
RSTS/E
Programmer's Utilities

Manual
Order No. AA-D749A-TC

(

May 1978

This document describes the RSX-based utilities available to the RSTS/E
programmer. It contains Information on the MACRO Assembler, the Librarian,
Patch, and MAKSIL utilities.

RSTS/E
Programmer's Utilities

Manual
Order No. AA-D749A-iC

OPERATING SYSTEM AND VERSION: RSTS/E V7.0

SOFTWARE VERSION: RSTS/E V7.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation • maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC net
DECsystem-10
DECSYSTEM-20
DECtape
DECUS
DIBOL
DIGITAL
FOCAL

lAS
MASSBUS
PDP
RSTS
RSX
UNIBUS
VAX
VMS

Contents

Preface

Documentation Conventions

Chapter 1 Introduction

1.1 RSTSIE Utility Command Line
1.2 RSTSIE File Specifications.
1.3 Accessing Utilities and Entering Command Lines

1.3.1 Accessing Utilities.

1.3.1.1 Entering the RUN Command
1.3.1.2 CCL Command Names . . .

1.3.2 Entering Command Lines

1.3.2.1 Entering the Complete Command Lines
1.3.2.2 Using Indirect Command

Chapter 2 Using the MACR0-11 Utility Program

2.1 Invoking MACRO-11
2.2 MACRO-11 Command Line Format
2.3 MACRO-II Input/Output File Specification Format.
2.4 MACRO-11 Switches

2.4.1 Listing Control Switches. . .
2.4.2 Function Control Switches . .
2.4.3 Assembly Pass Switch
2.4.4 MACRO Library File Switch .

2.5 MACRO-11 Error Messages

Chapter 3 USing the Librarian Utility Program (LBR)

3.1 Library Files
3.2 LBR Command Line.
3.3 LBR Switches. . . .

3.3.1 Compress Switch (lCO)
3.3.2 Create Switch (lCR) . .
3.3.3 Delete Switch (IDE) . .
3.3.4 Default Switch (IDF) ..
3.3.5 Delete Global Switch (lOG)
3.3.6 Entry Point Switch (IEP) .
3.3.7 Extract Switch (/EX) . . .
3.3.8 Insert Switch (lIN).
3.3.9 List Switches (/LI, /LE, /FU) .
3.3.10 Replace Switch (IRP)
3.3.11 Selective Search Switch (ISS)
3.3.12 Squeeze Switch (lSZ)

Page

un

um

1-1

.1-1

.1-2

.1-3

.1-3

.1-4

.1-4

.1-5

.1-5

.1-5

2-1

.2-2

.2-2

.2-3

.2-3

.2-3

.2-5
· 2-6
.2-6

.2-6

3-1

.3-1

.3-2

.3-2

.3-3

.3-4

.3-5

.3-6
· 3-7
.3-8
.3-9
.3-10
.3-11
· 3-12
· 3-16
· 3-17

m

3.4 Combining Library Functions.
3.5 LBR Restrictions
3.6 LBR Error Messages

3.6.1 Effect of Fatal Errors on Library Files
3.6.2 List of LBR Errors

Chapter 4 Using the Object Module Patch Utility (PAT) Program

4.1 How PAT Works
4.2 Specifying the PAT Command Line.
4.3 How PAT Applies Updates.

4.3.1
4.3.2
4.3.3
4.3.4

4.3.5

The Input File.
The Correction File
Creating the Correction File
How PAT and the Task Builder Update Object Modules.

4.3.4.1 Overlaying Lines in a Module
4.3.4.2 Adding a Subroutine to a Module

Determining and Validating the Contents of a File.

4.4 PAT Messages

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

Information Messages .
Command Line Errors .
File Specification Errors
Input/Output Errors . .
Errors in File Contents or Format.
Internal Software Error. .
Storage Allocation Error . . .

Chapter 5 Using the MAKSIL Utility Program

5.1 Creating a Run-Time System (RTS)
5.2 Creating a Resident Library
5.3 Operating Instructions. . . .
5.4 Messages..........

5.4.1 Fatal Error Messages.
5.4.2 Diagnostic Messages.
5.4.3 Informational Messages

Appendix A MACRO-11 Diagnostic Error Message Summary

Appendix B Librarian Utility Program (LBR) Files and Formats

Index

B.1 Library Header ...
B.2 Entry Point Table. .
B.3 Module Name Table.
B.4 Module Header . . .

· 3-19
· 3-19
· 3-20

· 3-20
· 3-21

4-1

.4-2

.4-4

.4-4

.4-4

.4-5

.4-5

.4-6

.4-6

.4-7

.4-8

.4-9

.4-9

.4-10

.4-11

.4-12

.4-13

.4-14

.4-15

5-1

.5-1
· 5-3
.5-3
· 5-5

.5-5

.5-8
· 5-9

A-I

B-1

· B-1
· B-1
· B-2
· B-2

Figures

Tables

3-1 MACRO Listing Before and After Running LBR with /SZ Switch.
4-1 Updating a Module Using PAT.
4-2 Processing Steps Required to Update a Module Using PAT.
B-1 Standard Library File Format
B-2 Contents of Library Header
B-3 Format of Entry Point Table Element .
B-4 Format of Module Name Table Element
B-5 Module Header Format

1-1 File Specification Defaults .
1-2 File Extension Defaults
1-3 Conventional CCL Names for RSTS/E Accessed RSX-Based Utilities.
2-1 MACRO-ll Switches : ..
2-2 Valid Arguments for ILl and /NL Switches .
2-3 Valid Arguments for /DS and /EN Switches.
3-1 LBR Switches.
3-2 Sample Files Used in LBR Examples. . . .
3-3 Output Library File after Execution of Example 1 .
3-4 Output Library File after Execution of Example 2 .
3-5 Output Library File after Execution of Example 3 .
5-1 Task Builder Options for Virtual and Physical Address Range
5-2 Task Builder PAR and STACK Options for Various Sized

Run-Time Systems

· 3-18
.4-2
.4-3
· B-2
· B-3
· B-4
· B-4
· B-4

.1-2

.1-3

.1-4

.2-4

.2-4

.2-5

.3-2

.3-14

.3-14

.3-15

.3-16

.5-2

.5-2

Commercial Engineering Publications Typeset this manual using DIGITAL's
TMS-ll Text Management System.

837all

v

Preface

This manual describes the RSX-based utility programs available to RSTS/E
users.These utility programs are:

• MACRO-ll Assembler Utility Program (MAC)

The MACRO-ll Assembler processes assembly language programs and sub­
programs and produces single relocatable binary object files. With the
MACRO-ll Assembler, you can obtain formatted listings of your source
(input) code, as well as a symbol table, and table of contents listings.

• Librarian Utility Program (LBR)

The Librarian Utility is a library maintenance program that provides a
means for creating, modifying, updating, listing, extracting, and maintain­
ing library files. LBR can process both Macro and object module libraries.

• Object Module Patch Utility Program (PAT)

With PAT you can modify code in a relocatable binary object (.OBJ)
Module.

• Make a Save Image Library Utility Program (MAKSIL)

MAKSIL Utility program allows you to either create a Save Image Library
file.or a run-time system image file.

These programs enable you to use the system resources efficiently to create,
manipulate, and maintain files from a system command level.

This manual is made up of five chapters. Chapter 1 contains general informa­
tion on RSTS/E Programmers's utilities; Chapters 2 through 5 contain de­
tailed information on use of the MACRO-ll Assembler Utility, the Librarian
Utility, the Object Module Patch Utility, and the Make a Save Image Library
Utility.

You need not read the entire manual to learn the use of a particular utility.
However, Chapter 1 contains general information that should be read before
going to the chapter that describes the utility of interest.

un

Documentation Conventions

um

Throughout this manual, symbols and other notational conventions are used
to represent keyboard characters, and textual information, as well as to clarify
the presentation of information. The symbols and conventions used are:

Color In the dialogue examples used in this manual, colored text
highlights user response to questions posed by the perti­
nent program.

Uppercase Where uppercase characters appear in a command line for­
mat, the uppercase characters must be entered as they are
shown. For example, utility switches are 2-character en­
tries that must always be entered as they are shown in
format specifications.

Lowercase Lowercase letters, words, or symbols in command line for­
mat specifications represent variable information. For
example:

Command
Abbreviations

Brackets
([J)

Commas
(,)

At sign
(@)

filnam.ext

represents a file specification where you substitute alpha­
numeric information for filnam, and ext. as appropriate.

Where short forms of commands are allowed (see Section
1.3.1.2), the shortest form acceptable is represented by
uppercase letters. This will be determined by the system
manager.

Brackets denote optional entries in a specification. Note
that brackets are a part of the project, programmer num­
ber in file specifications, that is, [project, programmer].
When this portion of a file specification is entered explicit­
ly, brackets are syntax elements and do not indicate op­
tional entries.

Commas are used as separators for command line parame­
ters.

The at sign (@) invokes an indirect command file. The at
sign immediately precedes the file specification for an indi­
rect command file:

@device:[project, prosrafllrtlerJ filnarTl.ext

Periods
(.)

Slashes
(/)

"Display"
and "Type"

Periods in the file specification separate the filename and
extension. When the filename is used as the file specifica­
tion without an ext, the period is not necessary.

Slashes in the file specification precede switches. When
shown in format specifications, slashes must be specified
as they are shown.

Where a carriage return is used in an example, it is indi­
cated by the symbol ffil.

The system "displays" and the user "types".

Chapter 1
Introduction

This chapter describes the following subjects:

1. The RSTS/E command line.

2. The RSTS/E file specification.

3. The use of utilities and the entering of command lines.

4. The conditions under which you can use a utility.

These subjects are common to all the programmer's utilities described in this
manual.

1.1 RSTS/E Utility Command Line

The general utility command line format is:

Olltfile to •• outfile=infile I ••• infile

where outfile and infile are file specifications for the output and input files to
be operated on by the utility. The number of file specifications you can enter
depends on the utility invoked, but the maximum length of a command line is
80 characters.

This general format varies for each utility. Some utilities use the entire com­
mand line and others use abbreviated forms of the command line. These
utilities also accept indirect files containing command lines, as described in
Section 1.3.2.2.

1-1

1.2 RSTS/E File Specifications

A file specification consists of a filename that conforms to standard RSTSIE
conventions, plus switches that modify, or specialize, the command. File spec­
ifications have the form:

deuice:[proJect,proSraMMerJfilenaMe.extension/sw •••

where all components are optional except the filename. The file specification
components are defined below:

device

[project,
programmer)

filename

extension

/sw

is the name of the device that stores the file. The device name
consists of two ASCII characters followed by an optional 1- or
2-digit decimal unit number; for example, LP or DTl. Logical
device names of up to six alphanumeric characters may also be
used.

is the account or project-programmer number (PPN) associ­
ated with the file. The default is the PPN of the account you
have logged into. Note that RSTSIE project-programmer
numbers are similar to RSX-user identification codes (VIC).

is the name of the desired file. The filename can contain up to
six alphanumeric characters.

is the a to 3-character filename extension. Files having the
same name but a different function can be distinguished from
one another by the file extension; for example LRB.TSK and
LRB.OBJ.

is a switch specification. More than one switch can be used,
each separated from the previous one by its slash (/). The
switch name is a 2- to 4- character alphanumeric code that
identifies the switch and may also indicate negation of the
switch. The permissible switches and their syntax are pre­
sented for each utility in the pertinent chapter.

Table 1-1 lists the default assumptions for components of a file-specification
that are not designated.

Table 1-1: File Specification Defaults

Item Default

device The device last specified (SY:,if none).

project-programmer The project-programmer number last specified (the account you have
logged into, if there is no previous entry). Any PPN associated with a
previously specified logical device name does not carry through.

extension See Table 1-2.

switch Defaults for each utility described in chapters 2 through 5.

1-2 Introduction

Following is an example of input to the MAC Assembler and defaults:
DK1:IMG1,MP1=IN1,DBO:IN2tIN3

Device

DK1:
DK1:
SY:
DBO:
DBO:

File

IMG1.0BJ
MP1.LST
IN1.MAC
IN2.MAC
IN3.MAC

Table 1-2 lists the default assumptions for missing extensions.

Table 1-2: File Extension Defaults

Utility File Type Extension File Description

MACRO-ll Input .CMD Indirect Command File
(MAC) .MAC Macro Module

.MLB Macro Module Library
Output .OBJ Object Module

.LST List File

Library Input .CMD Indirect Command File
(LBR) Input or Output .OBJ Object Module

Input or Output .MAC Macro Source Module
Input or Output .OLB Object Library Module
Input' or Output .MLB Macro Module Library
Output .LST List File

Patch Input .CMD Indirect Command File
(PAT) .OBJ Object Module

Output .OBJ Object Module

MAKSIL Input .TSK Task Image
.STB Symbol Table File
.CMD Indirect Command File

Output . LIB Resident Library File
.RTS Run-Time System File
.CMD Indirect Command File

1.3 Accessing Utilities and Entering Command Lines

The RSTS/E user can access an RSX utility in two ways; and after invoking a
specific utility, the user then has two choices for entering command lines. The
paragraphs that follow describe the methods of accessing utilities and enter­
ing command lines respectively.

1.3.1 Accessing Utilities

The two ways to invoke a utility are:

1. Type the RUN command.

2. Type a CCL command.

Introduction 1-3

The paragraphs below describe each method.

1.3.1.1 Entering the RUN Command - In response to the system READY
prompt, you can enter the general form of the RUN command:

RUN $lltilit}' @)

where utility is one of the following:

MAC.TSK - MACRO-ll Assembler Utility
LBR. TSK - Librarian Utility
PAT.TSK - Patch Object Module Utility
MAKSIL.BAC - MAKSIL Utility

For example, you can invoke the Librarian utility by typing the following:

RUN $LBR.TSK@)

This prompt is displayed on the terminal to indicate the Librarian utility is
ready to accept a command line:

LBR>

Note that the use of the symbol $ indicates that the utility is stored in account
[1,2]. The system manager has the option of installing these utilities in other
accounts. Check with the system manager for the location of these utilities.

1.3.1.2 CCl Command Names - If the system manager has installed CCL
commands for the programmer's utilities, you can invoke these utilities by
using the appropriate CCL command. Table 1-3 lists a recommended set of
CCL names for the RSX utilities invoked by RSTS/E.

Table 1-3: Conventional CCL Names for RSTSIE Accessed R:SX-Based
Utilities

Utility CCL Name

MACRO-ll MAC

Librarian LBR

Patch Object Module PAT

Make Save Image Library MAKSIL

As an example, you can invoke the PAT utility by typing:

PAT@)

The utility indicates its readiness to accept a command line by displaying the
following prompt:

PAT>

1-4 Introduction

Alternatively, you can employ the following general form of the eeL com­
mand:

PAT <coITlIT\and-line>~

This form causes the Patch utility to run, process <command-line>, and
return to the READY state.

1.3.2 Entering Command lines

The two methods for entering utility command lines are:

l. Typing the complete utility command line.

2. U sing an indirect command.

1.3.2.1 Entering the Complete Command Lines - You can enter the required
command line either in response to a utility's prompt for input or as part of
the eeL command. Three examples of this method are:

l. You can employ the RUN command to invoke the utility. The utility
prompts for command line input. After execution is completed, the utility
reprompts for additional command input; for example:

RUN $LBR~
LBR>BIGLIBI IN=SMALL ,MID ,BIG~

LBR>

2. You can invoke the utility by typing its eeL name. The utility prompts
for the command line. After execution is completed, the utility reprompts
for additional command input; for example:

LBR~

LBR>BIGLIB/IN=SMALL,MID,BIG~

LBR>

3. You can invoke the utility by typing its eeL name followed by a space
and the complete utility command line. After execution of the utility, the
system again displays the READY prompt; for example:

LBR BIGLIBI IN=SMALL ,MID ,BIG~

READY

1.3.2.2 Using Indirect Command - The second method of entering a utility
command line is through the use of indirect command files. When you specify
an indirect command file, the utility interprets the contents of the file in the
command specified as a series of one or more command lines. The advantage
of an indirect command file is that you can enter a commonly used command
line sequence once and store it for subsequent use rather than reentering the
sequence.

The @ character is the first character of the indirect command line. Immedi­
ately following the @ character is a file specification. The format for an indi­
rect command is:

Introduction 1-5

@deuice:[projectlpro~raMMer] filenaMe.extension

You can omit certain elements of the file specification. The following defaults
are then applied:

device - SY:

[project,programmer] - Current PPN

.extension - .CMD

The following examples show the use of indirect commands.

Example 1.

RUN $LBR 00l
LBR>@ALPHA 00l
LBR>

Example 2.

LBR @BETA.CTL 00l
READY

In the first example, only the filename, ALPHA is specified. The device,
account, and extensi9n fields are defaulted. In the second example, a filename
and extension are specified with the device and account defaulted.

NOTE

Indirect command files are not used by MAKSIL

1-6 Introduction

Chapter 2
Using the MACRO-11 Utility Program

The RSTS/E MACRO-ll utility assembles one or more ASCII source files
containing MACRO-ll assembly language statements into a single relocata­
ble binary object file. The output of a MACRO-ll assembly process can
consist of the following files:

1. Binary relocatable object file.

2. Listing file with:

a. Table of Contents listing.

b. Source (input) program listing.

c. Symbol table listing.

You determine the desired output files to be created during assembly by
specifying them in the MACRO-ll command line, as described in Section 2.2.
A set of switches, as described in Section 2.4, allows you to control the exact

. form and content of each output file.

The topics covered in this chapter are:

1. Invoking MACRO-ll.

2. Command Line format.

3. File specification.

4. Switches.

5. Error messages.

2-1

2.1 Invoking MACRO-11
Chapter 1 describes how you use the RUN and CCL commands to invoke the
MACRO-ll utility. As a review, calling MACRO-ll by RUN and CCL re­
spectively is done by entering:

RUN $MAC lBTIJ
or
MA C lBTIJ
and the utility prompts:
MAC>

2.2 MACRO-11 Command line Format.
In response to the prompt MAC> displayed by MACRO-ll, type the output
and input file specifications in this form:

MAC>obJecttlistins=srcl ,src2"" ,srcn

where:

object

listing

srcl,
scr2, ...
srcn

The specification for the binary relocatable object (output) file.

The specification for the assembly listing (output) file that con­
tains the table of contents, the assembly listing, and the symbol
table.

separates output file specifications from input file specifications.

The specifications for the ASCII source (input) files containing the
MACRO-ll source program or the user-supplied macro library
files to be assembled.

MACRO-ll recognizes two output file specifications in the command line
(object and listing). No limit is set on the number of source input files.
However, a single command line cannot exceed 80-characters including
spaces.

The absence of an output file specification in either field means that an
output file is not produced; for example:

MAC> ,LIST=SORCl ,SORC2 lBTIJ

In this case a binary relocatable object output file is not produced and output
is a list file (LIST.LST) only. Note that the comma before LIST must be
included. However, the absence of an input file field is an error condition and
results in the error message "MAC -- ILLEGAL FILENAME" to be displayed
at the user terminal (see Section 2.5).

NOTE
When a listing file is not specified, any errors encountered in
the source program are displayed at the user terminal from
which MACRO-ll was initiated. When the !NL (no list) switch
is used without an argument in the listing file specification, the
errors and symbol table are output to the specified file.

2-2 Using the MACRO-ll Utility Program

2.3 MACR0-11 Input/Output File Specification Format

The file specification serves to define the object files, listing files and source
files appearing in a MACRO-ll command line.

The format of the file specification is:

device: [project, prosraMMerJ filenaMe.extension

where:

device: is the name of the device where the desired file
resides. A device name consists of either two charac­
ters followed by a 1- or 2-digit decimal unit number,
and a colon, for example; DPl:, DKO:, DT3:, or a 1 to
6 character logical device name. The ·default device is
as specified in Table 1-1.

[project, programmer] is the project-programmer identification number
(PPN) associated with the file. The default is the
PPN logged into.

filename is the name of the desired file. The filename can con­
tain up to six alphanumeric characters .

. extension is an O-to-three character alphanumeric filename
extension. An extension is usually used to identify the
function of the file.

2.4 MACRO-11 Switches

You can append one or more switches to file specifications to modify the
assembly process. At assembly time, you may want to override certain
MACRO-ll directives appearing in the source program or to provide
MACRO-ll with information establishing how certain files are to be pro­
cessed during assembly. You can do so through one or more switches, which
may be selectively invoked as additional parameters in each file specification
(see Section 2.3). Switches are appended to the pertinent file specification,
without spaces. Also, there are no spaces as a separator. The available
switches for use in MACRO-ll file specifications under RSTSIE are listed in
Table 2-1, and associated arguments (:arg) are listed in Table 2-2.

2.4.1 Listing Control Switches

There are two listing control options: ILI:arg (list) and INL:arg (no list).
These options permit you to override the .NLIST and .LIST directives,
respectively, in the source code. With these switches you can control the
content and format of assembly listings. Table 2-2 lists and describes the
listing control switch arguments.

Using the MACRO-ll Utility Program 2-3

Table 2-1: MACRO-II Switches

Switch Mnemonic Function

ILI:arg Controls listing, overrides source program directive .NLIST.

/NL:arg Controls listing, overrides source program directive .LIST.

/EN:arg Enables object file function, overrides source program directive
.DSABL.

/DS:arg Disables object file function specified by arg, overrides source
program directive .ENABLE. (See Table 2-3.)

/ML Indicates input file is MACRO library file.

/PA:l Assemble the specified file during assembly pass 1 only. Assem-
bly pass 1 locates and reads all requested macros from libraries,
builds symbol tables and program section tables for the pro-
gram, and performs a rudimentary assembly of each source
statement. The use of the /PA:l switch avoids redefinition of
MACROSs during pass 2.

/PA:2 Assemble the specified file during assembly pass 2 only. Assem-
bly pass 2 creates an object file. This assembly consists of the
same steps as performed in assembly pass 1, except all source
statements containing MACRO-ll-detected errors are flagged
with an error code as the assembly listing file is created. The
object file created contains all the object records, together with
relocation records having information necessary for subsequent
Task Builder linking of the object file.

Table 2-2: Valid Arguments for ILl and /NL Switches

Argument Default Controls Listing of

BEX List Binary extensions.

BIN List Generated binary code.

CND List Unsatisfied conditionals, .IF and .ENDC statements.

COM List Comments.

LD No List List control directives with no arguments.

LOC List Address location counter.

MC List Macro calls, repeat range expansion.

MD List Macro definitions, repeat range expansion.

ME No list Macro expansion.

MEB No list Macro expansion binary code.

SEQ List Source line sequence number.

SRC List Source Code.

SYM List Symbol Table.

TOC List Table of Contents.

TTM No List 132-column line printer format when not specified.

2-4 Using the MACRO-ll Utility Program

2.4.2 Function Control Switches

The function control switches (IDS:arg and IEN:arg) allow you to override
ENABL and DSABL directives in the source code.Table 2-3 lists and de­
scribes the function control switch arguments.

Table 2-3: Valid Arguments for IDS and lEN Switches

Argument Default Enables or Disables

ABS Disable Absolute binary output.

AMA Disable Assembly of all absolute addresses as relative addresses.

CDR Disable Source columns from 73 on are reserved for comments.

FPT Disable Floating point truncation.

GBL Disable Undefined symbols treated as globals.

LC Disable Lower case ASCII input.

LSB Disable Local symbol block.

PNC Enable Binary output.

REG Enable Mnemonic definitions of registers. If REG is not used, the
definitions listed below remain in effect:

RO=%O
Rl=S,f,1
R2=<ic2
R3=%3
R4='104
R5=%5
SP=%6
PC=%7

Use of either the function control or listing control options and arguments at
assembly-time will override any corresponding listing or function control
directives and arguments in the source program. For example, assume the
following appears in the source program:

• NLI ST MEB

.(MACRO References)

.LIST MEB

In this example, you disable the listing of macro expansion binary code
(MEB) for some portion of the subprogram and subsequently resume MEB
listing. However, if you indicate ILI:MEB in the assembly command string,
the system ignores both the .NLIST MEB and the .LIST MEB directives.
This enables MEB listing throughout the program.

The PDP-ll MACRO-ll Language Reference Manual contains more detailed
information on the arguments for both the listing control and function control

Using the MACRO-ll Utility Program 2-5

options. The material is presented in the context of arguments for the assem­
bler directives .LIST and .NLIST, .ENABL and .DSABL.

2.4.3 Assembly Pass Switch

The IPA:arg option is meaningful only if appended to a source input file
specification. You must specify either IPA:l or IPA:2.

The specification IPA: 1 calls for assembly of the file during pass 1 only. Some
files consist entirely of code that is completely assembled at the end of pass 1
such as a definition file. By specifying IPA:l for these files, you can cause
MACRO to skip processing of these files through pass 2. In some cases, this
procedure can save considerable assembly time.

The specification IPA:2 calls for assembly of the file during pass 2 only.
Situations where the IPA:2 option can be meaningfully employed are unusual.

2.4.4 MACRO Library File Switch

The /ML option is meaningful only if appended to a source file specification.
It has no arguments, and it designates its associated source file as a macro
library .

When the assembler encounters an .MCALL directive in the source code, it
searches macro libraries according to their order of appearance in the com­
mand line. When it locates a macro whose name matches that given in the
.MCALL, it assembles the macro as indicated by that definition. If two or
more macro libraries contain definitions of the same macro name, the macro
library that appears leftmost in the command line takes precedence.

Consider the following command line:

MAC)<output file specification)=ALIB.MLB/ML,BLIB.MLB/ML,)-(IZ IBm

Assume that each of the two macro libraries, ALIB and BLIB, contain a
macro called .BIG, but with different definitions. If source file XIZ contains a
macro call .MCALL .BIG, the system includes the definition of .BIG in the
program as it appears in the macro library ALIB.

NOTE

A user macro library file with /ML switch must be specified in
the command line prior to the source files that require it, in
order to resolve macro definitions. For example:

output file=input file/MLtinput filel, input fileZIBm

2.5 MACRO-11 Error Messages

MACRO-ll produces two types of error indications: a single-letter error code
(see Appendix A) and a descriptive error message. The single-letter error code
indicates diagnostic errors produced during assembly and appears on assem­
bly listings.

2-6 Using the MACRO-ll Utility Program

All of the following error messages, with the exception of the "MAC -- COM­
MAND I/O ERROR" message, result in the termination of the current assem­
bly. MACRO-ll attempts to restart by reading another command line. In the
case of a command I/O error, however, MACRO-ll exits, since it is unable to
obtain additional command line input.

MAC -- COMMAND FILE OPEN FAILURE

Description: Either the file from which MACRO-ll is reading a command
could not be opened initially or between assemblies; or, the indirect command
file specified as "@filename" in the MACRO-ll command line could not be
opened. See "OPEN FAILURE ON INPUT FILE" for meaning.

Suggested User Response: Make sure the command file exists and that you
have read access to the' file. Check spelling errors in your command line.

MAC - - COMMAND I/O ERROR

Description: An error was returned by the file system during MACRO-ll's
attempt to read a command line. This is a fatal error and causes MACRO-ll
to exit. Do not attempt a MACRO-ll restart when this error occurs.

Suggested User Response: Check command file for correct contents. If this
occurs with an indirect command file, it indicates that a file contains a bad
disk block.

MAC - - COMMAND SYNTAX ERROR

Description: An error was detected in the syntax of the MACRO-ll command
line.

Suggested User Response: Check command line for spelling errors. Make sure
you have specified an input file. Check all option switches for correct spelling
and correct arguments.

MAC -- ILLEGAL FILENAME

Description: Neither the device name nor the filename was present in the
input file specification or a "wildcard" character (asterisk) was employed in an
input or output file specification. The "wildcard" characters (?) and (*) are
not permitted in MACRO-ll file specifications.

Suggested User Response: Check for spelling errors in the command line.
Check filename specifications for proper format.

MAC - - ILLEGAL SW ITCH

Description: An illegal switch was specified for a file, an illegal value was
specified with a switch, or an invalid use of a switch was detected by
MACRO-l1.

Suggested User Response: Check for spelling errors. Make sure all switch
arguments are legal for all switches specified.

MAC - - I NO I RECT COMMAND SYNTAX ERROR

Using the MACRO-ll Utility Program 2-7

Description: The name of the indirect command file (@filename) specified in
the MACRO-ll command line is syntactically incorrect.

Suggested User Response: Check for spelling errors. Make sure there are no
wildcards in your file specification.

MAC -- INDIRECT FILE DEPTH EXCEEDED

Description: An attempt to exceed the maximum allowable number of nested
indirect command files has occurred. (Only three levels of indirect command
files are permitted in MACRO-ll.)

Suggested User Response: Check nesting of indirect command files. Restruc­
ture the command files so they are not nested to more than three levels.

MAC -- INVALID FORMAT IN MACRO LIBRARY

Description: The library file is corrupted or it was not produced by the Librar­
ian Utility Program (LBR).

Suggested User Response: Make sure the proper file is being used. If the
MACRO file is corrupt, rebuild it using LBR.

MAC -- liD ERROR ON INPUT FILE

Description: In reading a record from a source input file or macro library file,
an error was detected by the file system. For example, a line containing more
than 132 characters was encountered. This message may also indicate that a
device problem exists or a source file or a macro library is corrupted.

Suggested User Response: Make sure all input lines do not exceed 132 charac­
ters. Check input file specifications for errors.

MAC -- 110 ERROR ON MACRO LIBRARY FILE

Description: Same meaning as I/O ERROR ON INPUT FILE, except that the
file is a macro library file and not a source input file.

Suggested User Response: Make sure the library file has the correct format
and has not been corrupted. Check all library file specifications.

MAC -- liD ERROR ON OUTPUT FILE

Description: In writing a record to the object output file or the listing output
file, an error was detected by the file system. This message may also indicate
that a device problem exists or that the storage space on a device has been
filled.

Suggested User Response: Insure that there is sufficient space on the output
media; that the output media is online and ready; and that the device is not
write locked.

MAC -- liD ERROR ON WORK FILE

Description: A read or write error occurred on the work file used to store the
symbol table. Generally, this error is caused by a hardware problem on the
pertinent device, or by writing to a device that is full.

2-8 Using the MACRO-ll Utility Program

Suggested User Response: See the response for I/O ERROR ON OUTPUT
FILE.

MAC -- OPEN FAILURE ON INPUT FILE

Description: This error is caused by one of the following conditions:

1. Specified device does not exist.

2. The volume is not mounted.

3. A problem exists with the device.

4. Specified directory does not exist.

5. Specified file does not exist.

6. User does not have access to the file.

Suggested User Response: Check the six possible error conditions listed above.
Also check for spelling errors on input file specifications.

MAC -- OPEN FAILURE ON OUTPUT FILE

Description: This error is caused by one of the following conditions:

1. Specified device does not exist.

2. The volume is not mounted.

3. A problem exists with the device.

4. Specified directory does not exist.

5. The volume is full or the device is write protected.

Suggested User Response: Check the five possible error conditions listed
above. Also check for spelling errors on the output file specifications.

MAC -- GlIK STORAGE LIMIT EXCEEDED

Description: 64K words of work file memory are available to MACRO-ll.
This message indicates that the assembler has generated too many symbols
(13,000 to 14,000) and it has run out of space. This means either the source
program is too large, or it contains a condition that leads to excessive size,
such as a macro expansion that recursively calls itself without a terminating
condition.

Suggested User Response: Check for recursive macro expansions. Try to use
fewer macros. Segment the program and assemble the separate parts, using
global references.

Using the MACRO-ll Utility Program 2-9

Chapter 3
Using the Librarian Utility Program (LBR)

With the Librarian Utility Program, (LBR) you can create, update, modify,
list, and maintain user-generated object and macro library files. LBR files
contain two directory tables: an entry p.oint table (EPT) that contains entry
point names (global symbols), and a module name table (MNT) that contains
module names. Both the EPT and MNT are alphabetically ordered.

Object module names are derived from .TITLE directives, while entry point
names are derived from defined global symbols. Once an entry point is locat­
ed, its associated module can be directly accessed.

Macro module names are derived from .MACRO directives; macro entry point
names are not applicable to library processing.

Chapter 1 describes how to invoke the LBR utility.This chapter contains
descriptions of:

1. Library Files.

2. LBR Command Line.

3. LBR Switches.

4. Procedures for combining Library Functions.

5. LBR Restrictions.

6. LBR Error Messages.

3.1 Library Flies

The library file consists of a one block (256 word) library header, an entry
point table (each entry point has one entry point name four words long), and a
module name table (each entry has one module name four words long). In
addition, each module has an eight-word header. See Appendix B for detailed
information on the formats and contents of library files.

NOTE

LBR accepts indirect command files (see Section 1.3.2)

3-1

3.2 LBR Command Line

LBR command lines have the general format:

outfile[.listfile]=infilel[.infile2 ••••• infilen]

For a complete description of file specifications, see Section 1.2. As an alter­
native to the use of file specification, you can use an indirect command file as
described in Section 1.3.2.2. LBR will not accept nested indirect command
files.

3.3 LBR Switches

LBR uses switches appended to file specifications to invoke functions. These
switches are summarized· in Table 3-1. .

Table 3-1: LBR Switches

Option Name Switch
Mnemonic Function

Compress ICO Compress a library file.

Create ICR Create a library file.

Delete /DE Delete a library module and all of its entry points.

Default /DF Specify the default library file type.

Delete Global /DG Delete a library module entry point.

Entry Point /EP Control (include) the entry of entry point elements in the
library entry point table.

I-EP Do not include the entry of entry point elements in the
library entry point table.

Extract /EX Extract (read) one or more modules from a library file and
write them into the specified output file.

Insert lIN Insert a module.

List /LI List module names.

/LE List module names and module entry points.

/FU List module names and full module description.

Replace IRP Replace a module.

I-RP Do not replace a module.

Selective Search ISS Set selective search attribute in module header.

Squeeze ISZ Reduce the size of macro source.

I-SZ Do not reduce the size of macro source.

3-2 Using the Librarian Utility Program (LBR)

3.3.1 Compress Switch (/CO)

The Compress switch physically deletes all logically deleted records, moves all
free space to the end of the file, and makes the free space available for new
library module inserts. In addition, the library table specification may be
altered for the resulting library. LBR accomplishes this by creating a new file
that is a compressed copy of the old library file. In this compression process,
the actual data in the file is compressed; however the physical length of the
file remains unchanged. The old library file is not deleted after the new file is
created (see Section 3.3.3).

The ICO switch can be appended only to the output file specification. The
format for specifying the Compress switch is:

outfile/CO:size:ept:Mnt=infile

where:

outfile is the file specification for the file that is to become the compressed
version of the input file. The default extension is .OLB if the input
file is an object library, or .MLB if the input file is a macro library.
Outfile must not have the same name as infile.

ICO is the Compress switch.

:size is the size of the new library file in 256-word blocks. If omitted, the
default size is that of the old library file.

:ept is the number of entry point table (EPT) entries to allocate. If the
value specified is not a multiple of 64, the next highest multiple of 64
is used. If omitted, the default value is the number of EPT entries in
the old library file. This parameter is always set to zero for MACRO
libraries. Maximum number of entries is 4096.

:mnt is the number of module name table (MNT) entries to allocate. If
the value specified is not a multiple of 64, the next highest multiple
of 64 is used. If omitted, the default value is the number of MNTs in
the old library file. Maximum number of entries is 4096.

infile is the file specification of the library file to be compressed. If the
current default library type is an object library (OBJ) (see Section
3.3.4), the file extension default is .OLB. If the current default li­
brary type is a macro library (MAC), the file extension default is
.MLB.

For example:

L6R)LI6FILlCO: 100.: 158. :70.=FILE1.OL6 !Bm

Using the Librarian Utility Program (LBR) 3-3

In this example, file FILE1.0LB is compressed, and a new file, LIBFIL.OLB,
is created with the following attributes:

size = 100 blocks
ept = 192 entry points
mnt = 128 module names

Note that in the above example the numbers for block size, entry points, and
module names include decimal points; if omitted, the numbers are inter­
preted as octal values.

3.3.2 Create Switch (fCR)
The Create switch allocates a contiguous library file on a direct access device
such as a disk. It initializes the library file header, the entry point table, and
the module name table. The fCR switch can be appended only to the output
file specifier. The format for specifying the Create switch is:

outfile/CR:size:ept:mnt:type

where:

outfile

fCR

:size

:ept

:mnt

is the file specification for the library file being created. The
default file extension is .OLB if an object library is being created,
or .MLB if a macro library is being created.

is the Create switch.

is the size of the library file in 256-word blocks. The default size
is 100 blocks.

is the number of entry point table (EPT) entries to allocate. The
default value is 512 for object libraries. This parameter is always
forced to 0 for macro libraries. Maximum number of entries is
4096. Once a value is specified or defaulted, an error occurs if an
Insert or Replace operation exceeds the value.

is the number of module name table (MNT) entries to allocate.
The default value is 256. Maximum number of entries is 4096.
Once a value is specified or defaulted, an error occurs if an Insert
operation exceeds the value.

extension is the file extension of library to be created. Acceptable exten­
sions are OBJ for object libraries and MAC for macro libraries.
The default is the last value specified or implied with the /DF
switch (see Section 3.3.4), or OBJ if /DF has not been specified.

In the example below:

LBR)LIBFIL/CR:50:158.®m

ept, and extension are assigned default values.

If the values you specify are not multiples of 64, the EPT and MNT are
automatically expanded to the next disk block boundary. For example:

LBR)LIBFILlCR:: 128. :84. :OBJ=FILE1 ,FILE2 ,FILE3 ®m

3-4 Using the Librarian Utility Program (LBR)

In this example, LBR performs two functions. First, LBR creates the library
file LIBFIL.OLB in the user's account on the public structure (SY:). LIBFIL
has the following attributes:

size = 100 blocks (default size)
ept = 128 entry points
mnt = 64 module names
type = OBJ

Secondly, LBR inserts object modules from the input files FILE1.0BJ,
FILE2.0BJ, and FILE3.0BJ, that reside in the user's account on the public
structure (SY:) into the newly created library file. The insert switch is the
default switch for input files (see Section 3.3.8).

3.3.3 Delete Switch (IDE)

The Delete switch logically deletes library modules and their associated entry
points (global symbols) from a library file. Up to 15 library modules and their
associated entry points can be deleted with one delete command.

When LBR begins processing the /DE switch, it displays the following mes­
sage at the user terminal:

MODULES DELETED:

As modules are logically deleted from the library file, the module name is
displayed at the user terminal.

If a specified library module is not contained in the library file, a message is
displayed, and the processing of the current command is terminated. This
message is as follows:

LBR -- *FATAL* - NO MODULE NAMED "name"

The /DE switch can be appended only to the library file specification.

NOTE

When LBR deletes a module from a library file, the module is
not physically removed from the file, but is marked for dele­
tion. This means that, although the module is no longer acces­
sible, the file space that the module occupied is not available
for use, unless the deleted module is the last module inserted.
To physically remove the module from the file and make the
freed space available for use, you must use the leo switch to
compress the library (see Section 3.3.1).

The form for specifying the Delete switch is:

outfile/DE:modulel[:module2: ••• :modulen]

where:

outfile is the file specification for the library file.

Using the Librarian Utility Program (LBR) 3-5

/DE is the Delete switch.

:module is the name of the module to be deleted.

For example:

LBR>LIBFILlDE:MODl :MOD2:MOD3 (5ITl

MODULES DELETED:

MOD1

MOD2

MOD3

In this example, LBR deletes the modules MODl, MOD2, and MOD3 and
their associated entry points from the library file SY:LIBFIL.OLB.

3.3.4 Default Switch (/DF)

The Default switch specifies the default library file extension. Acceptable
values are OBJ for object libraries and MAC for macro libraries. When /DF is
specified without an argument the default value of arg is OBJ.

Specifying a default value:

1. Sets the default extension argument for the Create switch (fCR).

2. Provides an extension default value of .MLB for macro libraries and .OLB
for object libraries when opening an output (library) file, except in the
cases of ICO and ICR. When ICO is specified, the default applies to the
library input file. When ICR is specified, the default extension is .OLB if
an object library is being created, or .MLB if a macro library is being
created. The /DF switch only affects the name of the file to be opened;
thereafter, the library header record information is used to determine the
type of library file being processed.

The /DF switch can be issued alone or appended to a library file specification.
The form for specifying the Default switch is:

outfile/DF:extension •••

or

IDF:extension

where:

outfile is the file specification for the library file.

/DF is the Default switch.

extension is OBJ for object library files and MAC for macro library files.

3-6 Using the Librarian Utility Program (LBR)

When you specify an extension other than OBJ or MAC, the current default
library extension will be set to object libraries, and the following message
displayed:

LBR -- INVALID LIBRARY TYPE SPECIFIED

Consider the following:

1. LBR>/DF:MAC~

LBR>LIBFIL=INFILE ~

File LIBFIL.MLB is opened for insertion.

2. LBR>/DF:MAC~

LBR>LIBFIL/DF:OBJ=INFILE ~

File LIBFIL.OLB is opened for insertion.

3. LBR>/DF:MAC ~
LBR>LIBFIL/CR ~

Macro library LIBFIL.MLB is created.

4. LBR>/DF:MAC ~

LBR>LIBFIL/CR::::OBJ ~

Object library LIBFIL.OLB is created.

5. LBR>/DF ~
LBR>TEMP/CO=LIBFIL ~

LIBFIL.OLB is opened for compression. If LIBFIL.OLB is an object
library, the file TEMP.OLB is created to receive the compressed output. If
LIBFIL.OLB is a macro library (a nonstandard use of the extension OLB),
the file TEMP.MLB is created.

6. LBR>/DF:OBJ~
LBR>TEMP/CO=LIBFIL.MLB ~

Assuming that file LIBFIL.MLB is a macro library, the macro library file
TEMP.MLB is created to receive the compressed output.

3.3.5 Delete Global Switch (lOG)

The Delete Global switch deletes a specified entry point (global symbol) from
the EPT. Up to 15 entry points may be deleted with one command. This
command does not affect the object module, which contains the actual symbol
definition.

When LBR begins processing the IDG switch, it displays the following mes­
sage on the user terminal:

ENTRY POINTS DELETED:

Using the Librarian Utility Program (LBR) 3-7

As entry points are deleted from the library file, each deleted entry point is
displayed. on the user terminal. If a specified entry point is not contained in
the EPT, a message to that effect is displayed on the user terminal, and the
processing of the current command is terminated:

LBR -- *FATAL* - NO ENTRY POINT NAMED "naMe"

The IDG switch can only be appended to the library file specification.

The format for specifying the Delete Global switch is:

outfile/DG:sloball[:sloba12: ••• :s1obaln]

where:

outfile is the library file specification.

IDG is the Delete Global switch.

global is the name of the entry point to be deleted.

For example:

LBR> LIBFIL/DG:GLoBl:GLoB2:GLOB3 ®ill

ENTRY POINTS DELETED:

GLoBl

GLoB2

GLoB3

In this example, the entry points GLOBl, GLOB2, and GLOB3 are deleted
from the library file named SY:LIBFIL.OLB.

3.3.6 Entry Point Switch (/EP)

The entry point switch includes or excludes entry point elements in a library
entry point table. This switch can be specified in three ways:

/EP Include entry points in the entry point table.
/-EP Do not include entry points in the entry point table.
/NOEP Do not include entry points in the entry point table.

/EP causes all entry points in a module or modules to be entered in the library
entry point table.

/-EP or /NOEP provides for a module to be included in a library while exclud­
ing the entry points in that module from being entered in the library entry
point table.

/EP and /-EP can be applied in the same command line. For example, a
particular input file with /-EP overrides the effect of /EP in the output file.
/EP is the LBR default; if the switch is not specified, all entry points are

3-8 Using the Librarian Utility Program (LBR)

entered into the library entry point table. The Entry Point switch has no
effect on MACRO libraries. The formats for specifying the Entry Point switch
are:

outfile[IEP]=infile, .. tinfilen
[/-EP]
[/NOEP]

or

outfile=infile[IEP] , .. tinfilen[/EP]
[/-EP] [/-EP]
[/NOEP] [/NOEP]

or

oLltfile[/EP]=infile , ••• infilen[/EP
[/-EP] [/-EP]
[/NOEP] [/NOEP]

where:

outfile is the output file specification. When the entry point switch is ap­
plied to this file specification, LBR assumes each of the input files
contains modules for which entry points are to be either included or
excluded.

infile is an input·file specification. When the Entry Point switch is applied
to an input file specification, LBR assumes only the input file(s) has
the entry point to be included or excluded.

The /-EP switch is used to select modules from a library by name rather than
entry point. If the switch is appended to an output file spec then it is in effect
for all input modules. If it is appended to an input file then it affects only that
file.

Entry points in an object module are not affected by the Entry Point switch;
the entry point switch permits you to either include or exclude entries in the
library entry point table only.

3.3.7 Extract Switch (lEX)

The Extract switch reads one or more modules from a library file and writes
them into a specified output file. If more than one module is extracted, the
modules are concatenated in the output file. The extract operation has no
effect on the library file from which the modules are read; that file remains
intact. Up to eight modules may be specified in one extract operation.

If no modules are specified on the command line, all modules in the library
are extracted and concatenated in the output file in alphabetical order. The
/EX switch may be applied only to input file specifications. The format for
specifying /EX is:

outfile=infile/EX[:modulename: ••• modulename]

Using the Librarian Utility Program (LBR) 3-9

where:

outfile is the file specification for the file into which extracted mod­
ules are to be stored. If the input modules are object modules,
the default extension for this file is .OBJ. If the input modules
are macro definitions, the default extension is .MAC.

infile specifies the library file from which the modules are to be
extracted. The default extension for this file is either OLB or
MLB, depending on the current default library type.

/EX is the Extract switch.

modulename is the name of the module to be extracted from the library.

Consider the following examples:

LBR>DRIVER=LI·BRY IE}(: D}(DRI,J: DKDRI,J: TTDRI,J ~

The object modules DXDRV, DKDRV, and' TTDRV are concatenated and
written into the file DRIVER.OBJ.

LBR>KB:=LB:TSTMAC.SML/E}(:QIO$$ ~

The macro QIO$$ is displayed at the issuing terminal.

LBR>TEST.OBS=TEST/E}(~

All of the modules in the library TEST.OLB are written into the file
TEST.OBS in alphabetical order.

3.3.8 Insert Switch (liN)

The Insert switch inserts library modules into an existing library file. An LBR
command line is limited to SO-characters. Each file specified can contain any
number of concatenated input modules. For MACRO libraries with nested
macros, only first-level macro definitions are extracted from the input files.
All text outside the first-level macro definitions is ignored. The /IN switch is
the default library file option and can be appended only to the library file
specification. Note that the number of MNTs and EPTs inserted cannot
exceed the number defined for the file at its creation.

When you attempt to insert an input module which already exists in the
library file, the following message is displayed on the initiating terminal:

?LBR -- *FATAL* DUPLICATE MODULE NAME "name" IN filename

Similarly, if you try to insert a module containing an entry point that already
exists in the EPT, the following message is displayed on the initiating
terminal:

?LBR -- *FATAL* DUPLICATE ENTRY POINT "name" IN filename

3-10 Using the Librarian Utility Program (LBR)

The format for specifying the Insert switch is:

outfileCIIN]=infile1[tinfile2, ••• tinfilen]

where:

outfile is the file specification for the library file into which the input mod­
ules are to be inserted. The default extension depends on the current
default (see Section 3.3.4). This extension is .OLB if the current
default is object libraries, and .MLB if the current default is macro
libraries.

/IN is the Insert switch.

infile is the file specification for the input file containing modules to be
inserted into the library file. The default extension is .OBJ if outfile
is an object library, and .MAC if outfile is a macro library.

For example:

LBR>LIBFIL/IN=FILE1 ,FILE2,FILE3 ®W

The modules contained in the files FILEl, FILE2 and FILE3, that reside in
the user's account on the public structure (SY:), are inserted into the library
file LIBFIL, which also resides in your account on SY:. The default extension
for files FILEl, FILE2, and FILE3 is .OBJ if LIBFIL is an object module
library, and .MAC if LIBFIL is a macro library.

3.3.9 List Switches (ILl, ILE, IFU)

The List switches produce a printed listing of the contents of a library file.
Three switches allow you. to select the type of listing desired:

ILl Produce a listing of the names of all modules in the library file.

ILE Produce a listing of the names of all modules in the library file and
their corresponding entry points.

/FU Produce a listing of the names of all modules in the library file and
give a full module description for each; that is, size, date of insertion,
and module-dependent information.

These switches can be appended only to the output file specification or the list
file specification.

The ILl switch is the default value and need not be specified when a listing
file has been specified or when /LE or /FU is included in the command.

The format for specifying List switches is:

infileC ,1istfile]/switchCes]

Using the Librarian Utility Program (LBR) 3-11

where:

infile

listfile

is the file specification for the library file whose content is to be
listed.

is the optional listing file specification. If not specified, the list­
ing is displayed at the user terminaL

switch[es] is the list option or options selected.

NOTE

If listfile is specified, its default device and account (PPN) is
the same for the library file. Specify SY: if the listfile is on the
public structure, and specify your own account for listfile if the
library file is not on your account.

For example:

1. LBR> LIBFIL/LI OOJ

In this example, a listing of the names of all the modules contained in file
SY:LIBFIL.OLB is displayed on the user terminal.

2. L6R> LIBFILILE OOJ

In this example, a listing of the names of all the modules and their entry
points (contained in file SY:LIBFIL.OLB) is displayed on the user'termi­
nal.

3. LBR> LIBFIL/FU OOJ

In this example, a listing of the names of all the modules, and a full
description of each module contained in file SY:LIBFIL.OLB, is displayed
on the user terminal.

4. LBR> DK1:[200.200JLI6FIL.LP:/LE/FU OOJ

In this example, a listing of the names of all the modules, their entry
points, and a full description of each module for file LIBFIL, residing in
directory [200,200] on DK1:, is printed on the line printer.

3.3.10 Replace Switch (/RP)

The Replace switch replaces modules in an existing library file with input
modules of the same name. Note that the number of EPTs placed into the file
cannot exceed the number defined for the file at its creation. In addition, each
input file can contain any number of concatenated input modules.

When a match occurs on a module name, the existing module is marked for
deletion, and all of its entries are removed from the EPT. If there is also an
entry point name match, the condition is fatal and terminates the current
command with an error message (see Section 3.6.2).

3-12 Using the Librarian Utility Program (LBR)

As each module in the library file is replaced, a message is displayed on the
user terminal. This message contains the name of the module being replaced:

MODULE "name" REPLACED

If the module to be replaced does not exist in the library file, LBR assumes
that the input module is to be inserted and automatically inserts it without
displaying a message.

The /RP switch can be specified in either of the following ways:

1. Global - The /RP switch is appended to the library file specification, and
all of the input files are assumed to contain modules to be replaced.

2. Local - The /RP switch is appended to an input file specification, and only
the file to which the /RP switch is appended is considered to contain
modules to be replaced.

Global Format:

ol.ltfile/RP=infilel[dnfileZ,. I, dnfilenJ

where:

outfile is the file specification for the library file. The default extension
depends on the current default (see Section 3.3.4). If the current
default is object libraries, the extent ion is .OLB and if the current
default is macro libraries, the extension is .MLB.

/RP is the Replace switch.

infile is the input file specification for the file that contains modules to be
replaced in the library file. The default type is .OBJ if outfile is an
object library, or .MAC if it is a macro library.

The global format of the /RP switch allows you to specify a list of input files
without having to append the /RP switch to each of the specifications. To
override the global function for a particular input file you must instruct LBR
to process a particular file in a list as a file containing modules to be inserted
but not replaced, by appending /-RP or INORP to the desired input file
specification.

Local Format:

ol.ltfile=infilel/RP[,infileZ/RP ••• , ,infilen/RP]

where:

outfile is the file specification for the library file. The local format default is
the same as the global format default described above.

infile is the input file specification for the file that contains modules to be
inserted or replaced in the output library file. The local format de­
fault is the same as the global format default described above.

Using the Librarian Utility Program (LBR) 3-13

/RP is the Replace switch, and when appended to an input file specifica­
tion, constitutes the local format of the switch. This overrides the
LBR default (Insert) and instructs LBR to treat the modules con­
tained in the specified file as modules to be replaced.

The files used in the following four examples, and the modules contained
within each file, are listed in Table 3-2. For the examples, the pertinent files
are assumed to reside in the default directory on the default device, and the
initial state of the library file is assumed to be as listed in Table 3-2.

Table 3-2: Sample Files Used in LBR Examples

Output
Library File Input Files

File Name LIBFIL.OLB FILEA.OBJ FILED.OBJ

FILECI FILEA FILEDl
Object FILEC2 FILEB2

FILEBI FILEB3
Modules FILEB2

FILEA

1. L6R)LI6FILlRP=FILEA tFILE6 tFILEC OOJ

MODULE" F I LEA" REPLACED
MODULE "FILE61" REPLACED
MODULE "FILE6Z" REPLACED
MODULE "FILEC1" REPLACED

MODULE "FILECZ" REPLACED

FILEB.OBJ

FILEBI
FILEC2
FILEC3

FILEC.OBJ

FILECI
FILED2

In this example, the global format for the /RP switch is used. Object
modules from the input files FILEA, FILEB, and FILEC replace modules
by the same names in the library file named LIBFIL. The resulting library
file is shown in Table 3-3.

Table 3-3: Output Library File After Execution of Example 1

LIBFIL.OLB

FILECI

FILEC2

FILEC3 *

FILEBI

FILEB2

FILEB3 *

FILEA

*These modules did not exist on the library file prior to the
execution of this example, but they did exist on the input
files. LBR, therefore, assumed that they were to be insert­
ed. Since LBR handled these modules as a normal insert,
no message was printed on the input terminal.

3-14 Using the Librarian Utility Program (LBR)

2. LBR) LIBFIL=FILED, FILEA/RP 00l

MODULE "FILEA" REPLACED

In this example, the local format of the /RP switch is used. The object
module FILEA from file FILEA is replaced in the library file LIBFIL. The
object modules in the file FILED are inserted in the library file. (See
Section 3.4.8.) The resulting library file is shown in Table 3-4.

Table 3-4: Output Library File After Execution of Example 2

LIBFIL.OLB

FILEDl **

FILED2 **

FILECl

FILEC2

FILEBl

FILEB2

FILEA *

*This module replaced

**These modules inserted

3. LBR) LIBFILlRP=FILEA ,FILEB .FILEC .FILED/-RP (Brn

MODULE "FILEA" REPLACED
MODULE "FILEB1" REPLACED
MODULE "FILEB2" REPLACED
MODULE" F I LEC 1" REPLACED

MODULE" F I LEC2" REPLACED

In this example, the /-RP switch is used to override the global format of
the command. Object modules in files FILEA, FILEB, and FILEC are
processed as modules to be replaced, and file FILED is processed as a file
which contains modules to be inserted. The resulting library file is shown
in Table 3-5.

4. LBR) LIBFILlRP=FILEA .FILEB/-RP .FILEC (Brn

MODULE "FILEA" REPLACED

?LBR - - *FATAL* - - DUPLI CATE MODULE" F I LEB 1 IN F I LEB. OBJ

In this example, only module FILEA from file FILEA was replaced. The
user specified that the modules in file FILEB not be replaced (/-RP), but
inserted. One of the modules contained in file FILEB duplicated an al­
ready existing module in file LffiFIL (see Table 3-2). Therefore, LBR
issued the fatal error message and terminated the processing of the cur­
rent command.

Using the Librarian Utility Program (LBR) 3-15

Table 3-5: Output Library File After Execution of Example 3

LmFIL.OLB

FILED 1 **

FILED2 **

FILECI

FILEC2

FILEC3

FILEBI

FILEB2

*

FILEB3 *

FILEA

*These modules were inserted by default.

**These modules were specified to be inserted. Had a mod­
ule of the same name been present, a fatal error message
would have been issued. See Example 4.

3.3.11 Selective Search Switch (ISS)

The Selective Search switch sets the selective search attribute bit in the
module header of each object module inserted into an object library. The
switch has no effect when applied to modules being inserted into a macro
library. The switch may be specified only on input files for insertion or re­
placement operations, and it affects all modules in the input file to which it is
applied.

Object modules with the selective search attribute bit set are given special
treatment by the Task Builder. Global symbols defined in object modules
with the selective search attribute are included in the Task Builder's symbol
table only if they are previously referenced by other modules. Therefore, only
referenced global symbols will be listed with the module in the Task Builder
memory allocation file, thereby reducing task build time. The ISS switch
should be applied to object files whose modules contain only absolute (not
relocatable) symbol definitions. See the RSTSIE Task Builder Reference
Manual Appendix C for more information.

The format for specifying the Selective Search switch is:

outfile=infilel/SS[rinfileZ/SS, ••• rinfilen/SSJ

where:

outfile is the file specification for the library file.

3-16 Using the Librarian Utility Program (LBR)

infile is the file specification for the input file that contains modules to be
selectively searched.

ISS is the Selective Search switch.

3.3.12 Squeeze Switch (/SZ)

The Squeeze switch reduces the size of macro definitions by eliminating all
trailing blanks and tabs, blank lines, and comments from MACRO library
files. This switch has no effect on object libraries.

The /SZ switch can be specified in a global or local format.

1. Global format - The /SZ switch is appended to the library file specifica­
tion, and all of the input files are assumed to contain modules to be
squeezed.

2. Local format - The /SZ switch is appended to an input file specifier, and
only the file to which the /SZ switch is appended is considered to contain
modules to be squeezed.

Global Format:

outfile/SZ=infilel ,[,infile2,." ,infilenJ

where:

outfile is the file specification for the library file.

/SZ is the Squeeze switch.

infile is the file specification for the input file that contains modules to be
squeezed before being inserted into the library file.

You can use this format of the /SZ switch to specify a list of input files
without having to append the /SZ switch to each file.

To override the global squeeze function for a particular input file that is to be
inserted but not squeezed, append /-SZ or INOSZ to the desired input file
specifier.

Local Format:

outfile=infilel/SZ[tinfile2/SZ" ,. tinfilen/SZJ

where:

outfile is the file specification for the library file.

infile is the file specification for the file that contains modules to be
squeezed before being inserted into the library file.

/SZ is the Squeeze switch.

Using the Librarian Utility Program (LBR) 3-17

LBR uses the following algorithm on each line to be squeezed and inserts the
resultant line into the library file:

1. The line is examined for the rightmost semicolon (;).

2. If a semicolon is located, it is deleted, along with all trailing characters in
the line.

3. All trailing blanks and tabs in the line are deleted.

4. If the resulting line is null, nothing is transferred to the library file.

The /SZ switch scans for semicolons from right to left and deletes text from
right to left until the first semicolon is encountered. Only the rightmost semi­
colon and text to its right are deleted. If the line contains a semicolon embed­
ded in meaningful (non-comment) text and you want comments squeezed,
code a dummy comment for that line. The /SZ switch uses only this rightmost
comment during squeeze processing.

Figure 3-1 illustrates the use of the LBR /SZ switch. A file containing input
text to be squeezed is illustrated, along with the text actually inserted into the
library file after the squeeze operation has been completed.

Figure 3-1: MACRO Listing Before and After Running LBR with /SZ
Switch

BEFORE BEING SQUEEZED

.MACRO MOVSTR RX,RY,?LBL

i*** - - NOTE :
BOTH ARGUMENTS MUST BE REGISTERS

LBL:

NULL

MOVE
BNE
OEC

iEND OR MOVSTR
.ENDM

(RX)+,(RY)+
LBL
RY

iMOVE A CHARACTER
;CONTINUE UNTIL NULL SEEN
iBACKUP OUTPUT PTR TO

AFTER BEING SQUEEZED

.MACRO MOVSTR RX,RY,?LBL
i*** - - NOTE :

BOTH ARGUMENTS MUST BE REGISTERS
LBL: MOVB (RX)+,(RY)+

BNE LBL
DEC RY
.ENDM

3-18 Using the Librarian Utility Program (LBR)

3.4 Combining Library Functions

You can request two or more library functions in the same command line. The
only exceptions are that (1) leo cannot be requested with anything else
except ILl, ILE, or /FU, and that (2) leR and /DE cannot be specified in the
same command line.

Functions are performed in the following order:

1. /DF

2. leR or leo

3. /DE

4. /DG

5. /IN, /RP, ISS, ISZ

6. ILl, ILE, /FU

For example:

LBR> FILE/DE:XYZ:$A,LP:/LE/FU=MODX,MODY/RP 00)

Functions are perfomed in order, as:

1. Delete modules XYZ and $A.

2. Insert all modules from MODX and MODY, replacing any duplicates of
modules in MODY.

3. Produce a listing of the resultant library file on the line printer with full
module descriptions and all entry points.

3.5 LBR Restrictions
The following restrictions apply when using LBR:

1. Limit of 65,536 words per module.

2. Limit of 65,536 blocks per library.

3. Tables should be allocated to maximum anticipated size. Expanding table
allocations requires using the leO switch to copy the entire file.

4. Three conditions result in a fatal error when using the /IN switch to insert
a module into a library:

a. The name of the inserted module matches the name of a module al­
ready in the library. This error can be avoided by using the IRP switch
to replace one module with another module of the same name.

b. The entry point name of the inserted module matches an entry point
name of a module in the library. For further information, refer to
Section 3.3.B.

c. The library cannot be extended because of the lack of disk space.

Using the Librarian Utility Program (LBR) 3-19

5. The use of wildcards, such as *.OBJ, where the * indicates all modules
with extension .OBJ in file specifiers is not allowed.

6. There must be enough space in the library's tables for both the modules
being replaced and their replacements, since the new modules are entered
before the old modules are marked for deletion.

3.6 LBR Error Messages

There are two types of LBR error messages: diagnostic and fatal.

Diagnostic error messages describe an existing condition that requires consid­
eration, but does not warrant termination of the command. When a hardware
error is suspected, examine the system error log to determine the device and
error type. Diagnostic messages are displayed at the user terminal in the
format:

%LBR -- *DIAG* - Messase

Fatal error messages describe a condition that caused LBR to stop processing
a command. When this occurs, LBR returns to the appropriate command
level. For example, if the command is entered in response to the CCL
command, i.e.,

LBR COMMand ~

then, LBR issues the fatal error message and exits. If, however, the command
is entered in response to the LBR prompt, i.e.,

LBR)cOMMand ~

LBR issues the fatal error message and reprompts.

Fatal error messages are displayed at the user terminal in the format:

?LBR -- *FATAL* - Messase

If a fatal error occurs during the processing of an indirect command file, the
command file is closed, the fatal error message and command line in error are
displayed on the user terminal, and LBR returns to the appropriate command
level.

3.6.1 Effect of Fatal Errors on Library Flies

The status of a .library file after fatal errors is:

1. In general, output errors leave the library in an indeterminate state.

2. During the deletion process directed by the /DE switch, the library is
rewritten prior to the display of the individual module-entry-point-deleted
messages.

3-20 Using the Librarian Utility Program (LBR)

3. During the replacement process directed by the IRP switch, the library is
rewritten prior to the display of the individual module-replaced messages.

4. During the insert process directed by the /IN switch, the library is rewrit­
ten after the insertion of all modules in each individual input file.

3.6.2 List of LBR Errors

The following list of LBR error messages provides a description of the error
cause along with suggested user responses.

LBR -- BAD LIBRARY HEADER

Description: Either the file is not a library file or the file is corrupted.

Suggested User Response:

1. If the file is not a library file, reenter the command line with a proper
library file specified.

2. If the volume is corrupted, it must be reconstructed before it can be used.

LBR -- COMMAND liD ERROR

Description: One of the following conditions may exist:

1. A problem with the physical device (e.g., device hung).

2. The file is corrupted or the format is incorrect (e.g., record length exceeds
132 bytes).

Suggested User Response: . Reenter the command line, using the correct
syntax.

LBR -- COMMAND SYNTAX ERROR
cOMMand line

Description: A command was entered in a format not conforming to syntax
rules.

Suggested User Response: Reenter the command line, using the correct syn­
tax.

LBR -- DUPLICATE ENTRY POINT NAME "naMe" IN filenaMe

Description: An attempt was made to insert a module into a library file when
both the insert module and a module in the library file have an identical entry
point names.

Suggested User Response: Determine if the specified input file is the correct
file. If not, reenter the command line, specifying the correct input file. If the
input file is the correct file, the user may delete the duplicate entry point from
the library and try again.

Using the Librarian Utility Program (LBR) 3-21

LBR -- DUPLICATE MODULE NAME "naMe" IN filenaille

Description: An attempt has been made to insert a module into a library that
already contains a module with the specified name, without use of the /RP
switch.

Suggested User Response: Determine if the specified input file is the correct
file. If the input file is correct, decide whether to delete the duplicate module
from the library file and insert the new one, or replace the duplicate module
by rerunning LBR with the !RP switch appended to the input file
specification.

LBR -- EPT OR MNT EXCEEDED IN filenaMe

Description: The EPT or MNT table limit has been reached during the execu­
tion of an Insert or Replace command.

Suggested User Response: Copy the library, increasing the table space
through use of the ICO switch. Reenter the command line.

LBR -- EPT OR MNT SPACE EXCEEDED IN COMPRESS

Description: An EPT orMNT table size was specified for the output library
file that is too small to contain the EPT or MNT entries used in the input
library file.

Suggested User Response: Reenter the command line with a larger EPT or
MNT table size specified.

LBR -- ERROR IN LIBRARY TABLES. FILE filenaMe

Description: The library file is corrupted or is not a library file.

Suggested User Response: If the file is corrupted, no recovery is possible and
the file must be reconstructed. If the file is not a library file, reenter the
command line with the correct library file specified.

LBR -- EXACTLY ONE INPUT FILE MUST APPEAR WITH ICO

Description: No file or more than one input library file was specified in the
ICO command.

Suggested User Response: Reenter the command line with only one input file
specified.

LBR -- FATAL COMPRESS ERROR

Description: The input library file is corrupted or is not a library file.

Suggested User Response: No recovery is possible. The file in question must
be reconstructed.

3-22 Using the Librarian Utility Program (LBR)

LBR -- GET TIME FAILED

Description: This error occurs when LBR attempts to execute a Get Time
Parameters directive and fails. The error is caused by a system malfunction.

Suggested User Response: Reenter the command line. If the problem persists,
submit a Software Performance Report along with the related console dia­
logue and any other pertinent information.

LBR -- ILLEGAL DEVICE/VDLUME
cOMMand line

Description: Device specifier entered is not a valid device name. A device
specifier consists of two ASCII characters, followed by one or two optional
digits.

Suggested User Response: Reenter the command line with the correct device
syntax specified.

LBR -- ILLEGAL DIRECTORY
cOMMand line

Description: The PPN entered does not conform to syntax rules. PPN syntax
consists of a left square bracket, followed by one to three digits, a comma, one
to three digits, and terminated by a right square bracket.

Suggested User Response: Reenter the command line with the correct PPN
syntax.

LBR -- ILLEGAL FILENAME
COMfTland line

Description: One of the following was entered:

1. A file specification containing a wildcard.

2. A file specification that neither is a filename nor has an extension.

Suggested User Response: Reenter the command line correctly.

LBR -- ILLEGAL GET COMMAND LINE ERROR CODE

Description: The system, due to an internal failure, is unable to read a com­
mand line.

Suggested User Response: Reenter the command line. If the problem persists,
submit a Software Performance Report along with the related console dia­
logue and any other pertinent information.

LBR -- ILLEGAL SWITCH
cOMMand line

Description: A switch was not recognized or a legal switch was specified in an
invalid context.

Using the Librarian Utility Program (LBR) 3-23

Suggested User Response: Reenter the command line with the correct switch
specification.

LBR -- ILLEGAL SWITCH COMBINATION

Description: Switches were entered that cannot be executed in combination.
See Section 3.4.

Suggested User Response: Reenter the command line, specifying the switches
in the proper sequence.

LBR -- INDIRECT COMMAND SYNTAX ERROR
COMMand line

Description: An indirect file was specified in a format that does not conform
to syntax rules.

Suggest User Response: Reenter the command line with the correct syntax.

LBR -- INDIRECT FILE DEPTH EXCEEDED
COMMand line

Description: An attempt has been made to exceed one level of indirect com­
mand files.

Suggested User Response: Rerun the job with only one level of indirect com­
mand file.

LBR -- INDIRECT FILE OPEN FAILURE
COMMand line

Description: The requested indirect command file does not exist as specified.
One of the following conditions may exist:

1. The user tried to read a file and was denied access.

2. A problem exists on the physical device.

3. The volume is not mounted.

4. The specified file directory does not exist.

5. The specified file does not exist.

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter the command line.

LBR -- INPUT ERROR ON filenaMe

Description: The file system, while attempting to process an input file, has
detected an error. A problem exists with the physical device due to some
transient condition.

3-24 Using the Librarian Utility Program (LBR)

Suggested User Response: Reenter the command line.

LBR -- INVALID EPT ANDIDR MNT SPECIFICATIDN

Description: An EPT or MNT value greater than 4096 was entered in a ICR or
ICO switch.

Suggested User Response: Reenter the command line with a valid value.

LBR -- INVALID FORMAT. INPUT FILE filename

Description: The format of the specified input file is not the standard format
for a macro source or object file, or the input file is corrupted.

Suggested User Response: Reenter the command line with the correct input
file specified.

LBR -- INVALID LIBRARY TYPE SPECIFIED

Description: An illegal library extension was specified in a Create (fCR) or
Default (/DF) command line. The extensions OBJ and MAC are the only
valid specifications. See Sections 3.3.2 and 3.3.4.

Suggested User Response: Reenter the command line with OBJ or MAC
specified.

LBR -- INI.JALID NAME -- "nal.le"

Description: A module name or entry point that contains a character that is
not in the Radix-50 character set has been specified for deletion. Radix-50
characters consist of the letters A through Z, the numbers 0 through 9, and the
special characters period (.) and dollar sign ($).

Suggested User Response: Reenter the command line with a valid name.

LBR -- liD ERROR INPUT FILE filname

Description: A read error has occurred on an input file. One of the following
conditions may exist:

1. A problem exists on the physical device.

2. The file is corrupted or the format is wrong (record length exceeds 132
bytes).

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter that command line.

LBR -- LIBRARY FILE SPECIFICATION MISSING

Description: A command was entered without specifying the library file.

Suggested User Response: Reenter the command line with the library file
specified.

Using the Librarian Utility Program (LBR) 3-25

L6R -- MARK FOR DELETE FAILURE ON L6R WORK FILE

Description: When LBR begins processing commands, it automatically cre­
ates a work file marked for deletion. For some reason, this operation failed.

Suggested User Response: Reenter the command line.

L6R -- MISSING OUTPUT FILE SPECIFIER

Description: The outfile specification was not included in the LBR command
line.

Suggested User Response: Reenter the command line with the outfile specifi­
cation included.

L6R -- NO ENTRY POINT ~AMED "naMe"

Description: The entry point to be deleted is not in the specified library file.

Suggested User Response: Determine if the entry point is misspelled or if the
wrong library file is specified. Reenter the command line with the entry point
correctly specified.

L6R -- NO MODULE NAMED "Module"

Description: The module to be deleted is not in the specified library file.

Suggested User Response: Determine if the module name is misspelled or if
the wrong library file is specified. Reenter the command line with the module
name correctly specified.

L6R -- OPEN FAILURE ON FILE filenaMe

Description: The file system, while attempting to open a file, has detected an
error. One of the following conditions may exist:

1. The user tried to read a file and was denied access.

2. A problem exists on the physical device.

3. The volume is not mounted.

4. The specified file directory does not exist.

5. The specified file does not exist.

6. There is insufficient contiguous space to allocate the library file (this
applies to the Compress and Create switches only).

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter that command line.

3-26 Using the Librarian Utility Program (LBR)

LBR -- OPEN FAILURE ON LBR WORK FILE

Description: While attempting to open the LBR work file, an error was detect­
ed. One of the following conditions may exist:

1. The volume is full.

2. The device is write-protected.

3. A problem exists with the physical device.

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter the command line.

LBR -- OUTPUT ERROR ON filename

Description: A write error has occurred on the output file. One of the following
conditions may exist:

1. The volume is full.

2. The device is write-protected.

3. The hardware has failed.

Suggested User Response: If the volume is full, delete all unnecessary files and
rerun LBR. If the device is write-protected, logically dismout write-enable,
logically remount, then reenter the command line. If the hardware has failed,
assign a new device and reenter the command line.

LBR -- TOO MANY INPUT FILES

Description: Too many input file specifications were included in the LBR
command line. You are limited to 80 characters.

Suggested User Response: Reenter a command line not exceeding 80
characters.

LBR -- TOO MANY OUTPUT FILES SPECIFIED

Description: More than two output files were specified; LBR makes the fol­
lowing assumptions:

1. The first output file specified is the output library file.

2. The second output file specified is the listing file.

Suggested User Response: No action is required. LBR ignores any remaining
file specifications.

Using the Librarian Utility Program (LBR) 3-27

LBR -- POSITIONING ERROR ON filename

Description: The device is write-locked.

Suggested User Response: If the device is write-locked, logically dismout the
device, write-enable it, logically remount it, and reenter the command line.

LBR -- VIRTUAL STORAGE REQUIREMENTS EXCEED 65536 WORDS

Description: This error may occur with maximum size libraries in conjunction
with a single command line which logically deletes a large number of modules
and entry points, and continues to replace them with an equally large number
of modules and entry points having highly dissimilar names. Normally, this
message indicates some sort of internal system error.

Suggested User Response: Rerun the job, but divide the complicated com­
mand line into several smaller command lines that do the same operations.

LBR -- WORK FILE 1/0 ERROR

Description: A write error has occurred on the LBR work file. One of the
following conditions may exist:

1. The volume is full.

2. The device is write-protected.

3. The hardware has failed.

Suggested User Response: If the volume is full, delete all unnecessary files and
rerun. If the device is write-protected, logically dismount the device, write
enable it, logically remount it, and reenter the command line. If the hardware
has failed, assign a new device and retry the command.

3-28 Using the Librarian Utility Program (LBR)

Chapter 4
Using The Object Module Patch Utility (PAT)
Program

The Object Module Patch Utility Program (PAT) allows you to patch or
update object code that is in a relocatable binary object module. Although
PAT can in theory patch any binary object file, in practice it is feasible to use
PAT to patch only .OBJ files generated by MACRO-H. PAT accepts a file
containing corrections or additional instructions, and applies these corrections
or additions to the original object module to produce an updated object mod­
ule. Figure 4-1 illustrates this procedure. Also, PAT allows you to increase the
size of object modules since changes are made before the module is linked by
the Task Builder.

This chapter covers the following major topics:

• How PAT Works

• Specifying the PAT Command String

• How PAT Applies Updates

• PAT Messages

4-1

4.1 How PAT Works

PAT receives input from two files: the file being corrected and a correction
file. The input file consists of one or more object modules in a single file. You
may correct only one of these object modules with a single execution of PAT.
The correction file consists of previously assembled object code containing
corrections and additions to the input file. When linked by the Task Builder,
the correction file either overlays or is added to the original object module.
Output from PAT is the updated, or new object file.

You can invoke PAT using any of the methods for invoking a utility as de­
scribed in Chapter 1.

Figure 4-1 shows how PAT updates a file (FILEl) consisting of three object
modules (MODI, MOD2, and MOD3) by appending a correction file to
MOD2. The updated module is then relinked with the rest of the file by the
Task Builder to produce an executable task.

Figure 4-1: Updating a Module Using PAT

FILE 1
FILE2

MOD1

MOD1

MOD2

~ ~
MOD2

MOD3
PAT --------

UPDATE2

MOD3

UPDATE2

Q-MK-0004B-OO

There are several steps involved when using PAT to update a file. First, you
must create the correction file by using PIP (see RSTSIE System User's
Guide) or a text editor. The correction file must then be assembled to produce
an object module. The input file and the correction file are then submitted to
PAT for processing. Finally, the updated object module, along with the object
modules that comprise the rest of the file, can be submitted to the Task
Builder to resolve global symbols and create an executable task. Figure 4-2
illustrates the processing steps involved in generating an updated task file
using PAT.

4-2 Using the Object Module Patch Utility (PAT) Program

Figure 4-2: Processing Steps Required to Update a Module Using PAT

1-

TEXT

EDITOR

CORRECT.MAC

ORIG.OLB

LLiBRARY FILE

TASK

BUILDER

1. GENERATE A CORRECTION FILE

USING THE TEXT EDITOR

CORRECT.MAC

CORRECT.OBJ

-l\.. 2. EXECUTE THE ASSEMBLER (OR COMPILER)

-V TO GENERATE AN OBJECT MODULE -1\..
VERSION OF THE FILE. -V

3. EXTRACT THE ORIGINAL

MODULE TO BE REPATCHED

USING LBR.

OPTIONAL STEP

CORRECT.OBJ

UPFILE.OBJ

4. EXECUTE PAT USING AS
INPUT THE CORRECTION

FILE AND MODULE TO
BE UPDATED.

5. EXECUTE THE TASK BUILDER
TO RESOLVE NEW ADDRESS
AND GENERATE AN
EXCUTABLE TASK.

ORIG.OBJ

COpy

UPFILE.OBJ

UPFILE.TSK

l
I

NOTE: PREFORM STEP 3 ONLY IF THE ORIGINAL

MODULE IS ON THE LIBRARY FILE.
F-MK-00047-00

Using the Object Module Patch Utility (PAT) Program 4-3

4.2 Specifying the PAT Command Line

A PAT command line has the following form:

[outfile]=infile[/CS[:number]] ,correctfile[/CS[:number]]

where:

outfile is the file specification for the output file. Outfile must have a
different name than the infile. If you do not specify an output
file, none is generated.

infile is the file specification for the input file. This file can contain one
object module or several concatenated object modules.

correctfile is the file specification for the correction file. This file contains
the corrections being applied to a single module in the input file.

ICS specifies the Checksum switch (lCS), which directs PAT to gen­
erate an octal value for the sum of all the binary data for the
module in the file to which the switch is applied. (See Section
4.3.5.)

number specifies an octal value that PAT compares to the computed
checksum value.

NOTE

P AT accepts indirect command files (see Section 1.3.2).

4.3 How PAT Applies Updates

PAT applies updates to a base input module using additions and corrections
supplied in a correction file. This section describes the format of input and
correction files, provides information on how to create a correction file, along
with pertinent examples.

4.3.1 The I nput File

The input file is the file to be updated, and therefore is the base for the
updated output file produced. The input file must be in object module format.
When PAT executes, the correction file module is applied to this file.

4-4 Using the Object Module Patch Utility (PAT) Program

4.3.2 The Correction File

The correction file also must be in object module format. It is usually created
from a MACRO-ll assembler source file in the following format:

.TITLE inputname

.IDENT updatenum
inputline
inputline

*
*
*

where:

inputname is the name of the module to be updated by PAT, and must be
the same as specified in the input file's .TITLE directive for
that module.

updatenum is any value acceptable to the MACRO-ll assembler. General­
ly, this value identifies the update version of the file being
processed by PAT, as shown in the examples below.

inputline is each line of input to be used to correct and update the input
file.

During execution, PAT adds the new global symbols defined in the correction
file to the module's symbol table. Duplicate global symbols in the correction
file supersede their counterparts in the input file, provided both definitions
are either relocatable or absolute.

A duplicate PSECT or CSECT supersedes the previous PSECT or CS~CT,
provided:

1. Both have the same relocatability attribute (ABS or REL).

2. Both are defined with the same directive (.PSECT or .CSECT).

If PAT encounters duplicate PSECT names, the length attribute for the
PSECT is set to the length of the longer PSECT and a new PSECT name is
assigned to the other module.

If a transfer address is specified, it supersedes that of the module being
patched.

4.3.3 Creating the Correction File

Referring to Figure 4-2, the first step in using PAT to update an object file is
to generate the correction file. Use any editor program to generate these addi­
tions and corrections to your file.

The correction file must be in object module format before it can be processed
by PAT. When you have created the source version of the correction file, you
must have it assembled in order to produce an object module that PAT can
process.

Using the Object Module Patch Utility (PAT) Program 4-5

4.3.4 How PAT and the Task Builder Update Object Modules

The following examples show an input file and a correction file to be processed
by PAT and Task Builder, along with a source-like representation of the
output file after PAT and Task Builder complete processing. Programs that
used the patched object module must be re-task built. Before Task-building,
corrections and additions are only appended to the patched object module.
After task-building, the additions and corrections are placed in their proper
locations in the task image. Two techniques are used in this process; overlay­
ing lines in a module, and appending a subroutine to a module.

4.3.4.1 Overlaying Lines in a Module - The example below illustrates a tech­
nique for overlaying lines in a module using a patch file. First, PAT appends
the correction file to the input file. The Task Builder is then executed to
replace code within the input file. The input file for this example is:

• TITLE ABC
• I DENT lOll

ABC: :
MOV AtC
CALL XYZ
RETURN
.END

To add the instruction ADD A,B after the CALL instruction, include the
following patch source file:

• TITLE ABC
.IDENT 101.011

.=.+12
ADD AtB
RETURN
.END

The patch source is assembled using MACRO-ll, and the resulting object file
is input to PAT along with the original object file. The updated object module
appears as follows:

• TITLE ABC
.IDENT 101.011

ABC: :
MOV AtC
CALL XYZ
RETURN

.=ABC

.=.+12
ADD AtB
RETURN
.END

4-6 Using the Object Module Patch Utility (PAT) Program

After Task Builder processes these files, the task image appears as follows:

• TITLE ABC
• I DENT 101.011

ABC: :
MDV A,C
CALL XYZ
ADD AlB
RETURN
.END

The Task Builder uses the .=.+12 in the program counter field to determine
where to begin overlaying instructions in the program. The Task Builder
overlays the RETURN instruction with the patch code:

ADD AlB
RETURN

4.3.4.2 Adding a Subroutine to a Module - This example illustrates a tech­
nique for adding a subroutine to an obj~ct module. In many cases, a patch
requires that more than a few lines be added to patch the file. A convenient
technique for ~dding new code is to append it to the end of the module in the
form of a subroutine. This way, you can insert a CALL instruction to the
subroutine at an appropriate location. The CALL directs the program to
branch to the new code, execute that code, and then return to in-line process­
ing. The input file for the example is:

.ENABL GBL
2
3
£I • TITLE ABC
5 • I DENT
6 000000 016767 OOOOOOG OOOOOOG ABC:: MDV AlB
7 000006 CALL XYZ

000006 00£1767 OOOOOOG JSR PC,XYZ
8 000012 016700 OOOOOOG MDV C,RO
8 000016 RETURN

000016 000207 RTS PC
10 * 11 * 12 * 13 000001 .END

The correction file for this example is:

1 .ENABL GBL
2
3
£I • TITLE ABC
5 .IDENT 101.011
6 000000 CALL PATCH

000000 00£1767 OOOOOOG JSR PC,PATCH
7 00000£1 0002£10 NDP
8 000000 PSECT PATCH
8 000000 PATCH:

10 000000 016767 OOOOOOG OOOOOOG MOV AlB
11 000006 016700 OOOOOOG MOV D,RO
12 000012 006300 ASL RO
13 000014 RETURN

000014 000207 RTS PC
14 000001 .END

Using the Object Module Patch Utility (PAT) Program 4-7

PAT appends the correction file to the input file, as in the overlay example.
The Task Builder then processes the file and the following outpqt file is
generated:

.ENABL GBL
2
3
4 .TITLE ABC
5 .IDENT 011.011
6 000000 ABC: :
7 000000 CALL PATCH

000000 004767 OOOOOOG JSR PC.PATCH
8 000004 000240 NoP
8 000006 CALL \/\1'7

I\JL..

000006 004767 OOOOOOG JSR PC t}-(YZ
10 000012 016700 OOOOOOG MOl,) C,RO
11 000016 RETURN

000016 000207 RTS PC
12 lI-

13 *
14 *
15 000000 .PSECT PATCH
16 000000 PATCH:
17 000000 016767 OOOOOOG OOOOOOG MOl,) A.B
18 000006 016700 OOOOOOG MOl.! D,RO
18 000012 006300 ASL RO
20 000014 RETURN

000014 000207 RTS PC
21 000001 .END

In this example, the CALL PATCH and NOP instructions overlay the three­
word MOV A,B instruction. The NOP is required because a two-word instruc­
tion replaces a three-word instruction and NOP is required to maintain word
boundary alignment. The Task Builder allocates additional storage for
PSECT PATCH, writes the specified code into this program section. and
binds the CALL instruction to the first address in this section. Note that the
MOV A,B instruction replaced by the CALL PATCH is the first instruction
executed by the PATCH subroutine.

4.3.5 Determining and Validating the Contents of a File

The Checksum switch (lCS) validates the contents of a module. The Check­
sum switch directs PAT to compute the sum of all binary data in a file. If
specified in the form ICS:number, ICS directs PAT to compute the checksum
and compare that checksum to the value specified as number.

To determine the checksum of a file, enter the PAT command line with the
ICS switch appended to the file specification whose checksum is being deter­
mined, for example:

=INFILE/CS,INFILE.PAT®ill

PAT responds to this command with the message:

INPUT MODULE CHECKSUM IS <checksuM>

4-8 Using the Object Module Patch Utility (PAT) Program

A similiar message is generated when the checksum for the correction file is
requested.

NOTE

A checksum is an octal number which is the sum of all the eight
bit binary values, less carries, comprising an object module.

To validate the changes to a file, enter the Checksum switch in the form
/CS:number. PAT compares the value it computes for the checksum with the
value you specify as number. If the two values do not match, PAT displays
the message:

ERROR IN FILE <filename> CHECKSUM

A checksum is always a nonzero value.

4.4 PAT Messages

PAT generates messages that state checksum values and messages that de­
scribe error conditions. For checksum values and nonfatal error messages,
PAT prefixes messages with:

'X.PAT -- *OIAG -

For error messages that describe errors causing PAT to terminate, PAT uses
the prefix:

?PAT -- *FATAL -

Fatal and diagnostic errors may still result in the creation of the requested
output files. All output files created prior to a fatal error should be deleted; all
diagnostic error output files should be examined and a decision made on
whether or not to keep them.

The messages described below are grouped according to message type, as
follows:

1. Information messages.

2. Command line errors.

3. Input/output errors.

4. Errors in file contents or format.

5. Internal software errors.

6. Storage allocation errors.

4.4.1 Information Messages

The following messages describe results of checksum processing.

Using the Object Module Patch Utility (PAT) Program 4-9

CORRECTION INPUT FiLE CHECKSUM IS <checksuM>

Description: <checksum> is the module checksum displayed in response to
the ICS switch appended to a correction input file specification. The value is
printed in octal.

Suggested User Response: No response necessary.

INPUT MODULE CHECKSUM IS <checksuM>

Description: <checksum> is the module checksum displayed in response to
the ICS switch appended to an input file specification. The value is printed in
octal.

Suggested User Response: No response necessary.

4.4.2 Command Line Errors

The following errors result from failure to ~dhere to the command line syntax
rules.

COMMAND LINE ERROR <coMMand line>

Description: The displayed command line contains an error detected by the
command line processor.

Suggested User Response: Reenter the command line using the correct syntax.

COMMAND SYNTAX ERROR <coMMand line>

Description: The command line displayed contains a syntax error.

Suggested User Response: Reenter the command line using the correct syntax.

ILLEGAL INDIRECT FILE SPECIFICATION <coMMand line>

Description: The displayed command line contains an indirect file specifica­
tion that contains one of the following errors:

• A syntax error in the file specification.

• Specification of a non-existent indirect file.

Suggested User Response: Check for file specification syntax errors. Check
that the specified file is contained in the User File Directory.

MAXIMUM INDIRECT .FILE DEPTH EXCEEDED <coMMand line>

Description: The command line displayed specifies an indirect command file
that exceeds the nesting level (level 2) permitted by PAT.

Suggested User Response: Reorder your files so that they do not exceed the
nesting limit.

4-10 Using the Object Module Patch Utility (PAT) Program

4.4.3 File Specification Errors

The following messages are caused by errors in the specification of input or
output files or related file switches.

CORRECTION INPUT FILE MISSING <command line>

Description: The command line does not contain the mandatory correction
file input specification.

Suggested User Response: Reenter the command line specification including
the correction file.

ILLEGAL DEVICE/VOLUME SPECIFIED <device name>

Description: <device name> does not adhere to the syntax rule for specifying
device or volume.

Suggested User Response: Check the rules for specifying the device and
reenter the command line with the correct device specified.

ILLEGAL DIRECTORY SPECIFICATION <directory name>

Description: The directory string displayed does not adhere to the syntax
rules for specifying directories.

Suggested User Response: Reenter the command line specifying the directory
string in the correct syntax.

ILLEGAL FILE SPECIFICATION <filename>

Description: The filename printed does not adhere to the syntax rules for file
specifications.

Suggested User Response: Reenter the command line using the correct syntax
for the filename.

ILLEGAL SWITCH SPECIFIED <filename>

Description: An unrecognized switch or switch value has been appended to
the filename displayed.

Suggested User Response: Check the rules for specifying the switch and
reenter the command line.

INVALID FILE SPECIFIED <filename>

Description: The filename displayed:

1. References a nonexistent device.

2. References a nonexistent PPN.

Using the Object Module Patch Utility (PAT) Program 4-11

Suggested User Response: Correct the device or PPN specification and reenter
the command line.

MULTIPLE OUTPUT FILES SPECIFIED <coMMand line>

Description: Only one output file specification is accepted by PAT.

Suggested User Response: Reenter the command line with only one output file
specified.

REQUIRED INPUT FILE MISSING <coMMand line>

Description: The command line does not contain the mandatory input file
specification.

Suggested User Response: Reenter the command line specification input file.

TOO MANY INPUT FILES SPECIFIED <coMMand line)

Description: The command line displayed contains too many input file speci­
fications. PAT accepts one input and one correction file specification.

Suggested User Response: Reenter the command line specifying the correct
files.

SYMBOL --- IS MULTIPLY DEFINED

Description: Multiple definitions of a symbol has occurred.

Suggested User Response: Rename one or more of the duplicate symbols, then
regenerate correction file.

UNABLE TO FIND FILE <filenaMe)

Description: The specified input or correction file could not be located.

Suggested User Response: Ensure that the file exists. Reenter the command
line.

4.4.4 Input/Output Errors

The error messages listed below are caused by faults detected while perform­
ing I/O to the specified file.

ERROR DURING CLOSE: FILE: <filenaMe)

j

Description: This error is most likely to occur while attempting to write the
remaining data into the output file before closing it. The principal sources of
error in these circumstances are:

1. Device full.

2. Device write-locked.

4-12 Using the Object Module Patch Utility (PAT) :i?rogram

Suggested User Response: Perform the appropriate corrective action and
reenter the command line.

ERROR POSITIONING FILE <filename>

Description: An attempt has been made to position the file beyond end-of-file.

Suggested User Response: Submit a Software Performance Report along with
the related console dialogue and any other pertinent information.

liD ERROR ON INPUT FILE <filename>

Description: An error was detected while attempting to read the specified
input file. The principal cause is a device hardware error.

Suggested User Response: Reenter the command.

liD ERROR ON OUTPUT FILE <filename>

Description: An error occurred while attempting to write into the named
output file. The most likely causes are:

1. Contiguous file ~annot be extended.

2. Device full.

3. Device write-locked.

4. Hardware error from device.

Suggested User Response: Perform the appropriate corrective action and
reenter the command.

4.4.5 Errors In File Contents or Format

The. following errors represent inconsistencies detected by PAT in the format
or contents of input or correction files.

ERROR IN FILE <filename> CHECKSUM

Description: Checksum computed by PAT for the named file does not match
that supplied by the user.

Suggested User Response: Ensure that the correct checksum was specified. If
the checksum was correct, either the input file or the correction file was
incorrect. Rerun PAT and specify the correct file.

FILE <filename> HAS ILLEGAL FORMAT

Description: The format of the named file is not compatible with the object
file format accepted by the Task Builder. The principal causes are:

Using the Object Module Patch Utility (PAT) Program 4-13

1. Truncated input file.

2. Input file consists of text.

Suggested User Response: Ensure that the file is a compatible object file and
resubmit it for PAT processing.

INCOMPATIBLE REFERENCE TO GLOBAL SYMBOL <sYMbol naMe)

Description: A correction file contains a global symbol whose attributes do not
match any of the following input file symbol attributes:

1. Definition or Reference.

2. Relocatable or Absolute.

Suggested User Response: Update the correction input file by modifying the
symbol attributes. Reassemble the file and resubmit it for PAT processing.

INCOMPATIBLE REFERENCE TO PROGRAM SECTION <section naMe)

Description: A correction file contains a section name whose attributes do not
match one of the input file section attributes:

1. Relocatable or Absolute.

2. .PSECT or .CSECT.

Suggested User Response: Update the correction file by modifying the section
attribute or changing the section type. Reassemble the file and resubmit it to
PAT for processing.

UNABLE TO LOCATE MODULE <Module naMe)

Description: A module name specified in the correction input file could not be
found in the file of concatenated input modules.

Suggested User Response: Update the correction file specification to include
the missing module. Reenter the command line.

UNABLE TO OPEN FILE

Description: An error occurred trying to open a file to which you had no
access.

Suggested User Response: Use a privileged account or change the protection
code of the file you are trying to access.

4.4.6 Internal Software Error

These errors reflect internal software error conditions. If they persist, submit a
Software Performance Report along with the related console dialogue and any
other pertinent information.

4-14 Using the Object Module Patch Utility (PAT) Program

ILLEGAL ERROR-SEVERITY CODE <error data>

Description: An error message call has been generated containing an illegal
parameter.

Suggested User Action: If the error persists, submit a Software Performance
Report along with the related console dialogue and any other pertinent
information.

4.4.7 Storage Allocation Error

The following error message indicates that insufficient task memory was
available for storing global symbol and program section data:

NO DYNAMIC STORAGE AVAILABLE <storase-listhead>

Description: Insufficient contiguous task memory was available to satisfy a
request for the allocation of storage.

<Storage-listhead> is a display of the two-word dynamic storage listhead
contents in octal.

Suggested User Response: None, this message is not relevent in RSTS/E.
However if this message does appear, submit a Software Performance Report.

Using the Object Module Patch Utility (PAT) Program 4-15

Chapter 5
Using the MAKSIL Utility Program

The MAKSIL utility program accepts as input files the generated output of
the Task Builder, a task image file (extension .TSK) and a symbol table
(extension.STB). Depending on how the program was originally coded and
how you specify the MAKSIL utility program, MAKSIL produces a formatted
output file that can be loaded into memory as a resident library (.LIB) or a
run -time system (.RTS).

When generating a run-time system, a new command file (.CMD) can also be
generated. When generating either the .LIB or .RTS, you have the option of
including the symbol table (.STB) into RSTSIE Save Image Library (SIL)
format, thus allowing symbolic patching of the output file.

5.1 Creating a Run .. Time System (RTS)

In order to use MAKSIL to format task builder output (task image) into a
loadable run-time system, two conditions must be met.

For the first condition:

1. The starting address of the task image (the label referenced by the .END
statement) must be within the lowest 1K of memory of the read-only
portion of the task.

2. The highest virtual address for the task must be 177774 (octal). The word
at 177774 (octal) must contain a valid, non-zero maximum job image size
entry.

The second condition requires the following step:

1. Task-build the MACRO assembled run-time system code (.OBJ), then
use MAKSIL to format the Task Builder output (.TSK and .STB). MAK­
SIL will print the following error message if the . TSK file is not alligned
properly:

TASK MUST BE EXTENDED BY xxxxxxxx BYTES

If the file is not properly aligned, edit the command file (.CMD) to extend
a "dummy" control section by the required number of bytes to align the
last .PSECT at the correct boundary and rerun MAKSIL. The "edit"
mode of MAKSIL can be used to automatically modify the command file
(see Section 5.2).

5-1

MAKSIL may not work correctly if the Task Builder parameters are out of
range. When you task build run-time system code, specify the following Task
Builder options described in Table 5-1 to set the required virtual and physical
address range. (See the RSTS/E Task Builder Reference Manual.)

Table 5-1: Task Builder Options for Virtual and Physical Address
Range

Option Description

PAR Define virtual address base and range. PAR also implicitly specifies the largest
program (low-segment) area.

STACK The partition size is a multiple of 4K words. If the run-time system is only
3K-words for example, the STACK option would be defined as "STACK=1024"
to reserve an additional 1K-words. If this is done, the run-time system will
occupy only 3K -words of physical memory when it is loaded.

EXTSCT RSTSIE requires the task to end at virtual address 177774. The EXTSCT option
extends a control section (usually .99998) so that the vector control section
(.99999) ends correctly.

Table 5-2 defines the PAR and STACK options for various run-time system
sizes.
Table 5-2: Task Builder PAR and STACK Options for Various Sized

Run-Time Systems

Size Options

lK - 4K PAR=160000:020000*

5K - 8K PAR=140000:040000

9K - 12K PAR=120000:060000

13K - 16K PAR=l00000: 100000

17K - 20K PAR=060000: 120000

21K - 24K P AR=040000: 140000

25K - 28K P AR=020000: 160000

1K 5K 9K 13K 17K 21K 25K STACK=3072

2K 6K 10K 14K 18K 22K 26K STACK=2048

3K 7K 11K 15K 19K 23K 27K STACK=1024

4K 8K 12K 16K 20K 24K 28K STACK=OOOO

*PAR=virtual address:number of bytes

The following example shows a control file for a dummy 4K word run-time
system:

FILE/-HD.FILE,FILE=FDDBLD/MP

PAR=FILE:1GOOOO:020000

STACK=O

EXTSCT=.99998:000000

II

5-2 Using the MAKSIL Utility Program

After task building FILE. TSK and executing MAKSIL, the command file
would be edited to change the PAR, STACK, and EXTSCT options to appro­
priate values. The task builder is then rerun to correctly build the task.

Finally, MAKSIL is rerun to build FILE.RTS.

Run-time systems are built by first specifying the size (4K,8K,etc.) and then
task building so as to include as many modules resident as will fit in the
partition (leaving sufficient patch space). Then, MAKSIL is run to define the
EXTSCT value. Finally, the extended task is built and converted to a run­
time system.

5.2 Creating a Resident Library

MAKSIL can also produce a resident library output file. As shown in the
example below, the switch /RTS is not appended to the filename entered in
response to the first MAKSIL prompt. Note that the switch /DEBUG can be
used if required.

RUN $MAKSIL 00l

MAKSIL V70 RSTS/E TimesharinS

Resident LibrarY name? TEST 00l

TasK-built Resident Library input file <TEST.TSK)? TEST ®m

Include SY'Ilbol table (Yes/No) <Yes)'? Yes 00l

Symbol table input file <TEST.STB)? TEST 00l

Resident Library output file <TEST.LIB)? TEST 00l

TEST built in 23 K-wordsl 5G8 symbols in the directory

TEST.TSK renamed to TEST.TSK<GO)

5.3 Operating Instructions

Following are the keyboard operating commands and responses for MAKSIL.

Type:

RUN $MAKSIL 00l

Mter displaying its header line, MAKSIL prompts, and the user answers:

Resident Library name? FILE/RTS m FILE

Type the name of the resident library (FILE, for example) or the run-time
system name (FILE/RTS, as shown above). "RTS" is required if a run-time
system is to be built. The switch /RTS signals that special conditions must be
met by the .TSK file before proper conversion to a run-time system Save

Using the MAKSIL Utility Program 5-3

Image Library (SIL) format can be made. When the switch /RTS is not used,
MAKSIL assumes that a Resident Library file is to be created. The switch
/DEBUG can be used when creating a run-time system or a resident library
file to initiate printout of internal tables during the create process.

MAKSIL then prompts:

TasK-built Resident Library irlPIJt file <FILE.TSK>? @)
or
TasK-built Run-Time S}'stem input file <FILE.TSK>? @)

Type the name of the. TSK file, or press the RETURN key if the default name
is acceptable. If a run-time system is to be built, the task is checked for
correct parameters. If a resident library is requested, the next prompt is
include symbol table.

If in Build Mode, the program checks the format of the file as a run-time
system and responds with either:

The run-time sYstem is correctly alisned
or
The run-time sYstem is not aliSned

If in IIEdit Modell, to redefine task-builder parameters.

Edit fTlode (Yes/No) <Yes> ? @)

At this point, in running MAKSIL, you have two options; to enter the edit
mode to redefine task build parameters, or the build mode to construct the
run-time system. This option is presented by the following prompt:

TasK-builder comfTland lnput file <FILE.CMD>? @)

If the run-time system is correctly alligned, the program will exit.

The command file is edited to modify the EXTSCT, STACK and PAR op­
tions to extend the task as necessary. The program then prompts:

Corrected command filename <FILE.CMD>? @)

If you respond with the RETURN key, the old file FILE.CMD will be re­
named to FILE.BAK. The program then reminds you to rebuild the task and
exits:

Please tasK-build aSain usins FILE.CMD

If you answered IINoli to the IIEdit Modell question, the program aborts if the
task is not correctly aligned. Perform the task-build. If there are no problems,
the following questions are asked:

Include SYMbol table (Yes/No) <Yes>? @)

5-4 Using the MAKSIL Utility Program

Typing Yes and the RETURN key or just the RETURN key, will append a
symbol table (.STB) to the run-time system. The .STB file allows you to
patch the .RTS via INIT or the on-line patching mechanism. If a symbol table
is requested, the prompt appears:

S}'mbol table input file <FILE.STB)? (Bm

Type the name of the .LIB or .RTS file, or the RETURN key if the default is
acceptable. MAKSIL builds the run-time system or resident library (with
symbol table if requested) into the output file and displays:

Run-Time System output file <FILE.RTS)? (Bm
or
Resident Libran FILE.LIB (Bm

Type the name of the .LIB or .RTS file, or the RETURN key if the default is
acceptable. MAKSIL builds the run-time system or resident library (with
symbol table if requested) into the output file and displays:

FILE built in 4K words, 123 symbols in the directory

After the MAKSIL process, the task image file is renamed so that unprivi­
leged users can access the task image with the "HISEG=" or the "LIBR="
switch when task building their programs.

5.4 Messag.es

There are three types of messages that can be encountered while using
MAKSIL:

1. Fatal error messages(?)

2. Diagnostic messages(%)

3. Informational messages

These three types of messages, their causes, and user responses are described
in the following sections.

5.4.1 Fatal Error Messages

?ooo BASE OR TRANSFER ADDRESS

Description: The .TSK file contains an incorrect transfer address or an odd
value for a base address.

Suggested User Response: Re-task build the program, and execute MAKSIL.

?GARBAGE WHEN CONVERTING "nnnnn" IN "command" text

Description: A conversion error has occurred.

Using the MAKSIL Utility Program 5-5

Suggested User Response: Check the .CMD file, re-task build, and execute
MAKSIL.

?COULDN'T FIND ALIGNMENT POINT

Description: The alignment scan could not locate the communication vector.

Suggested User Response: Check that the task build has been performed
correctly.

?PARTITION OR STACK PARAMETER INCORRECT FOR TASK

Description: You are trying to extend the task too far.

Suggested User Response: Rebuild the task with correct "PAR=" and
"STACK=" commands.

?TASK IMAGE xxxxx.TSK CANNOT BE CONl.'ERTED TO RUN-TIME SYSTEM }'n'n'.

Description: Same as message

Suggested User Response: Check that the task is defined correctly. Common
problems include a starting address that is not in the first lK memory seg­
ment, a missing vector control section (.99999), or overall incorrect run-time
system design. Running MAKSIL using the /DEBUG switch on the
"Run-Time System Name" question causes a list of internal symbols to be
printed that can be helpful in determining the cause of the error.

?ERROR REOPENING SYMBOL TABLE

Description: Opening the .STB file resulted in an error after the file had once
successfully been opened.

Suggested User Response: Re-execute the MAKSIL program.

?ERROR WHEN OPENING file.ext - - text

Description: An error was encountered when opening the file "file.ext" de­
scribed in error message "text".

Suggested User Response: Type in correct filename in response to question.

?OISK FILES ONLY, PLEASE

Description: An attempt has been made to open a non-disk file for input or
output operations.

Suggested User Response: Enter only filenames that reside on the disk in
response to MAKSIL questions.

5-6 Using the MAKSIL Utility Program

?ILLEGAL SYMBOL TABLE FORMAT

Description: The symbol table (.STB) file does not have the file attributes of
either formated binary or variable length records.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

?ERROR GETTING A .GSD ENTRY

Description: In processing the symbol table (,STB) file, an error occurred that
prevents finding a valid symbol table entry.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has"been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

?LONG FORMATTED-BINARY RECORD.

Description: The symbol table (,STB) file contains a formatted binary record
greater than 512 bytes"

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

?ILLEGAL FORMATTED-BINARY RECORD

Description: The symbol table (,STB) file contains a formatted record start­
ing at an odd byte boundary.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

?ILLEGAL VARIABLE-LENGTH RECORD

Description: The symbol table (.STB) file contains a variable length record
which either is greater than 512 bytes in length, or starts at an odd byte
boundary.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

Using the MAKSIL Utility Program 5-7

?ADDRESSING DUTSIDE OF TASK LIMITS

Description: The program tried to access beyond the calculated end of the
.TSK file. The task image is incorrect.

Suggested User Response: Task build the program again and execute
MAKSIL.

?ERROR GETTING BLOCK xx --text

Description: A GET command was performed on block xx of the output file
(.RTS or .LIB), which resulted in an error, as described in error message text.

Suggested User Response: Execute the MAKSIL program again.

?ERROR PUTTING BLOCK xx -- text

Description: A PUT command was performed on block xx of the output file,
which resulted in an error, as described in the error message text.

Suggested User Response: Execute the MAKSIL program again.

?ERROR GETTING FROM xxxx.STB -- text

Description: An error occurred when performing a GET command from the
symbol table (.STB) file, as described in error message text.

Suggested User Response: Re-execute the programs.

?FATAL ERROR --text

Description: An unexpected error has occurred.

Suggested User Response: Send a Software Performance Report along with an
appropriate listing of the error.

5.4.2 Diagnostic Messages

ZRUN-TIME SYSTEM MAXIMUM JOB SIZE (xx) EXCEEDS CALCULATED MAXIMUM OF (yy)

Description: The maximum size of a particular job (O.SIZE) as defined in the
.TSK, is too great for the run-time system. For example, while assembling a
run-time system requiring 16K words, a job size of 28K words had been
defined. Since the run-time system and a job cannot exceed 32K words, the
RSTS/E Monitor adjusts the maximum job size to 16K words.

Suggested User Response: No response is required.

ZMULTIPLE cOMMand: "first cOMMand", "COMMand line"

5-8 Using the MAKSIL Utility Program

Description: A PAR, STACK, or EXTSCT command appears more than
once. Only the first command, of a particular type, is used.

Suggested User Response: No response is required.

5.4.3 Informational Messages

INCORRECT FILE SIZE xx, COMPUTEO=yy

Description: The actual file size is less than that calculated from parameters
contained in the .TSK file.

Suggested User Response: No response is required.

THE RUN-TIME SYSTEM IS NOT ALIGNED

or

THE RUN-TIME SYSTEM IS CORRECTLY ALIGNED

Description: One of the two messages above is displayed, depending on the
outcome of the task verification phase.

Suggested User Response: No response is required.

THE COMMAND FILE IS ALREADY CORRECT.EXITING.

Description: The edit mode was selected even though the task is correct. This
may happen if MAKSIL is run from a batch stream

Suggested User Response: No response is required.

THE TASK- BUILDER COMMANDS HAVE BEEN CHANGED AS FOLLOWS
OLD par NEW par
OLD stacK NEW stacK
OLD extsct NEW extsct

<filename> will load in a xx K-words partition usin. yy K-words
ph}'sical fIle"IOf}'
zz (octal) bytes may be used for expansion.
please tasK-build a.ain usin. <filename>.CMD

Description: The above message is displayed to log the edit mode changes.

Suggested User Response: Re-task build using the edited command file.

UTILITY ADD SUPPRESSED

Description: This message is printed if the run-time system was not written to
account [0,1].

Suggested User Response: No response is required.

Using the MAKSIL Utility Program 5-9

Appendix A
MACRO 11 Diagnostic Error Message Summary

A diagnostic error code is printed as the first character in a source line which
contains an error detected by MACRO-11. This error code identifies a syntac­
tical problem or some other type of error condition detected during the pro­
cessing of a source line. An example of such a source line is shown below:

Q 28 000238 010102

The extraneous argument A in the MOV instruction above causes the line to
be flagged with a Q (syntax) error.

Error Code Meaning

A Assembly error. Because many different types of error conditions produce this
diagnostic message, all the possible directives which may yield a general assem­
bly error have been categorized below to reflect specific classes of error condi­
tions:

CATEGORY 1: megal Argument Specified .

. RADIX -- A value other than 2, 8, or 10 is specified as a new radix .

. UST/.NUST -- Other than a legally defined argument is specified with
the directive .

. ENABL/.DSABL -- Other than a legally defined argument is specified with
the directive .

. PSECT -- Other than a legally defined argument is specified with the
directive .

.IF/.IIF -- Other than a legally defined conditional test or an illegal argu­
ment expression value is specified with the directive .

. MACRO -- An illegal or duplicate symbol found in dummy argument list.

A-I

CATEGORY 2: Null Argument or Symbol Specified .

. TITLE -- program name is not specified in the directive, or first non-blank
character following the directive is a non-Radix-50 character .

.IRP/.IRPC -- No dummy argument is specified in the directive .

. NARG/.NCHAR/.NTYPE -- No symbol is specified in the directive .

.IF/.IIF -- No conditional argument is specified in the directive.

CATEGORY 3: Unmatched DelimiterlIllegal Argument Construction.

/ASCII/.ASCIZ/.RAD50/.IDENT -- Character string or argument string del­
imiters do not match, or an illegal character is used as a delimiter, or an
illegal argument construction is used in the directive .

. NCHAR -- Character string delimiters do not match, or an illegal character
is used as a delimiter in the directive.

CATEGORY 4: Genenl Addressing Errors

This type of error results from one of several possible conditions:

1. Permissible range of a branch instruction. i.e., from -128 to +127 words,
has been exceeded.

2. A statement makes invalid use of the current location counter, e.g., a
".=expression" statement attempts to force the current location counter
to cross program section (.PSECT) boundaries.

3. A statement contains an invalid address expression. In cases where an
absolute address expression is required, specifying a global symbol, a
relocatable value, or a complex relocatable value results in an invalid
address expression. Similarly, in cases where a relocatable address ex­
pression is required, either a relocatable or absolute value is permissible,
but a global symbol or a complex relocatable value in the statement
likewise results in an invalid address expression. Specific cases of this
type of error are those which follow:

.BLKB/.BLKW /.REPT -- Other than an absolute value or an expression
which reduces to an absolute value has been specified with the directive.

4. Multiple expressions are not separated by a comma. This condition
causes the next symbol to be evaluated as part of the current expression.

CATEGORY 5: lllegal Forward Reference.

This type of error results from either of two possible conditions:

1. A global assignment statement (symbol==expression) contains a for­
ward reference to another symbol.

2. An expression defining the value of the current location counter contains
a forward reference.

B Bounding error. Instructions or word data are being assembled at an odd address.
The location counter is incremented by 1.

D Doubly-defined symbol referenced. Reference was made to a symbol which is
defined more than once.

A-2 MACRO-ll Diagnostic Error Message Summary

E End directive not found. When the end-of-file is reached during source input and
the .END directive has not yet been encountered, MACRO-ll generates this
error code, ends assembly pass 1, and proceeds with assembly pass 2.

I Illegal character detected. Illegal characters which are also non-printable are
replaced by a question mark (?) on the listing. The character is then ignored.

L Input line is greater than 132 characters in length. Currently, this error condition
is caused only through excessive substitution of real arguments for dummy argu­
ments during the expansion of a macro.

M Multiple definition of a label. A label was encountered which was equivalent (in
the first six characters) to a label previously encountered.

N A number contains a digit that is not in the current program radix. The number is
evaluated as a decimal value.

o Opcode error. Directive out of context. Permissible nesting level depth for condi­
tional assemblies has been exceeded. Attempt to expand a macro which was
unidentified after .MCALL search.

P Phase error. A label's definition of value varies from one assembly pass to another
or a multiple definition of a local syml;>ol has occurred within a local symbol
block. Also, when in a local symbol block defined by the .ENABL LSB directive,
an attempt has occurred to define a local symbol in a program section other than
that which was in effect when the block was entered. A P error code also appears
if an .ERROR directive is assembled.

Q Questionable syntax. Arguments are missing, too many arguments are specified,
or the instruction scan was not completed.

R Register-type error. An invalid use of or reference to a register has been made, or
an attempt has been made to redefine a standard register symbol without first
issuing the .DSABL REG directive.

T Truncation error. A number generated more than 16 bits in a word, or an expres­
sion generated more than 8 significant bits during the use of the .BYTE directive
or trap (EMT or TRAP) instruction.

U Undefined symbol. An undefined symbol was encountered during the evaluation
of an expression; such an undefined symbol is assigned a value of zero. Other
possible conditions which result in this error code include unsatisfied macro
names in the list of .MCALL arguments and a direct assignment (symbol=expres­
sion) statement which contains a forward reference to a symbol whose definition
also contains a forward reference; also, a local symbol may have been referenced
that does not exist in the current local symbol block.

Z Instruction error. The instruction so flagged is not compatible among all members
of the PDP-ll family.

MACRO-ll Diagnostic Error Message Summary A-3

Appendix B
Librarian Utility Program (LBR) Files and Formats

A library file consists of a library header, an entry point table, a module name
table, the library modules, and (usually) free space. The entry point table has
zero length for macro libraries. See Figure B-l.

B.1 Library Header

The header section is a full block (256 words) in which the first 23 words are
used to describe the current status of the library. Its contents are updated as
the library is modified, so LBR can access the information it needs to perform
its functions (Insert, Compress, etc.) See Figure B-2.

B.2 Entry Point Table

The entry point table consists of 4-word elements that contain an entry point
name (words 0-1), and a pointer to the module header where the entry point is
defined (words 2-3). See Figure B-3. This table is searched when a library
module is referenced by one of its entry points. The table is sequenced in order
of ascending entry point names. The entry point table is not used for macro
library files.

B-1

B.3 Module Name Table

The module name table is searched when the library module is referenced by
its module name, rather than by one of its entry points. It is comprised of
4-word elements; a module name (words 0-1) and a pointer to the module
header (words 2-3). See Figure B-4. The module name table is sequenced in
order of ascending module names.

B.4 Module Header

Each module starts with an 8-word header, identifying the type and status
(normal and deleted) of the module, its length (number of words), etc. (see
Figure B-5).

For object modules, the low-order bit of the attributes byte is set if the module
has the selective search attribute. (See Section 3.3.11 "Selective Search
Switch (/SS)." The selective search attribute reduces task build time.) Also,
for object modules, the 2 words of type-dependent information contain the
module identification defined by the .IDENT directive at assembly time. For
macro modules, these 2 fields are undefined.

Figure B-1: Standard Library File Format

Fixed- Library
Length Header
Records

!
Entry Point

Table

Module Name
Table

Variable- Module 1 Header
Length
Records Module 1

! Module n Header

Module n

Available Space

B-2 Librarian Utility Program (LBR) Files and Formats

-Block
boundaries

Figure B-2: Contents of Library Header

OFFSET

WORD 0 NON ZERO 10 I LIBRARY TYPE

2 LBR (LIBRARIAN) VERSION

4 (.IDENT FORMAT)

6 YEAR
t---

10 DATE AND MONTH
I---

12 TIME OF LAST DAY
t---

14 INSERT HOUR
t---

16 MINUTE
I---

20 SECOND

22 RESERVED I SIZE EPT ENTR'S

24 EPT STARTING RELATIVE BLOCK

26 NO. EPT ENTRIES ALLOCATED

30 NO. EPT ENTRIES AVAILABLE

32 RESERVED I SIZE MNT ENTR'S

34 MNT STARTING REL BLOCK

36 NO. MNT ENTRIES ALLOCATED

40 NO. MNT ENTRIES AVAILABLE

42 LOGICALLY DELETED

44 AVAILABLE (BYTES)

46 CONTIGUOUS SPACE

50 AVAILABLE (BYTES)

52 NEXT INSERT RELATIVE BLOCK

54 START BYTE WITHIN BLOCK

Librarian Utility Program (LBR) Files and Formats B-3

Figure B-3: Format of Entry Point Table Element

WORD 0 GLOBAL SYMBOL

NAME (RADSO)

2 ADDRESS OF RELATIVE BLK. - MODULE
3 HEADER BYTE IN BLOCK

Figure B-4: Format of Module Name Table Element

WORD 0 MODULE NAME

(RADSO)

2 ADDRESS OF RELATIVE BLK.
I- MODULE

3 HEADER BYTE IN BLOCK

Figure B-5: Module Header Format

OFFSET FROM
START OF

MODULE HEADER

o

2

4

6

10

12

14

16

"-

-

ATTRIBUTES STATUS

SIZE OF

MODULE (BYTES)

YEAR
DATE
MODULE MONTH
INSERTED

DAY

TYPE DEPENDENT

INFORMATION

B-4 Librarian Utility Program (LBR) Files and Formats

O=NORMAL MODULE
1=DELETED MODULE

Index
Where more than one page number appears for an entry, the defining entry is in bold type.

ABS argument, 2-5t
Accessing utilities, 1-3
AMA argument, 2-5t
Arguments

ABS,2-5t
AMA,2-5t
BEX,2-4t
BIN,2-4t
CDR,2-5t
CND,2-4t
COM,2-4t
for IDS and /EN switches, 2-5t
FPT,2-5t
GBL,2-5t
LC,2-5t
LD,2-4t
for ILl and /NL switches, 2~4t
LOC,2-4t
LSB,2-5t
MC,2-4t
MD,2-4t
ME,2-4t
MEB,2-4t
PNC,2-5t
REG,2-5t
SEQ,2-4t
SRC,2-4t
SYM,2-4t
TOC,2-4t
TTM,2-4t

ASCn source file specification, 2-2
Assembly pass switch, 2-6

BEX argument, 2-4t
BIN argument, 2-4t
Build Mode, with MAKSIL, 5-4

CCL command names, 1-4
for RSX-based utilities, 1-4t

CDR argument, 2-5t
Checksum switch

for file contents 4-8
numeric value, 4<'
in PAT command line, 4-4

CND argument, 2-4t
COM argument, 2-4t
Command line

entering, 1-5

Command line, (cont.)
errors, 4-10 .
format, 1-1
LBR,3-2
MACRO-ll format, 2-2
PAT, specifying, 4-4

Commands
CCL names, 1-4
RUN, entering, 1-4

Compress switch, 3-2t, 3-3
Control switches

function, 2-5
listing, 2-3
MACRO-ll, 2-3

Correction file
creating, 4-5
CSECT names with PAT, 4-5
for PAT utility, 4-5
PSECT names with PAT, 4-5

Create switch, 3-2t, 3-4
CSECT

in PAT command line, 4-5

Default switch, 3-2t, 3-6, 3-7
Defaults

of file extensions, 1-3t
of file specifications, 1-2t

Delete Global switch, 3-2t, 3-7, 3-8
Delete switch, 3-2t, 3-5
Diagnostic error messages

MACRO-ll, A-I
MAKSIL,5-8

Edit Mode
with MAKSIL, 5-4

Entry Point switch, 3-2t, 3-8, 3-9
Entry Point table, B-1

format of elements, B-4f
and library module referencing, B-1

Error codes
MACRO-ll, A-I to A-3

Error messages
fatal, with MAKSIL, 5-5 to 5-8
LBR, 3-20 to 3-28
MACRO-ll, 2-6 to 2-9
PAT,4-9
sample user responses, 2-7 to 2-9

Index-l

Errors, types of
command line, 4-10
in file contents, 4-13
in file format, 4-14
file specification, 4-11, 4-12
VO, 4-12, 4-13
internal software, 4-14
storage allocation, 4-15

Extensions, file default, 1-3t
Extract switch, 3-2t, 3-9, 3-10
EXTSCT

Task Builder option, 5-2t

Fatal errors
effect on library files, 3-20
MAKSIL error messages, 5-5 to 5-8

File contents
determining, 4-8
validating, 4-8, 4-9

File extensions, default, 1-3t
File specification

ASCII for MACRO-11, 2-2
defaults, 1-2t
errors, 4-11, 4-12
example, 1-2
MACRO-11 VO format, 2-3
RSTS/E,1-2

Files
errors in contents, 4-13
errors in format, 4-14
library, 3-1
standard library format, B-2

FPT argument, 2-5t
Function control switches, 2-5
Functions, combining library, 3-19

GBL argument, 2-5t
Global format

Replace switch, 3-13 to 3-15
Squeeze switch, 3-17

Header
library, B-1
library, contents, B-3f
module, B-2
module, format, B-4f

VO errors, 4-12, 4-13
I/O file specification format

MACRO-11, 2-3
IDENT directive, module identification, B-2

Index-2

Indirect command
for entering lines, 1-5
examples, 1-6

Information messages, 5-9
with MAKSIL, B-3
with PAT, 4-9, 4-10

Insert switch, 3-2t
format, 3-11
use of, 3-10

Internal software errors, 4-14

LBR
command line, 3-2
error messages, 3-20 to 3-28
files and formats, B-1
files, sample, 3-14t
restrictions, list of, 3-19
use of, 3-1

LBR switches, 3-2t
Compress, 3-2t, 3-3
Create, 3-2t, 3-4
Default, 3-2t, 3-6, 3-7
Delete, 3-2t, 3-5
Delete Global, 3-2t, 3-7, 3-8
Entry Point, 3-2t, 3-8, 3-9
Extract, 3-2t, 3-9, 3-10
Insert, 3-2t, 3-10, 3-11
List, 3-2t, 3-11, 3-12
Replace, 3-2t, 3-12 to 3-15
Selective Search, 3-2t, 3-16
Squeeze, 3-2t, 3-17, 3-18

LC argument, 2-5t
LD argument, 2-4t
Librarian Utility Program (LBR)

CCL name, 1-4t
entering command lines, 1-5
files and formats, B-1
to invoke, 1-4
use of, 3-1

Library
functions, combining, 3-19
header, B-1
MACRO-11 file switch, 2-6
resident, 5-3, 5-4
standard file format, B-2f

Library files, 3-1
examples, 3-14t
fatal error messages, 3-20
sample output, 3-14t to 3-16t
standard format, B-2f

Library header, B-1
contents, B-3f
and library status, B-1

List switches, 3-2t, 3-11, 3-12
LOC argument, 2-4t
Local format

Replace switch, 3-13, 3-15
Squeeze switch, 3-17

LSB argument, 2-5t

MACRO-11
ASCII file specification, 2-2
assembly process output files, 2-1
CCL name, 1-4t
command line format, 2-'2
diagnostic error messages: A-I
error codes, A-i to A-3
error messages, 2-6 to 2-9
I/O file specification format, 2-3
invoking with RUN and CCL 2-2
library file switch, 2-6 '
switches, 2-3
switches, list of, 2-4t
utility prOgram, 2-1

MAKSIL
creating a run-time system, 5-1
diagnostic messages, 5-8
fatal error messages, 5-5 to 5-8
information messages, B-3
Make Save Image Library, 1-4t
operating instructions, 5-3, 5-4
use of, 5-1

MC argument, 2-4t
MD argument, 2-4t
ME argument, 2-4t
MEB argument, 2-4t
Messages

command line errors, 4-10
diagnostic errors, A-I
fatal errors and library files, 3-20
file content errors, 4-13
file format errors, 4-13, 4-14
file specification errors, 4-11
I/O errors, 4-12, 4-13
information, 4-9, 4-10
internal software errors, 4-14
LBR error, 3-21 to 3-28
for MACRO-11 errors, 2-6 to 2-9
MAKSIL diagnostic messages, 5-8
MAKSIL fatal errors, 5-5 to 5-7
MAKSIL informational messages, 5-9
with MAKSIL, 5-5
PAT errors, 4-9
storage allocation error, 4-15

Messages, with MAKSIL
diagnostic, 5-8

Messages, with MAKSIL (cont.)
fatal error, 5-5 to 5-8
informational, 5-9

Modules
adding a subroutine to, 4-7
header, described, B-2
header, format, B-4f
name table, described, B-2
name table, format, B-4f
object, updated with PAT, 4-6
object, updated with Task Builder, 4-6
overlaying lines in, 4-6
updating with PAT, 4-2f
updating with PAT, processing steps, 4-3f

Object modules
patch utility, 4-1
updated with PAT, 4-6
updated with Task Builder, 4-6

Operating instructions
for MAKSIL, 5-3, 5-4

Output library file, 3-14t to 3-16t
Overlaying lines in a module, 4-6

PAR option
Task Builder, 5-2t
for various sized run-time systems, 5-2t

PAT command line, 4-4
checksum switch, 4-4
specifying, 4-4

PAT utility
application of updates, 4-4
correction file, 4-5
error messages, 4-9
information messages, 4-9, 4-10
input file, 4-4
to invoke, 1-4, 4-2
messages, list of, 4-9
specifying command lines, 44
updating a module, 4-2f, 4-3f
updating object modules, 4-6
use of, 4-1, 4-2

Patch Object Module, CCL name, 1-4t
Physical address range

Task Builder option, 5-2t
PNC argument, 2-5t
PSECT

in PAT command line, 4-5

REG argument, 2-5t
Replace switch, 3-2t

example, 3-14, 3-15

Index-3

Replace switch, (cont.)
format, global, 3-13 to 3-15
format, local, 3-13, 3-15
use of, 3-12, 3-13

Resident library
creation of, 5-3, 5-4

RSX-based utilities, CCL names for, 1-4t
RUN command

entering, 1-4
Run-time systems (RTS)

to create, 5-1
PAR and STACK options, 5-2t

Selective Search switch, 3-2t, 3-16
SEQ argument, 2-4t
Software errors, internal, 4-14
Squeeze switch, 3-2t, 3-17

format, global, 3-17
format, local, 3-17
MACRO listing of, 3-18f
rules for, 3-18

SRC argument, 2-4t
STACK option

Task Builder, 5-2t
for various sized run-time systems, 5-2t

Standard library file format, B-2f
STB, symbol table, 5-5
Storage allocation error, 4-15
Subroutines, added to a module, 4-7
Switches

arguments for IDS and /EN, 2-5t
arguments for ILl and /NL, 2-4t
assembly pass, 2-6
Checksum, 4-8, 4-9
Compress, 3-2t, 3-3
Create, 3-2t, 3-4
Default, 3-2t, 3-6, 3-7
Delete, 3-2t, 3-5
Delete Global, 3-2t, 3-7, 3-8
Entry Point, 3-2t, 3-8, 3-9
Extract, 3-2t, 3-9, 3-10
function control, 2-5
Insert, 3-2t, 3-10, 3-11
LBR,3-2t

Index-4

Switches, (cont.)
List, 3-2t, 3-11, 3-12
MACRO-11, 2-3, 2-4t
MACRO-11 library file, 2-6
Replace, 3-2t, 3-12 to 3-15
Selective Search, 3-2t, 3-16
Squeeze, 3-2t
Squeeze, global format, 3-17
Squeeze, local format, 3-17

SYM argument, 2-4t
Symbol table, appended to run-time system,

5-5

Tables
entry point, B-1
entry point element format, B-4f
module name, B-2
symbol, appended to run-time system, 5-5

Task Builder
options, PAR and STACK, 5-2t
options, physical address range, 5-2t
options, virtual address range, 5-2t
processing files, 4-7
updating object modules, 4-6

TOC argument, 2-4t
TTM argument, 2-4t

Utilities
accessing, 1-3
command lines, entering, 1-4
command lines, format, 1-1
command lines"entering, 1-5
entering command lines, 1-4, 1-5
LBR, files and formats, B-1
Librarian, 1-4, 3-1, B-1
MACRO-11,2-1
MACRO-11 program, 2-1
MAKSIL, 1-4, 5-1
PAT, 1-4, 4-1
RSX-based, CCL names, 1-4

Virtual address range
Task Builder option, 5-2t

READER'S COMMENTS

RSTSIE
Programmer's Utilities

. Manual
AA-D749A-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer o Other (please specify) __________________________ _

Name Date _________________ _

Organization ___________________________________ _

Street ______________________________________ _

City ________________ _ State ______ Zip Code _______ _

or
Country

- - - - -Do Not Tear - Fold Here and Tape,- - - - - - - - - - - - - - -

~DmDamD IIIIII

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/ H3

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

I
I
I

- ---1

No Postage

Necessary

if Mailed in the

United States

- - - - Do Not Tear - Fold Here and Tape - - - - - - --- - - - - - - - - - -

I
I -,

