of an 8-word status block to be written when the offspring
task exits or emits status

WordO

Word 1

Word 2-7

offspring task exit status

system abort code

reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WX8 and the
event flag number in the iefn parameter above. ·

iparm name of a word to receive the status block address when an
AST occurs

ids integer to receive the Directive Status Word

Macro Call

VSRC$ tname,buf[,buflen],[efn],[east],esb]

tname

but

buflen

ef n

target task name of the offspring task to be connected

address of send buffer

length of buffer

the event flag to be cleared on issuance and set when the
offspring task exits or emits status

9-162 DIRECTIVE DESCRIPTIONS

east

esb

address of an AST routine to be called when the offspring task
exits or emits status

address of an 8-word status block to be written when the
offspring task exits or emits status

Word 0 offspring task exit status

Word 1

Word 2-7

system abort code

reserved

Note: The exit status block defaults to 1 one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WX8 and the
event flag number in the efn parameter above.

Macro Expansion

VSRC$
.BYTE
.RADSO
.WORD
.BYTE
.BYTE

.WORD

.WORD

.IJ.!ORD

ALPHA,BUFFR,BUFSiZE,2,SDRCTR,STBLK
141. ,8 ;VSRCS MACRO DIC, DPB SIZE=8 WORDS
/ALPHA/ ;TARGET TASK NAME
BUFFR ;SEND BUFFER ADDRESS
2 ;EVENT FLAG NUMBER = 2
16.

BUFSIZE

SDRCTR
STBLK

;EXIT STATUS BLOCK CONSTANT
;LENGTH OF BUFFER IN BYTES
;ADDRESS OF AST ROUTINE
;ADDRESS OF STATUS BLOCK

Local Symbol Definitions

S.DRTN

S.DRBF

S.DREF

S.DREA

S.DRES

task name (4)

buffer address (2)

event flag (2)

AST routine address (2)

status block address (2)

DSW Return Codes

is.sue
IE.UPN

IE.INS

IE.IEF

IE.ADP

IE.SOP

Notes

successful completion

insufficient dynamic memory to allocate a send packet,
Offspring Control Block, Task Control Block, or Partition
Control Block

the specified task is an ACP or has the no-send attribute

an invalid event flag number was specified (EFN<O or EFN>64)

part of the DPB or exit status block is not in the issuing task's
address space

DIC or DPB size is invalid

i. Changing the virtual mapping of the exit status block while the
connection is in effect may result in obscure errors.

DIRECTIVE DESCRIPTIONS 9-163

WIMP$

9.1.76 WIMP$-What's In My Professional

The What's In My Professional directive is a general purpose system informa­
tion retrieval mechanism. The directive allows a nonprivileged task to retrieve
specific information stored by the system without requiring the task to be
mapped to the Executive. In all forms, the WIMP$ directive requires a subf1.mc­
tion, a return buffer, and the return buffer size.

A subfunction specifies the type of information to be returned. The return buffer
is space allocated within your task and must be large enough to contain the in­
formation that is to be returned. Refer to the descriptions of the implemented
subfunction for the specific size of the return buffer.

Fortran Call

CALL WIMP (SFCN,P1 ,P2,P3,P4,P5,P6,IDS)

Macro Call

SFCN,P1 ,P2,P3,P4,P5,P6

SFCN subfunction code

P1 parameter 1

P2 parameter 2

P3 parameter 3

P4 parameter 4

p5 parameter 5

P6 parameter 6

IDS directive status

Macro Expansion

WIMP$ SFCN,P1 ,P2,P3,P4,P5,P6

.BYTE 169. ,variable

. ~~ORD SFCN ;SUBFUNCTJON CODE

.WORD p 1 ;PARAMETER 1

.WORD P2 ;PARAMETER 2

.WORD Pn ;PARAMETER n

Local Symbol Definitions

G.INSF

G.IP01

SUBFUNCTION CODE (2)

PARAMETER 1 (2)

9-164 DIRECTIVE DESCRIPTIONS

G.IP02 PARAMETER 2 (2)

G.IP03 PARAMETER 3 (2)

G.IP04 PARAMETER 4 (2)

G.IPOS PARAMETER 5 (2)

G.IP06 PARAMETER 6 (2)

DSW Return Codes

is.sue
IE.IOU

IE.SOP

successful completion

invalid hardware for requested operation

DIC, DPS size, or subfunction is invalid

Implemented Subfunctions

Gl.SSN get system serial number

WIMP$ Gl.SSN,BUF,SIZ

BUF

SIZ

return buffer address

size in words of return buffer (size= 3)10 .

Output Buffer Format

word 0

word 1

word 2

high word of system serial number

middle word

low word

Gl.CFG get configuration table

WIMP$ Gl.CFG,BUF,SIZ

BUF return buffer address

SIZ size in words of return buffer (size= 9610)

Table 9-12 lists the offsets in the configuration table as displayed in the user's
return buffer. The information contained in the return buffer reflects the current
system configuration including hardware and hardware status. Any changes
made to the information in the return buffer are not reflected in the system con­
figuration table.

DIRECTIVE DESCRIPTIONS 9-165

Table 9-12
The Configuration Table Output Buffer Format

Description

Table length in bytes

Serial number ROM ID

High word of serial number

Middle word of serial number

Low word of serial number

Number of option slots

Data length of table

SlotO ID.

Status/error of slot 0

Slot 1 ID

Status/error of slot 1

Slot2 ID

Status/error of slot 2

Slot3 ID

Status/error of slot 3

Slot4 ID

Status/error of slot 4

Slot 5 ID

Status/error of slot 5

Slot 6 ID (not used)

Status/error of slot 6 (not used)

Slot 7 ID (not used)

Status/error of slot 7 (not used)

Keyboard ID (supplied by the keyboard, this could be some other input device)

Keyboard status/error

Base processor type

Base processor status

Primary memory ID

Total system memory size

Diagnostic ROM version number

Diagnostic ROM error status

Video monitor present

Video monitor status

Audio device ID (not on PRO 325/350)

Audio device status

Keyboard interface ID (2661)

Keyboard interface status/error

Printer port interface ID (2661)

Offset

0

2

4

6

8.

10.

12.

14.

16.

18.

20.

22.

24.

26.

28.

30.

32.

34.

36.

38.

40.

42.

44.

46.

48.

50.

52.

54.

56.

58.

60.

62.

64.

66.

68.

70.

72.

74.

9-166 DIRECTIVE DESCRIPTIONS

Table 9-2 (Cont.)

Description

Printer port interface status/error

Maintenance port ID

Maintenance port status

Serial comm interface ID

Serial comm interface status/error

Time of day device ID

Time of day status/error

NVR RAM ID

NVR RAM status/error

Floating point ID

Floating point status/error

Interrupt controller ID

Interrupt controller status/error

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Soft restart address

Offset value into boot code

Booted device ID number

Unit number of booted device

Current boot sequence return address

Error flag for ROM diagnostics

Additional information length

Offset

76.

78.

80.

82.

84.

86.

88.

90.

92.

94.

96.

98.

100.

102.

104.

106.

108.

110.

112.

114.

116.

118.

120.

122.

124.

126.

128.

130.

132.

134.

136.

138.

140.

142.

144.

146.

DIRECTIVE DESCRIPTIONS 9-167

WSIG$

9.1.77 WSIG$-Wait For Significant Event ($S Form Recommended)

The Wait For Significant Event directive is used to suspend the execution of the
issuing task until the next significant event occurs. It is an especially effective
way to block a task that cannot continue because of a lack of dynamic memory,
since significant events occurring throughout the system often result in the re­
lease of dynamic memory. The execution of a Wait For Significant Event direc­
tive does not itself constitute a significant event.

Fortran Call

CALLWFSNE

Macro Call

WSIG$S [err]

err error routine address

Macro Expansion

WSIG$S ERR
MOV <PC>+,-<SP>
.BYTE 49., 1
EMT 377

BCC .+6
JSR PC,ERR

Local Symbol Definitions

None

DSW Return Codes

;PUSH DPB ONTO THE STACK
;WSIG$S MACRO DIC, DPB SIZE•1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE ''ERR''

is.sue
IE.ADP

IE.SOP

successful completion

Notes

part of the DPS is out of the issuing task's address space

DIC or DPS size is inV'alid

1. If a directive is rejected for lack of dynamic memory, this directive is the
only technique available for blocking task execution until dynamic
memory may again be available.

2. The wait state induced by this directive is satisfied by the first significant
event to occur after the directive has been issued. The significant event
that occurs may or may not be related to the issuing task.

9-168 DIRECTIVE DESCRIPTIONS

3. Because this directive requires only a 1-word DPB, the $S form of the
macro is recommended. It requires less space and executes with the
same speed as that of the DIR$ macro.

4. Significant events include the following:

D 1/0 completion

D Task exit

D Execution of a Send Data directive

D Execution of a Send Data, Request and Pass OCB directive

D Execution of a Send, Request and Connect directive

D Execution of a Send By Reference directive or a Receive by
Reference directive

D Execution of an Alter Priority directive

D Removal of an entry from the clock queue (for instance, resulting
from the execution of a Mark Time directive or the issuance of a
rescheduling request)

D Execution of a Declare Significant Event directive

D Execution of the round-robin scheduling algorithm at the end of a
round-robin scheduling interval

D Execution of an Exit, an Exit with Status, or Emit Status directive

DIRECTIVE DESCRIPTIONS 9-169

WTLO$

9.1.78 For OR Of Event

The Wait For OR Of Event Flags directive instructs the system to block
the execution of the task until the Executive sets the indicated event
flags from one of the following groups:

GRO flags 1-16

GR1 17-32

GR2 33-48

GR3 49-64

The task does not block itself if any of the indicated
the task issues the directive. See Notes below.

Fortran Call

CALL WFLOR (efn1 ,efn2, ... efnn)

are set when

efn list of event
directive

numbers taken as the set of flags to be specified in the

Macro Call

WTLO$ grp,msk

grp desired of event flags

mask word msk a 16-bit

Macro Expansion

WTLO$ 2,160003

.BYTE 43.,3

.WORD 2

. WORD 160003

local Definitions

None

DSW Retum Codes

successful

;WTLO$ MACRO D!C, DPB SlZE=3 WORDS
;FLAGS SET NUMBER 2 <FLAGS 33:48.)
;EVENT FLAGS 33,34,46,47 AND 48 .

is.sue

iE.IEF no event in the mask word or flag indicator

IE.ADP

IE.SOP

other than 0, 1, 2, 3, 4, or 5

of the DPB is out of the

DIC or DPB size is invalid

task's address space

9-170 DIRECTIVE DESCRIPTIONS

Notes

1. There is a one-to-one correspondence between bits in the mask word
and the event flags in the specified group. That is, if group 1 were
specified, then bit 0 in the mask word would correspond to event flag
17, bit 1 to event flag 18, and so forth.

2. The Executive does not arbitrarily clear event flags when Wait For
conditions are met. Some directives (Queue 1/0 Request, for example)
implicitly clear a flag; otherwise, they must be explicitly cleared by a
Clear Event Flag directive.

3. The grp operand must always be of the form n regardless of the macro
form used. In all other macro calls, numeric or address values for $S
form macros have the form:

#n
For WTLO$S this form of the grp argument would be:

n

4. The argument list specified in the FORTRAN call must contain only
event flag numbers that lie within one event flag group. If event flag
numbers are specified that are in more than one group, or if an invalid
event flag number is specified, a fatal FORTRAN error is generated.

5. If the issuing task has outstanding buffered 1/0 when it enters the Wait
For state, it will be stopped. When the task is in a stopped state, it can
be checkpointed by any other task regardless of priority. The task is
unstopped when:

D The outstanding buffered 1/0 completes.

D The Wait For condition is satisfied.

D The issuing task exits before the Wait For condition is satisfied.

DIRECTIVE DESCRIPTIONS 9-171

WTSE$

9.1.79 WTSE$-Wait For Single Event Flag

The Wait For Single Event Flag directive instructs the system to block the ex­
ecution of the issuing task until the indicated event flag is set. If the flag is set at
issuance, task execution is not blocked.

Fortran Call

CALL WAITFR (efn[,ids])

efn event flag number

ids directive status

Macro Call

WTSE$efn

efn event flag number

Macro Expansion

WTSE$ 52 .
. BYTE 41., 2

.WORD 52.

local Symbol Definitions

W.TSEF event flag number (2)

DSW Return Codes

;WTSE$ MACRO DIC, DPB SlZE=2 WORDS
;EVENT FLAG NUMBER 52.

is.sue
IE.IEF

IE.ADP

IE.SOP

successful completion

Notes

invalid event flag number (EFN<1, or EFN>64)

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. If the issuing task has outstanding buffered 1/0 when it enters the Wait
For state, it will be stopped. When the task is in a stopped state, it can
be checkpointed any other task regardless of priority. The task is

when:

D The outstanding buffered 1/0 completes.

D The Wait For condition is satisfied.

2. The issuing task exits before the Wait For condition is satisfied.

CHAPTER 10
SYSTEM INPUT /OUTPUT CONVENTIONS

This chapter describes the device drivers supported by the system and the
characteristics, functions, error conditions, and programming hints associated
with each one. Devices not described in this chapter must be developed and
maintained by the user.

Input/output (1/0) operations on the system are extremely flexible and are as
device- and function-independent as possible. Programs issue 1/0 requests to
logical units that have been previously associated with particular physical de­
vice units. Each program or task is able to establish its own correspondence
between physical device units and logical unit numbers (LUNs). 1/0 requests
are queued as issued; they are subsequently processed according to the rela­
tive priority of the tasks that issued them. l/O requests (for appropriate devices)
can be issued from tasks by means of either the Record Management Services
(RMS) or can be interfaced directly to an 1/0 driver by means of the Queue 1/0
(010) system directive.

All of the 1/0 services described in this chapter are requested by the user in the
form of 010 system directives. A function code included in the 010 directive in­
dicates the particular input or output operation to be performed. 1/0 functions
can be used to request such operations as:

D Attaching or detaching a physical device unit for a task's exclusive use

D Reading or writing a logical or virtual block of data

D Cancelling a task's i/O requests

A wide variety of device-specific 1/0 operations (for example, reading from a
terminal without echoing characters) can also be specified with 010 directives.

10-1

10-2 SYSTEM INPUT/OUTPUT CONVENTIONS

10.1 PHYSICAL, LOGICAL, AND VIRTUAL 1/0

There are three possible modes in which an 1/0 transfer can take place: phys­
ical, logical, and virtual.

Physical 1/0 involves reading and writing data in the actual physical units used
by the hardware (sectors or blocks).

Logical 1/0 involves reading and writing data in units (blocks) used by software.
When you issue a QIO to a device driver, the driver translates the logical block
numbers to physical block numbers. Logical blocks are numbered beginning at
0, and are always 51210 bytes in length.

Virtual 1/0 also involves reading and writing data in units (blocks) used by soft­
ware. However, virtual 1/0 pertains to reading and writing data in open files.
When reading and writing data in file-structured devices such as disks, virtual
blocks are the same size as logical blocks, but are numbered starting at 1 in­
stead of 0. When you issue a QIO to read or write a virtual block in an open file,
the system translates virtual blocks into logical blocks. When you issue a QIO to
read or write a virtual block to a non-file-structured device such as a terminal,
the Executive changes the QIO from a read/write virtual block to a read/write
logical block.

10.2 SUPPORTED DEVICES

The system supports the devices listed below when they are connected to the
printer port. Drivers are supplied for each of these devices; the appropriate 1/0
operations are described in detail in subsequent chapters of this manual.

1. Terminals

D LA 12 DECwriter

D LA34/LA38 DECwriter IV

D LA 100 DECwriter

D LA120

D VT100 Alphanumeric Display Terminal

D VT101 Alphanumeric Display Terminal

D VT102 Alphanumeric Display Terminal

D VT105 Alphanumeric Display Terminal

D VT125 Alphanumeric Display Terminal

D VT131 Alphanumeric Display Terminal

D VT132 Alphanumeric Display Terminal

2. Disks

D ROSO Fixed 5-Megabyte Hard Disk

D RXSO 51.4-inch Diskette

SYSTEM INPUT/OUTPUT CONVENTIONS 10-3

10.3 LOGICAL UNITS

This section describes the construction of the logical unit table and the use of
logical unit numbers.

10.3.1 Logical Unit Number

A logical unit number, or LUN, is a number associated with a physical device
unit during system 1/0 operations. More simply, a LUN represents an associ­
ation between a logical unit and a physical device unit. For example, LUN 1
might be associated with the terminal, LUN 2 with the printer port, LUNs 3 and 4
with the RX50s, and LUN5 with the RD50. Once the association has been made,
the LUN provides a direct and efficient mapping to the physical device unit, and
eliminates the necessity to search the device tables whenever the system en­
counters a reference to a physical device unit.

The association is a dynamic one; each task running in the system can establish
its own correspondence between LUNs and physical device units, and can
change any LUN/physical-device-unit association at almost any time. The flexi­
bility of this association contributes heavily to system device independence.

Keep in mind that, although this association can be changed at any time, reas­
signment of a LUN at run time causes pending 1/0 requests for the previous
LUN assignment to be cancelled. It is the user's responsibility to verify that all
outstanding 1/0 requests for a LUN have been serviced before that LUN is as­
sociated with another physical device unit.

10.3.2 Logical Unit Table

There is one Logical Unit Table (LUT) for each task running in a system. This
table is a variable-length block contained in the task header. Each LUT contains
sufficient 2-word entries for the number of logical units specified by the user at
task-build time by the "UNITS=" option.

Each entry or slot contains a pointer to the physical device unit currently associ­
ated with that LUN. Whenever a user issues an 1/0 request, the system matches
the appropriate physical device unit to the LUN specified in the call by indexing
into the LUT by the number supplied as the LUN. Thus, if the call specifies 6 as
the LUN, the system accesses the sixth 2-word entry in the LUT and associates
the 1/0 request with the physical device unit to which the entry points. The num­
ber of LUN assignments valid for a task ranges from 0 to 255, but cannot be
greater than the number of LUNs specified at task-build time.

10-4 SYSTEM INPUT/OUTPUT CONVENTIONS

10.3.3 Changing LUN Assignments

Logical unit numbers have no significance until they are associated with a phys­
ical device unit by means of one of the methods described below:

1. At task-build time, the user can specify an ASG= keyword option, which
associates a physical device unit with a logical unit number referenced
in the task being built.

2. At run time, a task can dynamically change a LUN assignment by
issuing the Assign LUN system directive, which changes the associ­
ation of a LUN with a physical device unit during task execution.

10.4 ISSUING AN 1/0 REQUEST

User tasks perform 1/0 in the system by submitting requests for 1/0 service in
the form of 010 or 010 And Wait system directives.

In this system, and in most multiprogramming systems, tasks normally do not
directly access physical device units. Instead, they utilize input/output services
provided by the Executive, since the Executive can effectively multiplex the use
of physical device units over many users. The Executive routes 1/0 requests to
the appropriate device driver and queues them according to the priority of the
requesting task. 1/0 operations proceed concurrently with other activities in the
system.

Before a request is queued, it must pass a battery of acceptance tests adminis­
tered by the Executive. If the request fails, it is rejected; this rejection is signaled
by the setting of the C-bit when the statement following the QIO is executed. It
is good programming practice to check for directive rejection by following the
QIO directive with a BCS instruction.

After an 1/0 request has been queued, the system does not wait for the opera­
tion to complete. If at any time the user task that issued the QIO request cannot
proceed until the 1/0 operation has completed, it should specify an event flag
(see Section 5.2) in the QIO request and should issue a Wait For system direc­
tive specifying the same event flag at the point where synchronization must oc­
cur. The task then waits for completion of 1/0 by waiting for the specified event
flag to be set.

The QIOW directive, QIO And Wait, is a more economical way to achieve this
synchronization. QIOW automatically waits until 1/0 has completed before re­
turning control to the task. Thus, the additional Wait For directive is not neces­
sary.

Each QIO or QIOW directive must supply sufficient information to identify and
queue the 1/0 request. The user may also want to include locations to receive
error or status codes and to specify the address of an asynchronous system

SYSTEM INPUT /OUTPUT CONVENTIONS 10-5

trap service routine. Certain types of 1/0 operations require the specification of
device-dependent information as well. Typical QIO parameters are the follow­
ing:

D 1/0 function to be performed

D Logical unit number associated with the physical device unit to be
accessed

0 Optional event flag number for synchronizing 1/0 completion process­
ing (required for QIOW)

D Optional address of the 1/0 status block to which information indicating
successful or unsuccessful completion is returned

0 Optional address of an asynchronous system trap service routine to be
entered on completion of the 1/0 request

D Optional device- and function-dependent parameters specifying such
items as the starting address of a data buffer, the size of the buffer, and
a block number

A set of system macros that facilitate the issuing of QIO directives is supplied
with the system. These macros, which reside in the System Library Account in
(RSXMAC.SML), must be made available to the source program by means of
the MACR0-11 Assembler directive .MCALL. The function of .MCALL is de­
scribed in Section 10.6.4. Several of the first six parameters in the 010 directive
are optional, but space for these parameters must be reserved.

During expansion of a QIO macro, a value of 0 is defaulted for all null (omitted)
parameters. Inclusion of the device- and function-dependent parameters de­
pends on the physical device unit and function specified. if the user wanted to
specify only an 1/0 function code, a LUN, and an address for an asynchronous
system trap service routine, the following might be issued:

10.ATT

6

ASTOX

QIO$C 10.ATT,6,,,,ASTOX

The 1/0 function code for attach

The LUN

The AST address

Null arguments for the event flag number, the request priority,
and the address of the 1/0 status block

No additional device- or function-dependent parameters are required for an at­
tach function. The C form of the 010$ macro is used here.

10-6 SYSTEM INPUT /OUTPUT CONVENTIONS

For convenience, any comma may be omitted if no parameters appear to the
right of it. Therefore, the command above could be issued as follows, if the
asynchronous system trap was not desired:

010$C 10.ATT,6

All extra commas have been dropped. If, however, a parameter appears to the
right of any place-holding comma, that comma must be retained.

10.4. i 010 Macro Format

The arguments for a specific 010 macro call may be different for each 1/0 de­
vice accessed and for each 1/0 function requested. The general format of the
call is, however, common to all devices and is as follows:

QIO$C fnc,lun,[efn],[pri],[isb],[ast][,<p1 ,p2, ... ,p6>]

where brackets ([]) enclose optional or function-dependent parameters. If
function-dependent parameters <p1 , ... ,p6> are required, these parameters
must be enclosed within angle brackets(<>). The following paragraphs summa­
rize the use of each QIO parameter.

The fnc parameter is a symbolic name representing the 1/0 function to be per­
formed. This name is of the form

10.xxx

xxx Identifies the particular 1/0 operation

For example, a 010 request to attach the physical device unit associated with a
LUN specifies the function code

10.ATT

A QIO request to cancel (or kill) all 1/0 requests for a specified LUN begins in
the following way:

QIO$C 10.KIL, ...

The fnc parameter specified in the QIO request is stored internally as a function
code in the high-order byte and modifier bits in the low-order byte of a single
word. The function code is in the range 0 through 31 and is a binary value sup­
plied by the system to match the symbolic name specified in the QIO request.
The correspondence between global symbolic names and function codes is de­
fined in the system object module library, which is automatically searched by
the Task Builder. Local symbolic definitions may also be obtained by the FIUO$
and SPCIO$ macros, which reside in the System Macro Library and are summa­
rized in Appendix C. Several similar functions may have identical function
codes, and may be distinguished only by their modifier bits. Only the modifier
bits for these two operations are stored differently.

SYSTEM INPUT/OUTPUT CONVENTIONS 10-7

The lun parameter represents the logical unit number (LUN) of the associated
physical device unit to be accessed by the 1/0 request. The association be­
tween the physical device unit and the LUN is specific to the task that issues the
1/0 request, and the LUN reference is usually device independent. An attach
request to the physical device unit associated with LUN 14 begins in the follow­
ing way:

QIO$C 10.ATI,14., ...

Because each task has its own LUT in which the physical device unit-LUN cor­
respondences are established, the legality of a LUN parameter is specific to the
task that includes this parameter in a QIO request. In general, the LUN must be
in the following range:

0 <LUN <length of task's LUT (if nonzero)

The number of LUNs specified in the LUT of a particular task cannot exceed
255.

The efn parameter is a number representing the event flag to be associated with
the 1/0 operation. It may optionally be included in a QIO or QIO And Wait re­
quest. The specified event flag is cleared when the 1/0 request is queued and is
set when the 1/0 operation has completed. If the task has issued the QIO And
Wait directive, execution is automatically suspended until the 1/0 completes. If a
QIO directive has been issued (with no Wait For directive), then task execution
proceeds in parallel with the 1/0. When the task continues to execute, it may
test the event flag whenever it chooses by using the Read All Event Flags sys­
tem directive or the Read Extended Flags system directive (for all event flags) If
the user specifies an event flag number, this number must be in the range 1
through 64. If an event flag specification is not desired, efn can be omitted or
can be supplied with a value of 0. Event flags 1 through 32 are local (specific to
the issuing task); event flags 33 through 64 are global (shared by all tasks in the
system). Flags 25 through 32 and 57 through 64 are reserved for use by system
software. Within these bounds, the user can specify event flags as desired to
synchronize 1/0 completion and task execution. Chapter 4 provides a more de­
tailed explanation of event flags and significant events.

Note: If an event flag is not specified, the Executive treats the directive as if it
were a simple 010 request.

A 1/0 request automatically assumes the priority of the requesting task. Thus, it
is recommended that a value of 0 (or a null) be used for this parameter.

The optional isb parameter identifies the address of the 1/0 status block (1/0
status double-word) associated with the 1/0 request. This block is a 2-word ar­
ray in which a code representing the final status of the 1/0 request is returned
on completion of the operation. This code is a binary value that corresponds to
a symbolic name of the form IS.xxx (for successful returns) or IE.xxx (for error
returns). The binary error code is returned to the low-order byte of the first word

10-8 SYSTEM INPUT/OUTPUT CONVENTIONS

of the status block. It can be tested symbolically, by name. For example, the
symbolic status IE.BAD is returned if a bad parameter is encountered. The fol­
lowing illustrates the examination of the 1/0 status block, IOST, to determine if a
bad parameter has been detected:

QI0$C IO.ATT,14.,2,,IDST
BCS DIRERR
WTSE$C 2

CMPB #IS.SUC,IOST
Bl'IE ERROR

The correspondence between global symbolic names and 1/0 completion codes
is defined in the system object module library, which is automatically searched
by TKB.

Certain device-dependent information is returned to the high-order byte of the
first word of isb on completion of the 1/0 operation. If a read or write operation
is successful, the second word is also significant. For example, in the case of a
read function on a terminal, the number of bytes typed before a carriage return
is returned in the second word of isb. If a magtape unit is the device and a write
function is specified, this number represents the number of bytes actually trans­
ferred. The status block can be omitted from a QIO request if the user does not
·intend to test for successful completion of the request.

The optional ast parameter specifies the address of a service routine to be en­
tered when an asynchronous system trap occurs. Section 10.4.3 discusses the
use of asynchronous system traps, and Chapter 5 describes traps in detail. If
you want to interrupt a task to execute special code on completion of an 1/0
request, an asynchronous system trap routine can be specified in the 010 re­
quest. When the specified 1/0 operation completes, control branches to this
routine at the software priority of the requesting task. The asynchronous code
beginning at address ast is then executed, much as an interrupt service routine
would be. If the user does not want to perform asynchronous processing, the
ast parameter can be omitted or a value of 0 specified in the QIO macro call.

The additional a.10 parameters, <p1 ,p2, ... ,p6>, are dependent on the particular
function and device specified in the 1/0 request. Typical parameters may in­
clude 1/0 buffer address, 1/0 buffer length, and so forth. Between zero and six
parameters can be included, depending on the particular 1/0 function.

10.4.2 Significant Events

"Significant event" is a term used in real-time systems to indicate a change in
system status. The system declares a significant event when an 1/0 operation
completes. This signals the system that a change in status has occurred and
indicates that the Executive should review the eligibility of all tasks in the sys­
tem to determine which task should run next. The use of significant events
helps cooperating tasks in a real-time system to communicate with each other,
and thus allows these tasks to control their own sequence of execution dynami­
cally.

SYSTEM INPUT /OUTPUT CONVENTIONS 10-9

Significant events are normally set by system directives, either directly or indi­
rectly, by completion of a specified function. Event flags associated with tasks
may be used to indicate which significant event has occurred. Of the 64 event
flags available, the flags numbered 1 through 32 are local to an individual task
and are set or reset only as a result of that task's operation. The event flags
numbered 33 through 64 are common to all tasks. Flags 25 through 32 and 57
through 64 are reserved for system software use.

An example of the use of significant events follows. A task issues a QIO direc­
tive with an efn parameter specified. A Wait For directive follows the QIO and
specifies as an argument the same event flag number. The event flag is cleared
when the 1/0 request is queued by the Executive, and the task is blocked when
it executes the Wait For directive until the event flag is set and a significant
event is declared at the completion of the 1/0 request. The task resumes when
the appropriate event flag is set, and execution resumes at the instruction fol­
lowing the Wait For directive. During the time that the task is blocked, other
tasks have a chance to run, thus increasing throughput in the system.

10.4.3 System Traps

System traps are used to interrupt task execution and to cause a transfer of
control to another memory location for special processing. Traps are handled
by the Executive and are relevant only to the task in which they occur. To use a
system trap, a task must contain a trap service routine, which is automatically
entered when the trap occurs.

There are two types of system traps: synchronous and asynchronous. Both are
used to handle error or event conditions, but the two traps differ in their relation
to the task that is running when they are detected. Synchronous traps signal
error conditions within the executing task. If the same instruction sequence
were repeated, the same synchronous trap would occur at the same place in
the task. Asynchronous traps signal the completion of an external event such
as an 1/0 operation. An asynchronous system trap (AST) usually occurs as the
result of initiating or completing an external event rather than a program condi­
tion.

The Executive queues ASTs in a FIFO queue for each task and monitors all
asynchronous service routine operations. Because asynchronous traps may be
the end result of 1/0-related activity, they cannot be controlled directly by the
task that receives them. However, the task may, under certain circumstances,
block recognition of ASTs to prevent simultaneous access to a critical data re­
gion. When access to the critical data region has been completed, the queued
ASTs may again be honored. The DSAR$S (Disable AST Recognition) and
ENAR$S (Enable AST Recognition) system directives provide the mechanism
for accomplishing this. An example of an asynchronous trap condition is the
completion of an 1/0 request. The timing of such an operation clearly cannot be
predicted by the requesting task. If an AST service routine is not specified in an
1/0 request, a trap does not occur and normal task execution continues.

10-10 SYSTEM INPUT/OUTPUT CONVENTIONS

Asynchronous system traps associated with 1/0 requests enable the requesting
task to be truly event driven. The AST service routine contained in the initiating
task is executed as soon as possible, consistent with the task's priority. Using
the AST routine to service 1/0-related events provides a response time that is
considerably better than a polling mechanism, and provides for better overlap
processing than the simple QIO and Waitfor sequence. Asynchronous system
traps also provide an ideal mechanism for use in multiple buffering of 1/0 oper­
ations.

All ASTs are inserted in a FIFO queue on a per-task basis as they occur that is,
the event that they are to signal has expired; they are effected one at a time
whenever the task does not have ASTs disabled and is not already in the pro­
cess of executing an AST service routine. The process of effecting an AST in­
volves storing certain information on the task's stack, including the task's Wait
For mask word and address, the Directive Status Word (DSW), the PS, the PC
and any trap dependent parameters. The task's general-purpose registers RO­
R5 are not saved, and thus it is the responsibility of the AST service routine to
save and restore the registers it uses. After an AST is processed, the trap­
deJ:>endent parameters (if any) must be removed from the task's stack and an
AST Service Exit directive executed. The ASTX$S macro described in Section
10.6. 7 is used to issue the AST Service Exit directive. On AST service exit, con­
trol is returned to another queued AST, to the executing task, or to another task
that has been waiting to run. Chapter 5 describes in detail the purpose of AST
service routines and all system directives used to handle them.

10.5 DIRECTIVE PARAMETER BLOCKS

A Directive Parameter Block (DPB) is a fixed-length area of contiguous memory
that COJ'ltains the arguments specified in a system directive macro call. The DPB
for a QIO directive has a length of 12 words. It is generated as the result of
expanding a QIO macro call. The first byte of the DPB contains the directive
identification code (DIC)-always 1 for QIO. The second byte contains the size
of the DPB in words-always 12. During assembly of a user task containing
QIO requests, the MACR0-11 Assembler generates a DPB for each 1/0 request
specified in a QIO macro call. At run time, the Executive uses the arguments
stored in each DPB to create, for each request, an 1/0 packet in system dy­
namic storage. The packet is entered by priority into a queue of 1/0 requests for
the specified physical device unit. This queue is created and maintained by the
Executive and is ordered by the priority of the tasks that i~sued the requests.
The 1/0 drivers examine their respective queues for the 1/0 request with the
highest priority capable of being executed. This request is dequeued (removed
from the queue) and the 1/0 operation is performed. The process is then re­
peated until the queue is emptied of all requests.

After the 1/0 request has been completed, the Executive declares a significant
event and may set an event flag, cause a branch to an asynchronous system
trap service routine, and/or return the 1/0 status, depending on the arguments
specified in the original QIO macro call. Figure 10-1 illustrates the layout of a
sample DPB.

SYSTEM INPUT /OUTPUT CONVENTIONS 10-11

0

WORD 0 SIZE OF DPS -- 12 1

BYTE

--- DIC FOR 010
DIRECTIVE

FNC MODIFIERS --- 1/0 FUNCTION

2 ~~0Z!!'~
~h LUN -- LOGICAL UNIT NUMBER

3 PRIORITY --- PAI EFN --- EVENT FLAG NUMBER

4

5

6

•

•

•

11

ISB

AST

DEVICE-

DEPENDENT

PARAMETERS

Figure 10-1 QIO Directive Parameter Block

10.6 1/0-RELATED MACROS

-- ADDRESS OF 1/0
STATUS BLOCK

__ ADDRESS OF
ASYNCHRONOUS TRAP
SERVICE ROUTINE

ZK-005-81

Several system macros are supplied with the system to issue and return infor­
mation about 1/0 requests. These macros reside in the System Macro Library
and must be made available during assembly by the MACR0-11 assembler di­
rective .MCALL.

Also supplied are Fortran-callable subroutines that perform the same functions
as the system macros. See Chapter 3 for details.

There are three distinct forms of most of the system directive macros discussed
in this section. The following list summarizes the forms of 010$, but the charac­
teristics of each form also apply to OIOW$, ALUN$, GLUN$, and other system
directive macros described below.

1. 010$ generates a directive parameter block for the 1/0 request at as­
sembly time, but does not provide the instructions necessary to execute
the request. This form of the request is actually executed using the
DIR$ macro. It is useful if the DPB is to be used in several different
places in the task and/or modified or referenced by the task at run time.

2. 010$S generates a directive parameter block for the 1/0 request on the
stack, and also generates code to execute the request. This is a useful
form for reentrant, shareable code since the DPB is generated dynami­
cally at execution time.

10-12 SYSTEM INPUT/OUTPUT CONVENTIONS

3. 010$C generates a directive parameter block for the 1/0 request at as­
sembly time, and also generates code to execute the request. The DPB
is generated in a separate program section called DPB .. This ap­
proach incurs little system overhead and is useful when an 1/0 request
is executed from only one place in the program.

Parameters for both the 010$ and QIO$C forms of the macro must be valid ex­
pressions to be used in assembler data-generating directives such as .WORD
and .BYTE. Parameters for the 010$8 form must be valid source operand ad­
dress expressions to be used in assembler instructions such as MOV and
MOVB. The following example references the same parameters in the three dis­
tinct forms of the macro call.

Q !0$

QIO$C

G!O$S

IO.RLB,6,2,,,AST01,<RDBUF,80.>
lO . R LB , 6 , 2 , , , AST 0 1 , < R DB U F , 8 0 . >
#JO.RLB,#6,#2,,,#AST01,<#RDEUF,#80.>

Only the 010$8 form of the macro produces the DPB dynamically. The other
two forms generate the DPB at assembly time.

The following Executive directives and assembler macros are described in this
section:

1. QIO$, which is used to request an 1/0 operation and supply parameters
for that request

2. QIOW$, which is equivalent to 010$ followed by WTSE$

3. DIR$, which specifies the address of a directive parameter block as its
argument, and generates code to execute the directive

4. .MCALL, which is used to make available from the System Macro Li­
brary all macros referenced during task assembly

5. ALUN$, which is used to associate a logical unit number with a physical
device unit at run time

6. GLUN$, which requests that the information about a physical device
unit associated with a specified LUN be returned to a user-specified
buffer

7. ASTX$S, which is used to terminate execution of an asynchronous sys­
tem trap (AST} service routine

8. WTSE$, which instructs the system to block execution of the issuing
task until a specified event flag is set

10.6.1 The 010$ Macro: Issuing an 1/0 Request

As described in Chapter 3, there are three distinct forms of the 010$ macro.
QIO$S generates a DPB for the 1/0 request on the stack, and also generates
code to execute the request. Oi0$C generates a DPB and code, but the DPB is
generated in a separate program section. 010$ generates only the DPB for the
1/0 request. This form of the macro call is used in conjunction with DIR$ to ex-

SYSTEM INPUT/OUTPUT CONVENTIONS 10-13

ecute an 1/0 request. In the following example, the DIR$ macro actually gener­
ates the code to execute the 010$ directive. It provides no 010 parameters of
its own, but references the 010 directive parameter block at address OIOREF
by supplying this label as an argument.

QIOREF: QIOS IO.RLB,6,2,,,AST01,<BUFFER,BO.>
;CREATE QIO DPB

READ1: DIRS IQIOREF ;ISSUE I/O REQUEST

READ2: DIRS IQIOREF ;ISSUE I/O REQUEST

10.6.2 The QIOW$ Macro: Issuing an 1/0 Request and Waiting for an Event
Flag

The QIOW$ macro is equivalent to a 010$ followed by a WTSE$. It is more eco­
nomical to issue a 010 And Wait request than to use the two separate macros.
An event flag (efn parameter) must be specified with OIOW$ if you actually want
to wait.

10.6.3 The DIR$ Macro: Executing a Directive

The DIR$ (execute directive) macro has been implemented to allow a task to
reference a previously defined DPB. It is issued in the form:

DIR$ (addr][,err)

addr The address of a directive parameter block to be used in the directive. If
addr is not included, the DPB itself or the address of the DPB is
assumed to be on the stack already. This parameter must be a valid
source operand for a MOV instruction generated by the DIR$ macro.

err An optional argument which specifies the address of an error routine to
which control branches if the directive is rejected. The branch occurs by
means of a JSR PC, err if the C-bit is set, indicating rejection of the 010
directive.

10.6.4 The .MCALL Directive: Retrieving System Macros

.MCALL is a MACR0-11 Assembler directive that retrieves macros from the
System Library Account (in RSXMAC.SML) for use during assembly. It must be
included in every user task invoking system macros .. MCALL is usually placed
at the beginning of a user-task source module and specifies, as arguments in
the call, all system macros that must be made available from the library.

10-14 SYSTEM INPUT/OUTPUT CONVENTIONS

The following example illustrates the use of this directive:

.MCALL QIOS,QIOSS,DIRS,WTSESS ;MAKE MACROS AVAILABLE

ATTACH: QIOSS 1IO.ATT,16,,,IOS8,IAST02 ;ATTACH DEVICE

QIOREF: QIOS IO.RL8,6,,,IOS8,AST01, ... ;CREATE ONLY QIO DPB

READ1: DIRS #QIOREF,DIRERR ;ISSUE I/O REQUEST

As many macro references as can fit on a line can be included in a single
.MCALL directive. There is no limit to the number of .MCALL directives that can
be specified.

10.6.5 The ALUN$ Macro: Assigning a LUN

The Assign LUN macro is used to associate a logical unit number with a phys­
ical device unit at run time. All three forms of the macro call may be used. As­
sign LUN does not request 1/0 for the physical device unit, nor does it attach
the unit for exclusive use by the issuing task. It simply establishes a LUN/
physical device unit relationship, so that when the task requests 1/0 for that par­
ticular LUN, the associated physical device unit is referenced. The macro is is­
sued from a MACR0-11 program in the following way:

ALUN$ lun,dev,unt

lun The logical unit number to be associated with the specified physical
device unit.

dev The name of the physical device or a logical device name assigned to a
physical device.

unt The unit number of the device specified above.

For example, to associate LUN 10 with terminal unit 1, the following macro call
could be issued by the task:

ALUN$C 1O.,TT,1

SYSTEM INPUT/OUTPUT CONVENTIONS 10-15

The example included below illustrates the use of the three forms of the ALUN$
macro.

DATA DEF lH IT I OMS

ASSIGN: ALUN$ 10., TT, 2

EXECUTABLE SECTION

DIR$ #ASSIGN

ALUNSC 10.,TT,2

ALUMSS #10. ,#"TI ,#0

GEMERATE DPB

EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTIOM, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GENERATE DPB ON STACK, THEN
; EXECUTE DIRECTIVE

10.6.5.1 Physical Device Names - Table 10-1 contains physical device
names, listed alphabetically, that may be included as dev parameters.

Table 10-1

Name Device

OW RD50 Fixed 5-Megabyte Hard Disk

DZ RX50 51/4-inch Diskette

TT Console Terminal and Printer Port (TI1 for Console TI2 for Printer Port)

10.6.5.2 Pseudo-Device Names - A pseudo-device is a logical device that is
redirected to another physical device unit. The pseudo-device provides device
independence for standard naming conventions. The pseudo-devices in Table
10-2 are supported, as indicated.

Table 10-2

Code Device

CL Console Logger device, the hard copy output device (see LP).

LB System library device.

LP The printer port device.

SY User default device.

Tl Pseudo-input terminal; Tl1: is the terminal from which a task was requested.

10-16 SYSTEM INPUT /OUTPUT CONVENTIONS

10.6.6 The GLUN$ Macro: Retrieving LUN Information

The Get LUN Information macro requests that information about a LUN­
physical device unit association be returned in a 6-word buffer specified by the
issuing task. Upon successful completion of the directive processing, the buffer
contains the information listed in Table 10-3, as appropriate for the specific de­
vice. All three forms of the macro call may be used. It is issued from a
MACR0-11 program in the following way:

GLUN$ lun,buf

lun The logical unit number associated with the physical device unit for
which information is requested.

buf The 6-word buffer to which information is returned.

For example, to request information on the disk unit associated with LUN 8, is­
S\Je the following call:

GLUN$C 8.,IOBUF

The example included below illustrates the use of the three forms of the GLUN$
macro.

DATA DEFINITIONS

GETLUN: GLUN$ 6,DSKBUF

EXECUTABLE SECTION

DIR$ #GETLUN

GLUN$C 6,DSKBUF

GLUN$S #6,#DSKBUF

GENERATE DPB

EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

Table 10-3
Get LUN Information

Numerical Offset

Word

0

2

0

3

4

5

Byte

0

2

3

8

9

12

14

15

Bit

Symbolic Offset

Word

G.LUNA

G.LUCW

(U.CW1)1

G.LUCW+02

(U.CW2)

G.LUCW+04

(U.CW3)

G.LUCW+06

(U.CW4)

Byte

G.LUNU

G.LUFB

(U2.xxx)

Bit

(DV.REC)

(DV.CCL)

(DV.TIY)

(OV.DIR)

(DV.MSD)

(DV.EXT)

(DV.SWL)

(DV.PSE)

(DV.F11)

(DV.MNT)

(U3.xxx)

SYSTEM INPUT /OUTPUT CONVENTIONS 10-17

Contents

Name of device associated with LUN (ASCil bytes)

Unit number of associated device

Driver flag value. Hetumed as 2008 if the driver is
resident, or as 0 if a loadable driver is not in the
system

First device characteristics word:

Unit record-oriented device \for example, line printer)
(1 =yes)

rr«u1<> .. r•,nn<1rn1 device (for example, line printer,
terminal) (1 =yes)

Terminal device (1 =yes)

Directory device (lor example, disk) (1 =yes)

Mass storage device (for example, disks) (1 =yes)

Device supports 22-bit direct addressing

Unit software write-locked (1 =yes)

Pseudo-device (1 =yes)

Device mountable as a FILES-11 device
(for example, disk (1 =yes)

Device mountable (logical OR of bits 13 and 14)
(1 =yes)

Second device characterisiics word:

Device-specific information

Third device characteristics

Device-specific information2

Fourth device characteristics word:

Default buffer size (for example, for disks, and line
length for terminals).

1. For mass storage devices, such as disks, this is the number of blocks (maximum logical block

number plus one).

2. The word and bil symbols shown in parentheses are symbols used in defining and referencing

corresponding items in the device UCB.

10-18 SYSTEM INPUT /OUTPUT CONVENTIONS

10.6.7 The ASTX$S Macro: Terminating AST Service

The AST Service Exit macro is used to terminate execution of an AST service
routine. All forms of the macro are provided. However, the S-form is preferred
because it requires less space and executes at least as fast as the ASTX$ or
ASTX$C form of the macro. The macro is issued in the following way:

ASTX$S [err]

err An optional argument that specifies the address of an error routine to
which control branches if the directive is rejected.

On completion of the operation specified in this macro call, if another AST is
queued and asynchronous system traps have not been disabled, then the next
AST is immediately entered. Otherwise, the task's state before the AST was en­
tered is restored (it is the AST service routine's responsibility to save and re­
store the registers it uses).

10.6.8 The WTSE$ Macro: Waiting for an Event Flag

The Wait For Single Event Flag macro instructs the system to suspend execu­
tion of the issuing task until the event flag specified in the macro call is set. This
macro is extremely useful in synchronizing activity on completion of an 1/0 op­
eration. All three forms of the macro call may be used. It is issued as follows:

WTSE$ efn

efn The event flag number.

WTSE$ causes the task to be blocked from execution until the specified event
flag is set. Frequently, an efn parameter is also included in a 010$ macro call,
and the event flag is set on completion of the 1/0 operation specified in that call.

SYSTEM INPUT /OUTPUT CONVENTIONS 10-19

The following example illustrates task blocking until the setting of the specified
event flag occurs. This example also illustrates the use of the three forms of the
macro call.

DATA DEFINITIONS

WAIT:
lOSB:

WTSE$
.BLKW

5

2

GENERATE DPB
I/O STATUS BLOCK

EXECUTABLE SECTION

ALUN$S #14.,#''DW ; ASSIGN LUN 14 TO UNIT ZERO
QIO$C 10.ATT,14.,5 ATTACH DEVICE
DIR$ #WAIT ; EXECUTE WAJTFOR DIRECTIVE

QIO$S #I 0. RLB, # 14. , # 2, , #I OSB, , < #BUF, #80 . >
; READ RECORD, USE EFN2

WTSE$S #2 WAIT FOR READ TO COMPLETE

Ql0$C I 0. WLB, 14., 3,, I OSB,, <BUF, 80. >
; WRITE RECORD, USE EFN3

WTSE$C 3 WAIT FOR WRITE TO COMPLETE

Ql0$C IO.DET,14. DETACH DEVICE

10.7 STANDARD 1/0 FUNCTIONS

The number of 1/0 operations that can be specified by means of the 010 direc­
tive is large. A particular operation can be requested by including the appropri­
ate function code as the first parameter of a Q!O macro call. Certain functions
are standard. These functions are almost totally device independent and can
thus be requested for nearly every device described in this manual. Others are

10-20 SYSTEM INPUT /OUTPUT CONVENTIONS

device dependent and are specific to the operation of only one or two 1/0 de­
vices. This section summarizes the function codes and characteristics of the
following device-independent 1/0 operations:

D Attaching to an 1/0 device

D Detaching from an 1/0 device

D Cancelling 1/0 requests

D Reading a logical block

D Reading a virtual block

D Writing a logical block

D Writing a virtual block

For certain physical device units discussed in this manual, a standard 1/0 func­
tion may be described as being a NOP. This means that no operation is per­
formed as a result of specifying the function, and an 1/0 status code of IS.SUC
is returned in the 1/0 status block specified in the 010 macro call.

Note: In the following descriptions, the five 010 directive parameters lun, efn,
pri, isb, and ast are represented by an ellipsis (...).

10.7.1 10.ATT: Attaching to an 1/0 Device

The function code 10.ATT is specified by a user task when that task requires
exclusive use of an 1/0 device. This function code is included as the first param­
eter of a 010 macro call in the following way:

QIO$C 10.ATT, ...

Successful completion of an 10.A TT request causes the specified physical de­
vice unit to be dedicated for exclusive use by the issuing task. This enables the
task to process input or output in an unbroken stream and is especially useful
on sequential, non-file-oriented devices such as terminals. An attached physical
device unit remains under control of the issuing task until it is explicitly de­
tached by that task. To detach the device, the task can specify any LUN pre­
viously assigned to the attached device.

While a physical device unit is attached, the 1/0 driver for that unit dequeues
only those 1/0 requests issued by the task that issued the attach. Thus, a re­
quest to attach a device unit already attached by another task will not be pro­
cessed until the attachment is broken and no higher priority request exists for
the unit. A LUN that is associated with an attached physical device unit may not
be reassigned by means of an Assign LUN directive except when at least one
LUN is still assigned to the attached device.

If the task that issued an attach function exits or is aborted before it issues a
corresponding detach, the Executive automatically detaches the physical de­
vice unit.

SYSTEM INPUT /OUTPUT CONVENTIONS 10-21

10.7.2 10.DET: Detaching from an 1/0 Device

The function code 10.DET is used to detach a physical device unit that has been
previously attached by means of an 10.ATT request for exclusive use of the
issuing task. This function code is included as the first parameter of a 010
macro call in the following way:

Ql0$C 10.DET, ...

The LUN specifications of both 10.ATT and 10.DET must be the same, as in the
following example, which also illustrates the use of S- forms of several macro
calls.

LOOP:

.MCALL ALUNIS,GIDIS
ALUNIS 114.,#''TT

QIOIS HIO.ATT,#14.

Q!OIS #IO,RLB,114., ...

ASSOCIATE TERMINAL WITH LUN 14.

ATTACH TERMINAL

READ

QIOIS #JO.DET,#14. ; DETACH TERMINAL

10.7.3 10.KIL: Canceling 1/0 Requests

The function 10.KIL is issued by a task to cancel all of that task's l/O requests
for a particular physical device unit.

For 1/0 requests waiting for service-that is, in the 1/0 driver's queue-a status
code of IE.ABO is returned in the 1/0 status block. An event flag is set, if speci­
fied. But any AST service routine that may have been specified is not initiated.

For 1/0 requests being processed by an 1/0 driver-other than the disk dri­
vers-the IE.ABO status code is returned. Other status information (byte count,
and so forth) is also returned in the 1/0 status block. An AST, if specified, is
activated.

For disk 1/0 requests being processed when an 10.KIL is issued, the IQ.KIL acts
as a NOP. The request is allowed to complete. Because disks operate quickly,
IQ.KIL simply causes the return of IS.SUC in the 1/0 status block.

This function code is included as the first parameter of a QIO macro in the fol­
lowing way:

0!0$C IQ.KIL, ...

10.KIL is useful in such special cases as canceling an 1/0 request on a physical
device unit from which a response is overdue.

10-22 SYSTEM INPUT/OUTPUT CONVENTIONS

10.7.4 10.RLB: Reading a Logical Block

The function code 10.RLB is specified by a task to read a block of data from the
physical device unit specified in the macro call. This function code is included as
the first parameter of a QIO macro in the following way:

QIO$C 10.RLB,. .. , <stadd,size,pn>

stadd The starting address of the data buffer.

size The data buffer size in bytes.

pn One to four optional parameters, used to specify such additional
information as block numbers for certain devices.

10.7.5 10.RVB: Reading a Virtual Block

The function code 10.RVB is used to read a virtual block of data from the phys­
ical device unit specified in the macro call. A "virtual" block indicates a relative
block position within a file and is identical to a "logical" block for such sequen­
tial, record-oriented devices as terminals. For these sequential, record-oriented
devices, 10.RVB is converted to 10.RLB before being issued.

Note: Any subfunction bits specified in the 10.RVB request (see Section
12.3.1) are stripped off in this conversion.

It is recommended that all tasks use virtual rather than logical reads. However,
if a virtual read is issued for a file-structured device (disk), the user must ensure
that a file is open on the specified physical device unit. This function code is
included as the first parameter of a QIO macro call in the following way:

QIO$C 10.RVB, ... ,<stadd,size,pn>

stadd The starting address of the data buffer.

size The data buffer size in bytes.

pn One to four optional parameters, used to specify such additional
information as block numbers for certain devices.

10.7.6 10.WLB: Writing a Logical Block

The function code 10.WLB is specified by a task to write a block of data to the
physical device unit specified in the macro call. This function code is included as
the first parameter of a QIO macro call in the following way:

QIO$C 10.WLB, ... ,<stadd,size,pn>

stadd The starting address of the data buffer.

size The data buffer in bytes.

pn One to four optional parameters, used to specify such additional
information as block numbers or format control characters for certain
devices.

SYSTEM INPUT /OUTPUT CONVENTIONS 10-23

10.7.7 10.WVB: Writing a Virtual Block

The function code 10.WVB is used to write a virtual block of data to a physical
device unit. A "virtual" block indicates a block position relative to the start of a
file. For sequential, record-oriented devices such as terminals and line printers,
the function 10.WVB is converted to 10.WLB.

Note: Any subfunction bits specified in the 10.WVB request (see Section
12.3.1) are stripped off in this conversion.

It is recommended that all tasks use virtual rather than logical writes. However,
if a virtual write is issued for a file-structured device (disk), the user must ensure
that a file is open on the specified physical device unit. This function code is
included as the first parameter of a 010 macro call in the following way:

QIO$C 10.WVB, ... ,<stadd,size,pn>

stadd The starting address of the data buffer.

size The data buffer size in bytes.

pn One to four optional parameters, used to specify such additional
information as block numbers or format control characters for certain
devices.

10.8 1/0 COMPLETION

When an 1/0 request has been completed, either successfully or unsuccess­
fully, one or more actions may be taken by the Executive. Selection of return
conditions depends on the parameters included in the QIO macro call. There are
three major returns:

1. A significant event is declared on completion of an 1/0 operation. If an
efn parameter was included in the 1/0 request, the corresponding event
flag is set.

2. If an isb parameter was specified in the QIO macro call, a code identify­
ing the type of success or failure is returned in the low-order byte of the
first word of the 1/0 status block at the location represented by isb.

This status return code is of the form IS.xxx (success) or IE.xxx (error).
For example, if the device accessed by the 1/0 request is not ready, a
status code of IE.DNA is returned in isb. The section below (Return
Codes) summarizes general codes returned by most of the drivers de­
scribed in this manual.

If the isb parameter was omitted, the requesting task cannot determine
whether the 1/0 request was successfully completed. A carry clear re­
turn from the directive itself simply means that the directive was ac­
cepted and the 1/0 request was queued, not that the actual input/output
operation was successfully performed.

3. If an ast parameter was specified in the 010 macro call, a branch to the
AST service routine that begins at the location identified by ast occurs
on completion of the 1/0 operation. See Chapter 5 for a detailed de­
scription of AST service routines.

10-24 SYSTEM INPUT/OUTPUT CONVENTIONS

10.9 RETURN CODES

There are two kinds of status conditions recognized and handled by the system
when they occur in 1/0 requests:

1. Directive conditions, which indicate the acceptance or rejection of the
010 directive itself

2. 1/0 status conditions, which indicate the success or failure of the 1/0
operation

Directive conditions relevant to 1/0 operations may indicate any of the following:

D Directive acceptance

D Invalid buffer specification

D Invalid efn parameter

D Invalid lun parameter

D Invalid DIC number or DPB size

D Unassigned LUN

D Insufficient memory

A code indicating the acceptance or rejection of a directive is returned to the
Directive Status Word at symbolic location $DSW. This location can be tested to
determine the type of directive condition.

1/0 conditions indicate the success or failure of the 1/0 operation specified in
the 010 directive. 1/0 driver errors include such conditions as device not ready,
privilege violation, file already open, or write-locked device. If an isb parameter
is included in the 010 directive, identifying the address of a 2-word 1/0 status
block, an 1/0 status code is returned in the low-order byte of the first word of
this block on completion of the 1/0 operation. This code is a binary value corre­
sponding to a symbolic name of the form IS.xxx or IE.xxx. The low-order byte of
the word can be tested symbolically, by name, to determine the type of status
return. The correspondence between global symbolic names and directive and
1/0 completion status codes is defined in the system object module library. Lo­
cal symbolic definitions may also be obtained by the DREAR$ and IOERR$
macros.

SYSTEM INPUT/OUTPUT CONVENTIONS 10-25

Binary values of status codes always have the meanings indicated in Table
10-4.

Table 10-4
Binary Status Codes

Code

Positive (greater
than 0)
0

Negative

Meaning

Successful completion

Operation still pending

Unsuccessful completion

A pending operation means that the 1/0 request is still in the queue of requests
for the respective driver, or the driver has not yet completely serviced the re­
quest.

10.9.1 Directive Conditions

Table 10-5 summarizes the directive conditions that may be encountered in
010 directives. The acceptance condition is first, followed by error codes indi­
cating various reasons for rejection, in alphabetical order. (See Appendix A for
a summary of error codes.)

Table 10-5
Directive Conditions

Code

is.sue

IE.ADP

IE.HWA

IE.IEF

IE.ILU

IE.PAI

Reason

Directive accepted
The first six parameters of the 010 directive were valid, and sufficient dy­
namic memory was available to allocate an 1/0 packet. The directive is ac­
cepted.

Invalid address
The 1/0 status block or the 010 DPB was outside of the issuing task's ad­
dress space or was not aligned on a word boundary.

Device handler not resident
The driver for the requested device was not loaded in memory.

Invalid event flag number
The efn specification in a 010 directive was less than 0 or greater than 96.

Invalid logical unit number
The lun specification in a 010 directive was invalid for the issuing task. For
example, there were only five logical unit numbers associated with the task,
and the value specified for lun was greater than 5.

Privilege violation
The user does not have the required privilege for the requested operation.

10-26 SYSTEM INPUT/OUTPUT CONVENTIONS

Table 10-5 (Cont.)

Code

IE.SOP

IE.ULN

IE.UPN

Reason

Invalid DIC number or DPB size
The directive identification code (DIC) or the size of the Directive Parameter
Block (DPB) was incorrect; the legal range for a DIC is from 1 through 127,
and all DIC values must be odd. Each individual directive requires a DPB of a
certain size. If the size is not correct for the particular directive, this code is
returned. The size of the QIO DPB is always 12 words.

Unassigned LUN
The logical unit number in the QIO directive was not associated with a phys­
ical device unit. The user may recover from this error by issuing a valid As­
sign LUN directive and then reissuing the rejected directive.

Insufficient dynamic memory
There was not enough dynamic memory to allocate an 1/0 packet for the 1/0
request. The user can try again later by blocking the task with a Waitfor Sig­
nificant Event directive. Note that Waitfor Significant Event is the only effec­
tive way for the issuing task to block its execution, since other directives that
could be used for this purpose themselves require dynamic memory for their
execution (for example, Mark Time).

10.9.2 1/0 Status Conditions

The following list summarizes status codes that may be returned in the 1/0 sta­
tus block specified in the 010 directive on completion of the 1/0 request. The
1/0 status block is a 2-word block with the following format:

D The low-order byte of the first word receives a status code of the form
IS.xxx or IE.xxx on completion of the 1/0 operation.

D The high-order byte of the first word is usually device dependent. In
cases where the user might find information in this byte helpful, this
manual identifies that information.

D The second word contains the number of bytes transferred or pro­
cessed if.the operation is successful and involves reQding or writing.

If the isb parameter of the 010 directive is omitted, this information is not re­
turned.

The following illustrates a sample 2-word 1/0 status block on completion of a
terminal read operation:

1 0 Byte

Word 0 O -10

1 Number of bytes read

where -10 is the status code for IE.EOF (end of file). If this code is returned, it
indicates that input was terminated by typing CTRL/Z, which is the end-of-file
termination sequence on a terminal.

SYSTEM INPUT/OUTPUT CONVENTIONS 10-27

To test for a particular error condition, the user generally compares the low­
order byte of the first word of the 1/0 status block with a symbolic value, as in
the following:

CMPB #IE.DNR,IOSB

However, to test for certain types of successful completion of the 1/0 operation,
the entire word value must be compared. For example, if a carriage return termi­
nated a line of input from the terminal, a successful completion code of IS.CR is
returned in the 1/0 status block. If an Escape character was the terminator, a
code of IS.ESC is returned. To check for these codes, the user should first test
the low-order byte of the first word of the block for IS.sue and then test the full
word for IS.CC, IS.CR, IS.ESC, or IS.ESQ.

Note that both of the following comparisons will test as equal since the low­
order byte in both cases is + 1.

CMP #IS.CR,IOSB

CMPB #IS.SUC,IOSB

In the case of a successful completion where the carriage return is the terminal
indicator (IS.CR), the following illustrates the status block:

1 0 Byte

Word 0 15 +1

1 Number of bytes read (excluding the CR)

where 15 is the octal code for carriage return and + 1 is the status code for suc­
cessful completion.

The codes described in Table 10-6 are general status codes that apply to the
majority of devices presented in Chapters 11 and 12. Error codes specific to
only one or two drivers are described only in relation to the devices for which
they are returned. The list below describes successful and pending codes first,
then error codes in alphabetical order.

Table 10-6
1/0 Status Conditions

Code

is.sue

IS.PND

Meaning

Successful completion
The 1/0 operation specified in the 010 directive was completed successfully. The
second word of the 1/0 status block can be examined to determine the number of
bytes processed, if the operation involved reading or writing.

1/0 request pending
The 1/0 operation specified in the 010 directive has not yet been executed. The 1/0
status block is filled with Os.

10-28 SYSTEM INPUT/OUTPUT CONVENTIONS

Table 10-6 (Cont.)

Code

IE.ABO

IE.ALN

IE.BAD

IE.BBE

IE.BLK

IE.BYT

IE.DAA

IE.DNA

IE.DNA

IE.EOF

IE.FHE

IE.IFC

Meaning

Operation aborted
The specified 1/0 operation was cancelled with IQ.KIL while in progress or while
still in the 1/0 queue.

File already open
The task attempted to open a file on the physical device unit associated with the
specified LUN, but a file has already been opened by the issuing task on that LUN.

Bad parameter
An illegal specification was supplied for one or more of the device-dependent 010
parameters (words 6-11). For example, a bad channel number or gain code was
specified in an analog-to-digital converter 1/0 operation.

Bad block on device
One or more bad blocks were found by executing the BAD utility. Data cannot be
written on bad blocks.

Illegal block number
An illegal block number was specified for a file-structured physical device unit.

Byte-aligned buffer specified
Byte alignment was specified for a buffer, but only word (or double-word) align­
ment is legal for the physical device unit. For example, a disk function requiring
word alignment was requested, but the buffer was aligned on a byte boundary.

Device already attached
The physical device unit specified in an 10.A TT function was already attached to
the issuing task. This code indicates that the issuing task has already attached the
desired physical device unit, not that the unit was attached by another task.

Device not attached
The physical device unit specified in an 10.DET function was not attached to the
issuing task. This code has no bearing on the attachment status with respect to
other tasks.

Device not ready
The physical device unit specified in the QIO directive was not ready to perform the

. desired 1/0 operation. This code is often returned as the result of an interrupt time­
out; that is, a "reasonable" amount of time has passed, and the physical device
unit has not responded.

End-of-file encountered
An end-of-file mark, record, or control character was recognized on the input de­
vice.

Fatal hardware error
Controller is physically unable to reach the location where input/output is to be per­
formed on the device. The operation cannot be completed.

Illegal function
A function code was specified in an 1/0 request that was illegal for the specified
physical device unit. This code is returned if the task attempts to execute an illegal
function or if, for example, a read function is requested on an output-only device,
such as the line printer.

SYSTEM INPUT /OUTPUT CONVENTIONS 10-29

Table 10-6 (Cont.)

Code

IE.NLN

IE.NOD

IE.OFL

IE.OVR

IE.PR!

IE.SPC

IE.VER

IE.WCK

IE.WLK

Meaning

File not open
The task attempted to close a file on the physical device unit associated with the
specified LUN, but no file was currently open on that LUN.

Insufficient buffer space
Dynamic storage space has been depleted, and there was insufficient butter space
available to allocate a secondary control block. For example, if a task attempts to
open a iile, buffer space for the window and file control block must be supplied by
the Executive. This code is returned when there is not enough space for such an
operation.

Device off line
The physical device unit associated with the LUN specified in the QIO directive was
not on line. When the system was booted, a device check indicated that this phys­
ical device unit was not in the configuration.

Illegal read overlay request
A read overlay was requested and the physical device unit specified in the 010 di­
rective was not the physical device unit from which the task was installed. The read
overlay function can oniy be executed on the physical device unit from which the
task image containing the overlays was installed.

Privilege violation
The task that issued a request was not privileged to execute that request.

Illegal address space
The buffer requested for a read or write request was partially or totally outside the
address space of the issuing task. Alternately, a byte count of 0 was specified.

Unrecoverable error
After the system's standard number of retries have been attempted upon encoun­
tering an error, the operation still could not be completed.

Write check error
An error was detected during the check (read) following a write operation.

Write-locked device
The task attempted to write on a write-locked physical device unit.

CHAPTER 11
DISK DRIVERS

The system's disk drivers support the disks summarized in Table 11-1. Subse­
quent sections describe these devices in greater detail.

All of the disks described in this chapter are accessed in essentially the same
manner. Disks and other file-structured media are divided logically into a series
of 256-word blocks.

Table 11-1
Standard Disk Devices

Controller/ Bytes/ Decimal
Drive RPM Secs Heads Cylinders Drive Blocks

AXSO 300 10 2 SO/diskette 819,200 800

ROSO 3600 16 4 153/surface SMB 9727

11.1 RXSO DESCRIPTION

The RX50 (diskette) subsystem consists of a 5.25-inch dual flexible diskette
drive and a separate single-board controller module. The module enables a data
processing system to store or retrieve information from any location on one
side of each front-loadable diskette.

11.2 ROSO DESCRIPTION

The RD50 (hard disk) is a random-access, rotating memory device. It stores
data in fixed-length blocks on 130mm rigid disk media. Winchester technology
uses moving head, noncontact recording. The drive contains a storage media in
a fixed configuration which cannot be removed.

11-1

11-2 DISK DRIVES

11.3 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system directive (the first
characteristics word) contains the information listed in Table 11-2 for disks. A
bit setting of 1 indicates that the described characteristic is true for disks.

Table 11-2

Bit Setting Meaning

0 0 Record-oriented device

0 Carriage-control device

2 0 Terminal device

3 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 Mass storage device

7 x User-mode diagnostics supported (device dependent)

8 x Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo-device

13 0 Device mountable as a communications channel

14 Device mountable as a Files-11 volume

15 Device mountable

Words 3 and 4 of the buffer contain the maximum logical block number. Note
that the high byte of U.CW2 is undefined. The user should clear the high byte in
the buffer before using the block number. Word 5 indicates the default buffer
size, which is 512 bytes for all disks.

DISK DRIVES 11-3

11.4 QIO MACRO

This section summarizes the standard and the device-specific 010 functions for
disk drivers.

11.4. 1 Standard QIO Functions

Table 11-3 lists the standard functions of the 010 macro that are valid for disks.

Table 11-3
Standard 010 Functions for Disks

Format Function

QIO$C 10.ATT,, Attach device1

QIO$C 10.DET,, Detach device

QIO$C 10.KIL,, Kill 1/02

QIO$C 10.RLB,,<stadd,size,,blkh,blkl> READ logical block

QIO$C 10.RVB,,<stadd,size,,blkh,blkl> READ virtual block

QIO$C 10.WLB,,<stadd,size,,blkh,blkl> WRITE logical block

QIO$C 10.WLC,,<stadd,size,,blkh,blkl> WRITE logical block followed by write check

QIO$C 10.WVB,,<stadd,size,,blkh,blkl> WRITE virtual block

stadd

size

The starting address of the data buffer (must be on a word
boundary).

blkh/blkl

The data buffer size in bytes (must be even or greater than 0).

Block high and block low, combining to form a double-precision
number that indicates the actual logical/virtual block address on
the disk where the transfer starts; blkh represents the high 8
bits of the address, and blkl the low 16 bits.

10.RVB and 10.WVB are associated with file operations. For these functions to
be executed, a file must be open on the specified LUN if the volume associated
with the LUN is mounted. Otherwise, the virtual 1/0 request is converted to a
logical 1/0 request using the specified block numbers.

Note: When writing a new file using QIOs, the task must explicitly issue
.EXTND File Control System library routine calls as necessary to reserve
enough blocks for the file, or the file must be initially created with enough blocks
allocated for the file. In addition, the task must put an appropriate value in the
FOB for the end-of-file block number (F.EFBK) before closing the file.

1. Only volumes mounted foreign may be attached. Any other attempt to attach a mounted volume will result in
an IE.PAI status being returned in the 1/0 status doubleword.

2. In-progress disk operations are allowed to complete when 10.KIL is received, because they take such a short
time. 1/0 requests that are queued when 10.KIL is received are killed immediately. An IE.ABO status is re­
turned in the 1/0 status doubleword.

11-4 DISK DRIVES

Each disk driver supports the subfunction bit IQ.X: inhibit retry attempts for er­
ror recovery. The subfunction bit is used by ORing it into the desired QIO; for
example:

QIO$C 10.WLB!IQ.X, ... ,<stadd,size,,blkh,blkl>

The IQ.X subfunction permits user-specified retry algorithms for applications in
which data reliability must be high.

11.5 STATUS RETURNS

The error and status conditions listed in Table 11-4 are returned by the disk
drivers described in this chapter.

Table 11-4
Disk Status Returns

Code

is.sue

IS.PND

IE.ABO

IE.ALN

IE.BLK

IE.BBE

IE.BYT

IE.DNA

IEFHE

Reason

Successful completion
The operation specified in the QIO directive was completed successfully. The sec­
ond word of the 1/0 status block can be examined to determine the number of
bytes processed, if the operation involved reading or writing.

1/0 request pending
The operation specified in the QIO directive has not yet been executed. The 1/0
status block is filled with Os.

Request aborted
An 1/0 request was queued (not yet acted upon by the driver) when an IQ.KIL was
issued.

File already open
The task attempted to open a file on the physical device unit associated with speci­
fied LUN, but a file has already been opened by the issuing task on that LUN.

Illegal block number
An illegal logical block number was specified.

Bad block error
The disk sector (block) being read was marked as a bad block in the header word.

Byte-aligned buffer specified
Byte alignment was specified for a buffer, but only word alignment is legal for disk.
Alternatively, the length of a buffer is not an appropriate number of bytes.

Device not ready
The physical device unit specified in the QIO directive was not ready to perform the
desired 1/0 operation.

Fatal hardware error
The controller is physically unable to reach the location where input/output opera­
tion is to be performed. The operation cannot be completed.

DISK DRIVES 11-5

Table 11-4 (Cont.)

Code

IE.IFC

IE.Mii

IE.NLN

IE.NOD

IE.OFL

IE.OVA

IE.PAI

IE.SPC

IE.VER

IE.WCK

IE.WLK

Reason

Illegal function
A function code was specified in an 1/0 request that is illegal for disks.

Media inserted incorrectly
The controller has detected that the media (such as a floppy diskette) was not in­
serted correctly. To correct the problem, reinsert the media properly.

File not open
The task attempted to close a file on the physical device unit associated with the
specified LUN, but no file was currently open on that LUN.

Insufficient buffer space
Dynamic storage space has been depleted, and there was insufficient buffer space
available to allocate a secondary control block. For example, if a task attempts to
open a file, buffer space for the window and file control block must be supplied by
the Executive. This code is returned when there is not enough space for this opera­
tion.

Device off line
The physical device unit associated with the LUN specified in the QIO directive was
not on line. When the system was booted, a device check indicated that this phys­
ical device unit was not in the configuration.

Illegal read overlay request
A read overlay was requested, and the physical device unit specified in the QIO
directive was not the physical device unit from which the task was installed. The
read overlay function can only be executed on the physical device unit from which
the task image containing the overlays was installed.

Privilege violation
The task that issued the request was not privileged to execute that request. For
disk, this code is returned if a nonprivileged task attempts to read or write a
mounted volume directly (that is, using 10.RLB or 10.WLB). Also, this code is re­
turned if any task attempts to attach a mounted volume.

Illegal address space
The buffer specified for a read or write request was partially or totally outside the
address space of the issuing task. Alternately, a byte count of 0 was specified.

Unrecoverable error
After the system's standard number of retries has been attempted upon encounter­
ing an error, the operation still could not be completed. For disk, unrecoverable
errors are usually parity errors.

Write check error
An error was detected during the write check portion of an operation.

Write-locked device
The task attempted to write on a disk that was write-locked.

When a disk 1/0 error condition is detected, an error is usually not returned im­
mediately. Instead, the system attempts to recover from most errors by retrying
the function as many as eight times. Unrecoverable errors are generally parity,
timing, or other errors caused by a hardware malfunction.

CHAPTER 12
THE TERMINAL DRIVER

12.1 INTRODUCTION

The system supports a single full-duplex terminal driver which includes the fol­
lowing features:

D Full-duplex operation

D Type-ahead buffering

D Eight-bit characters

D Transparent read and write

D Formatted read and write

D Read after prompt

D Read with no echo

D Read with special terminator

D Optional time-out on solicited input

D Device-independent cursor control

12-1

12-2 THE TERMINAL DRIVER

12.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system directive (the first
characteristics word) contains the information noted in Table 12-1 for termi­
nals. A setting of 1 indicates that the described characteristic is true for termi­
nals.

Table 12-1
Buffer Get LUN Information

Bit

0

2

3

4

5

6

7

8

9

12

13

14

15

Setting

0

0

0

0

0

0

0

0

0

0

0

Meaning

Record-oriented device

Carriage-control device

Terminal device

File-structured device

Single-directory device

Sequential device

Mass storage device

User-mode diagnostics supported

Device supports 22-bit direct addressing

Unit software write-locked

Pseudo device

Device mountable as a communications channel

Device mountable as a Files-11 volume

Device mountable

Words 3 and 4 of the buffer are undefined. Word 5 indicates the default buffer
size (the width of the terminal carriage or display screen).

THE TERMINAL DRIVER 12-3

12.3 QIO MACRO

Table 12-2 lists the standard and device-specific functions of the 010 Macro
that are valid for terminals.

Table 12-2
Standard and Device-Specific 010 Functions for Terminals

Format

Standard Functions:

QIO$C 10.ATT, ...

010$C 10.DET, .. .

QIO$C 10.KIL, .. .

QIO$C 10.RLB, ... ,<stadd,size[.tmo]>

Ql0$C 10.RVB, ... ,<stadd,size[.tmo]>

QIO$C 10.WLB, ... ,<stadd,size,vfc>

QIO$C 10.WVB, ... ,<stadd,size,vfc>

Device-Specific Functions:

Ql0$C 10.ATA, ... ,<ast, [parameter2][.ast2]>

QIO$C 10.CCO, ... ,<stadd,size,vfc>

QIO$C SF.GMC, ... ,<stadd,size>

QIO$C 10.GTS, ... ,<stadd,size>

QIO$C 10.RAL, ... ,<stadd,size(,tmo]>

010$C 10.RNE, ... ,<stadd,size[,tmo]>

Ql0$C 10.RPR, ... ,<stadd,size, (tmo),pradd,prsize,vfc>

QIO$C 10. RST, ... , <stadd,size[, tmo]>

010$C 10.RTT, ... ,<stadd,size, [tmo],table>

QIO$C SF.SMC, ... ,<stadd,size>

010$C 10.WAL, ... ,<stadd,size,vfc>

010$C 10.WSD, ... ,<stadd,size,,type>

QIO$C 10.RSD, ... ,<stadd,size,tmo,type>

Function

Attach device

Detach device

Cancel 1/0 requests

READ logical block (read typed
input into buffer).

READ virtual block (read typed
input into buffer).

WRITE logical block (print buffer
contents).

WRITE virtual block (print buffer
contents).

ATTACH device, specify
unsolicited-input- character AST

CANCEL CTRL/O (if in effect),
then write logical block

GET multiple characteristics

GET terminal support

READ logical block; pass all bits

READ logical block, do not echo

READ logical block after prompt

READ logical block ended by
special terminators

READ logical block ended by
specified special terminator

SET multiple characteristics

WRITE logical block, pass all bits

WRITE special data

READ special data

12-4 THE TERMINAL DRIVER

ast The entry point for an unsolicited- input-character AST.

parameter 2 A number that can be used to identify this terminal as the input
source upon entry to an unsolicited character AST routine.

ast2 The entry point for an INTERRUPT/DO sequence AST. (See
Section 12.5.2)

pradd The starting address of the byte buffer where the prompt is
stored.

prsize The size of the pradd prompt buffer in bytes. The specified size
must be greater than 0 and less than or equal to 8128. The
buffer must be within the task's address space.

size The size of the stadd data buffer in bytes. The specified size
must be greater than O and less than or equal to 8128. The
buffer must be within the task's address space. For SF.GMC,
10.GTS, and SF.SMC functions, size must be an even value.

stadd The starting address of the data buffer. The address must be
word aligned for SF.GMC, 10.GTS, and SF.SMC, 10.RSD,
10.WSD; otherwise, stadd may be on a byte boundary.

table The address of the 16-word special terminator table.

tmo An optional time-out count in 10-second intervals. If 0 is speci­
fied, no time-out can occur. Time-out is the maximum time al­
lowed between two input characters before the read is aborted.

type The data type of the buffer contents.

vfc A character for vertical format control from Table 12-12 (Verti­
cal Format Control Characters).

12.3.1 Subfunction Bits

Most device-specified functions supported by terminal drivers described in this
section are selected using "subfunction bits." One or more functions can be
selected by ORing their relative bits in a 010 function. Table 12-4 contains a
listing of 010 functions and relative subfunction bits that can be issued.

THE TERMINAL DRIVER 12-5

Each subfunction bit and subfunction selected when it is included in a 010 func­
tion is listed in Table 12-3.

Table 12-3

Symbolic
Name

TF.AST

TF.BIN

TF.CCO

TF.ESQ

TF.NOT

TF.RAL

TF.RCU

TF.RNE

TF.RST

TF.TMO

TF.WAL

TF.XCC

Sub function

Unsolicited-input-character AST

Binary prompt

Cancel CTRL/O

Recognize escape sequences

Unsolicited input AST notification; unsolicited characters are stored in the type­
ahead buffer until they are read by the task

Read all bits

Restore cursor position

Read with no echo

Read with special terminators

Read with time-out

Write all bits

Sends an INTERRUPT/DO sequence to the P/OS Dispatcher.

Table 12-4 lists subfunction bits that can be ORed with 010 functions. Addi­
tional details for using subfunction bits are included in Section 12.3.2.

If a task invokes a subfunction bit that is not supported on the system, the sub­
function bit is ignored, but the 010 request is not rejected.

The following example is a 010 request using more than one subfunction bit a
nonechoed (TF.RNE) read, terminated by a special terminator character
(TF.RST) and preceded by a prompt.

QIO$C 10.RPR!TF.RNE!TF.RST, ... ,<stadd,size,,pradd,prsize,vfc>

12.3.2 Device-Specific 010 Functions

All functions except SF.GMC, 10.RPR, SF.SMC, 10.RTT, and 10.GTS can be is­
sued by ORing a particular subfunction bit with another 010 function. These
subfunction bits are specified in the following descriptions; subfunction bits are
described in general in Section 12.3.1.

In addition to the device-specific OIO functions, this section also describes the
use of subfunction bits TF.ESO and TF.BIN.

Table 12-4
Summary of Subfunction Bits

Allowed Subfunction Bits

Equivalent
Function Subfunctions TF.AST TF.BIN TF.CCO TF.ESQ TF.NOT TF.RAL TF.RCU TF.RNE TF.RST TF.TMO TF.WAL TF.XCC

Standard Functions

10.ATI x x
10.DET
IQ.KIL
10.RLB 1 x 1 x
10.RVB 2 2 2
10.WLB x x
10.WVB 2 2 2

Device-Specific Functions

10.ATA 10.A TI!TF.AST x x x
10.CCO 10.WLB!TF.CCO 3
SF.GMC
10.GTS
10.RAL 10.RLB!TF.RAL x 1 x
10.RNE 10.RLB!TF.RNE 1 1 x
10.RPR x 1 x 1 x
10.RST 10.RLB!TF.RST 1 x x
10.RTI 1 x x x
SF.SMC
IQ.WAL 10.WLB!TF.WAL 3 3
10.WBT 10.WLB!TF.WBT x x 3
10.WSD
10.RSD x

Notes:
1. Exercise great care when using Read All and Read with Special Terminators together. Obscure problems can result.
2. These subfunctions are allowed but are not effective. They are stripped off when the read or write virtual operation is converted to a read or write logical operation.
3. During a write-pass-all operation (10.WAL or 10.WLB!TF.WAL) the terminal driver outputs characters without interpretation; it does not keep track of cursor position.

.....
I\)
I

a>

-i :c
m
-i
m
JJ
s:::
z
)>
r
0
JJ
< m
JJ

THE TERMINAL DRIVER 12-7

12.3.2.1 · 10.ATA- IO.ATA is a variation of the Attach function. The use of this
function is eased by the addition of TF.NOT and TF.XCC subfunction bits, de­
scribed later in this section. 10.ATA specifies ·asynchronous system traps
(ASTs) to process unsolicited input characters. When called as follows:

Ql0$C 10.ATA, ... , <[AST],[PARAMETER2][,AST2]>

Note: A minimum of one AST parameter (ast or ast2) is required.

This function attaches the terminal and identifies "ast" and "ast2" as entry
points for an unsolicited-input-character AST. Control passes toast whenever
an unsolicited character (other than CTRL/Q, CTRL/S, CTRL/X, or CTRL/0) is
input. If the ast2 parameter is specified, an INTERRUPT/DO sequence results
in the specified AST being entered in that parameter. If ast2 is not specified, an
INTERRUPT/DO sequence results in the specified AST being entered in the ast
parameter.

Unless the TF.XCC subfunction is specified, the INTERRUPT /DO sequence is
trapped by the task and does not reach the P/OS Dispatcher. Thus, any task
that uses 10.ATA without the TF.XCC subfunction should recognize some input
sequence as a request to terminate; otherwise, the P/OS Dispatcher cannot be
invoked to abort the task in case of difficulty.

Note that either ast2 or TF.XCC can be used, but riot both in the same 010 re­
quest. If both are specified in the request, an IE.SPC error is returned.

Upon entry to the AST routines, the unsolicited character and parameter 2 are
in the top word on the stack, as shown below. That word must be removed from
the stack before exiting the AST.

SP+10

SP+06

SP+04

SP+02

SP+OO

Event flag mask word

PS of task prior to AST

PC of task prior to AST

Task's directive status word

Unsolicited character in low byte; parameter 2, in the
high byte, is a user-specified value that can be used to
identify individual terminals in a multiterminal environ­
ment

The processing of unsolicited input ASTs is eased through the use of TF.NOT
and TF.XCC subfunction bits. When TF.XCC is included in the 10.ATA function,
all characters (except INTERRUPT /DO sequences) are handled in the manner
previously described. INTERRUPT/DO sequences cause the P/OS Dispatcher
to abort the application.

When unsolicited terminal input (except an INTERRUPT/DO sequence) is re­
ceived by the terminal driver and the TF.NOT subfunction is used, the resulting
AST serves only as notification of unsolicited terminal input; the terminal driver
does not pass the character to the task. Upon entry to the AST service routine,
the high byte of the first word on the stack identifies the terminal causing the
AST (parameter 2). After the AST has been effected, the AST becomes "dis-

12-8 THE TERMINAL DRIV!'OR

armed" until a read request is issued by the task. If multiple characters are re­
ceived before the read request is issued, they are stored in the type-ahead
buffer. Once the read request is received, the contents of the type-ahead buffer,
including the character causing the AST, is returned to the task; the AST is then
"armed" again for new unsolicited input characters. Thus, using the TF.NOT
subfunction allows a task to monitor more than one terminal for unsolicited in­
put without the need to continuously read each terminal for possible unsolicited
input.

See Chapter 5 for further details on ASTs.

10.ATA is equivalent to 10.ATT ORed with the subfunction bit TF.AST.

12.3.2.2 10.ATT!TF.ESQ - The task issuing this function attaches a terminal
and notifies the driver that it recognizes escape sequences input from that ter­
minal. Escape sequences are recognized only for solicited input. (See Section
12.6 for a discussion of escape sequences.)

If the terminal has not been declared capable of generating escape sequences,
10.ATT!TF.ESQ has no effect other than attaching the terminal. No escape se­
quences are returned to the task because any ESC sent by the terminal acts as
a line terminator. The SF.SMC function is used to declare the terminal capable
of generating escape sequences (see Table 12-5 Driver-Terminal Characteris­
tics for SF.GMC and SF.SMC Functions).

12.3.2.3 10.CCO - This write function directs the driver to write to the termi­
nal regardless of a CTRL/O condition that may be in effect. If CTRL/O is in ef­
fect, it is cancelled before the write is done.

10.CCO is equivalent to 10.WLB!TF.CCO.

12.3.2.4 SF.GMC -The Get Multiple Characteristics function returns terminal
characteristics information, as follows:

QIO$C SF.GMC, ... ,<stadd,size>

stadd

characteristic-name

The starting address of a data buffer of length "size"
bytes. Each word in the buffer has the form

.BYTE characteristic-name

.BYTE 0

One of the bit names given in Table 12-5. The value
returned in the high byte of each byte-pair is 1 if the
characteristic is true for the terminal and 0 if it is not
true.

THE TERMINAL DRIVER 12-9

Table 12-5
Driver-Terminal Characteristics for SF.GMC and SF.SMC Functions

Bit Name Octal Value

TC.ACR 24

TC.BIN 65

TC.CTS 72

TC.ESQ 35

TC.FOX 64

TC.HFF 17

TC.HFL 13

TC.HHT 21

TC.LPP 2

TC.NEC 47

TC.SCP 12

TC.SMR 25

TC.TBF 71

TC.TTP 10

TC.VFL 14

TC.WID3

Meaning (if asserted)

Wrap-around mode

Binary input mode (read-pass-all) no characters are interpreted as
control characters.

Suspend output to terminal 0 = resume
1 =suspend

Input escape sequence recognition

Full-duplex mode

Hardware form-feed capability (If 0, form-feeds are simulated
using TC.LPP.)

Number of fill characters to insert after a RETURN (0-7=x)

Horizontar tab capability (if 0, horizontal tabs are simulated using
spaces.)

Page length (1-255.=x)

Echo suppressed

Terminal is a scope (CRT)

Upper-case conversion disabled

Type-ahead buffer count (read), or flush (write)

Terminal type (=0-255.=x)

Send four fill characters after line feed

Page width (=1-255.=x)

For the TC.TTP characteristic (terminal type), one of the values shown in Table
12-6 is returned in the high byte.

The TC.TIP characteristic, when read by the terminal driver, sets implicit values
for terminal characteristics TC.LPP, TC.WID, TC.HFF, TC.HHT, TC.VFL, and
TC.SCP as shown in Table 12-6. These values can be changed (overridden) by
subsequent Set Multiple Characteristics requests. In addition, TC.TTP is used
by the terminal driver to determine cursor positioning commands, as appropri­
ate.

12-10 THE TERMINAL DRIVER

Table 12-6
TC.TIP (Terminal Type) Values Set by SF.SMC and Returned by SF.GMC

Implicit Characteristics 1

Terminal
Symbolic Type TC.LPP TC.WID TC.HFF TC.HHT TC.HFL

T.UNKO Unknown
T.V100 VT100 24 80
T.L120 LA120 66 132
T.LA12 LA12 66 132
T.L100 LA100 66 132
T.V101 VT101 24 80
T.V102 VT102 24 80
T.V105 VT105 24 80
T.V125 VT125 24 80
T.LQP2 LQP02 66 80
T.LASO LASO 66 80
T.BMP1 PC3oo2 24 80

The TC.CTS characteristic returns the present suspend (CTRL/S), resume
(CTRL/Q), or suppress (CTRL/0) state set via the SF.SMC function. Values re­
turned are as follows:

Table 12-7

Value
Returned State

0 Resume (CTRL/Q)

Suspend (CTRL/S)

2 Suppress (CTRL/0)

3 Both suppress and suspend

When a value of O is used with the SF.SMC function, the suspend state is
cleared; a value of 1 selects the suspend state.

Note: If you stop output to the terminal screen by pressing the Hold Screen
key on a PC300, TC.CTS does not indicate that output has stopped. In addition,
if you stop output to the terminal screen by pressing the NO SCROLL key on a
VT100 series terminal or the Hold Screen key on a PC300 series terminal, out­
put cannot be resumed with TC.CTS.

The TC.TBF characteristic returns the number of unprocessed characters in the
type-ahead buffer for the specified terminal. This allows tasks to determine if
any characters were typed that did not require AST processing. In addition, the
value returned can be used to read the exact number of characters typed, rather
than a typical value of 6010 or 13210 characters for the terminal.

1. Implicit characteristics are shown as supported by the driver. Values not shown are not auto­
matically set by the driver. An "unknown" terminal type has no implicit characteristics.

2. The PC300 Series Bitmap Display is the default terminal for the Professional.

TC.VFL TC.SCP

THE TERMINAL DRIVER 12-11

Notes

1. The maximum capacity of the type-ahead buffer is 36. characters.

2. Using TC.TBF in an SF.SMC function flushes the type-ahead buffer.

12.3.2.5 10.GTS -This function is a Get Terminal Support request that re­
turns information to a 4-word buffer specifying which features are part of the
terminal driver. Only two of these words are currently defined.

The various symbols used by the 10.GTS, SF.GMC, and SF.SMC functions are
defined in a system module, TTSYM. These symbols include:

F1 .xxx and F2.xxx (Table 12-8)

T.xxxx (Table 12-6)

TC.xxx (Table 12-5)

The SE.xxx error returns described in Table 12-9.

These symbols may be defined locally within a code module by using:

.MCALL TTSYM$

TTSYM$

Symbols that are not defined locally are automatically defined by the Task
Builder.

Table 12-8
Information Returned by Get Terminal Support (10.GTS) 010

Mnemonic

Word 0 of Suffer:

F1.ACR

F1.BUF

F1.UIA

F1.CCO

F1.ESQ

F1.LWC

F1 .RNE

F1 .RPR

F1 .RST

Fi.RUB

Fi.TRW

F1 .UTB

F1.VBF

Meaning When Set to 1

Automatic CR/LF on long lines

Checkpointing during terminal input

Unsolicited-input-character AST

Cancel CTRL/O before writing

Recognize escape sequences in solicited input

Lower- to uppercase conversion

Read with no echo

Read after prompting

Read with special terminators

CRT rubout

Read all and write all

Input characters buffered in task's address space

Variable-length terminal buffers

12-12 THE TERMINAL DRIVER

Table 12-8 (Cont.)

Mnemonic

Word 1 of Buffer:

F2.SCH

F2.GCH

F2.SFF

F2.CUP

F2.FDX

Meaning When Set to 1

Set characteristics 010 (SF.SMC)

Get characteristics 010 (SF.GMC)

Formfeed can be simulated

Cursor positioning

Full Duplex Terminal Driver

12.3.2.6 10.RAL - The Read All function causes the driver to pass all bits to
the requesting task. The driver does not intercept control characters or mask
out the high-order bit. For example, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z
and INTERRRUPT/DO sequences are passed to the program and are not inter­
preted by the driver.

Note: 10.RAL echoes the characters that are read. To read all bits without
echoing, use 10.RAL!TF.RNE.

10.RAL is equivalent to 10.RLB ORed with the subfunction bit TF.RAL. The !0.­
RAL function can be terminated only by a full character count (input buffer full).

12.3.2.7 10.RNE - The 10.RNE function reads terminal input characters with­
out echoing the characters back to the terminal for immediate display. This fea­
ture can be used when typing sensitive information (for example, a password or
combination).

(Note that the no-echo mode can also be selected with the SF.SMC function;
see Table 12-5, bit TC.NEC.)

The 10.RNE function is equivalent to !O.RLB ORed with the subfunction bit
TF.RNE.

12.3.2.8 10.RPR - The 10.RPR Read After Prompt functions as an 10.WLB
(to write a prompt to the terminal) followed by 10.RLB. However, 10.RPR differs
from this combination of functions as follows:

D System overhead is lower with the 10.RPR because only one 010 is
processed.

D When using the 10.RPR function, there is no "window" during which a
response to the prompt may be ignored. Such a window occurs if
10.WAL/IO.RLB is used, because no read may be posted at the time the
response is received.

D If the issuing task is checkpointable, it can be checkpointed during both
the prompt and the read requested by the 10.RPR.

D A CTRL/O that may be in effect prior to issuing the 10.RPA is canceled
before the prompt is written.

THE TERMINAL DRIVER 12-13

Subfunction bits may be ORed with 10.RPR to write the prompt as a Write All
(TF.BIN). In addition, read subfunction bits TF.RAL, TF.RNE, and TF.RST can
be used with 10.RPR.

12.3.2.9 10.RPRITF.BIN - This function results in a read after a "binary"
prompt; that is, a prompt is written by the driver with no character interpretation
(as if it were issued as an 10.WAL).

12.3.2.10 10.RST - This function is similar to an 10.RLB, except certain spe­
cial characters terminate the read. These characters are in the ranges 0-037
and 175-177. The driver does not interpret the terminating character, with cer­
tain exceptions.3 For example, a horizontal TAB (011) is not expanded, a RU­
BOUT (or DEL, 177) does not erase.

Upon successful completion of an 10.RST request that was not terminated by
filling the input buffer, the first word of the 1/0 status block contains the termi­
nating character in the high byte and the IS.sue status code in the low byte.
The second word contains the number of bytes contained in a buffer. The termi­
nating character is not put in the buffer.

10.RST is equivalent to 10.RLB!TF.RST.

12.3.2.11 SF.SMC - This function enables a task to set and reset the charac­
teristics of a terminal. Set Multiple Characteristics is the inverse function of
SF.GMC. Like SF.GMC, it is called in the following way:

stadd

QIO$C SF.SMC, ... ,<stadd,size>

The starting address of a buffer of length "size" bytes.
Each word in the buff er has the form

.BYTE characteristic-name

.BYTE value

characteristic-name One of the symbolic bit names given in Table 12-5.

value Either 0 (to clear a given characteristic) or 1 (to set a
characteristic).

Table 12-8 notes the restrictions that apply to these characteristics.

If the characteristic-name is TC.TIP (terminal type), value can have any of the
values listed in Table 12-6.

Specifying any value for TC.TBF flushes (clears) the type-ahead buffer (forces
the type-ahead buffer count to 0).

3. If upper- to lowercase coversion is disabled, characters 175 and 176 do not act as terminators. CTRL/O,
CTRL/Q, and CTRL/S (017, 021, and 023, respectively) are not special terminators. The driver interprets them
as output control characters in a normal manner.

12-14 THE TERMINAL DRIVER

12.3.2.12 10.RTT - This QIO function reads characters in a manner like the
10.RLB function, except a user-specified character terminates the read opera­
tion. The specified character's code can range from 0-377. It is user designated
by setting the appropriate bit in a 16-word table that corresponds to the desired
character. Multiple characters can be specified by setting their corresponding
bits.

The 16-word table starts at the address specified by the table parameter. The
first word contains bits that represent the first 16 ASCII character codes (0-17);
similarly, the second word contains bits that represent the next 16 character
codes (20-37), and so forth, through the sixteenth word, bit 15, which repre­
sents character code 377. For example, to specify the% symbol (code 045) as a
read terminator character, set bit 05 in the third word, since the third word of the
table contains bits representing character codes 40-57.

If the CTRL/S (023), CTRL/Q (021), and/or any characters whose codes are
greater than 177 are desired as the terminator character(s), the terminal must
be set to read-pass-all operation (TC.BIN=1), or read-pass 8-bits (TC.SBC), as
listed in Table 12-5.

The optional time-out count parameter can be included, as desired.

12.3.2.13 10.WAL - The Write All function causes the driver to pass al! out­
put from the buffer without interpretation. It does not intercept control charac­
ters. Long lines are not wrapped around if input/output wrap-around has been
selected.

IQ.WAL is equivalent to the 10.WLB!TF.WAL function.

12.3.2.14 10.WSD - The Write Special Data function is used to communicate
nontext information to the terminal task. The buffer address and length are the
same as for 10.WLB. The data type parameter indicates to the terminal task
what type of data is contained in the buffer. The available data types are:

SD.GOS GIDIS output

Note: This 010 implements a private data path to the terminal subsystem. The
interface is subject to change and is, therefore, for DIGITAL use only. The
PRO/Graphics and remote terminal emulator should be the only software using
10.WSD.

12.3.2.15 10.RSD - The Read Special Data function is also used in communi­
cating nontext information to the terminal task. The buffer address, length, and
timeout are the same as for 10.RLB. The data type parameter indicates to the
terminal what type of data is to be read.

Note: This 010 implements a private data path to the terminal subsystem. The
PRO/Graphics and remote terminal emulator should be the only software using
10.RSD.

THE TERMINAL DRIVER 12-15

The following restrictions apply to the use of 10.RSD:

D In some ways, 10.RSD is the same as a normal read. One result of this
is that if there is a read currently oustanding to the keyboard, the
10.RSD does not take effect until the read to the keyboard is complete.

D While an 10.RSD is pending, no input processing takes place until it
completes. So any characters that come in from the keyboard go di­
rectly to the typeahead buffer, no ASTs take place, and no characters
are echoed.

D When special data comes into the terminal driver from the terminal task
(for example, a GIDIS report) and no 10.RSD is outstanding, the special
data goes into a special typeahead buffer. That typeahead buffer is ca­
pable of holding a maximum of 36 bytes. If more characters are input
than the buffer can hold, those characters are discarded and no error
message is returned.

If there is an 10.RSD pending when special data comes into the terminal
driver from the terminal task, the data goes firectly into a read buffer.
However, the length of one report may not exceed 36 bytes.

As a result of these restrictions, the recommended way to get a special data
report is to first issue the 10.WSD to cause the report to occur and then to issue
an 10.RSD for the exact length of the request. This causes 10.RSD to complete
immediately, preventing it from blocking the keyboard input.

12.4 STATUS RETURNS

Table 12-9 lists error and status conditions that are returned by the terminal
driver to the 1/0 status block.

Most error and status codes returned are byte values. For example, the value
for IS.SUC is 1. However, IS.CC, IS.CR, IS.ESC, and IS.ESQ are word values.
When any of these codes are returned, the low byte indicates successful com­
pletion, and the high byte shows what type of completion occurred.

To test for one of these word-value return codes, first test the low byte of the
first word oi the 1/0 status block for the value IS.sue. Then, test the full word
for IS.CC, IS.CR, IS.ESC, IS.ESQ, or IS.CSQ. (If the full word tests equal to
IS.SUC, then its high byte is 0, indicating byte-count termination of the read.)

The "error" return IE.EOF may be considered a successful read since charac­
ters returned to the task's buffer can be terminated by a CTRL/Z character.

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions as de­
scribed in Sections 12.3.2.4 and 12.3.2.11. When any of these codes are re­
turned, the low byte in the first word in the 1/0 status block contains IE.ABO.
The second IOSB word contains an offset (starting from 0) to the byte in error in
the QIO's stadd buffer.

12-16 THE TERMINAL DRIVER

Table 12-9
Terminal Status Returns

Code

IE.EOF

is.sue

IS.CC

IS.CR

IS.ESC

IS.ESQ

IS.PND

IS.TMO

IE.ABO

IE.BAD

IE.DAA

IE.DNA

Reason

Successful completion on a read with end-of-file
The line of input read from the terminal was terminated with the end-of-file charac­
ter CTRL/Z. The second word of the 1/0 status block contains the number of bytes
read before CTRL/Z was seen. The input buffer contains those bytes.

Successful completion
The operation specified in the 010 directive was completed successfully. II the op­
eration involved reading or writing, you can examine the second word of the 1/0
status block to determine the number of bytes processed. The input buffer con­
tains those bytes.

Successful completion on a read
The line of input read from the terminal was terminated by an INTERRUPT /DO se­
quence. The input buffer contains the bytes read.

Successful completion on a read
The line of input read from the terminal was terminated by a RETURN. The input
buffer contains the bytes read.

Successful completion on a read
The line of input read from the terminal was terminated by an Escape character.
The input buffer contains the bytes read.

Successful completion on a read
The line of input read from the terminal was terminated by an escape sequence.
The input buffer contains the bytes read and the escape sequence.

1/0 request pending
The operation specified in the 010 directive has not yet been executed. The 1/0
status block is filled with zeroes.

Successful completion on a read
The line of input read from the terminal was terminated by a time-out (TF.TMO was
set and the specified time interval was exceeded). The input buffer contains the
bytes read.

Operation aborted
The specified 1/0 operation was cancelled by 10.KIL while in progress or while in
the 1/0 queue. The second word of the 1/0 status block indicates the number of
bytes that were put in the buffer before the kill was effected.

Bad parameter
The size of the buffer exceeds 8128 bytes.

Device already attached
The physical device unit specified in an 10.ATT function was already attached by
the issuing task. This code indicates that the issuing task has already attached the
desired physical device unit, not that the unit was attached by another task. If the
attach specified TF.AST or TF.ESQ, these subfunction bits have no effect.

Device not attached
The physical device unit specified in an 10.DET function was not attached by the
issuing task. This code has no bearing on the attachment status of other tasks.

THE TERMINAL DRIVER 12-17

Table 12-9 (Cont.)

Code

IE.DNA

IE.IES

IE.IFC

IE.NOD

IE.PES

IE.SPC

SE.NIH

SE.FIX

SE.VAL

Reason

Device not ready
The physical device unit specified in the 010 directive was not ready to perform the
desired 1/0 operation. This code is returned to indicate that a time-out occurred on
the physical device unit (that is, an interrupt was lost).

Invalid escape sequence
An escape sequence was started but escape-sequence syntax was violated before
the sequence was completed. (See Section 12.6.4.) The character causing the vio­
lation is the last character in the buffer.

Illegal function
A function code specified in an 1/0 request was illegal for terminals.

Buffer allocation failure
System dynamic storage has been depleted resulting in insufficient space available
to allocate an intermediate buffer for an input request or an AST block for an attach
request.

Partial escape sequence
An escape sequence was started, but read-buffer space was exhausted before the
sequence was completed. See Section 12.6.4.3.

Illegal address space
The buffer specified for a read or write request was partially or totally outside the
address space of the issuing task, a byte count of 0 was specified, or an odd or 0
AST address was specified.

A terminal characteristic other than those in Table 12-5 was named in an SF.GMC
or SF.SMC request, or a task attempted to assert TC.PAI.

An attempt was made to change a fixed characteristic in a SF.SMC subfunction
request (for example, an attempt was made to change the unit number).

The new value specified in an SF.SMC request for the TC.TIP terminal characteris­
tic was not one of those listed in Table 12-6.

12-18 THE TERMINAL DRIVER

12.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of the system's special terminal control
characters and keys. Note that the driver does not recognize control characters
and special keys during a Read All request (10.RAL), and recognizes only some
of them during a Read with Special Terminators (10.RST).

12.5.1 Control Characters

A control character is input from a terminal by holding the control key (CTRL)
down while typing one other key. Three of the control characters described in
Table 12-10, CTRL/R, CTRL/U, and CTRL/Z, are echoed on the terminal as
AR, Au, and Az, respectively.

Note: The use of control characters on PC 300 Series machines is not recom­
mended except when the PC 300s are connected to anoth.er system as a termi­
nal. In normal circumstances use the function keys on the PC300s.

Table 12-10
Terminal Control Characters

Character

CTRL/O

CTRL/Q

CTRL/S

CTRL/R

CTRL/U

CTRL/X

CTRL/Z

Meaning

CTRL/O suppresses terminal output. For attached terminals, CTRL/O remains in
effect (output is suppressed) until one of the following occurs:

The terminal is detached.
Another CTRL/O character is typed.
An 10.CCO or 10.WBT function is issued.
Input is entered.

For unattached terminals, CTRL/O suppresses output for only the current output
buffer (typically one line).

CTRL/Q resumes terminal output previously suspended by means of CTRL/S.

CTRL/S suspends terminal output. (Output can be resumed by typing CTRL/Q.)

Typing CTRL/R results in a RETURN and line feed being echoed, followed by the
incomplete (unprocessed) input line. Any tabs that were input are expanded and
the effect of any rubouts is shown. On hardcopy terminals, CTRL/R allows verify­
ing the effect of tabs and/or rubouts in an input line. CTRL/R is also useful for CRT
terminals for the CRT rubout. For example, after rubbing out the left-most charac­
ter on the second displayed line of a wrapped input line, the cursor does not move
to the right of the first displayed line. In this case, CTRL/R brings the input line and
the cursor back together again.

Typing CTRL/U before typing a line terminator deletes previously typed characters
back to the beginning of the line. The system echoes this character as Au followed
by a RETURN and a line feed.

This character clears the type-ahead buffer.

CTRL/Z indicates an end-of-file for the current terminal input.

Note: On the PC300 series systems, the Hold Screen key should be used instead
of CTRL/S and CRTL/Q.

THE TERMINAL DRIVER 12-19

12.5.2 INTERRUPT /DO AST Information

If the application has done an 10.ATA 010 without specifying the TF.XCC sub­
function, the following will happen:

Key One Key Two

non Interrupt key Do key

Interrupt key non Do key

Interrupt key Do key

CTRL/C

Result

The non-Interrupt key is han­
dled as usual and the applica­
tion gets the escape sequence
for the Do key

The Interrupt key is discarded
and the non Do key is handled
as if Interrupt had not been
pressed

Applications AST routine is ac­
tivated just as if a CTRL/C was
typed

Applications AST routine is ac­
tivated as for RSX-11 M-PLUS

If the application has not done an 10.ATA 010 or if it has done one with the
TF.XCC subfunction bit set, the following will happen:

Key One

non Interrupt key

Interrupt key

Interrupt key

CTRL/C

Key Two

Do key

non Do key

Do key

Result

The non Interrupt key is han­
dled as usual and the applica­
tion gets the escape sequence
for the Do key

The Interrupt key is discarded
. and the non Do key is handled
as if the Interrupt key had not
been pressed

The PRO/Dispatcher is notified;
aborts all application tasks. The
application gets no indication
that anything happened

The PRO/Dispatcher is notified;
the application gets no indica­
tion that anything happened

If an application puts the terminal in Read Pass All mode or if it specifies
TF.RAL on a read, all keys, except for Hold Screen and Print Screen, will go into
the type-ahead buffer unprocessed. The Interrupt and Do keys will go in as the
escape sequences that they represent.

12-20 THE TERMINAL DRIVER

Any characters for which there is no read or AST request outstanding will be put
into the type-ahead buffer. The buffer is 36 bytes long. If the buffer is full, and if
a character is typed that would go into the type-ahead buffer, a bell is echoed
and the character is discarded. When either CTRL/C or the INTERRUPT/DO se­
quence is entered, the type-ahead buffer is flushed.

12.5.3 Special Keys

The RETURN, and DELETE keys have special significance for terminal input, as
described in Table 12-11. A line can be terminated by a RETURN, or CTRL/Z
characters, or by completely filling the input buffer-that is, by exhausting the
byte count before a line terminator is typed. The standard buffer size for a termi­
nal can be determined for a task by issuing a Get LUN Information system direc­
tive and examining Word 5 of the buffer.

12.6 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with an ESC
(033) character.

Escape sequences provide a way to pass input to a task without interpretation
by the operating system. This could be done with a number 1-character Read
All functions, but escape sequences allow them to be read with 10.RLB re­
quests.

Table 12-11
Special Terminal Keys

Key

RETURN

DELETE

Meaning

Typing RETURN terminates the current line and causes the carriage or cursor to
return to the first column on the line.

Typing DELETE deletes the last character typed on an input line. Only characters
typed since the last line terminator may be deleted. Several characters can be de­
leted in sequence by typing successive DELETES.

DELETE causes the last typed character (if any) to be removed from the incomplete
input line and a backspace-space-backspace sequence of characters for that ter­
minal are echoed. If the last typed character was a tab, enough backspaces are
issued to move the cursor to the character position before the tab was typed. If a
long input line was split, or "wrapped," by the automatic-return option, and a DE­
LETE erases the last character of a previous line, the cursor is not moved to the
previous line.

THE TERMINAL DRIVER 12-21

12.6.1 Definition

The format of an escape sequence as defined in American National Standard X
3.41 - 1974 and used in the VT100 is:

ESC ... F

ESC The introducer control character (338) that is named escape.

The intermediate bit combinations that may or may not be present. I
characters are bit combination 408 to 57 8 inclusive in both 7- and 8-bit
environments.

F The final character. F characters are bit combinations 608 to 1768
inclusive in escape sequences in both 7- and 8-bit environments.

The occurrence of characters in the inclusive ranges 08 to 37 8 is technically an
error condition whose recovery is to execute immediately the function specified
by the character and then continue with the escape sequence execution. The
exceptions are: if the character ESC occurs, the current escape sequence is
aborted, and a new one commences, beginning with the ESC just received; if
the character CAN (308) or the character SUB (328) occurs, the current escape
sequence is aborted, as is the case with any control character.

12.6.2 Prerequisites

Two prerequisites must be satisfied before escape sequences can be received
by a task.

1. The task must "ask" for them by issuing an 10.ATT function and invok­
ing the subfunction bit TF.ESQ.

2. The terminal must be declared capable of generating escape se­
quences. A way to tell the driver that the terminal can generate escape
sequences is by issuing the Set Multiple Characteristics request. (See
Section 12.3.2.11).

If these prerequisites are not satisfied, the ESC character is treated as a line
terminator.

12.6.3 Characteristics

Escape sequences always act as line terminators. That is, an input buffer may
contain other characters that are not part of an escape sequence, but an es­
cape sequence always comprises the last characters in the buffer.

Escape sequences are not echoed. However, if a non-CRT DELETE sequence
is in progress, it is closed with a backslash when an escape sequence is begun.

Escape sequences are not recognized in unsolicited input streams. Neither are
they recognized in a Read with Special Terminators (subfunction bit TF.RST)
nor in a Read All (subfunction bit TF.RAL).

12-22 THE TERMINAL DRIVER

12.6.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 12.6.1 causes the driver to abandon
the escape sequence and to return an error (IE.IES).

12.6.4.1 DEL (177) - The character DELETE is not legal within an escape
sequence. If it occurs at any point within an escape sequence, the entire se­
quence is abandoned and deleted from the input buffer.

12.6.4.2 Control Characters (0-037) - The reception of any character in the
range 0 to 037 (with four exceptions is a syntax violation that terminates the
read with an error (IE.IES). Four control characters are allowed: CTRL/Q,
CTRL/S, CTRL/X, and CTRL/0. These characters are handled normally by the
operating system even when an escape sequence is in progress.

12.6.4.3 Full Buffer - A syntax error results when an escape sequence is
termfnated by running out of read-buffer space, rather than by receipt of a final
character. The error IE.PES is returned. For example, after a task issues an
10.RLB with a buffer length of 2, and the following characters are entered:

ESC!A

the buffer contains "ESC !", and the 1/0 status block contains:

IDSB IE. PES

2

The "A" is treated as unsolicited input.

12.7 VERTICAL FORMAT CONTROL

Table 12-12 is a summary of all characters used for vertical format control on
the terminal. Any one of these characters can be specified as the value of the
vfc parameter in 10.WLB, 10.WVB, 10.WBI, 10.CCO, or 10.RPR functions.

THE TERMINAL DRIVER 12-23

Table 12-12
Vertical Format Control Characters

Octal
Value

040

060

061

053

044

000

Character

blank

0

+

$

null

Meaning

SINGLE SPACE-Output one line feed, print the contents of the
buffer, and output a RETURN. Normally, printing immediately fol­
lows the previously printed line.

DOUBLE SPACE-Output two line feeds, print the contents of the
buffer, and output a RETURN. Normally, the buffer contents are
printed two lines below the previously printed line.

PAGE EJECT -If the terminal supports FORM FEEDs, output a
form feed, print the contents of the buffer, and output a RETURN.
If the terminal does not support FORM FEEDs, the driver simu­
lates the FORM FEED character by either outputting four line
feeds to a crt terminal, or by outputting enough line feeds to ad­
vance the paper to the top of the next page on a printing terminal.

OVERPRINT -Print the contents of the buffer and output a RE­
TURN, normally overprinting the previous line.

PROMPTING OUTPUT -Output one line feed and print the con­
tents of the buffer. This mode of output is intended for use with a
terminal on which a prompting message is output, and input is
then read on the same line.

INTERNAL VERTICAL FORMAT-Print the buffer contents with­
out addition of vertical format control characters.

All other vertical format control characters are interpreted as blanks (040).

A task can determine the buffer width by issuing a Get LUN Information direc­
tive and examining word 5 returned in the buffer.

It is possible to lose track of where you are in the input buffer if wrap-around is
enabled for your terminal. For example, while deleting text on a wrapped line,
the cursor will not back up to the previous line.

12-24 THE TERMINAL DRIVER

12.8 TYPE-AHEAD BUFFERING

Characters received by the terminal driver are either processed immediately or
stored in the type-ahead buffer. The type-ahead buffer allows characters to be
temporarily stored and retrieved FIFO. The type-ahead buffer is used as fol­
lows:

1. Store in buffer:

An input character is stored in the type-ahead buffer if one or more of
the following conditions are true:

D There is at least one character presently in the type-ahead buffer.

D The character input requires echo and the output line to the termi­
nal is presently busy outputting a character.

D No read request is in progress, no unsolicited input AST is speci­
fied. A character is not echoed when it is stored in the buffer.
Echoing a character is deferred until it is retrieved from the buffer,
since the read mode (for example, read-without-echo) is not
known by the driver until then.

Note: Depending on the terminal mode and the presence of a read function,
read subfunctions and an unsolicited input AST, the INTERRUPT/DO, CTRL/O,
CTRL/Q, CTRL/S, and CTRL/X characters may be processed immediately and
not stored in the type-ahead buffer.

2. Retrieve from buffer:

When the driver becomes ready to process input, or when a task issues
a read request, an attempt is made to retrieve a character from the
buffer. If this attempt is successful, the character is processed and
echoed, if required. The driver then loops, retrieving and processing
characters until either the buffer is empty, the driver becomes unable to
process another character, or a read request is finished with the termi­
nal attached or slaved.

3. Flush the buffer:

The buffer is flushed (cleared) when:

D CTRL/X is received.

D INTERRUPT/DO is received.

Exceptions: CTRL/X does not flush the buffer if read-pass-all or
read-with-special-terminators is in effect.

If the buffer becomes full, each character that cannot be entered causes a BELL
character to be echoed to the terminal.

If a character is input and echo is required, but the transmitter section is busy
with an output request, the input character is held in the type-ahead buffer until
output (transmitter) completion occurs.

THE TERMINAL DRIVER 12-25

12.9 FULL-DUPLEX OPERATION

When a terminal line is in the full-duplex mode, the full-duplex driver attempts to
simultaneously service one read request and one write request. The Attach, De­
tach and Set Multiple Characteristics functions are only performed with the line
in an idle state (not executing a read or a write request).

12.10 INTERMEDIATE INPUT AND OUTPUT BUFFERING

Input buffering for checkpointable tasks with checkpointing enabled is provided
in the terminal driver private pool. As each buffer becomes full, a new buffer is
automatically allocated and linked to the previous buffer. The Executive then
transfers characters from these buffers to the task buffer and the terminal
driver deallocates the buffers once the transfer has been completed.

If the driver fails to allocate the first input buffer, the characters are transferred
directly into the task buffer. If the first buffer is successfully allocated, but a sub­
sequent buffer allocation fails, the input request terminates with the error code
IE.NOD. In this case, the 1/0 status block contains the number of characters
actually transferred to the task buffer. The task may then update the buffer
pointer and byte count and reissue a read request to receive the rest of the
data. The type-ahead buffer ensures that no input data is lost as long as the
type-ahead buffer is not full.

All terminal output is buffered. As many buffers as required are allocated by the
terminal driver and linked to a list. If not enough buffers can be obtained for all
output data, the transfer is done as a number of partial transfers, using avail­
able buffers for each partial transfer. This is transparent to the requesting task.
If no buffers can be allocated, the request terminates with the error code
IE.NOD.

The unconditional output buffering serves two purposes:

1. It reduces time spent at system state.

2. It enables task checkpointing during the transfer to the terminal (if all
output fits in one buffer list).

12.11 TERMINAL-INDEPENDENT CURSOR CONTROL

The terminal driver responds to task 1/0 requests for cursor positioning without
the task requiring information about the type of terminal in use. 1/0 functions
associated with cursor positioning are described as follows.

Cursor position is specified in the vfc parameter of the 10.WLB or 10.RPR func­
tion. The parameter is interpreted simply as a vfc parameter if the high byte of
the parameter is 0. However, if the parameter is used to define cursor position,
the high byte must be nonzero, the low byte is interpreted as column number
(x-coordinate), and the high byte is interpreted as line number (y-coordinate).

12-26 THE TERMINAL DRIVER

Home position, the upper left corner of the display, is defined as 1, 1. Depending
upon terminal type, the driver outputs appropriate cursor-positioning com­
mands appropriate for the terminal in use that will move the cursor to the speci­
fied position. If the most significant bit of the line number is set, the driver clears
the display before positioning the cursor.

When defining cursor position in an 10.WLB function, the TF.RCU subfunction
can be used to save the current cursor position. When included in this manner,
TF.RCU causes the driver to first save the current cursor position, then position
the cursor and output the specified buffer, and, finally, restore the cursor to the
original (saved) position once the output transfer has been completed.

12.12 PROGRAMMING HINTS

Using 10.WVB instead of 10.WLB is recommended when writing to a terminal. If
the write actually goes to a terminal, the Executive converts the 10.WVB to an
10.WLB request. However, if the LUN has been redirected to an appropriate de­
vice-a disk, for example-the use of an 10.WVB function will be rejected be­
cause a file is not open on the LUN. This prevents privileged tasks from
overwriting block zero of the disk.

Note that any subfunction bits specified in the 10.WVB request (for example,
TF.CCO, TF.WAL, TF.WBT) are stripped when the 10.WVB is converted to
10.WLB.

CHAPTER 13
THE KERNEL COMMUNICATIONS DRIVER

13.1 INTRODUCTION

The Professional 300 kernel communications driver (XK) permits use of the ker­
nel communication port in asynchronous mode. The XK driver provides the fol­
lowing features:

0 Full duplex operation

D Input buffering

D Unsolicited event AST's

D Transfer length of up to 8128 bytes

D Optional time-out on solicited input

D Optional XON/XOFF support

0 Modem support

13-1

13-2 THE KERNEL COMMUNICATIONS DRIVER

13.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system directive (the first
characteristics word) contains the information noted in Table 13-1 for the XK
driver. A setting of 1 indicates that the described characteristic is true.

Table 13-1

Bit Setting Meaning

0 0 Record-oriented device

0 Carriage-control device

2 0 Terminal device

3 0 File structured device

4 0 Single-directory device

5· Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported, device dependent

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as communications channel

14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Words 3 and 4 of the buffer are undefined. Word 5 indicates size of the internal
input ring buffer.

THE KERNEL COMMUNICATIONS DRIVER 13-3

13.3 QIO MACRO

Table 13-2 lists the standard and device-specific functions of the QIO macro
that are valid for the XK driver.

Table 13-2
Standard and Device-Specific 010 Functions

Format Function

Standard Functions

010$ CIO.DET,. .. Detach device.

010$C 10.KIL, ... Cancel 1/0 requests.

010$C 10.RLB, ... ,<stadd,size[,tmo]> Read logical block (read input into buffer).

010$C 10.RVB, ... ,<stadd,size[,tmo]> Read virtual block (read input into buffer).

010$C 10.WLB, ... ,<stadd,size> Write logical block (send contents of buffer).

010$C 10.WVB, ... ,<stadd,size> Write virtual block (send contents of buffer).

Device-Specific Functions

010$C 10.ANS, ... ,<stadd,size> Initiate a connection in answer mode, either in re-
sponse to a ringing line, or if a connection already
exists.

010$C IO.ATA, ... ,<ast[.par2]> Attach device, specify unsolicited event AST.

010$C 10.BRK, ... ,<type> Send a BREAK.

010$C 10.CON, ... ,<stadd,size[.tmo]> Dial and connect.

010$C SF.GMC, ... ,<stadd,size> Get multiple characteristics.

010$C 10.HNG, ... Hang up a line.

010$C 10.L Tl, ... ,<stadd,size[,par3]> Connect for unsolicited event AST's while de-
tached.

010$C 10.0RG, ... ,<stadd,size[.tmo]> Initiate a connection in originate mode, assuming
the line has already been connected.

010$C 10.RAL, ... ,<stadd,size[,tmo]> Read logical block, pass all bits.

010$C 10.RNE, ... ,<stadd,size[.tmo]> Read logical block, do not echo.

010$C SF.SMC, ... ,<stadd,size> Set multiple characteristics.

010$C 10.TRM, ... Unload driver.

010$C 10.UTI, ... Disable unsolicited event AST's while detached.

010$C 10.WAL, ... ,<stadd,size> Write logical block, pass all bits.

13-4 THE KERNEL COMMUNICATIONS DRIVER

ast

par2
par3

size

stadd

type

tmo

the entry point for an unsolicited event AST

a number that can be used to identify this line as the input
source upon entry to an unsolicited event AST routine

the size of the stadd data buffer in bytes. The specified size
must be greater than zero and less than or equal to 8128; the
buffer must be within the task's address space

the starting address of the data buffer; the address may be byte
aligned

either 0 or 1 to indicate either a break or a long space

an optional time-out count when used in conjunction with
TF.TMO on read requests, 10.CON, and 10.0RG requests

The time-out is specified as follows:

.BYTE x,y

where xis the number of ten-second intervals, up to 25510, and
y is the number of one-second interval, also up to 25510. The
longest possible time-out interval that can be specified is 25510

seconds. If the time-out value is than 255 seconds, 255
seconds is used. Section 13.7 describes the effect of the time­
out parameters on specific requests.

13.3.1 Device-Specific 010 Functions

Several of the device-specific functions desscribed in this section can be issued
by ORing a particular subfunction bit with another 010 function. These subfunc­
tion bits are specified in the following descriptions.

13.3.1.1 10.ANS - The Answer function establishes a connection in answer
mode, either in response to a ringing line, or if connection already exists. If a
connection is not complete within 30 seconds, an iE.DNR error will be returned.
The buffer address is required but is not used.

13.3.1.2 0.ATA -10.ATA is a variation of the Attach function. !O.ATA speci­
fies an asynchronous system trap (AST) to process unsolicited events when
called as follows:

QIO$C IO.ATA, ... ,<ast[,par2]>

When an unsolicited event occurs, the resulting AST serves as notification of
the unsolicited event. Upon entry to the AST, the high byte of the top word on
the stack contains par2, if it was specified. The low byte contains the event
type. This word must be removed from the stack before exitting the AST. See
section 13.6 for more information on unsolicited events.

10.A TA is equivalent to 10.ATT ORed with the subfunction bit TF.AST.

THE KERNEL COMMUNICATIONS DRIVER 13-5

13.3.1.3 10.BRK -When issued, the 10.BRK function causes either a break or
a long space to be sent. If parameter 1 is zero, a break is sent. If parameter 1 is
one, a long space is sent.

On the kernel communication port, a break will last for approximately 235 milli­
seconds, and a long space approximately 3.5 seconds.

13.3.1.4 1.0.CON -The 10.CON function dials and connects a line in originate
mode, as follows:

Ql0$C 10.CON, ... ,<stadd,size[,tmo]>

where stadd is the address of the telephone number to dial.

If TF.TMO is not specified, the request will complete when a connection is es­
tablished or after 60 seconds.

13.3.1.5 SF.GMC - The Get Multiple Characteristics function returns driver
characteristics information, as follows:

QIO$C SF.GMC, ... ,<stadd,size>

where stadd is the starting address of a data buffer of length "size" bytes. Each
word in the buffer has the form: ·

.BYTE characteristic-name

.BYTE 0

where characteristic-name is one the bit.names given in Table 13-3. The value
returned in the high byte of each byte-pair is value of that characteristic.

13-6 THE KERNEL COMMUNICATIONS DRIVER

Table 13-3
XK Driver Characteristics for SF.GMC and SF.SMC Functions

Bit Valid
Name Values Meaning

TC.ARC 0-9. Auto-answer ring count (0 =>don't answer)

TC.BIN 0,1 Enable or disable XON/XOFF support

TC.CTS 0,1 Resume or suspend output

TC.EPA 0,1 Odd or Even parity (if TC.PAR is specified)

TC.FSZ Note 1 Character width including parity (if any)

TC.PAR 0,1 Enable parity checking and generation
Note 1

TC.RSP Note2 Receiver speed (bits-per-second)

TC.STB 1,2 Number of stop bits

TC.TBF Note3 Input ring buffer count or flush

TC.TRN Note4 Set translate table

TC.XMM 0,1 Disable or enable Maintenance mode

TC.XSP Note2 Transmitter speed (bits-per-second)

TC.BBC 0,1 Pass 8-bit characters on input and output
Note 1

XT.MTP Notes Modem type

1. TC.FSZ is the frame size of a character. It is the number of data bits per
character, plus 1 if parity is enabled.

TC.FSZ and TC.PAR interact with each other to determine the number
of data bits returned to the task. Table 13-4 shows the relationship of
these characteristics.

Two combinations do not appear in Table 13-4; TC.FSZ=9 with
TC.PAR=O, and TC.FSZ=5 with TC.PAR=1. These two combinations
are invalid, and the driver will return an error. To avoid this problem,
always set the value of TC.FSZ first. The driver will automatically enable
or disable parity if the value of TC.FSZ is 9 or 5.

If the value of TC.FSZ is Sor 9, the number of data bits returned to the
task is further modified by the value of TC.SBC. If TC.SBC is set to 1, all
S data bits will be returned to the task. If TC.SBC is set to 0, only 7 data
bits will be returned to the task. Setting TC.BIN to a value of 1 or using
the 10.RAL function will override the value of TC.SBC.

THE XK COMMUNICATIONS DRIVER 13-7

2. TC.ASP and TC.XSP values and corresponding baud rates are:

Table 13-5
Receiver and Transmitter Speed Values (TC.ASP. TC.XSP)

TC.RSPor
TC.XSP
Value Actual Baud Rate (in bits-per-second)

S.50 50

S.75 75

S.110 110

S.134 134.5

S.150 150

S.200 200

S.300 300

S.600 600

S.1200 1200

S.1800 1800

S.2000 2000

S.2400 2400

S.3600 3600

S.4800 4800

S.7200 7200

S.9600 9600

S.19.2 19200

3. The TC.TBF characteristic returns the number of unprocessed char­
acters in the input buffer when used with SF.GMC. If there are more
than 255 characters in the buffer, the value 255 will be returned.
When used with SF.SMC, TC.TBF causes the input buffer to be
flushed.

4. The translate table allows translation for either non-standard pulsing
arrangements or for modems other than the DF03 which may be
connected to the XK Communications port. The translate table is
made up of three sections; a dial translation table, a start sequence
string, and an end sequence string. Any or all sections of the trans­
late table may be empty.

•

13-8 THE XK COMMUNICATIONS DRIVER

The format of this characteristic is:

.BYTE TC.TRN,count1 ,count2,count3

;Translate table portion. .BYTE chr1 ,rep_chr1

.BYTE chrn,rep_chrn

.BYTE ss1 ,ss2, ...

.BYTE es1 ,es2, ...

.EVEN

;1st char is the char to
:translate, 2nd char is
;the replacement char
End of translate table
:ss1, ss2, ... are the
;start characters
;es1, es2, ... are the
;end characters

where count1 is the length of the dial translate table, count2 is the
length of the start sequence, and count3 is the length of the end
sequence.

count2 and/or count3 can be zero if you do not specify a start
and/or end sequence.

The 010 buffer count in the 10.SMC includes the bytes containing
the TC.TAN characteristic and the count bytes.

The dial translate table is a string of character pairs, input character
followed by output character. This translate table is used to convert
a telephone number, typically to remove format effectors such as
"(' ', ")", "-", and " ". If a character in the telephone number match­
es a character in the input section of the dial translate table, the
character is converted to the character from the output section. If the
character from the output section is 0, the character from the tele­
phone number will be ignored.

The start sequence string, if specified, will be sent to the autodialer
before the phone number.

The end sequence string, if specified, will be sent to the autodialer
after the phone number.

Note:

1. The next characteristic must begin on a word boundary.
2. This is a write-only parameter, and will return an SE.NIH error if used

with the SF.GMC function.

5. The XT.MTP characteristic has the following values:

XTM.NO
XTM.FS
XTM.21
XTM.M1
XTM.M2
XTM.PS
XTM.US

No modem, hard-wired line
USFSK - 0 .. 300 baud Bell 103J
CCITTV.21 - 0 .. 300 baud European
CCITTV.23 Mode 1 - 75/0 .. 300 split baud
CCITTV.23 Mode 2 - 75/0 .. 1200 split baud
DPSK - 1200 baud Bell 212
Mini Exchange

THE XK COMMUNICATIONS DRIVER 13-8.1

13.3.1.6 10.HNG-The 10.HNG function causes a line to be hung up.

13.3.1.7 10.LTl-The 10.L Tl function causes the driver to deliver unsolicited
event notification AST's to a specified task, if the driver is not attached by
another task. It is called as follows:

Ql0$C 10.LTl, ... ,<stadd,size[,par3]>

where stadd is the address of a three word buffer of the form:

.WORD

.RADSO

.RADSO

AST _address
/firsLhalf_oLtask_name/
/second_halLof_task_name/

When an unsolicited event occurs, the resulting AST serves as notification of
the unsolicited event. Upon entry to the AST, the high byte of the top word on
the stack contains par3, if it was specified. The low byte contains the event
type. This word must be removed from the stack before exitting the AST. See
section 13.6 for more information on unsolicited events.

THE KERNEL COMMUNICATIONS DRIVER 13-9

13.3.1.7 !O.LTi --The !Orn function causes the driver to deliver unsolicited
event notification AST's to a lf the driver is not attached by an­
other task. It is called as follows:

10.L

where stadd is t11e adc.iress of a three word buffer of the form:

.WORD AST _.address

.RAD50

.RAD50 '"'"'"""."'

When an unsolicited event occurs, the AST serves as notification of
the high byte of the top word on

The low byte contains the event
removed from the stack before exitting the AST. See

inforrnation on unsolicited events.

tt1e unsolicited event. to the
the stack contains

This word must
section 1 for

13.3.1.8 iO.ORG The 10.0RG function initiates a connection in originate
the line has been connected. The buffer address is re-
used.

13.3.1.9 10.RAL ~·The Head All function causes the driver to pass all bits to
the when t!1e va!ue of TC.FSZ is 8 or 9. The driver does not

bit This function is used to temporarily bypass the set-
ting of U1e characteristic. Note tt1at unlike the RSX-11 M/M-PLUS termi-
nal this function does not pass or CTRL/S to the requesting
task. The TC.BlN be set these characters to be returned to the task.

10.RAL is to 10.RLB ORed with the subfunction bit TF.RAL

13.3.1.10 IOJ~NE -The Read with No Echo function is accepted by the driver
and the subfuncUon bit is '""ff'"H'"~

10.RNE is to 10.RLB OHed with the subfunction bit TF.RNE.

13.3.1.11 SF .SMC - This function enables a task to set and reset the charac­
teristics of the XK driver, Set Characteristics is the inverse function of
SF.GMC. Like ls is called in the way:

wl1ere stadd is U1e address of a data buffer of length "size" bytes. Each
word in the buffer has the form:

.BYTE characteristic~name

.BYTE value

where characteristic-name is one the bit names
is a value the range in Table 13-2.

in Table 13-2, and value

13-10 THE KERNEL COMMUNICATIONS DRIVER

13.3.1.12 10.TRM -The 10.TRM function causes the driver to be unloaded.
The task must be attached to issue this function.

13.3.1.13 10.UTI -The 10.UTI function disables unsolicited event notification
while the driver is not attached.

13.3.1.14 10.WAL -The Write All function is accepted by the driver and the
subfunction bit is ignored. The driver transmits all data bits in all cases.

10.WAL is equivalent to 10.WLB ORed with the subfunction bit TF.WAL.

13.4 STATUS RETURNS

Table 13-6 lists error and status conditions that are returned by the communi­
catiQns driver to the 1/0 status block.

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions as de­
scribed in Sections 13.3.1.5 and 13.3.1.11. When any of these codes are re­
turned, the low byte in the first word of the 1/0 status block will contain IE.ABO.
The second IOSB word contains an offset (starting from 0) to the byte in error in
the QIO's stadd buffer.

Table 13-6
XK Driver Status Returns

Code

is.sue

IS.PND

IS.TMO

IE.ABO

IE.ALC

IE.CNR

Reason

Successful completion
The operation specified in the 010 directive was completed successfully. If the op­
eration involved reading or writing, you can examine the second word of the 1/0
status block to determine the number of bytes processed. The input buffer con­
tains those bytes.

1/0 request pending
The operations specified in the QIO directive has not yet been executed. The 1/0
status block is filled with zeros.

Successful completion on a read
The input from the communications port was terminated by a time-out (non-zero
value specified for the tmo parameter). The input buffer contains the bytes read.

Operation aborted
The specified 1/0 operation was cancelled by IQ.KIL while in progress or while in
the 1/0 queue. The second word of the 1/0 status block indicates the number of
bytes that were put in the buffer before the kill was effected.

Allocation failure
The total size of the phone number specified by an IQ.CON request plus the start
and end sequences was larger than the driver's internal buffer.

Connection rejected
Carrier was already present when an 10.CON request was issued.

THE KERNEL COMMUNICATIONS DRIVER 13-11

Table 13-6 (Cont.)

Code

IE.OAA

IE.DNA

IE.ONA

IE.IFC

IE.OFL

SE.NIH

SE.VAL

Reason

Device already attached
The physical device-unit specified in the 10.ATT function wal already attached by
the issuing task. This code indicates that the issuing task has already attached the
desired physical device-unit, not that the unit was attached by another task. If the
attach specified TF.AST, the subfunction bit has no effect.

Device not attached
The physical device-unit specified in an 10.DET or 10.TRM function was not at­
tached by the issuing task. This code has no bearing on the attachment status of
other tasks.

Device not ready
The physical device-unit specified in the QIO directive was not ready to perform the
desired 1/0 operation. This code is returned to indicate that an attempt was made
to perform a function on a line connected to a modem without carrier present, or to
indicate that a connection was not established within the time-out period specified
by an 10.CON, 10.ANS, or 10.0RG request.

Illegal function
A function code specified in an 1/0 request was illegal for the communications port.

Device off-line
The physical device-unit associated with the LUN specified in the QIO directive was
not online.

Characteristic not implemented
A characteristic other than those specified in Table 13-3 was named in an SF.GMC
or SF.SMC request.

Illegal characteristic value
The new value specified in an SF.SMC request was not one of those listed in Table
13-3.

13.5 FULL-DUPLEX OPERATION

The XK driver attempts to simultaneously service one read request and one
write request. Note that unlike the RSX-11 M/M-PLUS full-duplex terminal
driver, the SF.SMC function is NOT blocked until the line is idle. Resetting char­
acteristics during 1/0 operations may cause unpredictable results.

13-12 THE KERNEL COMMUNICATIONS DRIVER

13.6 UNSOLICITED EVENT PROCESSING

If a task attaches for unsolicited event AST's (10.ATA), an AST will be dis­
patched whenever any of the events listed in Table 13-5 occur. When the AST is
entered, the event type will be in the low byte of the top word of the stack, and
par2 (10.ATA) or par3 (10.LTI) will be in the high byte. Note that the XTU.UI
event is processed differently from the rest.

Table 13-7
Unsolicited Event Types

XTU.CD Carrier detect

XTU.CL Carrier loss

XTU.OF XOFF received

XTU.ON XON received

XTU.RI Ring

XTU.UI Unsolicited input

13.6.1 XTU.UI

If the event type is XTU.UI (unsolicited input), the AST becomes "disarmed" un­
til a read request is issued by the task. Once the read request has completed,
the AST is "armed" again for new unsolicited events.

13.7 TIME-OUT

The optional time-out parameter on read, 10.CON, and 10.0RG requests effects
the action of the request. The following sections describe those effects.

13.7.1 Read Requests

tmo=O

tmo <> 0

The request completes immediately after transferring as many
characters as are available, less than or equal to the size pa­
rameter. The number of bytes transferred is returned in the sec­
ond 1/0 status word.

The request completes after the time-out period or the re­
quested number of bytes has been transferred. The number of
bytes transferred will be returned in the second word of the 1/0
status block.

13.7.2 10.CON

tmo=O

tmo <> O

13.7.3 10.0RG

tmo=O

tmo<> O

THE KERNEL COMMUNICATIONS DRIVER 13-13

The request completes immediately. If carrier is not present
after 60 seconds, DTR and RTS are dropped.

The request completes after the time-out period, or after a con­
nection is established. If the time-out period expires, DTR and
RTS will be dropped, and an IE.DNA error will be returned in the
first word of the 1/0 status block. If carrier comes up before the
time-out period expires IS.SUC will be returned in the first word
of the 1/0 status block.

The request completes immediately. If carrier is down, DTR and
ATS will be dropped and an IE.DNA error will be returned in the
first word of the 1/0 status block. If carrier is up, IS.SUC will be
returned in the first word of the 1/0 status block.

The request completes after the time-out period, or after a con­
nection is established. If the time-out period expires, DTA and
ATS will be dropped, and an IE.DNA error will be returned in the
first word of the 1/0 status block. If carrier is up (or comes up
before the time-out period expires), IS.sue will be returned in
the first word of the 1/0 status block.

13.8 XON/XOFF SUPPORT

If XON/XOFF support is requested (TC.BIN = 0), the driver will transmit an
XOFF whenever the ring buffer is three-quarters filled, and an XON whenever
the buffer is then emptied below the one-quarter point. Because of this, tasks
should not pass XON/XOFF control characters to the driver for transmission.

If an XOFF is received, transmission will be blocked. If the task is attached for
unsolicited event AST's, an XTU.OF event will be dispatched. In any case, the
TC.CTS parameter will reflect the XON/XOFF state of the line.

If XON/XOFF support is not requested (TC.BIN= 1), and the value of XT.MTP is
XTM.NO (no modem), the Clear to Send line will be used in place of XON/XOFF
control characters. State changes of this line will cause unsolicited event AST's,
and modify the value of TC.CTS.

APPENDIX .A.
STANDARD ERROR CODES

The symbols listed below are associated with the directive status codes re­
turned by the Executive. They are determined (by default) at task-build time. To
include these in a MACR0-11 program, use the following two lines of code:

.MCALL DRERRS
DR ERR$

STANDARD ERROR CODES RETURNED BY DIRECTIVES IH THE DIRECTIVE STATUS
WORD

IS.CLR +00
is.sue +01
JS.SET +02

IE.UPN -01.

IE.INS -02.
IE.UNS -04.
!E.ULN -05.
!E.HWR -06.
IE.ACT -07.
IE.ITS -08.
IE.FIX -09.
IE.CKP -10.
IE.TCH -11.
IE.RBS -15.
IE.PR! -16.
IE.RSU -17.
IE.NSW -18.
lE.lLV' -19.

EVENT FLAG WAS CLEAR
OPERATION COMPLETE, SUCCESS
EVENT FLAG WAS SET

INSUFFICIENT DYNAMIC STORAGE
SPECIFIED TASK NOT INSTALLED
INSUFFICIENT DYNAMIC STORAGE FOR SEND
UNASSIGNED LUN
DEVICE DRIVER NOT RESIDENT
TASK NOT ACTIVE
DIRECTIVE INCONSISTENT WITH TASK STATE
TASK ALREADY FIXED/UNFIXED
ISSUING TASK NOT CHECKPOJNTABLE
XASK IS CHECKPOINTABLE
RECEIVE BUFFER TOO SMALL
PRIVILEGE VIOLATION
SPECIFiED VECTOR ALREADY IN USE
NO SWAP SPACE AVAILABLE
SPECIFIED VECTOR ILLEGAL

A-1

A-2 APPENDIX A: STANDARD ERROR CODES

IE.AST -80.
IE.MAP -81.

IE. I OP
IE.ALG
JE.WOV
IE.NVR
IE.NVW
IE. I TP
IE. IBS

IE.LNL
IE. IUI
IE. IDU

IE. !TI
IE.PNS
IE. I PR
IE.!LU
IE.IEF
IE.ADP
IE. SDP

-83.
-84.
-85.
-86.

-87.
-88.

-89.
-90.
-91.

-92.
-93.
-94.
-95.
-96.
-97.
-98.
-99.

DIRECTIVE ISSUED/NOT ISSUED FROM AST
JSR OR ENABLE/DISABLE INTERRUPT ROUTINE
NOT WITHIN 4K WORDS FROM VALUE OF
BASE ADDRESS & 177700
WINDOW HAS l/O IN PROGRESS
ALIGNMENT ERROR
ADDRESS WINDOW ALLOCATION OVERFLOW
INVALID REGION ID
INVALID ADDRESS WINDOW ID
INVALID TI PARAMETER
INVALID SEND BUFFER SIZE <>255.)
LUN LOCKED IN USE
INVALID UIC
INVALID DEVICE OR UNIT
INVALID TIME PARAMETERS
PARTITION/REGION NOT IN SYSTEM
INVALID PRIORITY <>250.)
INVALID LUN
INVALID EVENT FLAG NUMBER
PART OF DPB OUT OF USER'S SPACE
DIC OR DPB SIZE INVALID

APPENDIX B
SUMMARY OF 1/0 FUNCTIONS

This appendix summarizes legal 1/0 functions for all device drivers described in
this manual. Both devices and functions are listed alphabetically. The meanings
of the function-specific parameters shown below are discussed in the appropri­
ate driver chapters. The user may reference these functions symbolically by in­
voking the system macros FIUO$ (standard 1/0 functions) and SPCl0$ (special
1/0 functions), or by allowing them to be defined at task-build time from the sys­
tem object library.

B.1 DISK DRIVER

Valid 1/0 functions for the disk driver are listed below:

10.RLB, ... ,<stadd,size,,blkh,blkl>

10.RPB, ... ,<stadd,size,,,pbn>

10.RVB, ... ,<stadd,size,,blkh,blkl>

10.WDD, ... ,<stadd,size,,,pbn>

10.WLB, ... ,<stadd,size,,blkh,blkl>

10.WLC, ... ,<stadd,size,,blkh,blkl>

10.WPB, ... ,<stadd,size,,,pbn>

10.WVB, ... ,<stadd,size,,blkh,blkl>

READ logical block

READ physical block

READ virtual block

WRITE physical block (with deleted
data mark)

WRITE logical block

WRITE logicai block followed by write
check

WRITE physical block

WRITE virtual block

8-1

8-2 APPENDIX 8: SUMMARY OF 1/0 FUNCTIONS

B.2 TERMINAL DRIVER

Valid terminal driver 1/0 functions are listed below:

10.AT A, ... , <ast[,parameter2][,ast2]>

10.ATT, .. .

10.CCO, ... ,<stadd,size,vfc>

10.DET, .. .

SF.GMC, ... ,<stadd,size>

10.GTS, ... ,<stadd,size>

IQ.KIL, .. .

10.RAL, ... ,<stadd,size[,tmo]>

10.R.LB, ... ,<stadd,size[,tmo]>

10.RNE, .. .,<stadd,size[,tmo]>

10.RPR, ... ,<stadd,size,[tmo],
pradd,prsize,vfc>

10.RST, ... ,<stadd,size[,tmo]>

10.RTT, ... ,<stadd,size,[tmo], table>

10.RVB, ... ,<stadd,size[,tmo]>

SF .SMC, ... , <stadd,size>

10.WAL, ... ,<stadd,size,vfc>

10.WBT, ... ,<stadd,size,vfc>

10.WLB, ... ,<stadd,size,vfc>

10.WVB, ... ,<stadd,size,vfc>

ATTACH device, specify unsolicited­
character AST1

Attach device

WRITE logical block, cancel CTRL/O

Detach device

GET multiple characteristics

GET terminal support

Cancel 1/0 requests

READ logical block and pass all bits1

READ logical block1

READ logical block and do not echo1

READ after prompt1

READ with special terminators

READ logical block ended by specified
special terminator2

READ virtual block1

SET multiple characteristics

WRITE logical block and pass all bits

WRITE logical block and break through
any ongoing 1/0

WRITE logical block

WRITE virtual block

B.2.1 Subfunction Bits for Terminal-Driver Functions

TF.AST

TF.BIN

TF.CCO

TF.ESQ

TF.NOT

TF.RAL

TF.RCU

Unsolicited-input-character AST

Binary prompt

Cancel CTRL/0

Recognize escape sequences

Unsolicited input AST notification1

Read, pass all bits

Restore cursor position 1

1. "ast2", "parameter2", and "tmo" parameters are available for full-duplex driver functions only.

2. Full-duplex driver only.

TF.RNE

TF.RST

TF.TMO

TF.WAL

TF.WBT

TF.XCC

TF.XOF

APPENDIX B: SUMMARY OF 1/0 FUNCTIONS B-3

Read with no echo

Read with special terminators

Read with time-out1

Write, pass all bits

Break-through write

CTRL/C starts a command line interpreter1

SendXOFF

1. "asr", "parameter 2", and "tmo" parameters are available for full duplex driver functions only.

APPENDIX C
1/0 FUNCTION AND ST A TUS CODES

This appendix lists the numeric codes for all 1/0 functions, directive status re­
turns, and 1/0 completion status returns. Sections are organized in the follow­
ing sequence:

D 1/0 status codes

D Directive status codes

D Device-independent 1/0 function codes

D Device-dependent 1/0 function codes

Device-dependent function codes are listed by device. Both devices and codes
are organized in alphabetical order.

For each code, the symbolic name is listed in form 10.xxx, IE.xxx, or IS.xxx.
A brief description of the error or function is also included. Both decimal and
octal values are provided for all codes.

C.1 1/0 STATUS CODES

This section lists error and success codes that can be returned in the 1/0 status
block on completion of an 1/0 function. The codes may be referenced symboli­
cally by invoking the system macro IOERR$.

C.1.1 1/0 Status Error Codes

Name Decimal Octal Meaning

IE.ABO -15 177761 Operation aborted

IE.ALN -34 177736 File already open

IE.BAD -01 177777 Bad parameter

C-1

C-2 APPENDIX C: 1/0 FUNCTION AND STATUS CODES

Name Decimal Octal Meaning

IE.BBE -56 177710 Bad block

IE.BCC -66 177676 Block check error or framing error

IE.BLK -20 177754 Illegal block number

IE.BYT -19 177755 Byte-!igned buffer specified

IE.CNR -73 177667 Connection rejected

IE.CON -22 177752 UDC connect error

IE.DAA -08 177770 Device already attached

IE.DAO -13 177763 Data overrun

IE.DNA -07 177771 Device not attached

IE.DNR -03 177775 Device not ready

IE.DUN -09 177767 Device not attachable

IE.EOF -10 177766 End-of-file encountered

IE.EQT -62 177702 End-of-tape encountered

IE.EOV -11 177765 End-of-volume encountered

iE.FHE -59 177705 Fatal hardware error

IE.FLG -89 177647 Event flag already specified

IE.FLN -81 177657 !CS/!CR controller already offline

IE.IEF -97 177637 Invalid event flag

IE.IES -82 177656 Invalid escape sequence

IE.IFC -2 177776 Illegal function

IE.MOD -21 177753 Invalid UDC or ICS/ICR module

IE.NLK -79 177661 Task not linked to specified ICS/ICR
interrupts

IE.NLN -37 177733 File not open

IE.NOD -23 177751 No dynamic memory available to
allocate a secondary control block

IE.NST -80 177660 Task specified in ICS/ICR Link or
Unlink request not installed

IE.NTR -87 17765"! Task not triggered

IE.OFL -65 177677 Device off line

IE.ONP -05 177773 Illegal subtunction

IE.OVR -18 177756 Illegal read overlay request

IE.PES -83 177655 Partial escape sequence

IE.PR! -16 177760 Privilege violation

APPENDIX C: 1/0 FUNCTION AND STATUS CODES C-3

IE.REJ -88 177650 Transfer rejected

IE.RSU -17 177757 Nonsharable resource in use

IE.SPC -06 177772 Illegal address space

IE.TMO -74 177666 Time-out error

IE.VER -04 177774 Unrecoverable error

IE.WCK -86 177652 Write check error

IE.WLK -12 177764 Write-locked device

C.1.2 1/0 Status Success Codes

Decimal Octal
Name Bytes Word Meaning

IS.CC Byte 0: 1 001401 Successful completion on read
Byte 1: 3 terminated by CTRL/C

IS.CR Byte 0: 1 006401 Successful completion with
Byte 1: 15 RETURN

IS.ESC Byte 0: 1 015401 Successful completion with ESCape
Byte 1: 33

IS.ESQ Byte 0: 1 115401 Successful completion with an
Byte 1: escape sequence
233

IS.PND +00 000000 1/0 request pending

IS.ROD +02 000002 Deleted data mark read

is.sue +01 000001 Successful completion

IS.TMO +02 000002 Successful completion on read
terminated by time-out

IS.TNC +02 000002 Successful transfer but message
truncated (receiver buffer too small)

C.2 DIRECTIVE CODES

This section lists error and success codes that can be returned in the Directive
Status Word at symbolic location $DSW when a QIO directive is issued.

C-4 APPENDIX C: 1/0 FUNCTION AND STATUS CODES

C.2.1 Directive Error Codes

Name Decimal Octal Meaning

IE.ADP -98 177636 Invalid address

IE.IEF -97 177637 Invalid event flag number

IE.ILU -96 177640 Invalid logical unit number

IE.SOP -99 177635 Invalid DIC number or DPB size

IE.ULN -05 177773 Unassigned logical unit number

IE.UPN -01 177777 Insufficient dynamic storage

C.2.2 Directive Success Codes

Name Decimal Octal Meaning

is.sue +01 000001 Directive accepted

C.3 1/0 FUNCTION CODES

This section lists octal codes for all standard and device-dependent 1/0 func­
tions.

C.3.,1 Standard 1/0 Function Codes

Octal Octal
Code Subcode

Symbolic Word (High (Low
Name Equivalent Byte) Byte) Meaning

10.ATT 001400 3 0 Attach device

10.DET 002000 .4 0 Detach device

10.KIL 000012 0 12 Cancel 1/0 requests

10.RLB 001000 2 0 Read logical block

10.RVB 010400 21 0 Read virtual block

10.WLB 000400 1 0 Write logical block

10.WVB 011000 22 0 Write virtual block

APPENDIX C: 1/0 FUNCTION AND STATUS CODES C-5

C.3.2 Terminal 1/0 F1.mction Codes

Octal Octal
Code Subcode

Symbolic Word (High (Low
Name Equivalent Byte) Byte) Meaning

!O.ATA 001410 3 10 Attach device, specify
unsolicited-input-character
AST

10.CCO 000440 1 40 Write logical block and
cancel CTRL/O

SF.GMC 002560 5 160 Get multiple
characteristics

10.GTS 002400 5 00 Get terminal support

10.RAL 001010 2 10 Read block and
pass all bits

10.RNE 001020 2 20 Read with no echo

10.RPR 004400 11 00 Read after prompt

10.RST 001001 2 1 Read with special
terminators

10.RTT 005001 12 1 Read logical block
ended by specified
special terminator

SF.SMC 002440 5 40 Set multiple
characteristics

10.WAL 000410 10 Write logical block and
pass alibits

10.WBT 000500 1 100 Write logical block and
break through on-going
1/0

C.3.3 Subfunction Bits

With 10.RLB, 10.RPR:

TF.RST 1

TF.BIN 2

TF.RAL 10

TF.RNE 20

TF.XOF 100

TF.TMO 200

C-6 APPENDIX C: 1/0 FUNCTION AND STATUS CODES

With 10.WLB:

TF.WAL 10

TF.CCO 40

TF.WBT 100

With 10.ATT:

TF.AST 10

TF.ESQ 20

APPENDIX D
FACILITY AND ERROR CODES

The following symbols are used in reporting fatal errors. Their values must not
change, since user documentation may refer to them.

0.1 SUB-FACILITY CODES

These sub-facility codes are included in a fatal error report when one occurs.

Code

sfdsbl == 1.

sfenbl == 2.

sfmap==3.

sfumap==4.

sfinfo == 5.

sflist== 6.

sfload == 7.

sfmode== 8.

Meaning

Disable keyboard usage

Enable keyboard usage

Map keyboard common

Unmap keyboard common

Determine current keyboard information

Generate list of supported keyboards

Load specified keyboard

Convert keyboard to specified mode

D-1

D-2 APPENDIX D: FACILITY AND ERROR CODES

0.2 FATAL ERROR CODES

The following fatal error codes are reported via the subroutine in the diagnostic
firmware which reports fatal software-detected errors.

Code

ecipbl = 1. * 1000

ecfakc = 2. * 1000

ecfcaw = 3. * i 000

ecfdkc = 4. * 1000

ecikrn = 5. * 1000

eccksi = 6. * 1000

eckcts = 7. * 1000

ecemti = 8. • 1000

ecfcrf = 9. • 1000

D.3 BUGCHECK MACRO

'

Error

Incorrect parameter block length

Failure attaching keyboard common (low
byte is $DSW)

Failure creating address window (low byte
is $DSW)

Failure detaching keyboard common (low
byte is $DSW}

Invalid keyboard revision number

Corrupted keyboard-specific information

Keyboard common too small

Erroneous mode-table information

Failed to connect RAB to FAB (RMS code
in low 9 bits)

This macro defines the following facility and error codes.

Code

BF.PKS='B'000100

BF.TTD='B'000200

BF.PTS='B'100400

BF.EXE='B'000300

BE.IOT ='8'000000

BE.STK='B'000001

BE.BPT ='8'000002

BE.ILl='B'000003

BE.000='8'000004

BE.SGF='B'000005

BE.NPA='B'000006

BF.UP='B'000400

BE.FNF='B'000007

Meaning

P /OS Keyboard Handler

Terminal Driver

P/OS Terminal Subsystem

Exec-SSTSR, General

IOT in System State

Stack Overflow

Trace Trap or Breakpoint

Illegal Instruction Trap

Odd Address or Other Trap 4

Segment Fault

A Task on P/OS Without a Parent Aborted

System Startup Processing

Required File Not Found

INDEX

$ Macro form, 3-6
$C Macro form, 3-7
$S Macro form, 3-7
.MCALL assembler directive, 10-13

arguments, 3-6
example, 10-14

ABRT$ (Abort Task), 9-3
Access mode, 2-4

block, 2-5
record, 2-4

ACS
buffer, 8-9

Active Page Register
See APR

Active task state
blocked, 3-17
ready-to-run, 3-17
stopped, 3-18

Address mapping, 7-2
Address space

logical, 1-3, 7-2
physical, i-3, 7-2
virtual, 1-3, 7-2

Address window
creating, 9-21

Addressing
virtual, 7-2

Allocate Checkpoint Space
See ACS

AL TP$ (Alter Priority), 9-5
ALUN$ (Assign LUN), 9-7, 10-14
Application program

design suggestions, 1-3
APR, 7-19
APRO

restriction, 7-19
Assign LUN

SeeALUN$
AST, 3-3, 5-6

characteristics, 5-7
disable or inhibit, 9-37
service routines, 3-18, 5-8

ASTOX, 10-6
ASTX$S (AST Service Exit), 9-9, 10-21
Asynchronous System Trap

See AST
ATRG$ (Attach Region), 9-·12

definition, 7-8
Attribute list, 8-5

Block access mode
sequential, 2-5
VBN, 2-5

Bootblock, 8-15
Bootstrap, 8-15

Call
high-level language, 3-1

CALL ABORT, 9-3
CALL AL TPRI, 9-5
CALL ASNLUN, 9-7
CALL ATRG, 9-12
CALL CANALL, 9-28
CALL CANMT, 9-17
CALL CLREF, 9-14
CALL CNCT, 9-19
CALL CRAW, 9-21
CALL CRELOG, 9-15
CALL CRRG, 9-25
CALL DECLAR, 9-30
CALL DELLOG, 9-31
CALL DISCKP, 9-35
CALL DSASTR, 9-33
CALL DTRG, 9-36
CALL ELAW, 9-38
CALL EMST, 9-40
CALL ENACKP, 9-43
CALL ENASTR, 9-42
CALL EXITIF, 9-44
CALL EXST, 9-48
CALL EXTTSK, 9-50
CALL FEAT, 9-52
CALL GETDDS, 9-55
CALL GETLUN, 9-57
CALL GETMCR, 9-60
CALL GETPAR, 9-65
CALL GETREG, 9-67
CALL GETTIM, 9-69
CALL GETTSK, 9-71
CALL GMCX, 9-62
CALL INASTR, 9-33
CALL MAP, 9-76
CALL MARK, 9-76
CALL 010, 9-80
CALL RCST, 9-65
CALL READEF, 9-92
CALL RECEIV, 9-87
CALL FlECOEX, 9-89
CALL REOUES, 9-99
CALL RESUME, 9-104
CALL RPO!, 9-96
CALL RAEF, 9-101
CALL RUN, 9-105
CALL SDRC, 9-113
CALL SDRP, 9-116
CALL SEND, 9-109
CALL SETDDS, 9-111
CALL SETEF, 9-119
CALL SETTI M, 9-137
CALL SPAWN, 9-123
CALL SREF, 9-132
CALL SREX, 9-129
CALL STLOR, 9-140
CALL STOP, 9-142
CALL STOPFR, 9-143
CALL SUSPND, 9-122
CALL TRALOG, 9-169
CALL UNMAP, 9-150
CALL USTP, 9-152
CALL VRCD, 9-153

1-2 INDEX

CALL VRCS, 9-155
CALL VRCX, 9-157
CALL VSDA, 9-159
CALL VSRC, 9-161
CALL WAITFR, 9-171
CALL WFLOR, 9-169
CALL WFSNE, 9-167
CALL WIMP, 9-163
CALL WTQIO, 9-83
Callable system routines, 8-1

general conventions, 8-1
Callable task routines, 8-3
Cancel Mark Time

See CMKT$
Cancel Time Based Requests

See CSRQ$
CBD, 9-25
Checkpointing

affected task states, 1-5
definition, 1-5
disabled, 9-35
enable, 9-43

CLEF$ (Clear Event Flag), 9-14
CLOG$ (Create Logical Name String), 4-2,
9-15

example, 4-2
CMKT$ (Cancel Mark Time), 9-17
CNCT$ (Connect), 9-19
Command line

passing, 9-96
Common Block Directory

See CBD
Common event flag

definition, 5-2
Communications Driver, 13-1
Configuration table, 9-163
Connect, 6-2

See CNCT$
CRAW$ (Create Address Window), 7-8, 9-21
Create Address Window

See CRAW$
Create Logical Name

See CLOG$, PROLOG
Create Region

See CRRG$
CR EDEL

server task, 8-6
CRRG$ (Create Region), 9-25

definition, 7-8
CSRQ$ (Cancel Time Based Requests), 9-28

DECL$S (Declare Significant Event), 9-30
Default directories, 4-3
Default directory string

retrieving, 4-5
setting up, 4-4

Delete Logical Name
See DLOG$, PROLOG

Detach Region
See DTRG$

Device
physical device names, 10-15
pseudo-device names, 10-15
standard devices, 11-1
supported devices, 10-2

DIC, 3-2
DIR$ Macro, 10-13
Directive

conventions, 3-24
description format, 9-1
event-associated, 3-24
informational, 3-21
memory management, 3-23
parent/offspring tasking, 3-22
task status control directives, 3-21
trap-associated, 3-22

Directive Identification Code
See DIC

Directive macros, 3-4
Directive Parameter Block

See DPB
Directive Status Word

See DSW
Directory

creating a, 8-6
deleting a, B-6
setiing up default, 9-123

Directory manipulation
See PRODIR

Disable AST Recognition
See DHAR$

Disk driver
1/0 functions, 8-1

DLOG$ (Delete Logical Name), 4-3, 9-31
example, 4-4

DPB, 3-2
created at assembly time, 3-6
created at run time, 3-7
creation of, 3-4
definition, 10-10

Driver, Communications, i 3- i
DSAR$S (Disable AST Recognition), 9-33
DSCP$S (Disable Checkpointing), 9-35
DSW, 3-2
DTRG$ (Detach Region), 7-8, 9-36
Dynamic region, 7-3

EFN, 5-2
ELAW$ (Eliminate Address Window), 7-8, 9-38
EMST$ (Emit Status), 6-3, 9-40
EMT 377 instruction, 3- i
ENAR$S (Enable AST Recognition), 9-42
ENCP$S (Enable Checkpointing), 9-43
Equivalence name, 4-1
Error codes, A-1, D-1
Error returns, 3-3
Error routine address, 3-8
Event flag

definition, 5-2
setting, 9-1i9
testing for, 5-4

Event Flag Number
See EFN

EXIF$ (Exit If), 9-44
Exit With Status directive

See EXST$
EXIT$S (Task Exit), 9-46
EXST$ (Exit With Status), 9-48
EXTK$ (Extend Task), 9-50

FCP
See Files-11 ACP

FEAT$ (Test Extended Feature), 9-52
File

access modes, 2-4
accessing file attributes, 8-4
directory manipulation, 8-6
identification block, 8-4
indexed, 2-4
list of accessible attributes, 8-5
organization, 2-3
record formats, 2-3
relative, 2-4
sequential, 2-3
structure, 2-3

File system, 2-i
data storage, 2-1
overview, 2-1
See also RMS

Files-11 ACP (FCP)
description, 2-2
logical name use, 4-3

Floating Point Processor
exception ASTs, 9-120

Fortran, 3-1
use of AST service routines,

Fortran Object Time System
See DTS

Fortran subroutines
calls, 3-12
corresponding macro calls, 3-12
error conditions, 3-15
GETADR subroutine, 3-12
integer arguments, 3-11
optional arguments, 3-11
system directive operations, 3-10
use of, 3-10

GDIR$ (Get Default Directory), 4-7, 9-55
example, 4-7

GET file attributes
function of PROATR, 8-4

Get Mapping Context
SeeGMCX$

Get Partition Parameters
See GPRT$

Get Region Parameters
See GREG$

Get Task Parameters
See GTSK$

Get Time Parameters
See GTIM$

Global symbols, 3-8
GLUN$ (Get LUN Info), 9-57, 10-18
GMCR$ (Get Command Line), 9-60
GMCX$ (Get Mapping Context), 7-9, 9-62
GPRT$ (Gel Partition Parameters), 9-65
GREG$ (Get Region Parameters), 7-9, 9-67
GTIM$ (Get Time), 9-69
GTSK$ (Get Task Parameters), 9-71

1/0
attaching devices

See 10.ATT
canceling requests

See IQ.KIL
detaching devices

See 10.DET
general functions, 10-1
logical, 10-2
physical, 10-2
standard functions, 10-19
virtual, 10-2

1/0 completion
Executive actions, 10-28

1/0 request
acceptance of, 10-5
issuing, 10-4
rejection of, 10-5

INDEX 1-3

IHAR$S (Inhibit AST f-iecognition), 9-33
Initialization

volume, 8-7
Instrument Society of America

SeelSA
Integer array, 3-11
Intertask synchronization

examples, 6-4
10.ATT, 10-5, 10-20
10.DET, 10-21
10.KIL, 10-21
10.RVB, 10-22
10.WVB, 10-23
ISA

and AST service routines, 9-9
Fortran calls, 3-3

LBN (logical Block Number), 2-2
Library

cluster, 1-4
POSSUM, 8-1
shared, 1-4

Local event flag
definition, 5-2
examples of use, 5-3

Local symbolic offset, 3-10
Logical address space, 7-2
Logical Block Number

See LBN
Logical name

create, 4-3
definition, 4-1
delete, 4-3, 9-31
duplicate, 4-2
Files-11 use, 4-3
logical name table, 4-1
RMS conventions, 4-2
RMS translation, 4-2

Logical Unit Table
LUN (Logical Unit Number)

changing the assignment, 10-4
definition, 10-3
reassignment, 10-3

LUT (Logical Unit Table), 10-4

1-4 INDEX

Macro call
examples, 3-9

Macro expansion
$form, 3-6
$C form, 3-7
$S form, 3-7

Macro name conventions, 3-6
MACR0-11, 3-1

use of system directives, 3-1
MAP$ (Map Address Window), 7-9, 9-73
Mapping, 7-2
Mark Time

See MRKT$
Memory common

fixing in memory, 8-18
installation of, 8-16
removal of, 8-18

Memory Management directives, 7-1
MRKT$ (Mark Time), 9-76

OCB (Offspring Control Block), 6-2, 9-19
Offspring Control Block

SeeOCB
Offspring task, 6-1

exit status, 6-3
OTS

diagnostic messages, 3-18
Overlay

disk-resident, 1-4
memory-resident, 1-4

Parent task, 6-1
Parent/offspring tasking

chaining, 6-1
definition, 6-1
spawning, 6-1
use of, 6-1

Partition Control Block
See PCB

PC, 5-5
PCB, 9-30
PDP-11 R5 Calling Sequence

for high level-level languages, 8-2
Physical Address Space, 7-2
POSSUM library, 8-1

included in a task, 8-1
linking a task to POSSUM, 8-1

Privileged tasks
remapping APRs to regions, 7-19

PROATR, 8-4
arguments, 8-4

Processor Status
See PS

Processor Status Word
See PSW

PRODIR, 8-6
arguments, 8-6

PROFBI, 8-7
arguments, 8-7

Program Counter
See PC

PROLOG, 8-11
PROVOL, 8-14

arguments, 8-15
PS, 5-5
PSW, 3-3

010
macro expansion, 10-S
macro format, 10-6
standard functions for disks, 11-3
typical parameters, 10-S

010$ (Queue 1/0 Request), 9-80, 10-14
QIOW$, 9-83, 10-13

RS calling sequence, 8-2
RCST$ (Receive Data or Stop), 9-8S
RCVD$ (Receive Data), 9-87
RCVX$ (Receive Data or Exit), 9-89
ROSO

description, 11-2
ROAF$ (Read All Event Flags), 9-92
ROB, 7-10

definition, 7-10
field values, 7-18
generating with Fortran, 7-13
generating with macros, 7-13

ROB array format, 7-14
RDBBK$, 7-12
RDBDF$, 7-12
RDEF$ (Read Event Flag), 9-93
RDXF$ (Read Extended Event Flags), 9-94
Read All Event Flags

See ROAF$
Read Event Flag

See RDEF$
Read Extended Event Flags

See RDXF$
Receive By Reference

See RAEF$
Receive Data

SeeRCVO$
Receive Data Or Exit

SeeRCVX$
Receive Data Or Stop

See RCST$
Record access mode

key, 2-4
record file access (RFA), 2-4
sequential, 2-S

Record formats
fixed length, 2-3
stream, 2-3
undefined, 2-3
variable length with VFC, 2-3

Record Management System
See RMS

Region, 9-12
attaching to, 7-7
creation, 9-28
definition, 7-3
dynamic, 7-3
fixing in memory, 8-18
ID, 7-4
installation of, 8-16
protecting, 7-7
shareable, 7-7
static common region, 7-3

Region Definition Block
See ROB

Request
issuing, 9-99

Request Task
See ROST$

Resume Task
SeeRSUM$

RMS
and default directories, 4-3
associated documents, 2-5
data storage, 2-1
overview, 2-1

RPOI$, 9-96
and Spawn directive, 6-2
when to use, 1-3

ROST$
when to use, 1-3

ROST$ (Request Task), 9-99
RAEF$

definition, 7-9
RAEF$ (Receive By Reference), 9-101
RSUM$ (Resume Task), 9-104
RSXMAC.SML

See System macro library
RUN$ (Run Task), 9-105
RX50, 11-2

SDAT$ (Send Data), 9-109
SDIR$ (Setup Default Directory), 4-6, 9-111

example, 4-6
SDRC$ (Send, Request and Connect), 9-113

when to use, 1-3
SOAP$, 9-116
Send By Reference

SeeSREF$
Send Data

See SDAT$
Send, Request and Connect, 6-2

See SDRC$
Set Event Flag

SeeSETF$
SET file attributes

function of PROATR, 8-4
Set System Time

SeeSTIM$
SETF$ (Set Event Flag), 9-119
Setup Default Directory String

See SDIR$
SFPA$, 9-120
Shareable region, 7-3
Shared regions, 7-7
Significant event, 9-101, 10-8

declaration, 9-30
definition, 5-1
example, 10-9
wait for, 9-169

Spawn
SeeSPWN$

Spawning, 6-1
Specify Receive Data AST

See SADA$
Specify Requested Exit AST

See SREX$
SPND$S (Suspend), 9-122
SPWN$ (Spawn), 9-123

when to use, 1-4
SADA$ (Specify Receive Data AST), 9-127
SREF$

definition, 7-11
SREF$ (Send By Reference), 9-132
SREX$ (Specify Requested Exit AST), 9-129
SARA$, 9-135

SST, 3-22, 5-4
definition, 5-4
service routines, 5-5
vector table, 5-5
vector table format, 5-5

Stack Pointer, 3-7
Static common region

definition, 7-5
Status control block

format, 8-3
STD,3-16
STIM$ (Set System Time), 9-137
STL0$, 9-140
Stop

See STOP$S
Stop For Single Event Flag

SeeSTSE$
STOP$S, 9-142
Stop-bit synchronization, 5-11
STSE$, 9-143
Suspend

SeeSPND$S
SVOB$, 9-144
SVTK$, 9-146
SWST$ (Switch State), 9-148
Synchronous System Trap

See SST
System directive, 3-1

definition, 3-1
processing, 3-2

System library account
system macros, 10-5

System Macro Library, 3-1
RSXMAC.SML, 3-6

System object module library, 3-1
System Task Directory

See STD
System trap, 5-4

Task
addressing capability, 7-1
callable task routines, 8-4
changing priority, 9-5
cooperating tasks, 1-4
extending size of, 9-50
offspring task, 6-1
overlaying, 7-1
parent task, 6-1
resuming suspended, 9-104
server task, 8-1
spawning, 6-1 , 9-123
stopping, 5-10, 9-142
suspension of, 9-122
unstopping, 5-10, 9-153

Task Communication, 6-3
Task Control Block

SeeTCB
Task names

defining, 3-11
length, 3-11

Task region, 7-3

INDEX 1-5

1-6 INDEX

Task state, 3-16
active, 3-16
dormant, 3-16

Task state transitions
active to dormant, 3-18
blocked to ready-to-run, 3-18
blocked to stopped, 3-18
dormant to active, 3-17
ready-to-run to blocked, 3-21
ready-to-run to stopped, 3-17
stopped to blocked, 3-18
stopped to ready-to-run, 3-18

TCB, 5-7
Terminal driver

features, 12-1
010 macro functions for, 12-3
subfunction bits, B-2
valid 1/0 functions, B-2

Test Extended Feature
See FEAT$

Tick
definition, 9-87

Trap
asynchronous, 10-9
synchronous, 10-9
system, 10-9

UIC, 9-78
UMAP$ (Unmap Address Window), 7-9, 9-150
User data structures, 7-9
User Identification Code

See UIC
USTP$ (Unstop Task), 9-152

Variable Receive Data
SeeVRCD$

Variable Receive Data Or Exit
SeeVRCX$

Variable Receive Data Or Stop
See VRCS$

Variable Send Data
SeeVSDA$

Variable Send, Request and Connect
See VSRC$

VBN (Virtual Block Number), 2-2
Virtual address space, 7-2
Virtual address window

definition, 7-2
Virtual block

reading, 10-22
writing, 10-23

Virtual Block Number
SeeVBN

Volume
bad block checking, 8-7
bootstrap, 8-15
dismounting, 8-15
foreign, 8-15
formatting, 8-7
initialization, 8-7
label, 8-7
mounting, 8-15
write bootblock, 8-15

VRCD$ (Variable Receive Data), 9-153
VRCS$, 9-155
VRCX$, 9-157
VSDA$ (Variable Send Data), 9-159
VSRC$, 9-161

when to use, 1-3

Wait For Significant Event
SeeWSIG$

Wait For Single Event Flag
See WTSE$

WDB, 7-15
field values, 7-18
generating with Fortran, 7-17

WDBBK$, 7-16
WDBDF$, 7-16
WIMP$, 9-187
Window Definition Block

SeeWDB
WSIG$, 9-167
WTLO$, 9-169
WTSE$, 9-171, 10-21

1-6 INDEX

Task Communication, 6-2
Task Control Block

See TCB
Task names

defining, 3-11
length, 3-11

Task naming
in Executive-level dispatching, 3-22

Task region, 7-3
Task state, 3-16

active, 3-16
dormant, 3-16

Task state transitions
active to dormant. 3-18
blocked to ready-to-run, 3-18
blocked to stopped, 3-18
dormant to active. 3-17
ready-to-run to blocked, 3-17
ready-to-run to stopped. 3-17
stopped to blocked, 3-18
stopped to ready-to-run, 3-18

TCB, 5-7, 5-10
Terminal driver

features, 12-1
010 macro functions for, 12-3
subfunction bits, B-2
valid 1/0 functions, B-2

Test Extended Feature
See FEAT$

Tick
definition, 9-78

TLOG$ (Translate Logical Name), 4-3, 9-149
example, 4-3

Translate Logical Name
See TLOG$, PROLOG

Trap
asynchronous, 10-9
synchronous. 10-9
system, 10-9

UIC, 9-71
UMAP$ (Unmap Address Window), 7-9, 9-

150
User data structures, 7-9
User Identification Code

See UIC
USTP$ (Unstop Task), 9-152

Variable Receive Data
See VRCD$

Variable Receive Data Or Exit
See VRCX$

Variable Receive Data Or Stop
See VRCS$

Variable Send Data
See VSDA$

Variable Send, Request and Connect
See VSRC$

VBN (Virtual Block Number), 2-2
Virtual address space, 7-2
Virtual address window

definition, 7-2
Virtual block

reading, 10-22
writing, 10-23

Virtual Block Number
See VBN

Volume
bad block checking, 8-7
bootstrap, 8-23
dismounting, 8-22
foreign, 8-23
formatting, 8-7
initialization, 8-7
label, 8-8
mounting, 8-22
write bootblock. 8-23

VRCD$ (Variable Receive Data), 9-153
VRCS$, 9-155
VRCX$, 9-157
VSDA$ (Variable Send Data), 9-159
VSRC$, 9-161

when to use, 1-3

Wait For Significant Event
See WSIG$

Wait For Single Event Flag
See WTSE$

WDB, 7-10, 7-15
field values, 7-18
generating with Fortran, 7-17

WDBBK$, 7-16
WDBDF$, 7-16
WIMP$, 9-163
Window Definition Block

See WDB
WSIG$, 9-167
WTL0$, 9-169
WTSE$, 9-171, 10-18

XK communications driver, 13-1
010 macro functions for, 13-2

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-I

Cl>
§

"' £
Cl
c:
0
;;;
3
u
Cl>

"' ra
Cl>
a:

READER'S COMMENTS

P/OS System Reference Manual
Order No. AA-N620A-T1
Order No. AO-N620A-T2

NOTE: This form is for document comments only. DIGITAL
will use comments submitted on this form at the com­
pany· s discretion. If you require a written reply and
are eligible to receive one under Software Perfor­
mance Report (SPA) service. submit your comments
on an SPA form.

Did you find this manual understandable. usable. and well-organized?
Please make suggestions for improvement.

-----------·-·-

--

Did you find errors in this manual? If so. specify the error and the page number.

---·

----------------------------------·- - --------

Please indicate the type of reader that you most nearly represent.
0 Assembly language programmer
0 Higher-level language programmer
0 Occasional programmer (experienced)
0 User with little programming experience
0 Student programmer
0 Other (please specify) ------------ ---- -- - - .------··

Name _____________________ _ Date _________ -----

Organization------------------------
Street ____________________________________ _

City--------------- State ________ Zip Code --------

or

Country

I
I
I
I

, I
Do Not Tear - Fold Here and Tape --1

111111 No Po,u~ !
~amaama

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Professional 300 Series Publications
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET
MAYNARD, MASSACHUSETTS 01754

Necessary

if Mai led in the

United States

I
I

-----Do Not Tear - Fold Here--1
I
I
I
I
I
I
I
I

