
IAS/RSX-11
MACR0-11 Reference Manual

Order No. DEC-11-0IMRA-A-D

IAS/RSX-11
MACR0-11 Reference Manual

Order No. DEC-11-0IMRA-A-D

IAS Version 1

RSX-llM Version 2

RSX-llD Version 6B (Version 6.1}

digital equipment corporation · maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

Copyright (Q) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

10/76-:-~

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

0.1
0.2
0.3
0.4

PART I

1

1.1
1.1.1
1.1.2

2

2.1

2.2.l
2.2.2
2.2.3
2.2.4
2.3

PART II

3

.., ,

..) • J..

3 .1.1
3 .1. 2
3 .1. 3
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4

5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

CONTENTS

MANUAL OBJECTIVES AND READER ASSUMPTIONS
STRUCTURE OF THE DOCUMENT
ASSOCIATED DOCUMENTS
DOCUMENT CONVENTIONS

INTRODUCTION TO MACR0-11

MACR0-11 FEATURES

OVERVIEW OF MACR0-11
Assembly Pass 1
Assembly Pass 2

SOURCE PROGRAM FORMAT

STANDARDS AND CONVENTIONS
STATEMENT FORMAT

Label Field
Operator Field
Operand Field
Comment Field

FORMAT CONTROL

PROGRAMMING IN MACR0-11 ASSEMBLY LANGUAGE

SYMBOLS AND EXPRESSIONS

CHARACTER SET
Separating and Delimiting Characters
Illegal Characters
Unary and Binary Operators

MACR0-11 SYMBOLS
Permanent Symbols
User-Defined and Macro Symbols

DIRECT ASSIGNMENT STATEMENTS
REGISTER SYMBOLS
LOCAL SYMBOLS
CURRENT LOCATION COUNTER
NUMBERS
TERMS
EXPRESSIONS

RELOCATION AND LINKING

ADDRESSING MODES

REGISTER MODE
REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE

iii

ix
ix
x
xi

1-1

1-1
1-1
1-2

2-1

2-1
2-1
2-2
2-4
2-5
2-5
2-6

3-1

3-1
3-2
3-3
3-4
3-5
3-5
3-5
3-7
3:....9
3-10
3-11
3-13
3-14
3-15

4-1

5-1

5-2
5-2
5-2
5-3
5-3
5-4
5-4

CHAPTER

5.8
5.9
5.10
5 .11
5.12
5 .13
5.14
5.15

PART III

6

6.1
6.1.1
6.1. 2
6 .1. 3
6 .1. 4
6 .1. 5
6 .1. 6
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4
6.4.1
6.4.1.1
6.4.1.2

6.4.2

6.4.2.1
6.4.2.2

6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.l
6.6.2
6.7
6.8
6.8.l
6.8.1.1
6.8.1.2
6.8.1.3
6.8.2
6.9
6.10
6.10.l
6.10.2

CONTF.NTS (Cont.)

INDEX DEFERRED MODE
IMMEDIATE MODE
ABSOLUTE MODE
RELATIVE MODE
RELATIVE DEFERRED MODE
SUMMARY OF ADDRESSING FORMS
BRANCH INSTRUCTION ADDRESSING
USING TRAP INSTRUCTIONS

MACR0-11 DIRECTIVES

GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST Directives
Page Headings
.TITLE Directive
.SBTTL Directive
.IDENT Directive
.PAGE Directive/Page Ejection

FUNCTION DIRECTIVES: .ENABL AND .DSABL
DATA STORAGE DIRECTIVES

.BYTE Directive

.WORD Directive
ASCII Conversion Characters
.ASCII Directive
.ASCIZ Directive
.RAD50 Directive

RADIX AND NUMERIC CONTROL FACILITIES
Radix Control and Unary Control Operators
.RADIX Directive
Temporary Radix Control Operators: AD,

"o, and "B
Numeric Directives and Unary Control

Operators
.FLT2 and .FLT4
Temporary Numeric Control Operators:

"c and "F
LOCATION COUNTER CONTROL DIRECTIVES

.EVEN Directive

.ODD Directive

.BLKB and .BLKW Directives
TERMINATING DIRECTIVES

.END Directive

.EOT Directive
PROGRAM BOUNDARIES DIRECTIVE: .LIMIT
PROGRAM SECTIONING DIRECTIVES

.PSECT Directive
Creating Program Sections
Code or Data Sharing
Memory Allocation Considerations
.ASECT and .CSECT Directives

SYMBOL CONTROL DIRECTIVE: .GLOBL
CONDITIONAL ASSEMBLY DIRECTIVES

Conditional Assembly Block Directive: .IF
Subconditional Assembly Block Directives:

• IFF, • IFT, • IFTF

iv

5-4
5-4
5-5
5-6
5-7
5-7
5-8
5-9

6-1

6-1
6-1
6-5
6-10
6-11
6-12
6-12
6-13
6-16
6-17
6-18
6-18
6-19
6-21
6-22
6-23
6-23
6-23

6-24

6-25
6-27

6-27
6-28
6-29
6-29
6-29
6-30
6-30
6-31
6-31
6-31
6-32
6-36
6-38
6-38
6-38
6-39
6-41
6-41

CHAPTER

CHAPTER

6.10.3

6.10.4

7

7.1
7 .1.1
7 .1. 2
7 .1. 3
7 .1. 4
7.2
7.3

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4

7.4.1
7.4.2
7.4.3
7.5
7.6

7.6.l
7.6.2
7.7
7.8

PART IV

8

8.1
8 .1.1
8.1.1.1
8.1.1.2
8.1.1.3
8.1.1.4

8.1.1.5

8 .1. 2
8 .1. 3
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.4

CONTENTS (Cont.)

Immediate Conditional Assembly Directive:
.IIF 6-46

PAL-llR Conditional Assembly Directives 6-46

MACRO DIRECTIVES

DEFINING MACROS
.MACRO Directive
.ENDM Directive
.MEXIT Directive
MACRO Definition Formatting

CALLING MACROS
ARGUMENTS IN MACRO DEFINITIONS AND MACRO

CALLS
Macro Nesting
Special Characters in Macro Arguments
Passing Numeric Arguments as Symbols
Number of Arguments in Macro Calls
Creating Local Symbols Automatically
Concatenation of Macro Arguments

MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR,
AND .NTYPE
.NARG Directive
.NCHR Directive
.NTYPE Directive

.ERROR AND .PRINT DIRECTIVES
INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP

Jl..ND • IRPC
.IRP Directive
.IRPC Directive

REPEAT BLOCK DIRECTIVE: .REPT
MACRO LIBRARY DIRECTIVE: .MCALL

OPERATING PROCEDURES

OPERATING PROCEDURES

RSX-llD AND RSX-llM OPERATING PROCEDURES
Initiating MACR0-11 Under RSX-llM/RSX-llD
Method 1 - Direct MACR0-11 Call
Method 2 - Using RUN Facility
Method 3 - Single Assembly
Method 4 - Install, Run Immediately, and

Remove on Exit
Method 5 - Using Indirect Filename

Facility
RSX-11 Command String Format
RSX-11 File Specification Switches

IAS MACR0-11 OPERATING PROCEDURES
Initiating MACR0-11 Under IAS
IAS Command String Format
IAS Indirect Command Files
IAS Command String Examples

IAS/RSX-11 FILE SPECIFICATION FORMAT
MACR0-11 ERROR MESSAGES

v

7-1

7-1
7-1
7-2
7-3
7-3
7-3

7-4
7-5
7-6
7-6
7-7
7-8
7-9

7-10
7-10
7-11
7-12

7-12
7-13
7-14
7-15
7-16

8-1

8-1
8-1
8-1
8-2
8-2

8-2

8-2
8-3
8-5
8-8
8-8
8-8
8-10
8-11
8-11
8-12

APPENDIX A

A. l
A. 2

APPENDIX B

B.l
B.2
B.3

APPENDIX C

C.l
c.2

APPENDIX D

D.l

APPENDIX E

E.l
E.2
E.3
E.4
E.4.1
E.4.1.l
E.4.1.2
E.4.1.3
E.4.2
E.4.3
E.4.4
E.4.5
E.4.5.1
E.4.5.2
E.4.5.3
E.4.5.4
E.5
E.5.1
E.5.2
E.5.3
E.5.4
E.5.4.1
E.5.4.2
E.5.4.3
E.5.4.4
E.5.4.5
E.6
E.6.1
E.6.2
E.6.3
E.7
E.8
E.9
E.9.1

CONTENTS (Cont.)

MACR0-11 CHARACTER SETS

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

SPECIAL CHARACTERS
SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE (PST)

OP CODES
MACR0-11 DIRECTIVES

DIAGNOSTIC ERROR MESSAGE SUMMARY

MACR0-11 ERROR CODES

SAMPLE CODING STANDARD

INTRODUCTION
LINE FORMAT
COMMENTS
NAMING STANDARDS

Register Standards
General Purpose Registers
Hardware Registers
Device Registers
Processor Priority
Other Symbols
Using the Standard Symbols
Symbols
Global Symbols
Symbol Examples
Program-local Symbols
Macro Names

PROGRAM MODULES
General Comments on Programs
The Module Pref ace
Formatting the Module Pref ace
Modularity
Calling Conventions (Inter-Module)
Exiting
Intra-Module Calling Conventions
Success/Failure Indication
Module Checking Routines

FORMATTING STANDARDS
Program Flow
Common Exits
Code with Interrupts Inhibited

PROGRAM SOURCE FILES
FORBIDDEN INSTRUCTION USAGE
RECOMMENDED CODING PRACTICE

Conditional Branches

vi

A-1

A-1
A-4

B-1

B-1
B-1
B-3

C-1

C-1
C-4

D-1

D-1

E-1

E-1
E-1
E-2
E-2
E-2
E-2
E-2
E-2
E-3
E-3
E-3
E-3
E-3
E-4
E-5
E-5
E-5
E-5
E-5
E-6
E-8
E-9
E-9
E-9
E-9
E-9
E-10
E-10
E-11
E-12
E-12
E-12
E-13
E-13

E.10
E.10.l
E.10.2

APPENDIX F

F.l
F.2
F.3

APPENDIX G

APPENDIX H

APPENDIX I

FIGURE

TABLE

3-1
6-1
6-2
6-3

6-4
6-5
6-6
7-1
H-1
H-2

3-1
3-2
3-3
3-4
3-5
6-1

6-2

6-3
6-4

6-5

6-6
8-1
8-2

CONTENTS (Cont.)

PDP-11 VERSION NUMBER STANDARD
Displaying the Version Identifier
Use of the Version Number in the Program

CONSERVING DYNAMIC MEMORY

GENERAL HINTS AND SPACE-SAVING GUIDELINES
MACRO DEFINITIONS AND EXPANSIONS
OPERATIONAL TECHNIQUES

FEATURES/FUNCTIONS NOT SUPPORTED BY THE
RSX-llM 8K ASSEMBLER

WRITING POSITION INDEPENDENT CODE

SAMPLE ASSEMBLY LISTING

FIGURES

Assembly Listing Showing Local Symbol Block
Example of Line Printer Assembly Listing
Example of Terminal Assembly Listing
Listing Produced With Listing Control

Directives
Assembly Listing Table of Contents
Example of .ENABL and .DSABL Directives
Example of .BLKB and .BLKW Directives
Exampler of .IRP and .IRPC Directives
Position-Dependent Code
Position-Independent Code

TABLES

Special Characters Used in MACR0-11
Legal Separating Characters
Legal Delimiting Characters
Legal Unary Operators
Legal Binary Operators
Symbolic Arguments of Listing Control

Directives
Symbolic Arguments of Function Control

Directives
Symbolic Arguments of .PSECT Directive
Non-IAS/RSX-11 Program Section Default

Values
Legal Condition Tests for Conditional

Assembly Directives
Subconditional Assembly Block Directives
File Specification Default Values
MACR0-11 File Specification Switches for

RSX-11

vii

E-13
E-14
E-15

F-1

F-1
F-2
F-4

G-1

H-1

I-1

3-11
6-6
6-7

6-8
6-11
6-16
6-30
7-15
H-3
H-3

3-1
3-3
3-3
3-4
3-5

6-3

6-13
6-33

6-39

6-42
6-44
8-5

8-6

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The intent of this manual is to enable users of RSX-11 and IAS
operating systems to develop programs coded in the MACR0-11 assembly
language. No prior knowledge of the MACR0-11 Relocatable Assembler is
assumed.

Although the description of the assembly language is wholly
self-contained within this manual, the reader is assumed to be
familiar with the PDP-11 processors and related terminology, as
presented in the PDP-11 Processor Handbooks (11/05/10/35/40 and 11/45
versions). No attempt is made in this document to describe the PDP-11
hardware or the functions of the various PDP-11 instructions.

Since the development of programs necessarily involves the use of the
Task Builder to create an executable task image, the reader is
encouraged to become familiar with this system program, as presented
in the applicable Task Builder reference manual (see section 0.3).

In presenting MACR0-11, a tutorial bias has been adopted to enlarge
upon the reference material. This posture· is reflected in the
examples and the accompanying commentary describing MACR0-11 language
elements in typical applications.

0.2 STRUCTURE OF THE DOCUMENT

This manual is structured into three parts. Part I, consisting of two
chapters, briefly introduces MACR0-11. Chapter 1 lists the key
features of MACR0-11, and Chapter 2 identifies advantages which can be
realized through adherence to certain programming standards and
conventions. Also described is the format used in coding MACR0-11
source programs.

Part II, consisting of three chapters, presents general information
essential to programming with the MACR0-11 assembly language. Chapter
3 describes the symbols, terms, and expressions that form the elements
of MACR0-11 instructions. Also, the character set is listed, and the
various types of programming symbols that may be defined by the user
are discussed. Chapter 4 describes the output of MACR0-11 and
presents concepts essential to the proper relocation and linking of
object modules by the Task Builder. Chapter 5 briefly describes how
data stored in memory can be accessed and manipulated using the
various addressing modes recognized by the PDP-11 hardware.

ix

Part III, consisting of two chapters, describes the MACR0-11
directives that control the processing of source statements during
assembly. Chapter 6 discusses those directives which accomplish
generalized MACR0-11 functions, while Chapter 7 deals with those
directives used in the definition and expansion of macros.

Part IV, consisting
procedures essential
MACR0-11 programs.

only of
to the

Chapter
assembly,

8, presents the operating
linking, and initiating of

Finally, several appendixes are provided, supplying
information of interest to the MACR0-11 programmer.

additional

Appendix A lists the ASCII and Radix-50 character sets that. may be
used in MACR0-11 programs. Appendix B lists the special characters
recognized by MACR0-11, summarizes the syntax of the various
addressing modes used in PDP-11 processors, and briefly describes the
MACR0-11 directives in alphabetical order. The permanent symbols that
have been defined for use with MACR0-11 are listed alphabetically in
Appendix C.

The diagnostic error codes produced by MACR0-11 to identify various
types of errors detected during the assembly process are listed
alphabetically in Appendix D. Appendix E contains a sample coding
standard that is suggested as recommended practice in preparing
MACR0-11 programs. Appendix F discusses several methods of conserving
dynamic memory space for the benefit of those users of small systems
who may experience difficulty in assembling MACR0-11 programs.

Appendix G lists the features and functions that are not supported in
the 8K RSX-llM version of MACR0-11. MACR0-11 is available in two
versions under RSX-llM. One is a 14K version which is functionally
identical to the RSX-llD assembler and which has all the features
described in this manual. The other assembler is an 8K version which,
because of size limitations, supports an extensive subset of MACR0-11
features. Appendix H is a discussion of position independent code
(PIC).

0.3 ASSOCIATED DOCUMENTS

The reader should ref er to the
listed below for descriptions
manual.

applicable documentation
of documents associated

directory
with this

IAS Documentation Directory, Order No. DEC-11-0IDDA-A-D

RSX-llD Documentation Directory, Order No. DEC-11-0XUGA-C-D

RSX-llM/RSX-llS Documentation Directory, Order
DEC-11-0MUGA-B-D

x

No.

0.4 DOCUMENT CONVENTIONS

The symbols defined below are used throughout this manual.

Symbol

[]

11

UPPER CASE

lower case
characters

Definition

Brackets indicate that the enclosed
optional.

argument is

Vertical bars indicate that a single choice must be
made from a list of arguments.

Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

Upper-case characters indicate elements of the language
that must be used exactly as shown.

Lower-case characters indicate elements of the language
that are supplied by the programmer.

xi

PART I

INTRODUCTION TO MACR0-11

CHAPTER l

MACR0-11 FEATURES

The MACR0-11 Assembler provides the following features:

1. Program and command string control of assembly functions;

2. Device and filename specifications for input and output
files; ,

3. Error listing on command output device;

4. Alphabetized, formatted symbol table listing;

5. Relocatable object modules;

6. Global symbols for linking independent object modules;

7. Conditional assembly directives;

8. Program sectioning directives;

9. User-defined macros and macro libraries;

10. Comprehensive system macro library;

11. Extensive program and command string control of listing
functions; and

12. An indirect command file facility for controlling the
assembly process.

1.1 OVERVIEW OF MACR0-11

MACR0-11 is
relevant to
sections.

a two-pass assembler. The functions
each assembly pass are described in

1.1.1 Assembly Pass 1

and
the

operations
following

The first stage of assembly pass 1 is the initialization of all impure
data areas that MACR0-11 uses internally for the assembly process.
These areas include all dynamic storage areas and buffer areas used as
file storage regions.

1-1

MACR0-11 FEATURES

After initializing memory areas, MACR0-11 issues a call to a system
subroutine which transfers a command line into memory. This command
line contains the specifications of the files to be used during
assembly. After scanning the command line for proper syntax, MACR0-11
initializes the specified output files. These files are opened to
determine if valid output file specifications have been passed in the
command line. They are then closed to minimize requirements for
active file space.

As the assembly process begins, MACR0-11 initiates a routine which
retrieves source lines from the input file. If no such file is
currently open, as is the case at the beginning of assembly, MACR0-11
opens the next input file specified in the command line previously
read and begins to assemble the source statements. The main objective
of assembly pass 1 is to locate and read all required macros from
libraries, to build symbol tables and program section tables for the
program, while at the same time performing a rudimentary assembly of
each source statement. MACR0-11 determines the length of each
instruction and assembles it accordingly as one word, two words, or
three words.

At the end of assembly pass 1, MACR0-11 reopens the output files
described above and writes out information that is to be used later by
the Task Builder in linking the object modules. Such information as
the object module name, the program version number, and the global
symbol directory (GSD) entries for each program section are output to
the object file. After writing out the GSD entries for a given
program section, MACR0-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACR0-11 then writes out GSD records to the object file for these
symbols. This process continues for each program section, bringing to
a close assembly pass 1.

1.1.2 Assembly Pass 2

As an integral part of pass 2, MACR0-11 simultaneously writes the
object records to the output file and generates the assembly listing,
followed finally by the symbol table listing for the program.

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACR0-11-detected errors are flagged with an error code as the
assembly listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records containing information necessary for
subsequent Task Builder linking of the object file.

The information thus passed to the Task Builder enables the global
symbols in the object modules to be associated with absolute or
virtual memory addresses, thereby forming an executable body of code.

While not within the scope of this manual, the user may wish to become
familiar with the macro object file format and description. This
information is presented in the applicable Task Builder Reference
Manual (see section 0.3 in the Preface).

1-2

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 STANDARDS AND CONVENTIONS

Assembly level programming deals directly with the host hardware.
Hence, great care must be exercised in establishing programming
standards and conventions to enable code written by one group to be
interchanged easily with another group. A number of advantages accrue
from strict adherence to a set of standards. When applied to the
program development process, the observance of standards makes the
programming effort easier to:

Plan;
Comprehend;
Test;
Modify; and
Convert.

Even though standards must accommodate local requirements, many
aspects of the program development process have universal
applicability. The standards common to a11 of u1g~tal's PDP-11
software products are presented in Appendix E as a model for users.
Observance of these standards is beneficial to Digital and its users
by, simplifying both communications and the continuing task of
software maintenance and enhancement.

2.2 STATEMENT FORMAT

A source program is composed of a sequence of source coding lines.
Each line contains a single assembly-language statement consisting of
up to 132(10) characters. Although MACR0-11 will accept a source line
of 132(10) characters, due to listing format and terminal line size
constraints, 80(10) characters is the recommended length.

A MACR0-11 statement may be composed of as many as four fields. These
fields are identified by their order of appearance within the
statement and/or by specified separating characters between fields.
The general format of a MACR0-11 statement is:

Label: Operator Operand ;Comment(s)

The label and comment fields are optional. The operator and operand
fields are interdependent, i.e., when both fields are present in a
source statement, each field is evaluated by MACR0-11 in the context
of the other.

2-1

SOURCE PROGRAM FORMAT

Although a statement may contain an
field, the reverse is not true.
with no operator does not conform
conventions; such a statement is
during assembly as an implicit .WORD

operator field and no operand
A statement containing an operand
to established MACR0-11 coding
currently interpreted by MACR0-11
directive (see section 6.3.2).

MACR0-11 interprets and processes source program statements one by
one, generating one or more binary instructions or data words, or
performing a specified assembly process. Blank lines, although legal,
have no significance in the source program.

An assembly-language statement must be completed on one source line;
no continuation lines are allowed in MACR0-11.

The tab character can be used following each field of the source
statement to format the fields into aligned columns in accordance with
DEC's standard source program format, as shown below:

Label - begins in column l;

Operator - begins in column 9;

Operand(s) - begin(s) in column 17;

Comment(s) - begin(s) in column 33.

For example, the following statement should be formatted in the source
program into specific columns, increasing its readability in the
assembly listing:

REGTST:BIT#MASK,VALUE;COMPARES BITS IN OPERANDS.

1 9 17 33

REGTST: BIT #MASK,VALUE ;COMPARES BITS IN OPERANDS.

Although the above formatting conventions do not have to be observed
in coding MACR0-11 programs (since free-field coding is permissible),
it is recommended nonetheless that source programs be prepared in
accordance with these conventions for consistency and clarity
throughout.

2.2.1 Label Field

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The current location counter is the means by which MACR0-11
assigns memory addresses to the source program statements as they are
encountered during the assembly process. The address value of the
label is thus absolute or relocatable, depending on whether the
current program section being assembled is absolute or relocatable.
(The concept of program sections and the attributes that may be
specified for such modules are discussed in detail in section 6.8.)

In the case of an absolute program section, the value of the current
location counter is likewise absolute, i.e., its value references an
absolute virtual memory address (such as location 100). Similarly,
the value of the current location counter in a relocatable program
section is also relocatable; however, a relocation bias calculated by

2-2

SOURCE PROGRAM FORMAT

the Task Builder will be added to the apparent value of the current
location counter to establish its effective absolute virtual address
at execution time.

A label is thus a means of symbolically referring to a specific
location within a program. If present, a label always appears as the
first field in a source statement and must be terminated by a colon.
For example, if the current location counter value is absolute 100(8),
the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. Subsequent references to
this label would then yield a value of absolute 100(8). In this
example, if the location counter value were relocatable, the final
value of ABCD would be 100(8)+K, where K represents the relocation
bias of the program section, as calculated by the Task Builder at link
time.

More than one label may appear within a single label field; each
label so specified, is assigned the same address value. For example,
if the current location counter value is 100(8), the multiple labels
in the following statement:

ABC: $DD: A7.7: MOV A,B

are each assigned the value 100(8).

Multiple labels may also appear on successive lines. For example, the
following statements:

ABC:
$DD:
A7.7: MOV A,B

likewise cause the same current location counter value to be assigned
to all three labels.

Of the two methods of assigning labels contrasted above, the latter
method is preferred, since consistency of field positioning within the
source program enhances its readability.

A double colon (::) defines the label as a global symbol. Such a
label an be referenced by independently-assembled object modules.
References to this label in other modules will be resolved by the Task
Builder when the modules are linked as a composite executable task.
For example, the following statement:

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
another object module remote to that in which the symbol is defined
(see section 6.9).

The legal characters for defining labels are:

A through Z
0 through 9

(Period)
$ (Dollar Sign)

2-3

SOURCE PROGRAM FORMAT

NOTE

By convention, the dollar sign ($) and period (.)
are reserved for use in defining DEC system
software symbols. It is therefore recommended
that these characters not be used in defining
labels in MACR0-11 source programs.

A label may be any length; however, only the first six characters are
significant and, therefore, must be unique among all the labels in the
source program. All labels are terminatd by a colon (:) which is not,
however, considered part of the ·label. It is a mandatory delimiter.
An error code (M) is generated in the assembly listing if the first
six characters in two or more labels are the same (see Appendix D).

A symbol used as a label must not be redefined within the source
program. If the symbol is redefined, a label with a multiple
definition results, causing MACR0-11 to generate an error code (M) in
the assembly listing (see Appendix D). Furthermore, any statement in
the source program which references such a multi-defined label results
in an additional diagnostic message; in this case, an error code (D)
is generated in the assembly listing (see Appendix D).

2.2.2 Operator Field

The operator field follows the label field in a source statement.
This field may contain an instruction mnemonic (op-code), an assembler
directive, or a macro call. Thus, the operator field is that element
of a MACR0-11 instruction which specifies the action to be performed
by the instruction. Chapters 6 and 7 are devoted to a description of
these three types of operator field entries.

The operator field need not be preceded by a label; on the other
hand, it may be preceded by one or more labels and followed by one or
more operands and/or a comment. Furthermore, leading and trailing
spaces or tabs in the operator field have no significance; such
characters serve only to separate the operator field from the
preceding and following fields.

When the operator is an instruction mnemonic, the mnemonic op-code
specifies the machine instruction to be generated. MACR0-11 then
continues with the evaluation of the address(es) of the operand(s)
which follow(s). When the operator is a directive, the directive
causes MACR0-11 to perform certain control actions or processing
operations during the assembly of the source program. Finally, when
the operator is a macro call, MACR0-11 inserts the appropriate code,
as generated by the macro expansion.

An operator is terminated by a space, tab, or any non-RAD50 character,
as in the following examples:

MOV A,B

MOV A,B
MOV@A,B

;THE SPACE TERMINATES THE OPERATOR
;MOV.
;THE TAB TERMINATES THE OPERATOR MOV.
;THE @ CHARACTER TERMINATES THE
;OPERATOR MOV.

2-4

SOURCE PROGRAM FORMAT

Although the above statements are all
second statement is the recommended
MACR0-11 coding conventions.

2.2.3 Operand Field

equivalent in
form because

function, the
it conforms to

When the operator field contains an instruction mnemonic (op-code),
the operand field specifies those program variables that are to be
evaluated/manipulated by the operator. The operand field may also be
used to supply arguments to MACR0-11 directives and macro calls, as
described in Chapters 6 and 7, respectively.

Operands may be expressions or symbolic arguments (within the context
of the specified operation). Multiple expressions used in the operand
field of a MACR0-11 statement must be separated by a comma; multiple
symbolic arguments similarly used may be delimited by any legal
separator, i.e., a comma, tab, and/or space. An operand should be
preceded by an operator field; if it is not, the statement is treated
by MACR0-11 as an implicit .WORD directive (see section 6.3.2).

When the operator field contains an op-code, associated operands are
always expressions, as shown in the following statement:

MOV RO,A+2(Rl)

On the other hand, when the operator field contains a MACR0-11
directive or a macro call, associated operands are normally symbolic
arguments, as reflected in the following statement:

.MACRO ALPHA ARG1,ARG2

Users are advised to refer to the narrative descr101ng each MACR0-11
directive to determine the type and number of operands required in
issuing the directive.

The operand field is terminated by a semicolon when the field is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ;COMMENT FIELD

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage-return, line-feed,
vertical-tab or form-feed. All other characters appearing in the
comment field, even special characters reserved for use in MACR0-11,
are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

2-5

SOURCE PROGRAM FORMAT

All comment fields must begin with the semicolon character(;). When
lengthy comments extend beyond the end of the source line (column 80),
the comment may be resumed in a following line. Such a line must
contain a leading semicolon, and it is suggested that the body of the
comment be continued in the same columnar position in which the
comment began. A comment line can also be included as an entirely
separate line within the code body.

Comments do not affect assembly processing or program execution.
However, comments are useful in source listings for later analysis,
debugging, or documentation purposes.

2.3 FORMAT CONTROL

Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no affect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program, as reflected by the following statements:

LABEL:MOV(SP)+,TAG;POP VALUE OFF STACK.

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK.

The latter statement conforms to the standard horizontal formatting
conventions, i.e., the statement elements are separated into four
distinct fields and are therefore easily discernible, while the
preceding statement does not exhibit these desirable characteristics.

Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of appropriate MACR0-11 directives that may
be specified to accomplish desired formatting operations. Appendix E
describes the coding conventions used in all Digital PDP-11 operating
system software.

2-6

PART II

PROGRAMMING
IN MACR0-11 ASSEMBLY

LANGUAGE

I
l

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the various components of MACR0-11
instructions. The character set; the conventions observed in
constructing symbols, and the use of numbers, operators, terms and
expressions are discussed as they relate to MACR0-11 programming.

3.1 CHARACTER SET

The following characters are legal in MACR0-11 source programs:

1. The letters A through z. Both upper and lower case letters
are acceptable, although, upon input, lower case letters are
converted to upper case (see Section 6.2, .ENABL LC).

2. The digits 0 through 9.

3. The characters (period) and $
characters are reserved for use
Corporation system program symbols.

(dollar sign). These
as Digital Equipment

4. The special characters listed in Table 3-1.

Table 3-1
Special Characters in MACR0-11

Character Designation Function

: Colon Label terminator.

.. Double colon Label terminator; defines the
label as a global label.

= Equal sign Direct assignment operator.

-- Double equal Direct assignment operator;
sign defines the symbol as a global

symbol.

% Percent sign Register term indicator.

Tab Item or field terminator.

Space Item or field terminator.

3-1

Character

@

(

)

<

>

+

*

I

&

\

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont'd)
Special Characters Used in MACR0-11

Designation

Number sign

At sign

Left parenthesis

Right parenthesis

Comma

Semicolon

Left angle
bracket

Right angle
bracket

Plus sign

Minus sign

Asterisk

Slash

Ampersand

Exclamation point

Double quote

Single quote

Up arrow or
circumflex

Backslash

Function

Immediate expression
indicator.

Deferred addressing indicator.

Initial register indicator.

Terminal register indicator.

Operand field separator.

Comment field indicator.

Initial argument or expression
indicator.

Terminal argument or expres
sion indicator.

Arithmetic addition operator
or autoincrement indicator.

Arithmetic subtraction opera
tor or autodecrement indica
tor.

Arithmetic
operator.

multiplication

Arithmetic division operator.

Logical AND operator.

Logical inclusive OR operator.

Double ASCII character indica
tor.

Single ASCII character indica
tor.

Universal unary operator or
argument indicator.

Macro call numeric argument
indicator.

3.1.1 Separating and Delimiting Characters

Reference is made in the remainder of this manual to legal separating
characters and legal argument delimiters. These terms are defined
below in Tables 3-2 and 3-3.

3-2

SYMBOLS AND EXPRESSIONS

Table 3-2
Legal Separating Characters

Character Definition Usage

Space One or more spaces A space is a legal separator
and/or tabs between instruction fields and

between symbolic arguments
within the operand field.
Spaces within expressions are
ignored (see section 3. 9) .

Comma A comma is a legal separator
between symbolic arguments
within the operand field.
M11l+-;nlo expressions used , ,..,
1.·.1. \,A. -L '-...&...I::-' -L '\..,. ... ll

the operand field must be
separated by a comma.

Table 3-3
Legal Delimiting Characters

Character Definition Usage

< ••• > Paired angle brackets Paired angle brackets may be
used anywhere in a program to
enclose an expression for
treatment as a single term.
Paired angle brackets are also
used to enclose a macro
argument, particularly when
that argument contains separ
ating characters (see section
7. 3) .

"x ••• x Up-arrow
ator)

(unary oper
construction,

This construction is equiva
lent in function to the paired
angle brackets described above
and is generally used only
where the argument itself con
tains angle brackets.

where the up=arrow is
followed by an argu
ment that is bracketed
by any paired printing
characters (x).

3.1.2 Illegal Characters

A character is determined to be illegal for either of two reasons:

1. A character is not an element of the recognized MACR0-11
character set. Such a character causes immediate termination
of the current line and the printing of an error code (I) in
the assembly listing (see Appendix D).

2. A legal MACR0-11 character is illegal in the context of its
usage within the source statement, i.e., its syntax is
illegal or questionable. Such a character causes an error
code (Q) to be printed in the assembly listing (see Appendix
D) •

3-3

I

I

SYMBOLS AND EXPRESSIONS

3.1.3 Unary and Binary Operators

The legal unary operators for use in MACR0-11 source programs are
described in Table 3-4. Unary operators are used in connection with
single terms (arguments or operands) to indicate an action to be
performed on that term during assembly. A term preceded by a unary
operator is considered to contain that operator. The term so
specified thus becomes a value which can be used alone or as an
element of an expression.

Table 3-4
Legal Unary Operators

Unary
Operator Explanation Example Effect

+ Plus sign +A Produces the positive
value of A.

- Minus sign -A Produces the negative
(2's complement) value of
A.

" Up-arrow, univer- "C24 Produces the l's comple-
sal unary operator. ment value of 24 (8).
(This usage is
described in detail "Dl27 Interprets 127 as a
in sections 6.4.1.2 decimal number.
and 6.4.2.2)

F3.0 Interprets 3.0 as a
one-word, floating-point
number.

~034 Interprets 34 as an octal
number.

"811000111 Interprets 11000111 as a
binary number.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"D50
~C"Ol2

(Equivalent to -<"D50>)
(Equivalent to ~C<~Ol2>)

The legal binary operators for use in MACR0-11 source programs are
described in Table 3-5. In contrast to unary operators, binary
operators specify actions to be performed on multiple items or terms
within an expression. Thus, binary operators conjoin items or terms
within an expression to invoke a specific relationship between them as
the expression is evaluated during assembly. Table 3-5 shows the
relationships that can be established between expression terms through
the use of binary operators.

3-4

SYMBOLS AND EXPRESSIONS

Table 3-5
Legal Binary Operators

Binary
Operator Explanation Example

+ Addition A+B

Subtraction A-B

* Multiplication A*B (16-bit product returned)

I Division A/B (16-bit quotient returned)

& Logical AND A&B

T.nn~~~l inclusive OR A!B ~~~·~~·

All binary operators have equal priority. Items or terms can be
grouped for evaluation within an expression by enclosing them within
angle brackets. Terms so enclosed are evaluated first, and remaining
operations are performed from left to right, as shown in the examples
below:

.WORD

.WORD
1+2*3
1+<2*3>

3.2 MACR0-11 SYMBOLS

;EQUALS 11(8).
;EQUALS 7(8).

Three types of symbols may be defined for use within MACR0-11 source
programs: permanent symbols, user-defined symbols, and macro symbols.
Correspondingly, MACR0-11 maintains three types of symbol tables: the
Permanent Symbol Table (PST) , the User Symbol Table (UST), and the
Macro Symbol Table (MST). The PST contains all the permanent symbols
defined within (and thus automatically recognized by) MACR0-11 and is
part of the MACR0-11 task image. The UST and MST are constructed as
the source program is assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACR0-11 directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACR0-11 task image and need
not be defined before being used in the operator field of a MACR0-11
source statement (see section 2.2.2).

3.2.2 User-Defined and Macro Symbols

In developing programs, user-defined symbols are those symbols treated
by the programmer as labels (see section 2.2.1) or that are equated to
a specific value through a direct assignment statement (see section
3.3). These symbols are added to the User Symbol Table as they are
encountered during assembly. Macro symbols are those symbols used as
macro names (see section 7.1). Similarly, these symbols are added to
the Macro Symbol Table as they are encountered during assembly.

3-5

SYMBOLS AND EXPRESSIONS

User-defined and macro symbols
characters, dollar signs {$),
character is illegal.

can
and

NOTE

be composed
periods (.)

of alphanumeric
only; any other

The dollar sign ($) and period (.) characters are
reserved for use in defining Digital Equipment
Corporation system software symbols. For example,
READ$ is a file-processing system macro. The user
is cautioned not to employ these characters in
constructing user-define symbols or macro symbols
in order to avoid possible conflicts with existing
or future Digital Equipment Corporation system
software symbols.

The following rules govern the creation of user-defined and macro
symbols:

1. The first character of a symbol must not be a number {except
in the case of local symbols, see section 3.5).

2. The first six characters of a symbol must be unique.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII legality and are not otherwise evaluated or
recognized by MACR0-11.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACR0-11 character set is defined
in section 3.1.

The value of a symbol depends upon its use in the program. When a
symbol appears in the operator field, it may be any one of the three
symbol types described above i.e., permanent, user-defined, macro. To
determine the value of an operator-field symbol, MACR0-11 searches the
symbol tables in the following order:

1. Macro Symbol Table

2. Permanent Symbol Table

3. User-Defined Symbol Table

This search order allows redefinition of Permanent Symbol Table
entries as macro symbols. But the user must keep in mind the sequence
in which the search for symbols is performed in order to avoid
incorrect interpretation of the symbol's use.

When a symbol appears in the operand field, the User-Defined Symbol
Table is searched first, then the PST is searched.

Depending on their use in the source program, user-defined symbols
have either a local {internal) attribute or a global {external)
attribute.

Normally, MACR0-11 treats all user-defined symbols as local, that is,
their definition is limited to the module in which they appear.

3-6

SYMBOLS AND EXPRESSIONS

However1 symbols can be explicitly declared to be global symbols
through any one of three methods:

1. Use of the .GLOBL directive (see section 6.9).

2. Use of the double colon (::) in defining a label (see section
2.2.1).

3. Use of the double equal {==) sign in a direct assignment
statement (see section 3.3).

All symbols within a module that remain undefined at the end of
assembly are treated by MACR0-11 as default global references.

NOTE

Undefined symbols at the end of assembly are
assigned a value of zero and placed into the
user-defined symbol table as undefined default
global references. If the .DSABL GBL directive is
in effect, however, (see section 6.2), the
automatic global reference default function of
MACR0-11 is inhibited, causing the statement
containing the undefined symbol to be flagged with
an error code (U) in the assembly listing (see
Appendix D).

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol which is defined as a
label, for example, may serve as an entry-point address to another
section of code within the task image. Such symbols are referenced
from other source modules in order to transfer control throughout cne
task's execution. These global symbols are resolved by the Task
Builder at link time, ensuring that the resulting task image is a
logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS

A direct assignment statement allows the programmer to equate a symbol
to a specific value. When a direct assignment statement is first used
to define a symbol, that symbol is entered into the User-Defined
Symbol Table. A symbol defined in this manner may be redefined in a
subsequent direct assignment statement by assigning a new value to the
previously-defined symbol.

The general format for a direct assignment statement is:

symbol=expression

or

symbol==expression

where: expression - can have only one level of forward reference
(see 5. below).

- cannot contain an undefined global reference.

3-7

SYMBOLS AND EXPRESSIONS

A direct assignment statement embodying the double equal (==) sign, as
shown above, defines the symbol as having a global attribute (see
section 6.9).

The following examples illustrate the coding of direct assignment
statements:

A=l ;THE SYMBOL A IS EQUATED TO THE
;VALUE 1.

B=A-l&MASKLOW ;THE SYMBOL B IS EQUATED TO THE
;VALUE OF THE ENTIRE EXPRESSION
;WHICH FOLLOWS.

C:
D=.
E: MOV #1,ABLE

;THE SYMBOL DIS EQUATED TO., AND
;THE LABELS C AND E ARE ASSIGNED A
;VALUE THAT IS EQUAL TO THE LOCATION
;OF THE MOV INSTRUCTION.

The last of the three examples above does not necessarily reflect good
programming practice; this example is provided only to illustrate the
performance of MACR0-11 in such situations.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=) or double equal sign (==) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4. A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing is allowed, as shown in
the following example:

X=Y

Y=Z (Illegal forward reference)

Z=l

The above example would result in the generation of an error code (U)
in the assembly listing (see Appendix D) on the line containing the
illegal forward reference.

Although one level of forward referencing is allowed in MACR0-11 for
local symbols, a global symbol defined in a direct assignment
statement must not contain a forward reference, i.e., the global
assignment expression must not itself contain an undefined reference
to another symbol. Such a forward reference is illegal, causing an
error code (A) to be generated in the assembly listinq (see Appendix
D).

3-8

SYMBOLS AND EXPRESSIONS

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 processor are numbered O
through 7 and can be expressed in the source program in the following
manner:

%0
%1

%7

where % indicates a reference to a register rather than a location.
The digit specifying the register can be replaced by any legal,
absolute term which can be evaluated during the first pass of
assembly. It is recommended that the programmer use standard symbolic
names for all register references.

The register definitions listed below are automatically assigned by
MACR0-11, i.e., these definitions are the normal default values and
remain valid for all register references within the source program.

R0=%0 ;REGISTER 0 DEFINITION.
Rl=%1 ;REGISTER l DEFINITION.
R2=%2 ;REGISTER 2 DEFINITION.
R3=%3 ;REGISTER 3 DEFINITION.
R4=%4 ;REGISTER 4 DEFINITION.
R5=%5 ;REGISTER 5 DEFINITION.
SP=%6 ;STACK POINTER DEFINITION.
PC=%7 ;PROGRAM COUNTER DEFINITION.

Note that registers 6 and 7 are given special names because of their
unique system functions.

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value. Although the user can
reassign the standard register symbols, if desired, through the use of
the .DSABL REG directive (see section 6.2), this practice is not
recommended. An attempt by the user to redefine a default register
symbol without first specifying the .DSABL REG directive to override
the normal register definitions causes that assignment statement to be
flagged with an error code (R) in the assembly listing (see Appendix
D). The symbolic default names assigned to the registers, as listed
above, are the conventional names used in all DEC-supplied PDP-11
system programs. For this reason, the user is well advised to follow
these conventions.

All non-standard register symbols must be defined before they are
referenced in the source program. A register expression less than 0
or greater than 7 is flagged with an error code (R) in the assembly
listing (see Appendix D).

3-9

SYMBOLS AND EXPRESSIONS

The % character may be used with any legal term or expression to
specify a register. For example, the statement:

CLR %3+1

is equivalent in function to the statement

CLR %4

and clears the contents of register 4.

In contrast, the following statement:

CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
given block of coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from l
to 65535, inclusive. Examples of local symbols are:

1$
27$
59$

104$

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:

ALPHA=expression

is a direct assignment statement (see section 3.3), but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive in the
source program (see Figure 3-1).

3. The range of a local symbol block is delimited through
MACR0-11 directives, as follows:

Starting delimiter: .ENABL LSB (see section 6.2)

Ending delimiter: .DSABL LSB (see section 6.2)
or

Followed by one of: Symbolic label
.PSECT (see section 6.8.l)
.CSECT (see section 6.8.2)
.ASECT (see section 6.8.2)

3-10

SYMBOLS AND EXPRESSIONS

Local symbols provide a convenient means of generating labels for
branch instructions and other such references within a local symbol
block. Using local symbols reduces the possibility of symbols with
multiole definitions aooearino within a user oroqram. In addition,
the use of local symbols-differentiates entry-point-labels from local
labels, since local symbols cannot be referenced from outside their
respective local symbol block. Thus, local symbols of the same name
can appear in other local symbol blocks without conflict.

The use of local symbols is encouraged, since they require less symbol
table space than other types of symbols. When defining local symbols,
the programmer is advised to use the range from 1$ to 63$ first, then
the range from 128$ to 65535$. Local symbols within the range 64$
through 128$, inclusive, can be generated automatically as a feature
of MACR0-11. Such local symbols are useful in the expansion of macros
during assembly and are described in detail in this context in section
7.3.5.

Care must be exercised in specifying local symbols in order to avoid
multiple definitions within the same local symbol block. For example
if the local symbol 10$ is defined two or more times within the same
local symbol block, each symbol represents a different address value.
Such a multi-defined symbol causes an error code (P) to be generated
in the assembly listing (see Appendix D).

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

121
122 PROGRAM INITIALIZATION CODE
123
124
125 0ei000 ,PSECT XC:TPRG,GBL.
126 01110000 01270ei 01110000 ! XC:TPRG1 IMOV #!MPURE::,R0 JIMPURE DA T.l INITIALIZATION
127 "HHHll04 005020 151 C:LR (R0)•
128 000006 0227121~ QH:''0000' CMP #!MPURT,R~

129 000012 101374 BHI 1$

130
. 131 000000 • PSEC! XCTPAS,GBL

132 00~Hl0Vl ~ 1270Q! V'IV'l0000' XCTPAS11MOV #!MPPAS,R0 JPASS INITIALIZATION
133 000004 005(1!21'1 151 CLR (R0)•
134 000006 12122700 0 0 0 ,;_•l((Hl I CMP #P1PPAT,R0
i35 00l00i2 i~i374 Bi-il i $

136
13,. 12100000 0 PSEc:T XC:TL!N,GE:!L
138 00000~ 12112700 Ql01211!100 I XC:TLIN11MOV #IMPLIN,R0 J LI"<E INITIALIZATION
139 000004 005020 1 SI C:LR (R0)•
140 000006 1212271210 0000001 CMP #P1PLIT,R0
141 000012 1'11374 BHI ts
142

Figure 3-1
Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction, as shown in the first example
below. When used in the operand field of a MACR0-11 directive, it
represents the address of the current byte or word, as shown in the
second example below.

3-11

A: MOV #.,RO

SYMBOLS AND EXPRESSIONS

;THE PERIOD (.) REFERS TO THE ADDRESS
;OF THE MOV INSTRUCTION.

(The function of the #symbol is explained in section 5.9.)

SAL=O
.WORD 177535,.+4,SAL ;THE OPERAND .+4 IN THE .WORD

;DIRECTIVE REPRESENTS A VALUE
;THAT IS STORED AS THE SECOND
;OF THREE WORDS DURING
;ASSEMBLY.

In the above example, assume that the current value of the location
counter is 500. During assembly, MACR0-11 then reserves storage in
response to the .WORD directive (see section 6.3.2), beginning with
location 500. The operands accompanying the .WORD directive determine
the values so stored. The value 177535 is thus stored in location
500. The value represented by .+4 is stored in location 502; this
value is derived as the current value of the location counter (which
is .now 502), plus the absolute value 4, thereby depositing the value
506 in location 502. Finally, the value of SAL, previously equated to
0, is deposited in location 504.

At the beginning of each assembly pass, MACR0-11 resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the location
counter can be changed through a direct assignment statement of the
following form:

.=expression

Similar to other MACR0-11 symbols, the current location counter symbol
(.) has an attribute of relocatability associated with it, i.e., it is
either absolute or relocatable, depending on the specific such
attribute of the current program section. (A program section and its
attributes are defined through the use of the .PSECT directive
described in section 6.8.1.) The existing attribute (or mode) of the
current location counter cannot be changed by specifying a defining
expression having a different attribute.

Furthermore, such a defining expression must not force the location
counter into another program section (.PSECT area), even though the
program sections so involved may both be absolute or relocatable. The
expression defining the location counter value must not contain a
forward reference, i.e., the expression must not contain a reference
to a symbol that is not previously defined. Such violations
constitute a general assembly error, resulting in an error ~ode (A) in
the assembly listing (see Appendix D).

Thus, the attribute (or mode) of the current location counter takes on
the attribute of the current program section. Therefore, its
attribute from program section to program section can be changed only
through the program sectioning directives (.PSECT, .ASECT, and
. CSECT) , as described in section 6. 8.

3-12

SYMBOLS AND EXPRESSIONS

The following coding illustrates the use of the current location
counter:

.ASECT
.=500

FIRST: MOV

.=520

SECOND: MOV

.PSECT
.=.+20

THIRD: .WORD

.+10,COUNT

.,INDEX

0

;SET LOCATION COUNTER TO
;ABSOLUTE 500{0CTAL).
;THE LABEL "FIRST" HAS THE VALUE
;500{0CTAL).
;.+10 EQUALS 510(0CTAL}. THE
;CONTENTS OF THE LOCATION
;510(0CTAL) WILL BE DEPOSITED
;IN THE LOCATION "COUNT."
;THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
;ABSOLUTE 520(0CTAL).
;THE LABEL SECOND HAS THE
;VALUE 520(0CTAL).
;THE CONTENTS OF LOCATION
;520(0CTAL), THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
;ITSELF, WILL BE DEPOSITED IN THE
;LOCATION "INDEX."

;SET LOCATION COUNTER TO
;RELOCATABLE 20 OF THE
;UNNAMED PROGRAM SECTION.
;THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements:

.=.+40

or

.BLKB 40

or

.BLKW 20

reserves 40(8) bytes of storage space in the source program. The
.BLKB and .BLKW directives, however, are recommended as the preferred
ways to reserve storage space (see section 6.5.3).

3.7 NUMBERS

MACR0-11 assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this is that operands to PDP-11/45 and PDP-11/70 floating point
instructions are treated as decimal (see section 6.4.2). This default
radix can be altered with the .RADIX di~ective (see section 6.4.1.1).
Also, individual numbers can be designated as decimal, binary, or
octal numbers through temporary radix control operators {see section
6.4.l.2).

For every statement in the source program that contains a digit that
is not in the current radix, an error code (N) is generated in the
assembly listing (see Appendix D). However, MACR0-11 continues with
the scan of the statement and evaluates each such number encountered
as a decimal value.

3-13

SYMBOLS AND EXPRESSIONS

Negative numbers must be preceded by a minus
translates such numbers into two's complement form.
may (but need not) be preceded by a plus sign.

sign; MACR0-11
Positive numbers

A number containing more than 16 significant bits, i.e., greater than
177777(8), is truncated from the left and flagged with an error code
(T) in the assembly listing (see Appendix D).

Numbers are always considered to be absolute values, i.e., they are
not relocatable.

Single-word floating-point numbers may be generated with the AF
operator (see section 6.4.2.2) and are stored in the following format:

15 14 7 6 0

Sign
Bit

8-bit
Exponent

7-bit
Mantissa

Refer to the appropriate PDP-11 Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component of an expression and may be one of the
following:

1. A number, as defined in section 3.7, whose 16-bit value is
used.

2. A symbol, as defined in section 3.2. Symbols are evaluated
as follows:

a. A period (.) specified in an expression causes the value
of the current location counter to be used.

b. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

c. A permanent symbol's basic value is used, but zero is
substituted for any arguments.

d. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
(see section 6.2) is in effect, the automatic global
reference default function of MACR0-11 is inhibited, in
which case, the statement containing the undefined symbol
is flagged with an error code (U) in the assembly listing
(see Appendix D).

3. An ASCII conversion operation using either a single quote
followed by a single ASCII character or a double quote
followed by two ASCII characters. This type of expression
construction is explained in detail in section 6.3.3.

3-14

SYMBOLS AND EXPRESSIONS

4. A term may also be an expression enclosed in angle brackets
(<>). Any expression so enclosed is evaluated and reduced to
a single term before the remainder of the expression in which
it appears is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<A+B>).

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators (see Tables 3-4 and 3-5) and which reduce to a 16-bit
expression value. The evaluation of an expression includes the
determination of its attributes. A resultant expression value may be
any one of four types (as described later in this section): absolute:
relocatable, external, or complex relocatable.

Expressions are evaluated from left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:

-+-A

is equivalent to:

-<+<-A>>

A missing term, expression, or external symbol is interpreted as a
zero. A missing or illegal operator terminates the expression
analysis, causing an error code (A) or (Q), or both, to be generated
in the assembly listing (see Appendix D), depending on the context of
the expression itself. For example, the expression:

TAG ! LA 177777

is evaluated as

TAG ! LA

because the first non-blank character following the symbol LA is not a
legal binary operator, an expression separator (i.e., a comma), or an
operand field terminator (i.e., a semicolon or the end of the source
line). It should be noted that spaces within expressions are ignored.

The value of an external expression, as evaluated by MACR0-11, is
equal to the value of the absolute part of that expression. For
example, the expression EXTERN+A, where "EXTERN" is an external
symbol, has a value at assembly-time that is equal to the value of the
internal symbol A. This expression, however, when evaluated by the
Task Builder a link time then takes on the resolved value of the
symbol EXTERN, plus the value of symbol A.

3-15

SYMBOLS AND EXPRESSIONS

Expressions, when evaluated by MACR0-11, are determined to be one of
four types: absolute, relocatable, external (or global). or complex
relocatable. For the MACR0-11 programmer, the following distinctions
are important:

1. An expression is absolute if its value is fixed. An
expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable
expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
are also absolute, since such an expression is reduced to a
single term by MACR0-11 upon completion of the expression
scan. For example, the expression TAG2-TAG1, where both TAGl
and TAG2 are defined in the same program section, is an
absolute expression.

2. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears, but it will have an offset value added at task-build
time. Expressions whose terms contain labels defined in
relocatable program sections will have a relocatable value;
similarly, a period {.) in a relocatable program section,
representing the value of the current location counter, will
also have a relocatable value.

3. An expression is external {or global) if it contains a single
global reference {plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression is only partially defined following
assembly and must therefore be resolved by the Task Builder
at link time.

4. An expression is complex relocatable if any one of the
following conditions applies:

- It contains a global reference and a relocatable symbol.

- It contains more than one global reference.

- It contains relocatable terms belonging to
program sections.

different

The value resulting from the expression has more than one
level of relocation. For example, if the relocatable
symbols TAGl and TAG2 associated with the same program
section are specified in an expression construction in the
form TAGl+TAG2, two levels of relocation would be
introduced, since each symbol is evaluated in terms cf the
relocation bias in effect for the program section.

- An operation other than addition is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

3-16

CHAPTER 4

RELOCATION AND LINKING

The output of MACR0-11 is an object module which must be processed by
the Task Builder before it can be loaded and executed. Essentially:
the Task Builder fixes (i.e., makes absolute) the values of external
or relocatable symbols in the object module, thus rendering the object
module, or several such object modules, into an executable task image.
This process is called linking.

To enable the Task Builder to fix the value of an expression, MACR0-11
issues certain directives to the Task Builder, together with other
required parameters. In the case of relocatable expressions in the
object module, the Task Builder adds the base of the associated
relocatable program section to the value of the relocatable expression
provided by MACR0-11. In the case of external expression values, the
Task Builder determines the value of the external term in the
expression (since the external symbol must be defined in one of the
other object modules being linked together) and then adds it to the
absolute portion of the external expression, as provided by MACR0-11.

All instructions that require modification by the Task Buiider are
flagged in the assembly listing, as illustrated in the example below.
The apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis by the Task Builder is required in order to fix
+-h n,,.1110 ,...-F +-ho ovnrocciAn
._..1..1.~ vuiuc v..1... '-'.1."'- '-rtr..~.1..'-_,_, •,

EXAMPLE:

OOS06S CLR
OOOOOOG

OOS06S CLR
000006G

OOS06S CLR
000040'

EXTERN (RS)

EXTERN+6 (RS)

RELOC (RS)

;THE VALUE OF THE i'EXTERN" SYMBOL IS
;ASSEMBLED AS ZERO AND IS TO BE
;RESOLVED BY THE TASK BUILDER.

;THE VALUE OF THE SYMBOL uEXTERN"
;IS TO BE RESOLVED BY
;THE TASK BUILDER AND ADDED TO
;THE ABSOLUTE PORTION (+6) OF
;THE EXPRESSION.

;ASSUMING THAT THE VALUE OF THE
;SYMBOL "RELOC" IS RELOCATABLE
;40, THE TASK BUILDER WILL ADD A
;RELOCATION BIAS TO THIS VALUE.

4-1

005065 CLR
ooooooc

RELOCATION AND LINKING

-<EXTERN+RELOC>(R5) ;THIS EXPRESSION IS COMPLEX
;RELOCATABLE BECAUSE IT REQUIRES
;THE NEGATION OF AN EXPRESSION
;THAT CONTAINS A GLOBAL (EXTERN)
;REFERENCE AND A RELOCATABLE TERM.

For a complete description of object records output by MACR0-11, refer
to the applicable Task Builder Reference Manual (see section 0.3 in
the Preface).

4-2

CHAPTER 5

ADDRESSING MODES

The program counter {PC), register 7 of the eight general registers in
the PDP-11 processor, always contains the address of the next word to
be fetched, i.e., the address of the next instruction to be executed,
or the second or third word of the current instruction.

In order to understand how the address modes operate and how
assemble, the action of the program counter must be understood.
key rule to remember is:

"whenever the processor implicitly uses the program counter
{PC) to fetch a word from memory, the program counter is
automatically incremented by two after the fetch operation
is completed."

they
The

In the case of 2- or 3-word instructions, the processor uses the PC to
fetch the following words as well.

The following symbols are used in describing addressing
throughout this chapter:

1. E is any expression, as defined in Chapter 3.

modes

2. Risa register expression 1 i.e., any expression containing a
term preceded by a percent sign (%) or a symbol previously
equated to such a term, as shown in the examples below:

R0=%0
Rl=RO+l
R2=1+%1

;GENERAL REGISTER 0.
;GENERAL REGISTER 1.
;GENERAL REGISTER 2.

The symbol R may also represent any of the normal default
register definitions {see section 3.4).

3. ER is a register expression or an absolute expression in the
range 0 to 7, inclusive.

4. A is a general addressing specification which produces a
6-bit mode address field, as described in the PDP-11
Processor Handbooks. The addressing specification, A, is
described in terms of E, R, and ER, as defined above. Each
addressing specification within this section is illustrated
using either the single operand instruction CLR or the double
operand instruction MOV.

5-1

ADDRESSING MODES

5.1 REGISTER MODE

The register itself (R) contains the operand to be manipulated by the
instruction.

Format for A: R

Example:

CLR R3 ;CLEARS REGISTER 3.

5.2 REGISTER DEFERRED MODE

The register (R) contains the address of the operand to be manipulated
by the instruction.

Format for A: @R or {ER)

Examples:

CLR
CLR
CLR

@Rl
{Rl)
(1)

;ALL THESE INSTRUCTIONS CLEAR
;THE WORD AT THE ADDRESS
;CONTAINED IN REGISTER 1.

5.3 AUTOINCREMENT MODE

The contents of the register (ER) are incremented immediately after
being used as the address of the operand (see Note below).

Format for A: (ER)+

Examples:

CLR
CLR
CLR

{RO)+
(R4)+
{R2)+

;EACH INSTRUCTION CLEARS
;THE WORD AT THE ADDRESS
;CONTAINED IN THE SPECIFIED
;REGISTER AND INCREMENTS
;THAT REGISTER'S CONTENTS
;BY TWO.

NOTE

Certain special instruction/address mode
combinations, which are rarely or never used, do
not operate exactly the same on all PDP-11
processors, as described below.

In the autoincrement mode, both the JMP and JSR
instructions autoincrement the register before its
use on the PDP-11/40, but not on the PDP-11/45 or
11/10.

In double operand instructions having the
addressing form Rn, {Rn)+ or Rn,-{Rn), where the
source and destination registers are the same, the
source operand is evaluated as the autoincremented

5-2

ADDRESSING MODES

or autodecremented value, but the destination
register, at the time it is used, still contains
the originally-intended effective address. In the
following example, as executed on the PDP-11/40,
Register 0 originally contains 100(8):

MOV RO, (RO)+

MOV RO,-(RO)

;THE QUANTITY 102 IS MOVED
;TO LOCATION 100.

;THE QUANTITY 76 IS MOVED
;TO LOCATION 100.

The use of these forms should be avoided, since
they are not compatible with the entire family of
PDP-11 processors.

An error code (Z) is printed in the assembly
listing (see Appendix D) with each instruction
which is not compatible among all members of the
PDP-11 family.

5.4 AUTOINCREMENT DEFERRED MODE

The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as a
pointer.

Format for A: @(ER)+

Example:

CLR @(R3)+

c: c:
JoJ AUTODECREMENT MODE

;THE CONTENTS OF REGISTER 3 POINT
;TO THE ADDRESS OF A WORD TO BE
;CLEARED BEFORE THE CONTENTS OF THE
;REGISTER ARE INCREMENTED BY TWO.

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note above in section 5.3).

Format for A:

Examples:

CLR

CLR
CLR

-(ER)

-(RO)

-(R3)
- (R2)

;DECREMENT THE CONTENTS OF THE SPECI
;FIED REGISTER (0, 3, OR 2) BY TWO
;BEFORE USING ITS CONTENTS
;AS THE ADDRESS OF THE WORD TO BE
;CLEARED.

5-3

ADDRESSING MODES

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register (ER} are decremented before being used as
a pointer to the address of the operand.

Format for A:

Example:

CLR

5. 7 INDEX MODE

@-(ER)

@-(R2) ;DECREMENT THE CONTENTS OF
;REGISTER 2 BY TWO BEFORE
;USING ITS CONTENTS AS A POINTER
;TO THE ADDRESS OF THE WORD TO BE
;CLEARED.

The value of an expression (E} is stored as the second or third word
of the instruction. The effective address of the operand is
calculated as the value of E, plus the contents of register ER. The
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: E(ER)

Examples:

CLR X+2(Rl)

MOV R0,-2(R3)

5.8 INDEX DEFERRED MODE

;THE EFFECTIVE ADDRESS OF THE WORD
;TO BE CLEARED IS X+2, PLUS THE
;CONTENTS OF REGISTER 1.
;THE EFFECTIVE ADDRESS OF THE
;DESTINATION LOCATION IS -2, PLUS
;THE CONTENTS OF REGISTER 3.

An expression (E) , plus the contents of a register (ER), yields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: @E(ER)

Example:

CLR @114 (R4}

5.9 IMMEDIATE MODE

;IF REGISTER 4 CONTAINS 100, THIS
;VALUE, PLUS THE OFFSET 114, YIELDS
;THE POINTER 214. IF LOCATION 214
;CONTAINS THE ADDRESS 2000, LOCATION
;2000 WOULD BE CLEARED.

The immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. This mode is assembled as an
autoincrement of regisler 7 (the PC).

Format for A: #E

5-4

ADDRESSING MODES

Examples:

MOV
MOV

#100,RO
#X,RO

;MOVE THE VALUE 100 INTO REGISTER 0.
;MOVE THE VALUE OF SYMBOL X INTO
; REGISTER 0.

The number sign (#) in the MACR0-11 character set has special
significance as an addressing mode indicator. When this character
appears in the operand field, as shown above, it specifies the
immediate addressing mode, indicating to MACR0-11 that the operand
itself immediately follows the instruction word.

The operation of this mode can be shown through the first example,
MOV #100,RO, which assembles as two words:

Location 20: 0 1 2 7 0 0

Location 22: 0 0 0 1 0 0

Location 24: Next instruction

Note that the source operand (the value 100) is assembled immediately
following the instruction word, i.e., as the second word in the
instruction. Upon execution of the instruction, the processor fetches
the first word (MOV) and increments the PC by two so that it points to
location 22 (which contains the source operand).

After the next fetch and increment cycle, the source operand (100) is
moved into register 0, leaving the PC pointing to location 24 (the
next instruction).

5.10 ABSOLUTE MODE

The absolute mode is the equivalent of the immediate mode deferred.
The address expression @#E specifies an absolute address which is
stored as the second or third word of the instruction. In other
words, the value immediately following the instruction word is taken
as the absolute address of the operand. The absolute mode is
assembled as an autoincrement deferred of register 7 (the PC).

Format for A: @#E

Examples:

MOV @#100,RO

CLR @#X

;MOVE THE CONTENTS OF LOCATION 100
;INTO REGISTER RO.
;CLEAR THE CONTENTS OF THE LOCATION
;WHOSE ADDRESS IS SPECIFIED BY
;THE SYMBOL X.

The operation of this mode can be shown through the first example,
MOV @#100,RO, which assembles as two words:

Location 20: 0 1 3 7 0 0

Location 22: 0 0 0 1 0 0

Location 24: Next instruction

5-5

ADDRESSING MODES

Note that the absolute address 100 is assembled immediately following
the instruction word, i.e., as the second word in the instruction.
Upon execution of the instruction, the processor fetches the first
word (MOV) and increments the PC by two so that it points to location
22 (which contains the absolute address of the source operand). After
the next fetch and increment cycle, the contents of absolute address
100 (the source operand) are moved into register 0, leaving the PC
pointing to location 24 (the next instruction).

5.11 RELATIVE MODE

The relative mode is the normal mode for memory
assembled as index mode, using register 7
register.

Format for A: E

Examples:

references. It is
(the PC) as the index

CLR 100 ;CLEAR LOCATION 100, RELATIVE TO
;THE CONTENTS OF THE PC.

MOV RO,Y ;MOVE THE CONTENTS OF REGISTER 0
;TO LOCATION Y, RELATIVE TO THE
;CONTENTS OF THE PC.

In relative mode, the offset for the address calculation is assembled
as the second or third word of the instruction. This value is added
to the contents of the PC (the base register) to yield the address of
the source operand.

The operation of the relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: 0 1 6 7 0 3

Location 22: 0 0 0 0 5 4

Location 24: Next instruction

Note that the constant 54 is assembled immediately following the
instruction word, i.e., as the second word in the instruction. Upon
execution of the instruction, the processor fetches the first word
(MOV) and increments the PC by two so that it points to location 22
{containing the value 54). After the next fetch and increment cycle,
the processor calculates the effective address of the source operand
by taking the contents of location 22 (the offset) and adding it to
the current value of the PC, which now points to location 24 (the next
instruction). Thus, the source operand address is the result of the
calculation OFFSET+PC = 54+24 = 100(8), causing the contents of
location 100 to be moved into register 3.

Since MACR0-11 considers the contents of the current location counter
(.) as the address of the first word of the instruction, an equivalent
index mode statement is shown below:

MOV 100-.-4{PC),R3

This instruction has a relative addressing mode because the operand
address is calculated relative to the current value of the location

5-6

ADDRESSING MODES

counter. The offset is the distance (in bytes) between the operand
and the current value of the location counter. If the operator and
its associated operand(s) are moved in memory so that the distance
between the operator and the data remains constant, the instruction
will operate correctly anywhere in memory, i.e., the instruction is
relocatable (position-independent).

5.12 RELATIVE DEFERRED MODE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Format for A: @E

Example:

MOV @X,RO ;RELATIVE TO THE CURRENT VALUE OF
;THE PC, MOVE THE CONTENTS OF THE
;LOCATION WHOSE ADDRESS IS POINTED
;TO BY LOCATION X INTO REGISTER 0.

5.13 SUMMARY OF ADDRESSING FORMS

Each PDP-11 instruction takes at least one word. Operands of the form
listed below do not increase the length of an instruction.

Form

R

@R or (ER)

(ER)+

@(ER)+

-(ER)

@-(ER)

Meaning

Register mode

Register deferred mode (see Note below)

Autoincrement mode

Autoincrement deferred mode

Autodecrement mode

Autodecrement deferred mode

Operands of the following forms add one word to the instruction length
for each occurrence of an operand of that form:

Form

E(ER)

@E(ER)

#E

@#E

E

@E

Meaning

Index mode

Index deferred mode

Immediate mode

Absolute mode (see Note below)

Relative mode

Relative deferred mode

5-7

ADDRESSING MODES

The syntax of the addressing modes is
Additional discussion of addressing
applicable PDP-11 Processor Handbook.

NOTE

summarized
modes is

in Appendix
provided in

An alternate form for @R is (ER). However, the
form @(ER) is only logically, but not physically
equivalent to the expression @O(ER). The
addressing form @#E differs from form E in that
the second or third word of the instruction
contains the absolute address of the operand,
rather than the relative distance between the
operand and the PC. Thus, the instruction CLR
@#100 clears absolute location 100, even if the
instruction is moved from the point at which it
was assembled. See the description of the .ENABL
AMA function in section 6.2, which causes all
relative mode addresses to be assembled as
absolute mode addresses.

5.14 BRANCH INSTRUCTION ADDRESSING

B.
the

The branch instructions are 1-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACR0-11 performs the reverse operation to form the word offset from
the specified address. Remember that when the offset is added to the
current value of the PC, the PC is pointing to the word following the
branch instruction; hence, the factor -2 in the following
calculation:

Word offset = (E-PC)/2 truncated to eight bits.

Since the value of the PC = .+2, we have:

Word offset = (E-.-2)/2 truncated to eight bits.

In using branch instructions, the programmer must exercise care to
avoid the following error conditions:

1. Branching from one program section to another;

5-8

ADDRESSING MODES

2. Branching to a location that is defined as an external
(global) symbol; or

3. Specifying a branch address that is out of range, ~=c=, the
branch offset is a value that does not lie within the range
-128 (10) to +127 (10).

The above conditions cause an error code (A) to be generated in the
assembly listing for the statement in error (see Appendix D).

5.15 USING TRAP INSTRUCTIONS

THE EMT and TRAP instructions do not use the low-order byte of the
instruction word, allowing information to be transferred to the trap
hana1ers in the low-order byte. ir tne t;J.VIT or T.t<.F...I:' instruction is
followed by an expression, the value of the expression is stored in
the low-order byte of the word. However, if the expression is greater
than 377(8), it is truncated to eight bits and an error code (T) is
generated in the assembly listing (see Appendix D).

5-9

PART III

MACR0-11 DIRECTIVES

Chapters 6 and 7 describe all the directives used with MACR0-11.
Directives are stateroents which cause MACR0-11 to perform certain
operations during assembly. Chapter 6 describes several types of
directives, including those which control sy~bol interpretation,
listing header material, program sections, data storage formats, and
assembly listings. Chapter 7 describes those directives concerning
macros, macro arguments, and repetitive coding sequences.

MACR0-11 directives can be preceded by a label (subject to any
restrictions associated with specific directives) and followed by a
comment. A MACR0-11 directive occupies the operator field of a source
statement. Only one directive can be included in any given source
line. The operand field may be occupied by one or wore operands or
left blank; legal operands differ with each directive specified.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

Several listing control directives are provided in MACR0-11 to control
the content, format, and pagination of all line printer and
teleprinter listing output generated during assembly. Facilities also
exist for creating object module names and other identification
information in the listing output.

6.1.1 .LIST and .NLIST Directives

Listing control options can be specified in the
program through the .LIST and .NLIST directives.
of the form:

text of a MACR0-11
These directives are

where:

.LIST

.LIST arg

.NLIST

.NLIST arg

arg represents one or more of the optional symbolic
arguments defined in Table 6-1.

As indicated above, the listing control directives may be used without
arguments, in which case, the listing directives alter the listing
level count. The listing level count is initialized to zero (0). At
each occurrence of a .LIST directive, the listing level count is
incremented; at each occurrence of an .NLIST directive, the listing
level count is decremented. When the listing level count is negative,
the listing is suppressed (unless the line contains an error).
Conversely, when the listing level count is greater than zero, the
listing is always generated. Finally, when the count is zero (0), the
line is either listed or suppressed, contingent upon the other listing
controls currently in effect for the program. For example, the
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

.MACRO LT EST ;LIST TEST
A-THIS LINE SHOULD LIST ; LISTING LEVEL COUNT IS 0.

.NLIST ; LISTING LEVEL COUNT IS -1.
B-THIS LINE SHOULD NOT LIST

.NLIST ;LISTING LEVEL COUNT IS -2.
C-THIS LINE SHOULD NOT LIST

.LIST ; LISTING LEVEL COUNT IS -1.

6-1

GENERAL ASSEMBLER DIRECTIVES

D-THIS LINE SHOULD NOT LIST
. LIST

E-THIS LINE SHOULD LIST
.ENDM

. LIST ME
LT EST

A-THIS LINE SHOULD LIST
E-THIS LINE SHOULD LIST

;LISTING ~EVEL COUNT IS 0 .
;LISTING LEVEL COUNT IS BACK TO 0.

;LIST MACRO EXPANSION .
;CALL THE MACRO
;LISTING LEVEL COUNT IS 0.
;LISTING LEVEL COUNT IS BACK TO 0.

An important purpose of the level count is to allow macro expansions
to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing level count; however, the .LIST and .NLIST directives can be
used to override current listing control, as shown in the example
below:

X=.

X=.

.MACRO XX

.LIST ;LIST NEXT LINE.

.NLIST

. ENDM

. NLIST ME
xx

;DO NOT LIST REMAINDER OF MACRO
;EXPANSION .

;DO NOT LIST MACRO EXPANSIONS .

The allowable symbolic arguments for use with the listing directives
are described in Table 6-1. These arguments can be used singly or in
combination with each other. If multiple arguments are specified in a
listing directive, each argument must be separated by a comma, tab, or
space. For any argument not specifically included in a listing
control statement, the associated default assumption (List or No list)
is applicable throughout the source program. The default assumptions
for the listing control directives also appear in Table 6-1.

6-2

GENERAL ASSEMBLER DIRECTIVES

Table 6-1
Symbolic Arguments of Listing Control Directives

Default

SEQ* List

LOC* List

BIN* List

BEX List

SRC* List

Function

Controls the listing of source line
sequence numbers. If this field is
suppressed through an .NLIST SEQ
directive, MACR0-11 generates a tab,
effectively allocating space for the
field, but fills the field with blanks.
Thus, the inter-positional relationships
of subsequent fields in the listing
remain undisturbed. During the assembly
process, MACR0-11 examines each source
line for possible error conditions. For
any line in error, an appropriate error
flag is printed preceding the line
sequence number field (see Appendix D) .

Controls the listing of the current
location counter field. Normally, this
field is not suppressed. However, if it
is suppressed through the .NLIST LOC
directive, MACR0-11 does not generate a
tab, nor does it allocate space for the
-F; , ,::i ,,_ .Le..Lu, as is the case with the source
line sequence number field (SEQ)
described above. Thus, the suppression
of the current location counter (LOC)
field effectively left-justifies all
subsequent fields (while preserving
inter-positional relationships) to that
position otherwise normally occupied by
this field.

Controls the listing of generated binary
code. If this field is suppressed
through an .NLIST BIN directive,
left-justification of the source code
field occurs in the ~ame manner
described above for the current location
counter (LOC) field.

Controls the listing of binary
extensions, i.e. , the locations and
binary contents beyond those that will
fit on the source statement line. This
is a subset of the BIN argument.

Controls the listing of source lines.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the
same time, i.e., if all four significant fields in the listing are
to be suppressed, the printing of the resulting blank line is
inhibited.

6-3

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont'd)
Symbolic Arguments of Listing Control Directives

Argument

COM

MD

MC

ME

MEB

CND

LD

TOC

SYM

TTM

Default

List

List

List

No list

No list

List

No list

List

List

List
(Teleprinter
mode)

Function

Controls the listing of comments. This
is a subset of the SRC argument. The
.NLIST COM directive reduces listing
time and space when comments are not
desired.

Controls the listing of macro
definitions and repeat range expansions.

Controls the listing of macro calls and
repeat range expansions.

Controls the listing of macro
expansions.

Controls the listing of macro expansion
binary code. A .LIST MEB directive
causes only those macro expansion
statements that generate binary code to
be listed. This is a subset of the ME
argument.

Controls the listing of unsatisfied
conditional coding and associated .IF
and .ENDC directives in the source
program. This argument permits
conditional assemblies to be listed
without including unsatisfied
conditional coding.

Controls the listing of all listing
directives having no arguments, i.e.,
those listing directives that alter the
listing level count.

Controls the listing of the table of
contents during assembly pass 1 (see
section 6.1.4 describing the .SBTTL
directive). This argument does not
affect the printing of the full assembly
listing during assembly pass 2.

Controls the listing of the symbol table
resulting from the assembly of the
source program.

Controls the listing output format. The
.LIST TTM directive, the default mode,
causes output to be formulated into
teleprinter format (see Figure 6-2);
the .NLIST TTM directive causes output
to be formulated into line printer
format (see Figure 6-1).

6-4

GENERAL ASSEMBLER DIRECTIVES

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-1 causes the directive to be flagged with an error
code (A) in the assembly listing {see Appendix D).

An example of an assembly listing, as sent to a 132-column line
printer, is shown in Figure 6-1. Note that binary extensions for
statements generating more than one word are formatted horizontally on
the source line.

An example of an assembly listing, as sent to a teleprinter {in the
same format as for an 80-column line printer), is shown in Figure 6-2.
Notice that binary extensions for statements generating more than one
word are printed on subsequent lines. There is no explicit truncation
of output to 80 characters by the assembler.

The listing control options can also be specified during assembly
through switches included in the command string to MACR0-11 (see
Chapter 8). The use of these switches overrides all corresponding
listing control (.LIST or .NLIST) directives specified in the source
program.

Figure 6-3 shows a listing, produced in line printer format,
reflecting the use of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly listing
output.

6.1.2 Page Headings

MACR0-11 outputs each assembly page in the format shown in either
Figure 6-1 or Figure 6-2, depending on the listing mode {see TTM,
Table 6-1). On the first line of each page, MACR0-11 prints the
following (from left to right):

1. Title of the object module, as established through the .TITLE
directive (see next section).

2. Assembler version identification.

3. Date.

4. Time-of-day.

5. Page number.

The second line of each assembly listing page contains the subtitle
text specified in the last-encountered .SBTTL directive (see section
6.1.4).

6-5

°' I

°'

CSITST -- TEST o~ cs11 AND C8I2 MACRO Mli'l107 09•JUL•74 15147 PAGE 5
READ AND PA~SE COMMAND LINES

209
210
211 121211230
212 01211244
213 01211246
214 01211254
215 (:ll;i! 131210
216 001324
211 01211326
218 001332
219 001336
220 1211211360
221 01211404
222 001412
223 12101416
224 01211424
225 0121145121
2Ui 001474
227
228 001476
229 001502
230 12101504
231 i;hH512
232 01211520
233 001522
234 001!126
235 01211552
236 12101576
237 01211602
238 1210162121
239 1211211622
240 001626
241 001634
242 001636
243 001662
244 001666
245 1211211104
246 00171216
247 01211712
248 01211720
249 001722

10312103

103064
016046
16612116

0661216121
16266121
166060

000655

01215760
001652
112767
13276121
01211402
105267

103441

13276121
001360

10341217

132760
001360
000412

0121012120
01710004

01210016
00~002
1211(1001 b

01i'10V'102

000060
12100040

176416

0'110020

00'11021'!

000002

176432
000001

0001'101

000001

,SBTTL

GETLNI GC:MLS
BCC
EXITSS

1S I TYPE
CSIS1
BCC
MOV
SUB
TYPE
TYPE
AOD
SUB
SUB
TYPE
TYPEM
B~

251 TST
BEQ
MOVB
BI TB
BEQ
INCB

105 I TYfo)EM
TVPEM

OPARSE I CALL
CSIS2
BCS
CALL
BITB
BNE
TYPEM

IPARSE1 CALL
C:SIS2
BCS
CALL
6ITB
BNE
BR

READ ANO PARSE COMMAND LINES

•GC:LBLK IGET LINE VIA GCML
1S JSKIP IF NO ERRO~

IELSt., t.XIT
G,CMLD•2(R0),G,C:M~OCR0),•!0 ISEND OUT THE INPUT LINE
•CSIBLK,GCLBLK+G,CMLD+2,GCLBLK•G,C:ML0
2S JBRANCH IF NO ERROR DETECTED
C,FILD•2(R0),~CSP) 1PUT STRING ERROR AODR IN STK
C,CMLD•2(w0),(SP) 1CALCULATE LENGTH OF FIRST PART
C,CML0+2CR0), (SP),•IS JSENO OUT FIRST PART OF STRING
C,FILD+2CR0),C,fILDCR0),•'5 JSENO OUT SECOND PART
C:,FILDCR0) 1 C,FILD•2CR0) JCALC ADDR OF LAST PART OF STRING
(SP)+,C,CML0CR0) JDEOUCT LENGTH OF FIRST PART
C,FILD(R0),C,CMLDCR0) JCALC LENGTH OF LAST PA~T
C,FILD•2CR0),C,CML0CR0),•40 JSENO OUT LAST PART
STX,40 JSENO SYNTAX ERROR MESSAGE
GETLN JTRV FOR MO~E

C,CMLOCR0) JCHECK LENGTH OF LINE
GETLN IIF NULL, SKIP BACK FOR NEXT LINE
*'0,EQUBIT JASSUME EQUAL SIGN NOT FOUND
•CS,EQU,C,STAT(R0) JCHECK STATUS
105 ISKIP IF EQUAL SIGN NOT SEEN
EQUAIT IELSE, INDICATE EQUAL SIGN FOUND
EQU,40 JSENO EQUAL SIGN STATUS MESSAGE
OPT,40 ISEND OUTPUT SCAN MESSAGE
INIT2 IINIT LOCNS FOR CSI2 CALL/TEST
,OUTPUT,#SWTBL JPARSt. OUTPUT SPEC
CS2ERR JSKIP ON ERROR
EVALU8 IEVALUATE RESULTS OF SEMANTIC PARSE
*C:S,MOH,C,STAT(R0) JADDITIONAL OUTPUT SPECS?
OPARSE IYES, CONTINUE WITH OUTPUT SCAN
IPT,4~ ISENO INPUT !CAN MESSAGE
INIT2 JINIT LOCNS FOR CSI2 CALL/TEST
,INPUT,•SWTBL IPA~SE INPUT SPEC
CS2ERR JSKIP ON ERROR
EVALU8 JEVALUATE RESULTS OF SEMANTIC PARSE
#CS,MOR,C,STAT(R0) IAODITIONAL INPUT SPECS?
?PARSE JYES, CONTINUE WITH INPUT SCAN
JMPGET JGET ANOTHER COMMAND LINE

Figure 6-1
Example of Line Printer Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

CSITST P• TEST OF CSI1 ANO CSI2 MACRO M0707 09~JUL•74 15159 PAGE 5
READ AND PARSE COMMAND LINES

209
2i0
211 12101230
212 001244
21J 001246
214 001254
215 001300
216 001324
217 001326

216 001332

219 001336
220 001360
221 001404

222 001412

103003

103064
016046
000020
166016
000004

066060
00121016
000020
162660
000002

223 001416 166060
000016
000002

224 001424
225 0014~0
226 001474
227
228 001476

229 0015'1!2
230 001504

231 001512

232 001520
233 001522

234 001526
235 001552
236 001576
237 0~1602

000655

01115760
000002
001fl52
112767
000060
176432
132760
000040
000001
001402
105267
176416

238 001620 103441
239 001622

240 001626 132760
000020

241 liH1l1634
242 001636
243 001662
244 01211666
245 0eJ1704
246 001706
247 001712

248 01211720

00121001
001360

10341217

132760
1210121020
00121001
001360

1 SBTTL READ AND PARSE COMMAND LINES

GE TL NI

15 I

2!1

GCM~S
BCC
DIT!S
T'(PE
CSIS1
BCC
MOY

SUB

TYPE
TYPE
ADD

SUB

SUB

TYPE
TVPEM
BR

TST

BEQ
MOVB

BITB

BEQ
INCB

1051 TYPEM
TVPEM

OPARSE I CALL
CSIS2
BCS
CALL

BITB

BNE
TYPEM

I PARSE I CALL
CSIS2
BCS
CALL
BITB

BNE

•GCLBLK JGET LINE VIA GCML
15 JSKIP IF NO ERROR

JELSE, EXIT
G,CMLD•2(R0),G,CMLDCR0l,•'0 JSEND OUT THE INPUT LIN!
#CSIBLK,GCLBLK•G,CMLD•2,GCLBLK•G,CMLD
2$ JBRANCH IF NO ERROR DETECTED
C,FILD•2CR0),•(SP) IPUT STRING ERROR AODR IN STK

ICALCULATE LENGTH OF FIRST PART

C,CMLD•2CR0),(SP),#IS ISENO OUT FIRST PART OF STRING
C,FILD•2CR0),C,FILO(R0),# 1 S ISEND OUT SECOND PART
C,FILD(R0),C,FILD•2CR0) JCALC ADDR OF LAST PART OF STRII

CSP)•,C,CMLDCR0) IDEDUCT LENGTH OF FIRST PART

C,FILO(R0),C,CMLDCR0) JCALC LENGTH OF LAST PART

C,FILD•2(Re),C,CMLD(R0) 1 #40 JSEND OUT LAST PART
STX,40 JSENO SYNTAX ERROR MESSAGE
GETLN JTRV FOR MORE

C,CMLDCR0)

GE TLN
*'0,EQUBIT

JCHECK LENGTH OF LINE

JIF NULL, SKIP BACK FOR NEXT LINE
JASSUME EQUAL SIGN NOT FOUND

•Cs,Eau,C,STAT(R0) JCHECK STATUS

U'l $
EQUBIT

EQU,40
OPT,40
lNIT2
,OUTPUT,#SwTBL
CS2ERR
EV ALU8

JSKIP IF EQUAL SIGN NOT SEEN
JELSE, INDICATE EQUAL SIGN FOUND

JSEND EQUAL SIGN STATUS MESSAGE
JSENO OUTPUT SCAN MESSAGE
JINii LOCNS FOR CSI2 CALL!iESi
JPARSE OUTPUT SPEC
JSKIP ON ERROR
JEVALUATE RESULTS OF SEMANTIC PARSE

#CS,MOR,C,STAT(R0) JADDIT!ONAL OUTPUT SPECS?

OPARSE JYES, CONTINUE wITH OUTPUT SCAN
IPT,4~ JSEND INPUT SCAN MESSAGE
INIT2 JINIT LOCNS FOR CSI2 CALLIT~Si
,INPUT,•SwTBL JPARSE INPUT SPEC
CS2ERR JSKIP ON ERROR
EVALU8 JEVALUATE RESULTS OF SEMANTIC PARSE
#CS,MOR,C,STAT(R0) JADDITIONAL INPUT SPECS?

I PARSE JYES, CONTINUE wITH INPUT SCAN

Figure 6-2
Example of Terminal Assembly Listing

6-7

27
28
29 000062 LSTMAC COM JCOMMENT LINES TEST

I NLI s T COM
000062 000001 000002 000003 , WORD l.2,3,4,5
000070 000004 000005

,LIST COM
30
3 l
32 000074 LSTMi\C <COM,BEX> JCOMMENT LINES AND EXTENDED BINARY TEST

,NLI ST COM,BEX
00007• 000001 000002 000003 1 1110RD l,2,3,4,5

IL.. Is T COM,8EX

G1
t'Ij
z
t'Ij

~
t-1

,MAIN, MACRO M0707 09 .. JUL .. 74 16129 ?AGE l •l
:t>'
(/)
(/)

33 t'Ij

34 """'
°'

...::..
I 35 to

CX) 36 ,LIST TTM JNARROW LISTI~G MOOE IS IN EFFECT t-1
t'Ij

37 !;U
J8 000106 LSTMAC SEQ JSEQUENCE NUMBERS TEST

, NLI ST SEQ 0
H

000106 000001 ,wORO 1,2,J,•,5 JTHIS IS A COMMENT
~ 000110 000002

000112 ia00003 ()

000 ll 4 000004 1-:3
H

000116 11100005 <:
,LIST SEQ t'Ij

39 rn
40
41 000120 LSTMAC BEX JEXTENDED BINARY TEST

,NLIST BEX
000120 000001 ,WORD i.2,J,4,5 JTHJS IS A COMMENT

,LI ST BEX
42
43
44 00000 l I ,ENO

Figure 6-3
Listing Produced With Listing Control Directives

1 MAilll, MACRO M0707 09•JUL•74 16129 PAGE 1

l I NLIS1' TT"1 J wIDE LISTI NG MOOE IS IN EFFECT
2 ,LIST ME J LIST MACRO EXPANSIONS
J
4
5 L.:CSTING CONlROL TEST MACRCl
6

' I "'ACRC:I 1..STMAC ARG
8 , NLI ST ARG
9 1 w0Ro l.2,J,4,5 JTHIS IS A COMMENT

10 , LIST ARG
11 , ElllDM
12
13
14
15
16
p 000012 l..STMAC L.OC Jl..OCATION COUNTER TEST

I NL.X ST L.OC:
000001 000002 000003 ,wOFW 1, 2. 3, 4, 5 I THIS IS A COMMENT
000004 000005

,LI ST LOC
18
19

°'
20 000024 LST"'AC BIN JGENERATED BINARY TEST

I ,NLIST BIN

'° 000024 ,1110RD 11 2 I J,, 4 I 5 JTHI S IS A COMMENT
,LIST BIN

21
22
23 000036 1..STMAC BEX JEXTElllDED BINARY TEST

, NL! ST BEX
000036 000001 000002 0000021 ,WORD 11 2 I 3 I 4 I!) inns IS A COMMENT

,LIST BEX
24
25
26 000050 LST"1AC SRC JSOURCE LINES TEST

000050 000001 000002 00000~1
000056 000004 000005

, I.. I ST SRC

Figure 6-3 (Cont'd)
Listing Produced With Listing Control Directives

GENERAL ASSEMBLER DIRECTIVES

6.1.3 .TITLE Directive

The .TITLE directive is used to assign a name to the object module as
the first entry in the header of each page in the assembly listing.
The name so assigned is the first six non-blank characters following
the .TITLE directive. This name should be six Radix-SO characters or
less in length; any characters beyond the first six are checked for
ASCII legality, but they are not used by MACR0-11 as part of the
object module name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. (It should be
noted that this 6-character name bears no relationship to the file
name of the object module, as specified in the command string to
MACR0-11.) The name of an object module appears in the Task Builder
load map. This is also the module name which the Librarian will
recognize.

If the .TITLE directive is not specified, MACR0-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified in the source program, the last such directive
encountered establishes the name for the entire object module.

6-10

GENERAL ASSEMBLER DIRECTIVES

All spaces and/or tabs up to the first non-space/non-tab character
following the .TITLE directive are ignored by MACR0-11 when evaluating
the text string.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not a Radix-50 character, the directive is flagged with an error code
(A) in the assembly listing (see Appendix D).

A table of Radix-50 characters is provided in section A.2 of Appendix
A.

6.1.4 .SBTTL Directive

The .SBTTL directive is used to provide the elements for a printed
table of contents immediately preceding the assembly listing and to
further identify each page in the listing. In the latter case, the
text following the .SBTTL directive is printed as the second line of
the header of each page in the listing, continuing until altered by
the next occurrence of a .SBTTL directive in the program. For
example, the directive:

.SBTTL CONDITIONAL ASSEMBLIES

causes the text

CONDITIONAL ASSEMBLIES

to be printed as the second line in the header of the assembly
listing.

During assembly pass 1, a table of contents is printed for the
assembly listing, containing the line sequence number, the page
number, and the text accompanying each .SBTTL directive. The listing
of the table of contents is suppressed whenever an .NLIST or
.NLIST TOC
6-1). An
6-4.

directive
example

is encountered in the source program (see Table
of a table of contents listing is shown in Figure

CSITST ~- TEST OF CS!1 ANO CSI2 MACRO ~0707 09•JUL•74 15141
TABLE OF CONTENTS

2• 55
3• 74
4•153
5•209
6•255
7•345

MACRO DEFINITIONS
MESSAGE STRINGS
MISCELLANEOUS DATA
READ AND PARSE COMMAND LINES
EVALUATE THE SEMANTIC ANALYSIS
SUBROUTINES

Figure 6-4
Assembly Listing Table of Contents

6-11

GENERAL ASSEMBLER DIRECTIVES

6.1.5 .IDENT Directive

The .IDENT directive provides an additional means of labeling the
object module produced by MACR0-11. In addition to the name assigned
to the object module with the .TITLE directive (see section 6.1.3), a
character string up to six Radix-50 characters in length can be
specified between paired printing delimiters to label the object
module with the program version number. This directive takes the
following form:

where:

.IDENT /string/

string

I I

represents a string of six legal Radix-50
characters or less which establishes the program
version number. This number is included in the
global symbol directory of the object module.

represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign {=), the left angle bracket {<), or
the semicolon {;), as long as the delimiting
character is not repeated within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .IDENT directive is flagged with an
error code (A) in the assembly listing {see
Appendix D) .

An example of the .IDENT directive is shown below:

.IDENT /V05A/

The character string V05A is converted to Radix-50 representation
included in the global symbol directory of the object module.
character string also appears in the Task Builder load map and
Librarian directory listings.

and
This

the

When more than one .IDENT directive is encountered in a given program,
the last such directive encountered establishes the character string
which forms part of the object module identification.

6.1.6 .PAGE Directive/Page Ejection

A page eject operation in a MACR0-11 assembly listing is accomplished
in one of four ways:

1. After reaching a count of 58 lines in the listing, MACR0-11
automa~ically performs a page eject to skip over page
perforations on line printer paper and to formulate
teleprinter output into pages.

2. In addition, the .PAGE directive is used within the source
program to perform a page eject at desired points in the
listing. The format of this directive is:

.PAGE

6-12 '

GENERAL ASSEMBLER DIRECTIVES

This directive takes no arguments and causes a skip to the
top of the next page when encountered. It also causes the
page number to be incremented. The .PAGE directive does not
appear in the iisting.

When used within a macro definition, the .PAGE directive is
ignored during the assembly of the macro definition. Rather,
the page eject operation is performed as the macro itself is
expanded. In this case, the page number is also incremented.

3. When encountering a form-feed character, a page eject is
performed. If the form-feed character appears within a macro
definition, a page eject occurs during the assembly of the
macro definition, but not during the expansion of the macro
itself. A page eject resulting from the use of the form-feed
character likewise causes the page number to be incremented.

4. Encountering a new source file causes the page number to be
incremented and the line sequence count to be reset.

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

Several function control options are provided by MACR0-11 through the
.ENABL and .DSABL directives. These directives are included in a
source program to invoke or inhibit certain MACR0-11 functions and
operations incident to the assembly process itself. Using a
3-character symbolic argument to designate a desired function, these
directives take the following form:

where:

.ENABL arg

.DSABL arg

arg

Symbolic

Argument

ABS

AMA

CDR

represents one or more of the optional symbolic
arguments defined in Table 6-2.

Default

Disable

Disable

Disable

Table 6-2
of Function Control Directives

Function

Enabling this function produces absolute
binary output.

Enabling this function causes all
relative addresses (address mode 67) to
be assembled as absolute addresses
(address mode 37). This function is
useful during the debugging phase of
program development.

Enabling this function causes source
columns 73 and greater, i.e., to the end
of the line, to be treated as a comment.
The most common use of this feature is
to permit sequence numbers in card
columns 73-80.

6-13

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont'd)
Symbolic Arguments of Function Control Directives

Argument Default

FPT Disable

LC Disable

LSB Disable

LSB Disable

PNC Enable

Function

Enabling this function causes floating- I
point truncation; disabling this I
function causes floating-point rounding.

Enabling this function causes
to accept lower case ASCII input
of converting it to upper case.
function is not enabled, all
converted to upper case.

MACR0-11
instead
If this
text is

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block is
normally established by encountering a
new symbolic label or a .PSECT directive
in the source program, an .ENABL LSB
directive establishes a new local symbol
block which is not terminated until
another symbolic label or .PSECT
directive is encountered following a I
paired .DSABL LSB directive.

Although the .ENABL LSB directive
permits a local symbol ~lock to cross
.PSECT boundaries, local symbols cannot
be defined in a program section other
than that which was in effect when the
block was entered. The basic function I
of this directive with regard to
.PSECT's is limited to those instances
where it is desirable to leave a program
section temporarily to store data,
followed by a return to the original
program section. Attempts to define
local symbols in an alternate program
section are flagged with an error code
(P) in the assembly listing (see
Appendix D).

An example of the .ENABL LSB and .DSABL
LSB directives, as typically used in a
source program, is shown in Figure 6-5.

Disabling this function inhibits binary
output until an .ENABL PNC statement is
encountered within the same module.

6-14

I

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont'd)
Symbolic Arguments of Function Control Directives

r
Argument

REG

REG

GBL

Default

Enable

Enable

Enable

Function

When specified, the .DSABL REG directive
inhibits the normal MACR0-11 default
register definitions; if not disabled,
the default definitions listed below
remain in effect.

R0=%0
Rl=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as
the logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For
logical consistency, the programmer
should use the normal default register
definitions listed above.

When the .ENABL GBL directive is
specified, MACR0-11 treats all symbol
references that are undefined at the end
of assembly pass 1 as default global
references; when the .DSABL GBL
directive is specified, MACR0-11 treats
all such references as undefined
symbols. In assembly pass 2, if the
.DSABL GBL function is still in effect,
these undefined symbols are flagged with
an error code (U) in the assembly
listina <see Aooendix D); otherwise,
th~y-~~ntinue to-be regarded by MACR0-11
as global references.

Any argument specified in an .ENABL/.DSABL directive other than those
listed in Table 6-2 causes that directive to be flagged with an error
code (A) in the assembly listing (see Appendix D).

6-15

!

GENERAL ASSEMBLER DIRECTIVES

SQUEEZE MACRO M0707 09•JUL•74 15' 1 J PAGE 4

272
273
274
275
276 ,ENABL LSB
277
2''8 003142 010103 FNDSMI I MOV Fq ,R3 JPUT ADDR OF LINE IN R3
279 01213144 060203 ADO R2,R3 JPOINT R3 PAST LAST CMAR IN LI
280 0~3146 020301 1S I CMP R3,R1 JOOES RJ POINT TO START OF LIN
281 003150 001422 BEQ 305 JIF SO, LEAVE INDICATING FAILU
282 0031!52 124327 000073 CMPB •CRJ),•SEMIC JIS TME LAST CHARACTER SEMICO~
283 003156 001373 BNE ts JNO, CONTINUE LOOKING
284 003160 010302 MQV RJ,R2 JYES, POINT R2 PAST NEW END•OF
285 0~3162 000412 BR 205 JLEAVE VIA COMMON SUCCESS CODE
286
287 003164 060102 SKPBLKI ADO Rt,R2 JPOINT R2 PAST ENO•OF•LINE
288 003166 020201 10Sr CMP R2,R1 JDOES R2 POINT TO START OF LIN
289 003170 001412 BEQ 305 IIF SO, LEAVE WITH FAILURE
290 003172 124227 000011 CMPB -CR2),#TAB JIS THE LAST CHARACTER A TAB?
291 003176 001773 BEQ UlS JIF SO, IGNORE IT
292 003200 121227 0~0040 CMPB (R2) 1 1111BLANK J IS IT A BLANK?
293 003204 001770 BEQ 10$ IIF SO, IGNORE IT
294 003206 005202 !NC R2 JNON•BLANK CHARACTER••POINT PA
295 003210 160102 2051 SUB Rt,R2 JRE•COMPUTE LINE LENGTH
296 003212 000241 CLC JINDICATE SUCCESS
297 003214 000401 BR 405 JBRANCH TO LEAvt:.
298 0tiJ3216 000261 30S1 SEC IINDICATE FAILURE
299 003220 4(c)S I RE TURI-< ' 300 ,DSABL LSB
J01
302

Figure 6-5
Example of .ENABL and .DSABL Directives

6.3 DATA STORAGE DIRECTIVES

A wide range of data
following directives,
operators:

and data types can be generated with the
ASCII conversion characters, and radix-control

.BYTE

.WORD

.ASCII

.ASCIZ

.FLT2

.FLT4

.RAD50
"B
"D
"p
"O

These MACR0-11 facilities are described in the following sections.

6-16

GENERAL ASSEMBLER DIRECTIVES

6.3.1 .BYTE Directive

The .BYTE directive is used to generate successive bytes of binary
data in the object module. The directive is of the form:

.BYTE

.BYTE

exp ;WHICH STORES THE BINARY VALUE
;OF THE EXPRESSION "EXP" IN THE NEXT
;BYTE.

expl,exp2,expn ;WHICH STORES THE BINARY VALUES
;OF THE LIST OF EXPRESSIONS IN
;SUCCESSIVE BYTES.

A legal expression must reduce to eight bits of data or less. The
operands of a .BYTE directive are evaluated as word expressions before
being truncated to the low-order eight bits. The 16-bit value of the
specified expression must have a high-order byte (which is truncated)
that is either all zeros (0) or all ones (1). Each expression value
is stored in the next byte of the object module. Multiple
expressions, which must be separated by commas, are stored in
successive bytes, as illustrated and described below:

SAM=S
.=410

.BYTE "D48,SAM ;THE VALUE 060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION 410.
;THE VALUE 005 IS STORED IN LOCATION
; 411.

If the high-order byte of the expression reduces to a value other than
0 or -1, the value is truncated to the low-order eight bits and
flagged with an error code (T) in the assembly listing (see Appendix
D) •

The construction "D in the first operand of the .BYTE directive above
reflects the use of a temporary radix-control operator. The function
of such special unary operators is described in detail in section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case, the Task
Builder issues a truncation diagnostic for the object module in
question. For example, the following statements induce such a
possibility:

.BYTE
A:

.BYTE

23

A

;STORES OCTAL 23 IN NEXT BYTE.

;RELOCATABLE VALUE A WILL PROBABLY
;CAUSE TASK BUILDER TRUNCATION
;DIAGNOSTIC.

If an expression following the .BYTE directive is null, it is
interpreted as a zero, as illustrated and described below:

.=420
.BYTE

' ' '
;ZEROS ARE STORED IN BYTES 420, 421,
;422, AND 423.

Note in the above example, that four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

6-17

GENERAL ASSEMBLER DIRECTIVES

6.3.2 .WORD Directive

The .WORD directive is used to generate successive words of data in
the object module. The directive is of the form:

.WORD

.WORD

exp ;WHICH STORES THE BINARY EQUIVALENT
;OF THE EXPRESSION EXP IN THE NEXT
;WORD.

expl,exp2,expn ;WHICH STORES THE BINARY EQUIVALENTS
;OF THE LIST OF EXPRESSIONS IN
;SUCCESSIVE WORDS.

A legal expression must result in 16 bits of data or less. Each
expression is stored in the next word of the object program. Multiple
expressions must be separated by commas and stored in successive
words, as shown in the following example:

SAL=O
.=500

.WORD 177535,.+4,SAL ;STORES THE VALUES 177535, 506, AND
;0 IN WORDS 500, 502, AND 504,
;RESPECTIVELY.

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
.WORD , 5, ;STORES THE VALUES 0, 5, AND 0 IN

;LOCATION 500, 502, AND 504,
;RESPECTIVELY.

A statement containing a blank operator field, i.e., a symbol that is
not recognized by MACR0-11 as a macro call, an instruction nmemonic, a
MACR0-11 directive, or a semicolon is currently interpreted during
assembly as an implicit .WORD directive, as shown in the example
below:

.=440
LABEL: 100,LABEL ;THE VALUE 100 IS STORED IN LOCATION

;440 AND THE VALUE 440 IS STORED IN
;LOCATION 442.

The implicit use of the .WORD directive in this manner is discouraged,
since this convention may not be the default case in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary
operators that can appear in any MACR0-11 expression. When so used,
these characters cause a 16-bit expression value to be generated.

When the single quote is used, MACR0-11 takes the next character in
the expression and converts it from its 7-bit ASCII value to a 16-bit
expression value. The 16-bit value is then used as an absolute term
within the expression. For example, the statement:

MOV #'A,RO

6-18

GENERAL ASSEMBLER DIRECTIVES

results in the following 16-bit expression value being moved into
register 0:

00000000 01000001

Binary Value of ASCII A

Thus, in the example above, the expression 'A results in a value of
101(8). It should be noted that the high-order byte is always zero
(0) in the resulting expression value when the single quote unary
operator is used.

The ' character must not be followed by a carriage-return, null,
RUBOUT, line-feed, or form-feed character; if it is, an error code
(A) is generated in the assembly listing (see Appendix D).

When the double quote is used, MACR0-11 takes the next two characters
in the expression and converts them to a 16-bit binary expression
value from their 7-bit ASCII values. This 16-bit value is then used
as an absolute term within the expression. For example, the
statement:

MOV #"AB,RO

results in the following 16-bit expression value being moved into
register 0:

Binary Value of ASCII A

'--Binary Value of ASCII B

Thus, in the example above, the expression "AB results in a value of
041101 (8).

The " character also must not be followed by a carriage-return, null,
RUBOUT, line-feed, or form-feed character; if it is, an error code
(A) is likewise generated in the assembly listing (see Appendix D).

The ASCII character set is listed in section A.l, Appendix A.

6.3.4 .ASCII Directive

The .ASCII directive translates character strings into
ASCII equivalents and stores them in the object module.
the .ASCII directive is as follows:

their 7-bit
The format of

where:

.ASCII /string l/ .•. /string n/

string is a string of
printable ASCII

6-19

printable
characters

ASCII characters.
are legal.

All
The

I I

GENERAL ASSEMBLER DIRECTIVES

vertical-tab, null, line-feed, RUBOUT, and all
other non-printable ASCII characters, except
carriage-return and form-feeo, are illegal
characters. Such an illegal non-printing
character is flagged with an error code (I) in the
assembly listing (see Appendix D). The
carriage-return and form-feed characters terminate
the scan of the source line. This premature
termination of the .ASCII statement results in the
generation of an error code (A) in the assembly
listing, because MACR0-11 is unable to complete
the scan of the matching delimiter at the end of
the character string.

represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as long as the delimitinq
character is not repeated within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .ASCII directive is flagged with an
error code (A) in the assembly listing (see
Appendix D).

A non-printing character can be expressed in an .ASCII statement
by enclosing its equivalent octal value within anqle brackets.
set of angle brackets so used represents a single character.
example, in the following statement:

only
Each

For

.ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Furthermore, the expressions must reduce to
eight bits of absolute data or less, subject to the same rules for
generating data as with the .BYTE directive (see section 6.3.1).

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<expression>DEF/

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle brackets
is reflected in the third example of the .ASCII directive illustrated
below:

.ASCII /HELLO/ ;STORES THE BINARY REPRESENTATION
;OF THE LETTERS HELLO IN FIVE
;CONSECUTIVE BYTES .

. ASCII /ABC/<15><12>/DEF/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A,B,C,CARRIAGE
;RETURN,LINE FEED,D,E,F IN EIGHT
;CONSECUTIVE BYTES .

. ASCII /A<l5>B/ ;STORES THE BINARY REPRESENTATION

;OF THE CHARACTERS A, <, 1, 5, >,
;AND B IN SIX CONSECUTIVE BYTES.

6-20

GENERAL ASSEMBLER DIRECTIVES

The semicolon (;) and equal sign (=) can be used as delimiting
characters in an ASCII string, but care must be exercised in so doing
because of their significance as a comment indicator and assignment
operator, respectively, as illustrated in the examples below:

.ASCII ;ABC;/DEF/

. ASCII /ABC/;DEF;

. ASCII /ABC/=DEF=

;STORES THE BINARY REPRESENTATION OF
;THE CHARACTERS A, B, C, D, E, AND F
;IN SIX CONSECUTIVE BYTES; NOT
;RECOMMENDED PRACTICE .

;STORES THE BINARY REPRESENTATIONS OF
;THE CHARACTERS A, B, AND C IN THREE
;CONSECUTIVE BYTES; THE CHARACTERS D,
;E, F, AND ; ARE TREATED AS A COMMENT •

;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, B, C, D, E, AND
;F IN SIX CONSECUTIVE BYTES; NOT
;RECOMMENDED PRACTICE.

An equal sign is treated as an assignment operator when it appears as
the first character in the ASCII string, as illustrated by the
following example:

.ASCII =DEF= ;THE DIRECT ASSIGNMENT OPERATION
;.ASCII=DEF IS PERFORMED, AND A Q
; (SYNTAX) ERROR IS GENERATED UPON
;ENCOUNTERING THE SECOND = SIGN.

6.3.5 .ASCIZ Directive

The .ASCIZ directive is equivalent to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=l5
LF=l2
HELLO:

10$:

.ASCIZ <CR><LF>/MACR0-11 VOlA/<CR><LF> ;INTRODUCTORY MESSAGE

.EVEN

MOV
MOV
MOVE
BNE

#HELLO,Rl
#LINBUF ,R2
(Rl)+, (R2)+
10$

;GET ADDRESS OF MESSAGE.
;GET ADDRESS OF OUTPUT BUFFER.
;MOVE A BYTE TO OUTPUT BUFFER.
;IF NOT NULL, MOVE ANOTHER BYTE.

The .ASCIZ directive is subject to the same checks for character
legality and proper character string construction as described above
for the .ASCII directive.

6-21

GENERAL ASSEMBLER DIRECTIVES

6.3.6 .RADSO Directive

The .RADSO directive allows the user to generate data in Radix-SO
packed format. Radix-SO form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. The form of the directive is:

where:

.RADSO /string l/ ... /string n/

string

I I

represents a series of characters to be packed
(three characters per word). The string may
consist of the characters A through Z, 0 through
9, dollar sign($), period(.) and space (). An
illegal printing character causes an error flag
(Q) to be printed in the assembly listing (see
Appendix D).

If fewer than three characters are to be packed,
the string is packed left-justified within the
word, and trailing spaces are assumed.

As with the .ASCII directive described in section
6.3.4, the presence of the vertical:tab, null,
line-feed, RUBOUT, and all other non-printing
characters, except carriage-return and form-feed,
are illegal characters, resulting in an error code
(I) in the assembly listing. Similarly, the
carriage-return and form-feed characters result in
an error code (A) because these characters end the
scan of the line, preventing MACR0-11 from
detecting the terminating matching delimiter.

represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), provided that the delimiting
character is not repeated within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .RADSO directive is flagged with an
error code (A) in the assembly listing (see
Appendix D).

Examples of .RADSO directives are shown below:

.RADSO /ABC/

. RAD50 /AB/

. RADSO /ABCD/

;PACKS ABC INTO ONE WORD .
;PACKS AB (SPACE) INTO ONE WORD .
;PACKS ABC INTO FIRST WORD AND
; D (SPACE) (SPACE) INTO SECOND WORD.

Each character is translated into its Radix-SO equivalent, as
indicated in the following table:

Character Raoix-c::io Octal Equivalent

(space)
A-Z
$

(undefined)
0-9

0
1-32

33
34
3S

36-47

6-22

GENERAL ASSEMBLER DIRECTIVES

The Radix~SO equivalents for characters l through 3 (Cl,C2,C3) are
combined as follows:

Radix-50 Value ((Cl*50)+C2)*50+C3

For example:

Radix-50 Value of ABC= ((1*50)+2)*50+3 = 3223

Refer to section A.2 in Appendix A for a table of
equivalents.

Radix-SO

Angle brackets (<>) must be used in the .RADSO directive whenever
special codes are to be inserted in the text string, as shown in the
example below:

CHRl=l
CHR2=2
CHR3=3

.RAD SO ;STORES 3255 IN ONE WORD=

.RADSO <CHRl><CHR2><CHR3> ;EQUIVALENT TO .RAD50 /ABC/.

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.l Radix Control and Unary Control Operators

The normal default assumption for numeric values or expression values
appearing in a MACR0-11 source program is octal. However, numerous
instances may occur where an alternate radix is useful for portions of
a program or for variables within a given statement. It may be
useful, for example, to declare a given radix for applicability
throughout a program or to specify a numeric value or expression value
in a manner that causes it to be interpreted as a binary, octal, or
decimal value during assembly. In other such instances, it may be
useful to complement numeric values or expression values. These
MACR0-11 facilities are described in the following sections.

NOTE

When two or more unary operators appear together,
modifying the same term, the operators are
applied, from right to left, to the term.

6.4.1.l .RADIX Directive - Numbers used in a MACR0-11 source program
are initially considered to be octal values; however, the programmer
has the option to declare any one of the following radices for
applicability throughout the source program or within specific
portions of the program:

2, 4, 8, 10

6-23

GENERAL ASSEMBLER DIRECTIVES

This is accomplished via a .RADIX directive of the form:

.RADIX n

where: n represents one of the four acceptable radices
listed above. If the argument n is not specified,
the octal default radix is assumed.

The argument in the .RADIX directive is always interpreted as a
decimal value. Any alternate radix declared in the source program
through the .RADIX directive remains in effect until altered by the
occurrence of another such directive, i.e., a given radix declaration
is valid throughout a program until changed. For example, the
statement:

.RADIX 10

. RADIX

;BEGINS A SECTION OF CODE HAVING A
;DECIMAL RADIX.

;REVERTS TO OCTAL RADIX .

Any value other than null, 2, 4, 8, or 10 specified as an argument in
the .RADIX directive causes an error code (A) to be generated in the
assembly listing (see Appendix D).

In general, it is recommended that macro definitions not contain or
rely on radix settings established with the .RADIX directive. Rather,
temporary radix control operators should be used within a macro
definition. Where a possible radix conflict exists within a macro
definition or in possible future uses of that code, it is recommended
that the user specify numeric or expression values using the temporary
radix control operators described below.

6.4.1.2 Temporary Radix Control Operators: AD, AO, and AB - Once the
user has specified a given radix for a section of code or has decided
to use the default octal radix, he may discover a number of cases
where an alternate radix is more convenient or desirable (particularly
within macro definitions). The creation of a mask word, for example,
might best be accomplished through the use of a binary radix.

MACR0-11 has three unary operators which allow the user to establish
an alternate radix, as shown below:

ADx (x is evaluated as a decimal number)
AOx (x is evaluated as an octal number)
ABx (x is evaluated as a binary number)

Thus, an alternate radix can be declared temporarily to meet a
localized requirement in the source program. Such a declaration can
be made at any time, regardless of the existence of the default octal
radix or another specific radix declaration elsewhere in the program.
In other words, the effect of a temporary radix control operator is
limited to the term or expression immediately following the operator.
Any value specified in connection with a temporary radix control
operator is evaluated during assembly as a 16-bit entity. Temporary
radix control declarations can be included in the source program
anywhere a numeric value is legal.

6-24

GENERAL ASSEMBLER DIRECTIVES

The expressions below are representative of the methods of specifying
temporary radix control operators:

AD123
Ao 47
AB 00001101
AO<A+l3>

Decimal radix
Octal Radix
Binary Radix
Octal Radix

Note that the up-arrow and the radix control operator may not be
separated, while the radix control operator and the following term or
expression can be physically separated by spaces or tabs for
legibility or formatting purposes. A multi-element term or expression
that is to be interpreted in an alternate radix should be enclosed
within angle brackets, as shown in the last of the four temporary
radix control expressions above.

The following example also reflects the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix:

.RADIX 10
A=lO

.WORD AO<A+lO>*lO

When the temporary radix expression in the .WORD directive above is
evaluated, it effectively yields the following equivalent statement:

.WORD 180.

MACR0-11 also allows a temporary radix change to decimal using another
convention. This change is accomplished by specifying a number,
immediately followed by a decimal point (.), as shown below:

100.
1376.

128.

Equivalent to 144(8)
Equivalent to 2540(8)
Equivalent to 200(8)

The above expression forms are equivalent in function to those listed
below:

ADlOO
AD1376
AD128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the use of the floating-point hardware on the PDP-11.
These facilities, described in the following sections, allow
floating-point data to be created in the program, and numeric values
to be complemented or treated as floating-point numbers.

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A or Q) in the assembly listing (See Appendix D) .

6-25

GENERAL ASSEMBLER DIRECTIVES

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0EO
3EO
.3El
300E-2

As can be inferred, the list could be extended indefinitely (e.g.,
3000E-3, .03E2, etc.). A leading plus sign is optional (e.g., 3.0 is
considered to be +3.0). A leading minus sign complements the sign
bit. No other operators are allowed (e.g., 3.0+N is illegal).

All floating-point numbers are evaluated as 64 bits in the following
format:

64 63 56 55 0

s EEEEEEEE MMM MMM

Mantissa
Exponent
Sign

(55 bits)
(8 bits)
(1 bit)

MACR0-11 returns a value of the appropriate size and precision via one
of the floating-point directives. The values returned may be
truncated or rounded (See Section 6.2).

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits' of the field in which it is
to be stored, the high-order bit of the unretained·word is added to
the low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express its exact value, the highest bit (32) of the
unretained field is added to the least significant bit (0) of the
retained field (See illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT is used to
return to floating-point rounding (see Table 6-2).

Bit
32

Retained
field

Bit Bit
0 32 31

T
I
I

l
Unretained
field

Bit
0

Note that all numeric operands in PDP-11/45 and PDP-11/70
floating-point instructions are automatically evaluated as single-word
decimal, floating-point values unless a temporary radix control
operator is specified. For example, to add (floating) the octal
constant 41040 to the contents of floating accumulator zero, the
following instruction must be used:

ADDF #~041040,FO

where: FO is assumed to represent floating accumulator zero.

Floating-point numbers are described in greater detail in the
applicable PDP-11 Processor Handbook.

6-26

GENERAL ASSEMBLER DIRECTIVES

6.4.2.1 .FLT2 and .FLT4 Floating-point Storage
Directives - MACR0-11 supports two directives which evaluate
successive floating-point numbers and store the results in the object
module. These directives are similar to the .WORD directive and are
of the form:

. FLT2

. FLT4
argl,arg2, ...
argl,arg2, •..

where: argl,arg2, ... represent one or more floating point numbers
as described in Section 6.4.2. Multiple
arguments must be separated by commas .

. FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage for each argument.

6.4.2.2 Temporary Numeric Control Operators: AC and AF - A unary
operator for numeric control is available in MACR0-11 which allows the
programmer to specify an argument that is to be complemented as it is
evaluated during assembly. As with the radix control operators
described above, the numeric control operator (AC) can be used
anywhere in the source program that an expression value is legal.
Such a construction is evaluated by MACR0-11 as a 16-bit binary value
before being complemented. For example, the following statement:

TAG4: .WORD

causes the l's complement of the value 151 (octal) to be stored as a
16-bit value in the program. The resulting value expressed in octal
form is 177626(8).

Since the AC construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

causes the decimal value 25 to be complemented during assembly. The
resulting binary value, when expressed in octal form, reduces to
177746(octal).

The term created through the use of
operator thus becomes an entity
combination with other expression
following construction:

the temporary
which can be
elements. For

is equivalent in function to that shown below:

numeric control
used alone or in

example, the

This expression is evaluated during assembly as the l's complement of
2, plus the absolute value of 6. When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003(8) as the reduced value.

6-27

GENERAL ASSEMBLER DIRECTIVES

As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, the use of angle
brackets as delimiters is recommended to ensure precise evaluation and
readability.

MACR0-11 also supports a unary operator for numeric control which
allows the programmer to specify an argument consisting of a 1-word
floating-point number. For example, the following statement:

A: MOV

creates a 1-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 14 7 6 0

s EEEEEEEE MMMMMMM

Sign (bit 15) Exponent (bits 14-7) Mantissa (bits 6-0)

An example of the importance of ordering with respect to unary
operators is shown below.

AFl.O
AF-1.0
-AFl.0
-AF-1.0

020400
120400
157400
057400

The value created by the AF unary operator and its argument is then a
term which can be used by itself or in an expression. For example:

is equivalent to:

For this reason, the use of angle brackets is advised. Expressions
used as terms or arguments of a unary operator must be explicitly
grouped.

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space in the object program are
described in the following sections.

In this connection, it should be noted that several MACR0-11
statements may cause an odd number of bytes to be allocated, as listed
below:

1. .BYTE directive;

2. .BLKB directive;

3. .ASCII or .ASCIZ directive;

6-28

GENERAL ASSEMBLER DIRECTIVES

4. .ODD directive; or

5. A direct assignment statement of
which results in the assignment of

the form .=.+expression,
an odd address value.

In those cases above which yield an odd address value, the next
word-boundaried instruction automatically forces the location counter
to an even value, but that instruction is flagged with an error code
(B) in the assembly listing (see Appendix D).

6.5.l .EVEN Directive

The .EVEN directive ensures that the current location counter contains
an even value by adding one if the current value is odd. If the
current location counter is already even, no action is taken. Any
operands following an .EVEN directive are flagged with an error code
(Q) in the assembly listing (see Appendix D).

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/

.EVEN ;ENSURES THAT THE NEXT STATEMENT WILL
;BEGIN ON A WORD BOUNDARY .

. WORD XYZ

6.5.2 .ODD Directive

The .ODD directive ensures that the current location counter contains
an odd value by adding one if the current value is even. If the
current location counter is already odd, no action is taken. Any
operands following an .ODD directive are also flagged with an error
code (Q) in the assembly listing (see Appendix D).

6.5.3 .BLKB and .BLKW Directives

Blocks of storage can be reserved in the object program using the
.BLKB and .BLKW directives. The .BLKB directive is used to reserve
byte blocks; similarly, the .BLKW directive reserves word blocks.
The two directives are of the form:

where:

.BLKB exp

.BLKW exp

exp represents the specified number of bytes or words
to be reserved in the object program. If no
argument is present, a default value of 1 is
assumed. Using these directives without
arguments, however, is not recommended. Any
expression which is completely defined at
assembly-time and that reduces to an absolute
value is legal. If the expression specified in
either of these directives is not an absolute
value, the statment is flagged with an error code
(A) in the assembly listing (see Appendix D).

Figure 6-6 example illustrates the use of the .BLKB and .BLKW
directives.

6-29

GENERAL ASSEMBLER DIRECTIVES

166 000000 ,PSECT IMPU~E,O

161 000000 PASS11 I SI.IOI 1 JPASS FLAG
168 JNEXT GROUP MUST STAY TOGETMER
169 000000 ,PSECT lMPPAS,O,GBL
110 000000 SYMBOL I I I BL.IOI 2 JSYMBOL ACCUMULATOR
171 000004 MODE11 IMODEIFLAGS BYTE
172 0000U FLAGS11 ,BL.KB ,
173 000005 SECTOR11,BLl<B 1SYMBOL/EXPRESSION TYPE
174 000006 VALUE~I ,BL.KW IEXPRESSlON VALUE
175 000010 RELLVLI 1,BLKW JRELOCATION LEVEL
176 000003 ,REPT MAXXMT•<<,•SYMBOL>/2>
177 ,BLKW 1
178 ,ENOR
179
180 000020 CLCNAM11,BLKW 2 JCURRENT LOCATION COUNTER NAME
181 000024 CLCFGS11 1 BLKB 1 I
182 000025 CLCSEC11,BLKB 1 ,
183 000026 CLCLOC11,BLKW 1 ,
184 000030 CLCMAX 11, BLl<W 1 JENO OF GROUPED DATA
18!5 000032 CMRPNT11 1 BLl<W 1 JCMARACTER POINTER
186 000034 SY"1BEG 11, BLt<W 1 JPOINTER TO START OF SYMBOL
181 01.110036 ENDFL.Ci11,BLl<1rj 1 ,
188 000000 ,PSECT

Figure 6-6
Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression

which causes the value of the expression to be added to the current
value of the location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore the recommended method of reserving storage
space.

6.6 TERMINATING DIRECTIVES

6.6.l .END Directive

The .END directive, indicating the logical end of the source input,
takes the following form:

.END exp

where: exp represents an optional expression value which, if
present, indicates the program-entry point, i.e.,
the transfer address at which program execution is
to begin.

When MACR0-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Hence, additional text that may
occur beyond this point in the current source file, as well as in
additional source files identified in the command line, will be
ignored.

6-30

GENERAL ASSEMBLER DIRECTIVES

When creating a task image consisting of several object modules, only
a s ngle ob ect module may be terminated with an .END exp statement
spec fying th starting address. All other object modules must be
term nated w th an .END statement without an address argument;
otherwise, the Task Builder will issue a diagnostic message. If no
starting address is specified in any of the object modules, task
execution will begin at location 1 of the task and immediately fault
because of an odd addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (0) in the assembly listing (see Appendix D). The .END
statement may be used, however, in an immediate conditional statement
(see section 6.10.2).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing (see Appendix D).

6.6.2 .EOT Directive

Under RSX-11 and IAS operating systems, the MACR0-11 .EOT directive is
ignored and simply treated as a directive without effect, i.e., as a
no-op.

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often desirable to know the upper and lower address boundaries
of the task image. When the .LIMIT directive is specified in the
source program, MACR0-11 effectively generates the following
instruction:

.BLKW 2

causing two storage words to be reserved in the object module. Later,
at link time, the address of the bottom of the task's stack is
inserted into the first reserved word, and the address of the first
free word followina the task image is inserted into the second
reserved word.

During linking, the size of the task image is rounded upward to the
nearest 2-word boundary.

For a discussion of task memory allocation and mapping, refer to the
applicable Task Builder reference manual (see section 0.3 in the
Preface).

6.8 PROGRAM SECTIONING DIRECTIVES

The MACR0-11 program sectioning directives are used to
for program sections and to establish certain
attributes essential to Task Builder processing.

6-31

declare
program

names
section

GENERAL ASSEMBLER DIRECTIVES

6.8.1 .PSECT Directive

The .PSECT directive allows the user to exercise absolute control over
the memory allocation of a program at link time, since any program
attributes established through this directiv~ are passed to the Task
Builder. For example, if a programmer is writing programs for a
multi-user environment, a program section containing pure code
(instructions only) or a program section containing impure code (data
only) may be explicitly declared through the .PSECT directive.
Furthermore, these program sections may be explicitly declared as
read-only code, qualifying them for use as protected, reentrant
programs. In addition, program sections exhibiting the global (GBL)
attribute can be explicitly allocated in a task's overlay structure by
the user at link time. The advantages gained through sectioning
programs in this manner therefore relate primarily to control of
memory allocation, program modularity, and more effective partitioning
of memory. Refer to the applicable Task Builder reference manual for
a discussion of memory allocation (see section 0.3 in the Preface).

The .PSECT directive is formatted as follows:

where:

.PSECT name,argl,arg2, ... argn

name

argl,
arg2, ...
argn

represents the symbolic name of the
section, as described in Table 6-3.

program

represents any legal separator (comma, tab and/or
space).

represent one or more of the legal symbolic
arguments defined for use with the .PSECT
directive, as described in Table 6-3. The slash
separating each pair of symbolic arguments listed
in the table indicates that these optional
arguments are mutually exclusive, i.e., one or the
other, but not both, may be specified. Multiple
arguments must be separated by a legal separating
character. Any symbolic argument specified in the
.PSECT directive other than those listed in Table
6-3 will cause that statement to be flagged with
an error code (A) in the assembly listing (see
Appendix D) .

6-32

Argument

Name

RO/RW

I/D

GBL/LCL

GENERAL ASSEMBLER DIRECTIVES

Table 6-3
Symbolic Arguments of .PSECT Directive

Default

Blank

RW

I

LCL

Meaning

Establishes the program section name,
which is specified as one to six
Radix-50 characters. If this argument
is omitted, a comma must appear in lieu
of the name parameter. The Radix-50
character set is listed in section A.2
of Appendix A.

Defines which type of access
permitted to the program section:

RO=Read-Only Access
RW=Read/Write Access

NOTE

is

IAS and RSX-llD set hardware protection
for RO program sections RSX-llM does not
provide such protection.

Defines the program section as
containing either instructions (I) or
data (D) . These attributes allow the
Task Builder to differentiate global
symbols that are program entry-point
instructions (I) from those that are
data values In\

\..,I•

Defines the scope of the program
section, as subsequently interpreted by
the Task Builder.

In building single-segment programs, the
GBL/LCL arguments have no meaning
whatsoever, because the total memory
allocation for the program will go into
the root segment of the task. The
GBL/LCL arguments apply only in the case
of overlays.

If an object module contains a local
program section, then the storage
allocation for that module will occur
within the segment in which the module
resides. Many modules can reference
this same program section, and the
memory allocation for each module is
either concatenated or overlaid within
the segment, depending on the argument
of the program section (.PSECT) defining

6-33

Argument

GBL/LCL
(cont'd)

ABS/REL

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont'd)
Symbolic Arguments of .PSECT Directive

Default

LCL

REL

Meaning

its allocation requirements (see CON/OVR
below). If an object module contains a
global program section, the
contributions to this program section
are collected across segment boundaries, I
and the allocation of memory for that
section will go into the segment nearest
the root in which the first contribution
to this program section appeared. {The
term contribution implies an allocation
of memory to the program section.)

Defines the relocatability attribute of
the program section:

ABS=Absolute (non-relocatable). When
the ABS argument is specified, the
program section is regarded by the
Task Builder as an absolute module,
thus requiring no relocation. The
program section is assembled and
loaded, starting at absolute virtual
address 0.

The location of data in absolute
program sections must fall within
the virtual memory limits of the
segment containing the program I
section; otherwise, an error
results at link time. For example,
the following code, although valid
at during assembly, may generate a
Task Builder error message if
virtual location 100000 is outside
the segment's virtual address space:

.PSECT ALPHA,ABS
.=.+100000

.WORD X

The above coding assembles properly,
but the resulting load address may
be outside the respective segment's
boundaries. In such cases, the Task
Builder recognizes this as an
attempt to load data outside the
task image and responds accordingly
with an appropriate error message.

6-34

Argument

ABS/REL
(Cont'd)

CON/OVR

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont'd)
Symbolic Arguments of .PSECT Directive

Default Meaning

REL REL=Relocatable. When the REL argument is

CON

specified, the Task Builder calculates a
relocation bias and adds it to all
references within the program section,
i.e., all references in the program
section must have a relocation bias
added to them to make them absolute.

Defines the allocation requirements of
I the program section:

CON=Concatenated. All program section con
tributions are to be concatenated with
other references to this same program
section in order to determine the total
memory allocation requirements for this
program section.

OVR=Overlaid. All program section contribu
tions are to be overlaid. Thus, the
total allocation requirement for the
program section is equal to the largest
allocation request made by any individ
ual contribution to this program section.

The only argument in the .PSECT directive that is position-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:

.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GEL
argument. Default values (see Table 6-3) are assumed for all other
unspecified arguments.

Once the attributes of a program section are declared through a .PSECT
directive, MACR0-11 assumes that these attributes remain in effect for
all subsequent .PSECT directives of the same name that are encountered
within the module.

MACR0-11 provides for 256(10) program sections, as listed below:

1. One default absolute program section (. ABS.);

2. One default unnamed relocatable program section; and

3. Two-hundred-fifty-four named program sections.

The .PSECT directive enables the user to:

1. Create program sections (see section 6.8.1.1); and,

2. Share code and data among program sections (see section
6.8.1.2).

6-35

GENERAL ASSEMBLER DIRECTIVES

For each program section specified or implied, MACR0-11 maintains the
following information:

1. Program section name;

2. Contents of the current location counter;

3. Maximum location counter value encountered; and,

4. Program section attributes, i.e., the .PSECT
described in Table 6-3 above.

arguments

6.8.1.1 Creating Program Sections - MACR0-11 automatically begins
assembling source statements at relocatable zero (0) of the unnamed
program section, i.e., the first statement of a source program is
always an implied .PSECT directive.

The first occurrence of a .PSECT directive with a given name assumes
that the current location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section is specified. Further occurrences of a
program section name in subsequent .PSECT statements cause the
resumption of assembly where that section previously ended. For
example:

A:
B:
C:

X:
Y:

D:

.PSECT

.WORD

.WORD

.WORD

.PSECT

.WORD

. WORD

.PSECT

.WORD

0
0
0
ALPHA
0
0

0

;DECLARES UNNAMED RELOCATABLE PROGRAM
;SECTION ASSEMBLED AT RELOCATABLE
;ADDRESSES 0, 2, AND 4.

;DECLARES RELOCATABLE PROGRAM SECTION
;NAMED ALPHA ASSEMBLED AT RELOCATABLE
;ADDRESSES 0 AND 2 .
;RETURNS TO UNNAMED RELOCATABLE
;PROGRAM SECTION AND CONTINUES ASSEM
;BLY AT RELOCATABLE ADDRESS 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR

and later referenced through the equivalent directive:

.PSECT ALPHA

which requires no arguments.

By maintaining separate location counters for each program section,
MACR0-11 allows the user to write statements which are not physically
contiguous within the program, but which can be loaded contiguously
following assembly, as shown in the following example.

6-36

GENERAL ASSEMBLER DIRECTIVES

A:
B:
C:
ST:

.PSECT

.WORD

.WORD

.WORD
CLR
CLR
CLR
.PSECT

.WORD

.PSECT
INC
BR

SECl,REL,RO
0
0
0
A
B
c
SECA,ABS

. +2,A
SECl
A
ST

;START A RELOCATABLE PROGRAM SECTION
;NAMED SECl ASSEMBLED AT RELOCATABLE
;ADDRESSES O, 2, AND 4.

;ASSEMBLE CODE AT RELOCATABLE
;ADDRESSES 6 THROUGH 12.

;START AN ABSOLUTE PROGRAM SECTION
;NAMED SECA. ASSEMBLE CODE AT
;ABSOLUTE ADDRESSES 0 AND 2 •
;RESUME RELOCATABLE PROGRAM SECTION
;SECl. ASSEMBLE CODE AT RELOCATABLE
;ADDRESSES 14 AND 16.

All labels in an absolute program section are absolute; likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is also relocatable or absolute when referenced in
a relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the value of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed (or
blank) program section.

Since it is not known during assembly where relocatable program
sections will be loaded, all references between relocatable sections
in a single assembly are translated by MACR0-11 to references relative
to the base of the referenced section. Thus, MACR0-11 provides the
Task Builder with the necessary information to resolve the linkages
between various program sections. Such information is not necessary,
however, when referencing an absolute program section, since all
instructions in an absolute program section are associated with an
absolute virtual address.

In the following example, references to the symbols X and Y are
translated into references relative to the base of the relocatable
program section named SEN .

. PSECT ENT,ABS
.=.+1000
A: CLR x ;ASSEMBLED AS CLR BASE OF

;RELOCATABLE SECTION + 10.
JMP y ;ASSEMBLED AS JMP BASE OF

;RELOCATABLE SECTION + 6.
.PSECT SEN,REL
MOV RO,Rl
JMP A ;ASSEMBLED AS JMP 1000.

Y: HALT
X: .WORD 0

6-37

GENERAL ASSEMBLER DIRECTIVES

NOTE

In the above example, using a constant in
conjunction with the current location counter
symbol (.) in the form .=1000 would result in an
error, since constants are always absolute and are
always associated with the program's .ASECT
(. ABS.). If the form .=1000 is used, a program
section incompatibility would be detected. See
section 3.6 for a detailed discussion of the
current location counter.

6.8.1.2 Code or Data Sharing - Named relocatable program sections
with the argument GBL and OVR operate in the same manner as FORTRAN
COMMON, i.e., program sections of the same name with the arguments GBL
and OVR from different assemblies are all loaded at the same location
by the Task Builder. All other program sections, i.e., those with the
argument CON, are concatenated.

Note that no conflict exists between internal symbolic names and
program section names, i.e., it is legal to use the same symbolic name
for both purposes. Considering FORTRAN again, using the same symbolic
name is necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.8.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. This may
occur when a user places odd length data at the end of a module.
However, when several modules contain object code contributions to the
same program section having the concatenate attribute (see Table 6-3),
odd length modules (except the last) may cause the Task Builder to
link succeeding modules starting at odd locations thereby making the
linked program unexecutable. To avoid this problem, code and data
should be separated from each other and be placed in separately named
program sections. This permits the Task Builder to automatically
begin each program section on an even address. Refer to the
applicable Task Builder reference manual for further information on
memory allocation of tasks (see section 0.3 in the Preface).

6.8.2 .ASECT and .CSECT Directives

IAS and RSX-11 assembly-language programs use the .PSECT and .ASECT
directives exclusively, since the .PSECT directive affords all the
capabilities of the .CSECT directive defined for other PDP-11
assemblers. MACR0-11 will accept both .ASECT and .CSECT directives,
but assembles them as if they were .PSECT directives with the default
attributes listed in Table 6-4. Also, compatibility exists between
other MACR0-11 programs and the IAS/RSX-11 Task Builders, since the
respective Task Builders recognize the .ASECT and .CSECT directives
that appear in such programs and likewise assign the default values
listed in Table 6-4.

6-38

GENERAL ASSEMBLER DIRECTIVES

Table 6-4
Non-IAS/RSX-11 Program Section Default Values

! l
Default Value

Attribute

.ASECT .CSECT (named) .CSECT (unnamed)

Name . ABS. name Blank

Access RW RW RW

Type I I

I

I

I Scope GBL GBL LCL

Relocation ABS REL REL

Allocation OVR OVR CON

The allowable syntactical forms of the .ASECT and .CSECT directives
are:

.ASECT

.CSECT

.CSECT symbol

Note that the statement:

.CSECT JIM

is identical to the statement:

.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

MACR0-11 produces a relocatable object module and a listing file
containing the assembly listing and symbol table. The Task Builder
joins separately-assembled object modules into a single executable
task image. During linking, object modules are relocated as a
function of the specified base of the module. The object modules are
then linked via global symbols, such that a global symbol in one
module, defined either by a global assignment operator (==), a global
label operator (::), or the .GLOBL directive can be referenced from
another module. Thus, all symbols which will be referenced by other
program modules must be singled out as global symbols in the defining
modules.

The .GLOBL directive is provided to define (and thus provide linkage
to) symbols not otherwise defined as global symbols within a module.
For example, if the .DSABL GBL directive is in effect (see section
6.2), .GLOBL directives might be included in a source program to
effect linkage to library routines. For a global symbol definition,

6-39

GENERAL ASSEMBLER DIRECTIVES

the directive .GLOBL A,B,C is equivalent to:

A==expression (or A::)
B==expression (or B::)
C==expression (or C::)

Thus, the general form of the .GLOBL directive is:

where:

.GLOBL syml,sym2, ... symn

syml,
sym2, ...
symn

represent legal symbolic names. When multiple
symbols are specified, they are separated by any
legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment
field.

At the end of assembly pass 1, MACR0-11 determines whether a given
global symbol is defined within the current program section or whether
it is to be treated as an external symbol. All internal symbols
appearing within a given program must be defined at the end of
assembly pass 1 or they will be assumed to be default global
references. Refer to section 6.2 for a description of
enabling/disabling of global references.

In the example below, A and B are entry-point symbols. The symbol A
has been explicitly defined as a global symbol through the .GLOBL
directive, and the symbol B has been explicitly defined as a global
label through the double colon (::). Since the symbol C is not
defined as a label within the current assembly, it is an external
reference.

A:

X:

DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
EXTERNAL SUBROUTINE

A
@(RS)+,RO
#X,Rl
PC,C

;DECLARE THE UNNAMED PROGRAM SECTION .
;DEFINE A AS A GLOBAL SYMBOL .
;DEFINE ENTRY POINT A.

;CALL EXTERNAL SUBROUTINE C.
;EXIT.

B·.

. PSECT

. GLOBL
MOV
MOV
JSR
RTS
MOV
CLR

RS
(RS)+,Rl ;DEFINE ENTRY POINT B.

BR
R2
x

External symbols can appear in the operand field of an instruction or
MACR0-11 directive as a direct reference, as shown in the examples
below:

CLR
.WORD
CLR

EXT
EXT
@EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR
.WORD
CLR

EXT+A
EXT-2
@EXT+A(Rl)

It should be noted that an undefined external symbol cannot be used in
the evaluation of a direct assignment statement or as an argument in a
conditional assembly directive (see sections 6.10.1 and 6.10.3).

6-40

GENERAL ASSEMBLER DIRECTIVES

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives enable the programmer to include or
exclude blocks of source code during the assembly process, based on
the evaluation of stated condition tests within the body of the
program. This capability allows several variations of a program to be
generated from the same source code.

6.10.1 Conditional Assembly Block Directive: .IF

The general form of a conditional assembly block is as follows:

. IF

range

. ENDC

where: cond

argument{s)

range

.ENDC

cond,argument{s) ;START CONDITIONAL ASSEMBLY BLOCK .

;RANGE OF CONDITIONAL ASSEMBLY BLOCK.

;END OF CONDITIONAL ASSEMBLY BLOCK .

represents a specified condition which must be met
if the block is to be included in the assembly.
The conditions which may be tested by the
conditional assembly directives are defined in
Table 6-5.

represents any legal separator {comma, space,
and/or tab).

represent{s) the symbolic argument(s) or
expression(s) of the specified conditional test.
These arguments are thus a function of the
specified condition to be tested (see Table 6-5).

represents the body of code which is either
included in the assembly or excluded, depending
upon whether the specified condition is met.

terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed in Table 6-5, an illegal
argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing (see
Appendix D).

6-41

GENERAL ASSEMBLER DIRECTIVES

Table 6-5
Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive

EQ

GT

LT

DF

B

IDN

z

G

Arguments Assemble Block If:
Complement

NE Expression Expression is equal to 0
(or not equal to 0) •

LE Expression Expression is greater
than 0 (or less than or
equal to 0).

GE Expression Expression is less than 0
(or greater than or equal
to 0) •

NDF Symbolic Symbol is defined (or not
argument defined).

NB Macro-type Argument is blank (or
argument non-blank).

DIF Two macro-type Arguments are identical
arguments (or different).

NZ Expression Same as EQ/NE.

L Expression Same as GT/LT.

NOTE

A macro-type argument (which is a form of symbolic
argument), as shown below, is enclosed within
angle brackets or denoted with an up-arrow
construction (as described in section 7.3.1).

<A,B,C>
"/124/

An example of a conditional assembly directive follows:

. IF EQ ALPHA+l ;ASSEMBLE BLOCK IF ALPHA+l=O .

.ENDC

The two operators & and ! have special meaning within DF and NDF
conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator

Logical inclusive OR operator

6-42

I

GENERAL ASSEMBLER DIRECTIVES

For example, the conditional assembly statement:

.IF DF SYMl & SYM2

.ENDC

results in the assembly of the conditional block if the symbols SYMl
and SYM2 are both defined.

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

.ENDC

.ENDC

For example, the following conditional directives:

.IF DF SYMl

.IF DF SYM2

.ENDC

.ENDC

can govern whether assembly is to occur. In the example above, the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .ENDC
directive. An .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing (see Appendix D).

MACR0-11 permits a nesting depth of 16(10) conditional assembly
levels. Any statement which attempts to exceed this nesting level
depth is flagged with an error code (0) in the assembly listing (see
Appendix D).

6.10.2 Subconditional Assembly Block Directives: .IFF, .IFT, .IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

6-43

GENERAL ASSEMBLER DIRECTIVES

The subconditional directives are described in detail in Table 6-6.
If a subconditional directive appears outside a conditional assembly
block, an error code (0) is generated in the assembly listing (see
Appendix D).

Table 6-6
Subconditional Assembly Block Directives

Subconditional
Directive Function

.!FF The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
providing that the condition tested upon entering
the conditional assembly block is false.

.!FT The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
providing that the condition tested upon entering
the conditional assembly block is true.

.IFTF The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
regardless of the result of the condition tested
upon entering the conditional assembly block.

The implied argument of a subconditional directive is the condition
test that is specified upon entering the conditional assembly block,
as reflected by the initial directive in the conditional coding
examples below. Conditional or subconditional directives in nested
conditional assembly blocks are not evaluated if the previous (or
outer) condition in the block is not satisfied. Examples 3 and 4
below illustrate such nested directives that are not evaluated because
of previous unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

.IF DF SYM

.!FF

.IFT

.IFTF

.!FT

. ENDC

;TESTS TRUE, SYM IS DEFINED. ASSEMBLE
;THE FOLLOWING CODE.

;TESTS FALSE. SYM IS DEFINED. DO NOT
;ASSEMBLE THE FOLLOWING CODE.

;TESTS TRUE. SYM IS DEFINED. ASSEM
;BLE THE FOLLOWING CODE.

;ASSEMBLE FOLLOWING CODE UNCONDITION
;ALLY.

;TESTS TRUE. SYM IS DEFINED. ASSEM
;BLE REMAINDER OF CONDITIONAL ASSEM
;BLY BLOCK .

6-44

GENERAL ASSEMBLER DIRECTIVES

EXAMPLE 2: Assume that symbol X is defined and that symbol Y is not
defined.

. IF DF X
• IF DF Y
.IFF

• IFT

. ENDC

.ENDC

;TESTS TRUE, SYMBOL X IS DEFINED .
;TESTS FALSE, SYMBOL Y IS NOT DEFINED .
;TESTS TRUE, SYMBOL Y IS NOT DEFINED,
;ASSEMBLE THE FOLLOWING CODE.

;TESTS FALSE, SYMBOL Y IS NOT DEFINED .
;DO NOT ASSEMBLE THE FOLLOWING CODE .

EXAMPLE 3: Assume that symbol A is defined and that symbol B is not
defined.

. IF DF A

MOV A,Rl

.IFF

MOV Rl,RO

.IF NDF B

. ENDC

.ENDC

;TESTS TRUE. A IS DEFINED .
;ASSEMBLE THE FOLLOWING CODE.

;TESTS FALSE. A IS DEFINED. DO NOT
;ASSEMBLE THE FOLLOWING CODE.

;NESTED CONDITIONAL DIRECTIVE IS NOT
;EVALUATED .

EXAMPLE 4: Assume that symbol X ~u not defined and that symbol Y is
defined.

. IF DF X

.IF DF Y

.IFF

.IFT

. ENDC

.ENDC

;TESTS FALSE. SYMBOL X IS NOT DEFINED .
;DO NOT ASSEMBLE THE FOLLOWING CODE.
;NESTED CONDITIONAL DIRECTIVE IS NOT
;EVALUATED.

;NESTED SUBCONDITIONAL DIRECTIVE IS
;NOT EVALUATED.

;NESTED SUBCONDITIONAL DIRECTIVE IS
;NOT EVALUATED .

6-45

GENERAL ASSEMBLER DIRECTIVES

6.10.3 Immediate Conditional Assembly Directive: .IIF

An immediate conditional assembly directive provides a means for
writing a 1-line conditional assembly block. In using this directive,
no terminating .ENDC statement is required, and the condition to be
tested is completely expressed within the line containing the
directive. Immediate conditional assembly directives are of the form:

where:

.IIF cond,arg,statement

cond

arg

represents one of the legal condition tests
defined for conditional assembly blocks in Table
6-5.

represents any legal separator (comma, space,
and/or tab).

represents the argument associated
immediate conditional directive,
expression, symbolic argument, or
argument, as described in Table 6-5.

with the
i.e., an
macro-type

represents the separator between the conditional
argument and the statement field. If the
preceding argument is an expression, then a comma
must be used; otherwise, a comma, space, and/or
tab may be used.

statement represents the specified statement to be assembled
if the condition is satisfied.

For example, the immediate conditional statement:

.IIF DF FOO,BEQ ALPHA

generates the code

BEQ ALPHA

if the symbol FOO is defined within the source program.

As with the .IF directive, a condition test other than those listed in
Table 6-5, an illegal argument, or a null argument specified in an
.IIF directive results in an error code (A) in the assembly listing
(see Appendix D).

6.10.4 PAL-llR Conditional Assembly Directives

In order to maintain compatibility with programs developed under
PAL-llR, the following conditionals remain permissible under MACR0-11.
It is advisable, however, to develop future programs using the format
for MACR0-11 conditional assembly directives.

6-46

Directive

.IFZ or .IFEQ

.IFNZ or .IFNE

.IFL or .IFLT

.IFG or .IFGT

.IFLE

.IFDF

.IFNDF

GENERAL ASSEMBLER DIRECTIVES

Arguments

expression
expression
expression
expression
expression
symbolic argument
symbolic argument

Assemble Block if

expression=O
expression not equal 0
expression<O
expression>O
expression is < or =O
symbol is defined
symbol is undefined

The rules governing the usage of these directives are the same as for
the MACR0-11 conditional assembly directives previously described.

6-47

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

In assembly-language programming, it is often convenient and desirable
to generate a recurring coding sequence by invoking a single statement
within the program. In order to do this, the desired coding sequence
is first established with dummy arguments as a macro definition. Once
a macro has been defined, a single statement calling the macro by name
with a list of real arguments (replacing the corresponding dummy
arguments in the macro definition) generates the desired coding
sequence. This sequence is called the macro expansion.

7.1.l .MACRO Directive

The first statement of a macro definition must be a .MACRO directive.
This directive takes the form:

where:

label:

label

name

dummy
argument
list

.MACRO name; dummy argument list

represents an optional statement label.

represents the programmer-assigned symbolic name
of the macro. This name may be any legal symbol
and may be used as a label elsewhere in the
program.

represents any legal separator
and/or tab).

(comma, space,

represents a number of legal symbols which may
appear anywhere in the body of the macro
definition, even as a label. These dummy symbols
can be used elsewhere in the program with no
conflict of definition. Multiple dummy arguments
specified in this directive may be separated by
any legal separator.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

. MACRO ABS A,B ;DEFINES MACRO ABS WITH TWO ARGUMENTS .

7-1

MACRO DIRECTIVES

NOTE

Although it is legal for a label to appear on a
.MACRO directive, this practice is discouraged,
especially in the case of nested macro definitions
because invalid labels or labels constructed with
the concatenation character will cause the macro
directive to be ignored. This may result in
improper termination of the macro definition.
This NOTE also applied to .IRP, .IRPC, and .REPT.

7.1.2 .ENDM Directive

The final statement of every macro definition must be an .F.NDM
directive of the form:

.ENDM

where: name

.ENDM

.ENDM

name

ABS

represents an optional argument specifying the
symbolic name of the macro being terminated by the
directive, as shown in the following example:

;TERMINATES THE CURRENT
;MACRO DEFINITION.

;TERMINATES THE CURRENT
;MACRO DEFINITION NAMED ABS.

If specified, the symbolic name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly listing
(see Appendix D). In either case, the current macro definition is
terminated. Specifying the macro name in the .ENDM statement thus
permits MACR0-11 to detect missing .ENDM statements or
improperly-nested macro definitions.

The .ENDM directive may be followed by a comment field, but must not
contain a label, as shown below:

.MACRO
JSR
.WORD
.ENDM

TYPMSG MESSGE
RS,TYPMSG
MESSGE

;TYPE A MESSAGE.

;END OF TYPMSG MACRO.

An .ENDM statement encountered by MACR0-11 outside a macro definition
is flagged with an error code (0) in the assembly listing (see
Appendix D).

NOTES

1. Labels on .ENDM directives are ignored.

2. Illegal labels will cause the directive
to be bypassed.

7-2

MACRO DIRECTIVES

7.1.3 .MEXIT Directive

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see sections 7.6 and 7.7). It is most useful in
the context of nested macros. The .MEXIT directive terminates the
current macro as though an .ENDM directive had been encountered.
Using the .MEXIT directive bypasses the complexities of nested
conditional directives and alternate assembly paths, as shown in the
following example:

.MACRO ALTR N,A,B

. IF EQ N

• MEXIT
. ENDC

• ENDM

;START CONDITIONAL ASSEMBLY BLOCK •

;TERMINATE MACRO EXPANSION .
;END CONDITIONAL ASSEMBLY BLOCK .

;NORMAL END OF MACRO .

Considering the above macro, in an assembly where the real argument
for the dummy symbol N is equal to zero {see Table 6-5), the
conditional block would be assembled, and the macro expansion would be
terminated by the .MEXIT directive. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

A .MEXIT directive encountered outside a macro definition is flagged
with an error code (0) in the assembly listing (see Appendix D).

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is specified within a macro
definition, it is ignored during the assembly of the macro definition,
but a page eject is performed when that macro is expanded.

7.2 CALLING MACROS

A macro definition must be established through the .MACRO directive
(see section 7.1.l) before the macro can be expanded within the source
program. Macro calls, providing the means for invoking macro
definitions, are of the general form:

label: name real arguments

where: label represents an optional statement label.

name represents the name of the macro, as specified in
the .MACRO directive {see section 7.1.l).

7-3

MACRO DIREC'rIVES

real represents those symbolic arguments which replace
arguments the dummy arguments specified in the .MACRO

directive (see section 7.1.1). When multiple
arguments are specified, they are separated by any
legal separ~tor. Arguments to the macro call are
treated as character strings whose usage is
determined by the macro definition.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO) ,Rl ;ABS IS DEFINED AS A LABEL.

BR ABS ;ABS IS CONSIDERED TO BE A LABEL.

ABS #4,ENT,LAR ;ABS IS A MACRO CALL.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Arguments within a macro definition or macro call are separated from
other arguments by any of the legal separating characters described in
section 3.1.1.

For example, the following macro definition and its associated macro
expansion contain multiple arguments:

.MACRO REN A,B,C

REN ALPHA,BETA,<Cl,C2>

Arguments which themselves contain separating characters must be
enclosed in paired angle brackets, as shown above. For example, the
macro call:

REN <MOV X,Y>,#44,WEV

causes the entire expression

MOV X,Y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

The up-arrow (A) construction is provided to allow angle brackets to
be passed as part of the argument. This construction, for example,
could have been used in the above macro call, as follows:

REN A/<MOV X,Y>/,#44,WEV

causing the entire character string <MOV X,Y> to be passed as an
argument.

7-4

MACRO DIRECTIVES

The following macro call:

REN #44,WEVA/MOV X,Y/

however, contains only two arguments (#44 and WEVA/MOV X,Y/), because
the up-arrow is a unary operator (see section 3.1.3) and it is not
preceded by an argument separator.

As evident in the examples above, spaces can be used within
argument constructions to increase their legibility
expressions.

7.3.1 Macro Nesting

bracketed
of such

The nesting of macros, where the expansion of one macro includes a
call to another, causes one set of angle brackets in the macro
definition to be removed from an argument with each nested call. The
depth of nesting allowed is dependent upon the amount of dynamic
memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, the argument in the macro definition should be enclosed within
one set of angle brackets for each level of nesting, as shown in the
coding sequence below. It should be noted that this extra set of
angle brackets for each level of nesting is required in the macro
definition, not in the macro call.

.MACRO LEVELl DUM1,DUM2
LEVEL2 <DUMl>
LEVEL2 <DUM2>
.ENDM

.MACRO LEVEL2 DUM3
DUM3
ADD #10 ,RO
MOV RO,(Rl)+
.ENDM

A call to the LEVELl macro, as shown below, for example:

LEVELl <MOV X,RO>,<MOV R2,RO>

causes the following macro expansion to occur:

MOV X,RO
ADD #10, RO
MOV RO, (Rl) +
MOV R2,RO
ADD #10,RO
MOV RO, (Rl)+

When macro definitions are nested, i.e., when a macro definition is
contained entirely within the definition of another macro, the inner
definition is not a callable macro until the outer macro has been
called and expanded.

7-5

MACRO DIRECTIVES

For example, in the following coding:

. MACRO I..Vl A, B

.MACRO LV2 C

.ENDM

.ENDM

the LV2 macro cannot be called and expanded until the LVl macro has
been so invoked. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
invoked.

7.3.2 Special Characters in Macro Arguments

Arguments may include special characters without enclosing them in a
bracketed construction if that argument does not contain spaces, tabs,
semicolons, or commas. For example, the macro definition:

.MACRO PUSH ARG
MOV ARG,-(SP)
.ENDM

PUSH X+3(%2)

causes the following code to be generated:

MOV X+3 (%2) ,- (SP)

7.3.3 Passing Numeric Arguments as Symbols

When passing macro arguments, a symbol value can be passed which is
treated by the macro as a numeric string. An argument preceded by the
unary operator backslash (\) is treated as a numeric value in the
current program radix. The ASCII characters representing this value
are inserted in the macro expansion, and their function is defined in
the context of the resulting code, as shown in the following example:

.MACRO
CON

B=B+l
. ENDM
.MACRO

A'B: . WORD
.ENDM

C=O INC

INC A,B
A,\B

CON A,B
4

X,C

;B IS TREATED AS A NUMBER IN CURRENT
; PROGRA.M RADIX .

;A'B IS DESCRIBED IN SECTION 7.3.6 .

7-6

MACRO DIRECTIVES

The above macro call (INC) would thus expand to:

XO: .WORD 4

Note in this expanded code that the label XO: is the result of the
concatenation of two real arguments. The single quote (') character
in the label A'B: causes the real arguments X and 0 to be
concatenated as they are passed during the expansion of the macro.
This type of argument construction is described in further detail in
section 7.3.6.

A subsequent call to the same macro would generate the following code:

Xl: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (i.e., C) cannot
be updated in the CON macro definition, because its numeric value has
already been substituted for its symbolic name, i.e., the character 0
has replaced C in the argument string. In the CON macro definition,
the number passed is treated as a string argument. (Where the value
of the real argument is 0, only a single 0 character is passed to the
macro expansion.)

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assembles of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRO

. IDENT

.ENDM

IDT

IDT SYM
/VOSA'SYM/

;ASSUME THAT THE SYMBOL ID TAKES
;ON A UNIQUE 2-DIGIT VALUE .
;WHERE VOSA IS THE UPDATE
;VERSION OF THE PROGRAM.

The above macro call would then expand to:

.IDENT /V05A6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

If more arguments appear in the macro call than in the macro
definition, the excess arguments cause an error code (Q) to be
generated in the assembly listing (see Appendix D) . If fewer
arguments appear in the macro call than in the macro definition,
missing arguments are assumed to be null values. The conditional
directives .IF B and .IF NB (see Table 6-5) can be used within the
macro to detect missing arguments. The number of arguments can also
be specified using the .NARG directive (Section 7.4.1). It should be
noted that a macro can be defined with no arguments.

7-7

MACRO DIRECTIVES

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In the conventional
macro facilities thus far described, such a label must be explicitly
specified as an argument with each macro call. Care must be exercised
by the programmer in issuing subsequent calls to the same macro in
order to avoid specifying a duplicate label as a real argument. This
concern can be eliminated through a feature of MACR0-11 which creates
a unique symbol where a label is required in an expanded macro.

As noted in section 3.5, MACR0-11 can automatically create local
symbols of the form n$, where n is a decimal integer within the range
64 through 128, inclusive. Such local symbols are created by MACR0-11
in numerical order, as shown below:

64$
65$

127$
128$

This automatic facility is invoked on each call of a macro whose
definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B

TST A
BEQ B
ADD #5 ,A

B:
.ENDM

;CONTAINS DUMMY ARGUMENT B PRECEDED BY
;QUESTION MARK.

A local symbol is generated automatically by MACR0-11 only when a real
argument of the macro call is either null or missing, as shown in
Example 1 below, which reflects the expansion of the ALPHA macro
defined above.

If the real argument is specified in the macro call, however, MACR0-11
inhibits the generation of a local symbol and normal argument
replacement occurs, as shown in Example 2 below.

EXAMPLE 1: Generate a Local Symbol for the Missing Argument:

ALPHA Rl ;SECOND ARGUMENT IS MISSING.
TST Rl
BEQ 64$;LOCAL SYMBOL IS GENERATED.
ADD #5,Rl

64$:

EXAMPLE 2: Do Not Generate a Local Symbol:

ALPHA R2,XYZ ;SECOND ARGUMENT XYZ IS SPECIFIED.
TST R2
BEQ XYZ ;NORMAL ARGUMENT REPLACEMENT OCCURS.
ADD #5,R2

XYZ:

Automatically-generated local symbols are restricted to the first
16(10) arguments of a macro definition.

7-8

MACRO DIRECTIVES

It should be noted that automatically-created local symbols resultino
from the expansion of a macro, as described above, do not in any way
influence local symbol block boundaries. In other words, such
automatically-created local symbols do not establish a local symbol
block in their own right.

However, given a macro having several arguments earmarked for
automatic local symbol generation, substituting a specific label for
one such argument introduces a risk that assembly errors will result.
This is due to the fact that MACR0-11 constructs its argument
substitution list at the point of macro invocation. Therefore, the
appearance of any label, the .ENABL LSB directive, or the .PSECT
directive in the macro expansion will create a new local symbol block.
This could leave local symbol references in tbe previous block and the
symbol definitions in the new one, resulting in error codes in the
assembly listing (see Appendix D). Furthermore, a subsequent macro
expansion that generates local symbols in the new block may duplicate
one of the symbols in question, resulting in an additional error code
(P) in the assembly listing.

7.3.6 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions. A single quote which
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF A,B,C
A'B: .ASCIZ /C/

.BYTE I I A, I I B

.ENDM

when the macro DEF is called through the statement:

DEF X,Y,<MACR0-11>

it is expanded, as follows:

XY: .ASCIZ /MACR0-11/
.BYTE 'X, 'Y

In expanding the first line, the scan for the first argument
terminates upon finding the first ' character. Since A is a dummy
argument, the ' is removed. The scan then resumes with B; B is also
noted as another dummy argument. The two real arguments X and Y are
then concatenated to form the label XY:. The third dummy argument is
noted in the operand field of the .ASCIZ directive, causing the real
argument MACR0-11 to be substituted in this field.

When evaluating the arguments to the .BYTE directive during expansion
of the second line, the scan begins with the first ' character. Since
it is neither preceded nor followed by a dummy argument, this
character remains in the macro expansion. The scan then encounters
the second ' character, which is followed by a dummy argument and is
therefore discarded. The scan of argument A is terminated upon
encountering the comma (,). The third 'character is neither preceded
nor followed by a dummy argument and again remains in the macro
expansion. The fourth (and last) ' character is followed by another

7-9

MACRO DIRECTIVES

dummy argument and is likewise discarded. (Note that four
characters were necessary in the macro definition to generate two
characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

Three directives are available in MACR0-11 which allow the user to
determine certain attributes of macro arguments. The use of these
directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These
directives are described separately below.

7.4.1 .NARG Directive

The .NARG directive is used to determine the number of arguments in
the macro call currently being expanded. Hence, the .NARG directive
can appear only within a macro definition; if it does not, an error
code (0) is generated in the assembly listing (see Appendix D). This
directive takes the form:

label: .NARG symbol

where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of arguments in the macro
call currently being expanded. If a symbol is not
specified, the .NARG directive is flagged with an
error code (A) in the assembly listing (see
Appendix D).

An example of the .NARG directive follows:

ABC: .NARG x ;X IS EQUATED TO THE
;NUMBER OF ARGUMENTS IN THE
;CURRENT MACRO EXPANSION.

7.4.2 .NCHR Directive

The .NCHR directive, which can appear anywhere in a MACR0-11 program,
is used to determine the number of characters in a specified character
string. This directive, which is useful in calculating the length of
macro arguments, takes the following form:

label: .NCHR symbol,<string>

where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of characters in the
specified character string. If a symbol is not
specified, the .NCHR directive is flagged with an
error code (A) in the assembly listing (see
Appendix D).

represents any legal separator (comma, space,
and/or tab).

7-10

MACRO DIRECTIVES

<string> represents a string of printable characters. The
character string need be enclosed within angle
brackets (<>) or up-arrows (A) only if the
specified character string contains a legal
separator (comma, space, and/or tab). If the
delimiting characters do not match or if the
ending delimiter cannot be detected because of a
syntactical error in the character string (thus
prematurely terminating its evaluation), the .NCHR
directive is flagged with an error code (A) in the
assembly listing (see Appendix D).

An example of the .NCHR directive follows:

XYZ: .NCHR X,<AB,CD> ;X IS EQUATED TO 5 (THE
;NUMBER OF CHARACTERS BETWEEN THE
;BRACKETS).

7.4.3 .NTYPE Directive

The .NTYPE directive is used to determine the addressing mode of a
specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it is flagged
with an error code (0) in the assembly listing (see Appendix D). This
directive takes the form:

label: .NTYPE symbol,aexp

where: label represents an optional statement label.

symbol

a exp

represents any legal symbol. This symbol is
equated to the 6-bit addressing mode of the
following argument. If a symbol is not specified,
the .NTYPE directive is flaooed with an error code
(A) in the assembly listing~(see Appendix D).

represents any legal separator (comma, space,
and/or tab).

represents any legal address expression, as used
with an opcode. If no argument is specified, the
result will be zero (0).

An example of the use of an .NTYPE directive in a macro definition is
shown below:

.MACRO SAVE ARG

.NTYPE

.IF
MOV
.IFF
MOV
.ENDC
.ENDM

SYM,ARG
EQ,SYM&7
ARG,TEMP

#ARG,TEMP

;RELATIVE ADDRESSING MODE.

;IMMEDIATE ADDRESSING MODE.

For additional information concerning addressing modes, refer to
Chapter 5 and Appendix B.2.

7-11

MACRO DIRECTIVES

7.5 .ERROR AND .PRINT DIRECTIVES

The .ERROR directive is used to output messages to the listing file
during assembly pass 2. A common use of this directive is to provide
a diagnostic announcement of a rejected or erroneous macro call or to
alert the user to the existence of an illegal set of conditions
specified in a conditional assembly. If the listing file is not
specified, the .ERROR messages are output to the command output
device. The .ERROR directive takes the form:

label: .ERROR expr ;text

where: label represents an optional statement label.

ex pr

text

represents an optional expression whose value is
output when the ERROR directive is encountered
during assembly.

denotes the beginning of the text string.

represents the specified message associated with
the .ERROR directive.

Upon encountering an .ERROR directive anywhere in a source program,
MACR0-11 outputs a single line containing:

1. An error code (P);

2. The sequence number of the .ERROR directive statement;

3. The value of the current location counter;

4. The value of the expression, if one is specified;

5. The source line containing the .ERROR directive.

For example, the following directive:

.ERROR A ;INVALID MACRO ARGUMENT

causes a line in the following form to be output to the listing file:

p

Seq. Loe.
No. No.

Exp.
Value

512 005642 000076

Text

ERROR A ;INVALID MACRO ARGUMENT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the P error code.

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is a structure that is very similar to a
macro definition. Such a structure is essentially a macro definition
that has only one dummy argument. At each expansion of the indefinite
repeat range, this dummy argument is replaced with successive elements
of a specified real argument list. An indefinite repeat block
directive and its associated repeat range are coded in-line within the
source program. This type of macro definition and expansion does not

7-12

MACRO DIRECTIVES

require calling the macro by name, as required in the expansion of
conventional macros previously described in this ser,tion.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block (see
section 7.7). The rules for specifying indefinite repeat block
arguments are the same as for specifying macro arguments (see section
7. 3) .

7.6.1 .IRP Directive

The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block
range. This directive takes the following form:

label: . IRP sym,<argument list>

where:

(range of indefinite repeat block)

.ENDM

label represents an optional statement label.

sym represents a dummy argument which is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRP directive is
flagged with an error code (A) in the assembly
listing (see Appendix D).

represents any legal separator (comma, space,
and/or tab) .

<argument list> represents a list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any legal
separator (comma, space, and/or tab). If no real
arguments are specified, no action is taken.

range

.ENDM

represents the block of code to be repeated once
argument in the

other macro
for each occurrence of a real
list. The range may contain
definitions and repeat ranges.
directive (see section 7.1.3) is legal
range of an indefinite repeat block.

The .MEXIT
within the

indicates the end of the indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-1.

7-13

MACRO DIRECTIVES

7.6.2 .IRPC Directive

A second type of indefinite repeat block directive is available in
MACR0-11 which handles single character substitution, rather than
argument substitution. On each iteration of the indefinite repeat
range, the dummy argument is replaced with each successive character
in the specified string. The .IRPC directive is specified as follows:

label: .IRPC sym,<string>

where:

(range of indefinite repeat block)

.ENDM

label represents an optional statement label.

sym represents a dummy argument which is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the IRPC directive is
flagged with an error code (A) in the assembly
listing (see Appendix D).

<string>

range

.ENDM

represents any legal separator (comma, space,
and/or tab).

represents a list of characters enclosed within
angle brackets that is to be used in the expansion
of the indefinite repeat range. Although the
angle brackets are required only when the string
contains separating characters, their use is
recommended for legibility.

represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions and repeat
ranges. The .MEXIT directive (see section 7.1.3)
is legal within the range of an indefinite repeat
block.

indicates the end of the indefinite repeat block
range.

An example of the use of the .IRPC directive is shown in Figure 7-1.

7-14

MACRO DIRECTIVES

1 ,TITLE IRPTST
2 ,L!ST ME
J
4
!5
6 ,IRP X,<AA,BB,CC,DD,EE,FF>
7 MOV X, (R0) •
8 ,ENDM

liH'J0000 016720 000000G MOV AA,CR0H
0(ilJ0004 016720 00CH'100G MOV BA,CR0)+
P!;IJ0~ 10 016720 000000G MO\/ CC: 1 (R0) +
000014 016720 000000G MOV DD,(R0)•
011!0020 016720 0001210l0G MOV EE,CR0)•
000024 016720 000000G MOV FF,(R0)+

9
10
11 , I RPC: X,<ABCDEF>
12 MOVB #IX 1 •(R1)
1J .~NDM

0t'10'1l30 112741 000000G MOVB u, .. (R1)
0~0034 112741 000000G MOVB #B, .. (R1)
000040 112741 000000G MO\IB #C,,. CR 1)
000044 112741 000000G MQ\18 #D 1 •(R1)
000050 112741 000000G MOVB #E,,. CR 1)
000054 112741 000000G MOVB #F',•O'l)

14
15
16 000001 1 ,END

Figure 7-1
Example of .IRP and . IRPC Directives

7.7 REPEAT BLOCK DIRECTIVE: .REPT

Occasionally, it is useful to duplicate a block of code a number of
times in-line with other source code. This duplication of code is
accomplished by creating a repeat block using a directive in the form:

label:

where:

.REPT exp

(range of repeat block)

.ENDM

label

exp

range

represents an optional statement label.

represents any legal expression whose value
controls the number of times the block of code is
to be assembled within the program. When the
expression value is less than or egual to zero
(0), the repeat block is not assembled. If this
expression is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing (see Appendix D).

represents the block of code to be repeated the
number of times determined by the specified
expression value. The repeat block may contain
macro definitions, indefinite repeat blocks, or
other repeat blocks. The .MEXIT directive is
legal within the range of a repeat block.

7-15

.ENDM
or

. ENDR

MACRO DIRECTIVES

indicates the end of the repeat block range. The
terminating statement in a repeat block can be
either an .ENDM directive or an .ENDR directive .

7.8 MACRO LIBRARY DIRECTIVE: .MCALL

MACR0-11 provides a selection mechanism for the programmer to indicate
in advance those system and/or user-defined macro definitions that are
required in the assembly of the source program. The .MCALL directive,
providing this selection mechanism, allows the programmer to specify
the names of all system or user macro definitions not defined within
the source program but which are required to assemble the program.
The .MCALL directive must appear before the first occurrence of a call
to any externally-defined macro. The .MCALL directive is of the form:

where:

.MCALL argl,arg2, ... argn

argl,
arg2, ...
argn

represent the symbolic names of the macro
definitions required in the assembly of the source
program. The symbolic macro names may be
separated by any legal separator (comma, space,
and/or tab).

The .MCALL directive thus provides the means to access
user-defined and system macro libraries during assembly.

both

The /ML switch under RSX-11 and the /LIBRARY qualifier under IAS
specified in connection with an input file specification indicates to
MACR0-11 that the file is a macro library. When a macro call is
encountered in the source program, MACR0-11 first searches the user
macro library for the named macro definitions, and, if necessary,
continues the search with the system macro library.

Any number of such user-supplied macro files may be designated. In
cases of multiple library files, the search for the named macros
begins with the last such file specified. The search continues in
reverse order until the required macro definitions are found,
terminating again, if necessary, with a search of the system macro
library.

If any named macro is not found upon completion of the search, i.e.,
if the macro is not defined, the .MCALL statement is flagged with an
error code (U) in the assembly listing (see Appendix D). Furthermore,
a statement elsewhere in the source program which attempts to expand
such an undefined macro is flagged with an error code (0) in the
assembly listing.

The RSX-11 and IAS command strings to MACR0-11, through which a file
specification is supplied, are described in detail in sections 8.1.2
and 8.2.2, respectively.

7-16

PAR'I' IV

OPERATING PROCEDURES

CHAPTER 8

OPERATING PROCEDURES

MACR0-11 assembles one or more ASCII source files containing MACR0-11
statements into a single relocatable binary object file. The output
of MACR0-11 consists of a binary object file and a file containing the
table of contents listing, the assembly listing, and the symbol table
listing. A sample assembly listing is provided in Appendix I.

8.1 RSX-llD AND RSX-llM OPERATING PROCEDURES

The following sections describe those MACR0-11 operating procedures
that apply exclusively to the RSX-llD and RSX-llM system environments.

8.1.1 Initiating MACR0-11 Under RSX-llM/RSX-llD

Following the entry of CTRL/C (AC) from an operator's console, the
Monitor Console Routine (MCR) indicates its readiness to accept a
command by prompting with the following sequence:

MCR>

MCR then waits for input.

One of five methods can be employed to initiate MACR0-11, as described
below.

8.1.1.1 Method 1 - Direct MACR0-11 Call - The terminal sequence for
method 1 is:

MCR>MAC
MAC>macll-cmd-string

The monitor console routine (MCR) accepts MAC as input, causing
MACR0-11 to be activated. Since an assembly command string is not
present with the MCR line, MACR0-11 then solicits input with the
prompting sequence MAC> and waits for command string input (see
section 8.1.2 below). After the assembly of the indicated files has
been completed, MACR0-11 again solicits command string input with the
MAC> prompting sequence. This process will be repeated until a CTRL/Z
(AZ) is entered.

8-1

OPERATING PROCEDURES

8.1.1.2 Method 2 - Using RUN Facility - The terminal sequence for
method 2 is:

MCR>RUN ... MAC/UIC=[g,m]
MAC>macll-cmd-string

Method 2 is identical to method 1, except that the MCR RUN command is
used, which requires the entire task name, including the 3-dot prefix.
In addition, the default UIC is changed for one execution. As in
method 1 above, MACR0-11 again solicits command string input (see
section 8.1.2) after the assembly of the indicated files is completed.
The /UIC is optional.

8.1.1.3 Method 3 - Single Assembly - The terminal sequence for method
3 is:

MCR>MAC macll-cmd-string

In method 3, no prompting from MACR0-11 occurs, since the command
string input is included in the MCR command line. As in methods 1 and
2, the expression macll-cmd-strng is any legal, syntactically correct
MACR0-11 command string of the form described in section 8.1.2.
MACR0-11 then assembles source files under control of the command
string and, when finished, exits.

8.1.1.4 Method 4 - Install, Run Immediately, and Remove On Exit - The
terminal sequence for method 5 is:

MCR>RUN $MAC/UIC=[g,m]
MAC>macll-cmd-string

This method is used when the MACR0-11 assembler is not permanently
installed in the respective system. MCR installs MAC from the system
program directory and requests it under the specified UIC. As in
method 1, MACR0-11 solicits command string input (see section 8.1.2).
When MACR0-11 exits, it is automatically removed from the system.

NOTE

MACR0-11 can be terminated by entering a
CTRL/Z (AZ) at any time a request for
command string input is present.

8.1.1.5 Method 5 - Using Indirect Filename Facility - Any one of the
following sequences may be used in initiating RSX-ll's indirect file
facility for command string input:

MCR>MAC
MAC>@f ilespec

or
MCR>RUN ... MAC/UIC=[g,m]
MAC>@f ilespec

or
MCR>MAC @f ilespec

or
MAC>RUN $MAC/DIC=[g,m]
MAC>@filespec

8-2

OPERATING PROCEDURES

These forms use the indirect file facility of RSX-11, which
effectively accomplishes the substitution of 11 @filespec 11 for the
"macll-cmd-string" input employed in methods l through 4. The file
specified as 11 @filespec 11 contains MACR0-11 command strings. After
this file is opened, command lines are then read from the file until
the end-of-file is detected. Only three nested levels of indirect
files are permitted in MACR0-11.

8.1.2 RSX-11 Command String Format

In response to the MAC> prompting sequence printed by MACR0-11. the
user types the output and input file specifications in the general
form shown below:

where:

MAC>object,listing=srcl,src2, ... ,srcn

object

listing

srcl,
src 2, ...
srcn

represents the binary object (output) file.

represents the assembly listing (output) file
containing the table of contents, the assembly
listing, and the symbol table.

separates output file specifications from input
file specifications.

represent the ASCII source (input) files
containing the MACR0-11 source program or the
user-supplied macro library files to be assembled.

Only two output file specifications in the command string will be
recognized by MACR0-11; any more than two such files will be ignored.
No limit is set on the number of source input files; however; the
entire command string must fit on an 80-byte command line.

A null specification in either of the output file specification fields
signifies that the associated output file is not desired. A null
specification in the input file field, however, is an error condition,
resulting 1n the error message "MAC -- ILLEGAL FILENAME" on the
command output device (see section 8.4). Note that the absence of
both the device name (dev:) and the name of the file (filename.type)
from a file specification is the equivalent of a null specification.

NOTE

When no listing file is specified, any errors
encountered in the source program are printed on
the terminal from which MACR0-11 was initiated.
When the /NL switch is used in the listing file
specification without an argument, the errors and
symbol table are output to the file specified.

8-3

OPERATING PROCEDURES

Each file specification
accordance with the
specifications):

contains
standard

the following information
RSX-11 conventions for

(in
file

where:

filespec /switch:value ...

filespec is the standard RSX-11 file specification as
described in section 8.3 below.

/switch

/switch
(Cont'd)

represents an ASCII name identifying a switch
option. This switch option may be specified in
three forms, as shown below, depending on the
function desired:

/SW
/NOSW
/-SW

Invokes the specified switch action.
Negates the specified switch action.
Negates the specified switch action.

In addition, the switch identifier may be
accompanied by any number of the following values:

ASCII character strings, octal numbers, or decimal
numbers. The default assumption for a numeric
value is octal. Decimal values must be followed
by a decimal point (.).

Any numeric value preceded by a pound sign (#) is
regarded as an explicit octal declaration; this
option is provided for documentation purposes and
ready identification of octal values.

Also, any numeric value can be preceded by a plus
sign (+) or a minus (-) sign. The positive
specification is the default assumption. If an
explicit octal declaration is specified (#), the
sign indicator, if included, must precede the
pound sign.

All switch values must always be preceded by a
colon (:) .

The number of permissible switch specifications,
accompanying switch values, and interpretations
thereof are program-dependent, i.e., the switch
specifications are interpreted in the context of
the program to which they apply. The switch
options applicable to MACR0-11 are described in
Table 8-2 below.

A syntactical error detected in the command string causes MACR0-11 to
output the following error message to the command output device (see
section 8.4):

MAC -- COMMAND SYNTAX ERROR

followed by a copy of the entire command string.

Table 8-1 lists the default values for each file specification.

8-4

File

Object
File

Listing I
File I

11 Source
File

Source
to

Source
File

User
1.11'- - - -L'LdCL U

Library

System
Macro
Library

2

n

Indirect
Command
File

I
I

I

OPERATING PROCEDURES

Table 8-1
File Specification Default Values

Device

System
device.

Device used
for object
file.

System
device.

Device used
for source 1 or
last source file
specified.

System device,
~ .c ------ .c .! , -
.l.l llldCLU .l.ll.e

is specified
first; if not,
device used
by last source
file is used.

System
device.

System
Device.

Default

Directory

Current.

Directory
used in
Object file.

Current.

Directory
used for
source 1 or
last source
file speci-

I
fied.

I Current, if
r: .!. , --- ,,...._ - -- -mac L u L i. l. e I

is specified 'j

first; if not,
directory of I
last source I
file is used. J

[l' l]

Current

Value

Filename

None

None

None

None

None

RSXMAC

None

8.1.3 RSX-11 File Specification Switches

Type

.OBJ

.LST

I MAC

.MAC

I
.MLB I

.SML

.CMD

At assembly time, the programmer may wish to overr1ae certain MACR0-11
directives appearing in the source program or to provide MACR0-11 with
information establishing how certain files are to be handled during
assembly. This capability is provided through one or more switches
which may be selectively invoked as additional parameters in each file
specification (see Section 8.1.2). The switches available for use in
MACR0-11 file specifications under RSX-11 are listed in Table 8-2.

8-5

OPERATING PROCEDURES

Table 8-2
MACR0-11 File Specification Switches for RSX-11

Switch Option

/LI:arg
/NL:arg

/EN:arg
/DS:arg

/ML

Function

Listing control switches; these options
accept ASCII switch values (arg} which
are equivalent in function and name to
the arguments of the .LIST and .NLIST
directives specified in the source
program (see section 6.1.1).

Function control switches; these options
accept ASCII switch values (arg) which
are equivalent in function and name to
the arguments of the .ENABL and .DSABL
directives specified in the source
program (see section 6.2).

The /ML switch, which takes no
accompanying switch values, indicates to
MACR0-11 that an input file is a macro
library file. As noted in section 7.8,
any macro that is defined externally
must be identified in the .MCALL
directive before it can be retrieved
from a macro library file and assembled
with the user program. In locating
macro definitions, MACR0-11 initiates a
fixed search algorithm, beginning with
the last user macro file specified,
continuing in reverse order with each
such file specified, and terminating, if
necessary, with a search of the system
macro library file. If a required macro
definition is not found upon completion
of the search, an error code (U) results
in the assembly listing (see Appendix
D). This means that a user macro
library file must be specified in the
command line prior to the source file(s)
that use macros defined in the library
file.

8-6

OPERATING PROCEDURES

Table 8-2 (Cont'd)
MACR0-11 File Specification Switches For RSX-11

Switch Option

/ML
(Cont'd)

/PA:l

/PA:2

/SP

/NOSP

/-SP

Function

MACR0-11 does not pre-scan the command
line for marco libraries; when a new
source file is needed, it parses the
next input file specification. If that
file specification contains the /ML
switch, it is appended to the front of
the library file list. As a result, a
user macro library file must be
specified in the command line prior to
the source files which require it in
order to resolve macro definitions.

Assemble the associated file during
assembly pass 1 only.
Assemble the associated file during
assembly pass 2 only.

Spool listing output (default value).

Do not spool output.

Do not spool output.

NOTE

The /ML, /PA and /SP switches do not interact with
or override MACR0-11 directives. Rather, they
have meaning only in the command line itself.

Switches for the object file are limited to /EN and /DS; when
specified, they apply throughout the entire command string. Switch
options for the listing file are limited to /LI, /NL, /SP, and /NOSP.
Switches for input files are limited to /ML, /PA, /EN, and /DS; the
options /ML and /PA apply only to the file immediately preceding the
option so specified, whereas the /EN and /DS options, as noted above,
are also applicable to subsequent files in the command string.

Multiple occurrences of the same switch following a file specification
must be avoided, because the accompanying values of a subsequent like
switch specification override any previously-specified values. For
example, in the following command string element:

/LI:SRC/LI:MEB

the switch specification /LI:MEB will override that specified
previously as /LI:SRC. If both switch values are desired, they can be
specified in the syntactically correct form shown below:

/LI:SRC:MEB

8-7

OPERATING PROCEDURES

Examples:

1. MAC>OBJFIL,LSTFIL/NL:BEX:COM/LI:ME=SRCFIL

This command string suppresses the listing of binary
extensions and the source comments, and lists the macro
expansions. Furthermore, it causes all listing directives in
the source program having the arguments BEX, COM, and ME to
be overridden. In this example, the object output is sent to
the file named OBJFIL.OBJ, and the listing and symbol table
output is sent to the file named LSTFIL.LST.

2. MAC>OBJFIL,LISTM/NL:TOC=SRCFIL

This command string causes the assembly listing's table of
contents to be suppressed along with all other listing output
(except the symbol table), when the general no-list mode
prevails for listing files, e.g., when the /NL switch is
present in the file specification without an argument.

8.2 IAS MACR0-11 OPERATING PROCEDURES

The following sections describe those MACR0-11 operating procedures
that apply exclusively to the IAS system environment.

8.2.l Initiating MACR0-11 Under IAS

The MACRO command is used under IAS to begin MACR0-11 assembler
operations. The command causes MACR0-11 to assemble one or more ASCII
source files containing MACR0-11 statements into a relocatable binary
object file. The assembler will also produce an assembly listing,
followed by a symbol listing and a cross reference listing.

The command can be issued whenever the IAS Program Development System
(PDS) is at command level in interactive mode. This condition is
signified by the appearance of the prompting sequence:

PDS>

at the user's terminal. The command can be input either directly from
the terminal {interactive mode) or from a batch file (batch mode).
When the specified assembly has completed, MACR0-11 terminates
operations and returns control to PDS. {Refer to the IAS User's Guide
for further information about interactive and batch mode operations).

8.2.2 IAS Command String Format

A MACR0-11 command string can be specified using any one of the three
formats shown below. The first two formats apply to interactive mode
operation, while the last format applies to batch mode operation.
Notice that, in interactive mode, if the input file specification
(filespec) does not begin on the same line as the MACRO command and
its qualifiers, PDS prints following the prompting message:

FILES?

then waits for the user to specify the input file(s).

8-8

OPERATING PROCEDURES

In batch mode, the command and its arguments must appear on the same
line unless the PDS line continuation symbol (-) is used.

The command formats for each operating mode are as follows:

Interactive Mode

PDS> MACRO[qualifiers]

or

PDS> MACRO[qualifiers]

input []
filespec /LIBRARY+ ...

FILES? ~~i~!pec r/LIBRARYl + ••.
L ...J

Batch Mode

$MACRO [qualifiers]

where:

input
f ilespec

/LIBRARY

input [] filespec /LIBRARY+ ...

is the specification of an input file
(see section 8.3) that contains MACR0-11
source program code. When the program
consists of multiple files, a plus sign
(+) must be used to separate each file
specification from the next. The "wild
card" form of a file specification is
not allowed.

specifies that an input file is a macro
library file. As noted in section 7.8,
any macro that is defined externally
must be identified in the .MCALL
directive before it can be retrieved
from a macro library file and assembled
with the user program. In locating
macro definitions; MACR0-11 initiates a
fixed search algorithm, beginning with
the last user macro file specified,
continuing in reverse order with each
such file specified, and terminating, if
necessary, with a search of the system
macro library file. If a reguired macro
definition is not found upon completion
of the search, an error code (U) results
in the assembly listing (see Appendix
D). This means that a user macro
library file must be specified in the
command line prior to the source file(s)
that uses any macros defined in the
library file. If more than one library
file is specified, the libraries will be
searched in right-to-left order.

8-9

OPERATING PROCEDURES

gualif iers specifies one or more of the following:

output
/OBJECT :filespec

/NOOBJECT

output
/LIST :filespec

/NOLI ST

Produce an object file as specified by
filespec (see section 8.3). The default
is the last named source file having a
.OBJ extension.

Do not produce an object file.

Produce a listing file according to
filespec (see section 8.3). If filespec
is not specified, the listing is printed
on the line printer. The default is
/NOLIST.

Do not produce a listing file. The
default in interactive mode is /NOLIST
and in batch mode is /LIST.

NOTE

listing file is When no
specified,
encountered
program are
terminal from
initiated.

any errors
in the source
displayed at the
which MACR0-11 was

PDS accepts the MACRO or $MACRO command as input and initializes the
MACR0-11 assembler, which in turn processes the specified files
according to the options indicated in the command string. When the
operation is complete, MACR0-11 returns control to PDS to obtain the
next command line either from the terminal or from the batch stream.

8.2.3 IAS Indirect Command Files

The indirect command file facility of PDS can be used with MACR0-11
command strings. This is accomplished by creating an ASCII file that
contains the desired command strings {or portions thereof) in the
forms shown above in section 8.2.2. When an indirect command file
reference is used in a MACR0-11 command string, the contents of the
specified file are taken as all or part of the command string. An
indirect command file reference is specified in the form:

where:

@

@filespec

specifies that the name that follows is an indirect
file.

filespec is the file specification of a file {see section 8.3)
that contains a command string. The default extension
for the file name is .CMD.

An indirect command file reference must always be the rightmost entry
in the command {see section 8.2.4 below for examples).

8-10

OPERATING PROCEDURES

8.2.4 IAS Command String Examples

The following examples show typical PDS MACR0-11 command strings.

1. PDS> MACRO /NOLIST
FILES? A+BOOT;3

In this example, the source files A.MAC and BOOT.MAC;3 will
be assembled to produce an object file called BOOT.OBJ. No
listing will be produced.

2. Where the indirect command file TEST.CMD contains the command
string:

MACRO/OBJECT:MYFILE A+B

The command;

PDS>@TEST

causes MACR0-11 to assemble the two files A.MAC and B.MAC
into an object file called MYFILE.OBJ.

3. Where the indirect command file IND02.CMD contains the
command string segment:

ATEST/LIBRARY+BTEST+SRTl.021

The command:

PDS>MACRO/LIST:DKl:FOO @IND02

causes MACR0-11 to assemble the files BTEST.MAC and SRTl,.021
using the macro library file ATEST.MAC to produce an object
file named SRTl.OBJ. A listing file names FOO.LST is placed
on disk unit 1.

4. $MACRO/LIST:DKO:MICR/NOOBJECT
LIB1/LIBRARY+MICR.MAC;002

In this example, the library
MICR.MAC;002. The program
placed on disk unit 0.

.c~,_ .:_
L.l.le .!..::>

listing

8.3 IAS/RSX-11 FILE SPECIFICATION FORMAT

assembled with the
file named MICR.LST is

The general form for a file specification in IAS/RSX-11 systems is
shown below. Detailed information is provided in the applicable
system user's guide or operating procedures manual (see section 0.3 in
the Preface) .

dev: [g,m]name.ext;ver

where:

dev: is the name of the physical device where the desired
file resides. A device name consists of two characters
followed by a one or two digit device unit number
(octal) and a colon (e.g., DPl:, DKO:, DT3:). The

8-11

[g ,m]

name

OPERATING PROCEDURES

default device under RSX-llD and RSX-llM is as
specified in Table 8-1. The default device under IAS
is established initially by the system manager for each
user and can be changed through the SET command.

is the User File Directory (UFD) code. This code
consists of a group number (octal), a comma (,),and an
owner (user) number (octal) all enclosed in brackets
([]). For example: [200,30].

The default
Identification
IAS, this can
command.

is the file
alphanumeric
filename .

UFD is equivalent to the User
Code (UIC) given at log-in time. Under
be changed through the SET DEFAULT

name and
characters.

consists
There

of 1 through 9
is no default for a

. ext is a 1- to 3-alphanumeric character filename extension
or type that is preceded by a period (.). An extension
is normally used to identify the nature of the file.
Default values depend on the context of the file
specification and are as follows:

.CMD

.LST

.MAC

.OBJ

Indirect command (input) file
A listing (print format) file
MACR0-11 source module (input file)
MACR0-11 object module (output file)

;ver is an octal number between 1 and 77777 that is used to
differentiate between versions of the same file. This
number must be prefixed by a semicolon (;).

For input files, the default value is the highest
version number of the file that exists.

For output files, the default value is the highest
version number of the file that exists increased by 1.
If no version number exists, 1 is used.

8.4 MACR0-11 ERROR MESSAGES

MACR0-11 outputs an appropriate error message to the command output
device when one of the error conditions described below is detected.
These error messages reflect operational problems and should not be
confused with the diagnostic error messages (see Appendix D) produced
by MACR0-11 during assembly.

All the error messages listed below, with the exception of the "MAC -
COMMAND I/O ERROR" message, result in the termination of the current
assembly; MACR0-11 then attempts to restart by reading another
command line. In the case of a command I/O error, however, MACR0-11
exits, since it is unable to obtain additional command line input.

8-12

OPERATING PROCEDURES

Error Message

MAC -- COMMAND I/O ERROR

MAC -- COMMAND SYNTAX ERROR

MAC -- ILLEGAL FILENAME

MAC -- ILLEGAL SWITCH

MAC -- INDIRECT COMMAND SYNTAX ERROR

MAC -- INDIRECT FILE DEPTH EXCEEDED

MAC -- INDIRECT FILE OPEN FAILURE

MAC -- INVALID FORMAT IN MACRO LIBRARY

8-13

Meaning

An error has been returned by
the file system during
MACRO-ll's attempt to read a
command line. This is an
unconditionally fatal error,
causing MACR0-11 to exit. No
MACR0-11 restart is attempted
when this message appears.

An error has been detected in
the syntax of the MACR0-11
command line.

Neither the device name nor
the filename is present in
the input file specification
(i.e., the input file
specification is null), or a
"wild card" convention
(asterisk) is employed in an
input or output file
specification. "Wild cardi'
options (*) are not permitted
in MACR0-11 file
specifications.

An illegal switch is
specified for a file, an
illegal value is specified
with a switch, or an invalid
use of a switch has been
detected by MACR0-11.

The name of the indirect
command file (@filename)
specified in the MACR0-11
command line is syntactically
incorrect.
An attempt to exceed the
maximum allowable number of
nested indirect command files
has occurred. (Only three
levels of indirect command
files are permitted in
MACR0-11.)

The indirect command file
specified as "@filename'' in
the MACR0-11 command line
could not be opened. See

OPEN FAILURE ON INPUT FILE 11

for meaning.

The library file has been
corrupted or it was not
produced by the Librarian
Utility Program (LBR).

OPERATING PROCEDURES

Error Message

MAC -- I/O ERROR ON INPUT FILE

MAC -- I/O ERROR ON MACRO LIBRARY FILE

MAC -- I/0 ERROR ON OUTPUT FILE

MAC -- OPEN FAILURE ON INPUT FILE

MAC -- OPEN FAILURE ON OUTPUT FILE

MAC -- SYMBOL TABLE OVERFLOW

8-14

Meaning

In reading a record from a
source input file or macro
library file, an error was
detected by the file system,
e.g., a line containing more
than 132(10) characters is
encountered. This message
may also indicate that a
device problem exists or that
either a source file or a
macro library file has been
corrupted with incorrect
data.

Same meaning as I/O ERROR ON
INPUT FILE, except that the
file is a macro library file
and not a source input file.

In writing a record to the
object output file or the
listing output file, an error
was detected by the file
system. This message may
also indicate that a device
problem exists or that the
storage space on a device has
been exhausted (i.e., the
device is full).

1. Specified device does not
exist.

2. The volume is not
mounted.

3. A problem exists with the
device.

4. Specified directory file
does not exist.

5. Specified file does not
exist.

6. User does not have access
to the file directory or
the file itself.

1. Specified device does not
exist.

2. The volume is not
mounted.

3. A problem exists with the
device.

4. Specified directory file
does not exist.

5. User does not have access
to the file directory.

6. The volume is full or the
device is write
protected.

Available symbol table space
in dynamic memory has been
exceeded.

.~PPENDIX A

MACR0-11 CHARACTER SETS

A.l ASCII CHARACTER SET

EVEN
PARITY
BIT

0
1

1

0

1

0

0
1
1

0
0

1
0

1

1

0

1
0

0

1

7-BIT
OCTAL
CODE

000
001

002

003

004

005

006
007
010

011
012

013
014

015

016

017

020
021

022

023

CHARACTER REMARKS

NUL Null, tape feed, CONTROL/SHIFT/P.
SOH Start of heading; also SOM, start

of message, CONTROL/A.
STX Start of text; also EOA, end of

address, CONTROL/B.
ETX End of text; also EOM, end of

message; CONTROL/C.
EOT End of transmission (END); shuts

off TWX machines, CONTROL/D.
ENQ Enquiry (ENQRY); also WRU,

CONTROL/E.
ACK Acknowledge; also RU, CONTROL/F.
BEL Rings the bell. CONTROL/G.
BS Backspace; also FEO, format

effector. backspaces some
machines, CONTROL/H.

HT Horizontal tab. CONTROL/I.
LF Line feed or Line space (new line);

advances paper to next line,
duplicated by CONTROL/J.

VT Vertical tab (VTAB). CONTROL/K.
FF Form Feed to top of next page

(PAGE). CONTROL/L.
CR Carriage return to beginning of

line; duplicated by CONTROL/M.
SO Shift out; changes ribbon color to

red. CONTROL/N.
SI Shift in; changes ribbon color to

black. CONTROL/O.
DLE Data link escape. CONTROL/P (DCO).
DCl Device control l; turns

transmitter (READER) on, CONTROL/Q
(X ON).

DC2 Device control 2; turns punch or
auxiliary on. CONTROL/R (TAPE, AUX
ON).

DC3 Device control 3; turns
transmitter {READER) off, CONTROL/S
(X OFF).

A-1

EVEN
PARITY
BIT

0

1

1

0

0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
l
0
1
0
0
1

7-BIT
OC'I'AL
CODE

024

025

026

027

030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103

MACR0-11 CHARACTER SETS

CHARACTER REMARKS

DC4 Device control 4; turns punch or
auxiliary off. CONTROL/T (AUX
OFF).

NAK Negative acknowledge; also ERR,
ERROR. CONTROL/U.

SYN

ETB

CAN
EM
SUB
ESC
FS
GS
RS
us
SP

$
%
&

(
)

*
+

I
0
1
2
3
4
5
6
7
8
9

<

>
?
@
A
B
c

Synchronous
CONTROL/V.

file (SYNC).

End of transmission block; also
LEM, logical end of medium.
CONTHOL/W.
Cancel (CANCL). CONTROL/X.
End of medium. CONTROL/Y.
Substitute. CONTROL/Z.
Escape. CONTROL/SHIFT/K.
File separator. CONTROL/SHIFT/L.
Group separator. CONTROL/SHIFT/M.
Record separator. CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

A-2

MACR0-11 CHARACTER SETS

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

0 104 D
l 105 e
l 106 f
0 107 g
0 llO h
1 lll i
l ll2 j
0 ll3 k
l ll4 1
0 115 m
0 ll6 n
1 ll 7 0

0 120 p
1 121 q
1 122 r
0 123 s
1 124 t
0 125 u
0 126 v
1 127 w
1 130 x
0 131 y
0 132 z
1 133 [shift/k.
0 134 \ shift/I.
1 135] shif t/m.
1 136 *
0 137 ** -0 140 ... Accent grave .

1 141 a
1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
1 147 g
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n

* ~ Appears as # or ~ on some machines.

** Appears as underscore on some machines.

A-3

MACR0-11 CHARACTER SETS

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS ----
0 1S7 0

1 160 p
0 161 q
0 162 r
1 163 s
0 164 t
1 16S u
1 166 v
0 167 w
0 170 x
1 171 y
1 172 z
0 173
1 174
0 17S This code generated by ALTMODE.
0 176 This code generated by pref ix

(if present).
1 177 Delete, Rubout.

A.2 RADIX-SO CHARACTER SET

Character ASCII Octal Equivalent Radix-SO Equivalent

space 40

A-Z 101-132

$ 44

S6

unused

0-9 60-71

The maximum Radix-SO value is, thus~

47*S0**2+47*S0+47=174777

0

1-32

33

34

3S

36-47

key

The following table provides a convenient means of translating between
the ASCII character set and its Radix~SO equivalents. For example,
given the ASCII string X2B, the Radix-SO equivalent is (arithmetic is
performed in octal):

X=ll3000
2=002400
B=000002

X2B=l1S402

A-4

MACR0-11 CHARACTER SETS

Single Char.
or Second Third

First Char. Character Character

Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
c 011300 c 000170 c 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
p 062000 p 001200 p 000020
Q 065100 Q 001250 Q 000021
R 070200 . R 001320 R 000022
s 073300 s 001370 s 000023
T 076400 T 001440 T 000024
u 101500 u 001510 u 000025
v 104600 v 001560 v 000026
w 107700 w 001630 w 000027
x 113000 x 001700 x 000030
y 116100 y 001750 y 000031
z 121200 z 002020 z 000032
$ 124300 $ 002070 $ 000033

127400 002140 000034
Unused 132500 Unused 002210 Unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 1 71700 9 003030 9 000047

A-5

APPENDIX B

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.l SPECIAL CHARACTERS

Character

%
tab
space

@
(
)

+

*
I
&

(comma)

' (apostrophe)

<
>

\
vertical tab

Function

Label terminator
Direct assignment operator
Register term indicator
Item terminator or field terminator
Item terminator or field terminator
Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field separator
Comment field indicator
Arithmetic addition operator or auto

increment indicator
Arithmetic subtraction operator or auto

decrement indicator
Arithmetic multiplication operator
Arithmetic division operator
Logical AND operator
Logical OR operator
Double ASCII character indicator
Single ASCII character indicator or

concatenation indicator
Assembly location counter
Initial argument indicator
Terminal argument indicator
Universal unary operator or argument

indicator
Macro call numeric argument indicator
Source line terminator

B.2 SUMMARY OF ADDRESS MODE SYNTAX

Address mode syntax is expressed in the summary below using the
following symbols: n is an integer between 0 and 7 representing a
register number; R is a register expression; E is an expression;
and ER is either a register expression or an expression in the range 0
to 7.

B-1

Format

R

@R or
(ER)

(ER)+

@(ER)+

-(ER)

@-(ER)

E(ER)

@E(ER)

#E

@#E

E

@E

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Address
Mode
Name

Register

Register
deferred

Autoincrement

Autoincrement
Deferred

Autodecrement

Autodecrement
Deferred

Index

Index Deferred

Immediate

Absolute

Relative

Relative
Deffered

Address
Mode
Number

On

ln

2n

3n

4n

Sn

6n

7n

27

37

67

77

B-2

Register
operand.

Meaning

R contains the

Register R contains the ad
dress of the operand.

The contents of the register
specified as (ER) are
incremented after being used
as the address of the operand.

The register specified as (ER)
contains the pointer to the
address of the operand; the
register (ER) is incremented
after use.

The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

The contents of the register
specified as (ER) are
decremented before being used
as the pointer to the address
of the operand.

The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

The expression E, plus the
contents of the register
specified as (ER) , yield a
pointer to the address of the
operand.

The expression
operand itself.

E is

The expression E is
address of the operand.

the

the

The expression E, plus the
contents of the PC, yield the
effective address of the
operand.

The expression E, plus the
contents of the PC, yield a
pointer to the effective
address of the operand.

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.3 ASSEMBLER DIRECTIVES

The MACR0-11 Assembler directives are summarized in the following
table. For a detailed description of each directive, the table
contains references to the appropriate sections in the body of the
manual.

Form

Ii

"Bn

"Cexpr

"Dn

"Fn

"On

. ASCII /string/

. ASCIZ /string/

Section
Reference

6.3.3
7.3.6

6.3.3

6.4.1.2

6.4.2.2

6.4.1.2

6.4.2.2

6.4.1.2

6.3.4

6. 3. 5

Operation

A single quote (apostrophe}
followed by one ASCII character
generates a word which contains the
7-bit ASCII representation of the
character in the low-order byte and
zero in the high-order byte. This
character is also used as a
concatenation indicator in the
expansion of macro arguments (see
section 7.3.6).

A double quote followed by two
ASCII characters generates a word
which contains the 7-bit ASCII
representation of the two
characters. The first character is
stored in the low-order byte; the
second character is stored in the
high-order byte.

Temporary radix
the value n to
binary number.

control; causes
be treated as a

Temporary numeric control;
the expression's value
complemented.

causes
to be

Temporary
the value

radix
n to

decimal number.

control; causes
be treated as a

Temporary numeric control; causes
the value n to be treated as a
sixteen-bit floating-point number.

Temporary radix
the value n to
octal number .

control; causes
be treated as an

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte .

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte, with a zero
byte terminating the specified
string.

B-3

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.ASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2, •.

. CSECT name

.DSABL arg

.ENABL arg

.END exp

.ENDC

.ENDM name

.ENDR

.EOT

. ERROR exp;text

Section
Reference

6.8.2

6.5.3

6.5.3

6.3.1

6.8.2

6.2

6.2

6.6

6.10.l

7 .1. 2

7.7

6.6.2

7.5

Operation

Begin or resume
program section.

the absolute

Reserves a block of storage space
whose length in bytes is determined
by the specified expression.

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data;
each byte contains the value of the
corresponding specified expression .

Begin or resume named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-11
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, indefinite repeat
block, or macro definition. The
optional name, if used, must be
identical to the name specified in
the macro definition.

Indicates the end of the current
repeat block. This directive is
provided for compatibility with
other PDP-11 assemblers.

Ignored; indicates end-of-tape
(which is detected automatically by
the hardware). It is included for
compatability with earlier
assemblers .

User invoked error directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

B-4

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.EVEN

.FLT2 argl,arg2, ...

.FLT4 argl,arg2, ...

.GLOBL syml,sym2, ...

. IDENT /string/

.IF cond,argl

.IFF

.IFT

.IFTF

.IIF cond,arg,
statement

.IRP sym,
<argl,arg2, ••. >

Section
Reference

6.5.l

6.4.2.1

6.4.2.1

6.9

6 .1. 5

6.10.2

6.10.2

6.10.2

6.10.2

6.10.3

7.6.1

Operation

Ensures that the current location
counter contains an even address by
adding 1 if it is odd.

Generates successive two-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Generates successive four-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Defines the symbol(s) specified as
global symbol(s) .

Provides a means of labeling the
object module with the program
version number. The version number
is the Radix-50 string appearing
between the paired delimiting
characters.

Begins a conditional assembly block
of source code which is included in
the assembly only if the stated
condition is met with respect to
the argument(s) specified.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests false.

Appears only within a conditional
assemo~y o~ocK, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled unconditionally.

Acts as a one-line conditional
assembly block where the condition
is tested for the argument
specified. The statement is
assembled only if the condition
tests true.

Indicates the beginning of an
indefinite repeat block in which
the symbol specified is replaced
with successive elements of the
real argument list enclosed within
angle brackets.

B-5

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.IRPC sym,<string>

.LIMIT

• LIST arg

.MACRO name,argl,
arg2, ...

. MCALL argl,arg2, ...

.MEXIT

.NARG symbol

.NCHR symbol,<string>

• NLIST arg

.NTYPE symbol,aexp

Section
Reference

7.6.2

6.7

6 .1.1

7 .1.1

7.8

7 .1. 3

7.4.1

7.4.2

6 .1.1

7. 4. 3

Operation

Indicates the beginning of an
indefinite repeat block in which
the specified symbol takes on the
value of successive characters,
optionally enclosed within angle
brackets.

Reserves two words into which the
Task Builder inserts the low and
high addresses of the task image.

Without an argument, the .LIST
directive increments the listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but
formats the assembly listing
according to the argument
specified.

Indicates
definition
name and
arguments .

the start of a macro
having the specified

the following dummy

Specifies the symbolic names of the
user or system macro definitions
required in the assembly of' the
current user program, but which are
not defined within the program.

Causes an exit from the current
macro expansion or indefinite
repeat block.

Can appear only within a macro
definition; equates the specified
symbol to the number of arguments
in the macro call currently being
expanded.

Can appear anywhere in a source
program; equates the symbol
specified to the number of
characters in the specified string.

Without an argument, the .NLIST
directive decrements the listing
level count by 1. With an
argument, this directive suppresses
that portion of the listing
specified by the argument.

Can appear only within a macro
definition; equates the symbol to
the 6-bit addressinq mode of the
specified address expression.

B-6

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.PAGE

.PRINT exp;text

.PSECT name,attl, •..
attn .

.RADIX n

. RADSO /string/

.REPT exp

. SBTTL string

. TITLE string

. WORD expl,exp2, ..

Section
Reference

6.5.2

6.1.6

7.S

6.8.1

6.4.1.1

6.3.6

7.7

6.1.4

6.1.3

6.3.2

Operation

Ensures that the current location
counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page.

User invoked message directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Begin or resume a named or unnamed
program section having the
specified attributes.

Alters the current program radix to
n, where n is 2, 4, 8, or 10 .

Generates a block of data
containing the Radix-SO equivalent
of the character string enclosed
within delimiting characters.

Begins a repeat block; causes the
section of code up to the next
.ENDM or .ENDR directive to be
repeated the number of times
specified as exp .

Causes the specified string to be
printed as part of the assembly
listing page header. The string
component of each .SBTTL directive
is collected into a table of
contents at the beginning of the
assembly listing .

Assigns the first six Radix-SO
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing .

Generates successive words of data;
each word contains the value of the
corresponding specified expression.

B-7

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The permanent symbol table (PST) contains those symbols which are
automatically recognized by MACR0-11. The symbols so recognized
consist of both op codes and assembler directives. The op codes
(i.e., the instruction set) are listed first, followed by the
directives which cause specific actions during assembly.

For those desiring a detailed description of the instruction set, the
appropriate PDP-11 Processor Handbook may be consulted.

C.l OP CODES

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME

ADC 005500 Add Carry
BITB 130000 Bit Test (Byte)
BLE 003400 Branch If Less Than Or Equal
BLO 103400 Branch If Lower
BLOS 101400 Branch If Lower Or Same
BLT 002400 Branch If Less Than
BMI 100400 Branch If Minus
BNE 001000 Branch If Not Equal
BPL 100000 Branch If Plus
BPT 000003 Breakpoint Trap
ADCB 105500 Add Carry 1n :__ \

\D.Y '--~ J

ADD 060000 Add Source To Destination
ASH 072000 Shift Arithmetically
ASHC 073000 Arithmetic Shift Combined
ASL 006300 Arithmetic Shift Left
ASLB 106300 Arithmetic Shift Left (Byte)
ASR 006200 Arithmetic Shift Right
ASRB 106200 Arithmetic Shift Right (Byte)
BCC 103000 Branch If Carry Is Clear
BCS 103400 Branch If Carry Is Set
BEQ 001400 Branch If Equal
BGE 002000 Branch If Greater Than Or Equal
BGT 003000 Branch If Greater Than
BHI 101000 Branch If Higher
BHIS 103000 Branch If Higher Or Same
BIC 040000 Bit Clear
BICB 140000 Bit Clear (Byte)
BIS 050000 Bit Set
BISB 150000 Bit Set (Byte)
BIT 030000 Bit Test

C-1

MNEMONIC

BR
BVC
BVS
CALL
CCC
CLC
CLN
CLR
CLRB
CLV
CLZ
CMP

CMPB

COM
COMB

DEC
DECB

DIV
EMT
FADD
FDIV
FMUL
FSUB
HALT
INC
INCB

IOT
JMP
JSR
MARK
MFPI

MOV
MOVB

MTPI

MOL
NEG
NEGB
NOP
RESET
RETURN
ROL
ROLB
ROR
RORB
RTI

RTS
RTT

PERMANENT SYMBOL TABLE (PST)

OCTAL
VALUE

000400
102000
102400
004700
000257
000241
000250
005000
105000
000242
000244
020000

120000

005100
105100

005300
105300

071000
104000
075000
075030
075020
075010
000000
005200
105200

000004
000100
004000
006400
006500

010000
110000

006600

070000
005400
105400
000240
000005
000207
006100
106100
006000
106000
000002

000200
000006

FUNCTIONAL NAME

Branch Unconditional
Branch If Overflow Is Clear
Branch If Overflow Is Set
Jump To Subroutine (JSR PC,xxx)
Clear All Condition Codes
Clear C Condition Code Bit
Clear N Condition Code Bit
Clear Destination
Clear Destination (Byte)
Clear V Condition Code Bit
Clear Z Condition Code Bit
Compare Source To

Destination
Compare Source To

Destination (Byte)
Complement Destination
Complement Destination

(Byte)
Decrement Destination
Decrement Destination

(Byte)
Divide
Emulator Trap
Floating Add
Floating Divide
Floating Multiply
Floating Subtract
Halt
Increment Destination
Increment Destination

(Byte)
Input/Output Trap
Jump
Jump To Subroutine
Mark
Move From Previous

Instruction Space
Move Source To Destination
Move Source To Destination

(Byte)
Move To Previous

Instruction Space
Multiply
Negate Destination
Negate Destination (Byte)·
No Operation
Reset External Bus
Return From Subroutine (RTS PC)
Rotate Left
Rotate Left (Byte)
Rotate Right
Rotate Right (Byte)
Return From Interrupt

(Permits a trace
trap)

Return From Subroutine
Return From Interrupt

(inhibits trace trap)

C-2

PERMANENT SYMBOL TABLE (PST)

OCTAL
MNEMONIC VALUE

SBC 005600
SBCB 105600
sec 000277
SEC 000261
SEN 000270
SEV 000262
SEZ 000264
SOB 077000
SUB 160000

SWAB 000300
SXT 006700
TRAP 104400
TST 005700
TSTB 105700
WAIT 000001
XOR 074000

OP CODES (PDPll/45/70 ONLY)

MNEMONIC

ABSD
ABSF
ADDD
ADDF
CFCC

CLRD
CLRF
CMPD
CMPF
DIVD

MNEMONIC

DIVF
LDCDF

LDC FD

LDC ID

LDC IF

LDCLD

LDCLF

LDD
LDEXP
LDF
LDFPS

OCTAL
VALUE

170600
170600
1 72000
172000
170000

170400
170400
173400
173400
174400

OCTAL
VALUE

174400
177400

177400

177000

177000

177000

177000

17L400
176400
172400
170100

FUNCTIONAL NAME

Subtract Carry
5 .. i...-1--~~.i-

UIJl...L QI.,,'- Carry (Qu+-o'
\ ..._, .1 '-'-I

Set All Condition Code Bits
Set C Condition Code Bit
Set N Condition Code Bit
Set V Condition Code Bit
Set z Condition Code Bit
Subtract One And Branch
Subtract Source From

Destination
Swap Bytes
Sign Extend
Trap
Test Destination
Test Destination (Byte)
Wait For Interrupt
Exclusive OR

FUNCTIONAL NAME

Make Absolute Double
Make Absolute Floating
Add Double
Add Floating
Copy Floating Condition

Codes
Clear Double
Clear Floating
Compare Double
Compare Floating
Divide Double

riT"l"r.."Tnm T l"'\l\11\ T l\l 7\ UD r U!'H J. .L V1'1fi.U ncu•1J..J

Divide Floating
Load And Convert From

Double To Floating
Load And Convert From

Floating To Double
Load And Convert Integer To

Double
Load And Convert Integer To

Floating
Load And Convert Long

integer To Double
Load And Convert Long

Integer To Floating
Load Double
Load Exponent
Load Floating
Load FPPs Program Status

C-3

MNEMONIC

MFPD

MODD

MODF

MTPD
MULD
MULF
NEGD
NEGF
SETD
SETF
SETI
SETL
SPL
STCDF

STCDI

STCDL

STCFD

STCFI

STCFL

STD
STEXP
STF
ST FPS
STST
SUBD
SUBF
TSTD
TSTF

PERMANENT SYMBOL TABLE (PST)

OCTAL
VALUE

106500

171400

171400

106600
171000
171000
170700
170700
1 70011
170001
170002
170012
000230
176000

175400

175400

176000

175400

175400

1 74000
175000
1 74000
170200
170300
173000
1 73000
170500
170500

FUNCTIONAL NAME

Move From Previous Data
Space

Multiply And Integerize
Double

Multiply And Integerize
Floating

Move To Previous Data Space
Multiply Double
Multiply Floating
Negate Double
Negate Floating
Set Double Mode
Set Floating Mode
Set Integer Mode
Set Long Integer Mode
Set Priority Level
Store And Convert From

Double To Floating
Store And Convert From

Double To Integer
Store And Convert From

Double To Long Integer
Store And Convert From

Floating To Double
Store And Convert From

Floating To Integer
Store And Convert From

Floating To Long Integer
Store Double
Store Exponent
Store Floating
Store FPPs Program Status
Store FPPs Status
Subtract Double
Subtract Floating
Test Double
Test Floating

C.2 MACR0-11 DIRECTIVES

DIRECTIVE

. ASCII

.ASCIZ

.ASECT

.BLKB

.BLKW

.BYTE

.CSECT

FUNCTIONAL SIGNIFICANCE

Translates character string to ASCII equivalents .
Translates character string to ASCII equivalents;
inserts zero byte as last character.
Begins absolute program section (provided for
compatibility with other PDP-11 assembliers).
Reserves byte block in accordance with value of
specified argument.
Reserves word block in accordance with value of
specified argument.
Generates successive byte data in accordance with
specified arguments.
Begins relocatable program section (provided for
compatibility with other PDP-11 assemblers).

C-4

DIRECTIVE

. DSABL

. ENABL

. END

. ENDC

.ENDM

.ENDR

. EOT

.ERROR

. EVEN

.FLT2

.FLT4

. GLOBL

.IDENT

. IF

.IFF

.IFT

.IFTF

.IIF

.IRP

.IRPC

.LIMIT

.LIST

.MCALL

.MEXIT

.NARG

.NCHR

.NLIST

.NTYPE

. ODD

. PAGE

. PRINT

.PSECT

. RADIX

.RAD50

PERMANENT SYMBOL TABLE (PST)

FUNCTIONAL SIGNIFICANCE

Disables specified function .
Enables specified function .
Defines logical end of source program .
Defines end of conditional assembly block .
Defines end of macro definition, repeat block, or
indefinite repeat block.
Defines end of current repeat block (provided for
compatibility with other PDP-11 assemblers).
Define End of Tape condition (ignored) .
Outputs diagnostic message to listing file or
command output device.
Word-aligns the current location counter .
Causes two words of storage to be generated for
each floating-point argument.
Causes four words of storage to be generated for
each floating-point argument.
Declares global attribute for specified symbol(s) .
Labels object module with specified program
version number.
Begins conditional assembly block .
Begins subconditional assembly block (if
conditional assembly block test is false).
Begins subconditional assembly block (if
conditional assembly block test is true).
Begins subconditional assembly block (whether
conditional assembly block test is true or false).
Assembles immediate conditional assembly statement
(if specified condition is satisfied).
Begins indefinite repeat block; replaces
specified symbol with specified successive real
arguments.
Begins indefinite repeat block; replaces
specified symbol with value of successive
characters in specified string.
Reserves two words of storage for high and low
addresses of task image.
Controls listing level count and format of
assembly listing. .MACRO Denotes start of macro
definition.
Identifies required macro definition(s) for
assembly.
Exit from current macro definition or indefinite
repeat block.
Equates specified symbol to the number of
arguments in the macro expansion.
Equates specified symbol to the number of
characters in the specified character string.
Controls listing level count and suppresses
specified portions of the assembly listing.
Equates specified symbols to the addressing mode
of the specified argument.
Byte-aligns the current location counter .
Advances form to top of next page .
Prints specified message on command output device .
Begins specified program section having specified
attributes.
Changes current program radix to specified radix .
Generates data block having Radix-50 equivalents
of specified character string.

C-5

DIRECTIVE

.REPT

.SBTTL

.TITLE

.WORD

PERMANENT SYMBOL TABLE (PST)

FUNCTIONAL SIGNIFICANCE

Begins repeat block and replicates it according to
the value of the specified expression.
Prints specified subtitle text as the second line
of the assembly listing page header.
Prints specified title text as object module name
in the first line of the assembly listing page
header.
Generates successive word data in accordance with
specified arguments.

The MACR0-11 directives listed above are summarized in greater detail
in Appendix B.

C-6

APPENDIX D

DIAGNOSTIC ERROR MESSAGE SUMMARY

D.l MACR0-11 ERROR CODES

A diagnostic error code is printed as the first character in the
source line which contains an error detected by MACR0-11. This error
code identifies a syntactical problem or some other type of error
condition detected during the processing of a source line. An example
of such a source line is shown below:

Q 26 000236 010102 MOV Rl,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code

A

Meaning

Assembly error. Because many different types of
error conditions produce this diagnostic message,
all the possible directives which may yield a
general assembly error have been categorized below
to reflect specific classes of error conditions:

CATEGORY 1: ILLEGAL ARGUMENT SPECIFIED .

. RADIX -- A value other than 2, 4, 8, or 10 is
specified as a new radix .

. LIST/.NLIST -- Other than a legally defined
argument (see Table 6-1) is specified with the
directive .

. ENABL/.DSABL -- Other than a legally defined
argument (see Table 6-2) is specified with the
directive .

. PSECT -- Other than a legally-defined argument
(see Table 6-3) is specified with the
directive.

D-1

Error Code

A
(Cont'd)

GIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

.IF/.IIF -- Other than a legally defined
conditional test (see Table 6-5) or an illegal
argument expression value is specified with the
directive.

CATEGORY 2: NULL ARGUMENT OR SYMBOL SPECIFIED .

. TITLE -- Program name is not specified in the
directive, or first non-blank character
following the directive is a non-Radix-SO
character .

. IRP/.IRPC -- No dummy argument is specified in
the directive .

. NARG/.NCHAR/.NTYPE -- No symbol is specified
in the directive •

. IF/.IIF -- No conditional argument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT
CONSTRUCTION .

. ASCII/.ASCIZ/.RADSO/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive •

. NCHAR -- Character string delimiters do not
match, or an illegal character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction,
i.e., from -128(10) to +127(10) words, has
been exceeded.

2. A statement makes invalid use of the
current location counter, e.g., a
•
1

• =expression 11 statement attempts to force
the current location counter to cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression. In cases where an absolute
address expression is required, specifying
a global symbol, a relocatable value, or a
complex relocatable value (see section 3.9)

D-2

Error Code

A
(Cont'd)

B

D

E

I

L

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

results in an invalid address expression.
Similarly, in cases where a relocatable
address expression is required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
likewise results in an invalid address
expression. Specific cases of this type of
error are those which follow:

.BLKB/.BLKW/.REPT -- Other than an absolute
value or an expression which reduces to an
absolute value has been specified with the
directive.

4. Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

1. A global assignment
(symbol==expression) contains
reference to another symbol.

statement
a forward

2. An expression defining the value of the
current location counter contains a forward
reference.

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, MACR0-11 generates
this error code, ends assembly pass 1, and
proceeds with assembly pass 2.

Illegal character detected. Illegal characters
which are also non-printable are replaced by a
question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(10) characters in
length. Currently, this error condition is caused
only through excessive substitution of real
arguments for dummy arguments during the expansion
of a macro.

D-3

Error Code

M

N

0

p

Q

R

T

u

z

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

Multiple definition of a label was encountered
which was equivalent (in the first six characters)
to a label previously encountered.

A number contains a digit that is not in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. A P error code
also appears if an .ERROR directive is assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
.BYTE directive or trap (EMT or TRAP) instruction.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression) statement
which contains a forward reference to a symbol
whose definition also contains a forward
reference; also, a local symbol may have been
referenced that does not exist in the current
local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-11
family.

D-4

APPENDIX E

SAMPLE CODING STANDARD

E.l INTRODUCTION

Standards eliminate variability and the requirement to make a
decision. Much of the difficulty in establishing standards stems from
the notion that they should be optimal. However, to be successfully
applied, standards must represent an agreement on certain aspects of
the programming process.

This Appendix contains Digital's PDP-11 Program Coding Standard. It
is suggested that this be used as a model to assist users in preparing
standards for their own installations.

E.2 LINE FORMAT

All source lines shall consist of from one to a maximum of eighty
characters (not including ;**DDDD**, or ;**NEW** added by the SLIPR
(SLP in RSX-llM) editor. This program is described in the applicable
RSX-llM or RSX-llD utilities manual or in the IAS Editing Utilities
Reference Manual (see section 0.3 in the Preface).

Assembly language code lines shall have the following format:

1. Label Field - if present; the label shall start at tab stop 0
(column 1).

2. Operation field - the operation field shall start at tab stop
1 (column 9).

3. Operand field - the operand field shall start at tab stop 2
(column 17).

4. Comments field - the comments field shall start at tab stop 4
(column 33) and may continue to column 80.

Comment lines that are included in tbe code body shall be delimited by
a line containing only a leading semicolon. The comment itself
contains a leading semicolon and starts in column 3. Indents shall be
1 tab.

If the operand field extends beyond tab stop 4 (column 33) simply
leave a space and start the comment. Comments which apply to an
instruction but require continuation should always line up with the
character position which started the comment.

E-1

SAMPLE CODING STANDARD

E.3 COMMENTS

Comment all coding to convey the global role of an instruction, rather
than simply a literal translation of the instruction into English. In
general this will consist of a comment per line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments must immediately precede that section of
code.

Preface text, which describes formats, algorithms, program-local
variables, etc., will be delimited by the character sequence·;+ at the
start of the text and ;- at the end; these delimiters facilitate
automated extraction of narrative commentary. The comment itself will
start in column 3.

For example:

;+

;-

THE INVERT ROUTINE ACCEPTS
A LIST OF RANDOM NUMBERS AND
APPLIES THE KOLMOGOROV ALGORITHM
TO ALPHABETIZE THEM.

E.4 NAMING STANDARDS

E.4.1 Register Standards

E.4.1.1 General Purpose Registers - Only the
permitted as register names; and may not
purpose:

;REG 0
;REG 1
;REG 2
;REG 3
;REG 4
;REG 5

following names are
be used for any other

R0=%0
Rl=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

;STACK POINTER (REG 6)
;PROGRAM COUNTER (REG 7)

E.4.1.2 Hardware Registers - These
identically to the hardware definition.

registers must be named
For example, PS and SWR.

E.4.1.3 Device Registers - These are symbolically named identically
to the hardware notation. For example, the control status register
for the RK disk is RKCS. Only this symbolic name may be used to refer
to this register.

E-2

I

SAMPLE CODING STANDARD

E.4.2 Processor Priority

Testing or altering the processor priority is done using the symbols

PRO, PRl, PR2, PR7

which are equated to their corresponding priority bit pattern.

E.4.3 Other Symbols

Frequently-used bit patterns such as CR and LF will be
conventional symbolics on an as-needed basis.

E.4.4 Using the Standard Symbolics

made

The register standards will be defined within the assembler. All
other standard symbols will appear in a file and will be linked prior
to program execution.

E.4.5 Symbols*

E.4.5.1 Global Symbols - Global symbols should be easily recognized
by their format. The following standards apply and completely define
symbol standards for PDP-11 Medium/Large software products.

symbol pos-1 pos-2 pos-3 pos-4 pos-5 pos-6 length

non-glbl-sym letter a-nuM/ a-nurn/ a-nurn/ a-num/ a-num/ >=l
null null null null null

,...., \..., -""~""' ~I a-num/ a-nu.11\/ a-num/ a-nu..rn/ a-nu..rn/ >=l ':;j..L..L>..L.-<=>:t><• "r' / •

null null null null null

glbl-off set letter $/. a-num a-nurn/ a-nurn/ a-nurn/ >=3
null null null

glbl-bit-ptrn letter a-nurn $/. a-num/ a-nurn/ a-nurn/ >=4
null null

local-sym number $ >=2
*

E-3

SAMPLE CODING STANDARD

where:

a-num
non-glbl-sym
local-sym

glbl-sym
glbl-offset

glbl-bit-ptrn

is an alphanumeric character.
are non-global symbols.
local symbols, as defined by
MACR0-11.
are global symbols (addresses).
are global offsets (absolute
quantities).
are global bit patterns.

A program never contains a .GLOBL statement without showing cause.

E.4.5.2 Symbol Examples

Non-Global Symbols

AlB

ZXCJl

INS RT

Global Address Symbols

$JIM

.VECTR

$SEC

Global Absolute Offset Symbols

A$JIM

A$XT

A.ENT

Global Bit Pattern Symbols

Al$20

B3.6

JI.M

Local Symbols

37$

271$

6$

* Symbols that are branch targets are also called labels, but we will
al ways use the term "symbol 1

1
•

** Number is in the range O<number<65535.

E-4

SAMPLE CODING STANDARD

E.4.5.3 Program-local Symbols - Self-relative address arithmetic
(.+n) is absolutely forbidden in branch instructions; their use in
other contexts must be avoided if at all possible and practical.

Target symbols for branches that exist solely for positional reference
will use local symbols of the form

<num>$:

Use of non-local symbols is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4.5.4 Macro Names - The last two characters (with the last
character possibly being null) have special significance. The next to
last character is a $, the last, a character specifying the mode of
the macro.

For example, in the three macro forms in-line, stack, and p-section,
the in-line form has no suffix, the stack has an <S>, and the
p-section a <C>. Thus the Queue I/O Macro can be written as any of

QIO$

QI0$S

QI0$C

depending on the form required. These are not reserved letters. Only
the form of the name is standard.

E.5 PROGRAM MODULES

E.5.1 General Comments on Programs

In our software, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than lK a rarity. Since any software may eventually
exploit the virtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (don't
promiscuously branch over page boundaries or over a large absolute
address distance).

All code is read-only.
contains explanatory
read-write data.

Code and data areas are distinct and each
text. Read-only data should be segregated from

E.5.2 The Module Preface

Each program module in the system shall exist as a separate file. The
file name will reflect the name of the module and the file extension
shall be of the form 'NNN'. The 'NNN' signifies the edit number or

E-5

SAMPLE CODING STANDARD

the version number. The version number shall be changed only when a
new base level is created. Furthermore, if no corrections are made to
a file from one base level to the next, the version number will not be
changed. The availability of File Control Services and File Control
Primitives will greatly simplify version number maintenance. Program
modules adhere to a strict format. This format adds to the
readability and understandability of the module. The following
sections are included in each module:

For the Code Section:

1. A .TITLE statement that specifies the name of the module. If
a module contains more than one routine, subtitles may be
used.

2. An .!DENT statement specifying the version number. The
PDP-11 version number standard appears in section E.10.

3. A .PSECT statement that defines the program section in which
the module resides.

4. A copyright statement, and the disclaimer.

Copyright 1975, Digital Equipment Corp., Maynard,
Mass.

This software is furnished to purchaser under a
license for use on a single computer system and can
be copied (with inclusion of DEC's copyright notice)
only for use in such system, except as may otherwise
be provided in writing by DEC.

The information in this document is subject to change
without notice and should not be construed as a
commitment by Digital Equipment Corporation.

DEC assumes no responsibility for the use or
reliability of its software on equipment which is not
supplied by DEC.

5. The version number of the file.

The PDP-11 version number standard is described in section
E.10.

6. The name of the principal author and the date on which the
module was first created.

7. The name of each modifying author and the date of
modification. Names and modification dates appear one per
line and in chronological order.

8. A brief statement of the function of the module.

Note: Items 1-8 should appear on the same page.
9. A list of the definitions of all equated local symbols used

in the module. These definitions appear one per line and in
alphabetical order.

10. All local macro definitions, preferably in alphabetical order
by name.

E-6

SAMPLE CODING STANDARD

11. All local data. The data should indicate

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

12. A more detailed definition of the function of the module.

13. A list of the inputs expected by the module.
the calling sequence if non-standard,
settings, and global data settings.

This includes
condition code

14. A list of the outputs produced as a result of entering this
module. These include delivered results, condition code
settings, but not side effects. (All these outputs are
visible to the caller.)

15. A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations
in the state of the system not explicitly expected in the
calling sequence, or those not visible to the caller.

16. The module code.

E.5.3 Formatting the Module Preface

Rules:

1. The first eight items appear on the same page and will not
have explicit headings. Item 3 may be omitted if the blank
p-section is being used.

2. Headings start at the left margin*;
indented 1 tab position.

descriptive text is

3. Items 7-14 will have headings which start at the left margin,
preceded and followed by lines containing only a leading <;>.
Items which do not apply may be omitted.

A template for the module preface follows.

FILE-EXAMPL.SOl

.TITLE

.IDENT

.PSECT

COPYRIGHT

EXAMPLE
/01/
KERNEL

1975, DIGITAL EQUIPMENT CORP., MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT

*The left margin consists of a <;> a <space> then the heading, so the
text of the heading begins in column 3.

E-7

SAMPLE CODING STANDARD

AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY
OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

VERSION 01

JOE PASCUSNIK l-JAN-72

MODIFIED BY:

RICHARD DOE 2l~JAN-73

SPENCER THOMAS 12-JUN-73

Brief statement of the module's function

EQUATED SYMBOLS

List equated symbols

LOCAL MACROS

Local Macros

LOCAL DATA

Local data

;+
Module function-details

INPUTS:

Description of inputs

OUTPUTS:

Description of outputs

EFFECTS:

Description of effects
;-

Begin Module Code

E.5.4 Modularity

No other characteristic has more impact on the ultimate engineering

E-8

SAMPLE CODING STANDARD

success of a system than does modularity. Modularity for PDP-11
Medium/Large Software· Engineering's products consists of the
application of the single-function philosophy described in section
E.5.1, and adherence to a set of calling and return conventions.

E.5.4.1 Calling Conventions (Inter-Module) - The following calling
conventions must be observed.

Transfer of Control

Macros will exist for call and return. The actual transfer will
be via a JSR PC instruction. For register save routines, a
JSR Rn,SAVE will be permitted.

The CALL macro is:

CALL subr-name

The RETURN macro is:

RETURN

Register Conventions

On entry, a subroutine minimally saves all registers it intends
~o alter except result registers. On exit it restores these
registers. (State preservation is assumed across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent
pattern. For example; if passing three arguments, pass them in
RO, Rl and R2 rather than RO, R2, RS. Saving and restorinq
occurs in one place.

E.5.4.2 Exiting - All subroutine exits occur through a single RETURN
macro.

E.5.4.3 Intra-Module Calling Conventions - Designer optional, but
consistency favors a calling sequence identical to that of the
inter-module sequence.

E.5.4.4 Success/Failure Indication - The C bit will be used to
return the success/failure indicator, where success equals 0, and
failure equals 1. The argument registers can be used to return values
or additional success/failure data.

E.5.4.5 Module Checking Routines - Modules are responsible for
verifying the validity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks durinq checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E-9

SAMPLE CODING STANDARD

E.6 FORMATTING STANDARDS

E.6.1 Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

For example:

PROCESS

BBB AAA

COMMON

shall appear on the listing as:

TST
BNE BBB

AAA:

BR CMN
BBB:

CMN:

Rather than:

TST
BNE BBB

AAA:

CMN:

BBB:

BR CMN
E-10

SAMPLE CODING STANDARD

E.6.2 Common Exits

A common exit appears as the last code sequence on the listing. Thus
the flow chart:

1 0 3 4

EXIT --- -

will appear on the listing as:

PRl:

BR EXIT

PR2:

BR EXIT

PR3:

BR EXIT

PR4:

EXIT:

And not as:

PRl:

EXIT:

PR2:

BR EXIT

PR3:

BR EXIT

PR4:

BR EXIT

E-11

SAMPLE CODING STANDARD

E.6.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited, shall be flagged by a
three semi~colon (;;;) comment delimiter. For example:

.. ERTZ: ;ENABLE BY RETURNING
;BY SYSTEM SUBROUTINES,

10$:

BIS
BI'I'
BEQ
RTT

#PR7,PS
#PR7,+2(SP)
10$

; ; ;
I I I

; ; ;
; ; ;
I I I

; ; ;
, , !

; ; ;
; ; ;

INHIBIT INTERRUPTS
c

0
M

M
E

N
'I'
s

E.7 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A base
level is defined as a point at which the program source files have
been frozen. From the freeze point to the next base level,
corrections will not be made directly to the base level itself.
Rather a file of corrections shall be accumulated for each file in the
base level. Whenever an updated source file is desired, the
correction file will be applied to the base file.

The accumulation of corrections shall proceed until a logical breaking
point has occurred (i.e. a milestone or significant implementation
point has been reached). At this time all accumulated corrections
shall be applied to the previous base level to create a new base
level. Correction files will then be started for the new base level.

E.8 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as literals of the
previous instruction. For example:

2.

MOV @PC,Register

BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. In this case @PC is a D bank reference.

The use of the MOV instruction instead of a
to transfer program control to another
example:

MOV #ALPHA,PC

E-12

JMP instruction
location. For

SAMPLE CODING STANDARD

transfers control to location ALPHA. Besides taking longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control
take place. What if one would like to get a jump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, perhaps even other operations such as
ADD and SUB from PC should be discouraged. Possibly one or
two words can be saved by using these operations but how many
such occurrences are there?

3. The seemingly 11 neat" use of all single word instructions
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction sequence:

CMP -(Rl),(-Rl)

CMP -(Rl) ,-(Rl)

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space. Another question here is also, what if Rl
is odd? SUB always wins since it will always execute
properly and is always faster!

E.9 RECOMMENDED CODING PRACTICE

E.9.1 Conditional Branches

When using the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED

BGE
BLT
BGT
BLE

UNSIGNED

BHIS (BCC)
BLO
BHI
BLOS (BCS)

A common pitfall is to use a signed branch (e.g. BGT) when comparing
two memory addresses. All goes well until the two addresses have
opposite signs; that is, one of them goes across the 16K (100000(8))
bound. This type of coding error usually shows itself as a result of
re-linking at different addresses and/or a change in size of the
program.

E.10 PDP-11 VERSION NUMBER STANDARD

The PDP-11 Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written or caused to

E-13

SAMPLE CODING STANDARD

be written, as part of the PDP-11 Software Development effort. It is
used to provide unique identification of all released, pre-released,
and in-house software.

It is limited in that, as currently specified, only six characters of
identification are used. Future implementations of the Macro
Assembler, Task Builder, and Librarian should provide for at least
nine characters, and possibly twelve. It is expected that this
standard will be enhanced as the need arises.

Version Identifier = <form> <version> <edit> <patch>

<form>

<version>

<edit>

<patch>

Used to identify a particular form of a module or
program, where applicable, as in the case of
LINK-11. One alphabetic character, if used, and
null (i.e., a binary 0) if not used.

Used to identify the release, or generation, of a
program. Two decimal digits, starting at 00, and
incremented at the discretion of the project in
order to reflect what, in their opinion, is a
major change.

Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit is defined to be an
alteration to the source form. Two decimal
digits, beginning at 01, and incremented with each
edit; null if no edits.

Used to identify the level to which a particular
release, or generation, of a program or module has
been patched. A patch is defined as an alteration
to a binary form. One ·alphabetic character,
starting at B, and running sequentially toward Z,
each time a set of patches is released; null if
no patches.

These fields are inter-related. When <version> is changed, then
<patch> and <edit> must be reset to nulls. It is intended that when
<edit> is incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.10.1 Displaying the Version Identifier

The visible output of the version identifier should appear as:

Key <letter> <form> <version> - <edit> <patch>,

where the following Key Letters have been identified:

V released or frozen version
X in-house experimental version
Y 'field test, pre-release, or in-house release version

Note that 'X' corresponds roughly to individual support, 'Y' to group
support, and 'V' to company support.

The dash which separates <version> from <edit> is used only if <edit>

E-14

SAMPLE CODING STANDARD

and/or <patch> is not null. When a version identifier is displayed as
part of program identification, then the format is:

Name

Examples:

<space><key-letter><form><version>-<edit><patch>

PIP X03
LINK VB04-C
MACRO YOS-01

E.10.2 Use of the Version Number in the Program

All sources must contain the version number in an .IDENT directive.
For programs (or libraries) which consist of more than one module,
each individual module will follow this version number standard. The
version number of the program or library is not necessarily related to
the version numbers of the constituent modules; it is perfectly
reasonable, for example, that the first version of a new FORTRAN
library, VOO, contain an existing SIN routine, say VOS-01.

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs, e.g.,
the FORTRAN Library, will have an identification module in the first
position. An identification module exists solely to provide
identification, and normally consists of something like:

;OTS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

E-15

APPENDIX F

CONSERVING DYNAMIC MEMORY

This appendix is intended for the MACR0-11 user who experiences the
difficulty of not having sufficient dynamic memory available to
complete the desired assemblies. Users of smaller systems,
particularly those with the SK subset version of MACR0-11, should
become thoroughly familiar with the conventions discussed herein. In
this regard, Appendix F addresses the following topics:

1. General hints and space-saving guidelines;

2. Macro definitions and expansions; and

3. Operational techniques.

The user is assumed to have pursued a policy of modular programming,
as advised in Appendix E. In addition to the obvious advantages
accruing from small, distinct, highly-functional bodies of code, one
can usually avoid the problem of insufficient dynamic memory during
assembly by practicing such a policy. Other suggestions as to how
available memory can be best utilized are discussed in the following
sections.

F.l GENERAL HINTS AND SPACE-SAVING GUIDELINES

Dynamic memory is shared by MACRO-ll's internal stack and a number of
tables, each of which is allocated space on demand. The tables and
their corresponding entry sizes are, as follows:

1. User-defined symbols - four words.

2. Local symbols - three words.

3. Program sections - five words.

4. Macro names - three words.

5. Macro text - eight words.

6. Source files - five words.

In addition, several scratch pad tables are used during the assembly
process, as follows:

1. Expression analysis - four words.

F-1

CONSERVING DYNAMIC MEMORY

2. Object code generation - four words.

3. Macro argument processing - two words.

4. .MCALL argument processing - four words.

The above information can serve as
storage requirements and for
requirements.

a guide for estimating dynamic
determining ways to reduce such

For example, the use of local symbols whenever possible is highly
encouraged, since their internal representation requires 25% less
dynamic storage than that required for regular user-defined symbols.
The usage of local symbols can often be maximized by extending the
scope of local symbol blocks through the .ENABL LSB/.DSABL LSB
MACR0-11 directives (see sections 3.5 and 6.2).

Since MACR0-11 does not support a purge function, once a symbol is
defined, it permanently occupies its dynamic memory allocation.
Numerous instances occur during conditional assemblies and repeat
loops when a temporarily assigned symbol is used as a count or offset
indicator. If possible, the symbols so used should be re-used.

In keeping with the same principle, special treatment should be given
to the definition of commonly-used symbols. In lieu of simply
appending a pref ix file which defines all possibly-used symbols for
each assembly, users are encouraged to group symbols into logical
classes. Each class so grouped can then become a shortened prefix
file or a macro in a library (see section F.2 below). In either case,
selective definition of symbolic assignments is achieved, resulting in
fewer defined (but unreferenced) symbols.

An appropriate example of this idea is seen in the definition of
standard symbols. The system macro library, for example, supplies
several macros used to define distinct classes of symbols. These
groupings and associated macro names are, as follows:

DRERR$ - Directive return status codes

IOERR$ - I/O return status codes

FILIO$ - File-related I/O function codes

SPCI0$ - Special I/O function codes

F.2 MACRO DEFINITIONS AND EXPANSIONS

By far, dynamic storage is used most heavily for the storage of macro
text. Upon macro definition or the issuance of an .MCALL directive,
the entire macro body is stored, including all comments appearing in
the macro definition. For this reason, comments should not be
included as part of the macro text. An RSX-11 utility prooram (called
SQZ for RSX-IlD only) and a Librarian function switch- (fSZ-for RSX-llM
only) are available to compress macro source text by removing all
trailing blanks and tabs, blank lines, and comments. The system macro
library (RSXMAC.SML) has already been compressed. It is recommended
that user-supplied macro libraries (.MLB) and macro definition prefix
files also be compressed. For additional information regarding these
two utility tasks, consult the applicable RSX-llM or RSX-llD utilities
manual (see section 0.3 in the Preface).

F-2

CONSERVING DYNAMIC MEMORY

It often seems expedient to append a macro definition prefix file to
each assembly to provide commonly-used macros. This practice,
however, may produce the undesirable allocation of valuable dynamic
storage for unnecessary macros. This side effect can be avoided by
specifying that the pref ix file containing the macros is a
user-supplied macro library file (see Table 8-1). This action imposes
the stipulation that the names of all desired macros must be listed as
arguments in the .MCALL directive (see section 7.8).

Storage for macro text can be re-used effectively by redefining
certain types of macros to null after they have been invoked. This
practice releases their dynamic memory for the storage of later macro
text and also eliminates the overhead and the need for dynamic memory
which would otherwise be required during the subsequent invocation and
expansion of such non-redefined macros. The practice of redefining
macros to null applies mainly to those that only define symbolic
assignments, as shown in the example below. The redefinition process
may be accomplished as follows:

SY Ml
SYM2

OF Fl
OFF2
OFF3

OFFN

.MACRO DEFIN
VALl
VAL2

SYMBOL
OFFl+SIZl
OFF2+SIZ2

OFFM+SIZM

. MACRO DEFIN

.ENDM

.ENDM DEFIN

;DEFINE SYMBOLIC ASSIGNMENTS.

;DEFINE SYMBOLIC OFFSETS.

;MACRO NULL REDEFINITION .

Macros exhibiting this redefinition property should be defined (or
read via the .MCALL directive) and invoked before all other macro
definition and/or .MCALL processing. So doing ensures more efficient
use of dynamic memory.

The following system macros have the automatic null redefinition
property after once being invoked:

DRERR$ - Directive return status codes

IOERR$ - I/O return status codes

FILIO$ - File-related I/O function codes

SPCIO$ - Special I/O function codes

CSI$ - Command String Interpreter codes and offsets

GCMLD$ - Get Command Line codes and offsets

BDOFF$ - FCS buffer descriptor offsets

F-3

CONSERVING DYNAMIC MEMORY

FCSBT$ - FCS bit value codes

FDOFF$ - FCS file descriptor block offsets

FSROF$ - FCS file storage region (FSR) offsets

NBOFF$ - FCS filename block offsets

MACR0-11 has a limited ability to recover from the condition of
insufficient dynamic memory. When this condition occurs, MACR0-11
attempts to re-use dynamic memory by purging all macro definitions not
currently being expanded. (This applies only to macros defined via
the .MCALL directive or to macros defined at source level from a file
on a non-sequential, directory device. Macros defined inside other
macros are excluded.) Once purged, a macro definition will be
retrieved from its source on demand. Furthermore, it will remain in
memory until the dynamic memory reclamation process is again
initiated.

Keeping this in mind, users are advised to relax the absolute macro
storage requirments by limiting the number and size of nested macro
calls. Furthermore, since many of the system-supplied File Control
Services (FCS) macros contain a number of deeply-nested calls, it is
strongly suggested that they be invoked only at the source level.

F.3 OPERATIONAL TECHNIQUES

When, despite adhering to the guidelines discussed above, there is
still insufficient dynamic memory to continue, several additional
measures may be taken to complete the assembly process, as described
below.

The first measure involves shifting the burden of symbol definition
from MACR0-11 to the Task Builder. In most cases, the definition of
system I/O and FCS symbols (and user-defined symbols of the same
nature) is not necessary during the assembly process, since such
symbols are defaulted to global references (see section 3.9 and
section D.l, category 4 of error code A). The Task Builder attempts
to resolve all global references from the system object library
(SYSLIB.OLB). Furthermore, by applying the selective search option
for object modules consisting only of global symbol definitions, the
actual additional burden to the Task Builder is minimal.

A second way of making more dynamic memory available is to produce
only one output file (either object or listing), as opposed to two.
The additional file descriptor block (FDB) and file storage region
(FSR) required to support the second output file is allocated from
available dynamic memory at the start of each assembly. Furthermore,
the size of the file storage region allocated is the minimum required
for the second (listing) output file. For disk files, this would be
264(10) words, and for direct line printer output, it would be 74(10)
words.

The final way of increasing available dynamic memory is related only
to the operating environment. Under RSX-llM, MACR0-11 allocates all
storage between its highest address and the end of its partition as
dynamic memory. Consequently, the amount of working storage can be
increased by installing and running MACR0-11 in a larger partition.
An alternate method of accomplishing this in RSX-llM only, is to issue

F-4

CONSERVING DYNAMIC MEMORY

the MCR Set command, which alters the size of a system's partition
(see the RSX-llM Operator's Procedures Manual). In IAS and RSX-llD,
the assembler's dynamic memory is fixed at link time. If a larger
assembler is not available; you may build one by increasing the size
of the task's stack. This is accomplished by altering the STACK=
option in the command file to build MACR0-11.

F-5

APPENDIX G

FEATURES/FUNCTIONS NOT SUPPORTED BY THE RSX-llM 8K ASSEMBLER

ITEM

Search of PST in operand expressions

AF unary operator

Z error code

.ENABL, .DSABL Symbolic Arguments:
ABS
CDR
FPT
LC
PNC

Floating-point Storage Directives:
.FLT2
.FLT4

PAL-llR Conditional Assembly Directives

.EOT directive

More than one level of indirect command files

No PDP-11/45/70-0nly Opcodes

G-1

REFERENCE

3.2.2

3.7 and
6.4.2.2

5.3

6.2
6.2
6.2
6.2
6.2

6.4.2.1
6.4.2.l

6 .11. 3

6.6.2

8.1.1.5

C.l

APPENDIX H

WRITING POSITION INDEPENDENT CODE

The output of a MACR0-11 assembly is a relocatable object module. The
Task Builder binds one or more modules together to create an
executable task image. Once built, a task can generally be loaded and
executed only at the virtual address specified by the Task Builder at
link time. This is because the Task Builder has had to modify some
instructions to reflect the memory locations in which the program is
to run. Such a body of code is considered position-dependent (i.e.,
dependent on the virtual addresses to which it was bound).

All PDP-11 processors offer addressing modes that make it possible to
write instructions that are not dependent on the virtual addresses to
which they are bound. A body of such code is termed
position-independent and can be loaded and executed at any virtual
address.

In multiprogramming systems like IAS, RSX-llD and RSX-llM, it is
important that many tasks be able to share a single physical copy of
common code; for example a library routine. To make the optimum use
of a task's virtual address space, shared code should be
position-independent. Code that is not position-independent can also
be shared, but it must appear in the same virtual locations in every
task using it. This restricts the placement of such code by the Task
Builder and can result in the loss of virtual addressing space.

Position-independent code can improve system efficiency, both in use
of virtual address space and in conservation of physical memory.

The construction of position-independent code is closely linked to the
proper usage of PDP-11 addressing modes. The remainder of this
Appendix assumes reader familiarity with the addressing modes
described in Chapter 5.

All addressing modes
position-independent.

involving only register
These modes are as follows:

R
(R)
(R)+

@(R)+
-(R)

@-(R)

register mode
deferred register mode
autoincrement mode
deferred autoincrernent mode
autodecrement mode
deferred autodecrement mode

references are

When using these addressing modes, position-independence is guaranteed
providing the contents of the registers have been supplied such that
they are not dependent upon a particular virtual memory location.

H-1

WRITING POSITION INDEPENDENT CODE

The relative addressing modes are
relocatable address is referenced
These modes are as follows:

position-independent when a
from a relocatable instruction.

A
@A

relative mode
relative deferred mode

Relative modes are not position-independent when an absolute address
(that is a non-relocatable address) is referenced from a relocatable
instruction. In this case, absolute addressing (i.e., @#A) may be
employed to make the reference position-independent.

Index modes can be either position-independent or position-dependent,
according to their use in the program. These modes are as follows:

X(R)
@X(R)

index mode
index deferred mode

If the base, X, is an absolute value (e.g., a control block offset),
the reference is position-independent. For example:

MOV 2(SP),RO ;POSITION-INDEPENDENT
N=4

MOV N(SP) ,RO ;POSITION-INDEPENDENT

If, however, X is
position-dependent.

a relocatable
For example:

address, the

CLR ADDR(Rl) ;POSITION-DEPENDENT

reference is

Immediate mode can be either position-independent or not, according to
its usage. Immediate mode references are formatted as follows:

#N immediate mode

When an absolute expression defines the value of N, the code is
position-independent. When a relocatable expression·defines N, the
code is position-dependent. That is, immediate mode references are
position-independent only when N is an absolute value.

Absolute mode addressing is position-independent only in
where an absolute virtual location is being referenced.
addressing references are formatted as followed:

@#A absolute mode

those cases
Absolute mode

An example of a position-independent absolute reference is a reference
to the directive status word ($DSW) from a relocatable instruction.
For example:

MOV @#$DSW,RO ;RETRIEVE DIRECTIVE STATUS

The RSX-11 library routine, PWRUP, is a FORTRAN callable subroutine to
establish or remove a user power failure AST entry point address.
Imbedded within the routine is the actual AST entry point which saves
all registers, effects a call to the user-specified entry point,
restores all registers on return, and executes an AST exit directive.
The following examples are excerpts from this routine. The first
example has been modified to illustrate position-dependent references,
(see Figure H-1). The second example, Figure H-2, is the
position-independent version.

H-2

PWRUP::

10$:

20$:

BA:

PWRUP::

10$:

20$:

CLR
CALL

.WORD
MOV
MOV
BNE
CLR
BR

MOV
MOV

CALL
. BYTE

MOV
MOV
MOV

CLR
CALL
. WORD
MOV
MOV
BNE
CLR
BR

MOV
MOV
ADD

CALL
. BYTE

WRITING POSITION INDEPENDENT CODE

-(SP)
.X.PAA

1., $DSW
$0TSV,R4
(SP) +,R2
10$
-(SP)
20$

R2,F.PF(R4)
#BA,-(SP)

. X.EXT
109.,2 .

RO,-(SP)
Rl,-(SP)
R2,-(SP)

;ASSUME SUCCESS
;PUSH (SAVE) ARGUMENT ADDRESSES
;STACK
;CLEAR DSW, AND SET Rl=R2=SP
;GET OTS IMPURE AREA POINTER
;GET AST ENTRY POINT ADDRESS
;IF NONE SPECIFIED, SPECIFY NO
;RECOVERY AST SERVICE

;
;SET AST ENTRY POINT
;PUSH AST SERVICE
;
;ISSUE DIRECTIVE,

;PUSH (SAVE) RO
;PUSH (SAVE) Rl
;PUSH (SAVE) R2

ADDRESS

EXIT .

Figure H-1
Position-Dependent Code

-(SP) ;ASSUME SUCCESS

ONTO

POWER

.X.PAA ;PUSH ARGUMENT ADDRESSES ONTO STACK
1., $DSW ;CLEAR DSW, AND SET Rl=R2=SP .
@#$0TSV,R4 ;GET OTS IMPURE AREA POINTER
(SP)+,R2 ;GET AST ENTRY POINT ADDRESS
, I"\,... ;IF NONE SPECIFIED, SPECIFY l\lf'I POWER .l u .:;> J.~V

-(SP) ;RECOVERY AST SERVICE
20$

R2,F.PF(R4) ;SET AST ENTRY POINT
PC,-(SP) ;PUSH CURRENT LOCATION
#BA-.,(SP) ;COMPUTE ACTUAL LOCATION OF AST

.X.EXT ;ISSUE DIRECTIVE, EXIT.
109. ,2 .

ACTUAL AST SERVICE ROUTINE:

;
BA:

1) SAVE REGISTERS
2) EFFECT A CALL TO SPECIFIED SUBROUTINE
3) RESTORE REGISTERS
4) ISSUE AST EXIT DIRECTIVE

MOV
MOV
MOV

RO,-(SP)
Rl,-(SP)
R2,-{SP)

;PUSH (SAVE) RO
;PUSH (SAVE) Rl
;PUSH (SAVE) R2

Figure H-2
Position-Independent Code

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($0TSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by the Task

H-3

WRITING POSITION INDEPENDENT CODE

Builder to fixed memory locations. Therefore, the routine will not
execute properly as part of a resident library if its location in
virtual memory is not the same as the location specified at link time.

In the position-independent version, the reference to $0TSV has been
changed to an absolute reference. In addition, the necessary code has
been added to compute the virtual location of BA based upon the value
of the program counter. In this case, the value is obtained by adding
the value of the program counter to the fixed displacement between the
current location and the specified symbol. Thus, execution of the
modified routine is not affected by its location in the task's virtual
address space.

The MACR0-11 Assembler provides the user with a way of checking the
position-independence of code. In an assembly listing, MACR0-11
inserts a ' character following the contents of any word which
requires the Task Builder to perform a relocation operation. In some
cases this character indicates a position-dependent instruction; in
other cases, It merely draws the user's attention to the use of a
symbol which may or may not be position-independent. The cases which
cause a character to be inserted in the assembly listing are as
follows:

1. Absolute mode references are flagged with an ' character when
the reference is relocatable, References are not flagged when
they are position-independent (i.e., absolute). For example:

MOV @#ADDR,Rl ;PIC ONLY IF ADDR IS ABSOLUTE.

2. Index and index deferred mode references are flagged with an
' character when the offset is relocatable. For example:

MOV
MOV

ADDR(Rl) ,RS
@ADDR(Rl) ,RS

;NON-PIC IF ADDR IS RELOCATABLE.
;NON-PIC IF ADDR IS RELOCATABLE.

3. Relative and relative deferred mode references are flagged
with an ' character when the address specified is relocatable
with respect to another program section. For example:

MOV
MOV

ADDRl,Rl
@ADDRl,Rl

;NON-PIC WHEN ADDRl IS BOUND
;TO ANOTHER PROGRAM SECTION

4. Immediate mode references to relocatable addresses are always
flagged with an ' character.

MOV
MOV

#3,RO
#ADDR,Rl

;ALWAYS POSITION-INDEPENDENT.
;NON-PIC WHEN ADDR IS RELOCATABLE.

There is one case in which the MACR0-11 assembler does not flag a
potential position-dependent reference. This occurs where a relative
reference is made to an absolute virtual location from a relocatable
instruction (i.e., MOV $0TSV,R4 in Figure H-1).

Those references requiring more than simple ict~K Builder relocation
are also indicated in the assembly listing. Simple global references
are flagged with the letter G. Those which contain multiple global
references, or complex relocation are flagged with the letter C (see
sections 3.9 and 4.0). In such cases, it is difficult to positively
state which are or are not position-independent. However, in general,
it is safe to· apply the guidelines discussed earlier in this Appendix
to the resulting address value produced by the Task Builder.

H-4

APPENDIX I

SAMPLE ASSEMBLY LISTING

TABLE OF CONTENTS

2- 55
J• 74
4•153
5•211l9
6·255
7•345

MACRO DEFINITIONS
MESSAGE STRINGS
MlSCELLANious DATA
READ AND PARSE COMMAND LINES
EVALUATE THE SEMANTIC ANALYSIS
SUBROUTINES

I-1

H
I

N

CSITST -- TEST OF csr1 AND CSI2 MACRO M~707 09•JUL•74 15147 PAGE 1

1
2
J
4
5
6
1
8
9

10
11
12
1 J
14
t5
16
17
18
19
20
21
22
2J
24
25
26
21
28
29
:rn
31
J2
JJ
J4
35 00011l15
36 000012
31
J8 000001
J9 000002
40 00111004
41
42
43
44
45
46
41 000000
48 000000
•9 0000111'1!
50 000000
51
!52
!5J

,TITLE CSITST •• TESY OF CSI1 AND C5I2
I I DENT /02/

COPYRIGHT 1974, DIGITAL EQUIPMENT CORP,, MAYNARD, MASS, 01754

THIS SOFTwARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
ON A SINGLE COMPUTER SYSTEM, AND CAN BE COPIED (wlTH INCLUSION
OF DEC 1 S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, tXC~PT
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC,

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENi BY DIGITAL
EQUIPMENT CORPORATION,

VERSION 02

WRITTEN BYI
JOHN DOE

MODIFIED BY1
JO!oiN DOE

THIS PROGRAM WAS wRtTTEN TO PERFORM A COMPREHENSIVE TEST OF THE
COMMAND STRING INTERPRETER SUBROUTINES CCStl AND CSI2),

LOCAL ASSIGNMENTS

CR1: 15
LF•12

ASMSK•t
NUMSK•2
S111MSK • 4

1/AS SWITCH MASK
1/NU SWITCH MASK
1 /Sw SWITCH MASK

,MCALL CSIS,FDOFFS,GCMLOS,FILIOS
CSU
FOOFFS DEFSL
GCMLDS
FILIOS

,MCALL CSIS1,CSIS2,CSISSw,CSI!SV,CSISNO,FSRSZS,GCML$,GCMLBS
,MCALL CALL,RETURN,EXITSS,QIOS,WTSESS,DIRS

H
I

w

CSITST •• TEST OF CSI1 AND CS12 MACRO M~707 09•JUL•74 15147 PAGt 2
MACRO DEFINITIONS

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

,SBTTL MACRO DEFINITIONS

LOCAL MACRO DEFINITIONS

I M~1CRO

MOV
MOV
MOV
MQV
CALL
,E~DM

I MA.CRO
TY~'E

1 E ~IDM

TYPE ADR,LEN,CCTL
#QIODPB+Q,JOPL,R5
A.DR 1 (i::15)+
L.EN, CR5)+
CCTL, CR5)
)(QI 0
TVPE

TVPEM NAM,CTL
#NAMIMSG,#NAM'LEN,#CTL
TVPEM

CSITST •• TEST OF cs11 ANO CSI2 MACRO M111101 09•JUL.,.74 1!5147 PAGE 3
MESSAGE STRINGS

74 ,SBTTL. MESSAGE STRINGS
75
76
71 LOC.L. OAU
78
79
80 ,NL.IST BEX
81
82
83 11111100111~ 01 '5 077 11177 STX MSG I ,ASCII <CR>/??? SYNTAX ERROR (CSil)/<L.F><LF>
84 00003:2 STXL.EN•,•STXMSG
85
86
87 000032 07:7 077 077 SWRMSG1 ,ASCII /??? SWITCH ERROR CCSI2)/<L.F><L.F>
88 00003 :l SlllRLEN•,•SlliRMSG
89
90 C/l
91 00111063 01 :2 055 053 OPTMSG1 ,ASCII <L.F>/••• OUTPUT PARSE •+~I !i: 92 00002~5 OPTL.U.i. ,•OPTMSG
93 "C
94 ti
95 11100110 01:2 055 053 IPTMSG1 , ASCII <LF>/•+• INPUT PARSE •+•/ ti:!

96 011111102·4 lPTL.EN•, .. IPTMSG ~
97 C/l

98 C/l

H 99 000134 01 :2 103 123 EQUMSG1 , ASCII <LF>/CS,EQU•/ ti:!
3: I 100 000144 06,~ 012 EQUBIT1 ,ASCII /0/<L.F> IJj .s::..

101 00001:2 EQULEN•,•EQUMSG ti
102 ~

103 ti
104 000146 01 :~ 11113 123 DVFMSGI ,ASCII <LF>/CS,0\IF•/ H
105 000156 06,~ 040 040 D\IFBIT1 , ASCII /0 I C/l

106 0000 t:5 D\IFL.EN•,•D\IP:MSG 1-3
H

107 z
108 (j)

109 00111161 01 !5 103 123 DIFMSG1 ,ASCII <CR>/CS,DIF•/
110 000111 061~ 040 00 DIF8IT1 ,ASCII /0 I
11 l 0001111:! DIFL.EN•, .. OIFMSG
112
113
114 000174 0H1 103 123 NMFMSGI ,ASCII <CR>/CS,NMf•/
115 000204 061~ 040 040 NMFBITI ,ASCII /0 I
116 00001 :3 NMFL.EN•,•NMFMSG
117
118
119 000207 01 !5 103 123 WLOMSG1 ,ASCII <CR>/CS,wLD•/
120 000217 061~ WLDB IT I ,ASCII /0/
121 0011101 :l 1111.0L.EN•,•WLOMSG
122
123
124 ,ODD I ODD BOUNDARY MUST BE PRESE~\ltO

12!5 000221 04,~ 040 040 FNOMSG1 I ASCII \ I/\
126 000226 12:! 127 047 FNOSWT I ,ASCII \SWI SwITCH FOUND\
127 11111101112!5 FNOLEN• 1 ooFNOMSG
128
129
130 000246 04" 040 1114li'I \/AL.MSG I ,ASCII I ~ITM FOLL.OWING \IAL.UESI/

CSITST •• TEST OF CSI1 AND CSI2 MACRO M0707 09•JUL•74 15147 PAGE 7
SUBROUTINES

345 0 SBTTL SUBROUTINES
346
347
348 002722 005745 XQ I 0 I TST • (R5) JCHECK LENGTH OF OUTPUT REQUEST
J49 002724 003410 au: 1S JSKIP TO LEAVE. IF NOT GREATER THAN ZE~O

350 002726 DtRS #QIODPB JSEND OUT THE LINe
351 002734 wTSESS #1 JwAIT FOR I/O DONE
352 002746 1S I RETURN
J5J
354
355 002750 005067 175624 INIT21 CLR ASVAL JCLEAR LOCATIONS NECESSARY •••
356 002754 005067 175624 CLR ASVAL+4 J 100 TO PROPERLY TEST THE ...
357 002760 005067 175624 CLR NUVAL 1 11 ,RESULTS OF CSI2
358 002764 005067 175622 C:LR NUVAL•2 ,
J59 002770 005067 175620 CLR MYMSK2
360 002774 005061 175620 CLR MASK)(
361 003000 005067 175612 C:LR MASKZ en 362 003004 RETURN

~ 363
J64 t"(j

J65 003006 012167 175214 SWTFND1 MOV CR1)•,FNDSl~T JSET SWITCH IN FOUND MESSAGE 1:-1
J66 003012 051167 175576 BIS (R1),MYMSK2 JSET MASK IN BOTH OF THE

l:rj ...
367 003016 052167 175574 BIS (R1)+,MASK2 , ... LOCAL TALLY wORDS ~
368 003022 062701 000002 ADD #2,R1 JBUMP R1 TO PNT TO AODR OF VALUE TABLE en
J69 003026 011ll1l1 MOV CR 1), R 1 JPUT ADDR OF VALUE TABLE IN Rl en

H 370 003030 062701 0Pl0002 ADD #2,R1 JBUM? Rt TO PNT TO ADDR Of VALUE BUH ER
l:rj

I 371 003034 01t101 MOV (Rt), R1 JPUT AODR Of VALUE BUFFfR IN Rl
:s:

U1 td
372 003036 012702 000277 I MOV lfllVAUWF,R2 JPNT R2 TO VALUE BUFFER IN MSG 1:-1
HJ 003042 SNOFNDI TYPEM FND,40 JSEND SWITCH FOUND MESSAGE r-<:
J74 003066 RETURN ' 1:-1
375 H
376 en
377 003070 01110 t CVTNUMI MOV (R 1), R1 JPUT VALUE IN R1 t-3

H
J78 003072 100003 BPL 61S JSKIP IF NON•NEGATIVE VALUE z
379 003074 00541211 NEG R1 I CONVERT IT TO F'OSITIVE G'1
380 003076 112722 000055 MOVB # 1 • 1 CR2)• IINSERT MINUS SIGN
381 003102 005046 6151 CLR .. CSP) ISET TERMINATION CHAR IN STACK
382 003104 012746 000060 62Sr MOV #10,•(SP) JBASE IS ASCII ZERO
383 003110 010 t 03 MOV R1,R3 1eOPY REMAINING VALUE INTO R3
384 003112 042703 177770 BIC #177770,R3 JSAVE LEAST SIGNIFICANT DIGIT
385 003116 050316 BIS RJ,CSP) JMASK IT INTO BASE
386 003120 00620t ASR R1 I SHIFT ...
387 003122 006201 ASR Rt •••• OUT . ..
388 003124 00620t ASR Rt 1,,, LOWEST DIGIT
389 003126 001366 BNE 62S JCONTINUE UNTIL ZERO IS LEFT
390 003130 112622 6JS1 MOVB CS?)+, CR2)·~ JPOP RESULTS OFF THE STACK
391 003132 001376 BNE 6JS JUNTIL NULL IS REACHED
392 003134 RETURN JTHEN RETURN
39J
394
395 003t36 162702 011102461 TYPVALI SUB lllVALMSG,R2 JCALC LENGTH OF MESSAGE
396 0~3142 HPE #VALMSG, R2 ,1 #40 JSEND VALUE -MESSAGE
397 003164 RETURN ,
398
399
400
401 0012301 ,END GETLN

Absolute mode, 5-5
Addressing, branch instruction,

5-8
Addressing forms, 5-7
Addressing modes, 5-1
Address mode syntax, summary of,

B-1
Arguments in macro definitions

and macro calls, 7-4
ASCII character set, A-1
ASCII conversion characters,

6-18
.ASCII directive, 6-19
.ASCIZ directive, 6-21
.ASECT and .CSECT directive,

6-38

INDEX

Assembler directives, B-3
Assembler limitation for BK

RSX-llM assembler, G-1
Assembly directives, conditional,

6-41, 6-46
Assembly Pass 1, 1-1
Assembly Pass 2, 1-2
Assembly, single, 8-2
Assignment statements, direct,

3-7
Autodecrement deferred mode, 5-4
Autodecrement mode, 5-3
Autoincrement deferred mode, 5-3
Autoincrement mode, 5-2

Binary operators, unary and, 3-4
.BLKB directives, 6-29
.BLKW directives, 6-29
Branches, conditional, E-13
Branch instruction addressing,

5-8
tB, temporary radix control oper

ator, 6-24
.BYTE directive, 6-17

Call, direct MACR0-11 under
RSX-11, 8-1

Calling conventions, E-9
Calling conventions, intra

module, E-9
Calling macros, 7-3
Characters, ASCII conversion,

6-18
Characters, illegal, 3-3
Characters, separating and de

limiting, 3-2
Character set, 3-1

INDEX-1

Character set, ASCII, A-1
Character set, RADIX-SO, A-4
Character sets, MACR0-11, A-1
Characters, special, B-1
Code or data sharing, 6-38
Code with interrupts inhibited,

E-12
Coding standard, sample, E-1
Codes, MACR0-11, error, D-1
Codes, op, C-1
Coding practice, recommended,

E-13
Command string format,

RSX-11, 8-3
IAS, 8-8

Command string examples,
RSX-11, 8-1
IAS I 8-11

Comment field, 2-5
Comments, E-2
Common exits, E-11
Concatenation of macro argu-

ments, 7-9
Conditional assembly block

directive,.IF, 6-41
Conditional assembly directives,

6-41, 6-46
Conditional branches, E-13
Conserving dynamic memory, F-1
Control, format, 2-6
Control operators, radix, 6-23
Control operators, radix and

unary, 6-23
Control operators, temporary

numeric, 6-27
Control operators, unary, 6-25
Conventions and standards, 2-1
Conventions, calling, E-9
Conventions, intra-module,

calling, E-9
Counter, current location, 3-11
Creating local symbols auto

matically, 7-8
Creating program sections, 6-36
.CSECT and .ASECT directives,

6-38
tc, temporary numeric control

operator, 6-27
Current location counter, 2-2,

3-11

Data sharing, code or, 6-38
Data storage directives, 6-16
Defining macros, 7-1
Definitions and expansions,

macro, F-3

INDEX (Cont.)

Delimiting characters, separating
and, 3-2

Device registers, E-2
Diagnostic error message summary,

D-1
Direct assignment statements, 3-7
Directive, .ASCII, 6-19
Directive, .ASCIZ, 6-21
Directive, .BYTE, 6-17
Directive, .ENDM, 7-2
Directive, .EOT, 6-31
Directive, .EVEN, 6-29
Directive, .FLT2, 6-27
Directive, .FLT4, 6-27
Directive, .GLOBL, symbol control,

6-39
Directive, .IDENT, 6-12
Directive, .IF, conditional

assembly block, 6-41
Directive, .IIF, immediate condi-

tional assembly, 6-46
Directive, .IRP, 7-13
Directive, .IRPC, 7-14
Directive, .LIMIT program bound-

aries, 6-31
Directive, .MACRO, 7-1
Directive, .MCALL, macro library,

7-16
Directive, .MEXIT, 7-3
Directive, .NARG, 7-10
Directive, .NCHR, 7-10
Directive, .NTYPE, 7-11
Directive, .ODD, 6-29
Directive, .PAGE, 6-12
Directive, .PSECT. 6-32
Directive, .RAD50, 6-22
Directive, .RADIX, 6-23
Directive, .REPT, repeat block,

7-15
Directive, .SBTTL, 6-11
Directive, terminating, .END,

6-28
Directive, .TITLE, 6-10
Directive, .WORD, 6-18
Directives, B-1
Directives, .ASECT and .CSECT,

6-38
Directives, Assembler, B-3, C-3
Directives, .BLKB, 6-29
Directives, .BLKW, 6-29
Directives, conditional assembly,

6-41
Directives, data storage, 6-16
Directives, .ENABL, .DSABL,

function, 6-13
Directives, .ERROR, 7-12
Directives, .ERROR and .PRIN~,

7-12

INDEX-2

Directives, Floating-point
storage, 6-27

Directives, general assembler,
6-1

Directives, .IFF, .IFT, .IFTF,
subconditional assembly

6-43
Directives, .LIST, 6-1
Directives, .LIST and .NLIST,

6-·l
Directives, Listing control,

6-1
Directives, location counter

control, 6-28
Directives, macro, 7-1
Directives, macro attribute,

.NARG, .NCHR, .NTYPE, 7-10
Directives, MACR0-11, B-3, C-3
Directives, .NLIST, 6-1
Directives, numeric, 6-25
Directives, .PRINT, 7-12
Directives, program boundaries

and sectioning, 6-31
Displaying the version identi

fier, E-14
.DSABL function directives,

6-13
tD, temporary radix control

operator, 6-24
Dynamic memory, conserving,F-1

Ejection, page, 6-12
.ENABL function directives,

6-13
.END terminating directive,

6-30
.ENDM directive, 7-2
.EOT directive, 6-31
.ERROR and .PRINT directives,

7-12
Error codes, MACR0-11, D-1
.ERROR directives, 7-12
Error messages, 8-12
Error message summary,

diagnostic, D-1
.EVEN directive, 6-29
Exiting, E-9
Exits, common, E-11
Expansions, Macro, definition

and, F-3
Expression, 3-15
Expressions, symbols and, 3-1

INDEX (Cont.)

Failure indication, E-9
Features/functions not supported

by RSX-llM 8K assembler, G-1
Features, MACR0-11, 1-1
Field, comment, 2-5
Field, label, 2-2
Field, operand, 2-5
Field, operator, 2-4
File specification

Switches, RSX-11, 8-5
Format, RSX-11/IAS, 8-11

Floating-point storage directives,
6-27

.FLT2 directive, 6-27

.FLT4 directive, 6-27
Forbidden instruction usage, E-12
Format, command string,

RSX-11, 8-3
IAS, 8-8

Format control, 2-6
Format, File specification, 8-11
Format, line, E-1
Format, source program, 2-1
Format, statement, 2-1
Formatting, MACRO definition, 7-3
Formatting standards, E-10
Formatting the module preface, E-7
Forms, addressing, 5-7
tF, temporary numeric control

operator, 6-27
Function directives:, .ENABL,

. DSABL, 6-13

General assembler directives, 6-1
General hints, F-1
General purpose registers, E-2
Global symbols, E-3
.GLOBL symbol control directive,

6-39
Guidelines, space-saving, F-1

Hardware registers, E-2
Headings, page, 6-5
Hints, general, F-1

IAS
Command string format, 8-8
File specification format, 8-11
Indirect command file, 8-10
MACR0-11 operating procesures,

8-8
.IDENT directive, 6-12

INDEX-3

.IF, conditional assembly
block directive, 6-41

.IFF, subconditional assembly
block directives, 6-43

.IFT, subconditional assembly
block directives, 6-43

.IFTF, subconditional assembly
block directives, 6-43

.IIF, immediate conditional
assembly directive, 6-46

Illegal characters, 3-3
Immediate conditional assembly

directive, .IIF, 6-46
Immediate mode, 5-5
Indefinite repeat block

directives, .IRP and .IRPC,
7-12

Index deferred mode, 5-4
Index mode, 5-4
Indirect command files,

RSX-11, 8-2
'T'7\,... 0 11'\
.L.H..:::> ' 0 - .L v

Initiating MACR0-11 under IAS,
8-8

Initiating MACR0-11 under RSX-
llD/RSX-llM, 8-1

Direct MACRO call, 8-1
EUN facility: 8-2
Single assembly, 8-2
Install, run and remove-on-exit,

8-2
Indirect filename facility,

8-2
Instruction usage, forbidden,

E-12
Interrupts inhibited, code

with, E-12
Intra-module calling conven

tions, E-9
.IRP directive, 7-13
.IRP and .IRPC directives,

indefinite repeat block,
7-12

IRPC directive, 7-14

Label field, 2-2
.LIMIT, program boundaries

directive, 6-31
Line format, E-1
Linking, relocation and, 4-1
.LIST and .NLIST directives,

6-1
Listing control directives, 6-1

INDEX (cont.)

Local symbols, 3-10, 7-8
Location counter, 3-11

Control directives, 6-28

Macro arguments, concatenation of,
7-9

Macro arguments, special charac
ters in, 7-6

Macro attribute directives,
.NARG, .NCHR, .NTYPE, 7-10

Macro calls, arguments in, macro
definitions and, 7-4

Macro calls, number of arguments
in, 7-7

Macros, defining, 7-1
MACRO definition formatting, 7-3
Macro definitions and expansions,

F-3
Macro definitions and macro calls,

arguments in, 7-4
.MACRO directive, 7-1
Macro directives, 7-1
MACR0-11 character sets, A-1
MACR0-11 directives, B-3
MACR0-11 error codes, D-1

messages, 8-12
MACR0-11 features, 1-1
MACR0-11 operating procedures,

RSX-11, 8-1
IAS, 8-8

MACR0-11 symbols, 3-5
Macro library directive, .MCALL,

7-17
Macro names, E-5
Macro nesting, 7-5
Macro symbols, user-defined and,

3-5
Macros, calling, 7-3
.MCALL, macro library directive,

7-16
Memory allocation considerations,

6-38
Memory conserving dynamic, F-1
.MEXIT directive, 7-3
Mode, absolute, 5-5
Mode, autodecrement, 5-4
Mode, autodecrement def er:.:ed, 5-4
Mode, autoincrement, 5-2
Mode, autoincrement defer-·ed, 5-3
Mode, immediate, 5-5
Mode, index, 5-4
Mode, index deferred, 5-4
Mode, register, 5-2
Mode, register deferred, 5~2
Mode, relative, 5-6

INDEX-4

Mode, relative deferred, 5-7
Modes, addressing, 5-1
Modularity, E-8
Module checking routines, E-9
Module preface, E-5
Module preface, formatting the,

E-7
Modules, program, E-5

Names, Macro, E-5
Naming standards, E-2
.NARG directive, 7-10
.NCHR directive, 7-10
Nesting, macro, 7-5
.NLIST directives, 6-1
.NTYPE directive, 7-11
Number of arguments in macro

calls, 7-7
Numbers, 3-13
Numeric arguments as symbols,

7-6
Numeric control operator,

temporary, tC, 6-27
Numeric control operator,

temporary, tF, 6-27
Numeric directives, 6-25

.ODD directive, 6-29
Op codes, C-1
Operand field, 2-5
Operating procedures, MACR0-11,

RSX-11, 8-1
IAS, 8-8

Operational techniques, F-4
Operator field, 2-4
Operator, temporary, numeric

control, tC, 6-27
Operator, temporary, numeric

control, tF, 6-27
Operators, control, 6-23
Operators, numeric control,

6-23
Operators, radix control, 6-23
Operators, temporary radix,

control, tD, to, tB, 6-24
Operators,

unary and binary, 3-4
unary control 6-25

to, temporary radix control
operator, 6-24

Other symbols, E-3

INDEX (Cont.)

.PAGE directive/page ejection,
6-12

PAL-llR conditional assew~ly
directives, 6-45

Page ejection, .PAGE directive/,
6-12

Page headings, 6-5
Passing numeric arguments as

symbols, 7-6
PDP-11 version number standard,

E-13
Permanent symbols, 3-5
Permanent symbol table (PST) ,C-1
PIC, H-1
Pastian-independent code, H-1
Preface, module, E-5
.PRINT directives, 7-12
Priority, processor, E-3
Procedures, operating, 8-1

RSX-11, 8-1
IAS, 8-~

Processor priority, E=3
Program boundaries directive,

.LIMIT, 6-31
Program Format, source, 2-1
Program flow, E-10
Program-local symbols, E-5
Program modules, E-5
Program sectioning directives,

6-31
Program sections, creating, 6-36
Program source files, E-12
.PSECT directive, 6-32
PST, permanent symbol table, C-1

.RAD50 directive, 6-22
Radix and numeric control opera

tors, 6-23
Radix control operators, 6-23
radix control operators, temporary,

tD, tO, tB, 6-24
RADIX-50 character set, A-4
.RADIX directive, 6-23
Recommended coding practive, E-13
Register deferred mode, 5-2
Register mode, 5-2
Registers, device, E-2
Registers, general purpose, E-2
Registers, hardware, E-2
Register standards, E-2
Register symbols, 3-9
Relative deferred mode, 5-7
Relative mode, 5-6
Relocation and linking, 4-1
Repeat block directive, .REPT,

7-15

INDEX-5

Repeat block directives, .IRP,
.IRPC, indefinite, 7-12

.REPT, repeat block directive,
7-15

Routines, module checking, E-9
RSX-11 command string format,

8-3
File specification format,

8-11
File specification switches,

8-5
Indirect corrunand files, 8=2

RSX-llM BK Assembler Limita
tions, G-1

RUN facility, using, 8-2

.SBTTL directive, 6-11
Separating and delimiting

characters, 3-2
Single assembly, 8-2
Source files, program, E-12
Source program format, 2-1
Space saving guidelines, F-1
Special characters, B-1
Special characters in macro

arguments, 7-6
Standard PDP-11 version number,

E-14
Standards, coding, E-1
Standards and conventions, 2-1
Standards, formatting, E-10
Standards, naming, E-2
Standards, register, E-2
Standard syrriliolics, using the,

E-3
Statement format, 2-1
Statements, direct assignment,

3-7
Subconditional assembly block

directives, .IFF, .IFT,
.IFTF, 6-43

Success/failure indication,
E-9

Summary of address mode syntax,
B-2

Switch options,RSX-11 file speci
fications, 8-5

Symbol control directive,
.GLOBL, 6-39

Symbol examples, E-4
Symbolics, using the standard,

E-3
Symbols, E-3
Symbols and expressions, 3-1
Symbols automatically, creating

local, 7-8

INDEX (Cont.)

Symbols, global, E-3
Symbols, local, 3-10
Symbols, MACR0-11, 3-5
Symbols, other, E-3
Symbols, passing numeric argu-

ment as, 7-6
Symbols, permanent, 3-5
Symbols, program-local, E-5
Symbols, register, 3-9
Symbol table, PST, permanent,

C-1
Symbols, user-defined and macro,

3-5

Table, PST, permanent,symbol,
C-1

Techniques, operational, F-4
Temporary numeric control

operator, tC, 6-27
Temporary numeric control operator,

tF, 6-27
Temporary radix control operators,

tD, tO, tB, 6-24
Terminating directives, .END,.EOT

6-28
Terms, 3-14
.TITLE directive, 6-10
Trap instructions, using, 5-9

INDEX-6

Unary and binary operators,
3-4

Unary control operators, 6-21,
6-29

Use of the version number in
the program, E-15

User-defined and macro symbols,
3-5

Using indirect filename
facility,

RSX-11, 8-2
IAS, 8-10

Using RUN facility, 8-2
Using the standard symbolics,

E-3
Using trap instructions, 5-9

Version identifier, displaying
the, E-14

Version number in the program,
use of the, E-15

Version number standard,
PDP-11, E-13

.WORD directive, 6-18

IAS/RSX-11
MACR0-11
Reference Manual
DEC-11-0IMRA-A-D

READER 1 S COMMENTS

NOTE: This form is for document corrments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

City ____________________________ state~~~~~~-Zip Code ______________ _
or

Country

If vou reouire a written reply; please check here. fl

·---Fold IIere--

-- Do Not Tear · Fold IIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED JN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

PrintFHi in 11.S A

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-00
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	8-00
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	replyA
	replyB
	xBack

