
•

RSX-11M
Beginner '5 Guide

Order No. DEC-11-0MBGA-A-D

,--------------------------

SUPERSESSION/UPDATE INFORMATION: This is a new document.

OPERATING SYSTEM AND VERSION: RSX-11 M V3.0 and V3.1

SOFTWARE VERSION: RSX-11 M V3.0 and V3.1

RSX-11M
Beginner's Guide

Order No. DEC-11-0MBGA-A-D

June 1977

This document describes how to use the RSX-11 M operating system
from a terminal to develop a simple FORTRAN program and to
manipulate files.

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation · maynard, massachusetts

First Printing, June 1977

The information in this document is subject to change without notice and should not be construed as a commit
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright © 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DEC US EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-1 0
DECCOMM DECSYSTEM-20 TYPESET-II

3/78-14-

CONTENTS

Page

PREFACE ... v

CHAPTER 1
1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.2.3
1.3

CHAPTER 2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2

2.3

2.4

2.4.1
2.4.2
2.4.3
2.4.4

2.4.5
2.5

CHAPTER 3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.2
3.2.1
3.2.2

THE TERMINAL 1-1
USING A TERMINAL 1-2

Function Keys 1-3
Control Characters 1-3

MCR COMMANDS 1-5
Preparing to Issue Commands 1-7
Logging On and Off a Terminal : 1-7
The Quickest Ways to Log On 1-9

ERROR MESSAGES 1-11

PROGRAM PREPARATION 2-1
THE TEXT EDITOR (EDI) 2-2

Creating a Source Program File 2-2
Displaying a Copy of the New File 2-3
Editing a Source Program File 2-4
Basic EDI Commands 2-8

COMPILING A SIMPLE FORTRAN
SOURCE PROGRAM 2-8
ASSEMBLING A SIMPLE MACRO
SOURCE PROGRAM 2-11
LINKING OBJECT PROGRAMS - THE
TASK BUILDER 2-12

Full TKB Command Line 2-13
Simple Multiline Format 2-14
Default Types 2-14
Listing the Memory Allocation
(MAP) File 2-14
Task Builder Switches and Options 2-15

RUNNING A TASK 2-15

THE FILES 3-1
COMPLETE FILE SPECIFICATIONS 3-1

The Device Name 3-1
User File Directories (UFDs) 3-3
Version Numbers 3-4
File Specification Defaults 3-4

MANIPULATING FILES USING PIP 3-5
Listing a UFD 3-6
Listing Specific File Information 3-7

iii

Contents

APPENDIX

3.2.3
3.2.4
3.2.5
3.2.6

Page

Deleting Files 3-8
Copying Files 3-9
Spooling Files to the Line Printer 3-10
·Renaming Files 3-11

SUMMARY OF EXAMPLE PROGRAM A-I

INDEX .. Index-I

FIGURE 1-1 An LA30 Hard-Copy Terminal 1-1
1-2 A VT50 CRT Terminal 1-2
1-3 Keyboard of an LA30 Terminal 1-2
1-4 Keyboard of a VT50 Terminal 1-3
2-1 Steps in Creating a FORTRAN Task 2-1
2-2 Steps in Creating the FORTRAN Task ADD 2-17
3-1 Sample Directory Listing 3-7

TABLE 1-1 Function Keys 1-3
1-2 Control Characters 1-4
2-1 Basic EDI Commands 2-9
2-2 TKB Output File Requests 2-13
3-1 Commonly Used Device Names .. ' 3-2
3-2 File Specification Defaults 3-5

iv

PREFACE

MANUAL OBJECTIVES AND READER ASSUMPTIONS
The information presented in this guide enables a new user of RSX-llM
to perform simple program development. The guide assumes a knowledge
of computing in general, but it assumes no knowledge of the RSX-ll M
operating system. RSX-11M terms are defined when they appear for the
first time.

STRUCTURE OF THE DOCUMENT
The guide has been structured so that the new user can learn terms and
procedures as he or she actually creates and runs a program. The program
development procedures are divided into three parts, corresponding to the
following three chapters:

• THE TERMINAL
Chapter 1 discusses keyboard facilities, how to log onto the
terminal, and how to issue commands to the operating system.

• PROGRAM PREPARATION
Chapter 2 describes how to use system programs to creatG,
compile, link, and run a simple program.

• THE FILES
Chapter 3 describes how to specify and manipulate files.

The development of a simple FORTRAN program that adds two numbers
together is used as an example throughout the guide. The Appendix repro
duces the development of that program without the explanations provided
in the previous chapters.

ASSOCIATED DOCUMENTS
The guide makes frequent references to other RSX-11M documents,
which are all described in the RSX-llM/RSX-ll S Documentation
Directory. The directory defines the intended readership of each
manual in the RSX-11 M/RSX-11 S set and provides a brief synopsis
of each manual's contents.

DOCUMENTATION CONVENTIONS
The following notes describe documentation conventions used in this
guide.

• Text in italics, other than document titles or section headings,
indicates a new RSX-1lM term.

• Brackets ([]) indicate optional elements of command input
(ABO[RT]), except when the brackets are a part of a User
Identification Code ([300,221]).

v

Preface

vi

• In text that illustrates command format, upper-case letters
denote actual command input. Lower-case letters indicate
parameters that must be defined by the user. For example:

ABO taskname

The user types the letters ABO but must replace taskname with
the name of an actual program.

• In examples of terminal dialogues, text in a contrasting color
indicates user input, as opposed to computer-generated text
shown in black.

CHAPTER 1

THE TERMINAL

A terminal provides the means of communication between you and the
RSX-ll M operating system. You instruct the system by typing commands
at the terminal; the system either responds as instructed or displays an
error message telling you that it does not understand or cannot respond
to your input.

RSX-llM supports a variety of terminals, which fall into two general
categories: hard-copy terminals that print on paper, and Cathode Ray
Tube (CRT) terminals that display characters on a screen. Most CRT
terminals cannot provide a permanent record of terminal activity.
Figure 1-1 illustrates a typical hard-copy terminal (an LA30 terminal
in this photograph). Figure 1-2 at the top of the next page illustrates
a typical CRT terminal (a VTSO terminal).

Figure 1-1 An LA30 Hard-Copy Terminal

1-1

The Terminal

Figure 1-2 A VT50 CRT Terminal

1.1 USING A TERMINAL
All terminals have a keyboard that has the same basic configuration as
a typewriter. In addition, the keyboard includes other special keys that
enable you to execute various computer functions. Individual keys are not
always in the same position on different types of terminals, so check the
keyboard layout each time you use a different terminal for the first time.
Figure 1-3 shows the keyboard of an LA30 terminal. Figure 1-4 on the
next page shows the keyboard of a VT50 terminal, which has a keyboard
layout different from that of the LA30 terminal.

Figure 1-3 Keyboard of an LA30 Terminal

1-2

The Terminal

Figure 1-4 Keyboard of a VT50 Terminal

1.1.1 Function Keys
Important function keys that appear on the terminals are described in
Table 1-1.

Function Key

CR or
RETURN

CTRL

RUBOUT
or
DEL

TAB

Table 1-1 Function Keys

Description

Terminates an input line and advances the carriage
or cursor to position I of the next line.

Is part of numerous 2-key combinations (CTRL and
a letter key) that perform a variety of functions.
Each valid combination is called a control character,
represented in this manual by CTRL/X, where X is
the variable letter.

The control characters you need to use most often
are described in Section 1.1.2.

Deletes the last character typed on the current line,
and contiguous characters to the left if you press the
key repeatedly. Some CRT terminals erase each
deleted character from the screen and move the
printing position back one space. Otherwise, the
terminal prints a backslash (\), then each deleted
character, then another backslash before it
prints the first correct character (for example,
MISTKAE\EAK\AKE).

Advances the printing position to the next tab stop.
Tab stops occur after every eighth character position
in the line.

1.1.2 Control Characters
A control character is entered by striking the appropriate letter while
pressing CTRL. The system responds to some control characters by dis
playing an up arrow (t) followed by the appropriate letter (tu, for

1-3

The Terminal

example). Other control characters are not echoed in a display. See
Section 2.1.1 in the RSX-llM Operator's Procedures Manual for a com
plete list of the control characters. The list in Table 1-2 describes those
most commonly used.

Character

CTRLjC

CTRLjO

CTRLjQ
and
CTRLjS

CTRLjR

1-4

Table 1-2 Control Characters

Description

Gains the attention of the Monitor Console Routine
(MCR), which interprets commands to the operating
system. (See Sections 2.1.1 and 2.1.3.3 in the
RSX-llM Operator's Procedures Manual for more
information about the use of CTRLjC.) In most
cases the system responds to CTRLjC by displaying
the prompt

MCR>

Alternately discards and resumes the display of
output sent to the terminal. Discarded output is
lost.

For example, if you are running a program that
generates unwanted output, type CTRLjO. The
system then discards that program's output until
you type CTRLjO again. (Note that the only pro
gram affected is the one sending output to your
terminal when you type CTRLjO.)

See the RSX-llM Operator's Procedures Manual
for a more detailed description of the CTRLjO
function.

CTRLjS delays the display of further output until
you type CTRLjQ to restart it. For example, if you
are using a CRT terminal that displays output too
quickly to be read easily, press CTRLjS to halt the
display; then, when you have read the screen, press
CTRLjQ to restart the output display. Repeat the
process as necessary.

Performs a carriage return and retypes the current
line, omitting any deleted characters. If the
DELETE or RUBOUT key on your terminal prints
backslashes and deleted characters, the current line
may be difficult to read because it contains

Character

CTRL/U

CTRL/Z

The Terminal

Table 1-2 (Cont.) Control Characters

Description

numerous extraneous characters. Before terminating
the line, type CTRL/R to ensure that you have
made the right corrections. For example:

MISTKAE\EAK\AKE <CTRL/R>
MISTAKE

Deletes the current line and performs a carriage
return. This function allows you to retype a line
when individual deletions would be impractical.
Remember to type CTRL/U before you terminate
the incorrect line.

Used by many tasks as a signal to exit and return
con trol to M CR.

1.2 MCR COMMANDS
The commands that control system operation from a terminal are called
MeR commands. MCR stands for the Monitor Console Routine, which
interprets terminal input. You communicate with MCR by entering a
command string in the following format:

command-name parameter(s)/keyword(s) line-terminator

where:

command-name consists of 3 or more letters, terminated by a space,
that uniquely identify an MCR function. MCR reads
the first 3 letters only; further letters merely help you
to identify the command. Some examples of com
mand names are given below. (Brackets enclose
optional input.)

Names

ABO[RT]

DMO[UNT]

UFD

Function

ABOrt a running program (that is,
stop it from running).

DisMOunt a volume.

Create a User File Directory (see
Section 3.1.2).

1-5

The Terminal

parameter

/keyword

1-6

usually specifies the object of the command function,
which is most often a task or a device. (A task is an
executable program.) One or more blank spaces must
separate the parameter from the command name, and
one parameter from another. For example, when you
issue the Abort (ABO) command, you include the
name of the running task to be aborted.

• ABO TASK
Abort the task named TASK.

• RUN TASK 12:35:00
Run the executable program called TASK at
12:35 :00.

modifies either a parameter or the function of the
command. A keyword consists of a slash (/) and an
alphanumeric string indentification, optionally fol
lowed by an equal sign (=) and a keyword value:

/keyword [=value]

A keyword immediately follows the parameter it
defines:

parameter/keyword [=value]

However, when a keyword modifies a command func
tion, you must insert at least one space between the
name and the keyword:

command-name /keyword [=value]

Spaces are not required between consecutive
keywords:

parameter/keyword/keyword ...
command-name /keyword/keyword ...

Examples:

• SET /CRT=TI:
Enable backspace deletion on your CRT
terminal. TI: always stands for the terminal you
are currently using. The keyword /CRT deter
mines the function of the SET command.

• ABO T ASK/PMD
Abort the task named TASK and produce a
post-mortem dump, which is a listing that
describes the state of the task when it was
aborted.

The Terminal

line-terminator is either the CR or RETURN key, which performs a
carriage return «CR», or the ALTmode or ESCape
key (<ESC». Because <ESC> has special signifi
cance in certain circumstances, this manual uses
<CR> as a line terminator.

When you press <CR>, the system sends the current
line to MCR.

1.2.1 Preparing to Issue Commands
Before typing a command, you must ensure that the terminal is in the
right state to receive input directed to MCR:

• Check that the terminal's power is on.
• Check that the LOCAL/REMOTE switch is set to REMOTE.
• Consult installation instructions for additional required terminal

settings and dial-up instructions.
• Press the CR or RETURN key to clear the terminal and to

obtain the default prompt (»; or type CTRL/C to obtain the
explicit MCR prompt (MCR».

Both the explicit MCR prompt and the default prompt indicate that MCR
can receive input typed at the terminal. Any other prompt indicates
that the terminal will send the input to a task other than MCR. Both
DIGITAL-supplied and user-written tasks can request input by displaying
a task prompt at a terminal. If you see a task prompt, someone else is
probably using that terminal.

Examples in this manual use the default prompt, which a terminal displays
most often when it is ready to receive input to MCR.

NOTE
If you are working with a system that does not
support multiuser protection, you do not need
to log on and off the terminal. Ignore the next
two sections 0.2.2 and 1.2.3) and proceed
directly to Section 1.3.

1.2.2 Logging On and Off a Terminal
To begin a session at the terminal, you must issue the Hello command to
log on. The logging-on procedure has several purposes:

• I t allows the system to ensure that you are an authorized user
and to record information about your usage of the system.

• It grants you the use of the terminal for access to the system
until you log off.

• I t establishes initial defaults for your terminal activities.

1-7

The Terminal

The Hello Command
Hello is an interactive command that prompts for its parameters, as
follows:

>HELLO <CR>

ACCOUNT OR NAME: user-id-code} <CR>
last-name

P ASSWO RD: password

where:

user-id-code is a code, commonly called a UIC, that basically
consists of two octal numbers that identify your
account on the system. The first number (g) stands
for your user group; the second number (m) is your
own number within the group. The general UIC
format encloses the two numbers, separated by a
comma, in brackets: [g,m] .

last-name is your last name, which you can enter instead of
a UIC. The system derives the correct UIC from the
name you specify.

password is a 1- to 6-character alphanumeric string. The ac
count information maintained by the system includes
the correct passwords for each UIC and last name.
You cannot gain access to the system unless you
type the password that corresponds to the UIC or
name you have entered.

So that your password remains private, the system
does not print the characters you type in response
to PASSWORD:.

If you do not know your UIC or password, contact the system manager,
or whoever controls the use of the system at your installation.

Example:

1-8

>HEL <CF~>

ACCOUNT OR NAME: CHARLES <CR>
PASSWORD: GREY <CR)

RSX-l1M Bl..1S MULTI-USER SYSTEM

GOOD MOF~N I NG
22-MAY-77 11:07 LOGGED ON TERMINAL TT4:

2::~-"MAY 77

SYSTEM WILL BE DOWN TODAY FROM 13:00-15:00 FOR
CORRECTIVE MAINTENANCE

The Terminal

When the system receives the correct password, the terminal displays a
logon greeting that includes a system identification and the date and
time you logged onto the terminal. In addition, the terminal optionally
displays further messages, which usually supply information that affects
general use of the system. The default prompt (» on a new line after
the messages indicates that you can proceed to issue further MCR
commands.

If the message

HEL -- OTHER USER LOGGED ON

appears when you issue the Hello command, someone else is using the
terminal. Either try to log onto a different terminal or seek out the person
who logged on before you. Do not proceed to use the terminal yourself
without the other user's knowledge.

The Help Command
Help is the only MCR command that you can issue before logging on.
Because the first 3 letters are the same as Hello, you must enter HELP
in full. When you issue this command, the terminal displays text (de
termined by each installation) that generally tells you how to log on and
how to issue further commands. Even if you do not need help initially,
issue the command at least once so that you know the nature of the
information it provides.

The Bye Command
Whenever you finish a session, you must log off in order to make your
terminal available to other users. Log off by typing

>BYE<CR>

This command has no parameters. The system responds by performing all
actions required to terminate your activity at the terminal. (See the
RSX-llM Operator's Procedures Manual for more details.) A message like
the following then appears:

HAVE A GOOD MORNING
22-MAY-77 11:34 TT4: LOGGED OFF

You must reissue the Hello command to log on if you want to issue fur
ther commands other than Help.

1.2.3 The Quickest Ways to Log On
Most users want to type as little as possible when using a terminal; they
also want the quickest possible response time. This section describes
ways to shorten the logging-on procedure.

1-9

The Terminal

Suppressing Optional System Messages
Because the optional system messages that follow the Hello command
greeting can sometimes be lengthy and usually need to be read only
once a day, the Hello command allows you to enter a special form of
the VIC parameter to suppress the display of these messages. The normal
format for a VIC is [g,m] . However, to signal that you do not want to see
the optional system messages, replace the comma with a slash (/), as
follows:

[glm]

In all, Hello permits four VIC representations:

glm
[glm]
g,m
[g,m]

Either slash format always suppresses the optional messages. Brackets
around the VIC are optional. Note, however, that a VIC must always be
specified in the format [g,m] when it is not a parameter to the Hello
command.

If you have provided your name or the comma format of VIC, you can
stop the message display by typing CTRL/O. The system then immedi
ately displays the default prompt. For example:

:> HEL <Cf~>
ACCOUNT OR NAME: CHARLES {CR>
PASSWORD: {CR>

RSX-l1M BL18 MULTI-USER SYSTEM

GDOD MORNING
22-MAY-77 12:14 LOGGED ON TERMINAL TT4:

22···MAY····77

SYSTEM WILL BE DOW{CTRL/D>

Suppressing ACCOUNT OR NAME: Prompt
Another way to shorten the time it takes to log on is to enter the Hello
command and VIC (or last name) on the same line:

>HEL 201/312 {CR>
P('~SSW()RD :

Entering the command in this way eliminates the need for the prompt
ACCOVNT OR NAME:.

1-10

The Terminal

1.3 ERROR MESSAGES
When MCR receives input that it does not recognize or knows to be
incorrect or invalid, it displays an error message. An example is the
message that appears if you try to log onto a terminal already being used
by someone else (see The Hello Command in Section l.2.2). Another
message related to the Hello command .can be returned if you enter a
VIC (or last name) or password that is not stored in the system's account
file:

>HFL <CF~>
ACCOUNT OR NAME: PEEK <CR)
PASSWORD: JOHN <CR>
HEL --- INVALID ACCOUNT
" . . '

This attempt to log on is not successful either because the system does
not recognize the last name (PEEK), or because JOHN is not the correct
password.

How you should react to an error condition depends on the message
displayed. All error messages returned by MCR commands and MCR
related tasks are explained in the RSX-llM Operator's Procedures Manual.
Individual command descriptions given in that manual include a list of
possible error messages; Chapter 7 of that manual details all MCR error
messages in alphabetical order. (Each error message displayed at your
terminal begins with the 3-1etter name of the associated command or
task.) When you encounter an error while running a system task, such as
a text editor, look for clarification in documentation that describes
that software.

1-11

CHAPTER 2

PROGRAM PREPARATION

The steps required to prepare a program to run on RSX-llM are as
follows:

1. Create a source program.
2. Compile or assemble the source program to produce object

code.
3. Link the object code to create an executable program, called a

task.
4. Issue an MCR command to run the task.

Figure 2-1 illustrates this procedure in a diagram. Each of the steps in
volves the manipulation of a file, which is an own~r-named area on a
magnetic medium. This magnetic medium, called a volume, is used to
store data. Disks, DECtapes, and ANS magnetic tapes 1 are all volumes.

COMPILER

EXECUTING
TASK

LISTING

Figure 2-1 Steps in Creating a FORTRAN Task

1 ANS magnetic tapes are tapes that conform to the American National Standard for
Magnetic Tape Labels for Information Interchange, X3.27-1969.

2-1

Program Preparation

When you log onto a terminal, the system automatically allows you access
to a disk; this disk is your default system disk, on which, unless you
specify otherwise, the system stores all your files. (If your system does
not support multiuser protection, you have automatic access to a system
disk that is accessible to all users.) The following sections on program
preparation assume you are using your default system disk.

2.1 THE TEXT EDITOR (EDI)
The RSX-IIM Text Editor (EDI) is the system program used to create a
source program file.

2.1.1 Creating a Source Program File
To invoke EDI, issue a call to the editor in the same way that you issue an
MCR command:

>EDI<CR>

The editor responds by displaying its task prompt:

EDI>

To create a file, you then specify a file name and afile type that describe
the intended file contents in the following format:

EDI>filename.type

where:

filename

type

is a 1- to 9-character alphanumeric string.

is a 3-letter mnemonic, preceded by a period (.), related
to the file contents. The following types are standard
for programming language source files:

Type Language

BAS BASIC
CBL COBOL
FTN FORTRAN
MAC MACRO

To illustrate the creation of a source file, the following examples deal with
a FORTRAN program called ADD.FTN, an interactive program that adds
two numbers together and displays the result.

2-2

>EDJ <CI:;:>
ED!> ADD+FTN <CR>
[CREATING NEW FILE]
INPUT

Program Preparation

When EDI receives the name of a file that does not exist, it creates an
empty file with the given name and displays the last two lines shown in
the example above. You can then immediately start to type in your source
program. When you terminate each line of input, the system stores it in a
buffer, which EDI subsequently writes to the new file.

Use the keyboard facilities described in Tables 1-1 and 1-2 to correct any
input mistakes on the current line. Once a line has been terminated and
written to the file, you must use editor commands to correct it.

T~e following example specifies the new file on the same line as the call to
EDI; this format shows an alternate (and quicker) way to summon the
editor to create a file (Note the use of the DELETE or RUBOUT key,
CTRL/R, and CTRL/U).

~EDI ADD.FTN <CR)
[CREATING NEW FILE]
JNF'U'y

TYPE: :t. <CF~)

:I. FORMAT (' ENTER TWO NUMBERS - M,N') <CR)
APPE\EPP\CCEPT 2,K,L <CTRL/R)
ACCEPT 2,K,L <CR)

2 FORMAT (22\2\15) <CR)
PF~ I NT r'u
TYPE :-5, I\+l.. <CI:~>

3 FORMAT (' THE SUM IS ',15) <CR>
~) T () P < C F< >-

<CF<>-* E:X <Cf~>
[EXI'J :]

END <CF<>

Note the last four lines of the example above:

<Cf(>
*EX <CR>
[EXIT]

After terminating the last line in the program, type<CR> as the first
character in the new line. EDI responds by displaying an asterisk (*)
prompt. Until this point, EDI has been operating in input mode, entered
automatically when EDI created the new file. Typing carriage return
«CR» at the beginning of a new line switches EDI from input mode to
edit mode; the asterisk is a prompt for editor commands. The command
EX instructs EDI to close the file ADD.FTN and then to exit to MCR.

2.1.2 Displaying a Copy of the New File
To display a copy of the new file, issue the command

)PIP TI:=ADD.FTN <CR>

2-3

Program Preparation

This command requests the Peripheral Interchange Program (PIP) to dis
play a copy of ADD.FTN at your terminal. TI: (Terminal Input) is a
device name that always represents the issuing terminal. (See Chapter 3
for more information about PIP.) When entering this PIP command, re
member to type an equal sign (=) between TI: and the name of the file to
be copied:

>PIP TI:=filename.type <CR>

Example:

)PIP TI:=ADD.FTN <CR)

TYPE 1
1 FORMAT (' ENTER TWO NUMBERS - M,N')

ACCEPT 2,K+L
2 FORMAT (21.5)

TYPE :3" KH ..
3 FORMAT (' THE SUM IS ',,15)

STOP
END

2.1.3 Editing a Source Program File
To edit an existing file, enter the EDI command:

>ED1 ADD.FTN <CR>

Note that this is the same command line entered to create the file
ADD.FTN. However, because ADD.FTN now exists, EDI responds
differently:

)ED1 ADD.FTN <CR)
[00009 LINES READ IN]
I: F'(~GE :L J

*
EDI retrieves the existing file and automatically enters edit mode, indi
cated by the messages and the asterisk prompt. The message [00009
LINES READ IN] tells you the number of lines from the input file that
EDI has read into a buffer. The lines within the buffer comprise the cur
rent block of text to be edited (initially [PAGE 1]). The buffer mayor
may not contain the complete input file depending on the sizes of the
file and the buffer. To access text beyond the current block, you issue an
editor command (Renew, see Table 2-1) that writes the current block to
the output file and refills the buffer with the next block of text.

An internal line pOinter determines the line within the block to be edited.
When EDI reads in a buffer, the line pointer points to a line immediately
preceding the first line of text, thus allowing you to insert one or more
lines at the top. You subsequently position the pointer by searching for a
particular piece of text or by using commands that reposition the pointer.

2-4

Program Preparation

Locating and Changing Text
Most EDI Commands can be abbreviated to one or more letters. In the
following text, the optional portion of each command is underlined.

The example below illustrates the following editor commands:

Command Function

LOCATE Locate a string of text in the current block.

CHANGE Replace one text string with another.

NEXT Advance the line pointer to the next line.

PRINT Print the current line.

TOP Position the line pointer at the top of the current
block.

<CR> Point to and print the next line.

Example:

The text following each break in this example explains the command that
has just been given to the editor.

~EDI ADD.FTN <CR>
C00009 LINES READ IN]
[TAGE :I.]
*LOCATE ENTER <CR>

Point to and print the line containing the word ENTER.

1 FORMAT (' ENTER TWO NUMBERS - MpN')
*CHANGE/ENTER/TYPEI <CR>

Change the word ENTER to TYPE. (Note how the slashes delimit both
text strings.) EDI then prints the corrected line.

1 FORMAT (' TYPE TWO NUMBERS - M,N')
*NEXT <cr-i:>

Point to the next line.

*PF~INT <CF~>

Print the current line.

ACCEPT 2,K+L *I ... OCA·' E SUM <CF~>

2-5

Program Preparation

Point to and print the line containing the word SUM.

3 FORMAT (' THE SUM IS ',15)
*CHANGE/SUM/RESULTI <CR>

Change SUM to RESULT.

3 FORMAT (' THE RESULT IS ',IS)
*LOCATE (215) (CR>

Point to the line containing (215).

EDI reached end of buffer (EOB) without finding the text (215). The line
pointer only moves forward through the buffer in response to a LOCATE
command.

*TOP <c/=<>

Move the line pointer to the top of the buffer (one line before the first
line of text).

* <Cf~>
TYPE 1

Pressing carriage return in response to the * prompt instructs EDI to print
the next line, which becomes the current line for editing. In this case, the
next line is the first line in the buffer.

*EXIT <CF~>
[EXIT]

Write the current buffer and the remainder of the input file to the output
file, close both files, and exit to MCR.

Inserting and Deleting Text
This section illustrates how to use the following additional editor com
mands. Again, the optional portion of each command is underlined.

Command Function

INSERT Insert one or more new lines of text.

ADD Append text to an existing line.

DELETE Delete the current line.

<ESC> Point to and print the previous line.

2-6

Program Preparation

Command Function

RETYPE Replace the current line with a new string of text.

LIST Display at the terminal all lines remaining in the
buffer, beginning with the current line. Note that
the line pointer does not move.

Example:

The text following each break in this example explains the command that
has just been given to the editor.

)EDI ADD.FTN <CR>

EDI retrieves the latest edited version of ADD.FTN.

[00009J LINES READ IN
(PAGE 1J
* IN~3Er<T <CF<>

Switch to input mode. Insert the following line immediately before the
first line of text in the buffer.

C THIS PROGRAM ADDS TWO NUMBERS TOGETHER <CR>
<CI:<>
*LOCATE NUMBERS <CR>
j FORMAT (' TYPE TWO NUMBERS - M,N')
*ADD !INPUT PROMPT <CR>

Append comment text to current line.

*F'F~JNT <Cf<>
1 FORMAT (' TYPE TWO NUMBERS - M,N')!INPUT PROMPT
*LOCATE RESULT <CR>
3 FORMAT (' THE RESULT IS ',15)
*D[LETE ::Cf~>

Delete the current line and move the pointer forward one line.

*<E~:;C>

Typing <ESC> in response to the * prompt instructs EDI to point to and
print the previous line.

TYPE 3, I-\+L * I N ~:; E r~ T <: C F;: :>

Enter input mode.

3 FORMAT (' THE SUM IS ' v I5)!DISPLAY RESULT <CR>

2-7

Program Preparation

Insert this new line of text.

Re-enter edit mode.

*TDP (CH>

Reposition the line pointer at the top of the buffer.

*<Cf.:)

Point to and print the next line, which is the first line in the buffer.

C THIS PROGRAM ADDS TWO NUMBERS TOGETHER
*RETYPE r ADD DISPLAYS THE SUM OF TWO NUMBERS<CR>

Replace the current line with the text entered after the RETYPE
command.

*I ... IST <CF~>

Display the remainder of the current block.

C ADD DISPLAYS THE SUM OF TWO NUMBERS
TYPE 1

1 FORMAT (' TYPE TWO NUMBERS - M,N')!INPUT PROMPT
ACCEPT 2,1\, L

2 FORMAT (215)
TYPE 3,K+L

3 FORMAT (' THE SUM IS ',I5)!DlSPLAY RESULT
!:;TOP
END

*EXIT <Cf(>
[EXIT]
:>

2.1.4 Basic EDI Commands
Table 2-1 summarizes a basic set of EDI commands. This set provides you
with all the functions you need for simple editing. See the RSX-JJ Utili
ties Procedures Manual for a full specification of ED!.

2.2 COMPILING A SIMPLE FORTRAN SOURCE PROGRAM
Compilation is the process of translating an ASCII source program into a
machine-readable object program. In the call to the FORTRAN compiler,
you supply a file expression that specifies the source program as an input
file and the object program as an output file. For example:

)FOR ADD.OBJ=ADD.FTN

2-8

Pro gram Prepara tio n

Table 2-1 Basic EDI Commands

Command Command Format Description

ADD Add string Append string to current line.

BOTTOM BOttom Move the line pointer to the bot-
tom of the current block.

CHANGE Change / string 1/ Replace string I with string2 in the
string2/ current line.

<CR> Carriage return Print the next line, make it the
new current line; or exit from
input mode.

CTRL/Z tz Close the input and output files
and terminate the editing session.

DELETE Delete Delete the current line.

<ESC> ESCape or ALTmode Point to and prin t the previous
line.

EXIT EXit Close the input and output files
and terminate the editing session.

INSERT Insert [string] Insert string on the next line or
enter input mode if string is
omitted.

LOCATE Locate string Locate the first line containing
string. The search stops at the end
of the current block.

NEXT Next Advance the line pointer to the
next line.

PRINT Print Print the current line.

RENEW RENew Write the current block to the out-
put file and read in a new block
from the input file.

RETYPE Retype string Replace the current line with
string.

TOP Top Move the line pointer to the top
of the block.

2-9

Program Preparation

This command string requests the FORTRAN compiler to compile the
source program called ADD.FTN to produce an object file called
ADD.OBJ. As the example file expression shows, you specify, from left
to right, the output file (ADD.OBJ), an equal sign (=), then the input file
(ADD.FTN).

Because the FORTRAN compiler defaults the object type to OBJ and the
source type to FTN, you can abbreviate the above command string to

:> FOH ADD:::ADD

By appending switches to the input and/or the output file specifications,
you can make special compilation requests. See the IAS/RSX-ll
FORTRAN lV User's Guide or the FORTRAN IV-Plus User's Guide for
a description of FORTRAN compiler switches. All the examples in this
section assume you are using the compiler defaults.

Requesting a Listing File
In addition to translating a source program, the FORTRAN compiler can
also supply a listing file on request. For example:

)FOH ADDvADD=ADD <CH)

The second ADD in the output file list instructs the compiler to produce a
listing file of the source program and the storage map. (The storage map
lists all the symbolic names referred to in the program.) If the system sup
ports the line printer spooler, the listing file is automatically directed to
the line printer. (See Section 3.2.5 for a definition of spooling.) However,
if your system does not spool line printer output, the command shown
above creates a file called ADD.LST, stored on your system disk.

Note that you must insert a comma (,) between the object file name and
the listing device name; in other words, the required format is

>FOR object,list=source

To send· the listing file to your own terminal, issue the following com
mand string:

You can also request the compiler to produce a source listing of a program
without creating an object file as well. To make such a request, simply
omit the object file field in the file expression. For example: .

)FOR ,TI:=ADD <CH)

1 If your system does not spool the listing file by default, you can request a line printer
listing of the source file by substituting LP: for TI:, that is, >FOR ADD,LP:=ADD.

2-10

Program Preparation

Note that you must enter a comma (,) before the listing device; otherwise
the compiler interprets TI: as an object file name.

Requesting a Nonresident FORTRAN Compiler
If the message

MeR -- TASK NOT IN SYSTEM

appears after you issue the FOR command, the FORTRAN compiler is
not currently resident in the system. In this case, issue the command

>I~UN $FOF< ·:::cr-i:>

This command requests the system to load the FORTRAN compiler into
memory and to activate it. The compiler responds by prompting

FOR>

You then enter the file expression in the format illustrated above. For
example:

>I~UN $FOF~ <CFU·
rOR>ADD~ADD=ADD <CR>
FOR><crF~I.../Z>

After the compiler has completed your request, it displays its task prompt
once more. Enter CTRL/Z to terminate the compiler and remove it from
memory. Alternatively, you can enter a file expression to request another
compilation and/or source listing.

2.3 ASSEMBLING A SIMPLE MACRO SOURCE PROGRAM
To assemble a MACRO source program, issue a command in the following
format:

>MAC object,list=source

By appending switches to the input and/or the output file specifications,
you can make special assembly requests. See theIAS/RSX-ll MACRO-ll
Reference Manual for a description of assembly switches. All the examples
in this section assume you are using the assembly defaults.

The Assembler defaults the object type to OBJ, the list type to LST, and
the source type to MAC; therefore, the command

:::-MI~C ADD v (.:IDD:~:ADD

represents

>MAC ADD.OBJ.ADD.I...ST=ADD.MAC

2-11

Program Preparation

The Assembler-generated listing includes an optional table of contents, an
assembly listing, and a symbol table. To request a listing only, without an
assembled object file, omit the object file name. For example:

>,MAC , ADI)::::ADD

See Requesting a Listing File in Section 2.2 for further information about
obtaining a listing file.

Requesting a Nonresident Assembler
If the MACRO Assembler is not resident in memory when you issue a
MAC command, the system displays the message

MCR -- TASK NOT IN SYSTEM

To load and activate the Assembler, issue the following command:

> ~"\LJN ~)MAC

MAC>

Then enter a file expression in response to the following Assembler
prompt:

>F<UN ~~M('~C <CF~>

MAC>ADD,ADD=ADD <CR>
MAC> <CTF~I ... /Z>

When the Assembler prompts for further input, either enter a file expres
sion to request another compilation and/or source listing, or type CTRL/Z
to terminate the Assembler.

2.4 LINKING OBJECT PROGRAMS - THE TASK BUILDER
The Task Builder is a system program that makes an executable program
unit, called a task, from one or more object modules; it links the object
modules, resolves any references to the system library, and produces a
single task image. The task image resides on disk until you issue an MCR
command to install and run it.

The simplest form of Task Builder (TKB) command input is

>TKB task-image=object

where task-image, the output file, is the name given to the executable
task; and object, the input file, is the name of a module produced by a
compiler or assembler. For example:

>TKB ADD.TSK=ADD.OBJ <CR>

2-12

Program Preparation

Because TKB defaults the output file type to TSK, and the input file type
to OBJ, you can shorten the above command string to

}TKB ADD=ADD (CR)

2.4.1 Full TKB Command Line
The format of a full TKB command line accommodates three output files
and any number of input files. The three output files are as follows:

1. The task image (name.TSK), which contains the executable task
image

2. A memory allocation file (name.MAP), which lists information
about the size and location of components within the task

3. A symbol definition file (name.STB), which contains informa
tion about the task's global symbol definitions

The list of input files comprises the one or more object modules to be
linked into a single task image.

The format is

>TKB task-image,map,symbol-def=input, ...

If you omit an output file at the beginning or middle of the output list,
retain a comma in the file's place to specify a null field. On the right-hand
side of the equal sign, use a comma to separate one input file from an
other. Table 2-2 illustrates all the possible requests for TKB output files.

Table 2-2 TKB Output File Requests

Command Line Requested Output Files

>TI\1-:: ADDvMAPvSYMBOL=ADD All three output files

>TI\B ~ ~ SYMBOL=::ADD Symbol definition only

>Tt<n ~ MAP y ~:;YMBOI ... ::::ADD Memory allocation and symbol
definition

> Tt,:n ~ rjl~P::::I~DD Memory allocation only

:> TI''::B ADD y y t'YMBOI...::::ADD Task image and symbol
definition

>rl\B ADD? i"1AF'::::ADD Task image and memory
allocation

>TI<D ADD::::(.)DD Task image only

2-13

Program Preparation

2.4.2 Simple Multiline Format
A long list of input files can· cause a TKB command line to exceed your
terminal's maximum line length. If this is the case, invoke TKB in the
following manner:

>TI-(B <CH>
rt,B>

When you terminate the line immediately after entering TKB, MCR acti
vates the Task Builder, which then prompts for input. TKB continues to
display its prompt after each'line of input until it receives the terminating
characters II in the first two character positions. For example, the single
command line

)TKB TASKvMAP,SYMBOL=INPUT1,INPUT2,INPUT3 <CR>

can be entered as follows:

>'fl\[: <cr<>
TKB>TASK,MAP,SYMBOL=INPUTl <CR>
TI\H>I NPUT2 pI NPUT3 <CI~>
TKB>I I <Cf~>

2.4.3 Default Types
The default types in the TKB command line are as follows:

File

Task image
Memory allocation
Symbol definition
Input

Therefore, by default, the command line

>1K8 ADD,ADD,ADD=ADD

represents

2.4.4 Listing the Memory Allocation (MAP) File

Type

TSK
MAP
STB
OBJ

The memory allocation (also called map) file is an ASCII file that contains
information about the size and location of components within the task. If
your system supports the spooling option, TKB spools this file to the line
printer by default.

However, without the spooling option, TKB stores this file on your sys
tem disk. If you want a listing only of the map file, rather than a stored

2-14

Program Preparation

disk image, insert the name of a listing device in the place of the map file
name. For example:

)TKB ADD,LP:,SY:ADD=ADD

This command instructs TKB to list the file called ADD.MAP on the line
printer and to store the files ADD.TSK and ADD.STB on your system
disk.

Note that the third output file is called SY:ADD rather than ADD. SY:
is the device name for your system disk. You must prefix the name of the
STB file with SY: because the preceding device name has changed the
default device to LP:. The command

instructs TKB to list both the map and the symbol definition file on the
line printer, even though the third output file does not specify LP:.
Because the STB file is in machine-readable code rather than ASCII code,
an STB listing is of little or no use to you. The effect of the LP: specifica
tion does not cross the equal sign; =ADD still represents SY:ADD.OBJ.

2.4.5 Task Builder Switches and Options
The Task Builder includes a variety of switches and options that afford
you additional control over the construction of a task image. These
switches and options are described in the RSX-l1M Task Builder Refer
ence Manual.

2.5 RUNNING A TASK
The goal of the procedures described so far is to produce a program unit,
called a task, that can run on RSX-llM. Linking, the last step in the prep
aration sequence, has generated a task image file (ADD.TSK) stored on
your system disk. To run the task, issue the MCR Run command, specify
ing ADD.TSK as a parameter:

>F.:UN {~DD <CF<>

(The Run command defaults the type to TSK.) This command instructs
the system to perform the following functions:

• Locate ADD.TSK on your system disk.
• Load a copy of the task image into memory.
• Execute the task.
• Remove the memory-resident task when it has completed its

run.

The task image file remains on disk, ready to be run, until you explicitly
delete it.

2-15

Program Preparation

The following listing illustrates three consecutive runs of the FORTRAN
program ADD.

>f.:UN ADD <CI=\::::-
TYPE TWO NUMBERS - M,N
7v3 <CF~>

THE SUM IS 10
TT:I.:~ _ STOP

:-: f~UN ADD <CI:;:>
TYPE TWO NUMBERS - M,N
~.;22. l)2D <CF<>
THE SUM IS 1150
TT:J.3 - STOP

>1:~l.JN ADD <CF<>
"J"'r'PE: TWO NUMBERS ... M, N
(~ ~ 1. 6 <C;F~>

THE SUM IS 25
l"T 1. 3 •... - STOP

Note that, at the completion of each run, the program displays the line

TT:l.3 _. STOP

TT 13 is a temporary name assigned to the task while it is running. The
version of the Run command shown in these examples causes the system
to name the task TTn, where n is the unit number of the requesting
terminal.

Figure 2-2 reviews the steps in creating the FORTRAN task ADD, show
ing the specific files created along the way.

2-16

Source
Program

Object
Module

Task
Image

COMPILER

EXECUTING
TASK

Program Preparation

Listing

ADD.LST

Figure 2-2 Steps in Creating the FORTRAN Task ADD

2-17

CHAPTER 3

THE FILES

This chapter describes files and file handling in two parts. Section 3.1
defines all the elements of a complete file specification. Section 3.2
then explains how to use a system program to manipulate files.

3.1 COMPLETE FILE SPECIFICATIONS
The examples given in Chapters 1 and 2 have stressed the use of defaults
in a command line. Defaults are useful to know because they allow you
to type as little as necessary when providing input to the system. How
ever, there are many situations in which you must supply a complete
file specification because defaults do not apply. Section 2.1.1, Creating
a Source Program File, defines two fields of a file specification: the file
name and the file type. The three additional fields required to complete a
file specification are

dev: The name of the device that holds the volume on which
the file resides

[g,m] A User Identification Code (UIC) that identifies the
directory that lists the file

;n A number that differentiates among various versions of the
same file

The format of a complete file specification is

dev: [g,m] filename.type;n

Examples:

MTl: [116,23] DATA.DAT;4
DT: [203,204] TASK.TSK;1
DK2: [34,63] CALC.MAP;2

3.1 .1 The Device Name
The device name specifies the unit on which the file resides. The name
consists of 2 alphabetic characters, an optional 1- or 2-digit octal unit
number, followed by a colon (:). When the name does not include a unit
number, the system assumes that the unit number is O. Example device
names and corresponding units are listed on the following page.

3-1

The Files

Name

DK2:
DT1:
MT:

Corresponding Unit

RK05 disk, unit 2
DECtape, unit 1
TUIO magnetic tape, unit 0

The device name can specify either an actual physical unit, like the
three listed above, or a pseudo device name, which corresponds to dif
ferent physical units, according to whoever enters the name. For example,
the name TI: refers to the terminal at which you are entering input.
Another pseudo device name is SY:, which corresponds to your default
system disk. All the files you have created so far reside on SY:.

Table 3-1 lists the names of commonly used devices. The letter n stands
for unit number. There are different types of disks and magnetic tapes,
which have correspondingly different device names. Ask someone at your
installation which names you should use. See the RSX-llM Operator's
Procedures Manual for a complete list of device names.

Table 3-1 Commonly Used Device Names

Device Name

DECtape DTn:

Disk DBn:
DKn:
DMn:
DPn:
DXn:

Line Printer LPn:

Magtape MMn:
MTn:

Pseudo input terminal TI:

Terminal TTn:

System default device SY:

Because the names TI:, TT:, and LP: represent input and/or output de
vices, rather than storage media, they generally do not appear in a com
plete file specification. When you refer to one of these devices in a file
expression, the device name stands alone. For example, the following com
mand sends a copy of ADD.FTN on your system disk to your terminal:

:> F' J F' T I ! ;;:; (.~ :0 Ii • F T N

3-2

The Files

3.1.2 User File Directories (UFDs)
When you logged on (see Section 1.2.2), you either directly or indirectly
(through your last name) specified your UIC. This UIC identifies the
default User File Directory (UFD) set up for you on SY: when the system
manager made you an authorized user. This UFD is itself a file that lists
the names of all files in your area. The system cannot locate a file unless
it knows the UFD in which it is listed.

If your UIC is [203,125], the name of your default UFD is
203l25.DIR;1. However, when referring to a UFD within a file speci
fication, you must use the UIC format, namely [203,125].

Your default UFD is not the only directory you can access. On many
occasions you may need to access files belonging to someone else. In this
event, you can use an MCR command to change your default UFD
(SETjUIC=[g,m]; see the RSX-llM Operator's Procedures Manual), or
you can explicitly specify a different UFD in a file specification. (Note
that neither of these actions changes the UIC with which you logged on.)

Suppose you need to obtain a copy at your terminal of a file
(LABEL.MAC, for example) listed in UFD [203,200] :

>PIP TI:=[203,200JLABEL.MAC

This command assumes that LABEL. MAC resides on your SY:.

In a system that does not support multiuser protection, your default UFD
corresponds to the UIC specified in the last SET JUIC= [g,m] command
issued from your terminal. To obtain a display of the current default
UFD, issue the command

>GET IUTC <CI;:>

The system responds as follows:

UIC=[g,m]

where [g,m] is the current default UFD.

Restrictions on File Access
The system does impose restrictions on access to UFDs and other files
that belong to other users. Every file includes a protection mask that
determines who can access the file and in what manner; when you attempt
to access a file, the system checks your UIC against the file's protection
mask. If the check fails, your attempted access fails; and the system
returns an error message at your terminal.

3-3

The Files

For example, if you attempt to edit a file that prohibits access by your
VIC, EDI displays the following message:

EDI -- PRIVILEGE VIOLATION

See the RSX-llM Operator's Procedures Manual for a more detailed
description of file protection.

3.1.3 Version Numbers
A version number is octal and in the range 0 to 77777. When a file is
created, the system assigns it a version number of 1. Subsequently, the
system increments the version number by 1 each time a new version of
the same file is created. The "same file" is one that has the same name
and type and is listed in the same VFD on the same volume.

For example, whenever you edit a file, EDI creates an output file to con
tain the edited file. The file specification that refers to the output file
is identical to the input file specification, except that the version has been
increased by 1.

Input File Output File

I FILE.FTN;1 t-I - ~t---_·~I FILE.FTN ;21

Recompilations of the same source file also produce files with the same
specifications except for differing version numbers. For example, the
command

>FOR ADD=ADD

results in the creation of a file called ADD.OBJ;1. If you repeat the com
mand, the resultant file is called ADD.OBJ;2 since the file ADD.OBJ; I
already exists.

Input File Output File

CD I ADD.FTN ;111---...... 1 FOR It---~ .. I ADD.OBJ ;11

0IADD.FTN;III-----..~1 FORt-I -~ .. IADD.oBJ;21

3.1.4 File Specification Defaults
Table 3-2· explains the defaults for each field of the file specification.

3-4

The Files

Table 3-2 File Specification Defaults

Field Default

dev: SY:

[g,m] The VIC with which you logged on, or a VIC deter-
mined by the MCR command SET /VIC=[g,m] (see
the RSX-llM Operator's Procedures Manual).

filename No default.

type Depends on the command string in which the file
specification appears.

version For input files, the highest existing version.

For output files, the highest existing version plus 1.

Note that some commands require an explicit version
number.

3.2 MANIPULATING FILES USING PIP
In the process of creating, editing, compiling, and linking your program,
you have generated a number of disk files:

• The original source file (ADD.FTN;I)
• An edited version of the source file (ADD.FTN ;2)
• An object file containing the compiled program (ADD.OBJ; 1)
• A task image file containing linked object code (ADD.TSK;1)
• A memory-allocation file (ADD.MAP;1)
• A symbol-definition file (ADD.STB;1)
• Additional versions of the above files, if you have repeated any

of the program preparation steps

All of these files remain on SY:, taking up space, until you explicitly
delete them. Once you have determined which file you need to keep,
how do you eliminate those you do not want?

The following sections describe how to use the Peripheral Interchange
Program (PIP). This program allows you not only to delete obsolete files,
but also to perform a variety of other file-manipulation functions. When
you invoke PIP, it performs a specific function according to the param
eters you supply. (See the RSX-ll Utilities Procedures Manual for a
complete description of PIP; this manual describes only a subset of
PIP functions.)

3-5

The Files

3.2.1 Listing a UFD
All the files you' have created are listed in your UFD. The following PIP
command displays that list at your terminal.

>PIP IL.l <CI=\:>

ILl is the List switch, where a switch is a slash followed by 2 letters. The
letters abbreviate, or otherwise identify, the switch's function. For ex
ample, ILl means "list"; IDE means "delete."

If you plan to issue a series of PIP commands, you can invoke PIP as
follows:

>P J F' <C/:':>
PIP>//.. I <CI=<>

D I I~ECr()I:~Y DBO: [301. ,:314::1
2!:'i-·MAY····T7 14:4B

Ann.OBJ;2 ")
A· •••

(~D[I ~ TSK ; :I. 29.
(~DD • MAP; 1. 4.
ADD. STIl, :I. :3.
ADD.FTN;l. 1 •
ADD.TSK,3 29.
ADD. DB,); 1 ") "' ...•
(.~Dn. T!:>K; 2 29.

2:5 MAY 77
C 20· .. ·MAY 7'7

2::) MAY····77
2:::j MAY·-77
20 MAY 77

C 2:5 MAY·-77
20· .. · MAY"" 77

r 20 MAy 77

TOTAL OF 99./112. BLOCKS IN 8~ FILES

PIP>

1.4 ::31
14: :32
1. 4: ~52
14:32
1 ~5: 26
14: 3~5
1:::i: 27
:L~:j: 2B

After listing the directory, PIP displays its task prompt and waits for
further input. To terminate PIP, type CTRL/Z in response to the prompt

P I P><CTF~L/Z>

The PIP directory listing includes the following information:

3-6

•
• • •

The physical device unit on which the files are stored, and the
UIC that owns the directory. The unit named is your S'Y:; the
UIC is your current UIC.

The date and time you issued the PIP request.

The name, type, and version number of each file.

The size of each file in blocks. A block is 512 bytes (256 words)
long.

The Files

• The letter C if the file is contiguous, that is, not split into
physically separated sectors on the disk.

The date and time each file was created. • • The cumulative size in blocks of all the files listed and the num
ber of blocks allocated for all the files.

Figure 3-1 assigns the letters in the above list to the appropriate parts of a
directory listing .

•
•

DII~ECTOr~Y DBO:J:301,::H4J
t 25-MAY-77 14:48 • • ADD.OBJ;2

ADD.TSK;l
ADD.MAP;1
ADD.STBvl.
ADD.FTN;1
ADD. T!3K; 3
ADD.OBJ;l
ADD.TSK;2

")
A.o •

29.
4.
3.
1.
29.
")
': ...
29.

• • 25 MAY T7
C 20''''MAY 7'7

2~:)""MAY""77
25""MAY·-T7
2 0 MA y 7'7

C 25 MAY·-77
2() MAY· .. ·77

C 2() MAY 77

• TOTAL. OF 99./U.2. BLClCI-(S IN 8. FILES

Figure 3-1 Sample Directory Listing

14:31
:L4::32
14:32
14: ~52
:L5: 26
14: :~:~
15:27
1 ~j: 28

PIP also accepts switches that request either fewer or more details about
the files listed; these switches are described in the RSX-JJ Utilities Pro
cedures Manual.

3.2.2 Listing Specific File Information
PIP also allows you to obtain information about one file or a specific
group of files. For example, if you want to see how many versions of
ADD .TSK exist in your directory, issue the command

As the example illustrates, the file specification always precedes the
switch.

The command requests PIP to display a directory listing of all versions of
the file called ADD.TSK. The PIP request refers to all versions of the file
because you entered an asterisk (*) in the version number field of the file
specification. The asterisk, called a wildcard, stands for "all"; it can be
placed in any field of the file specification, other than the device field.
For example,

I~DD.*jI*

3-7

The Files

means all types and all versions of the file name ADD. Since all the files in
the directory listed above are named ADD, the command

has the same effect as

>F' I P II ... I <CF~>

which lists out all files in the directory.

3.2.3 Deleting Files
PIP includes two switches for deleting files:

IDE Delete the one or more files specified.

IPU Purge (delete) all but the highest version(s) of the one or
more files specified.

Once you know what files are listed in your UFD, you can decide which
files you want to delete. Considering the list shown in Figure 3-1, suppose
you decide to retain only the highest version of each file. You conse
quently need to delete the following files:

ADD.OBJ;1
ADD.TSK;1
ADD.TSK;2

To delete these files by means of the IDE switch, issue the command

This example demonstrates how to enter a list of specifications; a comma
separates one specification from the next, and the switch follows the last
specification (PIP filespec, ... , filespec/sw).

Note that the IDE option requires either an explicit version number or a
wildcard in the version field. However, the wildcard (*) feature is inappro
priate when the UFD lists other files with the same name, but with dif
ferent types and versions that you want to retain. In this instance, it is
necessary to specify each file to be deleted.

When you want to eliminate all but the highest version of one or more
files, the IPU switch ismore efficient than IDE. The following command
has the same effect as the above use of the IDE switch (in the context of
the UFD listed in Figure 3-1):

3-8

The Files

/PU does not affect files that have only one version listed within the UFD.
Note that the purged file specification does not include a version field.

>F'lF' ILl <CR>

DIRECTORY DBO:[301,314J
25-MAY-77 14:56

ADD.OBJ;2 2.
ADD. MAP; :I. 4.
ADD.STB;1 3.
ADD.FTN;l 1.
ADD.TSK;3 29.

25-MAY~~77
25-MAY~~77

25·-MAY-77
20'~MAY'-77

C 25-MA7-77

TOTAL OF 39./49. BLOCKS IN 5. FILES

14:31
14:32
14:32
15:26
14:33

As the listing shows, the directory now contains only the highest version
of each file.

3.2.4 Copying Files
Copying files is PIP's default function; that is, PIP assumes the copy
function when you do not specify a switch. For example, the following
command copies file ADD.MAP from your area on SY: to your area
on another disk:

)PlP DK:=ADD.MAP <CR)

The command includes the call to PIP, followed by a file expression
(see Section 2.2) in the form

outfile=infile

where infile is the file to be copied and outfile is the destination of the
new copy. When outfile omits the UFD, file name, type, and/or version,
PIP defaults the UFD, filename, type, and version to the equivalent fields
in the infile.

Any volume that you reference in a file specification must be allocated
to you (multiuser protection systems only) and mounted. If the volume
specified or implied in either infile or outfile is not mounted, PIP returns
the message

PIP -- DEVICE NOT MOUNTED

In addition, before you can copy a file to a directory on another volume,
the directory must exist. In a multiuser protection system, your directory
on SY: is the only UFD automatically created for you; and in a non
multiuser system, no UFDs are automatically created. If the output disk

3-9

The Files

specified in the above example does not contain a UFD corresponding
to your UIC, PIP returns the message

PIP -- CANNOT FIND DIRECTORY FILE

Device allocation, mounting, and the creation of UFDs are all MCR
functions, effected respectively by the following commands:

• ALLOCATE
• MOUNT
• UFD

See the RSX-llM Operator's Procedures Manual for a description of
these commands. Specifically note the sections on nonprivileged users
working in a multiuser system. Note, however, that these three commands
cannot be issued by nonprivileged users if the system does not support
multiuser protection.

3.2.5 Spooling Files to the Line Printer
System users often need line printer listings of files; consequently, the
line printer is usually in heavy demand. RSX-IIM provides an optional
feature called spooling that allows more efficient, nondisruptive use of the
line printer. To spool files to the line printer, use the PIP switch jSP.
For example:

>PIP ADD.MAP/SP <CR>

Note that you do not need to specify LP: as the output file. This com
mand requests PIP to enter the name ADD.MAP in a queue of files waiting
to be listed at the printer. The system maintains the queue of names,
copying each file or group of files to the line printer on a first-queued,
first-printed basis.

Find out from the system manager whether or not your system supports
spooling. If it supports spooling, the system automatically directs certain
files to the line printer (see Requesting a Listing File, Section 2.2). Also
note that spooling can be generated to delete all files spooled to the
printer; this feature should therefore be used with care.

If you issue a command like the one above, and your system does not sup
port the spooling option, PIP returns the message

PIP -- FAILED TO SPOOL FILE FOR PRINTING

If this message appears, you must request a listing in the conventional
copy format:

)PIP LP:=ADD.MAP <CR)

3-10

The Files

3.2.6 Renaming Files
The PIP switch IRE allows you to rename existing files. For example,
the command

tells PIP to change the file-name field of all types and versions of the
files named ADD to ADDTWO. Note that you must explicitly specify
either a number or a wildcard in both version fields when you use the
IRE switch. The wildcards in the output file specifier indicate that the
type and version of the renamed files are not to be changed. Your
directory now looks as follows:

DIRECTORY DBO:C301,314J
25-·MAY-77 16: 43

ADDTWO.OBJ;2 ~! •
ADDTWO.MAP;1 4.
ADDTWO.STB;1 3.
ADDTWO.FTN;1 1.
ADDTWO.TSK;3 29.

25--MAY ._. 77
25-MAY-77
25-MAY--77
20--MAY-77

C 25--MAY-77

TOTAL OF 39./49. BLOCKS IN 5. FILES

14:31
14:32
14:32
15:26
14:33

Because the renaming function does not transfer data, you cannot specify
a different device in the output file specification. If you want to rename
a file as you copy it to another volume, enter the new name in the output
specification of the copy command line. For example:

This command tells PIP to copy all types and versions of the file named
ADD, which are stored in your UFD on SY:, to an equivalent UFD on
the DK disk, unit 0, where they are named ADDTWO.

3-11

APPENDIX

SUMMARY OF EXAMPLE PROGRAM

The following listing summarizes the development of the FORTRAN
program ADD and the manipulation of the resultant files.

>HEL <CR>
ACCOUNT OR NAME: CHARLES <CR>
PASSWORD: GREY <CR>

RSX-llM BL18 MULTI-USER SYSTEM

(300D MOf~NrNG

22-MAY-77 11:07 LOGGED ON TERMINAL TT4:

22-MAY"-77

SYSTEM WILL BE DOWN TODAY FROM 13:00-15:00 FOR
CORRECTIVE MAINTENANCE

>EDI ADD.FTN <CR>
[CREATING NEW FILE]
INPUT

TYPE 1 (CR>
1 FORMAT (' ENTER TWO NUMBERS - M,N') (CR>

APPE\EPP\CCEPT 2,K,L <CTRL/R>
ACCEPT 2,K,L (CR>

2 FORMAT (22\2\15) <CR)
PR I NT '''lJ
TYPE ~~, K+L.. <CR>

3 FORMAT (' THE SUM IS ',15) <CR>
STOP <CF~)

<CR)
*EX <CR>
[EXIT]

END <CR>

)PIP TI:=ADD.FTN (CR)

TYPE 1.
1 FORMAT (' ENTER TWO NUMBERS - M,N')

ACCEPT 2,K+1...
2 FORMAT (215)

TYPE 3,K+L
3 FORMAT (' THE SUM IS ',15)

STOP
END

)EDI ADD.FTN <CR>
[00009 LINES READ IN]
[PAGE 1]
*LOCATE ENTER <CR>
1 FORMAT (' ENTER TWO NUMBERS - M,N')
*CHANGE/ENTER/TYPEI <CR>
1 FORMAT (' TYPE TWO NUMBERS - M,N')
*NEXT <cn>
*PRINT <CR)

ACCEPT 2, KH ..

A-I

Summary of Example Program

*LOCATE SUM (CR>
3 FORMAT (' THE SUM IS ',IS)
*CHANGE/SUM/RESULT I (Cf(>
3 FORMAT (' THE RESULT IS ',IS)
*LOCATE (215) (CR>
(*EOB*J
*TOP (CR>
*<CR)

TYPE 1
*EXIT <CR>
[EXIT]
)EDI ADD.FTN (CR)
(00009] LINES READ IN
[PAGE 1J
*INSERT <CR)
C THIS PROGRAM ADDS TWO NUMBERS TOGETHER (CR)
<CR>
*LOCATE NUMBERS (CR>
1 FORMAT (' TYPE TWO NUMBERS - M,N')
*ADD !INPUT PROMPT <CR>
*PfnNT <CR>
1 FORMAT (' TYPE TWO NUMBERS - M,N')!INPUT PROMPT
*LOCATE RESULT (CR>
3 FORMAT (' THE RESULT IS ',IS)
*DELETE <CF(>
*<ESC>

TYPE 3,K+L
*JNSERT <CF~>
J FORMAT (' THE SUM IS ',I5)!DISPLAY RESULT <CR>
<CF~>

*TOP <CR>
*<CI:~>

C THIS PROGRAM ADDS TWO NUMBERS TOGETHER
*RETYPE C ADD DISPLAYS THE SUM OF TWO NUMBERS <CR>
*LIST <CR>
C ADD DISPLAYS THE SUM OF TWO NUMBERS

1

'')

3

TYPE 1
FORMAT (' TYPE TWO NUMBERS - M,N')!INPUT PROMPT
ACCEPT 2,K,L
FOF~MAT (2I5)
TYPE :~, K +l ..
FORMAT (' THE SUM IS ',I5)!DISPLAY RESULT
!3TOP
END

*EXIT <CF~>
[EXIT]
>FOR ADD,ADD=ADD <CR>
)TKB ADD,ADD,ADD=ADD
>RUN ADD (CR>
TYPE TWO NUMBERS - M,N
"l,J <CR)
THE SUM IS 10
lT13 - STOP

>F,UN ADD (CR)
TYPE TWO NUMBERS - M,N
~j22, b28 <CR>
THE SUM IS 11.~:;0
TTl :'5 STOP

>1:~t.JN ADD <CR>
TYPE TWO NUMBERS - M,N
9,1.6 <CR>

A-2

Summary of Example Program

THE SUM IS 25
TT:I.3 -- STOP
>PIP <CH>
PIP>/LI <CR>

DIRECTORY DBO:(301,314J
25··-MAY-·77 14:4B

ADD.OBJ;2 2.
ADD.TSK;1 29.
ADD.MAP;1 4.
ADD.STB;1 3.
ADD.FTN;1 1 •
ADD.TSK;3 29.
ADD.OBJ;l. ") .:...
ADD.TSK;2 29.

25-MAY-77
C 20-MAY-77

25-MAY-77
25-MAY-77
20--MAY-77

C 25--MAY-77
20-MAY-77

C 20-MAY-77

TOTAL OF 99./112. BLOCKS IN 8. FILES

PIP>
PIP><CTRL/Z>
>PIP ADD.*/PU <CR>
>PIF' IL.I <CF<>

DIRECTORY DBO:[301,314J
~~!7;-'MAY-"77 14: 56

ADD.OB,J;2 2.
ADD.MAP;1 4.
ADD. STIH l. 3.
ADD.FTN;1 1 •
ADD.TSK;3 29.

25-MAY-77
25-MAY-77
25-MAY-77
20-MAY-77

C 25-MA7-77

TOTAL OF 39./49. BLOCKS IN 5. FILES

)PIP ADDTWO.*;*=ADD.*;*/RE <CR>
>PIF' IL.I <CH>

DIRECTORY DBO:[301,314J
~.~!:)-MAY--77 16: 43

ADDTWO.OB..J;2 '")
ADDTWO.MAP;1 4.
ADDTWO.STB;1 3.
(~DDTWO. FTN; 1 1 •
ADDTWO.TSK;3 29. C

25-MAY-77
25-MAY-··77
25-MAY-77
20--MAY'-77
25--MAY-·77

TOTAL OF 39./49. BLOCKS IN 5. FILES

14:31
14:32
14:32
14:32
15:26
14:33
15:27
15:28

14:31
14:32
14:32
15:26
14:33

14:31
14:32
14:32
15:26
14:33

A-3

Access restrictions,
me, 3-3

Allocating device, 3-10
ANS magnetic tape, 2-1
Appending text string, 2-6,2-7,2-9
Assembling MACRO program, 2-11,

2-12
Assembly switches, 2-11
Asterisk convention, 3-7

Buffer,
renewing editing, 2-4, 2-9

BYE command, 1-9

Carriage return, 1-3, 1-7
Changing text string, 2-5, 2-9
Characters,

deleting, 1-3
Clearing the terminal, 1-7
Command,

BYE, 1-9
EDI, 2-2
FOR, 2-8
HELLO, 1-8
HELP, 1-9
MAC, 2-11
RUN, 2-15
SET IUIC, 3-3
TKB, 2-12

Command format,
MCR, 1-5 to 1-7

Command name, 1-5
Command parameters, 1-6
Commands,

basic EDI, 2-9
editor, 2-3
issuing MCR, 1-5 to 1-7
MCR, 1-5 to 1-10

Compiler switches, 2-10
Compiling FORTRAN program,

2-8,2-10
Copying files, 3-9
Creating source program, 2-2
Creating UFD, 3-10
Curren t line,

displaying (CTRL/R), 1-4
printing (EDI), 2-5

INDEX

IDE switch, 3-8
DECtapes, 2-1
Default prompt, 1-7
Default system disk, 2-2
Default types, 2-2

FOR, 2-10
TKB, 2-14

Default UFD, 3-3
setting, 3-3

Defaults,
file speCification, 3-5

Deleting characters, 1-3
Deleting files, 3-8
Deleting lines,

CTRL/U, 1-5
EDI DELETE command, 2-6,2-9

Deleting terminal output,
CTRL/O, 1-4

Deleting text string, 2-6, 2-9
Device,

allocating, 3-10
mounting, 3-10
pseudo, 3-2
SY:, 2-15,3-2

Device name, 3-1
Directories,

user file, 3-3
Directory,

listing, 3-6
Disk,

defaul t system, 2-2
Disks, 2-1
Displaying current line, 14
Displaying file, 2-3
Displaying lines, 2-7, 2-8, 2-9

EDI, 2-2
EDI commands,

basic, 2-9
Edit mode, 2-3
Edi ting buffer,

renewing, 2-4, 2-9
Editing source program, 2-4
Editor,

text, 2-2
Editor commands, 2-3, 2-9
Error messages, 1-11

Index-1

Index

File, 2-1
displaying, 2-3
input, 2"10
memory allocation, 2-13, 2-14
output, 2-10
symbol definition, 2-13, 2-15
task-image, 2-13

File access restrictions, 3-3
File directories,

user, 3-3
File expression, 2-8
File information,

listing, 3-6,3-7
File name, 2-2
File specification defaults, 3-5
File specifications,

complete, 3-1
File type, 2-2
Files,

copying, 3-9
deleting, 3-8
listing, 3-6,3-7
manipulating, 3-5
purging, 3-8,3-9
renaming, 3 -11
TKB output, 2-13

FOR command, 2-8
Format,

MCR command, 1-5 to 1-7
FORTRAN program,

compiling, 2-8, 2-10

HELLO command, 1-8
HELP command, 1-9

Identification code,
user, 1-8

Information,
listing file, 3-6,3-7

Input file, 2-10
Input mode, 2~3

Inserting text string, 2-6
Interchange program,

peripheral, 3-5
Issuing MCR commands, 1-5 to 1-10

Keywords, 1-6

/LI switch, 3-6,3-7
Line,

displaying current (CTRL/R), 1-4
printing current (EDI), 2-5
TKB command, 2-13

Index-2

Line pointer, 2-4
moving, 2-4

Line printer spooler, 2-10,3-10
Line terminator, 1-7
Lines,

deleting, 1-5, 2-6, 2-9
displaying, 2-7, 2-8, 2-9

Linking object programs, 2-12
Listing directory, 3-6
Listing file information, 3-7
Listing files, 3-6, 3-7
Listing UFD, 3-6,3-7
Locating text string, 2-5, 2-9
Logging off terminal, 1-7,1-9
Logging onto terminal, 1-7,1-8,1-10

MAC command, 2-11
MACRO program,

assembling, 2-11
Magnetic tape,

ANS, 2-1
Manipulating files, 3-5
Mask,

protection, 3-3
MCR command format, 1-5 to 1-7
MCR commands, 1-5

issuing, 1-5 to 1-10
MCR prompt, 1-7
Memory allocation file, 2-13, 2-14
Messages,

error, 1-11
suppressing system, 1-10

Monitor console routine, 1-5
Mounting device, 3-10
Multiuser protection, 1-7, 3-3

Name,
command, 1-5
device, 3-1
file, 2-2

Object program, 2-8
linking, 2-12

Obtaining prompt, 1-7
Options,

TKB, 2-15
Output,

deleting terminal (CTRL/O), 1-4
stopping terminal (CTRL/S), 1-4

Output files, 2-10
TKB, 2-13

Parameters,
command, 1-6

Password, 1-8
Peripheral interchange

program, 3-5
PIP, 3-5
PIP switches, 3-6
Pointer,

line, 24
moving line, 24

Printing current line (EDI), 2-5
Privilege violations, 3-3,34
Program,

assembling MACRO, 2-11
compiling FORTRAN, 2-8,2-10
creating source, 2-2
editing source, 2-4
linking object, 2-12
object, 2-8
peripheral interchange, 3-5
preparing, 2-1 to 2-17

Prompt,
default, 1-7
MCR, 1-7
obtaining, 1-7

Protection,
multiuser, 1-7,3-3

Protection mask, 3-3
Pseudo device, 3-2
/PU switch, 3-8,3-9
Purging files, 3-8,3-9

/RE switch, 3-11
Renaming files, 3-11
Renewing editing buffer, 2-4,2-9
Replacing text string, 2-7, 2-8, 2-9
Restrictions,

file access, 3-3
RUN command, 2-15
Running task, 2-15

SET /UIC command, 3-3
Setting default UFD, 3-3
Source program,

creating, 2-2
editing, 24

/SP switch, 3-10
Specification defaults,

file, 3-5
Specifications,

complete file, 3-1
Spooling, 2-10,3-10
Stopping terminal output, 14

String,
appending text, 2-6, 2-7, 2-9
changing text, 2-5, 2-9
deleting text, 2-6, 2-9
inserting text, 2-6, 2-7, 2-9
locating text, 2-5, 2-9
replacing text, 2-7, 2-9

Index

Suppressing system messages, 1-10
Switch,

/DE, 3-8
/LI, 3-6,3-7
/PU, 3-8,3-9
/RE, 3-11
/SP, 3-10

Switches,
assembly, 2-11
compiler, 2-10
PIP, 3-6
TKB, 2-15

SY: device, 2-15,3-2
Symbol definition file, 2-13, 2-15
System disk,

default, 2-2

Tape,
ANS magnetic, 2-1

Task, 2-1
running, 2-15

Task Builder, 2-12 to 2-15
Task name,

temporary, 2-16
Task-image file, 2-12, 2-13
Temporary task name, 2-16
Terminal,

clearing the, 1-7
logging off, 1-9
logging onto, 1-7,1-8,1-10

Terminal output,
deleting (CTRL/O), 1-4
stopping (CTRL/S), 1-4

Terminator,
line, 1-7

Text editor, 2-2
Text string,

appending, 2-6,2-7, 2-9
changing, 2-5, 2-9
deleting, 2-6, 2-9
inserting, 2-6, 2-7, 2-9
locating, 2-5, 2-9
replacing, 2-7, 2-9

TKB, 2-12
command line, 2-13
default types, 2-14
options, 2-15

Index-3

Index

output files, 2-13
switches, 2-15

Type,
file, 2-2

UFD, 3-3
creating, 3-10
default, 3-3
listing, 3-6,3-7
setting, 3-3

Index4

UIC, 1-8
User file directories, 3-3
User iden tification code, 1-8

Version number, 34
Violations,

privilege, 3-3,3-4
Volume, 2-1

Wildcard, 3-7

cu
t::

I~
:.a
on
t:: o c;
.....
;:j
u

READER'S COMMENTS

RSX-IIM Beginner's Guide
DEC-II-0MBGA-A-D

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. Problems with software should be reported on a Software Performance Report
(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit
your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

cu
en
~

cu Please indicate the type of user/reader that you most nearly represent.
i5::

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Non-programmer interested in computer concepts and capabilities

Name Date ____________________ _

Organization _____________________________________ _

Street __ _

City __________________ State _______ Zip Code __________ _

or
Country

.--Fold lIere--

.--- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML S.S/E39
Maynard, Massachusetts 017 S4

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

digital equipment corporation

Printed in U.S.A.

