RSX-11M-PLUS and Micro/RSX

Task Builder Manual
Order No. AA-JSO8A-TC

RSX-11M-PLUS Version 4.0
Micro/RSX Version 4.0

Digital Equipment Corporation Maynard, Massachusetts

First Printing, December 1983
Revision, September 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1983, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER’'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem UNIBUS
DEC/CMS IAS VAX
DEC/MMS MASSBUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem-10 Micro/RSX VT
DECSYSTEM-20 PDP

DECUS PDT

DECwriter RSTS dlilgli/tiall
DIBOL RSX

ZK3086

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager

P.O. Box CS52008 100 Herzberg Road c/o Digital’s local subsidiary

Nashua, New Hampshire 03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster,
Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by TgX, the typesetting system developed by Donald E. Knuth at Stanford University. TeX is a trademark of the
American Mathematical Society.

Contents

Preface xxi

Summary of Technical Changes xxvii

Chapter 1 Introduction and Command Specifications

1.1

1.2

1.3

1.4
1.5
1.6
1.7
1.8

Task Builder Command Line 1-2
1.1.1 The MCR Command Line for the Task Builder 1-2
1.1.1.1 PrintingtheMap File L L 1-3
1.1.1.2 Omitting Specific Output Files 1-3
1.1.2 The DCL LINK Command Line for the Task Builder 1-4
1.1.2.1 The LINK Command Input File 1-4
1.1.2.2 The LINK Command Task File 1-5
1.1.2.3 The LINK Command Map File 1-6
1.12.4 The LINK Command Symbol Definition File 1-6
1.1.2.5 Printing the MAP File When Using the LINK Command 1-7
Multiline Input 1-7
1.2.1 Muliiline Input Using the TKB Command 1-7
1.2.2 Multiline Input Using the LINK Command,......... 1-8
1.2.2.1 Abbreviated Qualifiers in LINK, 1-8
Task Builder Options e 1-9
1.3.1 Entering Task Builder Options in TKB., 1-9
1.3.2 Entering Task Builder Options in LINK 1-10
1.3.3 Entering the Option Line 1-10
Multiple Task Specifications 1-11
Indirect Command Files L 1-12
Comments in Indirect Command Files 1-14
File Specifications e 1-15
Summary of Syntax Rules 1-17

iii

Chapter 2 Task Builder Functions

2.1 Linking Object Modules e 2-2
2.1.1 Allocating Program Sections 2-4
2.1.1.1 Access-Code and Allocation-Code 2-5

2.1.1.2 Type-Code and Scope-Code, 2-7

2.1.2 Resolving Global Symbols 2-8

22 TheTask Structure e 2-9
23 Overlays. e e 2-11
24 Addressing Concepts 2-12
241 Physical, Virtual, and Logical Addresses 2-12

242 Mapped Systems 2-15

243 Regions 2-18

25 Task Mappingand Windows e 2-20
25.1 Task Windows 2-20

2.6 RSX-11M-PLUS Supervisor Mode, .. 2-24
2.6.1 Supervisor-Mode Mapping o 2-25

2.7 Privileged Tasks o e 2-25
2.8 Multiuser Tasks 2-28
2.9 User-Mode I- and D-Space Tasks, 2-28

Chapter 3 Overlay Capability

3.1 Overlay Structures e e 3-1
3.1.1 Disk-Resident Overlay Structures 3-2

3.1.2 Memory-Resident Overlay Structures 3-7

3.2 Overlay Tree 3-16
3.2.1 Loading Mechanism 3-17

3.2.2 Resolution of Global Symbols in a Multisegment Task 3-18

3.2.3 Resolution of Global Symbols from the Default Library 3-20

3.24 Allocation of Program Sections in a Multisegment Task 3-20

3.3 Overlay Data Structures and Run-Time Routines 3-21
3.3.1 Overlaid Conventional Task Structures 3-22

3.3.2 Overlaid I- and D-Space Task Structures 3-22

3.4 Overlay Description Language 3-25
3.4.1 ROOT and .END Directives, 3-26

3.4.2 FCTIR Directiveo o 3-27

3.4.3 Arguments for the .FCTR and .ROOT Directives 3-28
3431 NamedInputFile 3-28

3.4.3.2 Specific Library Modules 3-28

3.4.3.3 A Library to Resolve References Not Previously Resolved 3-28

3.43.4 A Section Name Used in a .PSECT Directive 3-29

3.4.35 A Segment Name Used in a NAME Directive 3-29

344 Exclamation Point Operator 3-29
3.4.5 NAME Directiveo e 3-30
3.45.1 Example of the Use of the NAME Directive 3-31
3.4.6 PSECT Directive o ot e e 3-31
3.4.7 Indirect Command Files 3-32
3.5 Multiple-Tree Structurest 3-32
3.5.1 Defining a Multiple-Tree Structure 3-33
3.5.1.1 Defining Co-Trees with a Null Root by Using NAME 3-33
3.5.2 Example of a Multiple-Tree Structure 3-33
3.6 Creating an ODL File from a Virtual Address Space Allocation Diagram 3-39

3.6.1 Creating a .ROOT Statement by Using a Virtual Address Space Allocation
Diagramo 3-40

3.6.2 Creating a .FCTR Statement by Using a Virtual Address Space Allocation
Diagram 3-41

3.6.3 Creating an ODL Statement for a Co-Tree by Using a Virtual Address Space

Diagram e 3-42
3.7 Overlaying Programs Written in a High-Level Language 3-44
3.8 Buildingan Overlay e 3-44
3.9 Window Blocks in Overlays e 3-54
3.10 Summary of the Overlay Description Language 3-54

Chapter 4 Overlay Loading Methods

4.1

4.2

4.3
4.4
4.5

Autoload e 4-2
41.1 Autoload Indicator e 4-2
4.1.2 Path Loading oo i 4-4
413 Autoload Vectors e 4-4
4.1.4 Autoloadable Data Segments. e 4-7
Manual Loado 4-8
421 MACRO-11 Manual-Load Calling Sequence 4-8
4.2.2 MACRO-11 Manual-Load Calling Sequence for I- and D-Space Tasks 4-9
423 FORTRAN Manual-Load Calling Sequence 4-9
4.2.4 FORTRAN Manual-Load Calling Sequence for I- and D-Space Tasks 4-11
Error Handling 4-12
Global Cross-Reference of an Overlaid Task 4-13
Use and Size of Overlay Run-Time Routines 4-15
45.1 The OTS Fast Map Routine (FSTM) 4-19

Chapter 5 Shared Region Concepts and Examples

5.1 Shared Regions Defined
5.1.1 The Symbol Definition File
5.1.2 Position-Independent Shared Regions

5.1.2.1 Position-Independent Shared Region Mapping
5.1.2.2 Specifying a Position-Independent Region
5.1.3 Absolute Shared Regions
5.1.3.1 Absolute Shared Region Mapping
5.1.3.2 Specifying an Absolute Shared Region
5.1.3.3 Absolute Shared Region STB File
5.1.4 Shared Regions with Memory-Resident Overlays
5.1.4.1 Considerations About Building an Overlaid Shared Region
5.1.4.2 Example of Building a Memory-Resident Overlaid Shared Region.
5.1.4.3 Options for Use in Overlaid Shared Regions
5.1.4.4 Autoload Vectors and STB Files for Overlaid Shared Regions
5.1.5 Run-Time Support for Overlaid Shared Regions
5.1.6 Linking to a Shared Region
5.1.7 Number and Size of Shared Regions
5.1.8 Example 5-1: Building and Linking to a Common in MACRO-11
5.1.9 Linking Shared Regions Together.
5.1.10 Example 5-2: Building and Linking to a Device Common in MACRO-11
5.1.11 Building and Linking to a Resident Library in MACRO-11
5.1.11.1 Resolving Program Section Names in a Shared Region
5.1.12 Building a Task That Creates a Dynamic Region

52 Cluster Libraries
5.2.1 Building the Libraries
5.2.2 Rule 1: All Libraries but the First Require Resident Overlays
5.2.3 Rule 2: User Task Vectors Indirectly Resolve All Interlibrary References

524 Rule 3: Revectored Entry Point Symbols Must Not Appear in the “Upstream”
STBFile

525 Rule 4: A Called Library Procedure Must Not Require Parameters on the
Stack
5.2.6 Rule 5: All the Non-Position-Independent Libraries Must Be Built for the
Same Address

5.2.7 Rule 6: Trap or Asynchronous Entry into a Library Is Not Permitted
528 Building Your Task
5.2.9 Examples
5.29.1 F77CLS—Build the Default Library for the FORTRAN-77 OTS
5.2.9.2 FDVRES—Build an FMS-11/RSX Version 2.0 Shareable Library

5.29.3 FDVRESBLD.ODL—Overlay Description for FMS-11/RSX Version 2.0
Cluster Library

5294 FCSRES Library Build.

vi

5.2.9.5 F77TST.CMD—File to Build the FMS-11/RSX Version 2.0 FORDEM Test

Task. . v oo e 5-60

5.2.10 Overlay Run-Time Support Requirements 5-61

5.3 Task Building an F4PRES, FORRES, or FMSRES Library with or without FCSRES 5-62
5.3.1 FCSRES—The Types of FCS Resident Libraries 5-62
5.3.1.1 Building a Memory-Resident Overlaid FCSRES 5-63

5.3.1.2 Building a Non-Memory-Resident FCSRES 5-63

5.3.1.3 Using FCSRES and FCSFSL 5-64

53.1.4 Building FAPRES oo\ttt 5-64

5.3.1.5 Options and Trade-Offs 5-65

5.4 Virtual Program Sections 5-67
5.4.1 FORTRAN Run-Time Support for Virtual Program Sections 5-70

5.4.2 Building a Program That Uses a Virtual Program Section 5-73

Chapter 6 Privileged Tasks

6.1 DPrivileged and Nonprivileged Task Distinction 6-1
6.2 DPrivileged Task Hazards i 6-1
6.3 Specifying a Task as Privileged i 6-2
6.4 Privileged Task Mapping oo oottt 6-2
6.5 Privilege 0 Task 6-5
6.6 Privilege 4 Task L 6-5
6.7 Privilege 5 Task 6-6
6.8 Example 6-1: Building a Privileged Task to Examine Unit Control Blocks 6-6
6.9 Privileged Tasks in an I- and D-Space System 6-13

6.9.1 Privilege Available to Privileged Tasks in an I- and D-Space System 6-13

6.9.2 Privileged Task Mapping in an I- and D-Space System 6-13

Chapter 7 User-Mode |- and D-Space

7.1 User-Task Data Space Defined 7-1
7.2 I- and D-Space Task Identification 7-2
7.3 Comparison of Conventional Tasks and I- and D-Space Tasks 7-2
7.4 Conventional Task Mapping 7-2
75 I-and D-Space Task Mapping i 7-4
7.6 Task Windows in I- and D-Space Tasks 7-5
7.7 Specifying Data Space in Your Task i 7-5
7.8 Overlaid I- and D-Space Taskst 7-5

7.8.1 Autoload Vectorsand STB Files 7-10
7.9 I- and D-Space Task Memory Allocation and Example of Maps 7-10

7.9.1 Virtual Memory Allocation for MAIN.TSK 7-11

7.9.2 Virtual Memory Allocation for MAINID.TSK 7-11

Vil

Chapter 8 Supervisor-Mode Libraries

8.1
8.2
8.3
8.4

8.5

8.6

8.7
8.8
8.9
8.10
8.11
8.12
8.13

Mode-Switching Vectors e 8-1
Completion Routines 8-2
Restrictions on the Contents of Supervisor-Mode Libraries. 8-2
Supervisor-Mode Library Mapping e e 8-2
8.4.1 Supervisor-Mode Library Data. 8-4
8.4.2 Supervisor-Mode Libraries with I- and D-Space Tasks 8-4
Building and Linking to Supervisor-Mode Libraries 8-4
8.5.1 Relevant TKB Options i 8-4
8.5.2 Building the Library 8-7
8.5.3 Building the Referencing Task 8-7
8.5.4 Mode-Switching Instruction L 8-7
CSM Libraries i e 8-7
8.6.1 Building a CSM Library 8-7
8.6.2 Linking toa CSM Library 8-9
8.6.3 Example of a CSM Library and Linking Task 8-9

8.6.3.1 Building SUPER 8-21

8.6.3.2 Building TSUP 8-22

8.6.3.3 Running TSUP i 8-22
8.6.4 The CSM Library Dispatching Process. 8-23
Converting SCAL Libraries to CSM Libraries 8-23
Using Supervisor-Mode Libraries as Resident Libraries 8-24
Multiple Supervisor-Mode Libraries 8-24
Linking a Resident Library to a Supervisor-Mode Library 8-24
Linking Supervisor-Mode Libraries 8-24
Writing Your Own Vectors and Completion Routines 8-25
Overlaid Supervisor-Mode Libraries 8-25

Chapter @ Multiuser Tasks

9.1
9.2
9.3
9.4

Overlaid Multiuser Task 9-4
Disk Image of a Multiuser Task 9-4
I- and D-Space Multiuser Tasks o o 9-4
Example 9-1: Building a Multiuser Task 9-4

viii

Chapter 10 TKB Switches

10.1 TKB Switches e 10-1
10.1.1 File Specification Syntax 10-1
10.1.2 Switch Designation 10-1
10.1.3 Overriding Switches 10-2
10.1.4 Switch Summary Table 10-2

10.2 /AC[:n}—Ancillary Control Processor 10-5

10.3 /AL—Allocate Checkpoint Space 10-6

10.4 /CC—Concatenated Object Modules 10-7

10.5 /CL—Command Line Interpreter 10-8

10.6 /CM—Compatibility Mode Overlay Structure 10-9

10.7 /CO—Build a Common Block Shared Region 10-10

10.8 /CP—Checkpointable 10-11

109 /CR—Cross-Reference. i 10-12

10.10 /DA—Debugging Aid 10-15

10.11 /DL—Default Library 10-16

10.12 /EA—Extended Arithmetic Element 10-17

10.13 /EL—Extend Library 10-18

10.14 /FM—Fast Map o oo e 10-19

10.15 /FO—Fast OTS 10-20

10.16 /FP—Floating Point e 10-21

10.17 /FU—Full Search e 10-22

10.18 /HD—Header e e e 10-23

10.19 /ID—I-and D-Space Task 10-24

10.20 /IP—Task Maps I/O Page e 10-25

10.21 /LB—Library File 10-26

10.22 /LI—Build a Library Shared Region 10-28

10.23 /MA—Map Contents of File 10-29

10.24 /MM[:n][—Memory Management 10-30

10.25 /MP—Overlay Description L o 10-31

10.26 /MU—MUItUSEr ot 10-32

10.27 /NM—No Diagnostic Messagesot i it 10-33

10.28 /PI—Position Independent Lo 10-34

10.29 /PM—Postmortem Dump e 10-35

1030 /PR[:n]—Privileged 10-36

10.31 /RO—Resident Overlay 10-37

10.32 /SB—Slow Task Builder 10-38

1033 /SE—Send 10-39

10.34 /SG—Segregate Program Sectionso 10-40

10.35 /SH—Short Map 10-41

1036 /SL—Slave e 10-48

ix

10.37 /SP—Spool Map Output 10-49

10.38 /SQ—Sequential 10-50
10.39 /SS—Selective Search 10-51
10.40 /TR—Traceable 10-53
10.41 /WI—Wide Listing Format 10-54
10.42 /XH—External Header 10-55
1043 /XT[:n]—Exit on Diagnostic 10-56

Chapter 11 LINK Qualifiers

11.1 Using the LINK Qualifiers 11-1
11.1.1 LINK Command Line Syntax 11-1
11.1.2 Qualifier Designation. 11-3
11.1.3 Overriding Qualifiers. 11-3
11.1.4 Qualifier Summary Table 11-3

11.2 /JANCILLARY_PROCESSOR[:n] 11-10

113 /BASIC . . . 11-11

11.4 /[NOJCHECKPOINT:SYS e et e 11-12

115 /[NOJCHECKPOINT:TAS e 11-13

11.6 - JCODE:CLI e 11-14

11.7 JCODE:DATA_SPACE e 11-15

11.8° JCODEEAE 11-16

119 JCODE FAST_MAP e 11-17

11.10 JCODEFPP e 11-18

11.11 /CODE:OTS_FAST e e 11-19

11.12 JCODEPIC 11-20

11.13 /CODE:POSITION_INDEPENDENT i 11-21

11.14 JCOMPATIBLE 11-22

11.15 /INOJCONCATENATE e e 11-23

11.16 JCROSS_REFERENCE i 11-24

11.17 /DEBUG[:filespec] 11-27

11.18 /DEFAULT_LIBRARY 11-28

11.19 /ERROR_LIMIT[:n] e 11-29

11.20 /[NOJEXECUTABLE[:filespec] 11-30

11.21 /[NOJEXTERNAL e 11-31

11.22 JFAST . . .o 11-32

11.23 /FULL_SEARCH e 11-33

11.24 /INOJGLOBALS 11-34

11.25 /INOJHEADER 11-35

11.26 /INCLUDE:(modulel[,module2,...modulen]). 11-36

11.27 /INOJIO_PAGE 11-37

11.28 /LIBRARYo 11-38

11.29 JLONG . . o o e e 11-39

11.30 /MAP[filespec]o oot 11-46
11.31 /[NOIMEMORY-MANAGEMENT[:n] 11-47
11.32 /OPTION[fleSpec] o o i e e 11-48
11.33 /JOVERLAY_DESCRIPTION i 11-49
11.34 /POSTMORTEM 11-50
11.35 /[NOJPRINTERo ot e e e e 11-51
11.36 /PRIVILEGED[IN] oot e 11-52
11.37 /[NOJRECEIVE i e e 11-53
11.38 /[NOJRESIDENT_OVERLAYS e 11-54
11.39 /SAVE . . oo 11-55
11.40 /[NOJSEGREGATE e 11-56
11.41 /SELECTIVE_SEARCH i e 11-57
11.42 /SEQUENTIAL e e e 11-59
11.43 /SHAREABLE:COMMON i 11-60 -
11.44 /SHAREABLE:LIBRARY i 11-61
11.45 /SHAREABLE:TASK s 11-62
1146 /SLAVE . . .o e 11-63
1147 /SLOW . o i e 11-64
11.48 /SYMBOL _TABLE[filespec] 11-65
11.49 /[NOJSYSTEM_LIBRARY_DISPLAY 11-66
11.50 /[NOJTASK[:filespec] oot 11-67
1151 /TKB . o ot e e 11-68
1152 /TRACE . . . o 11-69
11.53 /[NOJWARNINGS e 11-70
1154 /[NOJWIDE e 11-71

Chapter 12 Options

12.1 ABORT—Abort the Task Build 12-5
12.2 ABSPAT—Absolute Patch 12-6
12.3 ACTFIL—Number of Active Files i, 12-7
12.4 ASG—Device Assignment e 12-8
12.5 CLSTR—System-Owned Cluster of Resident Libraries or Commons 12-9
12.6 CMPRT—Completion Routine i 12-11
12.7 COMMON or LIBR—System-Owned Resident Common or System-Owned Resident
LIDraryo o it e e 12-12
12.8 DSPPAT—Absolute Patch for D-Space 12-13
12.9 EXTSCT—Program Section Extension, 12-14
12.10 EXTTSK—Extend Task Memory e 12-15
12.11 FMTBUF—Format Buffer Size o 12-16
12.12 GBLDEF—Global Symbol Definition. 12-17

xi

12.13 GBLINC—Include Global Symbols 12-18

12.14 GBLPAT—Global Relative Patch 12-19
12.15 GBLREF—GIlobal Symbol Reference 12-20
12.16 GBLXCL—Exclude Global Symbols 12-21
12.17 IDENT—Task Identification 12-22
12.18 LIBR—System-Owned Library 12-23
12.19 MAXBUF—Maximum Record Buffer Size 12-24
12.20 ODTV—ODT SST Vector. vt e e e e e e 12-25
12.21 PAR—Partition 12-26
12.22 PRI—Priority 12-27
12.23 RESCOM or RESLIB—Resident Common or Resident Library 12-28
12.24 RESLIB—Resident Library i, 12-30
12.25 RESSUP—Resident Supervisor-Mode Library 12-31
12.26 RNDSEG—Round Segment 12-33
12.27 ROPAR—Read-Only Partition 12-34
12.28 STACK—Stack Size. 12-35
12.29 SUPLIB—Supervisor-Mode Library 12-36
1230 TASK—Task Nameo e e e e 12-37
12.31 TSKV—Task SST Vector i e i, 12-38
12.32 UIC—User Identification Code 12-39
12.33 UNITS—Logical Unit Usage e, 12-40
12.34 VARRAY—Virtual Array Specification and Usage 12-41
12.35 VSECT—Virtual Program Section., 12-44
12.36 WNDWS—Number of Address Windows 12-45

Appendix A Task Builder Input Data Formats

A.1 Declare Global Symbol Directory Record A-4
A.1.1 Module Name (Type 0) i A-6
A.1.2 Control Section Name (Type 1) A-6
A13 Internal Symbol Name (Type 2), A-7
A14 Transfer Address (Type 3) i i, A-7
A.1l.5 Global Symbol Name (Type 4) A-8
A.1.6 Program Section Name (Type 5) A-9
A.1.7 Program Version Identification (Type 6) A-11
A.1.8 Mapped Array Declaration (Type 7) A-12
A.19 Completion Routine Definition (Type 10). A-12
A2 End of Global Symbol Directory Record A-13
A3 Text Information Record A-13
A4 Relocation Directory Record A-14
A.4.1 Internal Relocation (Type 1) A-17
A.4.2 Global Relocation (Type 2) i e A-17

xii

A.4.3 Internal Displaced Relocation (Type 3) A-18

A.4.4 Global Displaced Relocation (Type 4) A-18
A.45 Global Additive Relocation (Type 5) A-19
A4.6 Global Additive Displaced Relocation (Type 6) A-19
A.4.7 Location Counter Definition (Type 7) A-20
A48 Location Counter Modification (Type 10) A-20
A49 Program Limits (Type 11). e A-21
A.4.10 Program Section Relocation (Type 12) A-21
A.4.11 Program Section Displaced Relocation (Type 14) A-22
A.4.12 Program Section Additive Relocation (Type 15). A-23
A.4.13 Program Section Additive Displaced Relocation (Type 16) A-23
A.4.14 Complex Relocation (Type 17). i A-24
A.4.15 Resident Library Relocation (Type 20) A-26
A.5 Internal Symbol Directory Record A-26
A5.1 Overall Record Format. A-27
A5.2 TKB-Generated Records (Type 1) A-28
A5.2.1 Start-of-Segment Item (1) A-28
A5.2.2 Task Identification Item (2) e, A-28
A5.2.3 Autoloadable Library Entry Point Item (3). A-29
A5.3 Relocatable/Relocated Records (Type 2) A-30
A5.3.1 Module Name Item (1) e A-30
A5.3.2 Global Symbol Item (2) A-31
A5.3.3 Program SectionItem (3). L oL A-32
A5.3.4 Line-Number or Program Counter (PC) Correlation Item (4) A-33
A5.35 Internal Symbol Nameltem (5) A-34
A5.4 Literal Records (Type 4) e A-36
A6 End-of-Module Record e A-36

Appendix B Detailed Task Image File Structure

B.1 Label Block Groupot i i e e B-6
B.2 Checkpoint Area B-12
B3 Header. e e B-12
B.3.1 Low-Memory Context B-15
B.3.2 Logical Unit Table Entry B-17
B4 TaskImage e B-17
B.4.1 Autoload Vectors for Conventional Tasks B-20
B.4.2 Autoload Vectors for I- and D-Space Tasks B-20
B.4.3 Segment Descriptor. B-21
B.4.4 Window Descriptor i B-24
B.4.5 Region Descriptoro B-25

xiii

Appendix C Host and Target Systems

C.1 Example C-1: Transferring a Task from a Host System to a Target System C-2

Appendix D Memory Dumps

D.1 Postmortem Dumps D-1

D.2 Snapshot Dumps e D-6
D.2.1 Format of the SNPBK$ Macro D-7
D.2.2 Format of the SNAP$ Macro. D-9
D.23 Example ofa Smapshot Dump D-10

Appendix E Reserved Symbols

Appendix F Improving Task Builder Performance

F.1 Evaluating and Improving Task Builder Throughput. F-1
F.1.1 Table Storage F-2
F.1.2 Input File Processing F-6
F.1.3 Summary e F-6

F.2 Modifying Command Switch Defaults F-6

F.3 The Slow Mode of the Task Builder F-11

Appendix G The Fast Task Builder

Appendix H Error Messages

Glossary

Index

Xiv

Examples

3-1
3-2
4-1
5-1
5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-5
6-1
6-2
7-1
7-2
8-1
8-2
8-3
8-4
8-5
9-1
9-1
10-1
10-2
11-1
11-2
12-1
C-1
C-1
D-1
D-2

Map File for OVR.TSK o 3-47
Map File for RESOVR.TSKo 3-51
Cross-Reference Listing of Overlaid Task. 4-14
Part 1, Common Area Source File in MACRO-11 5-21
Part 2, Task Builder Map for MACCOM.TSK 5-22
Part 3, MACRO-11 Source Listing for MCOM1 5-25
Part 4, MACRO-11 Source Listing for MCOM2 5-26
Part 5, Task Builder Map for MCOM1.TSK 5-28
Part 1, Assembly Listing for TTCOM 5-31
Part 2, Task Builder Map for TTCOM 5-33
Part 3, Assembly Listing for TEST 5-34
Part 4, Memory Allocation Map for TEST 5-35
Part 1, Source Listing for Resident Library LIBMAC 5-37
Part 2, Task Builder Map for LIBTSK 5-40
Part 3, Source Listing for MAINMAC 5-41
Part 4, Task Builder Map for MAIN.TSKo oot 5-43
Part 1, Source Listing for DYNAMICMAC 5-47
Part 2, Task Builder Map for DYNAMIC.TSK, 5-49
Part 1, Source Listing for VSECT.FTN 5-74
Part 2, Task Builder Map for VSECT.TSK 5-75
Part 1, Source Code for PRIVEX i 6-7
Part 2, Task Builder Map for PRIVEX 6-12
Map of Overlaid Task MAIN.TSK 7-14
Map of Overlaid I- and D-Space Task MAINID.TSK 7-17
Code for SUPERMAC it e e e 8-10
Memory Allocation Map for SUPERo 8-12
Completion Routine $CMPCS from SYSLIBOLB. 8-13
Code for TSUP.MAC e e e 8-17
Memory Allocation Map for TSUP 8-20
Part 1, Source Listing for ROTASKMAC, 9-7
Part 2, Task Builder Map for ROTASK.TSK 9-10
Cross-Reference Listing for OVR.TSK oo 10-13
Memory Allocation File (Map) Example 10-42
Cross-Reference Listing for OVRTSK 11-26
Memory Allocation File (Map) Example 11-41
A Task Using a Virtual Array with the OVR Attribute 12-42
Part 1, Task Builder Map for LIBTSK C-4
Part 2, Task Builder Map for MAIN.TSK C-5
Sample Postmortem Dump (Truncated) D-3
Sample Program That Calls for Snapshot Dumps D-11

XU

D-3 Sample Snapshot Dump (in Word Octal and Radix-50) D-12
D-4 Sample Snapshot Dump (in Byte Octal and ASCII) D-14
Figures

2-1 Relocatable Object Modules 2-2
2-2 Modules Linked for Mapped System 2-3
2-3 Allocation of Task Memory 2-7
2-4 DiskImageoftheTask 2-10
2-5 Memory Image 2-11
2-6 Simple 2-Segment, Disk-Resident Overlay Calling Sequence 2-13
2-7 Simple 2-Segment, Memory-Resident Overlay Calling Sequence 2-14
2-8 Task Relocation in a Mapped System 2-17
2-9 Memory Management Unit’s Division of Virtual Address Space 2-18
2-10 Mapping for 4K-Word and 6K-Word Tasks 2-19
2-11 Window Block 0 2-21
2-12 Virtual to Logical Address Space Translation 2-23
2-13 Mapping for a Conventional User Task and a System Containing a

Supervisor-Mode Library in an RSX-11M-PLUS System 2-26
2-14 Mapping for a Conventional User Task Using a Supervisor-Mode Library. 2-27
2-15 Simplified APR Mapping for an I- and D-Space Task 2-29
3-1 TK1 Built as a Single-Segment Task 3-4
3-2 TK1 Built as a Multisegment Task 3-5
3-3 TK1 Built with Additional Overlay Defined 3-6
3-4 TK2 Built as a Single-Segment Task 3-9
3-5 TK2 Built as a Memory-Resident Overlay 3-10
3-6A Relationship Between Virtual Address Space and Physical Memory—Time 1. . . 3-12
3-6B Relationship Between Virtual Address Space and Physical Memory—Time 2 . . . 3-13
3-7A Relationship Between Virtual Address Space and Physical Memory—Time 3 . . . 3-14
3-7B Relationship Between Virtual Address Space and Physical Memory—Time 4 . . . 3-15
3-8 Overlay Tree for TK1 i 3-17
3-9 Resolution of Global Symbols in a Multisegment Task 3-19
3-10 Resolution of Program Sections for TK1 3-21
3-11 Typical Overlay Root Segment Structure 3-23
3-12 Typical Overlaid I- and D-Space Task with Up-Tree Segment 3-24
3-13 Tree and Virtual Address Space Diagram. 3-27
3-14 Overlay Tree for Modified TK1 3-34
3-15 Virtual Address Space and Physical Memory for Modified TK1 3-35
3-16 Overlay Co-Tree for Modified TK1. 3-36
3-17 Virtual Address Space and Physical Memory for TK1 as a Co-Tree 3-38
3-18 Virtual Address Space Allocation Diagram 3-39
3-19 Virtual Address Space Allocation for a Main Tree and Its Co-Tree 3-43
3-20 Overlay Tree of Virtual Address Space for OVR.TSK 3-46

xvi

3-21
3-22

5-10
5-11
5-12
5-13
5-14
5-15

8-3

84

Allocation of Virtual Address Space for OVRTSK 3-49

Allocation of Virtual Address Space for RESOVR.TSK 3-53
Details of Segment C of TK1 4-2
Path-Loading Example 4-4
Autoload Vector Format for Conventional Tasks 4-5
Autoload Vector Format for I- and D-Space Tasks 4-5
Example Autoload Code Sequence for a Conventional Task 4-6
Autoload Overlay Tree Example 4-13
Typical Resident Common 5-2
Typical Resident Library 5-3
Interaction of the /LI, /CO, and /PI Switches 5-4
Interaction of the /SHAREABLE:LIBRARY, /SHAREABLE:COMMON, and
/CODEPIC Qualifiers 5-5
Specifying APRs for a Position-Independent Shared Region 5-8
Mapping for an Absolute Shared Region 5-10
Windows for Shared Region and Referencing Task 5-18
Allocation Diagram for MACCOM.TSK 5-24
Assigning Symbolic References Within a Common 5-27
Allocation of Virtual Address Space for MAIN.TSK 5-44
Example of Library and Task Structure 5-50
Example of an Unbalanced Tree with Null Segment 5-51
Example of an Overlay Cluster Library Structure. 5-52
Example of a Vectored Call Between Libraries 5-53
VSECT Option Usage 5-69
Privileged Task Mapping 6-3
Mapping for /PR:4 and /PR5 6-4
Allocation of Virtual Address Space for PRIVEX 6-11
Conventional Task Linked to a Region in an I- and D-Space System 7-3
I- and D-Space Task Mapping in an I- and D-Space System 7-4
Simplified Disk Image of a Nonoverlaid I- and D-Space Task 7-6
Overlaid I- and D-Space Task Virtual Address Space 7-7
Example Overlay Tree for Overlaid I- and D-Space Task IAND 7-8
Simplified Disk Image of Overlaid I- and D-Space Task IAND 7-9
Memory Allocation Diagram for MAIN.TSK 7-11
Memory Allocation Diagram for MAINID.TSK I-Space 7-12
Memory Allocation Diagram for MAINID.TSK D-Space 7-12
Mapping of a 24K-Word Conventional User Task That Links to a 16K-Word
Supervisor-Mode Library 8-3
Mapping of a 20K-Word Conventional User Task That Links to a 12K-Word
Supervisor-Mode Library Containing 4K Words of Data. 8-5
Mapping of a 40K-Word I- and D-Space Task That Links to an 8K-Word
Supervisor-Mode Library 8-6
Overlay Configuration Allowed for Supervisor-Mode Libraries 8-25

xvii

9-1
9-2
9-3

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29
A-30
A-31
A-32
A-33
A-34
A-35
A-36
A-37

Allocation of Program Sections in a Multiuser Task 9-2

Windows for a Multiuser Task o oo 9-3
Example Allocation of Program Sections in an I- and and D-Space Multiuser

TasK . . o 9-5
Windows for an I- and D-Space Multiuser Task 9-6
General Object Module Format A-2
Global Symbol Directory Record Format A-5
Module Name Entry Format A-6
Control Section Name Entry Format A-7
Internal Symbol Name Entry Format A-7
Transfer Address Entry Format A-8
Global Symbol Name Entry Format A-8
Program Section Name Entry Format A-10
Program Version Identification Entry Format A-12
Mapped Array Declaration Entry Format A-12
Completion Routine Entry Format, A-13
End of Global Symbol Directory Record Format A-13
Text Information Record Format A-14
Relocation Directory Record Format A-16
Internal Relocation Entry Format A-17
Global Relocation Entry Format. A-17
Internal Displaced Relocation Entry Format A-18
Global Displaced Relocation Entry Format A-19
Global Additive Relocation Entry Format. A-19
Global Additive Displaced Relocation Entry Format A-20
Location Counter Definition Entry Format A-20
Location Counter Modification Entry Format A-21
Program Limits Entry Format A-21
Program Section Relocation Entry Format A-22
Program Section Displaced Relocation Entry Format A-22
Program Section Additive Relocation Entry Format A-23
Program Section Additive Displaced Relocation Entry Format A-24
Complex Relocation Entry Format, A-26
Resident Library Relocation Entry Format A-26
General Format of All ISD Records A-27
General Format of a TKB-Generated Record A-28
Format of TKB-Generated Start-of-Segment Item (1) A-28
Format of TKB-Generated Task Identification Item (2) A-29
Format of an Autoloadable Library Entry Point Item (3) A-30
Format of a Module Name Item (1) A-31
Format of a Global Symbol Item (2) A-32
Format of a Program Section Item (3) A-33

xviii

A-38 TFormat of a Line-Number or PC Correlation Item (4) A-34
A-39 TFormat of an Internal Symbol Name Item (5) A-35
A-40 Format of a Literal Record Type A-36
A-41 End-of-Module Record Format A-36
B-1 Image on Disk of Nonoverlaid Conventional Task B-2
B-2 Image on Disk of Conventional Nonoverlaid Task Linked to Overlaid Library . . . B-3
B-3 Image on Disk of Conventional Overlaid Task B-4
B-4 Image on Disk of Overlaid I- and D-Space Task B-5
B-5 Label Block 0—Task and Resident Library Data B-9
B-6 Label Blocks 1 and 2—Table of LUN Assignments B-11
B-7 Label Block 3—Segment Load List B-11
B-8 Task Header, Fixed Part B-13
B-9 Task Header, Variable Part. B-14
B-10 Vector Extension Area Format. B-16
B-11 Logical Unit Table Entry, B-17
B-12 Task-Resident Overlay Database for a Conventional Overlaid Task B-18
B-13 Task-Resident Overlay Database for an I- and D-Space Overlaid Task B-19
B-14 Autoload Vector Entry for Conventional Tasks B-20
B-15 Autoload Vector Entry for I- and D-Space Tasks B-21
B-16 Segment Descriptor e B-22
B-17 Window Descriptor. B-25
B-18 Region Descriptor. oo e B-26
D-1 Snapshot Dump Control Block Format D-7
Tables
2-1 Program Section Attributes o o o oo oo oo 2-5
2-2 Program Sections for Modules IN1, IN2, and IN3 2-6
2-3 Individual Program Section Allocations 2-6
2-4 Resolution of Global Symbols for IN1, IN2, and IN3 2-8
4-1 Comparison of Overlay Run-Time Module Sizes 4-17
5-1 Comparison of Overlay Run-Time Module Sizes 5-61
6-1 Conventional Privileged Task Mapping in an I- and D-Space System 6-13
6-2 I- and D-Space Privileged Task Mapping in an I- and D-Space System 6-14
7-1 Mapping Comparison SUMMAry uninenenanonnon . 7-2
10-1 TKB Switches 10-2
10-2 Input Files for SELTSK 10-51
11-1 Link Qualifiers e e e e e e e 11-4
11-2 Input Files for SEL.TSK 11-57
12-1 Task Builder Options 12-2
A-1 Symbol Declaration Flag Byte—Bit Assignments A-9
A-2 Program Section Name Flag Byte—Bit Assignments A-10
A-3 Relocation Directory Command Byte—Bit Assignments A-15

Xix

B-1

F-1
F-2
F-3
F-4

Task and Resident Library Data B-6

Resident Library/Common Name Block Data B-10
Task File Switch Defaults F-8
Map File Switch Defaults F-9
Symbol Table File Switch Defaults F-10
Input File Switch Defaults F-10

XX

Preface

Manual Obijectives

This manual describes the concepts and capabilities of the RSX-11M-PLUS and Micro/RSX
Task Builder.

Working examples are used throughout this manual to introduce and describe features of the
Task Builder. Because RSX systems support a large number of programming languages, it is not
practical to illustrate the Task Builder features in all of the languages supported. Instead, most
of the examples in the main text of this manual are written in MACRO-11.

Intended Audience

Before reading this manual, you should be familiar with the fundamental concepts of your
operating system (Micro/RSX or RSX-11M-PLUS) and with the operating procedures described
in the RSX-11M-PLUS MCR Operations Manual, the RSX-11M-PLUS Command Language Manual,
and the Micro/RSX User’s Guide. In addition, you should be familiaf with the programming
concepts described in the RSX-11M-PLUS Guide to Program Development.

Structure of This Document

Chapter 1 describes the Task Builder command sequences that you use to interact with the Task
Builder.

Chapter 2 describes the basic Task Builder functions, including the Task Builder’s allocation of
virtual address space and the resolution of global symbols. It also contains an introduction to
supervisor-mode libraries, privileged tasks, and multiuser tasks.

Chapter 3 describes the Task Builder’s overlay capability and the language you use to define an
overlay structure.

Chapter 4 describes the two methods available to you to load overlay segments.

Chapter 5 describes some typical Task Builder features, including tasks that access shared regions
and device commons, tasks that create dynamic regions, and virtual program sections.

Chapter 6 defines privileged tasks, describes their mapping, and shows how to build a privileged
task to examine Unit Control Blocks.

xxi

Chapter 7 describes user-mode I- and D-space, the mapping of these spaces, and the advantages
of using I- and D-space in user mode.

Chapter 8 describes supervisor-mode libraries. The chapter defines and shows how to build
and use supervisor-mode libraries.

Chapter 9 describes and shows how to build multiuser tasks.

Chapter 10 lists and describes the Task Builder switches. The switches are listed in alphabetical
order.

Chapter 11 lists and describes the qualifiers for the DCL command LINK. The qualifiers are
listed in alphabetical order.

Chapter 12 lists and describes the Task Builder options. The options are listed in alphabetical
order.

Appendix A contains a detailed description of the Task Builder input data structures.
Appendix B contains a detailed description of the task image file structure.

Appendix C describes the considerations for building a task on one system to run on a system
with a different hardware configuration.

Appendix D describes two memory dumps: postmortem and snapshot.

Appendix E contains a list of the symbols and program section names reserved for Task Builder
use.

Appendix F contains information on improving Task Builder performance.
Appendix G describes the Fast Task Builder.
Appendix H contains the Task Builder error messages.

A Task Builder glossary follows the appendixes.

Associated Documents

Other manuals related to this document are described in the RSX-11M-PLUS Information
Directory and Master Index. This directory defines the intended audience of each manual
in the documentation set and provides a brief synopsis of each manual’s contents.

xxii

Conventions Used in This Document

The following conventions are used in this manual:

Convention

Meaning

>

MCR>
DCL>
XXX >

UPPERCASE

command abbreviations

lowercase

/keyword,
/qualifier,
or

/switch

parameter

A right angle bracket is the default prompt for the Monitor
Console Routine (MCR), which is one of the command interfaces
used on RSX-11M-PLUS systems. All systems include MCR.

A dollar sign followed by a space is the default prompt of
the DIGITAL Command Language (DCL), which is one of the
command interfaces used on RSX-11M-PLUS and Micro/RSX
systems. Many systems include DCL.

This is the explicit prompt of the Monitor Console Routine
(MCR).

This is the explicit prompt of the DIGITAL Command Language
(DCL).

Three characters followed by a right angle bracket indicate the
explicit prompt for a task, utility, or program on the system.

Uppercase letters in a command line indicate letters that must be
entered as they are shown. For example, utility switches must
always be entered as they are shown in format specifications.

Where short forms of commands are allowed, the shortest form
acceptable is represented by uppercase letters. The following
example shows the minimum abbreviation allowed for the DCL
command DIRECTORY:

$ DIR

Any command in lowercase must be substituted for. Usually
the lowercase word identifies the kind of substitution expected,
such as a filespec, which indicates that you should fill in a file
specification. For example:

filename.filetype;version

This command indicates the values that comprise a file spec-
ification; values are substituted for each of these variables as
appropriate.

A command element preceded by a slash (/) is an MCR
keyword; a DCL qualifier; or a task, utility, or program switch.
Keywords, qualifiers, and switches alter the action of the
command they follow.

Required command fields are generally called parameters. The
most common parameters are file specifications.

xxiii

Convention

Meaning

[option]

[..]

(}

:argument

@)

[gm]
[directory]

Square brackets indicate optional entries in a command line or
a file specification. If the brackets include syntactical elements,
such as periods (.) or slashes (/), those elements are required
for the field. If the field appears in lowercase, you are to
substitute a valid command element if you include the field.
Note that when an option is entered, the brackets are not
included in the command line.

Square brackets around a comma and an ellipsis mark indicate
that you can use a series of optional elements separated
by commas. For example, (argument|,..]) means that you
can specify a series of optional arguments by enclosing the
arguments in parentheses and by separating them with commas.

Braces indicate a choice of required options. You are to choose
from one of the options listed.

Some parameters and qualifiers can be altered by the inclusion
of arguments preceded by a colon. An argument can be either
numerical (COPIES:3) or alphabetical (NAME:QIX). In DCL, the
equal sign (=) can be substituted for the colon to introduce
arguments. COPIES=3 and COPIES:3 are the same.

Parentheses are used to enclose more than one argument in a
command line. For example:

SET PROT = (S:RWED,0:RWED)

Commas are used as separators for command line parameters
and to indicate positional entries on a command line. Positional
entries are those elements that must be in a certain place in the
command line. Although you might omit elements that come
before the desired element, the commas that separate them must
still be included.

The convention [g,m] signifies a User Identification Code (UIC).
The g is a group number and the m is a member number. The
UIC identifies a user and is used mainly for controlling access
to files and privileged system functions.

This may also signify a User File Directory (UFD), commonly
called a directory. A directory is the location of files.

Other notations for directories are: [ggg,mmm], [gggmmm], [ufd],
[name], and [directory].

The convention [directory] signifies a directory. Most directories
have 1- to 9-character names, but some are in the same [gm]
form as the UIC.

Where a UIC, UFD, or directory is required, only one set of
brackets is shown (for example, [g,m]). Where the UIC, UFD,
or directory is optional, two sets of brackets are shown (for
example, [[g,m]]).

xxiv

Convention

Meaning

filespec

KEYNAME

“print” and “type”

black ink

A full file specification includes device, directory, file name, file
type, and version number, as shown in the following example:

DL2: [46,63] INDIRECT.TXT; 3

Full file specifications are rarely needed. If you do not provide
a version number, the highest numbered version is used. If
you do not provide a directory, the default directory is used.
Some system functions default to particular file types. Many
commands accept a wildcard character (*) in place of the file
name, file type, or version number. Some commands accept a
filespec with a DECnet node name.

A period in a file specification separates the file name and file
type. When the file type is not specified, the period may be
omitted from the file specification.

A semicolon in a file specification separates the file type from
the file version. If the version is not specified, the semicolon
may be omitted from the file specification.

The at sign invokes an indirect command file. The at sign
immediately precedes the file specification for the indirect
command file, as follows:

Ofilename[.filetype;version]

A horizontal ellipsis indicates the following;:

® Additional, optional arguments in a statement have been
omitted.

* The preceding item or items can be repeated one or more
times.

® Additional parameters, values, or other information can be
entered.

A vertical ellipsis shows where elements of command input or
statements in an example or figure have been omitted because
they are irrelevant to the point being discussed.

This typeface denotes one of the keys on the terminal keyboard;
for example, the RETURN key.

The term “print” refers to any output sent to a terminal by
the system. The term “type” refers to any user input from a
terminal.

In examples, what the system prints or displays is printed in
black.

xxXv

Convention

Meaning

red ink

In interactive examples, what the user types is printed in red.
System responses appear in black.

A symbol with a 1- to 3-character abbreviation, such as [x] or
, indicates that you press a key on the terminal. For example,
[RET] indicates the RETURN key, indicates the LINE FEED key,
and indicates the DELETE key.

The symbol means that you are to press the key marked
CTRL while pressing another key. Thus, [CTRL/Z] indicates that
you are to press the CTRL key and the Z key together in this
fashion. is echoed on some terminals as “Z. However,
not all control characters echo.

xxvi

Summary of Technical Changes

The following sections list features, switches, qualifiers, and error messages that are new to
the Task Builder (TKB) or have been modified for the RSX-11M-PLUS and Micro/RSX Version
4.0 operating systems. These new or modified features are documented in this revision of the
RSX-11M-PLUS and Micro/RSX Task Builder Manual.

Also, major changes to the organization of the manual are included at the end of this summary.

New Feature
RNDSEG option

The RNDSEG option causes TKB to round the size of a named segment up to the nearest Active
Page Register (APR) boundary while building a resident library.

New Switches and Qualifiers

TKB has the following new switches and qualifiers:

New Switches:

e /CL
s /EM
s /FO
e /SB
/CL

The /CL switch tells TKB that the task is a command line interpreter.

/FM

The /FM switch tells TKB to allocate space in memory between the task and the external header
for use by the fast-mapping feature of the Executive.

xxvii

/FO

The /FO switch causes the task to use overlay run-time system Fast Map module.

/SB
The /SB switch causes the task to be built with the slow mode of the Task Builder.

New Qualifiers:
e /CODE:CLI
e /CODE:FAST_MAP
e /CODE:OTS_FAST
e /SLOW

/CODE:CLI
The /CODE:CLI qualifier specifies that the task is a corhmand line interpreter.

/CODE:FAST_MAP

The /CODE:FAST_MAP qualifier specifies that space must be allocated in memory between the
task and external header for use by the fast-mapping feature of the Executive.

/CODE:OTS_FAST

The /CODE:OTS_FAST qualifier specifies that the overlay run-time system (OTS) fast mapping
module FSTMAP be included in the task.

/SLOW

The /SLOW qualifier invokes the slow mode of the Task Builder.

New Error Messages
TKB produces the following new error messages:
* Cluster library element, element-name, is not resident overlaid

* Incompatible OTS module

Cluster library element, element-name, is not resident overlaid

This message occurs when the listed cluster element has been built without memory-resident
overlays. This kind of element cannot be used as a cluster library element. Cluster libraries 2
through 6 must be memory-resident and overlaid.

Incompatible OTS module

This message occurs when the OTS (overlay run-time system) module requested by TKB has
not been found. The OTS modules are part of the system library. This error occurs if you are
using an incompatible version of the system library (SYSLIB.OLB).

xxviii

Changes to the Document

The following changes in organization are included in this revision of the RSX-11M-PLUS and
Micro/RSX Task Builder Manual:

References to unmapped systems have been removed since this version of the manual
concerns only the RSX-11M-PLUS and Micro/RSX operating systems.

The discussion of the use and size of overlay run-time routines in Chapter 4 has been
expanded.

A new section in Chapter 5 discusses using FCSRES and FCSFSL.

Appendix F describes how to create a Task Builder that has the slow mode as its default.

xxix

Chapter 1
Introduction and Command Specifications

The basic steps in developing a program are as follows:

1. You write one or more routines in an RSX-11M-PLUS or Micro/RSX supported source
language and enter each routine as an ASCII text file. You accomplish this by using an
editor such as EDT.

2. You submit each text file to the appropriate language translator (an assembler or compiler),
which converts it to a relocatable object module.

3. You specify the object modules as input to the Task Builder (TKB), which combines the
object modules into a single task image output file.

4. You install and run the task.

If you find errors in the task when you run it, you make corrections to the text file using the
editor, and then repeat steps 2 through 4.

The Task Builder’s main function is to convert relocatable object modules (OB] files) into a
single task image (TSK file) that you can install and run on an RSX-11M-PLUS or Micro/RSX
system. The task is the fundamental executable unit in both systems.

If your program consists of one object module, using the Task Builder is simple. You specify as
input only the name of the file containing the object module produced from the translation of
the program and specify as output the task image file.

Typically, however, programs consist of more than one object module. In this case, you name
each of the object module files as input. TKB links the object modules, resolves references
between them, resolves references to the system library, and produces a single task image ready
to be installed and executed.

TKB makes a set of assumptions (defaults) about the task image based on typical usage and
storage requirements. You can override these assumptions by including switches and options
in the task-building terminal sequence. Thus, you can build a task that is tailored to its own
input/output and storage requirements.

Introduction and Command Specifications 1-1

TKB also produces (upon request) a memory allocation (or map) file that contains information
describing the allocation of address space, the modules that make up the task image, and
the value of all global symbols. In addition, you can request that a list of global symbols,
accompanied by the name of each referencing module, be appended to the file. This list is
called a global cross-reference.

Note that the examples in this manual use both MCR and DCL as the command line interpreters
(CLIs).

The following example shows a simple sequence for building a task:

MCR DCL
>MAC PROG,=FROG $ MACRO PROG
>TKB PROG, ,=PROG $ LINK PROG
>INS PROG $ INS PROG
>RUN PROG $ RUN PROG

The first command, MAC or MACRO, causes the MACRO-11 assembler to translate the source
code of the file PROG.MAC into a relocatable object module in the file PROG.OB]J. The second
command, TKB or LINK, causes TKB to process the file PROG.OBJ and to produce the task
image file PROG.TSK. The third command, INS, causes the INSTALL task to add PROG.TSK to
the Executive’s directory of executable tasks (the System Task Directory). The fourth command,
RUN, causes the task to execute.

The previous example includes the following command:
TKB (MCR) LINK (DCL)
>TKE PROG, ,=PROG or $ LINK PROG

This command illustrates the simplest use of TKB. A single file is the input and a single file is
the output.

The following sections describe basic Task Builder command forms and sequences.

1.1 Task Builder Command Line

The Task Builder command lines for both MCR and DCL are discussed in the following sections.

1.1.1 The MCR Command Line for the Task Builder

The task command line used in MCR contains the output file specifications, followed by the
input file specifications; they are separated by an equal sign (=). You can specify up to three
output files and any number of input files. TKB allows a command line to be a maximum of
132 characters in length.

The task command line has the following MCR form:
task-image-file,map-file,symbol-definition-file=input-file,...

You must give the output files in a specific order: the first file you name is the image (TSK) file;
the second is the memory allocation (MAP) file; and the third is the symbol definition (STB)
file. The map file lists information about the size and location of components within the task.
The symbol definition file contains the global symbol definitions in the task and their virtual or
relocatable addresses in a format suitable for reprocessing by TKB. You specify this file when

1-2 Introduction and Command Specifications

you are building a resident library or common. (Resident libraries and commons are described
in Chapter 3.) TKB combines the input files to create a single task image that can be installed
and executed.

1.1.1.1 Printing the Map File

If you create a map file by specifying one in the TKB command line, there are a number of
ways that you can print the file. The following examples show you how you may print the
map file.

1. With the following two command lines, you can create a map file and then print it later.
The TKB command line tells TKB to create a task file, a map file without printing it (by
use of the switch /-SP), and a symbol definition file. The PRINT command line tells the
system to print the map file.

>TKB INV.TSK,INV.MAP/-SP,INV.STB=INV.0BJ
SPRINT INV.MAP

2. With the next command line, you can print the map file directly as it is created. In this
case, TKB tells the system to print the file by use of the switch /SP. However, the system
task QMGPRT.TSK must be installed as PRT... for this method to work.

>TKB INV.TSK,INV.MAP/SP,INV.STB=INV.0BJ

3. With the next command line, you can print the map file on a line printer that you specify.
(Because it involves transparent spooling, see your system manager for specific details about
using this command line.)

>TKB INV.TSK,LPn:,SY:INV.STB=INV.0BJ

1.1.1.2 Omitting Specific Output Files

You can omit any output file by replacing the file specification with the delimiting comma that
would normally follow it. The following examples illustrate the ways in which TKB interprets
the output file names.

Examples

>TKB IMG1,IMG1,IMG1=IN1

The task image file is IMG1.TSK, the memory allocation (map) file is IMG1.MAP, and the
symbol definition file is IMG1.STB.

>TKB IMG1=IN1
The task image file is IMG1.TSK.

>TKB ,IMG1=IN1
The map file is IMG1.MAP.

>TKB ,,IMG1=IN1
The symbol definition file is IMG1.STB.

Introduction and Command Specifications 1-3

>TKB IMG1,,IMG1=IN1 [RET]
The task image file is IMG1.TSK and the symbol definition file is IMG1.STB.

>TKB =IN1 [RET

This is a diagnostic run with no output files.

1.1.2 The DCL LINK Command Line for the Task Builder
The LINK command for TKB has the following DCL form:
LINK/ [quall/[NOITASK([:fspec] /MAP[:fspec] /SYMBOL_TABLE: [fspec] [,fspec[,s]]

This is the standard form of the LINK command for the Task Builder used in this manual.
Any DCL command line, including the LINK command, has variations in the way it may be
used. For possible variations, see the RSX-11IM-PLUS Command Language Manual, both the
Introduction and the section on the LINK command.

The LINK command has many qualifiers and defaults. The qualifiers, which will be discussed
as they appear in the manual, correspond to the TKB switches and options listed in Chapters
10 and 12. The LINK qualifiers are listed in Chapter 11.

TKB can produce three different kinds of output files either at separate times or at the same
time. These files are the task file (TSK), the map file (MAP), and the symbol definition file
(STB). The input files for the LINK command are discussed in the next section. The output
files—task, map, and symbol definition—are discussed after the input files.

TKB allows a command line to be a maximum of 132 characters in length.

1.1.2.1 The LINK Command Input File

You may specify only the input file when you build your task with the LINK command. The
LINK command then creates, by default, an output file with the same name as the input file.
This way you need only specify the input file name, which must be an object file. The default
file type for the input file is OB]J. You separate the input file name from the rest of the qualifiers,
if any, by a space. For example:

$ LINK BUN [RET and $ LINK BUN.OBJ

each produce an output task file with the default name BUN and the file type TSK (BUN.TSK).
The LINK command expects the input file to have an OBJ file type by default. Therefore, you
need not specify .OBJ in the input filespec.

You may specify more than one input file in the LINK command as follows:
$ LINK ROLL1,ROLL2,ROLL3

This command produces one output task file, which is a combination of the three input files.
The output file has the default name ROLL1 and the file type TSK (ROLL1.TSK). LINK uses
the first input file name that it encounters as the default output file name.

However, other files, such as library files, will have a different file type that must be specified.
To specify a library file as an input file, you can use the following command line:

$ LINK COCKIE1,COOKIE2,COOKIE3,MIX4/LIBRARY

1-4 Introduction and Command Specifications

Here, MIX4 is a library file, and three OB] input files are combined with the library file to
produce one task file. A library file has the file type OLB, but this file type need not be specified
in the LINK command line. However, the library file must be indicated with the /LIBRARY
qualifier. The library file should be specified last in the input file string. If you use a library
file, you must use it together with the object file or files that you have coded and want to
build with the library. The separate input object files are named here COOKIE1l, COOKIE2,
and COOKIE3. This example produces the output task file with the default name of COOKIE1
and the file type TSK (COOKIE1.TSK).

Another way to specify a library file, but only use specific routines contained in the library file,
is to use the /INCLUDE qualifier. A command line using this qualifier would appear as follows:

$ LINK COOKIE1,COOKIEZ2,COOKIE3,MIX4/INCLUDE:BATCH1,BATCH2
This command line would include routines named BATCH1 and BATCH2 from the library

named MIX4. When you use /INCLUDE with an input file name, you need not use the
/LIBRARY qualifier.

More information about the /LIBRARY and /INCLUDE qualifiers is included in the description
of qualifiers in Chapter 11.

1.1.2.2 The LINK Command Task File

The output file of the LINK command is the task file. This file has the file type TSK. The
default name of the task file is the same name as that of the input file. For example:

¢ LINK BUN

This command line produces an output file called BUN.TSK. By the same process, LINK produces
one output file with a TSK file type from multiple input files and uses the name of the first
input file encountered in the command line as the name of the output file. For example:

¢ LINK ROLL,BUN,CROISSANT
This command line produces an output file called ROLL.TSK.

To give the output file any name you want, you must use the /TASK qualifier on the LINK
command. For example:

$ LINK/TASK:BREAD ROLL,BUN,CROISSANT

This command line produces an output file named BREAD with the file type TSK from the
three input files ROLL, BUN, and CROISSANT.

You may or may not want a TSK file as output. An example of not wanting a task file would
occur when you wanted to see only a MAP file for a task (MAP file output is discussed in the
next section), or you wanted to see if TKB would actually build without errors the files that you
had specified. You can notify LINK that you do not want a TSK file by using the /NOTASK
qualifier specified as follows:

¢ LINK/NOTASK ROLL,BUN,CROISSANT

Here, TKB goes through the building process but does not produce any output.

Introduction and Command Specifications 1-5

1.1.2.3 The LINK Command Map File

In addition to the task file, you can use the LINK command to produce a map file for the task.
The map file has a MAP file type. The map file contains the addresses and symbols used by
your task and it describes their relationship. The LINK command will produce this file only if
you specify that it do so. For example:

¢ LINK/MAP CHIP,0AT,FLOUR

This command line produces a task file with the default name of CHIP and a map file with the
default name of CHIP. CHIP is the name of the first input file.

However, you may name specifically the task file and let the map file default to the name of
the first input file, as before. You can do this with the following two variations of the LINK
command:

$ LINK/TASK:COOKIE/MAP CHIP,OAT,FLOUR
¢ LINK/MAP/TASK:COOKIE CHIP,OAT,FLOUR

To name specifically the map file, you must use a file name after the /MAP qualifier. You can
do this by entering either of the following two variations of the LINK command:

¢ LINK/TASK:COOKIE/MAP:COOKIE CHIP,QAT,FLOUR
¢ LINK/MAP:COOKIE/TASK:COOKIE CHIP,0AT,FLOUR

These latter two variations produce a task file called COOKIE.TSK and a map file called
COOKIE.MAP.

There are other qualifiers that produce a MAP file. These qualifiers are /[NOJSYSTEM_
LIBRARY_DISPLAY, /[NO]JCROSS_REFERENCE, /[NOJWIDE, and /LONG. Chapter 11 ex-
plains the operation of these qualifiers.

1.1.2.4 The LINK Command Symbol Definition File

Another file can be produced by the LINK command. This file is called the symbol definition
file and it has the file type STB. This file contains the symbols used or referenced by the input
files. TKB uses this file when you use libraries, commons, and overlays as part of your task.
Libraries and commons are discussed in Chapter 5, and overlays are discussed in Chapters 3
and 4.

To create a symbol definition file for your task, you must specifically notify the LINK command
that you want to do so. For example:

¢ LINK/TASK:COOKT/MAP:COOKM/SYMBOL_TABLE:COOKS CHIP,OAT,FLOUR

This command line produces three files: the task file COOKT.TSK, the map file COOKM.MAP,
and the symbol definition file COOKS.STB.

By default, the LINK command uses the name of the first input file to create the name of the
symbol definition file. For example:

¢ LINK/TASK:COOKT/MAP:COOKM/SYMBOL_TABLE CHIP,0AT,FLOUR

This command line produces a symbol definition file called CHIP.STB.

1-6 Introduction and Command Specifications

1.1.2.5 Printing the MAP File When Using the LINK Command

Automatic printing of your MAP file may occur if your system has the system task QMGPRT.TSK
installed with the PRT... name. Otherwise, the MAP file is created in your directory or the
directory you specified in the LINK command line and is not immediately printed. From there,
you may print it later by methods specific to your own system type or configuration.

If you use /MAP as a command qualifier, without a filespec argument, TKB puts the map in
your directory with the file name of the first input file encountered. For example:

¢ LINK/MAP CHIP,OAT,FLOUR

In this example, the name of the map file is CHIP.MAP. This file is printed if the PRT... task
is installed.

If you use /MAP with a filespec argument, either on an input file or as the LINK command
qualifier, TKB puts the map in your directory with the name you have specified in the filespec
argument. For example:

$ LINK/MAP:COOKIE/TASK:CQUKIE CHIP,DAT,FLOUR
¢ LINK/TASK:COUKIE CHIP/MAP:COOKIE,OAT,FLOUR

In these two examples, the map files are named COOKIE.MAP.

If you use /MAP as an input filespec qualifier, but do not give a specific name for the map file,
TKB places the map file in your directory with the name of the file to which /MAP is attached.
For example:

¢ LINK/TASK:COOKIE CHIP/MAP,0AT,FLOUR [RET]
In this example, the map file is named CHIP.MAP.

TKB always tries to spool the map file to the printer. TKB will succeed in doing this if the
system task QMGPRT.TSK is installed with the PRT.. name. To prevent spooling, use the
/NOPRINTER qualifier with the /MAP qualifier.

1.2 Multiline Input

Although you can specify a maximum of three output files, you can specify any number of input
files. When you specify several input files, a more flexible format is sometimes necessary—one
that consists of several lines. This multiline format is also necessary when you want to include
options in your command sequence (see Section 1.3).

1.2.1 Muitiline Input Using the TKB Command

If you type TKB, MCR activates the Task Builder. TKB then prompts for input until it receives
a line consisting only of the terminating slash characters (//). For example:

>TKB

TKB>IMG1, IMG1=IN1
TKB>IN2, IN3
TKB>//

>

This sequence produces the same result as the following single line command:
>TKB IMG1,IMG1=IN1,IN2,1IN3

Introduction and Command Specifications 1-7

Both command sequences produce the task image file IMG1.TSK and the map file IMG1.MAP
from the input files IN1.0OB]J, IN2.0B]J, and IN3.0B]J.

You must specify the output file specifications and the equal sign (=) on the first command line.
You can begin or continue input file specifications on subsequent lines.

When you type the terminating slash characters (//), TKB stops accepting input, builds the
task, and returns control to MCR.

1.2.2 Multiline Input Using the LINK Command

The LINK command can get very long when you use many qualifiers. One way to shorten the
command line is to use the hyphen (which is the continuation character) at a logical point in
the command, thus terminating the individual line at that point. For example:

$ LINK-
->/TASK : COUKIE/MAP : CRUNCH-
->/SYMBOL_TABLE:CRUMB CHIP,RAISIN,OAT,FLOUR

$
Or, you can do it as follows:

$ LINK- [RET
->/TASK : COOKIE/MAP : CRUNCH/SYMBOL_TABLE:CRUMB -
->CHIP ,RAISIN,NUT,SUGAR,OAT,FLOUR, SALT, SODA

$

Notice the space after CRUMB and before the hyphen. This space is the separation between
the qualifiers and the input file specifications. It must be present whether or not you use the
hyphen.

1.2.2.1 Abbreviated Qualifiers in LINK

To shorten the length of a command line, you can use an abbreviated qualifier, such as SYM
for SYMBOL _TABLE. The previous command sequence could look like the following one if
you use the hyphen and abbreviated qualifiers:

$ LINK-
->TAS: COOKIE/MA: CRUNCH/SYM:CRUMB CHIP,RAISIN,OAT,FLOUR
$

All the qualifiers for the LINK command can be abbreviated to some extent. The following is a
sample list of abbreviations for frequently used qualifiers:

LONG FORM SHORT FORM
/ANCILLARY_PROCESSOR /ANC
/NOCHECKPOINT:arg /NOCH:arg
/CHECKPOINT:arg /CHEC:arg
/CODE:arg /COD:arg
/NOHEADER /NOHE
/HEADER /HEAD or/HEA
/INCLUDE:modulename,..., /INC:modulename,...,
/LIBRARY /LIB
/MAPfilespec /MA:filespec
/OPTIONS:option /OPT:option

1-8 Introduction and Command Specifications

/OVERLAY_DESCRIPTION /OVER

/SHAREABLE:arg /SHARE:arg
/SYMBOL _TABLE:filespec /SYMfilespec
/NOTASK:filespec /NOT:filespec
/ TASK:filespec /TAS:filespec

However, be careful that you use abbreviations that DCL can recognize as unique. For example,
the two qualifiers /SEQUENTIAL and /SEGREGATE can be abbreviated to /SEQ and /SEG,
but not to /SE and /SE.

1.3 Task Builder Options

The Task Builder uses many options to control the way in which a task is built. Section
1.3.1 discusses entering these options in TKB if your system uses MCR as the command line
interpreter. Section 1.3.2 discusses entering these options in LINK if your system uses DCL as
the command line interpreter. Section 1.3.3 discusses specific methods that you may use or
circumstances that you may encounter when entering these options.

1.3.1 Entering Task Builder Options in TKB

You use options to specify the characteristics of the task you are building. To include options
in a task, you must use the multiline format. If you type a single slash (/) following the input
file specification, TKB requests option information by displaying “Enter Options:” and prompting
for input. For example:

>TKB [RET)
TKB>IMG1, IMG1=IN1 [RET]
TKB>IN2,IN3

TKB/

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL: RO
TKB>//

>

In this sequence there are two options: PRI=100 and COMMON=JRNAL:RO. The two slashes
end option input, initiate the task build, and return control to MCR upon completion.

Note

When you are building an overlaid task, there are exceptions to the use of the
single slash (/). See the discussion of the /MP switch in Chapter 10.

Introduction and Command Specifications 1-9

1.3.2 Entering Task Builder Options in LINK

If you want to use Task Builder options, you must use the LINK command qualifier /OPTIONS
in the LINK command line. After DCL reads the command line, it prompts you for the option
or options. Enter each option after the prompt, and then press the RETURN key after each
option. To end option input, you press the RETURN key after the option prompt. For example:
$ LINK/TASK:COOKIE/MAP:COOKIEM/OPTIONS CHIP,OAT,SUGAR,FLOUR

Option? PRI=100

Option? COMMON=JRNAL:RO

Option?

$

In this command sequence there are two options, PRI and COMMON. The RETURN key is
pressed after the third option prompt. You may use the hyphen in the LINK command line to
provide line continuation. The hyphen does not interfere with option input.

Alternatively, you can use a filespec on the /OPTION qualifier to designate a file that contains
the options that you want to use. For example:

$ LINK/TASK:COOKIE/MAP:COOKIEM/OPTIONS: filespec CHIP,0AT,SUGAR,FLOUR
$

The file named in filespec can have any name you want but must have the file type CMD. It
must contain the options in a list, with each option on a single line. This file cannot contain
any slash characters (/). The file would look like the following:

PRI=100
COMMON=JRNAL :RO
1.3.3 Entering the Option Line

The Task Builder provides numerous options, which are described in Chapter 12. The general
form of an option is the name of the option followed by an equal sign (=) and an argument
list. The arguments in the list are separated from one another by a colon (:). In the examples
in Sections 1.3.1 and 1.3.2, the first option consists of the keyword PRI and a single argument
indicating that the task is to be assigned the priority 100. The second option consists of
the keyword COMMON and an argument list, JRNAL:RO, indicating that the task accesses a
resident common region named JRNAL and that the access is read-only. You can specify more
than one option on a line by using an exclamation point (!) to separate the options.

For example, the following TKB command line:
TKB>PRI=100!COMMON=JRNAL : RO
is equivalent to the following two command lines:

TKB>PRI=100
TKB>COMMON=JRNAL : RO

In a similar way, the following LINK command line:
Option? PRI=100!COMMON=JRNAL:RO
is equivalent to the following two command lines:

Option? PRI=100
Option? COMMON=JRNAL:RO

1-10 Introduction and Command Specifications

Some options accept more than one argument list. You use a comma (,) to separate the
argument lists. For example:

TKB>COMMON=JRNAL : RO, RFIL:RW
or
Option? COMMON=JRNAL:RO,RFIL:RW

In these TKB and LINK command lines, the first argument list indicates that the task has
requested read-only access to the resident common JRNAL. The second argument list indicates
that the task has requested read/write access to the resident common RFIL.

The following three command sequences for TKB are equivalent:

TKB>COMMON=JRNAL :RO, RFIL:RW
TKB>COMMON=JRNAL : RO! COMMON=RFIL:RW

TKB>COMMON=JRNAL : RO
TKB>COMMON=RFIL:RW

Similarly, the following three command sequences for LINK are equivalent:

Option? COMMON=JRNAL:RO,RFIL:RW
Option? COMMON=JRNAL:RO!COMMON=RFIL:RW

Option? COMMON=JRNAL:RQO
Option? COMMON=RFIL:RW

1.4 Multiple Task Specifications

For MCR, if you intend to build more than one task, you can use the single slash (/) following
option input. This directs TKB to stop accepting input, build the task, and request information
for the next task build. For example:

>TKB

TKB>IMG1=IN1
TKB>IN2,IN3

TKB>/

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL:RO
TKB>/
TKB>IMG2=SUB1
TKB>//

TKB accepts the output and input file specifications and the option input; it then stops accepting
input upon encountering the single slash (/) during option input. TKB builds IMG1.TSK and
then returns to accept more input for building IMG2.TSK.

For DCL, there is no way to enter multiple task specifications with a single LINK command.

Introduction and Command Specifications 1-11

1.5 Indirect Command Files

You can enter commands to TKB directly from the terminal, or indirectly through the indirect
command file facility (Indirect). To use Indirect, you prepare a file that contains the TKB
commands you want to be executed. Later, after you invoke TKB, you type an at sign (@)
followed by the name of the indirect command file.

For example, suppose you create a file called AFIL.CMD containing the following information:

IMG1,IMG1=IN1

IN2,IN3

/

PRI=100

COMMON=JRNAL :RO

//

Later, you can type one of the following command sequences:
TKB LINK

>TKB $ LINK

TKB>QAFIL File(s)? QAFIL

TKB> $

or simply:
TKB LINK

>TKB QAFIL $ LINK QAFIL

Note

For interaction with a TKB indirect command file as described above, you must
use the multiline format when you specify the indirect command file.

If you use DCL, it passes the indirect command file to TKB. When TKB encounters the at sign
(@), it directs its search for commands to the file named AFIL.CMD.

The preceding example is equivalent to the following TKB command sequence:

>TKB

TKB> IMG1, IMG1=IN1
TKB> IN2,IN3

TKB> /

Enter Options:
TKB>PRI=100

TKB> COMMON=JRNAL : RO

TKB> //
>

The example is also equivalent to the following LINK command sequence:

$ LINK/TASK:IMG1/MAP:IMG1/0PTION IN1,- [RET
->IN2, IN3

Option? PRI=100

Option? COMMON=JRNAL:RO

Option?

$

When TKB encounters two terminating slash characters (//) in the indirect command file, it
terminates indirect command file processing, builds the task, and exits to MCR.

1-12 Introduction and Command Specifications

When TKB encounters a single slash (/) in an indirect command file and the slash is the last
character in the file, TKB directs its search for commands to the terminal. For example, suppose
the file AFIL.CMD in the last example is changed to include the following information:

IMG1, IMG1=IN1
IN2,IN3
/

Later, you can type the following command lines:

>TKB
TKB> QAFIL

In this case, TKB goes to the terminal and displays the following prompts:

Enter Options:
TKB>

From this point, you input options to TKB directly from the terminal. If you then conclude
option input from the terminal with double slashes (//), TKB suspends command processing,
as described above, and exits to MCR following the task build. If you conclude option input
with a single slash (/), TKB prompts for new command input following the task build of
IMG1.TSK, as follows:

TKB>

Using the single slash (/) following option input in indirect command files is a convenient way
to return control to your terminal between successive task builds. For example, suppose you
create two indirect command files. The first, AFIL.CMD, contains the following information:

IMG1,IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL
/

The second, AFIL1.CMD, contains the following information:

IMG2, IMG2=IN4
IN5,IN6

/

PRI=100

//

Then, type the following command sequence at your terminal:

>TKB
TKB> QAFIL [RET

TKB> QAFIL1
>

TKB permits two levels of indirection in file references. That is, the indirect command file
referenced in a terminal sequence can contain a reference to another indirect command file. For
example, if the file BFIL.CMD contains all the standard options that are used by a particular
group of users at an installation, you can modify AFIL to include an indirect command file
reference to BFIL.CMD as a separate line in the option sequence.

Introduction and Command Specifications 1-13

The contents of AFIL.CMD would then be as follows:

IMG1, IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL :RO
©BFIL

/

To build these files, you would type the following command lines:

>TKB
TKB> QAFIL

If BFIL.CMD contains the following options:

STACK=100
UNITS=5!ASG=DT1:5

then the terminal equivalent of building these files would be as follows:

>TKB
TKB>IMG1, IMG1=IN1
TKB>IN2,IN3

TKB> /

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL :RO
TKB>STACK=100
TKB>UNITS=5!ASG=DT1:5
TKB>//

>

The indirect command file reference must appear on a separate line. For example, if you modify
AFIL.CMD by adding the @BFIL reference on the same line as the COMMON=JRNAL:RO
option, the substitution would not take place and TKB would report an error.

1.6 Comments in Indirect Command Files

For TKB or LINK, you can include comments at any point in the indirect command file, except
in lines that contain file specifications. You begin a comment with a semicolon (;) and terminate
it with a carriage return. All text between these delimiters is a comment.

For example, in the indirect command file AFIL.CMD, described in Section 1.5, you can add
comments to provide more information about the purpose and the status of the task, as follows:

1-14 Introduction and Command Specifications

; TASK 33A
; DATA FROM GROUP E-46 WEEKLY

IMG1,IMGi=

; PROCESSING ROUTINES
IN1

; STATISTICAL TABLES
IN2

; ADDITIONAL CONTROLS
IN3

/

PRI=100

COMMON=JRNAL:RO ; RATE TABLES

; TASK STILL IN DEVELOPMENT
//
1.7 File Specifications

TKB adheres to the standard RSX-11M-PLUS and Micro/RSX conventions for file specifications.
For any file, you can specify the device, the directory, the file name, the file type, the file
version number, and any number of switches.

The file specification has the following form:
device: [directory]filename.type;version/swi/sw2.../swn

When you specify files by name only, TKB applies the default switch settings for device,
directory, type, and version.

For example:

TKB LINK
>TKB $ LINK
TKB> IMG1, IMG1=IN1 File(s)? /TASK:IMG1/MAP:IMG1 IN1,-
TKB> IN2, IN3 File(s)?IN2,IN3
TKB> // $

>

If the default directory of the terminal from which TKB is running is [200,200], the task image
file specification of the example is assumed to be the following:

SYO: [200,200] IMG1.TSK ; 1

That is, TKB creates the task image file on the system device (SY0) in directory [200,200].
The default type for a task image file is TSK and, if the name IMG1.TSK is new, the version
number is 1. The default settings for all the task image switches also apply. Switch defaults
are described in detail in Chapter 10.

Introduction and Command Specifications 1-15

The following TKB and LINK examples show how defaults are applied:

>TKB
TKB>[20, 23] IMG1/CP/DA, IMG1/CR=IN1

TKB>IN2; 3, IN3
TKB>//
>

$ LINK/TASK:[20,23] IMG1/CHECK:SYS/DEB/MAP:IMG1/CROSS IN1,- [RET

;>IN2; 3,IN3

This sequence of commands instructs TKB to create a task image file IMG1.TSK;1 and a memory
allocation (map) file IMG1.MAP;1 (actually, it produces IMG1.TSK and IMG1.MAP with versions
one higher than the current versions) in directory [20,23] on the device SY. The task image is
checkpointable and contains the standard debugging aid, ODT. TKB outputs the map to the line
printer with a global cross-reference listing appended to it. TKB builds the task from the latest
versions of IN1.OBJ and IN3.0BJ, and the specific version of IN2.OBJ. The input files are all
found on the system device SY.

The system device is always the default device unless you specify otherwise. If you specify
another device on either side of the equal sign (or the space in LINK), that device becomes the
default device for the files on that side of the equal sign (or space).

For example:

>TKB
TKB> [20, 23] IMG1,IMG1,IMG1=DB1:IMG1, IN1,IN2

$ LINK/TASK:[20,23] IMG1/MAP:IMG1/SYM:IMG1 DB1:IMG1,IN1,IN2
$

This command line produces a task image file, map file, and listing file in directory [20,23] on
device SY. All the object files are in directory [20,23] on device DB1. In cases where files are
scattered among several devices, the devices must be specified in the command line.

For some files, a device specification is sufficient. In the example above, the map file could
be fully specified by the device LP. The map listing is produced on the line printer, but is not
retained as a file.

For TKB format in MCR, this example also uses the switches /CP, /CR, and /DA, and uses
the LINK command qualifiers /CHECKPOINT:SYSTEM, /DEBUG, /CROSS_REFERENCE, and
/SYMBOL _TABLE. The syntax and meaning for each switch and qualifier are given in Chapters
10 and 11.

1-16 Introduction and Command Specifications

1.8 Summary of Syntax Rules
The syntax rules for issuing commands to TKB are as follows:
* A task-build command can take any one of four forms. The first form is a single line:

TKB LINK

>TKB task-command-line $ LINK command-line

The second form has additional lines for input file names:

TKB LINK
>TKB $ LINK
TKB>task-command-line File(s)? /TASK:..... -
TKB>input-line File(s)? INFILEi,INFILE2,...
TKB>terminating-symbol RET
> $
The third form allows you to specify options:

TKB LINK
>TKB $ LINK
TKB>task-command-1 File(s)? /TAS:.../OPT INFILE{,...
TKB>/ Options?
Enter Options: Options? ([RET

TKB>option-line

TKB>terminating-symbol
>

The fourth form has both input lines and option lines:

TKB LINK
>TKB $ LINK
TKB>task-command-line File(s)? /TAS:.../MAP:.../0PT -
TKB>input-line File(s)? INFILE1,...

Option? option-line
Option? [RET
$

TKB>/

Enter Options:

TKB>option-line

TKB>terminating-symbol
>

Introduction and Command Specifications 1-17

For TKB in MCR or in indirect command files, the terminating symbol is one of the following:
/ If you intend to build more than one task
// If you want TKB to return control to MCR

For LINK, the normal terminating symbol in command or option input is the RETURN key.
However, pressing CTRL/Z will end the command without any execution by TKB. If you
have specified an indirect command file for input to LINK, the terminating symbol in the
indirect command file is the end-of-file if it has no options, or the double slash (//) if it
has options.

A Task Builder command line has one of the following forms:

TKB LINK
output-file-list=input-file, ... output/qual input/qual
=input-file,... input-file
@indirect-command-file @indirect-command-file

The third form in the previous list is an indirect command file specification, as described in
Section 1.5.

A TKB output file list has one of the following three forms:
task-image-file,map-file,symbol-definition-file
task-image-file,map-file

task-image-file

The task-image-file is the file specification for the task image file; map-file is the file
specification for the memory allocation (map) file; and symbol-definition-file is the file
specification for the symbol definition file. Any of the specifications can be omitted, so that,
for example, the following form is permitted:

task-image-file, ,symbol-definition-file

An input line has one of two forms:

TKB LINK
=input-file,... input-file, ...
Q@indirect-command-file Q@indirect-command-line

Both input-file and indirect-command-file are file specifications.

An option line has one of two forms:

TKB LINK
option!... Option?option-line
Q@indirect-command-file Option?@indirect-command-file.

The indirect-command-file is a file specification.

Introduction and Command Specifications

An option has the form:

keyword=argument-list, ...

The argument-list consists of the following:

arg: ...

The syntax for each option is given in Chapter 12.

A file specification conforms to standard RSX-11M-PLUS and Micro/RSX conventions. It

has the form:

device: [directorylfilename.type;version/swi/sw2.../swn

device:

directory

filename

type

version

The name of the physical device on which the volume containing the
desired file is mounted. The name consists of two ASCII characters
followed by an optional 1- or 2-digit octal unit number and a colon; for
example, LP: or DT1:. It can also be a logical name if extended logical
name support is allowed on your system.

The directory may have a name of up to nine alphabetic or numeric
characters, such as [MYLETTERS] or [400578369] or [DIRECT424]. You
may use fewer letters or numbers if you want. The default directory is
the directory you are assigned when you log in on the system.

The combination of the group number and the member number is the
User File Directory (directory) that contains the file name.

The name of the desired file. The file name can contain up to nine
alphanumeric characters.

The 3-character file type identification. Files having the same name but
a different function are distinguished from one another by the file type;
for example, CALC.TSK and CALC.OB]J.

The version number, in decimal on Micro/RSX systems or in octal on
RSX-11M-PLUS systems, of the file. Various versions of the same
file are distinguished from one another by this number; for example,
CALC.OBJ;1 and CALC.OBJ;2.

All components of a file specification are optional.

Introduction and Command Specifications 1-19

Chapter 2
Task Builder Functions

The process of building a task involves the following distinct Task Builder (TKB) functions:
* Linking object modules

* Assigning addresses to the task image

e Building data structures into the task

First, TKB is a linker. It collects and links the relocatable object modules that you specify
to it into a single task image, and resolves references to global symbols across the module
boundaries.

Second, TKB assigns addresses to the task image. On mapped systems, TKB assigns addresses
for a task beginning at address 0. The Executive then relocates the addresses at run time.

Note

Unless otherwise indicated, references to tasks that run on mapped systems
assume that the tasks are nonprivileged and residing within system-controlled
partitions.

Third, TKB builds data structures into the task image that are required by the INSTALL task to
install the task and by the Executive to run it.

This chapter describes the three TKB functions in detail. It also describes the concepts of mapped
systems. In addition, this chapter introduces regions, supervisor-mode libraries, overlays,
privileged tasks, I- and D-space tasks, and many of the mapping concepts necessary for an
understanding of task mapping and Task Builder functions.

Task Builder Functions 2-1

2.1 Linking Object Modules

TKB links object modules within the context of program sections and resolves references to
global symbols across module boundaries.

When the language translators convert symbolic source code within a module to object code,
they assign provisional 16-bit addresses to the code. A single assembly or compilation produces
a single object module. In its simplest form, each module begins at 0 and extends upward to
the highest address in the module. Three object modules produced at separate times might
have the address limits shown in Figure 2-1.

Figure 2-1: Relocatable Object Modules

1000

7501
A

500

MODULE #1 MODULE #3

MODULE #2

\

RELOCATABLE 0 ‘

RELOCATABLE 0-

RELOCATABLEOj

ZK-377-81

If these modules represent the separate modules of a single program, TKB links them together
and, for a mapped system, modifies the provisional addresses to a single sequence of addresses
beginning at 0 and extending upward to the sum of the lengths of all the modules (-1 byte).

For example, Figure 2-2 shows the three modules linked for a mapped system.

2-2 Task Builder Functions

Figure 2-2: Modules Linked for Mapped System

2250 T
MODULE #3
MODULE #2
MODULE #1
ol
MAPPED
SYSTEM

ZK-378-81

Task Builder Functions 2-3

2.1.1 Allocating Program Sections

The language translators process source code and TKB links object modules within the context
of program sections. A program section is a block of code or data that consists of the following
three elements:

¢ A name
e A set of attributes
* A length

A program section is the basic unit used by TKB to determine the placement of code and data
in a task image. The language translators maintain a separate location counter for each program
section in a program. The name of each program section, its attributes, and its length are
conveyed to TKB through the object module.

You can create as many program sections within a module as you wish by explicitly declaring
them (with the COMMON statement in FORTRAN or the .PSECT directive in MACRO-11, for
example) or by allowing the language translator to create them. If you do not explicitly create a
program section in your source code, the language translator you are working with will create
a “blank” program section within each module translated. This program section will appear on
your listings and maps as . BLK.. For more information on explicitly declared program sections,
see your language referenice manual.

A program section’s name is the name by which the language translator and TKB reference
it. When processing files, both the language translator and TKB create internal tables that
contain program section names, attributes, and lengths. A named program section can be
declared more than once. However, all occurrences of that named program section must have
identical attributes if the section occurs more than once in the same module or if the section
is a global program section. Identically named program sections within the same module and
global program sections with differing attributes cause TKB to declare the program section as
having multiple attributes, which is an error. However, identically named program sections
with differing attributes may appear in different trees of an overlaid task if the program sections
have the local (LCL) attribute.

Program section attributes define a program section’s contents, its placement in a task image,
and, in some cases, the allowed mode of access (read/write or read-only).

A program section’s length determines how much address space TKB must reserve for it.

When a task consists of more than one module, it is not unusual for program sections of the
same name to exist in more than one of the modules. Therefore, as TKB scans the object
modules, it collects scattered occurrences of program sections of the same name and combines
them into a single area of your task image file. The attributes listed in Table 2-1 control the
way TKB collects and places each program section in the task image.

2-4 Task Builder Functions

Table 2-1: Program Section Attributes

Attribute Value Meaning

access-code RW Read/write: data can be read from, and written into, the
program section.

RO Read-only: can be read from, but cannot be written into, the

program section.

allocation-code CON Concatenate: all references to a given program section name are
concatenated; the total allocation is the sum of the individual
allocations.

OVR Overlay: all references to a given program section name overlay
each other; the total allocation is the length of the longest
individual allocation.

relocation-code REL Relocatable: the base address of the program section is relocated
relative to the base address of the task.

ABS Absolute: the base address of the program section is not
relocated; it is always 0.

save SAV The program section has the SAVE attribute, and TKB forces the
program section into the root.

scope-code GBL Global: the program section name is recognized across overlay
segment boundaries; TKB allocates storage for the program
section from references outside the defining overlay segment.

LCL Local: the program section name is recognized only within the
defining overlay segment; TKB allocates storage for the program
section from references within the defining overlay segment

only.
e-code D Data: the program section contains data.
P progr
I Instruction: the program section contains either instructions, or

data and instructions.

2.1.1.1 Access-Code and Allocation-Code

TKB uses a program section’s access-code and allocation-code attributes to determine its
placement and size in a task image. If you specify /SG (or /SEGREGATE in LINK) in
the command sequence, TKB divides address space into read/write and read-only areas, and
places the program sections in the appropriate area according to access code. However, the
default is to order the program sections alphabetically.

TKB uses a program section’s allocation code to determine its starting address and length. If
a program section’s allocation code indicates that TKB is to overlay it (OVR), TKB places each
allocation to the program section from each module at the same address within the task image.
TKB determines the total size of the program section from the length of the longest allocation
to it.

Task Builder Functions 2-5

If a program section’s allocation code indicates that TKB is to concatenate it (CON), TKB places
the allocation from the modules one after the other in the task image and determines the total
allocation from the sum of the lengths of each allocation.

TKB always allocates address space for a program section beginning on a word boundary. If
the program section has the D (data) and CON (concatenate) attributes, TKB appends to the
last byte of the previous allocation all storage contributed by subsequent modules. It does this
regardless of whether that byte is on a word or nonword boundary. For a program section
with the I (instruction) and CON attributes, however, TKB allocates address space contributed
by subsequent modules beginning with the nearest following word boundary.

For example, suppose three modules, IN1, IN2, and IN3, are to be task-built. Table 2-2 lists
these modules with the program sections that each contains and their access codes and allocation
codes.

In this example, the program section named B, with the attribute CON (concatenate), occurs
twice. Thus, the total allocation for B is the sum of the lengths of each occurrence; that is,
100 + 120 = 220. The program section named A also occurs twice. However, it has the OVR
(overlay) attribute, so its total allocation is the largest of the two sizes, or 300. Table 2-3 lists
the individual program section allocations.

Table 2-2: Program Sections for Modules IN1, IN2, and IN3

Program

Section Access Allocation Size
File Name Name Code Code (Octal)
IN1 B RW CON 100

A RW OVR 300

C RO CON 150
IN2 A RW OVR 250

B RW CON 120
IN3 C RO CON 50

Table 2-3: Individual Program Section Allocations

Program Section Total
Name Allocation
B 220

A 300

C 220

TKB then groups the program sections according to their access codes and alphabetizes each
group, as shown in Figure 2-3.

Note

The example shown in Figure 2-3 represents the Task Builder’s allocation of
program sections if the /SG or /MU switch (or, for LINK, the /SEGREGATE or
/SHAREABLE:task qualifier) is used. For more information, see the description

2-6 Task Builder Functions

of the /MU, /SQ, and /SG switches in Chapter 10 and the /SHAREABLE:TASK,
/SEQUENTIAL, and /SEGREGATE qualifiers in Chapter 11.

Figure 2-3: Allocation of Task Memory

A C (220) ~] READ-ONLY
_| Access
B (220)]
READMWRITE | TASK MEMORY
ACCESS
A (300)
STACK
HEADER

ZK-379-81

The save attribute (SAV) is useful in cases where the information in a program section must be
kept available to all task segments. The SAV attribute of a program section causes TKB to force
the program section into the root of an overlaid task. Therefore, the named common block
in the FORTRAN SAVE statement or the named program section in the MACRO-11 .PSECT
directive specified with the SAV attribute are in the root of the task.

When the ODL .PSECT directive or the SAV attribute is used to force a program section into a
different segment, the global symbol definitions for the program section remain in the segment
where the program section was defined. This means that when a program section is moved
from the root to an overlay using the PSECT directive, TKB does not generate an autoload
vector for the entry point.

This enables you to separate the location of global symbol definitions from the location of code.
Relocating global symbol definitions can be achieved by simply moving the program section
manually to the desired segment.

To autoload a segment that contains a program section that was forced out of the root, place
the segment in another segment that is autoloaded by way of an entry point not in the program
section that was relocated.

2.1.1.2 Type-Code and Scope-Code

The scope-code attribute is meaningful only when you define an overlay structure for a task.
(The scope code is described in Chapters 3 and 4 within the context of the descriptions of
overlays.) The type-code attribute is meaningful in the context of program sections within an I-
and D-space task (as described in Chapter 7).

Task Builder Functions 2-7

2.1.2 Resolving Global Symbols

TKB resolves references to global symbols across module boundaries and any references (explicit
or implicit) to the system library. When the language translators process a text file, they assume
that references to global symbols within the file are defined in other, separately assembled or
compiled modules. As TKB links the relocatable object modules, it creates an internal table
of the global symbols it encounters within each module. If, after TKB examines and links all
the object modules, references remain to symbols that have not been defined, TKB assumes
that it will find the definition for the symbols within the default system object module library
(LB:[1,1]SYSLIB.OLB). If undefined symbols still remain after SYSLIB is examined, TKB flags
the symbols as undefined. If you have not specified an output map in your TKB command
sequence, TKB reports the names of the undefined symbols to you on your terminal. If you
have specified an output map, TKB outputs to your terminal only the fact that the task contains
undefined symbols. The names of the symbols appear on your map listing.

When creating the task image file, TKB resolves global references, as shown in the following
example. Table 2-4 lists the three files IN1, IN2, and IN3, showing the program sections within
each file, the global symbol definitions within each program section, and the references to global
symbols in each program section.

Table 2-4: Resolution of Global Symboils for IN1, IN2, and IN3

File Program Section Global Global
Name Name Definition Reference
IN1 B Bl A
B2 L1
A C1
XXX

C
IN2 A A

B B1 B2
IN3 C B1

In processing the first file, IN1, TKB finds definitions for B1 and B2 and references to A, L1, C1,
and XXX. Because no definition exists for these references, TKB defers the resolution of these
global symbols. In processing the next file, IN2, TKB finds a definition for A, which resolves
the previous reference, and a reference to B2, which can be resolved immediately.

When all the object files have been processed, TKB has three unresolved global references: C1,
L1, and XXX. Assume that a search of the system library LB:[1,1]SYSLIB.OLB resolves L1 and
XXX, and TKB includes the defining modules in the task’s image. Assume also that TKB cannot
resolve the global symbol C1. TKB lists it as an undefined global symbol.

The relocatable global symbol Bl is defined twice. TKB lists it as a multiply defined global
symbol. In this case, TKB uses the first definition for the global symbol.

Finally, an absolute global symbol (for example, symbol=100) can be defined more than once
without being listed as multiply defined, as long as each occurrence of the symbol has the same
value.

2-8 Task Builder Functions

2.2 The Task Structure

TKB builds the data structures required by other system programs and incorporates them into
the task image. The Executive (which is responsible for the allocation of system resources) must
have access to the data for all tasks on the system. It must know, for example, a task’s size
and priority, and it must have information about the way each task expects to use the system.
It is the Task Builder’s responsibility to allocate space in the task image for the data structures
required by the Executive. For example, TKB allocates space for the task header and initializes
it.

The disk image file created by TKB contains the linked task and all of the information required
by the system programs to install and run it. In its simplest form, the disk image file consists
of the following three physically contiguous parts:

e The label block group

® The task header

¢ The task memory image

Figure 2-4 illustrates the basic simplified structure of this file.

The label block group contains data produced by TKB and used by INSTALL command
processing. It contains information about the task, such as the task’s name, the partition
in which it runs, its size and priority, and the logical units assigned to it. When you install
the task, INSTALL command processing (hereinafter called INSTALL) uses this information to
create a Task Control Block (TCB) entry for the task in the System Task Directory (STD) and to
initialize the task’s header information.

The task’s header contains information that the Executive uses when it runs the task. The header
also provides a storage area for saving the task’s essential data when the task is checkpointed.
TKB creates and partially initializes the header; INSTALL initializes the rest of the header.

Task Builder Functions 2-9

Figure 2-4: Disk Image of the Task

. TASK
: MEMORY

HEADER

LABEL
BLOCK

ZK-380-81

The task memory image contains the linked modules of the program and, therefore, the code
and data. It also contains the task’s stack. The stack is an area of task memory that a task can
use for temporary storage and subroutine linkage. It can be referenced through general register
6, the stack pointer (SP). The label block group, the task’s header, and the task memory image
are described in detail in Appendix B.

The task’s memory image is the part of your task that the system reads into physical memory at
run time. The label block group is not required in physical memory. Therefore, in its simplest
form, the task’s memory image consists of only two parts: the task header and task memory.
Figure 2-5 shows the memory image.

2-10 Task Builder Functions

Figure 2-5: Memory Image

. TASK |
:{ MEMORY :

HEADER

ZK-381-81

2.3 Overlays

This section is an introduction to overlaid tasks. Details about overlaid tasks can be found in
Chapters 3 and 4.

Using overlays can save memory space by reducing the size of the executing portion of the task
or the physical memory required by the task. Parts of an overlaid task reside on disk, thereby
saving memory space.

An overlaid task is a task designed to have discrete parts. The parts of a task designed this
way can execute relatively independently of other parts. Parts of an overlaid task reside on
disk until they are needed for their required function. The common part of the task, which
stays in memory, is the root. The root calls the other parts of the task, which are referred to as
segments, from disk into memory.

The RSX-11M-PLUS and Micro/RSX operating systems have two types of overlaid tasks. One
type of overlaid task reads in segments from disk over other segments already in memory. A
task of this type is called a disk-resident overlaid task. In this task, segments reside on disk until
they are needed. The segments in disk-resident overlays that share the same memory address
space of the task with other segments must be logically independent of those segments. The
independence is necessary because the other segments are on disk and cannot be referenced. For
example, Task A, an overlaid task root, can call either of two segments: segment B or segment
C. The root of Task A initially calls segment B. Segments B and C occupy the same memory
space. Segment B cannot call segment C and segment C cannot call segment B. However, if
segment B returns control of the task to the root of task A, the root can then call segment
C. Segment C would then be read into memory over segment B. Figure 2-6 illustrates this
sequence.

Task Builder Functions 2-11

Because segments of a disk-resident overlaid task can occupy the same memory space, a disk-
overlaid task can occupy less memory than it would if it were not overlaid. However, more
disk I/0 transfers (and, therefore, more time) are needed for this type of task.

Another type of overlaid task is the memory-resident overlaid task. In this task, the segments
reside on disk until they are needed. At that time, the needed segment is read into a sequentially
adjacent area of memory and resides there until the task ends. For example, a memory-resident
overlaid Task A has two segments: segment B and segment C. If the root of task A calls segment
B, segment B is read into memory adjacent to the root. When the root regains control and then
calls segment C, segment C is read into memory adjacent to segment B. Figure 2-7 illustrates
this sequence.

Memory-resident overlaid tasks execute faster than disk-resident overlaid tasks. The increase in
speed occurs because fewer disk I/O transfers are needed during task execution.

2.4 Addressing Concepts

The primary addressing mechanism of the PDP-11 computer is the 16-bit word. The maximum
physical address space that the PDP-11 can reference at any one time is a function of the length
of this word.

2.4.1 Physical, Virtual, and Logical Addresses

Physical, virtual, and logical addresses, and virtual and logical address space, are concepts that
provide a basis for understanding the functions of task addressing and the use of task windows.
These concepts are described as follows:

* Physical addresses—A single, physical location in memory is called the physical address.

Memory is divided into parts called bytes. They are numbered according to their position
in memory. Therefore, the lowest byte is 0 and the highest byte is whatever the upper
limit of memory may be for a particular system; for example, 32K, 64K, and so forth. The
assigned number is called the physical address.

A task contains addresses (for example, 0 through 2200). TKB relocates the task’s addresses
in an unmapped system by a number represented by the base address of the partition in
which it is installed. After installation, the task’s addresses refer to physical addresses of
memory, which always correspond to the same physical memory in an unmapped system.

Therefore, the task addresses have an actual one-to-one relationship to physical memory.
The same relationship exists any time the task is in memory. The memory (physical)
addresses will not be from 0 through 2200. For example, after the task is installed in the
partition, the task’s address of 0 may become physical address 17000 because the Task
Builder added in the offset, which is equal to the partition base address.

In a mapped system, the task’s addresses remain the same but the physical memory
addresses may change due to Executive processes (checkpointing, swapping, and so forth).
Therefore, the task addresses do not always correspond to the same physical memory. If
the task uses memory management directives, the memory addressing can be changed by
the task to include any part of physical memory that it is allowed to access.

2-12 Task Builder Functions

Figure 2-6: Simple 2-Segment, Disk-Resident Overlay Calling Sequence

MEMORY

TASK A
ROOT

Y
~

TASK A
ROOT| B C

MEMORY

TASK A
ROOT

LOAD TASK

TASK A
ROOT| B C

ROOT CALLS
SEGMENT B

MEMORY

TASK A
ROOT

TASK A
ROOT| B C

ROOT CALLS
SEGMENT C

ZK-382-81

Task Builder Functions

2-13

Figure 2-7: Simple 2-Segment, Memory-Resident Overlay Calling Sequence

MEMORY

TASK A
ROOT

>

TASK A
[root| B8 | ¢ |

LOAD TASK

MEMORY

TASK A
ROOT

TASK A
[rooT| B | ¢ |

ROOT CALLS
SEGMENT B

MEMORY

TASK A
ROOT

2-14 Task Builder Functions

TASK A
froot| B | ¢ |

N~

ROOT CALLS
SEGMENT C

ZK-383-81

e Virtual addresses—A task’s virtual addresses are the addresses within the task.

The PDP-11's 16-bit word length (a mapped system) imposes the address range of 32K
words on the virtual addresses. Therefore, these task addresses could include addresses 0
through 177777¢ depending on the length of the task. These task addresses are not the
same as the actual addresses of the memory in which the task resides.

e Virtual address space—A task’s virtual address space is that space encompassed by the
range of virtual addresses that the task uses.

With the Create Address Window (CRAWS$) memory management directive, a task can
divide its virtual address space into segments called virtual address windows. By using
address windows, you can manipulate the mapping of virtual addresses to different areas
of physical memory.

e Logical addresses—A task’s logical addresses are the actual physical memory addresses that
the task can access.

e Logical address space—The task’s logical address space is the total amount of physical
memory to which the task has access rights.

The physical memory represented by the logical addresses may or may not be continuous.
The items in physical memory that logical address space includes are the task itself, and
static and dynamic regions.

2.4.2 Mapped Systems

A mapped system is one in which the processor contains a KT-11 memory management unit.
The processor handbook for your machine contains a complete description of the memory
management unit.

Mapped processors have up to three modes of operation: kernel, supervisor, and user (the
PDP-11/34 does not have supervisor mode). The information in this section is relevant to user
mode only.

Task Builder Functions 2-15

The primary addressing mechanism for a mapped system is still the 16-bit word, and virtual
address space is still 32K words. However, due to the extent of the physical memory capacity
in a mapped system, physical memory and virtual address space do not coincide.

To address all of physical memory in a mapped system, a machine must have an effective word
length of 22 bits. When TKB links the relocatable object modules of a task that is to run on a
mapped system, it assigns 16-bit addresses to the task image. The memory management unit’s
function (under control of the Executive) is to convert the task’s 16-bit addresses to effective
22-bit physical addresses. The mechanical job of task relocation is performed by the Executive
and the memory management unit at task run time. Figure 2-8 illustrates the relationship
between physical memory and virtual address space in a mapped system.

The memory management unit divides a machine’s 32K words of virtual address space into
eight 4K-word segments or pages. Each page has two registers associated with it:

® A 16-bit Page Description Register (PDR), which contains control and access information
about the page with which it is associated

* A 16-bit Page Address Register (PAR), which is an address relocation register

The PDRs and PARs are always used as a pair. Each pair is called an Active Page Register
(APR). Figure 2-9 shows how the memory management unit divides the 32K words of virtual
address space.

The Executive allocates only as many APRs as are necessary to map a given task into physical
memory. Therefore, a 4K-word task requires one APR; a 6K-word task requires two. Figure 2-10
illustrates this mapping.

Unless a task is privileged, the 1/O page and the Executive are not normally part of a task’s
virtual address space, and a task is inhibited by the system from accessing any portion of
physical memory that it does not specifically own. Because the I/O page and the Executive
are not part of a task’s virtual address space, a task can be approximately 32,767 words long
(32K minus 32 words needed by the loader) on a mapped system. TKB can build a task of 32K
minus 1 word in size. However, overlaid tasks, and tasks that become extended, may use the
entire 32K-word space.

2-16 Task Builder Functions

Figure 2-8: Task Relocation in a Mapped System

b ;

HIGHEST
PHYSICAL
ADDRESS
PARTITION
BOUNDARY
TASK
MEMORY
32K — ’/////
MEMORY
MANAGEMENT HEADER
UNIT
TASK
MEMORY
TASK
MEMORY SYSTEM-CONTROLLED
0 — PARTITION
HEADER
VIRTUAL ADDRESS
SPACE
FOR 32K WORD
MEMORY
HEADER
TASK
MEMORY
PARTITION __ | HEADER _/
BOUNDARY
Py o
. EXECUTIVE ,
ETC.
° L]
0—
PHYSICAL
MEMORY
ZK-386-81

Task Builder Functions 2-17

Figure 2-9: Memory Management Unit's Division of Virtual Address Space

A

PAGE 7
VIRTUAL 160000 — APR7 —

PAGE 6
VIRTUAL 140000 — APR6 —

PAGE 5
VIRTUAL 120000 — APR5 —

PAGE 4 32K WORDS OF

: VIRTUAL ADDRESS

VIRTUAL 100000 — APR4 — SPACE

PAGE 3
VIRTUAL 60000 — APR3 —

PAGE 2
VIRTUAL 40000 — APR2 —

PAGE 1
VIRTUAL 200000 — APR 1

PAGE 0
VIRTUAL O APR 0 !

ZK-387-81

2.4.3 Regions

This section briefly describes regions and their relationship to and use by tasks. Regions and
their use are more thoroughly described in Chapter 5.

A region is a defined area of memory that can contain code or data. It can also be a blank
area reserved for use by one or more tasks. The region is named and built like a task except
that the /HD switch (/HEADER in LINK) is negated (/-HD in TKB or /NOHEADER in LINK)
because the region is not a task and does not need a task header. Tasks can also create regions
dynamically as they execute. Dynamic regions are useful because they increase the task’s logical
address space while saving its virtual address space. Regions also allow tasks to share code and
data with other tasks.

2-18 Task Builder Functions

Figure 2-10: Mapping for 4K-Word and 6K-Word Tasks

160000 APR 7~

140000 APR 6 —

120000 APR 56—

100000 APR 4 —

60000 APR 3 —

40000 APR 2—

20000 APR 1 —

VIRTUALO APRO—

TASK
MEMORY

HEADER & STACK

4 K WORDS

TASK A (4K WORDS)

APR7—

APRG—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR O —

TASK
MEMORY 6K WORDS

HEADER & STACK

TASK B (6K WORDS)

ZK-388-81

Task Builder Functions 2-19

Regions are named according to their use or the way in which they were built. These regions
are as follows:

® Task region—A continuous block of memory in which the task runs.

* Common shared region—On unmapped systems, a shared region defined by an operator at
run time or built into the system during system generation; for example, a global common
area.

Resident commons are usually called shared regions because they are used as an area in
which tasks share common data. Shared regions can be absolute or position independent.
Shared regions and their use are described in Chapter 5.

¢ Library shared region—A shared region containing common code or routines shared by
tasks, and in this way saving virtual address space in the tasks.

* Dynamic region—A region created dynamically at run time by the Create Region (CRRGS$)
memory management directive in the task. This directive and associated directives are
described in the RSX-11M-PLUS and Micro/RSX Executive Reference Manual.

By convention, a shared region that contains code is a library and a shared region that contains
data is a common.

Tasks must map to a region by using task windows that must be defined and numbered in the
task when the task is built. Usually, a task uses one window for each region to which mapping
must occur. Task windows are described in the next section, Task Mapping and Windows.

Figure 2-12 shows a sample collection of regions that could make up a task’s logical address
space. A task’s logical address space can expand and contract dynamically as the task issues
the appropriate memory management directives. The header and root segment are always part
of the region. Therefore, the task header and root segment always use window 0 (UAPR 0)
and region 0. Because a region occupies a continuous area of memory, each region is shown as
a separate block.

2.5 Task Mapping and Windows

As mentioned earlier, tasks that run on mapped systems must be relocated at run time. When
you build a task that is to run on a mapped system, TKB creates and places in the header of
the task one or more 8-word data structures called window blocks. When you install a task,
INSTALL initializes the window block or blocks. Once initialized, a window block describes a
range of continuous virtual addresses called a window.

2.5.1 Task Windows

A window can be as small as 32 words or as large as 32K words. When a task consists of
one continuous range of addresses (a single region task), only one window block is required
to describe the entire task from the beginning of its header to the highest virtual address in
the task. When a task consists of two or more regions (such as a task that references a shared
region as described in Chapter 5), each region must have at least one window block associated
with it that describes all or a portion of the region.

2-20 Task Builder Functions

When the Executive maps a task into physical memory, it extracts the information it requires
to set up the APRs of the memory management unit from the task’s window block. Windows
0 and 1 describe the root of an I- and D-space task. Window 0 describes the I-space root
and window 1 describes the D-space root and task header. Furthermore, this region is referred
to as the task region and is identified as region 0. (Figure 2-11 illustrates window block 0
for a system without I- and D-space.) Windows for an I- and D-space task are described in
Chapter 7.

Figure 2-11: Window Block 0

ADDRESS

HIGHEST VIRTUAL = \

TASK REGION —

WINDOW
0 MEMORY

HEADER & STACK)

LOWEST VIRTUAL ————*
ADDRESS

ZK-389-81

Task Builder Functions 2-21

When you run your task, the Executive determines where in physical memory the task is to
reside. The Executive then loads the Page Address Register portion of the APRs with a relocation
constant that, when combined with the addresses of the task, yields the 22-bit physical address
range of the task.

Referring to Figure 2-12, which illustrates a mapped system without I- and D-space, you can
observe that a large 32K user task contains three distinct areas of continuous space called
“windows.” The term “task window” is a construct that maps a continuous portion of the task’s
virtual address space to a continuous portion of a region in the task’s logical address space.
Windows must have a specified size and starting address. The window size can be from 32
words to 32K minus 32 words, and windows must start on a 4K address boundary. Figure 2-12
shows three windows that are not continuous in the task’s virtual address space. However, the
space within each window is continuous. In this task, the size of window 0 is 11K words, the
size of window 1 is 11K words, and the size of window 2 is 8K words. The concept of windows
exists for the following specific reason.

By using the concept of windows and the memory management directives, a nonprivileged task
can access a larger logical memory space than that implied by the 32K-word virtual addressing
range and normally accessible by the 16-bit address. A task can, in fact, only access 32K words
of memory at one time. However, a nonprivileged task can change its access to logical addresses
(real, physical memory). The area that your program accesses can be changed by the program
during program execution. The process of accessing different logical areas of memory is called
“mapping.”

By referring to Figure 2-12, you can see that window 1 in the task is mapped to region 1 in
physical memory. The task can change the window 1 mapping to region 0 in physical memory.
In effect, then, though a task is limited to a range of 32K virtual addresses, a task can access
all the physical memory available to it (determined by the way that you set up the mapping)
by changing the mapping of its windows to different logical addresses. Figure 2-12 provides a
visual description of the concept of mapping to different logical addresses.

To set up the task’s windows, you define task window blocks to TKB as described in the
following paragraphs.

To manipulate virtual address mapping to various logical areas, you must first divide a task’s
32K of virtual address space into segments. These segments are task (virtual address) windows.
Each window encompasses a continuous range of virtual addresses. The first address of the
window address range must be a multiple of 4K (the first address must begin on a 4K boundary)
because of the way that the KT-11 memory management unit uses APRs.

Tasks that use I- and D-space or supervisor-mode libraries have a total of 16 windows. You
can specify up to 14 windows in this type of task. Windows 0 and 1 are not available to
nonprivileged tasks in this kind of system.

A task that includes directives that dynamically manipulate address windows must have task
window blocks set up in the task header as well as Window Definition Blocks in the code for
use by the Create Address Window (CRAWS) directive. The Executive uses task window blocks
to identify and describe each currently existing window. When linking the task, you specify the
number of extra window blocks needed by the task. The number of blocks should equal the
maximum number of windows that will exist concurrently while the task is running.

2-22 Task Builder Functions

Figure 2-12: Virtual to Logical Address Space Translation

VIRTUAL ADDRESS SPACE
of 32K USER TASK

32K
7 4K
WINDOW 2
6 4K
5 4K

4 NNWINDOW 1Y 4K

1 WINDOW 0 4K

0K HEADER

Z/__ CONTAINS

3 WINDOW BLOCKS

KT11 MEMORY MANAGEMENT UNIT

va [apr] OF
15 13 12 65
[arr | BN | DIB
SELECT I ‘ L
APR
USER KERNEL
ACTIVE PAGE REGS | ACTIVE PAGE REGS
PAR PDR PAR PDR
7] PaF 7] Par
6| PAF 6| PAF
5| PAF 5| par
4| PAF 4| PAF
3| Par 3] PAF
2| par 2| parF
1| PaF 1| paF
L—- o| Par o PaF
| |
KAPR OR UAPR
11 USER
00 KERNEL (
DETERMINED BY BITS 14-15 OF PSW

PBN |

PHYSICAL MEMORY

| 65

L

18-BIT PHYSICAL ADDRESS

TASK

LOGICAL

ADDRESS

SPACE REGION 0

‘ REGION 1
I WINDOW 1
‘ REGION 2
l WINDOW 2
‘ TASK REGION
) WINDOW 0
~ EXECUTIVE P~

o

ZK-390-81

Task Builder Functions 2-23

In systems without I- and D-space, a window’s identification is a number from 0 to 7, which
is an index to the window’s corresponding window block. The address window identified by 0
is the window that always maps the task’s header and root segment. TKB creates window O,
which the Executive uses to map the task. No directive may specify window 0; a directive that
does so is rejected.

In systems using an I- and D-space task, a window’s identification is a number from 0 to
15, which is an index to the window’s corresponding window block. The address windows
identified by 0 and 1 are the windows that always map the task’s header and root. TKB creates
windows 0 and 1, which the Executive uses to map the task. No directive may specify windows
0 or 1; a directive that does so is rejected.

When a task uses memory management directives, the Executive views the relationship between
the task’s virtual and logical address space in terms of windows and regions. Unless a virtual
address is part of an existing address window, the address does not point anywhere. This is a
point to watch when setting up windows with the Create Address Window (CRAWS$) directive.
Similarly, a window can be mapped only to an area that is all or part of an existing region
within the task’s logical address space.

Once a task has defined the necessary windows and regions, the task can issue memory
management directives to perform operations such as the following:

e Map a window to all or part of a region
* Unmap a window from one region in order to map it to another region

e Unmap a window from one part of a region in order to map it to another part of the same
region

2.6 RSX-11M-PLUS Supervisor Mode

Three modes of operation are possible in the PDP-11: user mode, supervisor mode, and kernel
mode. Each mode has associated with it 16 APRs for mapping memory: 8 I-space APRs and 8
D-space APRs. A task can use supervisor-mode libraries and thereby double the task’s virtual
address space to 64K words. Supervisor-mode libraries are described in Chapter 8. This section
briefly describes supervisor mode and the mapping that occurs when the task uses supervisor
mode.

Supervisor-mode libraries are libraries of routines that are used only in supervisor mode. The
task switches to supervisor mode when it calls a routine within the supervisor-mode library.
By using a supervisor-mode library, as described in Chapter 8, you make the RSX-11M-PLUS
system, for large systems, use the supervisor-mode APRs.

2-24 Task Builder Functions

2.6.1 Supervisor-Mode Mapping

Normally, a task has an address space of 32K words by using eight user APRs. When a
conventional task links to a supervisor-mode library and calls a routine in the library, the
Executive copies the user-mode I-space APRs into the supervisor-mode D-space APRs and maps
the supervisor-mode library with supervisor I-space APRs. Therefore, while in supervisor mode
and within the library, the task can access 32K words of its own space with D-space APRs and
32K words of library routines with I-space APRs. The amount of possible logical address space
totals to 64K words.

When an I- and D-space task links to a supervisor-mode library, the Executive copies the user-
mode D-space APRs into the supervisor D-space APRs. Therefore, the supervisor-mode routines
can access user data space and access supervisor-mode instruction space with supervisor I-space
APRs. (Figure 8-2 illustrates this mapping.) The mapping just described is the default mapping
for an I- and D-space task. You can explicitly create supervisor-mode D-space mapping to
override the user-mode D-space overmapping that occurs by using the Executive directive Map
to Supervisor-Mode Data Space (MSDS$). Chapter 8 discusses the use of MSDS$.

The mapping of a conventional task in a system that contains a supervisor-mode library is
shown in Figure 2-13.

The mapping of a conventional task in a system while using a supervisor-mode library is shown
in Figure 2-14.

2.7 Privileged Tasks

RSX-11M-PLUS and Micro/RSX systems have two classes of tasks, privileged and nonprivileged.
However, the term “privileged” has meaning in mapped systems only, because in mapped
systems certain areas of memory are protected from nonprivileged tasks. In an unmapped
system, any task has the ability to access all of physical memory if so programmed. Therefore,
the distinction between these two classes of tasks is primarily one of their mapping to memory
in a mapped system.

Privileged tasks in a mapped system can access system data areas and the Executive. Altering
system data areas or the Executive can cause obscure and difficult problems. Therefore,
privileged tasks must be programmed and used with caution.

You can specify a task as privileged by using the /PR:n switch in the TKB command line or the
/PRIVILEGED:n qualifier in LINK. The /PR:0 switch or /PRIVILEGED:0 qualifier allows a task
to perform certain privileged operations; but the task with a privilege of 0 cannot access the
Executive or system data structures. The /PR:4 switch or the /PRIVILEGED:4 qualifier allows
the task to directly map the I/O page, Executive routines, and system data structures. The
/PR:4 switch or the /PRIVILEGED:4 qualifier is used for a privileged task in a system that has
an Executive of 16K words or less. The /PR:5 switch or the /PRIVILEGED:5 qualifier allows
a task to directly map to the 1/O page, Executive routines, and system data structures. The
/PR:5 switch or the /PRIVILEGED:5 qualifier is used for a privileged task in a system that has
an Executive of 20K words or less.

Chapter 6 describes privileged tasks and their mapping in detail.

Task Builder Functions 2-25

Figure 2-13: Mapping for a Conventional User Task and a System Containing a
Supervisor-Mode Library in an RSX-11M-PLUS System

TASKS APRS MEMORY
USER D
NON-
PRIVILEGED 7 I/0 PAGE
USER
TASK
32K
9 N+32K
7 USER | USER
i 7 TASK
0
N
0
SPVSR D
7
SUPERVISOR-
MODE
LIBRARY
32K N+32K
0 SPVSR
MODE
SPVSRI LIBRARY
7
0 N
0
KERNEL D
EXECUTIVE 2
36K
POOL,
1 COMMON,
DATA 0 TABLES,
ETC.
Z KERNEL | \
INSTRUCTION 4
STRUCTIONS conE
1+D 1
4K
LOW CORE | |

ZK-391-81

2-26 Task Builder Functions

Figure 2-14: Mapping for a Conventional User Task Using a Supervisor-Mode Library

TASKS

NON-
PRIVILEGED
USER
TASK

32K

SUPERVISOR-
MODE
LIBRARY

32K

EXECUTIVE

DATA

INSTRUCTIONS

1+D

COPIED

APRS MEMORY
USER D
/0 PAGE
TASK
SPVSR D
SPVSR
MODE
SPVSRI LIBRARY
KERNEL D
POOL,
COMMON,
TABLES,
ETC.
KERNEL |
CODE
LOW CORE

N+32K

N+32K

36K

0

ZK-392-81

Task Builder Functions 2-27

2.8 Muitiuser Tasks

The following section is an introduction to multiuser tasks, which are fully described in
Chapter 9.

TKB allows you to build multiuser tasks. A multiuser task is that which has one portion of
its code and data designated as read-only and another portion designated as read/write. You
specify the read-only portions of your task with program sections that have the read-only access
code. When you then build your task with the /MU switch or /SHAREABLE:TASK qualifier,
TKB places the read-only portions in a region that has a high virtual address and the read/write
portion in a region that has a low virtual address. Any other requests to run the task, if the task
is already running, result in a copy of the read/write portion of the task in physical memory for
the other user. There is always only one copy of the read-only code regardless of the number
of tasks that may be running.

The /MU switch is described in Chapter 10 and the /SHAREABLE:TASK qualifier is described
in Chapter 11.

2.9 User-Mode |- and D-Space Tasks

User tasks that use both I- and D-space differ from conventional tasks because I- and D-space
tasks have specifically defined locations within the task for both instructions and data. Because
of this separation, the I- and D-space task image is structurally different.

Additionally, the separate instruction areas are mapped through separate APRs in the memory
management unit. Hence, up to eight user-mode instruction APRs map the task’s instructions,
and up to eight user-mode data APRs map the task’s data.

Also, overlaid I- and D-space tasks are more complex because each overlaid part (segment) of
such a task may reside in both instruction space and data space.

I- and D-space tasks differ from conventional tasks in the following major ways:

* Program sections with the “I” attribute contain only instructions, and program sections with
the “D” attribute contain only data.

* Two sets of APRs map the I- and D-space task: the I-space APRs and the D-space APRs.

® I- and D-space tasks can use up to 64K words of virtual space instead of 32K words because
of their use of the two sets of APRs. With supervisor-mode libraries, an I- and D-space task
can use up to 96K words of virtual space.

The following units have data contiguously adjacent in memory and instructions contiguously
adjacent in memory:

* Nonoverlaid I- and D-space tasks
* Segments in an overlaid I- and D-space task that contain both I- and D-space

In these tasks or task segments, I-space program sections are segregated from D-space program
sections in memory. They cannot be intermixed.

Figure 2-15 shows a user-mode I- and D-space task with data separated from the instructions
and mapped to memory through two sets of APRs.

2-28 Task Builder Functions

Figure 2-15: Simplified APR Mapping for an |- and D-Space Task

USER-MODE
APRS
7
TASK B]
VIRTUAL - —]
ADDRESS - —
SPACE
4K B]
DATA 0
D-SPACE
0
4K
INSTRUCTIONS 7
: -
— —
— —
| —
0
I-SPACE

MEMORY

b)Y
[£9

2
€

DATA

INSTRUCTIONS

22
—C

b))
149

ZK-1049-82

I- and D-space tasks are more fully described in Chapter 7. The task images for both conventional

and I- and D-space tasks are described in Appendix B.

Task Builder Functions 2-29

Chapter 3
Overlay Capability

The Task Builder provides you with the means to reduce the memory and/or virtual address
space requirements of your task by using tree-like overlay structures created with the Overlay
Description Language (ODL). You can divide your conventional task into pieces called segments,
which are loadable with one disk access. In an I- and D-space task, an overlaid segment that
contains I- and D-space program sections requires a maximum of two disk accesses to load the
segment. The segments are the discrete parts of the overlay structure that form the tree. You
can specify two kinds of overlay segments: those that reside on disk, and those that reside
permanently in memory after being loaded from disk.

3.1 Overlay Structures
To create an overlay structure, you divide a task into a series of the following segments:
* A single root segment, which is always in memory

® Any number of overlay segments, which either 1) reside on disk and share virtual address
space and physical memory with one another (disk-resident overlays); or 2) reside in memory
and share only virtual address space with one another (memory-resident overlays)!

Segments consist of one or more object modules, which in turn consist of one or more
program sections. Segments that overlay each other must be logically independent; that is, the
components of one segment cannot reference the components of another segment with which
it shares virtual address space. In addition to the logical independence of the overlay segments,
you must consider the general flow of control within the task when creating overlay segments.

You must also consider the kind of overlay segment to create at a given position in the structure,
and how to construct it. Dividing a task into disk-resident overlays saves physical space, but
introduces the overhead activity of loading these segments each time they are needed—but are
not present—in memory. Memory-resident overlays, on the other hand, are loaded from disk
only the first time they are referenced. Thereafter, they remain in memory and are referenced
by remapping.

1 Note that memory-resident overlays can be used only if the hardware has a memory management unit and if support for the memory
management directives has been included in the system on which the task is to run.

Overlay Capability 3-1

3.1.

3-2

Several large classes of tasks can be handled effectively when built as overlay structures. For
example, a task that moves sequentially through a set of modules is well suited to use as an
overlay structure. A task that selects one of a set of modules according to the value of an item
of input data is also well suited to use as an overlay structure.

Tasks that have separate I- and D-space may also use overlays where the root has instructions
and data separately defined by program sections, and each individual segment of the task also
has instructions and data separately defined. Chapter 7 contains more information about I- and
D-space tasks.

1 Disk-Resident Overlay Structures

Disk-resident overlays conserve virtual address space and physical memory by sharing them
with other overlays. Segments that are logically independent need not be present in memory at
the same time. They, therefore, can occupy a common physical area in memory (and, therefore,
common virtual address space) whenever either needs to be used.

The use of disk-resident overlays is shown in this section by an example, task TK1, which
consists of four input files. Each input file consists of a single module with the same name as
the file.

The task is built by the following TKB command line:
>TKB TK1,,=OVRLAY.ODL/MP

or by one of the following LINK command lines:

$ LINK/TASK:TKi OVRLAY.ODL/OVERLAY_DESCRIPTION
$ LINK/TAS:TK1 OVRLAY.ODL/OVER

The file OVRLAY.ODL contains the modules CNTRL, A, B, and C in an overlay description for
the task being built. The /MP switch in TKB or the /OVERLAY_DESCRIPTION qualifier in
LINK specifies that the input file is an Overlay Description Language (ODL) file.

In this example, the modules A, B, and C are logically independent; that is:

A does not call B or C and does not use the data of B or C.
B does not call A or C and does not use the data of A or C.
C does not call A or B and does not use the data of A or B.

A disk-resident overlay structure can be defined in which A, B, and C are overlay segments
that occupy the same storage area in physical memory. The flow of control for the task is as
follows:

CNTRL calls A and A returns to CNTRL.
CNTRL calls B and B returns to CNTRL.
CNTRL calls C and C returns to CNTRL.
CNTRL calls A and A returns to CNTRL.

In this example, the loading of overlays occurs only four times during the execution of the
task. Therefore, the virtual address space and physical memory requirements of the task can be
reduced without unduly increasing the overhead activity.

The effect of the use of an overlay structure on allocating virtual address space and physical
memory for task TK1 is described in the following paragraphs.

Overlay Capability

The lengths of the modules are:

Module Length (in Octal)
CNTRL 20000 bytes

A 30000 bytes
B 20000 bytes
C 14000 bytes

Figure 3-1 shows the virtual address space and physical memory required as a result of building
TK1 as a single-segment task on a system with memory management hardware.

The virtual address space and physical memory requirement to build TK1 as a single-segment
task is 1040003 bytes.

In contrast, Figure 3-2 shows the virtual address space and physical memory required as a result
of building TK1 as a multisegment task and using the overlay capability.

The multisegment task requires 500005 bytes.

Note

In addition to the storage required for modules A, B, and C, storage is required
for overhead in handling the overlay structures. This overhead is not reflected
in this example.

In using the overlay capability, the total amount of virtual address space and physical memory
required for the task is determined by the sum of the length of the root segment and the length
of the longest overlay segment. Overlay segments A and B in this example are much longer
than overlay segment C. If A and B are divided into sets of logically independent modules, task
storage requirements can be further reduced. Segment A can be divided into a control program
(A0) and two overlays (Al and A2). Segment A2 can then be divided into the main part (A2)
and two overlays (A21 and A22). Similarly, segment B can be divided into a control module
(B0) and two overlays (B1 and B2).

Figure 3-3 shows the virtual address space and physical memory required for the task produced
by the additional overlays defined for A and B.

Overlay Capability 3-3

Figure 3-1:

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

3-4 Overlay Capability

TK1 Built as a Single-Segment Task

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

104000
BYTES

ZK-393-81

Figure 3-2: TK1 Built as a Multisegment Task

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR b—

APR 4—

APR 3—

APR 2—

APR 1—

APR O0—

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

A
B
C 50000
BYTE
CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

ZK-394-81

Overlay Capability 3-5

Figure 3-3: TK1 Built with Additional Overlay Defined

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

Al

1] Aa22
A21| y
A2 B2| C

AO BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

3-6 Overlay Capability

A21]A22
Al B1

A2 B2| C

A0 BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

34000

ZK-395-81

As a single-segment task, TK1 requires 1040005 bytes of virtual address space and physical
memory. The first overlay structure reduces the requirement by 340003 bytes. The second
overlay structure further reduces the requirement by 140005 bytes.

The vertical lines in the diagrams of Figures 3-2 and 3-3 represent the state of virtual address
space and physical memory at various times during the calling sequence of TK1. For example, in
Figure 3-3, the leftmost vertical line in both diagrams shows virtual address space and physical
memory, respectively, when CNTRL, A0, and Al are loaded. The next vertical line shows
virtual address space and physical memory when CNTRL, A0, A2, and A21 are loaded, and so
on.

The horizontal lines in the diagrams of Figures 3-2 and 3-3 indicate segments that share virtual
address space and physical memory. For example, in Figure 3-3, the uppermost horizontal line
of the task region in both diagrams shows Al, A21, A22, B1, B2, and C, all of which can use
the same virtual address space and physical memory. The next horizontal line shows Al, A2,
B1, B2, and C, and so on.

3.1.2 Memory-Resident Overlay Structures

TKB provides for creating overlay segments that are loaded from disk only the first time they are
referenced. Thereafter, they reside in memory. Memory-resident overlays share virtual address
space just as disk-resident overlays do but, unlike disk-resident overlays, memory-resident
overlays do not share physical memory. Instead, they reside in separate areas of physical
memory, each segment aligned on a 32-word boundary. Memory-resident overlays save time
for a running task because they do not need to be copied from a secondary storage device
each time they are to overlay other segments. “Loading” a memory-resident overlay reduces to
mapping a set of shared virtual addresses to the unique physical area of memory containing the
overlaying segment.

The use of memory-resident overlays is shown in this section by an example, task TK2, which
consists of four input files. Each input file consists of a single module with the same name as
the file.

The task is built by the following TKB command line:
>TKB TK2, ,=OVRLAY2.ODL/MP

or by one of the following LINK command lines:

$ LINK/TASK:TK2 OVRLAY2.0DL/OVERLAY_DESCRIPTION
$ LINK/TAS:TK2 OVRLAY2.0DL/OV

The file OVRLAY2.0ODL contains the modules CNTRL, D, E, and F in an overlay description
for the task being built. The /MP switch in TKB or the /OVERLAY_DESCRIPTION qualifier
in LINK specifies that the input file is an Overlay Description Language (ODL) file.

In this example, the modules D, E, and F are logically independent; that is:

D does not call E or F and does not use the data of E or F.
E does not call D or F and does not use the data of D or F.
F does not call D or E and does not use the data of D or E.

Overlay Capability 3-7

A memory-resident overlay structure can be defined in which D, E, and F are overlay segments
that occupy separate physical memory locations but the same virtual address space. The flow
of control for the task is as follows:

CNTRL calls D and D returns to CNTRL.
CNTRL calls E and E returns to CNTRL.
CNTRL calls F and F returns to CNTRL.

The effect of the use of a memory-resident overlay structure on allocating virtual address space
and physical memory for task TK2 is described in the following paragraphs.

The lengths of the modules are:

Module Length (in Octal)
CNTRL 20000

D 10000
E 14000
F 12000

Figure 3-4 shows the virtual address space and physical memory requirements as a result of
building TK2 as a single-segment task on a system with memory management hardware.

The virtual address space and physical memory requirements when TK2 is built as a single-
segment task is 560003 bytes.

If TK2 is built using the Task Builder's memory-resident overlay capability, the relationship of
virtual address space to physical memory changes, as shown in Figure 3-5.

3-8 Owerlay Capability

Figure 3-4: TK2 Built as a Single-Segment Task

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

HEADER AND STACK

VIRTUAL ADDRESS SPACE

F F
E E
> 56000
> BYTES
D D
CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

ZK-396-81

Overlay Capability 3-9

Figure 3-5: TK2 Built as a Memory-Resident Overlay

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

3-10 Owverlay Capability

>

34000(8)
BYTES

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

)

PHYSICAL MEMORY

56000
BYTES

ZK-397-81

The physical memory requirements for TK2 do not change (56000 bytes), but the virtual
address space requirements have been reduced to 340003 bytes. This represents a saving in
virtual address space of 220005 bytes.

Note

In addition to the storage required for modules D, E, and F, storage is required
for overhead in handling the overlay structures. This overhead is not reflected
in this example.

In Figure 3-5, the vertical and horizontal lines in the virtual address space diagram represent
the state of virtual address space at various times during the calling sequence of TK2. The
leftmost vertical line shows virtual address space when CNTRL and D are loaded and mapped.
The next vertical line shows virtual address space when CNTRL and E are loaded and mapped.
The third vertical line shows virtual address space when CNTRL and F are loaded and mapped.

The uppermost horizontal line of the task region shows that segments D, E, and F share virtual
address space.

When TK2 is activated, the Executive loads TK2’s root segment into physical memory. The
Executive loads segments D, E, and F into memory as they are called. Once all segments in the
structure have been called, “loading” of the overlay segments reduces to the remapping of virtual
address space to the physical locations in memory where the overlay segments permanently
reside. Figures 3-6 and 3-7 illustrate the relationship between virtual address space and physical
memory for task TK2 during the following time periods:

e TIME 1 (Figure 3-6A)—TK2 is run and the system loads the root segment (CNTRL) into
physical memory and maps to it.

e TIME 2 (Figure 3-6B)—CNTRL calls segment D. The system loads segment D into physical
memory and maps to it. Segment D returns to CNTRL.

» TIME 3 (Figure 3-7A)—CNTRL calls segment E. The system loads segment E into physical
memory, unmaps from segment D, and maps to segment E. Segment E returns to CNTRL.

e TIME 4 (Figure 3-7B)—CNTRL calls segment F. The system loads segment F into physical
memory, unmaps from segment E, and remaps to segment F. Segment F returns to CNTRL.

Overlay Capability 3-11

Figure 3-6A: Relationship Between Virtual Address Space and Physical Memory—

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

Time 1

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

3-12 Owerlay Capability

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

ZK-398-81

Figure

160000

140000

120000

100000

60000

40000

20000

3-6B: Relationship Between Virtual Address Space and Physical Memory—

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

Time 2

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

A

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY ZK-399-81

Overlay Capability 3-13

Figure 3-7A: Relationship Between Virlual Address Space and Physical Memory—

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0~

Time 3

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

3-14 Owerlay Capability

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

ZK-400-81

Figure 3-7B: Relationship Between Virtual Address Space and Physical Memory—

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

Time 4

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

|

CNTRL
{ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY
ZK-401-81

Overlay Capability 3-15

It is important to be careful in choosing whether to have memory-resident overlays in a
structure. Carelessly using these segments can result in inefficient allocation of virtual address
space because TKB allocates virtual address space in blocks of 4K words. Consequently, the
length of each overlay segment should approach that limit if you are to minimize waste. (A
segment that is one word longer than 4K words, for example, is allocated 8K words of virtual
address space. All but one word of the second 4K words is unusable.)

You can also conserve physical memory by maintaining control over the contents of each
segment. Including a module in several memory-resident segments that overlay one another
causes physical memory to be reserved for each extra copy of that module. Common modules,
including those from the system object module library (SYSLIB), should be placed in a segment
that can be accessed from all referencing segments.

The primary criterion for choosing to have memory-resident overlays is the need to save virtual
address space when disk-resident overlays are either undesirable (because they would slow
down the system unacceptably) or impossible (because the segments are part of a resident
library or other shared region that must reside in memory permanently).

Memory-resident overlays can help you use large systems to better advantage because of the
time saving realized when a large amount of physical memory is available. Resident libraries,
in particular, can benefit from the virtual address space saved when they are divided into
memory-resident segments.

3.2 Overlay Tree

The arrangement of overlay segments within the virtual address space of a task can be
represented schematically as a tree-like structure. Each branch of the tree represents a segment.
Parallel branches denote segments that overlay one another and therefore have the same virtual
address; these segments must be logically independent. Branches connected end to end represent
segments that do not share virtual address space with each other; these segments need not be
logically independent.

TKB provides an Overlay Description Language (ODL) for representing an overlay structure
consisting of one or more trees. (The ODL is described in Section 3.4.)

The single overlay tree shown in Figure 3-8 represents the allocation of virtual address space
for TK1 (see Section 3.1.1).

3-16 Owerlay Capability

Figure 3-8: Overlay Tree for TK1

A21 A22
A1l A2 B1 B2
l | rJ
A0 BO C
| |
|
CNTRL

ZK-402-81

The tree has a root (CNTRL) and three main branches (A0, B0, and C). It also has six leaves
(A1, A21, A22, Bl1, B2, and Q).

The tree has as many paths as it has leaves. The path down is defined from the leaf to the
root. For example:

A21-A2-A0-CNTRL
The path up is defined from the root to the leaf. For example:
CNTRL-BO-B1
Knowing the properties of the tree and its paths is important to understanding the overlay
loading mechanism and the resolution of global symbols.
3.2.1 Loading Mechanism

Modules can call other modules that exist on the same path. The module CNTRL (Figure 3-8)
is common to every path of the tree and, therefore, can call and be called by every module in
the tree. The module A2 can call the modules A21, A22, A0, and CNTRL; but A2 cannot call
Al, B1, B2, BO, or C.

When a module in one overlay segment calls a module in another overlay segment, the called
segment must be in memory and mapped, or must be brought into memory. The methods for
loading overlays are described in Chapter 4.

Overlay Capability 3-17

3.2.2 Resolution of Global Symbols in a Multisegment Task

In resolving global symbols for a multisegment task, TKB performs the same activities that it
does for a single-segment task. The rules defined in Chapter 2 for resolving global symbols in
a single-segment task apply also in this case, but the scope of the global symbols is altered by
the overlay structure.

In a single-segment task, any module can refer to any global definition. In a multisegment
task, however, a module can only refer to a global symbol that is defined on a path that passes
through the called segment.

The following points, illustrated in the tree diagram in Figure 3-9, describe the two distinct
cases of multiply defined symbols and ambiguously defined symbols.

In a single-segment task, if you define two global symbols with the same name, the symbols
are multiply defined and an error message is produced.

In a multisegment task, you can define two global symbols with the same name if they are on
separate paths and not referenced from a segment that is common to both.

If you define a global symbol more than once on separate paths, but they are referenced from
a segment that is common to both, the symbol is ambiguously defined. If you define a global
symbol more than once on a single path, it is multiply defined.

TKB'’s procedure for resolving global symbols is summarized as follows:
1. TKB selects an overlay segment for processing.
2. TKB scans each module in the segment for global definitions and references.

3. If the symbol is a definition, TKB searches all segments on paths that pass through the
segment being processed and looks for references that must be resolved.

4. If the symbol is a reference, TKB performs the tree search as described in step 3, looking
for an existing definition.

5. 1If the symbol is new, TKB enters it in a list of global symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding to their distance from
the root. That is, TKB processes the segment farthest from the root first, before processing an
adjoining segment.

When TKB processes a segment, its search for global symbols proceeds as follows:
1. The segment being processed

2. All segments toward the root

3. All segments away from the root

4. All co-trees (see Section 3.5)

Figure 3-9 illustrates the resolution of global symbols in a multisegment task.

3-18 Owerlay Capability

Figure 3-9: Resolution of Global Symbols in a Multisegment Task

A21 A22
T (DEF) R (REF)
S (REF) Q (REF)
S(ﬁEF)

A1l B1 B2
Q (REF) A2 Q (REF) S (REF)
R (REF) R (DEF) S (REF)

S(ﬁEF) I
A0 BO C
Q (DEF) Q (DEF)
S (DEF) S (DEF)
T(?EF) I
CNTRL
S (REF)

ZK-403-81

The following notes discuss the resolution of references in Figure 3-9:

1. The global symbol Q is defined in both segment A0 and segment B0. The references to
Q in segment A22 and in segment Al are resolved by the definition in A0. The reference
to Q in B1 is resolved by the definition in B0. The two definitions of Q are distinct in all
respects and occupy different overlay paths.

2. The global symbol R is defined in segment A2. The reference to R in A22 is resolved by
the definition in A2 because there is a path to the reference from the definition (CNTRL-
A0-A2-A22). The reference to R in Al, however, is undefined because there is no definition
for R on a path through Al.

3. The global symbol S is defined in both segment A0 and segment B0. References to S from
segments Al, A21, or A22 are resolved by the definition in AQ, and references to S in Bl
and B2 are resolved by the definition in B0. However, the reference to S in CNTRL cannot
be resolved because there are two definitions of S on separate paths through CNTRL. The
global symbol S is ambiguously defined.

4. The global symbol T is defined in both segment A21 and segment AQ. Since there is
a single path through the two definitions (CNTRL-A0-A2-A21), the global symbol T is
multiply defined.

Overlay Capability 3-19

3.2.3 Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over the tree structure. The
global symbols discussed in the previous section are included in user-specified input modules
that TKB scans in the first pass. If any undefined symbols remain, TKB initiates a second pass
over the structure in an attempt to resolve such symbols by searching the default object module
library (normally LB0:[1,1]SYSLIB.OLB). TKB reports any undefined symbols remaining after its
second pass.

When multiple tree structures (co-trees) are defined, as described in Section 3.5, any resolution
of global symbols across tree structures during a second pass can result in multiple or ambiguous
definitions. In addition, such references can cause overlay segments to be inadvertently displaced
from memory by the overlay loading routines, thereby causing run-time failures. To eliminate
these conditions, the tree search on the second pass is restricted to the following segments:

* The segment in which the undefined reference has occurred
e All segments in the current tree that are on a path through the segment
* The root segment

When the current segment is the main root, the tree search is extended to all segments. You
can unconditionally extend the tree search to all segments by including the /FU (full) switch
in TKB or the /FULL_SEARCH qualifier in LINK in the task image file specification. (Refer to
Chapter 10 for a description of the TKB /FU switch or to Chapter 11 for a description of the
LINK /FULL_SEARCH qualifier.)

3.2.4 Allocation of Program Sections in a Multisegment Task

One of a program section’s attributes indicates whether the program section is local (LCL) to
the segment in which it is defined or is global (GBL).

Local program sections with the same name can appear in any number of segments. TKB
allocates virtual address space for each local program section in the segment in which it is
declared. Global program sections that have the same name, however, must be resolved by
TKB.

When a global program section is defined in several overlay segments along a common path,
TKB allocates all virtual address space for the program section in the overlay segment closest
to the root.

FORTRAN common blocks are translated into global program sections with the overlay (OVR)
attribute. In Figure 3-10, the common block COMA is defined in modules A2 and A21. TKB
allocates the virtual address space for COMA in A2 because that segment is closer to the root
than the segment that contains A21.

3-20 Owverlay Capability

Figure 3-10: Resolution of Program Sections for 1K1

A21 A22
A1 A2
COMA B1 B2
A0 BO C
COMAB COMAB |
CNTRL

ZK-404-81

If the segments A0 and B0 use the common block COMAB, however, TKB allocates the virtual
address space for COMAB in both the segment that contains A0 and the segment that contains
BO. A0 and BO cannot communicate through COMAB. When the overlay segment containing
B0 is loaded, any data stored in COMAB by A0 is lost.

You can specify the allocation of program sections explicitly. If A0 and B0 need to share
the contents of COMAB, you can force the allocation of this program section into the root
segment by the use of the .PSECT directive of the Task Builder’s Overlay Description Language,
described in Section 3.4.

3.3 Overlay Data Structures and Run-Time Routines

When TKB constructs an overlaid task, it builds additional data structures and adds them to the
task image. The data structures contain information about the overlay segments and describe
the relationship of each segment in the tree to the other segments in the tree. TKB also includes
into the task image a number of system library routines (called overlay run-time routines). The
overlay run-time routines use the data structures to facilitate the loading of the segments and
to provide the necessary linkages from one segment to another at run time.

TKB links the majority of data structures and all of the overlay run-time routines into the root
segment of the task. The number and type of data structures, and the functions the routines
perform, depend on the following considerations:

e Whether the task is built to use the Task Builder’s autoload or manual-load facilities
e Whether the overlay segment is memory-resident or disk-resident

These considerations have a marked impact on the size and operation of the task. Chapter 4
describes the Task Builder’s autoload and manual-load facilities and describes the methods for
loading overlays. Appendix B describes the data structures and their contents in detail.

Overlay Capability 3-21

The contents of the root segment for a task with an overlay structure are discussed briefly in
the following sections.
3.3.1 Overlaid Conventional Task Structures

Depending on the considerations just discussed, some or all of the following data structures are
required by the overlay run-time routines:

* Segment descriptors

* Autoload vectors

* Window descriptors

* Region descriptors

Figure 3-11 shows the typical structure of an overlay root segment.

There is a segment descriptor for every segment in the task. The descriptor contains information
about the load address, the length of the segment, and the tree linkage.

In an autoloadable, overlaid task, autoload vectors appear in the root segment and in every
segment that calls modules in another segment located farther away from the root of the tree.
All references to resident libraries are resolved through autoload vectors in the root.

Window descriptors are allocated whenever a memory-resident overlay structure is defined for
the task. The descriptor contains information required by the Create Address Window (CRAW$)
directive. One descriptor is allocated for each memory-resident overlay segment.

Region descriptors are allocated whenever a task is linked to a shared region containing memory-
resident overlays. The descriptor contains information required by the Attach Region (ATRG$)
directive.

3.3.2 Overlaid I- and D-Space Task Structures

Overlaid I- and D-space tasks contain data structures similar to those in a conventional task.
These data structures differ only in their virtual address space allocation (mapping), and some
structures are mapped in two different address spaces.

Figure 3-12 shows a typical overlaid I- and D-space task with an up-tree segment.

3-22 OQwerlay Capability

Figure 3—-11: Typical Overlay Root Segment Structure

TASK CODE AND DATA

WINDOW DESCRIPTORS

REGION DESCRIPTORS

SEGMENT DESCRIPTORS

OVERLAY
RUN-TIME
ROUTINES

AUTOLOAD VECTORS

TASK CODE
AND
DATA

HEADER AND STACK

ZK-405-81

TYPICAL
MAIN TREE
ROOT SEGMENT

Overlay Capability 3-23

Figure 3-12: Typical Overlaid |- and D-Space Task with Up-Tree Segment

1.5K

300

VIRTUAL I-SPACE

I-SPACE PART OF
AUTOLOAD VECTORS

CODE

OVERLAY RUN-TIME
ROUTINES

AUTOLOAD VECTORS-
I-SPACE PART

TASK
CODE

UNUSED HEADER COPY

3-24 Overlay Capability

3.6K

3K

3K

2740

2720

2640

2630

1270

300

VIRTUAL D-SPACE

D-SPACE PART OF
AUTOLOAD VECTORS

DATA

WINDOW DESCRIPTORS

REGION DESCRIPTORS

SEGMENT DESCRIPTORS

AUTOLOAD VECTORS
D-SPACE PART

TASK
DATA

STACK SPACE

TASK HEADER
USABLE COPY

(

)

UP-TREE
SEGMENT

MAIN

TREE

ROOT
SEGMENT

ZK-1050-82

The following structures are located in data space:
* Segment descriptors

¢ Window descriptors

® Region descriptors

e Autoload vectors (the data part)

Autoload vectors contain both data and instructions. Therefore, TKB locates the instruction part
of the autoload vector in I-space and the data part in D-space. Each segment of an autoloadable
overlaid I- and D-space task may have an instruction part and a data part. Therefore, each I-
and D-space segment in such a task would have its vectors separated into an instruction part
and a data part.

The following structures are located in instruction space:
e Autoload vectors (the instruction part)
* Segment return point

e Overlay run-time system code (root segment only)

3.4 Overlay Description Language

TKB provides a language, called the Overlay Description Language (ODL), that allows you to
describe the overlay structure of a task. An overlay description is a text file consisting of a series
of ODL directives, one directive on each line. Each line may have as many as 132 characters.
You enter the name of this file in a TKB command line, and identify it as an ODL file by
specifying the /MP switch in TKB or the /OVERLAY_DESCRIPTION qualifier in LINK to the
file name.

For example, the following TKB command line specifies an ODL file:

>TKB TASK1,,=OVRLAY/MP

The following LINK command lines specify the same ODL file:

$ LINK/TASK:TASK1 OVRLAY/OVERLAY_DESCRIPTION

$ LINK/TAS:TASK1 OVRLAY/OVER

If you specify an ODL file to TKB, it must be the only input file you specify.
A command line in an ODL file takes the following form:

label: directive argument-list ;comment

A label is required only for the .FCTR directive (see Section 3.4.2). Labels cannot be used with
the other directives.

The ODL directives are listed below and described in Sections 3.4.1 through 3.4.6:

.ROOT and .END
FCTR

.NAME

.PSECT

@ (at sign; specifies indirect command file)

Overlay Capability 3-25

The ODL directives can act upon the following items: named input files, overlay segments,
program sections, and lines in the ODL file itself. These items follow each directive on the same
line as the directive and form an argument list. Operators (such as the hyphen, exclamation
point, and comma) group the argument-list items (named task elements) or attach attributes to
them.

If the named task element is a file, you can enter a complete file specification. Defaults for
omitted parts of the file specification are as described in Chapters 1 and 10, except that the
default device is SYO0, and the default directory is taken from the terminal UIC.

In addition, the following restrictions apply to argument lists:
® A period (.) is the only nonalphabetic character you can use in a file name.

¢ Comments cannot appear on a line ending with a file name.

3.4.1 .ROOT and .END Directives

The .ROOT directive defines the structure of the overlaid task. Because of this, .ROOT usually
appears first in the overlay description. The .NAME directive may precede the .ROOT directive
in certain circumstances discussed in Section 3.4.4. Each overlay description must end with one
.END directive. The .ROOT directive tells TKB where to start building the tree and the .END
directive tells TKB where the input ends.

The arguments of the .ROOT directive use three operators to express concatenation, memory
residency, and overlaying. The operators are as follows:

* The hyphen (-) operator indicates the concatenation of virtual address space. For example,
X-Y means that sufficient virtual address space will be allocated to contain module X and
module Y simultaneously. TKB allocates segment X and segment Y in sequence to produce
one segment.

® The exclamation point (!) operator indicates memory residency of overlays. (This operator
is discussed in Section 3.4.3.)

* The comma (,) operator, appearing within parentheses, indicates the overlaying of virtual
address space. For example, (Y,Z) means that virtual address space can contain either
segment Y or segment Z. If no exclamation point (!) precedes the left parenthesis, segment
Y and segment Z also share physical memory.

The comma operator is also used to define multiple tree structures (as described in Section
3.5.1).

These operators can be used with the .FCTR directive also.

You use parentheses to delimit a group of segments that start at the same virtual address. The
number of nested parenthetical groups cannot exceed 16.

For example:

.ROOT X-(Y,Z-(21,22))
.END

These directives describe the tree and its corresponding virtual address space shown in Figure
3-13.

3-26 QOwverlay Capability

Figure 3-13: Tree and Virtual Address Space Diagram

Z1 Z2

Z1 72
I Y
p4
|

X

ZK-406-81

To create the overlay description for the task TK1 in Figure 3-3 (Section 3.1.1), you could create
a file called TFIL.ODL that contains the following directives:

.ROOT CNTRL-(AO-(A1,A2-(A21,A22)),B0-(B1,B2),C)

.END
To build the task with that overlay structure, you would type one of the following command
lines:
TKB LINK
>TKB TK1i, ,=TFIL/MP $ LINK/TASK:TK1 TFIL/OVERLAY_DESCRIPTION

$ LINK/TA:TK1 TFIL/OV

The /MP switch or the /OVERLAY_DESCRIPTION qualifier in the command lines above tells
TKB that there is only one input file (TFIL.ODL) and that this file contains the overlay description
for the task.

3.4.2 .FCTR Directive

The .FCTR directive allows you to build large, complex trees and represent them clearly.

The .FCTR directive has a label at the beginning of the ODL line that is pointed to by a
reference in a .ROOT or other .FCTR statement. The label must be unique with respect to
module names and other labels. The .FCTR directive allows you to extend the tree description
beyond a single line, enabling you to provide a clearer description of the overlay. (There can
be only one .ROOT directive.)

For example, to simplify the tree given in the file TFIL (described in Section 3.4.1), you could
use the .FCTR directive in the overlay description as follows:

.ROOT CNTRL-(AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(A1,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
.END

The label BFCTR is used in the ROOT directive to designate the argument B0-(B1,B2) of
the .FCTR directive. The resulting overlay description is easier to interpret than the original

Overlay Capability 3-27

description. The tree consists of a root, CNTRL, and three main branches. Two of the main
branches have sub-branches.

The .FCTR directive can be nested to a level of 16. For example, you could further modify TFIL

as follows:

.ROOT CNTRL-(AFCTR,BFCTR,C)
AFCTR: .FCTR AO-(A1,A2FCTR)
A2FCTR: .FCTR A2-(A21,A22)
BFCTR: .FCTR BO-(B1,B2)

.END

3.4.3 Arguments for the .FCTR and .ROOT Directives

The arguments for the .FCTR and .ROOT directives may have different forms or syntax. The
examples in this chapter use forms such as Al, Bl, X, and Y for clarity, but the actual arguments
that you use may have somewhat different names. This section lists the forms that the arguments
may take for these directives. If you use an argument that does not fall into one of the following
five categories, TKB takes the argument as that of the name of an object module file; in other
words, the file name that you use must have the file type OBJ.

Note

When you use library file specifications in an ODL file, as in Sections 3.4.3.2
and 3.4.3.3, you must use the TKB /LB switch as described in those sections
and in Chapter 10. There are no LINK equivalents to use within an ODL file.

3.4.3.1 Named Input File
You may use a named input file that has the object file format. For example:
CALC: .FCTR [7,54]MULT.0BJ
The default file type is OB]J.

3.4.3.2 Specific Library Modules
You may name and therefore use specific object modules from a library file. For example:
BAKER: .FCTR [300,3]COOKIE/LB:CHIP:0AT
COOKIE.OLB is the library file and CHIP and OAT are the modules that you want to extract
from the file. The default file type is OLB and it need not be specified as part of the argument.
3.4.3.3 A Library to Resolve References Not Previously Resolved

You may specify a library as an argument in a .FCTR statement after extracting specific modules
in a previous .FCTR statement. TKB uses the library to resolve symbols that may still be
unresolved after extracting the modules. For example:

BAKER: .FCTR [300,3]COOKIE/LB:CHIP:0AT
LIB: .FCTR LB:[1,4]RECIPE/LB

3-28 Overlay Capability

3.4.3.4 A Section Name Used in a .PSECT Directive

You may use the name that you used as a program section name in the .PSECT directive as
the argument in a .FCTR statement. For example:

.PSECT COM,GBL,D,RW,0VR
FSTCOM: .FCTR COM

3.4.3.5 A Segment Name Used in a .NAME Directive

You may use the name that you specified as the name of a segment in the .NAME directive.
For example:

.NAME SEG1i,GBL,DSK
OVLY: .FCTR SEG1-MOD1-MOD2

3.4.4 Exclamation Point Operator

The exclamation point operator allows you to specify memory-resident overlay segments (see
Section 3.1.2). You specify memory residency by placing an exclamation point (!) immediately
before the left parenthesis enclosing the segments to be affected. The overlay description for
task TK2 in Figure 3-4 (Section 3.1.2) is as follows:

.ROOT CNTRL-!(D,E,F)
.END

In the example above, segments D, E, F are declared resident in separate areas of physical
memory. The Task Builder determines the single starting virtual address for D, E, and F by
rounding the octal length of segment CNTRL up to the next 4K boundary. The physical memory
allocated to segments D, E, and F is determined by rounding the actual length of each segment to
the next 32-word boundary (256-word boundary if the /CM switch or /COMPATIBLE qualifier
is in effect) and adding this value to the total memory required by the task.

The exclamation point operator applies to that segment immediately to the right of the left
parenthesis and those segments farther from the root on the same level with that segment. In
other words, all parallel segments must be of the same residency type (disk resident or memory
resident).

The exclamation point operator applies to segments at the same level from the root inside a pair
of parentheses. Segments nested in parentheses within that level, but farther from the root, are
not affected.

It is therefore possible to define an overlay structure that combines the space-saving attributes
of disk-resident overlays with the speed of memory-resident overlays. For example:

.ROOT A-!(B1-(B2,B3),!(x,y))
.END

In this example, B1 and (x,y) are declared memory resident by the exclamation point operator.
B2 and B3 are declared disk resident, however, because no exclamation point operator precedes
the parentheses enclosing them.

Note that while a memory-resident overlay can call a disk-resident overlay, the converse is not
valid; that is, you cannot use an exclamation point for segments emanating from a disk-resident
segment. For example, you cannot build the following structure:

Overlay Capability 3-29

.ROOT A-(B1-!(B2,B3),C) ; This overlay description is invalid
.END

In this example, Bl is declared disk resident, so it is invalid to use the exclamation point to
declare B2 and B3 memory resident.

3.4.5 .NAME Directive

The .NAME directive allows you to name a segment and to assign attributes to the segment.
The name must be unique with respect to file names, program section names, .FCTR labels,
and other segment names used in the overlay description. You use the .NAME directive prior
to using the .ROOT or .FCTR directive. The Task Builder attaches attributes to a segment when
it encounters the name in a .ROOT or .FCTR directive that defines the overlay segment. If you
apply multiple names to a segment, the attributes of the last name given are in effect. This
directive does the following:

* Names uniquely a segment that is loaded through the manual-load facility (see Chapter 4)
* Permits a named data-only segment to be loaded through the autoload mechanism
The format of the .NAME directive is as follows:

.NAME segname[,attr][,attr]

Parameters

seghame
A 1- to 6-character name, which can consist of the Radix-50 characters A to Z, 0 to 9, and
the dollar sign ($). (The period (.) cannot be used.)

attr
One of the following attributes:

GBL The name is entered in the segment’s global symbol table.
The GBL attribute makes it possible to load data-only overlay segments by means
of the autoload mechanism (see Chapter 4).

NODSK No disk space is allocated to the named segment.

If a data overlay segment has no initial values, but will have its contents
established by the running task, no space for the named segment on disk need
be reserved. If the code attempts to establish initial values for data in a segment
for which no disk space is allocated (a segment with the NODSK attribute), TKB
gives a fatal error.

NOGBL The name is not entered in the segment’s global symbol table.
If the GBL attribute is not present, NOGBL is assumed.

DSK Disk storage is allocated to the named segment.
If the NODSK attribute is not present, DSK is assumed.

3-30 OQwerlay Capability

3.4.5.1 Example of the Use of the .NAME Directive

In the following modified ODL file for TK1 (Figure 3-3 in Section 3.1.1), you provide names
for the three main branches—AO0, B0, and C—by specifying the names in the .NAME directive
and using them in the .ROOT directive. The default attributes NOGBL and DSK are in effect
for BRNCH1 and BRNCH3, but BRNCH2 has the complementary attributes (GBL and NODSK)
that cause TKB to enter the name BRNCH2 into the segment’s global symbol table and suppress
disk allocation for that segment. BRNCH2 contains uninitialized storage to be utilized at run

time.

.NAME BRNCH1

.NAME BRNCHZ2,GBL,NODSK

.NAME BRNCH3

_ROOT CNTRL-! (BRNCH1-AFCTR, *BRNCH2-BFCTR ,BRNCH3-C)
AFCTR: .FCTR AO-(A1,A2-(A21,A22))
BFCTR: .FCTR BO-*!(B1,B2)

.END
(The asterisk (*) is the autoload indicator. It is discussed in Chapter 4.)

You can load the data overlay segment BRNCH2 by including the following statement in the
program:

CALL BRNCH2

This action is immediately followed by an automatic return to the next instruction in the
program.

You can also use segment names in making patches with the ABSPAT and GBLPAT options
(see Chapter 11).

Note
In the absence of a unique .NAME specification, TKB establishes a segment

name, using the first module name or library module name occurring in the
segment.

3.4.6 .PSECT Directive

You can use the .PSECT directive to control the placement of a global program section in an
overlay structure. The name of the program section (a 1- to 6-character name consisting of the
Radix-50 characters A to Z, 0 to 9, and the dollar sign ($)) and its attributes are given in the
.PSECT directive. The attributes used in the .PSECT directive must match those in the actual
program section in the module. Thus, you can use the name in a .ROOT or .FCTR statement
to indicate to the Task Builder the segment to which the program section will be allocated. An
example of the use of .PSECT is given in the modified version of task TK1 shown in Figure
3-14 (the original version is shown in Figure 3-3 in Section 3.1.1).

In this example, TK1 has a disk-resident overlay structure. The example assumes that the
programmer was careful about the logical independence of the modules in the overlay segment,
but failed to take into account the requirement for logical independence in multiple executions
of the same overlay segment.

The flow of task TK1 can be summarized as follows: CNTRL calls each of the overlay segments,
and the overlay segment returns to CNTRL in the order A, B, C, A. Module A is executed twice.
The overlay segment containing A must be reloaded for the second execution.

Overlay Capability 3-31

Module A uses a common block named DATA3. The Task Builder allocates DATA3 to the
overlay segment containing A. The first execution of A stores some results in DATA3. The
second execution of A requires these values. In this disk-resident overlay structure, however,
the values calculated by the first execution of A are overlaid. When the segment containing A
is read in for the second execution, the common block is in its initial state.

To permit the two executions of A to communicate, a .PSECT directive is used to force the
allocation of DATAS3 into the root. The indirect command file for TK1, TFIL.ODL, is modified
as follows:

.PSECT DATA3,RW,GBL,REL,OVR
.ROOT CNTRL-DATA3-(AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(A1,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
.END

The attributes RW, GBL, REL, and OVR are described in Chapter 2.

3.4.7 Indirect Command Files

The Overlay Description Language processor can accept ODL text indirectly, that is, specified
in an indirect command file. If an at sign (@) appears as the first character in an ODL line, the
processor reads text from the file specified immediately after the at sign. The processor accepts
the ODL text from the file as input at the point in the overlay description where the file is
specified.

For example, suppose you create a file, called BIND.ODL, that contains the following text:
B: .FCTR B1-(B2,B3)

A line beginning with @BIND can replace this text at the position where the text would have
appeared, as follows:

Indirect Direct
.ROOT A-(B,C) .ROOT A-(B,C)
C: .FCTR C1-(C2,C3) C: .FCTR C1-(C2,C3)
@BIND B: .FCTR B1-(B2,B3)
.END .END

The Task Builder allows two levels of indirection.

3.5 Multiple-Tree Structures

You can define more than one tree within an overlay structure. These multiple-tree structures
consist of a main tree and one or more co-trees. The root segment of the main tree is loaded
by the Executive when the task is made active, while segments within each co-tree are loaded
through calls to the overlay run-time routines. Except for this distinction, all overlay trees
have identical characteristics: a root segment that resides in memory and two or more overlay
segments.

The main property of a structure containing more than one tree is that storage is not shared
among trees. Any segment in a tree can be referred to from another tree without displacing
segments from the calling tree. Routines that are called from several main tree overlay segments,

3-32 Owerlay Capability

for example, can overlay one another in a co-tree. The same considerations in deciding whether
to create memory-resident overlays or disk-resident overlays in a single-tree structure apply in
building a structure containing co-trees.

3.5.1 Defining a Multiple-Tree Structure

Multiple-tree structures are specified within the Overlay Description Language by extending the
function of the comma operator. As described in Section 3.4, this operator, when included
within parentheses, defines a pair of segments that share storage. Including the comma operator
outside all parentheses delimits overlay trees. The first overlay tree thus defined is the main
tree. Subsequent trees are co-trees. For example:

.ROOT X,Y
X: .FCTR X0-(X1,X2,X3)
Y: .FCTR YO-(Y1,Y2)
.END

In this example, two overlay trees are specified: 1) a main tree containing the root segment X0
and three overlay segments, and 2) a co-tree consisting of root segment Y0 and two overlay
segments. The Executive loads segment X0 into memory when the task is activated. The task
then loads the remaining segments through calls to the overlay run-time routines.

3.5.1.1 Defining Co-Trees with a Null Root by Using .NAME

A co-tree must have a root segment to establish linkage with its own overlay segments.
However, co-tree root segments need not contain code or data and, therefore, can be zero in
length. You can create a segment of this type, called a null segment, by means of the NAME
directive. The previous example is modified to move file Y0.OBJ to the root and include a null
segment, as follows:

.ROOT XY

X: .FCTR X0-Y0-(X1,X2,X3)
.NAME YNUL

Y: .FCTR YNUL-(Y1,Y2)
.END

The null segment YNUL is created by using the .NAME directive, and replaces the co-tree root
that formerly contained Y0.OB]J.

3.5.2 Example of a Multiple-Tree Structure
The following example illustrates the use of multiple trees to reduce the size of the task.

In this example, the root segment CNTRL of task TK1 (described in Section 3.1.1) has had two
routines added to it: CNTRLX and CNTRLY. The routines are logically independent of each
other and both are approximately 40003 bytes long. However, the routines have been placed in
the root segment of TK1 instead of being overlaid because both routines must be accessed from
modules on all paths of the tree. In a single-tree overlay structure, the root segment is the only
segment common to all paths of the tree. The schematic diagram for the modified structure is
shown in Figure 3-14.

Overlay Capability 3-33

Figure 3-14: Overlay Tree for Modified TK1

A21 A22
S
A1 A2 B1 B2
S]
AOQ BO c
| | |
CNTRLY
CNT|R LX SEFzEOMOETNT
CNTRL
ZK-407-81

One possible overlay description for this structure is as follows:

.ROOT CNTRL-CNTRLX-CNTRLY- (AFCTR,BFCTR,C)

AFCTR: .FCTR AO- (A1,A2FCTR)

A2FCTR: .FCTR A2-(A21,A22)

BFCTR: .FCTR BO-(B1,B2)
.END

Because TK1 consists of disk-resident overlays and the new routines are concatenated within
the overlay structure, the new routines add 100005 bytes to both the virtual address space and
physical memory requirements of the task. However, the added routines consume more virtual
address space than might be expected, as shown in Figure 3-15.

3-34 Owerlay Capability

Figure 3-15: Virtual Address Space and Physical Memory for Modified TK1

ROOT
SEGMENT

APR7—-

APR6-—

APR5—

APRA—

APR3—

APR2—-

APR1-—

APRO—

Al

A21{A22
A2 B2 | C

AO BO

CNTRLY

HEADER AND STACK

VIRTUAL ADDRESS
SPACE

A21] A22
Al B1
A2 B2 C

A0 BO

CNTRLY

HEADER AND STACK

PHYSICAL MEMORY

ZK-408-81

Overlay Capability 3-35

The expansion of TK1’s virtual address space requirements caused the task to extend 4000g
bytes beyond the next highest 4K-word boundary (APR 2). Because the Executive must use an
additional mapping register (APR2), the apparent cost in virtual address space above APR 2 of
40003 bytes is in fact 200003 bytes. (Compare the diagram in Figure 3-15 with the diagram in
Figure 3-3.) The shaded portion of the unused virtual address space in Figure 3-15 represents
the portion of virtual address space that is allocated, but is unusable as allocated.

Small tasks, such as TK1, are seldom adversely affected by the inefficient allocation of virtual
address space, but larger tasks may be. For example, a large task that contains code to create
dynamic regions (see Chapter 5) or that contains Executive directives to extend its task region
(see the RSX-11M-PLUS and Micro/RSX Executive Reference Manual) requires at least 4K words
of virtual address space to map each region. In such a task, using co-trees can often save virtual
address space and can, therefore, be of paramount importance. TK1 can be modified to reflect
this.

As noted earlier, the routines CNTRLX and CNTRLY are logically independent. Logical
independence is a primary requirement for all segments that overlay each other. However,
CNTRLX and CNTRLY cannot be structured into either of the main branches of TK1's tree
because it is further required that the routines be accessible from modules on all paths of the
tree. Therefore, the only way CNTRLX and CNTRLY can be overlaid and still meet all of these
requirements is through a co-tree structure. Figure 3-16 shows the schematic representation of
TK1 as a co-tree structure.

Figure 3-16: Overlay Co-Tree for Modifled TK1

A21 A22

l

A2 B1 B2
| l I
A0 BO C CNTRLX CNTRLY
I | |
CNTRL CNTRL2
MAIN TREE CO-TREE

ZK-409-81

The root segment CNTRL2 of the co-tree is a null segment. It contains no code or data and
has a length of zero. As noted earlier, the Task Builder requires the root segment in order to
establish linkage with the overlay segments. One possible overlay description for building TK1
as a 2-tree structure is as follows:

3-36 Overlay Capability

.NAME CNTRL2
.ROOT CNTRL-(AFCTR,BFCTR,C) ,CNTRL2- (CNTRLX,CNTRLY)

AFCTR: .FCTR AO-(A1,A2FCTR)

A2FCTR: .FCTR A2-(A21,A22)

BFCTR: .FCTR BO-(B1,B2)
.END

You define the co-tree in the .ROOT directive by placing the comma operator outside all
parentheses (immediately before CNTRL2). The .NAME directive creates the null root segment.
Figure 3-16 shows the new relationship between virtual address space and physical memory.

The diagrams in Figure 3-17 illustrate the saving (40003 bytes) in both virtual address space
and physical memory that is realized by overlaying CNTRLX and CNTRLY. What may be more
important in some applications, however, is that the top of TK1’s task region has dropped
below the 4K-word boundary of APR 2. TK1 has gained 4K words of potentially usable virtual
address space.

Note

The numbers used in this example have been simplified for illustrative purposes.
In addition, the storage required for overhead in handling the overlay structures
is not reflected in this example.

Because the null root CNTRL2 is zero bytes long, it does not require any virtual address space
or physical memory and, therefore, does not appear in the diagrams in Figure 3-17.

Finally, you can define any number of co-trees. Additional co-trees can access all modules in
the main tree and other co-trees.

Overlay Capability 3-37

Figure 3-17: Virtual Address Space and Physical Memory for TK1 as a Co-Tree

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

HEADER AND STACK

VIRTUAL ADDRESS SPACE

3-38 Owerlay Capability

CNTRLX CNTRLY NULL ROOT
A1l B1
A2 B2 | C
A0 BO —_—
CNTRL
(ROOT SEGMENT)

CNTRLX CNTRLY

A21]A22
B1
A2 B2 | C

Al

A0 BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

ZK-410-81

3.6 Creating an ODL File from a Virtual Address Space Allocation
Diagram

You can use a graphic method as an aid to converting a virtual address space allocation diagram
into the correct Task Builder ODL file.

First, create a virtual address space allocation diagram of your overlaid task, similar to that
shown in Figure 3-18, without the dotted-line path shown in the diagram.

Figure 3-18: Virtual Address Space Allocation Diagram

:o.o.oooO: A21 A22

§ A1 § é.....’... (A X E XN XN N) B-1

: o A2 : B2 C
J E lo.ov-..ooroto:

: ME Y

E AO :.»‘ BO :o.ooo«’nno:

A .

: !

: ROOT (CNTRL) .

ZK-1052-82

The dotted-line path will be the basis for writing the ODL statements that you need. To
determine the path through your virtual address space allocation diagram, follow these steps:

1. Start in the lower left corner of the root segment.

2. Draw a dotted line upward as far as you can go without passing through the top or into
“empty” virtual space, crossing into new segments as needed.

When you reach the top segment, proceed to the right until you reach a vertical line.

4. If the end of your dotted line is now opposite the vertical line of the lowest segment, cross
the vertical line and continue again from step 2; otherwise, proceed to step 5.

Overlay Capability 3-39

5. Because the end of your dotted line is not opposite the vertical line of the lowest segment,
proceed downward until you reach the lowest segment.

6. If you are not in the root, cross the vertical line to the right and continue from step 2;
otherwise, proceed to step 7.

7. If your dotted line is in the lower right corner of the root, you have finished the dotted-line
walk.

Once you have drawn the dotted line, you should go back over it to verify that you followed
all the steps. While doing this, draw arrowheads at each point where a line was crossed to
indicate the direction of the line.

3.6.1 Creating a .ROOT Statement by Using a Virtual Address Space
Allocation Diagram

Now you are ready to write the .ROOT statement. Follow these steps:
1. Write .ROOT followed by the name of the root statement (in this example, ROOT CNTRL).
2. Follow the dotted-line path.

3. Add each successive ODL element to your root statement, using the following syntax, based
on the direction of your dotted line:

a. At an upward crossing: -(“name of new segment”
b. At a horizontal crossing: ,“name of new segment”
¢. At a downward crossing:)
4. When you have returned to the root, your root statement is complete.

Using the dotted-line path in Figure 3-18 and the above associated steps, you can write a .ROOT
statement by using the following steps:

Step 1 : Write .ROOT CNTRL

Step 3A: Write .ROOT CNTRL-(A0

Step 3A: Write .ROOT CNTRL-(A0-(Al

Step 3B: Write . ROOT CNTRL-(A0-(A1,A2

Step 3A: Write . ROOT CNTRL-(A0-(A1,A2-(A21

Step 3B: Write .ROOT CNTRL-(A0-(A1,A2-(A21,A22

Step 3C: Write ROOT CNTRL-(A0-(A1,A2-(A21,A22)

Step 3C: Write .ROOT CNTRL-(A0-(A1,A2-(A21,A22))

Step 3B: Write . ROOT CNTRL-(A0-(A1,A2-(A21,A22)),B0

10. Step 3A: Write .ROOT CNTRL-(A0-(A1,A2-(A21,A22)),B0-(B1
11. Step 3B: Write .ROOT CNTRL-(A0-(A1,A2-(A21,A22)),B0-(B1,B2

¥ ® NP BN

3-40 Overlay Capability

12. Step 3C: Write ROOT CNTRL-(A0-(A1,A2-(A21,A22)),B0-(B1,B2)
13. Step 3B: Write .ROOT CNTRL-(A0-(A1,A2-(A21,A22)),B0-(B1,B2),C
14. Step 3C: Write ROOT CNTRL-(A0-(A1,A2-(A21,A22)),B0-(B1,B2),C)

The steps for writing .FCTR statements and co-tree statements follow next.

3.6.2 Creating a .FCTR Statement by Using a Virtual Address Space
Allocation Diagram

By using the steps for creating a .ROOT statement from a virtual address space allocation
diagram, you created the following .ROOT statement:

.ROOT CNTRL-(AO-(A1,A2-(A21,A22)),B0-(B1,B2),C)

It may be desirable to simplify your specific . ROOT statement into one or more .FCTR statements.
A technique similar to the one used to create the .ROOT statement may be used to create the
.FCTR statement.

In this example, segments A0, Al, A2, A21, and A22 are selected to be in the .FCTR statement.
Having selected these segments (normally related as a “stack” of segments), you are now ready
to write down the .FCTR statement.

First, draw a virtual address space allocation diagram of the segments that you have selected.
(You can use Figure 3-18 for this explanation.) Then, follow these next steps to draw a
dotted-line path through the diagram:

1. Start in the lower left corner of the lowest or “base” segment (A0) in your diagram.

2. Draw a dotted line upward as far as you can go without passing through the top or into
empty virtual space, crossing into new segments as needed.

3. When you reach the top segment, proceed to the right until you reach a vertical line.

4. If the end of your dotted line is now opposite the vertical line of the lowest segment, cross
the vertical line and continue again from step 2; otherwise, proceed to step 5.

5. Because the end of your dotted line is not opposite the vertical line of the lowest segment,
proceed downward until you reach the lowest segment.

6. If you are not in the base segment (A0), cross the vertical line to the right and continue
from step 2; otherwise, proceed to step 7.

7. If your dotted line is in the lower right corner of the base segment, you have finished the
dotted-line walk.

Once you have drawn the dotted line, you should go back over it to verify that you followed
all the steps. While doing this, draw arrowheads at each point where a line was crossed to
indicate the direction of the line.

Now you are ready to write the .FCTR statement. Follow these next steps:

1. Write a label followed by .FCTR, which is in turn followed by the name of the first segment
(A0) (in this example, AFCTR .FCTR AO0).

2. Follow the dotted-line path.

Overlay Capability 3-41

3. Add each successive ODL element to your root statement, using the following syntax, based
on the direction of your dotted line:

a. At an upward crossing: (“name of new segment”
b. At a horizontal crossing: ,“name of new segment”
c. At a downward crossing:)
4. When you have returned to the base segment, your .FCTR statement is complete.

Using the dotted-line path and the above associated steps, you can write a .FCTR statement by
using the following steps:

1. Step 1: Write AFCTR .FCTR A0

2. Step 3A: Write AFCTR .FCTR A0-(A1l

3. Step 3B: Write AFCTR .FCTR A0-(A1,A2

4. Step 3A: Write AFCTR .FCTR A(0-(A1,A2-(A21

5. Step 3B: Write AFCTR .FCTR A0-(A1,A2-(A21,A22

6. Step 3C: Write AFCTR .FCTR A0-(A1,A2-(A21,A22)

7. Step 3C: Write AFCTR .FCTR A0-(A1,A2-(A21,A22))

You have now reached the base segment and have written the two ODL statements:

.ROOT CNTRL-(AO-(A1,A2-(A21,A22)),B0-(B1,B2),C)
AFCTR: .FCTR AO-(A1,A2-(A21,A22))

The last step requires that you substitute the label AFCTR into the .ROOT statement, which
results in the following:

.ROOT CNTRL-(AFCTR,BO-(B1,B2),C)
AFCTR: .FCTR AO-(A1,A2-(A21,A22))

Additional .FCTR statements would be determined and written in the same way. For example,
you could write a .FCTR statement labeled BFCTR for the segments B0, B1, and B2.

The following section shows how to write an ODL statement for a co-tree by using the same

methods.

3.6.3 Creating an ODL Statement for a Co-Tree by Using a Virtual Address
Space Diagram

Assuming that you want to write an ODL statement for a co-tree like the one in Figure 3-19,
you would have two virtual address space allocation diagrams, one for the main tree and one
for the co-tree. These two diagrams are shown in Figure 3-19.

3-42 Owerlay Capability

Figure 3-19: Virtual Address Space Allocation for a Main Tree and Its Co-Tree

A21 | A22
A1 B1
A2 B2 C
A0 BO CNTRLX CNTRLY
ROOT (CNTRL) | CNTRL2
MAIN TREE CO-TREE

ZK-1051-82

From Figure 3-19, you see that the co-tree is a stack of segments also. Therefore, it is possible
to write the statement for the co-tree in the same fashion and with the same rules as that
described in Section 3.6. However, the following facts must be kept in mind:

e The co-tree has a null root.
e A NAME statement must be used to name the null root.

e A comma must be placed outside of the parentheses and at the end of that part of the
.ROOT statement that defines the main tree.

Therefore, the ODL statement that you obtain before writing the co-tree part is as follows:

.NAME CNTRL2
.ROOT CNTRL- (AFCTR,BO- (B1,B2),C)
AFCTR: .FCTR AO-(A1,A2-(A21,A22))

By following the rules in Section 3.6 and by using the diagram in Figure 3-19, you can then
create the following ODL statement:

.NAME CNTRL2
.ROOT CNTRL- (AFCTR,BO-(B1,B2),C),CNTRL2- (CNTRLX,CNTRLY)
AFCTIR: .FCTR AO-(A1,A2-(A21,A22))

QOverlay Capability 3-43

3.7 Overlaying Programs Written in a High-Level Language

Programs written in a high-level language usually require the use of a large number of library
routines in order to execute. Unless care is taken when overlaying such programs, the following
problems can occur:

* TKB throughput may be drastically reduced because of the number of library references in
each overlay segment.

® Library references from the default object module library that are resolved across tree
boundaries can result in unintentional displacement of segments from memory at run time.

* Attempts to task build such programs can result in multiple and ambiguous symbol
definitions when a co-tree structure is defined.

The following procedures are effective in solving these problems:

* You can increase TKB throughput by linking commonly used library routines into the main
root segment.

* You can eliminate ambiguous definitions, multiple definitions, and cross-tree references by
using the /NOFU switch (the TKB default) to restrict the scope of the default library search.
However, restricting the scope of the default library search may also cause problems.

If sufficient memory is available, you can effectively place the Object Time System in the
root segment by building a memory-resident library. This also reduces total system memory
requirements if other tasks are also currently using the library.

If a memory-resident library cannot be built, you can force library modules into the root by
preparing a list of the appropriate global references and linking the object module into the root
segment.

For other ways to reduce task size, you should consult the user’s guide for the language you
are using.

3.8 Building an Overiay

The text in this section and the figures associated with it illustrate the building of an overlay
structure. For this example, the routines of the resident library LIB.TSK and the task that
refers to it, MAIN.TSK (from Example 5-3, Chapter 5), are assembled as separate modules and
built as an overlaid task. This task is built first with disk-resident overlays and then with
memory-resident overlays. The disk-resident version of the task is named OVR.TSK and the
memory-resident version is named RESOVR.TSK.

Note

This example is intended to provide you with a working illustration of the
Overlay Description Language (ODL). It does not reflect the most efficient use
of it.

The following alterations were made to each of the routines for this example:

e A TITLE and a .END assembler directive were added to each routine to establish it as a
unique module.

3-44 Overlay Capability

The following assembler directive was added to each arithmetic routine to increase its
allocation:

.BLKW 1024 .%3

This was done to make TKB allocation of address space more obvious for documentation
purposes.

The operation of the overlaid task is identical to that of Example 5-3 in Chapter 5. The routines
and their titles as a result of the .TITLE directives are as follows:

The integer addition routine is named ADDOV.

The integer subtraction routine is named SUBOV.

The integer multiplication routine is named MULOV.
The integer division routine is named DIVOV.

The register save and restore routine is named SAVOV.
The print routine is named PRNOV.

The main calling routine is named ROOTM.

The lengths of the modules are as follows:

Module Length (in Octal)

ADDOV 14024 bytes
SUBOV 14024 bytes
MULOV 14024 bytes
DIVOV 14026 bytes
SAVOV 4042 bytes
PRNOV 4260 bytes
ROOTM 4104 bytes

The flow of control for OVR.TSK is as follows:

X N DL

ROOTM calls ADDOV and ADDOV returns to ROOTM.

ROOTM calls PRNOYV to print the result and PRNOV returns to ROOTM.
ROOTM calls SUBOV and SUBOV returns to ROOTM.

ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM.
ROOTM calls DIVOV and DIVOV returns to ROOTM.

ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM.
ROOTM calls MULOV and MULOV returns to ROOTM.

ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM.

Overlay Capability 3-45

The print routine (contained in module PRNOV) is called between each arithmetic operation by
the control routine (contained in module ROOTM). To avoid loading it into physical memory
each time it is called, you can place PRNOV in the root segment of the task. In addition, each
arithmetic routine calls SAVOV. Therefore, SAVOV must be on a path common to all segments
in the tree. It too is placed in the root segment of the task. One possible overlay configuration
for this task is shown in Figure 3-20.

Figure 3-20: Overlay Tree of Virtual Address Space for OVR.TSK

SUBOV DIVOV
MULOV ADDOV

|

SAVOV
ROOT
PR$0V SEGMENT
ROOTM
ZK-490-81

To build this overlay, first create an ODL file (OVERTREE.ODL) that contains the description
for the overlay:

.ROOT ROOTM-PRNOV-SAVOV-*(MULOV,ADDOV- (SUBOV,DIVOV))
.END

Then, after you have modified the modules and assembled them, you can build the task with
the following TKB command line:

>TKB OVR,0OVR/-SP,=0VRTREE/MP
or with the following LINK command line:
$ LINK/TAS:0VR/MAP:OVR/NOPRINT OVRTREE/OVER

This command line instructs TKB to build a task image, OVR.TSK, and to create a map file,
OVR.MAP, in the directory that corresponds to the terminal UIC. The negated spool switch
/-SP, or /NOPRINT as a LINK qualifier, inhibits TKB from spooling the map file to the line
printer.

The overlay switch /MP attached to the input file, or /OVER as a file qualifier, tells TKB that
the input file is an ODL file. Therefore, this file will be the only input file specified. Refer
to Chapter 10 for a description of the switches and Chapter 11 for the qualifiers used in this
example.

A portion of the map that results from this task build is shown in Example 3-1.

3-46 Owerlay Capability

Example 3-1: Map File for OVR.TSK

OVR.TSK Memory allocation map TKB M43.00
01-JAN-87 10:06

Partition name : GEN
Identification : 01
Task UIC : [7,62]

Stack limits: 000260 001257 001000 00512.
PRG xfr address: 001264

Total address windows: 1.
Task image size : 7488. words

Task address limits: 000000 035107
R-W disk blk limits: 000002 000073 000072 00058.

OVR.TSK Overlay description:

Base Top Length
000000} 005033| 005034 02588. ROOTM

005034 021057 014024 06164. MULOV

005034 021057 | 014024 06164. ADDOV

021060 035103 | 014024 06164. SUBOV

021060 035107 | 014030 06168. DIvVov
[

*** Root segment: ROOTM

R/W mem 1limits: 000000 005033 005034 02588.
Disk blk limits: 000002 000007 000006 00006 .

Memory allocation synopsis:

Section

. BLK.:(RW,I,LCL,REL,CON) 001260 002514 01356.

001260 000102 00066. ROOTM

001362 000260 00176.
001642 000042 00034 .
ANS :(RW,D,GBL,REL,OVR) 003774 000002 00002.

003774 000002 00002. ROOTM
003774 000002 00002. PRNOV

Page 1

Ident File

01 ROOTM.0BJ;1

01 PRNOV.0BJ;1
01 SAVOV.0BJ;1
01 ROOTM.0BJ;1

01 PRNOV.0BJ ;1

(Continued on next page)

- Overlay Capability 3-47

Example 3-1 (Cont.): Map File for OVR.TSK

Global symbols:

AADD 004032-R DIVV 004052-R PRINT 001550-R SUBB 004042-R
MULL 004022-R SAVAL 001642-R

x Task builder statistics:

Total work file references: 6863.
Work file reads: O.
Work file writes: 0.

Size of core pool: 7086. words (27. pages)
Size of work file: 3072. words (12. pages)

Elapsed time:00:00:14

Figure 3-21 shows the allocation of virtual address space for OVR.TSK. The circled numbers in
Example 3-1 correspond to those in Figure 3-21.

3-48 Overlay Capability

Figure 3-21:

160000

140000

120000

100000

60000

40000

20000

Allocation of Virtual Address Space for OVR.TSK

APR 7—

APR 6—

APR 5—

APR 4-

APR 3—

APR 2—

APR 1—

APR O—-

- UNUSED

SUBOV| DIVOV

MULOV ADDOV

SYSLIB
SAVOV
PRNOV
ROOTM

HEADER AND STACK

— 035107

¢

— 021057

¢

— 005033

¢

ROOT SEGMENT
— 001257
_ tmgo_o\o
ZK-411-81

Overlay Capability 3-49

Note that the root segment for OVR.TSK (ROOTM) has expanded with task building while the
segments containing the arithmetic routines have not. Before task building, the sum of the
modules (in octal bytes) that comprise the root segment is as follows:

4104 + 4260 + 4042 = 14,426 bytes

After task building, the root segment is 20,6773 bytes long. TKB has added a header, a stack
area, and the overlay run-time routines to it. The segments containing the arithmetic routines
have not changed. If there had been calls from segments nearer the root to segments farther
up the tree, the Task Builder would have added data structures to the calling segments as well.
(Refer to Chapter 4 for a description of the overlay loading methods.)

You can build OVR as a memory-resident overlay by simply adding the memory-resident
operator (!) to the ODL file for OVR as follows:

.ROOT ROOTM-PRNOV-SAVOV-#! (MULOV,ADDOV-! (SUBOV,DIVOV))
.END

For this example, the name of the ODL file and the task image file has been changed to
RESOVR.ODL to distinguish it from the disk-resident version.

You can build RESOVR with the following TKB command line:
>TKB RESOVR,RESOVR/-SP,=RESOVR/MP

or with the following LINK command line:

$ LINK/TASK:RESOVR/MAP:RESOVR/NOPRINT RESOVR/OVER

These commands direct TKB to build a task named RESOVR.TSK and to create a map file
named RESOVR.MAP. The negated spooling switch /-SP, or /NOPRINT as a LINK qualifier,
inhibits spooling of the map file.

The /MP switch on the input file, or /OVER as a file qualifier, tells TKB that the file is an
ODL file and that it will be the only input file for this task build. Refer to Chapter 10 for a
description of the switches and Chapter 11 for the qualifiers used in this example.

A portion of the map that results from this task build is shown in Example 3-2.

3-50 Owerlay Capability

Example 3-2: Map File for RESOVR.TSK

Partition name : GEN
Identification : O1
Task UIC : [7,62]

Stack limits: 000320 001317 001000 0051i2.

PRG xfr address: 001324

Total address windows: 3.

Task image size : 13920. words
Task address limits: 000000 057777
R-W disk blk limits: 000003 000074 000072 00058.

RESOVR.TSK Overlay description:
Base Top Length
000000] 005677| 005700 03008.
020000 034077 014100 06208.
020000 1034077 [014100 06208.
040000 [054077 1014100 06208.
040000] | 054077) 1014100 06208.

© o

*** Root segment: ROOTM

ROOTM
MULOV
ADDOV

SUBOV
DIVOV

R/W mem 1limits: 000000 005677 005700 03008.
Disk blk limits: 000003 000010 000006 00006 .

Memory allocation synopsis:

Section

. BLK.:(RW,I,LCL,REL,CON) 001320
001320
001422
001702

ANS :(RW,D,GBL,REL,OVR) 004034
004034
004034

002514 01356.
000102 00066 .
000260 00176.
000042 00034.

000002 00002.
000002 00002.
000002 00002.

Ident

01
01
01

01
01

File

ROOTM.0BJ; 1
PRNOV.0BJ; 1
SAVOV.0BJ;1

ROOTM.0BJ;1
PRNOV.0BJ; 1

(Continued on next page)

Overlay Capability 3-51

Example 3-2 (Cont.): Map File for RESOVR.TSK

Global symbols:

AADD 004072-R DIVV 004112-R PRINT 001610-R SUBB 004102-R
MULL 004062-R SAVAL 001702-R

+*x Task builder statistics:

Total work file references: 6938.
Work file reads : O.
Work file writes : O.

Size of core pool: 4178. words (16. pages)
Size of work file: 3072. words (12. pages)

Elapsed time:00:00:21

Figure 3-22 shows the allocation of virtual address space for RESOVR.TSK. The circled numbers
in Example 3-2 correspond to those in Figure 3-22.

3-52 Owverlay Capability

Figure 3-22:

160000

140000

120000

100000

60000

40000

20000

Allocation of Virtual Address Space for RESOVR.TSK

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

{UNUSED

SUBOV| DIVOV

SYSLIB
SAVOV
PRNOV
ROOTM

HEADER AND STACK

A — 054077

/

4 — 040000

=}
(5]
g
o
~
\l

| — 020000

(

724 _ 05677

/

ROOT SEGMENT

— 001317
— 000000

“

ZK-412-81

Overlay Capability 3-53

Note that TKB allocates virtual address space for each level of overlay segment on a 4K-word
boundary. When built as a disk-resident overlay, this structure requires 12K words of virtual
address space; when built as a memory-resident overlay structure, it requires 16K words of
virtual address space. As noted earlier, you must be careful when using memory-resident
overlays to ensure that virtual address space is used efficiently.

3.9 Window Blocks in Overiays

Finally, note in Figure 3-22 that TKB has allocated three window blocks to map RESOVR.TSK.
Each level of the overlay in a memory-resident overlay requires a separate window block to
map it. In a disk-resident overlay, a single window block maps the entire structure regardless
of how many segment levels there are within the structure. This consideration can be important
when you are building an overlaid task that either creates dynamic regions or accesses a resident
library or common because of the extra window blocks required to use these features.

3.10 Summary of the Overlay Description Language

® An overlay structure consists of one or more trees. Each tree contains at least one segment.
A segment is one or more modules containing one or more program sections that can be
loaded by a single disk access.

A tree can have only one root segment, but it can have any number of overlay segments.

* An ODL file is a text file consisting of a series of overlay description directives, one directive
on each line. You enter this file in the TKB or LINK command line, and identify it as an
ODL file by attaching the /MP switch for TKB or the /OVERLAY_DESCRIPTION qualifier
for LINK to the file name. If you enter an ODL file in the TKB or LINK command line, it
must be the only input file you specify.

® The Overlay Description Language provides the following directives for specifying the tree
representation of the overlay structure:

— .ROOT and .END—There can be only one .ROOT and one .END directive; the .END
directive must be the last directive because it terminates input.

— .PSECT, .FCTR, and .NAME—These can be used in any order in the ODL file.

®* You define the tree structure using the hyphen (-), comma (,), and exclamation point (!)
operators, and by using parentheses, as follows:

— The hyphen operator (-) indicates that its arguments are to be concatenated and thus
are to coexist in memory.

— The comma operator (,) within parentheses indicates that its arguments are to overlay
each other either physically, if disk resident, or virtually, if memory resident.

— The comma operator not within parentheses delimits overlay trees.

— The exclamation point operator (!) immediately before a left parenthesis declares the
enclosed segments to be memory resident. Nested segments in parentheses are not
affected by an exclamation point operator at a level closer to the root.

3-54 Overlay Capability

— The parentheses group segments that begin at the same point in memory. For example:
.ROOT A-B-(C,D-(E,F))

This ODL command line defines an overlay structure with a root segment consisting of
the modules A and B. In this structure, there are four overlay segments: C, D, E, and F.
The outer pair of parentheses indicates that the overlay segments C and D start at the
same virtual address; and similarly, the inner parentheses indicate that E and F start at
the same virtual address.

The .ROOT directive defines the beginning overlay structure. The arguments of the .ROOT
directive are one or more of the following:

— File specifications as described in Chapter 1
— Factor labels

— Segment names

— Program section names

The .END directive terminates input.

The .FCTR directive provides a means for replacing text by a symbolic reference (the factor
label). This replacement is useful for the following reasons:

— The .FCTR directive extends the text of the .ROOT directive to more than one line and
thus allows complex trees to be represented.

— The .FCTR directive allows you to write the overlay description in a form that makes
the structure of the tree more apparent.

For example:

.ROOT A-(B-(C,D),.E-(F,G),H)
.END

Using the .FCTR directive, you can write this overlay description as follows:

.ROOT A-(F1,F2,H)

F1i: .FCTR B-(C,D)
F2: .FCTR E-(F,G)
.END

The second representation makes it clear that the tree has three main branches.

The .PSECT directive provides a means for directly specifying the segment in which a
program section is placed. It accepts the name of the program section and its attributes.
For example:

.PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the program section name and the remaining arguments are the program section’s
attributes (program section attributes are described in Chapter 2).

The program section name (composed of the characters A to Z, 0 to 9, the dollar sign ($),
or period (.)) must appear first in the .PSECT directive, ‘but the attributes can appear in
any order or can be omitted. If an attribute is omitted, a default condition is assumed. The
defaults for program section attributes are RW, I, LCL, REL, and CON.

Overlay Capability 3-55

In the example, therefore, you need only specify the attributes that do not correspond to
the defaults: .PSECT ALPHA,GBL.

* The .NAME directive provides you with the means to designate a segment name for use
in the overlay description and to specify segment attributes. This directive is useful for
creating a null segment, naming a segment that is to be loaded manually, or naming a
nonexecutable segment that is to be autoloadable. (Refer to Chapter 4 of this manual for
a description of manually loaded and automatically loaded segments.) If you do not use
the .NAME directive, the Task Builder uses the name of the first file, program section, or
library module in the segment to identify the segment.

The .NAME directive creates a segment name as follows:

.NAME segname,attr,attr

Parameters

segname
The designated name (composed of the characters A to Z, 0 to 9, and the dollar sign
(%))

attr
An optional attribute taken from the following list: GBL, NOGBL, DSK, NODSK.

The defaults are NOGBL and DSK. The defined name must be unique with respect to the
names of program sections, segments, files, and factor labels.

® You can define a co-tree by specifying an additional tree structure in the .ROOT directive.
The first overlay tree description in the .ROOT directive is the main tree. Subsequent
overlay descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F)),X-(Y,2),Q-(R,S,T)

The main tree in this example has the root segment consisting of files A.OBJ and B.OB].
Two co-trees are defined; the first co-tree has the root segment X and the second co-tree
has the root segment Q.

3-56 Overlay Capability

Chapter 4
Overlay Loading Methods

RSX-11M-PLUS and Micro/RSX systems provide the following methods for loading disk-
resident and memory-resident overlays:

e Autoload—The overlay run-time routines are automatically called to load segments you
have specified.

e Manual load—You include in the task explicit calls to the overlay run-time routines.

When you build an overlaid task, you must decide which one of these methods to use because
both cannot be used in the same task.

The loading process depends on the kind of overlay, as follows:

* Disk-resident—A segment is loaded from disk into a shared area of physical memory,
writing over whatever was present.

* Memory-resident—A segment is loaded by mapping a set of shared virtual addresses to a
unique unshared area of physical memory, where the segment has been made permanently
resident (after having been initially brought in from the disk).

With the autoload method, the overlay run-time routines handle loading and error recovery.
Overlays are automatically loaded by being referenced through a transfer-of-control instruction
(CALL, JMP, or JSR). No explicit calls to the overlay run-time routines are needed.

With the manual-load method, you handle loading and error recovery explicitly. Manual loading
saves space and gives you full control over the loading process, including the ability to specify
whether loading is to be done synchronously or asynchronously.

In the manual-load method, you must provide for loading the overlay segments of the main
tree, as well as the root segments and the overlay segments of the co-trees. Once loaded, the
root segment of a co-tree remains in memory.

Overlay Loading Methods 4-1

4.1 Autoload

4.1.

4-2

To specify the autoload method, you use the autoload indicator, an asterisk (*). You place
this indicator in the ODL description of the task at the points where loading must occur. The
execution of a transfer-of-control instruction to an autoloadable segment up-tree (farther away
from the root) initiates the autoload process.

1 Autoload Indicator

The autoload indicator (*) marks as autoloadable the segment or other task element (as defined
below). If you apply the autoload indicator to an ODL statement enclosed in parentheses, every
task element within the parentheses is marked as autoloadable. Placing the autoload indicator
at the outermost level of parentheses in the ODL description marks every module in the overlay
segments as autoloadable.

In the TK1 example of Chapter 3, Section 3.1.1, if segment C consisted of a set of modules C1,
C2, C3, C4, and C5, the tree diagram would be as shown in Figure 4-1.

Figure 4-1: Details of Segment C of TK1

A21 A22 cs
c4
AT A2 B1 B2 3
AO BO o
1 |]
l

CNTRL

ZK-413-81

Placing the autoload indicator at the outermost level of parentheses ensures that, regardless of
the flow of control within the task, a module will be properly loaded when it is called. The
ODL description for task TK1 would be as follows:

.ROOT CNTRL-*(AFCTR,BFCTR,CFCTR)

AFCTR: .FCTR AO-(A1,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
CFCTR: .FCTR C1-C2-C3-C4-C5

.END

When you use autoload, the root of a co-tree is loaded by path loading if one of the branches
of the co-tree is called before the root. However, if the root of the co-tree is called before the
branch is called, the root must have an autoload indicator.

Also, when the root segment of a co-tree is not a null segment, you must mark the co-tree’s root
segment (CNTRL2) as well as its outermost level of parentheses to ensure that all modules of
the co-tree are loaded properly. For example, if the co-tree root (CNTRL2) of the multiple-tree
example, Section 3.5.2, had contained code or data, it would have been marked as follows:

Overlay Loading Methods

.ROOT CNTRL-*(AFCTR,BFTCR,CFCTR) ,*CNTRL2-* (CNTRLX,CNTRLY)

You can apply the autoload indicator to the following elements:

File names—to make all the components of the file autoloadable.

Portions of ODL tree descriptions enclosed in parentheses—to make all the elements within
the parentheses autoloadable, including elements within any nested parentheses.

Program section names—to make the program section autoloadable. The program section
must have the instruction (I) attribute.

Segment names defined by the NAME directive—to make all components of the segment
autoloadable.

.FCTR label names—to make the first component of the factor autoloadable. All elements
specified in the .FCTR statement are autoloadable if they are enclosed in parentheses.

In the following example, two .PSECT directives and a .NAME directive are introduced into the
ODL description for TK1. Autoload indicators are applied as follows:

.ROOT CNTRL- (*AFCTR,*BFCTR,*CFCTR) ©@

AFCTR: .FCTR AO-*ASUB1-ASUB2-*(A1,A2-(A21,A22)) © ©
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR CNAM-C1-C2-C3-C4-C5

.NAME CNAM,GBL @

.PSECT ASUB1,I,GBL,OVR ©
.PSECT ASUB2,I,GBL,OVR
.END

The following notes are keyed to the example above:

The autoload indicator is applied to each factor name; therefore:
a. *AFCTR=+A0

b. *BFCTR=+(B0-(B1,B2))

c. *CFCTR=+*CNAM

CNAM, however, is an element defined by a .NAME directive. Therefore, all components
of the segment to which the name applies are made autoloadable, that is, C1, C2, C3, C4,
and C5.

The autoload indicator is applied to the name of a program section with the instruction (I)
attribute (*ASUB1), so that program section ASUBI is made autoloadable.

The autoload indicator is applied to a portion of the ODL description enclosed in parentheses:
*(A1,A2- (A21,A22))

Thus, every element within the parentheses is made autoloadable (that is, files A1, A2, A21,
and A22).

The net effect of this ODL description is to make every element except program section ASUB2
autoloadable.

Overlay Loading Methods 4-3

4.1.2 Path Loading

The autoload method uses path loading; that is, a call from one segment to another segment
up-tree (farther away from the root) ensures that all the segments on the path from the calling
segment to the called segment will reside in physical memory and be mapped. Path loading is
confined to the tree in which the called segment resides.

A call from a segment in one tree to a segment in another tree results in the loading of all
segments on the path in the second tree from the root to the called module.

In Figure 4-2, if CNTRL calls A22, all the modules between the CNTRL and A2 are loaded. In
this case, modules A0 and A2 are loaded.

Figure 4-2: Path-Loading Example

A21 A22

L——T_—I C5
C4
A1l A2 B1 B2 c3
[Cc2

AO BO C1

l | J

|
CNTRL
ZK-414-81

With the autoload method, the overlay run-time routines keep a record of the segments that
are loaded and mapped and issue disk-load requests only for segments that are not in memory.
If CNTRL calls A2 after calling A1, A0 is not loaded again because it is already in memory and
mapped.

A reference from one segment to another segment down-tree (closer to the root) is resolved
directly. For example, A2 can immediately access A0 because A0 was path loaded in the call to
A2.

4.1.3 Autoload Vectors

To resolve a reference up-tree to a global symbol in an autoloadable segment, TKB generates
an autoload vector for the referenced global symbol. The reference in the code is changed to
a definition that points to an autoload vector entry. The format for the autoload vector for
conventional tasks is shown in Figure 4-3 and the format for I- and D-space tasks is shown in
Figure 4-4.

4-4 Overlay Loading Methods

Figure 4-3: Autoload Vector Format for Conventional Tasks

JSR PC,@.NAUTO

PC RELATIVE OFFSET TO .NAUTO

SEGMENT DESCRIPTOR ADDRESS

ENTRY POINT ADDRESS

ZK-415-81

Figure 4-4: Autoload Vector Format for |- and D-Space Tasks

MOV (PC)+,-(SP)

ADDRESS OF PACKET (D-SPACE)

JMP @.NAUTO

PC RELATIVE OFFSET TO NAUTO

I-SPACE PORTION

ADDRESS OF SEGMENT DESCRIPTOR

ENTRY POINT ADDRESS

D-SPACE PORTION
ZK-1089-82

For I- and D-space tasks, TKB generates the autoload vector in a format that differs from the
vector in a conventional task. The I- and D-space autoload vector is six words long and consists
of two parts: one part residing in I-space and the other part residing in D-space. The I-space
part consists of two 2-word instructions and the D-space part consists of two words of data.
The data in the vector are the segment descriptor address and the target entry point address.
The I- and D-space vector is shown in Figure 4-4.

The task root and the overlay segments may contain autoload vectors; the I-space part of the
root or segment contains the I-space part of the vectors and the D-space part of the root or
segment contains the D-space part of the vectors.

Overlay Loading Methods 4-5

The MOV instruction in the I-space part of the vector places the address of the D-space part
of the vector on the stack. The second instruction in the vector executes an indirect JMP to
$AUTO through the location .NAUTO.

In Figures 4-3 and 4-4, a transfer-of-control instruction to the up-tree global symbol generates
an autoload vector in the shown format. An example of the code sequence used in a call to a
global symbol in an autoloadable segment is shown in Figure 4-5.

Figure 4-5: Example Autoload Code Sequence for a Conventional Task

USER TASK ROOT

o AUTOLOAD VECTOR
CALL GLOBAL ——» JSR PC,@.NAUTO
—» SEGMENT DESCRIPTOR ADDRESS
. ENTRY POINT ADDRESS (GLOBAL)

i

$AUTO AUTOLOAD ROUTINE

SAUTO:] :LOAD
. :SEGMENT
USER TASK SEGMENT .
GLOBAL:: e ¢————— JMP GLOBAL ;GO TO
o :GLOBAL IN
b :SEGMENT

RETURN

ZK-416-81

An exception to the procedure for generating autoload vectors is made in the case of a program
section with the data (D) attribute. References from a segment to a global symbol up-tree in a
program section with the data (D) attribute are resolved directly.

Because TKB can obtain no information about the flow of control within the task, it often
generates more autoload vectors than are necessary. However, your knowledge of the flow
of control within your task, and of path loading, can help you determine where to place the
autoload indicators. By placing the autoload indicators only at the points where loading is
actually required, you can minimize the number of autoload vectors generated for the task.

In the following example, all the calls to overlays originate in the root segment. That is, no
module in an overlay segment calls outside its segment. The root segment CNTRL has the
following contents:

PROGRAM CNTRL
CALL A1l

CALL A21

CALL A2

CALL A0

CALL A22

4-6 Overlay Loading Methods

CALL B0
CALL B1
CALL B2
CALL C1
CALL C2
CALL C3
CALL C4
CALL G5
END

If you place the autoload indicator at the outermost level of parentheses, 13 autoload vectors
are generated for this task. However, because A2 and A0 are loaded by path loading to A21,
the autoload vectors for A2 and A0 are unnecessary. Moreover, because the call to C1 loads the
segment that contains C2, C3, C4, and C5, autoload vectors for C2 through C5 are unnecessary.

You can eliminate the unnecessary autoload vectors by placing the autoload indicator only at
the points where explicit loading is required, as follows:

-ROOT CNTRL-(AFCTR,*BFCTR, CFCTR)

AFCTR: .FCTR AO-(*A1,A2-%(A21,A22))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR *C1-C2-C3-C4-C5

.END

With this ODL description, TKB generates seven autoload vectors—for A1, A21, A22, B0, B1,
B2, and C1.

Note

Autoload vectors supplied by the symbol table (STB) files of the resident libraries
are selectively included in your task image. Only referenced symbols result in
autoload vectors that are present in the task image.

4.1.4 Autoloadable Data Segments

You can make overlay segments that contain no executable code autoloadable. To do so, you
must include a .NAME directive and specify the GBL attribute, as described in Section 3.4.4.
For example:

.ROOT A-#(B,C)
.NAME BNAME,GBL

B: .FCTR BNAME-BFIL
.END

The global symbol BNAME is created and entered into the symbol table of segment BNAME.
Because this segment is marked to be autoloaded, root segment A calls segment BNAME as
follows:

CALL BNAME
The segment is autoloaded and an immediate return to inline code occurs.

The data of BFIL must be placed in a program section with the data (D) attribute to suppress
the creation of autoload vectors.

Overlay Loading Methods 4-7

4.2 Manual Load

If you decide to use the manual-load method to load segments, you must include in your
program explicit calls to the $LOAD routine. These load requests must supply the name of
the segment to be loaded. In addition, they can include information necessary to perform
asynchronous load requests and to handle load request failures.

The $LOAD routine does not path load. A call to $LOAD loads only the segment named in
the request. The segment is read in from disk and mapped. For memory-resident overlays, the
segment is mapped, but read in only if it was not previously read in.

A MACRO-11 programmer calls the $LOAD routine directly. A FORTRAN programmer calls
$LOAD using the FORTRAN subroutine MNLOAD.

4.2.1 MACRO-11 Manual-Load Calling Sequence
A MACRO-11 programmer calls the $LOAD routine as follows:

Mov #BLK,RO
CALL $LOAD

PBLK is the address of a parameter block with the following format:

PBLK: .BYTE 1length,event-flag
.RAD50 /seg-name/
.WORD [i/o-status] or O
.WORD [ast-trp] or O

Parameters
length
The length of the parameter block (three to five words).

event-flag
The event flag number, used for asynchronous loading. If the event-flag number is 0,
synchronous loading is performed.

seg-name
The name of the segment to be loaded: a 1- to 6-character Radix-50 name, occupying two
words.

i/o-status
The address of the 1/0 status doubleword. Standard QIO status codes apply.

ast-trp
The address of an asynchronous trap service routine to which control is transferred at the
completion of the load request.

The condition code C list is set or cleared on return, as follows:
e If condition code C=0, the load request was accepted.

e If condition code C=1, the load request was unsuccessful.

4-8 Overlay Loading Methods

For a synchronous load request, the return of the condition code C=0 means that the desired
segment is loaded and is ready to be executed. For an asynchronous load request, the return
of the code C=0 means that the load request was successfully queued to the device driver, but
the segment is not necessarily in memory. Your program must ensure that loading has been
completed by waiting for the specified event flag before calling any routines or accessing any
data in the segment.

4.2.2 MACRO-11 Manual-Load Calling Sequence for |- and D-Space Tasks
A MACRO-11 programmer calls the $LOAD routine as follows:

MOV #PBLK ,RO
CALL $LOAD

PBLK is the address of a parameter block with the following format in an I- and D-space task:

PBLK: BYTE 3,0
.RAD50 /seg-name/
Parameters
length
The length of the parameter block (three words).

event-flag
Specify this as 0. Only synchronous load requests are possible when loading I- and D-space
segments.

seg-name
The name of the segment to be loaded: a 1- to 6-character Radix-50 name, occupying two
words.

The condition code C list is set or cleared on return, as follows:
* If condition code C=0, the load request was accepted.
* If condition code C=1, the load request was unsuccessful.

For a synchronous load request, which is the only one possible for I- and D-space segments,
the return of the condition code C=0 means that the desired segment is loaded and is ready to
be executed. Your program must ensure that loading has been successful by checking for the
condition code rather than assuming that the segment has been loaded.

4.2.3 FORTRAN Manual-Load Calling Sequence

To use the manual-load method in a FORTRAN program, your program must refer to the
$LOAD routine by means of the MNLOAD subroutine. The subroutine call has the following
form:

CALL MNLOAD(seg-name, [event-flag],[i/o-status], [ast-trp], [1d-ind])

Overlay Loading Methods 4-9

Parameters

seg-name
A 2-word real variable containing the segment name in Radix-50 format.

event-flag
An optional integer event flag number used for an asynchronous load request. If the event
flag number is 0, the load request is synchronous.

i/o-status
An optional 2-word integer array containing the 1/O status doubleword, as described for
the QIO$ directive in the RSX-11M-PLUS and Micro/RSX Executive Reference Manual.

ast-trp
An optional asynchronous trap subroutine entered at the completion of a request. MNLOAD
requires that all pending traps specify the same subroutine.

Id-ind
An optional integer variable containing the results of the subroutine call. One of the
following values is returned:

+1 Request was successfully executed.
-1 Request had bad parameters or was not successfully executed.
You can omit optional arguments. The following calls are valid:
e CALL MNLOAD (SEGA1)
Loads segment named in SEGA1 synchronously.
e CALL MNLOAD (SEGA1,0,,,LDIND)
Loads segment named in SEGA1 synchronously and returns success indicator to LDIND.
e CALL MNLOAD (SEGA1,1,JOSTAT,ASTSUB,LDIND)

Loads segment named in SEGA1 asynchronously, transferring control to ASTSUB upon
completion of the load request. Stores the I/O status doubleword in IOSTAT and the
success indicator in LDIND. '

The following example uses the program CNTRL, previously discussed in Section 4.1. In
this example, there is sufficient processing between the calls to the overlay segments to make
asynchronous loading effective. The autoload indicators are removed from the ODL description
and the FORTRAN programs are recompiled with explicit calls to the MNLOAD subroutine, as
follows:

PROGRAM CNTRL
EXTERNAL ASTSUB

DATA SEGA1 /6RA1 /
DATA SEGA21 /6RA21 /

4-10 Overlay Loading Methods

CALL MNLOAD (SEGA1,1,I0STAT,ASTSUB,LDIND)
CALL A1
CALL MNLOAD (SEGA21,1,I0STAT,ASTSUB,LDIND)

CALL A21

END
SUBROUTINE ASTSUB
DIMENSION IOSTAT(2)

END'
When the AST trap routine is used, the I/O status doubleword is automatically supplied to the
dummy variable IOSTAT.

4.2.4 FORTRAN Manual-Load Calling Sequence for |- and D-Space Tasks

To use the manual-load method in a FORTRAN program, your program must refer to the
$LOAD routine by means of the MNLOAD subroutine. The subroutine call has the following
form:

CALL MNLOAD(seg-name, ,,,[1d-ind])

Parameters
seg-name
A 2-word real variable containing the segment name in Radix-50 format.

Id-ind
An optional integer variable containing the results of the subroutine call. One of the
following values is returned:

+1 Request was successfully executed.

-1 Request had bad parameters or was not successfully executed.

Overlay Loading Methods 4-11

You can omit optional arguments. The following calls are valid:
* CALL MNLOAD (SEGB1)
Loads segment named in SEGB1 synchronously.
e CALL MNLOAD (SEGB1,,,LDIND)
Loads segment named in SEGB1 synchronously and returns success indicator to LDIND.

Only synchronous loading is possible when manually loading I- and D-space task segments.

4.3 Error Handling

If you use the autoload mechanism, a simple recovery procedure is provided that checks the
Directive Status Word (DSW) for an error indication. If the DSW indicates that no system
dynamic storage is available, the routine issues a Wait for Significant Event (WTSE$) directive
and tries again. If the problem is not dynamic storage, the recovery procedure generates a
synchronous breakpoint trap. If the task services the trap and returns without altering the state
of the program, the request will be retried.

If you select the manual-load method, you must provide error-handling routines that diagnose
load errors and provide appropriate recovery. A more comprehensive user-written error recovery
subroutine can be substituted for the system-provided routine if the following conventions are
observed:

e The error recovery routine must have the entry point name $ALERR.
* The contents of all registers must be saved and restored.

On entry to $ALERR, register 2 contains the address of the segment descriptor that could not
be loaded. Before recovery action can be taken, the routine must determine the cause of the
error by examining the following words in the sequence indicated:

1. $DSW

The Directive Status Word may contain an error status code, indicating that the Executive
rejected the I/0 request to load the overlay segment.

2. N.OVPT

The contents of this location, offset by N.IOST, point to a 2-word I/O status block containing
the results of the load overlay request returned by the device driver. The status code occupies
the low-order byte of word 0. For example, for a device-not-ready condition, the code will be
IE.DNR. (For more information on these codes, refer to the RSX-1IM-PLUS and Micro/RSX
1/0 Operations Reference Manual.)

4-12 Overlay Loading Methods

4.4 Global Cross-Reference of an Overlaid Task

This section illustrates a global cross-reference that has been created for an overlaid task.
The task consists of a root segment containing the module ROOT.OBJ, and overlay segments
composed of modules OVR1, OVR2, OVR3, and OVR4. The overlay description of the file is
as follows:

.ROOT ROOT- (OVR, *0VR2)
OVR: .FCTR OVR1-*(OVR3,0VR4)

Only segments OVR2, OVR3, and OVR4 are autoloadable. Figure 4-6 shows the resulting
overlay tree.

Figure 4-6: Autoload Overlay Tree Example

*OVR3 *OVR4 ROOT: CALL OVR3
L] CALL OVR1
| CALL OVR2
OVR1 *OVR2
I J
|
ROOT

ZK-417-81

As shown, the global symbol OVR1 is defined in module OVR1, and a single nonautoloadable,
up-tree reference is made to this symbol by the module ROOT, as indicated by the circumflex.
Note that because OVR1 is not autoloadable, it depends on a call to OVR3 or OVR4 to get loaded
by path loading. The asterisk indicates that the module contains an autoloadable definition.
The modules shown with the asterisk define the symbol.

The asterisks preceding the modules OVR2, OVR3, and OVR4 indicate that the global symbols
OVR2, OVR3, and OVR4 are autoload symbols and are referenced from the module ROOT
through an autoload vector, as shown by the at sign (@).

The asterisk and at sign are shown in the cross-reference listing in Example 4-1.

Down-tree references to the global symbol ROOT are made from modules OVR1, OVR2, OVR3,
and OVR4. These references are resolved directly.

The segment cross-reference shows the segment name and modules in each overlay.

Overlay Loading Methods 4-13

Example 4-1: Cross-Reference Listing of Overlaid Task

OVRTST CREATED BY TKB ON 27-JUL-87 AT 12:04 PAGE 1
GLOBAL CROSS REFERENCE CREF Vo1
SYMBOL VALUE REFERENCES. ..

N.ALER 000010 AUTO # OVRES

N.IOST 000004 OVCTL # OVRES

N.MRKS 000016 # OVRES

N.OVLY 000000 OVCTL # OVRES

N.OVPT 000054 AUTO OVCTL # VCTDF

N.RDSG 000014 # OVRES

N.STBL 000002 # OVRES

N.SZSG 000012 # OVRES

OVR1 002014-R # OVR1 ~ ROOT

0VR2 002014-R * OVR2 @ ROOT

*

OVR3 @ ROOT
OVR4 @ ROOT

OVR3 002014-R
OVR4 002014-R

*

ROOT 001176-R # ROOT
$ALBP1 001320-R # AUTD
$ALBP2 001416-R # AUTO
$ALERR 001246-R # ALERR OVDAT
$AUTO 001302-R # AUTO

$DSW 000046 ALERR # VCTDF
$MARKS 001546-R OVCTL
$0TSV 000052 VCTDF

$SAVRG 001452-R AUTO # SAVRG

* #*

$VEXT 000056 # VCTDF
.FSRPT 000050 # VCTDF
.NALER 001442-R # QVDAT
.NIOST 001436-R # OVDAT
.NMRKS 001450-R # OVDAT
.NOVLY 001432-R # OVDAT
.NOVPT 000042 # OVDAT
.NRDSG 001446-R # OVDAT
.NSTBL 001434-R # OVDAT
.NSZSG 001444-R # OVDAT

(Continued on next page)

4-14 Owverlay Loading Methods

Example 4-1 (Cont.): Cross-Reference Listing of Overlaid Task
OVRTST CREATED BY TKB ON 27-JUL-87 AT 12:04 PAGE 2
SEGMENT CROSS REFERENCE CREF Vo1
SEGMENT NAME RESIDENT MODULES

OVR1 OVR1

OVR2 0VR2

OVR3 OVR3

OVR4 OVR4

ROOT ALERR AUTO OVCTL CVDAT OVRES ROOT SAVRG
VCIDF

4.5 Use and Size of Overlay Run-Time Routines

TKB, when constructing an overlaid task, incorporates certain modules from the system library
to perform the actual overlay operations. An overlay run-time routine in the task loads overlays
from disk or maps resident overlays by issuing QIO$, CRAWS, or fast-mapping directives.

Note

When building an overlaid task, you should use both the current TKB and
the system library supplied for your system to ensure that the correct overlay
run-time system (OTS) modules are incorporated into your task. If you use TKB
with an incompatible version of the system library to build an overlaid task,
you will receive the following error message:

TKB -- *FATAL* -- Incompatible OTS module

The modules and routines described below implement the TKB autoload mechanism as described
in Section 4.1.

There are three major components and one optional component (FSTM) to the autoload service,
as follows:

AUTO This module controls the overlay process, and the autoload vectors indirectly call
AUTO through .NAUTO. AUTO determines whether the referenced overlay segment
is already in memory or mapped. It then jumps to the required entry point if the entry
point is available.

The AUTO module is supplied in two variations. These variations are separately
named and described as follows:

Overlay Loading Methods 4-15

AUTO Selected by TKB by default for all overlaid tasks. It manages disk-only,
memory management, and cluster library overlay structures.

AUTOT Manually selected by you by using an explicit reference in the ODL file, as
shown below. This module disables the AST traps while manipulating the
overlay data structures. This is required where user task AST traps might
cause modification of the overlay database. To incorporate this module in
your task image, you must include the following element in the .ROOT
factor of the task’s ODL file:

-LB:[1,1]SYSLIB/LB: AUTOT-

In addition to including AUTOT in the .ROOT factor, the following code
must be included in your task as initialization prior to the AST handling
routines in your task:

MOV Q#.NOVPT,RO
BISB #200,N.FAST(RO)

FSTM This module is only included in tasks built with the Fast OTS (/FO) switch and is
intended for tasks that use autoloaded memory-resident overlays. FSTM uses the
fast-mapping facility to map the windows for the memory-resident overlays.

MRKS This routine traverses the overlay descriptor data structure to mark any overlay segment
that will be displaced by a new overlay as “out of memory” and consequently not
available. MRKS is also used for manually loaded tasks.

RDSG The AUTO module calls the RDSG routine repeatedly to read or map each segment
along the overlay tree path into the task’s virtual address space. This is referred to as
“path loading.” When path loading is completed, AUTO calls the required entry point.
RDSG is also used for manually loaded tasks.

Several versions of MRKS and RDSG exist, reflecting the various sizes as appropriate for tasks
using manual or autoload service, or having disk-only overlays, memory-resident overlays, or
cluster libraries. TKB incorporates the smallest support routines appropriate for the overlay
structure of your task.

4-16 Owerlay Loading Methods

Depending on whether your task uses manual or autoload service, or has disk-only overlays,
resident overlays, or cluster libraries, TKB includes one of the following modules in the root of
your task:

OVFCTL Contain the MRKS and RDSG routines for autoloaded disk overlays only. No

OVFIDL support is included for memory-resident or cluster library overlays. OVFCTL is

OVCTL the module included for conventional autoloaded tasks and OVFIDL is the module

OVIDL included for autoloaded I- and D-space tasks. OVCTL is the module included
for conventional manually-loaded tasks, and OVIDL is the module included for
manually-loaded I- and D-space tasks.

OVFCTR Contain MRKS and RDSG routines for disk and memory-resident overlays. TKB
OVFIDR selects either of these modules if the task overlay structure includes memory-resident
OVCTR overlays or maps a resident library. OVFCTR is the module selected for conventional
OVIDR autoloaded tasks. OVFIDR is the module included for autoloaded overlaid I- and
D-space tasks. OVCTR is the module included for conventional manually-loaded
tasks, and OVIDR is the module included for manually-loaded I- and D-space tasks.

OVFCTC Contain the MRKS, RDSG, and cluster library support routines for disk and memory-

OVFIDC resident overlays. TKB includes OVCTC or OVIDC if cluster libraries are included

OVCTC in your task. OVFCTC is the module included for conventional autoloaded tasks.

OVIDC OVFIDC is the module selected for autoloaded overlaid I- and D-space tasks.
OVCTC is the module included for conventional manually-loaded tasks, and OVIDC
is the module included for manually-loaded I- and D-space tasks.

The following modules are also incorporated into your task’s image:

OVDAT A small, impure data area used by the AUTO, MRKS, RDSG, and FSTM routines.
TKB includes OVDAT in all overlaid tasks, and its size is independent of the overlay
structure of that task.

ALERR An error service module that AUTO invokes under one of the following circumstances:
e If an I/O error occurs while attempting to read a disk overlay into memory
e If a directive error occurs while attempting to attach or map a region containing

memory-resident overlays

Table 4-1 compares the sizes of the overlay run-time support modules. You can use it to
determine when it is appropriate to force certain variants into your task image.

Table 4-1: Comparison of Overlay Run-Time Module Sizes

Number
Program of Bytes
Module Section Octal /Decimal Specific Use

One of the following modules is included in any overlaid task that uses autoload.
AUTO $$SAUTO 126/86 All tasks that use autoload

AUTOT $$AUTO 136/94 All tasks with ASTs disabled during autoload
$$RTQ 32/26
$$RTR 34/28

Overlay Loading Methods 4-17

Table 4-1 (Cont.): Comparison of Overlay Run-Time Module Sizes

Number
Program of Bytes
Module Section Octal/Decimal Specific Use

One of the following modules is included in any overlaid conventional task.

OVFCTL $$MRKS 102/66 Optimized version of OVCTL for autoloaded disk over-
$$RDSG 154/108 lays only
$$PDLS 2/2

OVCTL $$MRKS 76/62 Disk overlays only, manual load

$$RDSG 160/112
$$PDLS 2/2

OVFCTR $$MRKS 150/104 Optimized version of OVCTR for disk and memory
$$RDSG 332/218 management overlays with no cluster libraries, autoload
$$PDLS 12/10

OVCTR $$MRKS 234/156 Disk and memory management overlays with no cluster
$$RDSG 332/218 libraries, manual load
$$PDLS 12/10

OVFCTC $$MRKS 170/120 Optimized version of OVCTC for disk and memory
$$RDSG 352/234 management overlays with cluster libraries, autoload
$$PDLS 120/80

OVCTC $$MRKS 254/172 Disk and memory management overlays with cluster
$$RDSG 354/236 libraries, manual load

$$PDLS 120/80

One of the following modules is included in any overlaid I- and D-space task.

OVFIDL $$MRKS 106/70 Optimized version of OVIDL for disk overlays only,
$$RDSG 224/148 autoload
$$PDLS 2/2

OVIDL $$MRKS 76/62 Disk overlays only, manual load

$$RDSG 224/148
$$PDLS 2/2

OVFIDR $$MRKS 226/150 Optimized version of OVIDR for disk and memory
$$RDSG 502/322 management overlays with no cluster libraries, autoload
$$PDLS 12/10

OVIDR $$MRKS 304/196 Disk and memory management overlays with no cluster
$$RDSG 502/322 libraries, manual load
$$PDLS 12/10

OVFIDC $$MRKS 246/166 Optimized version of OVIDC for disk and memory
$$RDSG 522/338 management overlays with cluster libraries, autoload

$$PDLS 120/80

4-18 Owerlay Loading Methods

Table 4-1 (Cont.): Comparison of Overlay Run-Time Module Sizes

Number
Program of Bytes
Module Section Octal/Decimal Specific Use

OVIDC $$MRKS 324/212 Disk and memory management overlays with cluster
$$RDSG 522/338 libraries, manual load
$$PDLS 120/80

The overlay data vector OVDAT is included in any overlaid task and in any task that links to
a memory management overlaid resident library.

OVDAT $$OVDT 26/22 Included in all tasks that perform overlay operations
$$SGDO 0/0
$$SGD2 2/2

$$RTQ 0/0
$$RTR 0/0
$$RTS 2/2
The FSTMAP module is included only when the /FO switch (/CODE:OTS_FAST qualifier) is
used.
FSTMAP $$FSTM 212/138 OTS FSTMAP routine
$DPBS 6/4 OTS FSTMAP routine Directive Parameter Block (DPB)
$RTS 2/2
The overlay error-service routine ALERR is included whenever OVDAT is included.
ALERR $$ALER 40/32 Overlay error
Manual overlay control (LOAD) is used in place of any AUTO routine. (See Section 4.2, Manual
Load.)
LOAD $$LOAD 252/170 Manual overlay control

$$AUTO 14/12

4.5.1 The OTS Fast Map Routine (FSTM)

The overlay run-time system (OTS) Fast Map routine enables you to use fast mapping for
autoloaded memory-resident overlays, thereby increasing the speed of overlay mapping by
approximately 10 times. The routine saves time because it uses fast mapping whenever possible
rather than using the Executive mapping directives Create Address Window (CRAWS$) and
Eliminate Address Window (ELAWS$) after the initial loading and mapping of an overlay.

The overlay run-time system routine MARKS, located in program section $$MRKS, controls
the unloading of overlays as the task executes. The optimized versions of MARKS used
for autoloaded memory-resident overlays can call the OTS Fast Map routine, which uses the
fast-mapping facility to map windows for autoloaded memory-resident overlays.

When you specify the Fast OTS (/FO) switch, TKB resolves the entry point $FSTIN to the OTS
Fast Map routine in program section $$FSTM. If you do not specify /FO, $FSTIN is resolved
to a dummy return instruction and the Fast Map routine is not accessed.

Overlay Loading Methods 4-19

The OTS Fast Map routine determines whether fast mapping was included in the operating
system during system generation. If fast mapping is available on the current system, it will be
used. If fast mapping is not available, the standard memory management directives CRAW$ and
ELAWS$ are used for mapping. This allows a task built with /FO to run on any RSX-11M-PLUS
or Micro/RSX system, even if fast mapping has not been included during system generation for
that system.

When the /FO switch is set, TKB requires the task to have an extended external header and
include space between the header and the task for the fast-mapping extension area. This is
accomplished by building the task with the Fast Mapping (/FM) and External Header (/XH)
switches (the /XH switch is the default).

The following restrictions apply to the OTS Fast Map routine:

* The OTS Fast Map routine uses the fast-mapping facility, which means that the task must
not use the IOT instruction for any purpose except fast mapping. (For more information
on the fast-mapping facility, see the RSX-11IM-PLUS and Micro/RSX Executive Reference
Manual.)

* The OTS Fast Map routine uses fast mapping with the memory-resident overlays only when
the memory-resident overlay being unloaded and the memory-resident overlay being loaded
start at the same Active Page Register (APR), use the same number of APRs, and map to
the same region. If these conditions are not met, the standard CRAW$ directive is used to
do the mapping and unmapping.

4-20 Owerlay Loading Methods

Chapter 5
Shared Region Concepts and Examples

The Task Builder provides you with many ways of using shared regions for tailoring your tasks
to meet your specific requirements. This chapter describes some of these facilities and their
applications.

This chapter contains five working examples. The discussion of the examples assumes that you
are familiar with the programming concepts described in the RSX-11M-PLUS Guide to Program
Development and with the first four chapters of this manual.

5.1 Shared Regions Defined

A shared region is a block of data or code that resides in memory and can be used by any
number of tasks. A shared region can contain data for use by several tasks or it may be an area
where one task writes data for use by another task. Also, a shared region can contain routines
for use by several tasks.

Shared regions are useful because they make more efficient use of physical memory. The two
kinds of shared regions are:

* A resident common that provides a way for two or more tasks to share their data

® A resident library that provides a way for two or more tasks to share a single copy of
commonly used subroutines

The term “resident” denotes a shared region that is built and installed into the system separately
from the task that links to it. In other words, you use TKB to build a shared region much as
you would use it to build a task. However, the region does not have a header or a stack. Also,
you can use switches to designate the kind of shared region (a library or a common) to be built.

Figure 5-1 shows a typical resident common. Task A stores some results in resident common S
and Task B retrieves the data from the common at a later time.

Shared Region Concepts and Examples 5-1

Figure 5-1: Typical Resident Common

RESIDENT COMMON

S

RESIDENT COMMON

S

PARTITION BOUNDARY

TASK A

TASK B

PARTITION BOUNDARY

EXECUTIVE

PHYSICAL MEMORY
TIME 1

EXECUTIVE

PHYSICAL MEMORY
TIME 2

ZK-418-81

Figure 5-2 shows a typical resident library. In this case, common reentrant subroutines are not
included in each task image; instead, a single copy is shared by all tasks.

5-2 Shared Region Concepts and Examples

Figure 5-2: Typical Resident Library

RESIDENT LIBRARY
CONTAINING
PARTITION BOUNDARY ROUTINE R
ROUTINE R
TASK A
ROUTINE R ‘ TASK A
TASK B TASK B
PARTITION BOUNDARY
EXECUTIVE EXECUTIVE
NONSHARED SHARED
PHYSICAL MEMORY PHYSICAL MEMORY

ZK-419-81
When you build a shared region, you must specify an output image file name for the region
in the TKB command sequence. But, because a shared region is not an executable unit, it
is not a task, and does not require a header or a stack area. Therefore, when you build a
shared region, you always attach the negated header (/-HD) switch, or /NOHEADER as a LINK
qualifier, to the region’s image file specification. This switch or qualifier tells TKB to suppress
the header within the image. To suppress the stack area in the Task Builder or LINK command
sequence during option input, you specify STACK=0. (Refer to Chapters 10, 11, and 12 for a
complete description of the /HD switch, the /NOHEADER qualifier, the STACK option, and
other switches, qualifiers, and options.)

When you build a shared region, you use the PAR option to name the partition in which the
region is to reside. You specify the partition name in the TKB command sequence during option
input. (Refer to Chapter 12 for a description of the PAR option.) The partition named in the
PAR option need not previously exist, but the actual partition defaults to GEN. The name used
in the PAR option must be the same name as that of the region.

Shared regions do not have to reside within partitions of their own; you can install a shared
region in any partition large enough to hold it. In fact, the partition for which the shared region
was built does not have to exist in the system at the time the shared region is installed. It
follows then that a TKB command sequence or build file for a memory-resident overlaid library

Shared Region Concepts and Examples 5-3

must contain the statement PAR=xxx, where xxx is the same name as that of the region being
built. Then, when you attempt to install the shared region in a partition that does not exist,
the INSTALL task installs it in the GEN partition and displays the following message on your
terminal:

INS -- Partition parname not in system, defaulting to GEN

Also, you should consider three switches when you build the region. The /PI switch in TKB or
the /CODE:PIC qualifier in LINK determines whether the region is relocatable. You can use the
/CO switch in the TKB command sequence, or the /SHAREABLE:COMMON qualifier in LINK,
to declare a region as a shared common. The /CO switch or /SHAREABLE:COMMON qualifier
specifies the use of the region as a shared common rather than as a shared library. Alternatively,
you can use the /LI switch in TKB, or the /SHAREABLE:LIBRARY qualifier in LINK, when you
build the region to declare the region as a shared library. Using these three switches affects the
contents of the symbol definition file, which is described in Chapter 10 under the /CO, /LI, and
/PI switches or in Chapter 11 under the /SHAREABLE:COMMON, /SHAREABLE:LIBRARY,
and /CODE:PIC qualifiers. See also Figure 5-3, Interaction of the /LI, /CO, and /PI Switches,
and Figure 5-4, Interaction of the /SHAREABLE:LIBRARY, /SHAREABLE:COMMON, and

/CODE:PIC Qualifiers. The contents of the symbol definition file are described in the following

sections.
Figure 5-3: Interaction of the /LI, /CO, and /Pl Switches
Si‘é"gggo SHARED REGION REGION PSECT .STB FILE STB FILE
NAME PSECT
WITH /-HD ABSOLUTE RELOCATABLE SEC SYMBOLS
ALL SYMBOLS.
/PI/LI YES SAME AS LIBRARY ONE PSECT RELATIVE TO
ROOT RELOCATABLE START OF THE
PSECT
ALL DECLARED ALL DECLARED
/PI/CO YES PSECT NAMES PSECTS A'&’BPS‘?ECTS S
INCLUDED RELOCATABLE A MBOL
PULI" VES S;_’g\gi:f ONE PSECT ALL SYMBOLS
ROOT ABSOLUTE ABSOLUTE
ALL DECLARED ALL DECLARED
/-PI/CO* YES PSECT NAMES PSECTS ':'é"sgm"TBEOLS
INCLUDED ABSOLUTE
/Pl YES SAME AS /PI/CO
/-PI* YES SAME AS /-PI/LI
NONE YES SAME AS /-PI/LI

*/-Pl is the default of not using /PI

5-4 Shared Region Concepts and Examples

ZK-420-81

£8-0LE1-MZ

AHVHEI:379YIYYHS/ SY JNYS S3A
NOWWOQ:318V3HVHS/01d'3A00/ SV JNVS S3A
31N7089V a3anioNI
cronlosay $1038d | S3WVN 103sd S3A NOWWOD:318VIHVHS/
a3auvio3da v a3yvi1o3a 1v
100Y
31N710Sav 3LN10Sav
AHVHE S3A AHYHEI1:319VIHVHS/
STOAINAS 11V 103Sd 3INO SV INVS
3gv.ivo013y d3aNIoONI
ﬁmmﬁ%_ﬁ« S103sd SIWVN 103Sd S3A NOWWOO:318V3HVHS/01d:3000/
a3ayvioaa 1v a3dyvi1o3a 1v
103Sd
3H1 40 1HV1S 379v1vO013H 1004 . R
OL 3AILYI3Y 1on54 N0 | uvuan sv anvs S3A AHYHEI1:379VIHVHS/01d: 3000/
'STO0GNAS 11V
ST0GNAS 1035d INVYN 318v1lvO0T3ad | 3LN10S8Y HY3AVIHON/
3714 915 34 915 103Sd NOID3Y HLIM @314103dS 43141vND

NOID3H J3HVHS

sI9PlIoN® D1d:3A0D/ PUD ‘NOWWOD:I1EVIAVHS/ ‘AdVAEIT:IIAVRIVHS/ SUl JO uoloDIsiu|

‘-G @Inbi4

5-5

Shared Region Concepts and Examples

5.1.1 The Symbol Definition File

When you build a shared region, you must specify a symbol definition (STB) file in the TKB
command sequence. This file contains linkage information about the region. (The format of an
STB file as input to TKB is the same as that of an OB] file. See Appendix A.) Later, when you
build a task that links to the region, TKB uses this STB file to resolve calls from within the
referencing task to locations within the region.

The STB file contains two forms of symbol definition. To maintain backward compatibility, all
autoloadable symbols are entries in the global symbol directory, and the vector itself is defined
in associated text records. Additionally, the STB file contains an internal symbol directory of
autoloadable symbols for conventional tasks, as well as the information needed to generate
autoload vectors for I- and D-space tasks.

The following equivalencies exist among the shared region switches in TKB and qualifiers in

LINK:

TKB Switches LINK Qualifiers

/LI /SHAREABLE:LIBRARY

/CO /SHAREABLE:COMMON

/P1 /CODE:PIC

/PI1 /CODE:POSITION_INDEPENDENT
/-L1 (none)

/-CO (none)

/-PI Absence of both /CODE:PIC

and /CODE:POSITION _INDEPENDENT

If you use TKB with MCR, the /PI switch declares a shared region to be relocatable. Conversely,
the /-PI switch declares a shared region to be absolute. If you specify the /PI switch without
the /CO or /LI switches to indicate a relocatable region, TKB defaults to building a relocatable
(position-independent) shared region (a common) with all program sections declared in the STB
file. The contents of the STB file when these three switches are used are described in Chapter
10 under the /CO, /LI, and /PI switches. See also Figure 5-3, Interaction of the /LI, /CO, and
/PI Switches.

If you use the LINK command, the /CODE:PIC qualifier declares a shared region
to be relocatable. Conversely, the absence of the /CODE:PIC qualifier declares the
shared region to be absolute. If you specify the /CODE:PIC qualifier without the
/SHAREABLE:COMMON or /SHAREABLE:LIBRARY qualifiers to indicate a relocatable re-
gion, TKB defaults to building a relocatable (position-independent) shared region (a com-
mon) with all program sections declared in the STB file. The contents of the STB file
when these three qualifiers are used are described in Chapter 11 under the /CODE:PIC,
/SHAREABLE:COMMON, and /SHAREABLE:LIBRARY qualifiers. See also
Figure 5-4, Interaction of the /SHAREABLE:LIBRARY, /SHAREABLE:COMMON, and
/CODE:PIC Qualifiers.

If you do not use either /CO or /LI, or for LINK either /SHAREABLE:COMMON or
/SHAREABLE:LIBRARY, the contents of an STB file for a shared region depend on the use of
the /PI switch or the /CODE:PIC qualifier, which determines whether the region is absolute
or relocatable. The effects of declaring a shared region relocatable or absolute and the resulting
contents of the STB file are described in the following sections.

5-6 Shared Region Concepts and Examples

Some STB files include an entry in the STB file for each program section in the region. Each
entry declares the program section’s name, attributes, and length. In addition, TKB includes in
the STB file every symbol in the shared region and its value relative to the beginning of the
section in which it resides.

5.1.2 Position-Independent Shared Regions

A position-independent shared region can be placed anywhere in a referencing task’s virtual
address space when the system on which the task runs has memory management hardware.

5.1.2.1 Position-Independent Shared Region Mapping

In the example of using the memory management Active Page Registers (APRs), shown in
Figure 5-5, two tasks refer to the shared region S: task A and task B. The shared region S is 4K
words long and therefore requires that much space in the virtual address space of both tasks.
Task A is 6K words long and requires two APRs (APR 0 and APR 1) to map its task region.
The first APR available to map the shared region is APR 2. Thus, you can specify APR 2 when
task A is built.

Task B is 16.5K words long. It requires five APRs to map its task region. The first APR available
to map the shared region S in task B is APR 5. Therefore, you can specify APR 5 when task B
is built.

If you do not specify which APR is to be used to map a position-independent shared region,
TKB selects the highest set of APRs available in the referencing task’s virtual address space.
In Figure 5-5, for example, if APR 2 in task A and APR 5 in task B had not been selected at
task-build time, TKB would have selected APR 7 in both cases.

5.1.2.2 Specifying a Position-Independent Region

You specify that a shared region is position independent when you build it by attaching the
/Pl switch to the image file specification for the region. If you use the LINK command, you
specify a position-independent region by using the /CODE:PIC qualifier attached to the LINK
command or to the input file specification. (Refer to Chapter 10 for a description of the /PI
switch or to Chapter 11 for a description of the /CODE:PIC qualifier.)

You should declare a region position independent if any one of the following conditions exists:

® The region contains code that will execute correctly regardless of its location in the address
space of the referencing task.

® The region contains data that is not address dependent.

® The region contains data that will be referenced by a FORTRAN program. Such data must
reside in a named common.

Shared Region Concepts and Examples 5-7

Figure 5-5:

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

SHARED
REGION
S

T

4K WORDS

l

TASK A

6K WORDS

5-8 Shared Region Concepts and Examples

SHARED
REGION
S

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

Specifying APRs for a Position-iIndependent Shared Region

SHARED

TASK B

16.5K
WORDS

ZK-421-81

Program section names are preserved in some shared regions. All the following switch
combinations produce shared regions in which program section names are preserved:

TKB LINK

/P1/CO /CODE:PIC/SHAREABLE:COMMON
/-PI/CO /SHAREABLE:COMMON
/PI /CODE:PIC

Therefore, you should observe the following precautions when building and referring to these
regions:

e No code or data in the region should be included in the blank (. BLK.) program section.

e No code or data in a referencing task should appear in a program section of the same name
as a program section in the shared region.

e The order in which memory is allocated to program sections (alphabetic or sequential) must
be the same for the shared region and its referencing tasks. (Chapter 2 describes alphabetic
ordering of program sections. Refer to the description of the /SQ and /SG switches in
Chapter 10 or to the /SEQUENTIAL and /[NOJSEGREGATE qualifiers in Chapter 11 for
an explanation of sequential ordering of program sections.)

5.1.3 Absolute Shared Regions

When a shared region is absolute, you select the virtual addresses for it when you build it.
Thus, an absolute shared region is fixed in the virtual address space of all tasks that refer to it.

5.1.3.1 Absolute Shared Region Mapping

Figure 5-6 shows three tasks (task C, task D, and task E) and a single absolute shared region, L.
The absolute shared region L is 6K words long and is built to occupy virtual addresses 1200005
to 1500005. These addresses correspond to APR 5 and APR 6, respectively. Tasks C and D can
be linked to region L because, at the time they are built, APR 5 and APR 6 are unused in both
tasks. However, task E is 23K words long and, even though it has 8K words of virtual address
space available to map the shared region, APR 5 (which corresponds to virtual address 120000,
the base address of the shared region) has been allocated to the task region. If shared region L
were position independent, task E could be linked to it.

Shared Region Concepts and Examples 5-9

Figure 5-6:

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1-—

APR 0—

Mapping for an Absolute Shared Region

6K WORDS

VIRTUAL

120000

ABSOLUTE
SHARED
REGION
L

TASK C

ABSOLUTE
SHARED
REGION
L

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

5-10 Shared Region Concepts and Examples

ABSOLUTE
SHARED
REGION
L

TASK D

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

TASK E

ZK-422-81

5.1.3.2 Specifying an Absolute Shared Region

You specify that a shared region is absolute when you build it by using the /-PI switch or
omitting the /PI switch or /CODE:PIC qualifier from the task image file. You establish the
virtual address for the region by specifying the base address of the region as a parameter of the
PAR option.

You should build an absolute shared region if any one of the following conditions exists:

e The region contains code that must appear in a specific location in the address space of a
referencing task.

¢ The region contains data that is address dependent.

e The region contains program sections of the same name as program sections in referencing
tasks.

5.1.3.3 Absolute Shared Region STB File

For TKB commands, when a shared region is created with the /-PI/LI or /-PI switches, or
with just the /-HD switch, the only program section name that appears in the STB file for
the region is the absolute program section name (. ABS.). Similarly for LINK commands, the
. ABS program section name is the only one that appears when you create the shared region
with the /SHAREABLE:LIBRARY qualifier and the /NOHEADER qualifier or ‘with only the
/NOHEADER qualifier. TKB includes in the STB file for the region each symbol in the region
and its value. But, because TKB does not include the program section names of an absolute
shared region in its STB file, all code or data in the region must be referred to by global
symbol names. Also, because the program section names are not in the STB file, TKB places no
restrictions on the way the program sections are ordered in either the absolute shared region
or the tasks that reference it. You can order program sections the way you want by using
the TKB /SQ and /SG switches or the LINK /SEQUENTIAL and /[NOJSEGREGATE qualifiers
(described in Chapters 10 and 11).

5.1.4 Shared Regions with Memory-Resident Overlays

Shared regions with memory-resident overlays are a primary resource for conserving memory. If
the shared region is larger than the available virtual address space in a task that must reference
the region, you can build the region—both position-independent and absolute—with memory-
resident overlays. All segments of the overlay structure are included in the shared region,
but each task referencing the shared region can include only part of the shared region—that
is, an overlay segment or series of segments in an overlay path—in its virtual address space.
Therefore, the task need only have enough virtual address space for the largest shared region
overlay segment, or series of segments in an overlay path, it is likely to access. Hence, the
virtual address space of the task can be considerably smaller than the size of the shared region.

Shared Region Concepts and Examples 5-11

5.1.4.1 Considerations About Building an Overlaid Shared Region

In general, overlays can be disk-resident or memory-resident, but those in shared regions
must, by their very nature, be memory-resident. TKB marks each overlay segment in the
shared region with the NODSK attribute to suppress overlay load requests. When you build
a shared region with memory-resident overlays, you must define the overlay structure through
a conventional ODL file. (See Chapters 3 and 4 of this manual for information on overlays
and the Overlay Description Language.) TKB does not include the overlay database (segment
descriptors, autoload vectors, and so forth) or the overlay run-time routines within the region
image. Instead, this database becomes a part of the STB file that is linked to the referencing
task. When this task is built, its root segment automatically includes both the database and
global references to overlay support routines residing in the system object module library.

The procedure for creating a shared region with memory-resident overlays can be summarized
as follows:

® Define an overlay structure containing only memory-resident overlays.

* Include the GLBREF option, or provide in the root segment a module containing the
appropriate global references for defining entry points within those overlay segments. TKB
generates autoload vectors and global definitions for the overlay segments.

5.1.4.2 Example of Building a Memory-Resident Overiaid Shared Region

The procedure for creating a shared region is illustrated in the following example. The shared
region to be constructed consists of reentrant code that resides within the overlay structure
defined below:

.ROOT A-!(*B,C-#*D)
.NAME A
.END

Root segment A contains no code or data and has a length of zero. All executable code exists
within memory-resident overlay segments composed of the object modules B.OBJ, C.OBJ, and
D.OBJ, which contain the global entry points B, C, and D, respectively.

You generate the TSK, MAP, and STB files by using the following TKB command sequence:

TKB>A/-HD/MM,LP:,SY:A=A/MP
Enter Optioms:
TKB>GBLREF=B,C,D
TKB>PAR=A: 160000 :20000
TKB>STACK=0

TKB> /

>

Or, use the following LINK command sequence:

$ LINK/TAS:A/NOH/MEM/MAP:LP:/SYM:SY:A/OPT A/OVER
Option? GBLREF=B,C,D

Option? PAR=A:160000:20000

Option? STACK=0

Option? (RET

$

5-12 Shared Region Concepts and Examples

Note
When building a shared region, you must use the same name for the partition
and the TSK and STB files.

See the descriptions of the PAR, RESLIB, LIBR, RESCOM, and COMMON
options in Chapter 11.

TKB inserts references to entry points B, C, and D in the root segment of the library. The
references subsequently appear in the STB file as definitions.

TKB resolves the definitions for symbol C directly to the actual entry point. TKB resolves the
definitions for symbols B and D to autoload vectors that it includes in each referencing task.

5.1.4.3 Options for Use in Overlaid Shared Regions

Certain options may prove useful to you when building and linking shared regions to a task.
These options are as follows:

GBLDEF

You can declare the definition of a symbol by means of the GBLDEF option. The option
has the following syntax:

GBLDEF=symbol-name:symbol-value

symbol-name is a 1- to 6-character Radix-50 name of the defined symbol and symbol-value
is an octal number in the range of 0 to 177777 assigned to the symbol. This option is
frequently used in the TKB build file for a task or shared region to allow you to alter
the value of a global symbol that resides in a module. This saves you the trouble of
reassembling the source code for a module if changes are necessary.

GBLINC

By means of this option, you force TKB to include the specified symbols in the STB file
being created by the linking process in which this option appears. The option has the
following syntax:

GBLINC=symbol-name,symbol-name,. .., symbol-name

symbol-name is the symbol or symbols to be included. Use this option when you want
to force particular modules to be linked to the task that references this library. The global
symbol references specified by this option must be satisfied by some module or GBLDEF
specification when you build the task.

GBLREF

You can force the inclusion of a global reference in the root segment of the shared region by
means of the GBLREF option. In this way, the necessary autoload vectors and definitions
can be generated without explicitly including such references in an object module. The
option has the following syntax:

GBLREF=[,name [,name. ..]]

The name consists of from one to six Radix-50 characters. If the definition resides within
an autoloadable segment, TKB constructs an autoload vector and includes it in the symbol
definition file. If the definition is not autoloadable, TKB obtains the real value and defines

Shared Region Concepts and Examples 5-13

it in the root segment. No global symbol appears in the STB file unless the symbol is either
defined in the root segment or is referenced in the root segment and defined elsewhere in
the overlay structure.

e GBLXCL

You can exclude a symbol or symbols from the symbol definition file of a shared region by
means of the GBLXCL option. The option has the following syntax:

GBLXCL=symbol-name, symbol-name, ..., symbol-name

symbol-name is the symbol or symbols to be excluded. You can use this option when you
do not want the task to be aware of specific symbols within the library. This option is
particularly useful when you cluster overlaid libraries together. See the CLSTR option in
Chapter 12 and the Cluster Libraries section (Section 5.2) in this chapter.

5.1.4.4 Autoload Vectors and STB Files for Overlaid Shared Regions

When TKB builds a task image file containing memory-resident overlays, TKB allocates autoload
vectors in the task image. If the task links to a shared region, autoload vectors for the shared
region are also allocated in the task image. TKB allocates the autoload vectors in the task’s root
segment, but not in the shared region. Therefore, the shared region cannot reference unloaded
(unmapped) segments of its overlay structure.

When the task executes, the shared region is effectively part of the task. In fact, when the task
loads overlay segments, it makes no distinction between overlay segments of the task and those
of the shared region. They are loaded as needed in a procedure that is transparent insofar as
the execution of the task is concerned.

For the Fast Task Builder (FTB) and older versions of TKB that do not support overlaid I- and
D-space tasks, each autoload vector in the shared region’s STB file is allocated in the root of
the task being linked to the region, whether or not the entry point is referenced by the task.

However, if you use a version of TKB that supports overlaid I- and D-space tasks and the
library was built with one of these versions, TKB allocates autoload vectors in the root of the
task only for those autoloadable entry points in the library that the task references. The STB
file contains ISD records that allow TKB to dynamically create autoload vectors when linking
the task to the library. TKB ignores the autoload vectors in the STB file if the ISD records are
present. Therefore, tasks that link to overlaid shared regions and are built with newer versions
of TKB tend to be smaller and use less virtual address space than those that are built by FTB
or older versions of TKB.

Note

Libraries created with older versions of TKB do not have the ISD records in the
STB file that newer versions of TKB use to include autoload vectors in the task
from the STB file. Therefore, TKB must create autoload vectors for every entry
point in the library.

If you are using one of these older libraries and you are linking an I- and
D-space task to it, TKB will give you the following fatal error message:

Module module-name contains incompatible autoload vectors.

This message occurs because the STB file contains conventional autoload vectors
that are not usable by an I- and D-space task.

5-14 Shared Region Concepts and Examples

Only those global symbols defined or referenced in the root segment of the shared region appear
in the STB file. The STB file also contains the database required by the overlay run-time system
in relocatable object module format. This database includes the following information:

e All autoload vectors

e Segment tables (linked as described in Appendix B)
* Window descriptors

e A single region descriptor

The overlay structure, as reflected in the segment table linkage, is preserved and conveyed to
the referencing task by the STB file. Thus, path loading for the shared region can occur exactly
as it does within a task. Aside from address space restrictions, there are no limitations on the
overlay structures that can be defined for a shared region.

5.1.5 Run-Time Support for Overlaid Shared Regions

Memory-resident overlays within a shared region require little additional support from the
overlay run-time system. The shared region overlay database that is linked within the image of
the referencing task has a structure that is identical to the equivalent data created for an overlaid
task. Therefore, memory-resident overlays within the shared region are indistinguishable from
memory-resident overlays that form a part of the task image. The only additional processing is
that required to attach the shared region and obtain its identification for use by the mapping
directives.

Once this initialization is complete, all further processing is identical to memory-resident overlay
processing performed on task overlays. ‘

For shared regions existing as memory-resident overlays, the following restrictions apply:

e A shared region cannot use the Autoload facility to reference memory-resident overlays
within itself or any other region. If each segment is uniquely named, overlays can be
mapped through the manual-load facility.

e Named program sections in a shared region overlay segment cannot be referenced by the
task. If reference to the storage is required, such sections must be included in the root
segment of the region (with resultant loss of virtual address space).

e For FTB, and libraries built with versions of TKB that do not support I- and D-space overlaid
tasks, the number of autoload vectors is independent of the entry points actually referenced.
The maximum number of vectors will be allocated within each referencing task. In some
cases the size of the allocation will be large.

e There is an overhead of six instructions for each autoload call, even when the segment is
mapped. The overhead is seven instructions for an overlaid I- and D-space task.

As implied by the previous items, great care must be exercised if an efficient memory-resident
overlay structure for library routines such as the FORTRAN IV OTS is to be implemented.

Shared Region Concepts and Examples 5-15

5.1.6 Linking to a Shared Region

When you build a task that links to a shared region, you must indicate to TKB the name of
the shared region and the type of access the task requires to it (read/write or read-only). In
addition, if the shared region is position independent, you can specify which APR TKB is to
allocate for mapping the region into the task’s virtual address space. The following options are
available for this action:

* RESLIB (resident library)

¢ RESCOM (resident common)

* LIBR (system-owned resident library)

* COMMON (system-owned resident common)

RESLIB and RESCOM accept a complete file specification as one of their arguments. Thus,
you can specify a device and directory indicating to TKB the location of the region’s image file
and, by implication, its symbol definition file. (Refer to Chapter 1 for more information on file
specifications and defaults.)

LIBR and COMMON accept a 1- to 6-character name. When you specify either of these options,
the shared region’s image file and symbol definition file must reside in directory [1,1] on device
LBO.

The RESLIB and RESCOM options require that all users of the shared region know the directory
in which the shared region’s image file and STB file reside. The LIBR and COMMON options
require only that the users of the shared region know the name of the shared region. When
you specify either LIBR or COMMON, by default, TKB expects to find the shared region’s image
and STB files on device LB: in directory [1,1].

When you are building a resident library, you can use the RNDSEG option to cause the size of
a specified segment to be rounded up to the nearest APR boundary.

When you install a resident library, INSTALL makes an entry for the resident library in the
Common Block Directory (CBD). The system loads the resident library when a task that uses it
runs.

Using RNDSEG enables you to install a new library without relinking the task to it as long as
the new library has the same common block length recorded in the CBD when the previous
library was installed. See Chapter 12 for more information on the RNDSEG option.

All four options accept the following additional arguments:
® The type of access that the task requires (RO or RW).

® The first APR that TKB is to allocate for mapping the region into the task’s virtual address
space. As stated earlier, this argument is valid only when the shared region is position
independent.

When you specify any of these options, TKB expects to find a symbol definition file of the same
name as that of the shared region, but with a file type of STB, on the same device and in the
same directory as those of the shared region’s image file.

The syntax of these options is given in Chapter 11.

5-16 Shared Region Concepts and Examples

When TKB builds a task, it processes first any options that appear in the TKB command
sequence. When TKB processes one of the four options above, it locates the disk image of
the shared region named in the option. The disk image of a shared region does not have a
header, but it does have a label block that contains the allocation information about the shared
region (for example, its base address, load size, and the name of the partition for which it was
built). TKB extracts this data from the shared region’s label block and places it in the LIBRARY
REQUEST section of the label block for the referencing task.

The STB file associated with the shared region is an object module file. TKB processes it as an
input file. If the shared region is position independent, its STB file contains program section
names, attributes, and lengths. However, the program section names are flagged within the
file as “library” program sections and TKB does not add their allocations to the task image it is
building.

If the task links to only one shared region, and if neither the shared region nor the task that
links to it contain memory-resident overlays, the Task Builder allocates two window blocks in
the header of the task. (Overlays are described in Chapter 3.) When the task is installed, the
INSTALL task will initialize these window blocks as follows:

¢ Window block 0 will describe the range of virtual addresses (the window) for the task
region.

* Window block 1 will describe the window for the shared region.

Figure 5-7 shows the window-to-region relationship of such a task.

Shared Region Concepts and Examples 5-17

Figure 5-7:

Windows for Shared Region and Referencing Task

HIGHEST VIRTUAL -
ADDRESS

SHARED
REGION

WINDOW BLOCK
1

WINDOW BLOCK
0

TASK
MEMORY

JHEADER AND STACK

LOWEST VIRTUAL
ADDRESS

Y

ZK-423-81

5-18 Shared Region Concepts and Examples

A shared region need not be installed before a task that links to it is built. The STB file
that you specify when you build the shared region contains all the information required by
TKB to resolve references from within a task to locations within the shared region. The only
requirement is that you install a shared region before you install a task that links to it.

Unless you use the /LI switch or the /SHAREABLE:LIBRARY qualifier, there is a restriction on
the way TKB processes tasks that link to relocatable shared regions. TKB places all program
section names into its internal control section table. The program section names include those
from the STB file of the shared region as well as those from the other input modules. A
conflict can arise when building a task that contains program sections of the same name as
those in the shared region to which the task links. The conflict arises because TKB tries to
add the program section allocation in the task to the already existing allocation for the program
section of the same name in the region. This is not possible because the region’s image has
already been built, is outside the address space of the task currently being built, and cannot be
modified. Therefore, to avoid this conflict, the program section names within a task that links
to a relocatable shared region must normally be unique with respect to program section names
within the shared region.

TKB displays an error message under the following conditions:

* A program section in the task and a program section in the shared region have the same
name.

* The program section in the task contains data.
® TKB tries to initialize the program section in the task.

The error message occurs when TKB tries to store data in an image outside the address limits
of the task it is building. If this conflict occurs, TKB prints the following message:

TKB--*DIAG*-Load addr out of range in module module-name
One exception to the above restriction develops when all of the following conditions exist:

* Both program sections (in the shared region and in the referencing task) have the (D) data
and OVR (overlay) attributes.

® The program section in the task is equal to or shorter than the program section in the shared
region.

® The program section in the task does not contain data.

When all of these conditions exist, there is nothing to be initialized within the shared region.
TKB binds the base address of the program section in the task to the base address of the
program section in the shared region. If the program section in the task contains global
symbols, TKB assigns addresses to them that reflect their location relative to the beginning of
the program section. You can use this technique to establish symbolic offsets into resident
commons. Examples 5-1 and 5-2 in the following sections illustrate how to establish these
offsets.

Shared Region Concepts and Examples 5-19

5.1.7 Number and Size of Shared Regions

The number of shared regions to which a task can link is a function of the number of window
blocks required to map the task and the regions.

If a task is 4K words or less, and each shared region to which the task links is 4K words or
less, a nonprivileged task can refer to as many as 15 shared regions: 7 in user mode and 8 in
supervisor mode. (Supervisor-mode libraries are described in Chapter 8.)

5.1.8 Example 5-1: Building and Linking to a Common in MACRO-11

The text in this section and the figures associated with it illustrate the development of a
MACRO-11 position-independent resident common and the development of two MACRO-11
tasks that share the common. The steps in building a position-independent common can be
summarized as follows:

1. You create a source file that allocates the amount of space required for the common. In
MACRO-11, either of the assembler directives .BLKB or .BLKW provides the means of
allocating this space.

2. You assemble the source file.

3. You build the assembled module, specifying both a task image file and a symbol definition
file.

You specify the /-HD (no header) switch, or the /NOHEADER qualifier for LINK, and
declare the common with /CO, or /SHAREABLE:COMMON for LINK. You specify the
common to be position independent with the /PI switch, or the /CODE:PIC qualifier for
LINK.

Then, you specify the following options:

STACK=0
PAR=parname

The parname in this PAR option is the name of the partition in which the common is to
reside.

The TKB switches are described in Chapter 10. The LINK qualifiers are described in Chapter
11. The STACK and PAR options are described along with the other options in Chapter 12.

The common can reside within any partition large enough to hold it.
4. You install the common.

Example 5-1, Part 1 shows a MACRO-11 source file that, when assembled and built, creates
a position-independent resident common area named MACCOM. The common area consists of
two program sections named COM1 and COM2, respectively. Each program section is 51249
words in length.

5-20 Shared Region Concepts and Examples

Example 5-1: Part 1, Common Area Source File in MACRO-11
.TITLE MACCOM

COM1 - 512 WORDS
COM2 - 512 WORDS

.PSECT COM1,RW,D,GBL,REL,QVR
.BLKW 512.

.PSECT COM2,RW,D,GBL,REL,OVR
.BLKW 512.

.END

Once this common has been assembled, the following TKB command sequence shown below
can be used to build it:

>TKB

TKB>MACCOM/PI/-HD/CO,MACCOM/-SP , MACCOM=MACCOM
TKB>/

Enter Options:

TKB> STACK=0

TKB>PAR=MACCOM: 0: 4000

TKB>//
>

Or, with the LINK command, you may enter the following command sequence:

$ LINK/TAS:MACCOM/NOH/CODE:PIC/SHARE : COMMON/MAP : MACCOM/NOPRINT/SYM/OPT
->MACCOM

Option? STACK=0

Option? PAR=MACCOM:0:4000

Option? [RET

$

This command sequence directs TKB to build a position-independent, headerless common
image file named MACCOM.TSK. It also specifies that the Task Builder is to create a map
file, MACCOM.MAP, and a symbol definition file, MACCOM.STB. TKB creates all three files—
MACCOM.TSK, MACCOM.MAP, and MACCOM.STB—on device SY in the directory that
corresponds to the terminal UIC. TKB will not spool a map listing to the line printer.

Under options, STACK=0 suppresses the stack area in the common’s image. The PAR option
specifies that the common area will reside within a common partition of the same name as that
of the common, MACCOM. In addition, the parameters in the PAR option specify a base of 0
and a length of 40005 bytes for the common. (Refer to Chapters 10, 11, and 12 for descriptions
of the switches, qualifiers, and options used in this example.)

Example 5-1, Part 2 shows the map resulting from this command sequence.

Shared Region Concepts and Examples 5-21

Example 5-1: Part 2, Task Builder Map for MACCOM.TSK

MACCOM.TSK; 1 Memory allocation map TKB M43.00 Page 1
17-NOV-87 16:05

Partition name : MACCOM
Identification :
Task UIC . [7,62]

Task attributes: -HD,PI
Total address windows: 1.
Task image size : 1024. WORDS

Task address limits: 000000 003777
R-W disk blk limits: 000232 000005 000004 00004 .
(3]

2]

¥x Root segment: MACCOM

R/W mem limits: 000000 003777 004000 02048.
Disgk blk limits: 000002 000005 000004 00004 .

Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 000000 000000 00000.
COM1 :(RW,D,GBL,REL,OVR) 000000 002000 01024.

000000 002000 01024. .MAIN. MACCOM.0BJ;1
COM2 :(RW,D,GBL,REL,OVR) 002000 002000 01024.
002000 002000 01024. .MAIN. MACCOM.0BJ;1
e
o

*xx Tagk builder statistics:

Total work file references: 183.
Work file reads: O.
Work file writes: O.

Size of core pool: 7086. WORDS (27. PAGES)
Size of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:05

The task attributes section of this map reflects the switches and options of the command string.
It indicates that the common resides in a partition named MACCOM, that it was built under
terminal UIC [7,62], that it is headerless and position independent, and that it requires one
window block to map. The total length of the common is 1024;, words and its address limits
range from 0 to 3777s. The common image (that portion of the disk image file that eventually
will be read into memory) begins at file-relative disk block 2 (@). The last block in the file is
file-relative disk block 5 (@) and the common image is four blocks long (©).

5-22 Shared Region Concepts and Examples

The memory allocation synopsis details the Task Builder’s allocation for and the attributes of
the program sections within the common. For example, reading from left to right, the map
indicates that the program section COM1 permits read/write access, that it contains data, and
that its scope is global. It also indicates that COM1 is relocatable and that all contributions to
COM1 are to be overlaid. Because COM1 has the overlay attribute, the total allocation for it
will be equal to the largest allocation request from the modules that contribute to it. (For more
information on program section attributes, see Chapter 2.)

Continuing to the right, the first 6-digit number is COM1’s base address, which is 0 (@). The
next two digits are its length (bytes) in octal and decimal, respectively.

The next line down lists the first object module that contributes to COM1. In this case there
is only one: the module MACCOM from the file MACCOM.OB]J;1. The numbers on this line
indicate the relative base address of the contribution and the length of the contribution in octal
and decimal (©). If there had been more than one module input to TKB that contained a
program section named COM1, TKB would have listed each module and its contribution in this
section.

Notice that there is a program section named . BLK. shown on the map just above the field
for COM1. This is the “blank” program section that is created automatically by the language
translators. The attributes shown are the default attributes. The allocation for . BLK. is 0
because the program sections in MACCOM were explicitly declared. If the program sections
had not been explicitly declared, all of the allocation for the common would have been within
this program section.

Figure 5-8 is a diagram that represents the disk image file for MACCOM. The circled numbers
in Figure 5-8 correspond to the circled numbers in Example 5-1, Part 2.

Once you have built MACCOM, you can install it.

The common remains in memory until you explicitly remove it with the MCR or DCL command
REMOVE. The common will not be loaded until either one of the following actions occurs:

* A task that is linked to it is run.
* You explicitly fix the common in memory with the MCR or DCL command FIX.

Because of the checkpointable common feature, changes made in the memory image of the
common are preserved when the common is removed. Using the REMOVE command causes
the common, with its changes, to be written into the common’s task image file. Reinstalling the
common then produces in memory the common that was saved with its corresponding changed
values.

Example 5-1, Parts 3 and 4 show two programs: MCOM1 and MCOM2, respectively. Both of
these programs reference the common area MACCOM created above. MCOMI1 in Example 5-1,
Part 3 accesses the COM1 portion of MACCOM. It inserts into the first 10 words of COM1 the
numbers 1 to 10 in ascending order. It then issues an Executive directive request for the task
MCOM2 and suspends itself.

Shared Region Concepts and Examples 5-23

Figure 5-8: Allocation Diagram for MACCOM.TSK

RELATIVE RELATIVE
DISK BLOCK LOAD
NUMBERS ADDRESSES

000005 — COM 2

000004 — — 002000

000003 — comM1 - 002000 (BYTES)

- 000002 — — 000000
000001 — LABEL BLOCK
000000 —

DISK IMAGE FILE

ZK-424-81

5-24 Shared Region Concepts and Examples

Example 5-1:

0UT:
FORMAT:
MES:

ANS:

START:

10$:

ERR1:

.TITLE
. IDENT

.MCALL

.BLKW
.ASCIZ
.ASCII
LEN = .
.EVEN

PSECT -
COMMON .

.PSECT
.BLKW

PSECT -
COMMON.

.PSECT
.BLKW

.PSECT

MOV
MOV
MoV

MOV
INC
DEC
BNE
RQST$C
BCS
SPND$S
MOV
MOV
MOV
CALL
QIOWSS
EXIT$S

QIOW$S
EXIT$S
.END

Part 3, MACRO-11 Source Listing for MCOM1
MCOM1
/o1/
EXIT$S, SPND$S,RQST$C, QIOWSS

100.) ; SCRATCH AREA
/THE RESULT IS %D./

/ERROR FROM REQUEST/

- MES

COM1 IS USED TO ACCESS THE FIRST 512(10) WORDS OF THE

COM1,GBL,0VR,D
10.

COM2 IS USED TO ACCESS THE SECOND 512(10) WORDS OF THE
IT WILL CONTAIN THE RESULT

COM2,GBL,0VR,D
1

#10. RO ; NUMBER OF INTEGERS TO SUM
#1,R1 ; START WITH A 1
#INT,R3 ; PLACE VALUES IN FIRST 10 WORDS
; OF COMMON
R1, (R3)+ ; INITIALIZE COMMON
R1 ; NEXT INTEGER
RO ; ONE LESS TIME
108 ; TO INITIALIZE
MCOM2 ; REQUEST THE SECOND TASK
ERR1 ; REQUEST FAILED
; WAIT FOR MCOM2 TO SUM THE INTEGERS
#0UT, RO ; ADDRESS OF SCRATCH AREA
#FORMAT,R1 ; FORMAT SPECIFICATION
#ANS,R2 ; ARGUMENT TO CONVERT
$EDMSG ; DO CONVERSION

#I0.WVB,#5,#1,,,,<#0UT,R1,#40>

#I0.WVB,#5,#1,,,,<#MES,#LEN, #40>

START

Shared Region Concepts and Examples

5-25

Example 5-1: Part 4, MACRO-11 Source Listing for MCOM2

.TITLE MCOM2
.IDENT /01/

.MCALL EXIT$S,QIOW$S,RSUM$C

MES: .ASCII /ERROR FROM RESUME/
LEN = . - MES
.EVEN

H PSECT - COM1 IS USED TO ACCESS THE FIRST 10(10) WORDS OF THE
; COMMON .

.PSECT COM1,GBL,0VR,D
INT: .BLKW 10.

R PSECT - COM2 IS USED TO ACCESS THE SECOND 10(10) WORDS OF THE
; COMMON. IT WILL CONTAIN THE RESULT.

.PSECT COM2,GBL,0VR,D

ANS: .BLKW 1
.PSECT
START :
MOV #10. ,RO ; NUMBER OF INTEGERS TD SUM
MOV #INT,R3 ; PLACE VALUES IN FIRST 10 WORDS
; OF COMMMON
CLR ANS ; INITIALIZE ANSWER
10$: ADD (R3)+,ANS ; ADD IN VALUES
DEC RO ; ONE LESS VALUE
BNE 108 ; TO SUM
RSUM$C MCOM1 ; RESUME MCOM1
BCS ERR ; RESUME FAILED
EXIT$S
ERR:
QIOW$S #I0.WVB,#5,#1,,,,<#MES,#LEN, #40>
EXIT$S
.END START

When MCOM2 runs, it adds together the integers left in COM1 by MCOM1 and leaves the
sum in the first word of COM2. It then issues a Resume (RSUMS$C) directive for MCOM1 and
exits.

When MCOMI resumes, it retrieves the answer left in COM2 and calls the system library
routine $EDMSG (Edit Message) to format the answer for output to device TI

All of the Executive directives for both programs (RQST$C, SPND$S, QIOW$S, RSUM$C, and
EXIT$S) are documented in the RSX-11M-PLUS and Micro/RSX Executive Reference Manual. The
system library routine $EDMSG is documented in the RSX-1IM-PLUS and Micro/RSX System
Library Routines Reference Manual.

Note that both MCOM1 and MCOM2 contain .PSECT declarations establishing program section
names that are the same as program section names within the position-independent common
to which the task is linked (MACCOM). As stated earlier, in most circumstances this would be
invalid. In this application, however, the .PSECT directives have been placed into the tasks to
establish symbolic offsets in the resident common. When either task is built, TKB assigns to

5-26 Shared Region Concepts and Examples

the symbol INT: the base address of program section COM1, and to the symbol ANS: the base
address of program section COM2. Figure 5-9 illustrates this assignment.

Figure 5-9: Assighing Symbolic References Within a Common

[=~
ANS: T~
~
- —~ — COM 2
T~ \\
\\\ \\
~ - \\\
~ ~
~ b - — o — ——
~
\\
ANS:
-~
~ <
INT: — ~
-~ -
~
~ ~
-~ ~
g ~
-~ =~
-~ ~~
~ -~
\\ S~
- e e — e —
~
S~
INT:—

ZK-425-81

Once you have assembled MCOM1 and MCOM2, you can build them with the following

command sequences:

TKB LINK
>TKB $ LINK/TAS/MAP:MCOM1/NOPRINT/OPT MCOM1
TKB>MCOM1,MCOM1/-SP=MCOM1 Option? RESCOM=MACCOM/RW
TKB>/ Option? [RET
Enter Options: $

TKB>RESCOM=MACCOM/RW

TKB>//

>

>TKB $ LINK/TAS/MAP:MCOM2/NOPRINT/OPT MCOM2
TKB>MCOM2 ,MCOM2/ -SP=MCOM2 Option? RESCOM=MACCOM/RW

TKB>/ Option?

Enter Options: $
TKB>RESCOM=MACCOM/RW
TKB>//

>

Under options in both of these command sequences, the RESCOM option tells TKB that these
programs intend to reference a common data area named MACCOM and that the tasks require
read/write access to it. Because the RESCOM option is used, TKB expects to find the image file
and the symbol definition file for the common on device SY in the directory that corresponds

Shared Region Concepts and Examples 5-27

to the terminal UIC. In addition, because the optional APR specification was omitted from the
RESCOM option, TKB allocates virtual address space for the common starting with APR 7 in
both tasks (the highest APR available in both tasks).

The TKB map for MCOM1 is shown in Example 5-1, Part 5. The map for MCOM2 is not
essentially different from that of MCOM1 and is therefore not included here.

Example 5-1: Part 5, Task Builder Map for MCOM1.TSK

MCOM1.TSK;1 Memory allocation map TKB M43.00 Page 1
11-DEC-87 16:12

Partition name : GEN

Identification : 01

Task UIC . [7,62]

Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001650

Total address windows: 2.

Tagk image size : 1184. words

Task address limits: 000000 004407

R-W disk blk limits: 000002 000006 000005 00005.

*** Root segment: MCOM1

R/W mem 1limits: 000000 004407 004410 02312.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section Title Ident File
. BLK.:(RW,I,LCL,REL,CON) 001274 002664 01460.

001274 000574 00380. MCOM Oi MCOM1.0BJ;1
COM1 : (RW,D,GBL,REL,OVR) 160000 002000 01024.

160000 000024 00020. MCOM 01 MCOM1.0BJ;1
COM2 :(RW,D,GBL,REL,0VR) 162000 002000 01024.

162000 000002 00002. MCOM 01 MCOM1.0BJ;1
$DPB$$: (RW,I,LCL,REL,CON) 004160 000016 00014.
004160 000016 00014. MCOM 01 MCOM1.0BJ;1

$$RESL: (RO,I,LCL,REL,CON) 004176 000212 00138.

*** Tagk builder statistics:

Total work file references: 1924.

Work file reads: O.

Work file writes: O.

Size of core pool: 7086. words (27. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:00:00:04

Note that TKB has placed two window blocks in MCOM1's header. When MCOM1 is installed,
the INSTALL task will initialize these window blocks as follows:

¢ Window block 0 will describe the range of virtual addresses (the window) for MCOM1’s
task region.

5-28 Shared Region Concepts and Examples

e Window block 1 will describe the window for the shared region MACCOM.

5.1.9 Linking Shared Regions Together

Shared regions can link to other shared regions. You may find it convenient to have code in a
shared library and have access to routines in another shared library to which it links.

The following text describes, as an example for a mapped system, the TKB command sequence
for building a resident library named FILEB. That text is followed by TKB and LINK command
sequences that show an example of building another resident library named FORCOM that links
to FILEB. Following that, TKB and LINK command sequences show the building of a task that
links to FORCOM. In the TKB and LINK command sequences to follow, it is assumed that you
know the contents of the libraries and the task. The examples show the linkage only.

The first shared region to be built is called FILEB. The library FILEB is a position-dependent
library. You use the /-PI switch or the /NOCODE:PIC qualifier to signify that the library is
absolute. You build the library with the /-HD switch or the /NOHEADER qualifier to indicate
that the library has no header. The /LI switch or the /SHAREABLE:LIBRARY qualifier indicates
that FILEB is to be a shared library. The program section name of the library is . ABS, which is
the only one in the library. FILEB is to be loaded into a user-controlled partition on a mapped
system. The name of the partition in which FILEB resides has the same name, FILEB, that you
specify in the PAR option. The PAR option also specifies the base address and the length of the
partition. Because FILEB is absolute, a base address must be specified; here, the base address is
160000. The length in this example is 4K bytes. If neither the base nor the length is specified,
TKB tries to determine the length.

For TKB, use the following command sequence:

>TKB
TKB>FILEB/-PI/-HD/LI,FILEB/-SP,FILEB=FILEB.0BJ
TKB>/

Enter Options:

TKB>STACK=0
TKB>PAR=FILEB: 160000 : 40000
TKB>//

For the LINK command, use the following command sequence:

$ LINK/TAS/SHARE:LIBRARY/NOHEAD/MAP:FILEB/NOPRINT/SYM/OPT FILES
Option? STACK=0

Option? PAR=FILEB:160000:40000

Option? [RET

$

The next TKB command sequence specifies a shared library called FORCOM. FORCOM
links to the read-only library called FILEB. You build FORCOM with the /LI switch or
/SHAREABLE:LIBRARY qualifier to specify a library to the Task Builder. FORCOM is
relocatable. You specify in the RESLIB option that the resident library to which FORCOM
links is called FILEB. The access required is read-only, which /RO specifies in the RESLIB
option line.

Shared Region Concepts and Examples 5-29

For TKB, use the following command sequence:

>TKB
TKB>FORCOM/-HD/LI/PI,FORCOM/-SP,FORCOM=FORCOM.OBJ
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=FORCOM: 0: 4000

TKB>RESLIB=FILEB/RO [RET

TKB>//

>

For LINK, use the following command sequence:

$ LINK/TAS:FORCOM/NOHEAD/CODE: PIC/SHARE: LIB/MAP : FORCOM/NOPRINT/SYM/OPT-
->FORCOM

Option? STACK=0

Option? PAR=FORCOM:0:4000

Option? RESLIB=FILEB/R0 [RET

Option? [RET]

$

The next command sequences build the task and specify that the task links to the library called
FORCOM. The RESLIB option line specifies the link to the resident library called FORCOM.

For TKB, use the following command sequence:

>TKB
TKB>FOTASK ,FOTASK/-SP,FOTASK=FOTASK . 0BJ

TKB>/

Enter Options:
TKB>RESLIB=FORCOM/RW
TKB>//

>

For LINK, use the following command sequence:

$ LINK/TAS:FOTASK/MAP:FOTASK/NOPRINT/SYM/OPT FOTASK
Option? RESLIB=FORCOM/RW

Option? [RET]

$

Build the libraries before you build the task, and install the libraries before you run or install
the task. See Chapter 10 for a description of the /PI, /HD, /CO, and /LI switches; and see
Chapter 11 for a description of the /CODE:PIC, /[NOJHEADER, /SHAREABLE:COMMON,
and /SHAREABLE:LIBRARY qualifiers. See Chapter 12 for a description of the PAR, RESCOM,
and RESLIB options.

5-30 Shared Region Concepts and Examples

5.1.10 Example 5-2: Building and Linking to a Device Common in
MACRO-11

A device common is a special type of common that occupies physical addresses on the I/O
page. When mapped into the virtual address space of a task, a device common permits the task
to manipulate peripheral device registers directly.

Note

Because any access to the I/O page is potentially hazardous to the running
system, you must exercise extreme caution when working with device commons.

The remaining text in this section and the figures associated with it illustrate the development
and use of a device common. Example 5-2, Part 1 shows an assembly listing for a position-
independent device common named TTCOM. When installed, TTCOM will map the control
and data registers of the console terminal. Its physical base address will be 777500,

Example 5-2: Part 1, Assembly Listing for TICOM

.TITLE TTCOM
.PSECT TTCOM,GBL,D,RW,OVR
.=.+60
$RCSR:: .BLKW i
$RBUF:: .BLKW 1
$XCSR:: .BLKW 1t
$XBUF:: .BLKW 1
.END

The PDP-11 Peripherals Handbook defines the control and data register addresses for the console
terminal. In Example 5-2, Part 1, the register addresses and the symbol names that correspond
to them are as follows:

Register Address Symbol
Keyboard Status 777560 $RCSR
Keyboard Data 777562 $RBUF
Printer Status 777564 $XCSR
Printer Data 777566 $XBUF

The double colon (::) following each symbol in Example 5-2, Part 1 establishes the symbol as
global. The first symbol, RCSR, is offset from the beginning of TTCOM by 603 bytes. Each
symbol thereafter is one word removed from the symbol that precedes it. Thus, when TTCOM
is installed at 777500, each symbol will be located at its proper address.

Once you have assembled TTCOM, you can build it using the following TKB command sequence:

>TKB

TKB>LB: [1,1]TTCOM/-HD/PI,LB: [1,1]TTCOM/-WI/SP,LB: [1,1]TTCOM=TTCOM
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=TTCOM:0:100

TKB>//

>

Shared Region Concepts and Examples 5-31

Or, by using the following LINK command sequence:

$ LINK/TAS:LB:[1,1]TTCOM/NOH/COD:PIC/MAP/NOWIDE/PRINT/SYM/OPT TTCOM

Option? STACK=0

Option? PAR=TTCOM:0:100

Option?

$

This command sequence directs TKB to create a common image named TTCOM.TSK and a
symbol definition file named TTCOM.STB. TKB places both files on device LB in directory [1,1].
The command sequence also specifies that TKB is to queue a map listing to the line printer.

In TKB, the /-WI switch specifies an 80-column line printer listing format. In the LINK
command, /NOWIDE specifies an 80-column format. The /PRINT qualifier need not be present
because printing of the map file is the default operation.

Note

For the command sequence above to work in a multiuser protection system, it
must be input from a privileged terminal.

The STACK=0 option suppresses the stack area in the common’s image file. The PAR option
also specifies that the base of the common is 0 and that it is 1005 bytes long.

The TKB map for TTCOM that results from the command sequence above is shown in Example
5-2, Part 2. The task attributes section of this map indicates that the common is position
independent and that no header is associated with it. The common’s image and symbol
definition file reside on device LB in directory [1,1].

The map in Example 5-2, Part 2 shows the global symbols defined in the common with their
relative offsets into the common region. You establish the virtual base address for the common
and the virtual addresses for the symbols within it when you build the tasks that link to the
common.

5-32 Shared Region Concepts and Examples

Example 5-2: Part 2, Task Builder Map for TTCOM

TTCOM.TSK;1 Memory allocation map TKB M43.00 Page 1
1-DEC-87 17:02

Partition name : TTCOM

Identification :

Task UIC . [7,62] TASK

Task attributes: -HD,PI ATTRIBUTES
Total address windows: 1. SECTION

Task image size : 32. WORDS
Task address limits: 000000 000067
R-W disk blk limits: 000002 000002 000001 00001 .

% Root segment: TTCOM

R/W mem 1limits: 000000 000067 000070 00056 .
Disk blk limits: 000002 000002 000001 00001 .

Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 000000 000000 0000O.
TTCOM : (RW,D,GBL,REL,OVR) 000000 000070 00056.
000000 000070 00056. .MAIN. TTCOM.0BJ;1

Global symbols:
$RBUF 000062-R $RCSR 000060-R $XBUF 000066-R $XCSR 000064-R

**% Task builder statistics:

Total work file references: 214.

Work file reads: O.

Work file writes: O.

Size of core pool: 6666. WORDS (26. PAGES)
Size of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:02

You establish the physical addresses for the common with the MCR command SET. The keyword
that you use with the SET command depends on which system you are running.

On an RSX-11M-PLUS or Micro/RSX system, use the following command line:
>SET /PAR=TTCOM:177775:1:DEV

These previous SET command lines create a main partition named TTCOM that begins at
physical address 777500 in 18-bit systems and physical address 1777750 in 22-bit systems.
The partition is one 64-byte block in length (1005 bytes). The argument DEV identifies the
partition type. You can establish the partition for a device common at any time. Partitions
created to accommodate a device common are not a system generation consideration because
they represent areas of physical address space above memory and therefore cannot conflict with
memory partitions.

Shared Region Concepts and Examples 5-33

Example 5-2, Part 3 shows an assembly listing for a demonstration program named TEST.
When built and installed, TEST will print the letters A through Z on the console terminal by
directly accessing the console terminal status and data registers. It will access the status and
data registers through the device common TTCOM.

Exampie 5-2: Part 3, Assembily Listing for TEST

.TITLE TEST
.IDENT /01/
.MCALL EXIT$S
START: MOV #15,R0 ; START WITH A CARRIAGE RETURN
CALL OUTBYT ; PRINT IT
MOV #12,R0 ; THEN A LINE FEED
CALL OUTBYT ; PRINT IT
Mov #101,RO ; FIRST LETTER IS AN "A"
MOV #26.,R1 ; NUMBER OF LETTERS TO PRINT
OUTPUT: CALL OUTBYT ; PRINT CURRENT LETTER
DEC R1 ; ONE LESS TIME
BNE OUTPUT . AGAIN
MOV #15,R0 ; ANOTHER CARRIAGE RETURN
CALL OUTBYT
MOV #12,R0 ; ANOTHER LINE FEED
CALL OUTBYT
EXIT$S
OUTBYT: TSTB $XCSR ; OUTPUT BUFFER READY?
BPL OUTBYT ; IF NOT WAIT
MOV RO, $XBUF ; MOVE CHARACTER TO OUTPUT BUFFER
INC RO ; INITIALIZE NEXT LETTER
RETURN
.END START

Once you have assembled TEST, you can build it with the following TKB command sequence:

>TKB

TKB>TEST, TEST/-WI/MA=TEST
TKB>/

Enter Options:
TKB>COMMON=TTCOM:RW: 1
TKB>//

>

For the LINK command, you can build TEST with the following command sequence:

$ LINK/TAS/MAP/SYS/NOWIDE/OPT TEST

Option? COMMON=TTCOM:RW:1

Option?

$

The COMMON option in this command sequence tells TKB that TEST intends to access the
device common TTCOM and that TEST will have read/write access to it. It also directs TKB to
reserve APR 1 for mapping the common into TEST’s virtual address space.

The TKB map that results from the command sequence above is shown in Example 5-2, Part 4.

5-34 Shared Region Concepts and Examples

Example 5-2: Part 4, Memory Allocation Map for TEST

TEST.TSK;1 Memory allocation map TKB M43.00 Page 1
1-DEC-87 17:03

Partition name : GEN

Identification : 01

Task UIC : [7,62]

Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001274

Total address windows: 2.

Task image size : 384. WORDS

Task address limits: 000000 001377

R-W disk blk limits: 000002 000003 000002 00002.

x Root segment: TEST

R/W mem 1limits: 000000 001377 001400 00768.
Disk blk limits: 000002 000003 000002 00002.
Memory allocation synopsis:

Section Title Ident File

BLK. : (RW,I,LCL,REL,CON) 001274 000100 00068.

001274 000100 00068. .MAIN. TEST.0BJ;1
TTCOM : (RW,D,GBL,REL,OVR) 200000 000070 00056 .
200000 000070 00056. TTCOM TTCOM.STB; 1

Global symbols:
$RBUF 020062-R $RCSR 020060-R $XBUF 020066-R $XCSR 020064-R

*** Task builder statistics:
Total work file references: 243.

Work file reads: O.

Work file writes: O.

Size of core pool: 6666. WORDS (26. pages)
Size of work file: 768. WORDS (3. pages)

Elapsed time:00:00:03

This map contains a global symbols section. TKB included it because the /MA switch was
applied to the memory allocation file at task-build time. Note that the global symbols in this
section, which were defined in TTCOM, now have virtual addresses assigned to them. The
addresses assigned by TKB are the result of the APR 1 specification in the COMMON= keyword
during the task build.

It is important to remember that programs like TEST, which access the /O page, take complete
control of the registers they reference. Therefore, coding errors in such programs can disable
the devices they reference and can even make it impossible for the device drivers to regain
control of the device. If this happens, you must reboot the system.

Shared Region Concepts and Examples 5-35

5.1.11 Building and Linking to a Resident Library in MACRO-11

Resident libraries consist of subroutines that are shared by two or more tasks. When such tasks
reside in physical memory simultaneously, resident libraries provide a considerable memory
savings because the subroutines within the library appear in memory only once.

The text in this section and the figures associated with it illustrate the development and use of
a resident library, called LIB.

Example 5-3, Part 1 shows five FORTRAN-callable subroutines, as follows:

An integer addition routine, AADD

An integer subtraction routine, SUBB
An integer multiplication routine, MULL
An integer division routine, DIVV

A register save and restore coroutine, SAVAL

These subroutines are contained in a single source file, LIB.MAC. When assembled and built,
they constitute an example of a resident library. FORTRAN-callable routines were used in this
example so that the routines can be accessed by either FORTRAN or MACRO-11 programs.

5-36 Shared Region Concepts and Examples

Example 5-3: Part 1, Source Listing for Resident Library LIB.MAC

.TITLE LIB
.IDENT /01/

.PSECT AADD,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO

AADD:: CALL $SAVAL ;
MOV Q@2(R5) ,RO ;
MOV Q4(R5) ,R1 B
ADD RO,R1 ;
MOV R1,06(R5E) H
RETURN ;

ADD TWO INTEGERS

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

SUM THEM

STORE RESULT

RESTORE REGISTERS AND RETURN

.PSECT SUBB,RO,I,GBL,REL,CON

;¥* FORTRAN CALLABLE SUBROUTINE TO

SUBB:: CALL $SAVAL H
Mov ©2(R5) ,RO ;
MoV Q@4 (R5) ,R1 ;
SUB R1,RO ;
MOV RO, @6 (R5) ;
RETURN ;

SUBTRACT TWO INTEGERS

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

SUBTRACT SECOND FROM FIRST
STORE RESULT

RESTORE REGISTERS AND RETURN

.PSECT MULL,RO,I,GBL,REL,CON

;%% FORTRAN CALLABLE SUBROUTINE TO

MULL:: CALL $SAVAL ;
MOV 02(R5) ,RO H
MOV 04 (R5) ,R1 H
MUL RO,R1 ;
MOV R1,06(R5) :
RETURN :

MULTIPLY TWO INTEGERS

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

MULTIPLY

STORE RESULT

RESTORE REGISTERS AND RETURN

.PSECT DIVV,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO

DIVV:: CALL $SAVAL ;
Mav 02(R5) ,R3 ;
MOV Q4(R5) ,R1 ;

DIVIDE TWO INTEGERS

SAVE REGS RO-R5
FIRST OPERAND
SECOND OPERAND

(Continued on next page)

Shared Region Concepts and Examples 5-37

Example 5-3 (Cont.): Part 1, Source Listing for Resident Library LIB.MAC

CLR R2 ; LOW-ORDER 16 BITS

DIV R1,R2 ; DIVIDE

Mov R2,06(R5) ; STORE RESULT

RETURN ; RESTORE REGISTERS AND RETURN

.PSECT SAVAL,RO,I,GBL,REL,CON
;**ROUTINE TO SAVE REGISTERS

$SAVAL: :
MOV R4,-(SP) ;SAVE R4
MOV R3,-(8P) ;SAVE R3
MOV R2,-(SP) ;SAVE R2
MOV R1,-(SP) ;SAVE R1
MOV RO, -(SP) ;SAVE RO
MOV 12(sP),-(SP) ;COPY RETURN
MOV R5,14(SP) ;SAVE RS
CALL Q(SP)+ ;CALL THE CALLER
MOV (sP)+,R0 ;RESTORE RO
MOV (sP)+,R1 ;RESTORE R1
MOV (sP)+,R2 ;RESTORE R2
MOV (SP)+,R3 ;RESTORE R3
MOV (SP)+,R4 ;RESTORE R4
MOV (SP)+,R5 ;RESTORE R5
RETURN

.END
Once you have assembled LIB, you can build it with the following TKB command sequence:

TKB>LIB/PI/-HD/LI,LIB/-WI,LIB=LIB

TKB>/

Enter Options:
TKB>STACK=0
TKB>PAR=LIB:0:200
TKB>//

>
Or, for LINK, you can use the following command sequence:

$ LINK/TAS/CODE:PIC/NOHEAD/SHARE:LIB/MAP/NOWIDE/SYM/OPT LIB
Option? STACK=0

Option? PAR=LIB:0:200

Option? [RET]

$

The TKB command sequence just shown instructs TKB to build a position-independent,
headerless library image named LIB.TSK. It instructs TKB to create a map file, LIB.MAP,
and to output an 80-column listing to the line printer. It also specifies that TKB is to create a
symbol definition file, LIB.STB. TKB creates all three files—LIB.TSK, LIB.MAP, and LIB.STB—on
device SY in the directory that corresponds to the terminal UIC. The /LI and /PI switches used
together cause TKB to name the program section LIB, which is the root segment of the library.
LIB becomes the only named program section in the library.

5-38 Shared Region Concepts and Examples

The LINK command sequence takes the name of the input file (LIB) as the default name for the
task file, the map file, and the symbol definition file. The qualifiers in the LINK command have
the following functions: the /CODE:PIC qualifier specifies a relocatable library; the /NOHEAD
qualifier is required for building a library or common; the /SHARE:LIB qualifier specifies that
a library be built; the /MAP qualifier requests a map, uses the input file name for the default
name, and outputs the map file to the line printer by default; the /NOWIDE qualifier requests an
80-column listing; the /SYM qualifier requests a symbol definition file; and the /OPT qualifier
requests a prompt for options.

If you used the command sequence above without the /LI switch or /SHAREABLE:LIBRARY
qualifier, TKB would create a common by default.

The STACK=0 option suppresses the stack area within the resident library’s image. The PAR
option tells TKB that the resident library will reside within a partition of the same name as that
of the library. In addition, the PAR option specifies that the base of the library is 0 and that it
is 2005 bytes in length. (For more information on the switches, qualifiers, and options used in
this example, refer to Chapters 10, 11, and 12, respectively.)

Example 5-3, Part 2 shows the TKB map that results from the command sequence shown
previously.

Note in the global symbols section of the map in Example 5-3, Part 2 that TKB has assigned
offsets to the symbols for each library function. When the task that links to this library is built,
TKB will assign virtual addresses to these symbols.

The program MAIN in Example 5-3, Part 3 exercises the routines in the resident library LIB.TSK.
When you assemble and build it, MAIN will call upon the library routines to add, subtract,
multiply, and divide the integers contained in the labels OP1 and OP2 within the program.
MAIN will print the results of each operation to device TL

Shared Region Concepts and Examples 5-39

Example 5-3: Part 2, Task Builder Map for LIB.TSK

LIB.TSK;1 Memory allocation map TKB M43.00

11-DEC-87 13:50

Partition name : LIB
Identification : 01

Task UIC : [7,62]

Tagk Attributes: -HD,PI

Total address windows: 1.

Task image size : 64. words
Task address limits: 000000 000163

R-W disk blk limits: 000002 000002 000001 00001.

*** Root segment: LIB

R/W mem limits: 000000 000163 000164 00116.
Disk blk limits: 000002 000002 000001 00001.

Memory allocation synopsis:

Section
. BLK.:(RW,I,LCL,REL,CON) 000000 000000
AADD :(RO,I,GBL,REL,CON) 000000 000024
000000 000024
DIVV :(RO,I,GBL,REL,CON) 000024 000026
000024 000026
MULL :(RO,I,GBL,REL,CON) 000052 000024
000052 000024
SAVAL :(RO,I,GBL,REL,CON) 000076 000042
000076 000042
SUBB :(RO,I,GBL,REL,CON) 000140 000024
000140 000024

Global symbols:
AADD 000000-R MULL 000052-R SUBB
DIVV 000024-R

%% Task builder statistics:

Total work file references: 368.
Work file reads: O.
Work file writes: O.

Size of core pool: 7086. words (27. pages)

00000.
00020.
00020.
00022.
00022.
00020.
00020.
00034.
00034.
00020.
00020.

LIB

LIB

LIB

LIB

000140-R

Size of work file: 768. words (3. pages)

Elapsed time:00:00:03

5-40 Shared Region Concepts and Examples

Page 1

Ident
01
01
01
01

01

File

LIB.0BJ;2
LIB.0OBJ;2
LIB.0BJ;2
LIB.0BJ;2

LIB.0BJ;2

Example 5-3: Part 3, Source Listing for MAIN.MAC

.TITLE MAIN
.IDENT /01/
i+
;**MAIN - CALLING ROUTINE TO EXERCISE THE ARITHMETIC ROUTINES
; FOUND IN THE RESIDENT LIBRARY LIB.TSK.

»

.MCALL QIOW$S.EXIT$S

OP1: .WORD 1 ; OPERAND 1

0P2: .WORD 1 ; OPERAND 2

ANS: .BLKW 1 ; RESULT

OUT: .BLKW 100. ; FORMAT MESSAGE

FORMAT: .ASCIZ /THE ANSWER = %D./

.EVEN
.ENABL LSB
START:
Mov #ANS, - (SP) ; TO CONTAIN RESULT
MoV #0P2, - (SP) ; OPERAND 2
MOV #0P1,-(SP) ; OPERAND 1
MOV #3,-(SP) ; PASSING 3 ARGUMENTS
MoV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL AADD ; ADD TWO OPERANDS
CALL PRINT ; PRINT RESULTS
Mov SP,R6 ; ADDRESS OF ARGUMENT BLOCK
CALL SUBB ; SUBTRACT SUBROUTINE
CALL PRINT ; PRINT RESULTS
MoV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL MULL ; MULTIPLY SUBROUTINE
CALL PRINT ; PRINT RESULTS
Mov SP,RS ; ADDRESS OF ARGUMENT BLOCK
CALL DIV ; DIVIDE SUBROUTINE
CALL PRINT ; PRINT RESULTS
EXIT$S

o+

;*x PRINT - PRINT RESULT OF OPERATION.

3

PRINT: MOV #0UT,RO ; ADDRESS OF SCRATCH AREA
Mov #FORMAT ,R1 ; FORMAT SPECIFICATION
MoV #ANS,R2 ; ARGUMENT TO CONVERT
CALL $EDMSG ; FORMAT MESSAGE
QIOW$S #IO.WVB,#5,#1,,,,<#0UT,R1,#40>
RETURN ; RETURN FROM SUBROUTINE
.END START

Once you have assembled MAIN, you can use the following TKB command sequence to build
it:

TKB>MAIN,MAIN/MA/-WI/-SP=MAIN
TKB>/

Enter Options:

TKB>RESLIB=LIB/R0:3

TKB>//

>

Shared Region Concepts and Examples 5-41

Or, you can use the following LINK command sequence to build it:

$ LINK/TAS/MAP:MAIN/SYS/NOWIDE/NOPRINT/OPT MAIN

Option? RESLIB=LIB/R0:3

Option? |[RET

$

These command sequences instruct TKB to build a task file named MAIN.TSK on device SY in
the directory that corresponds to the terminal UIC. It also specifies that TKB is to create a map
file MAIN.MAP. The /MA switch or /SYS qualifier requests an extended map format. In the
TKB example, /MA was applied to the device specification so that TKB would include in the
map for the task the symbols within the library LIB. In DCL, the /SYS qualifier includes the
symbols within the library into the map. The negated form of the wide listing switch (/-WI) was
appended to the map specification to obtain an 80-column map format. In DCL, the /NOWIDE
qualifier specified an 80-column map format. In this example, /-SP and /NOPRINT prevent
TKB from spooling a map listing to the line printer.

The RESLIB option specifies that the task MAIN is to access the library LIB and that it requires
read-only access to LIB. TKB uses APR 3 to map the library.

The TKB map that results from this command sequence is shown in Example 5-3, Part 4.

5-42 Shared Region Concepts and Examples

Example 5-3: Part 4, Task Builder Map for MAIN.TSK

MAIN.TSK;1 Memory allocation map TKB M43.00

11-DEC-87

Partition name : GEN
Identification : 01
Task UIC : [7,62]

13:51

Stack limits: 000274 001273 001000 00512.

PRG xfr address: 001634
Total address windows: 2.
Task image size : 1152. WORDS

Task address limits: 000000 004327
R-W disk blk limits: 000002 000006 000005 00005.

**x Root segment: MAIN

R/W mem 1limits: 000000 004327 004330 02264.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section

. BLK.:(RW,I,LCL,REL,CON) 001274

001274
002024
003074
003312
003406
003666
004004
LIB :(RO,I,GBL,REL,CON) 060000
060000
$$RESL: (RO, I,LCL,REL,CON) 004114
004114
004140
004226

Global symbols:

AADD 060000-R $CBDSG 003110-R
DIVV 060024-R $CBOMG 003116-R
I0.WVB 011000 $CBOSG 003124-R
MULL 060052-R $CBTA 003154-R
SUBB 060140-R $CBTMG 003132-R
$CBDAT 003074-R $CBVER 003116-R
$CBDMG 003102-R $CDDMG 003656-R

002620

000530
001050
000216
000074
000250
000126
000110
000166
000166
000212
000024
000066
000100

$CDTB
$COTB
$C5TA
$DAT

$DDIV
$DIV

$DMUL

01424.

00344. MAI
00552. EDT
00142. CBT.
00060. CAT

Page 1
le Ident File
N 01 MAIN.OBJ;1
MG 15 SYSLIB.OLB;1034
A 04.3 SYSLIB.QOLB;1034
B 03 SYSLIB.OLB;1034

00168. EDDAT 03
00086. CDDMG 00
00072. C5TA 02

00118.
00118. LIB
00138.

01

00020. SAVRG 04

00054 . ARI
00064 . DAR

003312-R
003320-R
004004-R
003452-R
004264-R
004170-R
004226-R

TH 03.04
ITH 0007

SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034

LIB.STB;17
SYSLIB.OLB;1034

SYSLIB.OLB;1034
SYSLIB.OLB;1034

$EDMSG 002122-R
$MUL 004140-R
$SAVRG 004114-R
$TIM 003532-R

Shared Region Concepts and Examples

(Continued on next page)

5-43

Example 5-3 (Cont.): Part 4, Task Builder Map for MAIN.TSK

**%* Task builder statistics:

Total work file references: 2218.

Work file reads: O.

Work file writes: O.

Size of core pool: 2066. words (8. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:00:00:19
This map contains a global symbols section. Note that the symbols within the library now
have virtual addresses assigned to them and that these addresses begin at 60000, the virtual

base address of APR 3. The Task Builder’s allocation of virtual address space for MAIN.TSK is
shown in Figure 5-10.

Figure 5-10: Allocation of Virtual Address Space for MAIN.TSK

APR 7—

APR 6—

APR 5—

APR 4—

LIBTSK } WINDOW 1 REGION 1

VIRTUAL 60000 APR 3—

APR 2—

APR 1—
MAIN.TSK }W|NDOW 0 REGIONO

VIRTUALO APR 0—
ZK-426-81

The library LIB is position independent and can therefore be mapped anywhere in the referencing
task’s virtual address space. APR 3 was used in this example to contrast this mapping
arrangement with the mapping of MACCOM in the virtual address space of task MCOM1 in

5-44 Shared Region Concepts and Examples

Example 5-1 (Section 5.1.7). If the optional APR parameter in the RESLIB option above had
been left blank, TKB would have allocated the highest available APR to map the library.

5.1.11.1 Resolving Program Section Names in a Shared Region

As described in earlier sections of this chapter, program section names within position-
independent shared regions must normally be unique with respect to program section names
within tasks that reference them. When a shared region is a position-independent resident
common and you explicitly declare the program section names within it, avoiding program
section name conflicts is an easy matter. However, when a shared region is a position-
independent resident library that contains calls to routines within an object module library
(SYSLIB, for example), conflicts may develop that are not apparent to you. The problem arises
when the position-independent resident library and one or more tasks that link to it contain
calls to separate routines residing within the same program section of an object module library.

When TKB resolves a call from within a module that it is processing to a routine within an
object module library, it places the routine from the library into the image it is building. It also
enters into its internal table the name of the program section in the object module library within
which the routine resides. If a position-independent resident library contains a call to a routine
within a given program section of SYSLIB, for example, and then subsequently a task that links
to the resident library contains a call to a different routine within the same program section
of SYSLIB, both the resident library and the referencing task will contain the program section
name. When you build the referencing task, the library’s STB file will contain the program
section name and a program section conflict will develop. (Refer to Section 5.1.6 for additional
information on the sequence in which TKB processes tasks and the potential program section
name conflicts that can result.)

This situation and one possible solution to it can be illustrated with Example 5-3. When this
example was first created, only the arithmetic routines were included in the source file of the
resident library (LIB.MAC in Example 5-3, Part 1). The system library coroutine ($SAVAL) was
resolved from SYSLIB. Because the first instruction of each arithmetic routine called $SAVAL,
TKB included a copy of it in the resident library’s image at task-build time. This turned out to
be unsatisfactory because of a call to the SYSLIB routine $EDMSG (Edit Message) within the
program MAIN that links to the resident library. Both routines ($SAVAL and $EDMSG) reside
within the unnamed or blank program section (. BLK.) within SYSLIB. Therefore, a program
section name conflict developed when MAIN was built.

To circumvent this problem, the source code for $SAVAL was included in the source file for the
resident library under the explicitly declared program section name SAVAL.

Another solution would have been to build the resident library as absolute. In this case, TKB
would not have included program section names from the resident library into the STB file for
the resident library.

It is important to note that the above program section name conflict develops only when two
different routines residing within the same program section of an object module library are
involved. It presents no problem when a resident library and a task that links to it contain
a call to the same routine in an object module library. In that case, TKB copies the routine
and the program section name in which it resides into the resident library when the library is
built. Then, when the task that calls the same routine is built, TKB resolves the reference to
the routine in the resident library instead of in the object module library.

Shared Region Concepts and Examples 5-45

5.1.12 Building a Task That Creates a Dynamic Region

In all the examples of tasks shown thus far in this chapter, TKB has automatically constructed
and placed in the header of the task all of the window blocks necessary to map all of the
regions of the task’s image. The INSTALL task has been responsible for initializing the window
blocks when the task was installed. In all the examples, this has been possible because both
TKB and the INSTALL task have had all the information concerning the regions available to
them.

When a task creates regions while it is running (dynamic regions), the information concerning
the regions is not available to either the Task Builder or INSTALL. Therefore, when TKB builds
such a task, it does not automatically create window blocks for the dynamic regions. It creates
only the window blocks necessary to map the task region (the region containing the header and
stack) and any shared regions that the task references.

Dynamic regions are created and mapped with Executive directives that are imbedded in the
task’s code. When you build a task that creates dynamic regions, you must explicitly specify to
TKB how many window blocks (in excess of those created by TKB for the task region and any
shared regions) it is to place in the task’s header. The Executive will initialize these window
blocks when it processes the region and mapping directives. In all (including window blocks
for the task region and shared regions), you can include as many as 16 window blocks.

The text in the remainder of this section and the figures associated with it illustrate the
development of a task that creates dynamic regions. Example 5-4 shows a task (DYNAMIC.MAC)
that creates a 128-word dynamic region. This task simply creates an unnamed region, maps
to it, and fills it with an ascending sequence of numbers beginning at the region’s base and
moving upwards. When the region is full, DYNAMIC detaches from it and prints the following
message on your terminal:

Dynamic is now exiting
The region is automatically deleted on detach.

All of the Executive directives used by DYNAMIC to create and manipulate the region (RDBBKS,
WDBBK$, DTRG$S, EXIT$S, CRRG$S, CRAWSS, QIOWS$S, and QIOWS$C) are described in the
RSX-11M-PLUS and Micro/RSX Executive Reference Manual.

5-46 Shared Region Concepts and Examples

Example 5-4:

WDB:
MES1:

ERR1:
ERR2:

ERR3:

START:

.TITLE
.IDENT
.MCALL
.MCALL

.NLIST

REGION
WORD
WORD
WORD
WORD
WORD
WORD
WORD

RDBBK$

WINDOW
WORD O
WORD 1
WORD 2
WORD 3
WORD 4
WORD 5

DT W= O

WDBBK$
.ASCIZ
S1 = .
.ASCII

SIZ1 = .

.ASCII

SIzZ22 = .

.ASCII

SIZ3 = .

.EVEN
.PAGE
.ENABL

CRRG$S
BCS
MOV
CRAWSS
BCS
MOV
MOV

Part 1, Source Listing for DYNAMIC.MAC

DYNAMIC
/vo1/

RDBBK$,WDBBK$,DTRG$S , EXIT$S,, CRRG$S , CRAWSS

QIOWS$C,QIOwss
BEX
DESCRIPTOR BLOCK

SIZE OF REGION IN 32(10) WORD BLOCKS

REGION NAME

NAME OF SYSTEM-CONTROLLED PARTITION IN
WHICH REGION WILL BE CREATED

STATUS WORD
PROTECTION WORD

128., ,GEN,<RS.MDL!RS.ATT!RS.DEL!RS.RED!RS.WRT>, 170017

DESCRIPTOR BLOCK

APR TO BE USED TO MAP REGION
SIZE OF WINDOW IN 32-WORD BLOCKS

REGION ID

OFFSET INTO REGION TO START MAPPING
LENGTH IN 32-WORD BLOCKS TO MAP

STATUS WORD

7,128.,0,0, ,WS.MAP!WS.WRT>
/Dynamic is Now Exiting/

- MES1

/Create Region Failed/

- ERR1

/Create Address Window Failed/

- ERR2

/Detach Region Failed/

- ERR3

LSB

#RDB
1%

RDB+R.GID,WDB+W.NRID

#WDB

2%
WDB+W.NBAS,RO
WDB+W.NSIZ,R2

; CREATE A 128-WORD UNNAMED REGION
; FAILED TO CREATE REGION

; COPY REGION ID INTO WINDOW BLOCK

; CREATE ADDR WINDOW AND MAP

; FAILED TO CREATE ADDR WINDOW

; BASE ADDR OF CREATED REGION

; NUMBER OF 32-WORD BLOCKS IN REGION

(Continued on next page)

Shared Region Concepts and Examples

5-47

Example 5-4 (Cont.): Part 1, Source Listing for DYNAMIC.MAC

_.REPT & ; MULTIPLY
ASL R2 ; BY
.ENDR ; 32(10)
MOV #1,R1 ; INITIAL VALUE TO PLACE IN REGION
20%: Mov R1, (RO)+ : MOVE VALUE INTO REGION
INC R1 : NEXT VALUE TO PLACE IN REGION
DEC R2 ; ONE LESS WORD LEFT
BGT 20% ; TO FILL IN
DTRG$S #RDB ; DETACH AND DELETE REGION
BCS 3% ; DETACH FAILED
QIOW$C 1I0.WVvB,5,1,,,,<MES1,S1,40>
EXITS$S ;
; ERROR ROUTINES
1$: MOV #ERR1,RO : CREATE FAILED
MOV #SIZ1,R1 ; SIZE OF MESSAGE
BR 6$; WRITE MESSAGE
23: Mov #ERR2,RO ; CREATE ADDRESS WINDOW FAILED
MoV #SIZ2,R1 ; SIZE OF MESSAGE
BR 6$
3%: MoV #ERR3,RO ; DETACH FAILED
MoV #SIZ1 ,R1 ; SIZE OF MESSAGE
6$: QIOW$S #I0.WVB,#5,#1,,,,<RO,R1,#40>
EXITS$S
.END START

Once you have assembled DYNAMIC, you can build it with the following TKB command
sequence:

TKB>DYNAMIC,DYNAMIC/-WI/-SP=DYNAMIC
TKB>/

Enter Options:

TKB>WNDWS=1

TKB>//

>

Or, you can use the following LINK command sequence:

$ LINK/TAS/MAP:DYNAMIC/NOWIDE/NOPRINT/OPT DYNAMIC

Option? WNDWS=1

Option?

$

This command sequence directs TKB to create a task image named DYNAMIC.TSK and an
80-column (/-WI; or /NOWIDE in DCL) map file named DYNAMIC.MAP on device SY under
the terminal UIC. Because /-SP, or /NOPRINT, is attached to the map file in the command
line, TKB does not spool the file to the line printer.

Under options, the WNDWS option directs TKB to create one window block over and above
that required to map the task region. Note that one window block must be created for each
region the task expects to be mapped to simultaneously.

The map that results from this command sequence is shown in Example 5-4, Part 2.

5-48 Shared Region Concepts and Examples

Note that creating dynamic regions always involves the assumption that there will be enough
room in the partition named in the task’s region descriptor block to create the region when the
task is run. In this example, if DYNAMIC were to be run in a system whose partition GEN was
not large enough to accommodate the region it creates, the Create Region (CRRG$) directive

would fail.
Example 5-4: Part 2, Task Builder Map for DYNAMIC.TSK
DYNAMIC.TSK;1 Memory allocation map TKB M43.00 Page 1

11-DEC-87 16:05

Partition name : GEN
Identification : VO1
Task UIC . [7,62]

Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001470
Total address windows: 2.

Task image size : 512. WORDS
Task address limits: 000000 001753
R-W disk blk limits: 000002 000003 000002 00002.

**%x Root segment: DYNAMI

R/W mem limits: 000000 001763 001754 01004.
Disk blk limits: 000002 000003 000002 00002.

Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 001274 000430 00280.
001274 000430 00280. DYNAMI VO1 DYNAMIC.0BJ;1

$DPB$$: (RW,I,LCL,REL,CON) 001724 000030 00024.
001724 000030 00024. DYNAMI VO1 DYNAMIC.0BJ;1

**¥* Task builder statistics:

Total work file references: 549.
Work file reads: O.
Work file writes: O.

Size of core pool: 7086. words (27. pages)
Size of work file: 768. words (3. pages)

Elapsed time:00:00:06

5.2 Cluster Libraries

The term “cluster libraries” refers to both a function and a structure created by the Task Builder
that allow a task to dynamically map memory-resident shared regions at run time. Cluster
libraries permit a task to use, for example, an F77CLS library, an FMS-11 library, and an
FCS-11 library, all mapped through the same task address window. The run-time routines put
into the task by the Task Builder remap the library regions so that, instead of occupying 48K
bytes of virtual address space, they share 16K bytes of virtual address space.

Shared Region Concepts and Examples 5-49

Note
Read-only and read/write libraries cannot be clustered together.

One task address window (window 1) maps the libraries into the same span of virtual address
space (48K bytes to 64K bytes). TKB maps your task from virtual 0 upward.

TKB implements the cluster library function in two parts. The first part, revectoring of interlibrary
calls, is independent of the actual remapping mechanism but is required for remapping to work.
The second part executes the required MAP$ directives to map the appropriate library.

The following examples use the library and task structure shown in Figure 5-11. Note that
in the following examples, the FMS-11/RSX Version 2.0 and FORTRAN-77 software products
are sold under separate license and are not included with the RSX-11M-PLUS and Micro/RSX
systems. Cluster library support may be used with RMS-11 Version 2.0 or later versions, and
operates in a fashion similar to the FCS-11 example. Also, the particular FCSRES library used
below is generated by SYSGEN. It consists of two memory management overlays and a null
root.

Figure 5-11: Example of Library and Task Structure

VIRTUAL
ADDRESS
64KB
FORTRAN OTS LIBRARY FMS-11 LIBRARY FCS-11 LIBRARY
F77CLS FMSCLS FCSRES
48KB
USER
TASK

ZK-492-81

5.2.1 Building the Libraries

You must follow several rules when designing and building shareable clustered libraries. The
rules are summarized as follows:

e All libraries but the first require resident overlays.
e User task vectors indirectly resolve all interlibrary references.
* Revectored entry point symbols must not appear in the “upstream” STB file.

* A called library procedure must not require parameters on the stack.

5-50 Shared Region Concepts and Examples

e All the non-position-independent libraries must be built for the same address.
e Trap or asynchronous entry into a library is not permitted.

The rules are discussed in detail in the following sections.

5.2.2 Rule 1: All Libraries but the First Require Resident Overlays

The first library is the first named library in the CLSTR option line. To obtain the required
run-time overlay data structures in your task, you must define all the libraries (except possibly
the first one) by using memory-resident overlays. Although the first library can be an overlaid
library, it need not be and can be a single-segment structure. If the first library is overlaid
with a null root, the overlay run-time system cannot distinguish between the first library and
the other libraries in the cluster (those named in the CLSTR option after the first library).
Therefore, if the first library called is not the first library named in the CLSTR option, severe
performance degradation may be noticed because of excessive mapping and unmapping of the
libraries. Therefore, to avoid performance degradation if the first library is overlaid with a null
root, make certain that the first library called is the first library named in the CLSTR option.

All the libraries, except the first, must have a null root if overlaid. You can achieve this in
cases where a library is not normally overlaid by creating an unbalanced overlay structure with
a null module. For example, the following ODL specification for FMSCLS and a null module
would suffice:

.NAME FMSCLS
.ROOT FMSCLS-*(NULL ,FMSLIB)

NULL: .FCTR LB:[1,1]SYSLIB/LB:NULL ;NULL MODULE
FMSLIB: .FCTR SY:FMSLIB-LB:[1,1]FDVLIB/LB ;FMS-11 ROUTINES
.END

The above ODL specification creates an unbalanced tree in the form shown in Figure 5-12.

Figure 5-12: Example of an Unbalanced Tree with Null Segment

FMS-11 ROUTINES

NULL

ZK-427-81

The effect, after you build your task, is an overlay structure that is represented in Figure 5-13.

Shared Region Concepts and Examples 5-51

Figure 5-13: Example of an Overlay Cluster Library Structure

FORTRAN OTS

FMS-11 ROUTINES

FCS-11 ROUTINES

NULL

USER TASK

NULL

ZK-428-81

TKB provides the cross-library linkage that it creates from the overlay segment data contained
in the individual STB files of each library.

5.2.3 Rule 2: User Task Vectors Indirectly Resolve All Interlibrary
References

Figure 5-14 illustrates rule 2 and is a part of the example in Figure 5-13. In Figure 5-14, if
the FORTRAN OTS library references the FCS-11 entry point .OPEN, the transfer of control
from the FORTRAN OTS library to the FCS-11 library must be resolved by a jump vector in
your task. Or, to state it in another way, the CALL instruction in the FORTRAN OTS library
must not reference directly the target address (the address of .OPEN) in the FCS-11 library.
The system library contains the modules that perform the indirect transfer for FCS-11 based
libraries and user tasks. If you want to duplicate the indirect referencing mechanism for your
own purposes, Figure 5-14 and the following text describe the control flow for FCS-11.

5-52 Shared Region Concepts and Examples

Figure 5-14: Example of a Vectored Call Between Libraries

FORTRAN OTS FCS-11 LIBRARY
.OPEN::
FCSVEC
.OPEN::

Sample code from FCSVEC module:

.OPEN:: MOV #30,-(SP) ; STACK OFFSET INTO USER TASK
; JUMP TABLE
BR DISPAT ; JOIN COMMON DISPATCH

DISPAT: MOV RO,-(SP) ; SAVE REGISTER

MOV @#.FSRPT,RO0 . GET FCS-11 POINTER

ADD A.JUMP(R0),2(SP) . ADD VECTOR BASE TO OFFSET
MOV (SP)+,RO . RESTORE REGISTER

MOV @(SP)+,-(SP) . PICK UP ADDRESS OF TARGET
RETURN ; AND TRANSFER TO TARGET

ZK-429-81

In this example, the module FCSVEC defines the .OPEN entry point. The code at that location
stacks an offset (or “entry number”) and joins common dispatch code. The dispatch code, using
the low core FCS-11 impure pointer called .FSRPT, obtains the address of the FCS-11 impure
data area. At offset AJUMP in that area is the address of a vector of FCS-11 entry points.
A return is executed, which transfers control to the routine whose address is now on top of
the stack. If the target routine is an overlaid library, the run-time support (JAUTO) loads the
appropriate overlay and relays the transfer of control.

You may use this vectoring mechanism to isolate the linkages between two libraries whether
or not you use them in the cluster library scheme. You can replace either the FORTRAN OTS
or the FCS-11 library in your system without relinking the other library. However, you must
relink your task when you replace either of these libraries.

Shared Region Concepts and Examples 5-53

5.2.4 Rule 3: Revectored Entry Point Symbols Must Not Appear in the

“Upstream” STB File

This rule means that the GBLXCL=symbol option must appear for each revectored symbol, as
in FORTRAN OTS in this example. In the brief example given in the previous section, the
following line must appear in the build file for the FORTRAN OTS library:

GBLXCL=.0PEN

5.2.5 Rule 4: A Called Library Procedure Must Not Require Parameters on

the Stack

This rule applies to routines contained in libraries other than the “default” library, as represented
by the FMSCLS and FCSRES libraries of the above example. In addition, the called procedures
must use the JSR PC and RTS PC call and return convention. The flow of control for a call
into a cluster library member other than the default library proceeds as follows.

Only your task can call and reference the FCSRES library routine .OPEN. All references from
other libraries are revectored as described above. TKB resolves all such references to an
appropriate task-resident autoload vector. As in the example, when the FORTRAN OTS library
calls .OPEN, the code revectors the call through your task and hence to the autoload vector.
At this point, the TKB run-time routine $AUTO gets control and searches the overlay segment
descriptor tree, noting which segments are resident and which must be loaded or mapped to
access the target routine.

Next, $AUTO notes that a member of a library cluster must be unmapped to comply with the
map adjustments required to access the target routine. The reference to the unmapped library
and the segment within the library is placed on the stack, the target library is mapped, and the
target routine is accessed through a JSR PC instruction. That target routine must not attempt
to access parameters by offsets from the stack pointer (SP) because of the presence of $AUTO
saved information. Upon return from the target by an RTS PC instruction, the target library is
unmapped, and the previous library is remapped using the saved segment and library data on
the stack. Finally, $AUTO executes an RTS PC instruction to return to the caller.

Note that if your task contains a mix of cluster libraries and noncluster libraries, the call format
rule applies only to control transfers to cluster library routines. Other noncluster libraries that
you create may use any appropriate call and parameter-passing convention.

5.2.6 Rule 5: All the Non-Position-Independent Libraries Must Be Built for

the Same Address

TKB must be able to place each library of the cluster at the same virtual address. To do this,
the libraries must be built as position independent or be built to the exact address specified in
the CLSTR command described in Section 5.2.8.

5-54 Shared Region Concepts and Examples

5.2.7 Rule 6: Trap or Asynchronous Entry into a Library Is Not Permitted

A routine built as part of a library that is to be used in a cluster may not be specified as the
service routine for a synchronous trap, or for asynchronous entry as a result of I/O completion
or Executive service. This restriction is required because at the moment of the trap or fault,
the appropriate library may not be the one that is mapped. For example, if the default library
contains the service routine to display an error message upon odd address trap (the odd address
fault occurs within one of the other libraries of the cluster), the routine will not be available to
service the trap. It will have been unmapped by the run-time routines to map the called library.

I/O completion and fault service vectors and routines must be placed in libraries or task

segments that are resident at all times that the faults, traps, or I/O completions may occur.

5.2.8 Building Your Task

After building the individual libraries and placing the TSK and STB files for all the libraries
into the LB:[1,1] directory, you may build your task. The TKB option line that you must use for

your task has the following syntax:

CLSTR=1ibrary_1,library_2,...library_n:switch:apr

Parameters
library_n

The first specification denotes the first or the default library, which is the library to which

the task maps when the task starts up and remaps after any call to another library.

The total number of libraries to which a task may map is seven. The number of the
component libraries in clusters is limited to a maximum of six. A cluster must contain a
minimum of two libraries. It is possible to have two clusters of three libraries each or three
clusters of two libraries each; any combination of clusters and libraries must equal at least
two or a maximum of six. If six libraries are used in clusters, the task may map to only one

other, separate library.

:switch:apr

The switch :RW or RO indicates whether the cluster is read-only or read/write for this
particular task. The APR specification is optional and indicates which APR is to be used
as the starting APR when mapping to cluster libraries. If not specified, TKB assigns the

highest available APRs and as many as required to map the library.

5.2.9 Examples

The sample build files for F77CLS, FDVRES, and FCSRES, and for the FMS-11 demonstration

task FMSDEM, are given here as an example of the cluster library build process.

Shared Region Concepts and Examples 5-55

5.2.9.1 F77CLS—Build the Default Library for the FORTRAN-77 OTS

If you use TKB syntax, enter the following command sequence:

>TKB
TKB>F77CLS/-HD,F77CLS/CR/-SP/MA,F77CLS=F77RES
TKB>LB: [1,1]F770TS/LB

TKB>LB: [1,1]SYSLIB/LB:FCSVEC ; INCLUDE THE FCS JUMP VECTOR
TKB>/

Enter Options:
STACK=0
PAR=F77CLS: 140000 :40000

; FORCE THE JUMP TABLE TO BE LOADED FROM THE SYSTEM

; LIBRARY WHEN THE USER TASK IS BUILT

GBLINC=.FCSJT ; REFERENCE SYMBOL DEFINED IN
; THE MODULE SYSLIB/LB:FCSJMP

; PREVENT DEFINITIONS FOR FCS-11 ENTRY POINTS FROM APPEARING
; IN THE STB FILE FOR THIS LIBRARY OR OTHER SYSTEM LIBRARY

GBLXCL=
GBLXCL=.
GBLXCL=.
GBLXCL=.

GBLXCL=.
GBLXCL=.
GBLXCL=.
GBLXCL=.

.ASLUN [RET
CLOSE [RET
CsIt

CSI2

DELET
DLFNB
ENTER
EXTND

FCTYP

RE

GBLXCL=.

—

GBLXCL=.
GBLXCL=.
GBLXCL=.

GBLXCL=.
GBLXCL=.
GBLXCL=.
GBLXCL=.

GBLXCL=.
GBLXCL=.
GBLXCL=.
GBLXCL=.
GBLXCL=.

GBLXCL=.
GBLXCL=.
GBLXCL=.
GBLXCL=.

GBLXCL=.
GBLXCL=.
GBLXCL=.
GBLXCL=.
GBLXCL=.

5-56 Shared

FIND
FINIT
FLUSH

GET [RET]
GETSQ
GTDID
GETDIR

MARK
MRKDL
OPEN
OPFID
OPFNB

PARSE
POINT
POSIT
POSRC

PRINT
PRSDV
PRSFN
PUT
PUTSQ

l.:cv

a &G ﬁ i

m: m mj{myjm
l—4 .-a l—4 ll—a ll—| l—‘

ES]
m
—

)
m
—

ii
mijjm
—ift—

2|
—

]
S
o

T 1| l
I
s |

]
m
—

myimj||m
—i||]|

2
my
—

zi
mlim
—i||—

R

EH
)=
my
i

Region Concepts and Examples

GBLXCL=.REMOV
GBLXCL=.SAVR1 [RET]
GBLXCL=.TRNCL [RET
GBLXCL=.READ

GBLXCL=.WAIT
GBLXCL=.WRITE [RET
//

If you use DCL syntax for the command and options shown, you must do two things. First,
create a command file that contains the options and name it (for example, CLUSTR.CMD). The
reason you must do this is that DCL cannot contain all these options within its command buffer.
This command file can contain the options in the following example sequence:

STACK=0!PAR=F77CLS: 140000 : 40000

GBLINC=.FCSJT

GBLXCL=.CSI1, .CSI2, .DLFNB, .FINIT, .GET, .GETSQ, . GTDID
GBLXCL=.MRKDL, .OPFNB, .PARSE, .POINT, .POSRC, .PRINT
GBLXCL=.PUT, .PUTSQ, .SAVR1, .READ, .WAIT

Second, enter the following DCL command sequence:

$ LINK/TAS:F77CLS/NOH/MAP: F77CLS/NOPRINT/SYS/CROSS/SYM:F77CLS/0PT - [RET
->F77RES,LB:[1,1]F770TS/LIB,LB: [1,1]SYSLIB/INC:FCSVEC

Option? QCLUSTR.CMD

Option?

$

The GBLINC option, as shown in the TKB and DCL examples, forces TKB to add a global
reference entry in the library STB file. This ensures that TKB links certain modules required by
the library, such as impure data areas or root-only routines, without further user action. These
modules should be in the system library (LB:[1,1]SYSLIB.OLB) or in a library always referenced
by your task so that this forced loading mechanism is entirely invisible to you.

5.2.9.2 FDVRES—Build an FMS-11/RSX Version 2.0 Shareable Library

The following is an example command file. You name it FDVRES.CMD. If you use TKB syntax,
you can use the following TKB command line:

>TKB QFDVRES

If you use DCL syntax, you can use the following LINK command line:
$ LINK OFDVRES
; TITLE OF THE EXAMPLE COMMAND FILE THAT BUILDS THE FORMS

. MANAGEMENT MEMORY MANAGEMENT RESIDENT LIBRARY FOR USE WITH THE
; TASK BUILDER CLSTR OPTION.

; FDVRES.CMD

; THE FOLLOWING CODE IS THE EXAMPLE TKB COMMAND FILE:

LB: [1, 11FDVRES/-HD/MM/SG,MP: [1,34]FVRES/MA/-SP,LB: [1,1]FDVRES= [RET
SY: [1,24]FDVRESBLD/MP

Shared Region Concepts and Examples 5-57

STACK=0

PAR=FDVRES : 140000 : 40000

TASK=FDVRES

; THE FOLLOWING LINE FORCES THE FCS JUMP TABLE TO BE INCLUDED IN THE
; SYMBOL TABLE FILE FOR THE FORMS MANAGEMENT LIBRARY.

GBLINC=.FCSJT
; THE FOLLOWING LINES FORCE LIBRARY ENTRY POINTS AND DEFINITIONS INTO
; THE TASK ROOT:

GBLREF=CBCUR, CBREV, CBTST, CB132, DVBLD,DVSBLK , DV$DHW , DVSDWD [RET
GBLREF=DVGRA ,DVREV ,DVUND, DATT1,D$ATT2,D$CLRC,DFID, DFXLN

GBLREF=D$LNCL ,D$PICT,D$PLEN, D$RLEN,D$VATT ,D$2ATT,D1$ALN ,D1$ALP
GBLREF=D1$ARY,D1$COM,D1$MIX,D1$NUM, D1$SCR,D1$SNM, D2$DEC, D2$DIS

i
=||m
m
!

|
m
=

GBLREF=D2$FUL , D2$NEC,D2$REQ, D2$RTJ , D2$SP0, D2$TAB, D2$VRT , D2$ ZFL
GBLREF=FC$ALL , FCSANY ,FC$CLS , FCCSH, FCDAT , FCGET , FCGSC , FCSLST
GBLREF=FC$0PN , FC$PAL , FCPSC, FCPUT, FCRAL ,RCRTN, FCSHO , FCSLN
GBLREF=FCSPF , FCSPN , FC$TRM , FESARG, FE$DLN , FEDNM, FEDSP , FE$FCD [RET
GBLREF=FESFCH, FEFLB , FE$FLD , FESFNM, FE$FRM , FEFSP, FEICH, FE$IFN [RET
GBLREF=FEIMP, FEINI,FE$IOL,FESIOR, FESLIN, FESNOF , FESNSC, FE$STR
GBLREF<FESUTR , FEINC, FSSUC , FTSATB, FTKPD ,FTNTR, FTNXT ,FTPRV [RET
GBLREF=FTSBK , FTSFW , FTSNX,FTSPR, FTXBK, FTXFW, F$ASIZ FSCHN [RET
GBLREF=FFNC, FIMP ,FLEN , FNAM, FNUM, FREQ, F$RSIZ, F$STS
GBLREF=FTRM, FVAL , ISALT, ISCLR, ISDEC, ISDSP, ISERR , ISHFM [RET
GBLREF=ISHLP, ISINS, ISSLST, ISSMED, ISNMS , ISSCR, ISSGN , IADVO
GBLREF=I$ALLC, I$BADR, I$BEND , I$BPTR, I$BSIZ, I$CFRM, I$CURC, I$CURP
GBLREF=I$DISP, I$DLN1, I$DLN2, I$FADR, I$FBLK, I$FCHN, I$FDES, I$FDST [RET
GBLREF=I$FDS1, I$FDS2, ISFIXD, I$FMST, I$FOFF, ISFORM, I$FSIZ, I$FXD1
GBLREF=I$FXD2, I$HLEN , I$HLPF , I$ILEN, I$IMPA, ISLCOL, ISLINE, ISLLIN
GBLREF=I$LNCL, I$LPTR, I$LVID, I$NBYT, I$NDAT, I$NFLD, I$PATN, I$PBLN

=
m
=

GBLREF=I$RESP, I$ROFF, I$STAT, I$STKP, I$SVST, I$VATT, L$§CLSZ , L$FDES
GBLREF=L$LNCL, L$RESP, $$FDVT

GBLREF=$FDV

; THE FOLLOWING LINES PREVENT THE DEFINITIONS FOR FCS-11 ENTRY POINTS
; FROM APPEARING IN THE FORMS MANAGEMENT LIBRARY STB FILE:

GBLXCL=. ASCPP
GBLXCL=.ASLUN [RET
GBLXCL=.CLOSE [RET
GBLXCL=.CTRL

GBLXCL=.DELET
GBLXCL=.DLFNB [RET
GBLXCL=.ENTER
GBLXCL=.EXTND [RET]

5-58 Shared Region Concepts and Examples

GBLXCL=.FATAL [RET
GBLXCL=.FCTYP |R
GBLXCL=.FIND [RET
GBLXCL=.FINIT [R
GBLXCL=.FLUSH [RET

GBLXCL=.GET
GBLXCL=.GETSQ [RET
GBLXCL=.GTDID [RET
GBLXCL=.GTDIR

GBLXCL=.MARK
GBLXCL=.MBFCT [RET
GBLXCL=.MRKDL

GBLXCL=.0PEN
GBLXCL=.0PFID
GBLXCL=.0PFNB

GBLXCL=.PARSE
GBLXCL=.POINT
GBLXCL=.POSIT
GBLXCL=.POSRC

GBLXCL=.PPASC
GBLXCL=.PPR50
GBLXCL=.PRINT
GBLXCL=.PRSDI

m
—

pe)

m
=

ﬁz

~
—

ol I el | el el |] 21|22
my |mj{m||m|im myj|m||rm:
4l [==i=l=] ==

GBLXCL=.PRSDV
GBLXCL=.PRSFN
GBLXCL=.PUT
GBLXCL=.PUTSQ

GBLXCL=.RDFDR
GBLXCL=.RDFFP
GBLXCL=.RDFUI
GBLXCL=.REMOV

GBLXCL=.SAVR1
GBLXCL=.TRNCL
GBLXCL=.WRITE [RE
// [RET]

)
m
=

22 pe]
m||m m)|
—||— —

2 |23
m| |mijm,
— ==

2|
m
his

5.2.9.3 FDVRESBLD.ODL—Overlay Description for FMS-11/RSX Version 2.0 Cluster
Library

The following example file is an overlay description file named FDVRESBLD.ODL. If you use
TKB syntax, you enter the command line as follows:

>TKB outfile(s)=FDVRESBLD/MP
If you use DCL syntax, you enter it as follows:

$ LINK/.../.../... FDVRESBLD/OVER

Shared Region Concepts and Examples 5-59

; THE FOLLOWING LINE IS THE FILE NAME OF THE ODL FILE FOR THE
; MEMORY MANAGEMENT RESIDENT FORMS MANAGEMENT LIBRARY:

; FDVRESBLD.0DL

THE FOLLOWING LINES OF CODE ARE CONTAINED IN THE ODL FILE FOR THE

; MEMORY MANAGEMENT RESIDENT FORMS MANAGEMENT LIBRARY:

.NAME
.ROOT
NULO: .FCTR
FCSV: .FCTR
MAIN: .FCTR

FDVROT
FDVROT-*! (MAIN,NULO) [RET
LB:[1,1])SYSLIB/LB:NULL

LB: [1,1]SYSLIB/LB: FCSVEC

LB: [1, 1]FDVLIB/LB:FDV-LB: [1,1]FDVLIB/LB-FCSV
.END

5.2.9.4 FCSRES Library Build

FCSRS1BLD.BLD is distributed with the RSX-11M-PLUS and Micro/RSX distribution kits.
Refer to the build command and overlay description contained in the files FCSRS1BLD.CMD
and FCSRS1BLD.ODL, which can be generated by SYSGEN if you want.

5.2.9.5 F77TST.CMD—¥ile to Build the FMS-11/RSX Version 2.0 FORDEM Test Task

The following is an example build command file named F77TST.CMD. If you use TKB syntax,
enter the following command line:

>TKB QF77TST.CMD

If you use DCL syntax, enter the following command line:

$ LINK QF77TST.CMD

;THE FOLLOWING ARE THE CONTENTS OF THE COMMAND FILE
FORDEM/FP, FORDEM/MA/-SP=FORDEM, HLLFOR

LB: [1,1]FDVLIB/LB

LB:[1,1]F770TS/LB

/ [RET

RET

EXTSCT=$$FSR1 : 2000
CLSTR=F77CLS , FDVRES , FCSRES : RO

STACK=200
1/

5-60 Shared Region Concepts and Examples

5.2.10 Overlay Run-Time Support Requirements

The Task Builder uses the STB files of the cluster libraries to obtain the information needed
to create the overlay database. For each memory management overlaid cluster library, TKB
places autoload vectors, segment descriptors, window descriptors, and a region descriptor in
the root of the task. This information comprises the overlay run-time support for the cluster
libraries. In Appendix B, Figure B-9 and the accompanying text describe this information. Table
5-1 describes the space needed for the overlay run-time system support that includes cluster
libraries. For a complete description of overlay run-time routine sizes, see Section 4.5.

Using cluster libraries conserves virtual space and may require only one window.

Table 5-1: Comparison of Overlay Run-Time Module Sizes

Number
Program of Bytes
Module Section Octal/Decimal Specific Use

One of the following modules is included in any overlaid task that uses autoload and in any
task that links to a memory management overlaid resident library.

AUTO $$AUTO 122/82 All tasks that use autoload
AUTOT $$AUTO 132/90 All tasks with ASTs
$$RTQ 32/26 disabled during autoload

$$RTR 30/24

One of the following modules is included in any overlaid conventional task. OVCTR or OVCTC
is included in any nonoverlaid task (conventional or I- and D-space) that links to a memory
management overlaid resident library.

OVCTL $$MRKS 76/62 Disk overlays only
$$RDSG 160/112
$$PDLS 2/2

OVCTR $$MRKS 234/156 Disk and memory management overlays with no cluster
$$RDSG 332/218 libraries
$$PDLS 12/10

OVCTC $$MRKS 254/172 Disk and memory management overlays with cluster
$$RDSG 352/234 libraries

$$PDLS 120/80
One of the following modules is included in any overlaid I- and D-space task.

OVIDL $$MRKS 76/62 Disk overlays only
$$RDSG 224/148
$$PDLS 2/2

OVIDR $$MRKS 304/196 Disk and memory management overlays with no cluster
$$RDSG 502/322 libraries
$$PDLS 12/10

Shared Region Concepts and Examples 5-61

Table 5-1 (Cont.): Comparison of Overlay Run-Time Module Sizes

Number
Program of Bytes
Module Section Octal/Decimal Specific Use

OVIDC $$MRKS 324/212 Disk and memory management overlays with cluster
$$RDSG 522/338 libraries
$$PDLS 120/80

The overlay data vector OVDAT is included in any overlaid task and in any task that links to
a memory management overlaid resident library.

OVDAT $$OVDT 24/20 Included in all tasks that perform overlay operations
$$SGDO 0/0
$$SGD2 2/2

S$SRTQ 0/0
$$RTR 0/0
$$RTS 2/2
The overlay error service routine ALERR is included whenever OVDAT is included.
ALERR $$ALER 24/20 Overlay error
Manual overlay control (LOAD) is used in place of any AUTO routine. (See Section 4.2, Manual
Load.)
LOAD $$LOAD 252/170 Manual overlay control

$$AUTO 14/12

5.3 Task Building an F4PRES, FORRES, or FMSRES Library with or
without FCSRES

The following section describes how and why you may want to link an application task to
one or more languages, FMS, or an FCS resident library. Also, this section describes trade-offs
of memory, speed, flexibility, and ease of use. For the sake of simplicity, the example of a
FORTRAN IV-PLUS OTS resident library (F4PRES) is used in the rest of this text to represent
FORTRAN IV-PLUS, FORTRAN IV (FORRES), and FMS (FMSRES) resident libraries

In general, the presence of a permanent resident library is justified when it is used frequently
enough that it saves physical memory, compared to having the FCS or OTS code in the task
images of frequently used tasks.

In all cases, the application task need only be linked to properly built resident libraries using
the LIBR, COMMON, RESLIB, RESCOM, or CLSTR options.

5.3.1 FCSRES—The Types of FCS Resident Libraries

It is possible to build two kinds of FCS resident libraries. They are described in the following
sections.

5-62 Shared Region Concepts and Examples

5.3.1.1 Building a Memory-Resident Overlaid FCSRES

SYSGEN can automatically generate a memory-resident overlaid FCS library that uses one APR
of task address space. This FCSRES makes available all of FCS (except the little-used routines
.CTRL, .PRSD], and .PPR50), .CSI1, .CSI2, and many other system library routines. (See
[1,20]JFCSRS1BLD.BLD for a list of routines.) When FCSRES is built from memory, and when it
is built from LB:[1,1)JANSLIB.OLB, it uses 66249 words. FCSRES uses one APR in either case
because it is composed of two memory-resident overlays and a null root segment.

SYSGEN Phase II and SYSGEN Phase III can link utility tasks to this FCSRES, frequently
improving task execution speed and virtual address space and lessening task image size. This
feature, plus the fact that no editing of a source file is required, makes the memory-resident
FCSRES easier to use than the non-memory-resident FCSRES.

A memory-resident FCSRES requires memory management support.

To task build an application task to both the memory-resident FCSRES and F4PRES, you
must take special measures when building the F4PRES. Such a resident library is said to have
revectored FCS. Once the F4PRES is built, application tasks may be linked to it with or without
linking to FCSRES as well. The TKB cluster library facility, using the CLSTR option, may be
used to task build the application task to two or more resident libraries, which saves in virtual
address space.

5.3.1.2 Building a Non-Memory-Resident FCSRES

You can manually assemble and build a non-memory-resident FCSRES from the file [200,200]
FCSRES.MAC.

If you build the resident library using LB:[1,1]SYSLIB.OLB without editing FCSRES.MAC, you
can produce a 3744,9-word FCSRES that uses one APR.

If you build the resident library using LB:[1,1JANSLIB.OLB, you must edit FCSRES.MAC to
remove enough FCS routines from FCSRES to bring it below 4K words. If you use ANSLIB.OLB
without editing FCSRES.MAC, TKB builds a 4448,o-word FCSRES that uses two APRs.

The FCSRES library built from an unedited FCSRES.MAC contains all of FCS. Note that .CSI1
and .CSI2, used by FORTRAN IV and FORTRAN IV-PLUS ASSIGN and OPEN statements, are
not present in the non-memory-resident FCSRES. The 1426, bytes used by .CSI1 and .CSI2
will be present in your task’s image if you use the ASSIGN or OPEN statement, or they can be
included in F4PRES.

If you want to link RSX-11M-PLUS and Micro/RSX utilities to a non-memory-resident FCSRES,
you must create and edit the TKB CMD and ODL files and task build the utilities manually.

No memory management support is required for a non-memory-resident FCSRES.

Shared Region Concepts and Examples 5-63

5.3.1.3 Using FCSRES and FCSFSL

FCSRES and FCSFSL are merged into a single vectored-entry memory image that can be used
in either user- or supervisor-mode libraries. The [1,1JFCSRES.TSK image file installs under the
library name FCSRES and is used to satisfy both user and supervisor library requests.

Although the build commands are LIBR=FCSRES and SUPLIB=FCSFSL, respectively, TKB forces
references to FCSFSL to become references to FCSRES in order to use the same library image.

Tasks built prior to the merging of FCSRES and FCSFSL that reference FCSFSL can continue
to use the previous version of FCSFSL until they are rebuilt. However, they cannot use
the new image file supplied under the name [1,1]JFCSFSL.TSK because this image does not
contain executable code. You do not need to relink tasks built prior to the merging of FCSRES
and FCSFSL if your library has vectored entry points and you install the task using INS
LB:[1,1JFCSRES /task=FCSFSL.

The possible FCSRES and FCSFSL references and the results are as follows:

Library
TKB Option Specification Result
LIBR= FCSRES Memory-resident overlaid, PIC, uses one APR
LIBR= FCSFSL User-mode nonoverlaid FCSRES, PIC, requires two APRs
SUPLIB= FCSRES Supervisor-mode overlaid, PIC, one supervisor-mode APR
SUPLIB= FCSFSL Supervisor-mode FCSRES usage, PIC, two supervisor-mode

APRs

5.3.1.4 Building F4PRES

Building an optimal FAPRES depends on the specific F4P OTS routines that your task uses, their
need for virtual address space, and the available physical memory on your system.

You must decide which F4P OTS routines are used frequently enough by your task to warrant
their presence in F4PRES. Routines are included or excluded by editing FAPRES.MAC.

The key factor is often the number of APRs used to map to the resident libraries. For example,
you may have an important privileged application task that has only one APR available. In this
case, if you construct an F4PRES library that uses two APRs and is clustered with FCSRES, for
a total of two APRs, it may be best to edit more routines out of F4PRES to trim it to one APR.

The key to building F4PRES usable with the memory-resident FCSRES is that no FCS code is
present in F4PRES, but all subroutine calls to FCS in F4PRES are resolved when F4PRES is
built. This scheme involves revectoring the FCS calls through the application task image.

5-64 Shared Region Concepts and Examples

5.3.1.5 Options and Trade-Offs

There are a number of ways to link application tasks with resident libraries.

The following cases assume a minimally sized FAPRES; 4096,, words mapped by one APR if
FCS is not contained in it, and 8192;p words mapped by two APRs if FCS is contained in it.
These numbers will vary according to the F4P OTS routines that you include in F4PRES. It may
not be possible for you to construct a useful F4PRES of one or both of these sizes; yours may
use two APRs without FCS or three APRs with FCS.

In the following cases, the “virtual and physical memory” descriptions are always relative to a
task with no overlays or resident libraries. Your task’s disk- or memory-resident overlays may
add overlay run-time routines, autoload vectors, and segment and region descriptors to your
task.

The cases are as follows:

Case 1—Linking to FAPRES with revectored FCS calls and memory-resident FCSRES used
as a cluster library. Link the application task with the following TKB option:

CLSTR=F4PRES, FCSRES:RO

This case uses a total of one APR, making available maximum virtual address space in the
application task. This is most appropriate for tasks that can take advantage of the increased
virtual address space. On a system with the memory-resident FCSRES, F4P application
tasks that do not profit from the increased address space should be built according to Case
2, which has two LIBR= TKB options. MACRO-11 application tasks can be built with one
LIBR=FCSRES:RO TKB option (see Case 3 for the memory characteristics in this case).

If FCS routines are called from the task image, the calls are resolved to entry points in
FCSRES. (FCS routines might be called by either OTS code in the task image or by your
task’s MACRO-11 subroutines.)

Virtual and physical memory: Case 1 requires one APR. The application task root incurs
a load of 1250,y bytes; 32 bytes from FCSJMP.OBJ, 650 bytes from FCSRES.STB (autoload
vectors, segment and region descriptors), and 568 bytes from the overlay run-time routines.

Execution speed: Some execution time is consumed when the overlay run-time code in the
task image must change the APRs from one resident library to another.

Case 2—Linking to F4PRES with revectored FCS calls and to a memory-resident FCSRES
not used as a clustered library. Link the application task with the following TKB options:

LIBR=FCSRES:RO
LIBR=F4PRES:RO

This case uses two APRs for the resident libraries, but there is less overhead than with a
cluster of libraries as in Case 1. Case 2 is best for tasks that cannot profit by using the extra
APR that a cluster could make available. If FCSRES is predominantly being used in this
way (little use of FCSRES linked to RSX utilities or MACRO-11 application tasks, and no
clustered FCSRES and F4PRES), you should also consider Case 4, where a two-APR F4PRES
contains FCS (with no cost in autoload vectors), FCSJMP, or overlay run-time routines for
FCSRES. Other tasks can reference the resident libraries with one or more TKB LIBR options
or with CLSTR.

Shared Region Concepts and Examples 5-65

If FCS routines are called from the task image, the calls are resolved to entry points in
FCSRES. (FCS routines might be called by either the OTS code in the task image or by
your task’s MACRO-11 subroutines.)

Virtual and physical memory: Case 2 requires two APRs. The application task root incurs
a load of 1164y, bytes; 32 bytes from FCSJMP.OBJ, 650 bytes from FCSRES.STB (autoload
vectors, segment and region descriptors), and 482 bytes from the overlay run-time routines.

Execution speed: Some execution time is consumed when the overlay run-time code in the
task image must change the mapping of the APR for FCSRES from one overlay to another,
but less time is used than with a cluster.

e Case 3—Linking to a memory-resident FCSRES and having the OTS code present in your
task’s image. Link the application task with the following TKB option:

LIBR=FCSRES:RO

This case is appropriate when FCSRES is necessary, but you cannot justify having a
permanent F4PRES on your system.

Virtual and physical memory: Case 3 requires one APR for FCSRES. The OTS code, which
may be thousands of bytes, is included in the application task image. (The OTS code should
be overlaid.) The task root also incurs a load of 1132 bytes: 650 bytes from FCSRES.STB
(autoload vectors, segment and region descriptors) and 482 bytes from the overlay run-time
routines.

Execution speed: Some execution time is consumed when the overlay run-time code in the
task image must change the mapping of the APRs of resident libraries from one library to
another. More execution time is used if you overlay the OTS code in the task image.

e Case 4—Linking to F4APRES with revectored FCS so that FCS code is present in your task’s
image. This combination is never the best choice because F4PRES and your task will include
FCSJMP and FCSVEC with no benefit. However, tasks will link and execute correctly. Link
the application task with the following TKB option:

LIBR=F4PRES:RO

e (Case 5—Linking to an F4PRES that contains FCS. You can link the task with the following
TKB option:

LIBR=F4PRES:R0O

This case is appropriate when F4PRES is necessary, you do not need a permanent FCSRES
on your system, and no critical application tasks would profit from the increased address
space of a clustered FCSRES and F4PRES.

The program combination for this case tends to contain more OTS code in the same number
of APRs than Case 6 because only the FCS used by F4PRES is present, leaving more room
for OTS code.

If your task contains macro subroutines that use FCS, try to use the FCS routines already
contained in F4PRES (for example, OFNB$, OFID$, or DELET$). Otherwise, the task will
contain large amounts of FCS code.

Virtual and physical memory: Case 5 requires two APRs. There is no overlay overhead due
to the resident library.

5-66 Shared Region Concepts and Examples

Execution speed: There is no overlay overhead due to the resident library.

¢ (Case 6—Linking F4PRES to a non-memory-resident FCSRES (LIBR=FCSRES:RO in the
F4PRES TKB command file). Link the task to F4PRES with the following TKB option:

LIBR=F4PRES:R0O

If you have a non-memory-resident FCSRES on your system, Case 6 may be appropriate.
Note that Case 5 tends to include more OTS code in the same number of APRs.

If FCS routines are called from the task image, a space problem can occur. (FCS routines
can be called by either OTS code in the task image or by your MACRO-11 subroutines.)
FCSRES entry points are available only to a task or resident library linked directly to
FCSRES; they are not available to a task linked to F4PRES in this case. Thus, any FCS
routine called in your task will bring a number of FCS modules into the task image.

Virtual and physical memory: Case 6 requires two APRs. There is no overlay overhead due
to the resident library.

Execution speed: There is no overlay overhead due to the resident library.

* Case 7—Linking to a non-memory-resident FCSRES with the OTS code in the task image.
Link the application task with the following TKB option:

LIBR=FCSRES:R0Q

Case 7 is appropriate when the non-memory-resident FCSRES is necessary, but you cannot
justify having a permanent F4PRES on your system.

Virtual and physical memory: Case 7 requires one APR for FCSRES. The OTS code, which
could be thousands of bytes, is included in the task image. The OTS code should be
overlaid.

Execution speed: There is no overlay overhead due to the resident library.

5.4 Virtual Program Sections

A virtual program section is a special TKB storage allocation facility that permits you to create
and refer to large data structures by means of the mapping directives. Virtual program sections
are supported in TKB through the VSECT option and in FORTRAN through a set of FORTRAN-
callable subroutines that issue the necessary mapping directives at run time. With the TKB
VSECT option, you can specify the following parameters for a relocatable program section or
FORTRAN common block that you have defined in your object module:

® Base virtual address
* Virtual length (window size)
¢ Physical length

By specifying the base address, you can align the program section on a 4K address boundary as
required by the mapping directives. Thereafter, references within the program need only point
to the base of the program section or to the first element in the common block to ensure proper
boundary alignment.

Shared Region Concepts and Examples 5-67

By specifying the window size, you can fix the amount of virtual address space that TKB
allocates to the program section. If the allocation made by a module causes the total size to
exceed this limit, the allocation wraps around to the beginning of the window.

By specifying the physical size, you can allocate, before run time, the physical memory that the
program section will be mapped into at run time. TKB allocates this physical memory within
an area that precedes the task image. This area is called the mapped array area.

The physical length parameter is optional. If you intend to allocate physical memory at run
time through the Create Region (CRRG$) directive, you can specify a value of 0.

Note that when you specify a nonzero value for the physical memory parameter, the resulting
allocation affects only the task’s memory image, not its disk image.

Note also that TKB attaches the virtual attribute to a relocatable program section you have
specified in the VSECT option only if the section is defined in the root segment of your task
through either a FORTRAN COMMON or a MACRO-11 .PSECT statement. The relocatable
program section with the virtual attribute in the root does not use address space in your task;
using this procedure merely assigns an address, window size, and physical length to a region
yet to be mapped at run time by your task. For example:

VSECT=MARRAY : 160000 : 20000 : 2000

In this example, virtual program section MARRAY is allocated with a window size of 4K words
(200005 bytes) and a base virtual address of 160000. In physical memory, 32K words are
reserved for mapping the section at run time.

Assume that the program is written in FORTRAN and includes the following statement:
COMMON /MARRAY/ARRAY(4)...

This statement generates a program section to which TKB attaches the virtual attribute. However,
this program section is not a FORTRAN virtual array. A reference to the first element of the
section, ARRAY(1), is translated by TKB to the virtual address 160000.

Figure 5-15 shows the effect of this use of the VSECT option.

5-68 Shared Region Concepts and Examples

Figure 5-15: VSECT Option Usage

160000 APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

TKB >/

WINDOW

}9 (WINDOW SIZE)

TASK
IMAGE

© (PROGRAM
SECTION
DEFINITION)

COMMON/MARRAY/...

HEADER & STACK

© (VIRTUAL BASE ADDRESS)

TASK
IMAGE

COMMON/MARRAY/...

VIRTUAL ADDRESS
SPACE

Enter Options:

TKB>VSECT = I\@B_ﬁYﬂGOOOOQOOOO:QOOO

o 000

HEADER & STACK

PHYSICAL LENGTH “:AR‘;"EE
64-BYTE BLOCKS R

PHYSICAL MEMORY

ZK-430-81

Shared Region Concepts and Examples 5-69

As mentioned previously, TKB restricts the amount of virtual address space allocated to the
section to a value that is less than or equal to the window size, wrapping around to the base if
the window size is exceeded.

This process is illustrated in the following example, in which three modules (A, B, and C) each
contains a program section named VIRT that is 3000 words long. A window size of 4K words
has been set through the VSECT option. If the program section has the concatenate attribute,
the Task Builder allocates memory to each module as follows:

Module Low Limit Length High Limit

A 160000 14000 174000
B 174000 14000 170000
C 170000 14000 164000

The address limits for modules B and C illustrate the effect of address wraparound when a
component of the total allocation exceeds the window boundary. Note that the addresses
generated will be properly aligned with the contents of physical memory if the virtual section
is remapped in increments of the window size.

5.4.1 FORTRAN Run-Time Support for Virtual Program Sections

FORTRAN supports subroutines to make use of the mapping directives. FORTRAN also supports
calls to the following subroutines, which are related to virtual program sections:

Subroutine Function

ALSCT Allocates a portion of physical memory for use as a virtual section

RLSCT Releases all physical memory allocated to a virtual section

As mentioned earlier, the effect of one or more VSECT= declarations at task-build time is to
create a pool of physical memory below the task image (the mapped array area). Before a
virtual section is referred to, the task must allocate a portion of this memory through a call to
ALSCT. When space is no longer required, it is released through a call to RLSCT.

Note that these subroutines issue no mapping directives. They allocate and release space using
region and window descriptor arrays that you supply. The resulting physical offsets are used
in the task’s subsequent calls that perform the actual mapping.

The subroutine ALSCT is called to allocate physical memory to a virtual program section as
follows:

CALL ALSCT (ireg,iwnd[,ists])

Parameters
ireg
A one-dimensional integer array that is nine words long. Elements 1 through 8 of the array

contain a region descriptor for the physical memory to be mapped. The descriptor has the
following format:

5-70 Shared Region Concepts and Examples

ireg(1) Region ID

ireg(2) Size of region in units of 64-byte blocks

ireg(3) Name of region in Radix-50 format (first three characters)

ireg(4) (Second three characters)

ireg(5) Name of main partition containing region

ireg(6) The name in Radix-50 format

ireg(7) Region status word

ireg(8) Region protection code

ireg(9) Thread word—This element links window descriptors that are used to map

portions of the region. It is maintained by the subroutine.

The elements of the array that you set up consist of ireg(1) and ireg(3) through ireg(8). The
thread word, ireg(9), must be 0 on the initial call; thereafter, the subroutine maintains it.

When your task makes an allocation, ireg(1) and ireg(2) must be 0 on the initial call. In
this case, ALSCT obtains and stores the region size in ireg(2). When the allocation is being
made from a separate region, the caller must supply both the region ID and size. The
subroutine does not refer to elements 3 through 8, but rather the caller must set them up as
required by the applicable system directives. For a detailed description of these parameters,
refer to the RSX-11M-PLUS and Micro/RSX Executive Reference Manual.

iwnd

A one-dimensional array that is 11 words long. The first eight words contain a window
descriptor in the following format:

iwnd(1) Base APR in bits 8 through 15; the Executive sets bits 0 through 7 when the
appropriate mapping directives are issued

wnd(2) Virtual base address

iwnd(3) Window size in units of 64-byte blocks

iwnd(4) Region ID

iwnd(5) Offset into the region, in units of 64-byte blocks
iwnd(6) Length to map, in units of 64-byte blocks

iwnd(7) Status word
iwnd(8) Address of send/receive buffer
iwnd(9) Base offset of physical block allocated to section in units of 64-byte blocks

iwnd(10) Length of block in units of 64-byte blocks (supplied by caller); set to maximum
block offset by subroutine

iwnd(11) Thread word—This element links window descriptors that are used to map
other portions of the region. It is maintained by the subroutine.

You must set up iwnd(10) before calling ALSCT.

Shared Region Concepts and Examples 5-71

The following array elements are supplied as output from the subroutine:
iwnd(4), iwnd(5), iwnd(9), iwnd(10), and iwnd(11)

The remaining elements must be set up as required by the Executive directives. Consult
the RSX-11M-PLUS and Micro/RSX Executive Reference Manual for a detailed description of
these parameters.

ists
An area that receives the result of the call. One of the following values is returned:

+1 Block successfully allocated. In this case, the region and window descriptor arrays
are set up as described above.

-200. Insufficient physical memory was available for allocating the block.

The subroutine RLSCT is called to deallocate the physical memory assigned to a virtual section
as follows:

CALL RLSCT (ireg,iwnd)

Parameters

ireg
A one-dimensional integer array that is nine words long. The contents of the array are the
same as those described for subroutine ALSCT.

iwnd
A one-dimensional integer array that is 11 words long. The contents of the array are the
same as those described for subroutine ALSCT.

Upon return, element iwnd(10) is the length of the deallocated region in units of 64-byte
blocks.

The procedure for using these subroutines can be summarized as follows:

1. You allocate storage in the program for one window descriptor for each virtual program
section and for a single region descriptor.

2. Your task calls the subroutine ALSCT to reserve the physical memory to which the virtual
program section will be mapped.

3. Your task issues the mapping directives to map the virtual address space into a portion of
the physical memory. It is the task’s responsibility to ensure that the physical memory to
be mapped is always within the limits defined by iwnd(9) and iwnd(10).

4. When the space is no longer required, the task unmaps it and releases it with a call to
RLSCT.

5-72 Shared Region Concepts and Examples

5.4.2 Building a Program That Uses a Virtual Program Section

Example 5-5, Part 1 shows the FORTRAN source file for a task named VSECT.FTN. It illustrates
the use of the ALSCT FORTRAN subroutine. When you build, install, and run VSECT, it will
allocate the mapped array area below its header, create a 4K-word window, and map to the
area through the window. ALSCT will then initialize the area and prompt for an array subscript
at your terminal, as follows:

SUBSCRIPT?

When you input a subscript, it responds with ELEMENT= and the contents of the array element
for the subscript you typed. VSECT continues to prompt until you press CTRL/Z. Upon receiving
a CTRL/Z, VSECT exits.

Once you have compiled VSECT, you can build it with the following TKB command sequence:

TKB>VSECT, VSECT/-SP=VSECT,LB: [1,1]F770TS/LB
TKB>/

Enter Options:

TKB>WNDWS=1

TKB>VSECT=MARRAY : 160000 : 20000: 200

TKB>//

>

Or, if you use LINK, use the following command sequence:

$ LINK/TAS/MAP:VSECT/NOPRINT/OPT VSECT,LB:[1,1JF770TS/LIB
Option? WNDWS=1

Option? VSECT=MARRAY :160000:20000:200

Option? |[RET

$

This command sequence directs TKB to create a task image file named VSECT.TSK and a short
(by default) map file named VSECT.MAP. Because /-SP is appended to the map file in TKB, or
/NOPRINT is specified in LINK, TKB does not spool the map to the line printer.

The library switch (/LB; /LIB in LINK) specifies that TKB is to search the FORTRAN run-time
library FOROTS.OLB to resolve any undefined references in the input module VSECT.OBJ.
Because the library switch was applied to the FORTRAN library file without arguments, TKB
extracts from the library and includes in the task image any modules in which references are
defined.

The WNDWS option directs TKB to add a window block to the header in the task image. The
Executive initializes this window block when it processes the mapping directives within the
task.

The VSECT option directs TKB to establish for the program section named MARRAY a base
address of 160000 (APR 7) and a length of 200003 bytes (4K words). The program section
VIRT is defined within the task through the FORTRAN COMMON statement. The VSECT
option also specifies that TKB is to allocate 200 64-byte blocks of physical memory in the task’s
mapped array area below the task’s header. (For more information on the switches, qualifiers,
and options used in this example, refer to Chapters 10, 11, and 12, respectively.)

The map that results from this command sequence is shown in Example 5-5, Part 2.

Shared Region Concepts and Examples 5-73

Example 5-5: Part 1, Source Listing for VSECT.FIN

c VSECT.FTN

INTEGER *2 SUB,IRDB(9),IWDB(11),DSW

INTEGER *2 IARRAY(4096)

COMMON /MARRAY/IARRAY

IWDB (1) = "3400 IUSE APR 7 FOR WINDOW

IWDB (3) = 128 IWINDOW SIZE = 12832 WORDS = 4K
IWDB (5) = 0 |0FFSET

IWDB (7) = "422 ISTATUS = WS.64B!WS.WRT!WS.UDS
IWDB (10) = 128 ISIZE TO ALLOCATE

nononon

ALLOCATE 4K MAPPED ARRAY TO IWDB,IRDB

QaQ

CALL ALSCT (IRDB,IWDB,DSW)
IF (DSW .NE. 1) GOTO 100

CREATE A 4K ADDRESS WINDOW

aaaQ

CALL CRAW (IWDB,DSW)
IF (DSW .NE. 1) GOTO 200

MAP 4K MAPPED ARRAY

aQaaQ

CALL MAP (IWDB,DSW)

IF (DSW .NE. 1) GOTO 300
DO 1 I=1,4096

IARRAY (I) =1

MAPPED ARRAY IS INITIALIZED, PROMPT FOR A SUBSCRIPT

WRITE (5,5)

FORMAT ('$SUBSCRIPT?')
READ (5,4,END=1000)SUB
FORMAT (I7)

WRITE (5,6)IARRAY (SUB)
FORMAT (' ELEMENT = ',I7)
GOTO 3

awaQQQ~

>

o]

ERROR ROUTINES

100 WRITE (5,101)DSW
101 FORMAT (' ERROR FROM ALSCT. ERROR = ',I7)
GOTO 1000
200 WRITE (5,201)DSW
201 FORMAT (' ERROR FROM CREATING ADDRESS WINDOW. ERRROR = ',I7)
GOTO 1000
(Continued on next page)

5-74 Shared Region Concepts and Examples

Example 5-5 (Cont.): Part 1, Source Listing for VSECT.FTN

300 WRITE (5,301)DSW

301 FORMAT (' ERROR FROM MAPPING. ERROR = ',I7)
1000 CALL EXIT
END
Example 5-5: Part 2, Task Builder Map for VSECT.TSK
VSECT.TSK;1 Memory allocation map TKB M43.00 Page 1

11-DEC-87 16:12

Partition Name : GEN

Identification : FORVO2

Task UIC : [303,1]

Stack limits: 000300 001277 001000 00512.
PRG xfr address: 016270

Total address windows: 2.

Mapped array area: 4096. words

Task image size : 8736. words

Task address limits: 000000 042043

R-W disk blk limits: 000002 000044 000043 00035.

*** Root segment: VSECT

R/W mem 1limits: 000000 042043 042044 17444.
Disk blk limits: 000002 000044 000043 00035.
Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 001300 001160 00624 .
MARRAY: (RW,D,GBL,REL,OVR) 160000 020000 08192.

160000 020000 08192. .MAIN. FORVO2 VSECT.0BJ;3

OTS$F :(RW,I,GBL,REL,CON) 002460 002332 01242.

002460 000406 00262. $CONVI F40003 FOROTS.OLB;2
003066 001724 00980. $FI0 F40006 FOROTS.OLB;2

OTS$I :(RW,I,LCL,REL,CON) 005012 011220 04752.

Global symbols:
ADI$IA 005032-R CAL$ 005140-R ICI$ 022466-R MOI$PS 006050-R

**% Task builder statistics:

Total work file references: 27855.

Work file reads: O.

Work file writes: O.

Size of core pool: 7086. words (27. PAGES)
Size of work file: 4325. words (17. PAGES)

Elapsed time:00:00:29

Shared Region Concepts and Examples

5-75

Chapter 6
Privileged Tasks

This chapter discusses privileged tasks: what they are, their possible hazards, how they are
mapped, and an example of their use.

6.1 Privileged and Nonprivileged Task Distinction

RSX-11M-PLUS and Micro/RSX systems have two classes of tasks: privileged and nonpriv-
ileged. The distinction between privileged and nonprivileged tasks is primarily based upon
system-access capabilities.

In a mapped system, privileged tasks have special device and memory access rights that
nonprivileged tasks do not have. A privileged task can, with certain exceptions, access the
Executive routines and data structures; a nonprivileged task cannot. Some privileged tasks have
automatic I/O page mapping available to them; nonprivileged tasks do not. Finally, a privileged
task can bypass system security features, whereas a nonprivileged task cannot.

6.2 Privileged Task Hazards

Because of their special access rights, privileged tasks are potentially hazardous to a running
system. A privileged task with coding errors can corrupt the Executive or system data structures.
Moreover, problems caused by such a privileged task can be obscure and difficult to isolate. For
these reasons, you must exercise caution when developing and running a privileged task.

Make certain that your privileged task has completed its operation when you log out of the
system. Logging out does not abort privileged tasks as it does nonprivileged tasks because the
privileged task may be in the process of changing the system database. Therefore, the task
must be allowed to complete its processing. Also, if the privileged task is in system state, no
other task can execute until the privileged task completes its processing while in system state.
However, when the privileged task leaves system state, you can log out of the system, leaving
the privileged task still in operation.

Privileged Tasks 6-1

If a processor trap occurs in a privileged task while the task is in user state, the Executive aborts
the task. If the processor trap occurs in the privileged task while the task is in system state,
the system fails. However, even while in user state, the privileged task that is mapped to the
Executive can cause a system failure by incorrectly changing system data. Please note that a
privileged task in user state should not modify system data.

6.3 Specifying a Task as Privileged

In TKB, you designate a task as privileged with the /PR (privileged) TKB switch. In DCL,
you use the /PRIVILEGED:n qualifier. The /PR switch is described in Chapter 10 and the
/PRIVILEGED:n qualifier is described in Chapter 11. TKB allocates address space for a privileged
task based on the memory management APR that you specify as an argument to this switch or
qualifier. The argument is optional; the default is 5, but you can change it by modifying the
TKBBLD.CMD file and rebuilding TKB. TKB accepts three arguments: 0, 4, and 5. Choosing
which of these arguments to specify is based on the considerations described below.

6.4 Privileged Task Mapping

When you specify an argument of 0 on the switch or qualifier, your task is marked as privileged
but not mapped to the Executive or I/O page. Virtual address space begins at virtual address
0 and extends upward as far as 32K words. Your task cannot access the Executive routines or
data structures, and TKB does not reserve an APR to map the /O page.

When you specify /PR:4 or /PR:5 in TKB, or /PRIV:4 or /PRIV:5 in LINK, TKB reserves
APR 7 for mapping the I/O page. Moreover, TKB makes the Executive available to your task
by reserving the APRs necessary to map the Executive into your task’s virtual address space.
Therefore, if your task requires access to the Executive, you must specify an argument of either
4 or 5. Five is the default.

The choice between APR 4 and 5 is dictated by the size of the Executive area. If the Executive
is 16K words or less, you may specify an argument of 4 or 5. The value specified depends on
the task size. A privilege 4 task can be 12K words in size and map the I/O page. TKB applies
a bias of 100000 (16K) to all addresses within your task.

If the Executive is 20K words, you must specify an argument of 5. TKB applies a bias of 120000
(20K) to all addresses within your task.

The mapping for privileged tasks is shown in Figure 6-1.

6-2 Privileged Tasks

Figure 6-1: Privileged Task Mapping

PHYSICAL MEMORY

1/0 PAGE

8K
PRIVILEGED TASK

MEMORY
OCCUPIED BY
TASKS AND
PARTITIONS

20K
EXECUTIVE

VIRTUAL KT-11 MEMORY
ADDRESSES MANAGEMENT UNIT
177777
I/0 PAGE APRs (UISAR 0-7)
157777 fr = —— — — — —
8K
PRIVILEGED
TASK
120000
» SHADING REPRESENTS
MAPPING THAT OCCURS
IN USER STATE
APRs (KISAR 0-7)
NOT USED NOW { 7 KISAR7 (1/0 PAGE)
6
PHYSICAL 5
-
ADDRESSES / ’ KISAR4 16-20K
17777
3 KISAR3 12-16K
20K NOT USED 2 KISAR2 8-12K
NOW
EXECUTIVE 1 KISAR1 4-8K
0 0 KISARO 0-4K
MAPPING FOR 8K PRIVILEGED TASK IN USER STATE AND 20K EXECUTIVE
VIRTUAL KT-11 MEMORY
ADDRESSES MANAGEMENT UNIT
177777
1/0 PAGE APRs (UISAR 0-7)
167777 = o= e e = - —
7 NQOT USED NOW
8K
PRIVILEGED 6 PRIV TASK 4-8K
TASK 5 PRIV TASK 0-4K
4 KISAR 0-4 AND
120000
3 7 COPIES NOT
2 USED IN SYSTEM
1 STATE BUT VALUES
* SHADING REPRESENTS
MAPPING THAT OCCURS o STILL EXIST
IN SYSTEM STATE
APRs (KISAR 0-7)
JE oo
f ol
COPIED FROM UISAR 5 + 6
PHYSICAL) 45
ADDRESSES 4
17777
3
20K 2
EXECUTIVE 1
0

PHYSICAL MEMORY

/O PAGE

8K
PRIVILEGED TASK

MAPPING FOR 8K PRIVILEGED TASK IN SYSTEM STATE AND 20K EXECUTIVE

MEMORY
OCCUPIED BY
TASKS AND
PARTITIONS

20K
EXECUTIVE

ZK-431-81

Privileged Tasks

6-3

The mapping for APR 4 and 5 is shown in Figure 6-2.
Figure 6-2: Mapping for /PR:4 and /PR:5

1/0 PAGE 1/0 PAGE
APR 7— I — VIRTUAL 160000 — APR 7 — I
AVAILABLE
APR 6— _
6 AVAILABLE APR 6 TASK SPACE
TASK SPACE
APR 5— — VIRTUAL 120000 — APR 5— *
APR 4— X — VIRTUAL 100000 — APR 4—
APR 3— APR 3— | RESERVED FOR
RESERVED FOR EXECUTIVE
APR2— | EXECUTIVE APR 2— MAPPING
MAPPING
APR 1 — APR 1—
APR 0— — VIRTUAL 0— APR 0— !
/PR:4 /PR:5
ZK-432-81

When you specify an argument of 4, there will be 12K words of address space between the
beginning of the task and the start of the mapping for the I/O page. If your task expects to
access the I/O page, it must not exceed this 12K-word limit. If it does, TKB uses APR 7 to map
the task instead of the I/O page.

When you specify an argument of 5, there will be 8K words of address space between the
beginning of the task and the start of the mapping for the I/O page. In this case, the task must
not be greater than 8K words if it expects to access the I/O page.

When a task overlaps the 1/O page, TKB does not generate an error message. Before TKB
generates an error message, a task designated to be mapped with APR 4 must be greater than
16K words; a task designated to be mapped with APR 5 must be greater than 12K words.
Only when you install a task that overlaps the I/O page does INSTALL generate the following
message:

INS--Warning--Privileged task not mapped to the I/0 page

While this is not a fatal error message, you should consider the condition to be fatal if you
expect your task to access the I/O page.

You can use the /-IP switch in TKB or the /NOIO_PAGE qualifier in LINK to inform TKB that
the task is purposely over 12K and does not need to be mapped to the I/O page.

6-4 Privileged Tasks

A task with a privilege of 4 or 5 can access all of the Executive, system control blocks, and
I/0 page. It can use Executive routines and do logical block I/O to a volume that is physically
mounted on a device. Also, the task can issue a $SWSTK macro to change from user to system
state. This allows the task to access the Executive or system data structures without interruption
or fear of the data being changed while it is being accessed.

6.5 Privilege 0 Task

Using the /PR:0 switch in TKB or the /PRIV:0 qualifier in LINK causes TKB to build the task in
the same way as any other task. Virtual address space begins at virtual address 0 and extends
upwards as far as 32K minus 32 words. This task cannot access the Executive routines and
system data structures or directly access the I/O page because the Task Builder has not reserved
APRs for these purposes.

There are advantages to using a task with privilege 0 and having it mapped into APR 0. A task
with privilege 0 can do the following:

* Bypass file protection.

* Use the Alter Priority (ALTP$) directive.

® Issue any directive that has a target task.

* Specify a device name in spawn directives.

* Write logical block I/O to a physically mounted volume, regardless of who issued the
MOUNT or ALLOCATE command. For example, the VMR task is a task with privilege 0
and writes to mounted volumes during system generation. However, this advantage can be
hazardous for obvious reasons.

A task with privilege 0 runs in user state and cannot switch to system state. Also, a task with
privilege 0 is not mapped to the Executive. If you want to write a privileged task that does 1/0
processing, it is advantageous to use the /PR:0 switch in TKB or the /PRIV:0 qualifier in LINK
for your task because there is less chance of corrupting the Executive or system code and data.

6.6 Privilege 4 Task

If you want your privileged task to map to the Executive and I/O page, and your Executive
is 16K words or less, use the /PR:4 switch for TKB or the /PRIV:4 qualifier for LINK in the
command line. If you specify privilege 4 for your task, TKB reserves APR 7 to map the I/0O
page and reserves APRs 0 through 3 to map the Executive as part of your task’s virtual address
space. The privilege 4 switch or qualifier can be used only if your Executive size is 16K words or
less because the 16K-word Executive uses APRs 0 through 3 and your task is assigned mapping
that starts with APR 4. Therefore, TKB applies a bias of 100000 (16K) to all virtual addresses
within the task. This specific mapping of APRs 0 through 4 and 7 occurs whether the task is
in user or system state.

Up to 12K words of virtual address space are possible in a privilege 4 task. The beginning of
the task marks the end of the Executive code. If the task is 12K words in size, the end of the
task marks the start of the I/O page. If the task is going to access the I/O page through APR 7,
the task cannot exceed the 12K limit. If the task does exceed the limit, TKB is forced to assign
APR 7 to the task code. When building the task, TKB does not give you an error message if

Privileged Tasks 6-5

your task exceeds the 12K limit. However, when you install the task, INSTALL sends you the
following message:

INS--Warning--Privileged task not mapped to the I/0 page

6.7 Privilege 5 Task

If you want your privileged task to map to the Executive and I/O page, and your Executive is
between 16K and 20K words, use the /PR:5 switch for TKB or the /PRIV:5 qualifier for LINK
in the command line. If you specify your task as privilege 5, TKB reserves APR 7 to map the
1/0 page and reserves APRs 0 through 4 to map the Executive as part of your task’s virtual
address space. The /PR:5 switch or /PRIV:5 qualifier can be used only if your Executive size
is between 16K and 20K words because the 20K-word Executive uses APRs 0 through 4 and
your task is assigned APR 5. (APR 5 may be used if the Executive is less than 16K words, but
this wastes virtual address space.) Therefore, TKB applies a bias of 120000 (20K) to all virtual
addresses within the task. This specific mapping of APRs 0 through 5 and 7 occurs whether
the task is in user or system state.

Up to 8K words of virtual address space (12K if the I/O page is overmapped) are possible in a
privilege 5 task. The beginning of the task marks the end of the Executive code. If the task is
8K words in size, the end of the task marks the start of the I/O page. If the task is going to
access the I/0 page through APR 7, the task cannot exceed the 8K-word limit. If the task does
exceed the limit, TKB is forced to assign APR 7 to the task code. When building the task, TKB
does not give you an error message if your task exceeds the 8K-word limit. However, when
you install the task, INSTALL sends you the following message:

INS--Warning--Privileged task not mapped to the I/0 page

Note

When you use a privileged task, the Executive has dedicated almost all the
APRs to the necessary mapping for the Executive, the I/O page, and your
task. Your task can issue memory management directives to remap any number
of these APRs to regions. However, such remapping can cause obscure and
difficult-to-find system problems. Also, note that when a directive unmaps a
window that formerly mapped to the Executive or the I/O page, the Executive
restores the former mapping.

6.8 Example 6-1: Building a Privileged Task to Examine Unit
Control Blocks

The MACRO-11 source program PRIVEX.MAC in Example 6-1 illustrates one possible use
of a privileged task.

Note

The nature of a privileged task is such that you must have a working knowledge
of system concepts to understand its operation or to write one. If this example
deals with Executive functions that are unfamiliar to you, you may prefer to
skip this section and return to it at a later time.

6-6 Privileged Tasks

Example 6-1:

.MCALL
; LOCAL DATA
.NLIST
ATTMES: .ASCIZ
BUFMES: .ASCIZ
.LIST
QIOBUF: .BLKB
.EVEN

Part 1, Source Code for PRIVEX

; MACRO LIBRARY CALLS
.TITLE PRIVEX

ALUN$C,EXIT$S,QIOW$S

BEX

/%2A%P:IS ATTACHED BY %2R/
/BUFFER OVERFLOW/

BEX

132.

;MESSAGE OUTPUT BUFFER

; BUFFER INTO WHICH INFORMATION IS STORED AT SYSTEM STATE FOR

; PRINTING AT USER STATE.

AN ENTRY IS FOUR WORDS LONG:

ADDRESS IN DCB OF THE TWO ASCII CHARACTER DEVICE NAME

BINARY UNIT NUMBER

FIRST RADIX-50 WORD OF NAME OF ATTACHED TASK
FIRST RADIX-50 WORD OF NAME OF ATTACHED TASK

SECOND RADIX-50 WORD OF NAME OF ATTACHED TASK

; THE BUFFER IS TERMINATED BY A

BUFFER:

START:

0
-1

.BLKW 4x%200.+1 ;
BUFEND=.-2

Mov
CLR
CLR

ALL UNITS IN THE SYSTEM HAVE BEEN EXAMINED
THE BUFFER WAS FILLED BEFORE ALL UNITS COULD BE EXAMINED

;ADDRESS OF LAST WORD OF BUFFER

#BUFFER,R2 ;GET ADDRESS OF INFORMATION BUFFER
(R2) ;ASSUME NO UNITS ARE ATTACHED
R1 ;INITIALIZE CURRENT DCB ADDRESS

; "CALL $SWSTK,FORMAT" SWITCHES TO SYSTEM STATE. ALL REGISTERS
; ARE PRESERVED ACROSS THE TRANSITION FROM USER MODE TD KERNEL
BEING IN SYSTEM STATE LOCKS OTHER PROCESSES OUT OF THE
; EXECUTIVE (GUARANTEES THAT THE DATA BEING EXAMINED WILL NOT

; MODE.

; CHANGE WHILE IT IS BEING EXAMINED).

A "RETURN" WILL GIVE

(Continued on next page)

Privileged Tasks

6-7

Example 6-1 (Cont.): Part 1, Source Code for PRIVEX

; CONTROL TO "FORMAT" AND WILL RESTORE THE CONTENTS OF THE
; REGISTERS TO THEIR VALUES BEFORE THE "CALL $SWSTK."

CALL $SWSTK, FORMAT ;SWITCH TO SYSTEM STATE
MOV #$SCDVT, - (SP) ; ;GET ADDRESS OF SCAN DEVICE TABLES
; ; COROUTINE .
20%: CALL Q(SpP)+ ; GET NEXT NONPSEUDG DEVICE UCB
;; ADDRESS
BCS 1008 ;; IF CS NO MORE UCBS

; AT THIS POINT:

: R3 - ADDRESS OF THE DEVICE CONTROL BLOCK
; R4 - ADDRESS OF THE STATUS CONTROL BLOCK
: R5 - ADDRESS OF THE UNIT CONTROL BLOCK

CMP R1,R3 ; ;IS THIS A NEW DCB?
BEQ 40% ;IF EQ NO
MOV R3,R1 ; ;REMEMBER THIS DCB
CLR RO ; ;FORM LOWEST UNIT NUMBER ON
BISB D.UNIT(R3),RO ; THIS DCB
40$: MOV U.ATT(R5) ,R4 ;IS A TASK ATTACHED?
BEQ 60$;;IF EQ NO
;. IF NE R4 IS TCB ADDRESS
CMP #BUFEND,R2 ; ;ANY MORE ROOM IN BUFFER?
BLOS 80% ;;IF LOS NO
ADD #D.NAM,R3 ; ;FORM ADDRESS OF DEVICE NAME
MOV R3,(R2)+ ; ;SAVE IT IN BUFFER
MOV RO, (R2)+ ; ;SAVE UNIT NUMBER
MOV T.NAM(R4), (R2)+ ;:SAVE NAME OF ATTACHED TASK
MOV T.NAM+2(R4), (R2)+ ;;
CLR (R2) ; ;ASSUME NO MORE ATTACHED UNITS
60%$: INC RO ; INCREMENT UNIT NUMBER
BR 20% HH
80%: CALL Q(SP) + ; ;GET $SCDVT TO CLEAN OFF STACK
BCC 80% i
COM (R2) ; ;SHOW BUFFER OVERFLOW
100$: RETURN ; ;RETURN TO USER STATE AT FORMAT
.ENABL LSB
FORMAT: TST (R2) ;ANY MORE INFORMATION IN BUFFER?
BEQ EXIT ;IF EQ NO
CMP #-1, (R2) ;OVERFLOWED BUFFER?
BNE 40% ;IF NE NO

(Continued on next page)

6-8 Privileged Tasks

Example 6-1 (Cont.): Part 1, Source Code for PRIVEX

EXIT:

40%:

MOV #BUFMES,R1 ;GET ADDRESS OF OVERFLOW MESSAGE
CALL PRINT ;PRINT IT

EXIT$S ;

MOV #ATTMES ,R1 ;GET ADDRESS OF TEMPLATE

CALL PRINT ;FORMAT AND PRINT THE INFORMATION
BR FORMAT ;

.DSABL LSB

; PRINT - FORMAT AND PRINT A MESSAGE

; INPUTS:

R1 - ADDRESS OF AN $EDMSG INPUT STRING
R2 - ADDRESS OF AN $EDMSG PARAMETER BLOCK

; OUTPUTS:

R2 - ADDRESS OF NEXT PARAMETER IN THE $EDMSG PARAMETER BLOCK
RO, R1, R3, R4 ARE DESTROYED
R5 IS PRESERVED

MoV #QIOBUF,RO ;GET ADDRESS OF OUTPUT BUFFER
MOV RO,R3 ;SAVE FOR QIOWS$S
CALL $EDMSG ;FORMAT MESSAGE INTO OUTPUT BUFFER

; REMOVE LEADING ZEROS FROM UNIT NUMBER

20%:

408$:

MOV R3,RO ;POINT AT OUTPUT BUFFER
TST (RO) + ; INCREMENT BY TWO (POINT PAST
DEVICE NAME)

MOV RO,R4 ;REMEMBER THIS SPOT

DEC R1 ;ASSUME NEXT BYTE IS A LEADING ZERO
; (REDUCE LENGTH OF MESSAGE)

CMPB #'0, (RO)+ ;IS IT?

BEQ 20% ;IF EQ YES -- IGNORE IT

INC R1 ;COUNTERACT TOO MUCH DECREMENTING

CMPB #':,-(RO) :WAS THE BYTE A COLON (WAS THE UNIT
; NUMBER ZERO)?

BNE 40% ;IF NE NO

MOVB #'0, (R4)+ ;ADD A ZERO UNIT NUMBER

INC R1 ; INCREASE LENGTH OF MESSAGE

MOVB (RO)+, (R4) + ;TACK ON REST OF MESSAGE

BNE 408 ;IF NE NOT DONE

(Continued on next page)

Privileged Tasks 6-9

Example 6-1 (Cont.): Part 1, Source Code for PRIVEX

; PRINT THE MESSAGE ON LUN "QUTLUN" (DEFINED BY THE TASK-BUILD FILE)
; AND WAIT USING EVENT FLAG 1

QIOW$S #I0.WVB,#OUTLUN,#1,,,,<R3,R1.#' > ;

RETURN
.END START

If you assemble, build, and install PRIVEX into your system, it will scan the system device tables
and examine the UCBs of all nonpseudo devices on your system. It will determine whether
each device is attached by a task and print on your terminal the names of all attached devices
on your system with the name of each attached program. '

PRIVEX accesses two Executive routines: $SWSTK (Switch Stack) and $SCDVT (Scan Device
Tables). The routine $SWSTK switches the processor to system state (kernel mode). This switch
to system state is necessary because it inhibits all other processes from modifying the Executive
data structures until PRIVEX is finished with them. The double semicolons (;;) indicate the
portion of the task that is running in system state.

The routine $SCDVT performs the actual scanning of the device tables. It returns to PRIVEX
each time it accesses a new UCB.

PRIVEX also calls the system library routine $EDMSG (Edit Message) to format the data it
has retrieved from the device tables. This routine is documented in the RSX-1IM-PLUS and
Micro/RSX System Library Routines Reference Manual.

PRIVEX.MAC should be assembled with a command line similar to the following one in TKB:
MAC>PRIVEX,PRIVEX/-SP=DRO: [1,1]EXEMC/ML, [11,10]RSXMC/PA:1,DR2: (303, 1]PRIVEX

If you use LINK, you may enter the following command line, which is similar to the one
preceding:

$ MACRO/OBJ:PRIVEX/LIST:PRIVEX DRO:[1,1]EXEMC/LIB,- [RET
->[11,10]RSXMC/PA:1,DR2: [303,1]PRIVEX

The file EXEMC is the Executive macro library and the file RSXMC is the Executive prefix
file. The switches used in the command line are described in the PDP-11 MACRO-11 Language
Reference Manual.

The TKB command sequence for PRIVEX is as follows:

>TKB [RET]
TKB>PRIVEX/PR:5,PRIVEX/-SP=PRIVEX
TKB>DRO: [3,54]RSX11M.STB,DRO: [1,1]EXELIB/LB

TKB>/

Enter Options:

TKB>UNITS=1 ;DEFINE NUMBER OF LUNS
TKB>GBLDEF=0UTLUN : 1 ;DEFINE LUN ON WHICH TO PRINT MESSAGES
TKB>ASG=TIO:1 ;ASSIGN LUN TO DEVICE

TKB>//

>

6-10 Privileged Tasks

If you use LINK, use the following command sequence to build PRIVEX:

$ LINK/TAS/PRIV:5/MAP:PRIVEX/NOPRINT/OPT PRIVEX

Option? UNITS=1 ;DEFINE NUMBER OF LUNS
Option? GBLDEF=0UTLUN:1 ;DEFINE LUN ON WHICH TO PRINT MESSAGES
Option? ASG=T10:1 ;ASSIGN LUN TO DEVICE

Option?
$

These command sequences direct TKB to build PRIVEX as a privileged task and to add a bias
of 120000 to all locations within it. APR 5 was chosen in this example because the Executive in
the system on which this example was originally built is 20K words in length. If the Executive
in your system is 16K words or less, you can use assign privilege 4 when you build the task.

In the options sections of these command sequences, the UNITS=1 option specifies that PRIVEX
will use only one logical unit. The GBLDEFFOUTLUN:1 option defines the symbol OUTLUN
as being equal to 1, and the ASG=TI0:1 option associates device TIO:" with logical unit 1.

The TKB map for PRIVEX is shown in Example 6-1, Part 2. The “Global symbols” section
has been shortened to save space. Note that the task’s address limits begin at virtual address
120000. Figure 6-3 illustrates how TKB allocates virtual address space for the program.

Figure 6-3: Allocation of Virtual Address Space for PRIVEX

/0 PAGE
APR 7— VIRTUAL 160000
APR 6—
VIRTUAL 127147 Q

PRIVEX. TSK ‘ TASK ADDRESS LIMITS
APR b— VIRTUAL 120000)
APR 4—
APR 3—

EXECUTIVE
APR 2—
APR 1—
APR 0— VIRTUALO

ZK-433-81

Privileged Tasks 6-11

Example 6-2: Part 2, Task Builder Map for PRIVEX

PRIVEX.

TSK;1 Memory allocation map TKB M43.00
7-0CT-87 13:26

Partition name : GEN
Identification : 01
Task UIC : [303,1]

Stack limits: 120230 121227 001000 00512.
PRG xfr address: 124610

Task attributes: PR

Total address windows: 1.

Task image size : 1920. words

Task address limits: 120000 127323

R-W disk blk limits: 000002 000011 000010 00008.

% Root segment:PRIVEX

R/W mem limits: 120000 127323 007324 03796.

Disk bl

Memory

k limits: 000002 000011 000010 00008.

allocation synopsis:

Section

$$RESL:
Global

AS .DEL
D.VvOUT

AS .EXT
D.VPWF

$PDVTA
$YHCTB

%x Tas
Tot
Wor.
Wor
Siz
Siz

:(RW,I,LCL,REL,CON) 121230 005746 03046.

121230 003656 01966 .
(RO, I,LCL,REL,CON) 127176 000124 00084.

symbols:

000001 BT.UAB 000002 DV.SDI 000020
000004 F.NWAC 000034 IE.DAA 177770

000004 B.DIR 000026 DV.SQD 000040
000006 F.SCHA 000015 IE.DNA 177771

020000 $REMOV 054044 $SGFFR 020652
022674 .TT14 023770

k builder statistics:

al work file references: 250535.

k file reads: O.

k file writes: O.

e of core pool: 13486. words (52. PAGES)
e of work file: 12032. words (47. PAGES)

Elapsed time:00:00:51

6-12 Privileged Tasks

Page 1

Title Ident

PRIVEX 01

D.RS81 177657

D.RS83 177655

$TICLR 041032

File

PRIVEX.0BJ;2

6.9 Privileged Tasks in an I- and D-Space System

The following text describes the available privilege and mapping for privileged tasks in I- and
D-space RSX-11M-PLUS and Micro/RSX systems.

6.9.1 Privilege Available to Privileged Tasks in an |- and D-Space System

A privileged task in an instruction- and data-space system, which is a system with an I- and
D-space Executive, may have either conventional mapping or I- and D-space mapping. That is,
it may map its own instructions and data with I-space APRs, or map instructions with I-space
APRs and data with D-space APRs. Regardless of its mapping, either kind of privileged task in
an I- and D-space system may have either privilege 0 or privilege 5. That is, a conventional
privileged task or a privileged task that uses I- and D-space may be built with either the /PR:0
or /PR:5 TKB switches, or the /PRIVILEGED:0 or /PRIVILEGED:5 LINK qualifiers. A privilege
0 task in this system has the same abilities as a privilege 0 task in other RSX systems. The
same is true for a privilege 5 task in this system as compared to other RSX systems.

A privilege 4 task (one built with the /PR:4 switch or /PRIVILEGED:4 qualifier) is not available
in an I- and D-space system. The reason is that the Executive in this system occupies 20K of
virtual instruction space and 20K of virtual data space. Therefore, this Executive uses instruction
APRs 0 through 4 to map its instructions and data APRs 0 through 4 to map its data. The
Executive’s data APR 0 and instruction APR 0 are overmapped and map the first 4K of the
Executive. Executive APRs 0 through 4 are copied into the privileged task’s APRs 0 through
4 in different combinations (see Section 6.9.2, Privileged Task Mapping in an I- and D-Space
System). Therefore, the privileged task can use only its own APRs 5 through 7 to map its
instructions, data, and the /O page. Hence, a privileged task in this system must be built with
the /PR:5 switch or /PRIVILEGED:5 qualifier.

The following text describes the mapping available to a privileged I- and D-space task.

6.9.2 Privileged Task Mapping in an I- and D-Space System

Table 6-1 shows the APR mapping used by a conventional privileged task in an I- and D-space
system.

Table 6-1: Conventional Privileged Task Mapping in an |- and D-Space System
User IAPRs Use

0 through 4 Contain the same contents as those of the Executive’s I-space APRs. The
privileged task may use Executive routines, but must not do so without first
issuing the SWSTK$ directive (go to system state) to linearize access to the
Executive’s routines and data.

5 through 6 Contain offsets that map the user task’s instructions and data, combined.

7 Contains an offset to map the I/O page or the user task’s instructions and
data if the task is large enough.

An I- and D-space privileged task uses the APR mapping in an I- and D-space system as shown
in Table 6-2.

Privileged Tasks 6-13

Table 6-2: |- and D-Space Privileged Task Mapping in an |- and D-Space System

User IAPRs Use

0 through 4 Contain the same contents as those of the Executive’s D-space APRs. The
privileged task may read the Executive’s data space or use Executive routines,
but must not do so without first issuing the SWSTK$ directive (go to system
state) to linearize access to the Executive’s routines and data.

5 through 6 Contain offsets to map the privileged task’s instructions.

7 Contains an offset that maps the privileged task’s instructions if the
privileged task is large enough.

User DAPRs Use

0 through 4 Contain the same contents as those of the Executive’s D-space APRs. The
privileged task may read the Executive’s data space or use Executive routines,
but must not do so without first issuing the SWSTK$ directive (go to system
state) to linearize access to the Executive’s routines and data.

5 through 6 Contain offsets that map the privileged task’s data.

7 Contains an offset that maps the privileged task’s data (if the task is large

enough) or the I/O page data.

6-14 Privileged Tasks

Chapter 7
User-Mode |- and D-Space

This chapter discusses the Task Builder’s ability to divide a user task into instruction and data
space (I- and D-space). A series of figures and text explains task mapping and the use of task
windows in RSX-11M-PLUS and Micro/RSX systems with an I- and D-space task. In the text,
comparisons are made between conventional tasks and I- and D-space tasks. A conventional
task is one that does not separately map instruction space and data space.

The I- and D-space feature is an RSX-11M-PLUS system-generation option, and is also available
on Micro/RSX systems where the hardware supports separate I- and D-space. The feature is
available only on specific processor hardware. Conventional tasks can be run in an I- and
D-space system, but an I- and D-space task cannot run in a system that does not have the
option included.

7.1 User-Task Data Space Defined

User-task data space contains data. The user task accesses the data space through D-space
APRs. The function of I- and D-space allows a total of 16 APRs to map your task: 8 APRs
for data space and 8 APRs for instruction space. If your task uses both I- and D-space to its
maximum capacity, it can contain 64K words of virtual address space. In addition to both I- and
D-space, if your task links to a 32K-word supervisor-mode library, it can contain 96K words of
virtual address space.

To separate the data and instructions, your task can use program sections to contain the
data or instructions. Also, your task can use the Executive directives CRAW$ and CRRG$ to
dynamically create and map to data-space regions. See the RSX-1IM-PLUS and Micro/RSX
Executive Reference Manual for the use of these directives.

Conventional tasks and tasks that separate instruction space and data space differ in only a few
areas of interest. The next sections discuss these areas.

User-Mode I- and D-Space 7-1

7.2 I- and D-Space Task Identification

Two fields denote an I- and D-space task. In the task header, the byte that has the offset
H.DMAP identifies the task D-space mapping mask. In the Task Control Block (TCB), the
T4.DSP bit in the fourth task status word identifies the I- and D-space task to the system.

The system task loader or the VMR FIX command initializes these two fields at the time the
task is loaded. Therefore, tasks built on a system other than an I- and D-space system may
be run without rebuilding on an RSX-11M-PLUS or Micro/RSX system that supports I- and
D-space.

The I- and D-space task is one in which TKB separates the data areas and instructions. In this
task, data areas should be defined by the MACRO-11 .PSECT directive that has the D attribute.
Similarly, the .PSECT directive with the I attribute defines instruction areas.

7.3 Comparison of Conventional Tasks and |- and D-Space Tasks

A conventional task operating in user mode can contain 32K words of virtual address space
and access approximately 32K words of physical memory. However, a task using both I- and
D-space APRs can contain 64K words of virtual address space and access approximately 64K
words of memory.

The conventional task in an I- and D-space system uses both sets of APRs. However, the
relocation addresses in both I-space and D-space APRs are identical. Also, the task windows
refer to I-space APRs in a task that does not use D-space.

An I- and D-space task can use separately both I- and D-space APRs; that is, APRs used in this
way are not overmapped. Because of this, the task can use eight D-space APRs to access and
use data, and eight I-space APRs to access and execute instructions. Using 16 APRs allows the
I- and D-space task to access a total of 64K words of physical memory at one time.

Table 7-1 contains a brief mapping summary of the combinations of I- and D-space tasks, I-
and D-space systems, and the APR mapping that occurs.

Table 7-1: Mapping Comparison Summary

I/D 1I/D
Task System Mapping Summary

No Yes I-space APRs and D-space APRs contain the same relocation addresses.
No No I-space APRs contain relocation.

Yes Yes I-space APRs map instruction space. D-space APRs map data space.
Yes No Not possible.

7.4 Conventional Task Mapping

Conventional tasks map their virtual addresses to their logical addresses through both I-space
and D-space APRs. That is, TKB does not separate instruction space or data space nor does
the system differentiate the spaces except by the logic inherent in the task. Therefore, the task
must map to its logical address space by both sets of APRs, which are overmapped.

7-2 User-Mode I- and D-Space

Figure 7-1 shows an 8K-word conventional task linked to an 8K-word region that maps to its
logical address space through both D-space and I-space APRs in an I- and D-space system.

Figure 7-1: Conventional Task Linked to a Region in an I- and D-Space System

PHYSICAL
MEMORY
~y qu
D-SPACE
APRS
7
VIRTUAL B 7
ADDRESS —
SPACE
REGION
16K - TASK
8K
|
| I-SPACE
APRS
8K
REGION
0
L__:] REGION MAPPING
TASK MAPPING
~o ~J
ZK-434-81

User-Mode I- and D-Space 7-3

7.5 |- and D-Space Task Mapping

Figure 7-2 shows an 8K-word I- and D-space task. TKB separated the data and instructions
in this task. Because of the way TKB processes task space, the task header must physically
reside at the beginning of the task in I-space. TKB puts the header that the Executive uses for
task control in D-space. Also, the task’s stack is in D-space. If the task is to have an external
header (under control of the /XH switch or /EXTERNAL qualifier), the Executive copies the
header in D-space and puts it into the contiguous space immediately before the task’s I-space in
memory. For more details, see Figure B-4, Image on Disk of Overlaid I- and D-Space Task, in
Appendix B.

Figure 7-2: |- and D-Space Task Mapping in an |- and D-Space System

PHYSICAL
D-SPACE MEMORY
APRS
et ~J
!]
6
- —
VIRTUAL
ADDRESS - _
SPACE
D-SPACE
8K |]
TASK - _
D-SPACE 1
______________ -~ -~
STACK 0 ~
————— ~
HEADER
oK ~
~N
| | ~
I | I-SPACE N N TASK
I-SPACE APRS J o-space
]2 Ntk G — D N A
7 STACK
—] N F-—- -1 HEADER USED BY
TASK | 6 _ HEADER k=" pxpcyTive
1-SPACE
b e —] L -
HEADER UNUSED HEADER
0 -] TASK copy
1-SPACE
- - | T] COPY OF HEADER
HEADER / IF EXTERNAL HEADER
- —
1
= — - — — —
0
~o

ZK-435-81

7-4 User-Mode I- and D-Space

The task shown uses two APRs because of its size (8K words). D-space APR 0 maps the task’s
header and stack and part of D-space.

7.6 Task Windows in I- and D-Space Tasks

TKB uses different windows to map various portions of an I- and D-space task. Window 0 in an
I- and D-space task cannot be used because it maps the root in I-space. Similarly, you cannot
use window 1 because it maps the D-space part of the root. The root of the task, which TKB
divides into I- and D-space, therefore requires two windows. TKB reserves the use of these two
windows. You can specify up to 14 windows for a task that uses I- and D-space.

7.7 Specifying Data Space in Your Task

You design an I- and D-space task by specifying data space separately from instruction space.
Good programming practice suggests that all data areas and buffers should be located in adjacent
locations. Similarly, all instructions should be located in adjacent locations. On its own, TKB
will separate and cluster instruction and data space when it builds the task. For TKB to do this,
however, you must use a method of informing it about which statements are data and which
are instructions.

For the MACRO-11 programmer, the way to separate data and instructions is to use the
MACRO-11 .PSECT directive. You can use this directive with the instruction (I) attribute for
all the instruction locations in your task’s code. Also, you can use .PSECT and the data (D)
attribute for all the data locations. You must define a data .PSECT in an I- and D-space task
even though no actual data is contained in the task. In this case, the .PSECT can be of zero
length.

Note that I- and D-space libraries have not been defined and are not a possible configuration.

7.8 Overlaid I- and D-Space Tasks

Except for the mapping of an I- and D-space task and the location of instructions and data,
the I- and D-space task differs little from a conventional task. However, there are structural
differences between a nonoverlaid and an overlaid I- and D-space task. By comparing the
two kinds of tasks, the figures and text in the following sections describe the nonoverlaid and
overlaid I- and D-space tasks. Also, you may want to refer to the description of overlaid
conventional tasks in Chapter 3. '

Figure 7-3 shows a simplified disk image of the nonoverlaid I- and D-space task. This task
contains four I-space program sections and four D-space program sections. TKB collects all the
I-space program sections together in one part of the root and all the D-space program sections
in another part of the root.

User-Mode I- and D-Space 7-5

Figure 7-3: Simplified Disk Image of a Nonoverlaid |- and D-Space Task

RELATIVE DISK BLOCK 0

RELATIVE DISK BLOCK n

LABEL BLOCK AREA

CHECKPOINT AREA

HEADER (UNUSED)

ROOT — I-SPACE PART

INSTRUCTIONS

HEADER (USER’S)

STACK

ROOT — D-SPACE PART

DATA

} |-SPACE PART

> D-SPACE PART

ZK-1098-82

Figure 7-4 shows the virtual address space and physical memory occupied by an overlaid I-
and D-space task called IAND. The task has a total physical size of 1600005 bytes. (You may

want to compare Figure 7-4, which is shown next, with Figure 3-1 in Chapter 3, which shows

a conventional overlaid task.) The instructions and data occupy the same virtual address space
and are of equal physical size; but because they are mapped through different APRs, they
occupy different locations in physical memory. The instructions in IAND occupy four program
sections that have the instruction (I) attribute, and the data in IAND occupy four program
sections that have the data (D) attribute.

7-6 User-Mode I- and D-Space

Figure 7-4: Overiaid |- and D-Space Task Virtual Address Space

160000

140000

120000

100000

60000

40000

20000

IAPR7

IAPR6

IAPRS

IAPR4

IAPR3

IAPR2

IAPR1

IAPRO

VIRTUAL I-SPACE

PSECT C

PSECT B

PSECT A

ROOT |

UNUSED
HEADER

MODULES

OVR3

OVR2

OVR1

VIRTUAL D-SPACE

DAPR?
DAPR6
DAPR5
DAPR4
PSECT G
DAPR3
PSECT F
PSECT E
DAPR2
ROOT D
— STACK —— DAPR1
USER
HEADER
DAPRO

160000

140000

120000

100000

60000

40000

20000

ZK-1099-82

User-Mode I- and D-Space 7-7

In Figure 7-4, the virtual instruction space contains program sections A, B, and C, which are
those that contain instructions, and ROOT I, which is the program section in the root that
contains instructions. TKB places the unused header in the I-space part of the root.

Also, in Figure 7-4, the virtual data space contains program sections D, E, and F, which are
those that contain data, and ROOT D, which is the program section in the root that contains
data. TKB places the task’s user header in the D-space part of the root.

As an overlaid task, a possible overlay tree may look like the one shown in Figure 7-5.

Figure 7-5: Example Overlay Tree for Overlaid |- and D-Space Task IAND

OVR1 OVR2 OVR3

ROOT

ZK-1100-82

The accompanying ODL statement for this task is as follows:
.ROOT ROOT-(OVR1,0VR2,0VR3)

Notice that this ODL statement is not different from any overlaid task with this tree structure.
In this statement, the module OVR1 contains the instruction program section A and the data
program section E, the module OVR2 contains the instruction program section B and the data
program section F, and the module OVR3 contains the instruction program section C and the
data program section G. Also, the ROOT module contains the instruction program section I and
the data program section D.

The disk image of this overlaid task, shown in Figure 7-6, contains the instruction and data
program sections in separate areas. Figure 7-6 also illustrates the difference between disk images
of overlaid and nonoverlaid I- and D-space task disk images when you compare it with the
disk image shown in Figure 7-3. Notice that TKB separates the segments of the overlaid IAND
task into instruction parts and data parts. Any autoload vectors generated because of calls from
these segments are also included in the segment area. The autoload vectors for I- and D-space
tasks contain two parts: an I-space part and a D-space part. TKB places each part with its
corresponding segment part as shown in Figure 7-6. Autoload vectors for I- and D-space tasks
are discussed in detail in Chapter 4.

7-8 User-Mode I- and D-Space

Figure 7-6: Simplified Disk Inage of Overlaid I- and D-Space Task IAND

RELATIVE BLOCK 0

LABEL BLOCK GROUP

SEGMENT LOAD LIST

RELATIVE BLOCK 3 CHECKPOINT AREA

. TASK HEADER (UNUSED)

ROOT | — INSTRUCTION SPACE

AUTOLOAD VECTORS FOR I-SPACE

TASK HEADER (USED)

TASK STACK AREA

ROOT D — DATA SPACE

AUTOLOAD VECTORS FOR D-SPACE

SEGMENT DESCRIPTORS

WINDOW DESCRIPTORS

OVERLAY SEGMENT OVR1
I-SPACE PART (PSECT A)

OVERLAY SEGMENT OVR1
D-SPACE PART (PSECT E)

OVERLAY SEGMENT OVR2
I-SPACE PART (PSECT B)

OVERLAY SEGMENT OVR2
D-SPACE PART (PSECT F)

OVERLAY SEGMENT OVR3
I-SPACE PART (PSECT C)

OVERLAY SEGMENT OVR3
D-SPACE PART (PSECT G)

ZK-1101-82

User-Mode I- and D-Space 7-9

7.8.1 Autoload Vectors and STB Files

If your I- and D-space task links to an overlaid shared region, that region must have been built
with a version of TKB that supports overlaid I- and D-space tasks. The reason for this is that
the STB files for overlaid shared regions built by older versions of TKB do not contain the ISD
records that are needed to create the type of autoload vectors that I- and D-space tasks use.

For newer versions of TKB that support overlaid I- and D-space tasks, TKB allocates autoloadable
vectors in the root of the task only for those entry points in the library referenced by the task.
To create the autoload vectors, TKB uses ISD records in the STB file when linking the task to
the library if the ISD records are present. Therefore, tasks built with newer versions of TKB
tend to be smaller because fewer autoload vectors are present.

For the Fast Task Builder (FTB) and older versions of TKB that do not support I- and D-space
tasks, each autoload vector in the shared region’s STB file is allocated in the root of the task
being linked to the region, whether or not the entry point is referenced by the task.

For user-mode I- and D-space tasks, the autoload vectors consist of two parts:
* An I-space part consisting of four words contained in the program section $SALVI

e A D-space part consisting of two words contained in the program section $$ALVD

Note

Libraries created with older versions of TKB do not have the ISD records in the
STB file that newer versions of TKB use to include autoload vectors in the task
from the STB file. Therefore, TKB must create autoload vectors for every entry
point in the library.

If you are using one of these older libraries and you are linking an I- and
D-space task to it, TKB will give you the following fatal error message:

Module module-name contains incompatible autoload vectors

This message occurs because the STB file contains conventional autoload vectors
that are not usable by an I- and D-space task.

For more information about linking shared regions to I- and D-space tasks, see the section in
Chapter 5 entitled Autoload Vectors and STB Files for Overlaid Shared Regions.

7.9 |- and D-Space Task Memory Allocation and Example of
Maps

The following section discusses and shows the differences between two versions of a task that
is built both as a conventional task and as an I- and D-space task. The conventional task is
called MAIN.TSK, and the I- and D-space version of MAIN.TSK is called MAINID.TSK. Both
of these tasks are similar to, but not the same as, the task called MAIN.TSK shown in Chapter
5. After MAIN.TSK was coded, built, and the map printed, MAIN.TSK was rebuilt as an I- and
D-space task to create MAINID.TSK. To do this, the /ID switch was used in the TKB command
line. (To do the same with DCL, use the /CODE:DATA qualifier in the LINK command line.)
Both the conventional version and the I- and D-space version of this task are overlaid and link
to a library.

7-10 User-Mode I- and D-Space

Use the following TKB command sequence to build MAIN as an I- and D-space task:

>TKB
TKB>MAIN/ID,MAIN/MA/-SP/-WI=MAIN
TKB>/

Enter Options:
TKB>RESLIB=LIB/RO:3

TKB>// [RET]
>

For LINK, use the following command sequence:

$ LINK/TAS/CODE:DATA/MAP:MAIN/NOPRINT/NOWIDE/SYS/OPT MAIN
Option? RESLIB=LIB/RO:3

Option?

$

7.9.1 Virtual Memory Allocation for MAIN.TSK

MAIN.TSK has a root called MAIN and three overlay segments called INPUT, CALC, and
OUTPUT. By comparing the map of this task in Example 7-1 and the memory allocation
diagram in Figure 7-7, you will be able to determine the virtual memory space allocation and
structure of this task. Note that the overlay segments occupy the same virtual address space,
and the root and segments are mapped in both I-space and D-space.

Figure 7-7: Memory Allocation Diagram for MAIN.TSK

006307 006307
0050
005063 05063 OUTPUT
004607 004607
INPUT
CALC
004514 004514
004513 004513
MAIN
000000 000000
ZK-1107-82

7.9.2 Virtual Memory Allocation for MAINID.TSK

MAINID.TSK has a root called MAIN and three overlay segments. In this way MAINID.TSK
resembles MAIN.TSK. However, the instruction program sections and data program sections in
MAINID.TSK are separated and they are mapped through their respective I-space or D-space
APRs. Therefore, MAINID.TSK has two virtual address spaces: an I-space and a D-space.
Figures 7-8 and 7-9 show the memory allocation for the I-space and D-space in MAINID.TSK.

User-Mode I- and D-Space 7-11

Figure 7-8: Memory Allocation Diagram for MAINID.TSK |-Space

004413

003263
003007

002714
002713

000000

004413
003263
TPUT
003007 ou
INPUT
CALC
002714
002713
MAIN
000000
ZK-1108-82

Figure 7-9: Memory Allocation Diagram for MAINID.TSK D-Space

002513

002414
002413

000000

The three segments INPUT, CALC, and OUTPUT occupy the same virtual I-space because these
three segments contain instructions and, therefore, instruction program sections. However, the
overlay segment OUTPUT is the only segment that occupies virtual D-space because the
segments INPUT and CALC do not contain data or D-space program sections. Note that the
two overlay segments INPUT and CALC have no D-space. You can see this in both Figure
7-9 and in the map in Example 7-2. The map in Example 7-2 shows the virtual address space

002513

OUTPUT

002414

002413

MAIN

000000

ZK-1109-82

allocation for both I-space and D-space.

7-12 User-Mode I- and D-Space

An I- and D-space task uses more virtual memory space than a conventional task. The map
in Example 7-2 shows that MAINID.TSK uses 1888, words of space as opposed to the 1664,
words used by MAIN.TSK. The reasons for the increase in size of MAINID.TSK over MAIN.TSK
are as follows:

* An I- and D-space task contains an unused task header.

¢ Autoload vectors in an I- and D-space task contain two more words than conventional
autoload vectors. Program sections $$ALVD and $$ALVI in Example 7-2 contain the
autoload vectors. You can see from this map that they use more space than the $$ALVC
program section in MAIN.TSK, which contains conventional autoload vectors.

* The segment descriptors in an overlaid I- and D-space task contain an extension.

The size of the segment descriptor block that is internal to TKB depends on whether an I- and
D-space task is being built. For a conventional task, the size of the internal segment descriptor
is 2305 bytes. For an I- and D-space task, the size is 2623 bytes.

In addition to these reasons for the increase in size of an overlaid I- and D-space task, a
memory-resident overlaid I- and D-space task would be even larger because of the need for
two window descriptors for each memory-resident segment.

User-Mode I- and D-Space 7-13

Example 7-1: Map of Overlaid Task MAIN.TSK

MAIN.TSK;1 Memory allocation map TKB M43.00 Page 1
20-0CT-87 10:08

Task nameCBP
Partition name : GEN
Identification : V00.00

Task UIC : [240,1]

Stack limits: 000320 001317 001000 00512.
PRG xfr address: 002350

Total address windows: 3.

Task image size : 1664. words

Task address limits: 000000 006307

R-W disk blk limits: 000002 000012 000011 00009.

MAIN.TSK;1 Overlay description:

Base Top Length

000000 004513 004514 02380. MAIN

004514 005063 000350 00232. INPUT

004514 004607 000074 00060. CALC

004514 006307 0015674 00892. OUTPUT

MAIN.TSK;1 Memory allocation map TKB M43.00 Page 2
MAIN 20-0CT-87 10:08

**x Root segment: MAIN

R/W mem 1limits: 000000 004513 004514 02380.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section Title Ident File
. BLK.:(RW,I,LCL,REL,CON) 001320 000466 00310.

001320 000250 00168. EDDAT 03 SYSLIB.OLB;5

001570 000216 00142. CBTA 04.3 SYSLIB.OLB;5
coMt :(RO,D,GBL,REL,CON) 002006 000024 00020.

002006 000024 00020. MAIN V00.00 MAIN.OBJ;36
CcOoM2 : (RW,D,GBL,REL,CON) 002032 000032 00026 .

002032 000032 00026. MAIN V00.00 MAIN.OBJ;36
COM3 : (RW,D,GBL,REL,CON) 002064 000010 00008.

002064 000010 00008. MAIN V00.00 MAIN.OBJ;36

(Continued on next page)

7-14 User-Mode I- and D-Space

Example 7-1 (Cont.):
coM4 : (RW,D,GBL,REL,CON)

COM5 : (RW,D,GBL,REL, CON)
LIBROT: (RW,I,GBL,REL,CON)
MAIN :(RO,I,LCL,REL,CON)

$$ALER: (RO, I,LCL,REL,CON)

$$ALvVC: (RO,I,LCL,REL,CON)

Global symbols:

AADD 002556-R N.DTDS 000020
ARGBLK 002046-R N.FAST 000013

Map of Overlaid Task MAIN.TSK

002074
002074
002330
002330
000000
000000
002350
002350
002512
002512
002512
002536

000234
000234
000020
000020
000140
000140
000142
000142
000024
000000
000024
000070

00156.
00156.
00016.
00016.
00096.
00096 .
00098.
00098.
00020.
00000.
00020.
00056.

$CBDAT 001570-R
$CBDMG 001576-R

MAIN.TSK;1 Memory allocation map TKB M43.00

INPUT 20-0CT-87

¥ Segment: INPUT

R/W mem 1limits: 004514 005063 000350 00232.
Disk blk limits: 000007 000007 000001 00001.

Memory allocation synopsis:

Section
. BLK.:(RW,I,LCL,REL,CON)
INPUT :(RO,I,LCL,REL,CON)

$$ALVC: (RO, I,LCL,REL,CON)

004514 000074 00060.
004514 000074 00060 .
004610 000252 00170.
004610 000252 00170.
005062 000000 00000.

10:08

MAIN V00.00 MAIN.OBJ;36
MAIN V00.00 MAIN.OBJ;36
LIBROT 03.01 LIBFSO.STB;1
MAIN V00.00 MAIN.OBJ;36

OVCTR 15.03 SYSLIB.OLB;5
ALERR 02.00 SYSLIB.OLB;5

.FSRPT 000050
.NALER 003354-R

Page 4

Title Ident File

CATB 03 SYSLIB.OLB;5

INPUT O1 INPUT.0BJ;32

(Continued on next page)

User-Mode I- and D-Space

7-15

Example 7-1 (Cont.): Map of Overlaid Task MAIN.TSK

Global symbols:
INPUT 004610-R $CDTB 004514-R $COTB 004522-R

MAIN.TSK;1 Memory allocation map TKB M43.00 Page 5
20-0CT-87 10:08

*** Tagk builder statistics:

Total work file references: 13626.

Work file reads: O.

Work file writes: O.

Size of core pool: 5198. words (20. pages)
Size of work file: 4096. words (16. pages)

Elapsed time:00:00:19

7-16 User-Mode I- and D-Space

Example 7-2: Map of Overlaid |- and D-Space Task MAINID.TSK

MAINID

Task

Partition name :
Identification :

.TSK; 1

name

Task UIC

Stack

limits:
PRG xfr address:

Memory allocation map TKB M43.00

156-0CT-87

.CBP

GEN

Task attributes: ID
Total address windows: 4.

Task

Task Address limits:

R-W disk blk limits:

MAINID

Base

000000
000000

002714
002414

002714
002414

002714
002414

MAINID
MAIN

image

.TSK;1 Overlay description:

Top

002713
002413

003263
002413

003007
002413

004413
002513

.TSK;1

size

V00 .00
(240,11
000256 001255 001000 00512.
000744

11:51

: 1184. words, I-Space
704. words, D-Space
000000 004413 I-Space

000000 002513 D-Space

002714
002414

000350
000000

000074
000000

001500
000100

OH OH OH OH

000002 000014 000013 00011.

MAIN

INPUT

CALC

OUTPUT

Memory allocation map TKB M43.00

16-0CT-87

x Root segment: MAIN

11:51

R/W mem 1limits: 000000 002713 002714 01484. I-Space
000000 002413 002414 01292. D-Space

Page 1

Page 2

(Continued on next page)

User-Mode I- and D-Space

7-17

Example 7-2 (Cont.): Map of Overlaid I- and D-Space Task MAINID.TSK

Disk blk limits: 000002 000004 000003 00003. I-Space
000005 000007 000003 00003. D-Space

Memory allocation synopsis:

Section
. BLK.:(RW,I,LCL,REL,CON) 000256
000256
000526
coMi :(RO,D,GBL,REL,CON) 001256
001256
COM2 : (RW,D,GBL,REL, CON) 001302
001302
COM3 : (RW,D,GBL,REL,CON) 001334
001334
COM4 : (RW,D,GBL,REL,CON) 001344
001344
COM5 : (RW,D,GBL,REL, CON) 001600
001600
LIBROT: (RW,I,GBL,REL,CON) 000000
000000
MAIN :(RO,I,LCL,REL,CON) 000744
000744
$$ALER: (RO, I,LCL,REL,CON) 001106
001106
001106
$$ALVD: (RO,D,LCL,REL, CON) 001620
$$ALVI: (RO, I,LCL,REL,CON) 001132

Global symbols:

000466
000250
000216
000024
000024
000032
000032
000010
000010
000234
000234
000020
000020
000140
000140
000142
000142
000024
000000
000024
000034
000070

00310.
00168.
00142.
00020.
00020.
00026 .
00026 .
00008 .
00008.
00156.
00156.
00016.
00016.
00096.
00096 .
00098 .
00098.
00020.
00000.
00020.
00028.
00056 .

AADD 001152-R N.DTDS 000020 $CBDAT 000526-R
ARGBLK 001316-R N.FAST 000013 $CBDMG 000534-R

7-18 User-Mode I- and D-Space

MAIN
MAIN
LIBROT
MAIN

OVIDR
ALERR

$TIM
$VEXT

Ident File

03 SYSLIB.OLB; 10
04.3 SYSLIB.OLB;10

V00.00 MAIN.OBJ; 34
V00.00 MAIN.OBJ; 34
V00.00 MAIN.OBJ;34
V00.00 MAIN.OBJ;34
V00.00 MAIN.OBJ; 34
03.01 LIBFSO.STB;1
V00.00 MAIN.OBJ; 34

01 SYSLIB.OLB; 10
02.00 SYSLIB.OLB;10

000402-R
000056

(Continued on next page)

Example 7-2 (Cont.): Map of Overlaid |- and D-Space Task MAINID.TSK

MAINID.TSK;1 Memory allocation map TKB M43.00
11:51

INPUT 16-0CT-87
% Segment: INPUT

R/W mem 1limits: 002714 003263 000350 00232.
002414 002413 000000 00000.

Disk blk limits: 000010 000010 000001 00001.
000011 000011 000000 00000.

Memory allocation synopsis:

Section

. BLK.:(RW,I,LCL,REL,CON)
INPUT :(RO,I,LCL,REL,CON)
$$ALVD: (RO,D,LCL,REL, CON)
$$ALVI: (RO,I,LCL,REL,CON)

$$RTS :(RO,I,GBL,REL,OVR)
$$sSLVC: (RO, I,LCL,REL, CON)

Global symbols:

002714
002714
003010
003010
002414
003262
002710
003262

000074
000074
000252
000252
000000
000000
000002
000000

I-Space
D-Space

I-Space
D-Space

Page 4

Title Ident File

00060 .

00060. CATB 03 SYSLIB.OLB;10

00170.

00170. INPUT 01 INPUT.0BJ;32

00000 .
00000.
00002.
00000 .

INPUT 003010-R $CDTB 002714-R $COTB 002722-R

MAINID.TSK;1 Memory allocation map TKB M43.00
11:51

CALC 15-0CT-87

***x Task builder statistics:

Total work file references:

Work file reads: O.
Work file writes: O.

13920.

Size of core pool: 5010. words (19. pages)
Size of work file: 4096. words (16. pages)

Elapsed time:00:00:28

Page 5

User-Mode I- and D-Space

7-19

Chapter 8
Supervisor-Mode Libraries

A supervisor-mode library is a resident library that doubles a user task’s virtual address space
by mapping the instruction space of the processor’s supervisor mode.

A call from within a user task to a subroutine within a supervisor-mode library causes the
processor to switch from user mode to supervisor mode. The user task transfers control to
a mode-switching vector that the Task Builder includes within the task. The mode-switching
vector performs the mode switch and then transfers control to the called subroutine within the
supervisor-mode library. The library routine executes with the processor in supervisor mode.
When the library routine finishes executing, it transfers control to a completion routine within
the library. The completion routine mode switches the processor back to user mode. The user
task continues executing with the processor in user mode at the return address on the stack.
This process recurs whenever the user task calls a subroutine in the supervisor-mode library.

8.1 Mode-Switching Vectors

In a task that links to a supervisor-mode library, TKB includes a 4-word, mode-switching vector
in the user task’s address space for each entry point referred to in a subroutine in the library.

The following example shows the contents of a mode-switching vector:

MOV #COMPLETION-ROUTINE, - (SP)
CSM #SUPERVISOR-MODE-ROUTINE ADDRESS

Note

When switching from user mode to supervisor mode, all registers of the
referencing task are preserved. All condition codes in the PSW saved on
the stack are cleared and must be restored by the completion routine.

Supervisor-Mode Libraries 8-1

8.2 Completion Routines

After the subroutine finishes executing, its RETURN statement transfers control to a completion
routine that switches from supervisor mode to user mode. The completion routine returns
program control back to the referencing task at the instruction after the call to the subroutine.
The system library (SYSLIB) contains two completion routines, as follows:

$CMPCS restores only the carry bit in the user-mode PSW.
$CMPAL restores all the condition code bits in the user-mode PSW.

8.3 Restrictions on the Contents of Supervisor-Mode Libraries

The following restrictions are placed on the contents of a supervisor-mode library:

Only subroutines using the form JSR PC, x should be used within the library.
The library must not contain subroutines that use the stack to pass parameters.

If both the library and the referencing task link to a subroutine from the system library,
then the entry point name of the subroutine must be excluded from the STB file for the
library.

Unless you include the Executive directive Map Supervisor D-space (MSDS$) within the
library, the library must not contain data of any kind (even read-only) because the user
supervisor D-space APRs map the user task by default. This includes user data, buffers,
I/0 status blocks, and Directive Parameter Blocks (only the $S directive form can be used,
because the DPB for this form is pushed onto the user stack at run time).

Using the MSDS$ directive, the library can map data within the instruction space of the
supervisor-mode library by using the supervisor D-space APRs. The directive maps specific
supervisor D-space APRs to supervisor instruction space by copying the supervisor I-space
APRs that map the data portion of the library. To effectively contain data within a
supervisor-mode library, you must know which APRs map the data portions of your task
and library.

Note

You cannot use MSDS$ to map supervisor D-space APR 0. Mapping library
data and the user task simultaneously should be done with extreme care. The
RSX-11M-PLUS and Micro/RSX Executive Reference Manual discusses the MSDS$
directive in detail.

8.4 Supervisor-Mode Library Mapping

Supervisor-mode libraries are mapped with the supervisor I-space APRs. Supervisor D-space
APRs can map the user task, data within the library, or both the user task and library data
simultaneously. They map the user task by default.

The supervisor D-space APRs can be mapped differently according to whether the library
contains data.

Supervisor D-space APRs are copies of user I-space APRs, which map the entire user task. This
gives the library access to data within the user task. Figure 8-1 illustrates this mapping.

8-2 Supervisor-Mode Libraries

Figure 8-1:

USER
D-SPACE

USER
I-SPACE

SUPERVISOR
D-SPACE

SUPERVISOR
i-SPACE

32K

0K
32K
24K

oK

32K
24K

0K

32K

16K

oK

Mapping of a 24K-Word Conventional User Task That Links to a 16K-Word

Supervisor-Mode Library

PHYSICAL
VIRTUAL
ADDRESS ; APRs MEMORY
256K
SPACE 6]
5
pu
3 <///UNUSED. ’T T
5
UNUSED 1
/, 0 -
UNUSED: 24K
7 T USER
6 —///UNUSED TASK
USER ?
TASK 4
>4
7
0
APRs
0-5
COPIED
7 7
6 4///UNUSED
UNUSED: 4
y 3
>
USER 1 -
TASK 0
(COPIED)
16K
SUPERVISOR
LIBRARY
UNUSED 7
6
/, 5 +///UNUSED
SUPERVISOR 4
LIBRARY i - 30k
H
0 ~ ~
oK
APR MAPPING

USER D-SPACE
USER I-SPACE

SUPERVISOR D-SPACE
SUPERVISOR I-SPACE

UNUSED

0-5 map entire user task
0-5 map entire user task
0-3 map library

Supervisor-Mode Libraries

ZK-439-81

8-3

8.4.1 Supervisor-Mode Library Data

Libraries that contain data require extremely complicated mapping that may overwrite the user
task or cause the task to fail.

Supervisor D-space APRs are copies of user I-space APRs, which map the entire user task.
For I- and D-space tasks, the supervisor D-space APRs are copies of the user D-space APRs.
Including the MSDS$ directive (see Section 8.3) within the library code enables the library to
map data within its own instruction space. The user task may be overmapped. The library has
access to data within its instruction space and to data in the user task that is not overmapped
by the MSDS$ directive.

Figure 8-2 illustrates this mapping.

8.4.2 Supervisor-Mode Libraries with |- and D-Space Tasks

I- and D-space tasks may link to supervisor-mode libraries. Instead of mapping to the entire
user task, the supervisor-mode library’s D-space APRs map the task’s data space. Because
the I- and D-space task maps its data with the D-space APRs, the task’s D-space APRs are
copied into the supervisor-mode library’s D-space APRs. Therefore, the supervisor-mode library
maps its own instructions with supervisor-mode I-space APRs and maps the task’s data with
supervisor-mode D-space APRs.

Figure 8-3 illustrates the mapping of an I- and D-space task linked to a supervisor-mode library.

8.5 Building and Linking to Supervisor-Mode Libraries

Building and linking to a supervisor-mode library is essentially the same as building and linking
to a conventional resident library (discussed in Chapter 5). When you build a supervisor-mode
library using the TKB command line, you suppress the header by attaching /-HD to the task
image file. If you use LINK, you use the /NOHEAD qualifier in the LINK command line.
During option input, you suppress the stack area by specifying STACK=0. You specify the
partition in which the library is to reside and, optionally, the base address and length of the
library with the PAR option.

8.5.1 Relevant TKB Options

Use the following options to build and reference supervisor-mode libraries:

CMPRT Indicates that you are building a supervisor-mode library and specifies
the name of the completion routine

RESSUP (SUPLIB) Indicates that your task references a supervisor-mode library

GBLXCL Excludes a global symbol from the STB file of the supervisor-mode
library

These options are discussed briefly in the next sections and are fully documented in Chapter
11.

8-4 Supervisor-Mode Libraries

Figure 8-2: Mapping of a 20K-Word Conventional User Task That Links to a 12K-Word
Supervisor-Mode Library Containing 4K Words of Data

PHYSICAL
VIRTUAL APRs MEMORY
ADDRESS 7 256K
SPACE 6 -
32K 5 o
4 ~ ~
3 -///UNUSED:.
2
USER UNUSED 1
D-SPACE ///// 0 -
0K
32K 7
/7NUSED 7 . 8K 20K
N ‘T/UNMAPPED/J) 4K USER
20K 6 s
= J///uNuseD - o TASK
USER USER
1-SPACE TASK g B
0K 1
0
APRs
0-4 7
COPIED 6 17/ (RS
32K 7 5 7
UNUSED/ 3
SUPERVISOR 20K L 0)
D-SPAGE USER TASK | (COPIE
- 12K 0~
sk |-SUPERVISOR DATA &>
S
USER TASK] (COP'®
0K
APR 2
e oy COPIED T P« cup 125
UNUSED. 7 8K UngzAlF?\?R
SUPERVISOR 6 7 / /
12K 5 1/ UNUSED
I-SPACE DATA & INSTR 4
BK = — — — 3 - 30k
INSTRUCTIONS
0K 1
0 - ~ ﬂr
APR MAPPING
USER D-SPACE UNUSED
USER I-SPACE 0-4 map entire user task
SUPERVISOR D-SPACE 0-1 and 3-4 map user task
2 remapped to supervisor data using MSDS$
SUPERVISOR I-SPACE 0-2 map library

2ZK-440-81

Supervisor-Mode Libraries 8-5

Figure 8-3: Mapping of a 40K-Word |- and D-Space Task That Links to an 8K-Word
Supervisor-Mode Library

32K
USER
D-SPACE 16K
oK
32K
USER 24K
1-SPACE
0K
32K
SUPERVISOR
p-space X
0K
32K
SUPERVISOR
1-SPACE oK
0K

8-6 Supervisor-Mode Libraries

VIRTUAL
ADDRESS
SPACE

/
% UNUSED

USER
DATA

UNUSED

USER
INSTRUCTIONS

UNUSED/

APRs
0-3
COPIED

USER DATA
(COPIED)

UNUSED

SUPERVISOR
LIBRARY

APRs

5 UNUSED

7 7,
6 —///UNUSED

6 —1 //
5 —//UNUSED,

6~
5 —
4 UNUSED

2

0

APR MAPPING

USER D-SPACE
USER I-SPACE
SUPERVISOR D-SPACE
SUPERVISOR I-SPACE

0-3 map user data

0-5 map user instructions
0-3 map user data

0-1 map library

PHYSICAL
MEMORY
J'——_{ 256K
¥ <X
USER
DATA 16K
______ 40K
i- and D-
USER
USER TASK
INsTRUCTIONS| [24K
8K
SUPERVISOR
LIBRARY
— 30K
4 A
M 0K
ZK-1105-82

8.5.2 Building the Library

You indicate to TKB that you are building a supervisor-mode library with the CMPRT option.
The argument for this option identifies the entry symbol of the completion routine. When TKB
processes this option, it places the completion routine entry point in the library’s STB file. To
exclude a global symbol from the library’s STB file, you specify the name of the global symbol as
the argument of the GBLXCL option. You must exclude from the STB file of a supervisor-mode
library any symbol defined in the library that represents the following:

* An entry point to a subroutine that uses the stack to pass parameters

* An entry point to a subroutine mapped in user mode that the referencing user task calls

8.5.3 Building the Referencing Task

When you build a task that references a supervisor-mode library, use the RESSUP option if
you are referencing a user-owned, supervisor-mode library, and SUPLIB if you are referencing
a system-owned, supervisor-mode library. (As with the RESLIB and LIBR options for linking
to conventional libraries, RESSUP and SUPLIB are functionally the same.) The arguments for
these options are as follows:

* The file specification (RESSUP option) or name (SUPLIB option) of the library to be
referenced

* A switch that tells TKB whether to use system-supplied vectors to switch from user mode
to supervisor mode.

* For position-independent libraries, the first available supervisor-mode I-space APR that you
want to map the library.

8.5.4 Mode-Switching Instruction

Mode switching occurs with a hardware instruction available with all processors that have the
the KDJ11 chip set. Throughout the remainder of the chapter, supervisor-mode libraries are
referred to as CSM (change supervisor mode) libraries.

8.6 CSM Libraries

This section discusses how you build and link to CSM libraries. It also shows an extended
example of building and linking to a CSM library and explains the context-switching vectors
and completion routines for CSM libraries.

8.6.1 Building a CSM Library

You indicate to the Task Builder that you are building a CSM library by specifying the name of
the completion routine as the argument for the CMPRT option. This option places the name of
the completion routine into the library’s STB file. Link the completion routine, either $CMPAL
or $CMPCS, located in LB:[1,1]SYSLIB.OLB, as the first input file. Although the completion
routines are located in the system library (which is ordinarily referenced by default), you must
explicitly indicate it and link it as the first input file. You must also specify in the PAR option a
base of 0 for the partition in which the library will reside. These two steps locate the completion
routine at virtual 0 of the library’s virtual address space.

Supervisor-Mode Libraries 8-7

You specify the name of any global symbols that you would like to exclude from the library’s
STB file as the argument to the GBLXCL option. You must exclude from the STB file of a
supervisor-mode library any symbol defined in the library that represents the following:

e An entry point to a subroutine that uses the stack to pass parameters
e An entry point to a subroutine mapped in user mode that the referencing user task calls

The following sample TKB command sequence builds a CSM library in directory [301,55] on
device SY:

TKB>CSM/-HD/LI/PI,CSM/MA,CSM=

TKB>LB: [1,2] SYSLIB/LB:CMPAL,SY: [301,55] CSM
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=GEN:0:2000 [RET

TKB>CMPRT=$CMPCS [RET

TKB>GBLXCL=$SAVAL [RET

TKB>//

>
Or, you can use the following LINK command sequence to build the same library:

$ LINK/TAS:CSM/NOH/SHARE:LIB/CODE:PIC/MAP:CSM/SYS/SYM:CSM/OPT - [RET
->LB: [1,2] SYSLIB/INCLUDE : CMPAL,SY: [301,55]CSM

Option? STACK=0

Option? PAR=GEN:0:2000

Option? CMPRT=CMPCS

Dption? GBLXCL=$SAVAL [RET

Option? [RET

$

The library is built without a header or stack, like all shared regions. It is position independent
and has only one program section named .ABS. The /LI switch in TKB (or the /CODE:PIC
qualifier in LINK) accomplishes this, eliminating program section name conflicts between the
library and the referencing task.

The completion routine module CMPAL is specified first in the input line. The library will
run in partition GEN at 0 and is not more than 1K words. These are two aspects of building
supervisor-mode libraries specific to CSM libraries: the completion routine must be linked first
and must reside at virtual 0. (Why the CSM library must reside at virtual 0 is discussed in
Section 8.6.2.)

The CMPRT option specifies the global symbol $CMPCS, which is the entry point of the
completion routine. Note that the name for the system library module is CMPCS and its
corresponding global symbol is $CMPCS.

The GBLXCL option excludes $SAVAL from the library’s STB file because the user task must
reference a copy of $SAVAL that is mapped with user mode APRs.

8-8 Supervisor-Mode Libraries

8.6.2 Linking to a CSM Library

If your task links to a user-owned CSM library, you use the RESSUP option. If your task links
to a system-owned CSM library, you use the SUPLIB option. These options tell TKB that the
task will link to a supervisor-mode library. The option takes up to three arguments, as follows:

* The file specification (RESSUP option) or name (SUPLIB option) of the library
* A switch that tells TKB whether to use system-supplied, mode-switching vectors

® For position-independent libraries, an APR that must be APR 0 so that the library’s
completion routine is mapped at virtual 0

This information enables TKB to find the STB file for the CSM library, include a 4-word
mode-switching vector within the user task for each call to a subroutine within the library, and
correctly map the library at virtual 0 in the library image.

The following examples of TKB and LINK command sequences build a task named REF, which
references the library SUPER that you built in the previous section:

TKB>REF , REF=REF
TKB> /

Enter Options:

TKB> RESSUP=SUPER/SV: 0
TKB> //

>

$ LINK/TAS/MAP/OPT REF
Option? RESSUP=SUPER/SV:0
Option?

$

This sequence tells TKB to include in the logical address space of REF a user-owned, supervisor-
mode library named SUPER. TKB includes a 4-word mode-switching vector within the user task
for each call to a subroutine within the library. The CSM library is position independent and
is mapped with APR 0.

8.6.3 Example of a CSM Library and Linking Task

This example shows you the code and maps and the TKB and LINK command sequences
for building and linking to a CSM library that contains no data in a system not having user
data space. Example 8-1 shows the code for the library SUPER and Example 8-2 shows its
accompanying map. Example 8-3 shows the code for the completion routine $CMPCS that is
linked into SUPER from the system library. Example 8-4 shows the code for referencing task
TSUP and Example 8-5 shows its accompanying map.

Supervisor-Mode Libraries 8-9

Example 8-1: Code for SUPER.MAC

.TITLE SUPER
.IDENT /01/
SORT: :
CALL $SAVAL ; SAVE ALL REGISTERS
TST (RB) + ; SKIP OVER NUMBER OF ARGUMENTS
MOV (R5)+,RO ; GET ADDRESS OF LIST
Mov (R5)+,R4 ; GET ADDRESS OF LENGTH OF LIST
MoV (R4) ,R4 ; GET LENGTH OF LIST
BEQ 40$; IF NO ARGUMENTS
MOV RO,R5 ;
DEC R4 ;
10$:
Mov R5,RO ; COPY
MOV R4,R3 ; COPY LENGTH OF LIST
20$:
TST (RO) + ; MOVE POINTER TO NEXT ITEM
CMP (R5) , (RO) . COMPARE ITEMS
BLE 308 ; IF LE IN CORRECT ORDER
MOV (R5) ,R2 ; SWAP ITEMS
MOV (RO), (R5) ;
MOV R2, (RO) H
30$:
DEC R3 ; DECREMENT LOOP COUNT
BGE 208% ; IF NE LOOP
DEC R4 ; DECREMENT
BLE 40% ; IF EQ SORT COMPLETED
TST (RB) + ; GET POINTER TO NEXT ITEM TO BE COMPARED
BR 108
40$:
RETURN
SEARCH: :
CALL $SAVAL ; SAVE ALL THE REGISTERS
CMP #4, (R5)+ ; FOUR ARGUMENTS?
BNE 20$ IF NE NO

MoV (R5)+,RO
MOV (R5)+,R1

GET ADDRESS OF NUMBER TO LOCATE
ADDRESS OF LIST SEARCHING

Mov (R5) +,R2 ; GET ADDRESS OF LENGTH OF LIST
Mov (R2) ,R2 ; GET LENGTH OF LIST

BEQ 20$; IF NO ARGUMENTS

MoV (R5) ,R5 ; ADDRESS OF RETURNED VALUE

MOV R2,R3 COPY LENGTH

(Continued on next page)

8-10 Supervisor-Mode Libraries

Example 8-1

10$:

20%:

30%:

CMP
BEQ
BMI
DEC
BNE

MOV
RETURN

SUB
INC
MoV
RETURN
.END

(Cont.):

(RO), (R1)+
30%
20%
R2
108

#-1, (RB)
R2,R3

R3
R3, (R5)

s

Code for SUPER.MAC

; IS THIS THE NUMBER?

IF EQ YES

IF MI NUMBER NOT THERE
DECREMENT LOOP COUNT

IF NE NOT AT END OF LIST

END OF LIST PASS BACK ERROR

NUMBER FOUND - GET INDEX INTO LIST

; RETURN INDEX

Supervisor-Mode Libraries

8-11

Example 8-2: Memory Allocation Map for SUPER

SUPER.TSK;3 Memory allocation
29-DEC-87

Partition name : GEN
Identification : 03.01
Task UIC : [7.61]
Task attributes: -HD,PI
Total address windows: 1.

map TKB M41.00
15:01

Task image size : 128. words

Task address limits: 000000 00
R-W disk blk limits: 000002 0O

Root segment: CMPAL

R/W mem limits: 000000 000341
Disk blk limits: 000002 000002
Memory allocation synopsis:

Section

. BLK.:(RW,I,LCL,REL,CON)

Global symbols:

0343
0002 000001 00001.

000342 00226.
000001 00001.

000000 000342 00226 .
000000 000140 00096 .
000140 000140 00096.
000300 000042 00034.

Page 1

File

SYSLIB.OLB;1
SUPER.0BJ;3
SYSLIB.OLB;1

SEARCH 000220-R SORT 000140-R $CMPAL 000022-R $CMPCS 000110-R

$SAVAL 000300-R $SRTI 000002

Task builder statistics:

Total work file references
Work file reads: O.
Work file writes: O

-R

: 300.

Size of core pool: 6466. words (25. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:00:00:08

8-12 Supervisor-Mode Libraries

Example 8-3: Completion Routine SCMPCS from SYSLIB.OLB

.TITLE CMPAL
.IDENT /0204/

; COPYRIGHT (c) 1987 BY
; DIGITAL EQUIPMENT CORPORATION, MAYNARD
; MASSACHUSETTS. ALL RIGHTS RESERVED.

; THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
; AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
; AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
; SOFTWARE, OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
; OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
; OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

; THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
; NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
; EQUIPMENT CORPORATION.

; DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
; ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

.ENABL LC

; This module supports the "new" transfer vector format generated by
; the Task Builder for entering super mode libraries. This format
; is optimized for speed and size and supports user data space tasks.

; The CSM dispatcher routine and the standard completion routines

: $CMPAL and $CMPCS are included in this module due to the close
; interaction between them.

; **-CSM Dispatcher-Dispatch CSM entry

; This module must be linked at virtual zero in the supervisor mode
; library. It is entered via a four word transfer vector of the form:

; MOV #completion-routine, - (SP)
; CSM #routine

; Note: Immediate mode emulation of the CSM instruction is required
; in the Executive.

(Continued on next page)

Supervisor-Mode Libraries

8-13

Example 8-3 (Cont.): Completion Routine SCMPCS from SYSLIB.OLB

. The CSM instruction transfers control to the address contained in
; supervisor mode virtual 10. At this point the stack is the following:

; (SP) routine address

; 2(SP) PC (past end of transfer vector)
; 4(SP) PSW with condition codes cleared
; 6(SP) Completion-routine address

; 10(SP) Return address

; A routine address of O is special cased to support return to
; supervisor mode from a user mode debugging aid (ODT). In this case
; stack is the following:

; (SP) =zero

; 2(SP) PC from CSM to be discarded

; 4(SP) PSW from CSM to be discarded

; 6(SP) Super mode PC supplied by debugger
; 10(SP) Super mode PSW supplied by debugger

; To allow positioning at virtual zero, this code must be in the blank
; PSECT which is first in the TKBs PSECT ordering.

.PSECT
.ENABL LSB

: Debugger return to super mode entry. Must start at virtual zero

CMP (8P)+, (SP) + ; Clean off PSW and PC from CSM

: *x-$SRTI-SUPER mode RTI

; This entry point performs the necessary stack management to allow
; an RTI from super mode to either super mode or user mode.
; In this case, the stack is the following:

; (SP) Super mode PC
; 2(SP) Super mode PSW

$SRTI:: TST 2(sP) ; Returning to user mode?
BR 70$; Join common code

(Continued on next page)

8-14 Supervisor-Mode Libraries

Example 8-3 (Cont.):

Completion Routine $CMPCS from SYSLIB.OLB

; CSM transfer address, this word must be at virtual 10 in super mode

.WORD

; Dispatch CSM entry

CSMSVR:

Mov
JMP

CSMSVR ; CSM dispatcher entry
6(SP) ,2(SP) ; Set completion routine address for RETURN
Q(sP)+ ; Transfer to super mode library routine

; *%¥-$CMPAL-Completion routine which sets up NZVC in the PSW

; Copy all condition codes to stacked PSW. Current stack:

$CMPAL: :

10$:

20$:

30$:

40%:

508:

60$:

(sp)
2(sP)
4(spP)

BPL
BNE
BVC
BIS
BR

BIS
BR

BVC
BIS
BR

BIS
BR

BNE
BVC
BIS
BR

BIS
BR

BVC
BIS

PSW with condtion codes cleared
Completion routine address (to be discarded)
Return address

408 ;

20$;

108 ;

#16, (SP) ; Set Nzv
$CMPCS ;

#14, (SP) ; Set NZ
$CMPCS H

308 ;

#12, (SP) ; Set NV
$CMPCS ;

#10, (SP) ; Set N
$CMPCS ;

60%$;

508 ;

#6, (SP) ; Set 2V
$CMPCS H

#4, (SP) ; Set Z
$CMPCS H

$CMPCS H

#2, (SP) ; Set V

(Continued on next page)

Supervisor-Mode Libraries

8-15

Example 8-3 (Cont.): Completion Routine $CMPCS from SYSLIB.OLB

; **-$CMPCS-Completion routine which sets up only C in the PSW
; Copy only carry to stacked PSW. Current stack:
; (SP) PSW with condtion codes cleared

; 2(SP) Completion routine address (to be discarded)
; 4(SP) Return address

$CMPCS: : ADC (sP) ; Set up carry
MoV 4(spP),2(SP) ; Set up return address for RTT
MOV (SP)+,2(SP) ; And PSW. Returning to super mode?
70%: BPL 80% ; If PL yes
MOV #6,-(SP) ; Number of bytes for (SP), PSW, and PC
ADD SP, (sP) ; Compute clean stack value
MTPI SP ; Set up previous stack pointer
80%: RTT ; Return to previous mode and caller
.DSABL LSB
.END

8-16 Supervisor-Mode Libraries

Example 8-4:

WRITE:
READIN:

IARRAY:
LEN:
IART:
INDEX:
OUT:
ARGBLK :
EDBUF:

FMT1:
FMT2:
FMT3:
FMT4:
FMT6:

START:

5$:

10$:

.TITLE
.IDENT

.MCALL
QIOoWS
QIOWS

.BLKW
.BLKW
.BLKW
.WORD
.BLKW

.BLKW

.ASCIZ
.ASCIZ
.ASCIZ
.ASCIZ
.ASCIZ

.EVEN

MOV
MOV

CLR
DEC
BNE
MOV
MoV

MOV

MoV
INC
CALL
CALL

Code for TSUP.MAC

TSUP
/01/

QIOW$,DIR$,QIOWSS
I10.wvB,5,1,,,,<0UT, ,40>
I0.RVB,5,1,,,,<0U0T,5>

12.
1

1

0
100.

10.

/%2SARRAY (%D) =/

/YN%2SNUMBER TO SEARCH FOR?/
/%N%28%D WAS FOUND IN ARRAY(%D)/
/UN%28%D WAS NOT IN ARRAY/
/%2SARRAY (%D) =%D/

#IARRAY RO ; GET ADDRESS OF ARRAY

#10,R1 ; SET LENGTH OF ARRAY

(RO) + ; INITIALIZE ARRAY

R1 ; LOOP

5%

#IARRAY RO ;

#INDEX,R2

#FMT1,R1 ; FORMAT SPECIFICATION (ADDRESS
; OF INPUT STRING)

(R2) ,EDBUF ; GET INDEX

EDBUF ;

PRINT ; PRINT MESSAGE

READ ; READ INPUT

(Continued on next page)

Supervisor-Mode Libraries

8-17

Example 8-4 (Cont.):

MOV
BEQ
INC
CMP
BNE
20%:
MOV
MOV
MOV
MOV
MOV
MOV

CALL
i+

’

IART, (RO)+
20%

(R2)
(R2),#10.
10$

(R2) ,LEN
#ARGBLK,R5
#2,(R6)+
#IARRAY, (R5)+
#LEN, (R5)
#ARGBLK,R5
SORT

Code for TSUP.MAC

; PUT BINARY KEYBOARD INPUT INTO ARRAY
; ZERO MARKS END OF INPUT

; IF NE YES
; CALCULATE LENGTH OF ARRAY
; GET ADDRESS OF ARGUMENT BLOCK

; NUMBER OF ARGUMENTS
; PUT ADDRESS OF ARRAY

; SORT ARRAY

;Task Builder replaced call to SORT subroutine in SUPLIB with 4-word
;context switching vector. Flow of control switches to SUPLIB via
;the vector and back via the completion routine $CMPCS. TSUP
;continues executing at the next imnstruction.

CLR
MOV
30$:
INC
MOV
MOV
MOV
CALL
CMP
BLT
MOV
CALL
CALL
MOV
MoV
MOV
MOV
MOV
MOV
MoV
CALL

R2
#IARRAY,RO

R2

R2,EDBUF

(RO) +,EDBUF+2
#FMT5,R1
PRINT

R2,LEN

30$

#FMT2,R1
PRINT

READ
#ARGBLK, RS
#4, (RB) +
#IART, (R5)+
#IARRAY, (R5) +
#LEN, (R5)+
#INDEX, (R5)
#ARGBLK, R5
SEARCH

8-18 Supervisor-Mode Libraries

GET ARRAY ADDRESS

INCREMENT INDEX

GET INDEX FOR PRINT

GET CONTENTS OF ARRAY

GET ADDRESS OF FORMAT SPECIFICATION

MORE TO PRINT?

IF LE YES

GET ADDRESS OF FORMAT SPECIFICATION
OUTPUT MESSAGE

READ RESPONSE

SET NUMBER OF ARGUMENTS

SET ADDRESS OF NUMBER LOOKING FOR
SET ADDRESS OF ARRAY

SET ADDRESS OF LEN OF ARRAY
ADDRESS OF RESULT

SEARCH FOR NUMBER IN IART

(Continued on next page)

Example 8-4 (Cont.):

Code for TSUP.MAC

;Call to SUPLIB for SEARCH subroutine.

TST
BLT
MOV
MOV
MOV
CALL
BR
40%:
MOV
MOV
CALL
100$:
CALL

PRINT:
CALL
MOV
MOV
CALL
MOV

DIR$
RETURN

READ:
CALL
DIR$
MOV
CALL
MOV
RETURN

.END

INDEX

40$
IART,EDBUF
INDEX ,EDBUF+2
#FMT3,R1
PRINT

100$

#FMT4 ,R1
IART, EDBUF
PRINT

$EXST

$SAVAL
#0UT,RO
#EDBUF ,R2
$EDMSG

’

; WAS NUMBER FOUND?

; IF LT NO

; GET NUMBER LOOKING FOR
; GET ARRAY NUMBER

GET FORMAT ADDRESS
DONE

GET FORMAT ADDRESS
GET NUMBER

EXIT WITH STATUS

; SAVE ALL REGISTERS

)
:

R1,WRITE+Q.IOPL+2

#WRITE

$SAVAL
#READIN
#0UT,RO
$CDTB
R1,IART

START

»

; ADDRESS OF OUTPUT BLOCK
; START ADDRESS OF ARGUMENT BLOCK

FORMAT MESSAGE
; PUT LENGTH OF OUTPUT
BLOCK INTO PARAMETER BLOCK

; WRITE OUTPUT BLOCK

SAVE ALL REGISTERS

READ REQUEST

GET KEYBOARD INPUT

CONVERT KEYBOARD INPUT TO BINARY
PUT INPUT INTO BUFFER

TSUP prompts you to enter numbers at your terminal. It calls a subroutine in SUPER to sort
the numbers. Then it displays the numbers you entered as array entries and prompts you to
request a number to search for. TSUP calls a subroutine in SUPERLIB to search for the number.
Finally, TSUP indicates at your terminal either that the number was not found or the array
location in which the number is stored.

Supervisor-Mode Libraries 8-19

Example 8-5: Memory Allocation Map for TSUP

TSUP.TSK;1 Memory allocation map TKB M43.00
29-DEC-87 15:01

Partition name : GEN

Identification : 01

Task UIC : [301,55]

Stack limits: 000274 001273 001000 00512.
PRG xfr address: 002130

Total address windows: 2.

Task image size : 1344. words

Task address limits: 000000 005133

R-W disk blk limits: 000002 000007 000006 OO

*** Root segment: TSUP

R/W mem limits: 000000 005133 005134 02652.
Disk blk limits: 000002 000007 000006 00006.

Memory allocation synopsis:

Section
. BLK.:(RW,I,LCL,REL,CON) 001274 002334
001274 001234
CMPAL : (RW,I,LCL,REL,CON) 000000 000474
PUR$D : (RO,I,LCL,REL,CON) 003630 000076
PUR$I :(RO,I,LCL,REL,CON) 003726 000752
$$RESL: (RO, I,LCL,REL,CON) 004700 000212
$$SLVC: (RO, I,LCL,REL,CON) 005112 000020

TSUP.TSK;1 Memory allocation map TKB M43.00
29-DEC-87 15:01

*** Tagk builder statistics:

Total work file references: 2477.

Work file reads: O.

Work file writes: O.

Size of core pool: 6988. words (27. page
Size of work file: 1024. words (4. pages

Elapsed time:00:00:056

8-20 Supervisor-Mode Libraries

006 .

01244.
00668 .
00316.
00062.
00490.
00138.
00016.

8)
)

Page 1

Title Ident File

Page 2

TSUP.0BJ; 22

8.6.3.1 Building SUPER

To build SUPER in directory [301,55] on device SY:, use the following TKB or LINK command
sequence:

TKB>SUPER/-HD/LI/PI,SUPER/MA, SUPER=

TKB>LB: [1,1]SYSLIB/LB:CMPAL,SY: [301,55] SUPER
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=GEN:0:2000 |RET

TKB>CMPRT=$CMPCS [RET

TKB>GBLXCL=$SAVAL [RET

TKB>//

>

$ LINK/TAS:SUPER/NOH/SHARE:LIB/CODE:PIC/MAP : SUPER/SYS/SYM: SUPER/OPT -
->LB:[1,1]SYSLIB/INC:CMPAL,SY: [301,55] SUPER

Option? STACK=0

Option? PAR=GEN:0:2000

Option? CMPRT=$CMPCS [RET

Option? GBLXCL=$SAVAL [RET

Option? [RET

$

SUPER is built without a header or stack. It is position independent and has only one program

section, named .BLK. The /LI switch or the /SHARE:LIB qualifier eliminates program section
name conflicts between the library and the referencing task.

The completion routine module CMPAL is specified first in the input line. The library will run
in partition GEN at 0 and is not more than 1K words.

The GBLXCL option excludes $SAVAL from the library’s STB file. You exclude $SAVAL from
the STB file because the referencing task, TSUP, also calls $SAVAL. If TSUP finds $SAVAL in
the STB file of SUPER, it will not link a separate copy of $SAVAL into its task image from
the system library. If TSUP could not link to a copy of $SAVAL that is mapped through user
APRs, TSUP would call $SAVAL as a subroutine residing within the supervisor-mode library
but without the necessary mode-switching vector and completion routine support. This option
forces TKB to link $SAVAL from the system library into the task image for TSUP.

The memory allocation map in Example 8-2 shows the following information:
* SUPER begins at virtual 0.

* The completion routine, $CMPAL, is linked into the library from the system library at
virtual 0.

* The entry point $CMPAL is located at virtual 22, SEARCH is located at 35, and SORT is
located at 274. All of these entry points are relocatable.

* The SEARCH and SORT subroutines that were located at virtual address 352 and 274,
respectively, in the virtual address space of SUPER have been relocated to the mode-
switching vectors residing at 5112 and 5122, respectively, in TSUP.

Supervisor-Mode Libraries 8-21

8.6.3.2 Building TSUP
Use the following TKB or LINK command sequence to build a task, TSUP, that links to SUPER:

TKB>TSUP , TSUP=TSUP
TKB>/

Enter Options:
TKB>RESSUP=SUPER/SV:0
TKB>//

$ LINK/TAS/MAP/OPT SUPER

Option? RESSUP=SUPER/SV:0

Option?

$

These two command sequences tell TKB to include in the logical address space of TSUP a
user-owned supervisor-mode library named SUPER. TKB includes a 4-word mode-switching
vector within the task image for each call to a subroutine within the library. The library is
position independent and is mapped with supervisor I-space APR 0. This is a requirement for
CSM libraries because the CSM library expects to find the entry point of the completion routine
at location 10.

The memory allocation map for TSUP (Example 8-5) shows the following information:
* $CMPAL is linked from the STB file of the library and begins at location 0.

e The mode-switching vectors begin at 005136 and are 16 bytes in length. This means that
TSUP calls subroutines within the library two times (four words for each vector).

e The initiation routine $SUPL is located at 4700.

e The SEARCH and SORT subroutines that were located at virtual 112 and 32, respectively,
in the virtual address space of SUPER have been relocated to the mode-switching vectors
residing at 5136 and 5146, respectively, in TSUP.

e The system library module SAVAL, containing $SAVAL, has been linked into the task image
instead of including $SAVAL from the library’s STB file.
8.6.3.3 Running TSUP

After building SUPER and TSUP as indicated in the task-build command sequence discussed
previously, you install SUPER and run TSUP. TSUP prompts you for a number, as follows:

ARRAY (%)

X
The position in which to store the number in the array. You enter a number. TSUP stores
the number in the array and prompts you again for a number. This continues until you
either have entered a 0, an invalid number, or 10 numbers. Then TSUP calls the SORT
routine in SUPER.

You enter a number. TSUP calls the SEARCH routine in SUPER. Then TSUP outputs a message
indicating whether the number was in the array.

8-22 Supervisor-Mode Libraries

8.6.4 The CSM Library Dispatching Process

When you build the referencing task and you specify the SV argument to the RESSUP or
SUPLIB option, TKB includes a 4-word context-switching vector for each call to a subroutine in
the library. This has been very generally discussed in Section 8.2. This section discusses the
CSM library vector in detail.

CSM mode switching occurs as follows:
1. The vector is entered with the return address on top of the stack (TOS).
2. The vector pushes the completion-routine address on the stack.

3. A CSM instruction is executed with the supervisor-mode entry point as the immediate
addressing mode parameter. The CSM instruction performs the following actions:

a. Evaluates the source parameter and stores the entry point address in a temporary register
b. Copies the user stack pointer to the supervisor stack pointer

c. Places the current PSW and PC on the supervisor stack, clearing the condition codes in
the PSW

d. Pushes the entry point address on the supervisor stack
e. Places the contents of location 10 in supervisor I-space into the PC

The stack looks like this when the processor begins to execute at the contents of virtual 10 in
supervisor mode:

user sp ----> return address
completion routine address
PSW
PC
super sp ----> entry point address

The most important aspect of how the CSM library mode-switching vector works is that the
processor begins executing at the contents of virtual 10 in supervisor mode. This is why
the completion routine must be located at virtual 0, so that virtual location 10 is within the
completion routine.

8.7 Converting SCAL Libraries to CSM Libraries

You can easily convert your SCAL libraries to CSM libraries. Rebuilding a task on an
RSX-11M-PLUS Version 2.0 system or later that linked to a library on a Version 1.0 system
requires that you rebuild the library also. Rebuild the library specifying the completion routine
as the first input module. If the library was not built to run at a starting address of 0 in its
partition, rebuild it to begin at 0 so that TKB can find the completion routine.

Supervisor-Mode Libraries 8-23

8.8 Using Supervisor-Mode Libraries as Resident Libraries

Supervisor-mode libraries can double as conventional resident libraries. For position-
independent supervisor-mode libraries, you rebuild the referencing task using the RESLIB
option instead of the RESSUP option. Indicate the first available user-mode APR that you want
to map the library. For CSM libraries, this will always change because you cannot map a shared
region with APR 0. You do not have to rebuild the library.

For absolute supervisor-mode libraries, rebuild the referencing task using the RESLIB option
instead of the RESSUP option. Rebuild the library only if the beginning partition address in
the PAR option is incompatible with the address limits of your referencing task.

8.9 Multiple Supervisor-Mode Libraries

A user task can reference multiple supervisor-mode CSM libraries. However, all the CSM
libraries must use the completion routine that begins at virtual 0 in supervisor-mode instruction
space.

8.10 Linking a Resident Library to a Supervisor-Mode Library

You can link a conventional resident library to a supervisor-mode library using the following
TKB or LINK command sequence:

TKB>F4PRES/-HD,F4PRES,LB: [1, 1] FAPRES=
TKB>F4PRES/LB

TKB>/

Enter Optionms:

TKB>STACK=0

TKB>SUPLIB=FCSFSL: SV

TKB>PAR=F4PRES : 140000 : 20000

TKB>//

>

$ LINK/TAS:FAPRES/NOH/MAP :FAPRES/SYM:LB: [1, 1]FAPRES/OPT -
-> F4PRES/LIB

Option? STACK=0

Option? SUPLIB=FCSFSL:SV

Option? PAR=F4PRES:140000:20000

Option?

$

These two command sequences show you how to link F4PRES to FCSFSL.

8.11 Linking Supervisor-Mode Libraries

You cannot link supervisor-mode libraries together, and you cannot link a supervisor-mode
library to a resident user-mode library. Calling a user-mode library is not possible because its
code is not mapped through the I-space APRs while in the supervisor-mode library. However,
you can link user-mode libraries to a supervisor-mode library.

8-24 Supervisor-Mode Libraries

8.12 Writing Your Own Vectors and Completion Routines

You can write your own mode-switching vectors and completion routines. This may be necessary
for threaded code. If you use your own vectors, build them into the task and use the /-SV
switch on the RESSUP or RESLIB option when you build the referencing task. If you create
your own completion routines, write your completion routine to resemble the system-supplied
completion routines (see Example 8-3) as much as possible. If you do not retain the last three
lines of code as indicated in Example 8-3, the task may crash if the Executive processes an
interrupt before the switch back to user mode has completed.

8.13 Overlaid Supervisor-Mode Libraries

It is possible to use overlaid supervisor-mode libraries. However, the following restrictions must
be noted when building these libraries:

¢ The completion routine for the library must be in the root.
* Only one level of overlaying is allowed. This is illustrated in Figure 8-4.
e Although the Fast Task Builder (FTB) can link to supervisor-mode libraries, it cannot link

to overlaid supervisor-mode libraries.

Figure 8-4: Overlay Configuration Allowed for Supervisor-Mode Libraries

A B A B C D A B CI D
E F
ROOT ROOT ROOT I
ALLOWED ALLOWED NOT ALLOWED
7K-1102-82

Supervisor-Mode Libraries 8-25

Chapter 9
Multiuser Tasks

A multiuser task is a task that shares the pure (read-only) portion of its code with two or more
copies of the impure (read/write) portion of its code. When the system receives an initial run
request for a multiuser task, a copy of both the read-only and read/write portions of the task
are read into physical memory. As long as the task is running, all subsequent run requests for
it result in the system duplicating only the read/write portion of the task in physical memory.
Thus, multiuser tasks are memory efficient.

When you build a task, you designate it as multiuser by applying the /MU switch to the task
image file. This switch directs the Task Builder to create two regions for the task. One region
(region 0) contains the read/write portion of the task; the other region (region 1) contains the
read-only portion of the task.

As with all other tasks, TKB uses a program section’s access code to determine its placement
within a multiuser task’s image. It divides address space into read /write and read-only sections.
Unlike in a single user task, however, the read-only portion of the task is hardware protected. In
addition, TKB separates the read/write portions of a multiuser task from the read-only portions
and places them in separate regions at opposite ends of the task’s address space. It allocates the
low-address APRs to the read/write portion (which includes the task’s header and stack area)
and the highest available APRs to the read-only portion. Figure 9-1 illustrates this allocation.

Multiuser Tasks 9-1

Figure 9-1: Allocation of Program Sections in a Multiuser Task

APR 7 — READ-ONLY
PROGRAM
SECTIONS
APR 6 —
APR 5—
APR 4 —
APR 3—
READ/WRITE
APR 2— PROGRAM
SECTIONS
APR 1 —
HEADER & STACK
APR 0 —

ZK-441-81

For I- and D-space multiuser tasks, in addition to having the multiuser task divided into regions
of read-only program sections and read/write program sections, these regions themselves are
divided into I-space areas and D-space areas. All of the following combinations must be present
in an I- and D-space multiuser task:

e .PSECT psectnamew, RO, I, ...
* PSECT psectnamex, RW, I, ...
e PSECT psectnamey, RO, D, ...
e PSECT psectnamez, RW, D, ...

If neither the read-only nor the read/write portion of the task contains memory-resident overlays,
TKB allocates two window blocks in the header of the task. When the task is installed, the
INSTALL task will initialize these window blocks as follows:

e Window block 0 describes the range of virtual addresses (the window) for the read/write
portion of the task. This region always contains the task’s header.

e Window block 1 describes the range of virtual addresses for the read-only portion.

9-2 Multiuser Tasks

Figure 9-2 shows the window-to-region relationship of a multiuser task.

Figure 9-2: Windows for a Multiuser Task

HIGHEST VIRTUAL

ADDRESS

WINDOW
1

WINDOW BLOCK
1

WINDOW BLOCK
0

READ/WRITE

LOWEST VIRTUAL 1

ADDRESS

REGION O

ZK-442-81

Multiuser Tasks

9-3

@.1 Overlaid Multiuser Task

If a multiuser task is an overlaid task (described in Chapter 3), the read-only portion of the task
can be made up of the following components:

* The read-only program sections of the root segment
* Branches of an overlay structure if the complete branch is memory resident and read-only

* A co-tree structure if the entire co-tree is memory resident and read-only

9.2 Disk Image of a Multiuser Task

The disk image of a multiuser task is somewhat different from that of a single-user task.
The read-only portion of the task is placed at the end of the disk image. The relative block
number of the read-only portion and the number of blocks it occupies appear in the label block.
The read-only portion of the image is described in the first library descriptor of the LIBRARY
REQUEST section of the label block. (Refer to Appendix B for more information on the task
image data structures.)

9.3 I- and D-Space Mulitiuser Tasks

The APR and window block assignment in an I- and D-space multiuser task differs from that
in a conventional multiuser task.

D-space APRs map the read/write and read-only program sections that have the data attribute.
Similarly, I-space APRs map the read/write and read-only program sections that have the
instruction attribute. Figure 9-3 shows the APR mapping for both kinds of program sections in
an I- and D-space multiuser task. :

TKB needs four window blocks to map an I- and D-space multiuser task. Window blocks 0 and
1 map region 0, which contains the read/write instruction and data program sections. Window
blocks 2 and 3 map region 1, which contains the read-only instruction and data program
sections. Figure 9-4 illustrates the mapping and assignment of these window blocks for an I-
and D-space multiuser task.

9.4 Example 9-1: Building a Multiuser Task

The text in this section and the figures associated with it illustrate the development of a
multiuser task. This example was created by concatenating into a single file the resident library
file (LIB.MAC) and the task that links to it (MAIN.MAC) from Example 5-3. It is not intended
to represent a typical multiuser task application. However, it does illustrate the Task Builder’s
allocation of program sections in a multiuser task and that is its primary value. The concatenated
source file, named ROTASK.MAC, for this example is shown in Example 9-1.

9-4 Multiuser Tasks

Figure 9-3: Example Allocation of Program Sections in an I- and and D-Space Multiuser

Task
DATA APRS INSTRUCTION APRS
UNUSED UNUSED
READ-ONLY DATA
PROGRAM SECTIONS
DAPR7 IAPR7 — READ-ONLY
INSTRUCTION
PROGRAM SECTIONS
DAPR6 — IAPR6
DAPR5 — IAPR5 —
UNUSED
DAPR4 — IAPR4 —
UNUSED
DAPR3 — IAPR3 —
DAPR2 — IAPR2 —
READ/WRITE DATA
PROGRAM SECTIONS
DAPR1 — IAPR1 — READ/WRITE
INSTRUCTION
PROGRAM SECTIONS
TACK
DAPRO HEADER AND S IAPRO UNUSED HEADER

ZK-1103-82

Multiuser Tasks 9-5

Figure 9-4: Windows for an |- and D-Space Multiuser Task

PHYSICAL
MEMORY
TASK READ-ONLY D
WINDOW BLOCKS
— — — — - — — — REGION 1
READ-ONLY |

WINDOW BLOCK 3

WINDOW BLOCK 2

WINDOW BLOCK 1

WINDOW BLOCK 0

READ/WRITE D
———————— REGION 0

READ/WRITE

ZK-1104-82

9-6 Multiuser Tasks

Example 9-1:

.TITLE
. IDENT
.MCALL

OP1: .WORD
0P2: .WORD
ANS: .BLKW
OUT: .BLKW

FORMAT: .ASCIZ
.EVEN

START:

MOV
MOV
MOV
MOV
MOV
CALL
CALL
MOV
CALL
CALL
MOV
CALL
CALL
MOV
CALL
CALL
EXIT$S

i+

Part 1, Source Listing for ROTASK.MAC

ROTASK

/01/

QIOW$S,EXIT$S

1 ; OPERAND 1

1 ; OPERAND 2

1 ; RESULT

100. ; FORMAT MESSAGE
/THE ANSWER = %D,/

#ANS, - (SP) ; TO CONTAIN RESULT

#0P2, - (SP) ; OPERAND 2

#0P1,-(SP) ; OPERAND 1

#3 ,-(SP) ; PASSING 3 ARGUMENTS

SP,R5 ; ADDRESS OF ARGUMENT BLOCK
AADD ; ADD TWO OPERANDS

PRINT ; PRINT RESULTS

SP,R5 ; ADDRESS OF ARGUMENT BLOCK
SUBB ; SUBTRACT SUBROUTINE
PRINT ; PRINT RESULTS

SP,R5 ; ADDRESS OF ARGUMENT BLOCK
MULL ; MULTIPLY SUBROUTINE
PRINT ; PRINT RESULTS

SP,R5 ; ADDRESS OF ARGUMENT BLOCK
DIV ; DIVIDE SUBROUTINE

PRINT ; PRINT RESULTS

;** PRINT - PRINT RESULT OF OPERATION.

PRINT: MOV
Mov
Mov
CALL
QIOW$S
RETURN

#0UT ,RO ; ADDRESS OF SCRATCH AREA
#FORMAT ,R1 ; FORMAT SPECIFICATION
#ANS ,R2 ; ARGUMENT TO CONVERT
$EDMSG ; FORMAT MESSAGE

#I0.WVB,#5,#1,,, ,<#0UT,R1,#40>
; RETURN FROM SUBROUTINE

(Continued on next page)

Multiuser Tasks 9-7

Example 9-1 (Cont.): Part 1, Source Listing for ROTASK.MAC

;*% FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS
.PSECT AADD,RO,I,GBL,REL,CON

AADD:: CALL $SAVAL ; SAVE RO-Rb
Mov 02(R5) ,RO ; FIRST OPERAND
MoV Q4(R5) ,R1 ; SECOND OPERAND
ADD RO,R1 ; SUM THEM
MOV R1,@6(R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

;** FORTRAN CALLABLE SUBROUTINE TO SUBTRACT TWO INTEGERS
.PSECT SUBB,RO,I,GBL,REL,CON

SUBB:: CALL $SAVAL ; SAVE RO-R5
MoV 92(R5) ,RO ; FIRST OPERAND
MOV 04 (R5) ,R1 ; SECOND OPERAND
SUB R1,RO ; SUBTRACT SECOND FROM FIRST
MOV RO, @6(R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

;%% FORTRAN CALLABLE SUBROUTINE TO DIVIDE TWO INTEGERS
.PSECT DIVV,RO,I,GBL,REL,CON

DIVV:: CALL $SAVAL ; SAVE RO-R5
MoV @2(R5) ,R3 ; FIRST OPERAND
Mov 04 (R5) ,R1 ; SECOND OPERAND
CLR R2 ; LOW ORDER 16 BITS
DIV R1,R2 ; DIVIDE
MOV R2,06 (R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

;** FORTRAN CALLABLE SUBROUTINE TO MULTIPLY TWO INTEGERS
.PSECT MULL,RO,I,GBL,REL,CON

MULL:: CALL $SAVAL ; SAVE RO-RS
MOV 02(R5) ,RO ; FIRST OPERAND
MOV 04(R5) ,R1 ; SECOND OPERAND
MUL RO,R1 ; MULTIPLY
Mov R1,06(R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN
.END START

Once you have assembled ROTASK, you can build it with the following TKB or LINK command
sequence:

TKB>ROTASK/MU,ROTASK/-WI/-SP=ROTASK
TKB>/

Enter Optioms:

TKB>ROPAR=RDONLY

TKB>//

>

$ LINK/TAS/SHARE:ROTASK/MAP:ROTASK/NOPRINT/NOWIDE/OPT ROTASK
Option? ROPAR=RDONLY
Option? [RET

9-8 Multiuser Tasks

These two command sequences direct TKB to build a multiuser task image named ROTASK.TSK
and to create an 80-column map file named ROTASK.MAP. TKB does not output a map to the
line printer.

The ROPAR option specifies that the system is to load the read-only portion of the task into
a partition named RDONLY. Specifying a separate partition for the task’s read-only region is
not a system requirement. The system will load the read /write portion into partition GEN. The
system will not load either region until it receives a run request for the task.

The map that results from this command sequence is shown in Example 9-1, Part 2. Note that
TKB has added one field to the task-attributes section of this map describing the disk block
limits of the read-only portion of the task. It has also added a field to the root-segment portion
of the map that describes the memory limits of the read-only portion of the task.

Finally, note that TKB has allocated space for all the program sections with the read-only
attribute, beginning with the highest available APR (in this case, APR 7).

Multiuser Tasks 9-9

Example 9-1: Part 2, Task Builder Map for ROTASK.TSK

ROTASK.TSK;1 Memory allocation map TKB M43.00

10-DEC-87
Partition name : GEN
Identification : 01
Task UIC : [7.62]

14:42

Stack Limits: 000274 001273 001000 00512.

PRG xfr address: 001634
Task attributes: MU
Total address windows: 2.

Task image size : 1088. words
Task address limits: 000000 004157
R-W disk blk limits: 000002 000006 000005 00005 .
R-0 disk blk limits: 000007 000007 000001 00001 .

xx Root segment: ROTASK

R/W mem 1limits: 000000 004157 004160 02160.
R-0 mem 1limits: 160000 160377 000400 00256.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section

T-;LRT:(RW,I,LCL,REL,CUN)
AADD :(RO,I,LCL,REL,CON)
DDIV :(RO,I,LCL,REL,CON)
MMUL :(RO,I,LCL,REL,CON)
SSUB :(RO,I,LCL,REL,CON)
$$RESL: (RO, I,LCL,REL,CON)

Global symbols:

001274
001274
160000
160000
160024
160024
160052
160052
160076
160076
160122

AADD 160000-R DIVV 160024-R

*** Task builder statistics:

Total work file references:

Work file reads: O.
Work file writes: O.

2145.

002662
000530
000024
000024
000026
000026
000024
000024
000024
000024
000212

MULL

01458.
00344.
00020.
00020.
00022.
00022.
00020.
00020.
00020.
00020.
00138.

160052-R SUBB

Size of core pool: 7086. words (27. PAGES)
Size of work file: 1024. words (4. PAGES)

Elapsed time:00:00:07

9-10 Multiuser Tasks

Title Ident

ROTASK 01

ROTASK 01

ROTASK 01

ROTASK 01

ROTASK 01

PAGE 1

File

ROTASK.0BJ;1
ROTASK.0BJ;1
ROTASK.0BJ;1
ROTASK.0BJ;1

ROTASK-0BJ;1

160076-R

Chapter 10

TKB Switches

10.

You use TKB switches, or LINK qualifiers, and TKB options to control the construction of
your task image. This chapter provides detailed reference information on all the TKB switches.
Chapter 11 describes the LINK qualifiers. Chapter 12 describes the TKB and LINK options.

1 TKB Switches

The following sections discuss switches as used in the syntax of file specifications, correct switch
designation, switches that override other switches, a switch summary table, and the individual
switches in alphabetical order.

10.1.1 File Specification Syntax

The syntax for a file specification, as given in Chapter 1, is:
dev: [directory]filename.type;version/swi/sw2.../swn

Optionally, you can conclude a file specification with one or more switches (sw1,sw2,...swn).
When you do not specify a switch, the Task Builder establishes a default setting for it.

10.1.2 Switch Designation

You designate a switch by a 2- to 4-character code preceded by a slash (/). If you precede
the 2- to 4-character code with a minus sign (-) or the word NO, TKB negates the function
of the two characters. For example, TKB recognizes the following settings for the switch CP
(checkpointable):

/CP The task is checkpointable.
/-CP The task is not checkpointable.
/NOCP The task is not checkpointable.

TKB Switches 10-1

10.1.3 Overriding Switches

In some cases, two particular switches cannot both be used in a file specification. When such a
conflict occurs, TKB selects the overriding switch according to the following table:

Overriding
Switch Switch Switch
/AC (Ancillary /PR (Privileged) JAC
Control Processor)
/EA (Extended /FP (Floating /FP
Arithmetic Element) Point Processor)
/CC (Concatenated /LB (Library file) /LB

object file)

For example:
MCR>TKB IMG5=IN6,IN5/LB/CC
TKB assumes that the input file IN5 is a library file. It searches the file for undefined global
references. It does not include in the task image all of the modules in INS.
10.1.4 Switch Summary Table

The switches that TKB recognizes are given in alphabetical order in Table 10-1. Sections 10.2
through 10.43 give detailed descriptions of each switch, including the following information:

* The switch format
e The file or files to which the switch can be applied
e A description of the effect of the switch on the Task Builder

e The default assumption made if the switch is not present

Table 10-1: TKB Switches

Applies
Format Meaning to File Default
/AC[:n] Task is an Ancillary Control Processor. TSK /-AC
/AL Task can be checkpointed to space allo- TSK /-AL
cated in the task image file.
/CC Input file consists of concatenated object OB] /CC
modules.
/CL Task is a command line interpreter. TSK /-CL
/CM Memory-resident overlays are aligned TSK /-CM

on 256-word physical boundaries.

10-2 TKB Switches

Table 10-1 (Cont.): TKB Switches

Applies
Format Meaning to File Default
/CO Causes TKB to build a shared common. TSK /CO
STB
/CP Task is checkpointable. TSK /-CP
/CR A global cross-reference listing is ap- MAP /-CR
pended to the memory allocation file.
/DA Task contains a debugging aid. TSK /-DA
OBJ
/DL Specified library file is a replacement for OLB /-DL
the system object module library.
/EA Task uses KE11-A Extended Arithmetic TSK /-EA
Element.
/EL Specifies library size according to parti- TSK /-EL
tion size.
/EM Tells TKB to allocate space in mem- TSK /-FM
ory between the task and the external
header for use by the fast-mapping fea-
ture of the Executive.
/FO Causes task to use overlay run-time TSK /-FO
system Fast Map module.
/FP Task uses the Floating Point Processor. TSK /FP
/FU All co-tree overlay segments are searched TSK /-FU
for matching definition or reference
when modules from the default object
module library are being processed.
/HD Task image includes a header. TSK /HD
STB
/1D Task will use I- and D-space. TSK /-ID
/1P Allows TKB to inform INSTALL that the TSK /-1P
task purposely overmaps the 1/0 page.
/LB Input file is a library file. OLB /-LB
/LI Informs TKB to build a shared library. TSK /-LI
STB
/MA Map file includes information from the MAP /MA or /-MA!
file. OBJ]

IThe default is /MA for an input file and /-MA for system library and resident library STB files.

TKB Switches

10-3

Table 10-1 (Cont.): TKB Switches

Applies

Format Meaning to File Default

/MM System on which the task is to run has TSK /MM or /-MM?
memory management.

/MP Input file contains an overlay descrip- ODL /-MP
tion.

/MU Task is a multiuser task. TSK /-MU

/NM Tells TKB to inhibit two diagnostic mes- TSK /-NM
sages.

/PI Task is position independent. TSK /-P1

STB

/PM Postmortem Dump is requested. TSK /-PM

/PR[:n] Task has privileged access rights. TSK /-PR

/RO Memory-resident overlay operator (!) is TSK /RO
enabled.

/SB Task is built with the slow mode of the TSK /-SB
Task Builder.

/SE Messages can be directed to the task by TSK /SE
means of the Executive directive Send.

/SG Allocates task program sections alpha- TSK /-SG
betically by access code (RW followed
by RO).

/SH Short memory allocation file is re- MAP /SH
quested.

/SL Task is slaved to an initiating task. TSK /-SL

/SP Spool map output. MAP /SP

/SQ Allocates task program sections in input TSK /-5Q
order by access code.

/SS Selective search for global symbols. OBJ /-SS

/TR Task is to be traced. TSK /-TR

/WI Memory allocation file is printed at a MAP /WI
width of 132 characters.

/XH Task is to have an external header. TSK 3

/XT[:n] TKB exits after n diagnostic errors. TSK /-XT

2The default for the memory management switch is /MM if the host system has memory management hardware and /-MM if the host
system does not have memory management hardware.

3 The default is ultimately determined by the /XHR switch in the INSTALL command, which overrides the TKB setting except for /-XH.

10-4 TKB Switches

/AC

10.2 /AC[:n]—Ancillary Control Processor

The /AC switch informs TKB that your task is an Ancillary Control Processor; that is, it is a
privileged task that extends certain Executive functions. For example, the system task F11ACP
is an Ancillary Control Processor that receives and processes Files—11-related input and output
requests on behalf of the Executive.

Format

file. TSK/AC:0=file.OB]

This switch also informs TKB that your task is privileged. TKB sets the AC attribute flag and
the privileged attribute flag in your task’s label block flag word.

The value of n is an octal number that specifies the first KT-11 Active Page Register (APR) that
you want the Executive to use to map your task’s image when your task is running in user
mode. Valid APRs are 0, 4, and 5. If you do not specify n, the Task Builder assumes a value
of 5.

If you do not explicitly specify that your task is to run on a mapped system (through the /MM
switch) and it is not otherwise implied (TKB is not running in a system with KT-11 hardware),
TKB merely tests the value of n for validity, but otherwise ignores it.

The default is /-AC.

Note

You should not use /AC and /PR on the same command line.

TKB Switches 10-5

/AL

10.3 /AL—Allocate Checkpoint Space

The /AL switch informs TKB that your task is checkpointable. The system will checkpoint it to
a space in your task’s image file. However, the system uses the system checkpoint file first if
you specified dynamic checkpointing.
Format

file. TSK/AL=file.0BJ

As well as making your task checkpointable, this switch directs TKB to allocate additional space
in your task image file to contain the checkpointed task image.

The default is /-AL.

Notes
1. Do not use /AL and /CP on the same command line.

2. The /AL switch should not be used with the /-HD switch to build tasks. Examples of tasks
that use the /-HD switch are the Executive, device drivers, and commons.

10-6 TKB Switches

/CC

10.4 /CC—Concatenated Object Modules

The /CC switch controls the way TKB extracts modules from your input file.

Format
file. TSK=file.OBJ] /-CC

By default, TKB includes in your task’s image all the modules of your input file. If you negate
this switch, TKB includes only the first module of your input file.

The default is /CC.

TKB Switches 10-7

/CL

10.5 /CL—Command Line Interpreter
The /CL switch informs TKB that the task is a command line interpreter (CLI).

Format
file.TSK/CL~file.OB]J

Using /CL enables you to install a CLI without specifying /CLI=YES on the INSTALL command
line. Use this switch when you task build the DCL task or any other CLI task. You can still
install a CLI built without the /CL switch by specifying /CLI=YES when installing it.

The default is /-CL.

Note
The Fast Task Builder (FTB) does not support the /CL switch.

10-8 TKB Switches

/CM

10.6 /CM—Compatibility Mode Overlay Structure

The /CM switch causes the Task Builder to build your task in compatibility mode.

Format
file. TSK/CM=file.OB]

TKB aligns memory-resident overlay segments on 256-word boundaries for compatibility with
other implementations of the mapping directives.

The default is /-CM.

TKB Switches 10-9

/CO

10.7 /CO—-Build a Common Block Shared Region

The /CO switch informs TKB that a shared common is being built. If you build a shared
common, you should use the /CO switch and the /-HD switch.

If you use the /-PI switch for an absolute shared common, all the program sections in the
common are marked absolute. Using the /-PI/-HD switches without the /CO switch causes
TKB to build a shared library.

If you use the /PI switch for a relocatable shared common, all program sections in the common
are marked relocatable.

In either case, the STB file contains all the program section names, attributes, length, and
symbols. TKB links common blocks by means of program sections. Therefore, the STB file of a
shared region built with the /CO switch contains all defined program sections.

Using the /PI/-HD switches without the /CO switch causes TKB to build a shared common.
The /CO switch cannot be negated.

Format
file. TSK/CO=file.OB]
This switch causes TKB to include all program section declarations in the STB file.

The default is /CO when the /PI switch is used, but when the /-PI switch is used, TKB builds
a shared library (/LI) instead of a shared common (/CO).

10-10 TKB Switches

/CP

10.8 /CP—Checkpointable

The /CP switch causes TKB to mark your task as checkpointable. The system will checkpoint it
to space that you have allocated in the system checkpoint file on the system disk. This switch
assumes that you have allocated the checkpoint space through the MCR command ACS. (Refer
to the RSX-11IM-PLUS MCR Operations Manual.)
Format

file. TSK/CP=file.OB]

The system writes your task to the system checkpoint file on secondary storage when its physical
memory is required by a task of higher priority.

The default is /-CP.

Note

Using /AL also makes your task checkpointable.

TKB Switches 10-11

/CR

10.9 /CR—Cross-Reference
The /CR switch directs TKB to add a cross-reference listing to the map file of your task.

Format
file. TSK file. MAP /CR=file.OB]

TKB creates a special work file (file.CRF) that contains segment, module, and global symbol
information. The Task Builder then calls the Cross-Reference Processor (CRF) to process the
file. CRF creates a cross-reference listing from the information contained in the file, and then
deletes file.CRF. (Refer to the RSX-11M-PLUS Utilities Manual for more information on CRF.)

The Example section below describes the cross-reference listing and its contents.

The default is /-CR.

Note

For this switch to be effective, CRF must be installed in your system.

Example

Example 10-1 shows a cross-reference listing for task OVR. The numbered items in the notes
correspond to the numbers in the example.

10-12 TKB Switches

/CR

Example 10-1: Cross-Reference Listing for OVR.TSK

CREF CREATED BY TKB ON 27-JUL-87 AT 09:46 PAGE 1 __"'
GLOBAL CROSS REFERENCE CREF VO1__|
SYMBOL VALUE REFERENCES. . . =
AADD 020000-R * AADD @ CALC
ADDEXI 020060-R * AADD ‘
ARGBLK 001340-R CALC # MAIN
BUFF 001366-R # MAIN OUTPUT
CALC 003270-R * CALC @ MAIN
DIFR 001360-R CALC # MAIN
DIVEXI 020062-R * DIVV e
DIVR 001364-R CALC # MAIN
DIV 020000-R @ CALC * DIVV
I 001350-R INPUT # MAIN
IE.EOF 177766 INPUT # QIOSYM
INITL 005664-R # INITL ~ MAIN
INPUT 003364-R * INPUT @ MAIN
I0OSB 001334-R INPUT # MAIN]
CREF CREATED BY TKB ON 27-JUL-87 AT 09:46 PAGE 2
SEGMENT CROSS REFERENCE CREF Vo1
SEGMENT NAME RESIDENT MODULES
AADD AADD
CALC CALC
DIV DIW
INPUT ARITH CATB INPUT QIOSYM SAVRG ®
LIBROT INITL SAVAL
MAIN ALERR AUTO MAIN OVCTR OVDAT OVRES SAVR1

VCTDF
MULL MULL
OUTPUT ARITH CATB CBTA CDDMG C5TA DARITH EDDAT

EDTMG OUTPUT QIOSYM SAVRG
SUBB SUBB]

© The cross-reference page header gives the name of the memory allocation file, the originating
task (TKB), the date and time the memory allocation file was created, and the cross-reference
page number.

@ The cross-reference list contains an alphabetic listing of each global symbol along with its
value and the name of each referencing module. When a symbol is defined in several
segments within an overlay structure, the last defined value is printed. Similarly, if a
module is loaded in several segments within the structure, the module name is displayed
more than once within each entry.

The suffix -R appears next to the value if the symbol is relocatable.

TKB Switches 10-13

/CR

Prefix symbols accompanying each module name define the type of reference as follows:

Prefix Symbol Type

blank Module contains a reference that is resolved in the same segment or in a
segment toward the root

Module contains a reference that is resolved directly in a segment away
from the root or in a co-tree ’

©@ Module contains a reference that is resolved through an autoload vector

Module contains a nonautoloadable definition

#*

* Module contains an autoloadable definition

©® The segment cross-reference lists the name of each overlay segment and the modules that
compose it. If the task is a single-segment task, this section does not appear.

10-14 TKB Switches

/DA

10.10 /DA—Debugging Aid
The /DA switch causes TKB to include a debugging aid in your task. The debugging aid
controls the task’s execution.
Format
file. TSK/DA=file.OBJ

If you apply this switch to your task image file, TKB includes the system debugging aid
LBO0:[1,1]ODT.OBJ into your task image. If you use the /DA switch with the /ID switch, TKB
includes LB:[1,1]JODTID.OB] in the task.

TKB passes control to the debugging program when you or the system starts task execution.

If you apply this switch to one of your input files, TKB assumes that the file is a debugging
aid that you have written. Such debugging programs can trace a task, p