
November 1978

RSX-11M
System Logic Manual

Order No. AA-5579A-TC

VOLUME 1

RSX-11 M V3.1

To order additional copies of this document, contact the Accessories and
Supplies Group, Product Line 86, Digital Equipment Corporation, Cotton
Road, Nashua, New Hampshire 03060.

digital equipment corporation · ma\:lnard. massachusetts

First Printing,November 1978

The information in this document is subject to change without notice
and should not be construed as a coilUl\itment by Digital Equipment
Corporation. Digital· Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @ 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-lo MASS BUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS

2/79-14

CONTENTS

VOLUME I

Page

PREFACE xvii.

CHAPTER 1 IN'I'RODUC'I'ION 'I'O THE RSX-llM V3.1 OPERATING
SYSTEM EXECUTIVE 1-1

1.1 RSX-UM SYSTEM 1-1
1.2 SYSTEM GENERATION 1-1
1.3 MAJOR COMPONENTS OF RSX-UM 1-2
1.4 MEMORY 1-2
1. 4 .1 Memory Partitions 1-2
1. 4. 2 Partitions In Mapped And Unmapped Systems 1-3
1. 4. 3 Partition Types 1-3
1. 4. 4 Subpartitions 1-4
1. 4.5 Memory Structure 1-4
1. 4. 6 Example Of A 16K Unmapped System 1-7
1. 4. 7 Example Of A Mapped 124K-word RSX-llM

System 1-9
1.5 'I'ASK PROCESSING 1-11
1. 5.1 Task States 1-11
1.5. 2 Fixed '!'asks 1-12
1.5. 3 Priority 1-12
1. 5. 4 Round-robin Scheduling 1-13
1.5 .5 Checkpointing 1-13
1. 5. 6 'I'ask Swapping 1-14
1.5. 7 'I'he Shuffler Task 1-15
1. 5. 8 Extended Logical Address Space 1-15
1.6 RSX-llM IN'I'ERRUP'I' PROCESSING 1-17
1. 6. l Interrupt Vectors 1-17
1. 6. 2 System. Stack 1-17
1.6.3 Processor '!'raps 1-18
1. 6. 4 E.xternal Interruptions 1-18
1. 6.5 Interrupt And Trap Vector Locations 1-19
1. 6. 6 System '!'raps 1-19
1. 7 EXECUTIVE DIRECTIVES 1-20
1. 7 .1 Event Flags 1-25
1. 8 'I'HE MCR INTERFACE 1-26
1. 8.1 Privileged Commands 1-26
1. 8. 2 External Scheduling Of 'I'ask Execution 1-27
1. 9 TERMINAL OPERATION 1-27
1. 9.1 Attached Terminals 1-27
1. 9. 2 Slave Terminals 1-28
1.10 MULTIUSER PROTECTION 1-28
1.10 .1 Public And Private Devices 1-28
1.11 SYSTEM MAINTENANCE 1-28
1.11.1 Error Logging 1-28
1.11. 2 Diagnostic Tasks 1-29
1.11. 3 Power Failure Restart 1-30

iii

CHAPTER 2

2.1
2.1.1
2.1. 2
2.1. 3
2.1. 4
2 .1. 5
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.s
2.2.9
2.2.10
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.4
2.4.1
2.4.2

CHAPTER 3

3.1
3.2
3.2.1

3.2.2
3.3
3.3.1
3.3.2

3.3.3

3.3.4

3.3.5

3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11

CONTENTS (Cont.)

MEMORY RESOURCE ALLOCATION

INTRODUCTION
Memory Addressing
Memory Management - An Overview
Virtual And Logical Addresses
Task Wi:ndows
Regions

MEMORY AL:LOCATION
Checkpointing
Disk Swapping
Shuffler (Memory Compaction)
The Loader (the System Loader Task)
The $NXTSK Routine
Routines That Call $NXTSK
Routines That $NXTSK Calls
$FNDSP Routine
$ICHKP Routine
$TSTCP Routine

MEMORY ALLOCATION FLOW DIAGRAMS
$ALCLK Logical Flow Diagram
$ALOCB Logical Flow Diagram
$CHKPT Logical Flow Diagram
$DECLK-$DEPKT-$DEACB Logical Flow Diagram
$FNDSP Logical Flow Diagram
$ICHKP Logical Flow Diagram
$NXTSK Logical Flow Diagram
$TSTCP Logical Flow Diagram
Loader Logical Flow Diagram
Shuffler Logical Flow Diagram

MEMORY ALLOCATION DATA STRUCTURES
Partition Control Block (PCB)
Task Control Block (TCB)

INTERRUPT PROCESSING

INTRODUCTION
INTERRUPT MECHANISMS

Hardware Interrupt Mechanisms - Review
and overview
Executive and Stack Processing

INTERRUP'I' PROCESSES
The INTSV$ Macro
External Interrupt from the Task
State ($STKDP=l)
External Interrupts from the System
State ($STKDP < =O)
Processor Traps from the Task State
($STKDP < =1)
Processor Traps from the System State
($STKDP < =O)
Powerf ail Processing
Processing Within Interrupt Routines
Fork Processing
Exiting the System State
Interrupt Processing Code
Interrupt Processing Summary

iv

Page

2-1

2-1
2-1
2-2
2-2
2-4
2-8
2-10
2-10
2-12
2-13
2-15
2-17
2-18
2-22
2-22
2-23
2-23
2-24
2-25
2-26
2-28
2-30
2-35
2-36
2-37
2-42
2-43
2-51
2-61
2-61
2-65

3-1

3-1
3-1

3-1
3-2
3-2
3-3

3-4

3-5

3-7

3-9
3-11
3-12
3-13
3-15
3-17
3-19

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4

4.2.5

CHAPTER 5

5.1
5.1.1

5.1. 2
5.1. 3

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.4

CHAPTER 7

7.1
7 .1.1
7.1.2
7 .1. 3
7 .1. 4
7 .1. 5
7 .1. 6
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.S
7.2.6
7 .. 2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12
7.2.13
7.2.14
7.2.15
7.2.16

CONTENTS (Cont.)

PRIVILEGED TASKS

INTRODUCTION
PRIVILEGED TASKS

Privileged Task Hazards
Specifying a Task as Privileged
Writing a Privileged Task
The $SWSTK Routine Described - Unmapped
and Mapped Systems
Task Mapping

MCR INTERFACE

MCR - MONITOR CONSOLE ROUTINE
Structure and Operation Environment
of MCR
The Terminal Driver and MCR Initiation
MCR Operation

I/O PROCESSING

IMPLEMENTATION
RSX-llM I/0 DATA STRUCTURES

The Device Control Block (DCB)
The Unit Control Block (UCB)
The Status Control Block (SCB)

QUEUE I/0 DIRECTIVE PARAMETER BLOCK
QIO DIRECTIVE LOGICAL FLOW

MODULE DESCRIPTIONS

CHAPTER ORGANIZATION
Module Name
Macro Library Calls
Entry Points
Calls
Entry (input) Conditions
Exit (output) Conditions

EXECUTIVE MODULE DESCRIPTIONS
BFCTL Module
CORAL Module
CRASH Module
CVRTM Module
DRABO Module
DRASG Module
DRATX Module
DRCIN Module
DRCMT Module
DRDAR Module
DRDCP Module
DRDSP Module
DREIF Module
DREXP Module
DRGCL Module
DRGLI Module

v

Page

4-1

4-1
4-1
4-1
4-2
4-4

4-5
4-10

5-1

5-1

5-2
5-3
5-5

6-1

6-1
6-1
6-2
6-2
6-2
6-3
6-5

7-1

7-1
7-1
7-1
7-2
7-2
7-2
7-2
7-2
7-2
7-4
7-6
7-7
7-7
7-8
7-8
7-9
7-11
7-12
7-13
7-14
7-15
7-17
7-18
7-19

7.2.17
7.2.18
7.2.19
7.2.20
7.2.21
7.2.22
7.2.23
7.2.24
7.2.25
7.2.26
7.2.27
7.2.28
7.2.29
7.2.30
7.2.31
7.2.32
7.2.33
7.2.34
7.2.35
7.2.36
7.2.37
7.2.38
7.2.39
7.2.40
7.2.41
7.2.42
7.2.43
7.2.44
7.2.45
7.2.46

CHAPTER 8

8.1
8.2
8.2.l
8.2.2
8.2.3
8.2.4
8.2.5

8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11
8.2.12
8.2.13
8.2.14
8.2.15

8.3
8.4
8.4.1

CONTENTS (Cont.)

ORGPP Module
ORGSS Module
ORGTK Module
DRGTP Module
ORMAP Module
DRMKT Module
DRPUT Module
ORQIO Module
DRRAS Module
DRREG Module
DRREQ Module
ORRES Module
DRSEO Module
DRSST Module
ERROR Module
INITL Module
IOSUB Module
LOAOR Module
LOWCR Module
PARTY Module
PLSUB Module
POWER Module
QUEUE Module
REQSB Module
SSTSR Module
SYSCM Module
SYSOF Module
SYSTB Module
SYSXT Module
TOSCH Module

DATA AREAS ANO CONTROL BLOCKS

INTRODUCTION
SYSTEM POINTERS AND LINKAGES

Device Control Block Pointer ($DEVHD)
Unit Control Blocks
Status Control Block (SCB)
Partition Control Block (PCB) Pointer
Task Ccmtrol Block (TCB) Pointers
($TSKHD And $ACTao)
Reschedule Pointer ($RQSCH)
Current Task Pointer ($TKTCB)
Loader Pointer ($LDRPT)
Task Termination Task Pointer ($TKNPT)
Free Storage Block Pointer ($CRAVL)
Fork Queue List Pointer ($FRKHD)
Clock Queue Pointer ($CLKHD)
Current Task Header Pointer ($HEADR)
Examples Of System Linkages
Interrelationship Of The DCB, UCB,
And SCB

I/O CONTROL BLOCK LINKAGES
CONTROL BLOCK OFFSET DEFINITIONS

Asynchronous System Trap Control
Block (ASTCB)

vi

Page

7-19
7-20
7-21
7-21
7-22
7-29
7-31
7-33
7-34
7-36
7-39
7-40
7-42
7-45
7-47
7-49
7-50
7-62
7-62
7-63
7-64
7-66
7-67
7-69
7-77
7-80
7-82
7-83
7-83
7-89

8-1

8-1
8-1
8-4
8-4
8-5
8-5

8-5
8-6
8-6
8-6
8-6
8-6
8-6
8-6
8-7
8-7

8-24
8-26
8-29

8-29

CONTENTS (Cont.)

Page

8.4.2 Clock Queue Control Block (CQCB) 8-31
8.4.3 Communications Control Block (CCB) 8-32
8.4.4 Device Control Block (DCB) 8-34
8.4.5 Error Message Block (EMB) 8-36
8.4.6 File Control Block (FCB). 8-37
8.4.7 Get Command Line Control Block (GCML) 8-38
8.4.8 Hardware Definitions 8-39
8.4.9 Interrupt Transfer Block (ITB) 8-40
8.4.10 Logical Assignment Control Block 8-41
8.4.11 Partition Control Block (PCB) 8-41
8.4.12 Region Definition Block (RDB) 8-43
8.4.13 Status Control Block (SCB) 8-44
8.4.14 Snap Block 8-46
8.4.15 Task Control Codes 8-47
8.4.16 Task Control Block (TCB) And Status

Definitions 8-47
8.4.17 Task Header 8-49
8.4.18 Task Image File Label Block a-so
8.4.19 Task Termination Notification Message

Codes 8-51
8.4.20 Unit Control Block (UCB) 8-51
8.4.21 Volume Control Block (VCB) 8-56
8.4.22 Window Definition Block (WDB) 8-56

CHAPTER 9 CROSS-REFERENCES 9-1

9.1 EXECUTIVE MODULE TO ROUTINE CROSS-REFERENCE 9-1
9.2 RSX-llM EXECUTIVE GLOBAL CROSS-REFERENCE 9-18
9.3 MCRMU GLOBAL CROSS-REFERENCE 9-30
9.4 MCRMU SEGMENT CROSS-REFERENCE 9-41
9.5 SYS GLOBAL CROSS-REFERENCES 9-42
9.6 SYS SEGMENT CROSS-REFERENCES 9-54
9.7 BIGFCP GLOBAL CROSS REFERENCES 9-54
9.8 BIGFCP SEGMENT CROSS-REFERENCES 9-69
9.9 CONDITIONAL ASSEMBLY PARAMETER TO MODULE

CROSS-REFERENCE 9-69
9.10 MODULE TO CONDITIONAL ASSEMBLY PARAMETER

CROSS-REFERENCE 9-75

vii

APPENDIX A

A.1
A.1.1
A.1.2
A.1.3
A.1. 4
A.1.5
A.1.6
A.1.7
A.1. 8
A.1.9
A.1.10

APPENDIX B

B.1
B.1.1
B.1.2
B.1. 3
B.1.4
B.1.5
B.1.6
B.1. 7
B.1.8
B.1. 9
B.1.10
B.1.11

APPENDIX c

C.1
C.1.1
C.1. 2
C.1.3
C. l. 4
C.1.5
C.1.6
C.1. 7
C.2
C.2.1
C.2.2
C.2.3
C.2.4
C.2.5
C.2.6
C.2.7

CONTENTS

VOLUME II

RSX-llM SUPPORTED DEVICES

RSX-llM DEVICE SUPPORT
Processors And Options
Card Readers
Co:rmnunications
Data Acquisition
Disk Devices
Laboratory/industrial Control
Printers
Tape Devices, Magnetic
Tape Devices, Paper
Terminals

CODING STANDARDS AND CONVENTIONS

CODING STANDARD INTRODUCTION
Line Format
Conunents
Naming Standards
Symbols
Program Modules
Formatting Standards
Program Source Files
Forbidden Instruction Usage
Reco:rmnended Coding Practice
PDP-11 Version Number Standard
Co-routines

MACRO EXPANSIONS

COMMAND STRING INTERPRETER MACRO
CSI$1 Macro
CSI$2 Macro
CSI$SW Macro
CSI$ND Macro
CSI$SV Macro
LDRO$ Macro
CSI$ Macro

DIRECTIVE MACRO EXPANSIONS
ABRT$C Macro
ABRT$S Macro
ABRT$ Macro
ALTP$C Macro
ALTP$S Macro
ALTP$ Macro
ALUN$C Macro

viii

Page

A-1

A-1
A-1
A-2
A-2
A-2
A-3
A-3
A-4
A-4
A-5
A-5

B-1

B-1
B-1
B-1
B-2
B-3
B-5
B-9
B-11
B-11
B-12
B-12
B-14

C-1

EXPANSIONS C-1
C-1
C-1
C-2
C-3
C-3
C-4
C-4
c-s
C-5
C-6
C-6
C-6
C-7
C-7
C-8

CONTENTS (Cont.)

Page

c.2.a ALUN$S Macro c-a
C.2.9 ALUN$ Macro C-9
c.2.10 ASTX$C Macro c-10
C.2.11 ASTX$S Macro c-10
c.2.12 ASTX$ Macro c-10
C.2.13 CINT$C Macro C-11
C.2.14 CINT$S Macro C-11
C.2.15 CINT$ Macro C-12
C.2.16 CLEF$C Macro C-13
C.2.17 CLEF$$ Macro C-13
C.2.18 CLEF$ Macro C-14
C.2.19 CMKT$C Macro C-14
C.2.20 CMKT$S Macro C-15
C.2.21 CMKT$ Macro C-15
c.2.22 CSRQ$C Macro C-15
C.2.23 CSRQ$S Macro C-16
C.2.24 CSRQ$ Macro C-16
C.2.25 DECL$C Macro C-17
C.2.26 DECL$S Macro C-17
C.2.27 DECL$ Macro C-18
C.2.28 DIR$ Macro C-18
C.2.29 DSAR$C Macro C-19
C.2.30 DSAR$S Macro C-19
C.2.31 DSAR$ Macro C-19
C.2.32 DSCP$C Macro C-20
C.2.33 DSCP$S Macro c-20
C.2.34 DSCP$ Macro C-20
C.2.35 ENAR$C Macro C-21
C.2.36 ENAR$S Macro C-21
C.2.37 ENAR$ Macro c-21
C.2.38 ENCP$C Macro C-22
C.2.39 ENCP$S Macro C-22
C.2.40 ENCP$ Macro c-22
C.2.41 ERR$ Macro C-23
C.2.42 EXIF$C Macro C-23
C.2.43 EXIF$S Macro C-24
C.2.44 EXIF$ Macro C-24
C.2.45 EXIT$C Macro C-24
C.2.46 EXIT$S Macro C-25
C.2.47 EXIT$ Macro C-25
C.2.48 EXTK$C Macro C-25
C.2.49 EXTK$S Macro C-26
C.2.50 EXTK$ Macro C-26
C.2.51 GLUN$C Macro C-27
C.2.52 GLUN$S Macro C-27
C.2.53 GLUN$ Macro C-28
C.2.54 GMCR$C Macro C-29
C.2.55 GMCR$ Macro C-29
C.2.56 GPRT$C Macro C-30
C.2.57 GPRT$S Macro C-30
C.2.58 GPRT$ Macro C-31
C.2.59 GSSW$C Macro C-32
C.2.60 GSSW$S Macro C-32
C.2.61 GSSW$ Macro C-32
C.2.62 GTIM$C Macro C-33

ix

CONTENTS (Cont.)

Page

C.2.63 GTIM$S Macro C-33
C.2.64 GTIM$ Macro C-34
C.2.65 GTSK$C Macro C-34
C.2.66 GTSK$S Macro C-35
C.2.67 GTSK$ Macro C-36
C.2.68 IHAR$C Macro C-37
C.2.69 IHAR$S Macro C-37
C.2.70 IHAR$ Macro C-37
C.2.71 MOV$ Macro C-38
c. 2. 72 MRKT$C Macro C-38
C.2.73 MRKT$S Macro C-39
C.2.74 MRKT$ Macro c-39
C.2.75 MVB$ Macro C-40
C.2.76 OFF$ Macro C-40
C.2.77 QOPB$S Macro C-41
C.2.78 QDPB$ Macro C-41
C.2.79 QIO$C Macro C-42
C.2.80 QIO$S Macro C-42
C.2.81 QIO$ Macro C-43
C.2.82 QIOW$C Macro C-43
C.2.83 QIOW$S Macro C-44
C.2.84 QIOW$ Macro C-44
C.2.85 R50$ Macro C-45
C.2.86 RCVO$C Macro C-45
C.2.87 RCV0$S Macro C-46
C.2.88 RCVO$ Macro C-46
C.2.89 RCVX$C Macro C-47
C.2.90 RCVX$S Macro C-47
C.2.91 RCV.X$ Macro C-48
C.2.92 ROAF$C Macro C-48
C.2.93 RDAF$S Macro C-49
C.2.94 ROAF$ Macro C-49
C.2.95 RFA$ Macro C-50
C.2.96 RQST$C Macro C-50
C.2.97 RQST$S Macro C-51
C.2.98 ROST$ Macro C-51
C.2.99 RSUM$C Macro C-52
c.2.100 RSUM$S Macro C-52
C.2.101 RSUM$ Macro C-53
c.2.102 RUN$C Macro C-53
C.2.103 RUN$S Macro C-54
C.2.104 RUN$ Macro C-54
C.2.105 RVP$ Macro C-55
c. 2 .• 106 SOAT$C Macro C-56
C.2.107 SDAT$S Macro C-56
C.2.108 SDAT$ Macro C-57
C.2.109 SETF$C Macro C-57
c.2.110 SETF$S Macro C-58
c.2.111 SETF$ Macro C-58
c.2.112 SFPA$C Macro C-59
C.2.113 SFPA$S Macro C-59
c.2.114 SFPA$ Macro C-59
C.2.115 SPNO$C Macro C-60
C.2.116 SPNO$S Macro C-60
C.2.117 SPNO$ Macro C-61

x

C.2.118
C.2.119
C.2.120
c.2.121
c.2.122
C.2.123
C.2.124
C.2.125
C.2.126
C.2.127
C.2.128
C.2.129
C.2.130
C.2.131
C.2.132
C.2.133
C.2.134
C.2.135
C.2.136
C.2.137
C.2.138
C.3
C.3.1
C.3.2
C.3.3
C.3.4
C.3.5
C.3.6
C.3.7
C.3.8
C.3.9
C.3.10
C.3.11
C.3.12
C.3.13
C.3.14
C.3.15
C.3.16
C.3.17
C.3.18
C.3.19
C.3.20
C.3.21
C.4
C.4.1
C.4.2
C.4.3
C.5
C.5.1
C.5.2
C.5.3
C.5.4
C.5.5
C.5.6
c.5.7

CONTENTS (Cont.)

SPRA$C Macro
SPRA$S Macro
SPRA$ Macro
SROA$C Macro
SRDA$S Macro
SRDA$ Macro
SVDB$C Macro
SVDB$S Macro
SVOB$ Macro
SVTK$C Macro
SVTK$S Macro
SVTK$ Macro
WSIG$C Macro
WSIG$S Macro
WSIG$ Macro
WTL0$C Macro
WTLO$S Macro
WTLO$ Macro
WTSE$C Macro
WTSE$S Macro
WTSE$ Macro

EXECUTIVE MACRO EXPANSIONS
CALL Macro
CALLR Macro
CRASH Macro
DIRSV$ Macro
DRSTS Macro
GTUCB$ Macro
INTLB Macro
INTSE$ Macro
INTSV$ Macro
MFPS/MTPS Macros
RETURN Macro
SAVNR Macro
SCBLB Macro
SETO Macro
SOB Macro
STD Macro
STFPS Macro
STST Macro
SWSTK$ Macro
LDD Macro
LDFPS Macro

FILES-11 HEADER OFFSETS MACRO DEFINITIONS
FHD01$ Macro
FHDOF$ Macro
HMBOF$ And HMB01$ Macros

FILE CONTROL SERVICES MACRO EXPANSIONS
BDOFF$ Macro
CBYTE$ Macro
CLOSE$ Macro
CMOV$2 Macro
CMOV$B Macro
CMOV$W Macro
CWORD$ Macro

xi

Page

C-61
C-61
C-62
C-62
C-63
C-63
C-64
C-64
C-65
C-65
C-66
C-66
C-67
C-67
C-67
C-68
C-68
C-69
C-69
C-70
C-70
C-71
C-71
C-71
C-72
C-72
C-72
C-72
C-72
C-73
C-73
C-74
C-74
C-74
C-74
C-75
C-75
C-75
C-75
C-75
C-76
C-76
C-76
C-76
C-76
C-77
C-78
C-79
C-79
C-80
C-80
C-80
C-80
C-81
C-82

C.5.8
C.5.9
C.5.10
c. 5 .11
c.5.12
C.5.13
C.5.14
C.5.15
C.5.16
c.5.17
C.5.18
C.5.19
c.5.20
C.5.21
c.5.22
C.5.23
C.5.24
C.5.25
C.5.26
C.5.27
c.5.28
C.5.29
C.5.30
C.5.31
C.5.32
C.5.33
C.5.34
C.5.35
C.5.36
C.5.37
C.5.38
C.5.39
C.5.40
C.5.41
C.5.42
C.5.43
C.5.44
C.5.45
C.5.46
C.5.47
C.5.48
C.5.49
C.5.50
C.5.51
C.5.52
C.5.53
C.5.54
C.5.55
C.5.56
C.5.57
C.5.58
C.5.59
C.5.60
C.5.61
C.5.62

CONTENTS (Cont.)

OEF$G Macro
DEF$I Macro
DEF$L Macro
DEF$N Macro
DEFIN$ Macro
OELET$ Macro
FCSBT$ Macro
FCSMC$ Macro
FDAT$A Macro
FDAT$R Macro
FDBDF$ Macro
FDBF$A Macro
FDBF$R Macro
FDBK$A Macro
FDBK$R Macro
FDBSZ$ Macro
FDOP$A Macro
FDOP$R Macro
FDRC$A Macro
FDRC$R Macro
FDOF$L Macro
FDOFF$ Macro
FDSOF$ Macro
FINIT$ and FSRSZ$ Macros
FSROF$ Macro
GET$ Macro
GET$R Macro
GET$S Macro
NBOF$L Macro
NBOFF$ Macro
NMBLK$ Macro
OPEN$ Macro
OPEN$A Macro
OPEN$M Macro
OPEN$R Macro
OPEN$U Macro
OPEN$W Macro
OPNS$A Macro
OPNS$M Macro
OPNS$R Macro
OPNS$U Macro
OPNS$W Macro
OPNT$D Macro
OPNT$W Macro
OFID$ Macro
OFID$A Macro
OFID$M Macro
OFID$R Macro
OFID$U Macro
OFID$W Macro
OFNB$ Macro
OFNB$A Macro
OFNB$M Macro
OFNB$R Macro
OFNB$U Macro

xii

Page

C-81
C-81
C-81
C-82

, C-82
C-82
C-82
C-84
c-85
C-85
C-85
C-85
C-86
C-86
C-86
C-86
C-87
C-87
C-87
C-87
C-88
C-88
C-89
C-90
C-90
c-·91
C-91
C-91
C-91
C-92
C-92
C-93
C-93
C-93
C-93
C-94
C-94
C-94
C-94
C-94
C-94
C-95
C-95
C-95
C-95
C-95
C-96
C-96
C-96
C-96
C-96
C-97
C-97
C-97
C-97

CONTENTS (Cont.)

Page

C.5.63 OFNB$W Macro C-97
C.5.64 PUT$ Macro C-97
C.5.65 PUT$R Macro C-98
C.5.66 PUT$S Macro C-98
C.5.67 RAD50$ Macro C-98
C.5.68 READ$ Macro C-99
C.5.69 TRUNC$ Macro C-99
C.5.70 WAIT$ Macro C-99
c. 5. 71 WRITE$ Macro c-99
C.6 NETWORK SYMBOL DEFINITION MACRO C-100
C.6.1 COMDF$ Macro c-100
C.7 PROGRAM LOGICAL ADDRESS SPACE EXTENSION

MACRO EXPANSIONS C-101
C.7.1 ATRG$, ATRG$C, and ATRG$S Macros c-101
C.7.2 .BLK., • BLKB., and .BLKW • Macros c-102
C.7.3 CRAW$, CRAW$C , CRAW$S Macro c-102
C.7.4 CRRG$, CRRG$C , and CRRG$S Macros C-103
C.7.5 DTRG$, DTRG$C, and DTRG$S Macros C-104
C.7.6 ELAW$ ' ELAW$C I and ELAW$S Macros C-104
C.7.7 GMCX$, GMCX$C, and GMCX$S Macros C-105
C.7.8 GREG$, GREG$C, and GREG$S Macros C-105
C.7.9 MAP$, MAP$C, MAP$S Macros C-106
C.7.10 RDBBK$ Macro C-107
C.7.11 RREF$, RREF$C, and RREF$S Macros C-107
C.7.12 SREF$, SREF$C, and SREF$S Macros C-108
C.7.13 SRRA$, SRRA$C, and SRRA$S Macros C-109
C.7.14 UMAP$, UMAP$C, and UMAP$S Macros C-109
C.7.15 WDBBK$ Macro c-110
C.8 RELATIVE FILES MACROS - EXPANSIONS c-110
C.8.1 RCLOS$ Macro c-110
C.8.2 RFD BT$ Macro c-110
C.8.3 RFIND$ Macro C-111
c.8.4 RFOF$L Macro C-111
C.8.5 RFOFF$ Macro C-111
C.8.6 RGET$ Macro c-112
C.8.7 ROPN$ Macro c-112
C.8.8 ROPN$A Macro c-112
C.8.9 ROPN$M Macro c-112
C.8.10 ROPN$R Macro C-113
C.8.11 ROPN$U Macro C-113
C.8.12 ROPN$W Macro C-113
C.8.13 ROPS$A Macro C-113
C.8.14 ROPS$M Macro C-113
C.8.15 ROPS$R Macro C-113
C.8.16 ROPS$U Macro C-114
C.8.17 ROPS$W Macro C-114
C.8.18 RPORT$ Macro C-114
C.8.19 RPRTC$ Macro C-114
C.8.20 RPUT$ Macro C-114
C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115
C.9.1 DRERR$ Macro C-115
C.9.2 FILIO$ Macro C-116
C.9.3 .IOER. Macro C-117
C.9.4 IOERR$ Macro C-117
C.9.5 .QIOE. Macro C-120

xiii

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

C.9.6
C.9.7
C.9.8
C.9.9
C.10
c.10.1
c.10.2
C.10.3
C.11
C.11.1
c.11.2
C.11.3
C.11.4
c.12

c.12.1
C.13
C.13.1

D

D.1

E

E.l
E.2
E.3
E.3.1
E.3.2

F

F.l
F.2
F.3
F.4
F.5
F.6
F.7

1-1
1-2
2-1

2-2
2-3
2-4

CONTENTS (Cont.)

QIOSY$ Macro
SPCIO$ Macro
UMDIO$ Macro
.WORD. Macro

SNAP CONTROL BLOCK AND SNAPSHOT DUMP MACROS
SNAP$ Macro
SNPBK$ Macro
SNPDF$ Macro

STATE AND KEYWORD TABLE GENERATION MACROS
!STAT$ Macro
MTRAN$ Macro
STATE$ Macro
TRAN$ Macro

SUBMIT FILE TO PRINT SPOOLER (PRT .••)
MACRO (PRINT$)

PRINT$ Macro
SET/GET SYMBOL (TTSYM$) MACRO E~PANSIONS

TTSYM$ Macro

LISTING OF CONDITIONAL ASSEMBLY PARAMETERS

LISTING OF CONDITIONAL ASSEMBLY PARAMETERS

GENERAL :FAULT ISOLATION

INTRODUCTION
FAULT CLASSIFICATIONS
SERVICING FAULTS

Gathering Pertinent Fault Isolation Data
Tracing Faults

SYSTEM TUNING

HARDWARE CONSIDERATIONS
MEMORY LAYOUT
EXECUTIVE SOFTWARE OPTIONS
FILE SYSTEM OPTIONS
HELPFUL HINTS
SOME USEFUL COMMANDS
A USEFUL TOOL

Page

C-120
c-121
C-123
C-124
C-124
C-124
C-124
C-125
C-125
C-125
C-126
C-126
C-127

C-128
C-128
C-129
C-129

D-1

D-1

E-1

E-1
E-1
E-1
E-3
E-4

F-1

F-1
F-1
F-2
F-3
F-4
F-5
F-8

Index-1

FIGURES

Sample Unmapped 16K System Memory Layout
Example of a Mapped 124K RSX-llM System
Memory Management - Virtual to Logical
Address Space Relationship
Routines That Call $NXTSK
$ALCLK Logical Flow Diagram
$ALOCB Logical Flow Diagram

xiv

1-8
1-10

2-5
2-19
2-25
2-26

2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
3-1
3-2
3-3

3-4

3-5
3-6
4-1
4-2

4-3

4-4

4-5
5-1
5-2
5-3
5-4
6-1
6-2
8-1
8-2
8-3
8-4
8-5
8-6

8-7

8-8

8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19

CONTENTS (Cont.)

$CHKPT Logical Flow Diagram
$DECLK-$DEPKT-$DEACB Logical Flow Diagram
$FNDSP Logical Flow Diagram
$ICHKP Logical Flow Diagram
$NXTSK Logical Flow Diagram
$TSTCP Logical Flow Diagram
Loader Logical Flow Diagram
Shuffler Logical Flow Diagram
Partition Control Block
Task Control Block
INTSV$ Macro Expansion
Example of a Driver Using $INTSV
Example of Use of $DIRSV by the $EMTRP
Routine
Stack State Upon Entry into Directive
Processing
Example Driver Interrupt Routine
Interrupt Flow of Control
User Task in Unmapped System
4K Nonprivileged User Task Mapping in a
PDP-11/70
SK Nonprivileged User Task Mapping in a
PDP-11/70
SK Nonprivileged Task Mapping in a PDP-11/70
Using PLAS Directives
Privileged Task Mapping
MCR Tree Structure
Input Buff er
Function Table Entry
Parser Table Entry
Queue Directive Parameter Block
QIO Directive Processing
Linked Lists on RSX-llM
Overview of :RsX-llM System Control Blocks
Example of PCB Listings
Example of a Partition Wait Queue
Example of a PCB List for Checkpoint Files
Example of a System Task Directory (STD)
and Active Task List
Simplified User-Controlled Partition TCB,
Task Header, and PCB Relationship
TCB, Task Header, and PCB Relationships
in a System-Controlled Partition
Example of an AST Queue
The Loader Queue
Send/Receive Data Queue
Send/Receive by Reference Queue
The Clock Queue
The Fork Queue
Example of DCB, SCB, UCB, LCB Relationship
Logical Assignment Control Block (LCB) List
MCR Queues
Pre-allocated I/O Packet Queue
Task Termination Notification (TKTN) Queues

xv

Page

2-28
2-30
2-35
2-36
2-37
2-42
2-43
2-51
2-63
2-66
3-6
3-6

3-8

3-10
3-14
3-18
4-11

4-12

4-13

4-14
4-15
5-2
5-6
5-7
5-8
6-3
6-6
8-2
8-3
8-8
8-9
8-10

8-11

8-12

8-13
8-14
8-15
8-15
8-16
8-16
8-17
8-18
8-19
8-20
8-21
8-22

0-20
8-21
0-22
8-23

8-24
B-1

E-1
E-2
E-3
E-4
E-5

CONTENTS (Cont.)

Dyn.amic Storage Region Free Block Queue
DHll Terminal I/O Data Structure
RKll Disk I/O Data Structure
I/O Data Structure for Two RKll Disk
Controllers
I/O Data Structure
Difference Among Global and Local
Symbols
Task Header on an Unmapped System
Task Header on a Mapped System
Stack Stl::-ucture: Internal SST Fault
Stack Structure: Abnormal SST Fault
Stack Structure: Data Items on Stack

xvi

Page

8-23
8-24
8-25

8-25
8-27

B-3
E-5
E-5
E-6
E-7
E-8

PREFACE

MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is intended for the experienced system programmer: one
who is familiar with RSX-llM operation and has an acquaintance with
the RSX-llM Executive code. The manual presents information
tutorially. However, the manual also contains a great deal of
cr~ss-reference information for very experienced programmers who may
not need the tutorial information.

The System Logic Manual primarily discusses the Executive. However,
cross-references for MCR and File Control Processor are also included.

PREREQUISITE MANUALS

The reader and user of this manual is expected to have read and
understood the contents of the following manuals:

Introduction to RSX-llM

IAS/RSX-11 MACR0-11 Reference Manual

RSX-llM Executive Reference Manual

RSX-llM Task Builder Reference Manual

RSX-llM Guide to Writing an I/O Driver

RSX-llM Operator's Procedures Manual

RSX-llM System Generation Manual

THE STRUCTURE OF THE LOGIC MANUAL

VOLUME 1

Chapter 1 - Introduction
Chapter 1 presents a general description of the RSX-llM V3.l
system for those who may need a fundamental introduction. This
chapter expands much of the material found in Introduction to
RSX-llM.

xvii

Chapter 2 - Memory Resource Allocation
Chapter 2 describes Memory Management and the important routines
that allocate memory resources. Specifically, Chapter 2
describes the Loader, the Shuffler, $NXTSK, $CHKPT, and
associated routines~

Chapter 3 - Interrupt Processing
Chapter 3 describes Executive interrupt and fork processing. The
important interrupt routines are described. A figure along with
supporting text describes the code path followed by the interrupt
and fork routines that a sample driver uses.

Chapter 4 - Privileged Tasks
Chapter 4 describes the purpose of privileged tasks, their use
and the cautions concerning their use, the use of $SWSTK (switch
stack), and mapping for both privileged and nonprivileged tasks.

Chapter 5 - MCR Interface
Chapter 5 describes the function of the MCR interface, the MCR
Dispatcher, and how MCR processes a command line entered at a
terminal.

Chapter 6 - I/O Processing
Chapter 6 discusses the internal processing of the QIO directive.

Chapter 7 - Module Descriptions
Chapter 7 contains brief descriptions of the modules that make up
the Executive. Entry points, inputs, outputs, and exit status of
the modules are also described.

Chapter 8 - Data Areas and Control Blocks
Chapter 8 contains figures that show various system linkages in a
generalized form. Important functions of the Device Control
Block, Unit Control Block, and Status Control Block are also
discussed. Also shown are all the bit definitions for the system
control blocks.

Chapter 9 - Cross-references
Chapter 9 contains important cross-references, created by the
CREF program, that you can use to find your way through the
system listings. The references include:

For the Executive:

• Module-to-routine cross-references

• Symbol-to-module cross-references

For MCRMU (multiuser MCR):

• Symbol-to-module cross-references (created by the
CREF program)

• MCRMU segment cross-references

• SYS symbol-to-module cross-references

• SYS segment cross-references

xviii

For the File Control Processor (BIGFCP) :

Chapter
modules
contain.

VOLUME 2

• Symbol-to-module cross-references

• BIGFCP segment cross-reference

9 also contains cross-references between Executive
and conditional assembly parameters that these modules

Appendix A - RSX-llM Supported Devices
Appendix A contains a list of devices supported by RSX-llM V3.l.

Appendix B - Coding Standards and Conventions
Appendix B contains an explanation of the coding standards and
conventions that RSX-llM follows. Appendix B also describes the
Executive's use of co-routines by explaining an example
co-routine from Executive code.

Appendix C - Macro Expansions
Appendix C contains the expansions of all the macros used in the
system code.

Appendix D - Listing of Conditional Assembly Parameters·
Appendix D lists all the conditional assembly parameters and
their meanings.

Appendix E - General Fault Isolation
Appendix E contains a generalized approach to program fault
isolation for RSX-llM.

Appendix F - System Tuning
Appendix F contains many ideas that can help you to improve
system performance.

xix

CHAPTER l

INTRODUCTION TO THE RSX-llM V3.1 OPERATING SYSTEM EXECUTIVE

This introduction is a tutorial for those who are beginning to learn
the RSX-llM Executive internal logic. However, this manual assumes
that you have at least read and understood the RSX-llM Introduction,
the RSX-llM Operator's Procedures Manual, the RSX-llM Task Builder
Reference Manual, and the RSX-llM System Generation Manual. If you
are familiar with the RSX-llM Executive or you are an experienced
system programmer, you may want to begin this manual with Chapter 2,
which assumes that you have a basic knowledge of the Executive and
describes the memory structures of RSX-llM.

1.1 RSX-llM SYSTEM

RSX-llM is a real-time operating system. This means that RSX-llM
responds quickly to input conditions or input data. RSX-llM is also a
multiprogramming system. This combination allows real-time activity
(for example, process control) to occur along with program development
(interactive te~minals) and other user jobs. At one extreme, RSX-llM
can be a dedicated process control system, and at the other, a system
for developing and running applications programs.

1.2 SYSTEM GENERATION

RSX-llM offers a wide range of services and utilities from which to
choose. Each installation selects from these options to shape its
version of RSX-llM according to the processor and peripherals
available and the purpose of the system. You perform a system
generation (SYSGEN) process to select these options.

Every installation intitially receives an RSX-llM system on
distribution media. You run this system and use its resources to
generate a target system configured to your installation's needs.

System generation is done in two phases. During the first phase
SYSGEN defines and assembles the Executive (the kernel or "brain" of
the operating system that responds to external requests) by conducting
a dialogue with you. Query programs pose questions at a terminal.
Your answers to the auestions determine the Executive service options,
processor options, and peripheral devices to be incorporated into the
system. During the second phase, SYSGEN builds the Executive, allows
you to define memory structures called partitions, and builds and
installs the system programs.

You complete the SYSGEN process by saving and bootstrapping the new
system. Saving a system means writing the image of an RSX-llM system
that has been resident in main memory into the system image file from

1-1

INTRODUCTION TO TBE RSX-llM V3.l OPBRATIRG SYSTEM EXECUTIVE

which it was bootstrapped. You do this with the Save command, which
saves the image to allow a hardware bootstrap or the Boot command to
later reload and restart the system.

You bootstrap (boot) a system by either using the switches on the
processo.r control panel or using the Boot command. The Boot command
bootstraps a system that exists as a system image file on a Files-11
(the RSX-llM file structure) volume. The Boot command immediately
terminates the system in operation and starts another. The Save
command, the Boot command, and the process of booting a system with
the switches are all described in the RSX-llM Operator's Procedures
Manual.

To change either the hardware or software configuration of an
installation, you must perform another system generation~ The RSX-llM
System Generation Manual describes the system generation process in
detail.

1.3 MAJOR COMPONENTS OF RSX-llM

RSX-llM requires the organized
components:

interaction of the following

• Memory resource management. Memory is the processor storage
medium in which loaded user programs, the Executive , and
control blocks of data reside. Much of the Executive's work
involves memory resource management and control.

• Task scheduling and processing. Tasks are system or user
programs that perform needed functions and manipulate data to
achieve some goal. The Executive controls task processing and
handles specific requests issued by the tasks~

• Interrupt processing. The Executive processes synchronous and
asynchronous events that occur as a result of task processing.
Examples of these events include software errors, I/O
completion, illegal instructions, and power failure.

1.4 MEMORY

1.4.l Memory Partitions

A partition is a continuous area of memory in which executable
programs called tasks can be run. The typical memory organization
consists of an area for the Executive and areas for system- or user
controlled partitions. A partition has the following characteristics:

• A name

• A defined size

• A fixed base address

• A defined type

1-2

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

1.4.2 Partitions In Mapped And Unmapped Systems

RSX-llM runs on almost all models of the PDP-11 processor. The PDP-11
addressing scheme allows a program to address directly only 32K words
of memory. For larger memories, DIGITAL has a KT-11 Memory Management
Unit (hardware) available for all models of the PDP-11 except the
PDP-11/03/04/05/10/20 processors. The KTll Memory Management Unit
associates addresses expressed in programs ("virtual" addresses in the
range 0 to 32K) with actual locations in memory ("physical"
addresses). Physical addresses c~n range from Oto 124K words on all
processors other than the PDP-11/70. Physical addresses on a
PDP-11/70 can range from 0 to l920K words.

Mapping is the process that associates virtual addresses with physical
addresses. Therefore, a PDP-11 system that includes a KTll Memory
Management Unit is called a mapped system. Conversely, systems
without a KTll are called unmapped systems. In a mapped system, a
task can be installed in any system partition or user partition large
enough to contain it. In an unmapped system, the task is bound to
physical memory and must be installed in the partition that starts at
the same memory address as the partition for which it was built.

Whether a system is mapped or unmapped affects the way in which you
create tasks. Before a compiled program (object code) can be run, it
must be processed by the Task Builder program (linker). The Task
Builder produces a task image that runs in a memory partition.

If a system is unmapped, you must specify to the Task Builder the base
address of the partition in which the task is to be run. You cannot
run the resulting task in a partition that has a base address
different from the address you specified to the Task Builder.

In a mapped system, however, every task (other than a
mapped into the Executive) has a virtual base
Transparently to the user, the KTll maps the virtual
task to the actual physical addresses in which the
task in a mapped system can therefore run in any
enough to contain it.

privileged task
address of O.

addresses of a
task resides. A
partition large

You need not rebuild nonprivileged tasks in a mapped system when
true because
base address

physical partition boundaries move. This is
nonprivileged, tasks on a mapped system run at a virtual
of O, rather than at a physical base address.

If you move the symbols that are referenced in the code, you must
rebuild privileged tasks in either system because they are linked to
the Executive symbol table file. You may be required to rebuild
nonprivileged tasks only if you change any of the task's attributes
such as checkpointability. The task's attributes can be changed when
you use the Install command to install the task. You use the Task
Builder to establish the attributes when building a task. Consult the
RSX-llM Task Builder Reference Manual for a comprehensive discussion
of task attributes and associated Task Builder switches. See the
RSX-llM Operator's Procedures Manual for a description of the Install
command.

1.4.3 Partition Types

RSX-llM supports two types of partitions in which tasks can execute:

l. System-controlled

2. User-controlled

1-3

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

In a system-controlled partition, the Executive allocates available
space to accomodate as many tasks as possible at any one time. This
allocation may involve shuffling resident tasks to arrange available
space into a continuous block large enough to contain a requested
task. The Shuffler, which is a privileged task and a SYSGEN option,
sh~f f les the tasks and memory space to make th~ needed space for the
requested task. Only mapped systems support system-controlled
partitions.

A user-contrplled partition is exclusively allocated to one task at a
time. Both mapped and unmapped systems support this type of
partition.

1.4.4 Subpartitions

You can subdivide a user-controlled partition into as many as seven
nonoverlapping subpartitions. Like its parent main partition, a
subpartition can contain only one task at a time. Because the
subpartitions occupy the same physical memory as the main partition,
tasks cannot be simultaneously resident in both the main partition and
one of its subpartitions. However, because each subpartition can
contain a task, up to seven tasks can potentially run in parallel
within a main partition.

The purpose of subpartitioning is to reclaim large memory areas in
unmapped systems. For example, when a large task that requires a main
partition is either no longer active or can be checkpointed (written
out to a disk to make room for a higher priority task),
subpartitioning allows a number of smaller tasks to use the partition
space.

1.4.5 Memory Structure

RSX-llM memory in a typical system can be divided into the following
parts:

• The Executive, which consists of:

- Trap vectors. The trap vector area contains the hardware
and interrupt vectors; it requires 128 words. During
SYSGEN, you can expand this area to 256 words.

- System stack. The system stack area is an internal
area for Executive use. The Executive uses it for
interrupts, saving registers and data, and internal
The stack requires 60 to 110 words depending upon
selected at system generation time.

storage
nesting
calls.

options

- System common data. This area contains system pointers that
are filled in during system generation and used by the
Executive and privileged tasks during execution.

- The Executive code. The Executive coordinates and manages
system resources and processes specialized system functions.
System generation options determine the size and abilities
of the Executive.

1-4

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

- Dynamic Storage Region (DSR). The Executive continually
uses temporary storage in memory. The Executive acquires,
uses, and then returns the memory that it used to the
available memory pool. If a given Executive service routine
requests dynamic storage and it is unavailable, the
Executive informs the user task, which usually waits for
some memory to become available. The size of this region is
important. If it is too small, long waiting periods or
system deadlocks can occur. If it is too large, fewer tasks
can fit into the remaining memory. The size of the region
is a system generation parameter.

You can extend the initial allocation of dynamic storage on
line by issuing the MCR command, Set /Pool, from the
console. However, the use 0£ this command is limited in
that this expansion can occur only into space that is not
being used. This space, if it exists, is between the
Dynamic Storage Region space and the first partition of
memory.

• Device drivers:

You can include three drivers in the 8K Executive during
SYSGEN: •

1. A disk driver

2. A cassette, DECtape, magtape, line printer, or floppy disk
driver

3. A terminal driver

In general, Executives larger than SK contain additional
resident drivers which you include during system generation.
Some drivers can be made loadable; that is, they reside on
disk and are loaded into memory when they are needed.
Therefore, loadable drivers save memory space because they
occupy memory only when needed and they do not occupy
Executive virtual address space.

• Loader:

The Loader is a task that runs in its own partition, which is
resident in the Executive. Thus, it can run in parallel with
system and user tasks. The Loader, which is device
independent:

l. Loads tasks upon initial load requests

2. Writes checkpointable tasks to disk when required (see
checkpointing, in this chapter)

3. Reloads previously checkpointed tasks when memory becomes
available, allowing them to actively compete for processor
resources.

e MCR and TKTN tasks:

- The Monitor Console Routine (MCR) processes system commands
that you enter at a terminal. These commands are directed
to the MCR processor. MCR either executes the commands
itself, or activates a system or user-written task that can
service the commands.

1-5

INTRODUCTION TO TBE RS:X-llM V3.l OPERATING SYSTEM EXECUTIVE

- The Task Termination Notification Task (TKTN) performs two
functions: ·

1. It prints out messages and tries to print the contents
of the registers of a task that has been aborted due to
an error.

2. It prints out messages for device drivers.

Ideally, TKTN runs either in a partition in which all tasks
are checkpointable or execute quickly, or in its own
partition. The reason for this is that TKTN must be in
memory in order to print messages. If TKTN cannot get
memory space to execute, the Executive queues up messages to
TKTN, thereby using up Dynamic Storage Region space. It is
conceivable that all the Dynamic Storage Region could be
used up for this purpose~ this would cause the system to
hang up.

• The file system:

Files-11 is a system of formatting files that are held on
volumes. Files-11 volumes are magnetic media (tapes or disks)
that have been specially formatted by the MCR command,
Initialize Volume. Volumes that are not properly formatted
are considered to be "foreign." RSX-llM includes a file
exchange utility that translates files in DIGITAL's DOS or
RT-11 format into Files-11 format.

Your tasks that run on RSX-llM access data within files on
Files-11 volumes through the use of two sets of subroutines:

• File Control Services (FCS)

• Record Management Services (RMS)

Both FCS and RMS provide the ability for your tasks to perform
record- or block-I/O operations on Files-11 volumes. FCS and
RMS are system interfaces between the I/O programs that you
write and the files on the Files-11 volumes that you want to
access. These interfaces provide device independence and
allow you to take advantage of different methods of file
organization.

FCS imposes a single logical organization on your files. This
logical organization is called the seouential file
organization and FCS imposes it on all files -regardless of
medium.

In contrast to FCS, RMS provides three file organizations
sequential, relative, and indexed.

The MACR0-11 I/O programming that you do differs between FCS
or RMS. Therefore, you must become familiar with the contents
of the manuals that describe each one. The respective manuals
are:

For FCS:

• IAS/RSX-11 I/O Operations Reference Manual

• RSX-llM I/O Drivers Reference Manual

1-6

INTRODUCTION TO TBE RSX-UM V3.-l OPERATING SYSTEM EXECUTIVE

For RMS:

• Introduction to RMS-11

• IAS/RSX-llM RMS-11 MACRO Programmer's Reference Manual

The Files-11 Ancillary Control Processor (FllACP) is a group
of Executive subroutines that process and control the I/O
control structures and devices for RMS or FCS. The Executive,
FCS, and RMS use FllACP; however, its operation is
transparent to you.

FllACP is available in three versions. The first and smallest
(FCPNMH.TSK) requires 2K of memory. FCPNMH does not support
multi-header files or RMS record blocking. The second
(FCP.TSK) requires 2.SK of memory. The third version
(BIGFCP.TSK) requires from 4.SK to SK of memory. You select
these versions during SYSGEN. The RSX-llM System Generation
Manual fully describes these versions, the reasons for their
use, and the methods of installation.

• The print spooler:

The print spooler task (PRT) speeds up the operation of
MACR0-11, the Task Builder, and compilers because they do not
have to wait for I/O to complete on the relatively slow line
printer. Instead, the listing files are written to a disk.
Subsequently, PRT prints the files as they appear in a queue.

Any task that uses the line printer to print files may use the
print spooler. For example, the RSX-llM Peripheral
Interchange Program (PIP) can optionally use the PRT task to
print files.

• User task partitions

User tasks run in the rema1n1n9 memory in the memory
structure. The partitions and tasks can be configured to the
system user's requirements.

1.4.6 Example Of A 16K Unmapped System

Figure 1-1 illustrates the memory layout of a sample 16K unmapped
system. The Executive region, which requires SK, consists of the
Executive and the user-controlled main partition named SYSPAR. This
partition contains the file system (FCPNMH), the Monitor Console
Routine (MCR) , and the Task Termination Notification routine (TKTN) •
The file system is checkpointable and has a lower priority than MCR or
TKTN. Therefore, if the file system is running and a system user
requests MCR, the Executive checkpoints the file system and loads and
starts MCR.

1-7

WORDS
16K -

BK

6K

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

SUBA

SUBB

SUBC

SYSPAR

OSR

BYTES
100000(8)

40000(8)

30100(8)

PAR8K -- USER-CONTROLLED
MAIN PARTITION WITH 3
SUB-PARTITIONS

USER-CONTf30LLED PARTITION:
FCPNMH - FILE SYSTEM
MCR - MONITOR CONSOLE ROUTINE
TKTN -TASK TERMINATION NOTIFICATION ROUTINE

DYNAMIC STORAGE REGION

----------~-
OSK PAR SYSTEM DISK DRIVER

SECPAR LINE PRINTER AND DEVICE DRIVERS

SYSTEM TABLES (SYSTB)
EXECUTIVE CODE
TASK LOADER EXECUTIVE
SYSTEM COMMON DATA
SYSTEM STACK
TRAP VECTORS

0 0

Figure 1-1 Sample Unmapped 16K System Memory Layout

1-8

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

The user area contains a user-controlled main partition named PAR8K,
SK in length. PARSK contains three subpartitions, named SUBA, SUBB,
and SUBC. Language processors and the Task Builder use the SK
partition for program preparation. These programs usually have a low
priority and may be checkpointable.

The three subpartitions are available for real-time tasks. A task in
the main partition is checkpointed if:

• It is checkpointable

• Another higher priority task needs the partition, or a
subparition

If tasks occupy the partitions SUBA, SUBB, SUBC, and SYSPAR and the
tasks are ready to run, the Executive gives CPU resources to the task
with highest priority.

1.4.7 Example Of A Mapped 124K-~ord RSX-llM System

Figure 1-2 is an example of a large mapped system.

Besides the Executive, the system contains DRVPAR, which is a
system-controlled partition for loadable device drivers including the
terminal driver. Loadable drivers residing on a disk are loaded by a
user command when they are needed.

SYSPAR is a 2K user-controlled partition that contains the Monitor
Console Routine Multi-user (MCRMU) task, TKTN, and the Shuffler task.
The Shuffler is discussed later in this chapter.

FCPPAR is a 6K p~rtition for the primary file coRtrol system, BIGFCP.
The GK size is sufficient to allocate approximately 50 file control
blocks (FCBs) •

All other tasks run in the system-controlled GEN partition.

1-9

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

WORDS
124K

32K

26K

22K

20K

SYSTEM CONTROLLED
GENERAL PARTITION
(GEN)

FCPPAR

·-
DRVPAR

SYSPAR

DSR

.... - - ----- ----
TASK LOADER
SYSTEM TABLES
EXECUTIVE CODE
SYSTEM COMMON DATA
SYSTEM STACK
TRAP VECTORS

0

BYTES
400000(8)

200000(8)

150000(8)

130000(81

120000(81

0

USER TASKS

FILE SYSTEM PARTITION -
BIG FILE SYSTEM (BIGFCPI

LOADABLE DRIVERS

EXECUTIVE PARTITION AREA -
MCRMU, TKTN, AND SHUFFLER
DYNAMIC STORAGE REGION
(TYPICALLY 4K - 6KI

Figure 1-2 Example of a Mapped 124K RSX-llM System

1-10

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

1.5 TASK PROCESSING

To make a task known to the Executive, you install it.· When you
install a task (by issuing the Install command: see the RSX-llM
Operator's Procedures Manual), the system records a number of task
parameters in a system-resident table called the System Task Directory
(STD). The recorded parameters include the name and size of the task,
the disk address at which the task's image starts, and the address of
the Partition Control Block (PCB) of the partition in which the task
is to run.

1.5.1 Task States

An installed task is defined as a task that has an entry in the STD.
It is neither resident in memory nor competing for system resources.
The Executive considers it to be dormant until a running task or a
command issued from a terminal requests the Executive to activate it.
The Executive therefore recognizes two task states:

• Dormant. A dormant task is one that has been installed (has
an entry in the STD) , but has not been requested to run.

• Active. An active task is an installed task that has been
requested to run. It remains active until it exits, or gets
aborted. It then returns to the dormant state.

An active task can be in one of two substates, ready-to-run or
blocked.

1. Ready-to-run. A ready-to-run task competes with
tasks for CPU time on the basis of priority.
ready-to-run task having the highest priority obtains
time and thus becomes the current task.

other
The
CPU

2. Blocked. A blocked task is unable to compete for CPU time
for synchronization reasons or because a needed resource
is not available.

The distinction between dormant tasks and active tasks is important in
a real-time system. A dormant task uses little memory: and yet when
the task is needed to service a real-time event, the Executive can
quickly and efficiently introduce it into active competition for
system resources. An installed task's STD entry enables this quick
response because it contains all the parameters the system needs to
retrieve the requested task. Note that the number of installed,
dormant tasks ·can, and usually will, far exceed the number of active
tasks.

When the Executive receives a request to activate
nonresident task, it performs a series of actions:

a dormant

• It allocates the required memory resources on the basis of the
task's priority.

• It brings the task into memory.

• It places the task in active competition for system resources
with other resident tasks.

If tasks fully occupy the partition in which a task is installed and
no resident task can be checkpointed (see Checkpointing in this
chapter), the task is placed in a queue by priority with other

1-11

INTRODUCTION TO TBE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

activated tasks, each waiting for space to become available in its
partition.

1.5.2 Fixed Tasks

A task can be loa<led and locked into its partition. Such a task is
called a fixed task·. The Fix command (see the RSX-llM Operator's
Procedures Manual) allows you to fix a task in memory. The Executive
services subsequent requests to run the task more quickly because the
task is resident in memory and does not have to be loaded from the
disk before it can run. The system can fix a task in memory only when
the partition in which it is to be fixed becomes available.

Fixed tasks remain physici!lly in memory even after they finish
execution. Therefore, the Executive does not have to reload them when
they are again requested to run. However, tasks that can be fixed in
memory must have re-entrant code if it is to be reused by another
program or system user. Re·-entrant code must be used because the task
cannot be allowed to change its own internal data base if another
program uses it. Only an Unfix or Remove command can free the memory
that the task occupies.

NOTE

See the RSX-_l_l_M...__o.....,,,.p_e_r_a_t_o_r~'-s..__P_r_o~c-e_d_u_r_e_s_
Manual for the Fix, Unfix, and Remove
commands.

The following restrictions apply to tasks that you want to fix in
memory:

• You must first install the task.

• You cannot fix an active task.

• You cannot fix a checkpointable task.

1.5.3 Priority

Active tasks compete for system resources on the basis of their
relative priorities. The Executive gives control of the processor to
the active task that has the highest priority and that also has access
to all the other resources it needs. When this task becomes blocked
(while waiting for I/Oto complete, for example), the Executive looks
for another task to use the processor. The chosen task is again the
one that has the highest priority and has access to all the resources
it needs.

You initially assign a default priority to a task when you task-build
it. This priority is a number between 1 and 250 (decimal)~ higher
numbers indicate higher priority. Later, you can change the priority
when you install the task; or the system can change the priority
while the task is running (see Swapping).

In an RSX-llM installation that mixes real-time applications with less
urgent work, higher priority numbers should be assigned to the
real-time tasks. This assignment ensures that the Executive gives
processor time to the real-time tasks ahead of the others. Text

1-12

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

editors are an example of real-time tasks, because they must respond
within a short time period. Text editors, commonly used for program
development or text processing, spend a large part of their time
waiting for terminal I/O to complete and are therefore out of
competition for processor time. However, when the I/O operation ends,
the terminal needs a rapid response. To get the higher response, the
installation system manager can assign to text editors a higher
priority than that of more processor bound tasks like the Task Builder
or Assembler. ·

1.5.3.1 Establishing Task Priority - You can establish task priority
when you use the Task Builder to build a task from an object module.
See the RSX-llM Task Builder Reference Manual for a description of the
priority option.

1.5.3.2 Installed Priority - When you install a task using the
Install command, you can specify a priority different from the one
that you specified when you built the· task. The priority specified in
the Install command overrides the priority that was specified for the
task in the Task Builder command. See the RSX-llM Operator's
Procedures Manual for a complete description of the Install command.

1.5.3.3 Altering Priority - You may want to alter a task's priority
after it is installed. The Alter command provides a way to change
priority. With the Alter command you can change the task's static
installed priority or change the task's running priority. However,
you can make these changes only if the system supports the Alter
Priority directive. See the RSX-llM Operator's Procedures Manual for
a complete description of the Alter command.

1.5.4 Round-robin Scheduling

When numerous competing memory-resident tasks have equal priorities,
the Executive tends to give processor time more often to those tasks
that appear first in the System Task Directory (STD) queue. Entries
with equal priorities normally appear in the STD in the order in which
the tasks were installed. Therefore, the Executive favors tasks that
were installed first. To avoid this problem, RSX-llM provides a
system generation option called round-robin scheduling. Round-robin
scheduling uses an algorithm that periodically rotates the execution
of tasks of equal priority in the STD. The overall effect is that
processor time is distributed more evenly among tasks. Each
equal-priority task has its turn toward the head of the STD queue.

1.5.5 Checkpointing

In a programming system where many tasks of equal or different
priorities are competing for memory space and system resources, the
Executive must have a method of distributing processor usage and
resources to all the tasks. The RSX-llM Executive uses a process
called checkpointing to allocate system resources among tasks. ·The
Executive uses task priority as the basis for the checkpointing
scheme.

1-13

INTRODUCTION TO THE R:;x-llM V3.l OPERATING SYSTEM EXECUTIVE

In some instances, an actiVf! task cannot get into memory and compete
for processor resources because the partition in which it was
installed is fully occupied. If the partition contains a task that
has a lower priority and is checkpointable, the Executive moves that
task out of memory and writes it on a disk to make room for the higher
priority task. When the high priority task is finished, the Executive
reloads the low priority task, which is now on the disk, to allow it
to continue processing from the point at which it was interrupted.
This roll-out, roll-in process is called checkpointing.

RSX-llM supports checkpointing in both user-controlled and
system-controlled partitions. The objective is to avoid preempting a
lower priority task, unless a higher priority task can be brought in
to make use of the freed memory. This optimizes the use of system
resources while maintaining a priority scheduling discipline.

1.5.5.1 Disk Space for Checkpointing - To checkpoint a task,
checkpoint space equal to the size of the partition that contains the
task must be available on disk. (Checkpoint space contains the
checkpointed task while a higher priority task executes.) You can
allocate checkpoint space eithe~ statically when building the task, or
dynamically at run time. You can use both kinds of checkpointing to
balance the advantages and disadvantages of the different allocation
methods.

When you use the Task Builder to create a task from an object module,
you can request checkpoint space allocation in the task image file on
the disk~ this is the same disk as the one on which the task resides.
The task image file is the executable task on the disk. While the
task is running, its checkpoint space is always allocated on disk,
whether or not the Executive actually checkpoints the task.

You can use disk space more efficiently if you allocate checkpoint
space dynamically. Instead of reserving disk space equal to the size
of each checkpointable task, you can create one or more checkpoint
files on disk to contain all checkpointed tasks. The size of the
files depends on an estimation of the checkpoint space required at any
given time. When the system allocates checkpoint space dynamically,
tasks need not be built as checkpointable. Instead, you decide if a
task can be checkpointed when the task is installed. You create a
checkpoint file, independent of individual tasks, by issuing the ACS
(Allocate Checkpoint Space) command from the terminal. Then, when the
Executive needs to checkpoint a task, it writes the task out into the
available space in the checkpoint file. A drawback to dynamic
allocation of checkpoint space is that space in a checkpoint file may,
at times, be filled. However, system performance may be improved if
the checkpoint file is on a fast disk.

See the RSX-llM Operator's Procedures Manual for the
Checkpoint Space (ACS) command.

1.5.6 Task Swapping

Allocate

The Executive must deal with the situation that occurs when several
active tasks with equal priorities compete for partition space in
memory. A task cannot normally cause the Executive to checkpoint
another task with the same priority. Therefore, a task of eaual
priority cannot get into memory. The Executive includes a task
swapping algorithm that uses checkpointing to allow tasks of equal
priority to successfully compete for memory.

1-14

INTRODUCTION TO THE RSX-llM VJ.1 OPERATING SYSTEM EXECUTIVE

Swapping is a variation of checkpointing that enables the Executive to
checkpoint tasks with equal priorities in and out of memory. Swapping
does not work, of course, unless the tasks are checkpointable. When
an eligible task begins to.run, the Executive adds a number to the
task's normal running priority. This number is called the swapping
priority and is used for swapping only. The old running priority
still exists. As the task runs, the Executive decrements the swapping
priority. Eventually, the sum of the decremented swapping priority
and the task's running priority causes the running task to have a
priority (for swapping) less than. that of a competing task. When this
occurs, the Executive checkpoints the running task to make room for
the competing task. The Executive then places the checkpointed task
in the queue of active tasks that are competing for memory. The
swapping priority does not affect task scheduling or I/O dispatching,
which are governed solely by the task's running priority.

1.5.7 The Shuffler Task

In trying to accommodate the execution of as many tasks as possible,
the Executive moves tasks in and out of memory depending up~n
available space, priority, etc. This operation can result in
fragmented memory, a situation in which many small tasks occupy memory
with unused spaces in between. Taken individually, these spaces may
not be large enough to allow large tasks to be loaded and executed.
The Shuffler task, a system generation option, solves this problem by
performing memory compaction in a system-controlled partition.

The Shuffler starts at the beginning of the system-controlled
partition and tries to move (shuffle) all tasks that are sitting above
a gap of free space down to the base of the free space. When
possible, it also checkpoints any tasks that it encounters that are
waiting for terminal input.

If there are some tasks still actively competing for memory in the
partition, the Shuffler creates an ascending, priority-ordered list of
the tasks in the partition. If the sum of the free space now in the
partition and the space occupied by the low priority, checkpointable
tasks in the partition is enough to allow the waiting task to run, the
Shuffler checkpoints the lower priority tasks. The Shuffler then
compacts memory again to make room for the waiting task.

• The foregoing Shuffler action should result in all free space being at
the top of the partition. However, there may be additional holes
below tasks because some things (drivers aAd regions) cannot be
shuffled. These additional holes cannot be reclaimed.

1.5.8 Extended Logical Address Space

An RSX-llM task specifies an address in a 16-bit word. The largest
address that can be expressed in a 16-bit word is 65,536 bytes or
32,768 words (commonly referred to as 32K words). To avoid limiting
the effective size of a task to only 32K words, a task can use
overlays that you define when you use the Task Builder to build the
task. Another option is that the task can use memory management
directives to access greater amounts of memory.

1-15

INTRODUCTION TO TSE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

1.5.8.1 Overlays - An overlaid. task has parts called segments. The
segments are the parts that overlay one another. The segments are
also sometimes called overlays. The root segment, which is always in
memory and never overlaid, and one or more overlay segments compose an
overlaid task. The overlay segments can be read into memory as
required. However, all the segments in memory at one time cannot
exceed 32K words.

See the RSX-llM Task Builder Reference Manual for a
description of overlay segments.

complete

1.5.8.2 Memory Management Directives - Memory management directives
allow task segments residE~nt in memory to access more than 32K words
of physical memory. The memory management directives, a subset of the
Executive directives, use the KTll hardware to map task addresses to
different logical areas within the task. Instead of displacing task
segments in memory, the task can reside entirely in memory and map its
virtual addresses to different physical addresses.

RSX-llM defines three kinds of address space:

• Physical address space. Physical address space consists of
the physical memory in which tasks reside and execute.

• Logical address space. Logical address space is the total
amount of physical address space to which the task has access
rights.

• Virtual address space. Virtual address space corresponds to
the 32K of addresses that the task can explicitly specify in a
16-bit word. If a task does not use memory management
directives, its logical and virtual address spaces directly
correspond one to the other. However, if the task uses these
directives, it can map its virtual addresses to different
parts of its logical address space. The net effect is to
allow a task's logical address space to exceed 32K.

The memory management directives also allow a task to expand
dynamically its logical address space. In other words, a task can
access logical areas that are not part of its static task image (the
executable task produced by the Task Builder). A task can issue
directives that create a new region of logical space and then map a
range of virtual addresses to the newly created region. A task can
also map its virtual addresses to logical areas that belong to another
task. The mapped area then becomes part of the former task's logical
address space.

The ability to create and map to a new region allows tasks to
communicate with one another by means of shared regions. For example,
at run time a task can create a new region of logical space, into
which it writes a large amount of data. Any number of tasks can then
access that data by mapping a range of their virtual addresses to the
region. Another benefit of mapping to different regions is an ability
to use a greater number of common routines. Tasks can map to the
required routines at run time, rather than link to them when the tasks
are built by the Task Builder.

1-16

INTRODUCTION TO TBE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

1.6 RSX-llM INTERRUPT PROCESSING

The RSX-llM system recognizes two kinds of hardware interrupts:
processor traps and external interrupts~ Processor traps occur
synchronously1 that is, the same sequence of instructions causes the
same processor trap to occur at the same place and time in the
program. Processor traps usually have a cause originating from within
the processor. See Processor Traps, in this chapter, for the causes
of processor traps. External interrupts, which are usually caused by
I/O devices, are asynchronous in that they may occur anywhere or at
any time in the program's execution.

Programs that use input and output routines would spend most of their
time waiting for I/O devices to complete their operations if it were
not for the program interrupt facility of RSX-llM. The program
interrupt facility allows asynchronous events, such as I/O completion,
to interrupt the running program so that a routine can service the
interrupting device. An interrupt is analagous to a subroutine jump.
However, to preserve program integrity, interrupts are allowed to
occur only after the completion of an instruction and before the start
of the next instruction.

As an example of the program interrupt facility, programs can continue
operation after starting a device, then allow the device to interrupt
when it is ready to signal the program about its resulting status.

The addresses of the interrupt processing routines must be made known
to the Executive. These addresses are called interrupt vectors and
they are in the Executive's low memory area.

1.6~1 Interrupt Vectors

Each peripheral device controller in the RSX-llM system has a hardware
pointer to its own pair of memory words. These words are located in
the low memory of the Executive. One word contains a vector (address)
for the device's interrupt service routine. The vector may be an
entry point address or an Interupt Control Block address. If this
vector is an entry point address, it becomes the contents of R7 the
program counter or PC word) when the service routine begins its
execution. For loadable drivers, the vector points to an Interrupt
Control Block.

The other word is the processor status (PS) word. It contains the
mode and the priority of operation for the interrupt routine. The
hardware saves the status of the interrupted program (the PC and PS)
before the interrupt routine begins its processing.

The Executive has an area called a stack in which it saves status,
register contents, parameters, or any other data that it may need.

1.6.2 System Stack

RSX-llM maintains a push-down stack using general register 6, which is
the stack pointer or SP. External interrupts, subroutine calls, and
processor traps use this stack to save program status. When an
interrupt occurs, the hardware first saves the current processor
status word (PS) and the program counter (PC) on the stack. It then
uses the new PS and PC from the trap and interrupt vector area in low
memory, and begins processing the interrupt routine that handles that
particular interrupt. A return from interrupt (RTI} instruction
restores the original PS and PC values from the stack, thereby
restoring the original interrupted program.

1-17

INTRODUCTION TO TBE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

1.6.3 Processor Traps

A variety of errors and programming conditions cause the processor to
trap to a set of fixed locations. These locations contain th~ PC and
PS for the trap processing routines. Processor traps include the
following:

• Power failure

• Odd addressing errors

• Stack errors

• Timeout errors

• Non-existent memory errors

• Memory parity errors

• Memory management violations

• Floating point processor exceptions

• Use of reserved instructions

• Use of the T-bit in the PS word

• Use of the IOT, EMT, and TRAP instructions

Processor traps cannot be masked off. That is, when they occur, the
processor immediately enters the trap sequence of pushing the current
PS and PC onto the current stack, retrieving the new PS and PC from a
specific hardware trap vector, and executing the code that begins at
the location specified by the trap vector.

Although there are several processor traps (see Interrupt and
Vectors, below), the trap of main interest is the emulator trap.
EMT instruction causes the emulator trap. This instruction calls
Executive whenever a user task has an Executive directive written
it that requests the Executive to perform some specific function
Executive Directives below)n

1.6.4 External Interruptions

Trap
The
the

into
(see

External interrupts are hard-wired into one of four priority levels of
the processor (labeled 4 to 7, with 7 being the highest priority).
These interrupts are maskable in that they can cause an interrupt only
if the priority level held in the processor status word is less than
the priority of the interrupting source. When an interrupting device
causes a new priority level to be loaded from its vector PS word,
interrupts at the same or lower levels are blocked out. The system,
however, remembers that the interrupts occurred and it processes them
in turn by priority.

Certain traps, however, cannot be masked by the priority field in the
PS word. These traps are: parity error, memory management violation,
stack limit yellow, power failure (power down), and floating-point
exception.

1-18

INTRODUCTION TO TBE RSX-llM Vl.l OPERATING SYSTEM EXECUTIVE

1.6.S Interrupt And Trap Vector Locations

The following chart shows some of the interrupt and trap vectors used
by RSX-llM interrupt . and trap processing. The PC for the interrupt
routine is taken from the specified memory location. The next word
contains the new PS word.

Memory
Location

000
004
010
014
020
024
030
034

.
244
250

Interrupt and
Trap Vector

Reserved for DEC use
CPU errors
Illegal and reserved instructions
Breakpoint trap (BPT)
Input/output trap (IOT)
Power fail
Emulator trap
TRAP instruction

Floating-point error
Memory management

For a complete list of vectors, see the pertinent PDPll Processor
Handbook.

1.6.6 System Traps

System traps are transfers of control (also called software
interrupts) that provide tasks with another means of monitoring and
reacting to events. The Executive initiates system traps when certain
events occur. The trap transfers control to the task associated with
the event and gives the task the opportunity to service the event by
entering a user-written routine.

There are two distinct kinds of system traps:

• Synchronous System Traps (SSTs). SSTs detect events directly
associated with program instruction execution. They are
"synchronous" because they always occur at the same point in
the program when previous instructions are repeated. For
example, an illegal instruction causes an SST to occur.

• Asynchronous System Traps (ASTs). ASTs detect significant
events that occur asynchronously to the task's execution:
that is, the task has no direct control over the precise time
that the event occurs. For example, the completion of an I/O
transfer may cause an AST to occur.

To use the system traps, a task issues system directives that
establish entry points for user-written service routines. Entry
points for SSTs are specified in a single table. AST entry points are
set by individual directives for each kind of AST. When a trap
occurs, the task enters the appropriate routine via the specified
entry point.

Debugging aid programs (On-line Debugging Tool and Executive Debugging
Tool) can be entered from points, which are called breakpoints, that
you insert into a memory-resident task. These breakpoints cause a
breakpoint trap that transfers execution to the debugging aid program.
The debugging aid, by means of its own table of trap vectors, can

1-19

INTRODUCTION TO THE RSX-llM VJ.l OPERATING SYSTEM EXECUTIVE

execute special processing for certain SSTs that can occur. The
IAS/RSX-11 ODT Reference Manual discusses the On-line Debugging Tool
in detail. The Executive Debugging Tool (XDT) is described in the
RSX-llM Guide to Writing an I/0 Driver.

1.7 EXECUTIVE DIRECTIVES

An Executive directive is a request from a task to the Executive to
perform an indicated operation. A programmer uses Executive
directives to control the execution and interaction of tasks.

Executive directives enable tasks to perform functions such as the
following:

• Obtain task and system information

• Measure time intervals

• Perform I/O operations

• Manipulate a task's logical and virtual address space

• Suspend and ~esume execution of tasks

• Request the execution of another task

• Exit from a task

System directives allow tasks to exploit some major system functions,
including the following:

• Event flags

• System traps

• Extended logical address space

RSX-llM MACRO programs execute Executive
calls and the EMT 377 instruction.
library routines to use the directives.

directives by using macro
FORTRAN uses DIGITAL-supplied

You should always use macro calls instead of directly executing the
directive. Then, if system changes are made in the directive
specifications, you need only to reassemble the program rather than
edit the source code.

Listed below is a brief summary of the directive functions that are
possible for RSX-llM. For a complete description of RSX-llM Executive
directives, see the RSX-llM Executive Reference Manual.

Task Execution Control Directives

Abort Task

Cancel Time Based
Initiation Requests

Causes the Executive to terminate the
execution of the task named in this
directive.

Causes the Executive to cancel
all time-synchronized initiation
requests for the execution of the task
named in this directive, regardless of
the source of each request.

1-20

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

Task Exit

Extend Task

Request Task

Resume Task

Run Task

Suspend

Task Status Control Directives

Alter Priority

Disable Checkpointing

Enable Checkpointing

Informational Directives

Get Partition Parameters

Get Region Parameters

Get Sense Switches

Informs the Executive that the task
issuing the Exit has completed its
execution. Unless the exiting task is
fixed, its memory is freed for use by
other tasks.

Causes the Executive to
size of the task that
directive by a positive
number of 32-word blocks.

modify the
issues this

or negative

Causes the Executive to request
immediate execution of the task named
in the directive.

Causes the Executive to resume the
execution of a task that has issued a
Suspend directive.

Causes the Executive to schedule the
execution of the task named in this
directive at a time specified in terms
of a time period from the issuance of
the directive.

Causes the Executive to suspend
execution of the task that issued the
suspend until explicitly resumed,
either by a Resume directive from
another task or the MCR command,
Resume.

Causes the Executive to change the
running priority of the installed and
active task named in this directive.

Causes the Executive to make the task
that issues this directive no longer
checkpointable.

Causes the Executive to nullify the
previously issued Disable
Checkpointing directive.

Causes the Executive to fill a 3-word
buffer, which is specified in this
directive, with parameters related to
the memory partition specified in this
directive or related to the task that
issues this directive.

Causes the Executive to fill a 3-word
buffer, which is specified in this
directive, with region parameters.

Causes the Executive to return the
settings of the 16 console switches to
the task that issues this directive.

1-21

INTRODUCTION TO THE RSX-llM V3.1 OPERATING SYSTEM EXECUTIVE

Get Task Parameters

Get Time Parameters

Event-associated Directives

Causes the Executive to fill a 16-word
buffer with parameters related to the
task that issues this directive.

Causes the Executive to return the
current time parameters (year, month,
day, hour, minute, second, tick and
ticks/second) of the task.

Clear Event Flag Causes the Executive to clear an event
flag specified in the directive and
return the previous polarity of the
flag.

Cancel Mark Time Requests Causes the Executive to cancel MARK
TIME requests that have been made by
the task that issues this directive.

Declare Significant Event Causes . the Executive to declare a
significant event. The Executive
scans the STD for the highest priority
task capable of execution. It then
saves the context of the currently
executing task and starts the
execution of the new highest priority
task.

Exitif Causes the Executive to cause an exit
of the task that issues the directive
if, and only if, a specified event
flag is clear.

Mark Time Causes the Executive to declare a
significant event after the expiration
of the time interval specified in the
directive. If an event flag is
specified in the directive, it is
cleared when the directive is issued
and set when the significant event
occurs. If an Asynchronous System
Trap (AST) entry point address is
specified in the directive, an AST
occurs at the time of the significant
event.

Read All Event Flags Instructs the Executive to return to
the task that issued this directive
the polarities of all 64 event flags
in a 4-word buffer.

Set Event Flag Causes the Executive to set an
indicated event flag and return the
previous polarity of the indicated
flag (without a declaration of a
significant event).

Wait For Significant Causes the Executive to suspend the
Event execution of the task that issues the

directive until the next significant
event occurs.

1-22

INTRODUCTION TO TBE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

Wait For Logical Or Of
Event Flags

Wait For Single
Event Flag

Trap-associated Directives

Causes the Executive to suspend the
execution of the task that issues the
directive until one or more specified
event flags of a group of event flags
is set.

Instructs the executive to suspend the
execution of the task that issues the
directive until an event flag that is
specified in the directive is set.

AST Service Exit Causes the Executive to terminate the
execution of the AST service routine.

Disable AST Recognition Causes the Executive to disable AST
recognition for the task that issues
this directive. The ASTs are queued
and only their recognition is
inhibited.

Enable AST Recognition Causes the Executive to enable AST
recognition for the task that issues
this directive.

Specify FPP Exception AST Informs the Executive that the
specified AST routine within the task
is to begin execution whenever a
floating-point processor exception
occurs, or that floating-point
processor exception ASTs are no longer
wanted.

Specify Power Recovery Informs the Executive whether or not
AST power recovery ASTs are wanted for the

task that issues this directive. If
the ASTs are wanted, this directive
indicates where control is to be
transferred when the AST occurs.

Specify Receive Data AST Informs the Executive whether or not
receive data ASTs for the task issuing
this directive are wanted. If the
ASTs are wanted, task execution is
transferred to the address of the AST
service routine within the task when
data is placed in the task's receive
queue.

Specify Receive By
Reference AST

Specify SST Vector Table
For Debugging Aid

Informs the Executive to transfer
control to an address in the task
specified in the directive when the
Receive-by-Reference AST occurs, or
that receive-by-reference ASTs are no
longer desired for the task that
issued this directive.

Specifies the address of a table of
synchronous system trap service
routine entry points for use by ODT or
other debugging aids.

1-23

INTRODUCTION TO TBE R.SX-llM V3.l OPERATING SYSTEM EXECUTIVE

Specify SST Vector Table
For Task

Informs the Executive that the task
that issues this directive contains a
table of addresses of service routines
to be executed upon task trap or fault
conditions.

I/O and Intertask Related Directives

Assign LUN

Connect To Interrupt
Vector

Get LUN Information

Get MCR Command Line

Queue I/O Request

Queue I/O Request
And Wait

Receive Data

Receive Data Or Exit

Send Data

Causes the Executive
physical device unit to
number (LUN). The LUN,
and device unit number
in this directive.

to assign a
a logical unit
device name,
are specified

Causes the Executive to allow a task
to process hardware interrupts by a
routine specified in the directive.
The Interrupt Service Routine (ISR)
must be in the task's own space.

Causes the Executive to return
information regarding the logical unit
specified in the directive to the task
that issues this directive.

Causes the Executive to transfer an
MCR (terminal) command line to the
task that issues this directive.

Causes the Executive to queue an I/O
request for the issuing task. This
request is queued by priority for a
logical unit which is assigned to a
physical unit. An event flag, an AST,
and an I/O status block may be
specified as I/O completion
indications.

Similar to the queue I/O request
directive except for one aspect. The
Queue I/O Request And Wait directive
specifies an event flag and the
Executive executes an implied Wait For
Single Event Flag directive.

Informs the Executive that the task
that issues this directive is ready to
receive data (in a 13-word data block)
that has been sent from another task
by means of the Send directive.

Causes the Executive to attempt to
receive data (dequeue a 13-word data
block) for the task that issues this
directive. If no data is received,
the task that issues this directive
exits.

Causes the Executive to declare a
significant event and to queue the
13-word block of data that the task
named in this directive is to receive.

1-24

INTRODUCTION TO THE RSX-llM V3.1 OPERATING SYSTEM EXECUTIVE

Memory Management Directives

Attach Region

Create Address Window

Create Region

Detach Region

Eliminate Address Window

Get Mapping Context

Map Address Window

Receive By Reference

Send By Reference

Unmap Address Window

1.7.1 Event Flags

Causes the Executive to attach the
task that issues this directive to a
static common region or to a named
dynamic region.

Causes the Executive to create a new
virtual address window by allocating a
window block from the header of the
task that issues this directive and
establishing the window's virtual
address base and size.

Causes the Executive to create a
dynamic region in a system-controlled
partition and, as an option, attach it
to the task that issues this
directive.

Causes the Executive to detach the
task that issues this directive from
the previously attached region that is
specified in this directive.

Causes the Executive to delete an
existing address window, unmapping it
first if necessary.

Causes the Executive to return a
description of the current
window-to-region mapping assignments.

Causes the Executive to map an
existing window to an attached region.

Causes the Executive to dequeue the
next packet in the
receive-by-reference queue of the task
that issues this directive.

Causes the Executive to insert a
packet containing a reference to a
region into the receive-by-reference
queue of a receiver task that is
specified in this directive.

Causes the Executive to unmap the
window that is specified in this
directive.

The execution of certain directives causes significant events to
occur. In fact, most significant events are caused, either directly
or indirectly, by system directives.

A significant event occurs when a task issues a system directive that
implicitly or explicitly suspends a task's execution, or when an
external interrupt occurs that can affect a task's execution. Event
flags are associated with significant events. When a significant
event occurs, the event flag indicates the specific cause of the
significant event.

1-25

INTRODUCTION TO THE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

The Executive uses significant events and event flags to manage task
execution. However, tasks can also use significant events to
coordinate internal task activity and to communicate with other tasks.
For example, a task can issue an Executive directive to associate an
event flag with a specific significant event. When that event occurs,
the Executive sets the associated flag. Therefore, by testing the
state of the flag, a task can determine whether or not the event has
occurred.

Sixty-four event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding event
flag number. The first 32 flags are local to each task and are set or
cleared as a result of each task's requirements. The second 32 flags
are common to all tasks and are therefore called global or common
event flags. Global flags can be set or cleared as a result of any
task's operation. Tasks use global flags to communicate with other
tasks because one task cannot refer to another task's local flags.
Eight of the local event flags and eight of the common event flags are
reserved exclusively for the Executive.

1.8 THE MCR INTERFACE

You communicate with RSX-llM by entering commands at a terminal. The
terminal driver directs the commands to the Monitor Console Routine
(MCR) processor. The MCR processor either executes the commands
itself, or it activates a system or user-written task that can service
the commands.

MCR commands allow you to:

• Start up-the system

• Manage peripheral devices

• Control task execution

• Obtain system and task information

• Activate system or user-written tasks that request input from
the terminal

The MCR commands that control task execution are particularly
significant to system pe!rformance. You must use an MCR command
(Install) to install a task into the system. Therefore, you establish
the base of installed tasks, which the Executive, other installed and
active tasks, and further MCR commands can manipulate.

1.8.l Privileged Commands

To restrict the use of commands that directly affect system
performance, RSX-llM considers some MCR commands and command options
to be privileged. You can issue a privileged command only from a
privileged terminal. In multiuser protection systems, individual
users are either privileged or nonprivileged~ when a user logs on,
the terminal assumes the privilege status assigned to that user's
identification code (UIC) • A ·user can issue an MCR command at a
privileged terminal to modify the privilege status of any other
terminal connected to the system. If multiuser protection support is
not included during system generation, all terminals are privileged.

1-26

INTRODUCTION TO TSE RSX•llM V3.l OPERATING SYSTEM EXECUTIVE

1.8.2 External Scheduling Of Task Execution

An important MCR function is the external scheduling of task
execution. This type of scheduling works in conjunction with the
Executive's priority driven internal scheduling of active tasks. You
can include time parameters with the command that activates an
installed task. The time parameters request the Executive to run a
task:

• At a specified time from the current moment

• At a specified time from clock unit synchronization

• At an absolute time of day

• Immediately

All of these time options are available with or without periodic
rescheduling. RSX-llM also supports an unlimited number of programmed
timers for each task in the system. The user task can create its own
timer, which the Executive then decrements at regular intervals. When
the timer reaches zero, the Executive sets an event flag or generates
an Asynchronous System Tra~ (AST) that passes control to the task at a
prespecified address.

1.9 TERMINAL OPERATION

In RSX-llM, a variable number of terminals can operate concurrently.
In addition, each terminal operates independently of others in the
system to allow each to run a different task. In a system that
supports multiuser protection, a user must log onto a terminal before
issuing further commands. In other RSX-liM systems, a user can issue
commands whenever the terminal displays an appropriate prompt.

1.9.l Attached Terminals

RSX-llM allows tasks to request input from a terminal. To ensure that
a requesting task receives input intended for it, the task usually
attaches to the terminal. While the task is attached, the terminal
directs all input to the attached task, with one exception. The
exception is a control C character (the C key pressed while pressing
the CTRL key), which gains the attention of the MCR processor. An
attached terminal ensures that a soliciting task properly receives its
input; but it also allows a user to interrupt the task's control of
the terminal to communicate with MCR. Note that attaching to the
terminal is a function of the task rather than of a user.

Some applications may require that a user be denied access to MCR but
allowed access to a specific task only. In this case, a task can
attach to the terminal with a special subfunction. The subfunction
causes the system to generate an AST for the attached task whenever
someone enters unrequested input, including CTRL/C, at the terminal.
However, making the terminal a slave terminal is another way of doing
this.

1-27

INTRODUCTION TO TBE R.SX-llM VJ .1 OPERATING SYSTEM EXECUTIVE

1.9.2 Slave Terminals

When your installation needs to dedicate a terminal exclusively to one
or more tasks, you issue· an MCR command (or a task issues a special
I/O function) that sets the terminal to slave status. The difference
between a slave terminal and an attached termipal is that the system
ignores all unsolicited input, including CTRL/C, that is entered at a
slave terminal. Until you issue another MCR command to delete the
slave status, the terminal can only be used to communicate with the
task soliciting input from the terminal. An I/O function issued by a
task can also delete the slave status of the terminal. Slave
terminals are often dedicated to real-time applications.

1.10 MULTIUSER PROTECTION

Multiuser protection, a system generation option, allows an RSX-llM
installation to monitor and control individual users of the system.
Individual users are either privileged or nonprivileged. The system
manager, who is the one assigned responsibility for system
configuration and operation, assigns a user identification code (UIC)
to each user, which determines the user's privilege status. When
logging onto a terminal, the user supplies a last name or UIC and a
password. If the user gives a name, the system finds the associated
UIC. The system then checks that the password matches the last name
or UIC, and sets the terminal to privileged or nonprivileged status,
according to the user's UIC.

1.10.l Public And Private Devices

In a multiuser protection system, some commands allow you to do things
that are not allowed in systems without multiuser protection. For
example, the Allocate command allows you (or any user) to allocate a
device (a disk drive) as your private device: allocating the device
prevents other nonprivileged users from accessing it.

A nonprivileged user can access a private device that he has allocated
to perform MCR functions that are normally privileged. These
functions include preparing a disk or magnetic tape for use by the
RSX~llM file system.

To complement the private device feature, multiuser protection allows
the system manager or privileged user to declare certain devices to be
public. Public devices cannot be allocated to individual users. By
declaring a line printer to be public, for example, the system manager
can ensure that all users have access to that commonly used output
device.

1.11 SYSTEM MAINTENANCE

1.11.l Error Logging

RSX-llM provides an error logging facility as a system generation
option for systems that are 24K words or larger. The error logging
facility monitors the hardware reliability of an RSX-llM system: it
continually detects and records information about disk, DECtape,

1-28

IRTRODOCTIOR TO TBE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

magtape, and memory errors as they occur, regardless of whether or not
the error is recoverable. The Executive automatically retries
recoverable errors. However, you might be unaware that the error
occurred. Therefore, at user-determined intervals, a formatting task
can be run to generate individual error and summary reports on some or
all of these errors. ·

Please note that only the following four types of errors are loggable:

• Device errors (disks, magtapes, DECtapes)

• Undefined interrupts

• Timeout

• Memory parity errors

In summary, the error logging facility performs the
functions:

following

• Detects a hardware error as it occurs (done by Executive
modules)

• Gathers information about the error

• Stores the information in a file

• Formats the information to produce an error report

Control of the facility is shared between routines in the Executive
and specific error logging tasks. These routines and tasks interface
with each other to carry out the four operations described above.

You can generate a wide variety of error reports. Among many options,
you can specify a report that covers only a certain time period, a
certain device or group of devices, or perhaps a certain type of
error. You can also request a report that contains only information
on individual errors, one that contains only summary information, or
one that contains both kinds of statistics.

Because the error log files may be written to a removable volume, an
operator can generate the reports either on site or at any other
RSX-llM installation that supports the error logging facility.

1.11.2 Diagnostic Tasks

RSX-llM also provides a group of diagnostic tasks which you can
incorporate into the Executive support at system generation time. A
diagnostic task tests a specific device to identify the source of any
errors. RSX-llM diagnostic tasks test for malfunctions on most disks,
DECtapes, magnetic tapes, and terminals. The tasks are simple to use
and require little memory space.

When used in connection with error logging reports, the diagnostic
tasks can significantly reduce system downtime. The system manager
should regularly generate error reports to check on hardware
performance. When a number of errors indicates that a particular
device is beginning to malfunction, the manager can run the diagnostic
task for the erring device to help isolate the source of the errors.

Each diagnostic task has two modes of operation: customer mode and
service mode. In customer mode, the user activates the appropriate

1-29

INTRODUCTION TO TBE RSX-llM V3.l OPERATING SYSTEM EXECUTIVE

task, which then runs to completion and reports its findings.
(Because the tests destroy any data resident on the device being
tested, only authorized users should be allowed to run diagnostic
tasks.) Service mode is intended for use by DIGITAL Field Service
engineers. Service mode allows the user to modify the test content
initially and to interrupt the running test to make further
modifications.

1.11.3 Power Failare Restart

RSX-llM can execute a power failure restart that smooths out
intermittent short-term power fluctuations with little loss of service
or data. Power failure restart functions in four phases:

• When power begins to fail, the CPU traps to
which stores volatile register contents,
system operations to a controlled halt.

the Executive,
thereby bringing

• When power is restored, the Executive again receives control
and restores the preserved state of the system.

• The Executive then schedules all device drivers that were
active at the time of the power failure at their power-fail
entry points. Drivers have the option of being scheduled one
of two ways:

1. Whenever power fails

2. Only when power fails while the driver is servicing an I/O
request

The drivers can then make any necessary restorations of state
(repeat an I/O transfer, for example).

• The Executive then determines if any user-level tasks have
requested notification of power failure by issuing a system
directive requesting an AST on power recovery. The Executive
initiates ASTs for any tasks that have requested them.

1-30

CHAPTER 2

MEMORY RESOURCE ALLOCATION

2.1 INTRODUCTION

Chapter 2 contains information about how the Executive manages,
structures, allocates, and deallocates memory resources in RSX-llM.
Any discussion of memory functions in RSX-llM necessarily overlaps the
closely related functions of task management and processing. However,
this discussion emphasizes memory allocation, deallocation, and
management to allow a more logical and coherent presentation of memory
in RSX-llM.

The functions of the core allocation routines, the Shuffler and the
Loader, are part of Executive memory management. However, the term
"memory management" also refers to the KTll Memory Management Unit,
which is hardware and not software. The use of the term "memory
management" has been avoided in this manual where confusion between
the Executive's role and the hardware's role in memory management
would arise. At the end of this chapter, flow diagrams show important
processes that the Executive performs to allocate and manage memory.

2.1.1 Memory Addressing

Because of the 16-bit word size of the PDP-11, an RSX-llM task can
have an address no larger than 177777(8) (an addressing range of 32K
words for nonprivileged tasks). In RSX-llM, you can use a task that
contains overlays to avoid limiting its size to its addressing range.
An overlaid task contains segments -- a root segment that is always in
memory, and any number of other segments that are loaded into memory
when required. When task segments are not in memory, they reside on
disk. Large task segments that are in memory may not be able to
access large amounts of disk-based data because the data may not fit
into the available memory with the task. A heavily overlaid task that
transfers large amounts of data to another task via disk incurs a
throughput penalty because of the many I/O transfers needed to move
segments in addition to those I/O transfers needed by the task's
function.

The combined size of an overlaid task's segments may exceed 32K, which
is ~he limit imposed by 16-bit addressing. Normally, the sum of task
segment sizes in memory is 32K or less. However, a non-privileged
task can exceed the 32K physical size imposed by the 16-bit address
structure by using the memory management programmed logical address
space (PLAS) directives. Combining the PLAS directives with
memory-resident overlays is an effective way to avoid throughput
problems caused by many I/O transfers. With this combination, I/O
transfers occur to move only data to another task and, because the
entire task is in memory, all or most of the task segments do not have
to be loaded or unloaded during task execution.

2-1

MEMORY RESOURCE ALLOCATION

Task throughput can be faster if all or a greater portion of the task
is resident in memory during task execution. RSX-llM contains a group
of memory management directives that provide the task with this
capability. The directives overcome the 32K word addressing
restriction. They allow the task to change the physical memory
locations referred to by a given range of addresses. Using these
directives, a task can increase its execution speed by reducing its
disk I/O requirements at the expense of increased memory requirements.

The memory management directives that a task can use for expanding the
32K range of accessible addresses are:

CRRG$

ATRG$

DTRG$

CRAW$

ELAW$

Create Region

Attach Region

Detach Region

Create Address Window

Eliminate Address Window

MAP$ -- Map Address Window

UNMAPS -- Unmap Address Window

SREF$

RREF$

GMCX$

GREG$

Send by Reference

Receive by Reference

Get Mapping Context

Get Region Parameters

The use of these directives is fully described in the RSX-llM
Executive Reference Manual. The RSX-llM Task Builder Reference Manual
describes overlay structures and overlaid tasks.

2.1.2 Memory Management - An Overview

In a mapped system, the KTll Memory Management Unit associates task
addresses with available physical memory. This process, which is
transparent to the user, is called mapping. Addresses used within a
task are virtual addresses and their correspondence to actual physical
memory addresses is known to the KTll unit only. However, memory
management directives can. control and manipulate the KTll, which
physically performs the address mapping.

A privileged task can address all of available memory by directly
using the KTll Memory Management Unit. There is some danger in doing
this because the programmer must be very certain that the task does
not corrupt system space, system routines and data (for instance, the
Executive itself, its pool space, or the I/O page), or other tasks.

2.1.3 Virtual And Logical Addresses

Virtual and logical addresses, and virtual and logical address space
are concepts that provide a basis for understanding the functions
performed by memory management directives and the use of task windows.

2-2

MEMORY RESOURCE ALLOCATION

• Physical addresses Memory is divided into discrete
addressable parts called bytes. They are numbered according
to their position in memory. Therefore, the lowest byte is O
and the highest byte is whatever the upper limit of memory may
be for a particular system1 for example, 32K, 64K, etc. The
assigned number is called the physical address.

A task contains virtual addresses (for example, O through
2200). The · Task Builder relocates the task's virtual
addresses in an unmapped system by a number represented by the
base address of the partition in which it is installed. After
installation, the task's addresses refer to logical addresses
of memory, which always correspond to the same physical memory
in an unmapped system (unless you change the partition or task
code}. Therefore, the addresses have an actual one-to-one
relationship to physical memory. The same relationship exists
any time the task is in memory. The logical addresses may not
be from 0 through 2200. For example, after the task is
installed in the partition, the task's virtual address 0 may
become logical and physical address 17000 because the Task
Builder added in the offset, which is equal to the partition
base address. In a mapped system, the virtual addresses
remain the same but the logical addresses may change due to
Executive processes (checkpointing, swapping, etc.).
Therefore, the logical addresses do not always refer to the
same physical memory. If the task uses memory management
directives, the logical addressing can be changed by the task
to include any part of physical memory that it is allowed to
access.

• Virtual addresses A task's virtual addresses are the
addresses within the task. The PDP-ll's 16-bit word length (a
mapped system) imposes the address range of 32K-words on the
virtual addresses. Therefore, these task addresses could
include addresses zero through 177777(8) depending on the
l~ngth of the task. However, in a system that uses the KTll
(mapped system), these task addresses may not be the same as
the actual addresses of the memory in which the task resides.
The KTll Memory Management Unit maps the task's virtual
addresses to the log~cal addresses of memory.

• Virtual address space -- A task's virtual address space is
that space encompassed by the range of virtual addresses that
the task uses. With the CRAW$ memory management directive, a
task can divide its virtual address space into segments called
virtual address windows. By using address windows, you can
manipulate the mapping of virtual addresses to different areas
of physical memory (see Virtual Address Windows below).

• Logical addresses -- A task's logical addresses are the actual
physical memory addresses that the task can access.

• Logical address space -- The task's logical address space is
the total amount of physical memory to which the task has
access rights. The physical memory represented by the logical
addresses may or may not be continuous. In other words,
though a task's virtual addresses may be continuous, its
logical address space may be divided among non-adjacent parts
of physical memory. Using the CRRG$ (Create Region) memory
management directive, you can divide the task's logical
address space into various areas called regions. Each region
is a continuous block of memory1 however, the regions may not
be adjacent.

2-3

MEMORY RESOURCE ALLOCATION

If the capabilities of the memory management directives were not
available, a nonprivileged task's virtual address space and logical
address space would directly correspond. That is, a single virtual
address would always point to the same logical location. Both types
of address space would have a maximum size of 32K. However, you can
use directives to assign a range of virtual addresses (a window) to
different logical areas (regions), thereby extending a task's logical
address space beyond 32K words.

Figure 2-1 shows a virtual address in a user task translated into a
logical address in physical memory by the KTll Memory Management Unit.
The paragraphs following Figure 2-1 briefly describe the task virtual
space, memory management, and task logical space relationships. A
complete discussion of tasks, task windows, and regions can be found
in the RSX-llM Task Builder Manual. Task mapping is also discussed in
Chapter 4, Privileged Tasks.

2.1.4 Task Windows

Referring to Figure 2-1, which illustrates a mapped system, you can
observe that a large 32K user task contains three distinct areas of
continuous space called "windows". When referring to task windows (a
file window is a similar but slightly different concept) the term,
window, is a construct that encompasses and defines an area of
continuous, virtual, progr·am space in the task. Windows must have a
specified size and starting address. The window size can be from 32
words to 32K-32 words and windows must start on a 4K address boundary.
Figure 2-1 shows three windows that are not continuous in the task's
virtual address space. However, the space within each window is
continuous. In this task, the size of window O is llK; the size of
window 1 is llK; and the size of window 2 is SK. The concept of
windows exists for the following specific reason.

By using the concept of windows and the Memory Management directives,
a nonprivileged task can access a larger logical memory space than
that implied by the 32K virtual addressing range and normally
accessible by the 16-bit address. A task can, in fact, only access
32K of memory at one time. However, a nonprivileged task can change
its access to logical addresses (real, physical memory). The area
that your program accesses can be changed by the program during
program execution. The process of accessing different logical areas
of memory is called "mapping". By referring to Figure 2-1, you can
see that Window 1 in the t:ask is mapped to Static Common Region 1 in
physical memory. The Window 1 mapping can be changed by the task to
map to Static Common Region 0 in physical memory. In effect then,
though a task is limited to a range of 32K virtual addresses, a task
can access all the physical memory available to it (determined by the
way that you set up the mapping) by changing the mapping of its
windows to different logical addresses. Figure 2-1 provides a visual
description of the concept of mapping to different logical addresses.

2-4

IV
I

lJl

VIRTUAL ADDRESS SPACE
OF 32K USER TASK

2 14K

1 WINDO=~
0 4K ------...

OK HEADER

CONTAINS
3 WINDOW BLOCKS

KTl 1 MEMORY MANAGEMENT UNIT

VA I APF I OF I
15 13 12 6 5 0

APF 1 BN 1 DIB

SELECT J l L

APR

USER KERNEL

ACTIVE PAGE REGS ACTIVE PAGE REGS

PAR PDR PAR PDR

7 PAF 7 PAF

6 PAF 6 PAF

5 PAF 5 PAF

4 PAF 4 PAF

3 PAF 3 PAF

2 PAF 2 PAF

1 PAF 1 PAF

~o PAF 0 PAF

l l

t KAPRORUJ
11 USER
OOKERNEL
DETERMINED BY

(PBN]
17 l 65

l 18-BIT PHYSICAL ADDRESS

~

]
0

J

TASK
LOGICAL
ADDRESS
SPACE

PHYSICAL MEMORY

1 BLOCK (32WORDS)

1 to 128 BLOCKS/PAGE

1 PAGE = 32 TO 4K-32 WORDS

STATIC COMMON REGION 0

TASK REGION

WINDOWO

"EXECUTIVE

(NOT SHOWN FULL SIZE)

Figure 2-1 Memory Management - Virtual to Logical Address Space Relationship

3:
tZJ

~
~
!;tj
tZJ
Cf.l
0
Cl
!;tj
n
tZJ

)II
~
~
0
0
)II
t-3
t-4

~

MEMORY RESOURCE ALLOCATION

Figure 2-1 shows a task that has three windows. One of the windows
can map to two different logical areas of memory. Window O in the
task maps to the task region. The t~sk region is llK in size and this
size corresponds to the size of Window O in the task. The task reqion
contains the task root and header. The program cannot change this
mapping because window 0 is a default of the Task Builder and must
contain the root and headeru If no windows were specified, the Task
Builder would create Window 0 for the entire task to map to its own
logical space in memory. Window 1 maps to Static Common Region 1.
Window 1 and Static Comm<>n Region 1 are both llK in size. The task
can change the mapping of Window 1 to map to Static Common Region o.
Observe here that the task <:an access llK more physical memory than it
occupies. In other words, i~ task of this size (32K), without windows,
can access 32K of memory. The task that is illustrated can access 43K
of memory.

The last window, Window 2, •:iccesses the Dynamic Common Region.
Window 2 and the Dynamic Common Region are 8k in size.

Both

Note that the spaces that exist between the windows in the illustrated
task do not ref er to any logical memory address because no window
(mapping) exists for those spaces.

The discussion now proceeds to setting up the task's windows. This is
done by defining task window blocks to the Task Builder.

To manipulate virtual address mapping to various logical areas, the
programmer must first divide a task's 32K of virtual addres~ space
into segments. These segments are task (virtual address) windows.
Each window encompasses a 1:::ontinuous range of virtual addresses. The
first address of the window address range must be a multiple of 4K
(the first address must begin on a 4K boundary) because of the way
that the KT-11 Memory Management Unit uses Aetire Page Registers
(APRs). The number of windows defined in a task can vary from l to 7.
Window 0 is not available to non-privileged tasks. The size of each
window can range from a minimum of 32 words to a maximum of 32K minus
32 words.

A task that includes directives that dynamically manipulate address
windows must have task window blocks set up in its task header as well
as Window Definition Blocks in the code for use by the Create Address
Window directive. The Executive uses task window blocks to identify
and describe each currently existing window. When linking the task,
the programmer specifies the number of window blocks to be set up by
the Task Builder. The number of blocks should equal the maximum
number of windows that will exist concurrently while the task is
running.

A window's identification is a number from O to 7,
to the window's corresponding window block.
identified by 0 is the window that always maps the
root segment. The Task Builder creates window O,
uses to map the task. No directive should specify

which is an index
The address window
task's header and
which the Executive
window O.

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address does not point anywhere. This is
a point to watch when setting up windows with the Create Address
Window directive (CRAW$). Similarly, a window can be mapped only to
an area that is all or part of an existing region within the task's
logical address space.

2-6

MEMORY RESOURCE ALLOCATION

Once a task has defined the necessary windows and regions, the task
can issue memory management directives to perform operations such as
the following:

•
•

•

Map a window to all or part of a region.

Unmap a
region.

Unmap a
another

window from one region in order to map it

window from one part of a region in order
part of the same region.

NOTE

It is currently possible for a task with
outstanding I/O to unmap from a region
although it cannot detach from a region
under this condition. Because this
feature may be impossible to support in
future releases of the system, DIGITAL
recommends that users consider carefully
before designing an application based on
this ability.

to another

to map it to

2.1.4.l Task Window Block - A task that includes Memory Management
directives to manipulate address windows must have window blocks set
up in the task header. The Executive uses the task window blocks to
identify and describe each currently existing window. When linking
the task you must specify the number of window blocks to be set up by
the Task Builder. To do this, you specify a number in the WNDWS
options of the Task Builder to define the number of windows to be used
(in addition to the default window, Window 0). The Task Builder
reserves space in the task header for window blocks - one block for
each window. The Task Builder always reserves at least one block (for
Window 0) as a default.

The label block group in the task header contains the number of task
windows. The word where this number is found is L$BWND. The number
that is contained here does not include windows for libraries.

The variable part of the task header contains the window blocks. You
must specify window size, address limits, etc. (see Window Definition
Block). However, task window blocks are filled in by the Executive
when it obtains the information that you have described in the Window
Definition Block (WDB) and Region Definition Block (ROB). Note that
the RSX-llM Executive Reference Manual contains all the information
that you need to establish address windows, regions, and their
respective blocks in your code. Also, the RSX-llM Task Builder Manual
contains a description of the task header.

2.1.4.2 Window Definition Block (WDB) - The Window Definition Block
is a coding structure that you must create by using the WDBDF$ and
WDBBK$ macros if you are using MACR0-11. You can create this block
with an 8-word integer array if you are using FORTRAN. The Window
Definition Block defines all the parameters that your code, the

2-7

MEMORY RESOURCE ALLOCATION

Executive, and the Task Builder need to use windows. The Window
Definition Block contains the:

• Window's base APR:
APRO • Virtual base address O
APR! • Virtual base address 4K
APR2 • Virtual base address SK

.
APR7 = Virtual base address 28K

• Size of the window in 32-word blocks

• Region ID of the region to map

• Offset within region to be mapped in 32-word blocks

• Window status word bit definitions

• Send/Receive buffer virtual address

The window's base APR and the size of the window are information that
the Executive needs. The region ID relates the window to the Region
Definition Block (ROB) which is also created by ydu. The offset
within the region determines where the mapped area starts within the
region. You can change the offset to move the area that is mapped
within the region. The RSX-llM Executive Reference Manual contains a
complete description of creating and using the WDB and the ROB.

2.1.5 Regions

A task's current window-to·-region mapping context determines the part
of the task's logical address space that the task can access at one
time. A task's logical address space can consist of various types of
region:

• Task Region -- The task region is a continuous block of memory
in which the task runs.

• Static Common Region -- A static common region is an area
defined by an operator at run time or during system
generation; for example, a global common area.

• Dynamic Region A dynamic region is a region created
dynamically at run time by using the Create Region (CRRG$)
memory management directive in the task.

Tasks refer to a region by using a region ID, which the Executive
returns to the task after the task creates the region. The Executive
returns the region ID in the R.GID field of the Region Definition
Block that the user must create before using the Create Region
directive. Region ID 0 always refers to a task's task region. All
other region IDs are actually addresses of the attachment descriptor
maintained by the Executive in the system's dynamic storage region.

Figure 2-1 shows a sample collection of regions that could make up a
task's logical address space. A task's logical address space can
expand and contract dynamically as the task issues the appropriate
memory management directives. The header and robt segment are always
part of the task region. Therefore, the task header and root segment
always use window 0 (UAPR 0) and region o. Because a region occupies
a continuous area of memory, each region is shown as a separate block.

2-8

MEMORY RESOURCE ALLOCATION

2.1.5.1 Shared Regions - Address mapping not only extends a task's
logical address space beyond 32K words, it also allows the space to
extend to regions that have not been linked to the task at task-build
time. One result is an increased potential for task interaction by
means of shared regions. For example, a task can create a dynamic
region to accomodate large amounts of data. Any number of tasks can
then access that data by mapping to the region. Another result is the
ability of tasks to use a greater number of common routines. Tasks
can map to required routines at run time, rather than link to them at
task-build time.

2.1.5.2 Attaching to Regions - A task attaches to a region to make
that region a part of the task's logical address space. A task can
map only to a region that is part of the task's logical address space.
There are three ways to attach a task to a region:

1. All regions that are linked to a task at task-build time are
automatically attached.

2. A task can issue a directive to attach itself to a named
static common region or a named dynamic region.

3. A task can request the Executive to attach any region within
its own logical address space (other than its task region) to
another specified task.

Attaching identifies a task as a user of a region, and prevents the
system from deleting a region until all tasks have been detached from
it. (It should be noted that fixed tasks do not automatically become
detached from regions upon exiting.)

2.1.5.3 Region Protection - A task cannot indiscriminately attach to
any region. The following criteria determine how tasks can attach to
regions outside their logical address space:

• Each region has a protection mask to prevent unauthorized
access. The mask indicates the types of access (read, write,
extend, delete) allowed for each category of user (system,
owner, group, world). The Executive checks that the
requesting task's User Identification Code (UIC) allows it to
make the attempted access. The attempt fails if the
protection mask denies that task the access it wants.

• When a task creates a dynamic region, it may or may not give
that region a name. If the dynamic region is named, any task
can map to it as long as it knows the name and there is no
protection violation. If a dynamic region is unnamed, a/task
can map to the region only if the task that created the
dynamic region issues a Send By Reference directive addressed
to the requesting task.

• Any task can issue a Send By Reference directive to attach
region (except the task region) to another specific task.
reference sent includes the access rights with which
receiving task attaches to the region. The sending task
only grant access rights that it has itself.

any
The
the
can

• Any task can map to a named static common region as long as
there is no protection violation.

2-9

MEMORY RESOURCE ALLOCATION

2.1.S.4 Region Definition Block (RDS) - You must create the Region
Definition Block for each dynamically created region with the RDBDF$
and RDBBK$ macros if you are using MACR0-11. You can create the ROB
with an 8-word single-precision array if you are using FORTRAN.

The ROB contains the:

• Region ID

• Region size in 32-word blocks

• Region name (in RADSO)

• Name of the partition (in RADSO) in which to create the region

• Region status word

• Region default protection

The RSX-llM Executive Reference Manual· contains a complete description
of creating and using the ROB.

2.2 MEMORY ALLOCATION

This section contains a te~:tual discussion of the major functions and
units of memory allocation. These are: checkpointing, swapping,
memory compaction (the Shuffler), and loading (the Loader task). Flow
diagrams of the major routines that are involved in these processes
are included at the end of the memory allocation section.

This section also includes flow diagrams of the Loader, Shuffler,
$NXTSK, and related routines called by $NXTSK.

2.2.l Checkpointing

RSX-llM supports checkpointing in both user- and system-controlled
partitions. The objective of checkpointing is to prevent lower
priority tasks from using main memory and thereby preventing its use
by higher priority tasks.

2.2.l.l Checkpointing in Oser-controlled Partitions - Checkpointing
in a user-controlled partition occurs under one of two conditions:

• A task requires the user-controlled main partition and has a
higher priority than any other task currently occupying it or
any of its subpartitions. Furthermore, all the occupying
tasks must be checkpointable and have checkpointing enabled.
If all of these conditions are met, the Executive checkpoints
all the tasks that occupy the partition and gives control of
the partition to the higher priority task.

• A task requires a subpartition of the user-controlled main
partition and a lower priority task occupies the main
partition or the subpartition into which the task is to be
loaded. Furthermore, the occupying task must be
checkpointable and have checkpointing enabled. If all these
conditions are met, the Executive checkpoints the task that
occupies the partition and gives control of the subpartition
to the higher priority task.

2-10

MEMORY RESOURCE ALLOCATION

2.2.1.2 Checkpointing in System-controlled Partitions - Checkpointing
in a system-controlled partition occurs as the result of a memory
allocation failure. That is, the Executive tries to allocate a
continuous section of a system-controlled partition to a task and it
cannot find an unoccupied memory area of sufficient size. In this
case, the Executive re-examines the list of allocated areas in the
partition to determine whether it can form a free space of sufficient
size by checkpointing one or more neighboring tasks. As with
user-controlled partitions, each task considered for checkpointing
must be of a lower priority, it must be checkpointable, and it must
have checkpointing enabled.

The Executive scans the list of allocated areas in the partition
looking for a series of neighboring tasks, possibly separated by gaps
of free space, where each task satisfies the checkpoint criteria. If
the sum of the memory occupied by such a series of tasks and gaps
satisfies the memory reguirement for the higher priority task, the
tasks are checkpointed and the higher priority task is allocated the
released memory. If such a series of neighboring tasks cannot be
found and memory compaction was generated for the system, the
Executive calls the Shuffler task to try to bring in the highest
priority waiting task. The Shuffler does this by compacting memory
and checkpointing a sufficient number of lower priority tasks that are
not necessarily neighbors in the partition.

The checkpointing algorithm does have a limitation, however. If a
large task is checkpointed and memory becomes fragmented by some
smaller higher priority tasks, the smaller tasks block the large task
from executing. The larger task can continue to be blocked until
memory becomes free again by tasks exiting or being shuffled.

2.2.1.3 Checkpointing During Terminal Input Wait - Checkpointing
during terminal input wait, a SYSGEN option, allows checkpointable
tasks to be checkpointed while they are waiting for terminal input.
This feature allows more copies of terminal I/O-bound tasks (for
example, text editors) to run than normally could be run in a given
amount of memory. This option frees memory for the long time periods
while a user is thinking or between keystrokes. This is important for
text editors that normally run at a high priority.

When the terminal driver dequeues a terminal input request for a
checkpointable task that ·has checkpointing enabled, is not at AST
state, and has ASTs enabled, the task is stopped from further
execution. Thus, even if the task has not entered a wait state for
the terminal input, its execution immediately stops when the request
is dequeued by the terminal driver.

When a task is stopped in this manner, its effective priority within
its partition drops to zero. (Its actual priority never changes.)
Therefore, lower priority tasks ready to run can cause a higher
priority task that is waiting for terminal input to be checkpointed.
When the terminal input to the checkpointed higher-priority task is
completed, the Executive removes the stop condition and the task can
be brought back into memory. If necessary, the Executive displaces
lower priority tasks to make room for it.

Normally, a task that was checkpointed for terminal input is not
brought back into memory until its terminal request is satisfied.
This is true even if memory becomes available during the wait. The
only way the task can execute further, prior to the completion of the
terminal input, is to receive an AST.

2-11

MEMORY RESOURCE ALLOCATION

2.2.2 Disk Swapping

Disk swapping allows more tasks of equal priority to alternate the use
of memory into which they cannot be loaded simultaneously. Swapping
is accomplished by varying task priorities so that tasks of the same
priority checkpoint each other periodically. Checkpointing is the
only Executive feature required for swapping to operate.

Swapping does not affect the basic checkpointing algorithm as
described under Checkpointing. For example, a task can only
checkpoint another task of lower priority, never one of equal or
higher priority. However, when swapping is enabled, the priority of
tasks resident in memory varies with time (the installed priority of
tasks remains unchanged - the swapping priority is for swapping only).
The task's priority with respect to all of the other system resources
does not change.

Two SYSGEN parameters control the swapping algorithm:

• Swapping interval. This parameter (S$$WPC) determines how
often the Executive scans the partition lists to modify the
swapping priority of resident tasks. A typical swapping
interval might be about one-half second and is entered during
SYSGEN as 30 (for 30 ticks or one-half second).

• Swapping priority range. This parameter (S$$WPR) is the
absolute value of the range through which a task's priority
varies from its installed priority. A typical value is 5.
This value would cause a task's memory priority to vary from
P+S to P-5, where P is the priority set for the task when it
was installed. The installed priority is in the word, L$BPRI,
in the task image label block. The swapping priority is in
the byte, H.SPRI, in the task header.

The key element of the swapping algorithm is the H.SPRI byte in the
task's header, which is that task's swapping priority. The symbol,
S$$WPR, is equated to the swapping priority range that is specified
during SYSGEN. In a swapping system, each time a task is read into
memory as the result of an initial task load or checkpoint read, the
swapping priority byte in the task header is initialized to +S$$WPR
(yielding a memory priority of the running priority plus the swapping
priority). On the occurrEmce of each swapping interval, the swapping
priority of each resident task is reduced by one until it reaches
-S$$WPR (yielding a memory priority of the running priority minus the
swapping priority). The Executive determines whether a nonresident
task should checkpoint a resident task by comparing the running
priority of the nonresident task with the sum of the running and
swapping priorities of the resident task. If a possibility exists
that checkpointing within a main partition might occur based on the
new priorities, the Executive executes its partition allocation
algorithm for that main partition.

The following points should be considered when specifying swapping
parameters:

• The swapping interval should be approximately five times the
round-robin scheduling interval. Round-robin scheduling is a
SYSGEN option that periodically rotates the execution of tasks
of equal priority that are in the System Task Directory (STD).

• From the time a task is loaded into memory, the average time
(in clock ticks - 1 tick=l/60 of a second for a line frequency
clock (1/50 of a second for 50 cycle machines) it takes for a
task of the same running priority to checkpoint it is roughly
equal to the product of the two swapping parameters.

2-12

MEMORY RESOURCE ALLOCATION

• Tasks of the same running priority tend to get the same amount
of time in memory. Tasks whose running priorities differ by
less than the swapping range tend to receive different amounts
of time in memory with the higher priority tasks getting much
more time. When many tasks compete for memory and they are of
different priorities, excessive checkpointing can occur.
Therefore, tasks that use the swapping algorithm should have
the same priority.

• In a system that supports checkpointing during terminal input,
terminal input is also a factor in causing checkpointing to
occur. Editors and other interactive tasks normally should
run at a higher priority than more compute-bound tasks. The
higher priority increases the terminal response time.
Otherwise, the editor would have to compete with other tasks
(for example, utilities) most of which run at a priority of
50. However, when an editor is waiting for terminal input,
any lower priority task can checkpoint it. As soon as its
input is complete, the editor can come back into memory by
checkpointing the lower priority task. It is possible in a
highly interactive system for the naturally high checkpoint
rate to eliminate the need for the Executive swapping code to
service many tasks of equal priority.

2.2.3 Shuffler (Memory Compaction)

$NXTSK, which is an Executive routine, attempts to find space in a
partition for each waiting task. $NXTSK requests the Shuffler task
after an allocation failure within the system-controlled partition
takes place. The Shuffler receives no information from the Executive
when it begins execution: it merely begins examining the partitions
in the system starting from the beginning each time it i~ run. When
the Shuffler encounters a system-controlled partition, the Shuffler
makes two passes through the PCB list of subpartitions in an attempt
to make room for the task or tasks in the main partition wait queue.
In its first pass, the Shuffler attempts to remove all the holes in
the partition. In addition, tasks that are stopped for terminal input
are unconditionally checkpointed, if checkpointing during terminal
input is included (a SYSGEN option).

Tasks that have been fixed in memory can be shuffled. However, the
following occupants of a system-controlled partition cannot be
shuffled. For this reason, these memory residents cause free space to
be fragmented in the partition.

• Loaded device drivers

• Tasks that are connected to the ICS/ICR-11 or UDC-11 drivers

• A task whose partition was previously marked by the Shuffler
as having a long outstanding I/O and whose I/O count has yet
to drop to zero. Typical examples of this case are:

- Tasks that issued terminal reads and cannot be checkpointed
- LPAll or tasks that have synchronous functions being

serviced
- Tasks using the Connect to Interrupt Vector directive

• Tasks that have been aborted and fixed by the Executive
because of a memory parity error

• Dynamically-created common regions

2-13

MEMORY RESOURCE ALLOCATION

When such a partition is encountered, the Shuffler treats the start of
the subpartition as the end of an area within the main
system-controlled partition. It treats each area as though it were a
separate main partition. The tasks that occupy an area are shuffled
until only one hole remains in the area.

In its second pass, the Shuffler creates a list of all the tasks that
occupy an area of the main partition. This list is in reverse
priorit:y order. The Shuffler then examines this list in an attempt to
find tasks that the waiting task can checkpoint. The Executive
routine ($TSTCP) determines if the waiting task can checkpoint the
task that owns the partition, which is the "owner task". If this scan
of the list indicates that the sum of space available from holes and
checkpointable tasks is sufficient for the waiting task, the Shuffler
scans the list a second time to checkpoint (using $ICHKP) as many
owner tasks as necessary.

To shuffle a task, the Shuffler first "freezes" the task in memory to
prevent it from being checkpointed. Then, using the Executive
routine, $BLXIO, it moves the task image in the partition. The
Shuffler executes this move while in system state (thus preventing
context switching) and it does the move in 256.-word blocks.
Therefore, QIO speed optimizations with a large BLXIO transfer vector,
a SYSGEN option, increases the response time for a very high priority
real-time task.

The Shuffler's algorithm consists of two passes
system-controlled partition: it executes the steps
iteratively until the partition reaches a stable state.

through the
in each pass

2.2.3.1 The Shuffler's First Pass - In the first pass, the Shuffler
starts at the beginning o:f the system-controlled partition and tries
to move (shuffle) all tasks that are positioned above a gap of free
space down to the base of the free space. When possible, it also
checkpoints any tasks it encounters that are waiting for terminal
input. Task shuffling occurs in the following steps:

• The Shuffler blocks the task from further execution and
allocates the free space below the task.

• If necessary, the Shuffler waits for the task's outstanding
I/O count to reach zero by checking it at intervals of
approximately one-eighth of a second. If the task I/O count
does not drop to zero in about one-half of a second, the
Shuffler marks the task's partition as having long-outstanding
I/O, deallocates the free space below the task, and restarts
its first pass scan of the partition. The Executive clears
the task's partition long-outstanding I/O indicator when it
reduces the task's I/O count to zero.

• If the task's I/O count drops to zero within one-half of a
second, the Shuffler moves the task down to the base of the
free space. The speed of this move increases if the QIO speed
optimizations were included during phase 1 of SYSGEN and a
large BLXIO transfer vector was allocated.

• After the Shuffler completes the move, it unblocks the task to
allow further execution and then it deallocates free space
(now above the task).

2-14

MEMORY RESOURCE ALLOCATION

When the Shuffler completes its first pass, all free space in the
partition has been merged into one hole at the top of the partition.
However, there may be additional holes below those tasks that cannot
be shuffled.

2.2.3.2 The Shuffler's Second Pass - If the Shuffler completes its
first pass and some tasks are still actively competing for memory in
the partition, the Shuffler executes its second pass algorithm. In
the second pass, the Shuffler creates an ascending, priority-ordered
list of the tasks in the partition. It then uses this list to
determine if the size of the waiting task is less than the sum of the
free space in the partition and the size of one or more of the lower
priority tasks that can be checkpointed. If the waiting task's size
is less than this sum, the lower priority tasks are checkpointed. The
Shuffler then restarts its first-pass algorithm to accumulate the
freed-up space and allocate it to the waiting task. If tasks that
cannot be shuffled fragment the system-controlled partition, the
Shuffler executes the second-pass algorithm once for each fragment of
the partition.

The RSX-llM philosophy of checkpointing in system-controlled
partitions avoids preempting memory unless it can actually be used.
When the Shuffler is active but not actually executing - for example,
waiting for task I/O or a checkpointing operation to complete - it
places itself in a state in which it may be checkpointed by any task.
No lower priority task is checkpointed unless it is known beforehand
that enough continuous space can be made available to load the higher
priority task. The one exception is a checkpointable task waiting for
terminal input. This task is swapped out unconditionally to make room
for other tasks whenever the Shuffler is activated. It is not brought
back in until the terminal input request is completed.

If the Shuffler completes its second pass without finding space for
the waiting task, it searches for the next system-controlled partition
in the system and exits if none exists.

2.2.4 The Loader (the System Loader Task)

The Loader, which is a resident RSX-llM system task, has three
functions:

1. Reading a task, which is either about to start executing or
is being fixed, into memory

2. Performing a checkpoint write of a task image from memory to
disk

3. Performing a checkpoint read of a task image from disk into
memory (resuming checkpointed tas~s)

The Loader has the single objective of emptying its receive queue of
tasks waiting for its attention.

The Loader's receive queue, which consists of a list of TCBs, is
ordered by priority. When $NXTSK or one of its associated routines
determines that action by the Loader is required, the TCB of the task
to be moved to or from the disk is placed in the Loader's receive
queue and the Executive requests Loader execution. After it has begun

2-15

MEMORY RESOURCE ALLOCATION

executing, the Loader examines two bits in the task status word of
each TCB: the swap bit and the out-of-memory bit. These bits
determine the Loader's action. The interpretation of these bits is as
follows:

Swctp Bit Out-of-Memory Bit Action
(TS.CKP) (TS.OUT)

l 1 The task is read back into
memory from its checkpoint area.

l 0 The task is written from memory
into its checkpoint area.

0 l The task is read into memory
from its load image.

0 0 Illegal combination

When the Loader removes the next entry from its queue, it assumes
memory is available if the task is about to be read (it has been
allocated by $NXTSK). After the Loader writes a task into its swap
area, it calls the release partition routine that in turn calls $NXTSK
to select the next task that will occupy the partition.

The Loader performs several other functions associated with moving
tasks to and from disk. These tasks include:

Task Load and Checkpoint Read

• Copy the task header into the Dynamic Storage Region

• Initialize task swapping priority

• Declare receive and receive-by-reference ASTs for the task if
the appropriate queues are not empty

Checkpoint Read Only

• Release space held by the task within a dynamic checkpoint
space file

Task Load Only

• Map the task's address windows to the task image and attach
static commons

Checkpoint Write Only

• Deallocate the Dynamic Storage Region copy of the task's
header

• Place the task's TCB in the partition wait queue

• Release the partition previously owned by the task. This
results in a call to $NXTSK to reallocate the partition.

2-16

MEMORY RESOURCE ALLOCATION

2.2.5 The $NXTSK Routine

$NXTSK is a routine in the Executive module, REQSB. $NXTSK works with
both user- and system-controlled partitions and takes a single input:
the PCB address of the partition to be reallocated. $NXTSK examines
all the TCBs in the partition wait queue of the specified PCB and
attempts to find space in the partition for each waiting task. When
all TCBs in the queue have been examined, a return to the caller is
executed. ·

$NXTSK is called by routines
partition to the highest
partition.

that need partitions;
priority task waiting

it assigns a
to occupy the

The inputs and functions of $NXTSK are listed in the following text.

2.2.5.l $NXTSK Inputs - The only input to $NXTSK is the address,
which is in register O, of the PCB of the partition to assign.

2.2.5.2 $NXTSK Functions - $NXTSK has five possible functions:

1. The partition is not currently busy and a task is waiting to
occupy the partition. $NXTSK assigns the partition to the
waiting task and places a request on the Loader queue to load
the task.

2. The partition is currently occupied by a task that is either
of higher priority than all the waiting tasks or is not
checkpointable. In this situation, $NXTSK cannot assign the
partition to another task.

3. The partition is currently occupied by a lower priority
checkpointable task. $NXTSK places a request in the Loader
queue to checkpoint the task that owns the partition.

4. The highest priority task waiting to occupy the partition
needs the main partition that is currently occupied by one or
more tasks that are either of higher priority or are not
checkpointable. In this situation, $NXTSK cannot assign the
partition to another task.

5. The highest priority task waiting to occupy the partition
requires the main partition that is currently occupied by one
or more checkpointable tasks of lower priority. $NXTSK
places a request in the Loader queue to checkpoint each task.

2.2.5.3 $NXTSK Operation in a User-controlled Partition - If the
partition being reallocated is a task partition, $NXTSK first
determines if the requested space in the partition is unused. If it
is, the task is assigned the space and a request to read the task into
memory is issued to the Loader.

If the space is being used by another task, $NXTSK calls $TSTCP to
determine if the task or tasks occupying the partition can be
checkpointed by the requesting task. If the task or tasks can be
checkpointed by the requesting task and if checkpointing will produce
enough space for the requesting task, $NXTSK calls $ICHKP to initiate
a checkpoint of the task or tasks that occupy the space.

2-17

MEMORY RESOURCE ALLOCATION

When the Loader completes the checkpoint write of the tasks that
occupy the partition, it calls $NXTSK again to allow the requesting
task to find the newly vacated space in the partition.

2.2.5.4 $NXTSK Operation in a System-controlled Partition - If the
partition being reallocated is a system-controlled partition, $NXTSK
calls $FNOSP to find a·hole in the partition large enough for the
requesting task. If such a hole is found, $NXTSK assigns to the
requesting task as much of the space in the hole as it requires, and
issues a request to the Loader to read the task into memory.

If $NXTSK cannot find a satisfactory hole, it searches for a
contiquous combination of holes and checkpointable tasks large enough
to form a single hole large enough for the requesting task. $NXTSK
calls $TSTCP to determine if the memory resident task or tasks can be
checkpointed by the requesting task. If such a combination is found,
$NXTSK calls $ICHKP to initiate a checkpoint of each task in the
potential hole. $NXTSK then returns to the caller, relying on the
Loader to call it again when checkpointing is complete.

Finally, if no combination of contiguous holes and checkpointable
tasks can be found, and if the Shuffler is installed, $NXTSK requests
execution of the Shuffler.

2.2.6 Routines That Call $NXTSK

Examining the routines that call $NXTSK yields information on the
circumstances under which reallocation of a partition occurs. Figure
2-2 shows that such routines tend to fall into two groups. Routines
in the first group call $NXTSK directly (1 through 5 and A through G
in Figure 2-2). Routines in the second group call routines A through
G. Whe numbers and letters in Figure 2-2 are an index into a table of
short routine descriptions that follow the Figure.

2-18

RATX

$DRATX

ORABO

8 $DRA80

16

22

28

A

B

c

0

E

F

G

OREIF

$DR EXT

OREIF

$DR EXT

ORREO

$0RREO

REOSB

$ABTSK

$ABCTK

$0ASTT

$0ASTT

$RLPAR

$RLPR1

$STPTK

$ST PCT

$TSKRT

$TSKRP

$TSKRQ

TOSCH

SWAP ----

MEMORY RESOURCE ALLOCATION

OROCP

2 $DRECP

LOAOR

9 $LOAOR

OR MAP

17 $0RSRF

OR REG

23 $0ETRG

ERROR

29 $0EMB

DR EXP

3 $DREXP

ORA TX

11 $DRATX

DR RAS

18 $0RSND

LOADR

24 $LOAOR

REOSB

30 $EXROP

$EXROF

$EX RON

OR RES IOSUB

4 $0RATP 5 $10FIN

OREIF SST SR

12 $0REXT 13 $SSTXT

LOA OR TOSCH

19 $LOAD A 201 $C~T I

LOADR

261 $L~R I

TOSCH

31 $CKINT

REOSB

H $NXTSK

Figure 2-2 Routines That Call $NXTSK

2-19

IOSUB

6 $10ALT

$1000N

SYSXT

14 $DIRXT

MEMORY RESOURCE ALLOCATION

2.2.6.1 Routine Description - The numbers and letters in the
following text are keyed to the numbers and letters in Figure 2-2.

1. $DRATX - DRATX Module - AST exit directive
Calls $NXTSK if task is stopped at task state.

2. $DRECP - DRECP Module - Enable Checkpointing directive
Calls $NXTSK when checkpointable task enables checkpointing

3. $DREXP - DREXP Module - Extend Task directive
Returns to $NXTSK to reallocate the partition after changing
the P.SIZE word in the task's PCB.

4. $DRATP - DRRES Module - Alter Task Priority directive

5.

Calls $NXTSK to recallocate the partition due to changed task
priority.

$IOFIN - IOSUB Module - I/O finish
Calls $NXTSK after completion of what
declared a long-·outstanding I/O.
declared a long I/O by the Shuffler if
finish in 1/2 second.

Routine that calls $IOFIN:

has previously been
An I/0 operation is
the operation does not

6. $IODON/$IOALT - IOSUB Module - I/O done
Calls $IOFIN unconditionally. Most drivers call $IOALT,
$!ODON, or $IOFIN.

A. $ABTSK - REQSB Module - Abort task by TCB address
Calls $NXTSK after the task has been marked for abort.

Routines that call $ABTSK:

8. $DRABO - DRABO Module - Abort Task directive
Calls $ABTSK to actually abort the task.

9. $LOADR - LOADR Module - Task Loader
Calls $ABTSK if a disk read error occurred while reading
task.

B. $ABCTK - REQSB Module - Abort current task
Calls $ABTSK to abort task.

Routines that call $ABCTK:

11. $DRATX - DRATX Module - AST Exit directive
Calls $ABCTK when address check of task stack fails:
$ABCTK aborts the task and the next AST is not acted
upon.

12. $DREXT - DREIF Module - Exit directive
Calls $ABCTK if task is already marked for abort.

13. SSTXT - SSTSR Module - Common SST processing routine
Calls $ABCTK if task has no SST vector.

14. $DIRXT - SYSXT Module - Directive exit (context switch)
Call $ABCTK if address check of task fails.

C. $DASTT/$QASTT - REQSB Module - Declare or Queue (non-I/O) AST
to task.
$QASTT calls $NXTSK if task is not stopped: $DASTT calls
$QASTT.

2-20

MEMORY RESOURCE ALLOCATION

Routines that call $DASTT:

16. $DREXT - DREIF Module - Exit directive
Calls $DASTT to act upon floating-point, powerfail, and
receive ASTs on task exit.

17. $DRSRF· - DRMAP Module - Send-by-Reference directive
Calls $DASTT to act upon receive-by-reference AST for
receiver. ·

18. $ORSND - DRRAS Module - Send Data directive
Calls $DASTT to act upon receive AST for receiver.

19. $LOAOR - LOADR Module - Task loader
Calls $DASTT for receive and receive-by-reference ASTs if
task queues are not empty when task is brought into
memory.

Routine that calls $QASTT:

20. $CKINT - TOSCH Module - Clock interrupt service routine
Calls $QASTT when mark time request has expired.

D. $RLPAR/$RLPR1 - REQSB Module - Release partition
Calls $NXTSK to allow next highest priority task to occupy
partition.

Routines that call $RLPAR/$RLPR1:

22. DREXT - DREIF Module - Exit directive
Calls $RLPAR when task exit is complete.

23. $DETRG - DRREG Module - Detach Region directive
Calls $RLPR1 when a dynamic common regilJn with a "delete
on last detach" attribute is detached by the last task
and is deallocated from a system-controlled partition.

24. $LOADR - LOADR Module - Task loader
Calls $RLPAR upon completion of a checkpoint write of a
task.

E. $STPCT/$STPTK - REQSB Module - Stop (current) task
Calls $NXTSK after setting task's stop bit.

Routine that calls $STPCT/$STPTK:

26. $LOADR - LOADR Module - Task loader
Calls $STPCT to set its own stop bit when waiting for
work.
Note: Many privileged system tasks call $STPCT.

F. $TSKRT/$TSKRP/$TSKRQ - REGSB Module - Request task execution
Calls $NXTSK to force reallocation of task's partition, if
task is not fixed or active.

Routines that call $TSKRT/$TSKRP/$TSKRQ

28. $DRREQ - DRREQ Module - Task Request directive
Calls $TSKRP to request desired task.

29. $QEMB - ERROR Module - Queue error message block
Calls $TSKRT to request error logger to run.

2-21

MEMORY RESOURCE ALLOCATION

30. $EXRQP/$EXROF/$EXRQN REQSB Module Execute task
request
Calls $TSKRT after clearing task's stop bit on internal
executive request of task (TKTN, LOADR, etc).

31. $CKINT - TOSCH Module - Clock interrupt service routines
Calls $TSKRT to carry out a schedule request after a
clock queue has expired.

G. SWAP - TOSCH Module - Disk swapping algorithm
Calls $NXTSK during scan of all partitions in system. $NXTSK
is called:

• Whenever a system-controlled partition is encountered

• Whenever the swapping priority of a task is reduced

2.2.7 Routines That $NXTSK Calls

2.2.7.1 $CBKPT Routine - $CHKPT checkpoints a task. When an Executive
routine calls $CHKPT, all the conditions necessary for a task to be
checkpointable have been met. If dynamic allocation of checkp6int
space has been selected as a SYSGEN option, $CHKPT searches the
checkpoint files for available space by using the $FNDSP routine. If
this search fails, or if dynamic allocation of checkpoint space was
not a selected option, $CHKPT determines if checkpoint space is
allocated within the task's disk image file. If checkpoint space is
found in either the dynamic checkpoint space or the task image file,
$CHKPT issues a checkpoint request to the Loader and requests
execution of the Loader.

If no checkpoint space can be found, $CHKPT requests the TKTN task to
print a message that so informs the user.

The method used ~Y the Executive to allocate space within the
checkpoint file is identical to the method used to allocate space
within a system-controlled partition. In both cases, a main PCB
describes the overall area of allocation (main partition or entire
disk file) and a sub-PCB describes a single fragment of the area
(sub-partition for the task or portion of the checkpoint file reserved
for one task image). In addition, both algorithms use $FNDSP to find
a hole of the required size within the area described by the main PCB.

2.2.8 $FNDSP Routine

$FNDSP tries to find space in a PCB list in a system-controlled
partition for a PCB. It searches through the list until it finds a
large enough hole. If it finds a large enough hole, $FNDSP links the
PCB into the list. If it does not find a hole, $FNDSP sets the C-bit
before returning to the calling routine.

2-22

MEMORY RESOURCE ALLOCATION

2.2.9 $ICBKP Routine

Other routines call $ICHKP to begin the checkpointing process for a
task that owns a partition. $ICHKP has three possible functions:

1. If the task is already being checkpointed, $ICHKP immediately
executes a return to the calling routine.

2. If the task is being read into memory or has outstanding I/O,
$ICHKP marks the task for checkpointing. If the task is
being read into memory, the Loader detects that the task is
marked for checkpointing when the read is done and
immediately checkpoints the task. If the task has I/O
outstanding, $IOFIN in the IOSUB module is entered when the
I/O is complete. $IOFIN detects the checkpoint request and
checkpoints the task. However, terminal I/O that has been
buffered is not included in the I/O count of a task.

3. If neither 1. nor 2. above are true, $ICHKP calls $CHKPT to
checkpoint the task.

2.2.10 $TSTCP Routine

Other routines call $TSTCP to determine if a task that owns space in a
partition (owner task) can be checkpointed by a task that is
requesting space in the same partition (requesting task). There are
two conditions that must be met before the requesting task can
checkpoint the owner task.

First, the owner task must be eligible for checkpointing. A task is
eligible for checkpointing if:

• It is neither fixed nor being fixed

• It was taskbuilt or installed as checkpointable

• It does not have checkpointing disabled

The second condition for checkpointability is that the requesting task
must have a default priority higher than the effective priority of the
owner task. Two factors may make the effective priority of a
memory-resident task different from its default priority:

1. Tasks that are stopped, or that are stopped for terminal
input and do not have outstanding ASTs, have an effective
priority of zero.

2. In a system that includes the disk swapping of equal or
nearly equal priority tasks, the effective priority of a task
that is in memory is the sum of its default priority (from
the TCB) and its swapping priority (from the task headerl.

If these two conditions are met, the calling routine is informed that
the requesting task can checkpoint the owner task. Note that the
presence of outstanding I/O belonging to the owner task is not
detected by this routine.

2-23

MEMORY RESOURCE ALLOCATION

2.3 MEMORY ALLOCATION FLOW DIAGRAMS

Memory allocation within partitions is managed by two types of
routines in RSX-llM. Routines in the first group detect the presence
of conditions that indicate reallocation of space within a partition
is necessary.

Routines in the second group (headed by the $NXTSK routine) find or
create space for a · task within a partition, and load the task into
that space. In other words, the first group of routines determines
when memory allocation should take place and the second group of
routines does the reallocation.

This flow diagram section contains flow diagrams of $NXTSK and the
routines that it invokesu It also contains flow diagrams of the
Loader, Shuffler, $ALOCB, and $DEACB.

2-24

MEMORY RESOURCE ALLOCATION

2.3.1 $ALCLK Logical Flow Diagram

SALCLK:
ALLOCATES A CLOCK
QUEUE BLOCK FOR A
CLOCK QUEUE ENTRY.

$ALPKT:
ALLOCATES A BLOCK FOR
A SEND OR 1/0 REQUEST
QUEUE ENTRY.

REFERENCES:

SA.,_L_C_L...,K ... :: __________ - - - - - - - - C. LGTH

PICK UP LENGTH OF 10$
CLOCK BLOCK. SALPKT

;..SA_L-.P_K_T __________ - - - - - - - - I. LGTH

GET LENGTH OF 1/0
PACKET.

i9
10------""'"------- - - - - - - - - $ALOCB

$ALOCB
FIGURE 2-4 CALL $ALOCB.

------------- - - - - - - - - D. RS1
IF BLOCK ALLOCATED,
RETURN TO CALLER.
OTHERWISE, TRAP TO SET
DIRECTIVE STATUS
(DRSTS).

$ALO CB
FIGURE 2-4

Figure 2-3 $ALCLK Logical Flow Diagram

2-25

MEMORY. RESOURCE ALLOCATION

2. 3. 2 $ALOCB Logical Flow I>iagram

REFERENCES:

----------·-.-.-- - - - - ---- SYSCM,$CRAVL,$PKAVL

$ALOCB BEGINS WITH A
REFERENCE TO $CRAVL IN
SYSCM. $CRAVL·2 CONTAINS
A 3 USED TO ROUND A
REQUEST UP TO THE NEXT
4-BYTE BOUNDARY. (A
REQUEST FOR 10. BYTES GETS
12 BYTES.) $CRAVL IS THE
LIST HEAD FOR THE LIST
OF DYNAMIC FREE MEMORY
BLOCKS. $CRAVL + 2 IS ZERO
BECAUSEITISTHELENGTH
OFTHEFREEBLOCKREPR&
SENTEO BY $CRAVL THERE
ARE TWO ENTRY POINTS:
$ALOCB ANO $ALOC1. $ALOC:B
MAKES USE OF PRE·
ALLOCATION OF 1/0 PACKETS,
A SYSGeN OPTION. $ALOC1
ALLOCATES BLOCKS FROM
DYNAMIC MEMORY OTHER
THAN THAT POINTED TO BY
$CRAVL

$ALOCB::]-- - - - - - --- $CRAVL

POINT TO ALLOCATION
MASK WORD ($CRAVL·2).
ROUND TO NEXT 4·BYTE
BOUNDARY.

IS REQUEST G LENGTH? =:J----0 :RT 2

PART2

Figure 2-4 $ALOCB Logical Flow Diagram (Part 1 of 2)

2-26

MEMORY RESOURCE ALLOCATION

PART 1

REFERENCES:

----------- - - - - - - - - -- I. LGTH
DOES REQUEST SIZE•
PREALLOCATED BLOCK?

IF PRE-ALLOCATED BLOCK
AVAILABLE:

UNLINK PACKET,
SUBTRACT ONE FROM
NUMBER OF PACKETS,
RETURN

IF PRE·ALLOCATEO BLOCK
NOT AVAILABLE:

POINT TO $CRAVL·2

$ALOC1::

5$

ROUND TO NEXT 4·BYTE
BOUNDARY.

ZERO LENGTH REQUEST?

11J$

LAST BLOCK?

BLOCK BIG ENOUGH?

LINK BLOCK IN CHAIN.
CALCULATE AND RECORD
REMAINING SIZE.

30$

RETURN TO CALLER

6$
PART2

30$
PART2

3(1J$
PART2

10$
PART2

Figure 2-4 $ALOCB Logical Flow Diagram (Part 2 of 2)

2-27

MEMORY RESOURCE ALLOCATION

2.3.3 .$CBKPT Logical Flow Diagram

$CHKPT::

REFERENCES:

... ___________ FD------!':~:DIX 8: CO-ROUTINES USE SAVNR CO-ROUTINE
TO SA VE R4 AND R5.

--<J
CLEAR CHECKPOINT ALLOCATIOJ- - - ·- - - - - - ~~~~~. T.ST2
FAILURE. $ALOCB, P.SIZE

ATTEMPT TO ALLOCATE PCB.

------P-CB_A_L_L~O-C_A_T-ED-7----~~~T1
.-------i..-----·-- - - - - - - - - $CFLPT

10$

ALLOCATION SUCCESSFUL.
CALCULATE NUMBER
OF BLOCKS NEEDED IN
DYNAMIC CHECKPOINT
FILE.
POINT TO DYNAMIC
CHECKPOINT FILE LISTHEAO

ANOTHER CHECKPOINT ~ 30$

FILE EXIST? ~ PART 2

DEALLOCATE CHECKPOINT]- - - - - - - - - $DEACB

PCB.

20$

]

- - - - - - - -- T2.CAF, T.ST2
SET DYNAMIC CHECKPOINT
SPACE ALLOCATION FAILURE
IN TASK'S TCB -

PART2

Figure 2-5 $CHKPT Logical Flow Diagram (Part 1 of 2)

2-28

MEMORY RBSOORCE ALLOCATION

PART 1

REFERENCES:

r------------.- ----------T3.CAL, T.ST3
IS CHECKPOINT SPACE
ALLOCATED WITHIN TASK'S
DISK IMAGE FILE?

60$
PART2

---------------- - - - - - - - - $TKNPT

26$

REQUESTTKTN TO PRINT
MESSAGE ABOUT ALLO·
CATION FAILURE.

RETURN TO CALLER THROUGH
SAVNR CO-ROUTINE.

3(1$

T. STAT
$EX RON

------------.- - - - - - - - - - - P. REL
ALLOCATION IN FILE
TURNED OFF?

10$
PART 1

-------------- - - - - - - - ---$FNDSP CALL $FNDSP TO FIND
OUT IF ENOUGH SPACE
EXISTS TO CONTAIN
IMAGE OF THIS TASK.

SPACE IN FILE?
1(1$
PART 1

50$
------------- - - - - - - ----TS. CKP, T. STAT

SET CHECKPOINT IN
PROGRESS BIT

-------------- - - - - - - - --- $LOADT
PLACE TCB OF TASK TO BE
CHECKPOINTED IN LOADER
QUEUE AND CALL LOADER
VIA $LOADT AND
$EXROP

$LDRPT
$EXROP

Figure 2-5 $CHKPT Logical Flow Diagram (Part 2 of 2)

2-29

MEMORY RESOURCE ALLOCATION

2.3.4 $DECLK-$DEPK'l'-$DEACB Logical Plow Diagram

$DECLK::
DEALLOCATES A CLOCK
QUEUE BLOCK.

$DEPKT::
DEALLOCATES A SEND
OR 1/0 REQUEST
BLOCK.

$DEACB::
DEALLOCATES ASTOR·
AGE BLOCK (PACKET)
FROM A LIST OF PRE·
ALLOCATED PACKETS
FROM POOL SPACE.
OPERATIONAL IF PRE
ALLOCATED 1/0 PACKETS
ARE AVAILABLE (Q$$0PT
OPTION IN SYSGEN).
OTHERWISE, $DEAC1::
IS USED.

$DEAC1::
DEALLOCATES A STORAGE
BLOCK FROM DYNAMIC
MEMORY OTHER THAN POOL
SPACE. IF A LOWER OR
HIGHER ADJACENT B'LOCK
IS FREE, THE BLOCKS ARE
MERGED TO PRODUCE ONE
FREE BLOCK.

$DECLK:: -------------- - - - - - - - -- -
PICK UP LENGTH OF
CLOCK BLOCK.
BRANCH TO SDEACB.

$DEACB
PART2

REFERENCES:

C. LGTH, $DEACB

Figure 2-6 $DECLK-$DEPKT-$DEACB Logical Flow Diagram (Part 1 of 5)

2-30

MEMORY RESOURCE ALLOCATION

REFERENCES:

$DEPKT::

....-------------- - - - - - - - - - - - t. LGTH
PICK UP LENGTH OF 1/0
PACKET.

$0EACB:: ,_ _____ ..._ _____ .,._ - - - - - - "!'"9-- -- $CR~VL

POINT TO ALLOCATION
MASK WORD ($CRAVL
-2)
ROUND LENGTH TO NEXT
4-BYTE BOUNDARY.

LENGTH• '1?
NO BLOCK TO RELEASE.

LENGTH= 1/0 PACKET LENGTH?

8(1$
PARTS

(SEE $CRAVL DISCUSSION IN
$ALOCB LOGICAL FLOW DIAGRAM)

------- 1.LGTH
3G$
PART3

---------------- - - - - - - - - - - $PKMAX
MAXIMUM NUMBER OF
PACKETS ALLOCATED?

INCREMENT COUNT OF
AVAILABLE PACKETS BY 1.

LINK PACKET INTO LJST

RETURN TO CALLER.

30$
PART3

Figure 2-6 $DECLK-$DEPKT-$DEACB Logical Flow Diagram (Part 2 of 5)

2-31

MEMORY RESOURCE ALLOCATION

$0EAC1::

ROUND LENGTH TO~
4-BYTE BOUNDARY~

REFERENCES:

~RETURN
LENGTH• Q?~TO CALLER

30$

SAVE ADDRESS OF LISTHEAD I
ON STACK (IF ERROR
CHECKING, R$$DER. IS
OPERATIONAL).

40$

GET ADDRESS OF CURRENT I
BLOCK ANO NEXT BLOCK.

NEXT BLOCK QI~ 50$

(END OF CHAIN~PART 3

50$

NEXT BLOCK ADDRESS
HIGHER OR EQUAL?

NEXT BLOCK ADDRESS
LOWER. ADD SIZE
TO ADDRESS OF THIS
BLOCK TO GET ADDRESS
OF POSSIBLE NEXT BLOCK.

PART4

Figure 2-6 $DECLK-$DEPKT-$DEACB Logical Flow Diagram (Part 3 of 5)

2-32

MEMORY RESOURCE ALLOCATION

PART3

REFERENCES:

--------------- - - - - - - - - - - CARRY STAT
ILLEGAL ADDRESS? CRASH

--------------- - - - - - - - - -- - #$CRAVL

DEALLOCATION IN EXEC POOL?

56$

DEALLOCATION IN FRONT
OF START OF FREE SPACE?

DEALLOCATION PAST END
OF EXEC POOL?

COMPARE CALCULATED ADDRESS
TO ADDRESS OF NEXT BLOCK

NEXT ADDRESS LOW?

NEXT ADDRESS NOT EQUAL?

ADDRESS OF NEXT FREE
SPACE EQUALS END OF
THIS BLOCK. MERGE
BLOCKS AND ADJUST
LINK.

PART 5

56$
PART4

CRASH

CRASH

90$
PARTS

60$
PART5

Figure 2-6 $DECLK-$DEPKT-$DEACB Logical Flow Diagram (Part 4 of 5)

2-33

MEMORY RESOURCE ALLOCATION

PART 4

68$

COMPARE ADDRESS AND L'ENGTH I
OF PREVIOUS FREE BLOCK To·
ADDRESS OF BLOCK BEING
RELEASED.

REFERENCES:

DEALLOCATION JN exec F-r~ -> ~:s:-- #$CRAVL
POOL7

65$

7fJS

SGS

IF BLOCK BEING
RELEASED IS
ADJACENT TO PREVIOUS
BLOCK, MERGE BLOCKS
ANO ADJUST LINKS.

OTHERWISE, SET SIZE :J
OF BLOCK BEING RELEASED.
POP LISTHEAD ADDRESS
OFF. STACK.

RETURN ---, ____ __J

90$

IF NEXT ADDRESS LOWER
THAN SIZE OF BLOCK TO
BE DEALLOCATED, NEXT
BLOCK BETTER BE AT
END OF LIST.

END OF LIST? ===1---8 CRASH

6(1$

PART 5

Figure 2-6 $DECLK-$DEPKT-$DEACB Logical Flow Diagram (Part 5 of 5)

2-34

MEMORY RESOURCE ALLOCATION

2.3.S $PNDSP Logical Plow Diagram

$FNOSP:: REFERENCES

-------------- ---------- P.REL,P.SUB

1(1$

GET STARTING ADDRESS
OF MAIN PCB, HIGHEST
ADDRESS IN LAST PARTITION.

GET ADDRESS OF NEXT
PCB.

NEXT PCB EXIST? 2H
PART 1

------------------------ P.REL
CALCULATE SIZE OF HOLE .

.._ __ is_H_o_L_E_B_IG E-No_u_G_H_? __ ... I ---T:J :~ ~ P.size

CALCULATE ADDRESS OF
NEXT HOLE

10$ P. SIZE
PART 1

20$
------------ - -- - - - - --- P. REL

CALCULATE SIZE OF LAST HOLE.

HOLE BIG ENOUGH?
4(1$

PART1

P.SIZE

30$
...----------------------- P.REL

40$

HOLE BIG ENOUGH WAS
FOUND FOR REQUESTING
TASK. LINK PCB INTO
LIST.

RETURN TO CALLER.
C·BIT • 1 IF HOLE
NOT FOUND.

P.SUB

Figure 2-7 $FNDSP Logical Flow Diagram (Part 1 of 1)

2-35

MEMORY RESOURCE ALLOCATION

2.3.6 $ICBKP Logical Flow Diagram

$1CHKP::

REFERENCES:

- - - -TS.OUT, T.STAT

IS TASK TO BE CHECKPOINTEO 20$
BEING READ INTO MEMORY? PART 1

IS THE TASK ALREADY
BEING CHECKPOINTEO?

30$
PART 1

- - -TS.CKP, T.STAT

SET A CONDITIONAL SCHEDLJ- - - - - - - - $SETCR

REQUEST TO ALLOW NEXT
TASK ON ACTIVE TASK LISI
(ATL) TO RUN.

·--------------------

DOES TASK BEING CHECK
POINTEO HAVE 1/0 IN PROGRESS?

JUMP TO $CHKPT TO CHECl<:-1
POINT TASK. ~

20$
PART 1

20$:--1 - - - - - - - - TS.CKR, T.STAT

SET CHECKPOINT. REQUES'~

RETURN TO CALLING ROUTl;:J

Figure 2-8 $ICHKP Logical Flow Diagram (Part l of l)

2-36

MEMORY RESOURCE ALLOCATION

2.3.7 $NXTSK Logical Flow Diagram

REFERENCES:

SNXTSK::

---------------... - - - - - P.MAIN

GET PCB ADDRESS OF MAIN PARTITION
TO BE REALLOCATED.

10$

20$

21$

FIND TCB ADDRESS OF FIRST TASK
IN PARTITION WAIT QUEUE.

TCB FOUND?

TASK STOPPED WITHOUT PENDING
ASTS7

SYSTEM·CONTRO LLED PARTITION?

MAIN PARTITION BUSY?

GET REQUESTED SUB-PARTITION
ADDRESS.

PART2

- - - - - P.WAIT

100$
PART7

40$
PART3

-- -
110$
PARTS

T.ASTL

PS.SYS
P.STAT

- - - P.BUSY

50$
PART4

- - - - - T.PCB

Figure 2-9 $NXTSK Logical Flow Diagram (Part 1 of 7)

2-37

MEMORY. RESOURCE ALLOCATION

REFERENCES:

------....i----·---------------P.BUSY

IS REQUESTED SUB-PARTmON
BUSY?

30$
PART3

,,.2ss _______ _________________ P.WAIT

REQUESTED SUB-PARTITION IS FREE. $QRMVT
REMOVE TCB OF REQUESTED TASK T.PCB
FROM PARTITION WAIT QUEUE. P.BUSY
SET PARTITION BUSY FLAG. SLOADT
PLACE TCB OF REQUESTED TASK
IN LOADER QUEUE AND REQUEST
LOADER.

CONTINUE TO SCAN PAATI~ 111$
WAIT QUEUE. ___J l__/ PART 1

Figure 2-9 $NXTSK Logical Flow Diagram (Part 2 of 7)

REFERENCES:

AEQUESTEO SUB-PARTITION IS BUSY-I

- - - - - - P.BUSY

WAS MAIN PARTITION REQIJESTED? y 50$

------------------- PART4

DETERMINE IF OWNER TASK CAN BE I
CHECKPOINTED.

IF OWNER TASK CANNOT BE CHECK
POINTED: GO TO NEXT TASK IN
PARTITION WAIT QUEUE ANO
CONTINUE CHECKING ALLOCATION.

20$
PART 1

P.TCB
$TS TCP

- - - - - - $1CHKP

40$

CHECKPOINT OWNER TASK.

GO TO NEXT TASK IN PARTITION
WAIT QUEUE ANO CONTINUE
CHECKING ALLOCATION.

20$
PART 1

Figure 2-9 $NXTSK Logical Flow Diagram (Part 3 of 7)

2-38

MEMORY RESOURCE ALLOCATION

51$ REFERENCES:

MAIN PARTITION IS BUSY: LOCATE
FIRST SUB-PARTITION.

61$
------------..----- P.BUSY

IF SUB·PARTITION IS BUSY: P.TCB
CHECK IF OWNER TASK CAN BE $TSTCP
CHECKflOINTED.

TASK CHECKPOINT ABLE?

NEXT SUB-PARTITION EXIST?

71JS

1fl0S
PART7

..------------,..------P.BUSY
KEEP CHECKING BUSY SUB· STSTCP
PARTITIONS AND CHECKPOINT ABLE P.SUB
TASKS. IF PARTITION BUSY AND P.TCB
CAN BE CLEARED OF TASKS
OR PARTITIONS NOT BUSY, $1CHKP
THE SPACE IS AVAILABLE.

101$
PART7

Figure 2-9 $NXTSK Logical Flow Diagram (Part 4 of 7)

11GS REFERENCES:

RE·ALLOCATION OF SPACE IN
A SYSTEM CONTROLLED PARTITION.

----------------------·T.PCB
GET ADDRESS OF REQUESTING
TASK'STCB.

-------------------- - $FNDSP
FIND .SPACE IN PARTITION FOR
TASK.

WAS SPACE FOUND?

GO REQUEST LOADER TO LOAD
TASK.

25$
PART1

15G$
PART6

Figure 2-9 $NXTSK Logical Flow Diagram (Part 5 of 7)

2-39

MEMORY RESOURCE ALLOCATION

150$

BEGIN SEARCH OF HOLES AND
ADJACENT CHECKPOINTABLE
TASKS LARGE ENOUGH FOR
REQUESTED TASK .

REFERENCES:

.. 1_a0_s ________ , ______ - - -- - -- P.REL

GET PCB ADDRESS OF SUB .. PARTITION
AT END OF HOLE. IF END OF HOLE,
ALSO END OF SYSTEM CONTROLLED
PARTITION, REQUEST EXECUTION
OF SHUFFLER ANO RETURN TO
CALLER, OR RETURN TO CALLER
IF SHUFFLER NOT PRESENT.

P.SUB
P.TCB
$SHFPT
$EXRQN

SHUFFLER OR CALLING ROUTINE
(RETURN THROUGH SAVNR)

---------------,----- --- PS.ORV

SUB-PARTITION OWNED BY
LOADED DRIVER OR DYNAMIC
COMMON?

PS.COM
166$ P.STAT
PART7

--------------- - - - - - - - •$TSTCP

OWNER TASK CHECKPOINTABLE?

PART7

165$
PART7

Figure 2-9 $NXTSK Logical Flow Diagram (Part 6 of 7)

2-40

MEMORY RESOURCE ALLOCATION

165$

RESET .SIZE ANO STARTING ADDRESS
OF HOLE AND SCAN PARTITION
AGAIN.

170$

200$

TASK IS CHECKPOINTABLE.
CALCULATE NEW HOLE SIZE.

HOLE LARGE ENOUGH FOR
REQUESTED TASK?

A COMBINATION OF HOLES AND
CHECKPOINTABLE TASKS WILL
YIELD A BIG ENOUGH HOLE.

CHECKPOINT TASKS.

RETURN
THROUGH
SAVNR

160$
PAAT6

160$
PART6

REFERENCES:

P.REL

P.SIZE

P.SUB

P.MAIN

P.SIZE

$1CHKP

P.SUB
P.TCB

Figure 2-9 $NXTSK Logical Flow Diagram (Part 7 of 7)

2-41

MEMOR'.f RESOURCE ALLOCATION

2. 3. 8 $TSTCP Logical Flow :Diagram

$TSTCP::
REFERENCES:

-----------·---....., - - - - - - - - - - - T2.STP

IS TASK STOPPED OR STOPPED
FOR TERMINAL INPUT ANO WITH
OUT PENDING ASTs.

T.ST2
5$ T.ASTL
PART1

----------,----- - - - - - - - - - S$$WPR, TS.CKP,

TASK IN MEMORY?

TS.CKR, TS.OUT,
4$ T.STAT
PART 1

-------------..... - -- - - - - - - - T.PCB, P.HDR,

INCLUDE SWAPPING PRIORITY
FROM TASK HEADER IN COMPUTA-
TION OF EFFECTIVE PRIORITY OF TASK.

H.SPRI, T.PRI

r-4_s _______ _____ _, - - - - - - - - - - T.PRI

5$

IS OWNER TASK PRIORITY LESS THAN
REQUESTED TASK PRIORITY.

OWNER TASK MAY BE CH::--i
POINTED BY REQUESTED~

10$
PART1

----------·---_, - - - - - - - - - - T2.CKD, T2.CHK,

20$

10$

IS OWNER TASK CHECKPOINTABLE?
(INSTALLED CHECKPOINTABLE,
HAVE CHECKPOINTING ENABLED,
IS NOT FIXED OR BEING FIXED.)

RETURN TO CALLING RO~

TASK OWNING PARTITION NOT
CHECKPOINTABLE SET C-BIT.

10$
PART 1

20$
PART1

T2.FXD, T2.HLT,
T.ST2

Figure 2-10 $TSTCP Logical Flow Diagram (Part 1 of 1)

2-42

MEMORY RESOURCE ALLOCATION

2.3.9 Loader Logical Plow Diagram

REFERENCES:

,.s_L_o_A_o_R·_. :----------.... - - - - - -$SWSTK, $TKTCB, T.RCVL
SWITCH TO SYSTEM STATE. $QRMVF
GET NEXT TCB FROM LOADER QUEUE ..

----------------. - - - - - -$STPCT

10$

IF TCB NOT FOUND, STOP LOADER.
WAIT FOR NEXT REQUEST.

-------..... -------. - - - - - TS.OUT, T.STAT

CHECKPOINT WRITE? 30$

---------------..,-- - - - - -T.PCB, P.HOR, P.REL

30$

COPY TASK HEADER IMAGE
IN OSR TO TASK HEADER IN
TASK.

T.OFF, KISAR6, H.WNO
W.BLVR, H.DSW, H.HOLN

---------------.., -- -- - - -LDRTK, T.PCB, T.STAT
RETURN TO TASK STATE. GET
ADDRESS OF TASK TCB. ASSUME
READ FUNCTION.

ID.ALB. LDRFC

________ ______ ..,_ --- - -TS.OUT, 10.WLB, LDRFC

IF CHECKPOINT WRITE, SET
WRITE FUNCTION.

,..s_0s _______ ______ .., __ -- -- -- -LDRBF, A.REL, P.SIZE,
SET STARTING ADDRESS OF
TRANSFER. COMPUTE SIZE OF
TRANSFER ALLOWING PLAS
TASK SIZE TO BE GREATER
THAN 32K. DETERMINE DEVICE
TO BE USED IN TRANSFER. ASSUME
TRANSFER DEVICE IS TASK'S LOAD
DEVICE.

PART2

T.OFF, T.LBN, T.LDV

Figure 2-11 Loader Logical Flow Diagram (Part 1 of 8)

2-43

MEMOR~~ RESOURCE ALLOCATION

PART1

~ REFERENCES:

- - - --

6

-

9

$---TS.CKP

PART2
CHECKPOINT REQUEsn

------------..... ---------
-·----------------·--- - - --- - -T2.CAF, T.ST2

HAS DYNAMIC CHECKPOINT
SPACE ALLOCATION FAILURE
OCCURRED FOR THIS TASK7

56$
PART2

--------------- - -- - - --T.CPCB, P.REL, P.MAIN

56$

POINT TO CHECKPOINT PCB.
SET RELATIVE BLOCK NUMBER
IN FILE. SET LBN TO LBN OF
CHECKPOINT FILE.

60$
PART2

.------------·---t---------- -T.MXSZ

CHECKPOINT SPACE IS IN TASI<
FILE. GET PARTITION SIZE AND
CALCULATE STARTING LBN
OF CHECKPOINT AREA.

60$

j
--------SHEAOR, H.LUN

ASSIGN LOADER LUN1 TO TRANSi"
FER DEVICE. LOCK OUT INTERRU

GET PARTITION ADDRESS.
CHECKPOINT REQUEST?

PART3

- - - -P.REL, TS.CKP

65$
PART3

Figure 2-11 Loader Logical Flow Diagram (Part 2 of 8)

2-44

65$

70$

75S

SGS

MEMORY RESOURCE ALLOCATION
PART2

CALCULATE OFFSET TO TASK
IMAGE.

DETERMINE TRANSFER SIZE.

EXECUTE 1/0.

TRANSFER FAILURE BECAUSE
OF NO POOL SPACE.

LAST TRANSFER? OR ERROR?

SUCCESSFUL TRANSFER

WAIT FOR SIGNIFICANT EVENT.

ALLOW INTERRUPTS. SWITCH
TO SYSTEM STATE.

TASK IN MEMORY?
IF NO, CHECKPOINT
WRITE JUST COMPLETED.

SUCCESSFUL WRITE?

PART4

REFERENCES:

------ -T.OFF

----- - - LDRLN, UISAR8

------OIRS

------CARRYSTAT

75$
y PART 3

------IOSB

y SGS
PART3

65$
PART3

----- -WSIGS

70$
PART 3

------PS,SSWSTK

------TS.OUT

N 110S
PART 5

-------IOSB

N
90S
PART4

Figure 2-11 Loader Logical Flow Diagram (Part 3 of 8)

2-45

MEMORY' RESOURCE ALLOCATION

PART3

REFERENCES:

r-----------·---- - - --- -TS.OUT, $0EACB,

SET TASK OUT OF MEMORY
DEALLOCATE DSR COPY OF TASK
HEADER. INSERT TASK TCB IN
PARTITION WAIT QUEUE.
CALL $RLPAR TO RELEASE
PARTITION.
DONE.

90$

$QINSP, SRLPAR,
P.WAIT, P.MAIN

-------------- -------T.NCWF,$HEADR,

SET CHECKPOINT WRITE FAILURE.
GET LOADER HEADER POIN'TER.
GET UCB ADDRESS OF WRITE
ERROR. OUTPUTWRITE ERFIOR
MESSAGE.

H.LUN, $DVMSG,
TS.CKP, T.STAT

95$ r-------...._---·---------- - -T2.CAF, T.ST2

96$

SPACE IN CHECKPOINT FILE
EXIST?

USE SAVNR TO SAVE R4 AND RS.
OELINK CHECKPOINT PCB FROM
CHECKPOINT FILE LIST. DE:ALLO·
CATE CHECKPOINT PCB.

IF CHECKPOINT FILE EMPTY
ANO NO LONGER IN USE,
REQUEST TKTN TO PRINT
"CHECKPOINT FILE NOW
INACTIVE".

$LOADR::
PART 1

$LOADR::
PART 1

Figure 2-11 Loader Logical Flow Diagram (Part 4 of 8)

2-46

MEMORY RESOURCE ALLOCATION

REFERENCES:

110$
------------- - - - - - - - - P.REL, KISAR6 (M$$MGE)•

115$

120$

TASK READ OR CHECKPOINT
READ JUST COMPLETED.
MAPAPR6 TO REAL TASK
HEADER.

SUCCESSFUL READ?

SET NUMBER OF TASK LUNs
TO ZERO.

J
ALLOCATE SPACE FOR TASK
HEADER IN DSR. IF CANNOT
BE DONE, WAIT FOR SIGNIFI-
CANT EVENT ANO RETURN TO 84$.

130$ J
SAVE ADDRESS OF COPY OF
HEADER IN TASK'S PCB.

r
SET UP TO COPY TASK
HEADER FROM TASK TO
DSR.

140$ J
COPY TASK HEADER FROM
TASK TO DSR.

l
CLEAR TASK OUT OF MEMORY BIT
TO NOTE TASK IN MEMORY.

c!J
PART6

T.OFF, KISAR6 (P$$LAS)

----- --- H.IPS, 1058

120$
PARTS

- - - - - - - - H.NLUN, W.BLGH

- - - - - - - - SALOCB, $TKWSE

- - - - - - - - P.HDR

H.HDLN, H.GARD, H.WND,
H.NLUN,

------- T.STAT

- - - - - - - - TS.OUT

Figure 2-11 Loader Logical Flow Diagram (Part 5 of 8)

2-47

MEMORY RESOURCE ALLOCATION

PARTS

GET TASK HEADER ADDRESS.I

INITIALIZE SWAPPING PRIORl:J

REFERENCES:

P.HDR, S$$WPR, H.SPRI

J
------H.WND,$MAPTK

MAP TASK'S FIRST ADDRESS
WINDOW • .._ __________________ __

H.IPS, IOSB

INVALID TASK IMAGE OR~-- -
18G$

READ ERROR? y PART B

CHECKPOINT READ?

ATTACH-TASK TO STATIC COMMON 1. - - - -
REGIONS SPECIFIED AT TASK
BUILD.

149$

rs TASK BEING Frxeo rN MEMORY? I -I : >

- - TS.CKP

150$
PARTS

170$
PART7

H.WND, LDRBK, T.ATT,
AS.RED, W.BLPO, AS.WAT,
$CRATT, $TKWSE, $SWSTK,
W.BATT

T2.BFX, T.ST2

BUILD A STACK FOR TASK JUS~ -
STARTING ANO PLACE TASK ON
ACTIVE TASK LIST.

- - - - - $Bl LOS

15"$

CHECKPOINT READ COMPLET~.
DEALLOCATE CHECKPOINT
SPACE FROM CHECKPOINT FILE.
DEALLOCATE CHECKPOINT PCB.

PART7

Figure 2-11 Loader Logical Flow Diagram (Part 6 of 8)

2-48

MEMORY RESOURCE ALLOCATION

REFERENCES:

156$
..----------------... - - - - --- - -TS.CKR

16'1$

HAS A CHECKPOINT OF THE TASK
BEEN REQUESTED?

GET ADDRESS OF TASK TCB.
CHECKPOrNT THE TASK.

DOES TASK ALLOW SEND OR
SEND·BY·REFERENCE?

16'1$
PART7

- - - - - - -·TS.CKR, $CHKPT

....... ~---- - -T3.NSD, T.ST3
169$
PART7

----------------- - -- - - - - -T.RCVL
ANYTHING IN TASK'S RECEIVE
QUEUE?

165$
PART 7

-------------------- - ----H.RCVA,$DASTT
DECLARE RECEIVE AST.

165$

ANYTHING IN RECEIVE-BY-REFERENCE QUEUE?..__,..
- - -- -T.RRFL

169
PART7

----------------.....-- - - - - -- - - H.RRVA, $DASTT

170$

DECLARE RECEIVE-BY-REFERENCE
AST.

RETURN-ENO OF LOADER
RETURN TO $LOAOR::

TASK FIXED IN MEMORY. CLEAR BEING
FIXED FLAG. SET TASK FIXED IN
MEMORY FLAG.

l
RETURN-END OF LOADER.
RETURN TO $LOADR::

- - - - -- --T2.BFX, T2.FXO

Figure 2-11 Loader Logical Flow Diagram (Part 7 of 8)

2-49

MEMOR!' RESOURCE ALLOCATION

REFERENCES:

18G$ -----------T2.BFX, TS.EXE
TASK UNSUCCESSFULL V READ~
CLEAR TASK BEING FIXED FLAG.
NOTE TASK NOT IN EXECUTION.

I -----------UISDR0, H.NUN, H.RRVA,

DO HOUSEKEEPING-CLEAR: H.FPSA, H.GARO, H.PFVA

ATTACHMENT DESCRIPTOR
ADDRESS,

NUMBER OF LUNs,
RECEIVE-BY-REFERENCE

CONTROL BLOCK ADDRESS,
FLOATING-POINT SAVE

POINTER,
RECEIVE CONTROL BLOCK

POINTER,
FLOATING-POINT CONTROL

BLOCK POINTER,
POWERFAIL CONTROL

BLOCK POINTER.

I
CHECKPOINT READ DONE?

1
PLACE TASK ON ATL.

1-- ,--5;;,;----SACTTK

PARTS

187$

FAILURE OCCURRED. J
------------TS.CKP, TS.CKR, S.CCRF

NOTE CHECKPOINT READ

---J-
190$

...

·-----------],----------- $ABTSK ABORT TASK.

1
RETURN· LOADER DONE. J

RETURN TO $LOAOR:: __ ,

Figure 2-11 Loader Logical Flow Diagram (Part 8 of 8)

2-50

MEMORY RBSOORCB ALLOCATION

2.3.10 Shuffler Logical Flow Diagram

,,,,.....----....- - - -- SHUFFLER INITIALIZATION CODE· ALLOCATE
INITL: PCB ANO CLOCK BLOCK

REFERENCES:

.-.-------------.- - - -- - - - - - $SWSTK
SWITCH TO SYSTEM STATE VIA
CALL $SWSTK, INITL

$SWSTK

,------------..- - - - - - - - - C.LGTH
ALLOCATE A CLOCK QUEUE
BLOCK VIA CALL $ALOCB FOR
MARK TIME REQUESTS.
ALLOCATE A PCB.

ALLOCATIONS SUCCESSFUL? SSHUFL::

$ALOCB
P.LGTH, PCBAD

.,... ____ ...,...._ ______ - - - - - - - - -CLKAO

DEALLOCATE POSSIBLE CLOCK
QUEUE BLOCK. WAIT FOR
SIGNIFICANT EVENT.

$SHUFL::

INITL:
$DECLK
$TKWSE

..--------------.--- - - - - - - - -$SWSTK
SWITCH TO SYSTEM STATE
(CALL SSWSTK, $SHUFL) CLEAR
LOCAL SCHEDULE REQUEST
FLAGS.

START SCAN OF PARTITIONS
IN SYSTEM.

PART2

$SHUFL
ROSCH, RQSCH1

Figure 2-12 Shuffler Logical Flow Diagram (Part 1 of 11)

2-51

MEMORY RESOURCE ALLOCATION

PART 1

PASS1: ~
CGET ADDRESS OF NEXT ~CB. J

REFERENCES:

15$

I = ANY MORE PCBs7 ~ EXIT:
~PARTS

- ----T2.STP T.ST2
16$,

IS TASK STOPPED?

--------------.------------ PART2

c TASK HAVE QUEUED ASTl

] 16$

SAVE WAITING TCB ADDRESS.
GET MAIN PARTITION PCB
ADDRESS. GET BASE ADDRESS
OF INITIAL HOLE.

----T.ASTL
15$
PART2

----TCBAD

P.REL
16$ THROUGH $40 CHECKS, SAVES,
AND ADDS HOLE SIZES. IF PARTI
TION IS IMMOBILE, SHUFFLER SETS
SCHEDULE REQUEST (LOCAL) AND

l
CHECKSNEXTPCa

20$ r::.: J-------P.SUB
~PCB AT END OF HOLE, IF ANY.

-. --(CHECK IF SECOND PASS
PASS 2: IS REQUIRED)

--------------.------------ PARTS

PCB FOUND?

PART3

Figure 2-12 Shufller Logical Flow Diagram (Part 2 of 11)

2-52

MEMORY RESOURCE ALLOCATION

PART2

REFERENCES:

,....--------------. -- - - - - PS.COM, PS.NSF, PS.ORV,
CHECK IF PARTITION CAN BE
SHUFFLED.
UNSHUFFLABLE:
LIBRARY OR COMMON BLOCK,
PARTITION MARKED NOT

SHUFF LAB LE,
LOADED DRIVER,
MARKED BY SHUFFLER

FOR LONG 1/0.

SHUFF LAB LE?

CHECK IF OWNER TASK CAN BE
SHUFFLED.
IMMOBILE TASK:

• TASK CHECKPOINT REQUESTED,
TASK BEING CHECKPOINTED,
TASK OUT OF MEMORY.

TASK IMMOBILE?

40$
PART4

PS.LIO, P.STAT

- - - - - TS.CKR, TS.CKP, TS,OUT,

50$
PART4

---------------. -- -- -- -- -- ROSCH, P.REL. P.BLKS
SET SCHEDULE REQUEST FOR THIS
PARTITION (CHECK LATER).

PART4

Figure 2-12 Shuffler Logical Flow Diagram (Part 3 of 11)

2-53

MBMORf RESOURCE ALLOCATION

PART3

4G$

CALCULATE BASE OF NEXT HOLE.

IS TASK CHECKPOINTABLE?

IS TASK STOPPED FOR TERMINAL
1/0?

56$

IS SUBPARTITION AT BASE OF
CURRENT HOLE (FROM 40$
OR 16$).
IF SO; NO NEED TO SHUFFLE
OWNER TASK. IT'S REALLY
NOT A HOLE.

SAVE CURRENT TASK STATUS.
FREEZE TASK IN MEMORY.
GET ADDRESS OF DUMMY PCB
(FROM INITL:). GET ADDRESS
OF TASK PCB.
COPY TASK PCB.
LINK DUMMY PCB INTO PCB
CHAIN.
SET 5 IN WAIT COUNT FOR
1/0.
RETURN TO USER STATE.

REFERENCES:

-----P.REL,P.BLKS

20$
PART2

- --- - T2.CHK

55$
PART4

- - ----- T2.STP

75$
PARTS

-----P.REL

40$
PART4

- - -- -- TSKST, T2.CKD, TS.CKP
PCBAD, P.REL, P.BLKS,
P.SUB, WAITCT, RETURN

SHUFFL:
PART 1

Figure 2-12 Shuffler Logical Flow Diagram (Part 4 of 11)

2-54

MEMORY RESOURCE ALLOCATION

75

POINT TO TCB ANO CALL $CHKPT
TO CHECKPOINT OWNER TASK.
SET LOCAL RESCHEDULE REQUEST
FLAG, ROSCH, TO RECHECK THIS
PARTITION LATER.

EXIT:

END OF PCB SCAN. REMOVE SHUFFLER
CLOCK QUEUE ENTRY IF ONE EXISTS.

MKTIM:

WAS PARTITION SCHEDULED TO
BE RECHECKED?

CALL $DECLK TO DEALLOCATE
SHUFFLER CLOCK BLOCK.
DEALLOCATE DUMMY PCB.
EXIT.

BUI LO CLOCK QUEUE ENTRY FOR
1 /8 SEC. WAIT. INSERT ENTRY IN
CLOCK QUEUE. SHUFFLER STOPS

ITSELF FOR 1/8 SECOND.
RETURN TO $SHUFL::

REFERENCES:

- - - - - T.ST2, $CHKPT, ROSCH

PASS 1:
PART2

- - - - - $TXTCB, $CLKHD, CLKAO

MKTIM:
PART5

- RQSCH1

CLKAD,$0ECLK,PCBAO
~LGT~$0EACB,$0REXT

C.CSTP, CLKAD, $TKPS
$CLI NS. $STPCT

$SHUFL::
PART 1

Figure 2-12 Shuffler Logical Flow Diagram (Part 5 of 11)

2-55

MEMORY RESOURCE ALLOCATION

PASS 2:

At this point, if no reschedule request has been posted for this partition, the following conditions are valid:.

There is at least one task in the wait queue. The Executive cannot fit the first one in by checkpointing neighboring tasks.
The only place a hole can exist is before the end of a partition or before a partition that cannot be shuffled (hereinafter
referred to as a driver partition).
No tasks in the partition are in the process of being checkpointed.

The following code gets in the next waiting task by checkpointing lower priority tasks and shuffling. No tasks are
checkpointed unless it is absolutely certain that by doing so the next waiting task will fit. This code refers to an area of the
main partition, preceded by the beginning of the main partition or a driver partition and followed by a driver partition or
the end of the main partition, as a section.

The following code determines the number of lowest priority tasks in a section that can be checkpointed to allow the
waiting task to fit. The Executive's task swapping algorithm is also included in this determination.

The key to the swapping algorithm is the swapping priority byte in the task header (H.SPRI). This byte is initialized to
+S$$WPR each time a task is read into memory and TOSCH decrements it periodically as the task resides in memory. The
Executive routine, $TSTCP, adds the swapping priority to the priority byte in the TCB of the task in memory when
determining if a nonresident task may checkpoint that task. In this pass, if there is a task that is not stopped in the wait
queue of the current main system-controlled partition, the Shuffler forms a linked list, one section at a time, of all tasks in
that section by increasing priority (weighted by the swapping priority). As soon as the Shuffler forms this linked list, the
priority bytes in the TCBs are reset to their original values. Traversing this list, the Shuffler accumulates the sizes of all
tasks checkpointable by the waiting task until sufficient size is found or the list is exhausted. The Shuffler adds the
accumulated size to the size of the hole at the end of the section. If enough space is found the task(s) are checkpointed.

PART7

Figure 2-12 Shuffler Logical Flow Diagram (Part 6 of 11)

2-56

MEMORY RESOURCE ALLOCATION

PARTS

REFERENCES:

-------------------- -ROSCH

IS THIS PARTITION Rl:SCHEDULED? PASS 1:
PAAT2

-------------------- - -TCBAD

GET ADDRESS OF WAITING TCB.
START PCB LIST SCAN.

35$
PART7

PIW'--------------'- - - - -- -P.SUB

POINT TO NEXT PCB. IF ENO OF PCB
LIST, GO CHECK NEXT MAIN PCB.

PASS 1:
PART2

1ii5---------------- - - - - -APRIL

CLEAR AVAILABLE SPACE COUNTER.
CLEAR REVERSE PRIORITY LISTHEAD.

45$
PARTS

4 .. G,..$..._ ___________________ PS.COM, PS.NSF, PS.ORY

PARTITION SHUFFLABLE? 50$
PARTS

PS.LIO. P.STAT

.----------------__ --- _P.HOR, P.TCB, H.SPRI,

POINT TO TASK HEADER AND
TCB. ADO IN SWAPPING PRIORITY.

T.PRI

4
,.

1..,$-------------- - - --- -APRIL

POINT TO NEXT IN LIST.
ANY MORE IN LIST?

42$
PARTS

_______ ..._ _____ ..,.._ --- - - -T.PRI

TASK IN PARTITION LOWER IN
PRIORITY?

PARTS

41$
PART7

Figure 2-12 Shuffler Logical Flow Diagram (Part 7 of 11)

2-57

42$

45$

MEMORY RESOURCE ALLOCATION

PART7

LINK PARTITION TASK INT]
LOWER PRIORITY CHECK··
POINT LIST.

REFERENCES:

.-so.._ ____________ ... -----------P.REL, P.MAIN, P.SIZE

END OF AREA BOUNDED BY
UNSHUFFLABLE SUBPARTl-
TION OR END OF PARTITION HAS
BEEN REACHED. PASS 1 OF
SHUFFLER PLACED ONLY HOLE
IN THIS AREA AT END OF AREA.
COMPUTE HOl.E SIZE. BEGIN
SCAN OF REVERSE PRIORITY
LIST.

70$

GETNEXTTCBINLIST.W~ 3GS
ONE FOUND? ~PART7

P.PP.IL

1---.-----------T.PCB, P.HDR, H.SPRI

READ JUST TASK'S PRIORffY.
CAN OWNER TASK ON THE RE·
VERSE PRIOR ITV LIST BE
CHECKPOINTED BY THE
WAITING TASK?

PART9

7<1$
PARTS

T.PRI, $TSTCP

Figure 2-12 Shuffler Logical Flow Diagram (Part 8 of 11)

2-58

MEMORY RESOURCE ALLOCATION

PARTS

REFERENCES:

------------- - - - - - - P.SIZE
ADO SIZE OF THIS CHECK·
POINTABLE TASK TO THE
SUM OF SPACE AVAILABLE.

CAN WAITING TASK FIT?

CHECKPOINTING THIS TASK WILL
M~.KE ENOUGH ROOM. SAVE
POINTER TO THIS TCB. START RE·
SCAN OF LIST.

75$

CAN NEXT TASK BE CHECK·
POINTED BY WAITING TASK?

INITIATE CHECKPOINT OF OWNER
TASK.

ENOUGH CHECKPOINTING DONE?

RESCHEDULE (ROSCH) THIS
PARTITION FOR LATER CHECKING.

80$

ADJUST TASK PRIORITIES
(SUBTRACT SWAPPING PRIORITY)
OF REST OF TASKS IN LIST.

PASS 1:
PART2

- - - - - • T.PCB, P.SIZE
70$

PARTS

- - - - - - APRIL

- - - $TSTCP
75$

PART9

- - - - - - ICHKP

75$
PART9

- - - - - - - ·ROSCH

Figure 2-12 Shuffler Logical Flow Diagram (Part 9 of 11)

2-59

MEMORY RESOURCE ALLOCATION

SHUFFL:

SWITCH TO SYSTEM STATE ~
~ EXAMINE TASK TO BE SHUF

REFERENCES:
PCBAO, $SWSTK, P. TCB

I .
DOES TASK HAVE OUTST A
1/0?

NOING 1--1 N >-;;;-T.IDC
PART 10

l
SET LOCAL NO-RELOCATIOf
HAS SHUFFLER WAITED 1/2
FOR 1/0 TO FINISH?

1
RESCHEDULE SHUFFLER ANO
IN 1/8 SEC.

139$

RETURN TO TASK STAT~
RETURN TO 117$. ___J

---ROSCH1
EXIT:
RETURN TO
SHUFFL:

117$ l :-:::::-i----- - - - A.REL, P.SUB, P.BLKS

SET LIMITS OF TASK IMAG:.:::::.:J

1 120$
..--s"""'w--1 .. TC_H.....,.T~O--S ... Y~ST~E~M-ST_A_T""'E' ----- - - - - - -SSWSTK, $BLXIO

125$

MOVE TASK IMAGE. CLEAR
LOCAL NO-RELOCATION FLAG.

ADJUST TASK PCB TO REFLECT
SHUFFLE.

PART 11

---- ----P.REL

Figure 2-12 Shuffler Logical Flow Diagram (Part 10 of 11)

2-60

MEMORY RESOURCE ALLOCATION

PART 1CI
REFERENCES:

.-1-.35-.S..._ ___ _.. _____ --.-· - - - - - -TS.CKP, T.STAT, TSKST

CLEAR CHECKPOINT IN PROGRESS.
RESTORE TASK STATUS •

...--------------.---- - -PS.LIO, P.STAT

IF 1/0 STILL TO BE DONE,
SET LONG 1/0 BIT,
RETURN TO USER STATE,
GO TO $SHUFL

$SHUFL::
PART 1

--------------,----- - --P.MAIN, $NXTSK

IF 1/0 NOT STILL TO BE DONE,
GET ADDRESS OF MAIN
PARTITION PCB AND
CALL $NXTSK TO
REALLOCATE PARTITION.

$NXTSK;:

Figure 2-12 Shuffler Logical Flow Diagram (Part 11 of 11)

2.4 MEMORY ALLOCATION DATA STRUCTURES

The two fundamental data structures that are used by the Executive
during memory allocation are the Partition Control Block (PCB) and the
Task Control Block (TCB). They are both included here for your
reference while you follow the operations of the flow diagrams.

2.4.l Partition Control Block (PCB)

The PCB serves three major functions in the memory allocation
routines:

1. The PCB contains the starting address and length of the main
or subpartition it represents.

2. The PCB of a main task partition or a system-controlled
partition contains busy flags and is the listhead of a linked
list of subpartition PCBs. This allows the Executive to
determine the availability of space within a partition.

3. The main partition PCB serves as the listhead for
list called the partition wait queue. Tasks
competing for space in the partition and are out
have their TCBs linked into this list.

2-61

a linked
that are

of memory

MEMO:RY RESOURCE ALLOCATION

A partition or subpartition may be created in three ways:

1. By a VMR or MCR S·et command

2. By the Executive in a system-controlled partition

3. By the Loader task when loading a device driver into a
system-controlled partition

Whenever a partition is created, a PCB is allocated from the Dynamic
Storage Region. The PCB is then filled with the starting address and
length of the partition and is linked into the appropriate system
lists.

Partition Control Block, Figure 2-13, describes the fields contained
in the Partition Control Block.

2-62

MEMORY RESOURCE ALLOCATION

PARTITION CONTROL BLOCK (PCB)

P.LNK

P.PRI _l P.IOC

P.NAM

P.SUB

P.MAIN

P.HDR

P.REL

P.BLKS/P.SIZE

P.WAIT

P.SWSZ

P.BUSY (2 BYTES)

P.OWN/P.TCB

P.STAT

P.HDR

P.PRO

P.ATT

LINK TO NEXT PARTITION PCB.

PRIORITY OF PARTITION; 1/0 AND
1/0 STATUS BLOCK COUNT.

PARTITION NAME IN RAD6G.

POINTER TO NEXT SUBPARTITION.

POINTER TO MAIN PARTITION.

POINTER TO HEADER CONTROL
BLOCK (IF M$$MGE NOT DEFINED).

STARTING PHYSICAL ADDRESS
OF PARTITION.

SIZE OF PARTITION IN BYTES.

PARTITION WAIT QUEUE LISTHEAD.

PARTITION SWAP SIZE.

PARTITION BUSY FLAGS.

TCB ADDRESS OF OWNER TASK.

PARTITION STATUS FLAGS.

POINTER TO HEADER CONTROL BLOCK
(IF M$$MGE IS DEFINED).

PROTECTION WORD FOR P$$LAS
(DEWR, DEWR, DEWR, DEWR).

ATTACHMENT DESCRIPTOR LIST HEAD
(FOR P$$LAS).

Figure 2-13 Partition Control Block (Part l of 2)

2-63

MEMORY RESOURCE ALLOCATION

Partition Status Word Bit Definitions
PS.OUT•'B'lOOOOO Partition is out of memory
PS.CKP•'B'40000 Partition checkpoint in pro-

PS.CKR•'B'20000

PS.CHK•'a-• 10000

PS.FXD•'B'4000
PS.PER•'B'2000
PS.LIO•'B'lOOO

PS.NSF='B'400
PS.COM•'B'200
PS.PIC•'B'lOO

PS.SYS='B'40
PS.DRV='B'20
PS.DEL•'B'lO

PS.APR='B'7

Attachment Descriptor Offsets

A.PCBL:'L'.BLKW l

A. p RI : I L I • BLK B 1
A. IOC: 'L' • BLKB 1

A • TCB : I L I • BLKW 1
A.TCBL:'L'.BLKW l

A.STAT:'L'.BLKB 1
A.MPCT:'L'.BLKB 1

A • PCB : ' L I • BLKW 1
A • LGTH : I B ' •

grass
Partition checkpoint is re
quested

Partition is not checkpoint-
able

Partition is fixed
Parity error in partition
Marked by shuffler for long

I/O
Partition is not shufflable
Library or common block
Position independent li-
brary or common

System controlled partition
Driver is loaded in partition
Partition should be deleted

when not attached
Starting PAR number mask

PCB attachement queue thread
word

Priority of attached task
I/O count through this des
criptor

TCB address of attached task
TCB attachment queue thread

word
Status byte
Mapping count of task through
this descriptor

PCB address of attached task

Attachement Descriptor Status Byte Bit Definitions

AS.DEL='B'lO
AS.EXT•'B'4
AS.WRT='B'2
AS.RED='B'l

Task has delete access
Task has extend access
Task has write access
Task has read access

Figure 2-13 Partition Control Block (Part 2 of 2)

2-64

MEMORY RESOURCE ALLOCATION

2.4.2 Task Control Block (TCB)

The TCB contains three major kinds of information:

1. Links and listheads to other control blocks or queues

2. Pointers related to task execution and needed by the
Executive

3. Three words of status information

Other information includes:

• Task priority

• I/O pending count

• Task name

• Task local event flags

• Task default priority

• Task image size

Figure 2-14, Task Control Block, describes the fields in the Task Control
Block.

2-65

T.LNK

T.PRI l
T.CPCB

T.NAM

T.RCVL

T.ASTL

T.EFLG

T.UCB

T."rCBL

T.STAT

T.ST2

T.ST3

T.DPRI J
T.LBN

T.LDV

T.PCB

T.MXSZ

T.ACTL

T.ATT

T.OFF

RESERVED l
T.RRFL

T.IOC

T.SRCT

MEMORY RESOURCE ALLOCATION

UTIL.ITY LINK WORD.

TASK PRIORITY: 1/0 PENDING COUNT

POINTER TO CHECKPOINT Pee·

TAStC NAME IN RAD5G.

RECEIVE QUEUE LISTHEAD.

AST QUEUE LISTHEAD.

TASK LOCAL EVENT FLAGS
1-32.

UCB ADDRESS FOR PSEUDO
DEVICE "Tl"

TASK LIST THREAD WORD.

FIRST STATUS WORD (BLOCK
ING BtTS).

SECOND STATUS WORD
(STATE BITS).

THIRD STATUS WORD
(ATTRIBUTE BITS).

TASK'S DEFAULT PRIORITY.

LBN OF TASK LOAD IMAGE.

UCB .ADDRESS OF LOAD DEVICE.

PCB ADDRESS OF TASK PARTITION.

MAXIMUM SIZE OF TASK IMAGE
(MAPPED SYSTEM)

ADDRESS OF NEXT TASK IN ACTIVE
LIST.

ATTACHMENT DESCRIPTOR
LiSTHEAD·

OFFSET TO TASK IMAGE IN PARTITION.

SREF WITH EFN COUNT IN ALL
RECEIVE QUEUES.

RECEIVE BY REFERENCE LISTHEAO.

*OR LINK TO ITBS FOR TASKS CONNECTED TO INTERRUPTS.

Figure 2-14 Task Control Block (Part 1 of 2)

2-66

MEMORY RESOURCE ALLOCATION

Task Status Definitions (* • statement true when bit is on)

F.irst Status Word (Blocking Bits)

TS.EXE•'B'lOOOOO
TS.RDN=-'B'40000
TS.MSG•'B'20000
TS.NRP•'B'lOOOO·
TS.RUN•'B'4000
TS.OUT•'B'400
TS.CKP•'B'200
TS.CKR•'B'lOO

Task not in execution *
I/O run down in progress *
Abort message being displayed *
Task mapped to nonresident partition *
Task is running on another processor *
Task is out of memory *
Task is being checkpointed *
Task checkpoint requested *

Task Blocking Status Mask

TS.BLK•'B'TS.CKP!TS.CKRITS.EXElTS.MSG!TS.NRP!TS.OUT!TS.RDN

Second Status Word (State Bits)

T2.AST•'B'l00000
T2.DST•'B'40000
T2.CHK•'B'20000
T2.CKD='B'l0000
T2.BFX•'B'4000
T2.FXD='B'2000
T2.TIO•'B'l000
T2.CAF='B'400

T2.HLT=-'B'200
T2.ABO='B'l00
T2.STP•'B'40
T2.STP•'B'20
T2.SPN•'B'l0
T2.SPN='B'4
T2.WFR='B'2
T2.WFR='B'l

AST in progress *
AST recognition disabled *
Task not checkpointable *
Checkpointing disabled *
Task being fixed in memory *
Task fixed in memory *
Task is engaged in terminal I/O *
Dynamic checkpoint space allocation

failure *
Task is being halted *
Task marked for abort *
Task stopped *
Task stopped *
Saved TS.SPN on AST in progress
Task suspended *
Saved TS.WFR on AST in progress
Task in waitfor state *

Third Status Word (Attribute Bits)

T3.ACP='B'l00000
T3.PMD='B'40000
T3.REM='B'20000
T3.RPV='B'l0000
T3.MCR='B'4000

T3.SLV='B'2000
T3.CLI='B'l000
T3.RST='B'400
T3.NSD='B'200
T3.CAL='B'l00

T3.ROV='B'40
T3.NET•'B'20

Ancillary control processor *
Dump task on synchronous abort
Remove task on exit *
Task is privileged *
Task was requested as external MCR

function *
Task is a slave task *
Task is command line interpreter *
Task is restricted *
Task does not allow send data
Task has checkpoint space in task

image
Task has resident overlays
Network protocol level

Figure 2-14 Task Control Blocks (Part 2 of 2)

2-67

3.1 INTRODUCTION

CHAP1'ER 3

INTERRUPT PROCESSING

This chapter discusses the internal operation of the RSX-llM interrupt
mechanisms. Flow diagrams of important routines are included in this
chapter.

3.2 INTERRUPT MECHANISMS

RSX-llM is a priority driven, multiprogramming, real-time operating
system. As with any such system, its principle function is
multiplexing the sharable resources among competing tasks. The
multiplexing itself is made possible by the interrupt system of the
hardware that causes control to be taken away from user tasks and
given to the Executive. It is during this period of interrupt control
that the Executive makes decisions about granting use of shared
resources. Understanding the interrupt mechanism is fundamental to
understanding the Executive. Once this is understood, the knowledge
serves as a framework for describing the operation of Executive
subsystems (drivers, I/O, etc.) and the system as a whole.

3.2.1 Hardware Interrupt Mechanisms - Review and Overview

The PDP-11 family of computers has two classes of interrupts:

1. Processor traps

2. External interrupts

Processor traps cannot be masked (blocked) in any way by altering the
priority of the processor. When p~ocessor traps occur the processor
enters the trap sequence of pushing the PS and PC onto the current
stack (system or user) and retrieving the PS and PC from the proper
hardware trap vector. If no other interrupts are pending when this
occurs, the processor then begins at the location specified by the
trap vector. A table of trap vectors starts at location 0 in low
memory and extends to location 774(8). However, RSX-llM does not use
locations 0 and 2 as vectors. Processor traps include the:

Breakpoint trap (BPT) instruction

Emulator trap (EMT) instruction

Input/Output Trap (IOT) instruction

TRAP instruction

3-1

INTERRUPT PROCESSING

11/40 floating-point exception fault

Odd address

Power fail

Illegal instructi~n

External interrupts are hardwired to one of the four bus request
levels of the processor. These interrupts are generally associated
with I/O devices and are maskable. They can only cause an interrupt
when the priority in the Processor Status Word (PS) is less than the
priority of the interrupting source. Thus, by setting the processor
priority in a trap vector PS word to an appropriate level, interrupts
equal to or below that priority are locked out.

Every device that causes an interrupt has an associated trap vector in
the vector table located in lower memory. However, not all devices
cause interrupts, therefore, those devices do not have associated trap
vectors.

3.2.2 Executive and Stack Processing

All the vectors in the trap vector table must be initialized properly
so that when a processor trap or interrupt occurs, an Executive
interrupt routine obtains control of the processor.

On an unmapped PDP-11, only one stack exists. This stack must be
multiplexed to service the user tasks and the Executive. Having only
a single stack also implies a single processor state. The Executive
must simulate a two state system. A single word, the stack depth
indicator ($STKDP) is used to control this simulation.

On a mapped system, there are two stacks - the user stack and the
system stack.

When the word, $STKDP, is egual to 1 the system is running in the user
state: when it is zero or less, it is in the system state. All stack
multiplexing is accomplished by testing the contents of this word.
Note that the priority set in the PS word for user tasks (both
privileged and unprivileged) is O, and for Executive routines, when
running interruptable, is either 0, 7 or the level at which the
interrupt was taken. These priorities play an important part in the
goal to operate the Executive and its associated routines
non-interruptable for as short a duration as possible.

Describing the RSX-llM interrupt mechanism involves several
interrelated routines, and it may be necessary for you to read the
following section twice before the process becomes completely clear.

3.3 INTERRUPT PROCESSES

The RSX-llM interrupt machinery involves the following routines or
routine types:

Interrupt processor (both external interrupts and traps):

The Interrupt Save Routine ($INTSV):

3-2

INTERRUPT PROCESSING

The Directive Save Routine ($DIRSV);

The Interrupt Exit Routine ($INTXT)1

The Directive Exit Routine ($DIRXT); and

The Fork Processors ($FORK,$FORKO,$FORK1).

For resident drivers only, the device interrupt vector must be
initialized when defining data structures, and not dynamically. This
practice makes the driver code independent of device register address
assignments and of the actual location of the interrupt vector. The
driver data structure must include a storage assignment and
initialization for the interrupt vector with the priority set to PR7.

Writers of loadable drivers do not initialize the device interrupt
vector. The vector is dynamically established by Load when the driver
is loaded. When a driver is unloaded, Unload sets the vector to the
system nonsense interrupt entry point.

Driver interrupt processing routines are entered directly from the
vector and usually use the INTSV$ macro for state switching services:
at the completion of these services, the interrupt routines are again
given control to complete the interrupt service. The exit routines
$INTXT and $DIRXT restore the state prior to switching to the system
state, control the unnesting of interrupts, and make checks on the
state of the system (for example, is it necessary to redispatch the
processor). The Fork processing routines linearize access to shared
system data bases. The details of all these routines are discussed
later in the text.

3.3.1 The INTSV$ Macro

INTSV$ is a system macro that minimizes coding differences between
loadable and resident drivers. INTSV$ contains conditionally
assembled code to handle:

1. Single or multiple controllers

2. Loadable or resident drivers

3. Mapped or unmapped systems

This macro is required for loadable drivers on mapped systems, because
interrupts from hardware devices must be processed in kernel address
space. In particular, the decoding of the PS word and the call to
$INTSV must be done before entering the driver. Thus, a call to the
Executive routine $INTSV within a loadable driver is illegal, and the
MCR Load function returns an error if loading is attempted.

When the INTSV$ macro is used for a loadable driver in a mapped
system, the Load function allocates a block of dynamic memory in
kernel address space to contain the interrupt coding. This block,
called the Interrupt Control Block (ICB), also contains coding to:

1. Save the kernel mapping (APRS)

2. Load APRS to map the driver

3. Transfer to the driver

4. Restore the mapping after return

3-3

IRTERROPT PROCESSING

The Load function also sets up the controller's interrupt vector so
that hardware interrupts point to the ICB.

Finally, the use of the INTSV$ macro in a loadable driver on a mapped
system requires that the symbol LD$xx (where xx is the 2-character
device mnemonic) be defined either in the driver source or the
assembly prefix file RSXMC.MAC.

3.3.1.1 INTSV$ Macro Format - Tne format of the INTSV$ macro is:

INTSV$ xx,pri,nctlr[,pssave,ucbsave]

where:

xx

pri

nctlr

pssave

ucbsave

is the 2-character device mnemonic.

is the priority of the device (the priority that
would be used in a call to $INTSV).

is the number of controllers the driver services.

is an optional argument specifying a variable in
which to save the PS word. If omitted, a variable
named TEMP is used.

is an optional argument specifying a block of
contiguous words in which to retrieve the
interrupting device's UCB address. If omitted, a
block of contiguous words named CNTBL is used.

Outputs: R4 is the controller index, only if nctlr is greater
than 1.

RS is the UCB address.

Example:

INTSV$ PP,PR4,P$$Pll

3.3.2 External Interrupt from the Task State ($STKDP•l)

The vectors in lower memory contain a PC unique to each interrupting
source, and a PS set with a priority of PR7. Hence, when an external
interrupt occurs, the hardware pushes the cu·rrent PS and PC onto the
current stack (in this case the task's stack) and loads the new PC and
PS (set at PR7) from the appropriate interrupt vector. The interrupt
routine then starts executing with interrupts locked out. Interrupt
routines may, in fact, be executing in one of three states:

1. At PR7 with interrupts locked out;

2,. At the priority of the interrupting source; thus, interrupt
levels greater than the source are permitted, or

3~ At Fork level which is at PRO.

By internal convention, processing in the PR7 state is limited to
lOOus. If processing can be completed in this time, then the
interrupt routine simply RTI's; the interrupt has been processed and
dismissed with minimal overhead.

3-4

INTERRUPT PROCESSING

If the interrupt routine requires additional processing time (but does
not intend to alter a shared system data base) it uses the INTSV$
macro. The priority at which the caller is to run is included in the
INTSV$ macro or the call to $INTSV. With loadable drivers the
Interrupt Control Block calls $INTSV. Therefore, the driver cannot
use a CALL to $INTSV; it must use the INTSV$ macro.

The interrupt save routine, $INTSV, uses the priority specified in the
INTSV$ macro l\ne (the interrupting source priority) to set up the
interrupt routine. At this point in the process, the interrupt
routine is interruptable by devices with priorities higher than that
of the interrupting source. The $INTSV routine then conditionally
switches to system state if the processor is not already in system
state.

3.3.2.l $INTSV Routine - The $INTSV algorithm is:

$INTSV: Push RS and R4 onto the current stack.

Note:

Decrement stack depth indicator, $STKDP.

Is the stack depth indicator =O? No; go to l.

Save the current (a task's in this case) stack pointer.

Set up the System stack pointer (switch stacks if not
M$$MGE) •

l. Load the new processor priority as specified by the caller.

Return to caller.

The stack depth indicator, $STKDP, is zero only after the transition
from the user state to the system state occurs.

The JSR RS,$INTSV instruction pushes RS on the stack prior to entering
the $INTSV routine. Pushing of R4 and RS is done to free these
registers for routines processing external interrupts. It is an
internal programming convention that assumes these routines will not
require more than two registers to accomplish their functions. If
they do, they must save and restore any additional registers they use.

3.3.2.2 INTSV$ Macro - The interrupt save macro, INTSV$, expands as
shown in Figure 3-1.

3.3.3 External Interrupts from the System State ($STKDP <•O)

The code on this interrupt path is identical to that discussed in
External Interrupt from the Task State. However, it is not necessary
for the task to switch states when the INTSV$ macro is used. The
current stack is the system stack, and when $INTSV tests the value of
the stack depth indicator, $INTSV bypasses saving the SP and switching
the stacks. After $INTSV saves R4 and RS on the system stack, it
returns to the driver interrupt routine.

3-S

;+

IRTERROPT PROCESSING

.MACRO INTSV$ DEV,PRI,NCTRLR,PSWSV,UCBSV

.IF NDF L$$DRV 1 M$$MGE 1 LD$'DEV

.IF GT NCTRLR-1

.IF B <PSWSV>
MFP·S TEMP
.IFF
MFPS PSWSV
.ENDC
.IFTF
JSR R5,$INTSV
.IF OF L$$SI1
.WORD PRI
.IFF
.WORD AC<PRI>&PR7
.ENDC
.IFT
.IF B <PSWSV>
MOV TEMP,R4
.IFF
MOV PSWSV,R4
.ENDC
BIC U 77760 ,R4
ASI, R4
.ENDC
.ENDC
GTUCB$ UCBSV,NCTRLR
.ENDM

Figure 3-1 INTSV$ Macro Expansion

; **-$PPINT-PC11 PAPER TAPE PUNCH CONTROLLER INTERRUPT ROUTINE
;-

$PPINT::

30$:

40$:
50$
60$:

65$:
70$:

INTSV$
MOV
MOVB
MOV
MOV
BMI
SUB
BCS
TSTB
BPL
CLRB
BR
CALL
MOVB
JMP
INC
CLR
CALL
MOV
MOV
MOV
SUB
MOV
TST
BPL
MOV
CALL
BR

PP,PR4,P$$Pll
U.SCB(RS) ,R4:
S.ITM(R4) ,S.CTM(R4)
S.CSR(R4) ,R4:
(R4)+,U.CW3(R5)
60$
#1,U.CNT(RS)
50$
U.CW2(R5)
30$
(R4)
40$
$GTBYT
(SP)+, (R4)
$INTXT
U.CNT(RS)
-(R4)
$FORK
U.SCB(RS) ,R4
S • PKT (R4) , RJ.
I.PRM+4(Rl) ,Rl
U.CNT(RS) ,Rl
US .SUC&377 ,RO
U.CW3(R5)
70$
UE. VER&377 ,RO
$!ODON
PP IN I

;;;REF LABEL
;;;GENERATE INTERRUPT SAVE CODE
;;;GET ADDRESS OF SCB
;;;RESET TIMEOUT COUNT
;;;POINT R4 TO CSR
;;;SAVE STATUS
;;;IF MI, ERROR
;;;DECREMENT CHARACTER COUNT
;;;IF CS, THEN DONE
;;;CURRENTLY PUNCHING TRAILER?
;;;IF PL NO
;;;LOAD NULL INTO OUTPUT REGISTER
;;;BRANCH TO LOAD IT
;;;GET NEXT BYTE FROM USER BUFFER
;;;LOAD BYTE INTO OUTPUT REGISTER
;;;EXIT FROM INTERRUPT
;;;RESET BYTE COUNT
;;;DISABLE PUNCH INTERRUPTS
;;;CREATE SYSTEM PROCESS
;POINT R4 TO SCB
;POINT Rl TO I/O PACKET
;AND PICK UP CHARACTER COUNT
;CALCULATE CHARACTERS TRANSFERRED
;ASSUME SUCCESSFUL TRANSFER
;DEVICE ERROR?
;IF PL NO
;UNRECOVERABLE HARDWARE ERROR CODE
;INITIATE I/0 COMPLETION
;BRANCH BACK FOR NEXT REQUEST

Figure 3-2 Example of a Driver Using $INTSV

3-6

INTERRUPT PROCESSING

3.3.4 Processor Traps from the Task State ($STKDP<•l)

when a processor trap occurs from the task state, the hardware pushes
PS, PC, and initiates the routine specified in the associated hardware
trap vector. If an Executive directive causes the trap, EMT 377, the
Directive Parameter Block (DPS) or its address was pushed onto the
user task's stack prior to the issuance of the EMT.

Also, the task can caus·e a processor trap by issuing the SWSTK$ macro.
See Chapter 4 for an explanation of the SWSTK$ macro.

The trap routine, running at PR7, immediately calls the routine $DIRSV
(Directive Save}, which has the following algorithm:

$DIRSV: Push RS and R4 onto current stack

Decrement stack depth indicator.

Is the stack depth indicator <~o? No, go to 1.

Save current task's stack pointer.

Set up system stack pointer (switch stacks if not M$$MGE}.

l. Push R3, R2, Rl, RO onto current (system} stack.

Load new processor priority as specified by the caller.

Return to caller.

The $STKDP check is made to improve crash analysis; no other
decisions are made in $DIRSV because all processor traps, with the two
exceptions of the Trap instruction or Powerfail, occur from the task
state. The exceptions are handled on exit. All registers are saved;
the need for only two registers, RS and R4 is assumed only for
routines processing external interrupts. As with $INTSV, the priority
at which the caller expects to run immediately follows the call. All
processor trap routines, however, run interruptable.

Only one processor trap can be queued for processing in the system at
any point in time (ignore, for the moment, the two exceptions we have
noted). Because the processor trap occurred in task state, entrance
to the Executive occurs only when the Executive is idle. While in the
system state, only external interrupts can occur. If processor traps
occur, then either they are valid exceptions, or the system itself has
faulted and shuts down.

Once a valid processor trap is pending, it is processed to completion
before any other system routine is given access to any shared system
data base. This strict sequentiality is accomplished with the two
exit routines $INTXT, $DIRXT and the fork processors ($FORK, $FORKO,
and $FORK1).

3.3.4.l Example use of $DIRSV - Figure 3-3 shows the code for the
Emulator Trap (EMT} processing routine, $EMTRP.

3-7

IRYERROPT PROCESSING

EMT TRAP PROCESSING ROUTINE

THIS ROUTINE IS ENTERED VIA THE VECTOR AT LOCATION 30 WHEN AN EMT
INSTRUCTION IS EXECUTED. THE ROUTINE IS ENTERED IN SYSTEM STATE.
IF THE STACK DEPTH IS NOT 0 AFTER THE DIRSV$ MACRO EXECUTES,
THE SYSTEM CRASHES.

$EMTRP::DIRSV$

80$:

85$:

TST
BNE
MOV
CMP
MOV

.MACRO DIRSV$
JSR R5,$DIRSV
.ENDM

$STKDP
70$
@$HEADR
(R3)+,{R3)+
(R3)+,RS

.IF DF M$$MGE

MFPI
CMP
BNE
MOV

.IFF

CMP
BNE
MOV

.IFTF

MOV
MOV
BIC
CLR

.IF

MOV
MOV
TST
BEQ
CMP

.IFF

CMP

.ENDC

BNE
JMP
JMP

-{RS)
U04377, (SP)
80$
U, {SP)

U 0 4 3 7 7 , ·• (RS)
80$
U,-(SP)

fUSRPS,R5
R3, (RS)+
(SP) , {R3) +
{RS)

DF M$$MGB

$HEADR,R5
H.WND{RS),RS
W. BLVR+2 {RS)
8S$
{SP) , #104376

(RS),#104376

85$
$SWSTK
$EMSST

111SAVE REGISTERS AND SET PRIORITY

;WERE WE AT STACK DEPTH +l
;IF NE 0 - NO - CRASH SYSTEM
;GET SAVED STACK POINTER
;POINT TO USER PC WORD.
:GET ADDRESS OF EMT +2

:GET DIRECTIVE WORD
:DIRECTIVE EMT 377?
:IF NE 0 -NO-
;SET SUCCESSFUL DIRECTIVE STATUS

:DIRECTIVE EMT 377
;IF NE 0 -NO-
:SET SUCCESSFUL DIRECTIVE STATUS

:POINT TO LOCAL DATA
;SAVE ADDRESS OF USER PS
:CLEAR CARRY IN USER PS WORD
;INDICATE NO BYTES

;POINT TO CURRENT TASK HEADER
;POINT TO NUMB&R OF WINDOW BLOCKS
;CURRENT TASK MAPPED TO EXEC
;IF EQ 0 -NO-
;IS THIS A CALL TO $SWSTK

:IS THIS A CALL TO $SWSTK

;IF NE 0 -NO-
;PROCESS CALL TO $SWSTK
:PROCESS SST FAULT

Figure 3-3 Example of Use of $DIRSV by the $EMTRP Routine

3-8

INTERRUPT PROCESSING

$DIRSV::MOV R4,-(SP) 111SAVE R4
DEC
BNE
MOV

.IF NDF

MOV

.ENDC

10$: MTPS
MOV
MOV
MOV
MOV
CALL
BR

$STKDP
10$
SP,@$HEADR

M$$MGE

i$STACK,SP

#0
R3,-(SP)
R2,-(SP)
Rl,-(SP)
RO,-(SP)
(RS)
$DIRXT

:;1SET PROPER STACK DEPTH
:1:IF NE, DON'T SWITCH STAC~S
::;SAVE CURRENT SP

;;;LOAD SYSTEM STACK POINTER

:;;ALLOW INTERRUPTS
:SAVE REGISTERS R3-RO ON STACK

;
;CALL SYNCHRONOUS TRAP ROUTINE
;EXIT FROM TRAP

Figure 3-3 (Cont.) Example of Use of $DIRSV by the $EMTRP Routine

3.3.5 Processor Traps from the System State ($STKDP <=0)

Only two processor traps are valid from the system state: the Trap
instruction and Powerfail. If any other processor trap occurs while
in the system state, the system's operation is aborted or XDT, the
Executive debug tool, is entered if it is present.

3.3.5.l Processing for Trap Instructions Occurring in System
State - The Executive uses the trap instruction as a core saving
technique in returning status following the execution of an Executive
directive. The EMT 377, which is the processor trap used to initiate
directives, causes entry into the directive dispatcher ($EMTRP) which
in turn calls $DIRSV. See Figure 3-3. On return from $DIRSV, but
before calling the directive processing routine, the directive
dispatcher pushes a value of +l onto the system stack, and clears the
C bit in the PS word stored on the user's stack. It then calls the
proper directive processing routine to execute the directive. Figure
3-4, Stack Stack Upon Entry into/Directive Processing, shows the state
of the user and system stacks for both the unmapped and mapped systems
at the time entry is made to the routine that processes the issued
directive.

The directive processing routine now carries out its function, and in
so doing is free to alter any shared system data base, because no
other routine can gain access to a shared data base until the
directive processing routine is completed. This arrangement of the
stack and interface between the directive dispatcher and the directive
processors has two advantages:

1. The normal return for all but a few directives is a +l status
and carry clear. This means the directive routines can
return to the dispatcher with an RTS; thus the return path
is one word rather than the two needed if a JMP is employed:
this scheme probably saves 100 words in the RSX-llM
Executive.

2. Internal Executive routines can call the directive processing
routines without using an EMT.

3-9

INTERRUPT PROCESSING

UNMAPPED SYSTEM

USER'S STACK SYSTEM STACK

DPB R3

PS R2

PC Rl

RS RO

R4 +l TOS, _______ ..

RETURN AODR
TOS

MAPPED SYSTEM

USER'S STACK SYSTEM STACK

Tos~-~l.__ ___ o_P_e ____ .J PS

PC

RS

R4

R3

R2

Rl

RO

+l

RETURN ADR
TOS

Figure 3-4 Stack State Upon Entry into Directive Processing

If a directive processing routine needs to return a status other than
+l, and have the carry stat clear, the routine replaces the +l on the
stack with the value it intends to return and then executes an RTS.

Now to the use of the Trap instruction within the Executive. If a
directive processing routine must return a status other than +l and,
in addition have the carry stat set, or cleared, based on the status
value returned, it then uses the Trap instruction with the value of
the status to be returned in the low order byte of the instruction.
When the trap processing routine is entered, it immediately checks for
stack depth=O, and if 0, proceeds to reset the stack for correct
exiting from a directive processing routine. The low order byte of

3-10

INTERRUPT PROCESSING

the trap instruction itself overlays the +l status currently on the
stack1 this value is tested and, if minus, the carry stat is set in
the user task's PS word. If plus, the carry stat is left cleared.
After this processing, the exiting code of the directive dispatcher is
entered just as if the directive processing routine had executed an
RTS.

If the initial test for a stack depth indicator of 0 fails, the trap
processing routine calls $DIRSV. This call is logically incorrect if
the stack depth indicator was less than zero. This programming error
is recognized on exit. On return from $DIRSV, the trap processing
routine checks the stack depth indicator, and if it is not zero, the
system crashes.

Note that directives are legitimate only from the task state (stack
depth indicator•!) so that during directive processing, the stack
depth indicator is always O. Interrupts that occur in system state
disappear from the stack before the directive processing sequence
resumes following an interrupt. Hence, even though the stack can grow
while a directive processing routine is in control, this growth is
transparent to the routines. Stating it from a different perspective,
interrupts are permitted but the directive processing routine that is
in control is unaware of them.

Thus, directive processing routines have three methods of returning
status:

1. For the normal return carry clear and status equal to +l,
they use an RTS.

2. For carry clear and status other than +l, they overlay the +l
status on the stack with the desired status value (status
value is at 2(SP)) and RTS.

3. For carry clear or set, and status of one byte, they use the
trap instruction. This requires more overhead than 1 and 2
above but saves memory, and, of course is the required return
mechanism if carry is to be set.

Together, these return mechanisms from directive processing routines
save between 200 and 300 words in the RSX-llM Executive as compared to
returning via jump instructions.

3.3.6 Powerfail Processing

When a power failure occurs, the power failure trap processing
routine, PDOWN: in the POWER module, is entered. This routine
saves the state of the system, sets up a new power failure trap-vector
PC for use when power is restored, calls the user's powerfail routine
if it's defined, then halts.

On restoration of power, the state of the system at the time the
failure occurred is restored, the $PWRFL flag is set indicating that a
power failure has occurred, the reschedule pointer $ROSCH is set, and
the clock is re-enabled. Then, the restoration code issues an RTI,
which results in the resumption of the processing that was in progress
when the power failure occurred. The specific processing to reflect
the occurrence of a power failure does not occur until either
Directive Exit is entered or the clock interrupts. In any event, this
processing is part of Directive Exit and is discussed under Directive
Exit.

3-11

INTERRUPT PROCESSING

Note that power failure processing is not asynchronous. As much as
1/60 of a second could elapse following restoration before the power
failure is acted upon. The records and logic needed to provide
asynchronous power failure processing are simply too large for a
system with the memory objectives of RSX-llM.

3.3.7 Processing Within Interrupt Routines

In this section, we detail the events that take place following
interrupt entry up to the point where the Executive is ready to return
control to the task state.

Once the Executive is entered via an interrupt (regardless of the
state it is in when the interrupt occurs) it does not again return to
the task state until all system related processing for that interrupt
has been completed.

A single interrupt in the task state causes transfer into the system
state where the system remains until the interrupt is processed. But
while in the system state, repeated interrupts can occur. This
implies a fixed interrupt depth of one for the task stack (requiring a
task to provide a stack of at least four words in an unmapped system),
and implies a variable interrupt depth for the system stack.

Because multiple interrupts can occur in the system state, RSX-llM
resolves both of these logical difficulties by strictly linearizing
interrupt processing and access to internal data bases. The
mechanisms employed to accomplish this linearization are the system
stack, fork processes, and the associated fork list.

3.3.7.1 Queuing Interrupts on the System Stack - In the system state,
the system must operate interruptable as much of the time as possible.
Three possible conditions can exist when the system itself runs
non-interruptable:

1. The most recent interrupt is being processed at level ~R7 and
the driver interrupt routine has not yet returned to an
interruptable state.

2. The interrupt routine has dropped from level PR7 to the level
at which the interrupt occurred. Priority levels, equal to
or less than the priority of the interrupting source are
locked out.

3. The system is updating a critical list whose consistency can
only be maintained by a non-interruptable instruction
sequence. There are two such lists, and we will discuss them
shortly.

In the sections External Interrupts from the Task State and Processor
Traps from the Task State, we examined the code sequence for
processing external interrupts and processor traps, as well as the
stack additions that occurred during their processing. Interrupt
stacking in the system state occurs based principally on hardware
interrupt levels. Thus, if a level PR4 interrupt is being processed,
a level PRS, PR6, or PR7 interrupt can potentially interrupt this
processing and cause context to be stacked and control given to the
higher level interrupt routine.

3-12

INTERRUPT PROCESSING

3.3.8 Fork Processing

Once a driver interrupt routine passes from a non-interruptable to an
interruptable state by using a call to $INTSV or the INTSV$ macro,
processing is at the same level as the priority of the interrupting
source. However, along any given interrupt path, more processing is
of ten required than the minimum non-interrUptable code sequences in
the Executive permit. Along this path the allowable maximum
non-interruptable processing time is SOOus. ~hus, a scheme is
required to split interrupt processing routines further, such that
part of their execution runs interruptable to any interrupting source.
The mechanism for achiev~ng this split is called fork processing.

First, and most important, fork processing linearizes access to system
data bases. Thus eliminating unwanted recursion and untimely updates
of these data bases. A list associated with fork processing, the Fork
List, is the method the system uses to linearize data base accessing.

Driver and system interrupt routines are required to adhere to the
following internal conventions:

1. Use of any registers except R4 and RS requires that these
registers be saved and restored.

2. Non-interruptable
instructions.

processing must not exceed twenty

3. All modifications to system data bases must be done via a
fork process.

Along an interrupt path, control can be taken from a routine only due
to a higher priority interrupt pending in the hardware. As discussed
previously, these interrupts are kept track of on the system stack.
When an interrupt routine needs to transfer from a non-interruptable
to an interruptable state, or modify a system data base, it must call
$FORK. $FORK, however, cannot be called directly from an interrupt
routine1 it must first switch to system state by calling $INTSV and
then calling $FORK.

By virtue of calling $FORK, the routine is now interruptable and its
access to system data bases is strictly linear. The Fork List is a
list of system routines, usually I/O drivers, waiting to complete
their processing, in particular, waiting to access a shared system
data base.

When the $FORK routine returns to $INTX1 after placing the fork block
in the fork list, $INTX1 and $DIRXT remove the stacked items for the
driver interrupt routine. In effect the fork list is a secondary
interrupt queue (stack) whose members are processed FIFO, and obtain
processing time only if the system stack is empty.

Note that the context saved for a caller of $FORK depends on which
entry point is called ($FORK or $FORK1), and the context saved is all
that is needed to restart routines on the fork list.

Figure 3-5 Example Driver Interrupt Routine shows the expansion of the
INTSV$ macro and the call to $FORK.

3-13

INTERRUPT PROCESSING

;+
; $XXINT DISK CONTROLLER INTERRUPT ROUTINE
;-

40$:
50$:
;+

INTSV$

TSTB
BEQ
MOV
MOV
MOV
BMI
BIT
BNE
TST
RETURN
MOV
CALL

DK,PR5,R$$Kll ;;;SAVE REGISTERS AND SET PRIORITY

.MACRO INTSV$ DEV,PRI,NCTRLR,PSWSV,UCBSV

.IF NDF L$$DRV 1 M$$MGE 1 LD$'DEV
• IF GT NCTRL:R-1
.IF B <PSWSV>
MFPS TEMP
.IFF
MFPS PSWSV
.ENDC
.IFTF
JSR R5,$INTSV
.IF DF L$$SI1
.WORD PRI
.IFF
.WORD AC<PRI>&PR7
.ENDC
.IFT
.IF B <PSWSV>
MOV TEMP,R4
.IFF
MOV PSWSV,R4
.ENDC
BIC U 77760, R4
ASL R4
.ENDC
.ENDC
GTUCB$ UCBSV,NCTRLR
.ENDM
RTTBL+l(R4)
50$
R4,-(SP)
U.SCB(R5) ,R4
@S.CSR(R4) ,R4
40$
#20000,R4
40$
(SP)+

(SP)+,R4
$FORK

;;;DRIVE RESET IN PROGRESS?
;7;IF EQ NO
;;;SAVE CONTROLLER INDEX
;;;GET ADDRESS OF SCB
;;;GET CONTENTS OF CSR
;;~IF MI DRIVE RESET ERROR
;;;DRIVE RESET COMPLETE?
;;;IF NE YES
; ; : CLEAN· STACK , , ,
;;1RESTORE CONTROLLER INDEX
iiiCREATE A SYSTEM PROCESS

CONTROL IS REGAINED AT THIS POINT WITH ALL INTERRUPTS ALLOWED
;-

51$:

MOV
MOV
MOV
MOV
MOV
BITB
BNE

R4,R3 ;COPY CONTROLLER INDEX
U.SCB(R5) ,R4 ;GET ADDRESS OF SCB
S.CSR(R4),R2 ;GET ADDRESS OF CSR
#IS.SUC&377,RO ;ASSUME SUCCESSFUL TRANSFER
S.PKT(R4) ,Rl ;GET I/O PACKET ADDRESS
#IQ.UMD,I.FCN(Rl) ;DIAGNOSTIC FUNCTION EXECUTED?
130$;IF NE YES

Figure 3-5 Example Driver Interrupt Routine

3-14

INTERRUPT PROCESSING

3.3.8.l $FOR.IC - $FORK is in the file SYSXT. A driver calls $FORK to
switch from a partially interruptable level (its state following a
call on $INTSV) to a fully interruptable level.

Notes:

1. $FORK cannot be called unless $INTSV has been previously
called. The fork-processing routine assumes that $INTSV has
set up entry conditions.

2. A driver's current timeout count is cleared in calls to
$FORK. This protects the driver from synchronization
problems that can occur when an I/O request and the timeout
for that request happen at the same time. After a return
from a call to $FORK, a driver's timeout code will not be
entered.

If the clearing of the timeout count is not desired, a driver
has two alternatives:

a. Perform timeout operations by directly inserting elements
in the clock queue (refer to the description of the
$CLINS routine).·

b. Perform necessary initialization, including clearing
S.STS in the SCB to zero (establishing the controller as
not busy), and call the $FORK1 routine rather than $FORK.
Calling $FORK1 bypasses the clearing of the current
timeout count.

3. The driver must not have any information on the stack when
$FORK is called.

3.3.8.2 $FORK1 - $FORKl is the file SYSXT. A driver calls $FORK1 to
bypass the clearing of its timeout count when it switches from a
partially interruptable level to a fully interruptable level (refer
also to the description of the $FORK routine).

Notes:

1. For mapped systems with loadable driver support, a 5-word
fork block is required for calls to $FORK1.

2. When a 5-word fork biock is used, the driver must initialize
the fifth word with the base address (in 32-word blocks) of
the driver partition. This address can be obtained from the
fifth word of the standard fork block in the SCB.

3. The driver must not have any information on the stack when
$FORK! is called.

3.3.9 Exiting the System State

Two routines $INTXT (Interrupt Exit) and $DIRXT (Directive Exit)
result in the sequential removal of all items on the system stack,
followed by all items on the Fork List. The following text discusses
these two routines.

The Executive's objective is to return to the idle state as fast and
as efficiently as possible. It does this by servicing all routines on

3-15

INTERRUPT PROCESSING

the system stack first. These routines are usually running at some
level of non-interruptability. When the system stack is cleared of
pending requests, the Executive then services the pending requests on
the Fork List. When both the Fork List and system stack are empty,
the Executive either returns to the task state or if no task is
active, waits for work to do (idles).

$INTXT is transferred ~o by
that are running on the
interrupting source.

external interrupt processing routines
system stack at the priority of the

$DIRXT has the task of servicing the Fork List and, when the Executive
has no more work to do, restoring the task state. $DIRXT is entered
by trap routines, fork routines, and by $INTXT.

3.3.9.l $INTXT Routine - The $INTXT algorithm is as follows:
.,

$INTXT:: Lock out interrupts.

Notes:

Is $STKDP=O? No, go to 1.

Is Fork List empty (check $FRKHD)? No, reload user SP if
memory management is not defined and go to 1.

Allow interrupts.

Store R3, R2, Rl, RO on the current (system in this case)
stack.

Execute $DIRXT (Directive Exit).

1. Increment stack depth indicator.

Restore R4 and RS from current stack and RTI.

Interrupts must be locked out to insure a consistent check of $STKDP
and the contents of the Fork List. The same type of lockout occurs in
directive exit. There are two non-interruptable code spans used to
check and update the Fork List. One is in $FORK, and one in $DIRXT.
The saving of R3 thru RO is preparatory to the jump to $DIRXT, which
expects these registers on the stack. Note that the path through the
Executive that finds both the Fork List empty and the stack depth
indicator equal to O is fairly common. This is the minimum overhead
path.

3.3.9.2 Directive Exit - The $DIRXT algorithm is as follows:

$DIRXT:: Lock out interrupts.

Check $FRKHD. Anything in Fork Queue? No, go to 1.

Remove entry from Fork Queue and update Fork Queue listhead
pointers.

Allow interrupts.

If memory management and loadable drivers are defined, save
APRS and map the driver.

3-16

INTERRUPT PROCESSIRG

Restore fork context (registers R4 and RS).

Restore APR5 if memory management is defined.

Call routine whose fork context was restored (CALL @-(R3)).

Go to $DIRXT.

1. Is rescheduling required ($ROSCH not•O)?
registers R0-R3 and 90 to 2.

Allow interrupts.

No,

Is t.he power failure flag ($PWRFL) set? Yes, go to 3.

Clear $ROSCH.

Save context of current task.

Locate a ready-to-run task.

Load and check context of new task.

restore

Map windows of new task for correct mapping determined by
task privilege.

Go to $DIRXT.

2. Restore task stack pointer (from @$HEADR to SP).

Increment stack depth indicator, $STKDP.

Restore R4 and RS from user stack and RTI.

3. Call power failure processing (CALL $POWER).

Go to $DIRXT.

Notes:

$DIRXT calls both waiting fork processes and the powerfail routine.
These routines terminate via an RTS instruction. On return $DIRXT
again cycles looking for work.

The task reschedule pointer, $RQSCH, controls the redispatching of the
processor. It points to the location in the STD list where $DIRXT
should begin its scan for a task ready to use the processor.

$RQSCH is set when a change of state has occurred in the system that
might cause a task other than the one currently in control to obtain
processor time. Examples are I/O done, clock queue runout, or a task
doing an EXIT. The word is reset by $DIRXT just prior to its
dispatching a new task.

3.3.10 Interrupt Processing Code

Figure 3-6 showe the driver and system interrupt code that is used in
processing interrupts. The lines in Figure 3-6 shows the flow of
control from routine to routine. The numbers associated with the
lines indicate the sequence of events.

3-17

-SXX>UNT - INTERRUPT ENTRY POINT

IMlS\1$ Dll.,PR~R$$Xll

Q)
llOV Rl.-49'1 <D
~v U~IH~5!.q.f.

llO\/ S.PKTIR41,Rl
llOV S.CSRIR41,R4
llOV RXD61R41.1.PR1i'61Rll
llOV ISl'l'.RJ
lllC =INT£BL.IR41
CALL SFORK---
llOV R4,R2 @

w I
© llOV U.SCBIR&l.R4

llOVB S.CONCR41.Rl

I TST IR21

....... BPI. 160$

Q)

SFC>RK:: llOV R4,-ISPI

@ llOV U.SClllR51.R4
CLRB S.C11AtR41
ADD l!S.FRKffl,R4

llOV ISPl+.IR41
SfORKL llOV RS.-IR41
SFORKO:: llOV ISl'l+.-IR41

CLR -llMI
MFPS -151'1
MTPS #PR7
llOV R4.-RKH0<2
MOY R4.SFRKH0<2
MTPS ISl'I+

.IF OFCSSINT

RETURN
SFORK2:: TST 21R61

MTPS 151'1+
BNE 10$
MOii R4.61R51
MOii R6.R4
ADD "6.R4
BR SFORKI

110: TST ISP!+

©

;SAllER4
;POINT TO COHTAOl.LER STAl\JS BLOCK
;DISAllLET-OUT
;POINT TO ENO OF FORK llLOCK
;!'UT SAVED R4 IN FORK llLOCK
;SAVE R5
;SAl/10 FORK PC

;"CLEAR LINK TO NEXT FORK llLOCK
;;;SAVE CURRENT l'ROC6liOft PftlORITY
;;;LOCK OUT INTERRUPTS
;;;LINK NEW ENTRY TO OLD LAST ENTRY
;:;SET ADDRESS OF NEW LAST ENTRY
;;;RESTORE PROC£SSOll PRIORITY

;;;FORK llLOCK ALREADY IN USE
":RESTORE PROCESSOR PRIORITY
;;;IF INUSE -llllANQI
;;.-sAllE R4 IN FORK llLOCK

;;;POINT JUST AFTER J.WIJ FORK BLOCK

;;;FALL 'll!llOUGH TO SINTXT

L lllC
CALL

@
.ENOC

tlllil+.51'
fR6I

#RJ
ISTKDI'
IOI
SFllKHD

• IHI
SINTXT.: RETURN

1-·n··I
__________________ __, llOV

Rl.-ISPI
R2,-15P1
111.-ISPI
R0.-1!1'1
-1
IERKHD.Rl
211$
lftllSCH.116 ..

.IF OF CSSINT

SINTSC:: llOV IM.-151'1 ;;;SAVE Rf
DEC ISTKDP ;;;-TOI STACKSI
BNE 111$;;;IFNEO-NO
llOV SP.-ADR ;;;SAYE QJRRENT SP

IFNOFMS$MGE

MOii .:SSTACK..51" ;;;LOM>SYSTEllSTACIC POINTER

10$

llOV KISARS.-ISPI ;;;SAVEKENtfL-
llOV K.REL-XJ'SWIR61.KISARS;;.-UAP ISR .. KERNEL APR

.ENOC

StNTS2: t.t1PS tRIW+
INC RS
CALL lllR!il+

.IF OF llSSMGE

llOV -·-

BR SINTXI

;;;LOAD ISR PR-ITY
;;;$l(lP OVER UNUSED BYTE
;;.'CALL 1511

JIESTOllE KENtfL APft 5

;;;EXIT F- INTERRIPT

<D
~$IN"IS\l::MOV IM,-csPI

ISTICOP
;;;SAYE R4
~TCllSTACKSI
;;;lfNEO-NO

21: DEC

3$:

-MOii
3$
SP.t1$HEAD11

.If NDf llSSMGE

llOV .tlSSTACK.sP

.IF Df 1.#111

MTPS IRlil
CALL 2lllil

;;;LOAD SYSTEM SP

;;;LOADtEWPRIORITY
;;.-CALL THE CALLER IACK

llOV --IDIRXT:· llTPS -.--------.. E

©

© =
6&:

llOV
llOV
llOV
llOV

-·· tsPl+.81
tSPl+.RZ
csPl+.Rl

.iFNDf-

llOll lllHEADll.11'

.ENOC

10$: INC

MOii --::RTI

ISTKDP
tSPl+.IM
tSPl+.Rli

.___ ____ 2111: MOii
IR31.IFRIOIO -llOV

JOI: lllTPS
ADD

JOI
#SFlllOIOP-2 ...
#IO.R3

.IFOFLSSDRV-

MOii KISAllli.-tsPI
MOii lll3l.KISAll5

.lfTf

MOii -CR31.IM - -IR31.Rli

@
CALL ----.IFT - tSPl+.KISAll5

.ENOC .. IOlllXT

Figure 3-6 Interrupt Flow of Control

;;;LOAD NEW PRIORITY
;;;CALL THE CALLER MCK

;;;UICI(OUT !NnRllUP1S
;;.:STACICDEl'tllZEROl
;;;IFtED-IT"SNOT
;;;ANYTMING IN FORK QUEUE
:;lf£QO-NO
;;;ALLOW!Nna..-

;SAYE Rl 'll!llOUGH 1111

;;;LOCI(OUT INTEllllUl'lS
.;;;AHYnMIG •FORK OUEUU
;;;tfNEO-YES
;;;SCHEOUUNG REQUESTED_
;;;IFtEO-YES
;;;RESTORE 1111 'll!ROUGH R3

;;;RELOAD USER SP

;;;-NTSTM:ICOEPTH

;;;RESTORE M - Rli

;;;RElllOllE ENTllY f- FOllK QUEUE
;;;lfllEO-llOllEEHTlllES
;;;RESET FOlllC QUEUE LISlHEAll
;;;ALLOW INftlllll.PIS

:l'OINTPASTSAVEllM

;SAVE-
-THEORIVEll

;llESTOllEMMIOll&

;CALL fOllC ROUTINE

;llESTOllEAl'fti

;TllYEllll-

....
~
~

"' ~ .,,
ti .,,
~
n

"' m
m
~

INTERRUPT PROCESSING

3.3.11 Interrupt Processing Sammary

The following seven types of routines not only comprise the interrupt
system, but practically comprise the entire Executive itself:

External Interrupt Routines

Trap Routines

Interrupt Save

Directive Save

Fork and Fork Processes

Interrupt Exit

Directive Exit

External interrupts cause traps to external interrupt processing
routines which run in one of three states:

1. Non-interruptable at PR7.
They run here when initially entered.

2. Interruptable by priorities higher than the interrupting
source.

Both states 1 and 2 are linearized being queued and dequeued
from the system stack.

3. Fully interruptable as fork processes.

Trap routines, of which only one may occupy the system stack during
any given passage through the Executive, operate at priority level
zero, need never call Fork, and operate entirely from the system
stack.

Interrupt save is called by driver interrupt routines when they make a
transition from non-interruptable to interruptable.

Directive save is called by trap routines.

Fork creates a fork process for external interrupt routines.

Interrupt Exit unstacks waiting routines from the system stack, and
when the system stack is empty drops into Directive Exit.

Directive Exit gives control to waiting fork processes, processes
power failure, and redispatches the processor.

The Executive structure has a sequentiality which obviates the need
for any explicit synchronizing mechanisms. Privileged tasks that
follow the internal conventions of the Executive are never concerned
with multiple-update of shared system data bases. While progressing
toward the idle state the Executive gives priority to routines on the
system stack, then to fork processes.

3-19

4.1 INTRODUCTION

CHAPTER 4

PRIVILEGED TASKS

This chapter discusses privileged tasks: what they are, the hazards
to the system that they present, and how they are mapped.

4.2 PRIVILEGED TASKS

A privileged task has a special access to memory locations and devices
that a nonprivileged task does not have. Specifically, certain
privileged tasks can examine and use the values in system control
blocks. These tasks can also examine and use Executive code. Also,
certain privileged tasks can directly access the device registers in
the I/O page. A privileged task can read from or write to a volume
whether or not that volume is mounted (via the Mount command) or
allocated to another user. These abilities imply that a privileged
task has every ability that the Executive has, and, in fact, it does.
It may be helpful to conceive of the privileged task as part of the
Executive because certain privileged tasks are mapped with the
Executive and I/O page. See Task Mapping in this chapter. As the
writer of a privileged task, you are obliged to take every precaution
so as not to damage the Executive, system, or user code and data.

4.2.1 Privileged Task Hazards

Privileged tasks are potentially hazardous to a running system. A
privileged task can corrupt the system and disable devices. Bugs in
these tasks are obscure and difficult to find. For these reasons, you
must be cautious when developing and running a privileged task.

Make certain that your privileged task has completed its operation
when you log off the system (say "BYE"). BYE does not abort
privileged tasks as it does nonprivileged tasks. BYE cannot abort a
privileged task because the privileged task may be in the process of
changing the system data base. Therefore, it must be allowed to
complete its processing. Also, if the privileged task is in
system-state, BYE or no other task can execute until the privileged
task completes its processing while in system-state. However, when
the privileged task leaves system-state, BYE runs and logs you off the
system, leaving the privileged task still in operation.

If a processor trap occurs in a privileged task while the task is in
user-state, the Executive aborts the task. However, if the processor
trap occurs in the privileged task while the task is in system-state,
the system crashes. However, even while in user state the privileged
task that is mapped to the Executive can cause a system crash by

4-1

l~RIVILEGED TASKS

incorrectly changing system data. Please note that a privileged task
in user-state should not be modifying system data.

Note that all tasks in an unmapped system can access all of memo~y.
The privileged or nonprivileged designation has no particular meaning
in an unmapped system. However, be just as careful about modifying
Executive, device, or user data in an unmapped system.

4.2.2 Specifying a Task as Privileged

To specify a task as privileged, you must use the /PR switch in the
Task Builder command line when you build your task. The RSX-llM Task
Builder Reference Manual describes the use of this switch. You can
use one of three numeric arguments with the /PR switch: O, 4, or 5
(specifically as /PR:O, /PR:4, or /PR:S). The abilities and mapping
of the privileged tasks designated by these switch values are
described next.

4.2.2.l /PR:O Privileged Task

Using the /PR:O switch causes the Task Builder to reserve user APAR 0
for mapping the task, which is the same as any other task. Virtual
address space begins at virtual address 0 and extends upwards as far
as 32K minus 32 words. This task cannot access the Executive
routines, system data structures, or directly access the I/O page
because the Task Builder has not reserved APRs for these purposes.

However, a task mapped into APR 0 can access the I/O page through a
device common. The RSX-llM Task Builder Reference Manual discusses
device commons. To do this,, you must build a device common that
occupie.s physical addresses on the I/O page. Then, when the task is
built, you associate the common with the task by using the COMMON= or
RESCOM= keyword.

There are four advantages to using a /PR:O task and having it mapped
into APR 0:

1. The task has more virtual address space available. A task
mapped through APR .o that accesses the I/O page can be as
large as 28K words.

2. A device common provides you with the means to associate
symbolic names with physical addresses in the I/O page.

3. You can restrict the amount of space to which the task has
access on the I/O page. When you specify an argument of
either 4 or 5 on the /PR switch, the Task Builder always
allocates the entire I/O page. However, a device common can
be as small as 32 words expanding upwards (in 32-word
blocks) to 4K words. Therefore, your task needs access to
only the portion of the I/O page that it requires. Thus,
there is less chance that the task will alter the wrong data
and destroy the running system.

4. A /PR:O task can write logical block I/O to a physically
mounted volume, regardless of who issued the Mount or
Allocate command. For example, the VMR task is a /PR:O task
and writes to mounted volumes during the SYSGEN process.
However, this advantage can be hazardous for obvious reasons.

4-2

PRIVILEGED TASKS

A /PR:O task runs in user state and cannot switch to system state.
Also, a /PR:O task is not mapped to the Executive. If you want to
write a privileged task that does I/O processing, it is to your
advantage to use the /PR:O switch for your task because there is less
chance of corrupting the Executive or system code and data.

4.2.2.2 /PR:4 Privileged Task

If you want your privileged task to map to the Executive and I/O page,
and your Executive is 16K or less, use the /PR:4 switch in the Task
Builder command line. If you specify /PR:4 for your task, the Task
Builder reserves APR 7 to map the I/O page and reserves APRs 0 through
3 to map the Executive as part of your task's virtual address space.
The /PR:4 switch can be used only if your Executive size is 16K or
less because the 16K Executive uses APRs 0 through 3 and your task is
assigned mapping that starts with APR 4. Therefore, the Task Builder
applies a bias of 100000 (16K decimal) to all virtual addresses within
the task. This specific mapping of APRs O through 4 and 7 occurs
whether the task is in user- or system-state~

There is up to 12K words of virtual address space possible in a /PR:4
task. The beginning of the task marks the end of the Executive code.
If the task is 12K words in size, the end of the task marks the start
of the I/O page. If the task is going to access the I/O page through
APR 7, the task cannot exceed the 12K limit. If the task does exceed
the limit, the Task Builder is forced to assign APR 7 to the task
code. When building the task, the Task Builder does not give you an
error message if your task exceeds the 12K limit. However, when you
install the task, the system task, Install, sends you the following
message:

"INS -- WARNING -- PRIVILEGED TASK OVERMAPS THE I/0 PAGE"

This message is a warning that your task will most likely hang if it
tries to access the I/O page.

A /PR:4 task can access all of the Executive, system control blocks,
and I/O page. It can use Executive routines and do logical block I/O
to a volume that is physically mounted on a device. Also, the /PR:4
task can issue a $SWSTK macro to change from user- to system-state.
This allows the task to access the Executive or system code without
interruptions or fear of the data being changed while it is being
accessed. See $SWSTK in an Unmapped System or $SWSTK in a Mapped
System in this chapter.

4.2.2.3 /PR:S Privileged Task

If you want your privileged task to map to the Executive and I/O page,
and your Executive is between 16K and 20K, use the /PR:S switch in the
Task Builder command line. If you specify /PR:S for your task, the
Task Builder reserves APR 7 to map the I/O page and reserves APRs 0
through 4 to map the Executive as part of your task's virtual address
space. The /PR:S switch can be used only if your Executive size is
between 16K and 20K because the 20K Executive uses APRs O through 4
and your task is assigned APR 5. (APR 5 may be used if the Executive
is less than 16K, but this wastes virtual address space.) Therefore,
the Task Builder applies a bias of 120000 (20K) to all virtual
addresses within the task. This specific mapping of APRs 0 through 5
and 7 occurs whether the task is in user- or system-state.

4-3

PRIVILEGED TASKS

There is up to SK words of virtual address space (12K if the I/O page
is overmapped) possible in a /PR:S task. The beginning of the task
marks the end of the Executive code. If the task is SK words in size,
the end of the task marks the start of the I/O page. If the task is
going to access the I/O page through APR 7, the task cannot exceed the
BK limit. If the task does exceed the limit, the Task Builder is
forced to assign APR 7 to the task code. When building the task, the
Task Builder does not give you an error message if your task exceeds
the BK limit. However, when you install the task, the system task,
Install, sends you the following message:

"INS -- WARNING -- PRIVILEGED TASK OVERMAPS THE I/O PAGE"

This message is a warning that your task will most likely hang if it
tries to access the I/O page.

A /PR:S task can access all of the Executive, system control blocks,
and I/O page. It can use Executive routines and do logical block I/O
to a volume that is physically mounted on a device. Also, the /PR:S
task can issue a $SWSTK macro to change from user- to system-state.
This allows the task to access the Executive or system code without
interruptions or fear of the data being changed while it is being
accessed. See $SWSTK in an Unmapped System or $SWSTK in a Mapped
System in this chapter.

4.2.3 Writing a Privileged Task

In addition to the privileged
previously, take note of
privileged task:

task mapping
the following

and cautions
points when

mentioned
writing a

1. Task size is limited to BK if you have a 20K Executive and
12K if you have a 16K Executive. This limit occurs because
only two APRs are available for mapping your task with a 20K
Executive and three APRs with a 16K Executive.

2. Your privileged task is mapped with the Executive and I/O
page. This mapping is done to allow your task to access the
Executive and I/O page registers (APRs, device registers,
etc.). You can refer to any area in the Executive or I/O
page by label or label and offset because you task build your
task with the Executive symbol table file and library. A
typical Task Builder command file is, for example:

PRIV/PR:S,PRIV/-SP=PRIV
[l,54]RSX11M.STB, [l,l]EXELIB/LB
I
UNITS=!
GBLDEF=OUTLUN:l
ASG=TIO:l

;DEFINE NUMBER OF LONS
;DEFINE LUN ON WHICH TO PRINT MESSAGES
;ASSIGN LUN TO DEVICE

In this command file, the Task Builder is informed that the
task has a privilege attribute of 5. Therefore, the task
uses APR 5. It also uses APR 6 if it is over 4K in length.

3. When you use a privileged task, the Executive has dedicated
almost all the APRs to the necessary mapping for the
Executive, the I/O page, and your task. Your task can issue
PLAS directives to remap any number of these APRs to regions.
However, such remapping can cause obscure and difficult to
find system bugs. Also, be aware that when a directive
unmaps a window that formerly mapped the Executive or the I/O
page, the Executive restores the former mapping.

4-4

PRIVILEGED TASKS

4. A privileged task uses the $SWSTK macro when going from user
to system-state. (See $SWSTK in a Mapped System.) While in
system state your task can access the Executive and I/O page
without being interrupted by other tasks or system processes.
It would be prudent to limit the time that your task spends
in system state for the sake of other system users. Remember
that while in user-state your task can not only read, but
change the Executive or I/O page, if necessary. However, if
your task is interrupted while changing data in user state,
it may not finish its processing properly, thereby causing
obscure bugs. Allowing a task to manipulate the Executive
data base while in user-state is not a goal of RSX-llM.
Future releases of RSX-llM may prohibit this activity.

S. While in system-state, a privileged task can modify any
mapping registers to make them point to any desired area of
physical memory. For example, the system task, PMD, loads
the starting address of the task being dumped into KISAR6
(Executive APR 6). It then biases the addresses by 140000 to
force mapping through APR 6. The bias is 120000 for APR 5.
Note that by modifying APR 5 or APR 6 registers, it is
possible for a privileged task to unmap its task image.
Therefore, you must take care to avoid this. However, PMD is
only 4K words in size. Therefore, modifying KISAR6 cannot
cause PMD to unmap itself.

4.2.4 The $SWSTK Routine Described - Unmapped and Mapped Systems

4.2.4.l SWSTK$ in a Mapped System

SWSTK$ - Used by privileged tasks to switch from user- to system-state
(described for a mapped system).

1. I TASK CODE I
CALL SWSTK$,100$

RETURN
100$: •••

EXPANDS TO:

CALL $SWSTK,100$
EMT 376
.WORD 100$

PROCESS:
EMT puts current PS
and PC on stack, loads
PC from location 30
($EMTRP) and PS from
location 32 (PR7 -
defined as 340). Cur
rent PC points to .WORD
containing address of
100$:. EMT in a mapped
system causes switch
to system SP.

4-5

SYSTEM STACK

TASK PC

TASK PS

2.~~

3.

$EMTRP::DIRSV$
TST $STKDP

SYSXT

$DIRSV::MOV R4,-(SP)
DEC $STKDP

MOV SP,@$HEADR
MTPS #0
MOV R3,-(SP)
MOV R2,-(SP)
MOV Rl,-(SP)
MOV RO,-(SP)
CALL (RS)
BR $DIRXT

PRIVILEGED TASKS

PROCESS EMT 376:

EXPANDS TO:
JSR RS, $DIRSV
Puts RS on stack.
RS then contains
return address of
the TST instruction.
Jumps to $DIRSV::

PROCESS:

Save R4 on stack.
Decrement $STKDP.
Stack depth: user- or
system-state1
l•USER, 0 or less s

SYSTEM. Save current SP
(->) •
MTPS expands to:

CLRB @#PS
Clears first byte of PS
to allow interrupts.

SYSTEM STACK

~ RS

TASK PC

TASK PS

SYSTEM STACK

PC

RO

Rl

R2

R3

Save R3 through RO (R3) --- R4

4. ORO SP

$EMTRP::OIRSV$
_._TST $STKOP

BNE 70$
MOV @$HEAOR,R3
CMP (R3) +, (R3) +

* MOV (R3)+,R5
MFPI -(RS)
CMP #104377,(SP)
BNE 80$

80$:CMP (RS) ,#104376
JMP $SWSTK

85$:JMP $EMSST

on stack.
CALL (RS) expands:

JSR PC, (RS)
Puts PC on stack.
Puts return address in
RS into PC. Jumps to
TST following $EMTRP::.

PROCESS:

Check for 0 $STKDP.
If not 0, crash.
Get saved task SP into R3.
Point to task PC in stack.
Get address of word after
$SWSTK into RS. (PC saved
on stack after $SWSTK in
task. Back up RS to
check EMT. Check EMT.
If EMT 376, jump to $SWSTK.
If not, process SST.

* Task stack pointer (R3) shown at this point.

4-6

RS

TASK PC

TASK PS

SYSTEM STACK

PC

RO

Rl

R2

R3

R4

RS

TASK PC

(R3) __..... TASK PS

r---

I---

s. SYSXT

$SWSTK:CLRB (R3)
MOV #KISAR6,RS
MOV UISAR6, (RS)
MOV UISARS,-(RS)

(16K cond)MOV UISAR4,-(R5)
MOV - (R3) , RS
MOV (RS) + , (RJ.)
MOV RS, (SP)

6.

7.

MOV -(R3) ,RS
MOV 12(SP),R3
CALLR @(SP)+

TASK CODE

CALL SWSTK$,100$

~···

RETURN
100$:

SYSXT

BR $DIRXT

$DIRXT::MTPS #PR7
MOV $FRKHD,R3
BNE
MOV $RQSCH, RS
BNE
MOV (SP)+,RO

.
MOV (SP)+,R3
INC $STKDP
MOV (SP)+,R4
MOV (SP)+,RS
RTI

PRIVILEGED TASKS

PROCESS:

Clear byte 0 of task's PS word.
Move user APRs to Executive
APRs. Move user APR 4 if 16K
Executive. Get sav~d task SP
for PC. Put PC for return
to user task in R3. Put
task PC on system stack.
Restore RS. Restore R3.

CALLR expands:
JMP @(SP)+
Return to task instruc
tion after $SWSTK to pro
cess system-state code.

TASK PROCESS:

Do system-state proces
sing. RETURN expands:

RTS PC
Pops stack and gets
saved PC to go back to
SYSXT at BR $DIRXT
instruction.

PROCESS:

Lock out interrupts.
Check forking.
Check rescheduling.
Restore RO - R3.
Make $STKDP = 1.
Restore R4, RS.
RTI pops saved PC and PS.
from stack •

4-7

(R3)

SYSTEM STACK

TASK PC

PC r--
RO

Rl

R2

R3

R4

RS

TASK PC

__, TASK PS

SYSTEM STACK

RO i----

Rl

R2

R3

R4

RS

TASK PC

TASK PS

l»RIVILEGED TASKS

8 • I TASK CODE PROCESS:

SAVED PC----. WORD 100$ Process at 100$ in
100$: code user-state.

4.2.4.2 SWSTK$ in an Unmapped System

SWSTK$ - Used by privileged tasks to switch from user- to system-state
(described for an unmapped system)

1 .. §c CODE I
CALL SWSTK$,100$

2.

RETURN
100$: •••

DRDSP

$EMTUP: : DI RSV$
TST $STKDP

EXPANDS TO:

CALL $SWSTK,100$
EMT 376
.WORD 100$

PROCESS:
EMT puts current PS
and PC on stack, loads
PC from location 30
($EMTRP) and PS from
location 32 (PR7 -
defined as 340) • Cur
rent PC points to .WORD
containing address of
100$:. Still using user
SP at this point.
Switch to system SP.

PROCESS EMT 376:

EXPANDS TO:
JSR RS, $DIRSV
Puts RS on stack.
RS then contains
return address of
the TST instruction.
Jumps to $DIRSV::

PROCESS:

USER STACK

TASK PC

TASK PS

USER STACK

~ RS

TASK PC

TASK PS

STACKS 3.~~
USER SYSTEM

$DIRSV::MOV R4,-(SP)
DEC $STKDP

MOV SP,@$HEADR
MOV #$STACK,SP
MTPS #0
MOV R3,-(SP)
MOV R2,-(SP)
MOV Rl,-(SP)
MOV RO,-(SP)
CALL (RS)

* BR $DIRXT

Save R4 on stack.
Decrement $STKDP. (->)
Stack depth: user- or
system-state~

l=USER, 0 or less =
SYSTEM. Save current SP
(->). Load system SP.
MTPS expands to:

CLRB @#PS
Clears first byte of PS
to allow interrupts.

Save R3 through RO on
system stack.
CALL (RS) expands:

JSR PC, (RS)
Puts PC for return
to BR $DIRXT (*) for system
exit. Puts return address
in RS into PC. Jumps to
TST following $EMTRP::.

4-8

R4 PC

RS RO

TASK PC Rl

TASK PS R2

R3

i---

4.

s.

PRIVILEGED TASKS

DRDSP

$EMTRP::DIRSV$
_....,. TST $ STKDP

BNE 70$
MOV @$HEADR,R3
CMP (R3) + , (R"J) +

* MOV (R3)+,RS
CMP #104377,-(RS)
BNE 80$:

80$:CMP (RS),#104376
JMP $SWSTK

85$:JMP EMSST

PROCESS:

Check for 0 $STKDP.
If not O, crash.
Get saved task SP into R3.
Point to task PC in stack.
Get address of word after
$SWSTK into RS. PC (R3)->
saved on stack after $SWSTK
in task. Back up RS to
check EMT. Check EMT.
If EMT 376, jump to $SWSTK.
If not, process SST.

* User stack pointer (R3) shown at this point

SYSXT

$SWSTK:CLRB (R3)
MOV -(R3) ,RS
MOV (RS) + , (R3)
MOV RS,-(SP)
MOV -(R3),RS

* MOV l2(SP) ,R3
CALLR @(SP)+

PROCESS:

Clear byte 0 of task's PS
word. Get saved task SP
for PC. Put PC for return
to user task in R3. Put task
PC on system stack. Restore
RS. Restore R3. CALLR
expands: JMP @(SP)+

Return to task to
instruction after
$SWSTK to process
system-state code.

* System stack pointer shown at this point

6. I TASK CODE I
CALL SWSTK$,100$

TASK PROCESS:

Do system-state processing
RETURN expands: ---···

* RETURN
100$:

RTS PC
Pops stack and gets
saved PC to go back to
SYSXT at BR $DIRXT
instruction.

* System SP shown at this point

4-9

STACKS
USER SYSTEM

R4 PC .._._
RS RO

TASK PC Rl

TASK PS R2

R3

STACKS
USER SYSTEM

R4 TASK PC t----

RS PC

TASK PC RO

TASK PS Rl

R2

R3

STACKS

USER SYSTEM

R4 PC I-I-·

RS RO

TASK PC Rl

TASK PS R2

R3

7. [sYSXT I
BR $DIRXT

.
$DIRXT::MTPS #PR7

MOV $FRKHD,R3
BNE .
MOV $ROSCH, RS
BNE
MOV (SP)+,RO

MOV (SP)+,R3
MOV @$HEADR,SP
INC $STKDP
MOV (SP)+,R4
MOV (SP)+,RS
RTI

8. I TASK CODE I
SAVED PC ----.WORD 100$

100$: code

4.2.5 Task Mapping

J?RIVILEGED TASKS

PROCESS:

Lock out interrupts •
Check forking.
Check rescheduling.
Restore RO - R3.
Restore RO - R3.
Reload user SP.
Make $STKDP == 1.
Restore R4, RS.
RTI pops saved PC and PS.
from stack.

PROCESS:

Process at 100$ in
user-state

Figure 4-1 shows the mapping of a nonprivileged user task in an
unmapped system.

Figure 4-2 shows the mapping of a nonprivileged task in a mapped
system.

Figure 4-3 shows the mapping of an 8K nonprivileged task in a mapped
system.

Figure 4-4 shows the mapping of an SK nonprivileged task that uses
memory management (PLAS) directives in a mapped system.

Figure 4-5 shows an SK privileged task mapped into APRs 5 and 6. The
20K Executive occupies 5 APRs, which leaves two APRs for the
privileged task and one for the I/O page. All the APRs are used by
the system in this example. The Executive copies what are normally
the Executive's own APRs (KISARO through KISAR4, and KISAR7) into what
is normally the user APRS (UISARO through UISAR4, and UISAR7). Thus,
the privileged task has access to the Executive and I/O page in either
user- or system-state.

These figures are presented in a sequential and logical way to allow
an easier understanding of privileged task mapping in the system.

4-10

TASK VIRTUAL
ADDRESS SPACE

2K
USER
TASK

PRIVILEGED TASKS

PHYSICAL MEMORY

170000 t-------------~

100000I.----------1Ir
r EXECUTIVE

0-------------------'

• Location of task depends on partition location in unmapped system (PAR option of TKB)

• Base of task on 32-word boundary; length is a multiple of 32 words; highest virtual address= 28K

• Non-runable task - resident library or global common - maximum size= 32K minus 32 words

• Unless you change parameters of task and task build again, task in unmapped system always loads into
the same location

• INSTALL calls $ALOCB to allocate TCB space. It then reads the first record of header label blocks, and
sets up data in the task header. It verifies that the task fits in the specified partition

• INSTALL sets load device and LBN in TCB. UCB address of load device is put in header of INSTALL as a
result of opening task image file. It then puts UCB address in TCB of task

• INSTALL: checks System Task Directory (STD) for task of same name; gets partition name from task
Label Block Group; searches for task partition; checks if task fits in partition

• INSTALL: checks Label Block Group for PLAS support, resident overlays; puts task offset in TCB, checks
if task is a common block, checkpoint file space, set priority in TCB, checks partition base address and
task starting address

• INSTALL fills in TCB with information from Label Block Group. When everything is done, TCB is in
STD

• When the task is executed, the Executive Loader loads task into correct partition and location. TCB is
put on Active Task List

Figure 4-1 User Task in Unmapped System

4-11

Iii

21

21

TASK VIRTUAL
ADDRESS SPACE

007777 -------

4K
USER
TASK

002040 MOV LOC, R 1

KT-11 MEMORY MANAGEMENT UNIT

APR1 (UISAR CHI VIRTUAL ADDRESS

72040

000 010000 100000

15 12 11 8 5

PHYSICAL MEMORY

4K USER TASK
MOV LOC. RI 67777 ,__ _______ _,

}------i
I EXECUTIVE

0 ~~~~~~~~

PRIVILEGED TASKS

72040

• Nonprivileged user task uses User Active Page
Register 0 (APR 0), which is called UISARO in
the I /0 page.

• User is aware of virtual addresses 0 - 07777 8

only.

• INSTALL task maps this 4K task with APR 0
only, because task is only 4K. If it were bigger,
INSTALL would select needed number of
APRs (4K for each of 8 APRs - 32K maximum).
INSTALL determines into which partition task
is to go in mapped system and virtual address
for base of task (task may have a virtual section
at beginning of task code, making its real virtual
address different from its apparent virtual
address). Executive determines physical address
by information in task header and current sys
tem memory allocation. Executive puts this
address in APRO. After task is loaded, mapping
information is kept in Executive copy of task
header in DSR.

• Contents of APR 0 relocates whole task (MOV
instruction shown as part of task as an example).

• Bits 13-15 of task virtual address selects APR 0.
If task were SK, two AP Rs would be used.
Virtual addresses in the task (bits 13-15) select
dynamically the APR from those assigned.

• KT-11 adds value in APR 0 (16 bits) to bits
6-12 of virtual address. KT-11 appends sum to
the low-order 6 bits of the virtual address to
produce 22-bit physical address.

Figure 4-2 4K Nonprivileged User Task Mapping in a PDP-11/70

4-12

3

2

PRIVILEGED TASKS

TASK VIRTUAL
ADDRESS SPACE

37777 .---------

8K
USER
TASK

21770 ~ -1- - --------.,

111n f------------1

KT·11 MEMORY MANAGEMENT UNIT

APRs (UISAR 0-71 VIRTUAL ADDRESS

001 0001111 111000

15 I 12 8 5
I
I
I
I
I ------- I

i----------1 I
1000

0700

15 I
L.---

21

1217 c:
21 22-BIT PHYSICAL ADDRESS

PHYSICAL MEMORY

~~ ~~

8KUSERTASK
I- t-

137777

121no
1om1 1--------------
70000

~i:s EXECUTIVE ~~
0

121770,
I
I
I
I
I
I
I
I ------..J

• User task shown has no memory management
directives.

• User task is SK in size. Because each APAR
maps 4K of memory, user task must use two
APA Rs.

• For example, APR 1 relocates address 21770
in the user task to physical address 121770.
Because the virtual address being translated is
over 4K and less than SK, the high-order three
bits of the address are 001. The three high-order
bits select APR 1. If the task were between
SK and 12K in size, virtual addresses between
SK and 12K would contain 2 in the high-order
digit and APAR 2 would be selected for these
addresses. This relationship of virtual addressing
to AP Rs continues up to 32K of virtual addresses.
Each APAR can contain a 4K relocation factor;
therefore, with 8 APARs, 32K of virtual
addresses can be relocated.

• The virtual address limit of a user task in a
mapped system is 32K.

• Without memory management directives, user
task without commons or resident libraries
occupies continuous physical address space in
memory. The task can only access that physical
memory to which the Executive maps it. This
physical memory is continuous and has a direct
one-to-one relationship to the tasks's virtual
addresses until the task exits or the Executive
checkpoints it. Of course, the Executive does
not move fixed tasks once they are loaded, but
they may be shuffled.

• Executive memory allocation routines determine
the physical base address of the user task when
the Executive Loader loads the task into mem
ory. The base address is likely to change if
checkpointing or shuffling occurs.

Figure 4-3 SK Nonprivileged User Task Mapping in a PDP-11/70

4-13

PRIVILEGED TASKS

BK TASK
VIRTUAL ADDRESSES

17777 -------

TASK DATA
MAPPED TO

COM 1 -APR2
f-- - - - - - - -· - - - -,

07777 1-----------
TASK ROOT

ANDHEADER
APRO

o--------
KT-11 MEMORY MANAGEMENT UNIT

APR1 (UISAR 0-71 15 12 11 5 J

7 ~ I [VIRTUAL ADDRESS t:t:-' ..J

I --, I T T
I I I I
I I I I
I I I I
I I / I

2[1------~-------1 I
1 r i r
o (}--.J I

·T I 1- I

~u --~~=5=J
21 22-BIT,PHYSIJL ADDRESS ,,, ~ O

21

[

[.._ __ ~------------~-·rt::l~ .. ~i-:;--"
PHYSICAL MEMORY

BK REGION ICOMll

I
I
I
I
I
I
I
I
I CURRENT MAPPING

BY MAP ADDRESS WINDOW
DIRECTIVE

~------J

4KTASK ROOT
ANO HEADER

... 1--------------
~ ,.(,

1 """"ve J

• The Task Builder built this task with WNDWS
option = 1; the Task Builder reserves two win
dow blocks in Task Header. Window blocks
contain mapping information (see Chapter 2).
Window block 0 is for APR 0 mapping. TKB
always reserves one window block (window 0)
for mapping task header and root (in this case 0
to 7777). Window block 1 is for address win
dow (APR 2} that PLAS directives use in the
task. However, a task may use more than one
address window for mapping when using PLAS
directives, but the number of windows to be
used must be specified to TKB when building
the task.

• Upper 4K of this task is defined as an address
window to access a region in memory.

• Window size can be 32 to 32K minus 32 words
and must start on a 4K virtual boundary.

• The Executive maps both the task root and the
region into the GEN system-controlled partition.
You must specify the APR that the Executive
is to use for the region.

• The Executive may map the region to a numeri
cally lower physical location than your task and
the region and task root may or may not be con
tiguous in memory.

• You must create Window Definition Block
(WDB) in your task (see Chapter 2 or RSX-11 M
Executive Reference Manual).

• You must create the Region Definition Block
(ROB) in your task (see RSX-11M Executive
Reference Manual).

• Your task must issue an Attach Region directive
to attach the region (COM 1) to your task.

• Your task must issue a Map Address Window
directive to map your task's window to the
region. In this directive, your task specifies the
offset into the region in which mapping begins.
This offset can be changed by issuing another
Map Address Window with the offset changed.
Doing this can move the window through the
whole region.

• These directives in combination with the Send/
Receive and Detach Region directives make it
possible for two tasks to transfer data to each
other through a region that they can both access
in common.

Figure 4-4 SK Nonprivileged Task Mapping
in a PDP-11/70 Using PLAS Directives

4-14

PHYSICAL
ADDRESSES

177777

167777

120000

PHYSICAL
ADDRESSES

117777

0

PHYSICAL
ADDRESSES

l/OCODE ___ _____
SK

PRIVILEGED
TASK

20K
EXECUTIVE

177777 ----1/_0_C_O_D_E __ _

157777

SK
PRIVILEGED

TASK

120000 ----------

PRIVILEGED TASKS

KT-11 MEMORY
MANAGEMENT UNIT

APRs (UISAR 0-7)

COPY OF KISAR7

PRIV TASK 4-BK

PRIV TASK 0-4K

COPY OF KISAR4

3 COPY OF KISAR3

2 COPY OF KISAR2

COPY OF KISAR1

0 COPY OF KISARO

APRs (KISAR 0-7}

NOT USED NOW { KISAR7 (1/0 PAGEi

6

5

KISAR4 16·20K

3 KISAR3 12·16K

KISAR2 B·12K

KISAR1 4-BK

0 Kl SARO 0-4K

MAPPING FOR SK PRIVILEGED TASK IN USER STATE AND 20K EXECUTIVE

6

5

4

3

KT-11 MEMORY
MANAGEMENT UNIT

APRs (UISAR 0-7)

NOT USED NOW

PRIV TASK 4·8K

PRIV TASK 0-4K

KISAR 0-4 AND

7 COPIES NOT

USED IN SYSTEM

STATE BUT VALUES

STILL EXIST

APRs (KISAR 0·7)

KISAR7 (1/0 PAGE)

COPIED FROM UISAR 5 + 6
{

PRIV TASK 4-SK

PHYSICAL PRIV TASK 0-4K

ADDRESSES ------ 4 KISAR4 16·20K
117777 --------- 1---------

20K
EXECUTIVE

0 ---------~------....

3 KISAR3 12·16K

KISAR2 8-12K

KISAR1 4-BK

KISARO 0-4K

MAPPING FOR BK PRIVILEGED TASK IN SYSTEM STATE AND 20K EXECUTIVE

Figure 4-5 Privileged Task Mapping

4-15

PHYSICAL MEMORY

1/0PAGE

BK
PRIVILEGED TASK

MEMORY
OCCUPIED BY
TASKS AND
PARTITIONS

20K
EXECUTIVE

PHYSICAL MEMORY

1/0 PAGE

BK
PRIVILEGED TASK

MEMORY
OCCUPIED BY
TASKS AND
PARTITIONS

20K
EXECUTIVE

CHAPTER 5

MCR INTERFACE

5.1 MCR - MONITOR CONSOLE ROUTINE

MCR is the collection of functions that make it possible to operate
and control the RSX-llM ~ystem from a terminal device. As the link
between the collection of services provided by RSX-llM and users who
want to make use of these services, MCR provides a number of commands
which you can execute by entering the command at your terminal.

The RSX-llM Operator's Procedures Manual describes
commands that you can use. They are listed as follows:

1. ABO rt

2. ACS

3. ACTive

4. ALLocate

5. ALT er

6. ASsigN

7. ATL

8. BRK

9. CANcel

10. CLQueue

11. DEAllocate

12. DEVices

13. FIX

14. HELP

15. LUN

16. OP En register

17. PARtition definitions

18. REAssign

19. REDirect

5-1

all the MCR

MCR INTERPACE

20. REMove

21. RESume

22. RUN

23. SAVe

24. SET

25. TAsk List

26. TASk list

27. TI Me

28. UN Fix

Services 29-39 run as tasks.

29. BOOt

30. BROadcast

31. BYE

32. DMOunt

33. HELlo

34. INTitvolume

35. INS tall

36. LO Ad

37. MOUnt

38. UFO

39. UN Load

5.1.1 Structure and Operation Environment of MCR

MCR is an RSX-11 task that, typically, operates out of its own
partition. MCR runs at a moderately high priority to be able to
service terminal input reguests. This priority value is typically
160. or, at least, higher than that of user tasks and utilities. MCR
is privileged and is usually stopped, though active, while waiting for
terminal input. MCR can be checkpointed and have checkpoint space in
its own task image.

MCR is a tree structured task, and its structure is depicted
schematically in Figure 5-1.

DISPATCHER
I I I

PARSERS(l-3)

ROOT
I

I I I
COMMAND FUNCTION PROCESSORS

Figure 5-1 MCR Tree Structure

5-2

MCR INTERFACE

The command function processors are those that process the first 16
console services listed in Section x.x. The rema1n1ng console
services run as tasks and not as integral parts of MCR. MCR, in fact,
does not distinguish between these task functions and tasks that it
initiates as a result of recognizing an MCR request for functions
17-22 listed in Section 5.1. The console language syntax is defined
such that if the first three characters of an input line are not part
of the defined command language, then MCR attempts to initiate the
task named

••• xxx

Thus, the task named ••• JIM can be initiated by entering

JIM

to MCR, or by entering

RUN ••• JIM

to MCR.

5.1.2 The Terminal Driver and MCR Initiation

The terminal driver is intimately integrated into the operation of
MCR. Because RSX-llM accepts and acts upon unsolicited input from any
operator terminal, it is the function of the terminal driver to know
when it is receiving input destined for MCR.

When a character on an operator terminal is struck, the resulting
interrupt initiates the terminal driver. (Remember the device is full
duplex and the keyboard cannot be locked to prevent input when the
device is, in fact, involved in an I/O operation.) The driver then
acts on the input as follows:

1. [Check the device state]

Is the device busy. No, go to 3.

2. [The device is busy]

If the driver was sending output (in an output state) when
the character was entered, an input request flag is set in
the appropriate UCB and the driver continues sending the
output stream. When the output request is finished,
processing continues at 5.

If the terminal was in an input state . the character is
accepted. Go to 6.

3. [Device is not busy]

Note, if the device was not busy, the incoming character is
the first character of an input line.

Was the input character a CTRL-C? (CTRL-C is an explicit
requ~st to communicate with MCR.) If the character was a
CTRL-C, the terminal driver executes a $FORK and execution
continues at 4.

5-3

MCR INTERFACE

If the first character is not a CTRL-C, a check is made to
see if the device is attached. If it is, MCR ignores the
character (unsolicited input to MCR on an attached device is
not permitted).

If the device is unattached then it is considered the
beginning of unsolicited input to MCR. Go to 4.

4. [Fork level processing]

The driver has transferred to fork level because it needs a
buffer, and it can only get a buffer at fork level (shared
system tables must be altered to obtain a buffer). In
addition to getting a buffer, the fork level terminal
processing code must check for a rare race condition.

After the arrival of the CTRL-C (or a non CTRL-C character if
the terminal is not attached) and between the time the fork
is executed and control is regained in the driver, it is
possible that the device may have returned to the busy state.
This is because we may have just unbusied the device for a
previous request when the input interrupt occurred. The
interrupt code finds the device free and executes a fork.
But before control is regained at fork level, execution is
continued in the driver for the previous request. The driver
jumps to the initiator entry to propagate its execution and

. thus may find another waiting I/O request which it begins
processing because the device is free. Thus the fork routine
must recheck the state of the device. If it is busy the
input is ignored and th• driver returns (exits) from fork
level. Otherwise, an attempt is made to obtain a buffer for
the unsolicited input.

5. [Buffer Acquisition]

·If the buffer acquisition attempt is unsuccessful, the driver
ignores the input and exits.

If a buffer is obtained, the driver sets up to start an
unsolicited input request by initializing various pointers
and setting the status of the controller and unit to busy.

If the initial input character was CTRL-C, then

MCR>

is echoed to signify an explicit request to input to
MCR.

Otherwise, the input character is stored in the buffer
and echoed on the initiating terminal.

The driver returns (exits) from fork level.

5-4

MCR INTERFACE

6. [Character processing]

Once the terminal driver determines that input coming from an
operator terminal is destined for MCR, it transfers
subsequent characters into the buffer acquired in Step 5. It
also echoes the incoming characters. The acceptance of input
ceases if:

a. The buff er is filled (the buff er has room for 80
characters) but the maximum accepted depends on the
device:

72 for KSR

72 for VT05B

80 for LA30S

80 for LA30S

b. An end of line character is entered. The valid end of
line characters are:

CTRL-Z

Carriage Return

ALT-Mode (codes 33, 175, and 176)

7. [Interrupt from a character echo]

Is the device in input mode? If it is not, another character
is obtained from the user output buffer and it is echoed. If
the device is in input mode, end-of-line must be checked. If
it is not, the keyboard interrupt is re-enabled and exit from
the interrupt occurs. If end-of-line is detected, then the
fork process is called.

8. [End-of-line processing - fork level]

For unsolicited input, the UCB address and the terminating
character are deposited into the input buffer and the buffer
linked into MCR's input queue. MCR is then requested to run.
The driver itself clears control and unit busy and returns to
its initiator entry point.

For solicited input, I/O Done is called. First, the number
of characters entered is determined and the buffered input is
moved to the soliciting task's input buffer. The driver
input buffer is released and I/O Done is called with the
second I/O status word equal to the number of bytes entered.
The left byte of the first I/O status word is set equal to
the terminating character and the right byte to +l. The
driver then jumps to the initiator entry point to propagate
its execution.

5.1.3 MCR Operation

After the request of MCR by the driver, the file system is swapped out
and MCR is swapped in. Control is passed to the MCR root segment
which calls the Dispatcher (DSPTCH) overlay. DSPTCH, via a privileged
subroutine ($SWSTK), switches to system state. The call to this

5-5

MCR IN'TERFACE

routine includes a parameter which is the address where the caller
wants to return when it switches back to task state. The state
switching routine performs the switch and resumes processing in the
caller immediately followin9 the call. When $SWSTK is called, it sets
up an interrupt entry to thE! system. Interrupts are locked out while
it pushes the passed return address and the PS on the stack. $SWSTK
then calls interrupt save (~lINTSV). On return from interrupt save,
R3, R2, Rl, RO are pushed onto the stack and now the stack state
simulates that of an EMT. ~;swSTK now calls the caller who resumes
execution one instruction past the call to $SWSTK. When the calling
routine finishes, it returnH, which takes it back to $SWSTK. $SWSTK
jumps to Directive Exit which redispatches the processor. The effect
of this is to resume the caller in task state at the passed return
address.

MCR now proceeds as follows~

1. [Request an unsolicited input queue entry]

The Dispatcher calls the queue removal routine ($QRMVF).
$QRMVF attempts to remove a buffer and deliver it to the
Dispatcher. If no buffer is available (carry set return from
$QRMVF) the Dispatcher exits. The buffer is formatted as
shown in Figure 5-2.

~WORD • •r- WORD • • UP TO 80 BYTES_._

LINK TO UCB OF
NEXT BUFFER INPUT DEV

I COMMAND INPUT

Figure 5-2 Input Buffer

The queue empty condition never occurs on an initial call to
MCR, because MCR is not requested unless something is in the
queue. MCR remains; resident until it has processed all the
entries in the unsolicited input queue.

Note that the Dispatcher, during buffer requisition, is
operating at system level and all queue entries are done at
fork level. Thus the buffer removal process is linearized
with buffer item entry.

If DSPTCH gets a buffer, it saves the buffer address in a
memory location and does a return. This return takes DSPTCH
back to task state where the J?rocessing of the buffer begins.

2. [Process a Buff er]

On return to task state, the Dispatcher scans through the
buff er and

1. Compresses out redundant spaces and/or tabs

2. Converts an Escape character to a Carriage Return

3. Truncates trailing spaces and/or tabs

5-6

MCR INTERPACE

If no line terminator is found in the buffer, the Dispatcher
inserts a CR as the 80th character. Finally the actual line
terminator (either CR or ESC) is saved so it can be restored
in the message if the message must be routed to a task other
than MCR itself.

The Dispatcher then converts the first three characters to
RADSO and begins to search two internal tables for an MCR
function with· a matching name.

3. [Searching the function tables - Table descriptions]

MCR has two function tables1 one for privileged commands,
and one for non-privileged commands.

Privileged commands are those whose unrestricted use could
cause privacy violation or system failures and they can only
be executed from a privileged terminal. Privileged terminals
are identified by a bit in the UCB. These terminals are
established at SYSGEN or by the SET command.

Both tables contain a 5-word packet for each command in the
class (privileged or non-privileged). The packet appears in
Figure 5-3.

RADSO CMD NAME (3 CHARS)

INDEX INTO COMMAND OVERLAY

ADDRESS OF PARSER TABLE

RAD50 COMMON OVERLAY NAME

INDEX INTO COMMON OVERLAY

Figure 5-3 Function Table Entry

The table entries correspond to three overlay types:

l. Command overlay

2. Parser overlay

3. Common overlay

The use of these overlay types is noted next.

Typically, any command that can be processed in a single
overlay and whose size is such that it requires all or nearly
all of the max overlay size (600 wds) is classed as a command
overlay.

Parsers for the commands are distinct entities and are
grouped into overlays. Generally, a given parser services
more than one command but three parsers currently service all
the commands. The parser entry is a pointer to a parser
table entry shown in Figure 5-4.

5-7

NCR INTERPACE

~DSO PARSER NAME (3-CHARS)

QNDEX INTO PARSER OVERLAY

Figure 5-4 Parser Table Entry

Because three parsers serv:lce all the commands it is more
economical in storage space to point to the parser table than
to include the name and the index in the main function table.

The index is used as the entry point into the parser where
the parsing for a given command begins. This is required
because a parser can, and generally does, contain parsers for
more than one command.

The common overlay is used when the processing for a command
is small enough to make it practical to group more than one
command into a single overlay. This grouping saves space
since ten words are required by the Overlay Runtime System
for each overlay in a tree structure. The index serves the
same purpose as the index in a parser overlay.

Note that a command overlay also contains an index. The
value of the command overlay index is generally zero. But to
maintain the coherence of the table processing commonality,
and to allow for flexibility, the index is included.

3a. [Look up and start a function other than an MCR internal
function]

The Dispatcher then looks in the privileged command table for
a name which matches the first three characters in the input
buffer. This table contains all the privileged MCR commands.

Internally, privileged terminals are identified by a bit in
the UCB. The bit is set at SYSGEN or from a privileged
terminal using the SET MCR command.

If the command is not found in the privileged command table,
the non-privileged command table is searched.

MCR for multiuser-systems is called MCRMU. MCRMU is actually
two tasks: ••• MCR and ••• SYS. The Dispatcher in MCRMU,
which is part of the MCR task, looks in a table to see if it
is to process the issued command. These commands are: LUN,
REA, REM, FIX, UNFIX, CANCEL, RESUME, and ABORT. If the
command is not in this table, the Dispatcher looks in another
table to see if the task, ..•• SYS, processes the command.

If the name is not in either table, then the Dispatcher
prefixes three periods to the three buffer characters, and
using these six characters, searches the STD looking for a
match on the name. If it does not find the name it displays
an error message on the initiating terminal. If it finds the
name, it requests the function to run, supplying as an
argument to the requested task the UCB address that was in
the input buffer. The UCB address is inserted into the TCB
of the requested task as its TI (terminal input) pseudo

5-8

MCR INTERPACE

device. If the attempt to request the task fails, an error
message is displayed, the buffer is released, and MCR exits.
Having discovered a non-internal MCR function, MCR must
prepare to pass the buffer, because the initiated task is
going to issue a Get MCR Command Line directive. To pass the
buffer, MCR uses three words in system common. These words
are:

1. The TCB address of the requested task

2. The address of the command buffer

3. The byte count of the number of input characters in the
buffer

MCR fills these words, making synchronizing checks that they
are free, because only one triplet exists for passing buffers
to a requested task. Thus, until the buffer is emptied,
other completed buffers in the queue are waiting.

Eventually, the requested task starts running, and issues a
Get MCR Command Line directive. The directive processing
then tests for a match on the TCB address in SYSCM and the
TCB address of the requesting task. If they match the buffer
is passed to the task by copying it into the DPB of the
directive. The directive status is set to the byte count,
the buffer is released and the TCB address in the SYSCM
triplet is cleared. The TCB address being zero is an
indication to MCR that the triplet is free.

3b. [Start an internal MCR function]

Once a name match has been found in the command table, the
Dispatcher copies words 1, 2, 4 and 5 of the function table
entry and both words of the parser table entry for this
command into the MCR root segment. Now the Dispatcher scans
the function table entry as follows:

Jc. If a parser exists, go to 4. Otherwise, if a command overlay
exists go to 3d. If a command overlay does not exist, go to
5. Otherwise, abort the system.

3d. The Dispatcher forms the overlay name, constructs the
required overlay information packet, and enters the root at
the point where overlay loading is performed.

4. [Parser functions]

The selected pars~r parses the buffer and, if the parse is
successful, it Jumps back to the root to load the desired
function. If the parse fails, the parser deposits an error
number in the root and jumps to the entry $ERLD in the root
which loads the error overlay.

Ultimately the root initiates another routine, either the
error routine or the requested function.

5. [Function routines]

These routines may further check the input and find errors.
If errors are found, the function sets up the error routine
and jumps to the root to load an error overlay. If it
succeeds, the function releases the buffer and enters the
root as the point where the root reloads the dispatcher.

5-9

MCR INTERFACE

6. [Error overlay]

The error overlay contains all error messages and the code
needed to format the error message from the error number
deposited in the root by the MCR component discovering the
error.

7. [Final Exit]·

The dispatcher calls the queue routine to obtain another
buffer1 if one is found, the cycle of name table scanning
resumes {starting at Step 2). If no buffers are waiting, MCR
exits.

5-10

CHAPTER 6

I/O PROCESSING

This chapter contains a description of QIO directive processing in the
form of a Logical Flow Diagram.

6.1 IMPLEMENTATION

The user interface to the RSX-llM I/O system consists of logical
numbers (LUNs) and a single active I/O directive, Queue I/O.
directives Assign LUN, Get LUN Info, etc. do not initiate
transfers.)

unit
(The
I/O

In RSX-llM all the preliminary processing antecedent to actually
queuing an I/O request is performed by the QIO directive processing
code that uses the I/O data structures. This code calls ancillary
routines for centralized services. When a driver finally receives an
I/O order, it generally has very little to do other than set up the
status registers and issue the order.

Termination processing is equally modular and centralized. The driver
is entered, performs some cleanup operations, and calls centralized
routines for obtaining pending I/O orders, performing AST processing,
etc. The driver is only concerned with the most intimate and specific
details of the actual hardware interface in respect to the execution
and completion of I/O transfers. Using this centralization
philosophy, RSX-llM keeps both driver size and non-interruptible
processing time small.

6.2 RSX-llM I/O DATA STRUCTURES

The static I/O data structures consist of three blocks:

1. A Device Control Block (DCB)

2. A Unit Control Block (UCB)

3. A Status Control Block (SCB)

Although each serves a specific function, and the components of each,
in general, reflect these functions. The functional purpose of each
data structure is reflected by the units of information which compose
them. See Chapter 8, Data Areas and Control Blocks.

6-1

:c/o PROCESSING

6.2.1 The Device Control Block (DCB)

One device control block exists for each device type attached to the
system. Its function is to describe the static characteristics of
both the controller and the units attached to the controller. All the
DCBs in the system are singly linked. The DCB contains such
information as:

• The device mnemonic (two ASCII characters)

• The lowest and highest unit numbers on the
controller type

• The address of the first UCB

• The length of each UCB

• The next DCB pointer

• The Legal Function Mask

• The Control Function Mask

• The No-Op'd Functior:t Mask

• The File Function Mask

• The pointer to the Driver Dispatch Table

respective

For Loadable drivers, the pc>inter to the driver's driver dispatch
table (D.DSP) and the pointer to the driver's PCB (D.PCB) are altered
by Load and Unload.

The rest of these information fields are static and are used
principally by the Queue I/O directive processing code to prepare a
Queue I/O reauest for a device driver. The details of Queue I/O
processing aie shown in Figure 6-2, QIO Directive Processing.

6.2.2 The Unit Control Block (UCB)

One unit control block exists for each physical device unit attached
to the system. Many of its information fields are static and very
device dependent. The device independent parts of the UCB contain few
dynamic parameters. For example, the redirect pointer reflects the
result of a Redirect MCR command.

The UCB contains device unit specific data, such as unit status,
physical unit number, and unit characteristics. See Chapter 8, Data
Areas and Control Blocks.

6.2.3 The Status Control Block {SCB)

One status control block exists for each device controller in the
system. This is true even if the controller handles more than one
device unit (like the DK Controller). Line multiplexers such as the
DHll and DJll are considered to have a controller per line since all
lines may transfer in parallel.

6-2

I/O PROCESSING

Some of the information in the SCB is dynamic. It contains the
following information about the currently active unit:

• The interrupt vector address

• The controller bus request priority

• Timeout counts (initial and current)

• The address of the Control Status Register

• The address of the current I/O Packet

• Storage for a Fork Block

• The I/O queue listhead

• The controller status (busy/idle)

• The controller index

The dynamic data in the SCB makes it possible to maintain control of
the current I/O in progress on the controller. The presence of Fork
Block storage in the SCB implies that a driver cannot call $FORK twice
for the processing at fork level on a given controller. The driver
for a specific device type never concerns itself with unwanted
recursion or multiple updates. Once a driver is in a fork level
process, further I/O processing, which may involve updating a shared
data base, is automatically locked out by the Fork processing of the
system itself.

6.3 QUEUE I/O DIRECTIVE PARAMETER BLOCK

The Queue I/O directive requires a 12-word Directive Parameter Block
(DPB) as shown in Figure 6-1.

LENGTH DIC

FUNCT CODE MODIFIER

RESERVED LUN

PRIORITY EFN

I/O STATUS BLOCK ADDRESS

ADDRESS OF AST ROUTINE

DEVICE

DEPENDENT

PARAMETERS

Figure 6-1 Queue Directive Parameter Block

6-3

I/O PROCESSING

The parameters have the following interpretation.

DPB size (required):

The length of DPS in words. For QIO always equal to 12 words.

DIC (required):

Directive Identification Code. For QIO, the value is a 1.

Function Code and Modifier (required):

The code of the requested I/O function (0 through 31) and device
dependent modifier bits. I/O function code definitions are in
the RSX-llM I/O Drivers Reference Manual.

Reserved:

Reserved byte: must not be used.

LUN (required):

Logical Unit Number.

Priority:

Request priority. Ignored by RSX-llM, but space must be
allocated for RSX-llD compatibility.

EFN (optional):

Event flag number.

I/O Status Block Address (optional):

This word contains a pc,inter to the I/O status block, which is a
4-byte device dependent I/O completion data packet formatted as:

Byte 0

I/O status byte

Byte 1

Augmented data supplied by the driver

Bytes 2 and 3

The contents of these bytes depend on the value of byte O.
See the RSX-llM I/O Drivers Reference Manual.

AST Address (optional):

Address of an AST service routine.

6-4

I/O PROCESSING

Device Dependent Parameters:

Up to six para.meters specific to the device. These may be, for
example:

Buffer address

Byte count

Carriage control type

Logical block number

Any optional parameters that are not specified must be filled with
zeros.

Directive Parameter Blocks and their contents are fully described in
the RSX-llM Executive Reference Manual and the RSX-llM I/O Drivers
Reference Manual.

6.4 QIO DIRECTIVE LOGICAL FLOW

Figure 6-2 is a Lo9ical Flow Diagram of QIO directive processing. The
diagram shows the main stream of code flow through the DRQIO module of
the Executive.

6-5

I/O PROCESSING

SDROIO:: REFERENCES:

:-1-- - - - - - - - - (R3), (SP)

SAVE 1/0 FUNCTION cc~

J
·----------SMPLUN, D.RS6

CALL $MPLUN TO
MAP LUN TO UCB
ADDRESS.
IF LUN NOT AS
SIGNED, SET D.RS5

._ ________________ _

1/0 OPERATION PENOING 03---8 ;:T 2

------------------- - - - - - - - - - - STKWSE
GET SAVED TASK
STACK POINTER.
BACK-UP TASK PC
TO RE-EXECUTE EMT.
CALL $TKWSE TO
WAIT FOR SIGNIFI·
CANT EVENT.

Figure 6-2 QIO Directive Processing (Part 1 of 24)

6-6

I/O PROCESSING

REFERENCES:

16$
------ - --- O.RS6, D.DSP

IF [)RIVER NOT
RESIDENT, SET
O.RS6.

l - - - - - - - - - - $CEFN
CALL $CEFN TO CONVERT
EVENT FLAG NUMBER.
CLEAR SPECIFIED
EVENT FLAG.

l
--- - -- - - - - $ACHKW

CALl. $ACHKW TO
CHECK 1/0 STATUS
BLOCK ADDRESS.

l
~10 STATUS BLOCK

J
CALL $ALPKT TO ALLOCATE 1/0

- -- - -- - -- - $ALPKT,l.PRM

PACKET ANO CLEAR RECORD
LOCKING ENTRY POINTER

l
DREMENTl/O

IUESTCOUNT

l

------ - --- T.IOC

- ---- - - --- $CEFI
IF FUNCTION IS 010 $DRWFS
ANO WAIT, CALL
$CEFI TO CONVERT
FLAGi TO MASK
AND .ADDRESS;
CALL $DRWFS TO
PUT TASK IN WAIT
STATE.

0
PART3

Figure 6-2 QIO Directive Processing (Part 2 of 24)

6-7

I/O PROCESSING

PART2

..... ___ F-IL_L_l_N_l_/O_P_A_C_K_E_T_. _]- - - - - - - - - -

..

___ C_A_L_L_S_R_E-LO_C_T_O ___ J----------RELOCATE 1/0 STATUS
BLOCK ADDRESS.

..

---IF-FU_N_C_T_l_O_N-IS-1/_0 __ J----------KILL, CALL $10KIL
TO FLUSH 1/0 QUEUE.
SET SUCCESSFUL
DIRECTIVE STATUS.

"'"

----IF_F_U_N_C_T-IO_N_N_O_T __ J----------10 KILL, CHECK
ACCESS RIGHTS
TO DEVICE.

]--BIEPRI
PART 12 .._ __________ __ ACCESS ALLOWED?

ILLEGAL FUNCTION?

PART4

REFERENCES:

T.PRI

$RELOC

$10KIL
$0EPKT
$10FIN

U.OWN, US.PUB, U.ST2
STKTCB, T.UCB, T3.PRV,
T.ST3

Figure 6-2 QIO Directive Processing (Part 3 of 24)

6-8

I/O PROCESSING

PART3

REFERENCES:

______ ..._ ______ - - - - - - - - - - US.OFL, U.ST2

IS DEVICE OFF LINE 7

CONTROL FUNCTION?

IS FUNCTION NO-OP ?

IEOFL
PART 12

FCCTL
PART9

ISSUC
PART12

---------------.- - - - - - - - - - U.CW1

IS DEVICE MOUNTABLE? 80$
PART6

---------------. - - - - - - - - - - US.MNT, US.FOR,
IS DEVICE MOUNTED
AND NOT FOREIGN?

ACP FUNCTION?

SET UP TO EXECUTE CODE
FOR SPECIFIC ACP

PART 13

60$ U.STS

PARTS

70$
PARTS

Figure 6-2 QIO Directive Processing (Part 4 of 24)

6-9

70$

I/O PROCESSING

DEVICE IS NOT J
MOUNTED OR
MOUNTED AS FOREIGN. __r-;\. 75$ ----i..:../ PART 5

ACP FUNCTION?

FCTRN (PART II)
(TRANSFER FUNCTION)

DEVICE MOUNTED ANIJ
NOT FOREIGN BUT NO'T
ACP FUNCTION

75$

IEPRI (PART 12)
(PRIVILEGE VIOLATION)

REFERENCES:

Figure 6-2 QIO Directive Processing (Part 5 of 24)

6-10

80$

DEVICE NOT .
MOUNTABLE.

ACP FUNCTION?

THIS MUST BE A FILE
STRUCTURED FUNCTION
FOR A NON·FILE
STRUCTURED DEVICE
AND MUST BE A READ
OR WRITE VIRTUAL
ALL OTHER FUNCTIONS
WOULD BE ILLEGAL
OR NO·OPS.

I/0 PROCESSIRG

FCTRN
PART?

REFERENCES:

r--------------. --- - - - - - - - 10.ALB, l.FCN, I.PAM
ASSUME FUNCTION IS
READ VIRTUAL

______ ..._ ________ - - -- -- - - - 10.RVB

IS IT READ VIRTUAL?

SET FUNCTION TO
WRITE LOGICAL BLOCK

PART7
FCTRN

FCTRN
PART?

Figure 6-2 QIO Directive Processing (Part 6 of 24)

6-11

I/O ·PROCESSING

PARTS

REFERENCES:

FCTRN

]

---------- U.CTL,UC.LGH
CALL SACHKB TO
ADDRESS CHECK
BUFFER.
CHECK BUFFER
ALIGNMENT.

ALIGNMENT ERROR'~ IEBYT
~~PART11

ADDRESS CHECK ERROF~_r;-\. IESPC
ZERO LENGTH BUFFER?~~--i....:._/ PART 11

...

_________]--- - - - - - - - - $RELOC CALL $RELOC TO
RELOCATE USER
BUFFER.

VIRTUAL 1/0 l______r-:-\. 20$

__________ F_u_N_CT~1_o_N_1 ___ ~ PART7

ADDRESS.

CALL $MPPHY TO MAI]- - - - - - - - - - $MPPHY

TO 18-BIT PHYSICAL

"-----------~------
20$

SET UP RELOCATION :J
BIAS AND DISPLACEMENT
ADDRESS.

FCXFR
PART9

Figure 6-2 QIO Directive Processing (Part 7 of 24)

6-12

I/O PROCESSING

PART 4 AND 11

REFERENCES:

SDRQRQ
-------------... - - - - - - - - - - u.sce, UC.QUE, U.CTL

QUEUE PACKET BEFORE
CALLING DRIVER?

10$
PARTS

______ ..._ ______ - - - - - - - - - -- $QINSP

10$

CALL SQINSP TO
QIO PACKET IN
DEVICE QUEUE

______ ..._ ______ - - - - - - _, - - - KISAR6, D.PCB, P.REL

MAP DRIVER.
GET ADDRESS OF
DRIVER DISPATCH
TABLE. CALL
DRIVER INITIATOR.

D.DSP, D.VINI

______ ..._ _______ - - - - - - - - - KISAR5

RESTORE APR 5

RETURN

Figure 6-2 QIO Directive Processing (Part 8 of 24)

6-13

I/O PROCESSING

REFERENCES:

FCCTL

FUNCTION IS CONTROL J
FUNCTION. COPY
REMAINDER OF DPB.

MOUNTABLE DEVICE?]=-0 !i'T ~ - - U.CWl

:--,- -~ - - - - - US.MNT, US.FOR, U.STS

MOUNTED AND NOT FOREIGN~ !~T g

POINT TO CURRENT TASK
TCB. TASK PRtVILEGED?

- -~ :P~I- - - STKTCB. T3.PRV0 T.ST3

1..:../ PART 12

------------..---------
10$

FCXFR

INSERT PARAMETER
1 INTO 1/0 PACKET
PARAMETER LIST.

INSERT PARAMETERS
2 THROUGH 6 INTO
1/0 PACKET
PARAMETER LIST

IS THIS DIAGNOSTIC
FUNCTION?

PART10

J
J

Figure 6-2 OIO Directive Processing (Part 9 of 24)

6-14

I/O PROCESSING

PART9

REFERENCES:

--------------- - - - - - - - - - 10.ATT

ATTACH FUNCTION?
10$
PART 10

-------------- -- - - - - - - - 10.0ET

DETACH FUNCTION?
10$
PART 10

-------------.- - - - - - - - - - US.UMD, U.ST2
DEVICE ATTACHED
FOR DIAGNOSTICS?

IEPRI
PART 12

-------------.- - - - - - - - - - $ACHCK
CALL SACHCK TO ADDRESS
CHECK REGISTER BUFFER

-----------------------cs
ADDRESS CHECK FAIL? IESPC

PART 11

------------- - - - - ~ - - - - - SRELOC

10$

CALL SRELOC TO RELOCATE
REGISTER BUFFER

------------- - -- - - - - - - - 10.LOV

LOAD OVERLAY FUNCTION? FCXIT
PART 12

-------------- - - - - - - - - - U.CW1

MOUNTABLE DEVICE? FCXIT
PART 12

------------- - - - - - - - - - - $TKTCB, T. LDV
GET CURRENT TASK
TCB ADDRESS AND
UCB ADDRESS OF LOAD
DEVICE.

PART 11

Figure 6-2 OIO Directive Processing (Part 10 of 24)

6-15

PART 10

CALL SMPLND TO MA
TO ACTUAL UCB
ADDRESS •

I/O PROCESSING

REFERENCES:

-· - - - - - - - - - $MPLNO

._ ________________ _

IESPC

IEOVR

IEBYT

IECMN

LOAD DEVICE MATO~ IEOVR
SPECIFIED UDB7 ___r--L..I PART 11

GENERATE LOGICAl:---i- - - - - - - - - - T.LBN

BLOCK NUMBER __J

PARTS
$0RORQ

Figure 6-2 QIO Directive Processing (Part 11 of 24)

6-16

I/O PROCESSING

REFERENCES:

IEPRI
-------------. --- - - - - - - - IE.PAI

SET PRIVILEGE VIOLATION CODE

FCXIT

CLEAN STACK ANO RETRIEVE
1/0 PACKET ADDRESS

IEIFC

IECMN
PART 11

SORQRQ
PARTS

-------------. - - - - - - - - - - IE.IFC

SET ILLEGAL FUNCTION CODE I D IECMN

..._----------------- PART11

IEOFL
----------------. - - - - - - - - - - IE.OFL

I D IECMN
.__sE_T_o_e_v_i_cE_o_F_FL_l_N_E_sT_A_T_u_s__ PART11

ISSUC
-------------. - - - - - - - - - - is.sue

IENOO

SET SUCCESSFUL
COMPLETION CODE

IECMN
PART 11

---------------- --- -- -- IE.NOD

IEBAO

SET NO BUFFER
AVAILABLE CODE

IECMN
PART 11

-------------.. - - - - - - - - - - IE.BAO

I D IECMN
..... _s_ET-BA_D __ PA--RA_M_E_T_E_R_c_o_o_E___ PART11

IEALN
------------- - - - - - - - - - - IE.ALN

IENLN

SET FILE ALREADY
ACCESSED CODE

IECMN
PART 11

-------------. - - - - - - - - - - IE.NLN

SET NO FILE ACCESSED CODE I D IECMN ..._ _____________ ~ PART11

Figure 6-2 QIO Directive Processing (Part 12 of 24)

6-17

I/O PROCESSING

PART4

REFERENCES:

LESS THAN 10, CRASH.
SHOULD NOT BE
PROCESSING HERE.

IF FUNCTION CODE J
....____,

-------------- - - - - - - - - - - MOV FCDSP(R2), R5
MOVE ADDRESS OF
POLISH DISPATCH
VECTOR TABLE, FCDSP,
INCREMENTED BY THE
FUNCTION CODE, INTO
R5 .

..

------------]- - - - - - - - - - JM. P@(RS)+
JUMP TO SPECIF IC
POLISH ROUTINE AND
EXECUTE IT.

FCDSP:

------- - - - - - - - - - - - - - POLISH ROUTINES
POLISH

ROUTINES

.WORD FCIFC
FCIFC: .WORD IEIFC

NOW SHOW IN
NUMERICAL SEQUENCE

]

- - - - - - - - - - 10 =ILLEGAL FUNCTION
36 =ILLEGAL FUNCTION
37 •ILLEGAL FUNCTION

------------ 12 =ILLEGAL FUNCTION

IEIFC:

SET ILLEGAL FUNCTION }-0
CODE. ___ ,
POLISH ROUTINES J
CONTINUE ON PART 14 ---

IECMN
PART 11

IF R$$LKL NOT DEFINED

Figure 6-2 QIO Directive Processing (Part 13 of 24)

6-·18

I/O PROCESSING

REFERENCES:

FCDSP:
.--------------- - - - - - - - - - THIS DISPATCH VECTOR

BDPKT:

OPPRM:
10$

.WORD FCPKT
FCPKT: .WORD BDPKT

BUILD AN 1/0 PACKET.
CALL OPPRM TO
INSERT OPTIONAL
FILE ID BLOCK.

CONTROL BLOCK
SPECIFIED?

20$

SEQUENCE USED BY:

11 - FIND FILE NAME IN
DIRECTORY

13 - REMOVE FILE NAME
FROM DIRECTORY

14 - ENTER FILE NAME
IN DIRECTORY

23 - EXTEND FILE
25 - MARK FILE FOR

DELETE
26 - READ FILE ATTRIBUTES
27- WRITE FILE ATTRIBUTES
28- USER MAGTAPE CONTROL

FUNCTION

------..... ------- - - - - - - - - - $ACHCK
CALL $ACHCK TO
ADDRESS CHECK
BLOCK.

ADDRESS OK?
IESPC
PART 11

----------------------- $AELOC

20$

30$

CALL SRELOC TO
RELOCATE BLOCK
ADDRESS.

PARAMETER REQUIRED?

RETURN TO INSTRUCTION
AFTER CALL TO OPRM

PART 16

30$

IEBAD
PART12

Figure 6-2 QIO Directive Processing (Part 14 of 24)

6-19

I/O PROCESSING

PART 14

ATRBK:

HERE TO BUILD ATTRIBl;;-i
POINTER BLOCK". __J

WAS AN ATTRIBUTE]--0
DESCRIPTOR BLOCK N
SPECIFIED?

MOVE3
PART

REFERENCES:

J
-----------I, LGTH,$ALOCB

SET LENGTH OF
SECONDARY
CONTROL BLOCK.
CALL $ALOCB TO
ALLOCATE THE BLOCI ________________ __

~__r:"\. IENOD
STORAGE AVAILABLE~ PART 12

• ~---------- MSTK,KISAR6
SAVE ADDRESS OF
BLOCK AND
CURRENT MAPPING

SET UP ATTRIBUTE ~
BLOCK POINTERS ANID
ADDRESSES.

CALL $ACHCK TO CHE<]- - - - - - - - - - $ACHCK

ADDRESS OF NEXT
ATTRIBUTE DESCRIPT<
BLOCK

------------...------

PART 16

Figure 6-2 QIO Directive Processing (Part 15 of 24)

6-20

I/O PROCESSING

PART 15

REFERENCES:

10$,,,__ _____ ..._ ________ - - - - - - - - $ACHCK

SET ADDRESS OF NEXT
ATTRIBUTE DESCRIPTOR.
ADDRESS CHECK OK?

IESPC
PART 11

-------...------ - - - - - - -- - - $RELOM
CALL $RELOM TO
RELOCATE AND MAP
ATTRIBUTE DESCRIPTOR.

END OF ATTRIBUTE
DESCRIPTOR BLOCK.

20$
PART16

-------------- - - - - - - - - - - $ACHCK
CALL $ACHCK TO
ADDRESS CHECK
ATT.RIBUTE BLOCK .

..------_._ ______ - - - - - - - -- - $RELOC

20$

CALL $RELOC TO
RELOCATE ATTRIBUTE
BLOCK ADDRESS.

ANY MORE SPACE IN
POINTER BLOCK?

CLEAN STACK. GET
ADDRESS OF NEXT
WORD IN 1/0 PACKET.
RESTORE CURRENT
MAPPING. RETRIEVE
ADDRESS OF NEXT
WORD IN DPB.

PART 17

10$
PART 16

Figure 6-2 QIO Directive Processing (Part 16 of 24)

6-21

MOVE3:

PART 16

AND ACCESS CONTROL
WORD IN 1/0 PACKET.

I/O PROCESSING

INSERT EXTEND J
CONTROL WORDS

--
FILNM:

REFERENCES:

------..... ----·--- - - - - - - - - -OPRM (PART 15)
SET LENGTH OF
FILENAME BLOCK
AND CALL OPRM
(PART 15) TO INSERT
OPTIONAL FILENAME.
BLOCK

NEXT WORD IN
VECTOR.

USE JMP @(R5)+ J
TO RETURN TO

...__

FCDSP:

CKNLN:

.WORD UNLXT SEQUENCE USED BY:

]

- - - - - - - - - - THIS DISPATCH VECTOR

UNLCK: .WORD CKNLN 12 - UNLOCK BLOCK

J
FILE ACCESSED ON
LUN? PART 12

--1-
]-01ENLN

JMP @(R5)+ TO NEXT J
WORD. ---

Figure 6-2 QIO Directive Processing (Part 17 of 24)

6-22

JMP@(R5)+ FROM CKNLN PART 17

UNLXT:

FCDSP:

ADVANCE PACKET
POINTER. CLEAN UP
STACK, RESTORE R5.

I/O PROCESSING

FCCTL
PART9

REFERENCES:

r-------------- - - - - - - - - -16 - ACCESS FILE FOR READ

CKDMO:

FCCAW:

.WORD FCACC
FCACC: .WORD CKDMO

VOLUME MARKED FOR
DISMOUNT?

JMP@(R5)+ TO NEXT
WORD IN VECTOR

• • •
. WOROCKALN

FILE ACCESSED ON LUN?

JMP@(R5)+ TO NEXT
WORD IN VECTOR

FCCAW: .WORD CKALN
.WORD BDPKT

• • •
JMP@(R5)+ AT END OF
BDPKT RETURNS HERE

PART19

IEPRI
PART 12

IEALN
PART 12

BO PKT
PART 14

16-ACCESS FILE FOR READ
ANO WRITE

17 -ACCESS FILE FOR READ,
WRITE, AND EXTEND

RETURN HERE
FROM BDPKT
SEQUENCE

Figure 6-2 QIO Directive Processing (Part 18 of 24)

6-23

I/O PROCESSING

PART 18

FCCAW: .WORD CKALN J
.WORD BDPKT
.WORDCKRLK

CKRLK:

SET ACCESS/DEACCESS J
PENDING INTERLOCK

...______

CKXIT:

REMOVE ADDRESS OF
SECOND LUN WORD.
REMOVE FUNCTION
CODE FROM STACK.
RETRIEVE UCB ADDRESS.
INCREMENT VOLUME
TRANSACTION COUNT.
EXIT POLISH ROUTINES.

FCDSP:

• • •
FCDAC: .WORD CKNLN]---<J

.WOAD BDPKT __ ,
-----D'

FCDAC: .WORD CKNLN
.WORD BDPKT
.WOAD CKRLK

CKRLK
PART 19

REFERENCES:

JSR @(RS)+

FROM CKNLN
PART 17

BDPKT
PART 14

JSR @(RS)+

FROM BDPKT
PART 17

Figure 6-2 QIO Directive Processing (Part 19 of 24)

6-24

I/O PROCESSING

REFERENCES:

FCOSP:
-------------- - - - - - - - - - 21 - READ VIRTUAL BLOCK

CK RAC:

.WORD FCRVB
FCRV'B: .WORD CKNLN.

• • •
FCRVB: .WORD CKNLN

.WORDCKRAC

CKNLN 32 - RECEIVE PROCESS IMAGE
PART 17

JSR@(R6)+
FROMCKNLN
PART 17

---------------- -- - -----WI.ADV

CKWAC:

SET READ ACCESS
MASK WORD

10$
PART20

-------------- - - -- -----Wl.WRV

10$

SET WRITE ACCESS
MASK WORD

RETRIEVE ADDRESS OF
SECOND LUN WORD.
SET ACP VIRTUAL
FUNCTION FLAG.

DESIRED ACCESS
PERMITTED?

RETRIEVE UCB ADDRESS.
EXECUTE AS TRANSFER
FUNCTION

IEPRI
PART 12

FCTRN
PART7

Figure 6-2 QIO Directive Processing (Part 20 of 24)

6-25

I/O PROCESSING

REFERENCES:

FCDSP:
------------- ·- - - - - - - - -- 22 -WRITE VIRTUAL BLOCK

.WORD FCWVB
FCWVB: .WORD CKNLN PART 17

1--D CKNLN 31 -TRANSMIT PROCESS IMAGE
._ ____________________ __,

• • •
FCWVB: .WORD CKNLN

.WORDCKWAC -(] JSR @(R5)+
FROM CKNLN
PART 17 .._ __________, ___________ ~

FCDSP:

CKWAC
PART 20

----------------------- ·----- - - - - -24-CREATE FILE
.WORD FCCRE

FCCRE: .WORD CKOMO
t---D CKDMO

PART 18 .._ ______________________ _,

CKACC:

10$

FCC RE:

• • •
.WORDCKDMO
.WORDCKACC

l
ACCESS REQUESTED?

l
POINT R5 TO #FCCAW

T
JMP@(R5)+ TO NEXT
WORD

to-

to-

-(] JSR @(R5)+
FROM CKDMO
PART 18

10$
PART 21

-- -------- JUMP TO FCCAW (PART 18)
IF ACCESS REQUESTED.
IF ACCESS NOT REQUESTED,
JUMP TO FCPKT (PART 14).

Figure 6-2 QIO Directive Processing (Part 21 of 24)

6-26

I/O PROCESSING

REFERENCES:

FCDSP:
--------------- - - - - - - - - 33 -CONNECT TO PROCESS

.WORD FCCON I D CKDMO

.._ ___ F_c_c_o_N_=_.w_o __ R_o_c_K_o_M_o....,_... PART1a

CKALN:

10$

CKCON:

• • •
FCCON: .WORD CKDMO

.WORDCKALN

FI LE ACCESSED ON
LUN?

JMP @(R5)+ TO
NEXT WORD

FCCON: .WORD CKDMO
.WORDCKALN
.WORDCKCON

• • •

JMP@(R5)+
FROMCKDMO
PART 18

IEALN
PART 12

JMP@(R5)+
FROM CKALN

,,,_ ___________,.. - - - - - - - - -- CHECK CONNECT

GET LENGTH OF BUFFER
IN BYTES.

BUFFER 0 LENGTH?

CALL RQPRM TO
INTERPRET REQUIRED
BLOCK ADDA ESS

PART 23

IESPC
PART 11

PARAMETER BUFFER

Figure 6-2 OIO Directive Processing (Part 22 of 24)

6-27

I/O PROCESSING

PART 22

RQPRM:

SET REQUIREP =1---D
PARAMETER FLAG . --

10$
• • •

INSERT LENGTH OF
PARAMETERS ANO
COPY REMAINDER OF
PARAMETERS .

JMP @(R5)+ TO J
NEXT WORD

.____

FCCON:

FCOSP:

• • •
.WORD CKOMO]-
.WORD CKALN --<J
.WORDCKCON
.WORD CKRLK

• • •
FCOIS: .WORD CKNLN]---<J

.WORDCKDIS

CKDIS: 1
COPY FIRST PARAMETER]--D
INTO 1/0 PACKET

• • •

PART 24

10$
PART 14

REFERENCES:

RETURN FROM
OPPRM -10$
PART14

JMP@(R5)+
RETURN
FROM CKCON
PART 22

JUMP @(R5)+5
RETURN FROM
CKNLN PART 17

10$
PART 23

Figure 6-2 QIO Directive Processing (Part 23 of 24)

6-28

FCDSP:

PART 23

0
• • •

FCDIS: .WORD CKNLN
.WORDCKDIS
.WORDCKRLK

I/O PROCESSING

REFERENCES:

JMP@(R5)+
RETURN FROM
10$ PART 23

CKRLK
PART 19

-------------- - - - - - - - - - -35 - NETWORK CONTROL

I D CKDMO FUNCTION .WORD FCNCT
FCNCT: .WORD CKDMO

-------------------------• • •
FCNCT: .WORD CKDMO

.WORDCKCON

FCNCT: .WORD CKOMO
.WORDCKCON
.WORD CKXIT

CKXIT
PART 19

·PART 18

JMP@(RS)+
FROM CKDMO
PART 18

CK CON
PART 22

JMP@(RS)+
RETURN FROM
CKCON PART 22

Figure 6-2 QIO Directive Processing (Part 24 of 24)

6-29

CHAPTER 7

MODULE DESCRIPTIONS

This chapter describes the modules, as individual units, that perform
the RSX-llM Executive programmtng functions.

The modules are described in alphabetical order and the description of
a. new module always begins on a new page.

7.1 CHAPTER ORGANIZATION

The following information is presented in this chapter:

• Module name

• Macro Library Calls

• Entry points {routines)

• Function of this module or routines

• Modules this module calls

• Entry (input) conditions

• Exit (output) conditions

The modules appear alphabetically and are grouped by system component.
Thus, this chapter describes the Executive modules, then the FCP
modules, and finally, the MCR modules1 all alphabetically.

7.1.1 Module Name

The module name starts the description of each module. The name
always appears at the top of a new page following the description of
the previous module. A brief statement of the function of the module
is included here.

7.1.2 Macro Library Calls

These calls appear in the code listing after the copyright notice.
They are included here to show the data areas or control blocks to
which the module refers.

7-1

MODULE DESCRIPTIONS

7.1.3 Entry Points

The entry point is the globc!l label in the module to which program
control is transfered by another part of the program. It can also be
considered as the label of a routine within the module. Statements
about the function of the routine are included here.

7.1.4 Calls

Included here are all the calls (using the CALL or CALLR macro) that
this routine executes. They are listed in order of appearance in the
code. Howev~r, they may appear more than once in the code.

7.1.5 Entry (input) Conditions

Entry conditions are those conditions set up by the routine that
called this routine or are present when this routine starts
processing. These parameters or conditions are in data areas or
registers in the form of data or addresses. The contents of these
registers or data areas may be altered by this routine.

7.1.6 Exit (output) Conditions

Exit conditions may be changed register contents, data area contents,
stack contents, or status indicators. Usually, the output is needed
by some other part of the system program. However, the routine or
module may perform a function without producing anything that can be
defined easily as "output". In many of these cases, the routine
indicates that it completed its operation by altering the C-bit or
returning a directive status (for directive processing routines).

7.2 EXECUTIVE MODULE DESCRIPTIONS

7.2.l BFCTL Module

BFCTL The BFCTL module puts a byte or word into the user's
buffer or gets a byte or a word out of the user's buffer.
Also, moves data one byte at a time from place to place in
the memory of a mapped system.

Macro Library Calls
HWDDF$ Define hardware registers

Entry Point -
$GTBYT:: The GTBYT routine maps to the user buffer if Memory

Management is defined. GTBYT gets the next byte from the
user buffer and returns it to the caller on the stack.
After the byte has been fetched, $GTBYT increments the
next byte address.

Calls None

7-2

Input

Output

Note

MODULE DESCRIPTIONS

RS • Address of the UCB that contains the buffer pointers.

The stack contains the byte from the user buffer.

All registers are preserved across the call.

Entry Point -
$PTBYT:: The PTBYT routine maps to the user buffer if Memory

Management is defined. PTBYT puts a byte in the next
location in the user buffer and increments the next byte
address.

Calls

Input

Output

Note

None

RS = Address of the UCB that contains the buffer pointers.

Stack = Byte to be stored in the next location in the user
buff er

$PTBYT removes the byte from the stack and stores it in
the user buffer. $PTBYT increments the next byte address.

All registers are preserved across the call.

Entry Point -
$GTWRD:: Gets the next word from the user buffer and returns it to

the caller on the stack. After the word has been fetched,
$GTWRD calculates the next word address.

Calls

Input

Output

Note

None

RS = Address of the UCB that contains the buffer pointers.

$GTWRD fetches the next word from the user buff er and
returns it to the caller on the stack.

Stack = Next word of user buffer

All registers are preserved across the call.

Entry Point -
$PTWRD:: The PTWRD routine puts a word in the next location in the

user buffer. After storing the word, $PTWRD calculates
the next word address.

Calls

Input

Output

Note

None

RS = the address of the UCB that contains the buffer
pointers.

Stack = Word to be stored in the next location of the
buffer.

$PTWRD removes the word from the stack and stores it in
the user buffer.

All registers are preserved across the call.

7-3

M~DDOLE DESCRIPTIONS

Entry Point -
$GTCWD:: The GTCWD routine gets the next word from the user control

buffer and returns it to the caller on the stack.

Calls None

Input

Output

RS • Address of the UCB that contains the buffer pointers.

$GTCWD fetches the next word from the user control buffer
and returns it to the calle~ on the stack.
Stack • next word of user buff er

Note All· registers are preserved across the call.

Entry Point -
$BLXIO:: The BLXIO routine moves data within the memory of a mapped

system.

Calls None

Input RO = Number of bytes to move
Rl = Source APRS bias
R2 = Source displacement
R3 = Destination APR6 bias
R4 = Destination displacement

Output After BLXIO finishes moving the data:
RO and RS are all tered
Rl and R3 are preserved
R2 points to the last byte of the source +1
R4 points to the last byte of the destination +l

7.2.2 CORAL Module

CORAL This module contains the core allocation
memory search algorithm looks for the
memory that is available for allocation.
rounded upward to a multiple of four bytes.

Macro Library Calls
CLKDF$ Define clock queue control block offsets
PKTDF$ Define I/O packet offsets

Entry Point -
$ALOCB:: The ALOCB routine allocates a core buffer

routines. The
first block of

The size is

$ALOC1:: The ALOCl routine allocates a core buffer (alternate
entry)

Calls

Input

Output

None

RO = Address 01: core allocation listhead -2 if entry is at
$ALOC1.

Rl = Size of the core buffer to allocate in bytes

C = l if insufficient core is available to allocate the
block

c = 0 if the block is allocated
RO = Address of. the allocated block
Rl = Length of the allocated block

7-4

MODULE DESCRIPTIONS

Entry Point -
$ALCLK:: The ALCLK routine allocates a core block for a clock queue

entry. This routine stores the length of the clock block
in Rl.

Calls

Input

Output

Note

None

None

If core is not available to allocate the block, $ALCLK
returns a 'D.RSl' directive status. If enough core is
available, $ALCLK returns the address of the allocated
block to the caller in RO.

The ALCLK routine shares common code with the ALPKT
routine.

Entry Point -
$ALPKT:: The ALPKT routine allocates a core block for a SEND or I/O

REQUEST queue entry. $ALPKT stores the length of the I/O
Packet (I.LGTH) in Rl and calls $ALOCB to allocate the
block.

Calls

Input

Output

$ALOCB

None

If core is not available to allocate the block, $ALPKT
returns a directive status of 'D.RSl'. Otherwise, $ALKPT
returns the address of the allocated block to the caller
in RO.

Entry Point -
$DEACB:: The DEACB routine deallocates the core buffer.
$DEAC1:: The DEACl routine deallocates the core buffer (alternate

entry).

Calls

Input

Output

Error

DEAC inserts the Executive core block to be deallocated
into the free block chain by core address. If an adjacent
block is currently free, DEAC merges the two blocks and
inserts them in the free block chain.

None

RO = Address of the core buffer to be deallocated
Rl = Size of the core buffer to deallocate in bytes
R3 = Address of core allocation listhead -2 if entry is at

$DEAC1

DEAC merges the core block into the free block chain by
core address and agglomerates it with adjacent free
blocks.

The system crashes if deallocation is attempted before the
front or past the end of the system pool.

Entry Point -
$DECLK:: The DECLK routine deallocates a core block that was used

for a clock queue entry.

Calls None (branches to $DEACB)

7-5

MCtDOLE DESCRIPTIONS

RO • Address of the core block to be deallocated Input

Output DECLK deallocates the clock queue entry core block and
agglomerates adjacent free core blocks~

Entry Point -
$DEPKT:: The DEPKT routine deallocates a core block that was used

for a SEND-or I/O REQUEST queue entry.

Calls None

Input RO • Address of the core block to be deallocated.

Output The core block is deallocated.

Note This routine uses the code in the DEACB routine.

7.2.3 CRASH Module

CRASH This module is E!ntered via a JUMP whenever a fatal system
error is detected. This routine dumps memory on a
DECtape, RKOS, TUlO or TU16. The first block of the dump
contains information about the state of the system at the
time of the crash. When the dump is finished, you may
reboot the system or re-execute the dump.

This module uses the following local data and routines:

CRSMSG:

$CRSBF::
$CRSST••
$CRSBN::
$CRSCS::
AGAIN:
$CRSHT::
$CRSUN::
TYPE:
CKSUM:
DUMP:

MessagH: /CRASH -- CONT WITH SCRATCH
xxO/
where: xx = OT, DK, MT, or MM
Internal crash stack
Top of crash stack
Starting device address
Checksum of device address
Type a message and wait for the user
Wait for the user
Crash unit number
Type an ASCIZ message
Verify checksum of device address
Dump the system image

Macro Library Calls -
HWDDF$ Define hardware registers

Entry Point -
$CRASH:: This is the system crash dump routine.

Calls

Input

TYPE, CKSUM

02(SP) = PS word at crash.
(SP) • PC word at crash.

MEDIA ON

Output The internal crash stack and a core image of the system
(up to 128K) are dumped onto the crash dump device.

7-6

MODULE DESCRIPTIONS

7.2.4 CVRTM Modale

CVRTM The CVRTM routine converts a pair of time interval-time
units to a clock ticks count.

Macro Library Calls -
None

Entry Point -
$CVRTM:: Time interval-units pair to clock ticks count conversion

Calls $MUL

Input R3 = Address of the time interval pair.

Output CVRTM returns the ticks count to the calling routine by
placing the high order part in RO and the low order part
in Rl. CVRTM advances R3 by 4, thus pointing past the
time interval-time units pair. If the calling routine
specified an illegal time interval (greater than 15 bits)
or illegal time units (0 or greater than 4), CVRTM returns
a directive status of 'D.RS93'.

7.2.S D~BO Module

DRABO The directive processing module, DRABO,
(aborts) the execution of a specified task.

terminates

Macro Library Calls -
ABODF$ Define task abort codes.

Entry Point -
$DRABO:: The DRABO routine aborts a specified task.

Calls

Input

Output

Note

Error

$ABTSK

RO = Address of the TCB of the task to be terminated.
Rl = Address Of the task status word of the task to be

ended.
R2 = Address of the task status word of the current task.
R3 = Address of the last word in the DPB+2.
R4 = Address of the header of the current task.
RS = Address of the TCB of the current task.

DRABO returns directive status (D.RS7) and PS to the task.

C = 0 if DRABO successfully completed execution.
DRABO returns a directive status of +l.

C = 1 if DRABO is rejected.

Directive status returned:
'D.RS7' if the specified task is not active

DPB format:
WO. 00 DIC(83.),DPB size(3.)
WO. 01 -- First half of task name
WO. 02 -- Second half of task name

Also,

Reason for abort (in S.CABO) is set into RO before calling
$ABTSK.

7-7

MODULE DESCRIPTIONS

7.2.6 DRASG Module

DRASG The directive processing module, ORASG, assigns a device
unit to a logical unit number.

Macro Library Calls -
TCSDF$ Oef ine task control block offsets.

Entry Point -
$DRASG:: Assigns logical unit number (LUN)

Calls $MPLUN, $MPLNO, $MUL

Input R2 • Address of the task status word of the current task.
R3 • Address of the logical unit number in the DPS.
R4 = Address of the header of the current task.
RS • Address of the TCS of the current task.

Output DRASG returns directive status and PS to the calling
routine.

C = O if DRASG s:uccessfully completes execution. Also,
ORASG retuirns a directive status of +l.

C = 1 if the DRJ\.SG directive routine is rejected.

Directive status returned:
'D.RS90' if a file is open or a unit is attached on the

specifi.ed LUN.

Note

'D.RS92' if a device or unit, or device and unit are
invalid.

The DPS
WO. 00
WO. 01
WO. 02
WO. 03

format i.s:
DIC(7.),DPS size(4.)
LUN to be assigned
Name of device to be assigned
Unit number of device to be assigned

7.2.7 DRATX Module

DRATX The directive processing module DRATX instructs the system
to end the execution of an asynchronous system trap (AST)
service routine. If another AST is queued and AST's are
not disabled, the next queued AST is immediately executed.

Macro Library Calls -
ASODF$ Define task abort codes
HDRDF$ Define task header offsets
HWDDF$ Define hardware registers

Conditional
A$$TRP
C$$CKP
D$$ISK
M$$MGE
A$$CHK

Assembly Parameters -
AST support
Checkpointing support
Non-resident task support
Memory management
Address checking

7-8

MODULE DESCRIPTIONS

Entry Point -
$DRATX:: The DRATX routine ends AST service.

Calls

Input

Output

Note

$NXTSK, $ACHCK, $RELOM, $SETRT, $ABCTK

R2 • Address of the task status word of the current task
Rl • Address of the last word in the DPB +2
R4 • Address of the header of the current task
RS • Addres·s of the TCB of the current task

DRATX returns a directive status and PS word to the task.

C • 0 if the DRATX routine successfully completed
execution. Also, the DRATX routine restores the
status of the pre-AST state.

C • 1 if the DRATX routine is rejected.

Directive status returned:
'D.RS80' if an AST service routine did not execute the

DRATX directive.

If an address check failure occurs while removing
arguments from the task stack, the issuing task is aborted
(S.CAST is placed in RO and $ABCTK is called).

The OPB format is:
WD. 00 -- OIC(llS.) ,DPB size(l.)

At issuance, the task stack contains:
14(SP) = (Unused)
12(SP) • (Unused)
lO(SP) = (Unused)
06(SP) =Event flag mask word.
04(SP) =Pre-AST task PS
02(SP) = Pre-AST task PC
OO(SP) =Pre-AST task directive status word

Error Possible ABORT as described in above note.

7.2.8 DRCIN Module

DRCIN The DRCIN module either connects or disconnects a
specified interrupt vector to an interrupt service routine
(ISR) in the task's own space.

Macro Library Calls -
HWDDF$ Define hardware registers
TCBDF$ Define task control block offsets
PCBDF$ Define partition control block offsets
ITBDF$ Define interrupt transfer block (ITB) offsets

Entry Point -
$DRCIN:: This routine connects a specified interrupt vector to an

interrupt service routine (ISR) in the task's own space.
DRCIN allocates a block of dynamic memory and sets up the
block as an interrupt transfer block (ITB). The !TB is
linked to the !TB list of the task with the listhead, a
single word, in T.CPCB of the TCB. DRCIN disables
shuffling and checkpointing for the task and sets up the
vector to point to the offset X.JSR in the ITB that
contains a subroutine call to the special interrupt save
routine $INTSC.

7-9

Input

Output

Note

MODULE DESCRIPTIONS

R2 • Address of the task status word of the current task
R3 • Pointer to WD. 01 in the DPB
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

DRCIN returns d:lrective s.tatus and the PS to the task.

C • 0 if DRCIN 13uccessfully completes execution with a
directive status of +l.

c • 1 if execut:lon is unsuccessful.

Directive status returned:
D.RSl An ITB could not be allocated (no pool space)
D.RSS The function requested is disconnect and the task

is not the owner of the vector.
D.RS16 Issuing task is not privileged
D.RS17 The specified vector is already in use
D.RS19 The specified vector is illegal (lower than 60 or

higher than the highest vector specified at
SYSGEN, or not a multiple of 4)

D.RS81 The ISR or disable-interrupt routine is not within
4K words from the specified base address

The DPB format is:
WO. 00 DIC (1:29.), DPB size(7.)
WO. 01 Inter:cupt vector address
WO. 02 Base address for mapping of ISR and

disable-interrupt routines. Ignored in an
unmapped system.

WO. 03 Addre:ss of interrupt service .routine. If zero,
directive is "disconnect from interrupts" and
remaining arguments are ignored.

WO. 04 Address of disable interrupt routine
WO. 05 (Low lbyte) low byte of PSW to be set before

calling ISR
WO. 06 Addre:ss of AST routine

Entry Point -
$DISIN:: This routine disconnects a specified interrupt vector from

an interrupt service routine (ISR) in the task's own space
and deallocates the associated block of memory.

When disconnecting the last or only vector, DISIN clears
the checkpoint-disable bit (T2.CKD) and the no-shuffle bit
(PS.NSF). DISIN_does this regardless of what the state
was before vectors were connected or any change in state
while vectors were connected except if the task is marked
for abort. In this case it is not made shufflable.

The ~outine DISIN:

1. Removes the ITB from the ITB list starting in T.CPCB
of the task's TCB

2. Calls the user routine that disables interrupts and
that was supplied to DRCIN and to which the vector
was connected.

3. Restores the vector PC to point to the nonsense
interrupt routine

7-10

Input

Output

MODULE DESCRIPTIONS

4. Removes the fork block of the ITB if it is in the
fork queue

S. Removes the AST block of the ITB if it is in the AST
queue for the task

6. Enables checkpointing for the task if this was the
only vector connected to the task and makes the task
shuf flable if the task runs in a system controlled
partition.

7. Deallocates the ITB

Rl • Pointer to the interrupt transfer block (ITB)
RS • Pointer to task TCB

C • 0 if DISIN successfully completes execution

C • 1 if the task is not the owner of the vector

Note Registers RO, Rl, R2, and R3 are altered by this routine

7 • 2 • 9 DRCMT Mod·ale

DRCMT DRCMT contains the following directive processing
routines:
$DRCMT Cancel·all mark time requests for the issuing

task
$DRCSR Cancel all schedule requests for a specified

task

Macro Library Calls -
CLKDF$ Define clock queue control block offsets

Entry Point -
$DRCMT:: The DRCMT routine cancels all mark time requests for the

issuing task.

Calls

Input

Output

Note

None

R2 = Address of the task status word of the current task
R3 • Address of the last word in the DPB +2
R4 • Address of the header of the current task
RS = Address of the TCB of the current task

DRCMT returns directive status and the PS to the task.

C = 0 with a directive status of +l

This routine is also called from the EXIT directive and
requires only RS to be loaded on entrance.
DRCMT shares common code with DRCSR.

The DPB format is:
WO. 00 -- DIC(27.),DPB size(l.)

Entry Point -
$DRCSR:: The DRCSR routine cancels all schedule requests for a

specified task.

Calls $CLRMV - to remove periodic single-shot requests,

7-11

Input

M•:>DULE DESCRIPTIONS

RO • Address of the TCB for which to cancel schedule
requests

Rl = Address of the task status word of the task for which
to cancel schedule requests

R2 • Address of the task status word of the current task
R3 • Address of the last word in the DPB +2
R4 = Address of the header of the current task
RS • Address of the TCB of the current task

Output DRCSR returns directive status and PS to the task.
c • O with a directive status of +l

Note The DPB format is:
WO. 00 DIC(25.),DPB size (3.)
WO. 01 First half of task name
WO. 02 -- Second half of task name

7.2.10 DRDAR Module

DRDAR The directive
recognition of
task.

DRDAR contains

processing module, DRDAR, disables
asynchronous system traps for the issuing

the following directive processing
routines:
$DRDAR
$DREAR

Disable AST recognition
Enable AST recognition

Macro Library Calls -
TCBDF$ Define task control block offsets

Entry P-oint -
$DRDAR:: The DRDAR routine disables AST recognition.

Calls

Input

Output

Note

None

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRDAR returns directive status and PS to the calling task.

C = 0 if the DRDAR directive successfully completes.
Also, DRDAR returns a directive status of +l.

C = 1 if the DR.DAR routine is rejected.

Directive status returned:
'D.RS8' if AST recognition is already disabled.

The DPB format is:
WD. 00 -- DIC(99.),DPB size(l.)

Entry Point -
$DREAR:: The DREAR routine causes the system to recognize

asynchronous system traps for the issuing task. ASTs that
have been queued while AST recognition was disabled are
processed immediately.

7-12

Calls

Input

Output

MODULE DESCRIPTIONS

$SETRT

R2 • Address of the task status word of the current task
R3 • Address of the last word in the DPB +2
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

DREAR returns directive status and PS to the task.

C • 0 if the DREAR routine successfully completes.
DREAR returns a directive status of +l.

c • 1 if the DREAR routine is rejected.

Directive status returned:
'D.RS8' if AST recognition is not disabled.

Also,

Note The DPB format is:
WO. 00 -- DIC(lOl.),DPB size (1.)

7.2.11 DRDCP Module

DRDCP The directive processing module, DRDCP, causes the system
to disable or enable checkpointing of the issuing task.

DRDCP contains the following
routines:
$DRDCP
$DRECP

Disable checkpointing
Enable checkpointing

directive processing

Macro Library Calls -
TCBDF$ Define task control block offsets

Entry Point -
$DRDCP:: Disable checkpointing

Calls

Input

Output

Note

None

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRDCP returns directive status and PS to the task.

C = 0 if the DRDCP routine successfully completes
execution. Also, DRDCP returns a directive status
of +l.

c = 1 if the DRDCP routine is rejected.

Directive status returned:
'D.RS8' if checkpointing is already disabled for the

issuing task.
'D.RSlO' if the issuing task is not checkpointable.

The DPB format is:
WO. 00 -- DIC(95.) ,DPB size(l.)

7-13

M10DULE DESCRIPTIONS

Entry Point -
$DRECP:: The DRECP routine enables checkpointing of the issuing

task.

Calls

Input

Output

$NXTXK

R2 • Address of the task status word of the current task
R3 • Address of the last word in the DPB +2
R4 • Address of the header of th·e current task
RS • Address of the TCB of the current task

DRECP returns directive status and PS to the task.

C • O if the DRECP routine successfully completed
execution. Also, DRECP returns a directive status
of +l.

C = 1 if the ORECP routine is rejected.

Directive status returned:
'D.RS8' if checkpointing is already enabled.

Note The DPB format is:
WD. 00 -- DIC(97.),DPB size(!.)

7.2.12 DRDSP Module

DRDSP The DRDSP module is the directive dispatcher.

DRDSP contains the following directive processing
routines:
$TRTRP
$EMTRP

The '!'RAP instruction traps to this routine
The EMT instruction traps to this routine

Macro Library Calls -
HDRDF$ Define task header offsets
HWDDF$ Define hardware registers
TCBDF$ Define task control block offsets
WDBDF$ Define user window definition block offsets

Entry Point -
$TRTRP:: During execution, a TRAP instruction traps to this

routine. TRTRP returns a directive status if the stack
depth is zero. Otherwise, TRTRP transfers control to the
EMT/TRAP syncht·onous system trap handling routine.

Calls

Input

Output

None

2(SP) •PS word pushed by TRAP instruction
(SP) = PC worCI pushed by TRAP instruction

TRTRP returns directive status in the stack if stack depth
is zero.

7-14

MODULE DESCRIPTIONS

Entry Point -
$EMTRP:: When an EMT instruction execution occurs, the trap occurs

to this routine. EMTRP crashes the system if the stack
depth is not +l. If the stack depth is +l, EMTRP checks
the EMT instruction for the presence of code 377. If the
code was other than 377, EMTRP transfers control to the
EMT/TRAP SST handling routine. If 377 was present, EMTRP
processes the coded directive.

The following processing occurs within EMTRP.

The EMTRP routine:

1. Calls $DIRSV (coroutine) to switch to system state and
save registers RO - RS.

2. Checks directive validity (DIC odd, size of DPB
valid).

3. Maps to DPB using KAPR6 if a mapped system is being
used.

4. Processes common functions if required (for instance,
masks).

5. Sets up the following registers prior to calling the
directive processing routine:
RS = Address of current task's TCB
R4 = Address of current task's header
R3 = Address of the next word in the directive DPB
R2 = Address of second task status word of the current

task
Rl = Directive dependent
RO = Directive dependent

6. Calls the Directive Processing routine
7. Sets the DSW, gets cor~ect stack pointers, and

restores registers.
8. Enters $DIRXT through $DIRSV which restores RO RS

and exits.

Calls $ACHK2, $ACHKP, $CEFN, $SRSTD, $DIRSV, $SWSTK, $EMSST

Input 2(SP) = PS word pushed by the EMT instruction
(SP) = PC word pushed by the EMT instruction

Output EMTRP crashes the system if the stack depth is not +l.
Otherwise, EMTRP gives control to the EMT/TRAP SST routine
or the specified directive routine. If the EMT had a code
of 377, EMTRP gives control to the specified directive
routine.

Note The stack depth ($STKDP) is defined in SYSCM.

7.2.13 DREIF Module

DREIF This is the EXIT directive processing module.

DREIF contains the following directive processing
routines:
$DREIF End execution of issuing task if specified event

flag is clear
$DREXT End execution of issuing task

7-15

MC)DOLE DESCRIPTIONS

Macro Library Calls -
ABOOF$ Define task abort codes
HOROF$ Define task header off sets
PCBDF$ Define partition control block offsets
PKTDF$ Define I/O packet offsets
TCBCF$ Define task control block offsets

Entry Point -
$DREIF:: This routine causes the system to end the execution of the

issuing task only if an indicated event flag is clear.

Calls

Input

Output

Note

None

RO • Event flag mask word
Rl = Event flag mask address
R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DREIF returns directive status and the PS to the task.

c = O if DREIF successfully completes processing.

c = 1 if DREIF is rejected.

Directive status returned:
'D.RS22' if the specified event flag is set.
'D.RS97' if an invalid or no event flag number was

specified when DREIF was called.
The DPB format is:
WO. 00 DIC(53.),0PB size(2.)
WO. 01 -- Event flag number of event flag that must be

cleat'

Entry Point -
DREXT:: The DREXT routine causes the system to end the execution

of the issuing task.

Calls

Input

Output

Note

$DRCMT, $DRSIN, $RLMCB, $DASTT, $ABCTK, $IOKIL, $ALOCB,
$DRQRQ, $ACTRM, $EXRQN, $TKWSE, $CSTA, $QMCRL, $RLPAR,
$DETRG, $DEACB, $CROSE, $QRMVF, $FINBF, $MPLNE,

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

The dispatcher also calls this routine. When this occurs,
only RS need be loaded on entrance.

The DREXT routine returns directive status and the PS to
the task.

No other status is returned to the task because this
routine ends the task's execution.

The DPB format is:
WO. 00 -- DIC(51.),DPB size(l.)

The DREXT routine contains a subroutine to empty a queue
(MTQUE:) and a coroutine to scan a logical unit table
(SCNLN:) •

7-16

MODULE DESCRIPTIONS

7.2.14 DREXP Module

DREXP The DREXP module extends tpe partition by a positive or
negative increment.

Macro Library Calls -
HWDDF$ Define hardware offsets
HDRDF$ Define task header offsets
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block offsets

Entry Point -
$DREXP:: The DREXP

partition
amount.

routine
of the

causes the system to extend the
issuing task by a positive or negative

Calls

Input

Output

Note

$SETRT, $CHKPT, $MAPTK

R2 = Address of the second task status word of the current
task

R3 = Address of the extend increment in the DPB
R4 = Address of the header of the current task
RS • Address of the TCB of the current task

The DREXP routine returns directive status and the PS to
the task.

C = 0 if the DREXP routine successfully completes
processing. Also, DREXP returns a directive status
of +l.

C = 1 if the DREXP routine is rejected.

Directive status returned:
'D.RS8' under the following conditions:

• The task is not checkpointable and specified a positive
increment

• The task has a preallocated checkpoint space and is
trying to extend its space greater than the installed
size.

• The task is not in a system controlled partition.

'D.RS88' if the specified increment is invalid.

The DPB format is:
WD. 00 DIC(89.) ,DPB size(3.)
WO. 01 Extend increment
WO. 02 -- Reserved

7-17

MODULE DESCRIPTIONS

7.2.15 DRGCL Module

DRGCL The directive processing module, DRGCL, gets the MCR
command line or releases the MCR command buffer.

DRGCL contains the following directive processing
routines:
$DRGCL

$RLMCS

Transfer a 1 through 80 byte command line to MCR
·function task
Relea.se MCR ,command buffer

Entry Point -
$DRGCL:: The DRGCL routine causes the system to transfer a 1

through 80. byte command line to the last MCR function
task requested by the dispatcher.

Calls

Input

Output

Note

Calls a subroutine to search for the command buff er for
the current task.

R2 • Address of the task status word of the current task
R3 = Address of the 80. byte buffer in the DPS.
R4 = Address of the header of the current task
RS = Address of: the TCS of the current task

DRGCL returns the directive status and the PS to the
current task.

C = O if DRGCL successfully completed execution. Also,
DRGCL returns a directive status equal to the length
of the cc>mmand 1 ine in bytes.

C = 1 if DRGCL does not complete execution.

Directive status returned:
'D.RS80' if the issuing task is not the last task that was

requested by the MCR dispatcher.

The DPB format is:
WO. 00 -- DIC(127.) ,DPS size(41.)
WO. 01 through wo. 50 -- First through last word of the

80. byte buffer

Entry Point -
$RLMCS:: The RLMCS routine releases the MCR command buffer.

Calls

Input

Output

$DEACS, 30$ (Subroutine to search for the command buffer
for the current task)

RS = Address of the TCB of the current task

If the command line currently in the MCR command buffer is
for the current task, RLMCS releases the buffer and clears
$MCRTN.

7-18

MODULE DESCRIPTIONS

7.2.16 DRGLI Module

DRGLI The directive processing module, ORGLI, causes the system
to fill a six word buffer with 1nformation about a device
that is assigned to a specified LUN. If requests to the
device have been redirected, the information returned by
DRGLI pertains to the redirected device.

Macro Library Calls -
HWDDF$ Define hardware registers

Entry Point -
$DRGLI:: Puts logical unit number information into a six word

buffer.

Calls $MPLUN, $ACHKP, $DIV

Input R2 = Address of the task status word of the current task
R3 • Address of the LUN in the DPS
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

Output The DRGLI routine returns directive status and the PS to
the task.

C = 0 if DRGLI successfully completes.
returns a directive status of +1.

Also, DRGLI

Note

C = 1 if DRGLI does not complete exection.

Directive status returned:
'D.RSS' if no device is assigned to the specified LUN.

The DPB format is:
WD. 00 DIC(S.),DPB size(3.)
WD. 01 LON for which information is returned
WD. 02 Address of a six word buffer

WD. 00
WO. 01
WD. 02
WO. 03
WO. 04
WD. 05

The six-word buffer format is:
Name of assigned device
Unit number of assigned device and flags byte
First device characteristics word
Second device characterisitics word
Third device characteristics word
Fourth device characteristics word

7.2.17 ORGPP Module

DRGPP The directive processing module, DRGPP, causes the system
to fill a 3-word buffer with partition parameters.

Macro Library Calls -
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block offsets

Entry Point -
$DRGPP:: The directive processing routine, DRGPP, fills a 3-word

buffer with partition parameters.

7-19

Calls

Input

Output

Note

MODULE DESCRIPTIONS

$SRATT, $SRNAM, $ACHKP

R2 • Address of the task status word of the current task
R3 • Address of the partition name in the OPB
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

The ORGPP routine returns directive status and the PS to
the task. ·

C • O if DRGPP successfully completed execution. Also,
DRGPP returns a directive status equal to the
starting virtual address of the specified partition.

C • 1 if DRGPP is rejected.

Directive status returned:
'D.RS2' if the specified partition is not in the system.

The DPB format is:
WO. 00 OIC(65.),DPB size(4.)
WO. 01 First half of optional partition name
WO. 02 -- Second half of optional partition name
WO. 03 -- Address of a three word buffer

The buffer format is:
WO. 00 Base address of the partition in 32 word blocks
WO. 01 Size of the partition in 32 word blocks
WO. 02 -- Partition flags word

7.2.18 DRGSS Module

DRGSS The directive processing module, DRGSS, causes the system
to store the contents of the console switch register in
the issuing task's directive status word.

Macro Library Calls -
HWDDFS Define hardware registers

Entry Point -
$0RGSS:: This routine ge·ts the sense switch information.

Calls

Input

Output

Note

None

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

The DRGSS routine returns the directive status and the PS
to the task.

C = 0 with a directive status eoual to the contents of the
console switch register. -

The DPB format is:
WO. 00 -- DIC(l25.) ,DPB size(l.)

7-20

MODULE DESCRIPTIONS

7.2.19 DRGTK Module

DRGTK The directive processing module, DRGTK, causes the system
to fill a 16-word buffer with task parameters.

Macro Library Calls -
HDRDF$ Define task header offsets
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block offsets

Entry Point -
$DRGTK:: This routine get.s task parameters.

Calls

Input

Output

Note

None

R2 = Address of the task status word of the current task
R3 = Address of the sixteen word buff er in the DPB
R4 = Address of the header of the current task
RS • Address of the TCB of the current task

DRGTK returns directive status and the PS to the task.

C = 0 with a directive status of +l.

The DPB format is:
WD. 00 -- DIC(63.) ,DPB size(2.)
WD. 01 -- Address of a sixteen word buffer

The buffer format is:
we. oo
WO. 01
WD. 02
WO. 03
we. 04

we. 05

we. 06
WO. 07
WO. 10
WO. 11
WO. 12
WO. 13
WD. 14
WO. 15
WD. 16
we. 17

First half of the name of the issuing task
Second half of the name of the issuing task
First half of the name of the task's partition
Second half of the name of the task's partition
First half of requesting task's name (not
supported)
Second half of requesting task's name (not
supported)
Task priority
Current task UIC
Number of logical units
Machine type indicator (not supported)
Standard flags word (not supported)
Address of task SST vector table
Size of task SST vector table in words
Size of task in bytes
Reserved
Reserved

7.2.20 DRGTP Module

DRGTP The directive processing module, DRGTP, causes the system
to fill a specified 8-word buffer with the current time
parameters.

Entry Point -
$DRGTP:: The DRGTP routine fills an 8-word buffer with the current

time parameters.

Macro Library Calla -
None

7-21

Calls

Input

Output

Note

MODULE DESCRIPTIONS

$ACHKP

R2 • Address of the task status word of the current task
R3 • Address of the second word in the DPB
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

The DRGTP routine returns directive status and the PS to
the task.

C • 0 if the DRGTP routine successfully completes
execution. Also, DRGTP returns a directive status
of +1.

C • 1 if DRGTP does not complete execution.

Directive status returned:
'D.RS98' if the buffer is outside the issuing task's

addres:s space.

The DPB format is:
WO. 00 -- DIC(61.) ,DPB size(2.)
wo. 01 -- Address of an eight word buffer

The buffer format is:
wo. 00 Year since 1900
WO. 01 Month of year
WD. 02 Day of month
WO. 03 Hour of day
WO. 04 Minute of hour
wo. 05 Second of minute
wo. 06 Tick of second

7.2.21 DRMAP Module

DRMAP The directive processing module, DRMAP, contains the
following routines:

$DRCRW::
$DRELW::
$DRMAP::
$DRUNM::
$DRSRF::
$DRRRF::

Create an address window
Eliminate address window
Map window to region
Unmap address window
Send by reference
Receive by reference

These directive processing routines receive, as
pointers to a window definition block. The
definition block serves as a communication area
the issuing task and the Executive.

7-22

input,
window

between

MODULE DESCRIPTIONS

The format of the window definition block is:

W.NAPR
W.NID

W.NBAS

W.NSIZ

W.NRID

W.NOFF

W.NLEN

W.NSTS

W.NSRB

Macro Library Calls -

BASE APR WINDOW ID

VIRTUAL BASE ADDRESS (BYTES)

WINDOW SIZE (32W BLOCKS)

REGION ID

OFFSET IN PARTITION (32W BLOCKS)

LENGTH TO MAP (32W BLOCKS)

STATUS WORD

SEND/RECEIVE BUFFER ADDRESS (BYTES)

HDRDF$ Define header and window block offset
PCBDF$ Define PCB and attachment descriptor offsets
TCBDF$ Define TCB offsets
WDBDF$ Define window definition block offsets

Entry Point -
$DRCRW:: The DRCRW routine causes the system to allocate an address

window in the header of the issuing task. The routine
unmaps and eliminates overlapping address windows and,
optionally, maps the new window.

Calls ELAW (to eliminate addr.ess window)

7-23

Input

Output

Note

MODULE DESCRIPTIONS

R2 • Addre~s of the task status word of the current task
R3 • Address of the window definition block
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

Input fields of the window definition block are:

W.NAPR • Base APR of region
W.NSIZ • Desired size of address window
W.NRID • ID of region to map or zero (0) for task region

(if WS • MAP = l)
W.NOFF • Offset within region to map (if WS.MAP • 1)
w.NLEN • Contains either length to map or zero (0) • If

zero, W.NLEN defaults to the smaller of the
following: window size or size left in partition
(if WS.MAP = 1)

W.NSTS = Control information
WS.MAP = l if mapping is to occur
WS.WRT • 1 if mapping is to occur with write access

The DRCRW routin·e returns directive status and the PS to
the task.

C • 0 if DRCRW successfully completes execution. Also,
DRCRW returns a directive status of +l.

C = 1 if DRCRW does not complete execution.

Directive status returned:
'D.RS16' if the specified access is denied in the mapping

stage of execution.
'D.RS84' if an invalid APR and window size combination or

an invalid region and off set-length combination
was specified in the mapping stage of execution.

'D.RS85' if no window blocks are available for use.
'D.RS86' if an invalid region was specified in the mapping

stage of execution.

Output fields in the window definition block are:
W.NID = Assigned window ID
W.NBAS = Virtual base address of window
W.NLEN = Length actually mapped
W.NSTS = Indication of any changes in mapping status

WS.CRW = 1 if address window is successfully established
WS.ELW = l if any address windows were eliminated
WS.UNM = 1 if any address windows were unmapped

The DPB format is:
WD. 00 DIC(ll7.),DPB size(2.)
WD. 01 -- Address of window definition block

Entry Point -
$DRELW:: The DRELW routine causes the system to eliminate the

specified address window, unmapping it first if necessary.

Calls $SRWND, $UNMAP

7-24

Input

Output

Note

MODULE DESCRIPTIONS

R2 • Address of the task status word of the current task
Rj = Address of the window definition block
R4 • ·Address of the header of the current task
RS • Address of the TCB of the current task

Input fields in the window definition block are:
W.NID • ID of address window to eliminate

The DRELW routine returns directive status and the PS to
the task.

C = 0 if DRELW successfully completed execution. Also,
DRELW returns a directive status of +l to the task.

C = 1 if DRELW is rejected.

Directive status returned:
'D.RS87' if an invalid address window was specified.

Output fields in the window definition block are:
W.NSTS = Indication of any changes in mapping status

WS.ELW = 1 if DRELW successfully eliminated the address
window

WS.UNM = l if DRELW found the address window already
unmapped

The DPB format is:
WD. 00 DIC(ll9.),DPB size(2.)
WD. 01 -- Address of window definition block

Entry Point -
$DRMAP:: The DRMAP directive processing routine causes the system

to map the specified address window to an offset in the
specified region. DRMAP unmaps the window if necessary.
DRMAP first builds an image of a mapped window block on
the stack. If DRMAP encounters no errors during this
process, DRMAP unmaps the corresponding window, if
necessary, and sets up the new window from the stack
image.

Calls

Input

$SRWND, $SRATT, $UNMAP

R2 Address of the task status word of the current block
R3 = Address of the window definition block
R4 = Address of the header of the current task
RS • Address of the TCB of the current task

Input fields in the window definition block are:
W.NID = ID of window to be mapped
W.NRID = ID of region to which to map. If W.NRID is 0,

mapping occurs to the task region.
W.NOFF = Offset within region to which to map
W.NLEN = Length to map. If 0, W.NLEN defaults to window

size or the size left in the partition.
W.NSTS = Control information

WS.WRT = 1 if write access is desired

7-25

Output

Note

MCIDOLE DESCRIPTIONS

The DRMAP routirte returns directive status and the PS to
the task.

C • 0 if DRMAP s;uccessfully completes execution. Also,
ORMAP returns a directive status of +l to the task.

C • 1 if ORMAP i.s rejected.

Directive status returned:
'D.RS16' if the desired access to the region is denied.
'D.RS84' if an invalid region and offset size combination

is spec:ified.
'D.RS86' if an invalid region ID is specified.
'D.RS87' if an invalid address window is specified.

Output fields in the window definition block are:
W.NLEN • Length actually mapped
W.NSTS • Indication of any changes in mapping status.

WS.UNM • 1 if the window was unmapped first

The DPB format is:
WO. QO DIC(l~~l.) ,OPB size(2.)
WO. 01 -- Address of window definition block

Entry Point -
$DRUNM The DRUNM routine causes the system to unmap the specified

address window.

Calls

Input

Output

Note

$SRWNO, $UNMAP

R2 = Address of the task status word of the current task
R3 = Address of the window definition block
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

Input fields in the window definition block are:

W.NIO • IO of the window to be unmapped

ORNUM returns directive status and the PS to the task.

C • O if DRUNM successfully completes execution. Also,
DRUNM returns a directive status of +l to the task.

C = 1 if DRUNM is rejected.

Directive status returned:
'D.RS8' if the specified address window was not mapped.
'D.RS87' if an invalid address window was specified by the

task.

Output fields in the window definition block are:
W.NSTS • Indicator of any changes in mapping status

WS.UNM = 1 if ORUNM successfully unmapped the window

The DPB format is:
WO. 00 OIC(l23.),0PB size(2.)
WO. 01 -- Addres1s of window definition block

7-26

MODULE DESCRIPTIONS

Entry Point -
$DRSRF:: The DRSRF (Send by Reference) routine causes the system to

create a formatted packet that includes a reference to a
specified region and additional optional information which
is supplied by the issuing task. The sender task must
have the access specified in the reference. The
referenced region is attached to the receiving task.

Calls

Input

Output

$CEFN, $ACHKP, $SRATT, $ALPKT, $CRATT, $QINSF, $DASTT,
$DRDSE, $DEPKT

RO • Address of the TCB of the receiver task
Rl • Address of the task status word of the receiver task
R2 = Address of the task status word of the current task
R3 = Address of the EFN number in the OPB
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

Input fields in the window definition block are:
W.NRIO = IO of the region to be sent by reference
W.NOFF = Offset word passed without checking
W.NLEN = Length word passed without checking
W.NSTS = Allowed access (defaults to access of sender

task)
WS.REO = 1 if read access is to be allowed
WS.WRT = 1 if write access is to be allowed
WS.EXT = 1 if extend access is to be allowed
WS.DEL = 1 if delete access is to be allowed

W.NSRB = Optional address of an 8-word buffer of
additional information

The DRSRF routine returns directive status and the PS to
the task.

C = O if DRSRF successfully completes execution. Also,
DRSRF returns a directive status of +l.

C = 1 if the DRSRF routine did not complete execution.

Directive status returned:
'D.RSl' if DRSRF could not allocate a send packet or

attachment descriptor
'D.RS2' if an attempt is made to send to an ACP task
'D.RS16' if the desired access to the region is denied
'O.RS86' if an invalid region ID was specified
'D.RS97' if an invalid EFN number is specified
'D.RS98' if the address check of the window definition

block or send buffer fails

There are no output fields in the window definition block.

The format of the send by reference packet is:
WO. 00 Receive queue thread
WO. 01 TCB address if EFN was specified. zero if the

EFN was not specified.
WD. 02 EFN mask; first word of sender task name
WD. 03 EFN address: second word of sender task name
WO. 04 Region ID (attachement descriptor address)
WO. 05 Offset in region word
WO. 06 Length of map.word
WO. 07 Status word
WO. 08 through WD. 017 -- Contents of the send buffer

7-27

Note The DPB
WO. 00
wo. 01
WO. 02
WO. 03
WO. 04

MODULE DESCRIPTIONS

format is:
DIC(69.),DPB size(S.)
First half of receiver task name
Second half of receiver task name
Optional event flag to set when receive occurs
Address of the window definition block

Entry Point -
$DRRRF:: The DRRRF directive processing routine causes the system

to dequeue the next receive by reference packet in the
receive queue. DRRRF exits if there are no packets in the
receive queue and the sending task requested an exit.

Calls

Input

Output

Note

$DRDSE, $SETM, $ACHKP, $QRMVF, $DEPKT, $DRMAP

R2 = Address of the task status word of the current task
R3 = Address of the window definition block
R4 • Address of the header of the current task
RS = Address of the TCB of the current task

Input fields in the window definition block are:
W.NSTS • Control information.

WS.MSP = 1 if received reference is to be mapped
WS.RCX = 1 if task exit desired if DRRRF does not find

packet
W.NSRB = Optional address of 10-word buffer for additional

information

The DRRRF routine returns directive status and the PS to
the task.

C = O if DRRRF successfully completes execution.

c = 1 if DRRRF is rejected.

Directive status returned:
'D.RS8' if receive by reference entry is not in the queue.
'D.RS98' if the address check of the receive buffer fails.

Output fields in the window definition block are:
W.NRID = Assigned region ID of the referenced region
W.NOFF = Offset word specified by sender task
W.NLEN = Length word specified by sender task
W.NSTS = Status word specified by sender task

WS.RED = 1 if attached with read access
WS.WRT = 1 if attached with write access
WS.EXT = 1 if attached with extend access
WS.DEL = 1 if attached with delete access
WS.RRF = 1 if receive was successful

The DPB format is:
WD. 00 DIC(81.),DPB size(2.)
WO. 01 -- Address of 10-word buffer

information
for additional

Entry Point -
$DRGMX:: The DRGMX directive processing routine causes the system

to return the mapping context of the task (to fill in a
given number of window definition blocks). The total
number of window blocks is in the task header. DRGMX does
not return information on unused window blocks.

7-28

Calls

Input

Output

MODULE DESCRIPTIONS

$ACHKP

R2 = Address of the task status word of the current task
R3 • Address of N window definition blocks
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

There are no input fields in the window definition blocks.

DRGMX returns directiv~/status and the PS to the task.

C • O if DRGMX successfully completes execution. Also,
DRGMX returns a directive status of +l.

C • 1 if DRGMX is rejected.

Directive status returned:
'D.RS98' if the address check of the window blocks plus

terminator word fails.

Output fields in each window definition block are:
W.NID = Address window ID of next ~stablished address

window.
W.NAPR = Base APR of the window
W.NBAS = Virtual base address of the window
W.NSIZ = Size of the address region
W.NRID = Region ID if mapped or unmodified
W.NOFF = Offset in region if mapped or unmodified
W.NLEN = Length of map if mapped or unmodified
W.NSTS = Necessary bits to restore mapping or O if not

mapped
WS.MAP = 1 if window is mapped
WS.WRT = 1 if window is mapped with write access

Note The DPB format is:
we. 00 DIC(ll3.),DPB size(2.)
we. 01 -- Address of the N window definition blocks

7.2.22 DRMKT Module

DRMKT This module processes the MARK TIME and RUN directives.

DRMKT contains the following directive processing
routines:
$DRMKT

$DRRUN

Macro Library Calls -

Declare significant event at specified
interval
Generate a clock queue entry to request a
at a specified time

CLKDF$ Define clock queue control block offsets

7-29

time

task

MC)DULE DESCRIPTIONS

Entry Point -
$DRMKT:: The directive processing routine, DRMKT, causes the system

to declare a significant event at a specified time
interval from issuing the directive. If an event flag is
specified at the time the MARK TIME directive is issued,
DRMKT clears the event flag immediately and then sets the
event flag at the time of the significant event.

Calls

Input

Output

Note

If the issuing task specified an AST entry point, an
asynchronous trap occurs at the time of the significant
event. The PS, PC, directive status word, and the
specified event flag number are pushed onto the stack when
the specified AST is processed.

$CVRTM

RO • Event flag mask word
Rl • Event flag mask address
R2 • Address of the task status word of the current task
R3 • Address of the third word in the DPB
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

DRMKT returns directive status and the PS to the task.

C • O if DRMKT successfully completes execution. Also,
DRMKT returns a directive status of +l.

C • 1 if DRMKT does not complete execution.

Directive status returned:
'D.RSl' if insufficient core is available to allocate the

clock queue entry.

The DPB format is:

WD. 00
WD. 01
WD. 02
WD. 03
WD. 04

DIC(23.),DPB size(S.)
Event flag number of event flag to be set
Time interval magnitude
Time interval units
AST entry point address

Entry Point -
$DRRUN:: The DRRUN directive processing

to generate a clock queue
requested at a specified-delta
directive and, optionally,
periodically.

routine causes the system
entry to cause a task to be
time from issuance of the

to repeat the request

Calls $UISET, $CVRTM,, $ALCLK, $CLINS

Input RO • Address o:E the TCB of the task to be run
Rl • Address of the task status word of the task to be run
R2 • Address o:E the task status word of the current task
R3 • Address o:E the partition name in the DPB
R4 • Address o:E the header of the current task
RS • Address o:E the TCB of the current task

7-30

Output

MODULE DESCRIPTIONS

The routine DRRUN returns directive status and the PS to
the task.

C • 0 if DRRUN successfully completes execution. Also,
DRRUN returns a directive status of +l to the task.

C • 1 if DRRUN does not complete execution.

Directive status returned:
'D.RSl' if insufficient core is available to allocate the

clock queue entry.

Note The DPB format is:

WD. 00 DIC(l7.),DPB size (11.)
WD. 01 First half of task name
WD. 02 Second half of task name
WD. 03 Partition name {not supported but must be

present)
WD. 04 Partition name (not supported but must be

present)
WD. OS Request priority (not supported but must be

present)
WD. 06 Request UIC
we. 07 Delta time magnitude
WD. 10 Delta time units
WD. 11 Reschedule interval magnitude
WD. 12 Reschedule interval units

7.2.23 DRPUT Module

DRPUT DRPUT contains the following directive processing
routines:
$DRFEX Enable or disable floating-point ASTs for task
$DRPUT Enable or disable power recovery ASTs for task
$DRRRA Enable or disable receive-by-reference ASTs for

task
$DRRCV Enable or disable receive ASTs for task

Macro Library Calls -
HDRDF$ Define task header offsets
TCBDF$ Define task control block offsets

Entry Point -
$DRFEX:: The directive processing routine, DRFEX, causes the system

to record that floating-point ASTs are either desired or
not desired for the issuing task.

Calls

Input

None

R2 = Address of the task status word of the current task
R3 = Address of the AST address in the DPB
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

7-31

Output

Note

lllODOLE DESCRIPTIONS

DRFEX returns directive status and the PS to the task.

C • 0 if DRFEX successfully completed execution. Also,
DRFEX returns a directive status of +l to the task.

C • 1 if DRFEX does not complete execution.

Directive status returned:
'D.RS8' if ASTs are already not desired
'D.RS80' if an AST routine issued this directive

The DPB format is:
WO. 00 -- DIC(lll.),DPB size(2.)
WO. 01 -- AST entry point address or zero

DRFEX shares common code with DRRCV.

Entry Point -
$DRPUT:: The directive processing routine, DRPUT, causes the system

to record that power recovery ASTs either are desir.ed or
are not desired for the issuing task.

Input

Output

Note

R2 = Address of the task status word of the current task
R3 = Address of the AST address in the DPB
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRPUT returns directive status and the PS to the task.

C =· O if DRPU'l~ succesfully completes execution. Also,
DRPUT returns a directive status of +l to the task.

C = 1 if DRPU'l~ does not complete execution.

Directive status returned:
'D.RS8' if ASTs are already not desired
'D.RS80' if an AST routine issued the DRPUT directive.

The DPB format is:
WO. 00 -- DIC(l09.),DPB size(2.)
WO. 01 -- AST entry point address or zero

DRPUT shares c:::ommon code with DRRCV.

Entry Point -
$DRRRA:: The directive processing routine, DRRRA, causes the system

to record that receive-by-reference ASTs either are
desired or are not desired for the issuing task.

Calls

Input

None

R2 = Address of the task status word of the current task
R3 • Address of the AST address in the DPB
R4 • Address of the header of the current task
RS = Address of the TCB of the current task

7-32

Output

Note

MODULE DESCRIPTIONS

DRRRA returns directive status and the PS to the task.

C • O if DRRRA successfully completes execution. Also,
DRRRA returns a directive status of +1 to the task.

C • 1 if DRRRA does not complete execution.

Directive status returned:
'D.RS8' if ASTs are already not desired.
'D.RS80' if an AST rou~~ne issued the DRRRA directive

The DPB format is:
WO. 00 DIC(21.),DPB size(2.)
wo. 01 -- AST entry point address or zero

Entry Point -
$DRRCV:: The directive processing routine, DRRCV, causes the system

to record that receive ASTs either are desired or are not
desired for the issuing task.

Calls

Input

Output

$ALCLK, $DECLK

R2 • Address of the task status word of the current task
R3 = Address of the AST address in the DPB
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRRCV returns directive status and the PS to the task.

C = 0 if DRRCV successfully completed. Also, DRRCV
returns a directive status of +l to the task.

C = 1 if DRRCV does not complete execution.

Note The DPB format is:
WD. 00 DIC(l07.),DPB size(2.)
WD. 01 -- AST entry point address or zero

7.2.24 DROIO Module

DRQIO DRQIO contains the following directive processing
routines:
$DRQIO Place I/O request in a queue of priority ordered

requests
$DRGRG Place I/O packet in a controller queue

Macro Library Calls -
FllDF$ Define Files-11 control block offsets
HWDDF$ Define hardware registers
PKTDF$ Define I/O packet offsets
TCBDF$ Define task control block offsets
PCBDF$ Define partition control block offsets

Entry Point -
$DRQIO:: The direc~ive processing routine, DRQIO, places an I/O

request in a queue of priority ordered requests for a
device or unit specified by a logical unit number. If the
task specifies an event flag with a QIO and WAIT (QIOW)
directive, the task is put into a wait state to wait for
the specified event flag to be set upon the occurrence of
the significant event.

7-33

Calls

Input

Output

Note

M;ODULE DESCRIPTIONS

$MPLUN, $TKWSE, $CEFN, $ACHKW, $ALPKT, $CEFI, $DRWFS,
$RELOC, $ACHKB, $MPPHY, $IOKIL, $ACHCK, $MPLND

R2 • Address of the task status word of the current task
R3 • Address of: the I/O function code in the DPB
R4 • Address of the header of the cu~rent task
RS • Address of the TCB of the current task

DRQIO returns directive status and the PS to the task.

c • 0 if DRQIO successfully completes execution. Also,
DRQIO returns a directive status of +l to the task.

c • l if DRQIO is rejected.

Directive status returned:
'D.RSS' if the specified LON is not assigned.

The OPB format is:
WD. 00 DIC(l./3.),DPB size(l2.)
WO. 01 I/O :Eunction code
WD. 02 LUN 1:.nd unused byte
WD. 03 Event flag number and priority (priority is

igno:ced)
WD. 04 Addr1ess of I/O status block
WD. 05 Addr•ess of AST service routine
WD. 06 Parameter 1
WD. 07 Parameter 2
WO. 10 Parameter 3
WO. 11 Parameter 4
WD. 12 Parameter 5
WO. 13 Parameter 6

Entry Point -
$DRQRQ:: The DRQRQ routine is called to insert an I/O packet in a

controller queue and call the driver to start.activity on
the device.

Calls

Input

Output

$QINSP, @D.VINI(RS) call to driver initiator or device
initiator, $DEPKT, $IOFIN, PPRM, $ALOCB, $ACHCK, $RELOM,
RQPRM

Rl • Address of the I/O packet
RS = Address of the unit control block

DRQRQ places the I/O packet in the controller queue and
starts activity on the device.

Note This routine destroys the contents of R4.

7.2.25 DRRAS Module

DRRAS DRRAS contains the following directive processing
routines:
$DRREC Process RECEIVE DATA and RECEIVE DATA OR EXIT

dirE!Cti ves.
$DRSND Process SEND DATA directive.

Macro Library Calls -
HDRDF$ Define task header offsets
TCBDF$ Define task control block offsets

7-34

MODULE DESCRIPTIONS

Entry Point -
$DRREC:: This routine causes the system to dequeue a data block

from the issuing task's receive queue. If the issued
directive was RECEIVE DATA OR EXIT, the task exits if no
data is queued.

Calls

Input

Output

Note

$ACHKP, $QRMVF, $DEPKT

R2 • Address of the task status word of the current task
R3 = Address of the second word in the DPB
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

The DRREC routine returns directive status and the PS to
the task.

C = O if DRREC successfully completes execution. Also,
DRREC returns a directive status of +l to the task.

C = 1 if DRREC does not complete execution.

Directive status returned:
'D.RS8' if no data is queued in the task's receive queue.

The DPB format is:
WO. 00 DIC(75. or 77.) ,DPB size(4.)
WO. 01 First half of the task name - Not supported but

must be present
WO. 02 Second half of the task name - Not supported but

must be present
wo. 03 Address of a fifteen word receive buffer

Entry Point -
$DRSND:: This directive processing routine causes the system to

queue a thirteen word data block in a specified task's
receive queue.

Calls

Input

Output

Note

$ACHKP, $SETF, $ALPKT, $QINSF, $DASTT, $DRDSE

RO = Address of the TCB of the receiver task
Rl = Address of the task status word of the receiver task
R3 = Address of the data block address in the DPB
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRSND returns directive status and the PS to the task.

C = 0 if DRSND successfully completes execution. Also,
DRSND returns a directive status of +l to the task.

C = 1 if DRSND does not complete execution.

Directive status returned:
'D.RSl' if insufficient core is available to queue the

data block.
'D.RS2' if the receiver task is an ancillary control

processor.

The DPB
WO. 00
WD. 01
WD. 02
WD. 03
WD. 04

format is:
DIC(71.) ,DPB size(5.)
First half of receiver task name
Second half of receiver task name
Address of thirteen word data block
Event flag number (optional)

7-35

MODULE DESCRIPTIONS

7.2.26 DRREG Modale

DRREG The directive processing module, DRREG, contains the
following routines:

$DRCRR::
$DRATR::
$DRDTR::
$DETRG::

Cre·ate a region
Att.ach a region
Detach a region
Det.ach a region by attachment
address

descriptor

These directive processing routines receive, as input, a
pointer to a region definition block that is a
communication area between the issuing task and the
Executive.

The format of the region definition block is:

R.GID REGION IO

R.GSIZ SIZE OF REGION (32W BLOCKS)

R.GNAM NAME OF REGION (RAD50)

R.GPAR REGION'S MAIN PARTITION NAME (RAD50)

R.GSTS REGION STATUS WORD

R.GPRO PROTECTION CODE OF REGION

Macro Library Calls -
HDRDF$ Define header and window block offsets
PCBDF$ Define PCB and attachment descriptor offsets
RDBDF$ Define region definition block offsets
TCBDF$ Define TCB offsets

Entry Point -
$DRCRR:: This directive processing routine causes the system to

create a region and optionally to attach it.

Calls $SRNAM, ATT, $ALOCB, $FNDSP

7-36

Input

Output

Note

MODULE DESCRIPTIONS

R2 • Address of the task status word of the current task
R3 • Address of the region definition block
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

Input fields in the region definition block are:
R.GSIZ = Size of region to create
R.GNAM = N~me of re.gion to create or O for no name
R.GPAR • Name of system partition in which to allocate

region or z~:to (0) for main system partition of
task

R.GSTS = Control information
RS.NOL = 1 if region should not be deleted on last

detach
RS.ATT = 1 if created region should be attached
RS.RED = 1 if read access is desired on attach
RS.WRT • l if write access is desired on attach
RS.EXT • l if extend access is desired on attach
RS.DEL = 1 if delete access is desired on attach

R.GPRO = Protection code for region (DEWR,DEWR,DEWR,OEWR)

DRCRR returns directive status and the PS to the task.

C = 0 if DRCRR successfully completed execution. Also,
DRCRR returns a directive status of +l to the task.

c = 1 if DRCRR does not complete execution.

Directive status returned:
'D.RSl' if a PCB or attachement descriptor could not be

allocated
'D.RS16' if the desired access is denied in the

attachement stage
'D.RS84' if the specified partition in which the region is

to be allocated does not exist, or if no
partition name has been specified and RS.ATT is
zero.

Output fields in the region definition block are:
R.GIO = Assigned region IO (RS.ATT = 1)
R.GSTS = Directive completion information

RS.CRR = 1 if region was created

The DPB format is:
WO. 00 OIC(SS.) ,DPB size(2.)
WD. 01 -- Address of region definition block

7-37

MtODOLE DESCRIPTIONS

Entry Po.int -
$DRATR:: The directive processing routine, DRATR, causes the system

to attach the specified region to the current task.

Calls

Input

Output

Note

$SRNAM, $CKACC, $CRATT

R2 • Address of the task status word of the current task
R3 • Address of the region definition block
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

Input fields in the region definition block are:
R.GNAM • Name of the region to which to attach or zero (0)

for task region
R.GSTS • Desired access to region

RS.RED = 1 if read access is desired
RS.WRT = 1 if write access is desired
RS.EXT = 1 if extend access is desired
RS.DEL = 1 if delete access is desired

DRATR returns directive status and the PS to the task.

C = 0 if DRATR successfully completes execution. Also,
DRATR returns a directive status of +l to the task.

C = 1 if DRATR does not complete execution.

Directive status returned:
'D.RSl' if an attachment descriptor cannot be allocated.
'D.RS84' if the specified region name does not exist.

Output fields in the region definition block are:
RaGID = Assigned region ID
R.GSIZ = Size of attached region

The DPB format is:
WO. 00 DIC(57.) ,OPB size(2.)
WO. 01 -- Address of region definition block

Entry Point -
DRDTR:: The directive processing ~outine, DRDTR, causes the system

to detach the specified region, unmapping it if necessary.

Calls

Input

$SRATT, $UNMAP

R2 = Address of the task status word of the current
R3 = Address of. the region definition block
R4 = Address of the headee of the current task
RS = Address of the TCB of the current task

Input fields in the region definition block are:
R.GID = Region ID of the region to be detached
R.GSTS = Control information

task

RS.MDL = 1 if region should be marked for delete on the
last detach

7-38

Output

MODULE DESCRIPTIONS

DRDTR returns directive status and the PS to the task.

C • 0 if DRDTR successfully completes execution. Also,
DRDTR returns a directive status of +l to the task.

C • 1 if DRDTR does not complete execution.

Directive status returned:
'D.RS16'if .an attempt is made to mark the

delete without delete access
'D.RS86' if an invalid region ID is specified

attempt is made to detach region zero

region for

or if an
(0) •

Output fields in the region definition block are:
R.GSTS • Indication of any changes in mapping context

RS.UNM = 1 if any windows were unmapped

Entry Point -
$DETRG:: The directive processing routine, DETRG, detaches a task

from a region and deallocates the attachment descriptor.
The last time DETRG detaches the region it checks it for
deletion and calls $NXTSK if needed.

Calls

Input

Output

$QRMVT, $RLPR1, $DEACB

RS = Address of attachment descriptor

DETRG modifies RO, Rl, R2, and R3.

All other output is the same as the ORDTR routine.

7.2.27 DRREO Module

DRREQ The directive processing module, DRREQ, causes the system
to request the execution of a specified task.

Macro Library Calls -
TCBDF$ Define task control block offsets

Entry Point -
$DRREQ:: Request the execution of a specified task.

Calls $TSKRP, $UISET

Input RO • Address of the TCB of the task to be requested
Rl = Address of the task status word of the task to be

requested
R2 = Address of the task status word of the current task
R3 = Address of the partition name in the DPB
R4 = Address of the header of the current task
RS = Address of the TCff of the current task

7-39

MtDDULE DESCRIPTIONS

Output DRREQ returns directive status and the PS to the task.

C • 0 if DRREQ successfully completes execution. Also,
DRREO returns directive status of +l to the task.

Note

C = 1 if DRREQ does not complete execution.

Directive .status returned:
'D.RSl' if partition control block cannot be allocated
'D.RS7' if specified task is already active

The DPB format is:
WO. 00 OIC(ll.),OPB size(7.)
WO. 01 First half of task name
WO. 02 Second half of task name
WO. 03 Partition name (not supported, but must

present)
WO. 04 Partition name (not supported, but must

present)
WO. 05 Request priority (not supported, but must

present}
WD. 06 Request UIC

7.2.28 DRRES Module

be

be

be

DRRES The directive processing module, DRRES, contains the
following directive processing routines:
$ORRES Resume execution of a task that has issued a

suspend directive
$DRSPN Suspend the execution of the task that issued

this directive
$DRATP Change the task priority of the specified task

Macro Library Calls -
HORDF$ Define task header offsets
PKTDF$ Define I/O packet offsets
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block offsets

Entry Point -
$ORRES:: The directive processing routine, DRRES, causes the system

to resume the execution of a task that issued the suspend
directive.

Calls $SETCR

Input RO = Address of the TCB of the task to be resumed
Rl Address of the task status word of the task to be

resumed
R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task
RS == Address of the TCB of the current task

7-40

Output

Note

MODULE DESCRIPTIONS

DRRES returns directive status and the PS to the task.

C • 0 if DRRES successfully completes execution. Also,
DRRES returns a directive status of +l to the task.

C • 1 if DRRES is rejected.

Directive status returned:
'D.RS7' if .the specified task is not active
'D.RS8' if the specified task is not suspended

Tne DPB format is:
WO. 00 DIC(47.),DPB size(3.)
we. 01 First half of task name
WD. 02 -- Second half of task name

Entry Point -
$DRSPN:: The directive processing routine, DRSPN, causes the system

to suspend the execution of the issuing task.

Calls

Input

Output

Note

$SETRT

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRSPN returns directive status and the PS to the task.

C = 0 with a directive status of 'D.RS22'

WO. 00 -- DIC(45.) ,DPB size(l.)

Entry Point -
$DRATP:: The directive processing routine, DRATP, causes the system

to change the task priority of the specified task.

Calls

Input

Output

Note

$MPLNE, $ACTRM, $ACTTK, $QRMVT, $NXTSK, $DRDSE, $QINSF,
$0RMVF, $QINSP

RO • Address of the TCB of the task to be altered
Rl = Address of the task status word of the task to be

altered
R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRSPN returns directive status and the PS to the task.

C = fr if DRSPN successfully completes execution. Also,
DRSPN returns directive status of +l to the task.

C = 1 if DRSPN does not complete execution.

Directive status returned:
'D.RS7' if the task is not active
'D.RS95' if the new specified priority is invalid

The DPB format is:
WD. 00 DIC(9.),DPB size{4.)
we. 01 First half of task name
WO. 02 Second half of task name
WD. 03 New priority

7-41

MCIDOLE DE.SCRIPTIORS

7.2.29 DRSBD Modale

DRS ED The directive processing module, ORSEO, contains the
following directive processing routines:
$ORCEF Clear event flag
$CROSE Declare a significant event
$DRRAF Read ·all event flags
$DRSEF Set event flag
$TKWSE Task wait for significant event
$ORWSE Wait t:or significant event
$0RWFL Wait for LOGICAL OR of event flags
$DRWFS Wait for single event flag

Macro Library Calls -
HORDF$ Define task header offsets
TCBOF$ Define task control block offsets

Entry Point -
$ORCEF:: The directive processing routine, ORCEF, causes the system

to report the polarity of an event flag and then clear the
event flag.

Calls

Input

Output

Note

None

RO = Event flag mask word
Rl = Event flag mask address
R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRCEF returns directive status and the PS to the task.

C = 0 with a directive status of 'O.RSOO' if the flag was
clear or 'D.RS22' if the flag was set.

The DPB format is:
WO. 00 DIC(31.),0PB size(2.)
WO. 01 -- Event flag number of flag to be cleared

Entry Point -
$DRDSE:: The directive processing routine, OROSE, causes the system

to declare a significant event.

Calls

Input

Output

Note

This directive is also called as a subroutine.

None

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRDSE returns directive status and the PS to the task.

C • 0 with a directive status of +l

The DPB format is:
WO. 00 -- OIC(3S.) ,OPB size(l.)

7-42

MODULE DESCRIPTIONS

Entry Point -
$0RRAF:: The directive processing routine, ORRAF, causes the system

to fill a 4-word buffer with the task's local and the
global event flags.

Calls

Input

Output

Note

$ACHKP

R2 • Address of the task status word of the current task
R3 • Addre•s of the buffer address in the OPB
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

DRRAF returns directive status and the PS to the task.

C = 0 if DRRAF successfully completes execution. Also,
DRRAF returns a directive status of +l to the task.

C • 1 if DRRAF does not complete execution.

Directive status returned:
'D.RS98' if the buffer is outside of the issuing task's

address space

The DPB format is:
WO. 00 DIC(39.),DPB size(2.)
WO. 01 -- Address of a 4-word buffer

Entry Point -
$0RSEF:: The directive processing routine, DRSEF, causes the system

to report on the polarity of an event flag and then set
the event flag.

Calls

Input

Output

Note

None

RO • Event flag mask word
Rl • Event flag mask address
R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRSEF returns directive status and the PS to the task.

C = 0 with a directive status of 'D.RSOO' if the flag was
clear or 'D.RS22' if the flag was set

The DPB format is:
WO. 00 DIC(33.),DPB size(2.)
we. 01 -- Event flag number of flag to be set

Entry Point -
$TKWSE:: This routine is called from within the Executive to

execute a wait for significant event directive for the
current task. This routine shares code that is common
with the $DRWSE routine.

Calls

Input

Output

None

None

This routine executes the wait for significant event
directive and returns to the calling routine.

7-43

MODULE DESCRIPTIONS

Entry Point -
$DRWSE:: The directive processing routine, DRWSE, causes the system

to suspend the execution of the issuing task until the
next significant event occurs.

Calls

Input

Output

Note

$SETRQ

R2 • Address of the task status word of the current task
R3 • Address of the last word in the DPB+2
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

DRWSE returns directive status and the PS to the task.

C • 0 with a directive status of +l

The DPB format is:
WO. 00 -- DIC(49.),DPB size(l.)

Entry Point -
$DRWFL:: The directive p:cocessing routine, DRWFL, causes the system

to suspend the execution of the task that issued the
directive until any of the specified event flags become
set.

Calls

Input

Output

Note

None

R2 = Address of the task status word of the current task
R3 = Address of the second word in the DPB
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRWFL returns directive status and the PS to the task.

c = O if DRWFL :;uccessfully completes execution. Also,
DRWFL returns a directive status of +l to the task.

C = 1 if DRWFL does not complete execution.

Directive status returned:
'D.RS97' if ~n illegal event flag set or a zero (0) event

flag mask is specified by the task.

The DPB format :is:
WO. 00 DIC(43.) ,DPB size(3.)
wo. 01 Event flag set indicator
WO. 02 -- Event flag mask word

The event flag sets are:
Set O Event flags l. - 16.
Set l Event flags 17. - 32.
Set 2 Event flags 33. - 48.
Set 3 Event flags 49. - 64.

Entry Point -
$DRWFS:: The directive pirncessing routine, DFWFS, causes the system

to suspend the execution of the issuing task until a
specified event flag is set.

Calls $SETRT

7-44

Input

Output

MODULE DESCRIPTIONS

RO • Event flag mask word
Rl • Event flag mask address
R2 • Address of the task status word of the current task
R3 • Address of the last word in the DPB+2
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

The DRWFS routine returns directive status and the PS to
the task. ·

C • 0 with a directive status of +l.

Note The DPB format is:
WD. 00 DIC(41.) ,DPB size(2.)
WD. 01 -- Event flag number of flag to wait for

7.2.30 DRSST Module

DRS ST The directive pr~cessing module, DRSST, specifies SST
vectors of service routine entry points for use by
intra-task debugging aids or the issuing task.

DRSST contains the following directive processing
routines:
$DRSDV

$DRSTV

Record address and length of a vector of SST
service routine entry points for debugging aid.
Record address and length of a vector of SST
•ervice routine entry points for issuing task.

Macro Library Calls -
HDRDF$ Define task header off sets

Entry Point -
$DRSDV:: The directive processing routine, bRSDV, records the

address and length of a vector of SST service routine
entry points for use by an intra-task debugging aid (ODT) •

Calls

Input

Output

None

R2 = Address of the task status word of the current task
R3 = Address of the second word in the DPB
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

DRSDV returns directive status and the PS to the task.

C = 0 if DRSDV successfully completes execution. Also,
DRSDV returns a directive status of +l to the task.

C = 1 if DRSDV does not complete execution.

Directive status returned:
'D.RS98' if part of the vector is outside of the issuing

task's address space, a vector address of zero is
specified, or the vector size is greater than 31.·
words.

7-45

Note

MIJDOLE DESCRIPTIONS

The DPB format is:
WO. 00 DIC(l03.),DPB size(3.)
WD. 01 -- Address of the SST vector
WD. 02 -- Number of entries in the SST vector

The SST vector format is:
WD. 00 Traps to 4 (odd address, non-existent memory,

etc.)
WO. 01 -- Segment fault
WD. 02 -- Trace trap CT-bit) or execution of BPT

WD.
WD.
WO.
WD.
WO.

03 ~--
04
05
06
07

instruction
Execution of an IOT instruction
Execution of an illegal or reserved instruction
Execution of a non-RSX EMT instruction
Execution of a TRAP instruction
PDP 11/40 floating point exception fault

Entry Point -
$ORSTV:: The directive processing routine, ORSTV, causes the system

to record tha address and length of a vector of SST
service routine entry points for use by the issuing task.

Calls

Input

Output

Note

$ACHKW

R2 = Address of the task status word of the current task
R3 • Address of the second word in the DPB
R4 • Address of the header of the current task
RS • Address of the TCB of the current task

DRSTV returns directive status and the PS to the task.

C • 0 if DRSTV successfully completes execution. Also,
DRSTV returns a directive status of +l to the task.

C • 1 if DRSTV does not complete execution.

Directive status returned:
'D.RS98' if part of the vector is outside of the issuing

task's address space, a vector address of zero is
specified, or the vector size is greater than 31.
words.

The DPB format is:
WO. 00 DIC(lOS.) ,DPB size(3.)
WO. 01 -- Addcess of the SST vector
WO. 02 -- Number of entries in the SST vector

The
WO.

SST vector format is:
00 Traps to 4 (odd address, non-existent memory,

WO. 01
WO. 02

WO. 03
WO. 04
WO. 05
WO. 06
WO. 07

etc.)
SegmE!nt fault
Trace trap (T-bit) or exectution of a BPT
instt·uction
Execution of an IOT instruction
Execution of an illegal or reserved instruction
Execution of a non-RSX EMT instruction
Execi:ttion of a TRAP instruction
PDP 11/40 floating-point exception fault

7-46

MODULE DESCRIPTIONS

7.2.31 ERROR Module

ERROR This is the error logging module. This module contains
the following routines:

$ALEMB - Allocate an error message block

$ALEB1 - Allocate an error message block (alternate entry)

$BMSET - Set a driver's bit in the I/O active bit map

$DTOER - Device timeouts

$DVCER - Device error bit set

$DVERR - Device error bit set (temporary label)

NSIER: . - Nonsense interrupt error processing

$QEMB - Queue an error message block (EMB)

Macro Library Calls -
HWDDF$ Define CPU registers
CLKDF$ Define clock offsets and codes
HDRDF$ Define task header offsets
PCBDF$ Define partition offsets
PKTDF$ Define I/O packet offsets
TCBDF$ Define task control block offsets and codes

Entry Point -
$ALEMB:: Error serv1c1ng routines call this routine. It
$ALEB1:: counts the occurence of the error and tries to allocate a

core block from the pool. If the core block is allocated,
it fills in the error code, the time, and the error
sequence number. Otherwise, it sets the C-bit = l.

Calls

Input

Output

Note

$ALOCB

2(SP) =Error code
O(SP) =Return
Rl = Size of the EMB to allocate

If the C-bit is 0:
(RO) = Address of the first unfilled byte
(Rl) = Address of the EMB

If the C-bit = 1, $ALEMB did not complete execution.

$ALEMB destroys R2 and R3 when it calls $ALOCB.

Entry Point -
$BMSET:: This co-routine raises the processor priority to seven and

sets the mask in the SCB in $IOABM. It lets the calling
routine start the function, then allows interruptions.

Calls @(SP)+ -- to call the calling routine

Input R4 = Address of the SCB

Output $IOABM is modified and priority 7 established.

7-47

MODULE DESCRIPTIONS

Entry Point -
$DTOER:: This is the error message block (EMB) formatting routine.

Calls

Input

Output

Note

The driver recognizes timeout errors. On the first
occurrence of an error, $DTOER attempts to log it. If
errors occur on retries, they are not logged.

$DTOER pushes the error code EC.OTO on the stack, sets the
error in progress bit in the SCB, calculates the length of
the required EMB, and calls $ALEMB. If $ALEMB fails to
allocate a packet for any reason, $DTOER exits and $DVCER
clears the pointer in the SCB to the EMB.

Otherwise, $DVCER copies the saved $IOABM from the SCB to
the EMB and saves a pointer to the EMB in the SCB. $DVCER
puts the error information, including device registers,
into the EMB and executes a RETURN. The contents of the
CSR that is saved is unchanged from the time of timeout.
After the CSR is saved, device interrupts are disabled and
CPU priority is lowered to PRO.

None

(R2) • Address of the CSR
(R4) • Address of the SCB

C = 0 if the function was not a user-mode diagnostic
function. The EMB is filled and the SCB contains a
pointer to it. The error in progress flag is set in
the SCB.

C = l if the function was a user-mode diagnostic function.
Only interrupt enable is cleared and the priority is
lowered to O.

If the system supports diagnostics, Rl will be set to the
I/O packet address. If diagnostics are not supported, all
registers are cleared.

Entry Point -
$DVCER:: This is the EMEi formatting routine and it is used when the

device driver recognizes device error bit errors. On the
first occurencE~ of an error, $DVCER attempts to log it.
If errors occuc on retries, they are not logged.

Calls

$DVCER pushes the error code, EC.DVC, on the stack, sets
the error in progress bit in the SCB, calculates the
length of the required EMB, and calls $ALEMB. If $ALEMB
fails to all<>cate a packet for any reason, $DVCER clears
the pointer in the SCB to the EMB and exits.

Otherwise, $DVCER copies the saved $IOABM from the SCB to
the EMB and sa,1es a pointer to the EMB in the SCB. $DVCER
puts the error information, including the device
registers, into the EMB and executes a RETURN.

$ALEMB

7-48

Input

Output

MODULE DESCRIPTIONS

(R4} = Address of the SCB

After $DVCER fills the stack, the stack contains:

O(SP} =Error code
2(SP) = CSR address or O
4(SP} =Saved RO
6(SP) =Saved Rl
lO(SP) =Saved R2
12(SP) =Saved R3
14(SP) = Return

If successful, the EMB is filled and the SCB contains a
pointer to it. An error in progress bit is set in the
SCB.

Otherwise, the occurrence of the error is counted only.

Entry Point -
$NSO::through$NS7::

These are the nonsense interrupt identifier routines. One
of a group of 16 unused vectors points to each of these
routines. The vectors are sub-coded in the PS condition
codes. Each routine consists of a CALL to NSIER: and a
word containing an indentifying number.

Entry Point -
$QEMB:: This is the common entry point for all EMBs. $QEMB queues

the EMB FIFO in the error queue. $QEMB awakens the ERROR
logger task if there are enough bytes of EMBs in the pool.
If the queue is empty, $QEMB makes a schedule request to
write a queued EMB within a time limit. Otherwise, $QEMB
executes a RETURN.

Input (Rl) = Address of the EMB

Output None

Note $QEMB destroys registers RO through R3

7.2.32 INITL Module

INITL The INITL module contains the transfer point of the
resident executive. When the system is initially booted,
control transfers to this routine to initialize and start
up the system.

The INITL
$POOL::
SYSMG:
SYSID:
DEVMG:

OPMSG:

TRPRT:
$SYBEG::
$SYTOP::

module contains the following labels:
Start of the system pool space
The log on message "RSX-llM V3.l BL",
The system identification (4 bytes)
The message: /DEVICE dduu: NOT IN
CONFIGURATION/
Subroutine to write a message to the system
console terminal
Non-existent memory - trap routine
Beginning of dynamic storage region
Last address in the Executive

7-49

MODULE DESCRIPTIONS

The INITL routine resets the processor and saves the
following information about the loading device:
• Unit number
• Logical block number (LBN) of load image
• Device name
• Length of load file

The INITL.module sets up the basic ope~ating parameters of
the system using conditional assemblies for Memory
Management, 11/70 Extended Memory Support, 11/70 Cache
Parity Support, and Real Time Clock for LSI-11.

Macro Library Calls -
HWDDF$ Define hardware registers

Entry Point -
$INITL:: This is the system start up and initialization routine.

Calls $DIV, $DEACB

Input None - Processor reset

Output None - System operating parameters initialized

7.2.33 IOSDB Module

IO SUB The IOSUB
$ACHKP
$ACHKW
$ACHK2
$ACHKB
$ACHCK
$ASUMR
$CEFN
$CEFI
$DEUMR
$DQUMR
$DVMSG
$GTPKT
$BLKCK
$BLKC1
$!ODON
$IOALT
$IOFIN
$IOKIL
$LCKPR
$MPLNE
$MPLUN
$MPPHY
$MPPKT
$MPUBM
$MPVBN
$RELOC
$RELOM
$RLCH
$RQCH
$SCDVT
$SCDV1
$STMAP
$ECCOR
$RELOP

module contains the following routines:
Address check parameter block
Address check parameter block; word aligned
Address check 2-byte directive parameter block
Address check; byte aligned
Address check; word aligned
Assign UNIBUS mapping registers
Convert event flag number for directive
Convert event flag number for I/O
Deassign UNIBUS mapping registers
Dequeue from UMR wait
De~ice message output
Get I/O packet from request block
Check logical block
Check logical block (alternate entry)
I/O done
I/O done (alternate entry)
I/O finish
I/O ~:ill
Lock and unlock processing routine
Map logical unit number for exit
Map logical unit number
Map to physical address
Map J:/O packet function
Map UNIBUS to memory
Map virtual block number
Relocate user virtual address
Relocate and map address
Release channel
Reauest channel
Scan device tables
Scan device tables (alternate entry)
Set up UNIBUS mapping address
Common ECC correction code for RP04/RK06
Relocate UNIBUS phisical address

7-50

$CRPAS
$MUL
$WTUMR
$DIV

MODULE DESCRIPTIONS

Common register pass routine
Integer multiply magnitude numbers
Wait for change in UMR state
Integer divide magnitude numbers

Macro Library Calls -
FllDFS Define window and lock block off sets
HDRDF$ Define task header offsets
HWDDF$ Define hardware registers
PCBDF$ Define partition control block offsets
PKTDF$ Define I/O packet offsets
TCBDF$ Define task control block offsets

Entry Points -
$ACHKP:: Executive code calls these routines to check the address
$ACHKW:: of a task specified parameter block to ensure that the
$ACHK2:: block is within the task's address space and is correctly

aligned. If either check fails, the routines return a
directive status of 'D.RS98'.

Calls

Input

Output

Note

$ACHCK, $RELOC

RO = Starting address of the block to be checked
Rl = Length of the block to be checked in bytes

These routines return a directive status of 'D.RS98' to
the calling routine if either check fails.

Registers RO and R3 are preserved across the call.

Entry Points -
$ACHKB:: Executive code calls these routines to check the address
$ACHCK:: of a block of memory to be sure it lies within the address

space of the current task.

Input

Output

Note

RO = Starting address of the block to be checked
Rl = Length of the block (in bytes) to be checked

C = O if address check succeeded.
C = 1 if address check failed.

Registers RO and R3 are preserved across the call

Entry Point -
$ASUMR This routine assigns UNIBUS mapping registers (UMRs). It

assigns a contiguous set of UMRs. For the sake of speed,
the link word of each mapping assignment block points to
the UMR address (2nd) word of the block, not the first
word. A linked list of mapping assignment blocks
represents the current state of UMR assignment. Each
block contains the address of the first UMR assigned and
the number of UMRs assigned times 4. The blocks are
linked in the order of increasing first UMR address.

Calls

Input

None

RO = Address of a mapping register assignment block
M.UMRN(RO) =Number of UMRs required times 4

7-51

Output

Note

MODULE DESCRIPTIONS

C • 0 if $ASUMR successfully assigned the UMRs. All
fields of the mapping register assignment block are
initialized and the block is linked into the
assignment list.

C • 1 if $ASUMR could not assign the UMRs.

All registers are preserved.

Entry Points -
$CEFN:: Executive code calls these routines to convert an
$CEFI:: event flag number to an event flag mask word and event

flag mask address.

Calls

Input

Output

Note

None

RO = Event flag number to be converted
RS = TCB address of the task to which the event flag

applies

C = O if an event flag number was specified.
RO = Event flag mask word
Rl = Event flag mask address

C = 1 if no event flag number was specified.
RO = zero
Rl = zero

Directive status returned:
'D.RS97' if an incorrect event flag number is specified.

If the $CEFI routine is called, R3
otherwise, $CEFN adds two to R3.

is preserved;

Entry Point -
$DVMSG:: This routine queues a message to the task termination

notification task. The messages are related to a device
failure or a checkpoint write failure occurring from the
loader.

Calls

Input

Output

Note

$ALOCB, $EXRGF

RO = Message number
RS = Address of the UCB or TCB to which the message

applies

$DVMSG calls $/~LOCB to allocate a four-word packet and
stores the message number (RO) in the second word and the
UCB or TCB address (RS) in the third word. $DVMSG threads
the packet in the task termination notification task
message queue.

If the task termination notification task (SYSGEN option)
is not installed, or no storage can be obtained, $DVMSG
performs no function and returns to the calling routine.

7-52

MODULE DESCRIPTIONS

Entry Point -
$GTPKT:: Device drivers call this routine to dequeue the next I/O

request to be processed~ If the device controller is
busy, GTPKT sets the carry bit and returns to the caller.
If the device controller is not busy, GTPKT tries to
dequeue the next request from the controller queue. If
$GTPKT cannot dequeue a request, it sets the carry bit and
returns to the caller. If the $GTPKT process succeeds,
$GTPKT sets the controller to busy and clears the carry
bit before returning to the caller.

Calls

Input

Output

Note

$IOALT, $MPPKT, $EXRQP

RS • Address of the UCB of the controller for which $GTPKT
will get a packet.

C = 0 if $GTPKT successfully dequeued a packet. Also,
$GTPKT returns the following contents of Rl through
RS:
Rl = Address of the I/O packet
R2 = Physical unit number
R3 = Controller index
R4 = Address of the status control block
RS = Address of the unit control block

C = 1 if the controller is busy or no request can be
dequeued

The contents of R4 and RS are changed by this routine.

Entry Points -
$BLKCK:: I/O device drivers call these routines to check the
$BLKC1:: starting and ending logical block numbers of an I/O

transfer to a file structured device. If the range of
blocks is not correct, $BLKCK enters $IODON with a final
status of 'IE.BLK' and then a return to the calling driver
occurs at the driver's initiator entry point. If the
range of blocks is correct, $BLKCK returns to the calling
driver.

Input Rl = Address of the I/O packet
RS = Address of the unit control block (UCB)

Output

Entry Point

If the check fails, $BLKCK enters $IODON
status of 'IE.BLK' and $IODON returns
driver at the initiator entry point.

If the check succeeds, $BLKCK returns
contents of registers RO through R3 to the
RO = Low part of logical block number
Rl = Points to I.PRM+l2 (low part of user

number)
R2 = High part of logical block number
R3 = Address of I/O packet

with a final
to the calling

the following
calling driver:

logical block

$DEUMR:: This routine deassigns a contiguous block of UMRs. If the
mapping assignment block is not in the list, no action is
taken. For the sake of assignment speed, the link word
points to the UMR address (2nd) word of the assignment
block.

Calls None

7-53

Input

Output

Note

MtODOLE DESCRIPTIONS

R2 • Pointer to assignment block

None

RO and Rl are preserved.

Entry Point -
$DQUMR:: Control is transfered here to see if a driver is waiting

for UMR assignemnt. $DQUMR calls the calling driver back
as a co-routine. When the calling driver issues a return
back to this routine, $DQUMR checks to see if any drivers
are waiting for UMRs. If so, $DQUMR restores the waiting
driver's context without actually de-queueing the mapping
assignment block and passes control back to the original
UMR assignment routine.

Input (SP) = Return address to the driver's caller

Output None

Entry Points -
$IODON:: I/O device drivers call this routine at the end of an I/O
$IOALT:: request to do final processing. $IODON sets the unit and

controller to idle and enters $IOFIN to finish processing.

Calls

Input

Output

$QEMB, $DEUMR, $FORKO

RO = First I/O status word
Rl = Second I/O status word. If the entry to this routine

is at $IOALT, $IOALT clears Rl to signify that the
second status word is zero (0).

R2 • Starting and final error retry counts if this process
is the end of I/O on an error logging device

RS = Address of the unit control block of the unit being
completed

(SP) • Address of the driver's caller (for return)

The unit and controller are set idle.

R3 = Address of the current I/O packet

Entry Point -
$IOFIN:: This routine is called to finish I/O processing in cases

where the unit and controller are not to be declared idle.

Calls

Input

$SETF, $CHKPT, $NXTSK, $QINSF, $DEPKT

RO = First I/O status word
Rl - Second I/O status word
R3 = Address of the I/O request packet

7·-54

Output

Note

MODULE DESCRIPTIONS

$IOFIN:
1. Stores the final I/O status values in the I/O statu_s

block if one was specified
2. Decrements the I/O count and clears TS.RON in case the

task was blocked for I/O rundown.
3. Clears TS.CKR if it is set and initiates checkpointing

of the task.
4. Queues an AST for the task if an AST service routine

was specified. Otherwise, $IOFIN deallocates the I/O
packet.

S. Sets the event flag.

$IOFIN destroys the contents of R4.

Entry Point -
$IOKIL:: This routine flushes all I/O requests for the current task

from a device queue and cancels the I/O operation in
progress for the current task.

Calls

Input

Output

Note

$IOFIN, @D.VCAN(R2) - where R2 is the address of the
driver dispatch table

RS = Address of the device UCB of the device for which to
flush requests

$IOKIL calls the driver at the cancel I/O operation entry
point with the arguments:
RO = Address of the current I/O packet
Rl = Address of the TCB of the current task
R3 • Controller index
R4 = Address of the status c6ntrol block
RS = Address of the unit control block

$IOKIL destroys the contents of R4.

Entry Point -
$LCKPR:: This is the lock/unlock processing routine. This routine

first determines if a file I/O request is to a shared
file. If it is, $LCKPR determines if the request is an
UNLOCK QIO or a virtual block I/O request. It then either
performs the unlock QIO or the lock processing,
respectively.

Calls $ALOCB

7-55

Input

Output

Note

MODULE DESCRIPTIONS

The inputs for the main entry point, $LCKPR, are:
Rl • I/O packet. address of the request

Unlock processing: The section of $LCKPR that performs
the unlock ptocessing contains the following relevant
register contents:
RO • Unlock error status
Rl =- I/O packet. address
R2 • Address of the first lock block in the lock list
R3 • Pointer to current window
R4 = Byte count of current unlock request

Lock processi~g: The section of $LCKPR that performs the
lock processing checks for attempted lock overlaps, tries
to set the new lock, and performs the implied unlock. If
a new lock request for an explicit unlocker is detected
that exactly matches an existing lock for that window in
both starting VBN and size, the lock block is reused. The
relevant registers contents for this part of $LCKPR are:
Rl = I/O packet address
R2 = Address of first lock block in lock list
R3 = Address of file window
R4 = Block count for current request

$LCKPR contains; an internal routine to check for exact VBN
and block count match. The inputs to this routine are:
Rl = I/O packet address
R2 = Lock block address
R4 = Byte count

The outputs of this routine are:
z = 1 if there is an exact match
z = 0 if there is no match
All· registers are preserved.

The outputs of $LCKPR are:
C = O if no lock processing was required

C = 1 if an unlock was performed or an error condition
occured during the lock processing.

RO =- I/O status

Rl is preserved.

Entry Point -
$MPLNE:: These routines validate a logical unit number (LON) and
$MPLUN:: map the LUN into a UCB pointer. If the calling routine

specified an incorrect LUN, $MPLNE returns a directive
status of 'D.RS96'. If the LON is correct, $MPLNE maps it
and returns the pointer, which points to the LUN and the
UCB, to the calling routine.

Input

Output

R3 = Address of the LON
R4 = Address of the header of the current task
RS = Address of the TCB of the current task

Rl contains the address of the second LUN word in the task
header.

R3 is advanced by two (2).

C = 0 if a device is assigned to the specified LON.
RO = Address of the UCB of the assigned device

C = 1 if no device is assigned to a specified LUN. RO
contains zero (0).

7-56

MODULE DESCRIPTIONS

Entry Point -
$MPPHY:: This routine maps a relocation bias and displacement

address to an 18-bit physical address. If the indicated
device is not a non~processor request (NPR) device, $MPPHY
returns the relocation bias and displacement address to
the caller. Otherwise, $MPPHY converts the relocation
bias and displacement address to an 18-bit physical
address and returns this address to the calling routine.

Calls

Input

Output

Note

None

Rl • Relocation bias
R2 • Displacement address
RS • Address of the unit control block

If the device is an NPR device:
Rl = High order 2 bits of physical address in bits 4 and 5
R2 • Low order 16 bits of physical address

If the device is an NPR device on an 11/70:
Rl = High order 6 bits of physical address in high byte
R2 = Low order 16 bits of physical address

If the device is not an NPR device:
Rl • Relocation bias
R2 = Displacement address

RO and R3 are preserved across the call.

Entry Point -
$MPPKT:: This routine maps a read or write virtual function in an

I/O packet to a read or write logical function. If the
current window does not map the virtual function, MPPKT
sets the C-bit and returns the partial mappping results to
the calling routine. If the window completely maps the
virtual function, $MPPKT stores the logical block number
in the I/O packet and converts the read or write virtual
function to its logical counterpart.

Calls

Input

Output

Note

$MPVBN, $MPPHY

Rl = Address of the I/O packet

C = O if mapping was successful.
RO = Zero (0)
I.FCN+l(Rl) = IO.WLB or IO.RLB
I.PRM+lO(Rl) =High part of mapped LBN
I.PRM+l2(Rl) = Low part of mapped LBN

C = 1 if mapping failed.
RO = Number of blocks not mapped
R2 = High part of mapped LBN
R3 = Low part of mapped LBN

Rl is preserved across call

Entry Point -
$MPUBM:: UNIBUS NPR device drivers call this routine to load the

necessary UNIBUS map registers to enable a transfer to
main memory on an 11/70 processor with extended memory.

Calls None

7-57

Input

Output

Note

MODULE DESCRIPTIONS

R4 • Address of device SCB
RS • Address of device UCB

$MPUBM loads th•! necessary UNIBUS map registers to enable
a transfer.

Register R3 is preserved across the call.

Entry Point -
$MPVBN:: This routine maps a virtual block number (VBN) to a

logical block number (LBN) by using a window block that
contains a set of mapping pointers.

Calls

Input

Output

None

RO • The number of consecutive bytes that must be mapped
Rl • Address of the window block
R2 • High part of VBN
R3 • Low part of VBN

C • 0 if $MPVBN successfully maps the VBN to the LBN.
Also:
RO • The number of unmapped blocks
R2 - High part of LBN
R3 • Low part of LBN

c • 1 if $MPVBN could not map the VBN by using the window
block

Entry Point -
$RELOC:: This routine relocates a user's virtual address. $RELOC

transforms a 16-bit user virtual address into a relocation
bias and displacement-in-block relative to APR6.

Calls

Input

Output

Note

None

RO • User's virtual address to be relocated

Rl • Relocation bias to be loaded into PAR6
R2 • Displacement-in-block plus 140000 (PAR6 bias)

RO and R3 are preserved across the call.

Entry Point -
$RELOM:: This routine transforms a 16-bit user virtual address into

a relocation bias and displacement-in-block relative to
APR6 and loads these values for access by the caller.

Calls $RELOC

Input RO = User's virtual address to be relocated

Output RO • Displacement-in-block

$RELOM loads KISAR6 with the relocation bias

Note R3 is preserved across the call.

7-58

MODULE DESCRIPTIONS

Entry Point -
$RLCH:: This routine releases a channel. It sets the channel

status to idle and tries to dequeue the next driver
waiting to use the channel. If no driver is waiting,
$RLCH returns to the calling routine. Otherwise, $RLCH
dequeues the driver, sets the channel status to busy,
calls the driver, and returns to the calling routine.

Calls

Input

Output

Note

$0RMVF

RS • Address of the unit control block

$RLCH sets the channel status to idle and tries to dequeue
the next driver waiting to use the channel.

RO, Rl, and R2 are preserved across the call.

$RLCH destroys the contents of R4.

Entry Point -
$ROCH:: This routine requests exclusive use of a channel. If the

channel is busy, $ROCH threads the calling driver into the
channel wait queue and returns to the routine that called
the driver. If the channel is not busy, $ROCH sets the
channel status to busy and returns to the calling driver.

Calls

Input

Output

$QIN SF

R4 = Address of status control block
RS = Address of unit control block
(SP) • Return address of calling routine
2(SP) =Return address of the routine that called the

calling routine.

The calling driver is threaded into the channel wait
queue.

Entry Point -
$SCDVT:: This co-routine scans device tables for a calling routine.
$SCDV1:: For each UCB found, this co-routine calls the calling

routine and returns the UCB, DCB, and SCB addresses to it.

Calls

Input

Output

@(SP)+ (the calling routine)

R3 = List pointer (if entry is at $SCDV1)

C = 0 if the next device table entry is being returned
R3 = Address of the device control block (DCB)
R4 = Address of the status control block (SCB)
RS = Address of the unit control block (UCB)

C = 1 if no more entries exist in the device tables

7-59

MODULE DESCRIPTIONS

Entry Point -
$STMAP:: UNIBUS NPR device drivers call this routine to set up the

UNIBUS mapping address. $STMAP first assigns the UNIBUS
mapping registers (UMRs). If the UMRs cannot be
allocated, $STMAP places the driver's mapping assignment
block in a wait queue and returns to the driver's caller.
The assignement block will be dequeued eventually when the
UMRs are available and the driver will be remapped and
returned to with Rl through RS preserved and the normal
outputs of this routine. $STMAP stores the driver's
context in the assignment block and the fork block while
it is blocked and in the wait queue. Once $STMAP places
the driver's mapping assignment block in the UMR wait
queue, it is not removed from the queue until the UMRs are
successfully assigned. This strategy assures that waiting
drivers are serviced FIFO and that drivers with large
requests for UMRs will not wait indefinitely.

Calls

Input

Output

Note

$ASUMR, $WTUMR

R4 = Address of the device SCB
RS = Address of the device UCB
(SP) = Return to driver's caller

$STMAP sets up UNIBUS map addresses in the device UCB and
moves the actual physical address to the SCB.

Registers Rl, R2, and R3 are preserved across the call.

Entry Point -
$ECCOR:: This routine contains common error correction code (ECC)

Calls

Input

Output

for the RP04 and RK06. $ECCOR applies the ECC correction
algorithm and de~ermines if offset recovery is required
(if supported).

$RELOP

Rl = Contents of error register
R2 = Control status register (CSR) address
R3 = Address of first ECC register
RS = UCB address

R3 = Controller index

C = 0 if offset recovery is not required
RO = IS.SUC&377
Rl = bytes actually transfered
R2, R4, and RS are unmodified
U.BUF and U.BUF+2 are updated by a call to $RELOP

C = 1 if off set recovery is required
RO Number of good bytes transfered
Rl - RS are unmodified

7-60

MODULE DESCRIPTIORS

Entry Point -
$RELOP:: This routine relocates a UNIBUS physical address to a

KISAR6 bias and displacement.

Calls

Input

Output

None

RO • byte offset from address in U.BUF+l and U.BUF+2
RS • UCB address
U.BUF+l(RS) • High order bits of physical address
U.BUF+2(R5) • Low orde~bits of physical address

KISAR6 • Calculated bias (mapped system)
Rl • Real address or displacement

Entry Point -
$CRPAS:: This is the common register pass routine. $CRPAS passes

the contents of the device registers back to the
diagnostic task. This routine passes all registers in the
order in which they appear on the UNIBUS. $CRPAS uses the
error logging entries, S.ROFF and S.RCNT, in the status
control block. To use this routine, error logging must be
enabled.

Calls

Input

Output

Note

None

Rl = I/O packet address
R2 = Control status register address
R4 = Status control block address

None

RO and R2 are preserved.

Entry Point -
$MUL: This is the integer multiply routine.

Calls

Input

Output

Note

None

RO = Multiplier
Rl = Multiplicand

$MUL returns a doubleword result in RO and Rl.
part is in RO and the low part is in Rl.

The high

Registers R2, R3, R4, and RS are ~reserved across the
call.

Entry Point -
$DIV:: This is the integer divide routine.

Calls

Input

Output

Note

None

RO = Dividend
Rl =r Divisor

$DIV returns the quotient in RO and the remainder in Rl.

Registers R2, R3, R4, and RS are preserved across the
call.

7-61

M()DULE DESCRIPTIONS

Entry Point -
$WTUMR:: This routine wa:Lts for a change in the UMR state. It

stores Rl through R4 and the return PC in the mapping
assignment block and queues the block in the UMR wait
queue for a subsequent recall to the caller when the state
of the UMRs changes. It is possible for the mapping
assignment block to already be in the wait queue. If it
is~ it can be at the head of the queue only.

Calls

Input

Output

7.2.34

LOA DR

None

RO = Pointer to UMR assignment block

$WTUMR queues the assignment block in the UMR·wait queue.
$WTUMR returns to the caller at system state with Rl
through R4 preserved.

LOADR Module

The LOADR module is a task that loads and checkpoints all
nonresident tasks.

Macro Library Calls -
ABODF$ Define task abort codes
HDRDF$ Define task header offsets
HWDDF$ Define hardware registers
PCBDF$ Define partition control block off sets
TCBDF$ Define task control block offsets

Entry Point -
$LOADR:: This task:

• Reads a nonresident task into memory and initializes it
for execution.

• Reads a previously checkpointed task back into memory
and restarts its execution.

• Writes a checkpoint image of a running task and frees
its partition.

$LOADR gets its input from a loader queue by a call to
$QRMVF. The loader queue contains a priority ordered list
of task TCBs. $LOADR removes the highest priority (the
first) TCB from the queue and processes it. $LOADR
processes the TCBs in the queue in priority sequence.

Calls SQRMVF, $STPCT, $DEACB, $QINSP, $RLPAR, $DVMSG, $ALOCB,
$TKWSE, $MAPTK, $CRATT, $SWSTK, $BILDS, $CHKPT, $DASTT,
$ACTTK I $ABTSK

7.2.35 LOWCR Module

LOWCR The LOWCR module contains low core pointers, trap and
interrupt vectors, and the Executive stack area. This
module contains one executable statement - a JUMP to the
panic dump routine ($PANIC). The other statements define
the addresses of trap processing modules and low core
pointers.

7-62

MODULE DESCRIPTIONS

This file must be the first in the task builder command
file because it occupies locations starting at real
location zero.

The following low core pointers are contained in this
module:
• Address of directive status
• Directive status word
• FCS impure area pointer
• FORTRAN impure area pointer
• Overlay run time system impure area pointer

The system stack area contains a minimum of 40. words.

Calls None

Input None

Output None

7.2.36 PARTY Module

PARTY Execution of this module occurs because of a memory parity
error interrupt. Any error that occurs on the system
stack or in the Executive is a fatal error. A fatal error
halts the system and the message "***EXEC PARITY ERROR***"
is printed. Otherwise, the task occupying the memory in
which the error occurred is aborted and locked into memory
to prevent that portion of memory from being used again.
A message is printed to indicate that the task was
aborted.

Macro Library Calls -
ABODF$ Define task abort codes
HWDDF$ Define hardware registers
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block off sets

Entry Point -
PARER: Memory parity error interrupt processing module

Calls

Input

Output

$ALEMB, $QEMB, $ABTSK

None

None

7-63

Note

MODULE DESCRIPTIONS

The error message block (EMB) format (for error logging)
for cache parity is:
WD. 00 - Link word
WD. 01 - Size= 37.*2
wo. 02 - Processor type/entry code • 002
WD. 03 - Minute/second
WD. 04 - Day /ho·ur
WD. 05 - Year/m·onth
WD. 06 - Error sequence number
WD. 07 Trap PC
we. 08 - Trap PS
WD. 09 - First word of task name
wo. 10 - Second word of task name
we. 11 - First word of partition name
we. 12 - Second word of partition name
WD. 13 - Partition base address
WD. 14 - Partition size
we. 15 to WD. 30 - Memory parity control status registers

(CSRs)
WC. 31 to WD. 36 - Cache parity CSRs

7.2.37 PLSUB Module

PL SUB The PLSUB module contains the following program logical
address space subroutines:
$SRNAM Search for a named partition
$CKACC Check desired access
$CRATT Create attachment descriptor
$SRATT Search for attachment descriptor
$SRWND Search for· specified address window
$UNMAP Unmap address window

Macro Library Calls -
HDRDF$ Define task header offsets
HWDDF$ Define hardware registers
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block offsets

Entry Point -
$SRNAM: : This routine searches :for a named par ti ti on and returns a

success or failure indication and a pointer to the PCB if
it finds the partition.

Calls

Input

Output

None

R3 = Pointer to the double-word RADSO name

C = 0 if SRNAM finds the named partition.
R2 = The PCB address

C = l if SRNAM does not find the name

7-64

MODULE DESCRIPTIONS

Entry Point -
$CKACC:: This routine checks if the desired access of a task to a

region is allowed. The bits in the protection word are
arranged in the following order:

Calls

Input

Output

WORLD, GROUP, OWNER ,.SYSTEM
15 0

The bits within each category in the protection word are
arranged in the follwing order:

DELETE EXTEND WRITE READ
3 2 1 0

If a bit is set, the corresponding access is not allowed.

None

RO • Desired access mask in the low four bits
Rl • Current UIC of the task
R2 • PCB address of the region

CKACC changes the contents of RO and Rl.

CKACC returns a directive status of 'D.RS16' to the
calling routine if access to the region is not possible.

Entry Point -
$CRATT:: This routine creates an attachment descriptor block and

inserts it in the necessary queues.

Calls

Input

Output

$ALOCB, $QINSF, $QINSP

R2 • PCB address of the region being attached to
R4 • Access code
RS • TCB address of attaching task

C • 0 if CRATT successfully completes execution.
Rl = Address of the attachment descriptor block
CRATT changes the contents of RO

C • l if an attachment descriptor could not be allocated.
CRATT modifies RO and Rl.

Entry Point -
$SRATT:: This routine verifies that a valid region ID was passed in

a PLAS directive by searching for the corresponding
attachment descriptor in the task control block's
attachment queue.

Calls

Input

Output

None

R3 = Address of the region ID to be verified (or 0 for
task region)
RS = TCB address of the current task

RS = Address of the attachment descriptor

SRATT returns a directive status of D.RS86 if the
attachment descriptor cannot be found.

7-65

M:ODULB DESCRIPTIONS

Entry Point -
$SRWND:: This routine VE!rifies that the specified address window ID

corresponds to a valid established address window.

Calls

Input

Output

None

R3 • Address of the address window ID
R4 • Address of the current task header

R4 = Pointer to the specified window block

SRWND chages the contents of RO

SRWND returns a directive status of D.RS87 if the
specified address window is invalid.

Entry Point -
$UNMAP:: This routine SE~arches for and conditionally unmaps the

specified address window.

Calls

Input

Output

None

R4 • Address of the window to be unmapped

UNMAP modifies RO

C = 1 if UNMAP sucessfully unmapped the address window

7.2.38 POWER Module

PO.WER This is the powerfail recovery module. If power fails, the
POWER module saves the stack pointer, hardware registers
RO - RS, UNIBUS mapping registers, memory management
registers, floating point status, mode, and registers, and
the program interrupt request.

When power comes back on, POWER restores all the
registers, forces a schedule request for the null task,
increments the powerfail indicator, and executes an RTI
instruction.

The dispatcher then calls the $POWER routine in this
module to restart the system.

The POWER module contains the following labels and
routines:

PWBTM: This is the label of register storage area
PWSTK: This is the label of the stack pointer storage

area
PWVCT: Def inei; the powerfail vector
PDOWN: This r<>utine is entered when a power failure

interrupt occurs. This routine saves all volatile
machine registers, switches the power fail vector
to the power up routine (PUP:), and halts the
processor to await the power up interruption.

7-66

MODULE DESCRIPTIONS

PUP: This routine is entered when a power up interrupt
occurs. It restores all volatile machine
registers, forces a schedule request for the NULL
task, increments the powerfail indicator, and
executes an RTI instruction. The dispatcher then
calls the power recovery routine ($POWER::), which
is in this module, to re-instate system
processing.

$POWER::Restart system processing

Macro Library Calls -
EMBDF$ Define error message block offsets
HDRDF$ Define task header offsets
HWDDF$ Define hardware registers
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block offsets

Entry Point -
$POWER:: The dispatcher calls the POWER routine after the PUP

routine restores the volatile registers. The POWER routine
clears the power failure indicator and declares a
significant event. If the KWll-Y is supported, POWER
clears the clock error flags and energizes the output
relay. POWER then enables parity error interrupts, clears
the 11/70 parity control register, clears the memory error
register, declares power failure ASTs for task that are
active and in core, and performs a power failure recovery
for all active devices.

Calls

Input

$CROSE, $ALEMB, $QEMB, $DASTT, @D.VPWF(R2)-where R2 is the
address of the device dispatch table

$POWER calls the driver at the powerfail entry point with
the following arguments:
R3 • Controller index
R4 • Address of the status control block
RS • Address of the unit control block

Output None

7.2.39 QUEUE Module

QUEUE The QUEUE
routines:
$CLINS::
$CLRMV::
$QINSF::
$QINSP::
$QMCRL::
$QRMVF::
$QRMVT::

Macro Library Calls -

module contains the following queue manipulation

Clock queue insertion
Clock queue removal
Queue insertion at end of list
Queue insertion by priority
Queue MCR command line
Queue removal from front of list
Queue removal by TCB address

CLKDF$ Define clock queue control block offsets
TCBDF$ Define task control block offsets

7-67

M!ODOLE DESCRIPTIONS

Entry Point -
$CLINS:: This routine makes an entry in the clock queue. The

routine inserts the entry in a way that allows the clock
queue to be ordered in ascending time sequence. Thus, the
entries at the top (or front) of the queue are the most
immminent.

Calls

Input

Output

None

RO • Address of the clock queue entry core block
Rl • High order half of delta time
R2 • Low order half of delta time
R4 • Request type
RS • Address 01: requesting TCB or request identifier

The clock queue entry is inserted in the clock queue
according to the time that it will become due.

Entry Point -
$CLRMV:: This routine rE~moves all entries for a specified TCB

address and request type from the clock queue.

Calls

Input

Output

$DECLK

R4 = Request type
RS • Address oJ: requesting TCB or system subroutine

CLRMV removes all entries for the specified TCB address
and request type from the clock queue. If the request type
is not 'C.SYST", CLRMV releases the clock queue entry core
block.

Entry Point -
$QINSF:: This routine makes an entry in a first-in first-out list.

Calls

Input

Output

It links the entry to the end of the list. This routine
shares common c::ode with the $QINSP routine.

None

RO • Address of the two-word listhead
Rl • Address of the entry to be inserted

The entry is linked to the end of the queue.

RO and Rl are preserved across the call.

Entry Point -
$QINSP:: This routine inserts an entry in a priority ordered list.

Calls

Input

Output

QINSP searches the list until it finds an entry that has a
lower priority or it finds the end of the list. The new
entry is linked into the list at whichever of these two
points is appropriate.

None

RO = Address of the two-word listhead
Rl = Address of the entry to be inserted

QINSP links the entry into the list in priority order.

RO and Rl are preserved across the call.

7-68

MODULE DESCRIPTIONS

Entry Point -
$QMCRL:: This routine queues a command line for MCR.

Calls

Input

Output

$EXRQF

Rl • Address of the command line control block

Via the call to EXRQF, the command line is inserted into
the MCR command line list and MCR is requested to run.

Entry Point -
$QRMVF:: This routine removes the next (front) entry from a list.

Calls

Input

Output

The list organization may be either FIFO or by priority.

None

RO • Address of the two-word listhead

C • 0 if QRMVF removes the next entry from the list Rl •
Address of the entry removed

C • 1 if there are no entries in the list RO is preserved
across the call

Entry Point -
$QRMVT:: This routine removes the next entry from a list that

matches a specified TCB address. The list organization may
be either in FIFO or in priority order.

Calls

·Input

Output

None

RO = Address of the two-word listhead
Rl • Address of the TCB for which QRMVT searches

C = 0 if QRMVT removes a matching entry from the list
Rl = Address of the entry removed

C = 1 if there is no entry in the list that matches the
TCB address

RO is preserved across the call

7.2.40 REQSB Module

REQSB This module
$ABCTK
$ABTSK
$BILDS
$ACTTK
$SETCR
$SETRQ
$SETRT
$SETF
$SETM
$DASTT
$DQAC

$QASTC
$QASTT
$SRSTD

contains the following task control routines:
Abort current task
Abort task
Build stack and initialize header
Put task in active task list
Set conditional schedule request
Set schedule request
Set schedule request for current task
Set event flag - ·
Set event flag
Declare AST trap
Dequeue AST block queued by $QASTC (called
from SYSXT only)
Queue AST to task
Queue AST to task
Search system task dire~tory

7-69

$ACTRM
$STPCT
$STPTK
$RLPAR
$RLPR1
$NXTSK
$FNDSP

$TSTCP
$ICHKP
$CHKPT
$LOADT
$EXRQP

$EXRQF
$EXRQN
$TSKRT
$TSKRQ
$TSKRP
$UISET
$MAPTK

MC>DOLE DESCRIPTIONS

Remove task from the active task list
Stop current task
Stop task
Release task partition
Release partition
Assign next task to partition
Find space in partition control block (PCB)
list:
Test if checkpoint should be initiated
Initiate checkpoint
Che<:kpoint task
Put task in loader queue
Executive request with queue insert by
pri<>rity
Exe<:utive request with queue insert FIFO
Executive request with no queue insertion
Task execution request (default UCB)
Task execution request (UCB specified)
Task execution request (default UIC specified)
Establish default UIC and current UIC
Map task address window

Macro Library Calls -
HDRDF$ Define task header offsets
ITBDF$ Define interrupt transfer block offsets
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block offsets

Entry Point -
$ABCTK:: Abort current task
$ABTSK:: Abort task

Calls

Input

Output

These routines mark a task to be aborted and they force a
task's exit. They store the abort reason and the current
outstanding I/O count in the first task event flag word.
If the entry occurs at $ABTSK, Rl contains the address of
the TCB of the task to be aborted. If the entry occurs at
$ABCTK, the TCB address of the task to be aborted is moved
into Rl. Otherwise, the remainder of the two routines have
common code.

$SETCR, $NXTSK

RO = Reason for the abort
Rl = Address of the TCB of the task to be aborted when

entry occurs at $ABTSK only.

These routines mark the task to be aborted and set a
conditional schedule request.

Entry Point -
$BILDS:: This routine sets up the task stack and initializes the

header. This routine is called prior to placing a task
into contention for ~he processor. This occurs when an
execution request is made for a task that is fixed in
memory or when a disk resident task has finished loading.

Calls None

Input RO = Address of the TCB of the task to initialize

7-70

Output

MODULE DESCRIPTIONS

$BILDS::
1 - Clears the task local event flags 1. through 32.
2 Sets up the current UIC in the header
3 Sets up task context (PC, PS, stack pointer) to cause

the task to start execution at its entry
4 Conditionally requests redispatching of the processor

Entry Point -
$ACTTK:: This routine puts an active task in the active task list.

Calls

Input

Output

None

RO • Address of the TCB of the task to be put in the
active task list.

ACTTK merges the specified task into the active task list
by priority.

R3 is preserved across the call.

Entry Point -
$SETCR Set conditional schedule request
$SETRQ Set schedule request
$SETRT Set schedule request for current task

Calls

Input

Output

These routines force redispatching of the processor from a
specified position in the active task list. If a previous
request was set, redispatching starts at whichever request
has the highest priority.

These routines share common code.

$DRDSE

If entry occurs at $SETRT:
RS = Address of the TCB of the current task

If entry occurs at $SETRQ or $SETCR:
RO = Address of the TCB at which dispatching is to start

These routines set a
redispatching of the
executed.

schedule request that forces a
processor when a system exit is

R2 and R3 are preserved across the call.

RO is preserved across the call if entry occurs at $SETRQ
or $SETCR.

Entry Point -
$SETF $SETM These routines set an event flag and do the required

rescheduling.

Calls

Input

Output

Note

CEFI, $DRDSE

RO = Event flag number ($SETF) or event flag mask ($SETM)
only)

Rl = Event flag word address ($SETM only) set
RS = TCB address for which flag is being set

RO = TCB address of the task whose flag was set

R3 is preserved

7-71

MODULE DESCRIPTIORS

Entry Point -
$DASTT:: This routine declares a non-I/O related ast trap. It

examines the header of the specified task to determine if
the specified AST is enabled. If it is enabled, the AST is
declared.

Calls None

Input

Output

Note

R4 • Offset into the task header to the AST control block
address

RS • Address of the TCB of the task for which the AST is
to be declared

C • O if DASTT succeeded in setting up the task for the
AST and declaring the AST

Rl • Address of the AST control block

C • 1 if the task is not setup for the specified AST

DASTT alters the contents of R4 during execution

Entry Point -
$DQAC This routine dequeues an AST block that was queued by

$QASTC

Calls

Input

Output

None

RO = Pointer to AST block

A.CSL is set to one (1) to indicate that the AST block is
free (not in AST queue)

Entry Point -
$QASTC Queues an AST to a task. This routine is a variant of

$QASTT used by a task ISR which was specified in a CINT$
directive.

Calls

Input

Output

Note

None

RS = Pointer to fork block in ITB

C = 0 if the AST is queued.
C = 1 if the AST address was not specified in the CINT$

call.

If the AST block is already queued for the task, $QASTC
takes no action and returns C = O.

$QASTC alters RO, Rl, R2, and R3.

Entry Point -
$QASTT:: This routine queues an AST to a task and ensures that the

task will be scheduled and reconsidered for eligibility in
the partition.

Calls

Input

$QINSF, $SETCR, $NXTSK

RO = TCB address of the task to receive the AST
Rl = Address of the AST control block to be used

7-72

Output

MODULE DESCRIPTIONS

C • 0 if QASTT successfully completed execution

Rl is preserved across the call

Entry Point -
$SRSTD:: This routine searches the task directory for a task of the

specified name.

Calls

Input

Output

None

R3 • Address of the task name for which to search

c • o if SRSTD finds the task.
RO • Address of the TCB

C • 1 if SRSTD did not find the specified task

Rl, R2, and R3 are preserved across the call

Entry Point -
$ACTRM:: This routine removes a task (its TCB} from the active task

list.

Calls

Input

Output

None

RO • Address of the TCB to be removed

C • 0 if ACTRM succ.eeds in removing a matching entry from
the list

C • 1 if there is no entry in the list that matches the
TCB address

RO is preserved across the call

Entry Point -
$STPCT:: · Stop the current task
$STPTK:: Stop the task

Calls

Input

Output

These routines stop a task and reallocate the task's
partition.

$SETCR

RO • The TCB of the task to be stopped (if entry occurs at
$STPTK)

None

Entry Point -
$RLPAR:: Release task partition
$RLPR1:: Release partition

Calls

This routine releases a partition owned by a task and
assigns the partition to the next highest priority task
waiting to occupy the partition.

None

7-73

Input

Output

MODULE DESCRIPTIORS

RO • Address of the TCB of the owner task (if entry occurs
at $RLPAR)

Rl • Address of subpartition PCB to release (if entry
occurs at $RLPR1)

R3 • Address of main partition PCB (if entry occurs at
$RLPR1)

The partition is released and assigned to the next highest
priority task waiting to occupy the partition.

Entry Point -
$NXTSK:: This routine assigns a partition to the highest priority

task waiting to occupy the partition.

Calls

Input

Output

$QRMVT, $LOADT, $TSTCP, $ICHKP, $FNDSP

RO • Address of the PCB of the partition to be assigned

Five outputs are possible:
1 - The partition is not currently busy and a task is

waiting _to occupy the partition. NXTSK assigns the
partition to the waiting task and places a request in
the loader queue to load the task.

2 - The partition is currently occupied by a task that is
either of higher priority than all waiting tasks or is
not checkpointable. In this case, the partition cannot
be assigned to another task.

3 - The partition is currently occupied by a lower
priority checkpointable task. NXTSK places a request
in the loader queue to checkpoint the owner task.

4 - The highest priority task waiting to occupy the
partition requires the main partition while the main
partition is occupied by one or more tasks that are
either of higher priority or are not checkpointable.
In this case the partition cannot be assigned.

5 - The highest priority task that is waiting to occupy
the partition requires the main partition. One or more
tasks of lower priority that are checkpointable
currently occupy the main partition. NXTSK places a
request in the loader queue to checkpoint each task.

Entry Point -
$FNDSP:: This routine finds space within a dynamically allocated

PCB list. The list represents the allocation state of a
system controlled partition or dynamic checkpoint file.

Calls

Input

Output

Note

None

R4 = Address of the PCB for which to find space
RS • Address of the main PCB in the list where space is to

be found

C • 0 if FNDSP successfully allocated space and linked the
sub-PCB into the allocation list.

C = 1 if FNDSP was unsuccessful

FNDSP changes the contents of RO, Rl, and R2.

7·-74

MODULE DESCRIPTIONS

Entry Point -
$TSTCP:: This routine checks the priority of the requested task to

determine if the owner task should be checkpointed.

Calls None

Input Rl • Address of the TCB of the owner task
R4 • Address of the TCB of the requested task

Output C • 0 if checkpoint should occur

C • l if checkpoint should not occur

Entry Point -
$ICHKP:: This routine starts the process of checkpointing a task.

Calls

Input

Output

The $CHKPT routine does the actual checkpointing.

$SETCR

Rl • Address of the TCB of the task to be checkpointed

None

Entry Point -
$CHKPT:: This rou~ine checkpoints a task.

Calls

Input

Output

$ALOCB, $DEACB, $FNDSP

Rl • Address of the TCB of the task to be checkpointed.

$CHKPT:
1 - Sets the checkpoint flag in the task status word
2 - Places the task in the loader queue
3 - Requests the loader to checkpoint the task

Entry Point -
$LOADT:: This routine puts a task in the loader queue for an

initial load or a checkpoint operation. This routine
contains one instruction only, which moves the address of
the TCB of the loader into RO.

Calls

Input

Output

Note

None

Rl = Address of the task control block

None

This routine shares code with the $EXRQP, $EXRQF, and
$EXRQN routines.

Entry Point -
$EXRQP:: Executive request with queue insert by priority
$EXRQF:: Executive request with queue insert FIFO
$EXRQN:: Executive request with no queue insertion

Calls

The Executive uses these routines when requesting all
tasks.

$SETCR

7-75

Input

Output

MODULE DESCRIPTIONS

RO • TCB address of the task to be requested
Rl • Address of the packet to be queued to the task (if

entry occurs at $EXRQP or $EXRQF)

C • 0 if the request successfully completed execution.
C • 1 if the task was not requested and,

z • 0 if the PCB could not be allocated
z • l if the task is active, being removed, or being

fixed

Entry Point -
$TSKRT:: Task request (default UCB)
$TSKRQ:: Task request (specify UCB)
$TSKRP:: Task request (specify default UIC)

Calls

Input

Output

Note

These routines request the execution of a task.

$ALOCB, $QINSP, $NXTSK, $BILDS

RO = Address of the TCB of the task to be requested
Rl = Request UIC
R2 • UCB address if entry at $TSKRQ
R3 = Default UIC if entry at $TSKRP

C • O if these routines successfully request the execution
of the task

C • 1 if the task was not requested
z = 1 if the task is active or is being fixed in memory
z • 0 if the PCB could not be allocated

These routines share common code.

Entry Point -
$UISET:: This routine establishes the default and current UIC for

requested tasks in multi-user systems.

Calls

Input

Output

None

Rl = Request UIC
R2 = Address of second status word of the current task
R4 = Address of the header of the current task

C = 0 if UISET establishes the UIC
Rl = Current UIC
R3 = Default UIC

C = 1 if a nonprivileged task is trying to change the UIC

Entry Point -
$MAPTK:: This routine maps the first window block in a task's

header in a mapped system from the task's TCB and PCB.

Calls None

Input Rl = Pointer to the number of window blocks in the task
header

RS Address of the task control block (TCB) for the task

Output Rl = Address of the last PDR image in the task header

Note MAPTK modifies the contents of R2.

7·-76

MODULE DESCRIPTIONS

7.2.41 SSTSR Modale

SSTSR The SSTSR module contains the following synchronous system
trap service routines:
$EMSST:: Non-RSX EMT/TRAP instruction processing
$FLTRP:: Floating-point exception processing (11/40)
$FLTRP:: Floating-point exception processing (11/45)
$FPINT:: Programmed interrupt request entry point
$ILINS:: Illegal or reserved instruction processing
$IOTRP:: IOT instru~tion processing
$SGFLT:: Segment fault processing
$TRACE:: Trace (T-bit) or break point instruction (BPT)

trap processing
$TRP04:: Trap at 4 (odd address, non-existent memory,

etc.) processing
$SSTXT:: Common SST exit routine

The SSTSR module contains tbe following local data:
l - Floating point exception vector -
.WORD $FLTRP
.WORD PR7
.WORD $FPINT
.WORD PR7

2 - Floating point status and fork block
FLSTS: .BLKW 2
FLFRK: .BLKW 2

3 - Segment fault vector -
.WORD $SGFLT
.WORD PR7

Macro Library Calls -
ABODF$ Define task abort codes
HDRDF$ Define task header offsets
HWDDF$ Define harware registers
PKTDF$ Define I/O packet offsets

Entry Point -
$EMSST:: The directive dispatcher (DRDSP) transfers control to

routine when the system executes a non-RSX EMT or
instruction. The machine state was saved before entry
this routine occurs. EMSST sets up the EMT/TRAP code
byte of the instruction) to be passed to the user
transfers control to the SST exit routine.

Calls

Input

Output

None

RS·= Address of the EMT/TRAP instruction

04(SP) =EMT/TRAP code multiplied by 2
02(SP) = SST code (SCEMT=EMT, SCTRP=TRAP)

this
TRAP
into
(low
and

OO(SP) =Number of bytes to be transfered to the user
stack (6)

Entry Point -
$FLTRP:: The system traps to this routine when an 11/40 floating

point exception occurs. FLTRP saves the current machine
state and transfers control to the SST exit routine.

Calls None

7-77

Input

Output

MODULE DESCRIPTIONS

None

02(SP) • SST code (SCFLT)
OO(SP) •number of bytes to be transfered to user stack

(4)

Entry Points -
$FLTRP:: The system tra.ps to this entry point when an 11/45

floating point. exception occurs. FLTRP saves the floating
point exception and address registers and posts a
programmed inte!rrupt r1equest at priority level 1.

$FPINT:: Control returns to this entry point when the programmed
interrupt request, which was issued by FLTRP, is processed
by the system.

Calls

Input

Output

$INTSV, $FORKO, $DASTT

The floating point exception register contains the reason
for the fault and the floating point address register
contains the address of the instruction that caused the
fault.

The outputs are the saved floating
address registers and the posted
request.

point exception and
programmed interrupt

Entry Point -
$ILINS:: A trap occurs to this routine when the system tries to

execute an illegal or reserved instruction. This routine
saves the current machine state and transfers control to
the SST exit routine.

Calls

Input

Output

Note

None

None

02{SP) • SST code {SCILI)
OO(SP) • number of bytes to be transferred to the user

stack (4)

This routine shares common code with the $TRP04 routine.

Entry Point -
$IOTRP:: The system traps to this routine when it executes an IOT

instruction. If the stack depth is not +l, this routine
crashes the syE;tem via a jump to $CRASH. If the stack
depth is +l, this routine saves the current machine state
and transfers control to the SST exit routine.

Calls

Input

Output

Note

None

None

The following arguments are set up on the current stack:
02{SP) • SST code {SCIOT)
00 {SP) • Numbe1:- of bytes to be transfered to the user

stack (4)

This routine shares common code with the $TRP04 routine.

7-78

MODULE DESCRIPTIONS

Entry Point -
$SGFLT:: The system traps to this routine when a segment fault

occurs. SGFLT saves the current machine state, sets up SRO
through SR2 to be passed to the user, and transfers
control to the SST exit routine.

Calls

Input

Output

None

None

lO(SP) = Contents of SRO
06(SP) = Contents of SR2
04(SP) =Contents of SRl
02(SP) = SST code (SCSGF)
OO(SP) =Number of bytes to be transfered to the user

stack (10)

Entry Point -
$TRACE:: The system traps to this routine when a trace trap bit

Cal l's

Input

Output

Note

(T-bit) occurs or when the system executes a breakpoint
trap instruction. This routine saves the current machine
state and transfers control to the SST exit routine.

None

None

02(SP) = SST code (SCBPT)
OO(SP) =Number of bytes to be transfered to the user

stack (4)

This routine shares common code with the $TRP04 routine.

Entry Point -
$TRP04:: The system traps to this routine when a trap at 4 occurs.

Calls

Input

Output

Note

If a stack violation occurred (stack pointer=<400), this
routine crashes the system. Otherwise, this routine saves
the current system state and transfers control to the sst
exit routine (SSTXT).

None

None

02.(SP) = SST code (SCOAD)
OO(SP) =Number of bytes to be transferred to the user

stack (4)

This routine shares common code with the exit routine
(SSTXT) •

Entry Point -
$SSTXT:: This routine gets control to affect a synchronous system

trap (SST). If the current system stack depth is not zero,
this routine crashes the system. If the stack depth is
zero, the routine tries to execute an SST for the current
task. If the task does not have the appropriate SST vector
entry or this routine cannot push the SST parameters onto
the stack, this routine aborts the task. Otherwise, this
routine sets up the SST and executes a directive exit.

Calls $ACHCK, $RELOM, $ABCTK

7-79

Input

Output

MODULE DESCRIPTIONS

For a mapped system:
24(SP) =PS word saved by SST trap
22(SP) =PC word saved by SST trap
20(SP) •Saved RS
16(SP) =Saved R4
14(SP) =Saved R3
12(SP) =Saved R2
lO(SP) • Saved Rl
06(SP) = Saved RO
04 (SP) = SST pa:rameter (zero or more parameters may be

specified)
02(SP) = SST code
OO(SP) =Number of bytes to be transferred to the the user

stack

For a real memory system:
14(SP) =Saved R3
12(SP) = Saved R2
lO(SP) = Saved Rl
06(SP) •Saved RO
04(SP) = SST parameter (zero or more parameters may be

spec Hied)
02(SP) =SST code
OO(SP) =Number of bytes to be transfered to the user

stack

The routine executes the specified SST for the current
task.

7.2.42 SYSCM Module

SYSCM The SYSCM module defines common data areas that are used
by the system for storage of system data and pointers. The
module does not contain executable code~ it only defines
system data areas. The global areas defined in this module
are shown below. The null task control block areas in
SYSCM are unique for this TCB. Remaining areas, as noted,
are in the true! system common area

For the null task control block: (This TCB terminates the
system and active task lists. It must have a priority of
zero and always be blocked.)

SHEADR::
$CURPR::
$COMEF::
$SYSID::
$TKNPT::
$SHFPT::
$CKCNT::
$CKCSR::

SCKLDC::
$SYUIC: :

$EXSIZ::
$PWRFL::
$SIGFL::
$LOGHD::
$MCRCB::
$LSTLK::
$CRAVL::

T .I,NK - Pointer to current task header
T.IOC - Current task priority
T.'l~CB, T.NAM - Common event flags
T.NAM+2, T.RCVL - System identification
T.RCVL+2 - Pointer to TKTN TCB
T.ASTL - Pointer to shuffler TCB
T.ASTL+2 - Address of clock count register
T.EFLG - Address of clock control status

register
T.EFLG+2 - Clock load count
T.UCB - System UIC (54,l for mapped system,

50,l for unmapped system)
T.STAT - Address of last byte in Executive
T.ST2 - Powerfail recovery request flag
T.ST3 - Task waiting for significant event
T.NRPC - Logical device assignment list
T.LBN+l - MCR command block address
T.LDV - Lock word (TCB address of owner)
T.MXSZ - Active task list listhead

7-80

MODULE DESCRIPTIONS

(The labels that follow are in the system common area.)

Pointers:

$ACTHD::
$ABTIM::
$TKTCB::
$ROSCH::
$STKPD::
$DEVHD::
$MCRPT::
$ERRPT::
$CFLPT::
$INTCT::
$FRKHD::
$FMASK::
$PARPT::
$CLKHD::
$COPT::
$PARHD::
$LDRPT::
$TSKHD::

Active task list listhead
Absolute time counter
Current task TCB
Schedule re,quest TCB address
Stack depth indicator
First device control block
MCR TCB
Error logger TCB
First checkpoint file PCB
Clock interrupt ticks count
Fork queue listhead
System feature mask
Parity address vector table
Clock queue
Command output UCB
Partition list
Loader TCB
System task directory

Idle pattern:

$IDLCT::
$IDLFL::
$IDLPT::

Idle pattern count byte
Idle pattern flag byte
Idle pattern word

Days per month table:

$DYPMN:: February •••• January

Bit mask table:

$BTMSK:: Bit mask table

Online error logging data base:

$ERRHD::
$ERRLM::
$ERRSQ::
$ERRSV::
$ERRSZ::
$IOABM::

Error logging message queue listhead
Limit on resident error logging data
Universal error sequence number
Pointer to error file indentif ication
Resident bytes of error logging data
Devive I/O active bitmap

System bootstrap and save configuration vector:

$SYSIZ:: Size of memory in 32W blocks

Time Limit Parameters:

$TKPS:: Ticks per second

Current time vector:

$TTNS:: Tick of second

LIFO send and I/O preallocation
parameters:

list pointer

$PKAVL::
$PKNUM::

Pointer to first packet in list
Number of packets currently in list

7-81

and

MODULE DESCRIPTIONS

$PKMAX:: Maximum number allowed in list

Global task size limit for extend task directive:

$MXEXT:: Initialize to no limit (or reference label)

UMR allocation listhead and wait queue listhead:

$UMRHD::

$UMRWT::

Mapping assignment block listhead

UMR wait queue listhead

Macro Library Calls -

HDRDF$
HWDDF$
TCBDF$

Define task header offsets
Define hardware registers
Define task control block offsets

Entry Point - None

Input - None

7.2.43 SYSDF Module

SYSDF The SYSDF module globally defines the following:
V$$CTR, defining the highest vector address
S$$YDF, causing offset definitions from prefix files to be

listed
ITBDF$, defining ITB offsets and length
PCBDF$, defining PCB offsets and length
SCBDF$, defining SCB offsets
TCBDF$, defining TCB length

The following directive status codes:
D.RSl==-1. Insufficient dynamic core available to satisfy

request
D.RS2==-2. Specified task not installed in the system
D.RSS==-5. Unassigned LUN
D.RS6==-6. Driver not loaded
D.RS7==-7. Task not active
D.RS8==-8. Task not suspended, no data queued, task

checkpointing already enabled or disabled, AST
recognition already enabled or disabled, AST
entry already unspecified

D.RSl0==-10. Issuing task not checkpointable
D.RS16==-16. Privilege violation
D.RS17==-17. Vector already in use (CINTS)
D.RS19==-19. Illegal vector (CINTS)
D.RS80==-80. Directive issued from AST routine, directive

not issued from AST routine
D.RS81==-Bl. Cannot map ISR or disable-interrupt routine

(CINTS)
D.RS84==-84. Alignment error
D.RSBS==-85. Address window overflow
D.RS86==-86. Invalid region ID
D.RS87==-87. Invalid window ID
D.RS90==-90. Specified LUN is locked in use
D.RS92==-92. Invalid device or unit specified
D.RS93==-93. Invalid time parameter
D.RS94==-94. Partition or region not in system
D.RS95==-95. Invalid priority
D.RS96==-96. Invalid LUN

7-82

MODULE DESCRIPTIONS

D.RS97••-97. Invalid EFN or required EFN not specified
D.RS98••-98. Part of DPB is outside of issuing task's

address space
D.RS99•=-99. Invalid DIC or DPB size
D.RS22=•2. EFN was set
D.RSOO••O. EFN was clear

Global conditional assembly definitions:
D$$YNM••O Globally define D$$YNM if dynamic memory

allocation is present
M$$EXT••O Globally define M$$EXT if 11/70 extended memory

is present
M$$MGE•=O Globally define M$$MGE if memory management is

present

Macro Library Calls -
ITBDF$ Define ITB offsets and length
PCBDF$ Define partition control block offsets and length
SCBDF$ Define status control block offsets
TCBDF$ Define task control block offsets

Entry Point - None

Calls None

Input None

Output None

7.2.44 SYSTB Module

SYSTB This module defines the system tables.

Macro Library Calls -
HWDDF$ Define hardware registers
SCBDF$ Define SCB offsets
UCBDF$ Define UCB offsets

Entry Point -
$DEVTB:: This is the main entry point for the SYSTB module. It

indicates the start of the device tables.

Calls None

Input None

Output None

Note SYSTB is generated by SYSGEN

7.2.45 SYSXT Module

SYSXT SYSXT performs system entrance, exit and processor
dispatching. SYSXT contains the following routines:
$DIRSV:: Directive save routine
$FORK:: Fork and create system process
$FORK1:: Fork and create system process
$FORK0:: Fork and create system process

7-83

$FORK2::
$INTXT::
$INTSC::

$INTSE::
$INTSV::
$INTXT::
$DIRXT::
$NSO:: -

$NONSI::

l!IODOLE D:ESCRIPTIONS

Fork routine to use with the CINT$ directive
Interrupt exit processing
Interrupt save (interrupt connected to via a
CINIT$ directive)
Interrupt save (error logging devices)
Interrupt save
Interrupt exit
DiI·ective exit

$NS7::Nonsense interrupt entry (if error logging
of undefined interrupts is not supported, all
unused vectors point to the nonsense interrupt
address).
Nonsense interrupt exit

Fork routines are entered via a CALL with the arguments:
R3 • Address of the beginning of the fork block+2
R4 = Restored from fork block
RS • Restored from fork block

Execute fork routine: (20$:) Removes entry form fork
queue, resets fork queue listhead, and allows
interrupts, restores registers R4 and RS,
calls the fork routine, and branches to $DIRXT
to try to exit again.

Rescheduling or powerfail routine: (40$:) Allows

RESCH:
$FINBF::
$SAVNR::
$SWSTK::

interrupts, tests for power failure. If power
failure, executes a CALL to $POWER for power
recovery and then branches to $DIRXT to try to
exit again. If not power failure, goes to
rescheduling routine.

Rescheduling routine
Finish terminal input buffered I/O
Save non~volatile registers
Switch stacks

Macro Library Calls -
ABODF$ Define task abort codes
HDRDF$ Define task header offsets
HWDDF$ Define hardware regist:ers
PCBDF$ Define partition control block offsets
TCBDF$ Define task control block offsets
ITBDF$ Define interrupt transfer block offsets

Entry Point -
$DIRSV:: Directive level trap service routines call $DIRSV. The

stack depth is +l, thus a switch to the system stack is
always necessary. At the end of trap processing, a RETURN
is executed to exit from system code.

Calls

Input

Output

(RS) to call synchronous trap routine

4(SP) =PS word pushed by trap
2(SP) =PC word pushed by trap
O(SP) =Saved RS pushed by "JSR R5,$DIRSV"

$DIRSV pushes R4 onto the current stack and executes a
switch to the system stack. $DIRSV pushes R3 through RO on
the system stack, sets the new processor priority and
calls the calling routine.

7-84

MODULE DESCRIPTIORS

Entry Point -
$FORK:: An I/O driver calls this routine to create a system

process that returns to the driver at stack depth zero (0)
to finish processing. $FORK saves R4 in the controller
fork block. It points to the controller block, disables
timeout, and points to the end of the fork block.

Calls

Input

Output

None

RS • Address of the fl,CB for the unit being processed

None

Entry Point -
$FORK1:: This routine is an alternate entry to $FORK to create a

system process and save RS. This routirie consists of one
instruction "MOV RS,-(R4)" that follows in line with the
$FORK routine code.

Calls

Input

Output

None

R4 • Address of the last word of a 3-word fork block plus
2

RS • Data to be saved in the fork block

None

Entry Point -
$FORKO:: The $FORKO entry point is a continuation of $FORK1 code.

$FORKO sets the fork PC, saves current processor priority,
locks out interrupts, and links the system process to the
fork queue. $FORKO then restores processor priority and
executes a RETURN if C$$INT is defined. If C$$INT is not
defined, the return is not executed and the code falls
into the $FORK2 routine.

Input

Output

R4 = Address of the last word of a 2-word fork block plus
2

None

Entry Point -
$~0RK2:: $FORK2 is the fork routine for use with the CINT$

directive. $FORK2 tests to see if the fork block is
already in use (fork PC non-zero). If it is, $FORK2 clears
the stack and falls through to $INTXT, which executes a
return. Otherwise, $FORK2 saves R4 in the fork block,
points to the location just after the three word fork
block and branches to $FORK1. The combination of $FORK!,
$FORKO, and $FORK2 create a system process, link the new
fork entry in the fork queue, restore processor priority,
and end up at $INTXT for the RETURN.

Calls

Input

Output

None

RS = Address of fork block in ITB

If the fork block is not in use, $FORK2 saves R4 in the
fork block, puts a pointer in R4 to point just after the
3-word fork block, and clears the stack.

7-85

MC>DOLE DESCRIPTIONS

Entry Point -
$INTXT:: This is the interrupt exit routine. It contains only a

RETURN instruc•tion. A JUMP to this entry point causes an
exit from an interrupt.

Calls

Input

Output

None

O(SP) • Interrupt save return address

None

Entry Point -
$INTSC:: Interrupt save routine (for interrupt from vector

connected to via a CINT$ directive). $INTSC saves R4 on
the stack and checks for $STKDP•O. If $STKDP•O, $INTSC
loads ISR priority, calls ISR, and branches to $INTX1 to
exit from interrupt. If $STKDP not = O, $INTSC saves stack
pointer in header, loads the system stack pointer, loads
ISR priority, calls ISR, and branches to $INTX1 for
interrupt exit.

Calls

Input

Output

@(RS}+ to call ISR

None

None

Entry Point -
$INTSE:: This is the interrupt save routine for error logging

devices. An interrupt service routine calls $INTSE when an
interrupt is not to be immediately serviced. $INTSE saves
R4 and thens loads R4 with the address of the SCB of the
controller that caused the interrupt. $INTSE then checks
if an error is already in progress. If not, $INTSE saves
the current I/O active bitmap and loads R4 with the
controller index. $INTSE code finishes in the $INTSV code
to execute an interrupt save.

Calls

Input

Output

None

4(SP)
2(SP)
O(SP)

RS
2(R5}

• PS word pushed by interrupt
= PC word pushed by interrupt
= Saved RS pushed by "JSR RS,$INTSE"
= Address of the SCB of interrupting controller
= New processor priority

R4 = Controller index
The bit is cleared in the bitmap.

Entry Point -
$INTSV:: This is the interrupt save routine. An interrupt service

routine calls this routine when an interrupt is not to be
immediately dismissed. $INTSV switches to the system stack
if the current stack depth is +l. When the interrupt
service routine is finished processing, it forks, jumps to
$INTXT, or executes a return.

Calls

Input

2(R5) to call the caller back
(RS) to call the caller back if L$$SI1 is not defined

4(SP) =PS word pushed by interrupt
2(SP) =PC word pushed by interrupt

7-86

Output

MODULE DBSCRIPTIORS

O(SP) • Saved RS pushed by "JSR R5,$INTSV"
RS • New processor priority

Switch to system stack if stack depth is +l

New processor priority is loaded

Entry Point
$INTX1::· This is the interrupt exit routine. This routine is

entered from a return to exit from an interrupt. $INTX1
locks out interrupts and if the stack depth is not • O,
$INTX1 branches to $DIRXT to increment the stack depth and
restore registers R4 and RS; then, $DIRXT executes an RTI
instruction. If the stack depth is zero, $INTX1 checks for
entries in the fork queue. If the fork queue is empty,
$INTX1 branches to $DIRXT to increment the stack depth,
restore registers R4 and RS, and execute an RTI
instruction. If the fork queue is not empty, $INTX1 allows
interrupts, saves registers RO-R3 on the current stack,
and proceeds to $DIRXT directive exit code.

Calls None

Input 06(SP) •PS word pushed by interrupt
04(sp) =pc word pushed by interrupt
02(SP) • Saved RS
OO(SP) • Saved R4

Output None

Entry Point -
$DIRXT:: This is the directive exit processing routine. A directive

processing routine or a trap service routine use a JUMP to
enter this routine for exit. If there are any entries in
the fork queue, $DIRXT removes the first entry and
executes the fork routine. If there are no entries in the
fork queue, $DIRXT checks to see if redispatching of the
processor is necessary. If not, $DIRXT restores RO-RS and
executes an RTI instrution. If processor redispatching is
necessary, the processor is redispatched and $DIRXT
executes the exit sequence again.

Calls

Input

@-(R3) to call fork routine
$POWER to call power recovery routine
$ABCTK to abort current task
$QRMVF to remove ast entry from queue
$ACHCK to address check stack space
$RELOM to relocate and map stack address
@(RO)+ or @-2(R0) to call dequeue subroutine
$DEACB to deallocate control block
$DREXT to force task exit

Inputs for mapped system:
16(SP) =PS word pushed by interrupt or trap
14(SP) =PC word pushed by interrupt or trap
12(SP) = Saved RS
lO(SP) =Saved R4
06(SP) =Saved R3
04(SP) =Saved R2
02(SP) = Saved Rl
OO(SP) =Saved RO

7-87

Output

MtODOLE DESCRIPTIONS

Inputs for unmapped system:
06(SP) •Saved R3
04(SP) • Saved R2
02(SP) • Saved Rl
OO(SP) •Saved RO

For outputs of the $DIRXT routine, consult the interrupt
processin~ logic diagrams in this manual.

Entry Point -
$FINBF:: This routine finishes terminal input buffered I/O. It is

called to finish a buffered terminal input request that
has been placed in the AST queue.

Calls

Input

Output

$RELOC to relocate I/O status block
$IOFIN to finish I/O operation
$DEACB to deallocate input buffer

RO = Address of I/O packet

$FINBF transfers the buffered I/O to the user task and
calls $IOFIN to finish the I/O request.

Entry Point -
$SAVNR:: This is a co-routine that saves registers R4 and RS.

Calls @(SP)+ to call the caller

Input R4 and RS, which are the registers to be saved.

Output $SAVNR saves R4 and RS on the stack.

Entry Point -
$SWSTK:: A task calls this routine to switch to the system stack,

thus inhibiting task switching. The calling task must be
privileged if running in a mapped system and mapped to the
exec. Control is passed here from $DRDSP after the trap
has occured and $DIRSV has been called.

Calls

Input

The calling sequence is:
EMT 376 Trap to $EMSST in DRDSP
.WORD ADDR Address for return to user state

@(SP)+ to call the calling routine

R3 = Address of PC word of trap on stack +2

Inputs for a mapped system:
22(SP) = PS pushed by trap
20(SP) = PC pushed by trap
16(SP) = Saved RS
14(SP) = Saved R4
12(SP) = Saved R3
lO(SP) = Saved R2
06(SP) = Saved Rl
04(SP) = Saved RO
02(SP) = Return address for system
OO(SP) = 104376

Inputs for an unmapped system:
lO(SP) =Saved R3
06(SP) =Saved R2
O~(SP) =Saved Rl

7-88

exit

MODULE DESCRIPTIONS

02(SP) • Saved RO
OO(SP) •Return address for system exit

Output $SWSTK calls the·user back on the system stack with all
registers preserved. To return to task level the user
executes a return.

7.2.46 TDSCB Module

TOSCH This module processes time dependent scheduling and device
time-outs.

Macro Library Calls -
CLKDF$ Define clock queue control block offsets
HDRDF$ Define task header offsets
HWDDF$ Define hardware registers
TCBDF$ Define task contiol block offsets
PCBDF$ Define partition control block offsets

Entry Point -
$CKINT:: A clock interrupt causes the system to enter this routine.

$CKINT calls $INTSV to save R4 and RS and increments the
interrupt count. If the result is non-zero, $CKINT
executes a JUMP to $INTXT •. If the count is zero, $CKINT
calls $FORKO to execute fork and process clock interrupts.

Calls $INTSV to save registers and set priority
$FORK0 to execute fork and process clock interrupts

UPTIM: - Update absolute and real time of day and date:
None

TDS: - Time dependent scheduling:
$EXRQN to clear stop bit and reallocate partition

Single-shot internal system subroutine (type 6 or 8):
@C.SUB{R4) to call system subroutine

Mark time request:
$SETM to set event flag
$QASTT to queue AST to task

Schedule request:
$TSKRT to request task execution
$DECLK to deallocate control block
$CLINS to reinsert entry in clock queue
@(SP)+ to get next UCB address

@D.VOUT(Rl): - Call driver at timeout entry point with the
arguments:

RO • Device timeout status "IE.DNR"
R2 = Address of device CSR
R3 • Controller index
R4 = Address of the status control block
RS • Address of the unit control block

ROBIN: - Executive level round robin scheduling
$DRDSE cause a redispatch of processor

SWAP: - Disk swapping algorithm: reduce sapping priority
of resident tasks

7-89

Mt)D1JLB DESCRIPTIONS

$NXTSK Reallocate partition

TIMXT: - Exit time dependent scheduling if no unprocessed
clock ticks remain

Input None

Output none

7-90

CHAPTER 8

DATA AREAS AND CONTROL BLOCKS

8.1 INTRODUCTION

This chapter describes the system control block linkages and data
structures. The control blocks were taken from system code. However,
while transposing the system code into this manual, editorial changes
were made for the sake of appearance and clarity. The beginning of
the chapter describes system pointers and typical system linkages
followed by a discussion of I/O linkages as related to I/O drivers.
The remainder of the chapter contains the system control block offset
descriptions and describes the system control blocks and data areas in
alphabetical order.

8.2 SYSTEM POINTERS AND LINKAGES

Figure 8-1, Linked Lists on RSX-llM, describes the typical way that
control block lists are linked in RSX-llM. Figure 8-2, Overview of
RSX-llM System Control Blocks, contains an overview of the way that
RSX-llM system control blocks are linked together. This figure shows
the major system lists, list pointers, and linkages only. More
detailed linkages and control block configurations are shown in
Figures 8-3 through 8-24.

8-1

DATA AllBAS ARD CONTROL BLOCKS

LISTS HEADED BY POINTER

[POINTER 1 - POINTER .. POINTER ... 0 J - - -

• For an Empty List the Initial Pointer is 0. In any Case, the Last Pointer Is 0

LISTS HEADED BY LISTHEAOS

LISTHEAO

WOROO
.. POINTER -- POINTER - 0 -

WORD 1 t--

• For an Empty List the First Word of the Listhead is 0 and the Second Contains the Address of the First

Figure 8-1 Linked Lists on RSX-llM

8-2

Q)

I
w

LINK TO DEVICE DATA BASES

LINK TO PARTITIONS
$PARHD

CHAIN OF ALL TCBs

CHAIN OF ALL ACTIVE TASKS
RESCHEDULE POINTER
CURRENTTCB
LOADER
TASK TERMINATION ---DYNAMIC STORAGE REGION

FORK LIST
CLOCK QUEUE

STACK

PROG. t::
• FOR MAPPED SYSTEM

HEADER IS COPIED
TODSR

SCB

/
•FIG. 8-14

• BULLETED FIGURE REFERENCES REFER
TO RELATED DIAGRAMS.

II

•FIG. 8-10

TCSOFTASK
TERMINATING

TASK

•FIG. 8-19

•FIG. 8-20

DCB

II L-JI

I 111 I

•FIG. 8-8

DCB

'----'

I uce1 I

DCB

~I

•FIG. 8-3
•FIG. 8-4
•FIG. 8-6

DCB

L....,_J

I UCB1 I

Figure 8-2 Overview of RSX-llM System Control Blocks

DCB

1--.-.J } •FIG. 8-15
•FIG. 8-16

I SCB1

~
= l'lll g;

= tj

!
t"

s
n ,.
tll

DATA AltEAS AND CONTROL BLOCKS

8.2.1 Device Control Block Pointer ($DEVBD)

The location, $DEVHD, which is in SYSCM, contains the address of the
label, $DEVTB. $.DEVTB is the label of the first DCB of a list of DCBs
in the system.

SY~GEN produces SYSTB, which contains the DCBs, UCBs, and SCBs for the
system as well as the label, $DEVTB::. The Task Builder resolves the
references to the first DCB ($DEVTB) when it links SYSTB into the
Executive.

The DCBs are linked by the :first word in each DCB, D .LNK. D .LNK
contains the address of the next DCB in the chain. Typically, when
the Executive works with the DCB, R3 contains the address of the DCB.
To access the next DCB, the Executive executes a MOV @R3,R3
instruction.

The DCBs and UCBs in SYSTB contain the logical name, logical unit
number, and device characteristics of the devices in the system. In
general, the DCB contains device-unit information common to all
device-units of the same type on a controller. This kind of structure
saves space because, otherwise, thi.s common information would have to
appear in the UCB for each device-unit.

The DCB contains the device name; for example, the DCB for DKO:
contains "DK" in ASCII. With one exception, there is only one DCB
with the name of a given device in it. The exception occurs when
there is a DCB for every kind of terminal device controller in the
system (DL, DJ, DH, or DZ); however, they all contain the device name
"TT".

There are two types of DCB; one for real devices and one for pseudo
devices. Nothing in the DCB denotes its use for a real or pseudo
device. However, the UCB associated with the DCB contains the bit,
DV.PSE, which identifies the associated device as a pseudo device.

An Executive co-routine, $SCNDT, is used to scan all the addresses of
the DCBs and UCBs in the system up to but not including the first
pseudo device. For example, the address of the DCB for TI: cannot be
found by using this co-routine.

8.2.2 Unit Control Blocks

A UCB exists for each device-unit on the system. D.UCB, which is a
word in the DCB, contains a pointer to the first UCB for that DCB.
There is at least one UCB for each DCB; however, there can be more
than one UCB for each DCB.

For an example of a DCB-UCB relationship, a system has four identical
disk drives on one controller. The disk device-units would have
physical unit numbers from O through 3 and logical unit numbers from O
through 3. In this configuration, there is one DCB (all device-units
are the same), four UCBs (one for each device-unit), and one Status
Control Block (SCB) for the controller. In this example, only one
drive can be operated at a time.

For another example, a system has four identical disk drives1 two
connected to controller 0 and two connected to controller 1. The two
drives on controller 0 have physical unit numbers O and 1, and logical
unit numbers O and 1. The two drives on controller 1 have physical
unit numbers O and 1, and logical unit numbers 3 and 4. In this
configuration, there is one DCB (all device units are the same), four
UCBs (one for each device-unit), and 'two seas (one for each

8-4

DA'l'A AREAS AND CONTROL BLOCKS

controller). In this example, two drives can operate in parallel as
long as they are on different controllers: that is, the drives with
logical unit numbers 0 and 2 or 0 and 3, or the drives with logical
unit numbers l and 2 or 1 and 3. ·

The UCB contains pointers and device status information.

8~2.3 Status Control Block (SCB)

There is one Status Control Block for each controller on the system
and it contains controller status information. The UCB points to the
related SCB. See the discussion that precedes the word and bit
definitions for the Status Control Block.

8.2.4 Partition Control Block (PCB) Pointer

$PARBO is the pointer to the first PCB in the chain of system PCBs.

System- and user-controlled partitions can be differentiated by
examining the form of their PCB linkage.

In a user-controlled partition PCB, P.LNK of this PCB points to the
first word, P.LNK, of the next subpartition PCB. P.SUB in the first
PCB also points to P.LNK of the next PCB. P.MAIN, which is in
user-controlled partition and subpartition PCBs, points back to the
main partition PCB that heads the list of subpartition PCBs. In a
user-controlled main partition PCB without subpartitions, P.SUB is O.
However, if the main partition has subpartitions, P.SUB in the last
~ubpartition PCB is zero.

This linkage is slightly different in system-controlled partitions.
The dynamically created subpartition PCBs are not linked by P.LNK;
only P.SUB points to the first word, P.LNK, of the next PCB in the
chain of PCBs. P.MAIN in each system-controlled partition or
subpartition points back to the main PCB. In a PCB for a
system-controlled partition without dynamically created subpartitions.
P.LNK is O. If the partition has subpartitions, P.SUB in the last
subpartition PCB is O.

See Figure 8-3 for an example of a system- and user-controlled
partition list.

8.2.5 Task Control Block (TCB) Pointers ($TSKHO And $ACTHO)

Task Control Blocks (TCBs) are listed in several lists. One is the
System Task Directory (STD), a list (ordered by priority) of all
installed tasks. Another is the Active Task List (ATL), a list of
tasks that are currently active. The ATL is a subset of the STD;
therefore, TCBs that are linked into the ATL are also linked into the
STD.

$TSKHD points to the first TCB in the STD. The remaining TCBs in the
STD are linked by the word, T.TCBL. $TSKHD points to T.LNK in the
first TCB, T.TCBL in the first TCB points to T.LNK in the next TCB,
and so on.

$ACTHD points to the first TCB in the ATL. The word, T.ACTL, links
the remaining active task TCBs. T.ACTL in the last TCB word is O;
this indicates the TCB of the Null task.

8-5

DA'l'A AFtEAS ARD COR'l'ROL BLOCKS

The Partition Wait Queue is a list of TCBs of those tasks waiting to
use a given partition. The word, P.WAIT, in the PCB points to the
first TCB in the Partition Wait Queue. T.LNK in the first TCB points
to the T.LNK word in the sec:ond TCB, T.LNK in the second TCB points to
the T.~NK word in the third TCB, and so on.

8 .2 .6 Reschedule Pointer (~~RQSCB)

The reschedule pointer, $RQSCH, contains the address of the TCB of the
task to be rescheduled.

8.2.7 Current Task Pointer ($TKTCB)

The current task pointer, $~rKTCB, contains the address of the TCB of
the currently running task.

8.2.8 Loader Pointer ($LDRl?'l')

Normally, $LDRPT is the pointer to the TCB of the Loader task.

8.2.9 Task Termination Task Pointer ($TKNPT)

$TKNPT points to the TCB of the Task Termination Task.

8.2.10 Free Storage Block Pointer ($CRAVL)

$CRAVL.points to the first free block in a list of free storage blocks
in the Dynamic Storage Region. $CRAVL-2 is a word that contains a 3
and should never contain less than a 3. This number is one less than
the number of bytes in the smallest possible block obtainable from the
Dynamic Storage Region. This number 3 is a rounding factor. In other
words, the size of the smallest allocatable memory block is 4 bytes
and memory must be allocated in multiples of 4 bytes. Four bytes are
needed because every free memory block must contain a pointer to the
next block, followed by its own size in bytes. This information uses
up 2 words of the block.

Initially, the Dynamic Storage Region is a
However, it becomes somewhat fragmented
execution.

8. 2 .11 Fork Queue List Poi.nter ($FRKHD)

continuous memory area.
after the system begins

$FRKHD is a pointer to a list of seas in the fork queue.

8.2.12 Clock Queue Pointer ($CLKHD)

$CLKHD is a pointer to a list of 8-word clock queue control blocks.

8-6

DATA AREAS ARD CONTROL BLOCKS

8.2.13 Current Task Reader Pointer ($BEADR)

$HEADR points to the current task header. In a mapped system, the
Executive copies the task header into the DSR. Only privileged tasks
can access this copy7 the Executive refers to and modifies this copy
as execution proceeds. Therefore, the original header of the current
task may not contain valid information because the valid header is in
the DSR space. Before the task is checkpointed, the Executive
replaces the original header with the copy in the DSR.

8.2.14 Examples Of System Linkages

Figure 8-3 contains an example of a PCB linkage for user- and
system-controlled partitions.

Figure 8-4 shows TCB wait queues in user- and system-controlled
partitions.

Figure 8-5 shows checkpoint file PCBs with and without checkpointed
task TCBs.

Figure 8-6 shows an example of TCBs linked into a System Task
Directory with some of the TCBs in the Active Task List.

Figure 8-7 shows a simplified linkage of the PCB, TCBs, and task
header in a task partition.

Figure 8-8 shows a linkage of TCBs for resident and non-resident tasks
with their respective PCBs.

Figure 8-9 shows AST control blocks in the AST queue.

Figure 8-10 shows TCBs of tasks in the Loader queue.

Figure 8-11 shows Send/Receive data blocks queued to the receiver task
TCB.

Figure 8-12 shows Send/Receive-by-Reference blocks queued to the
receiver task TCB.

Figure 8-13 shows the linkage of Clock Queue Control Blocks.

Figure 8-14 shows the linkage of the Fork Control Blocks.

Figure 8-15 shows an example of DCBs, SCBs, UCBs, and LCBs in system.
It also shows the linkage caused by redirected and reassigned devices.

Figure 8-16 Shows the Logical Assignment Control Block linkage.

Figure 8-17 shows the linkage of MCR queue entries.

Figure 8-18 shows the linkage of pre-allocated I/O packets.

Figure 8-19 shows Message Blocks in the Task Termination Notification
(TKTN) queue.

Figure 8-20 shows the linkage of the free blocks in the Dynamic
Storage Region.

8-7

PARTITION LIST

SPAR HD - P. LNK

P.sus-e

P.MAIN

-- P. LNK -
.- P .. SUB

P.MAIN .

I ==i P. LNK

~ P.SUB

P.MAIN

~
~

P. LNK

P.SUB-cl

P.MAIN

~ P. LNK•G

P.SUB

P.MAIN

DATA AltBAS ARD CONTROL BLOCKS

~

I--'

r;:--

t--

!-----"

~

~

~

1---1

Figure 8-3

P. LNK•?

P.SUB P. LNK•?

P.MAIN 1--1

P. SUB•G

P.MAIN

PCB'SOF DYNAMICALLY ALLOCATED
SUBPARTITIONS ARE CHAINED ACCORDING
TO THE BASE ADDRESSES OF THEIR SUBPARTITIONS

1--

Example of PCB Listings

8-8

USER-CONTROLLED
MAIN PARTITION
WITHOUT SUBf'ARTITIONS

USER·CONTROLLED
MAIN PARTITION
WITH 2 SUBPARTITIONS

SYSTEM-CONTROLLED
PARTITION WITH
2 OYNAMICALL Y
CREATED SUBPARTITIONS

-
[r--'"" P. LNK

......... P. SUB

P.MAIN

P.WAIT

~ P. LNK

P. SUB-G

P.MAIN

~ P. LNK-G

t P. SUB
P.MAIN

P.WAIT

~ P. LNK•7

P. SUB-G

P.MAIN

DATA AREAS AND CONTROL BLOCKS

~

l L
T. LNK T. LNK•0

~

~
T.PCB '--- T.PCB

1 -r-- T. LINK T. LNK

r-- T.PCB ...- T. PCB r-
r--r-
~

.._ i....
.._

P. SUB•0 P. SUB•0

r-- P.MAIN r- P.MAIN ,--

\.
T

TCB'S OF WAITING TASKS ARE CHAINED ACCORDING
TO THE RUNNING PRIORITY OF THE TASKS IN
DESCENDING ORDER.

"I

T. LNK-G

T.PCB

P. SUB-G

P.MAIN

.J

)o

>-

WAIT QUEUE OF A
USER CONTROLLED
MAIN PARTITION
WITH ONE
SUBPARTITION

WAIT QUEUE OF A SYSTEM
CONTROLLED PARTITION
WITH ONE TASK
ALREADY RESIDENT

• The main PCB always heads the Partition Wait Queue. The
Partition Wait Queue contains TCBs both of tasks to be loaded
for the first time and of checkpointed tasks.

Figure 8-4 Example of a Partition Wait Queue

8-9

$CFLPT - P. LNK -
P.SUB

P. MAIN-G

~ P. LNK•G

P. SUB•G

P. MAIN•IJ

DATA l~RBAS ARD CONTROL BLOCKS

-::::::;_ --
~

.--..i

P. SUB
P.MAIN r- r---1

P. SUB

P.MAIN 1--

.__
T.CPCB

..__
T.CPCB

CHECKPOINT FILE
WITH 2 CHECKPOINTED
TASKS IN IT.

CHECKPOINT FILE
CURRENTLY NOT USED

• PCBs for checkpoint files are allocated by the MCR command:

ACS devunit: /BLKS=no. of blocks

The PCBs are chained in the order of their allocation.

• PCBs for checkpointed tasks are dynamically allocated whenever
the Executive checkpoints a task and are chained in ascending
order according to base disk address.

Figure 8-5 Example of a PCB List for Checkpoint Files

8-10

$TSKHD

$ACTHD

r--

$ROSCH 1---1

,......

r--

.........i

STKTCB ~

r--'

TCB

(T. PAI

T.TCBL

LT. DPRI

T.ACTL

TCB

[T. PAI

T.TCBL

(T. DPRI

T.ACTL

TCB

(T. PAI

T.TCBL

(T.DPRI

TCB

[T. PAI

T. TCBL

[T. OPAi

T.ACTL

TCB

(T. PRI

T.TCBL

(T.DPRI

T.ACTL

TCB

[T.PAI

T. TCBL•0

T.ACTL•0

DATA AREAS AND CONTROL BLOCKS

.,
248

>
248

r--
~

161J

16G

10G

10(1

50

60

1----1 1--1

135

50

1---'

G

}

• $TSKHD points to the start of the
STD.

• $ACTHD points to the start of the
ATL.

TceoF • $TKTCB points to the current task.
(TYPICALLY) $ROSCH points to where the Execut1' ve LOADER TASK e

TCBOF
NULL TASK

starts scanning the ATL.
• A task is put into the STD by the

Install command and removed by the
Remove command.

• The STD is linked in descending
order according to the default
priority.

• The ATL is linked according to the
running and default priority in
descending order.

• The default priority is defined when
the task is installed:

TKB-option PRI•n
INS f ilespec/PRI=n
RUN f ilespec/PRI=n

default•SO.
ALT taskname/PRI=n

• The running priority is defined by:
ALT taskname/PRI=n
ALT taskname/RPRI=n
ALTP$ directive
default: default priority

• The round robin scheduler
periodically reorders the tasks of
the same numeric running priority
within the ATL1 it does not affect
the STD.

• The swapping algorithm does not
affect the STD or the ATL.

• The following are pointers to TCBs
of special tasks:

$LDRPT points to the Loader TCB
$MCRPT points to the MCR TCB
$TKNPT points to the task

termination notification task
TCB

$SHFPT points to the shuffler
TCB

$ERRPT points to the error
logger TCB

Figure 8-6 Example of a System Task Directory (STD) and Active Task List

8-11

NON-RESIDENT
TASK

RESIDENT TASK

DATA AFtEAS AND CONTROL BLOCKS

TCB

TCB

TASK
HEADER

·r.PCB

T.PCB

-

-~ P. TCB

r--1 ~HOR

~

-

PCB OF TASK
PARTITION
(MAIN OR SUBP}

Figure 8-7 Simplified User-Controlled
Partition TCB, Task Header, and PCB Relationship

8-12

NON-RESIDENT,
NON-ACTIVE TASK

RESIDENT TASK

NON-RESIDENT,
ACTIVE TASK

OTHER
RESIDENT
TASK

TCB

TCB

TASK
HEADER

TCB

TCB .

TASK
HEADER

DATA AREAS ARD CONTROL BLOCKS

r--
P.SUB

P.MAIN

T.PCB P. TCB•(I
!--'

P. HDR•0

i--i

T.PCB

P.SUB
P.MAIN

r-::: P. TCB

P.HOR

n_ -
P. SUB•?
P.MAIN

~ T.PCB P.TCB

P. HOR?

r--i

T. PCB

P. SUB-G

P.MAIN

~
P. TCB

P. HOA

-.-

t::!=-1
1-i

"""' 1-i
t-+-

I'--' 1--

f..,.J

t---

PCB OF
MAIN PARTITION

DYNAMICALLY
CREATED PCB

DYNAMICALLY
CREATED PCB

DYNAMICALLY
CREATED PCB
(LAST)

Figure 8-8 TCB, Task Header, and PCB
Relationships in a System-Controlled Partition

8-13

EACH ACTIVE TASK
HAS ITS OWN
DYNAMICALLY
CREA TEO PCB.

PCB'S OF RESIDENT
TASKS ARE CHAINED
ACCORDING TO THE
BASE ADDRESS OF
THEIR SUBPARTITION.

TCB

TASK
HEADER

T.ASTL

H. PFVA
H. PFVA•0
H. RCVA•0

H.RRVA,,. 0

DATA AF~AS ARD CONTROL BLOCKS

AST

CQINTROL BLOCK
FOR

If() COMPLETION

~
AST

CINTROL BLOCK
FOR

E:CEIVE DATA

AST

CONTROL BLOCK
FOR

POWER FAILURE

AST

ONTROL BLOCK
FOR

RECEIVE DATA

1/0 PACKET

• AST control blocks are queued FIFO.

0
AST

CONTROL BLOCK
FOR

MARK TIME

CLOCK QUEUE
CONTROL BLOCK

FOR

MARK TIME

• AST control blocks for power failure, floating-point
exception, Receive Data, and Receive-by-Reference are
allocated a length of C.LGTH•l6. bytes. They are deallocated
by the STRA$, SFPA$, SRDA$, and SRRA$ directives. Their
addresses are kept in the task header. When an AST is
executed, the AST control block is inserted into the AST
queue. After the AST has been set up, the AST control block
address is again put into the task header.

• The AST control block for Mark Time is allocated a length of
C.LGTH•l6. bytes by the MRKT$ directive and inserted into the
clock queue. When the mark time becomes due, the AST control
block is removed from the clock queue and inserted into the
AST queue. After the AST has been ~et up, the AST control
block is deallocated.

• For the I/O completi.on AST, the I/O packet is taken and
inserted into the AST queue. After the AST has been set up,
the AST control block (I/O packet) is deallocated.

Figure 8-9 Example of an AST queue

8-14

$LDRPT

TCBO
LOAD
TASK

.,.

F
ER ..-

DATA AREAS AND CONTROL BLOCKS

LOADER
TCB

T.RCVt
J TCB TCB l TCB

T. LNK T. LNK T. LNK•IJ

TCBs OF TASKS TO BE LOADED OR ROLLED
OUT/IN ARE CHAINED ACCORD1NG TO THE
RUNNING PRIORITY OF THE TASKS IN
DESCENDING ORDER.

• The Loader queue is headed by the TCB of the loader task and
contains TCBs of both tasks to be loaded the first time and
the task to be checkpointed.

TCBOF
RECEIVER
TASK

~

,-1

'-i

I- T.RCVL

Figure 8-10 The Loader Queue

~
-i - --. --

• Send/Receive data blocks are queued FIFO.

-""' 0

• Send/Receive data blocks are queued by issuing the SDAT$
directive and dequeued when the RCVD$ or RCVX$ directives are
issued.

Figure 8-11 Send/Receive Data Queue

8-15

TCBOF
RECEIVER
TASK

DATA l~REAS AND CONTROL BLOCKS

l
T. RRFL ~ - ~ 0 -

• Send/Receive-by-Reference blocks are queued FIFO.

• Send/Receive-by-Reference blocks are
SREF$ directive and dequeued when
issued.

queued by issuing the
the RREF$ directive is

Figure 8-12 Send/Receive by Reference Queue

SCLKHD -;:S: C. LNK • The clock queue is linked in ascending
order according to the absolute time when
the events described by the Clock Queue
Control Block come due.

~ C. LNK

i...- C. LNK•G

• The 1-word counter, $ABTIM, is incremented
with each clock tick. Whenever it
overflows, the high-order word of the
absolute time in each clock queue is
decremented. -

• An event comes due when the high-order of
the absolute time in its Clock Queue
Control Block is 0 and the low-order
word of the absolute time is less than or
equal ·to the counter, $ABTIM.

• The Clock Queue Control Block is
conditionally deallocated when the event
comes due dependent on the type of Clock
Queue Control Block:
Type 0 - Used as AST control block (if

specified), otherwise deallocated
Type 2 - Queued again
Type 4 - Deallocated
Type 6, 10, or 12 - Not deallocated

Figure 8-13 The Clock Queue

8-16

DATA AREAS ARD CONTROL BLOCKS

$FR KHO 0

• Fork control blocks are queued FIFO

• Fork control blocks are queued by issuing a $FORK, $FORK1 or
$FORK0 call; the control goes back to the next higher subroutine
level

• Fork processes (instructions following the CALL $FOR Kn instruction
up to the next RETURN instruction) are executed before the system
goes back to user level the next time ($STKDP is changed from
fJ to 1)

FORK CONTROL BLOCK

IJ POINTER TO NEXT FORK CONTROL BLOCK

2 START ADDRESS OF FORK PROCESS

4 SAVED RS

6 SAVED R4

10 RELOCATION BIAS OF FORK PROCESS IN MAPPED SYSTEM WITH
....,------------------------------'LOADABLE DRIVER

12 SUPPORT ONLY

Figure 8-14 The Fork Queue

8-17

(X)

i
(X)

mm:;I DCB DCB

rl9 ::~I IA~: I
'DB' I I 'LP'

.DB1 U.OWN

~· U.DCB ~

L...IU:""REol 11 I

see SLNA
I I

UCB see
DSG U.OWN=t

U.DCB

I I 0. Rf{) -

~I I~
'rA

I I u
PARTIAL UCB

USES UCB FOR.
.DBI

U.SCB ~

~ $TT2 r.-,
U.OWN=t

~ CB

U.RED

U.SCB • LP REDIRECTED TO TT2

• SY REDIRECTED TO DBI

$LOG HD L. LNK L. LNK
:i

~=G
MP SY OU

L.UCB L.UCB LUCB L.UCB•I

L.ASG L.ASG LASG I L.ASG t
......_

V'
,/_ _,,

v ~

LOCAL ASSIGNMENTS LOGIN ASSIGNMENTS GLOBAL ASSIGNMENTS

Figure 8-15 Example of DCB, SCB, UCB, LCB Relationship

~
>'
~
ll!I
>'
tD

~
r:I

n
~
to!

fJ
t1

l'O s
n

" m

L. TYPE

DATA AREAS AND CONTROL BLOCKS

$ LOGHD

LOCAL

LOGIN

GLOBAL

LOGICAL ASSIGNMENT CONTROL BLOCK (LCB)

LINK TO NEXT LCB

LOGICAL NAME OF DEVICE

TYPE OF ENTRY (0•GLBL) LOGICAL UNIT NUMBER

Tl UCB ADDRESS

ASSIGNMENT UCB ADDRESS

L. LNK

L.NAM

L. UNIT

L.UCB

L.ASG

L. LGTH

• An LCB is allocated by issuing an {
ASN target device= logical device /LOGIN [/TERM• terminal] } command

/GBL

and deallocated by issuing an { .
ASN • [logical device] /LOGIN [/TERM= terminal] } command

/GBL

• There are three groups of logical assignments:

1. local assignments applying to one specific terminal only
2. login assignments applying to one specific terminal only where

a user is logged in, they are established either at login time
or when a login logical assignment command is issued

3. global assignments valid for all terminals in the system

• LCBs are linked local assignments first, then login assignments and
global assignments at the end; within each group they are linked according
to the time the logical assignment was established

• Logical assignments are resolved by scanning the linked list of LCB's
when a logical unit number is assigned to a physical device (at install
time or at run time when a ALUN$ directive is issued)

• Symbolic offset definitions In LCBD FS in [1, 1] EX EMC.M LB

Figure 8-16 Logical Assignment Control Block (LCB) List

8-19

SM CR PT -

SMCRCB

DATA J~RBAS AND CONTROL BLOCKS

POINTER TO (J -- NEXT BLOCK -.... T.RCVL ~
UCB OF REQUESTING UCB OF REQUESTING 1---- '---" TERMINAL TERMINAL

• MCR queue entries are allocated in a length of 84. bytes (M$$CRB)

• MCR queue entries are linked FIFO

• Entries are inserted by the terminal driver whenever an unsolicited
input is completed or when a line is finished being typed in after an
MCR> 1>rompt that follows a control·C.

• Entries are dequeued by the MCR root; internal MCR commands
are processed by the corresponding overlay segment; MCR queue
entries for external MCR commands are inserted into the following
queue

POINTER TO POINTER TO
NEXT BLOCK NEXT BLOCK

UCB OF REQUESTING UCB OF REQUESTING
TERMINAL TERMINAL

• MCR queue entries in this list are dequeued when an external
MCR command (a task with a taskname ... XYZ) issues a GMCRS
directive; the contents of the entry is copied into the OPB of the
GMCR$ directive and the MCR queue entry is deallocated

Figure 8-17 MCR Queues

8-20

0

$PKAVL

$PKNUM $PKMAX

DATA AREAS AND CONTROL BLOCKS

~ t-

POINTER TO FIRST 1/0 PACKET

MAX NO.OF
PACKETS
ALLOWED IN
LIST

·No. OF PACKETS
CURRENTLY
IN LIST

-

• Each preallocated 1/0 packet has a length ot 44 bytes.

• Preallocated 1/0 packets are provided - as long as
available - whenever $ALOCB is called and a core block
with a length of 44 bytes is requested.

• Preallocated 1/0 packets can and will be used for other
purposes also.

Figure 8-18 Pre-allocated I/O Packet Queue

8-21

I-

~ 0

$TKNPT 7

t-

.oj

""

DATA J.JU:AS ARD CONTROL BLOCKS

POINTER TO
T.RCVL -!---""" NEXT BLOCK

MESSAGE NUMBER

UCB/TCB ADDRESS

• The queue is linked FIFO

• An entry i11 made when the routine $DYMSG is called

As a second TKTN queue the active task list (ATL) is used.

There are two types of ATL entries significant for the TKTN:

G

MESSAGE NUMBER

UCB/TCB ADDRESS

• TCBs (with the TS.MSG bit in T. STAT and the T2. ABO bit in T. ST2 set)
of aborted tasks or an exited task with outstanding 1/0 in which case

T. EFLG I current 1/0 count I abort message

• TCBs (with the T2. CAF bit in T. ST2 set and the T3. CAL bit in T. ST3 clear)
of tasks with a checkpoint allocation failure

Figure 8-19 Task Termination Notification (TKTN) Queues

8-22

DATA AREAS AND CONTROL BLOCKS

$CRAVL

LOW MEMORY

Figure 8-20 Dynamic Storage Region Free Block Queue

8-23

DATA Al~EAS ARD CONTROL BLOCKS

8.2.15 Interrelationship Of The DCB, UCB, And SCB

This section discusses the celationships existing among the DCB, UCB,
and sea.

Figure 8-21 shows the data structure resulting from three LA36
DECwriters interfaced by means of a DHll multiplexer. The structure
requires one DCB, three UCBs, and three SCBs, because activity on all
three units can proceed in parallel.

Figure 8-22 shows the internal data structure for an RKll disk
controller with three units attached. Note that only one SCB exists
because only one of the three units can be active at any given time.

Figure 8-23 shows the data structure for two RKll disk controllers,
each of which has two drives attached. Here, there are two seas,
because both of the disk controllers can operate in parellel.

Taken together, Figures 8-21, 8-22, and 8-23 illustrate the strategy
underlying the existence of three basic I/O control block types.
There need be only one DCB for each device type. There may be one or
more seas, depending on the degree of parallelism that is desired or
possible: one for each device-unit, or one for each controller
servicing several device-units. The number of UCBs and seas, and
their interrelationships, are uniquely determined by the hardware that
these data structures describe.

This data structure provides considerable flexibility in configuring
I/O devices, and, because of the control and status in the structures
themselves, substantially reduces the code requirements of the
associated drivers.

DCB

f ~ l
UCB UCB UCB

1 1
SCB SCB SCB

Figure 8-21 DHll Terminal I/O Data Structure

8-24

DATA AREAS AND CONTROL BLOCKS

DCB

,
UCB UCB UCB

~ sea

Figure 8-22 RKll Disk I/O Data Structure

DCB

f
j_ l

UCB UCB UCB UCB

I I
see see

Figure 8-23 I/O Data Structure for Two RKll Disk Controllers

8-25

DATA AREAS AND CONTROL BLOCKS

8 • 3 I/O CONTROL BLOCK LINK.i\GES

This section discusses all the I/O control blocks, in terms of their
linkage and use within the system. The following data structures make
up the complete set for I/O processing:

1. Task Header

2. Window Block ·{WB)

~. File Control Block {FCB)

4. $DEVHD word, the Device Control Block (DCB), and the Driver
Dispatch Table (DDT)

5. Unit Control Block (UCB)

6. Status Control Block (SCB)

7. I/O Queue

8. Volume Control Block (VCB}

Figure 8-24, which provides the structure for the following
discussion, shows all the individual data structures and the important
link fields within them. The numbers on the figure are keyed to the
text to simplify the discussion and to quide the reader through the
data structures.

8-·26

<D
TASK
HEAO'ER

©

DATA AREAS AND CONTROL BLOCKS

I SDEVHO::

1
_

0
ocs oca

0
oce

(INSYSCM) ---

UCBs

© ;o
TCB

~D
D ®

DOT

INI

CAN
TIM

VCB

©
see

FORK
BLOCK

0
l/OQUEUE -o-ou

FCB (INDEX)

--------,---.. -w

0
-e-(-vo_L_u_M~e~10~----------------'

MOUNTED
VOLUME

Figure 8-24 I/O Data Structure

8-27

DATA AREAS AND CONTROL BLOCKS

1. The task header ls constructed during the task-build process.
In mapped systems, a copy of the task header (located in the
task's partition) is made in the Executive's Dynamic Storage
Region. The Executive then uses this copy. To access the
current information in this copy, a task must be privileged
and mapped to the Executive.

The task header entry of interest, the Logical Unit Table
(LUT), is allocated by the Task Builder and filled in at task
installation. The number of LUT entries is established by
the UNITS• keyword option1 this number is an upp~r limit on
the number of device units a task may have active
simultaneously.

Each LUT entry contains two words: a pointer to an
associated UCB, and a pointer to a Window Block. The first
word contains the address of the device UCB in the Executive
system tables that contains drive-dependent information. The
UCB address is set during task installation if a
corresponding ASG• option is specified at task build time.
The UCB address can also be set at run-time with the Assign
LUN directive to the Executive.

The second word is a pointer to the Window Block if the
device is file structured. The Window Block pointer is set
when_a file is opened on the device whose UCB address is
specified by the first word. The Window Block pointer is
cleared when the file is closed.

2. A Window Block (WB) exists for each active access to files on
a mounted volume. It helps to speed up the retrieval of data
items in the file1 entries in a WB consist mainly of
pointers to contiguous areas on the device on which the file
resides. The driver is not concerned with the WB.

3. Each uniquely opened file on a mounted volume has an
associated File Control Block (FCB). The file system uses
the FCB to control access to the file.

4. $DEVHD is a word located in system common (SYSCM) and points
to a singly linked, unidirectional list of Device Control
Blocks (DCBs). Each device type in a system has at least one
associated DCB. The DCB list is terminated by a O in the
link word.

Linked to each DCB is a Driver Dispatch Table (DDT), which is
part of the driver. The DDT contains the addresses of the
driver's four entry points that the Executive can call.

5. A key data structure is the Unit Control Block (UCB). All
the UCBs associated with a DCB appear in consecutive memory
locations. During internal processing of a I/O request, most
drivers set RS to the address of the related UCB: it is by
means of pointers in the UCB that the driver can access other
control blocks in the data structure. In particular, the UCB
contains pointers to the DCB, SCB, VCB, and to the UCB to
which it may have lbeen redirected. If a Redirect command has
not been issued for the device-unit, the UCB redirect pointer
points to the UCB itself. When servicing a request for one
of its UCBs, the driver is unaware of whether I/O was issued
directly to its own UCB or to a UCB that had been redirected
to its UCB.

8-28

DATA AREAS ARD CONTROL BLOCKS

6. One Status Control Block (SCB) exists for each controller in
the system. A unique SCB must exist for each
controller/device-unit capable of performing parallel I/O.
The SCB contains the fork-block storage required when a
driver calls $FORK to transfer itself to the fork processing
level. The I/O request queue listhead is also contained in
the SCB. Generally, register R4 contains the address of the
SCB during processing of an I/O request.

7. The I/O queue is a list of control blocks called I/O packets
that QIO processing creates dynamically. Each time a task
makes an I/O r.equest, the Executive performs a series of
validity checks on the DPB parameters. If these checks prove
successful, the Executive generates a data structure called
an I/O packet. The Executive then inserts the packet into a
device-specific, priority-ordered list of packets called the
I/O queue. Each I/O queue's listhead is in the SCB to which
the I/O requests apply.

When a device driver needs work, it requests the Executive to
dequeue the next I/O packet and deliver it to the requesting
driver. Normally, the driver does not directly manipulate
the I/O queue. However, an exception is the case where a
driver examines an I/O packet before it is queued, or in
place of having it queued. For the driver to accomplish this
examination, it must set the UC.QUE bit in the control byte,
U.CTL, of the UCB.

The most common reason for a driver to examine a packet
before queuing is that the driver employs a special user
buffer, other than the normal buffer used in a transfer
request. Within the context of the requesting task, the
driver must address-check and relocate such a special buffer.

8. One Volume Control Block (VCB) exists for each mounted volume
in the system. The VCB maintains volume-dependent control
information. It contains pointers to the File Control Block
(FCB) and Window Block (WB), which control access to the
volume's index file. (The index file is a file of file
headers.) The WB for the index file serves the same function
as the WB for a user file. All unique FCBs for a volume form
a linked list emanating from the index file FCB. This
linkage helps to keep file access times short. Further,
because the window that contains the mapping pointers is
variable in length, you can increase file access speed by
adding more access pointers to whatever extent the
application requires. However, greater speed requires more
main memory.

8.4 CONTROL BLOCK OFFSET DEFINITIONS

8.4.l Asynchronous System Trap Control Block (ASTCB)

Defined by: .MACRO PKTDF$,L,B,SYSDEF

Some positional dependencies between the DCB and the AST control block
are relied upon in the routine $FINXT in the module SYSXT.

8-29

.ASECT
.•177774
A.KSRS: 'L' .BLKW
A.DQSR:'L' .BLKW

.BLKW
A.CSL: 'L' .BLKW
A.BYT: 'L' .BLKW
A.AST: 'LI .BLKW
A.NPR: 'LI .BLKW
A.PRM: 'L' .BLKW

1
1
1
1
1
l
1
1

DATA A:REAS ARD CONTROL BLOCKS

7Subroutine KISARS bias (A.CBL•O)
1Dequeue subroutine address (A.CBL•O)
1AST queue thread word
1Length of control block in bytes
1Nu1mber of bytes to allocate on task stack
1AST trap address
1Number of AST parameters
1First AST parameter

8.4.1.l I/O Packet Offset Definitions - QIO directive processing
constructs the 18-word I/O packet and places it in the driver I/O
queue. A call to $GTPKT subsequently delivers the packet to the
driver •

• ASECT
.•O
I.LNK:'L' .BLKW 1

I.PRI:'L' .BLKB 1

I.EFN: 'L' .BLKB 1

I.TCB:'L' .BLKW 1
I. LN2 : IL I • BLKW 1

I.UCB:'L' .BLKW 1

I • FCN : ' L I • BLKW 1

I.IOSB: 'L' .BLKW 1
.BLKW 1
.BLKW 1

: I/i:'.> queue thread word
Links I/O packets queued for a driver. A
0 ends the chain. The listhead is in the
S1:B (S. LHD) •

7Request priority
Priority copied from the TCB of the re
questing task.

1Event flag number
Contains the event flag number as copied
by QIO directive processing from the reques
t·or 's DPB.

1TCB address of the requesting task
1Pointer to second LUN word

Contains the address of the second word of
the LUT entry in the task header to which
the I/O request is directed. For open
files on file-structured devices, this word
contains the address of the window block,
otherwise it is o.

1Pointer to unit control block that
contains the address of the redirect UCB
if the starting UCB has been subject to a
R•edirect command.

1I/O function code
C•ontains the function code for the I/O
r·equest.

:Virtual address of I/O status block
1I/O status block relocaton bias
:I/O status block address

I.IOSB contains the virtual address of the
I/O status block (IOSB) if one is specified
or O if one is not.

I.IOSB+2 and I.IOSB+4 contain the address
doubleword for the IOSB. In an unmapped
system, the first word is 0 and the se-
c1::>nd word is ·the real address of the IOSB.
In a mapped system, the first word contains
the relocation bias of the IOSB: the bias is
the 32-word block number in which the IOSB
starts. This block number is derived by
viewing available real memory as a col
lection of 32-word blocks numbered consecu-

8-30

I .AST: 'L' • BLKW 1

I • PRM: ' L ' • BLKW 1
.BLKW 6

.BLKW 1
I • ATTL• I B ' •

I.LGTH•'B'.

DATA AREAS AND CONTROL BLOCKS

tively, starting with o. Thus, if the
IOSB starts at physical location 3210(8),
its block number is 32(8). See the RSX-llM
Guide to Writing an I/0 Driver for more
details.

;AST service routine address
Contains the virtual address of the AST
service. routine to be executed at I/O com
pletion. If no address is specified, the
field contains o.

;Reserved for mapping parameter il
;Parameters 1 to 6 constructed from the last

6 words of the OPB. Note that if the I/O
function is a transfer, the buffer address
(the first DPB device-dependent paramenter)
is translated to an equivalent address
doubleword. Therefore, device-dependent
paramenter "n" is copied to I.PRM+(2*n)+2.

;User mode diagnostic parameter word
;Minimum length of I/O packet (used by

file system to calculate maximum
number of attributes)

;Length of I/O request control block

8.4.2 Clock Queue Control Block (CQCB)

Defined by: .MACRO CLKDF$,L,B

There are five types of clock queue control blocks. Each control block
has the same format in the first five words and differs in the
remaining three.

The following control block types are defined:

C.MRKT•'B'O
C.SCHO•'B'2
C.SSHT•'B'4
C.SYST•'B'6

C.SYTK•'B'8.
C.CSTP•'B'lO.

;Mark time request
;Task request with periodic rescheduling
;Single shot task request
;Single shot internal system subroutine

(ident)
;Single shot internal system subroutine (task)
;Clear stop bit (conditionalized on shuffling)

8.4.2.1 Clock Queue Control Block Independent Offsets

.ASECT
.•O
c .LNK: 'LI .BLKW
C.RQT: 'LI .BLKB
c. EFN: 'LI .BLKB
C.TCB: IL' .BLKW

C.TIM:'L' .BLKW

l
1
1
1

2

;Clock queue thread word
;Request type
;Event flag number (mark time only)
;TCB address or system subroutine
; identification
;Absolute time when request comes due

8-31

DATA AJtEAS ARD CONTROL BLOCKS

8. 4. 2. 2 Clock Queue Contrc>l Block - Mark Time Dependent Offsets

.•C.TIM+4
C.AST: 'LI
C.SRC: 'LI
C.DST: IL I

.BLKW 1

.BLKW 1

.BLKW 1

1Start of dependent area
1AST address
1Flag mask word for 'BIS' source
1Address of 'BIS' destination

8.4.2.3 Clock Queue Contro1l Block - Periodic Rescheduling Dependent Offsets

.•C.TIM+4
C.RSI: IL I
C.UIC: 'L'

.BLKW 2

.BLKW 1

1Start of dependent area
:Reschedule interval in clock ticks
;Scheduling UIC

8.4.2.4 Clock Queue Control Block - Single-Shot Dependent Offsets

.•C.TIM+4
.BLKW 2
.BLKW 1

:Start of dependent area
;Two unused words
:Scheduling UIC

8.4.2.5 Clock Queue Control Block - Single-Shot Internal Subroutine -Offsets

There are two type codes for this type of request:

Type 6: single shot internal subroutine with a 16-bit value as an
identifier.

Type 8: single shot internal subroutine with a TCB address as an
identifier.

.•C.TIM+4
C.SUB: 'LI
c .ARS: IL I

C.LGTH•'B'.

.BLKW 1

.BLKW 1

.BLKW 1

:Start of dependent area
:Subroutine address
:Relocation base (for loadable drivers)
:One unused word
:Length of clock queue control block

8.4.3 Communications Control Block (CCB)

Defined by: .MACRO CUCDF$ X,Y

.ASECT
.=U.CW2+2
u .ACOR: Ix
u .NSYN: Ix
u .NSYC: Ix

.=U.VCB+2
U .PHDR: 'X
u .RCHK: Ix
u .QSYN: Ix
U .RCAC: 'X
u .RBUF: Ix
u .RCNT: Ix
u .SVC: Ix
u .TXCT: Ix
u .INTP: Ix
U .SYNC: 'X
u .MPN: Ix

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 2

.BLKW 1

.BLKW 1

.BLKW 1

.BLKB 1

.BLKB 1

:Position ACU at U.CW3 position
:ACU register address (at U.CW3)
:Number of syncs to issue
:Number of syncs issued

:Extend after VCB address
;End-of-transmit header check routine
:Address of redundancy check routine
:DQ sync buffer
:Redundancy check accumulator
:Receive buffer address
:Receive buffer count
:External receive interrupt service
:DQ transmit buffer count
:Internal receive interrupt service
:Current sync charecter
:Multipoint node number

8-·32

U .RFRK: 'X
U.RFPC:'X
U .RFR5: 'X
U .RFR4: 'X
U.RFCT•'Y

.PSECT

U2.HDX='Y
U2.LIN•'Y
U2.CTS•'Y
U2.SWC='Y
U2.0NL•'Y
U2.HPT•'Y
U2.HRC•'Y
U2.RCV•'Y
U2.ACU='Y
02.MPT•'Y
U2.FTM='Y
U2.SFL='Y
02.RFK='Y
02.SYC='Y
U2.TXA='Y
U2.SNC•'Y
US.SYN='Y

U3.LOK='Y
U3.RPD='Y
U3.RAC•'Y
o3.SND='Y

DATA AREAS AND CONTROL BLOCKS

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1
U.TXCT+l

100000
40000
20000
10000

4000
1000

400
200
100

40
20
10

4
3
2
1
1

100000
400
200

;Receive fork block
;Fork PC
;Fork save RS
;Fork save R4
;DO receive fork count

;Set if running half duplex
;Set if physical link half duplex
;Set if clear to send expected
;Set if switched circuit
;Set if unit on line
;Set if DO has protocol option
;Set if controller does CRC
;Set if receiver active, half duplex
;Set if unit has ACU
:Set if operating multipoint
;Set if just initiated receive
;Sent final on last message
;Clear when primary fork free (DO)
;Bits used for receiver sync count
;Set if TX code active (DO)
;Set if sending syncs (DO)
;Set if device always sends sync

;Software
;Set when
:Set when
;Set when

interrupt lockout (DA)
receive pending (DA)
receive in progress (DA)
in transmit mode (DA) 1

.MACRO

.ENDM

.ENDM

CUCDF$ A,B

8.4.3.l Communications Vector

Defined by: .MACRO CVCDF$ X,Y

.ASECT
.=V.IFWI
v .CPRT: Ix
v .CLON: Ix
v .CMPN: Ix
V .CSTS: 'X
V .CSTl: 'X
V .CNID: 'X
v .cues:' x
v .CMPL: Ix
V .CNPN: 'X
v .CMBC: Ix
v .CRED: Ix
v .CNHD: Ix
v .CTBL: Ix
v .CRBL: Ix
v .NXHD: Ix
v .CDBC: Ix
v .CIAO: Ix
v .CICT: Ix
v .CSAD: Ix
V .CSCT: 'X
v .CMXI: Ix
v .CMXO: Ix
v .CTDH: Ix

.BLKW l

.BLKB l

.BLKB l

.BLKW l

.BLKB 1

.BLKB 1

.BLKW l

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

;Overlay from here on
;Protocol descriptor vector address
;CCP'S current LON for this node
;Multipoint node designator
;Protocol-oriented status
;Status extension
;Node ID number for next node over
;Current UCB for this VCB
;Multipoint table link word
:Next multipoint node in chain
;Multipoint half duplex count of bytes
;Redundancy check keyword
;Address of (new) header block
;Address of current AST block
;Address of current data block
;Next header buffer address
;Receiver data count, bytes
;Receive buffer address, enter transparency
;Receive data count, enter T.
;Receive buffer address, exit T.
;Receive buffer count, exit T.
;Max record size accepted, bytes
;Max record size can transmit
;Transmit data packet list head

8-33

· v .CTDT: 'X
v .CSTQ: Ix
v .CLMT: Ix
v .CTMA: Ix
v .CLMR: Ix
v .CRMA: Ix
V .CMCT: 'X
v .CRPC: Ix
V .CRPL: 'X
v .CRTM: Ix
v .CREP: Ix
V .CBCC: 'X
V .CDCC: 'X
v .CURH: Ix
V .COLE: 'X
v .COVR: Ix
V .CRST: 'X
V.CALF: 'X
v .CREA: Ix

V .CTPN: 'X

V .CLEN: 'X

.PSECT
VS.SEL='Y
VS.FIN=-'Y
VS.REP•'Y
VS.RTR•'Y
VS.STK•'Y
VS.STR:a'Y
VS.ACKm'Y
VS.NAK•'Y
VS.MPT•'Y
VS.DIS='Y
VS.CTL='Y
VS.DAT•'Y
VS.SYN•'Y
VS.POL='Y
VS.ONL•'Y
VS.BOO='Y
VS.TRN='Y

DATA A:REAS AND CONTROL BLOCKS

.BLKW 1

.BLKW 2

.BLKB 1

.BLKB 1

.BLKB 1

.BLKB 1

.BLKW 2

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKB 1

.BLKB 1

1Transmit data packet list tail
1Start mode pre-transmission queue
1Last message number transmitted
;Last transmitted message ACKed
1Last message number received
;Last received message ACKed
;Count of messages sent
;Consecutive rep count
;Consecutive rep limit
1Rep timeout value, ticks
1Rep count accumulator
;Header block check error count
;Data block check error count
;Unrecognized header error count
;Data late error count
;Transmitter overrun count
;Number of starts or restarts
;Number of system buffer allocation failures
;Contains NAK reason
;Unused

.IF DF C$$ACU

.BLKB 12. ;Telephone number, this unit (ASCII)

.ENDC

.BLKW 1

100000
40000
20000
10000

4000
2000
1000

400
200
200
100

40
20
10

4
2
1

.MACRO

.ENDM

.ENDM

;Communications VCB length

;Set if select other unit
;Set if final transmission
;Unit in REP mode
;Transmitter in retry mode
;Set if start ACK expected
;Start mode if set
;Set if should send ACK
;Set if should send NAK
;Set if link is multipoint
: (V.CSTl) Set link in dismount mode
;Set if have mastership, multipoint
;Set if data message
;Set if sync train required
;Poll next multipoint if set
;Related node is active
;Marked as boot channel
;Marked as DDCMP-only channel

CVCDF$ A,B

8.4.4 Device Control Block (DCB)

Defined by: .MACRO DCBDF$,L,B

The Device Control Block (I>CB) describes the static characteristics
(rather than execution-time! information) of both the device controller
and the units attached to the controller. Most of the data in the DCB
is established in the assembly source for the I/O driver data
structure. The DCB is used by the QIO directive processing code in
the Executive, ~ather than by the driver. All the DCBs in a system
form a forward-linked list,. with the last DCB having a link of O. The
link word is D.LNK.

8-34

DATA AREAS AND CONTROL BLOCKS

At least one DCB exists for each type of device appearing in a system
(device type should not be equated with device-unit). Therefore, a

DCB has the device name in it1 for example, the DCB for DKO: has
".ASCII /DK/" in it. In general, there is only one DCB containing the
name of a given device. However, in the case of the terminal driver,
a separate DCB exists for every kind of terminal device controller in
the system (DL, DJ, DH, and DZ), and each DCB contains ".ASCII /TT/".
For example, if there are terminals in a system, then there is at
least one controller and one DCB containing the device name "TT". If
some of the terminals were interfaced via DLll-As and the rest via a
DHll, then there would be two DCBs1 one for all DLll-A-interfaced
terminals, and one for all DHll-interfaced terminals. They both would
contain the device name, "TT" •

.=O
D.LNK:'L'

D.UCB:'L'

D.NAM: 'L'

D.UNIT:'L'

D.UCBL:'L'

D.DSP:'l'

D.MSK:'l'

• ASECT

.BLKW 1

.BLKW 1

.BLKW 1

.BLKB 1
• BLKB 1

.BLKW 1

• BLKW 1

.BLKW 1
• BLKW 1
• BLKW 1
• BLKW 1
• BLKW 1
• BLKW 1
• BLKW 1
• BLKW 1

1Link to next DCB. A O in this field in
dicates the last (or only) DCB in the chain.
The driver links its DCB into the system
DCBs via the global label $USRTB on its
first DCB.

1Pointer to first Unit Control Block. All
UCBs, for a given DCB, are in contiguous
memory locations and must all be the same
length.

1Generic device name in ASCII by which
device units are referenced mnemonically.

1Lowest unit number covered by this DCB.
1Highest unit number covered by this DCB •

These two bytes represent the range of
logical units available to the user for
assignment. Typically, the lowest number is
0 and the highest is n-1, where n is the
number of device-units described by the DCB.

1Length of each unit control block in
bytes. The UCB can have any length to meet
the needs of the driver for variable
storage. However, all UCBs for a given DCB
must have the same length. The specified
length must include prefix words (U.LUIC and
U.OWN) if present.

1Pointer to driver dispatch table •
When the Executive must enter the driver
at any of the four entry points contained
in the driver dispatch table, it accesses
D.DSP, locates the address in the table, and
calls the driver at that address. A O
table address indicates that the (loadable)
driver is not in memory. If a driver does
not process a given function, it supplies a
return address. For more details see the
RSX-llM Guide to Writing an I/O Driver.

1Legal function mask codes 6-15.
1Control function mask codes 0-15 •
7NOP'ed function mask codes 0-15 •
1ACP function mask codes 0-15 •
1Legal function mask codes 16.-31 •
1Control function mask codes 16.-31 •
7NOP 1 ed function mask codes 16.-31 •
1ACP function mask codes 16.-31 •

The Executive uses these words to validate
and dispatch the I/O request specified
by a QIO directive.

8-35

D.PCB: 'LI .BLKW 1

DATA AREAS AND CONTROL BLOCKS

7Address of the driver's Partition Control
Block (PCB). This word is present in
the DCB only if the loadable-driver
SYSGEN option has been selected. It must
be initialized to O. The DCB can be
extended by adding words after D.PCB.

A PCB exists for every partition in a
system. MCR creates a PCB when the SET
/MAIN or SET /SUB commands are given. If a
driver is loadable, its PCB describes the
partition in which it resides.

The Executive uses D.PCB together with
D.DSP (the address of the driver dispatch
table) to determine whether a driver is
loadable or resident, and, if loadable,
whether or not it is in memory. For more
details see the RSX-llM Guide to Writing an
I/O Driver.

8.4.4.1 Driver Dispatch Table Offsets

D.VINI•'B'O
D.VCAN='B'2
D.VOUT•'B'4
D.VPWF•'B'6

1Device initiator
7Cancel current I/O function
7Device timeout
;Powerfail recovery

8.4.5 Error Message Block (EMS)

Defined by: .MACRO EMBDF$,L,B

The following error codes are defined:

EC.INI='B'40
EC.DVC='B'l
EC.DTO='B'l40
EC.NSI='B'l41
EC.LOA='B'4
EC.UNL•'B'lO
EC.MPE•'B'2
EC.PWR='B'42

7Device error bit set
7Device interrupt timeout
;Undefined interrupts
;Driver load
;Driver unload
;Memory parity error
7Power fail

8.4.5.1 Error Message Block Independent Offsets

.ASECT
.=O
E.SIZE: 'L'
E.CODE: 'L'

E .TIME: 'LI
E .SEQ: 'LI
E.ABM:'L'

.BLKW 1

.BLKB 1

.BLKB 1

.BLKB 6

.BLKW 1

.BLKW 1

;Size of the EMB in bytes
;Error code
;RE!served
;Time of error-s,m,h,d,m,y
7 SE~quence number
;Saved I/O active bitmap

8-36

DATA AREAS AND CONTROL BLOCKS

8.4.5.2 Error Message Block - Undefined Interrupt Offsets

.•E.ABM+2
E.VCTR: 'L'
E .LOST: 'L'
E .OPS:' L'
E.OPC: 'L'

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 1

1ID of vector trapped through
1Number of lost undefined interrupts
70ld PS preinterrupt
10ld PC preinterrupt

8.4.5.3 Error Message Block - Device Errors and Device Interrupt
Timeout Offsets

.•E.ABM+2
E.RTRY: 'LI

E. IOC: 'LI
E.TASK:'L'
E.PAR:'L'
E.UIC: 'L'
E .UCB:' LI
E. FCN: IL I
E.PRM:'L'

E .RCNT: 'LI

E. REGS= I BI •
E.LGTH='B'.

.BLKB 2

.BLKB 1

.BLKB 1

.BLKW 2

.BLKW 1

.BLKW l

.BLKW 1

.BLKB 2

.BLKW 1

.BLKW 6

.BLKB 1

.BLKB 1

1Low byte=left, hi byte=start
1Task priority
1I/O in progress count
1Task name
1Partition address
1Task UIC
:Device UCB address
1QIO function code
1Buffer mapping
:Parameters 1-6
1Number of device registers
1Reserved

8.4.S.4 Error Message Block - Driver Load and Unload

.•E.TIME+<9.*2>
E • WHY : I L ' • BLKW 1 1Action code (load/unload)
.•.+2
E .NAME: IL I .BLKW 1 1Device name (ASCII)

8.4.6 File Control Block (FCB)

.ASECT
.=O
F.LINK: .BLKW
F.FNUM: .BLKW
F.FSEQ: .BLKW

.BLKB
F.FSQN: .BLKB
F.FOWN: .BLKW
F.FPRO: .BLKW
F.UCHA: .BLKB
F.SCHA: .BLKB
F.HDLB: .BLKW
F .LBN: .BLKW

F.SIZE: .BLKW
F.NACS: .BLKB
F.NLCK: .BLKB
F.STAT:
F.NWAC: .BLKB

.BLKB
FC.WAC=lOOOOO
FC.DIR=40000

1
1
1
1
1
1
1
1
1
2
2

2
1
1

1
1

;FCB chain pointer
;File number
;File sequence number
;Not used
1File segment number
;File owner's UIC
;File protection code
:User controlled charact~ristics
1System controlled characteristics
:File header logical block number
1LBN of virtual block 1 if contiguous
:O if non contiguous
:Size of file in blocks
;No. of accesses
;No. of locks
;FCB status word
:Number of write accessors
;Status bits for FCB consisting of
;Set if file accessed for write
;Set if FCB is in directory LRU

8-37

DATA AllEAS AND CONTROL BLOCKS

FC.CEF•20000
FC.FCO=lOOOO

F.DREF: .BLKW 1
F .DRNM: .BLKW 1
F.FEXT: .BLKW 1
F.FVBN: .BLKW 2
F.LKL: .BLKW 1
F.LGTH:

8.4.6.l Window

.ASECT
.=O
W.CTL: .BLKW 1

WI.RDV•400.
WI. WRV•lOOO
WI.EXT•2000
WI.LCK•4000
WI.DLK=lOOOO
WI.EXL=40000
WI.BPS=lOOOOO

W.VBN: .BLKB 1
W.WISZ: .BLKB 1

W.FCB:
W.LKL:
W.RTRV:

.BLKW 1

.BLKW 1

.BLKW 1

1Set if directory EOF needs updating
;Set if trying to force directory contig
1 Dii~ectory EOF block number
7lst word of directory name
7Pointer to extension FCB
1Starting VBN of this file segment
;Pointer to locked block list for file
;Size in bytes of FCB

1Low byte = # of map entries active
;High byte consists of the following bits

Read virtual block allowed if set
Write virtual block allowed if set
Extend allowed if set
Set if locked against shared access
Set if deaccess lock enabled
Set if manual unlock desired

; Bypass access interlock if set
;High byte of 1st VBN mapped by window
;Size in rtrv ptrs of window (7 bits)
;Low order word of 1st VBN mapped
;File control block address
;Pointer to list of users locked blocks
;Offset to 1st retrieval pointer in window

8.4.6.2 Locked Block List Node

.ASECT
.=O
L.LNK:
L. Wil:
L.VBl:
L.CNT:

L.LGTH:

.BLKW 1

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

;Link to next node in list
;Pointer to window for first entry
; High order VBN byte
;Count for entry

8.4.7 Get Command Line Control Block (GCML)

Defined by: .MACRO GCML$D GBL

G.ERR = S.FDB
G.MODE G.ERR+l
G.PSDS = G.ERR+2
G.CMLD = G.ERR+6
G.ISIZ 16.

G.DPRM = G.ERR+G.ISIZ
G.SIZE = G.DPRM+6+S.FNB

;Error return code byte
;Status and mode control byte
;Prompt string descriptor
;Command line descriptor
;Size of impure area (PTRS, FLAGS,
; COUNTS, etc.)
;Default prompt string
;Buffer size

8-38

DATA AREAS AND CONTROL BLOCKS

G.MODE BIT DEFINITIONS

GE.COM • l
GE.IND • 2
GE.CLO • 4
GE.LC • 10
GE.CON • 20
GE.SIZ • 40

G.ERR VALUES

GE.IOR • -1
GE.QPR • -2
GE.BIF • -3
GE.MOE • -4
GE.EOF • -10.
GE.RBG = -40.

;Comment recognition
;Indirect file recognition
;Close command file before return
;Pass lower case characters
1Continuation lines allowed
1Buffer size

1I/O error
:Unable to open indirect file
;Bad indirect file name
1Maximum indirect file depth exceeded
1End of file
;Buffer size error (overflow)

8.4.8 Hardware Definitions

Defined by: .MACRO HWDDF$,L,B

8.4.8.1 Hardware Register Addresses and Status Codes

MPCSR='B'l77746
MPAR•'B'l72100
PIRQ•'B'l77772
PRO•'B'O
PRl•'B'40

· PR4='B'200
PRS•'B'240
PR6='B'300
PR7='B'340
PS='B'l77776
SWR='B'l77570
TPS= •·a' 177564

;Address of PDP-11/70 memory parity register
;Address of first memory parity register
;Programmed interrupt request register
;Processor priority 0
;Processor priority 1
;Processor priority 4
;Processor priority 5
;Processor priority 6
;Processor priority 7
;Processor status word
;Console switch and display register
;Console terminal printer and status register

8.4.8.2 Extended Arithmetic Element Registera

.IF OF E$$EAE
AC='B'l77302
MQ='B'l77304
SC='B'177310

.ENDC

;Accumulator
;Multiplier-quotient
;Shift count

8.4.8.3 Memory Management Hardware Register and Status Codes

.IF DF
KDSARO='B'l72360
KDSDRO='B'l72320
KISARO='B'l72340
KISAR5='B'l72352
KISAR6='B'l72354
KISAR7='B'l72356
KISDRO='B'l72300
KISDR6='B'l72314

M$$MGE
;Kernel D PAR 0
;Kernel D PDR 0
;Kernel I PAR 0
;Kernel I PAR 5
;Kernel I PAR 6
;Kernel I PAR 7
;Kernel I PDR 0
;Kernel I PDR 6

8-39

KISDR7•'B'l72316
SISDRO•'B'l72200
ODSAR0=-'B'l77660
ODSDRO•'B'l77620
OISARO•'B'l77640
OISAR4•'B'l77650
UISARS='B'l77652
UISAR6•'B'l77654
UISAR7•'B'l77656
UISDRO•'B'l77600
UISDR4•'B'l77610
UISDRS•'B'l77612
OISDR6•'B'l77614
OISDR7•'B'l77616

UBMPR•'B'l70200
CMOOE•'B'l40000
PMOOE='B'30000
SRO•'B'177572
SR3•'B'l72516

.ENOC

DATA AltEAS AND CONTROL BLOCKS

;Ke1~nel I PAR 7
;Supervisor I PDR 0
; 0St!r 0 PAR 0
;Usur 0 PDR 0
;Usc~r I PAR 0
;Uscer I PAR 4
;Uscu I PAR 5
; Usier I PAR 6
;Osier I PAR 7
;Osier I PDR 0
; Us•er I PDR 4
; Us•er I PDR 5
; Osier I PDR 6
; Us·er I PDR 7

;UNIBUS mapping register O
;Current mode field of PS word
;Previous mode field of PS word
;Segment status register 0
;Segment status register 3

8.4.8.4 Feature Symbol Definitions

FE.EXT='B'l
FE.MUP='B'2
FE.EXV=='B'4
FE.ORV='B'lO
FE.PLA•'B'20
FE.CAL='B'40
FE.PKT=='B'lOO
FE.EXP=='B'200
FE.LSI='B'400
FE.CEX='B'20000
FE.MXT='B'40000
FE.NLG='B'lOOOOO

.ENOM

.ENOM

;11/70 extended memory support
;Multi-user protection support
;Executive is supported to 20K
;Loadable driver support
;PLAS support
;Dynamic checkpoint space allocation
;Preallocation of I/O packets
;Extend Task directive supported
;Processor is an tsI-11
;COM exec is loaded
;MCR exit after each command mode
;Logins disabled - multi-user support

8.4.9 Interrupt Transfer Block (ITB)

Defined by: .MACRO ITBDF$ IJ,B,SYSDEF

.IF DF A$$TRP

.MCALL PKTDF$
PKTDF$;Define AST block offsets
.ENDC

.ASECT
.=O
x .LNK: IL I
X.JSR:'L'
X.PSW: 'L'

x. ISR: IL I
x. FORK: IL I

.BLKW l ;Link word for ITB lists starting in TCB
JSR RS,@#0 ;Call $INTSC
.BLKB 1 ;Low byte of PSW for ISR
.BLKB 1 ;Unused
.BLKW l ;ISR entry point (APRS mapping)

.BLKW l

.BLKW l

.BLKW l

;Fork block
;Thread word
; Fink PC
;S.aved RS

8-40

x .REL: IL I

X.OSI: 'L'
X.TCB: 'LI

X.AST: 1l1

x. VEC: IL I

x. VPC: IL I
x .LEN: IL I

DATA AREAS AND CONTROL BLOCKS

.BLKW 1 ;Saved R4

.IF OF M$$MGE

.BLKW 1 ;Relocation base for APR5

.ENOC

.BLKW l ;Address of DIS.INT. routine

.BLKW l ;TCB address of owning task

.IF NB SYSDEF

.IF OF A$$TRP

.BLKW 1 ;A.DQSR for AST block

.BLKB A.PRM ;AST block

.ENDC

.BLKW 1

.BLKW 1

.ENDC
.PSECT

;Vector address (if AST support,
; this is first and only AST parameter)
;Saved vector PC
;Length in bytes of ITB

8.4.10 Logical Assignment Control Block

Defined by: .MACRO LCBDF$,L,B

The logical assignment control block (LCB) associates a logical
name with a physical device-unit. LCBs are linked together to
form the logical assignments of a system. Assignments may be on
a system-wide or local (terminal) basis •

• ASECT
.=-0
L.LNK:'L' .BLKW l
L.NAM:'L' .BLKW l
L.UNIT: 'L' .BLKB 1
L.TYPE:'L' .BLKB 1
L.UCB:'L' .BLKW 1
L.ASG:'L' .BLKW 1
L.LGTH='B'.-L.LNK

.PSECT

;Link to next LCB
;Logical name of device
;Logical unit number
;Type of entry (O=system wide)
;TI UCB address
;Assignment UCB address
;Length of LCB

8.4.11 Partition Control Block (PCB)

Defined by: .MACRO PCBDF$ L,B,SYSDEF

.ASECT
.=O
p .LNK: 'LI

P. PRI: 'L'
P.IOC: 'L'
p .NAM: IL I

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 2

;Link to next PCB. The PCBs are linked in
physical address order, highest to lowest.
If a main partition has subpartitions, they
are linked in the PCB chain off the main
partition in highest to lowest address
order. The last subpartition of a main
partition either ends the PCB chain or
links to the next main partition. A main
partition with no subpartition either links
to the next main partition or ends the
chain.

;Priority of partition
;I/O + I/O status block count
;Partition name in RAD50

8-41

P.SUB: 'L'

p .MAIN: IL I

P.HDR: 'L'

p .REL: IL I

P.BLKS: 'L'
P.SIZE: 'L'
p .WAIT: 'LI

P.SWSZ:'L'

p .BUSY: IL I

p .OWN: IL I

p .TCB: IL I

P.STAT: 'L'

P.HDR:'L'

P.PRO: 'LI
p .ATT: 'LI

DATA AREAS AND CONTROL BLOCKS

.BLKW 1 JPointer to next subpartition. Structured and
used similarly to P.LNK when manipulating a
chain of subpartition PCBs •

• BLKW 1 ;Pointer to main partition. The backpointer
from a subpartition to its parent main par
tition •

• IF NB SYSDEF
.IF NDF M$$MGE

.ENDC

.IFTF
• BLKW 1

.BLKW 1

.BLKW 2

.BLKW 1

.BLKB 2

.BLKW 1

.BLKW 1

.IFT

;Pointer to task header (unmapped system)

;Starting physical address of the partition •
The partition base relocation bias. In a
mapped system, P.REL is the bias; in an un
mapped system, P.REL is the actual parti
tion address.

;Size of partition in bytes
;Partition wait queue listhead (2 words). A

pointer to a list of tasks awaiting the use
of the partition. The list is ordered by
priority and is searched to determine which
task should be in control of the partition.

;Partition swap size (system-controlled
partitions only)

;Partition busy flags. The first byte, the
busy status, is the inclusive OR of the
state for the main partition and all its
subpartitions. The second byte, the busy
mask, contains a busy (1) or not busy (0)
setting for the main partition and its
seven subpartitions.

;TCB address of the task that owns the par
tition (owner task).

;Partition status flags

.IF OF M$$MGE

.BLKW 1 ;Pointer to

.ENDC
task header (mapped system)

.BLKW 1

.BLKW 2
;Protection word [DEWR,DEWR,DEWR,DEWR]
;Attachment descriptor listhead

• IF NDF P$$LA.S
P.LGTH='B'P.PRO ;Le·ngth of partition control block

P.LGTH='B'.

.PSECT

.IFF

.ENDC

.!FF

;Length of partition control block

8.4.11.1 Partition Status Word Bit Definitions

PS.OUT='B'lOOOOO
PS.CKP='B'40000
PS.CKR='B'20000

PS.CHK='B'lOOOO
PS.FXD='B'4000
PS.PER='B'2000
PS.LIO='B'lOOO

;Partition is out of memory (l=yes)
;Partition checkpoint in progress (!=yes)
;Partition checkpoint is requested
; (!=yes)
;Partition is not checkpointable (!=yes)
;Partition is fixed (!=yes)
;Parity error in partition (!=yes)
;Marked by shuffler for long I/O (!=yes)

8-42

DATA AREAS AND CONTROL BLOCKS

PS.NSF•'B'400
PS.COM•'B'200
PS.PIC•'B'lOO

PS.SYS•'B'40
PS.DRV•'B'20
PS.DEL='B'lO

PS.APR•'B'7

;Partition is not shuffleable (l•yes)
;Library or common block (!•yes)
;Position independent library or common
1 (l•yes)
;System controlled partition (!•yes)
1Driver is loaded in partition (l•yes)
;Partition should be deleted when not
1 attached (!•yes)
;Starting APR number mask

8.4.11.2 Attachment Descriptor Offsets

.ASECT
.=O
A.PCBL: IL I
A.PRI: IL I

A. IOC: IL I

A.TCB: 'LI
A.TCBL: 'LI
A.STAT:'L'
A.MPCT: 'LI

A.PCB: IL I
A.LGTH•'B'.

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

1PCB attachment queue thread word
;Priority of attached task
1I/O count through this descriptor
;TCB address of attached task
;TCB attachment queue thread word
;Status byte
;Mapping count of task thru this
; descriptor
;PCB address of attached task
;Length of attachment descriptor

8.4.11.3 Attachment Descriptor Status Byte Bit Definitions

.PSECT
AS.DEL•'B'lO
AS.EXT•'B'4
AS.WRT='B'2
AS.RED='B'l

.ENDC

;Task has delete access (l=yes)
;Task has extend access (l=yes)
;Task has write access (l=yes)
;Task has read access (l=yes)

8.4.12 Region Definition Block (ROB)

Defined by: .MACRO RDBDF$ GBL

.MCALL .BLKW.,.BLK •
• BLK.
.BLKW. l,R.GID,GBL
.BLKW. l,R.GSIZ,GBL
.BLKW. 2,R.GNAM,GBL
.BLKW. 2,R.GPAR,GBL
.BLKW. l,R.GSTS,GBL
.BLKW. l,R.GPRO,GBL
.BLKW. O,R.GLGH,GBL

;Region ID
;Size of region (32W blocks)
;Name of region (RADSO)
;Region's main partition name (RADSO)
;Region status word
;Protection code of region
;Length of region definition block

8.4.12.l Region Status word Symbols

.IF ION <DEF$G>,<GBL>
.GLOBL RS.CRR,RS.UNM,RS.MDL,RS.NDL,RS.ATT,RS.NEX
.GLOBL RS.DEL,RS.EXT,RS.WRT,RS.RED

.ENDC

8-43

DATA AFtEAS AND CONTROL BLOCKS

RS.CRR•AO<lOOOOO>
RS.UNM•A0<40000>

;Region was successfully created
10ne or more windows were unmapped on a
; dE~tach

RS.MDL•""0<200>
RS.NDL•"'O<lOO>

;Mark region for delete on last detach
;Created region is not to be marked for
; dE~tach

RS.ATT•"'0<40>
RS.NEX="'0<20>
RS.DEL•""O<lO>
RS.EXT•""0<4>
RS.WRT•""0<2>
RS.RED•"'O<l>

;Attach to created region
1 CrE!ated region is not extendable
;Delete access desired on attach
;Extend access desired on attach
;Write access desired on attach
;Read access desired on attach

8.4.13 Status Control Block (SCB)

Defined by: .MACRO SCBDF$,1~,B,SYSDEF

The SCB defines the status 1Jf a device controller. The SCB is pointed
to by Unit Control Blocks (UCBs). One SCB exists for each device
controller in the system. This is true even if the controller handles
more than one device-unit (as in the case of the RKll Controller).
However, line multiplexers :3uch as the DHll and DJll are considered to
have one controller for each line because all lines may transfer in
parallel. As an example, where a group of terminals may be connected
to two controllers, a DLll·-A and a DHll, each terminal interfaced via
the DLll-A would have a SCB because each DLll-A is an independent
interface unit. The terminals interfaced via the DHll would also each
have an SCB because the DHll is a single controller but multiplexes
many units in parallel.

Most of the information in the SCB is dynamic, and is used by both the
Executive and the driver •

• ASECT
.=177772
S .RCNT: 'L'
S .ROFF: 'L'
S .BMSV: 'L'

S .BMSK: 'L'
s. LHD: 'LI

S. PRI: 'L'
S. VCT: 'L'

S. CM:' L'

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 1

.BLKW 2

;Number of registers to copy on error
;Offset to first device register
;Saved I/O active bitmap and pointer to

the EMB
;Device I/O active bit mask
;Controller I/O queue listhead. The first

word points to the first I/O packet in the
queue and the second word points to the
last I/O packet in the queue. If the queue
is empty, the first word is 0 and the
second word points to the first word.

.BLKB l ;Priority at which the device interrupts.

.BLKB 1 ;Interrupt vector address divided by 4.
For loadable drivers, the MCR/VMR LOA[D]
function uses this field and the existence
of driver symbol(s) $xxINT, $xxINP, and
$xxOUT to initialize the device interrupt
vector.

.BLKB 1 ;Current timeout count. RSX-llM supports
device timeout, which enables a driver to
limit the time that elapses between the
issuing of an I/O operation and its
termination. The current timeout count (in
seconds) is initialized by moving S.ITM
(initial timeout count) into S.CTM. The
Executive clock routines (in TOSCH) examine

8-44

S.ITM: 'L'
s .CON: 'LI

s .STS: IL I

S.CSR: 'L'

s .PKT: IL I

s. FRK: IL I

DATA AREAS AND CONTROL BLOCKS

.BLKB 1

.BLKB l

• BLKB 1

.BLKW l

.BLKW l

.BLKW 1

.BLKW l

.BLKW 1

.BLKW 1

the time, decrement it and, if it reaches O,
call the driver at its device
timeout entry point.

The internal clock count is kept in
1-second increments. Thus, a time count of
1 is not precise because the internal
clocking mechanism is operating asynchro
nously with driver execution. The minimum
meaningful clock interval is 2 if you
intend to treat timeout as a consistently
detectable error condition. Note, if the
count is O, that no timeout occurs1 a 0
value is, in fact, an indication that
timeout is not operative. The maximum
count is 255. You are responsible for
setting this field. Resetting occurs at
actual timeout or within $FORK.

1Initial timeout value
;Controller index. This is the controller

number multiplied by 2. Drivers that are
written to support more than one controller
use this byte. S.CON may be used by the
drfver to index into a controller table
that the driver creates and maintains
internally. Indexing the controller table
enables the driver to service the correct
controller when a device causes an
interrupt.

;Controller status (O=idle, l=busy) •
This is the interlock for marking a driver
as busy for a specific controller. It is
tested and set by $GTPKT and reset by
$IODON.

;Address of the control status register
for the device controller. The driver uses
S.CSR to initiate I/O operations and to
access, by indexing, other registers re
lated to the device that are located in
the I/O page. This address need not be a
CSR. It may only be a member of the
device's register set. It is accessed at
system bootstrap time to determine if the
interface exists on the system hosting the
Executive. The Executive uses S.CSR to set
the offline bit at bootstrap so that system
software can be interchanged between systems
without an intervening system generation.
Otherwise, it is only accessed by the driver
itself.

1Address of current I/O packet established by
$GTPKT. This field is used to retrieve the
I/O packet address upon the completion of
an I/O request. S.PKT is not zeroed after
the packet is completed.

;Fork block link word
;Fork-PC
;Fork-RS
; Fork-R4

The four words starting at S.FRK are used
for fork block storage when the driver es
tablishes itself as a fork process. Fork
block storage preserves the state of the
driver, which is restored when the driver
regains control at fork level. This area
is used when the driver calls $FORK.

8-45

S.CCB: 'LI
S .MPR: 'L'

.PSECT

DATA A:REAS AND CONTROL BLOCKS

The fork block is 5 words long in
stead of 4 if two conditions are met:
1. Loadable drivers have been selected as

a SYSGEN option
2. The system is a mapped system

If these conditions are met, and the fork
block is 5 words long, you must not use
the fork block for any other purpose. In
other words, your driver may not share the
space reserved for the fork block. If it is
shared, the loadable driver's relocation
base will be destroyed. In addition, the
5-word fork block should always be part of
the SCB if the two conditions listed above
a.re met •

• IF NB SYSDEF
.IF OF L$$DRV & M$$MGE
.BLKW 1 1Fork driver relocation base
.ENDC

.BLKW 6

• IFF

1Mixed MASSBUS channel control block
;11/70 extended memory UNIBUS device

C-block. Drivers use the 6 words starting
at S.MPR for non-processor request (NPR)
devices attached to a PDP-11/70 with 22-bit
addressing •

8.4.13.1 Status Control Bl•ock Priority Byte Condition Code Status Bit Definition

SP.EIP•'B'l
SP.ENB•'B'2
SP.LOG•'B'4
SPARE=lO

;Error in progress (l=yes)
1Error logging enabled [O=yes)
;Error logging available (l=yes)
;Spiue bit

8 .4 .13 .2 Mapping Assignmen1t Block (for UNIBUS Mapping Register Assignment)

.ASECT
.=O
M.LNK: IL I
M.UMRA: 'L'
M.UMRN: 'L'
M.UMVL: 'L'
M.UMVH: 'LI
M. BFVH: IL I
M.BFVL: 'LI
M.LGTH•'B'.

.PSECT

.BLKW

.BLKW

.BLKW

.BLKW

.BLKB

.BLKB

.BLKW

.ENDC

l
l
l
1
l
l
1

;Link word
;Address of first assigned UMR
;Number of UMR's assigned * 4
;Low 16 bits mapped by 1st assigned UMR
;High 2 bits mapped in bits 4 and 5
1High 6 bits of physical buffer address
;Low 16 bits of physical buffer address
;Length of mapping assignment block

8.4.14 Snap Block

Defined by: .MACRO SNPDF$ GBL
• IF ION <GBL>, <DJ~F$G>

.GLOBL SB.CTL,SB.DEV,SJ3.UNT,SB.EFN,SB.ID,SB.LM1,SB.PMD

.GLOBL SC.HDR,SC.LUN,SC.OVL,SC.STK,SC.WRD,SC.BYT
.ENDC

8-46

DATA AREAS AND CONTROL BLOCKS

SB.CTL • 0
SB.DEV • 2
SB.ONT • 4
SB.EFN • 6
SB.ID • ""0<10>
SB.LMl • ""0<12>
SB.PMD • ""0<32>
SC.HOR • 1
SC.LUN • 2
SC.OVL • 4
SC.STK • ""0<10>
SC.WRD • ""0<20>
SC.BYT • "'0<40>

;Control word
;Device name
;Device unit number
;Event flag number
;Snapshot identification word
;First word of address limits
1 • RADSO /PMD ••• /
1Dump task header (including registers)
1Dump assigned LUN information
;Dump overlay structure information
;Dump task stack
;Send output in word/RADSO format
;Send output in byte/ASCII format

8.4.15 Task Abort Codes

Defined by: .MACRO ABODF$,L,B

NOTE: S.COAD-S.CFLT are also SST vector offsets

S.COAD•'B'O.
S.CSGF='B'2.
S.CBPT•'B'4.
S.CIOT='B'6.
S.CILI•'B'8.
S.CEMT='B'lO.
S.CTRP='B'l2.
S.CFLT•'B'l4.
S.CSST•'B'l6.
S.CAST•'B'l8.
S.CABO•'B'20.
S.CLRF•'B'22.
S.CCRF•'B'24.
S.IOMG='B'26.
S.PRTY•'B'28 •

• ENDM

;Odd address and traps to 4
;Segment fault
;Break point or trace trap
;IOT instruction
;Illegal or reserved instruction
;Non RSX EMT instruction
;TRAP instruction
;11/40 floating point exception
;SST abort - bad stack
;AST abort - bad stack
;ABORT via directive
;Task load request failure
;Task checkpoint read failure
;Task exit with outstanding I/O
;Task memory parity error

8.4.16 Task Control Block (TCB) And Status Definitions

Defined by: .MACRO TCBDF$,L,B,SYSDEF

T .LNK: IL I
T .PRI: IL I

T. IOC: IL I

T.CPCB: 'LI
T.NAM: 'LI
T.RCVL: 'L'
T.ASTL: 'LI
T.EFLG: 'L'
T.UCB: IL I
T.TCBL: 'LI
T.STAT: 'L'
T.ST2:'L'
T.ST3:'L'
T .DPRI: f LI
T.LBN: IL I
T .LDV: IL I
T.PCB: 'LI

.BLKW 1

.BLKB l

.BLKB l

.BLKW 1

.BLKW 2

.BLKW 2

.BLKW 2

.BLKW 2

.BLKW 1

.BLKW l

.BLKW l

.BLKW l

.BLKW 1

.BLKB l

.BLKB 3

.BLKW l

.BLKW 1

;Utility link word
;Task priority
;I/O pending count
;Pointer to checkpoint PCB
;Task name in RAD50
;Receive queue listhead
;AST queue listhead
;Task local event flags 1-32
;UCB address for pseudo device 'TI'
;Task list thread word
;First status word (blocking bits)
;Second status word (state bits)
;Third status word (attribute bits)
;Task's default priority
;LBN of task load image
;UCB address of load device
;PCB address of task partition

8-47

T.MXSZ:'L'
T.ACTL: 'LI

.BLKW 1

.BLKW 1

;START OF PLAS AREA

T.ATT: 'L'
T.OFF: 'L'

T.SRCT: 'L'

.BLKW 2

.BLKW 1
.BLKB l
.BLKB l

DATA AltEAS AND CONTROL BLOCKS

;Ma~imum size of task image (mapped only)
;Address of next task in active list

;Attachment descriptor listhead
;Offset to task image in partition
; Re~1erved
;SREF with EFN count in all receive
; queues

T.RRFL: 8 L' .BLKW 2 ;Receive by reference listhead
.IF NB SYSOEF
.IF NOF P$$LAS:

T.LGTH•'B'T.ATT
.IFF

T.LGTH•'B'.
.ENOC

;Length of task control block

T.EXT='B'O ;Length of TCB extension

8.4.16.l Task Status Definitions

First Status word (Blocking Bits)

TS.EXE•'B'lOOOOO
TS.RON=-'B'40000
TS.MSG='B'20000
TS.NRP='B'lOOOO

TS.RUN='B'4000

TS.OUT•'B'400
TS.CKP•'B'200
TS.CKR•'B'lOO

;Task not in execution (l=yes)
;I/O rundown in progress (l=yes)
;ABORT message being displayed (l=yes)
;Task mapped to nonresident partition

(l=yes)
;Task is running on another processor

(layes)
;Task is out of memory (l•yes)
;Task is being checkpointed (l=yes)
;Task checkpoint requested (l=yes)

Task Blocking Status Mask

TS.BLK='B'TS.CKP!TS.CKR!TS.EXE!TS.MSG!TS.NRP1TS.OUT!TS.RDN

Second Status Word (State Bits)

T2.AST•'B'l00000
T2.0ST='B'40000
T2.CHK='B'20000
T2.CKD•'B'l0000
T2.BFX='B'4000
T2.FXD•'B'2000
T2.TIO•'B'l000
T2.CAF='B'400
T2.HLT•'B'200
T2.ABO='B'l00
T2.STP•'B'40
T2.STP='B'20
T2.SPN='B'l0
T2.SPN='B'4
T2.WFR='B'2
T2.WFR•'B'l

;AST in progress (l=yes)
;AST recognition disabled (l=yes)
;Task not checkpointable (l=yes)
;Checkpointing disabled (l=yes)
;Task being fixed in memory (l=yes)
;Task fixed in memory (l=yes)
;Task is engaged in terminal I/O
;DYN checkpoint space allocation failure
;Task is being halted (l=yes)
;Task marked for ABORT (l=yes)
;Task stopped (l=yes)
;Task stopped (l=yes)
;Saved TS.SPN on AST in progress
;Task suspended (l=yes)
;Saved TS.WFR on AST in progress
;Task in Wait For state (l=yes)

8-48

DATA AREAS AND CONTROL BLOCKS

Third Status word (Attribute Bits)

T3.ACP•'B'l00000
T3.PMD•'B'40000
T3.REM•'B'20000
T3.PRV•'B'l0000
T3.MCR•'B'4000

T3.SLV•'B'2000
T3.CLI•'B'l000

T3.RST•'B'400
T3.NSD•'B'200
T3.CAL•'B'l00
T3.ROV•'B'40
T3.NET•'B'20

8.4.17 Task Header

1Ancillary control processor (l•yes)
:Dump task on synchronous abort (O•yes)
:Remove task on exit (l•yes)
1Task is privileged (l•yes)
;Task requested as external MCR function

(l•yes)
. ;Task is a slave task (l•yes)
:Task is a command line interpreter

(l=yes)
:Task is restricted (l•yes)
7Task does not allow send data
;Task has checkpoint space in task image
;Task has resident overlays
;Network protocol level

Defined by: .MACRO HDRDF$,L,B

.ASECT
.•O
H.CSP: 'L'
H .HDLN: 'LI
H .EFLM: 'L'
H.CUIC: 'L'
H.DUIC: 'L'
H.IPS: 'L'
H.IPC: 'L'
H. ISP: 'LI
H.ODVA: 'L'
H.ODVL: 'L'
H.TKVA: 'L'
H .TKVL: 'L'
H.PFVA: 'L'
H .FPVA: 'L'
H .RCVA: 'L'
H .EFSV: 'L'
H.FPSA: 'L'
H .WND: 'L'
H.DSW: 'LI
H.FCS: 'L'
H.FORT: 'LI
H.OVLY: 'L'
H. VEXT: 'L'
H .SPRI: 'L'
H.NML: 'L'
H.RRVA: 'L'

H .GARD:' L'
H .NLUN: 'L'
H .LUN: 'L'

.BLKW 1

.BLKW 1

.BLKW 2

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 3

.BLKW 1

.BLKW 1

.BLKW 2

:Current stack pointer
;Header length in bytes
1Event flag mask word and address
;Current task UIC
;Default task UIC
;Initial processor status word (PS)
;Initial p.rogram counter (PC)
;Initial stack pointer (SP)
;ODT SST vector address
;ODT SST vector length
;Task SST vector address
1Task SST vector length
;Power fail AST control block address
:Floating point AST control block address
;Receive AST control block address
:Event flag address save address
;Pointer to floating point/EAE save area
;Pointer to number of window blocks
;Task directive status word
;FCS impure pointer
;FORTRAN impure pointer
:Overlay impure pointer
;Work area extension vector pointer
;Priority difference for swapping
;Network mailbox LUN
:Receive by reference AST control block
; address
:Reserved words
;Pointer to header guard word
;Number of LUNs
;Start of logical unit table

8.4.17.l Window Block Offsets

.=O
W. BPCB: 'L'
W .BLVR: 'L'

.BLKW 1

.BLKW l
;Partition control block address
;Low virtual address limit

8-49

W.BHVR:'L'
.W.BATT: 'L'
W.BSIZ:'L'
w. BOFF: 'LI
W.BFPD: 'L'
W.BNPD: 'LI
W.BLPD: 'L'
W.BLGH: 'L'

.BLKW 1

.BLKW. 1

.BLKW l

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

DATA AJtEAS AND CONTROL BLOCKS

1High virtual address limit
1Address of attachment descriptor
1Size of window in 32W blocks
1Physical memory offset in 32W blocks
1First PDR address
1Ni.;1mber of PDRs to map
1Contents of last PDR
1Length of window descriptor

8.4.18 Task Image File Label Block

B.4.18.1 Resident Library Descriptor Offsets

Defined by: .MACRO LBLDF$,I. ,B

.ASECT
.•O
R$LNAM: 'L'
R$LSA: 'LI
R$LHGV: 'L'
R$LMXV: 'L'
R$LLDZ:'L'
R$LMXZ:'L'
R$LOFF: IL I

R$LWND: 'L'
R$LSEG: 'L'
R$LFLG: 'L'
R$LDAT: 'L'
R$LSIZ: 'LI

.BLKW 2

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW l

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 3

.BLKW 0

1 RJ!~DIX-50. library name
1Library starting virtual address
:Library address window 0 bound
1Library high virtual address limit
1Library load size (32W blocks)
1Library max. size (32W blocks)
1Library offset into partition (32W
1 blocks)
1Number of library address windows
1Size of library segment descriptors
1Library flags word
:Library creation date (yr., mo., day)
1Length of library descriptor

B.4.18.2 Library List Entry Flags

LD$ACC•'B'l00000
LD$RSV•'B'040000
LD$REL•'B'000004

1 Ac:cess intent (l•RW, O•RO)
1APR reservation flag (l•APR reserved)
1PIC flag (!•position independant)

B.4.18.3 Label Block Offsets

.•O
L$BTSK: IL I

L$BPAR:'L'
L$BSA:'L'
L$BHGV: 'L'
L$BMXV: 'L'

.BLKW 2 1 RJ~DIX SO task name

NOTE

Label block parameters between this
offset and the start of the task library
descriptors must be identical in format
and content to a resident library
descriptor entry.

.BLKW 2

.BLKW l

.BLKW 1

.BLKW 1

J' RADIX SO partition name
pStarting address of task

:Window O virtual address limit
1Task high virtual address limit

a-so

L$BLDZ:'L'
L$BMXZ:'L'
L$BOFF: 'L'
L$BWNO: 'L'
L$BSEG: 'L'
L$BFLG: 'L'
L$BOAT: 'L'
L$BLIB: 'L'
L$BPRI:'L'
L$BXFR:'L'
L$BEXT: 'L'
L$BSGL: 'LI

L$BHRB:'L'

L$BBLK: 'L'
L$BLUN: 'L'

DATA AREAS AND CONTROL BLOCKS

.BLKW 1 ;Task load size (32W blocks)

.BLKW 1 ;Task max. size (32W blocks)

.BLKW 1 ;Task offset into partition {32W blocks)

.BLKW 1 ;Number of task windows (less libraries)
.BLKW 1 ;Size of task segment descriptors (bytes)
.BLKW 1 ;Task flags word
.BLKW 3 ;Task creation date {yr., mo., day)
.BLKW <7.*<R$LSIZ/2>>+1 ;Resident library entries
.BLKW 1 ;Task priority
.BLKW 1 ;Task transfer address
.BLKW 1 ;Task extend size (32W blocks)
.BLKW l ;Relative block number of segment length

; list
.BLKW l ;Relative block number of task image

; header
.BLKW
.BLKW
.BLKW

1 ;Number of blocks in label
l ;Number of logical units
<512.-.>/2

L$BASG:'L' .BLKW 0 ;Start of device assignment tables
;Task is PIC (l=yes) TS$PIC•'B'l00000

TS$NHO='B'040000
TS$ACP='B'020000
TS$PMD='B'Ol0000
TS$SLV='B'004000
TS$NSD='B'002000
TS$NET='B'001000
TS$PRV='B'000400
TS$CMP='B'000200
TS$CHK='B'000100
TS$RES='B'000040

.PSECT

;No header in task image {l=yes)
;Task is ancillary control processor (l•yes)
;Generate post-mortem dump {l=yes)
;Task is slaveable (l=yes)
;No send to task is permitted (l=yes)
;Task uses new network protocol (l=yes)
;Task is privileged (l=yes)
;Task built in compatibility mode (l=yes)
;Task is checkpointable (O=yes)
;Task has resident overlays (l=yes)

8.4.19 Task Termination Notification Message Codes

Defined by: .MACRO ABODF$,L,B

T.NDNR='B'O
T.NDSE='B'2
T.NCWF='B'4
T.NCRE='B'6
T.NDMO='B'8.
T.NLDN='B'l2.
T.NLUP='B'l4.

.ENDM

;Device not ready
;Device select error
;Checkpoint write failure
;Card reader hardware error
;Dismount complete
;Link down (networks)
;Link up (networks)

8.4.20 Unit Control Block (UCB)

Defined by: .MACRO UCBDF$,L,B

One UCB exists for each device-unit attached to a system. In other
words, one UCB exists for each device-unit of each DCB. The UCB
defines the status of an individual device-unit, and is the control
block that is pointed to by the first word of an assigned LUN. The
UCBs associated with a particular DCB are contiguous in memory, have
the same length, and are pointed to by the DCB. UCBs associated with
different DCBs may have different lengths but are of the same length
for a specific DCB.

Much of the information in the UCB is static, though a few dynamic
parameters exist. From the UCB, however, it is possible to access
most of the other structures in the I/O data base. In this sense, the

8-51

DATA AREAS AND CONTROL BLOCKS

UCB gives access to a large amount of dynamic data. For example, the
redirect pointer, which reflects the results of an MCR Redirect
command, is updated dynamically.

As with the DCB, most of the UCB is established in the assembly
source: however, its contents are used and modif~ed by both the
Executive and the driver, though modification of a given datum is
usually done by either the Executive or the driver, but not both.
Because the UCB is the key control in the I/O data structures, access
to other I/O control blocks usually occurs via links implanted in the
UCB.

.ASECT
.~177774
U.LUIC: 'L'

U .OWN: 'L'

U .DCB:' L'

U .RED:' L'

u .CTL: IL'

u .STS: IL'
U. UNIT:' L'

U. ST2: 'L'

U .CWl: 'L'

U.CW2:'L'

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKB l

.BLKB 1

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 1

;LOGIN UIC - for terminal UCBs on multi-user
systems only

;The UCB address of the owning terminal for
allocated devices - multi-user system5
O•nly

;Back pointer to corresponding DCB
A.ccess to other control blocks in the I/O
data structure usually occurs via the UCB.

;Pointer to redirect unit UCB. initially
points to U.DCB. This field is changed
a.s the result of the Redirect command.
A.fter the command is issued, this field
points to the UCB to which this device-unit
has been redirected. The redirect
chain ends when this field points to U.DCB
field in the UCB in which it resides.

;Control processing flags (set at assembly
time). U.CTL and the function mask words
in the DCB drive QIO directive processing.
Any inaccuracy in the bit setting of U.CTL
produces erroneous I/O processing. See the
BSX-llM Guide to Writing an I/O Driver for
more details.

;Device independent unit status
;Physical unit number of device. If the

controller for the device supports only one
unit, the unit number is always O.

;Unit status extension

;First device characteristics word
This is the first word in a cluster of

device characteristics information. U.CWl
and U.CW4 are device independent. U.CW2
and U.CW3 are device dependent. The four
characteristic words are retrieved from the
UCB and placed in the requestor's buffer
upon issuance of a GLUN$ Executive direc
tive. It is the responsibility of the
driver writer to supply the contents of
these four words in the assembly source of
the driver's data structure. See the
RSX-llM Guide to Writing an I/O Driver.

;Sicond device characteristics word. This
word is specific to a given device driver
and, with an exception, is available for
working storage or constants. The ex
ception is for block-structured devices.
In this case, U.CW2 and U.CW3 may not be
used for working storage. In drivers for
block-structured devices (disks and

8-52

DATA AREAS AND CONTROL BLOCKS

U.CW3:'L'
U.CW4:'L'
U.SCB:'L'

U.ATT:'L'

U.BUF:'L'

U.CNT:'L'

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1
• BLKW 1

.BLKW 1

U.VCB='B'U.CNT+4
U.CBF='B'U.CNT+2
U.UIC='B'U.CNT+<9.*2>

.PSECT

DECtape), these two words must be
initialized to a double-precision number
giving the total number of blocks on the
device. Place the high-order bits in the
low-order byte of U.CW2 and the low-order
bits in U.CW3.

1Third device characteristics word
;Fourth device characteristics word
1Pointer to SCB for this UCB. In general, R4

contains the value in this word upon entry
to the driver via the driver dispatch table
because service routines frequently ref er
ence the sea.

;Address of the TCB of the task attached to
to the unit.

;Relocation bias of current I/O request.
;Buffer address of current I/O request •

U.BUF labels two consecutive words that
serve as a communication region between
$GTPKT and the driver. If a non-transfer
function is indicated (in D.MSK), U.BUF,
U.BUF+2, and U.CNT receive the first three
parameter words from the I/O packet.

For transfer operations, the format of
these two words depends upon the setting of
UC.NPR in U.CTL. The driver does not format
the words; all formatting is completed be
fore the driver receives control. For un
mapped systems, the first word is O and
the second word is the physical address of
the buffer, For mapped systems, the UC.NPR
bit determines the format. UC.NPR is set
for an NPR device and reset for a pro
gram-tr ans fer device.

For more information, see the RSX-llM
Guide to Writin an I O Driver.

;Byte count o current I O request
Contains the byte count of the buffer
described by U.BUF. The driver uses this
field to construct the device address.

U.BUF and U.CNT keep track of the current
data item in the buffer for the current
transfer (except for NPR transfers). Be
cause this field is being altered dyna
mically, the I/O packet may be needed to
reissue an I/O operation; for instance,
after a powerfail or error retry.

;Address of volume control block
;Control buffer relocation and address
;Terminal UIC (terminals only)

8.4.20.1 Device Table Status Definitions

Device Characteristics Word 1 (U.CWl) Device Type Definition Bits

DV.REC='B'l
DV.CCL='B'2
DV.TTY='B'4
DV.DIR='B'lO
DV.SDI='B'20
DV.SQD='B'40

;Record oriented device (l=yes)
;Carriage control device (l=yes)
;Terminal device (l=yes)
;File structured device (l=yes)
;Single directory device (l=yes)
;Sequential device (l=yes)

8-53

DV.MXD•'B'lOO
DV.UMO•'B'200
DV.SWL•'B'lOOO
DV.ISP•'B'2000
DV.OSP•'B'4000
DV.PSE•'B'lOOOO
OV.COM='B'20000

DV.Fll•'B'40000

DV.MNT•'B'lOOOOO

DATA ~.REAS ARD CONTROL BLOCKS

1 Ml!.SSBUS d·evice (l•yes)
1User mode diagnostics supported (l•yes)
1Unit software write locked (l•yes)
1Ir.iput spooled device (l•yes)
1Send output to spooled device (l•yes)
1Pseudo device (l•yes)
1Device is mountable as COM channel
, (l•yes)
1 DE!Vice is mountable as Fll device
, (l•yes)
70uvice is mountable (l•yes)

Terminal Dependent CharactE!ristics word 2 (U.CW2) Bit Definitions

U2.0Hl•'B'lOOOOO
U2.0Jl•'B'40000
U2.RMT•'B'20000
U2.L8S=-'B'l0000
U2.NEC•'B'4000
U2.CRT•'B'2000
U2.ESC•'B'l000
U2.LOG='B'400
U2.SLV•'B'200
U2.0Zl='B'l00
U2.HLO•'B'40
U2.AT.•'B'20
U2.PRV•'B'l0
U2.L3S•'B'4
U2.VT5•'B'2
U2.LWC•'B'l

7Unit is a multiplexer (l=yes)
,unit is a OJll (l•yes)
7Unit is remote (l•yes)
7Unit is LA180s (l•yes)
JOO not echo solicited input (l•yes)
7Unit is a CRT (l•yes)
7Unit generates escape sequences (l=yes)
;User logged on terminal (O•yes)
7Unit is a slave terminal (l•yes)
;Unit is a DZll (l=yes)
JTerminal is in hold screen mode (l=yes)
;MCR command AT. being processed (l•yes)
7Unit is a privileged terminal (l•yes)
;Unit is a LA30S terminal (l=yes)
;Unit is a VTOSB terminal (l=yes)
, L<)wer case to upper case conversion
; (l•yes)

RH11-RS03/RS04 Characteristics word 2 (U.CW2) Bit Definitions

U2.R04•'B'l00000 ;Unit is a RS04 (l•yes)

RH11-TU16 Characteristics Word 2 (U.CW2) Bit Definitions

U2.7CH•'B'l0000 ;Unit is a 7 channel drive (l=yes)

Unit Control Processing Flag Definitions

UC.ALGa'B'200

UC.NPR='B'lOO

UC.QUE='B'40

UC.PWF='B'20

;Byte alignment of data buffers is allowed
(O•yes)
Word alignemnt is allowed (l=yes)

;Device is an NPR device (l=yes)
This word determines the format of the
2-word address in U.BUF.

;Call driver before queuing (l=yes)
If set, the QIO directive processor calls
the driver prior to queing the I/O packet.
The disposition of the I/O packet is the
driver's responsibility. Typically, an I/O
packet is queued prior to a call to the
driver, which later retrieves it by a call
to $GTPKT.

;Call driver at powerfail always (l=yes)
If set, the driver is always called when
power is restored after a power failure
occurs. Typically, the driver is called on
power restoration only when an I/O opera
tion is in progress.

8-54

UC.ATT•'B'lO

UC.KIL•'B'4

UC.LGH•'B'3

DATA AREAS AND CONTROL BLOCKS

;Call driver on ATTACH/DETACH (!•yes)
If this bit is set, the driver is called
when $GTPKT processes an Attach/Detach I/O
function. Typically, the driver does not
get control for Attach/Detach requests and
the Executive performs the entire function
without any assistance from the driver.

1Call driver at I/O kill always (l•yes)
If set, the driver is called on a Cancel
I/O request even if the specified unit is
not busy. Typically, the driver is called
on a Cancel I/O only if an I/O operation
is in progress.

;Transfer length mask bits
These two bits are used to check
whether the byte count specified
in an I/O request is a legal buffer
modulus. See Guide to Writing an
I/O Driver manual.

Unit Status (U.STS) Bit Defintions

This byte contains device-independent status information. US.MOM,
US.MNT, and US.FOR apply only to mountable devices.

US.BSY=='B'200
US.MNT='B'lOO
US.FOR•'B'40
US.MDM•'B'20

;Unit is busy (l=yes)
;Unit is mounted (O=yes)
;Unit is mounted as foreign volume (l=yes)
;Unit is marked for dismount {l=yes)

Card Reader Dependent Unit Status Bit Definitions

US.ABO='B'l

US.MDE='B'2

;Unit is marked for abort if not ready
; (l=yes)
;Unit is in 029 translation mode (l=yes)

FILES-11 Dependent Unit Status Bits

US.WCK•'B'lO
US.SPU•'B'2

;Write check enabled (l=yes)
;Unit is spinning up (l=yes)

Terminal Dependent Unit Status Bit Definitions

US.DSB='B'lO
US.CRW='B'4
US.ECH='B'2
US.OUT•'B'l

;Unit is disabled (l=yes)
;Unit is waiting for carrier (l=yes)
;Unit has echo in progress (l=yes)
;Unit is expecting output interrupt
; (l=yes)

LPSll Dependent Unit Status Bit Definitions

US.FRK='B'2
US.SHR='B'l

;Fork in progress (l=yes1
;Shareable function in progress (O=yes)

8-55

DATA J\REAS AND CONTROL BLOCKS

ANSI Magtape Dependent Unit Status Bits

US.LAB•'B'4 ;Unit has labeled tape on it (l•yes)

Unit Status Extension (U.ST2) Bit Definitions

US.OFL•'B'l
US.RED•'B'2
US.PUB•'B'4
US.UMD•'B'lO

;Unit offline (l=yes)
;Unit redirectable (O•yes)
;Unit is public device (l•yes)
;Unit attached for diagnostics (l•yes)

8. 4. 21 Volume Control Blo·ck (VCB)

.ASECT
• =-0
V.TRCT:
V.IFWI:
V.FCB:
V.IBLB:
V.IBSZ:

V.FMAX:
V.WISZ:

V.SBCL:
V.SBSZ:
V.SBLB:
V.FIEX:

V.VOWN:
V.VPRO:
V.VCHA:
V.FPRO:
V.VFSQ:
V.FRBK:

V.LRUC:

V.STAT:

VC.IFW= 1
VC.BMW= 2
V.FFNU:
V.LGTH:

.BLKW 1

.BLKW 1

.BLKW 2

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKB 1

.BLKB 1

.BLKW 1

.BLKB 1

.BLKB 1

;Transaction count
;Index file window
;File Control Block listhead
;Index bit map 1st LBN high byte
;Index bit map size in blocks
;Index bit map 1st LBN low bits
;Max no. of files on volume
;Dflt size of window in no. of rtrv ptrs
;Value is < 128.
;Storage bit map cluster factor
;Storage bit map size in blocks
;Storage bit map 1st LBN high byte
;Default file extend size
;Storage bit map 1st LBN low bits
;Volume owner's UIC
;Volume protection
;Volume characteristics
;Volume default file protection
;Volume file sequence number
;Number of free blocks on volume high

byte
;Count of available LRU slots in FCB list
;Number of free blocks on volume low bits
;Volume status byte, containing the

following:
Index file is write accessed
Storage bit map file is write accessed

;First free index file bit map block
;Size in bytes of VCB

8.4.22 Window Definition Block (WDB)

Defined by: .MACRO WDGDF$ GBL

8-56

DATA AREAS AND CONTROL BLOCKS

8.4.22.l Window Definition Block Offsets

.MCALL .BLKW.,.BLKB.,.BLK •
• BLK.
.BLKB.
.BLKB.
.BLKW.
.BLKW.
.BLKW.
.BLKW.
.BLKW.
.BLKW.
.BLKW.
.BLKW.

l,W.NID,GBL
l,W.NAPR,GBL
l,W.NBAS,GBL
l,W.NSIZ,GBL
l,W.NRID,GBL·
l,W.NOFF,GBL
l,W.NLEN,GBL
l,W.NSTS,GBL
l,W.NSRB,GBL
O,W.NLGH,GBL

;Window ID
;Base APR
;Virtual base address (bytes)
;Window size (32W blocks)
;Region ID
;Offse~ in partition (32W blocks)
;Length to map (32W blocks)
;Window status word
;Send/receive buffer virtual address (bytes)
;Length of window definition block

8.4.22.2 Window Status Word Symbols

.IF IDN <DEF$G>,<GBL>

.GLOBL WS.CRW,WS.UNM,WS.ELW,WS.RRF,WS.648

.GLOBL WS.MAP,WS.RCX,WS.DEL,WS.EXT,WS.WRT,WS.RED

.ENDC

WS.CRW=""O<lOOOOO>
WS.UNM="'0<40000>

WS.ELW="0<20000>

WS.RRF="'O<lOOOO>
WS.64B•"'o<400>
WS.MAP="0<200>

WS.RCX•"O<lOO>
WS.DEL="'O<lO>
WS.EXT•"'0<4>
WS .WRT="'0<2>

WS.RED•""O<l>

;Address window was successfully created
;One or more windows were unmapped in
;Create address window or map.
;One or more windows were eliminated in
;Create address window
;Reference was successfully received
;64 byte alignment allowed
;Map after create window or receive
by reference
;Exit if no references to receive
;Send with delete access
;Send with extend access
;Send with write access or map with
; write access
;Send with read access

8-57

CHAPTER 9

CROSS-REFERENCES

9.1 EXECUTIVE MODULE TO ROUTINE CROSS-REFERENCE

This cross-reference contains a listing of the executive modules
(driver tables not included) and the routines that they contain. The
routines are in alphabetical order as are the modules. A dollar sign
($) preceeds the label of global routines. All named labels are in
this cross-reference but some are the labels of data areas or fields.

Large and important local routines are in this cross-reference. A
dollar sign ($) does not preceed these routines because they are not
global.

Module

BFCTL

CORAL

CRASH

CTDRV

Routines and Labels

Buffer control routines
$BLXIO - Move block of data
$GTBYT - Get next byte from user buff er
$GTCWD Get next word from user control buff er
$GTWRD - Get next word from user buffer
$PTBYT - Put next byte in user buffer
$PTWRD - Put next word in user buffer

Core buff er allocation routines
$ALCLK - Allocate clock queue core block
$ALOC1 - Allocate core buffer (alternate entry)
$ALOCB - Allocate core buffer
$ALPKT - Allocate SEND or I/O REQUEST core block
$DEAC1 - Deallocate core buffer (alternate entry)
$DEACB - Deallocate core buff er
$DECLK - Deallocate clock aueue core block
$DEPKT - Deallocate SEND or I/O REQUEST core block

Crash dump routines
$CRASH - Crash dump routine
$CRSBF - Internal crash stack
$CRSBN - Starting device address
$CRSCS - Checksum of device address
$CRSHT - Halt to wait for the user
$CRSUN - Crash unit number (C$$RUN) stored here
$PANIC - Reference entry label only

TAll tape cassette controller driver
$CTINT - Controller interrupt processing
CTINI - Controller initiator
$CTTBL - Driver dispatch table
SPCBK - Spacing function
RDBLK - Read logical function

9-1

Module

CTDRV
(cont.)

CVRTM

DBDRV

DLDRV

DMD RV

DPDRV

DRABO

DRASG

C:ROSS-REPERENCES

Routines and Labels

WRBLK
WREOF
CTOUT

- Write logical function
- Rewind and write EOF functions
- Device timeout

Conver~ time routine
$CVRTM - Convert a time interval-time units pair to a

clock ticks count

RH11-RP04/0S/06 disk pack driver
CNTBL - Address e>f current unit control block
RTTBL - Retry count for current operation
TEMP - Temporary storage for controller number
OFFAD - Address e>f current off set value
OFFTB - Offset pe>sitioning value table
FUNTBL - Diagnostic function table
$DBTBL - Driver dispatch table
DBINI - Initiator

RLll/RLOl disk driver
CNTBL
RTTBL
TEMP
$DLTBL
DLINI
DLINIO
CLOUT
DLDIFF
CLOVER
DLDTER

- Address e>f current unit control block
Retry count for current operation
Temporary storage for controller number
Driver dispatch table
Initiator (get I/O packet)
Initiate I/O operation
Device tj.meout
Cylinder address difference calculator
Error logging routine
Error logging routine

RK611-RK06/RK07 disk cartridge driver
CNTBL - Address off curtrent unit control block
RTTBL - Retry count for current operation
TEMP - Temporary storage for controller number
FUNTBL - Diagnostic function table
OFFTB - Offset positioning data
$DMTBL - Driver di.spatch table
DMINI - Initiator
DMINIO - I/O initi.ator
DMOUT - Device timeout
DMECC - Error correction
DMECOR - Memory address calculation for correction
DMDVER - Error logging
DMDVTO - Error logging
DMRPAS - Controller register pass routine
DMDINT - Diagnostic interrupt handler

RPll-C/E disk pack controller driver
CNTBL - Address of current unit control block
RTTBL - Error retry count and positioning flag
TEMP - TemporarY' storage for .controller number
FUNTBL - Diagnostic function code table
$DPTBL - Driver dispatch table
DPINI - Initiator
DPOUT - Device timeout

Abort task routine
$DRABO - Abort a specified task

Assign a device unit to a logical unit number
$DRASG - Assign logical unit number (LUN)

9-2

Module

DRATX

DRCIN

DRCMT

DRDAR

DRDCP

DRDSP

DREIF

DREXP

DRGCL

DRGLI

DRGPP

DRGSS

DRGTK

CROSS-REFERENCES

Routines and Labels

End execution of an asynchronous system trap service
routine

$DRATX - Asynchronous system trap (AST) service exit
routine

Connect or disconnect an interrupt vector to an
interrupt service routine (ISR) in the
task's own space

$DRCIN - Connect to interrupt
$DISIN - Disconnect interrupt. vector

Cancel MARK TIME and SCHEDULE REQUEST directives
$DRCMT - Cancel MARK TIME requests
$DRCSR - Cancel SCHEDULE requests

Disable or enable AST recognition directive processing
$DRDAR - Disable AST recognition
$DREAR - Enable AST recognitionDAR

Disable or enable checkpointing directive processing
$DRDCP - Disable checkpointing
$DRECP - Enable checkpointing

DRDSP contains the directive dispatch table
BTRMV - Bytes to remove on exit
DSPMP - Dispatch mapping table
DSPTBL - Directive dispatch table
$EMTRP - EMT instruction trap routine
$DPLM1 - Get pointer to definition block
$DPLM2 - Get size of definition block
$DRATP - NOP alter priority
$DRLM1 - Get. first word on user stack
$DRLM2 - Get first DPB word
$TRTRP - TRAP instruction trap routine
USRPS - Pointer to user PS word

End execution of the issuing task directive processing
$DREIF - Terminate the execution of the issuing task if

the event flag is clear
$DREXT - Terminate the execution of the issuing task
MTQUE - Subroutine to empty queue
SCNLN - Scan logical unit table

Extend partition directive processing
$DREXP - Extend the partition of the issuing task

Get MCR command line or release MCR command buff er
directive processing

$DRGCL - Get MCR command line
$RLMCB - Release MCR command buffer

Get logical unit number information directive processing
$DRGLI - Get LUN information

Get partition parameters directive processing
$DRGPP - Get partition parameters

Get sense switch register contents directive processing
$DRGSS - Get sense switch contents

Get task parameters directive processing
$DRGTK - Get task parameters

9-3

Module

DRGTP

DRMAP

DRMKT

DRPUT

DRQIO

CROSS-REFERENCES

Routines and Labels

Get time parameters directive processing
$DRGTP - Get current time parameters

Mapping and send or receive by reference directive
processing

$DRCRW - Create address window
$DRELW - Eliminate address window
$DRGMX - Get mapping context of the task
$DRMAP - Map window to region
$DRRRF - Receive by reference
$DRSRF - Send by reference
$DRUNM - Unmap address window

Mark time and run directive processing
$DRMKT - Mark time: declare a significant event after a

specified interval
$DRRUN - Run the task after a specified interval or

run the task after a specified interval and
repeat the task periodically

Specify floating-point, powerfail, and receive AST traps

$DRFEX -

$DRPUT -

$DRRCV -
$DRRRA

directive processing
Specify floating-point exception ASTs for ·the
issuing task
Specify power recovery ASTs for the issuing
task
Specify receive ASTs for the issuing task
Specify receive by reference ASTs for the
issuing task

Queue
ATRBK
BDPKT
CKACC
CKALN
CK CON
CKDIS

I/O directive processing
- Build attribute pointer block

Build an I/O packet

CK OMO
CKNLN
CK RAC

CKRLK
CKWAC

CKXIT
$DQLM1 -
$DQLM2
$DRQIO -
$DRQIW -
$DRQRQ -
FCACC
FCC AW
FCCON
FCC RE
FCCTL
FCDAC
FCDIS
FCDSP
FCIFC
FCKIL

Check if access also requested on create
Check for file already accessed on LUN
Check connect parameter buffer
Fill disconnect parameter buffer and interlock
LUN usage
Check for volume marked for dismount
Check for file accessed on LUN
Check for read access priviliges and
exit to transfer function
Access or deaccess interlock
Check for write access priviliges and exit
to transfer function
Exit polish to function exit
Zero I/O status block
Clear I/O status block
Queue I/O request
Queue I/O request and wait
Insert I/O packet in a controller queue
Access file: check if volume marked for dismount
Access file: check if file accessed
Connect to process
Create file
Function is control function
Deaccess file~ check if file accessed on LON
Disconnect from process
Function code dispatch vector
Set illegal function status
Flush I/O queue

9-4

Module

DRQIO
(Cont.)

DRRAS

DRREG

DRREQ

DRRES

CROSS-REFERENCES

Routines and Labels

FCNCT
FCPKT
FCRVB
FCTRN

FCWVB
FCXFR
FCXIT

FILNM
IEALN

IEBAD
IEBYT

IECMN
IEIFC

IENLN

IENOD
IEOFL
IEOVR

IEPRI
IESPC

ISSUC

MSTK
MOVE3

OPP RM
RQPRM
UNLCK
UNLKT

- Network control function
- Build an I/O packet
- Read virtual block: check if file accessed on LON
- Function is a transfer function: address check and

map function
- Write virtual block; check if file accessed on LUN
- Insert parameter 2 (within FCCTL routine)
- Clean stack and retrieve address of I/O

packet (prior to entry into $DRQRQ)
- Insert optional ~ilename block
- File already accessed on LUN; set file already

accessed code
- Bad parameter; set bad parameter status
- Illegal byte count or alignment; declare odd byte

status
- Common error exit
- Illegal function; declare illegal function code

status
- No file accessed on LUN; set no file accessed

status
- No buffer space available: set no buffer status
- Specified device is off line
- Illegal load overlay UCB; declare illegal load

overlay function status
- Privilege violation; set privilege violation status
- Illegal buffer address specified; declare illegal

buffer status
- Function is a NOOP function; declare successful

completion status
- Location to mark stack address
- Move extend and access control words into I/O

packet
- Interpret optional block address
- Interpret required block address
- Unlock block
- Set up registers for unlock and exit

to control address

Receive and send directive processing
$DRREC - Receive data and receive data or exit.

Dequeue data from the issuing task's receive
queue

$DRSND - Send data; queue data in a specified task's
receive queue

Attach and detach region directive processing
$DRATR - Attach region to the current task
$DRCRR - Create a region and optionally attach to it
$DRDTR - Detach the specified region, unmapping if

necessary
$DETRG - Detach region by attachment descriptor address

Request task execution directive processing
$DRREQ - Request task execution

Resume or suspend task execution or alter task priority
directive processing

$DRATP - Alter task priority of a specified task
$DRRES - Resume executing a task that has issued the

suspend directive
$DRSPN - Suspend execution of the issuing task

9-5

Module

DRS ED

DRS ST

DTDRV

DXDRV

ERROR

1:ROSS-REFERENCES

Routines and Labels

Significant event and event flag directive processing
$DRCEF - Clear event flag and report its polarity

before clearing
$DRDSE - Declare a significant event
$DRRAF - Read all event flags (local and common)
$DRSEF - Set an event flag and report its polarity

bef·ore setting
$DRWFL - Suspend task execution until LOGICAL OR of

event flags occur
$DRWFS - Suspend task execution until a specified

event flag is set
$DRWSE - Suspend execution of the issuing task until

the next significant event
$TKWSE - Execute a wait for significant event directive

for the current task

Specify SST vector directive processing
$ORSDV - Specify debugging aid SST vector
$DRSTV - Specify task SST vector

TCll DECTAPE controller driver
CNTBL
RTTBL
TEMP
$0TTBL
DTINI
OTC AN
DTOUT

- Address of current unit control block
Error retry count and drive reset flag
Temporary storage for controller number
Driver dispatch table
Initiator
Cancel I/O operation
Reference label

RXll floppy disk driver
CNTBL - Address of current UCB for controller
DXCAN - Cancel I/O entry point
DXTBL - Driver dispatch table
DXINI - Initiator
DXOUT - Log device timeout
DXPWF - Powerfail entry point
DXRTY - Retry last function
NXTSEC - Update block number, buffer address, and

buffer pointer
RTTBL - Error retry count for current unit
SETBUF - Set up buffer pointer for CPU1 SILO transfers
TEMP - Temporary storage for controller number
TRKSEC - Convert logical or physical block number

to track-sector pair

Error logging and error log processing
$ALEB1 - Allocate an error message block (EMB)1

(alternate entry)
$ALEMB - Allocate an error message block
$BMSET - Set a driver's bit in the I/O active bitmap
$DTOER - Log timeout error1 EMB formatting routine
DTOTMP - Device timeout storage
$DVCER - Log devi.ce error bit errors1 EMB formatting

routine
$DVERR - Same as $DVCER
$NSO - Call common nonsense interrupt code1 group

0 - 17
$NS1 - Call common nonsense interrupt code1 group

·20 - 37
$NS2 - Call common nonsense interrupt code1 group

40 - 57

9-6

Module

ERROR
(Cont.)

IN I TL

IOSUB

CROSS-REFERENCES

Routines and Labels

$NS3 - Call common nonsense interrupt. code; group
60 - 77

$NS4 - Call common nonsense interrupt code; group
100 - 117

$NSS - Call common nonsense interrupt code; group
120 - 137

$NS6 - ca11· common nonsense interrupt code; group
140 - 157

NSI - Nonsense interruption recursion counter
NS I ER - Nonsense interrupt errors
OPS - Nonsense interruption old PS storage
OPC - Nonsense interruption old PC storage
$QEMB - Queue an error message block (EMB)
TEMP - Nonsense interrupt PS storage

System startup and initialization routine
DEVMG - "DEVICE dduu: NOT IN CONFIGURATION" message
$INITL - System gets control here after a boot to

OP MSG
$POOL
PRO MT
$SYBEG
SYS MG
SYS ID
$SYTOP
TRTRP

initialize and start up the system
Send message to terminal
Start of pool
Terminal prompt character
Beginning of dynamic storage region
System identification message
System ID
Last address in the Executive
Non-existent memory trap routine

I/O related subroutine processing
$ACHCK - Address check, word aligned
$ACHK2 - Address check 2-byte directive parameter block
$ACHKB - Address check byte aligned
$ACHKP - Address check parameter block
$ACHKW - Address check parameter block, word aligned
$ASUMR - Assign UNIBUS mapping ·registers
$BLKC1 - Logical block check routine (alternate

entry)
$BLKCK - Logical block check routine
$CEFI - Convert event flag number for I/O
$CEFN - Convert event flag number for directive
$CRPAS - Common register pass routine
$DEUMR - Deassign UNIBUS mapping registers (UMRs)
$DIV - Integer divide magnitude numbers
$DQUMR - Dequeue from UNIBUS mapping register (UMR)

wait
$DVMSG - Device message output to task termination

notification task
$ECCOR - Common ECC correction code for RP04/RK06
$GTPKT - Get I/O packet from request queue
$IOALT - I/O done (alternate entry); finish I/O

processing
$IODON - I/O done; finish I/O processing
$IOFIN - Finish I/O processing where unit and controller

are not to be idle
$IOKIL - Kill I/O; flush all I/O requests for the

current task and cancel current I/O
$LCKPR - Lock processing routine
$MPLND'- Map logical unit number (LUN); check for

redirected device
$MPLNE - Map LUN for exit
$MPLUN - Map LUN
$MPPHY - Map to physical address

9-7

Module

IOSUB
(Cont.)

LOADR

LOWCR

LPDRV

CROSS-REFERENCES

Routines and Labels

$MPPKT - Map a read/write virtual function in an I/O
packet tc• a read/write logical function

$MPUBM - Map UNIBUS to memory
$MPVBM - Map virtual block number
$MUL - Integer multiply magnitude numbers
$RELOC - Relocate virtual address into a relocation

bias and displacement in block
$RELOM - Relocate and map address
$RELOP - Relocate UNIBUS physical address
$RLCH - Release channel
$ROCH - Request channel
$SCDV1 - Scan devl.ce tables (alternate entry)
$SCDVT - Scan device tables
$STMAP - Set up UNIBUS mapping address
$WTUMR - Wait for change in UNIBUS mapping register

state

Task to load and checkpoint all nonresident tasks
IOSB - I/O status double word
LDRBF - R/W I/O DPB; buffer address
LDRBK - LBN of I/O transfer
LDRDP - ,R/W I/O DPB; DIC, DPB size
LDRFC - R/W I/O DPB; function code

LUN 1
EFN 1
I/O status doubleword address

; no AST service routine
LDRLN - R/W I/O DPB; buffer length
LDRTK - R/W I/O DPB; pointer to request task TCB
$LOADR - 1. Read a non-resident task into memory .

and initialize it for execution
2. Read a previously checkpointed task back

into memory and restart its execution
3. Write a checkpoint image of a running task

and free its partition

START Interrupt and trap vectors
$EMTRP - EMT instruction trap
$!LINS - Illegal instruction trap
$IOTRP - IOT instruction trap
$NONSI - Nonsense interrupt vector
$TRACE - Breakpoint trap
$TRP04 - T~ap to 4
$TRTRP - TRAP instruction trap

DSW - Pointers
Address of directive status
Directive status word
FCS impure area pointer
FORTRAN impure area pointer
Overlay run time system impure area pointer

$STACK - Executive stack area

LPll/LSll line printer controller driver
CNTBL
LP CAN
LP I NI
LP INT
LPOUT
LPPWF
LPRNT
$LPTBL
TEMP

- Address of UCB
Cancel I/O
Driver initiator
Interruption processing
Device timeout processing
Powerfail return
Fill line printer buffer
Driver dispatch table
Temporary storage for controller

9-8

number

Module

MMD RV

MTDRV

NLDRV

PARTY

CROSS-REFERENCES

Routines and Labels

RH11/RH70 TM02/TM03 magnetic tape controller driver
BSPACE - Backspace one ~ecord
CHKEOV - Check for logical end of volume
CNTBL - Address of current UCB
DRVCLR - Issue drive clear
FMTBL - Format code save area
INTADD - Current interruption service address
LGFCN - Legal function dispatch table
MMCAN - Cancel I/O operation
MMDINT - TU16 diagnostic interruption and timeout

handler
MMINI - Tape controller initiator
MMPWF - Powerfail processing
$MMTBL - Driver dispatch table
REWND - Rewind function
RLCH - Release channel
ROCH - Request channel
RTTBL - Error retry count
SELECT - Select drive
SELERR - Select error
SPCBK - Space block function
SPCFL - Space file function
SPTBL - Space checking
TEMP - Temporary storage for controller number
WRBLK - Write logical function
WREOF - Write tape mark function

TMll magnetic tape controller driver
BSPACE - Backspace one record function
CHKEOV - Check for-logical end of volume
CNTBL - Address of current unit control block
INTADD - Current interuption service address
LGFCN - Legal function dispatch table
MTCAN - Cancel I/O operation
$MTCLK - Reference label for timeout
MTDINI - Diagnostic interruption and timeout handler
MTINI - Tape controller initiator
MTOUT - Device timeout processing
$MTTBL - Driver dispatch table ·
RDBLK - Read logical function
REWND - Rewind function
RTTBL - Error retry count
SELECT - Select a tape drive
SELERR - Select error
SPCBK - Space block function
SPCFL - Space file function
SPTBL - For space checking
TEMP - Temporary storage for controller number
WRBLK - Write logical function
WREOF - Write tape mark function

Null device driver
$NLTBL - Driver dispatch table
NLINI - Null driver executable code

Memory pa·r i ty interrupt handling
ERTRK - Address/data group O and 1, time of last error
EXMSG - Executive parity error message
$PARTS - Dummy control status register (CSR) for

nonexistant registers
$MPCTL - New cache parity CSR contents

9-9

Module

PARTY
(Cont.)

PLSUB

POWER

PPTAB

PRDRV

QUEUE

REQSB

CROSS-R.EFERENCES

Routines and Labels

$MPCSR - Vector of cache CSR addresses
MSTAT - First two parity CSRs
PARLV - Interruption recursion level counter
RECURS - Jump to halt processor
STAT - Memory status register
PARER - Memory parity error interrupt processing

Program logical ctddress space (PLAS) common subroutines
$CKACC - Check desired access of a task into a region
$CRATT - Create a1ttachement descriptor
$SRATT - Search for attachment descriptor
$SRNAM - Search for named partition
$SRWND - Search for specified address window
$UNMAP - Unmap address window

Power failure recovery processing
$LDPWF - Save APR5: reference label for LOAD
PDOWN - Powerfail interrupt processing
$POWER - Power failure recovery processing routine
PUP - Power up interrupt processing
PWBTM - Volatile register storage
PWVCT - Powerfail vector

Device tables
$PPDAT - Start oj: device tables
$PPEND - End of device tables

PCll/PRll paper tape reader driver
CNTBL - Address of unit control block
PRCAN - In procf~ss I/O tranfers are not terminated
PRINI - Controller initiator
$PRINT - Controller interruption processing
PROUT - Device 1t:imeout processing
PRPWF - Powerfail return
$PRTBL - Driver dispatch table
TEMP - Temporary storage for controller number

General queue manipulation processing
$CLINS - Clock queue insertion
$CLRMV - Clock queue removal
$QINSF - Queue insertion at end of list
$QINSP - Queue insertion by priority
$QMCRL - Queue MCR command line
$QRMVF - Queue r1~moval from front of list
$QRMVT - Queue r1~moval by TCB address

Task re.quest related subroutines
$ABCTK - Abort current task
$ABTSK - Abort task
$ACTTK - Put task in active task list
$ACTRM - Remove task from the· active task list
$BILDS - Build stack and initialize header
$CHKPT - Checkpoint task
$DASTT - Declare AST trap
$DQAC - Dequeue AST block queued by $QASTC
$EXRQF - Executi'lle request with FIFO queue insert
$EXRQN - Executive request with no queue insertion
$EXRQP - Executive request with queue insert by priority
$FNDSP - Find space in PCB list
$ICHKP - Initiate checkpoint
$LOADT - Put task in loader queue

9-10

Module

REQSB
(Cont.)

SST SR

SYSCM

CROSS-REFERENCES

Routines and Labels

$MAPTK - Map task address window
$NXTSK - Assign next task to partition
$QASTC - Queue AST to task
$QASTT - Queue AST to task
$RLPAR - Release task partition; get PCB address
$RLPR1 - Release partition; clear busy
$SETCR - Set conditional schedule request
$SETF - Set event flag; convert to mask and address
$SETM - Set event flag
$SETRQ - Set schedule request
$SETRT - Set schedule request for current task
$STPCT - Stop current task
$STPTK - Stop task
$SRSTD - Search system task directory
$TSTCP - Test if checkpoint should be initiated
$TSKRP - Task request (default UIC)
$TSKRQ - Task request (UCB specified)
$TSKRT - Task request (default UCB)
$UISET - Establish default UIC and current UIC

Synchronous system trap (SST) service routine
processing

$EMSST - Non-RSX EMT/TRAP instruciton
FLFRK - Floating-point fork block
FLSTS - Floating-point status
$FLTRP - Floating-point exception (11/40)
$FLTRP - Floating-point exception (11/45)
$FPINT - Programmed interrupt request processing
$!LINS - Illegal or reserved instruction trap routine
$IOTRP - IOT instruction trap routine
$SGFLT - Segment fault trap routine
SSTXT - Common SST exit routine
$TRACE - TRACE (T-bit) or break point instruction (BPT)

trap routine
$TRP04 - Traps occuring at 4 (odd address,

non-existant memory, etc.) trap routine

System common data areas
$ABTIM - H.CSP; current stack pointer
$ACTHD - T.MXSZ; active task list listhead
$BTMSK - Bit mask table
$CFLPT - W.BOFF; pointer to first checkpoint file PCB
$CKCNT - T.ASTL+2; address of clock count register
$CKCSR ·- T.EFLG; address of clock control status

$CKLDC
$CLKHD -
$COMEF
$COPT
$CRAVL -
$DEVHD -
$0'YPMN -
$ERRHD -
$ERRLM -
$ERRPT -
$ERRSQ -
$ERRSV -
$ERRSZ
$EXSIZ
$FMASK -
$FRKHD -

register
T.EFLG+2; clock load count
P.TCB; clock queue
T.TCB; common event flags 1. - 16.
P.STAT; pointer to command output UCB
P.PRI; dynamic storage listhead
H.FCS; pointer to first DCB
H.VEXT; February, March
Error logging message queue listhead
Limit on resident error logging data
W.BHVR; pointer to error logger TCB
Universal error sequence number
Pointer to error file identification
Resident bytes of error logging data
W.BSIZ; address of last byte in Executive
P.WAIT+2; system feature mask
P.SIZE; fork queue listhead

9-11

Module

SYS CM
(Cont.)

SYSDF

SYS TB

SYSXT

CROSS-REFERENCES

Routines and Labels

$HEADR - T.LNK; pointer to current task header
$INTCT - P.MAIN; clock interrupt ticks count
$IOABM - Device 1/0 active bitmap
$LDRPT - H.FORT; pointer to loader TCB
$LOGHD - T.NRPC; logical device assignment list
$LSTLK - T.LDV; lock word (TCB address of owner)
$MCRCB - T.LBN+l, MCR command block address
$MCRPT - H.OVLY; pointer to MCR TCB
$MXEXT - GLobal task size limit for extend task

directiv·e
$PARHD - H.CUIC; pointer to partition table
$PARPT - P.BUSY; parity address vector table pointer
$PKAVL - Pointer to first packet in list
$PKMAX - Maximum number allowed in list
$PKNUM - Number of packets currently in list
$PWRFL - H.EFLM; powerfail recovery pointer
$RQSCH - H.EFSV; schedule request TCB address
$SHFPT - W.BATT; pointer to shuffler TCB
$SIGFL - H.EFLM+21 task waiting for significant event
$STKDP - H.FPSA; stack depth indicator
$SYSID - T.NAM+2,T.RCVL; system identification
$SYSIZ - Size of memory in 32 word blocks
$SYUIC - T.UCB; default system UIC (mapped or unmapped)
$TKNPT - T.RCVL+2; pointer to TKTN TCB
$TKPS - Ticks per second
$TKTCB - H.FPVA; pointer to current task TCB
$TSKHD - W.BLVR; pointer to system task directory
$TTNS - Tick of second
$UMRHD - Mapping assignment block listhead
$UMRWT - UMR wait queue listhead

Contains directive status codes, system global and
control block offset definitions

Contains system device tables
$DEVTB - Device tables

System entrance, exit, and processor dispatching

$DIRSV -
$DIRXT -
$FINBF -
$FORK0 -

routines
Directive save routine
Directive exit
Finish terminal input buffered I/O
Fork and create system process (alternate
entry)

$FORK1 - Fork and create system process and save RS
$FORK2 - Fork and create system process (CINT$

$FORK
directive)
Fork and create system process (called from
I/O driver)
Interrupt save (CINT$ directive)
Interrupt save (error logging devices)
Interrupt save
Interrupt exit
Interrupt exit
Nonsense interrupt RTI routine

$INTSC -
$INTSE -
$INTSV
$INTX1 -
$INTXT -
$NONSI
$NSO
$NS1
$NS2
$NS3
$NS4
$NS5

- Nonsense interrupt vector
vector
vector
vector
vector
vector

- Nonsense interrupt
- N·onsense interrupt
- Nonsense interrupt
- Nonsense interrupt
- Nonsense interrupt

9-12

Module

SYSXT
(Cont.)

SYTAB

TD SCH

TTDRV

CROSS-REFERENCES

Routines and Labels

$NS6 - Nonsense interrupt vector
$NS7 - Nonsense interrupt vector
RESCH - Rescheduling requested1 clear schedule request
$SAVNR - Save non-volatile registers
$SWSTK - Switch from task stack to system stack

System tables needed for resident tasks and
bootstrapping the system

.LDRHD - Loader task header
$PCBS - Loader partition control block
$STD - Loader task control block

Time dependent scheduling and device timeout
processing

$CKINT - Clock interrupt processing routine
DVOUT - Test for one second elapsed time
ROBIN - Executive round robin scheduling
RNDCT - Clock ticks to next schedule interval
SWAP - Disk swapping algorithm1 reduce swapping

priority of resident tasks
SWPCT - Clock ticks to next swapping interval
TDS - Time dependent scheduling
TIMXT - Exit time dependent scheduling if no

unprocessed clock ticks remain
UPTIM - Update absolute and real time of day and date

Terminal driver for DLll-A line interface and
DHll/DJll/DZll line multiplexers

BECHOB - Echo next byte
CLKSW - DMll-BB clock switch word
CNTBL - Address of unit control block
CRTRUB - Backspace, space, backspace (/ /)
CTRLC - Control output message (MCR>)
CTRLR - Control R processing
CTRLU - Control output message (U)
CTRLZ - Control output message (Z)
DHCSR - DHll CSR address
$DHINP - DHll terminal multiplexer input interrupt

processing
$DHOUT - DHll terminal multiplexer output interrupt

processing
DHTBL - Pointer to DHll table
DHTMP - Temporary storage for controller number (DBll)
OJCSR - DJll CSR address
$DJINP - OJll terminal multiplexer input interrupt

processing
$DJOUT - DJll terminal multiplexer output interrupt

processing
DJSAV - DJll terminal multiplexer save routine
DJTBL - Pointer to DJll UCB table
DJTMP - Temporary storage for controller number (DJll)
$DLINP - DLll terminal input interrupt processing
$DLOUT - DLll terminal output interrupt processing
DLSAV - DLll terminal save routine
DLTMP - Temporary storage for controller number (DLll)
$DM11B - DMll-B or DMll-BB modem control interrupt

processing
DMHUP - Subroutine to hang up a DMll-BB unit if not

ready
DMSAV - DHll terminal multiplexer save routine
DMTBL - DMll-BB CSR address

9-13

Module

TTDRV
(Cont.)

XBDRV

CROSS-REFERENCES

Routines and Labels

DMTMO - DMll-BB time out routine
DOCTLC - Lock out input characters
DZCLK - Clock queue entry address
DZCLKS - DZll clock switch word
DZCSR - OZll CSR address
$DZINP - DZll terminal multiplexer input interrupt

processing
$DZOUT - DZll terminal multiplexer output interrupt

processing
DZSAV - DZll terminal multiplexer save routine
DZTBL - Pointer to DZll UCB table (indexed by

controller number)
DZTMO - DZll time out routine
DZTMP - Temporary storage for controller number (DZll)
ECHOBl - Display (send out) a character
ECHOB - Echo next byte
FCHAR - Send a character to a terminal
FILTB - LA30S carriage return fill table
FWRITE - Breakthrough write (disallow control-0)
GETBF - Get input buff er and set terminal control block
GETBF2 - Allocate a core block
GMCTAB - Terminal characteristics
ICHAR - Process an input character
INPINI - Copy UCB address
INPPT - Input request in progress
INPTO - Enable input character handling
INPTl - Fork to finish an input request
INPT2 - End-of-line fork process
!ODON - Finish I/O operation
JTTINI - Go to terminal initiator
LEVHSM - Leave hold-screen mode ()
MECHOl - Multi-echo processing
OCHAR - Send a character to a terminal
OUTPT - Start or continue an output stream
OUTPTl - Test if a fill should be echoed
SYNTAB - Escape sequence syntax table
TCHRl - Teminal characteristics
TINPl - Unsolicited input fork process
TICAN - Cancel 1/0 operation (force I/O complete)
TTCHK - Terminal driver special parameter checking
TTHUP - Cancel 1/0 and BYE if DMll or DZll line hangs

TT IN I
TTOUT
TTOUTl
TTPWF

up
- Terminal initiator
- Terminal driver timeout entry point
- Terminal timeout; finish I/O operation
- Powerfail entry point (loaded as a loadable

driver)
$TTTBL - Device initiator entry point
UCBTB - Address of UCB for line
UCJTB - Address of line's UCB (DJll)
UCZTB - UCB address for each line: indexed

by line (unit) number

Interprocessor Communications Driver DAll-B
CNTBL
UNITBL
$XBTBL::

- Unit impure data table (reference label)
- Unit impure data table
- Device dispatch table

DBINIT - DAll-EI parallel communications link controller
I/O initiator entry point

SUCC: - Successful completion entry
DBTMO: - Device timeout entry

9-14

Module

XBDRV
(Cont.)

XMDRV

CROSS-REFERENCES

Routines and Labels

DBCANC:
DBPWRF:
$XBINT::
I EVER:
SUCDN:
INTDN:
TXDN:
NOTHING:
EXIT:
ERR:
DBSET:
DBEXIT:
XBRCV:
RESYNC:
MYSYNC:

- Device cancellation entry
- Device powerfail entry
- DAll-B interrupt routine
- Unrecoverable error finish
- Successful completion
- Finish I/O
- Check for enable receive
- Check for interrupt
- Wait for transfer completion
- Error checking
- Check for valid UCB address and device online
- Exit from interrupt

Initiate device for unsolicited receive
- Receive error. Check for receiver active
- Receive error. Device must be resynced

RSX-llM DMCll Driver

U.XQ:
U.RQ:
U.ERR:
U.XAST:
U.ABO:

IOTYPE:
COUNT:
UMR:
UMRSUM:
BASE:
$XMTBL::
CNTBL:
TEMP:
LIST:
BTAB:
XLTAB:
AXTAB:
XMRET:
XMINIT:
PKTOK:
FINPKT:
XMDNR:
XMSPC:
XMIFC:
TRAN:
TRY:
GIVE:
SETDMC:
WRDYIC:
WRDYIS:
MAP22:
$XMINP::
~MTRDY:
RCVRDY:
FPERR:
$XMOUT::
XMTCOM:
RCVCOM:
CNTLO:
BAD:
XMINTX:
XMSET:

UCB displacements used
- Transmit listhead address

Receive listhead address
Error status
Exception AST block address
Number of I/O requests marked for abort
Listhead displacements
SELO request type
Sent count
Next UMR to use
Sum of both UMR addresses
Microprocessor base table
Driver dispatch table
UCB address table
Temporary unit Spve
Listheads
Multiple unit base table addresses
Multiple unit listhead addresses
Address extension bits
Return point
Initiate DMC I/O entry
Finish packet with "Is.sue" status
Alternate entry for PKTOK
Device not ready
Illegal buffer
Illegal function code
Transfer function
Try to give transfer request to DMC
Give buffer address and count to DMC
Initialize DMC hardware
Release port and wait for RDYI clear
Wait for RDYI set
Do 22-bit mapping and load data port
Process RDYI interrupt
DMC ready for transmit buffer
DMC ready for receive buffer
Force procedure error
Process completion interrupt
Transmit buffer complete
Receive buffer complete
Control out
Exit from interrupt {reference label)
Exit from interrupt
Setup for interrupt routines and transfer

9-15

Module

XMDRV
(Cont.)

XPDRV

XQDRV

CROSS-REFERENCES

Routines and Labels

RDYINT: - Give buffer to DMC
BUFCOM: - Process bu~fer complete
XMFRK: - Start fork process if fork process not running
XMTMO: - Timeout processing entry
XMCANC: - Cancel I/O entry
XMPWRF: - Powerfail recovery entry
XMCANC: - Indicate I/O kill was done
KILL: - Kill the device
RQPABO: - Alternate entry for KILL:
RQP: - Alternate entry for KILL:
QXAST: - Queue an AST to the CCP (clear AST block address)
QAST: - Queue an AST to the CCP (declare significant

event)
DQRAP: - Dequeue and return an I/O packet
RAP: - Return an already dequeued I/O packet
ITRY: - Try to set up another buffer from interrupt level
PORT: - Request the data port
IPORT: - Request the data port from interrupt level
NTXMT: - Initiate DECNET transmit
NTRCV: - Initiate DECNET receive
NTFIX: - DECNET error recovery
NTABO: - Abort by CCB address

DPll Synchronous Communications Driver
CNTBL: - Reference label for UNITBL:
UNITBL: - UCB addresses
TEMP: - Reference label for UNIT:
UNIT: - Temporary storage for unit number
$XPTBL:: - Driver dispatch table
DPINIT: - DPll Synchronous Communications Controller I/O

DPSUCC:
DP FIN:
DPPWRF:
DPCANC:
DPTMO:
$XPINP::
$XPOUT::
DPTXND:
DPRXER:
DPRCV:

DPSET:

DPSXT:

initiator
- Return successful status
- Idle controller and mark unit idle
- Power fail service routine
- I/O cancellation entry
- Timeout service routine
- DPll input interrupt service routine
- Transmitter interrupt service routine
- End of transmission
- Receiver error detected. Resync controller
- Unsolicited receive initialization. Activate

controller
- Set up register R4 with CSR address, RS with UCB

address, unit number in low-order 4 bits of unit
- Dismiss interrupt

DQll Synchronous Communications Driver
CNTBL: - Reference label for UNITBL:
UNITBL: - UCB address tabel
TEMP: - Reference label for UNIT:
UNIT: - Temporary storage for unit number
$XQTBL:: - Device dispatch table
DQINIT: - DQll Synchronous Communications Controller I/O

initiator
DQRET: - Return from initiator
SUCC: - Do I/O done (successful)
UNSUCC: - Do I/O done (unsuccessful)
DQCANC: - I/O cancellation entry
DQPWRF: - Powerfail routine entry
DQTMO: - Timeout routine entry

9-16

Module

XQDRV
(Cont.)

XU ORV

CROSS-REFERENCES

Routines and Labels

TNEXT:

TOAN:

RNEXT:

ROAN:

$XQOUT::
TXTRN:
DQTXDN:
ERROR:
RBCERR:
DQSET:

$DQEXIT:
$XQINP::
RXENT:

DQRCV:
RESYNC:

SETUP:

- Select appropriate buffer address register to use
(transmit)

- Select appropriate buffer address register to use
(transmit - double buffering ahead)

- Select appropriate buffer address register to use
(receive)

- Select appropriate buffer address register to use
(receive - double buffering ahead)

- Transmit interrupt routine
- Finish transmit
- Transmit done
- Error routine
- Receive BCC error
- Set up R4 with RXCSR address, RS with UCB

address,
unit number in low-order four bits of unit.

- Jump to $INIXT to dismiss interrupt
- Receive interrupt routine
- End of receive routine. Clear spurious clock

error, save registers, check for buffers
finished.

- Initialize DQ for unsolicited receive
- Re-sync or initialize receiver to

receive from a dead start.
- Set up device with next receive buffer

DUll Synchronous Communications Driver
CNTBL: - Reference label (for UNITBL:)
UNITBL: UCB address table
TEMP: Reference label (for UNIT:)
$XUTBL:: Driver dispatch table
DUINIT: DUll Synchronous Communication Controller

DUSUCC:

DUFIN:
DUPWRF:
DUCANC:
DUTMO:
$XUINP::
$XUOUT::
DUTXND:
DURXER:
DURCV:

OUSET:

DUSXT:

I/O initiator
Return successful status for mode change
full- or half-duplex)
End mode change request routine
Powerfail service routine
I/O cancellation service routine
Timeout service routine
Input interrupt service routine
Transmitter interrupt service routine
End of transmitter interrupt service
Receiver error - re-sync controller
Activate controller to be ready to accept
data
Set up R4 with CSR address, RS with UCB address,
unit number in low-order 4 bits of unit
Jump to $INTXT to dismiss interrupt

9-17

Module

XWDRV

CROSS-REFERENCES

Routines and Labels

DUPll Synchronous Communications Driver
CNTBL: - Reference label for UNITBL:
UNITBL: - UCB address table
TEMP: - Reference label for UNIT:
UNIT: - Tempoi;ary storage for unit number
$XWTBL:: - Dr i ve1~ dispatch table
DWINIT: - DUPll Synchronous Communication Controller

DWSUCC:
DWFIN:
DUPWRF:
DWCANC:
DWTMO:
$XWINP::
$XWOUT::
DWTXND:
DWRXER:
DWRCV:

DWSET:

I/O initiator
- Successful device mode change request
- End 01: device mode change request routine
- Powerfail service routine
- I/O cancellation service routine
- Timeout service routine
- DUPll input interrupt service routine
- Transmitter interrupt service routine
- End of transmitter interrupt service
- Receiver error detected. Resync controller
- Activate controller to be ready to receive

data
- Set R4 with CSR address, RS with UCB address,

unit number in low-order 4 bits of unit

9.2 RSX-llM EXECUTIVE GLOUAL CROSS-REFERENCE

The Executive global cross-reference contains an alphabetic listing of
each global symbol alon9 with its value and the name of each
referencing module.

The value contains the suffix -R if the symbol is relocatable.

The symbol # preceeds the module in which the symbol is defined.

Symbol Value Modules That Reference Symbol

C.SYST 000006 # EX EDF' TTDRV
DV.MXD 000100 # EX EDF' IOSUB
DV.PSE 010000 # EX EDF' IN I TL IO SUB
DV.TTY 000004 # EXEDF' IO SUB
DV.UMD 000200 DRQIO # EX EDF IO SUB
0$$YNM 000000 # SYSDF'
D.OSP 000012 ORQICt i EX EDF IO SUB POWER TOSCH
D.MSK 000014 ORQIO # EX EDF
D.NAM 000004 DRASG # EX EDF IN I TL IOSUB
D.PCB 000034 ORQIO # EXEOF IOSUB POWER TOSCH
D.RSOO 000000 ORS ED # SYSOF
D.RSl 177777 CORAI. DREXP DRMAP DRREG DRREQ

SYSOli'
D.RSlO 177766 ORDCP # SYS OF
D.RS16 177760 ORO SP DRMAP ORM KT DRREG DRRES

PLSUB # SYSDF
D.RS17 177757 # SYSDF'
D.RS19 177755 # SYSOF'
D.RS2 177776 DRDSP' ORGPP DRMAP DRRAS # SYSDF
D.RS22 000002 ORE IF' DR.RES DRS ED # SYSDF
D.RS5 177773 ORGLI DRQIO # SYSDF
D.RS6 177772 DRQIO # SYSDF
D.RS7 177771 ORA BO ORREQ DRRES # SYSOF
D.RSS 177770 DROAR: DRDCP DREXP DR MAP DRPUT

ORRAS DRRES i SYSDF

9-18

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

D.RS80 177660 DRATX DRGCL DRPUT # SYSDF
D.RS81 177657 # SYSDF
D.RS84 177654 DREXP DRMAP # SYSDF
D.RS85 177653 DRMAP # SYSDF
D.RS86 177652 DRMAP DRREG PL SUB # SYSDF
D.RS87 177651 PL SUB # SYSOF
D.RS90 177646 DRASG # SYSDF
D.RS92 177644 DRASG # SYS OF
D.RS93 177643 CVRTM # SYSDF
D.RS94 177642 DRREG # SYSDF
D.RS95 177641 DRRES # SYSDF
D.RS96 177640 IOSUB # SYSDF
D.RS97 177637 DRDSP DRS ED IOSUB # SYSDF
D.RS98 177636 DRS ST IOSUB SSTSR # SYSOF
D.RS99 177635 DROSP # SYSDF
D.UCB 000002 DRASG # EX EDF IN I TL IO SUB
D.UCBL 000010 DRASG # EX EDF IN I TL IOSUB
D.UNIT 000006 DRASG # EXEDF IN I TL IO SUB
O.VCAN 000002 # EX EDF IO SUB
D.VINI 000000 ORQIO # EX EDF
D.VOUT 000004 # EX EDF TOSCH
D.VPWF 000006 # EX EDF POWER
EC.OTO 000140 ERROR # EXEOF
EC.DVC 000001 ERROR # EXEOF
EC.NS! 000141 ERROR # EX EDF
E.LGTH 000056 ERROR # EXEOF
E.OPC 000022 ERROR # EXEOF
E.RTRY 000016 # EX EDF IO SUB
IE.ABO 177761 OTO RV IO SUB LP ORV TTDRV
IE.ALN 177736 DRQIO
IE.BAD 177777 ADD RV DRQIO ICORV TTDRV
IE.BBE 177710 DRDRV MMD RV
IE.BLK 177754 DXDRV IO SUB
IE.BYT 177755 DRQIO ICDRV
IE.CNR 177667 GRDRV
IE.CAA 177770 IO SUB
IE.DAO 177763 MMD RV
IE.DNA 177771 IO SUB
IE.ONR 177775 ADD RV DB ORV DK ORV DMD RV DRDRV

ICDRV MMD RV TOSCH TTDRV
IE.EOF 177766 MMD RV NL ORV TTDRV
IE.EQT 177702 MMD RV
IE.EOV 177765 MMD RV
IE.FHE 177705 MM ORV
IE.FLN 177657 . ICDRV
IE.IEF 177637 GRDRV
IE.IFC 177776 DBDRV DK ORV DMD RV DRDRV ORQIO

DTDRV ICDRV IO SUB ISORV MMD RV
TTORV UDO RV

IE.LCK 177745 IO SUB
IE .MOD 177753 ICORV ISORV
IE.NLN }·77733 DRQIO
IE.NOD 177751 ORQIO IO SUB TTDRV
IE.OFL 177677 ORQIO
IE.CVR 177756 DRQIO
IE.PR! 177760 DRQIO I CD RV IOSUB TTORV
IE.RSU 177757 TTORV
IE.SPC 177772 AO ORV ORQIO GRORV ICDRV MM ORV

TTDRV
IE.ULK 177653 IOSUB
IE.VER 177774 OB ORV DKDRV DMD RV DRDRV DTDRV

DXDRV MMD RV

9-19

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

IE.WCK 177652 DBDRV DKDRV DMD RV DRDRV
IE.WLK 177764 DBDRV DKDRV DMD RV DRDRV DTDRV

MMD RV
IO.ATT 001400 DRQIO IOSUB TTDRV
IO.CLN 003400 DRE IF
IO.CON 015400 GRDRV
IO.DET 002000 DRE IF DRQIO IO SUB TTDRV
IO.DIS 016000 GRDRV
IO.EOF 003000 MMD RV
IO.FLN 012400 I CD RV
IO.GTS 002400 TTDRV
IO.LOV 001010 DRQIO
IO.ONL 017400 ICDRV
IO.RLB 001000 DBDRV DKDRV DMD RV DRDRV DRQIO

DTDRV DXDRV LOADR MMD RV TTDRV
IO.RLV 001100 DTDRV MMD RV
IO.RPR 004400 TTDRV
IO.RVS 010400 DRQIO IOSUB
IO.STC 002500 MMD RV
IO.STP 016400 GRDRV
IO.OLK 005000 IO SUB
IO.WLB 000400 DMD RV ORO RV ORQIO OXDRV IO SUB

LOADR MMORV NL ORV TTORV
IO.WLC 000420 DBDRV DK ORV OMO RV ORD RV
IO.WLT 000410 OMDRV DRORV
IO.WLV 000500 OTDRV
IO.WVB 011000 IO SUB
IQ.OMO 000004 ORQIO ERROR IO SUB
IQ.X 000001 DBDRV OK ORV OMO RV ORD RV DX ORV
IS.ROD 000002 OX ORV
rs.sue 000001 ADO RV OB ORV OKDRV OMDRV ORD RV

DRQIO DTORV OX ORV GRDRV ICDRV
IO SUB ISDRV LP ORV MMORV NL ORV
TTDRV UOORV

I$$Sll 000000 ISO RV
I.FCN 000012 # EXEOF GRORV I CO RV NLDRV TTDRV
I .PRI 000002 # EXEOF TTORV
I.PRM 000024 # EXEOF GRDRV ICORV NL ORV TTDRV
I.TCB 000004 # EXEOF GRDRV ICDRV TT ORV
KISAR5 172352 # EX EDF QUEUE
KISAR6 172354 ORMAP # EX EDF GRORV TTDRV
L.ASG 000010 DRASG # EXEOF
L.NAM 000002 DRASG # EXEOF
L.TYPE 000005 DRASG # EXEDF
L.UCB 000006 DRASG # EXEDF
L.UNIT 000004 ORASG # EX EDF
M$$EXT 000000 # SYSOF
M$$MGE 000000 # SYSOF
M.BFVH 000011 # EX EDF IO SUB
M.BFVL 000012 # EX EDF IO SUB
M.LGTH 000014 # EXEOF IO SUB
M.UMRA 000002 # EXEOF IO SUB
M.UMRN 000004 # EXEOF IO SUB
M.UMVH 000010 # EX EDF IO SUB
M.UMVL 000006 # EXEOF IO SUB
PR4 000200 # EX EDF GRORV
PRS 000240 # EXEOF TTDRV
PR6 000300 # EX EDF ICDRV
PR7 000340 # EX EDF GRORV
PS 177776 # EX EDF GRDRV ICDRV TTORV
P.ATT 000036 DRREG PLSUB # SYSDF

9-20

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

P.BLKS 000016 # EX EDF # SYSDF
P.BUSY 000024 # EX EDF # SYSOF
P.HOR 000032 DREXP ORRES ERROR LOADR REQSB

SYSDF SYSXT TD SCH TTDRV
P.IOC 000003 # EX EDF # SYSDF
P.LGTH 000042 DRE IF DRREG REQSB # SYSDF
P.LNK 000000 # EX EDF # SYSDF
P.MAIN 000012 # EX EDF # SYSDF
P.NAM 000004 # EXEDF # SYSDF
P.OWN 000026 # EX EDF # SYSDF.
P.SIZE 000016 # EXEDF # SYSDF
P.STAT 000030 # EXEDF # SYSDF
P.SUB 000010 # EXEDF # SYSDF
P.SWSZ 000022 # EX EDF # SYSDF
P.TCB 000026 # EX EDF # SYSDF
P.WAIT 000020 # EXEDF # SYSDF
SP.EIP 000001 ERROR # EXEDF IO SUB SYSXT
SP.ENB 000002 ERROR # EX EDF
S$$IEN 000115 # SYSCM
S$$LDC 000001 # SYSCM
S$$RTZ 000074 # SYSCM
S$$TPS 000074 # SYSCM
S.BMSK 177776 DTDRV ERROR # EX EDF # SYSDF SYSXT
S.BMSV 177774 ERROR # EX EDF IO SUB # SYSDF SYSXT
S.CCB 000030 # SYSDF
S.CON 000010 DBDRV DKDRV DMORV ORD RV OXDRV

EX EDF IO SUB MMD RV POWER # SYSOF
SYSXT TOSCH

S.CSR 000012 AO ORV DBDRV OKDRV OMO RV ORO RV
DTORV DX ORV ERROR # EXEOF GRORV
ICDRV IN I TL LPORV MMORV # SYSOF
TOSCH TTDRV

S.CTM 000006 DBDRV DKDRV OMO RV ORO RV DTORV
DX ORV # EX EDF LPDRV MMD RV # SYSOF
SYSXT TOSCH TTORV

S.OHCK 000030 # SYSTB TTDRV
S.FLG 000000 ICDRV
S.FRK 000016 # EXEOF IO SUB # SYSOF SYSXT
S.ITM 000007 DB ORV OK ORV OMDRV ORO RV OTO RV

OX ORV # EXEOF LP ORV MMORV # SYSOF
TTORV

S.LHD 000000 # EXEOF # SYSOF
S.MPR 000030 IOSUB # SYSDF
S.PKT 000014 DBDRV DK ORV OMO RV ORO RV OTDRV

OX ORV ERROR # EXEOF IO SUB LP ORV
MMD RV # SYS OF TT ORV

S.PRI 000004 ERROR # EX EDF IO SUB # SYSOF SYSXT
TOSCH TTDRV

S.RCNT 177772 ERROR # EXEDF IO SUB # SYSOF
S.ROFF 177773 ERROR # EXEOF IO SUB # SYSDF
S.STS 000011 DBDRV DK ORV DMD RV ORO RV OTO RV

EX EDF IO SUB LP ORV MM ORV # SYSDF
TTDRV

S.VCT 000005 # EXEOF # SYSOF
TS.CKR 000100 # EXEOF TTDRV
TS.RON 040000 # EXEOF TTORV
T.ASTL 000016 # EXEOF GRORV TT ORV
T.EXT 000000 # SYSDF
T.IOC 000003 # EX EDF GRORV TTORV
T.LGTH 000070 # SYS OF
T.PCB 000046 # EX EDF TTDRV
T.STAT 000032 # EXEDF TTDRV

9-21

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

T.ST2 000034 # EXEOF· GRDRV TT ORV
T.ST3 000036 *· EXEOF ICDRV TT ORV
T2.ABO 000100 * EXEOF' GRDRV
T2.AST 100000 # EXEOF GRDRV TTDRV
UC.KIL 000004 # EX EDF' IOSUB
UC.LGH 000003 ORQIO # EXEDF
UC.NPR 000100 # · EXEDF' IOSUB
UC.PWF 000'020 # EXEOF' POWER
UC.QUE 000040 DRQIO # EX EDF
UISARO 177640 DRMAP· * EX EDF
UISORO 177600 DRMAP' # EXEDF
US.BSY 000200 # EX EDF' IO SUB TTDRV
US.CRW 000004 # EX EDF' TTDRV
US.DSB 000010 # EX EDF' TTDRV
US.ECH 000002 # EX EDF' TTDRV
OS.FOR 000040 DRQIO DRRES # EXEOF IO SUB
US.LAB 000004 ORQIO # EX EDF MM ORV
US.MOM 000020 DRQIO # EXEOF
US.MNT 000100 ORQIO DRRES # EXEOF IOSUB
US .OFL 000001 DRQIO # EX EDF IN I TL POWER TTORV
US.OUT 000001 # EX EDF' TTDRV
US.PUB 000004 ORQIO # EX EDF
US.SPU 000002 DBDRV' DKDRV DMORV ORD RV # EX EDF
US.OMO 000010 DRQIO # EXEOF IOSUB
US.WCK 000010 DBORV DKDRV DMORV ORO RV # EXEDF
U.ACP 000032 DRRES # EXEOF IO SUB
U.ATT 000022 DRASGI DRE IF # EXEOF IO SUB

TTORV
U.BUF 000024 AO ORV BFCTL DBDRV DKDRV OMDRV

DRORV OTDRV OXDRV # EXEOF IO SUB
LPORV MMD RV TTORV

U.CNT 000030 AODRV DBDRV DKDRV DMORV DRDRV
DTDRV DXDRV # EX EDF IOSUB LPDRV
MMD RV TTDRV

U.CTL 000004 DRQIO # EXEDF IOSUB POWER
O.CWl 000010 DRGLI DRQIO DRRES # EX EDF IN I TL

IOSUB
U.CW2 000012 ADD RV DBDRV DMD RV DTDRV # EX EDF

IOSUEi LPDRV MMD RV TTDRV
U.CW3 000014 DMD RV # EX EDF IO SUB MMORV TTDRV
U.CW4 000016 # EX EDF' LPDRV TTDRV
U.DMCS 000064 # SYSTE: TTDRV
U.OWN 177776 DRQIO # EXEDF
U.RED 000002 # EX EDF' IO SUB
U.SCB 000020 DBDRV DKDRV DMD RV DRDRV DRQIO

DRRES DTDRV DXDRV # EX EDF ICDRV
IN I TI, IO SUB LPDRV MMD RV SYSXT
TTDRV

U.STS 000005 DBDRV DKDRV DMD RV DRDRV DRQIO
DRRES # EX EDF IO SUB MMD RV POWER
TOSCH TTDRV

U.ST2 000007 DRQIO # EX EDF IN I TL IO SUB POWER
TTDRV

U.UNIT 000006 DBDRV DKDRV DMD RV DRDRV DXDRV
EX EDF' IO SUB MMD RV TTDRV

U.VCB 000034 DRE IF' DRQIO DTDRV # EX EDF MMD RV
U2.CRT 002000 # EXEOF' TTDRV
02.ESC 001000 # EXEOF' TTDRV
U2.HLO 000040 # EXEOF' TTDRV
02.LOG 000400 # EXEOF' TTDRV
02.LWC 000001 # EXEOF' TTDRV
V$$CTR 000400 # SYS OF'

9-22

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

W.BATT 000006 # EX EDF TTORV
W.BLGH 000020 # EXEDF TTDRV
W.BOFF 000012 # EX EDF TTDRV
X.AST 000032 # SYSOF
X.DSI 000024 # SYSDF
X.FORK 000012 # SYSDF
X.ISR 000010 # SYSDF
X.JSR 000002 # SYSDF
X.LEN 000050 # SYSOF
X.LNK 000000 # SYSDF
X.PSW 000006 # SYSDF
X.REL 000022 # SYS OF
X.TCB 000026 # SYSDF
X.VEC 000044 # SYSDF
X.VPC 000046 # SYSOF
$ABCTK 016370-R DRATX DRE IF # REQSB SST SR SYSXT
$ABTIM 006174-R QUEUE # SYS CM TOSCH
$ABTSK 016374-R DRABO LOADR PARTY # REQSB
$ACHCK 007704-R ADO RV DRATX DRQIO # IOSUB SSTSR

SYSXT
$ACHKB 007712-R' DRQIO # IO SUB TTDRV
$ACHKP 007650-R ORO SP DRGLI DRGPP DRGTK DRGTP

DRMAP DRRAS DRS ED # IOSUB
$ACHKW 007674-R DRS ST # IO SUB
$ACTHO 006172-R ORE IF ORSEO POWER REQSB # SYSCM

TOSCH
$ACTRM 017102-R DRE IF DRRES # REQSB
$ACTTK 016562-R DRRES LOAOR # REQSB
$AOTBL 075350-R # ADD RV
$ALCLK 007300-R # CORAL ORMKT ORPUT
$ALEB1 034644-R # ERROR
$ALEMB 034630-R # ERROR PARTY POWER
$ALOCB 007166-R # CORAL OMDRV ORE IF DRQIO DRREG

ERROR GRORV IO SUB LOA DR PL SUB
REQSB TTDRV

$ALOC1 007230-R # CORAL
$ALPKT 007314-R # CORAL ORMAP DRQIO DRRAS
$ASUMR 013154-R # IO SUB
$BILOS 016450-R LOADR # REQSB
$BLKCK 010640-R DB ORV DK ORV DMD RV ORD RV DTDRV

IO SUB
$BLKC1 010650-R DMD RV DRDRV # IO SUB
$BLXIO 006650-R # BFCTL
$BMSET 034740-R DBDRV DK ORV DMD RV ORD RV DXDRV

ERROR MMD RV
$BTMSK 006264-R DRQIO IO SUB # SYSCM SYSTB TTORV
$BTSTP 002626-R # CRASH PANIC
$CEFI 010024-R DRQIO GRDRV # IO SUB REQSB
$CEFN 010020-R DROSP DRMAP DRQIO # IO SUB
$CFLPT 006212-R REQSB # SYSCM
$CHKPT 020136-R DREXP LOAOR # REQSB
$CLKHD 006232-R QUEUE # SYSCM TOSCH
$CLPAR 014666-R # PARTY POWER
$CLRMV 016174-R DRCMT # QUEUE
$CMBEG 006116-R # SYSCM
$CMEND 006430-R # SYSCM
$COMEF 006122-R DRS ED IOSUB REQSB # SYSCM
$COPT 006234-R REQSB # SYSCM
$CRALT 001674-R # CRASH EXDBT
$CRASH 001664-R # CRASH LOWCR SST SR
$CRATT 036034-R DRMAP DRREG LOADR # PLSUB
$CRAVL 006166-R CORAL IN I TL # SYSCM

9-23

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$CRLF 052566-R CRASH # PANIC
$CRPAS 013634-R DBDRV DKDRV DRDRV DTDRV # IOSUB

MMD RV
$CRPBF 001114-R # CRASH
$CRPST 001160-R # CRASH
$CRSBF 001124-R # CRASH
$CRSBN 001656-R # -CRASH
$CRSCS 001662-R # CRASH
$CRSHT 002404-R # CRASH
$CRSST 001654-R # CRASH
$CRSUN 002410-R # CRASH
$CRUPC 000632-R # CRASH EXDBT
$CRUST 000634-R # CRASH EXDBT
$CURPR 006121-R REQSB # SYS CM SYSXT
$CVRTM 007532-R # CVRTM ORMKT
$C5TA 006430-R # C5TA DREIF
$DASTT 016740-R DRE IF DRMAP DRRAS LOA DR POWER

REQSB SSTSR
$DBINT 051340-R # DBDRV
$DBTBL 050634-R # DBDRV
$DB0 104756-R # SY STE
$DEACB 007334-R # CORAL OMO RV DRE IF DRGCL DRREG

IN I TL LOADR REQSB SYSXT TTDRV
$DEAC1 007374-R # CORAL
$DECLK 007306-R # CORAL DRPUT QUEUE TD SCH
$DEPKT 007330-R # CORAL DREIF DRMAP DRQIO DRRAS

IO SUB
$DETRG 033512-R DRE IF' # DRREG
$DEUMR 013272-R # IOSUE;
$DEVHD 006204-R DRASG INITL IO SUB # SYSCM
$DEVTB 104512-R SYSCM # SYS TB
$DHINP 045132-R # TTDRV
$DHOUT 044600-R # TTDRV'
$DIRSV 002634-R DRDSP' PARTY SST SR # SYSXT
$DIRXT 003100-R INITL. # SYSXT
$DIV 013730-R C5TA DBDRV DKDRV DMD RV ORD RV

DRGLI EXDBT IN I TL # IO SUB
$DKINT 062702-R # DK ORV
$DKTBL 062272-R # DK ORV
$DPLM1 023610-R # DRDSP' EXDBT SSTSR
$DPLM2 023614-R # DRDSP' EXDBT SSTSR
$DQLM1 030472-R # DRQIO EXDBT SSTSR
$DQLM2 030502-R # DRQIO EXDBT SSTSR
$DQUMR 013472-R # IO SUB
$DRABO 024066-R # DRABO ORD SP
$DRASG 024112-R # DRASG DRDSP
$DRATP 034030-R DRDSP # DRRES
$DRATR 033176-R ORD SP # DR.REG
$DRATX 024336-R # DRATX ORD SP
$DRCEF 034350-R DRDSP # DRS ED
$DRCMT 024504-R # DRCM'JI DRDSP DRE IF
$DRCRR 032610-R DRDSF' # DRREG
$DRCRW 026052-R ORD SP # DRMAP
$DRCSR 024510-R # DRCM'l' DR.DSP
$DRDAR 024524-R # DRDAR DRDSP
$DROCP 024560-R # DROCP DRDSP
$DRDSE 034360-R DROS:t1 DRE IF DRMAP DRRAS DRRES

DRS ED POWER REQSB TD SCH
$DRDTR 033360-R DRDSP # DRREG
$DREAR 024540-R # DRDAFt ORD SP
$DRECP 024604-R # DRDCP ORD SP
$DREIF 004674-R DRDSP # DRE IF

9-24

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$DRELW 026300-R DRDSP # DRMAP
$DREXP 024630-R DRDSP # DREXP
$DREXT 004702-R DRDSP # DREIF DR MAP DRRAS SYSXT
$DRFEX 030066-R DRDSP # DRPUT
$DRGCL 025354-R DRDSP # DRGCL
$DRGLI 025462-R DRDSP # DRGLI
$DRGMX 027472-R DRDSP # DRMAP
$DRGPP 025564-R DRDSP # DRGPP
$DRGSS 025666-R DRDSP # DRGSS
$DRGTK 025676-R DRDSP # DRGTK
$DRGTP 026016-R DRDSP # DRGTP
$DRINT 047202-R # DRDRV
$DRLM1 023514-R # DRDSP EXDBT SSTSR
$DRLM2 023534-R # DRDSP EXDBT SSTSR
$DRMAP 026334-R DRDSP # DRMAP
$DRMKT 027716-R DRDSP # DRMKT
$DRPUT 030110-R DRDSP # DRPUT
$DRQIO 030376-R DRDSP # DRQIO
$DRQRQ 031472-R DRE IF # DRQIO
$DRRAF 034374-R DRDSP # DRS ED
$DRRCV 030150-R DRDSP # DRPUT
$DRREC 032262-R DRDSP # DRRAS
$DRREQ 033724-R DRDSP # DRREQ
$DRRES 033756-R DRDSP # DRRES
$DRSPN 034016-R DRDSP # DRRES
$DRSRF 026704-R DRDSP # DRMAP
$DRSTV 034550-R DRDSP # DRS ST
$DRTBL 046372-R # DRDRV
$DRUNM 026660-R DRDSP # DRMAP
$DRWFL 034460-R DRDSP # DRS ED
$DRWFS 034522-R DRDSP DRQIO # DRSED
$DRWSE 034444-R DRDSP # DRS ED
$ORO 105470-R # SYS TB
$DS0 105672-R # SYS TB
$DTINT 071066-R # DTDRV
$DTOER 034764-R DBDRV DKDRV DMD RV DRDRV DTDRV

DXDRV # ERROR MMD RV
$DTTBL 070444-R # DTDRV
$OTO 106214-R # SYS TB
$DVCER 035026-R # ERROR
$DVERR 035026-R DBDRV DKDRV DMD RV DRDRV DTDRV

DXDRV # ERROR MMD RV
$DVMSG 010110-R DTDRV # IO SUB LOADR LPDRV MMD RV
$DXINT 074122-R # DXDRV
$DXTBL 073532-R # DXDRV
$DXO 106424-R # SYSTB
$DYPMN 006250-R # SYSCM TD SCH
$EDIT 052614-R CRASH # PANIC
$EMSST 021070-R DRDSP # SSTSR
$EMTRP 023440-R # DRDSP EXDBT LOWCR
$ERRHD 006324-R ERROR # SYSCM
$ERRLM 006330-R ERROR # SYSCM
$ERRPT 006210-R ERROR # SYSCM
$ERRSQ 006332-R DMD RV ERROR # SYSCM
$ERRSV 006334-R # SYSCM
$ERRSZ 006336-R ERROR # SYSCM
$EXRQF 020344-R IO SUB QUEUE # REQSB
$EXRQN 020362-R DRE IF # REQSB TOSCH TTDRV
$EXRQP 020336-R IO SUB # REQSB
$EXSIZ 006150-R CORAL # SYSCM
$FINBF 004452-R DRE IF # SYSXT
$FLTRP 021124-R EXDBT # SST SR

9-25

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$FMASK 006226-R # SYS CM
$FNDSP 017660-R ORREG # REQSB
$FORK 002670-R OBORV OKDRV DMORV ORD RV DTDRV

DX ORV LPORV MMD RV # SYSXT TTORV
$FORKO 002712-R IOSUB SSTSR # SYSXT TOSCH
$FORK1 002710-R ERROR GRDRV # SYSXT
$FPPRQ 021146-R ·IN I TL # SST SR
$FPPR7 021124-R POWER # SST SR
$FPPR8 021132-R IN I TL # SSTSR
$FRKHD 006222-R f SYSCM SYSXT
$GRFRK 000000 GRDRV
$GTWRD 006616-R # BFCTL
$HEADR 006116-R DRATX ORD SP ORE IF ORRAS IO SUB

LOADR PARTY POWER SSTSR # SYSCM
SYSXT SYTAB

$ICHKP 020070-R IO SUB # REQSB
$ICINT 075320-R # I CD RV
$ICTBL 074676-R # ICDRV
$IDLCT 006244-R # SYS CM SYSXT
$IDLFL 006245-R # SYSCM SYSXT
$IDLPT 006246-R # SYSCM SYSXT
$!LINS 021232-R EXDBT LOWCR # SSTSR
$INITL 117656-R EXDBT # IN I TL
$INTCT 006220-R # SYSCM TOSCH
$INTSE 002762-R # SYSXT
$INTSV 003020-R ERROR GRDRV SSTSR # SYSXT TOSCH

UODRV
$INTXT 002760-R NLDRV # SYSXT UDO RV
$INTX1 003042-R t SYSXT
$IOABM 006340-R DTORV ERROR # SYSCM SYSXT
$IOALT 010736-R # IOSUB TTDRV
$!ODON 010740-R DBDRV DKDRV DMD RV DRORV OTDRV

OXDRV # IOSUB LP ORV MMD RV TT ORV
$IOFIN 011116-R ADD RV ORQIO GRDRV ICDRV # IOSUB

I SD RV NLDRV SYSXT TTDRV UDDRV
$IOKIL 011374-R DRASG DREIF DRQIO # IO SUB
$IOTRP 021244-R EXOBT LOWCR # SSTSR
$ISINT 075666-R # I SD RV
$ISTBL 075570-R # I SD RV
$LCKPR 012314-R # IOSUB
$LDPWF 016034-R # POWER
$LDRPT 006240-R IOSUB REQSB # SYSCM
$LOADR 102600-R # LOA OR SYTAB
$LOADT 020332-R # REQSB
$LOGHD 006156-R DRASG # SYSCM
$LPINT 067622-R # LPDRV
$LPTBL 067464-R # LPDRV
$LPO 106546-R # SYS TB
$LSTLK 006162-R DRE IF' # SYS CM
$MAPTK 020746-R DREXP LOAOR # REQSB
$MCRCB 006160-R ORGCL # SYSCM
$MCRPT 006206-R QUEUE: # SYSCM
$MMINT 054762-R # MMD RV
$MMTBL 053406-R # MMD RV
$MMO 106746-R # SYSTB
$MPCSR 014130-R # PARTY POWER
$MPCTL 014126-R # PARTY' POWER
$MPLND 011634-R DRASG DRQIO # IO SUB
$MPLNE 011614-R OREIF' DRRES # IOSUB
$MPLUN 011576-R ORASG DRGLI DRQIO # IOSUB
$MPPHY 011676-R DRQIO GRDRV # IO SUB
$NLO 117070-R # SYS TB

9·-26

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$NONSI 003142-R IN I TL LOWCR # SYSXT
$NSO 035310-R # ERROR LOWCR
$NS1 035316-R # ERROR LOWCR
$NS2 035324-R # ERROR LOWCR
$NS3 035332-R # ERROR LOWCR
$NS4 035340-R # ERROR
$NS5 035346-R # E·RROR
$NS6 035354-R # ERROR
$NS7 035362-R # ERROR
$NXTSK 017232-R ORATX OROCP OREXP DRRES IOSUB

REQSB TOSCH
$OUT 052664-R CRASH # PANIC
$0UTB 052660-R CRASH # PANIC
$PANIC 052562-R # PANIC
$PARBO 006236-R PLSUB # SYSCM TOSCH
$PARPT 006230-R # SYS CM
$PARTB 014034-R IN I TL # PARTY SYSCM
$PCBS 117426-R SYSCM # SYTAB
$PKAVL 006410-R CORAL # SYS CM
$PKMAX 006413-R CORAL # SYSCM
$PKNUM 006412-R # SYSCM
$POOL 117552-R CORAL # IN I TL
$POWER 015664-R # POWER SYSXT
$PTBYT 006570-R # BFCTL TTDRV
$PTWRO 006616-R AO ORV # BFCTL
$PWRFL 006152-R POWER # SYSCM SYSXT
$QASTT 016772-R # REQSB TOSCH TTORV
$QEMB 035526-R # ERROR IO SUB PARTY POWER
$QINSF 016242-R ORMAP DRRAS DRRES ERROR GRDRV

IOSUB PL SUB # QUEUE REQSB
$QINSP 016250-R ORQIO DRRES LOADR PL SUB # QUEUE

REQSB TTORV
$QMCRL 016306-R OREIF # QUEUE TTDRV
$QRMVF 016316-R DRE IF DRMAP DRRES LOADR

QUEUE SYSXT
$QRMVT 016330-R DRRAS DRREG DRRES # QUEUE REQSB
$RELOC 012764-R ADO RV DRQIO GRDRV # IOSUB SYSXT

TTDRV
$RELOM 013034-R DRATX DRQIO # IO SUB SST SR SYSXT
$RELOP 013554-R DBDRV DMD RV DRDRV # IOSUB
$RLMCB 025416-R DREIF # DRGCL
$RLPAR 017156-R DRE IF LOADR # REQSB
$RLPR1 017220-R DRREG # REQSB
$RQSCH 006200-R ORS ED POWER REQSB # SYSCM SYSXT
$SAVNR 004620-R ERROR IO SUB LOAOR REQSB # SYSXT
$SCOVT 013050-R # IO SUB POWER TOSCH
$SCDV1 013054-R # IO SUB
$SETCR 016614-R DRRES GRDRV IO SUB # REQSB
$SETF 016674-R DRRAS IO SUB # REQSB
$SRATT 036134-R DRGPP DRMAP DRREG # PL SUB
$SRNAM 035654-R DRGPP DRREG # PL SUB
$SRSTD 017042-R DRDSP # REQSB
$SRWND 036172-R DRMAP # PL SUB
$STACK 000632-R CRASH DROSP IN I TL # LOWCR SSTSR

SYSXT
$STD 117462-R SYSCM # SYTAB
$STKDP 006202-R DRDSP EXDBT SSTSR # SYSCM SYSXT
$STMAP 013316-R OKDRV DMD RV DTDRV # IO SUB
$STPCT 017132-R LOADR # REQSB
$STPTK 017136-R # REQSB TTDRV
$SWSTK 004640-R DRDSP # SYSXT
$SYBEG 120756-R # IN I TL SYSCM

9-27

CROSS-REFERENCES

Symbol Value Module:; That Reference Symbol

$SYSID 006126-R EXOB~l' IN I TL # SYSCM
$SYSIZ 006342-R INITJ:, # SYSCM
$SYTOP 124756-R # INITJC. SYSCM
$SYUIC 006144-R # SYSCM
$TKNPT 006132-R OREU' IOSUB REQSB # SYSCM
$TKPS 006370-R CVRTM ORGTP IN I TL # SYSCM TOSCH

· TTORV
$TKTCB 006176-R OROS:!? ORE IF ORQIO ORSEO IO SUB

LOAO:R PARTY REQSB SSTSR # SYSCM
SYSX'r

$TKWSE 034440-R OREI.f!' ORQIO # ORSEO LOAOR
$TRACE 021324-R EXOB'r LOWCR # SST SR
$TRP04 021336-R EXOB'r LOWCR # SST SR
$TRTRP 023374-R # ORO SP EXOBT LOWCR
$TSKHO 006242-R REQSB # SYSCM
$TSKRP 020414-R ORREQ # REQSB
$TSKRQ 020412-R # REQSB
$TSKRT 020406-R ERROR # REQSB TOSCH
$TSTCP 017762-R # REQSB
$TTNS 006406-R DRGTP ERROR PARTY # SYSCM TOSCH
$TTTBL 044570-R # TTORV
$TTO 107130-R # SYSTB
$TT1 114556-R # SYSTB
$TT10 115046-R # SYSTB
$TT11 115076-R # SYS TB
$TT12 115126-R # SYSTB
$TT13 115156-R # SYSTB
$TT14 115206-R # SYSTB
$TT15 115236-R # SYSTB
$TT16 115266-R # SYSTB
$TT17 115316-R # SYSTB
$TT2 114626-R # SYSTB
$TT20 115346-R # SYSTB
$TT21 115376-R # SYSTB
$TT22 115426-R # SYSTB
$TT23 115456-R # SYS TB
$TT24 115506-R # SYS TB
$TT25 115536-R # SYS TB
$TT26 115566-R # SYS TB
$TT27 115616-R # SYS TB
$TT3 114656-R # SYS TB
$TT30 115646-R # SYS TB
$TT31 115676-R # SYS TB
$TT32 115726-R # SYS TB
$TT33 115756-R # SYSTB
$TT34 116006-R # SYS TB
$TT35 116036-R # SYS TB
$TT36 116066-R # SYSTB
$TT37 116116-R # SYSTB
$TT4 114706-R # SYS TB
$TT40 116146-R # SYSTB
$TT41 116176-R # SYSTB
$TT42 116226-R # SYSTB
$TT43 116256-R # SYSTB
$TT44 116306-R # SYSTB
$TT45 116336~R # SYS TB
$TT46 116366-R # SYS TB
$TT47 116416-R # SYS TB
$TT5 114736-R # SYS TB
$TT50 116446-R # SYSTB
$TT51 116476-R # SYSTB
$TT52 116526-R # SYS TB

9-28

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$TT53 116556-R # SYSTB
$TT54 116606-R # SYSTB
$TT55 116636-R # SYS TB
$TT56 116666-R # SYSTB
$TT57 116716-R # SYS TB
$TT6 114766-R # SYS TB
$TT60 116746-R # SYSTB
$TT7 115016-R # SYS TB
$UDINT 050560-R # UDDRV
$UDTBL 050472-R # UDDRV
$UISET 020706-R DRMKT ORREQ # REQSB
$UMRHD 006416-R IOSUB # SYSCM
$UMRWT 006424-R IOSUB # SYSCM
$UNMAP 036232-R DRMAP DRREG # PL SUB
$USRTB 000000 SYSTB
$WTUMR 013516-R # IOSUB
$XDT 076362-R # EXDBT
.CLO 117220-R # SYS TB
.coo 117174-R SYSCM # SYSTB
.DBO 104552-R # SYS TB
.DBl 104612-R # SYS TB
.DB2 104652-R # SYS TB
.DB3 104712-R # SYS TB
.DKO 105054-R # SYS TB
.DKl 105114-R # SYS TB
.DK2 105154-R # SYS TB
.OTO 105770-R # SYS TB
.DTl 106034-R # SYS TB
.DT2 106100-R # SYS TB
.DT3 106144-R # SYS TB
.oxo 106320-R # SYS TB
.DXl 106360-R # SYSTB
.LBO 117244-R IN I TL # SYS TB SYTAB
.LOR 117462-R SYSCM # SYTAB
.LDRHD 117302-R # SYTAB
.LPO 106514-R # SYS TB
.MMO 106636-R # SYS TB
.MMl 106700-R # SYS TB
.NLO 117036-R # SYSTB
.SYO 117270-R IN I TL # SYSTB SYTAB
.TIO 117150-R # SYSTB
.TTO 107046-R # SYS TB
.TTl 107222-R # SYS TB
.TTlO 110050-R # SYS TB
.TTll 110142-R # SYSTB
.TT12 110234-R # SYS TB
.TT13 110326-R # SYS TB
.TT14 110420-R # SYS TB
.TT15 110512-R # SYSTB
.TT16 110604-R # SYS TB
.TT17 110676-R # SYS TB
.TT2 107314-R # SYS TB
.TT20 110770-R # SYS TB
.TT21 111062-R # SYS TB
.TT22 111154-R # SYSTB
.TT23 111246-R # SYS TB
.TT24 111340-R # SYSTB
.TT25 111432-R # SYS TB
.TT26 111524-R # SYSTB
.TT27 111616-R # SYSTB
.TT3 107406-R # SYS TB
.TT30 111710-R # SYSTB

9-29

Symbol

.TT31

.TT32

.TT33

.TT34

.TT35

.TT36

.TT37

.TT4

.TT40

.TT41

.TTS

.TTSO

.TTSl

.TT52

.TT53

.TT54

.TTSS

.TT56

.TT57

.TT6

.TT60

.TT7

Value

112002-R
112074-R
112166-R
112260-R
112352-R
112444-R
112536-R
107500-R
112630-R
112722-R
107572-R
113550-R
113642-R
113734-R
114026-R
114120-R
114212-R
114304-R
114376-R
107664-R
114470-R
107756-R

CROSS-REFERENCES

Modules That Reference Symbol

i SYSTH
SYSTB
SYSTH
i SYSTH
SYSTH
SYSTH
#·SYSTH
SYSTH
SYSTH
SYSTH
SYSTH
SYSTB
SYSTH
SYSTU
SYSTU
SYSTH
SYSTU
SYSTH
SYSTU
SYSTH
SYSTH
SYSTES

9.3 MCRMU GLOBAL CROSS-REPERENCE

This cross-reference is for a mapped system.

The cross-reference contains an alphabetic listing of each global
symbol along with its value and the name of each referencing module.
When a symbol is defined in several segments within an overlay
structure, TKB prints the last defined value in the listing.
Similarly, in a real TKB cross-reference listing, TKB would print the
module name more than oncE! for each symbol if the module is loaded in
several segments within the structure.

The Task Builder creates an MCRMU.CRF cross-reference file when /CR is
specified in the Task Builder command file used to build MCRMU. One
of the input files to the Task Builder when building MCRMU is the
Executive symbol table file, RSXllM.STB. RSXllM.STB is needed because
MCRMU references some E>~ecutive symbols. All the symbols from
RSXllM.STB are put in the MCRMU.CRF symbol table file even though they
are not referenced by MCR. Therefore, some symbols appearing here in
the MCRMU cross-reference are defined in the Executive but not used by
MCRMU. These symbols are shown defined in the Executive LOWCR or
EXEDF modules.

The value contains the suffix -R if the symbol is relocatable.

9-30

CROSS-REFERENCES

Pref ix symbols accompanying each module name define the type of
reference as follows:

Pref ix
Symbol

blank

@

*

Reference Type

Module contains a reference that is resolved in the
same segment or in a segment toward the root.

Module contains a reference that is resolved
directly in a segment away from the root or in a
co-tree.

Module contains a reference that is resolved
through an autoload_vector.

Module contains a non-autoloadable definition.
This module defines the symbol.

Module contains an autoloadable definition. This
module defines the symbol.

Symbol Value Modules That Reference Symbol

C.SCHD
DV.PSE
DV.TTY
DV.UMD
D$$YNM
D.DSP
D.LNK
D.MSK
D.NAM

D.PCB
D.RSOO
D.RSl
D.RSlO
D.RS16
D.RS17
D.RS19
D.RS2
D.RS22
D.RS5
D.RS6
D.RS7
D.RS8
D.RS80
D.RS81
D.RS84
D.RS85
D.RS86
D.RS87
D.RS90
D.RS92
D.RS93
D.RS94
D.RS95
D.RS96
D.RS97
D.RS98
D.RS99
D.UCB

000002
010000
000004
000200
000000
000012
000000
000014
000004

000034
000000
177777
177766
177760
177757
177755
177776
000002
177773
177772
177771
177770
177660
177657
177654
177653
177652
177651
177646
177644
177643
177642
177641
177640
177637
177636
177635
000002

EXEDF
EXEDF
EXEDF
EXEDF
LOWCR
EXEDF
EXEDF
EXEDF
EXEDF

MCRDIS
EXEDF
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
LOWCR
EXEDF

FIXOV
LOWCR
LOWCR
LOWCR

LOWCR
FIXOV

LOWCR
FIXOV

LOWCR

FIXOV

9-31

FMTOV GTTSK # LOWCR

FMTDV GTMNM # LOWCR

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

D.UCBL 000010 # EXEDF FIXOV FMTDV GTMNM i LOWCR
D.UNIT 000006 # EX EDF FIXOV FMTDV GTMNM i LOWCR
D.VCAN 000002 # EX EDF # LOWCR
D.VINI 000000 # EX EDF # LOWCR
D.VOUT 000004 # EX EDF # LOWCR
D.VPWF 000006 # EXEDF # LOWCR
EC.OTO 000140 # EX EDF # LOWCR
EC.DVC 000001 # EX EDF # LOWCR
EC.NS! 000141 i EX EDF i LOWCR
E.LGTH 000056 i EX EDF # LOWCR
E.OPC 000022 # EX EDF # LOWCR
E.RTRY 000016 # EX EDF # LOWCR
E.SIZE 000000 # EX EDF # LOWCR
FE.CAL 000040 # EXEDF MC RD IS
FE.MOP 000002 # EX EDF FIXOV MCRDIS
FE.MXT 040000 # EXEDF MCRDIS
FE.PLA 000020 # EX EDF FIXOV MCRDIS
H.HDLN 000002 # EX EDF FIXOV
H.LUN 000076 # EX EDF FIXOV
H.WND 000044 # EX EDF MC ROOT
IE.ABO 177761 # LOWCR
IE.ALN 177736 # LOWCR
IE.BAD 177777 # LOWCR
IE.BLK 177754 # LOWCR
IE.BYT 177755 # LOWCR
IE.DAA 177770 # LOWCR
IE.DNA 177771 # LOWCR
IE.DNR 177775 # LOWCR
IE.EOF 177766 MC RD IS
IE.IFC 177776 # LOWCR
IE.LCK 177745 # LOWCR
IE.NLN 177733 # LOWCR
IE.NOD 177751 # LOWCR
IE .OFL 177677 # LOWCR
IE.CVR 177756 # LOWCR
IE .PRI 177760 # LOWCR
IE.SPC 177772 # LOWCR
IE.ULK 177653 # LOWCR
IO.ATT 001400 LNlOV # LOWCR
IO.CLN 003400 # LOWCR
IO.DET 002000 # LOWCR LUNOV
IO.KIL 000012 ERROV MC RD IS
IO.LOV 001010 # LOWCR
IO.NLK 011400 FIXOV
IO.RLB 001000 LNlOV # LOWCR
IO .RVB 010400 # LOWCR
IO.ULK 005000 # LOWCR
IO.WLB 000400 # LOWCR
IO.WVB 011000 ERROV LNlOV # LOWCR MCRDIS
IQ.UMD 000004 # LOWCR
rs .sue 000001 # LOWCR
KISAR5 172352 # EX EDF # LOWCR
KISAR6 172354 # EX EDF # LOWCR
L.ASG 000010 # EX EDF # LOWCR
L.NAM 000002 # EX EDF # LOWCR
L.TYPE 000005 # EX EDF # LOWCR
L.UCB 000006 # EX EDF # LOWCR
L.UNIT 000004 # EX EDF # LOWCR
M$·$MGE 000000 # LOWCR
P.ATT 000036 FIXOV # LOWCR
P.BLKS 000016 # EXEDF # LOWCR
P.BUSY 000024 # EX EDF # LOWCR

9-32

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

P.HDR 000032 FIXOV # LOWCR
P.IOC 000003 # EXEOF # LOWCR
P.LGTH 000042 FIXOV # LOWCR
P.LNK 000000 # EX EDF # LOWCR
P.MAIN 000012 # EX EDF # LOWCR
P.NAM 000004 # EXEOF # LOWCR
P.OWN 000026 # EX EDF # LOWCR
P.PRI 000002 # EX EDF # LOWCR
P.PRO 000034 # LOWCR
P.REL 000014 # EX EDF # LOWCR
P.SIZE 000016 # EX EDF # LOWCR
P.STAT 000030 # EX EDF # LOWCR
P.SUB 000010 # EX EDF # LOWCR
P.swsz 000022 # EX EDF # LOWCR
P.TCB 000026 # EX EDF # LOWCR
P.WAIT 000020 # EX EDF # LOWCR
SP.EIP 000001 # EX EDF # LOWCR
SP.ENS 000002 # EX EDF # LOWCR
S.BMSK 177776 # EX EDF # LOWCR
S.BMSV 177774 # EX EDF # LOWCR
S.CCB 000030 # LOWCR
S.CON 000010 # EX EDF # LOWCR
S.CSR 000012 # EXEDF # LOWCR
S.CTM 000006 # EX EDF # LOWCR
S.DZCK 000030 # LOWCR
S.FRK 000016 # EX EDF # LOWCR
S.ITM 000007 # EX EDF # LOWCR
S.LHD 000000 # EXEDF # LOWCR
S.MPR 000030 # LOWCR
S.PKT 000014 # EXEDF # LOWCR
S.PRI 000004 # EX EDF # LOWCR
S.RCNT 177772 # EX EDF # LOWCR
S.ROFF 177773 # EXEOF # LOWCR
S.STS 000011 # EX EDF # LOWCR
S.VCT 000005 # EX EDF # LOWCR
TS.EXE 100000 # EX EDF FIXOV MCRDIS
TS.OUT 000400 # EX EDF FIXOV MC RD IS
T.ACTL 000052 # EX EDF MC RD IS
T.ATT 000054 # EX EDF FIXOV
T.CPCB 000004 # EX EDF MCRDIS
T.DPRI 000040 # EX EDF MCRDIS
T.EXT 000000 # LOWCR
T.LGTH 000070 FIXOV # LOWCR MCRDIS
T.MXSZ 000050 # EX EDF FIXOV
T.NAM 000006 ABOOV # EXEDF FIXOV
T.OFF 000060 # EXEDF MCROIS
T.PCB 000046 # EX EDF FIXOV LKLST MCRDIS
T.PRI 000002 # EX EDF MCRDIS
T.RCVL 000012 # EX EDF FIXOV MCRDIS
T.RRFL 000064 # EX EDF FIXOV
T.STAT 000032 ABOOV # EX EDF FIXOV MCRDIS
T.ST2 000034 ABOOV # EXEDF FIXOV LKLST MC RD IS
T.ST3 000036 ABOOV # EX EDF FIXOV MCRDIS
T.TCBL 000030 # EX EDF FIXOV MC RD IS
T.UCB 000026 ABOOV # EX EDF GTMNM GTTSK MCRDIS
T2.ABO 000100 ABOOV # EX EDF
T2.BFX 004000 # EX EDF FIXOV
T2.CHK 020000 # EX EDF FIXOV MCRDIS
T2.CKD 010000 # EX EDF LKLST
T2.FXD 002000 # EX EDF FIXOV
T3.ACP 100000 # EX EDF MCRDIS
T3.MCR 004000 # EX EDF MC RD IS

9-33

•=ROSS-REFERENCES

Symbol Value Modules That Reference Symbol

T3.PMO 040000 # EXEDF MCRDIS
T3.PRV 010000 ABOOV # EX EDF MCRDIS
T3.REM 020000 # EXEDF FIXOV MCRDIS
T3.RST 000400 # EX EDF MCRDIS
T3.SLV 002000 ABOOV # EX EDF
UC.ATT 000010 # EX EDF # LOWCR
UC.KIL 000004 # EX EDF # LOWCR
UC.LGH 000003 # EX EDF # LOWCR
UC.NPR 000100 # EX EDF t LOWCR
UC.PWF 000020 # EX EDF # LOWCR
UC.QUE 000040 # EXEDF # LOWCR
UISARO 177640 # EX EDF # LOWCR
UISDRO 177600 # EX EDF # LOWCR
US.BSY 000200 # EX EDF i LOWCR
US.FOR 000040 # EX EDF # LOWCR
US.MOM 000020 # EX EDF # LOWCR
US.MNT 000100 # EX EDF # LOWCR
US.OFL 000001 # EX EDF # LOWCR
US.PUB 000004 # EX EDF # LOWCR
US.OMO 000010 # EX EDF # LOWCR
U.ACP 000032 # EX EDF # LOWCR
U.ATT 000022 # EX EDF # LOWCR
U.BUF 000024 # EX EDF # LOWCR
U.CNT 000030 # EX EDF # LOWCR
U.CTL 000004 # EX EDF # LOWCR
U.CWl 000010 # EX EDF # LOWCR
U.CW2 000012 ABOOV # EXEDF FIXOV # LOWCR MCRDIS
U.CW3 000014 # EXEDF # LOWCR
U.CW4 000016 # EX EDF MCRDIS
U.DCB 000000 # EXEDF FMTDV GTMNM GTTSK MC RD IS
U.LUIC 177774 # EX EDF MCRDIS
U.OWN 177776 # EX EDF # LOWCR
U.RED 000002 ABOOV # EX EDF GTMNM # LOWCR MC RD IS
U.SCB 000020 # EX EDF # LOWCR
U.STS 000005 # EX EDF # LOWCR
U.ST2 000007 # EX EDF # LOWCR
U.UIC 000052 # EX EDF MCRDIS
U.UNIT 000006 # EX EDF # LOWCR
U.VCB 000034 # EX EDF # LOWCR
U2.AT. 000020 # EX EDF MCRDIS
U2.HLO 000040 # EX EDF MCROIS
U2.LOG 000400 # EX EDF FIXOV MC RD IS
U2.PRV 000010 ABOOV # EX EDF FIXOV MCRDIS
V$$CTR 000410 # LOWCR
W.BLVR 000002 # EX EDF MC ROOT
X.AST 000032 # LOWCR
X.DSI 000024 # LOWCR
X.FORK 000012 # LOWCR
X.ISR 000010 # LOWCR
X.JSR 000002 # LOWCR
X.LEN 000050 # LOWCR
X.LNK 000000 # LOWCR
X.PSW 000006 # LOWCR
X.REL 000022 # LOWCR
X.TCB 000026 * LOWCR
X.VEC 000044 # LOWCR
X.VPC 000046 # LOWCR
$ABCTK 014460 # LOWCR
$ABOEP 122036-R # ABOOV PRlOV
$ABTIM 005414 # LOWCR
$ABTSK 014464 ABOOV # LOWCR
$ACHCK 007242 # LOWCR

9-34

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$ACHKB 007250 # LOWCR
$ACHKP 007206 # LOWCR
$ACHKW 007232 # LOWCR
$ACTHD 005634 # LOWCR
$ACTRM 015172 # LOWCR
$ACTTK 014652 # LOWCR
$ALCLK 006636 # LOWCR
$ALEB1 032634 # LOWCR
$ALEMB 032620 # LOWCR
$ALOCB 006524 FIXOV # LOWCR MCRDIS
$ALOC1 006566 # LOWCR
$ALPKT 006652 # LOWCR
$SILOS 014540 # LOWCR
$BLKCK 0'10174 # LOWCR
$BLKC1 010204 # LOWCR
$BLXIO 006212 # LOWCR
$BMSET 032730 # LOWCR
$BTMSK 005640 # LOWCR
$CANEP 122122-R # ABOOV PRlOV
$CATS 125444 GTTSK MC ROIS PRlOV
$CBDMG 123250 LUNOV
$CBOMG 123264 FMTDV GTMNM
$CEFI 007362 # LOWCR
$CEFN 007356 # LOWCR
$CFLPT 005522 # LOWCR
$CHKPT 016226 # LOWCR
$CKACC 033726 # LOWCR
$CKCNT 005604 # LOWCR
$CKCSR 005606 # LOWCR
$CKINT 017726 # LOWCR
$CKLDC 005610 # LOWCR
$CLINS 014162 # LOWCR
$CLKHD 005556 # LOWCR
$CLRMV 014264 FIXOV # LOWCR
$COMEF 005570 # LOWCR
$COPT 005560 # LOWCR
$CRASH 001470 # LOWCR
$CRATT 034024 # LOWCR
$CRAVL 005532 # LOWCR
$CRPAS 012470 # LOWCR
$CRSBF 000730 # LOWCR
$CRSBN 001462 # LOWCR
$CRSCS 001466 # LOWCR
$CRSHT 001752 # LOWCR
$CRSST 001460 # LOWCR
$CRSUN 001756 * T.,OWCR
$CVRTM 007070 # LOWCR
$C5TA 005772 ERROV # LOWCR
$DASTT 015030 # LOWCR
$DBO 043366 # LOWCR
$DEACB 006672 FIXOV # LOWCR MC RD IS
$DEAC1 006732 # LOWCR
$DECLK 006644 # LOWCR
$DEPKT 006666 FIXOV # LOWCR
$DETRG 031502 FIXOV # LOWCR
$DEVHD 005462 FIXOV # LOWCR
$DEVTB 043122 # LOWCR
$DIRSV 002264 # LOWCR
$DIRXT 002514 # LOWCR
$DIV 012564 FMTDV GTMNM # LOWCR
$DKO 043630 # LOWCR
$0PLMl 021662 # LOWCR

9-35

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$OPLM2 021666 # LOWCR
$DQLM1 026526 # LOWCR
$DQLM2 026536 # LOWCR
$DRABO 022140 # LOWCR
$DRASG 022164 # LOWCR
$DRATP 032020 ABOOV # LOWCR
$DRATR 031166 # -LOWCR
$DRATX 022410 # LOWCR
$DRCEF 032340 # LOWCR.
$DRCMT 022556 # LOWCR
$DRCRR 030600 # LOWCR
$DRCRW 024064 # LOWCR.
$DRCSR 022562 # LOWCR
$DRDAR 022576 # LOWCR
$DRDCP 022632 EDCKP # LOWCR
$DRDSE 032350 LKLST # LOWCR
$DRDTR 031350 # LOWCR
$DREAR 022612 # LOWCR
$DRECP 022656 EDCKP # LOWCR
$DREIF 004220 # LOWCR
$DRELW 024312 # LOWCR
$DREXP 022702 # LOWCR.
$DREXT 004226 # LOWCR MC RD IS
$DRFEX 026100 # LOWCR
$DRGCL 023372 # LOWCR.
$DRGLI 023500 # LOWCR
$DRGMX 025504 # LOWCR.
$DRGPP 023602 # LOWCR
$DRGSS 023704 # LOWCR
$DRGTK 023714 # LOWCR
$DRGTP 024030 # LOWCR
$DRLM1 021566 # LOWCR
$DRLM2 021606 # LOWCR
$DRMAP 024346 # LOWCR.
$DRMKT 025730 # LOWCR
$DRPUT 026122 # LOWCR
$DRQIO 026410 # LOWCR
$DRQRQ 027516 # LOWCR
$DRRAF 032364 # LOWCR
$DRRCV 026162 # LOWCR
$DRREC 030306 # LOWCR
$DRREQ 031714 # LOWCR
$DRRES 031746 # LOWCR
$DRRRA 026142 # LOWCR
$DRRRF 025232 # LOWCR
$DRRUN 025762 # LOWCR
$DRSDV 032532 # LOWCR
$DRSEF 032420 # LOWCR
$DRSND 030440 # LOWCR
$DRSPN 032006 # LOWCR
$DRSRF 024716 # LOWCR
$DRSTV 032540 # LOWCR
$DRUNM 024672 # LOWCR
$DRWFL 032450 # LOWCR
$DRWFS 032512 # LOWCR
$DRWSE 032434 # LOWCR
$DSW 000046 ABOOV
$DSO 044064 # LOWCR
$DTOER 032754 # LOWCR
$OTO 044276 # LOWCR
$DVCER 033016 # LOWCR
$DVERR 033016 # LOWCR

9-36

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$DVMSG 007446 # LOWCR
$DXO 044472 # LOWCR
$DYPMN 005470 # T..10WCR
$EMSST 017156 # LOWCR
$EMTRP 021512 # LOWCR
$ERREP 121660-R # ERROV
$ERRHD 005700 # LOWCR
$ERRLM 005704 # LOWCR
$ERRLN 000404 # ERRMSG ERROV
$ERRPT 005514 FIXOV # LOWCR
$ERRSQ 005706 # LOWCR
$ERRSV 005710 # LOWCR
$ERRSZ 005712 # LOWCR
$ERRTB 124064-R # ERRMSG ERROV
$EXRQF 016434 # LOWCR
$EXRQN 016452 # LOWCR
$EXRQP 016426 # LOWCR
$EXSIZ 005520 # LOWCR
$FINBF 003776 # LOWCR
$FIXEP 122714-R # FIXOV PRlOV
$FLTRP 017212 # LOWCR
$FMASK 005552 FIXOV # LOWCR MC RD IS
$FMTDV 123156-R # FMTDV LUNOV
$FNDSP 015750 # LOWCR
$FORK 002320 # LOWCR
$FORKO 002342 # LOWCR
$FORK! 002340 # LOWCR
$FPINT 017226 # LOWCR
$FRKHD 005546 # LOWCR
$GNBLK 125270-R # GNBLK
$GTBYT 006102 # LOWCR
$GTMNM 125340-R # GTMNM GTTSK MC ROIS
$GTPKT 007510 # LOWCR
$GTTSK 124714-R ABOOV FIXOV # GTTSK LNlOV
$GTWRD 006160 # LOWCR
$HEADR 005564 FIXOV GTTSK LKLS'r r .. rnov # LOWCR

MC ROOT
$ICHKP 016160 # LOWCR
$!LINS 017304 # LOWCR
$INITL 052414 # LOWCR
$INTCT 005542 # LOWCR
$INTSE 002376 # LOWCR
$INTSV 002434 # LOWCR
$INTXT 002374 # LOWCR
$INTX1 002456 # LOWCR
$IOABM 005714 # LOWCR
$IOALT 010272 # LOWCR
$!ODON 010274 # LOWCR
$IOFIN 010414 # r ... OWCR
$IOKIL 010666 # LOWCR
$IOTRP 017316 # LOWCR
$LCKPR 011552 # LOWCR
$LDPWF 014124 # LOWCR
$LDRPT 005464 # LOWCR
$LN1EP 124436-R # LNlOV PRlOV
$LOAD 121004 MC ROOT
$LOADR 041214 # LOWCR
$LOADT 016422 # LOWCR
$LOCKL 125120-R F!XOV # LKLST f\1CRDIS
$LOGHD 005624 # LOWCR
$LPO 044614 # LOWCR
$LSTLK 005630 LKLST # LOWCR

9-37

<:ROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$LUNEP 122636-R i LUNOV
$MAPTK 017036 i LOWCR
$MBUF 120362-R ERROV LNlOV LUNOV MC RD IS i MC ROOT
$MCKD 122212-R # EDCKP ERROV MC RD IS
$MCKE 122224-R # EDCKP ERROV MC ROIS
$MCMD 120454-R ERROV FIXOV LNlOV MC ROIS # MC ROOT

PRlOV
$MCOV 120464-R MCRDI:3 * MC ROOT PRlOV
$MCR 120634-R ABOOV ERROV FIXOV LUNOV # MC ROOT
$MCRCB 005626 # LOWCR MCRDIS
$MCRPT 005466 FIXOV i LOWCR
$MDIS 120500-R * MCR00 1r
$MDPB 120366-R ABOOV ERROV FIXOV LNlOV LUNOV

MCRDIB # MC ROOT
$MERLO 120720-R ABOOV FIXOV LNlOV LUNOV MC RD IS

i MCROO~r PRlOV
$MERR 120470-R # MCROO'r
$MERRN 120474-R ABOOV ERROV FIXOV LNlOV LUNOV

MCRDIB # MC ROOT PRlOV
$MLDOV 120724-R LNlOV MC RD IS . # MC ROOT
$MLIMI 120632-R i MCROO'r
$MLINE 120504-R MCRDI:S # MC ROOT
$MMO 045014 # LOWCR
$MOVRB 120416-R i MCROO'r
$MPARS 120424-R ABOOV ERROV FIXOV LNlOV LUNOV

MCRDIB # MC ROOT PRlOV
$MPCSR 012734 # LOWCR
$MPLND 011126 # LOWCR
$MPLNE 011106 # LOWCR
$MPLUN 011070 # LOWCR
$MPPHY 011170 # LOWCR
$MPPKT 011240 # LOWCR
$MPRSR 120460-R MCRDIS # MC ROOT
$MPVBN 011372 # LOWCR
$MROOT 120706-R # MCR001r
$MTERM 120476-R MCRDI:S # MC ROOT
$MUCB 120364-R ABOOV FIXOV LNlOV MC ROIS # MC ROOT
$MUL 012534 # LOWCR
$MXEXT 005770 # LOWCR
$NLO 051622 # LOWCR
$NNBLK 125272-R # GNBLK PRlOV
$NONSI 002556 # LOWCR
$NSO 033300 # LOWCR
$NS1 033306 # LOWCR
$NS2 033314 # LOWCR
$NS3 033322 # LOWCR
$NS4 033330 # LOWCR
$NS5 033336 # LOWCR
$NS6 033344 # LOWCR
$NS7 033352 # LOWCR
$NULL 043100 # LOWCR
$NXTSK 015322 FIXOV # LOWCR
$0VEP 121634-R # MCRDI:S MC ROOT
$PANIC 001470 # LOWCR
$PARHD 005422 # LOWCR
$PARPT 005554 # LOWCR
$PARTB 012670 # LOWCR
$PCBS 052164 # LOWCR
$PKAVL 005764 # LOWCR
$PKMAX 005767 # LOWCR
$PKNUM 005766 # LOWCR
$POOL 052310 # LOWCR

9-·38

CROSS-REFERENCES

Symbol Value Modules That Reference ~ymbol

$POWER 013750 # LOWCR
$PPO 045144 # LOWCR
$PRO 045266 # LOWCR
$PR1EP 121654-R # PRlOV
$PTBYT 006132 # LOWCR
$PTWRO 006160 # LOW CR
$PWRFL 005416 # LOWCR
$QASTT 015062 # .LOWCR
$QEMB 033516 # LOWCR
$QINSF 014332 # LOWCR
$QINSP 014340 FIXOV # LOWCR
$QMCRL 014376 # LOWCR
$QRMVF 014406 FIXOV # LOWCR MCROIS
$QRMVT 014420 # LOWCR
$RELOC 012222 # LOWCR
$RELOM 012272 # LOWCR
$RELOP 012410 # LOWCR
$REMEP 122714-R # FIXOV PRlOV
$RESEP 122134-R # ABOOV PRlOV
$RLMCB 023434 # LOWCR
$RLPAR 015246 FIXOV # LOWCR
$RLPR1 015310 # LOWCR
$RQSCH 005452 # LOWCR
$SAVNR 004144 # LOWCR
$SCDVT 012306 # LOWCR
$SCDV1 012312 # LOWCR
$SETCR 014704 # LOWCR
$SETF 014762 # LOWCR
$SETM 014766 # LOWCR
$SETRQ 014734 # LOWCR
$SETRT 014732 # LOWCR
$SGFLT 017336 # LOWCR
$SHFPT 005516 FIXOV # LOWCR
$SIGFL 005420 LKLST # LOWCR
$SRATT 034124 # LOWCR
$SRNAM 033644 # LOWCR
$SRSTD 015132 GTTSK # LOWCR MC ROIS
$SRWND 034162 # LOWCR
$STACK 000642 # LOWCR
$STD 052220 # LOWCR
$STKDP 005454 # LOWCR
$STPCT 015222 # LOWCR MCRDIS
$STPTK 015226 # LOWCR
$SWSTK 004164 # LOWCR
$SYBEG 053424 # LOWCR
$SYSID 005574 # LOWCR
$SYSIZ 005716 # LOWCR
$SYTOP 063424 # LOWCR
$SYUIC 005612 # LOWCR
$TKNPT 005600 FIXOV # LOWCR
$TKPS 005744 # LOWCR
$TKTCB 005446 ABOOV EDCKP GTMNM GTTSK LKLST

LOWCR MCRDIS
$TKWSE 032430 LKLST # LOWCR
$TRACE 017376 # LOWCR
$TRP04 017410 # LOWCR
$TRTRP 021446 # LOWCR
$TSKHD 005512 FIXOV # LOWCR
$TSKRP 016504 # LOWCR MCRDIS
$TSKRQ 016502 # LOWCR
$TSKRT 016476 # LOWCR
$TSTCP 016052 # LOWCR

9-39

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$TTNS 005762 # LOWCR
$TTO 045534 # LOWCR
$TT1 045564 # LOWCR
$TT10 047672 # LOWCR
$TT11 04 7722 # LOWCR
$TT12 047752 # LOWCR
$TT13 050002 # LOWCR
$TT14 050032 # r ... OWCR
$TT15 050062 # LOWCR
$TT16 050112 # LOWCR
$TT17 050142 # LOWCR
$TT2 047452 # LOWCR
$TT20 050172 # LOWCR
$TT21 050222 # LOWCR
$TT22 051210 # LOWCR
$TT23 051260 # LOWCR
$TT24 051310 # LOWCR
$TT25 051340 # LOWCR
$TT26 051370 # LOWCR
$TT27 051420 # LOWCR
$TT3 047502 # LOWCR
$TT30 051450 # LOWCR
$TT31 051500 # LOWCR
$TT4 047532 # LOWCR
$TT5 047562 # LOWCR
$TT6 047612 # LOWCR
$TT7 047642 # LOWCR
$UISET 016776 # LOWCR
$UNFEP 122714-R # FIXOV PRlOV
$UNLKL 125210-R FIXOV # LKLST MC ROIS
$UNMAP 034222 # LOWCR
$USRTB 000000 # LOWCR
$XDT 035002 # LOWCR
.CLO 051756 # LOWCR
.coo 051732 # LOWCR
.OBO 043162 # LOWCR
.DBl 043222 # LOWCR
.082 043262 # LOWCR
.DB3 043322 # LOWCR
.DKO 043464 # LOWCR
.DKl 043524 # LOWCR
.DK2 043564 # LOWCR
.osw 000044 # LOWCR
.oso 043720 # LOWCR
.DSl 043760 # LOWCR.
.DS2 044020 # LOWCR.
.OTO 044162 # LOWCR.
.DTl 044226 # LOWCR
.oxo 044366 # LOWCF'.
.DXl 044426 # LOWCF:
.LBO 052002 # LOWCF:
.LOR 052220 # LOWCR
.LDRHD 052040 # LOWCR
.LPO 044562 # LOWCR
.MMO 044704 # LOWCF:
.MMl 044746 # LOWCR
.NLO 051570 # LOWCR
.PPO 045112 # LOWCFt
.PRO 045234 # LOWCR
.SYO 052026 # LOWCFt
.TIO 051706 # LO WC Ft

9-40

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

.TTO 045362 # LOWCR

.TTl
"

045452 # LOWCR
.TTlO 046400 # LOWCR
.TTll 046470 # LOWCR
.TT12 046560 # LOWCR
.TT13 046650 # LOWCR
.TT14 046740 # LOWCR
.TT15 047030 # LOWCR
.TT16 047120 # LOWCR
.TT17 04 7210 # LOWCR
.TT2 045660 # LOWCR
.TT20 047300 # LOWCR
.TT21 047370 # LOWCR
.TT22 050316 # LOWCR
.TT23 050406 # LOWCR
.TT24 050476 # LOWCR
.TT25 050566 # LOWCR
.TT26 050656 # LOWCR
.TT27 050746 # LOWCR
.TT3 045750 # LOWCR
.TT30 051036 # LOWCR
.TT31 051126 # LOWCR
.TT4 046040 # LOWCR
.TT5 046130 # LOWCR
.TT6 046220 # LOWCR
.TT7 046310 # LOWCR

9.4 MCRMU SEGMENT CROSS~REFERENCE

The MCRMU segment cross-reference lists the name of each overlay
segment and the modules that compose it. The cross-reference follows:

Segment
Name Resident Modules

ERROV EDCKP ERRMSG ERROV
LUNOV EX EDF FMTDV LUNOV
MC ROOT EX EDF LOWCR MC ROOT
MCROV EDCKP EX EDF GTMNM LKLST MC ROIS
l?RlOV ABOOV EX EDF FIXOV GNBLK GTMNM GTTSK

LKLST LNlOV PRlOV

9-41

CROSS-REFERENCES

SYS Global Cross-references

9. 5 SYS GLOBAL CROSS-REFUtENCEs

This cross-reference is for a mapped system.

The cross-reference contains an alphabetic listing of each global
symbol along with its value and the name of each referencing module.
When a symbol is defined in several segments within an overlay
structure, TKB prints the last defined value in the listing.
Similarly, in a real TKB cross-reference listing, TKB would print the
module name more than once for each symbol if the module is loaded in
several segments within the structure.

The Task Builder creates an SYS.CRF cross-reference file when /CR is
specified in the Task Builder command file used to build SYS. One of
the input files to the Tas~: Builder when building SYS is the Executive
symbol table file, RSXllM.STB. RSXllM.STB is needed because SYS
references some Executive symbols. All the symbols from RSXllM.STB
are put in the SYS.CRF symbol table file even though they are not
referenced by SYS. Therefore, some symbols appearing here in the SYS
cross-reference are defined in the Executive but not used by SYS.
These symbols are shown defined in the Executive LOWCR or EXEDF
modules.

The value contains the sufj:ix -R if the symbol is relocatable.

Prefix symbols accompanyin9 each module name define the type of
reference as follows:

Pref ix
Symbol

blank

@

*

Symbol

DV.Fll
DV. ISP
DV.MNT

DV.OSP
DV.PSE

OV.SQD
OV.TTY

Value

Reference Type

Module contains a reference that is resolved in the
same segment or in a segment toward the root.

Module
directly
co-tree.

contains a reference that
in a segment away from the

is resolved
root or in a

Module contains a reference that is resolved
through an autoload vector.

Module contains a reference that is resolved
This module defines the symbol.

Module contains an autoloadable definition. This
module defines the symbol.

Modules That Reference Symbol

040000 # EXE DE' SDSOV SPROV
002000 # EXED.E' RE DOV
100000 ALLOV DEAOV DEVOV # EXE OF RE DOV

SDSOV SPROV
004000 # EX EDF RE DOV
010000 ALLOV AS NOV DEAOV OEVOV # EX EDF

LOWCH OPEOV RE DOV sosov SP HOV
000040 DEVOV # EXEDf'
000004 ALLOV .a.SNOV ATLOV DEVOV # EXEOF

Lowen SDSOV SPROV

9-42

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

DV.UMD 000200 # EXEDF LOWCR
D$$YNM 000000 # LOWCR
D.DSP 000012 DEVOV # EX EDF # LOWCR
D.LNK 000000 DEAOV DEVOV # EX EDF SDSOV $FDUCB
D.MSK 000014 # EX EDF # LOWCR
D.NAM 000004 AS NOV DEAOV DEVOV # EX EDF FMTDV

GTTSK # LOWCR OPEOV RA POV RE DOV
Sl?ROV $FDUCB

D.PCB 000034 DEVOV # EX EDF # LOWCR OPEOV
O.RSOO 000000 # LOWCR
D.RSl 177777 # LOWCR
D.RSlO 177766 # LOWCR
O.RS16 177760 # LOWCR
D.RS17 .177757 # LOWCR
D.RS19 177755 # LOWCR
D.RS2 177776 # LOWCR
D.RS22 000002 # LOWCR
D.RS5 177773 # LOWCR
D.RS6 177772 # LOWCR
D.RS7 177771 # LOWCR
D.RS8 177770 # LOWCR
D.RS80 177660 # LOWCR
D.RS81 177657 # LOWCR
D.RS84 177654 # LOWCR
D.RS85 177653 # LOWCR
D.RS86 177652 # LOWCR
D.RS87 177651 # LOWCR
D.RS90 177646 # LOWCR
D.RS92 177644 # LOWCR
D.RS93 177643 # LOWCR
D.RS94 177642 # LOWCR
D.RS95 177641 # LOWCR
D.RS96 177640 # LOWCR
D.RS97 177637 # LOWCR
D.RS98 177636 # LOWCR
D.RS99 177635 # LOWCR
D.UCB 000002 DEAOV DEVOV # EX EDF FMTDV GTMNM

LOWCR OPEOV sosov $FDUCB
O.UCBL 000010 DEAOV DEVOV # EXEDF FMTDV GTMNM

LOWCR sosov $FDUCB
D.UNIT 000006 DEAOV DEVOV # EX EDF FM'rov GTMNM

LOWCR $FDUCB
D.VCAN 000002 # EX EDF # LOWCR
D. VINI 000000 # EX EDF # LOWCR
D.VOUT 000004 # EX EDF # LOWCR
D.VPWF 000006 # EX EDF # LOWCR
EC.OTO 000140 # EX EDF # LOWCR
EC.DVC 000001 # EX EDF # LOWCR
EC.NS! 000141 # EX EDF # LOWCR
E.LGTH 000056 # EX EDF # LOWCR
E.OPC 000022 # EX EDF # LOWCR
E.RTRY CT00016 # EXEDF # LOWCR
E.SIZE 000000 # EXEDF # LOWCR
FE.ORV 000010 DEVOV # EX EDF
FE.EXP 000200 # EX EDF SDSOV SPROV
FE.EXT 000001 # EX EDF PAROV SDSOV SETOV TASOV
FE.EXV 000004 # EX EDF SPROV
FE.MUP 000002 ALLOV DEAOV DEVOV # EX EDF RPSOV

RU NOV SPROV
l?E.NLG 100000 # EXEDF SPROV
FE.PKT 000100 # EX EDF SDSOV SPROV
FE.PLA 000020 # EX EDF SETOV SPROV

9-43

(:ROSS-REFERENCES

Symbol Value Modules That Reference Symbol

H.CSP 000000 ATLOV # EXEDF
H.GARD 000072 ATLOV # EX EDF
H.WND 000044 # EX EDF SYS ROT
IE.ABO 177761 # LOWCR
IE.ALN 177736 # LOWCR
IE.BAD 177777 # LOWCR
IE.BLK 177754 # ·LOWCR
IE.BYT 177755 # LOWCR
IE.DAA 177770 # LOWCR
IE.DNA 177771 # LOWCR
IE.DNR 177775 * LOWCR
IE.IFC 177776 # LOWCR
IE.LCK 177745 # LOWCR
IE.NLN 177733 # LOWCR
IE .NOD 177751 # LOWCR
IE.OFL 177677 # LOWCR
IE.OVR 177756 i LOWCR
IE.PR! 177760 # LOWCR
IE.SOP 177635 ALTOV
IE.SPC 177772 # LOWCR
IE.OLK 177653 # LOWCR
IE.OPN 177777 ASNOV
IO.ATT 001400 ASNOV ATLOV CLQOV DEVOV i LOWCR

OPEOV PAROV TASOV
IO.CLN 003400 # LOWCR
IO.DET 002000 ASNOV ATLOV CLQOV DEVOV f LOWCR

OPEOV PAROV TASOV
IO.KIL 000012 ERROV
IO.LOV 001010 # LOWCR.
IO.RLB 001000 # LOWCB: RA POV TASOV
IO.RVS 010400 # LOWCR OPEOV
IO.OLK· 005000 # LOWCR.
IO.WAL 000410 SPRov·
IO.WLB 000400 # LOWCR OPEOV REAOV
IO.WVB 011000 AS NOV ATLOV CLQOV DEVOV ERROV

LOWCR OPEOV PAROV SDSOV SPROV
TASOV TIMOV

IQ.OMO 000004 # LOWCR
IS.SOC 000001 # LOWCR
KISAR5 172352 # EX EDF' # LOWCR
KISAR6 172354 # EX EDF' # LOWCR
L.ASG 000010 ASNOV # EX EDF # LOWCR $FDOCB
L.LGTH 000012 AS NOV # EX EDF
L.LNK 000000 ASNOV # EX EDF $FDOCB
L.NAM 000002 ASNOV # EX EDF # LOWCR $FDOCB
L.TYPE 000005 ASNOV # EX EDF # LOWCR $FDOCB
L.OCB 000006 ASNOV # EX EDF # LOWCR $FDOCB
L.UNIT 000004 AS NOV # EX EDF # LOWCR $FDOCB
M$$MGE 000000 # LOWCFt
PADVBF 125730-R DEVOV # PAROV
PR7 000340 # EX EDE' SETOV
PS 177776 # EXEDE' SETOV
P.ATT 000036 # LOWCFt
P.BLKS 000016 # EX EDP # LOWCR
P.BUSY 000024 # EX EDE' # LOWCR
P.HDR 000032 ATLOV # LOWCR OPEOV
P.IOC 000003 # EX EDP # LOWCR
P.LGTH 000042 # LOWCH SETOV
P.LNK 000000 # EXEDE' # LOWCR
P. MAIN 000012 ALTOV # EX EDF # LOWCR
P.NAM 000004 # EX EDP # LOWCR
P.OWN 000026 # EXEDP # LOWCR

9-44

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

P.PRI 000002 # EX EDF # LOWCR
P.PRO 000034 # LOWCR
P.REL 000014 # EXEDF # LOWCR
P.SIZE 000016 # EX EDF # LOWCR
P.STAT 000030 # EX EDF # LOWCR
P.SUB 000010 # EX EDF # LOWCR
P.SWSZ 000022 # EX EDF # LOWCR
P.TCB 000026 # EX EDF # LOWCR
P.WAIT 000020 ALTOV # EX EDF # LOWCR
SP.EIP· 000001 # EX EDF # LOWCR
SP.ENB 000002 * EX EDF # LOWCR
S.BMSK 177776 # EXEDF # LOWCR
S.BMSV 177774 # EX EDF # LOWCR
s.ccs 000030 # LOWCR
S.CON 000010 # EX EDF # LOWCR
S.CSR 000012 # EX EDF # LOWCR SETOV
S.CTM 000006 # EXEDF # LOWCR
S.DZCK 000030 # LOWCR
S.FRK 000016 # EX EDF # LOWCR
S.ITM 000007 # EX EDF # LOWCR
S.LHD 000000 # EX EDF # LOWCR
S.MPR 000030 # LOWCR
S.PKT 000014 # EX EDF # LOWCR
S.PRI 000004 # EX EDF # LOWCR
S.RCNT 177772 # EX EDF # LOWCR
S.ROFF 177773 # EX EDF # LOWCR
S.STS 000011 # EX EDF # LOWCR
S.VCT 000005 # EX EDF # LOWCR
T.EXT 000000 # LOWCR
T.LGTH 000070 # LOWCR
T.NAM 000006 CLQOV # EX EDF PAROV
T.PCB 000046 # EX EDF LKLST SETOV
T.ST2 000034 # EX EDF LKLST
T.ST3 000036 # EX EDF RPSOV SYSOV
T.TCBL 000030 # EX EDF SETOV
T.UCB 000026 # EX EDF GTMNM GTTSK SPROV SYSOV

$FDUCB
T2.CKD 010000 # EX EDF LKLST
T3.MCR 004000 # EX EDF RPSOV SYSOV
UC.ATT 000010 # EX EDF # LOWCR
UC.KIL 000004 # EX EDF # LOWCR
UC.LGH 000003 # EXEDF # LOWCR
UC.NPR 000100 # EX EDF # LOWCR
UC.PWF 000020 # EX EDF # LOWCR
UC.QUE 000040 # EX EDF # LOWCR
UISARO 177640 # EX EDF # LOWCR
UISDRO 177600 # EXEDF # LOWCR
US.BSY 000200 # EX EDF # LOWCR
US.FOR 000040 # EXEDF # LOWCR
US.MOM 000020 DEVOV # EX EDF # LOWCR
US.MNT 000100 ALLOV DEAOV DEVOV # EX EDF # LOWCR

RE DOV
US.OFL 000001 DEVOV # EX EDF # LOWCR SETOV
US.PUB 000004 ALLOV DEAOV DEVOV # EX EDF # LOWCR

SDSOV SPROV
US.RED 000002 # EX EDF RE DOV
US.UMD 000010 # EX EDF # LOWCR
US.WCK 000010 # EX EDF SDSOV SPROV
U.ACP 000032 # EX EDF # LOWCR
U.ATT 000022 ALLOV ASNOV .P1TLOV CLQOV DEVOV

EX EDF # LOWCR RE DOV
U.BUF 000024 # EXEDF # LOWCR

9-45

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

U.CNT 000030 i EXEDF # LOWCR
U.CTL 000004 # EX EDF • LOWCR
U.CWl 000010 ALLOV AS NOV ATLOV DEAOV DEVOV • EX EDF # LOWCR OPEOV RE DOV SDSOV

SPROV
u.cw2 000012 ALLOV AS NOV ATLOV DEAOV DEVOV

i EX EDF # LOWCR RUNOV SDSOV SETOV
SPROV SYSOV

U.CW3 000014 # EXEDF i LOWCR SDSOV SETOV
U.CW4 000016 # EX EDF SDSOV SPROV
U.DCB 000000 i EX EDF FMTDV GTMNM GTTSK RE DOV

SDSOV $FDUCB
u:LuIC 177774 DEVOV # EX EDF RUNOV SPROV
U.OWN 177776 ALLOV DEAOV DEVOV # EXEDF # LOWCR

sosov SPROV
U.RED 000002 ASNOV DEVOV # EX EDF GTMNM # LOWCR

RE DOV SPROV
U.SCB 000020 # EX EDF # LOWCR SETOV
U.STS 000005 ALLOV DEAOV DEVOV # EX EDF # LOWCR

REDOV SDSOV SPROV
U.ST2 000007 ALLOV DEAOV DEVOV # EXEDF # LOWCR

RE DOV SDSOV SETOV SPROV
U.UIC .000052 # EX EDF sosov SPROV
U.UNIT 000006 # EXEDF # LOWCR SETOV
U.VCB 000034 DEVOV # EX EDF # LOWCR
02.CRT 002000 # EX EDF SDSOV SPROV
U2.DH1 100000 # EXEDF SPROV
U2.DJ1 040000 # EX EDF SPROV
U2 .DZl 000100 # EX EDF sosov SETOV SPROV
02.ESC 001000 # EX EDF sosov SPROV
U2.HLD 000040 # EX EDF SDSOV SPROV
U2.LOG 000400 ALLOV DEVOV # EX EDF
02.LWC 000001 # EX EDF SDSOV SPROV
U2.L3S 000004 # EX EDF sosov SPROV
U2.L8S 010000 # EX EDF sosov SPROV
U2 .PRV 000010 AS NOV ATLOV DEAOV # EXEDF RUNOV

SDSOV SPROV SYSOV
02.RMT 020000 # EXEDF sosov SPROV
U2.SLV 000200 # EX EDF SDSOV SPROV
02.VT5 000002 # EX EDF sosov SPROV
V$$CTR 000410 # LOWCR.
W.BLVR 000002 # EXEDF' SYS ROT
X.AST 000032 # LOWCR
X.DSI 000024 # LOWCR
X.FORK 000012 # LOWCR
X.ISR 000010 # LOWCR.
X.JSR 000002 # LOWCR
X.LEN 000050 # LOWCR
X.LNK 000000 # LOWCR
X.PSW 000006 # LOWCR
X.REL 000022 # LOWCR
X.TCB 000026 # LOWCR
X.VEC 000044 # LOWCR
X.VPC 000046 # LOWCR.
$ABCTK 014460 # LOWCR.
$ABTIM 005414 CLQOV # LOWCR
$ABTSK 014464 # LOWCR
$ACHCK 007242 # LOWCR
$ACHKB 007250 # LOWCR
$ACHKP 007206 # LOWCR
$ACHKW 007232 # LOWCR
$ACTEP 122566-R # ATLOV

9-46

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$ACTHD 005634 # LOWCR
$ACTRM 015172 # LOWCR
$ACTTK 014652 # LOWCR
$ALCLK 006636 # LOWCR
$ALEB1 032634 # LOWCR
$ALEMB 032620 # LOWCR
$ALLEP 123350-R # ALLOV REAOV
$ALOCB 006524 ASNOV # LOWCR RPSOV SETOV
$ALOC1 006566 # LOWCR
$ALPKT 006652 • LOWCR
$ALTEP 122170-R # ALTOV
$ASNEP 122636-R # AS NOV RA POV
$ATLEP 122556-R # ATLOV
$BILDS 014540 # LOWCR
$BLKCK 010174 # LOWCR
$BLKC1 010204 # LOWCR
$BLXIO 006212 # LOWCR
$BMSET 032730 # LOWCR
$BRKEP 124642-R # BRKOV OPEOV
$BTMSK 005640 # LOWCR
$CATS 127134 ALTOV GTTSK OPEOV RAPOV RPSOV

SPROV SYSOV
$CBDMG 124206 ATLOV CLQOV SDSOV TASOV
$CBOMG 125304 AS NOV ATLOV FMTDV GTMNM SDSOV

TASOV
$CDTB 127310 GETNUM RPSOV TIMOV
$CEFI 007362 # LOWCR
$CEFN 007356 # LOWCR
$CFLPT 005522 # LOWCR
$CHKPT 016226 # LOWCR
$CKACC 033726 # LOWCR
$CKCNT 005604 # LOWCR
$CKCSR 005606 # LOWCR
$CKINT 017726 # LOWCR
$CKLDC 005610 # LO.WCR
$CLINS 014162 # LOWCR RUNOV
$CLKHD 005556 CLQOV # LOWCR
$CLRMV 014264 # LOWCR
$COMEF 005570 # LOWCR
$COPT 005560 # LOWCR
$COTB 127316 ASNOV GETNUM OPEOV $FDUCB
$CRASH 001470 # LOWCR
$CRATT 034024 # LOWCR
$CRAVL 005532 # LOWCR SDSOV
$CRPAS 012470 # LOWCR
$CRSBF 000730 # LOWCR
$CRSBN 001462 # LOWCR
$CRSCS 001466 # LOWCR
$CRSHT 001752 # LOWCR
$CRSST 001460 # LOWCR
$CRSUN 001756 # LOWCR
$CVRTM 0''01010 # LOWCR
$C5TA 005772 ATLOV CLQOV ERROV # LOWCR PAROV

SDSOV TASOV
$DASTT 015030 # LOWCR
$DB0 043366 # LOWCR
$DDIV 124454 CLQOV
$DEACB 006672 AS NOV # LOWCR RPSOV RUNOV SETOV

SPROV
$DEAC1 006732 # LOWCR
$DEAEP 123624-R # DEAOV REAOV
$DECLK 006644 # LOWCR

9-47

C:ROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$DEPKT 006666 # LOWCR
$DETRG 031502 # LOWCR
$DEVEP 122302-R # DEVOV
$DEVHD 005462 DEAOV DEVOV # LOWCR OPEOV SDSOV

$FDUCEI
$DEVTB 043122 # LOWCR
$DIRSV 002264 # LOWCR
$DIRXT 002514 # LOWCR
$DIV 012564 FMTDV GTMNM # LOWCR TIMOV
$DKO 043630 # LOWCR
$DPLM1 021662 # LOWCR
$DPLM2 021666 # LOWCR
$DQLM1 026526 # LOWCR
$DQLM2 026536 # LOWCR
$DRABO 022140 # LOWCR
$DRASG 022164 # LOWCR
$DRATP 032020 # LOWCR
$DRATR 031166 # LOWCR
$DRATX 022410 # LOWCR
$DRCEF 032340 # LOWCR
$DRCMT 022556 # LOWCR
$DRCRR 030600 # LOWCR
$DRCRW 024064 # LOWCR
$DRCSR 022562 # LOWCR
$DRDAR 022576 # LOWCR
$DRDCP 022632 EDCKP # LOWCR
$DRDSE 032350 LKLST # LOWCR
$DRDTR 031350 # LOWCR
$DREAR 022612 # LOWCR
$DRECP 022656 EDCKP # LOWCR
$DREIF 004220 # LOWCR
$DRELW 024312 # LOWCR
$DREXP 022702 # LOWCR
$DREXT 004226 # LOWCR
$DRFEX 026100 # LOWCR
$DRGCL 023372 # LOWCR
$DRGLI 023500 # LOWCR
$DRGMX 025504 # LOWCR
$DRGPP 023602 # LOWCR
$DRGSS 023704 # LOWCR
$DRGTK 023714 # LOWCR
$DRGTP 024030 # LOWCR
$DRLM1 021566 # LOWCR
$DRLM2 021606 # LOWCR
$DRMAP 024346 # LOWCR
$DRMKT 025730 # LOWCR
$DRPUT 026122 # LOWCR
$DRQIO 026410 # LOWCR
$DRQRQ 027516 # LOWCR
$DRRAF 032364 # LOWCR
$DRRCV 026162 # LOWCR
$DRREC 030306 # LOWCR
$DRREQ 031714 # LOWCR
$DRRES 031746 # LOWCR
$DRRRA 026142 # LOWCR
$DRRRF 025232 # LOWCR
$DRRUN 025762 # LOWCR
$DRSDV 032532 # LOWCR
$DRSEF 032420 # LOWCR
$DRSND 030440 # LOWCR
$DRSPN 032006 # LOWCR
$DRSRF 024 716 # LOWCR

9-48

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$DRSTV 032540 # LOWCR
$DRUNM 024672 # LOWCR
$0RWFL 032450 # LOWCR
$DRWFS 032512 # LOWCR
$0RWSE 032434 # LOWCR
$0SW 000046 ALTOV ASNOV
$050 044064 # LOWCR
$0TOER 032754 # LOWCR
$OTO 044276 # LOWCR
$0VCER 033016 # LOWCR
$0VERR 033016 # LOWCR
$0VMSG 007446 # LOWCR
$DXO 044472 # LOWCR
$0YPMN 005470 # LOWCR TIMOV
$EMSST 017156 # LOWCR
$EMTRP 021512 # LOWCR
$ERREP 122160-R # ERROV
$ERRHD 005700 # LOWCR
$ERRLM 005704 # LOWCR
$ERRLN 000404 # ERRMSG ERROV
$ERRPT 005514 # LOWCR
$ERRSQ 005706 # LOWCR
$ERRSV 005710 # LOWCR
$ERRSZ 005712 # LOWCR
$ERRTB 124364-R * ERRMSG ERROV
$EXRQF 016434 # LOWCR RPSOV
$EXRQN 016452 # LOWCR
$EXRQP 016426 # LOWCR
$EXSIZ 005520 # LOWCR sosov SETOV SPROV
$FOLGG 126422-R # $FDUCB
$FDLOG 126430-R ALLOV AS NOV DEAOV RAPOV SPROV

$FDUCB
$FDUCB 126436-R AS NOV ATLOV REDOV # $FDUCB
$FINBF 003776 # LOWCR
$FLTRP 017212 # LOWCR
$FMASK 005552 ALLOV DEAOV DEVOV # LOWCR OPEOV

PAROV RPSOV RUNOV SDSOV SETOV
SPROV TASOV

$FMTDV 125176-R ASNOV ATLOV DEVOV # FMTDV SDSOV
TASOV

$FNDSP 015750 # LOWCR
$FORK 002320 # LOWCR
$FORKO 002342 # LOWCR
$FORK1 002340 # LOWCR
$FPINT 017226 # LOWCR
$FRKHO 005546 # LOWCR
$GNBLK 126750-R ALLOV ASNOV ATLOV DEAOV DEVOV

GNBLK
$GTBYT 006102 # LOWCR
$GTMNM 126034-R # GTMNM GTTSK
$GTNUM 126716-R ALTOV # GETNUM RA POV RPSOV SPROV
$GTPKT 007510 # LOWCR
$GTTSK 125460-R ALTOV # GTTSK RAPOV
$GTWRO 006160 # LOWCR
$HEADR 005564 GTTSK LKLST # LOWCR OPEOV RA POV

RPSOV RUNOV SETOV SYS ROT TASOV
$FDUCB

$ICHKP 016160 # LOWCR
$!LINS 017304 # LOWCR
$INITL 052414 # LOWCR
$INTCT 005542 # LOWCR
$INTSE 002376 # LOWCR

9-49

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$INTSV 002434 f LOWCR
$INTXT 002374 i LOWCR
$INTX1 002456 i LOWCR
$IOABM 005714 i LOWCR
$IOALT 010272 i LOWCR
$!ODON 010274 i LOWCR
$IOFIN 010414 i LOWCR
$IOKIL 010666 i LOWCR
$IOTRP 017316 i LOWCR
$LCKPR 011552 t LOWCR
$LDPWF 014124 i LOWCR
$LDRPT 005464 i LOWCR
$LOAD 121004 SYS Rm~
$LOADR 041214 i LOWCR
$LOADT 016422 i LOWCR
$LOCKL 124564-R ASNOV ATLOV DEVOV i LKLST PAROV

RE DOV SETOV TASOV
$LOGHD 005624 AS NOV i LOWCR $FDUCB
$LPO 044614 # LOWCR
$LSTLK 005630 LKLST i LOWCR
$MAPTK 017036 i LOWCR
$MBUF 120362-R ASNOV ATLOV CLQOV DEVOV ERROV

OPEOV PAROV RPSOV SDSOV SPROV
SYSOV # SYS ROT TASOV TIMOV

$MCKD 122512-R i EDCKP ERROV
$MCKE 122524-R i EDCKP ERROV
$MCMD 120454-R ERROV RAPOV RPSOV SPROV SYSOV

i SYSRO'l~
$MCOV 120464-R SPROV SYSOV # SYS ROT
$MCR 120634-R ALLOV ALTOV ASNOV ATLOV BRKOV

CLQOV DEAOV DEVOV ERROV OPEOV
PAROV REAOV RE DOV R.PSOV RUNOV
SDSOV SETOV SPROV # SYS ROT TASOV
TIMOV

$MCRCB 005626 i LOWCR
$MCRPT 005466 t LOWCR RPSOV
$MDIS 120500-R # SY SRO~~
$MDPB 120366-R AS NOV ATLOV DEVOV ERROV OPEOV

PAROV RA POV REAOV SDSOV SPROV
SYSRO'l' TASOV TIMOV

$MERLO 120720-R ALLOV ALTOV AS NOV ATLOV CLQOV
DEAOV DEVOV OPEOV PAROV RAPOV
REAOV RE DOV RPSOV RUNOV SDSOV
SETOV SPROV SYSOV # SYS ROT TASOV
TIMOV

$MERR 120470-R # SY SRO~~
$MERRN 120474-R ALLOV ALTOV ASNOV ATLOV CLQOV

DEAOV DEVOV ERROV OPEOV PAROV
RA POV REAOV RE DOV RPSOV RUNOV
SDSOV SETOV SPROV SYSOV # SYS ROT
TASOV TIMOV

$MLDOV 120724-R RAPOV RPSOV SPROV SYSOV # SYS ROT
$MLIMI 120632-R ATLOV DEVOV PAROV # SYS ROT TASOV
$MLINE 120504-R SYSOV # SYS ROT
$MMO 045014 i LOWCR
$MOVRB 120416-R i SYSRO'l~
$MPARS 120424-R ALLOV ALTOV AS NOV ATLOV DEAOV

DEVOV ERROV OPEOV PAROV RA POV
REAOV RE DOV RPSOV RUNOV SDSOV
SETOV SPROV # SYS ROT TASOV TIMOV

$MPCSR 012734 i LOWCR
$MPLND 011126 # LOWCR

9-50

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$MPLNE 011106 # LOWCR
$MPLUN 011070 # LOWCR
$MPPHY 011170 # LOWCR
$MPPKT 011240 # LOWCR
$MPRSR 120460-R SYSOV * SYS ROT
$MPVBN 011372 # LOWCR
$MROOT 120706-R # SYS ROT
$MTERM 120476-R RPSOV RUNOV SYSOV # SYS ROT
$MUCB 120364-R ALLOV ASNOV ATLOV CLQOV DEAOV

DEVOV PAROV RPSOV RUNOV SDSOV
SPROV SYSOV i SYS ROT TIMOV

$MUL 012534 # LOWCR RUNOV
$MXEXT 005770 # LOWCR SDSOV SPROV
$NLO 051622 # LOWCR
$NNBLK 126752-R # GNBLK SPROV TIMOV
$NONSI 002556 # LOWCR
$NSO 033300 * LOWCR
$NS1 033306 # LOWCR
$NS2 033314 # LOWCR
$NS3 033322 # LOWCR
$NS4 033330 # LOWCR
$NS5 033336 # LOWCR
$NS6 033344 # LOWCR
$NS7 033352 # LOWCR
$NULL 043100 # LOWCR
$NXTSK 015322 ALTOV # LOWCR
$OPEEP 122226-R # OPEOV
$PANIC 001470 # LOWCR
$PAREP 123654-R DEVOV * PAROV
$PARHD 005422 # LOWCR OPEOV PAROV SDSOV SETOV

SPROV
$PARPT 005554 # LOWCR
$PARTB 012670 # LOWCR
$PCBS 052164 # LOWCR
$PKAVL 005764 # LOWCR
$PKMAX 005767 # LOWCR SDSOV SPROV
$PKNUM 005766 # LOWCR SDSOV
$POOL 052310 # LOWCR
$POWER 013750 # LOWCR
$PPO 045144 # LOWCR
$PRO 045266 # LOWCR
$PTBYT 006132 # LOWCR
$PTWRD 006160 # LOWCR
$PWRFL 005416 # LOWCR
$QASTT 015062 # LOWCR
$QEMB 033516 # LOWCR
$QIN SF 014332 # LOWCR
$QINSP 014340 ALTOV # LOWCR
$QMCRL 014376 # LOWCR
$QRMVF 014406 # LOWCR
$QRMVT 014420 ALTOV # LOWCR
$RAPEP !22144-R # RA POV
$REAEP 123142-R # REAOV
$REDEP 123000-R ALTOV I RE DOV
$RELOC 012222 # LOWCR
$RELOM 012272 # LOWCR
$RELOP 012410 # LOWCR
$RLMCB 023434 # LOWCR
$RLPAR 015246 # LOWCR
$RLPR1 015310 # LOWCR
$RPSEP 122206-R # RPSOV
$ROSCH 005452 # LOWCR

9-51

C:ROSS-REPERENCES

Symbol Value Modules That Reference Symbol

$RUNEP 122144-R # RUNOV
$SAVNR 004144 CBTO CBTO # LOWCR
$SCDVT 012306 # LOWCR
$SCDV1 012312 # LOWCR
$SOSEP 122676-R # sosov
$SETCR 014704 # LOWCR
$SETEP 122164-R # SETOV
$SETF 014762 # LOWCR
$SETM 014766 # LOWCR
$SETRQ 014734 # LOWCR
$SETRT 014732 # LOWCR
$SGFLT 017336 # LOWCR
$SHFPT 005516 # LOWCR
$SIGFL 005420 LKLST # LOWCR
$SOVEP 122134-R # SYSOV "' SYS ROT
$SPREP 122700-R # SPROV
$SRATT 034124 # LOWCR
$SRNAM 033644 # LOWCR
$SRSTD 015132 GTTSK t LOWCR OPEOV RPSOV RUNOV
$SRWND 034162 # LOWCR
$STACK 000642 # LOWCR
$STD 052220 # LOWCR
$STKDP 005454 # LOWCR RUNOV
$STPCT 015222 # LOWCR
$STPTK 015226 # LOWCR
$SWSTK 004164 # LOWCR
$SYBEG 053424 # LOWCR
$SYSID 005574 # LOWCR
$SYSIZ 005716 # LOWCR OPEOV SETOV SPROV
$SYTOP 063424 # LOWCR
$SYUIC 005612 # LOWCR sosov SPROV
$TALEP 122576-R # ATLOV
$TASEP 122172-R # TASOV
$TIMEP 122260-R # TIMOV
$TKNPT 005600 # LOWCR
$TKPS 005744 CLQOV # LOWCR RU NOV TIMOV
$TKTCB 005446 EDCKP GTMNM GTTSK LKLST i LOWCR

RPSOV SPROV SYSOV $FDUCB
$TKWSE 032430 LKLST # LOWCR
$TRACE 017376 BRKOV i LOWCR
$TRP04 017410 # LOWCR
$TRTRP 021446 # LOWCR
$TSKHD 005512 ALTOV i LOWCR SETOV TASOV
$TSKRP 016504 # LOWCR RUNOV
$TSKRQ 016502 # LOWCR
$TSKRT 016476 # LOWCR
$TSTCP 016052 # LOWCR
$TTNS 005762 CLQOV # LOWCR RUNOV TIMOV
$TTO 045534 # LOWCR
$TT1 045564 # LOWCR
$TT10 047672 # LOWCR
$TT11 047722 # LOWCR
$TT12 047752 # LOWCR
$TT13 050002 # LOWCR
$TT14 050032 # LOWCR
$TT15 050062 # LOWCR
$TT16 050112 # LOWCR
$TT17 050142 # LOWCR
$TT2 047452 # LOWCR
$TT20 050172 # LOWCR
$TT21 050222 # LOWCR
$TT22 051210 # LOWCR

9-52

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$TT23 051260 * LOWCR
$TT24 051310 • LOWCR
$TT25 051340 # LOWCR
$TT26 051370 # LOWCR
$TT27 051420 • LOWCR
$TT3 047502 # LOWCR
$TT30 051450 # LOWCR
$TT31 051500 # LOWCR
$TT4 047532 • LOWCR
$TT5 047562 # LOWCR
$TT6 047612 # LOWCR
$TT7 047642 # LOWCR
$UISET 016776 # LOWCR
$UNLKL 124654-R ALTOV ASNOV ATLOV DEVOV # LKLST

PAROV RE DOV SETOV SYSOV TASOV
$UNMAP 034222 # LOWCR
$USRTB 000000 # LOWCR
$XDT 035002 # LOWCR
.CBTO 124752-R * CBTO DEVOV OPEOV PAROV
.CLO 051756 # LOWCR
.COT2B 125056-R # COT2B OPEOV
.coo 051732 # LOWCR
.C2BTO 124732-R # CBTO OPEOV PAROV
.C22TO 124666-R # CBTO OPEOV PAROV
.DBO 043162 # LOWCR
.DB! 043222 # LOWCR
.DB2 043262 # LOWCR
.DB3 043322 # LOWCR
.DKO 043464 # LOWCR
.DKl 043524 # LOWCR
.DK2 043564 # LOWCR
.osw 000044 # LOWCR
.DSO 043720 # LOWCR
.DSl 043760 # LOWCR
.DS2 044020 # LOWCR
.OTO 044162 # LOWCR
.DTl 044226 # LOWCR
.oxo 044366 # LOWCR
.DX! 044426 # LOWCR
.KEYWD 127020-R # KEYWD OPEOV RPSOV SPROV
.LBO 052002 # LOWCR
.LOR 052220 # LOWCR
.LDRHD 052040 # LOWCR
.LPO 044562 # LOWCR
.MMO 044704 # LOWCR
.MM! 044746 # LOWCR
.NLO 051570 # LOWCR
.PPO 045112 # LOWCR
.PRO 045234 # LOWCR
.SYO 052026 # LOWCR
.TIO 051706 # LOWCR
.TTO 045362 # LOWCR
.TT! 045452 # LOWCR
.TTlO 046400 # LOWCR
.TTll 046470 # LOWCR
.TT12 046560 # LOWCR
.TT13 046650 # LOWCR
.TT14 046740 # LOWCR
.TT15 047030 # LOWCR
.TT16 047120 # LOWCR
.TT17 047210 # LOWCR
.TT2 045660 # LOWCR

9-53

tCROSS-REFERENCES

Symbol Value Modules That Reference Symbol

.TT20 047300 i LOWCR

.TT21 047370 # LOWCR

.TT22 050316 i LOWCR

.TT23 050406 t LOWCR

.TT24 050476 I LOWCR

.TT25 050566 i LOWCR

.TT26 050656 I J.,OWCR

.TT27 050746 # LOWCR

.TT3 045750 i LOWCR

.TT30 051036 i LOWCR

.TT31 051126 # LOWCR

.TT4 046040 # LOWCR

.TTS 046130 i LOWCR

.TT6 046220 i LOWCR

.TT7 046310 i LOWCR

9.6 SYS SEGMENT CROSS-REFE:RENCES

The SYS segment cross-reference lists the name of each overlay and the
modules that compose it. The cross-reference follows:

Segment
Name Resident Modules

ALTOV ALTOV E.KEDF GETNUM GTMNM GTTSK LKLST
REDOV $FDUCB

ATLOV ATLOV EX EDF FMTDV GNBLK GTMNM GTTSK
LKLST $FDUCB

CLQOV CLQOV E.KEDF
DEVOV CBTO DEVOV EX EDF FMTDV GNBLK LKLST

PAROV
ERROV EDCKP ERRMSG ERROV
OPEOV BRKOV C:BTO COT2B KEYWD OPEOV
RAPOV AS NOV E:KEDF f•MTDV GETNUM GNBLK GTMNM

GTTSK L.KLST RAPOV $FDUCB
REAOV ALLOV DEAOV EX EDF GNBLK REAOV $FDUCB
RPSOV EX EDF GETNUM KEYWD RPSOV
RUNOV EX EDF RUNOV
SDSOV EX EDF FMTDV SDSOV
SETOV EX EDF L.KLST SETOV
SPROV EX EDF GETNUM GNBLK KEYWD SPROV $FDUCB
SYSOV EX EDF L.KLST SYSOV
SYS ROT EX EDF LtOWCR SYS ROT
TASOV EX EDF FMTDV LKLST TASOV
TIMOV GNBLK TIMOV

9.7 BIGFCP GLOBAL CROSS REFERENCES

The cross-reference contains an alphabetic listing of each global
symbol along with its value and the name of each referencing module.
When a symbol is defined in several segments within an overlay
structure, TKB prints the last defined value in the listing.
Similarly, in a real TKB cross-reference listing, TKB would print the
module name more than once for each symbol if the module is loaded in
several segments within the structure.

9-54

CROSS-REFERENCES

The value contains the suffix -R if the symbol is relocatable.

The Task Builder creates a BIGFCP.CRF cross-reference file when /CR is
specified in the Task Builder command file used to build BIGFCP. One
of the input files to the Task Builder when building BIGFCP is the
Executive symbol table file, RSXllM.STB. RSXllM.STB is needed because
BIGFCP references some Executive symbols. All the symbols from
RSXllM.STB are put in the BIGFCP.CRF symbol table file even though
they are not referenced· by BIGFCP. Therefore, some symbols appearing
here in the BIGFCP cross-reference are defined in the Executive but
not used by BIGFCP. These symbols are shown defined in the Executive
LOWCR or EXEOF modules.

Prefix symbols accompanying each module name define the type of
reference as follows:

Pref ix
Symbol

blank

@

*

Symbol

AT.FCB
AT.HOR
AT.ION
AT.MAP
AT.PRO
AT.RO
OV.PSE
DV.TTY
DV.UMD
D$$YNM
D.DSP
D.MSK
O.NAM
D.PCB
D.RSOO
D.RSl

Reference Type

Module contains a reference that is resolved in the
same segment or in a segment toward the root.

Module
directly
co-tree.

contains a reference that
in a segment away from the

is resolved
root or in a

Module contains a reference that is resolved
through an autoload vector.

Module contains a non-autoloadable definition.
This module defines the symbol.

Module contains an autoloadable definition. This
module defines the symbol.

Value Modules That Reference Symbol

000100 # ATC TL RAT CM WAT CM
000000 # ATC~L
000001 # ATC TL
000002 # ATCTL
000040 # ATC TL WAT CM
000200 # ATC TL WATCM
010000 # EX EDF # LOWCR
000004 # EX EDF # LOWCR
000200 # EXEOF # LOWCR
000000 # LOWCR
000012 # EX EDF * LOWCR
000014 # EX EDF # LOWCR
000004 # EX EDF # LOWCR
000034 # EX EDF # LOWCR
000000 # LOWCR
1'17777 # LOWCR

9-55

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

D.RSlO 177766 # LOWCR
D.RS16 177760 i LOWCR
D.RS17 177757 # LOWCR
D.RS19 177755 # LOWCR
D.RS2 177776 # LOWCR
D.RS22 000002 # LOWCR
D.RS5 177773 # ·LOWCR
D.RS6 177772 # LOWCR
D.RS7 177771 # LOWCR
D.RSS 177770 # LOWCR
D.RS80 177660 # LOWCR
D.RS81 177657 # LOWCR
D.RS84 177654 # LOWCR
D.RS85 177653 # LOWCR
D.RS86 177652 # LOWCR
D.RS87 177651 # LOWCR
D.RS90 177646 # LOWCR
D.RS92 177644 # LOWCR
D.RS93 177643 # LOWCR
D.RS94 177642 # LOWCR
D.RS95 177641 # LOWCR
D.RS96 177640 # LOWCR
D.RS97 177637 # LOWCR
D.RS98 177636 # LOWCR .
D.RS99 177635 # LOWCR
D.UCB 000002 # EX EDF # LOWCR
D.UCBL 000010 # EX EDF # LOWCR
D.UNIT 000006 # EX EDF # LOWCR
D.VCAN 000002 # EX EDF # LOWCR
D.VINI 000000 # EX EDF # LOWCR
D.VOUT 000004 # EX EDF # LOWCR
D.VPWF 000006 # EX EDF # LOWCR
EC.OTO 000140 # EX EDF # LOWCR
EC.DVC 000001 # EX EDF # LOWCR
EC.NS! 000141 # EX EDF # LOWCR
E.BDHD 000000 # DI SPAT RDHDR
E.LGTH 000056 # EX EDF # LOWCR
E.OPC 000022 # EX EDF # LOWCR
E.RTRY 000016 # EX EDF # LOWCR
E.SIZE 000000 # EX EDF # LOWCR
FE.MUP 000002 CRFIL # EXEDF PROCK
F.EFBK 000010 DRACC DREOF
F.FFBY 000014 DRACC DREOF
F.HIBK 000004 DRACC DREOF
F.RSIZ 000002 DRACC
F.RTYP 000000 DRACC
IE .ABO 177761 # LOWCR RWVBL
IE.ALC 177654 SMALC
IE .ALN 177736 # LOWCR.
IE.BAD 177777 ACCESS CRFIL DEA CC DI SPAT DLMRK

DRINI ENTNM EX COM GTFID INWIN
LOCAT # LOWCR RWATT RWVB

IE.BDR 177716 DRACC
IE .BHD 177700 NXHD.R RDHDR SMDEL SMSCN
IE.BLK 177754 # LOWCR
IE.BVR 177701 ENTNM.
IE.BYT 177755 # LOWCR
IE.CKS 177742 RDHDR:
IE.CLO 177732 ACCESS
IE.DAA 177770 # LOWCR.
IE.DFU 177750 SMALC
IE.DNA 177771 # LOWCR.

9-56

CROSS-REFERENCES

Symbol Va.lue Modules That ·Reference Symbol

IE.DNR 177775 # LOWCR
IE.DUP 177707 ENTNM
IE.EOF 177766 RWVB RWVBL TRUNC
IE.HFU 177744 EXCMP
IE.IFC 177776 # LOWCR
IE.IFU 177747 CRFID
IE.LCK 177745 ACCESS i LOWCR TRUNC WAC CK
IE.NLN 177733 GTFID i LOWCR
IE.NOD 177751 ALLOC # LOWCR RWVBL
IE.NSF 177746 DLMRK FDRMV PROCK RDHDR
IE.OFL 177677 # LOWCR
IE.CVR 177756 # LOWCR
IE .PRI 177760 i LOWCR PROCK TRUNC WRATT
IE.RER 177740 RWlLB
IE.SNC 177735 RDHDR
IE.SPC 177772 # LOWCR
IE.SOC 177734 NXHDR RDHDR
IE.OLK 177653 i LOWCR
IE.OPN 177777 RWVBL RWlLB
IE.WAC 177743 ACCESS
IE.WAT 177741 RATCM WAT CM
IE.WER 177737 CLNUP RWlLB
IE.WLK 177764 CRFIL PROCK
IO.ACR 006400 ACCESS
IO.ATT 001400 # LOWCR
IO.CLN 003400 # LOWCR
IO.CRE 012000 CLCOM
IO.DEL 012400 CLCRE DLFIL
IO.OET 002000 # LOWCR
IO.EXT 011400 DREXT IX EXT
IO.FNA 004400 ORA CC
IO.LOV 001010 # LOWCR
IO.RLB 001000 # LOWCR RWVBL RWlLB
IO.RVB 010400 # LOWCR
IO•OLK 005000 # LOWCR
IO.WLB 000400 # LOWCR RWVBL RWlLB
IO.WVB 011000 # LOWCR RWVBL
IQ.OMO 000004 # LOWCR
IS.SOC 000001 # LOWCR
KISARS 172352 # EX EDF # LOWCR
KISAR6 172354 # EX EDF # LOWCR
L.ASG 000010 # EX EDF # LOWCR
L.NAM 000002 # EXEDF # LOWCR
L.TYPE 000005 # EXEDF # LOWCR
L.OCB 000006 # EX EDF # LOWCR
L.ONIT 000004 # EX EDF # LOWCR
M$$MGE 000000 # LOWCR
NB.SNM 000040 ENTNM FDRMV LOCAT
NB.STP 000020 ENTNM FDRMV LOCAT
NB.SVR 000010 ENTNM FDRMV LOCAT
N.DID 000024 ORIN I FNDNM
N.FNAM 000006 FNDNM
N.FVER 000016 ENTNM FDRMV
N.NEXT 000022 ENTNM FDRMV
N.STAT 000020 ENTNM FDRMV
P.ATT 000036 # LOWCR
P.BLKS 000016 # EXEDF # LOWCR
P.BUSY 000024 # EX EDF # LOWCR
P.HDR 000032 CRFIL # LOWCR PROCK
P.IOC 000003 # EX EDF # LOWCR
P.LGTH 000042 # LOWCR
P.LNK 000000 # EX EDF # LOWCR

9-57

i::ROSS-REFERENCES

Symbol Value Modules That Reference Symbol

P.MAIN 000012 # EX EDF i LOWCR
P.NAM 000004 # EXEDF # LOWCR
P.OWN 000026 # EX EDF # LOWCR
P.PRI 000002 t EX EDF i LOWCR
P.PRO 000034 # LOWCR
P.REL 000014 # EX EDF # LOWCR
P.SIZE 000016 # .EXEDF # LOWCR
P.STAT 000030 # EX EDF # LOWCR
P.SUB 000010 i EX EDF # LOWCR
P.swsz 000022 # EX EDF # LOWCR
P.TCB 000026 i EX EDF # LOWCR
P.WAIT 000020 # EX EDF i LOWCR
R.FIX 000001 DRACC
SP.EIP 000001 # EX EDF # LOWCR
SP.ENB 000002 # EX EDF # LOWCR
S.BMSK 177776 # EX EDF # LOWCR
S.BMSV 177774 # EX EDF # LOWCR
S.CCB 000030 # LOWCR
S.CON 000010 # EX EDF # LOWCR
S.CSR 000012 # EX EDF # LOWCR
S.CTM 000006 # EX EDF # LOWCR
S.DRFN 000032 DREX DRINI # LOCAT RMVNM
S.DZCK 000030 # LOWCR
S.FRK 000016 # EX EDF # LOWCR
S.ITM 000007 # EX EDF # LOWCR
S.LHD 000000 # EX EDF # LOWCR
S.MPR 000030 # LOWCB:
S.NFEN 000020 DRACC ENTNM FDRMV
S.PKT 000014 # EX EDF' # LOWCR
S.PRI 000004 # EX EDF' # LOWCR
S.RCNT 177772 # EX EDF' i LOWCR
S.ROFF 177773 # EXEDF' # LOWCR
S.STS 000011 i EX EDF' # LOWCR
S.VCT 000005 # EX EDF' i LOWCR
T.EXT 000000 # LOWCFl
T.LGTH 000070 i LO WC Ft
UC.ATT 000010 # EX EDP' # LOWCR
UC.KIL 000004 i EX EDF' # LOWCR
UC.LGH 000003 # EXEDF' # LOWCR
UC.NPR 000100 i EXEDli' # LOWCR
UC.PWF 000020 # EXED!i' # LOWCR
UC.QUE 000040 # EX EDE' # LOWCR
UIS ARO 177640 # EX EDE' # LOWCR
UISDRO 177600 # EX EDE' # LOWCR
US.BSY 000200 # EX EDE' # LOWCR
US.FOR 000040 # EXED!i' # LOWCR
US.MOM 000020 DISP~~T DMOUNT # EX EDF # LOWCR
US.MNT 000100 DMOUNT # EX EDF # LOWCR
US.OFL 000001 # EX EDP # LOWCR
US.PUB 000004 # EX EDP # LOWCR
US.UMD 000010 # EX EDP # LOWCR
U.ACP 000032 # EX EDP # LOWCR
U.ATT 000022 # EX EDP # LOWCR
U.BUF 000024 # EX EDP # LOWCR
U.CNT 000030 # EX EDP # LOWCR
U.CTL 000004 # EX EDP # LOWCR
u.cw1 000010 # EX EDP # LOWCR
U.CW2 000012 # EX EDP # LOWCR
U.CW3 000014 # EX EDP # LOWCR
U.OWN 177776 # EX EDP # LOWCR
U.RED 000002 # EX EDP # LOWCR
U.SCB 000020 # EX EDP # LOWCR

9-58

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

U.STS 000005 DI SPAT DMOUNT # EXEDF # LOWCR
U.ST2 000007 # EX EDF # LOWCR
U.UNIT 000006 # EXEOF # LOWCR
U.VCB 000034 CLNUP DI SPAT DMOUNT # EX EDF t LOWCR
V$$CTR 000410 # LOWCR
X.AST 000032 # LOWCR
X.OSI 000024 # LOWCR
X.FORK 000012 i LOWCR
X.ISR 000010 # LOWCR
X.JSR 000002 # LOWCR
X.LEN 000050 # LOWCR
X.LNK 000000 # LOWCR
X.PSW 000006 # LOWCR
X.REL 000022 # LOWCR
X.TCB 000026 # LOWCR
X.VEC 000044 # LOWCR
X.VPC 000046 # LOWCR
$ABCTK 014460 # LOWCR
$ABTIM 005414 # LOWCR
$ABTSK 014464 # LOWCR
$ACHCK 007242 # LOWCR
$ACHKB 007250 # LOWCR
$ACHKP 007206 # LOWCR
$ACHKW 007232 # LOWCR
$ACTHD 005634 # LOWCR
$ACTRM 015172 # LOWCR
$ACTTK 014652 # LOWCR
$ALCLK 006636 # LOWCR
$ALEB1 032634 # LOWCR
$ALEMB 032620 # LOWCR
$ALERR 122774-R # OVERR
$ALOCB 006524 ALLOC # LOWCR
$ALOC1 006566 # LOWCR
$ALPKT 006652 # LOWCR
$SILOS 014540 # LOWCR
$BLKCK 010174 # LOWCR
$BLKC1 010204 # LOWCR
$BLXIO 006212 BLXIO # LOWCR
$BMSET 032730 # LOWCR
$BTMSK 005640 # LOWCR
$CEFI 007362 # LOWCR
$CEFN 007356 # LOWCR
$CFLPT 005522 # LOWCR
$CHKPT 016226 # LOWCR
$CKACC 033726 # LOWCR
$CKCNT 005604 # LOWCR
$CKCSR 005606 # LOWCR
$CKINT 017726 # LOWCR
$CKLDC 005610 # LOWCR
$CLINS 014162 # LOWCR
$CLKHD 005556 # LOWCR
$CLRMV <H4264 # LOWCR
$COMEF 005570 # LOWCR
$COPT 005560 # LOWCR
$CRASH 001470 # LOWCR
$CRATT 034024 # LOWCR
$CRAVL 005532 # LOWCR
$CRPAS 012470 # LOWCR
$CRSBF 000730 # LOWCR
$CRSBN 001462 # LOWCR
$CRSCS 001466 # LOWCR
$CRSHT 001752 # LOWCR

9-59

CROSS-REFERENCES

Symbol Value Modules 'i~hat Reference Symbol

$CRSST 001460 # LOWCR
$CRSUN 001756 # LOWCR
$CVRTM 007070 # LOWCR
$C5TA 005772 # LOWCR
$DASTT 015030 # LOWCR
$080 043366 # LOWCR
$DDIV 121164-R # OARITH SMALC SMDEL
$DEACB 006672 # LOWCR RLEAS
$DEAC1 006732 # LOWCR
$DECLK 006644 # LOWCR
$DEPKT 006666 # LOWCR
$DETRG 031502 # LOWCR
$DEVHD 005462 # LOWCR
$DEVTB 043122 # LOWCR
$DIRSV 002264 # LOWCR
$DIRXT 002514 # LOWCR
$·DIV 012564 DAT IM DLHDR INWIN IXEXT # LOWCR

SMDEL
$DKO 043630 # LOWCR
$DMUL 121126-R # DARI TH SMALC
$DPLM1 021662 # LOWCR
$DPLM2 021666 # LOWCR
$DQLM1 026526 # LOWCR
$DQLM2 026536 # LOWCR
$DRABO 022140 # LOWCR
$DRASG 022164 # LOWCR
$DRATP 032020 # LOWCR
$DRATR 031166 # LOWCR
$DRATX 022410 # LOWCR
$DRCEF 032340 # LOWCH
$DRCMT 022556 # LOWCF:
$DRCRR 030600 # LOWCR
$DRCRW 024064 # LOWCFt
$DRCSR 022562 # LOWCR
$DRDAR 022576 # LO WC Ft
$DRDCP 022632 # LOWCR
$DRDSE 032350 # LOWCR
$DRDTR 031350 # LOWCR
$DREAR 022612 # LOWCH
$DRECP 022656 # LOWCR
$DREIF 004220 # LOWCH
$DRELW 024312 # LOWCH
$DREXP 022702 # LOWCH
$DREXT 004226 DMOUNT # LOWCR
$DRFEX 026100 # LOWCR
$DRGCL 023372 # LOWCH.
$DRGLI 023500 # LOWCR
$DRGMX 025504 # LOWC:R
$DRGPP 023602 # LOWCR
$DRGSS 023704 # LOWCR
$DRGTK 023714 # LOWCR
$DRGTP 024030 # LOWCR
$DRLM1 021566 # LOWCR
$DRLM2 021606 # LOWCR
$DRMAP 024346 # LOWCR
$DRMKT 025730 # LOWCR
$DRPUT 026122 # LOWCR
$DRQIO 026410 # LOWCR
$DRQRQ 027516 # LOWCR RWVB
$DRRAF 032364 # LOWCR
$DRRCV 026162 # LOWCR
$DRREC 030306 # LOWCR

9-60

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$DRREQ 031714 # LOWCR
$DRRES 031746 # LOWCR
$DRRRA 026142 # LOWCR
$DRRRF 025232 # LOWCR
$DRRUN 025762 # LOWCR
$DRSDV 032532 # LOWCR
$DRSEF 032420 # LOWCR
$DRSND 030440 # LOWCR
$DRSPN 032006 # LOWCR
$DRSRF 024716 # LOWCR
$DRSTV 032540 # LOWCR
$DRUNM 024672 # LOWCR
$DRWFL 032450 # LOWCR
$DRWFS 032512 # LOWCR
$DRWSE 032434 # LOWCR
$DSW 000046 OVERR RWVBL RWlLB
$050 044064 # LOWCR
$DTOER 032754 # LOWCR
$OTO 044276 # LOWCR
$DVCER 033016 # LOWCR
$DVERR 033016 # LOWCR
$DVMSG 007446 DMOUNT # LOWCR
$DXO 044472 # LOWCR
$DYPMN 005470 # LOWCR
$EMSST 017156 # LOWCR
$EMTRP 021512 # LOWCR
$ERRHD 005700 # LOWCR
$ERRLM 005704 # LOWCR
$ERRPT 005514 # LOWCR
$ERRSQ 005706 # LOWCR
$ERRSV 005710 # LOWCR
.$ERRSZ 005712 # LOWCR
$EXRQF 016434 # LOWCR
$EXRQN 016452 # LOWCR
$EXRQP 016426 # LOWCR
$EXSIZ 005520 # LOWCR
$FINBF 003776 # LOWCR
$FLTRP 017212 # LOWCR
$FMASK 005552 CRFIL # LOWCR PROCK
$FNDSP 015750 # LOWCR
$FORK 002320 # LOWCR
$FORKO 002342 # LOWCR
$FORK1 002340 # LOWCR
$FPINT 017226 # LOWCR
$FRKHD 005546 # LOWCR
$GTBYT 006102 # LOWCR
$GTPKT 007510 # LOWCR
$GTWRD 006160 # LOWCR
$HEADR 005564 DI SPAT # LOWCR MPVBN
$ICHKP 016160 # LOWCR
$!LINS 017304 # LOWCR
$INITL 052414 # LOWCR
$INTCT 005542 # LOWCR
$INTSE 002376 # LOWCR
$INTSV 002434 # LOWCR
$INTXT 002374 # LOWCR
$INTX1 002456 # LOWCR
$IOABM 005714 # LOWCR
$IOALT 010272 # LOWCR
$IODON 010274 # LOWCR
$IOFIN 010414 DI SPAT # LOWCR
$IOKIL 010666 # LOWCR

9-61

CROSS-REFERENCES

Symbol Value Modules; That Reference Symbol

$IOTRP 017316 # LOWCB:
$LCKPR 011552 # LOWC:R
$LDPWF 014124 # LOWCF:
$LDRPT 005464 # LOWCR
$LOADR 041214 # LOWCR:
$LOADT 016422 fl: LOWCR
$LOGHD 005624 # LOWCR
$LPO 044614 # LOWCR
$LSTLK 005630 # LOWCR:
$MAPTK 017036 # LOWCR
$MCRCB 005626 # LOWCR:
$MCRPT 005466 # LOWCR:
$MMO 045014 * LOWC:R
$MPCSR 012734 # LOWCR
$MPLND 011126 # LOWCR
$MPLNE 011106 # LOWCR
$MPLUN 011070 # LOWCR
$MPPHY 011170 # LOWCR
$MPPKT 011240 # LOWCR RWVB
$MPVBN 011372 * LOWCR. MPVBN RWVBL
$MUL 012534 DATIM # LOWCR RATCM WATCM
$MXEXT 005770 # LOWCR.
$NLO 051622 # LOWCR
$NON SI 002556 # LOWCR
$NSO 033300 # LOWCR
$NS1 033306 # LOWCR
$NS2 033314 # LOWCR
$NS3 033322 # LOWCR
$NS4 033330 # LOWCR
$NS5 033336 # LOWCR
$NS6 033344 # LOWCR
$NS7 033352 # LOWCR
$NULL 043100 # LOWCR
$NXTSK 015322 fl: LOWCR
$PANIC 001470 # LOWCR
$PARHD 005422 # LOWCR
$PARPT 005554 # LOWCR
$PARTB 012670 # LOWCR
$PCBS 052164 # LOWCR
$PKAVL 005764 # LOWCR
$PKMAX 005767 # LOWCR
$PKNUM 005766 # LOWCR
$POOL 052310 # LOWCR
$POWER 013750 # LOWCR
$PPO 045144 # LOWCR
$PRO 045266 # LOWCR
$PTBYT 006132 # LOWCR
$PTWRD 006160 # LOWCR
$PWRFL 005416 # LOWCR
$QASTT 015062 # LOWCR
$QEMB 033516 # LOWCR
$QIN SF 014332 # LOWCR
$QINSP 014340 # LOWCR
$QMCRL 014376 # LOWCR
$QRMVF 014406 DI SPAT fl: LOWCR
$QRMVT 014420 # LOWCR
$RELOC 012222 BLXIO # LOWCR
$RELOM 012272 # LOWCR
$RELOP 012410 # LOWCR
$RLMCB 023434 # LOWCR
$RLPAR 015246 # LOWCR
$RLPR1 015310 # LOWCR

9-62

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$RQSCH 005452 # LOWCR
$SAVNR 004144 # LOWCR WTRNl
$SCDVT 012306 # LOWCR
$SCDV1 012312 # LOWCR
$SETCR 014704 # LOWCR
$SETF 014762 # LOWCR
$SETM 014766 # LOWCR
$SETRQ 014734 # LOWCR
$SETRT 014732 # LOWCR
$SGFLT 017336 # LOWCR
$SHFPT 005516 # LOWCR
$SIGFL 005420 # LOWCR
$SRATT 034124 # LOWCR
$SRNAM 033644 # LOWCR
$SRSTD 015132 # LOWCR
$SRWND 034162 # LOWCR
$STACK 000642 # LOWCR
$STD 052220 # LOWCR
$STKDP 005454 # LOWCR
$STPCT 015222 DI SPAT # LOWCR
$STPTK 015226 # LOWCR
$SWSTK 004164 # LOWCR
$SYBEG 053424 # LOWCR
$SYSID 005574 # LOWCR
$SYSIZ 005716 # LOWCR
$SYTOP 063424 # LOWCR
$SYUIC 005612 # LOWCR
$TKNPT 005600 # LOWCR
$TKPS 005744 # LOWCR
$TKTCB 005446 DI SPAT DMOUNT # LOWCR
$TKWSE 032430 # LOWCR
$TRACE 017376 # LOWCR
$TRP04 017410 # LOWCR
$TRTRP 021446 # LOWCR
$TSKHD 005512 # LOWCR
$TSKRP 016504 # LOWCR
$TSKRQ 016502 # LOWCR
$TSKRT 016476 # LOWCR
$TSTCP 016052 # LOWCR
$TTNS 005762 # LOWCR
STTO 045534 # LOWCR
$TT1 045564 # LOWCR
$TT10 04 7672 # LOWCR
$TTll 04 7722 # LOWCR
$TT12 047752 # LOWCR
$TT13 050002 # LOWCR
$TT14 050032 # LOWCR
$TT15 050062 # LOWCR
$TT16 050112 # LOWCR
$TT17 050142 # LOWCR
$TT2 047452 # LOWCR
$TT20 050172 # LOWCR
$TT21 050222 # LOWCR
$TT22 051210 # LOWCR
$TT23 051260 # LOWCR
$TT24 051310 # LOWCR
$TT25 051340 # LOWCR
$TT26 051370 # LOWCR
$TT27 051420 # LOWCR
$TT3 047502 # LOWCR
$TT30 051450 # LOWCR
$TT31 051500 # LOWCR

9-63

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

$TT4 047532 # LOWCR
$TT5 047562 # LOWCR
$TT6 047612 # LOWCR
$TT7 047642 # LOWCR
$UISET 016776 # LOWCR
$UNMAP 034222 # LOWCR
$USRTB 000000 # LOWCR
$XDT 035002 # LOWCR
.ACBMX 000006 # ATCTL RATCM WATCM
.ACCES 136540-R * ACCESS @ DI SPAT
.AGAIN 121406-R # DISPA~r DREXT IXEXT
.ALCAD 121640-R EXCMP EX COM EX TEN # FllCM
.ALCTL 121632-R EXCMP EX COM EXTEN # FllCM SMALC
.ALFCB 120252-R # ALLOC INFCB
.ALLOC 120274-R ACCESS # ALLOC INWIN
.ALOBT 126144-R SMALC # SMSCN
.ATCTL 137414-R * ATCTL RATCM WAT CM
.ATMAX 000016 # ATCTL RATCM WAT CM
.BLXI 120340-R # BLXIO DRINI EX TEN GTFID WATCM
.BLXIl 120344-R # BLXIO
.BLXO 120372-R # BLXIO CLCRE CRFIL DREX EXCMP

EX COM RATCM
.BLXOl 120376-R # BLXIO
.CKFRE 126136-R SMALC # SMSCN
.CKSMl 120430-R # CK SUM
.CKSUM 120424-R # CK SUM DREXT RDHDR WRHDR
.CLACC 120450-R i CLACC CLNUP
.CLACl 120516-R # CLACC CLDAC
.CLCRE 136722-R * CLCRE CLNUP
.CLDAC 121034-R # CLDAC CLNUP DEA CC
.CLDEL 136520-R * CL COM CLNUP
.CLDIR 137030-R * CLDIR CLNUP DREOF DREXT DRWRT

FNDNM
.CLEXI 137730-R * CLNUP @ DI SPAT
.CLEXT 137134-R CLCRE * CLEXT CLNUP @ DI SPAT
.CLEXl 121302-R # DISPA~r TRUNC
.CLEX2 121304-R # DISPA~r EXTHD
.CLFCB 137526-R * CLFCB @ DI SPAT
.CLFCl 121316-R CL COM CLDAC CL EXT # DISPAT
.CLNUP 137744-R * CLNUP @ FllCM
.CLRAT 136660-R * CL COM CLNUP
.CLWAT 136702-R * CLCOM CLNUP
.CLO 051756 # LOWCR
.coo 051732 # LOWCR
.CRFCB 122062-R ACCESS DRACC EXTHD # INFCB RDATT
.CRFID 137466-R * CRFID CRFIL EXTHD
.CRFIL 137670-R * CRFIL @ DI SPAT
.DATIM 140346-R CRFIL * DATIM DEA CC
.DBO 043162 # LOWCR
.DB! 043222 # LOWCR
.DB2 043262 # LOWCR
.DB3 043322 # LOWCR
.DEACC 140502-R * DEA CC @ DI SPAT
.DELBT 126154-R SMDEL # SMSCN
.DKO 043464 # LOWCR
.DKl 043524 # LOWCR
.DK2 043564 # LOWCR
.DLBLK 140110-R CL EXT * DLBLK DLFIL DREXT
.DLBLl 140130-R CLEXT * DLBLK
.DLFIL 140304-R CLCRE @ DI SPAT * DLFIL
.OLFLl 121314-R CLOAC # DI SPAT DLMRK
.DLHDR 140356-R CL COM CLEXT DLFIL * DLHDR

9-64

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

.OLHDl 140404-R CLCRE CLEXT * DLHDR

.OLMRK 140516-R @ DI SPAT * DLMRK

.OMOUN 140716-R @ DI SPAT * DMOUNT

.ORACC 141160-R @ DI SPAT * DRACC

.ORACl 121324-R # DI SPAT ENTNM FNONM RMVNM

.ORALC 140652-R * DRALC DREXT

.ORBUF 131232-R DRGET DRWRT # FllCM

.ORCPY 141704-R * DRCPY DREXT

.OREFl 121322-R # DI SPAT DRWRT

.ORENB 134232-R ORGET # FllCM

.OREOF 142020-R @ DI SPAT * DREOF

.DREX 142100-R * DREX FNDNM

.OREXT 142132-R @ DI SPAT * OREXT

.OREXl 121320-R # DI SPAT ENTNM

.DRFNB 122252-R ORIN I ENTNM FDRMV # LOCAT

.ORFRE 122246-R ENTNM # LO CAT

.ORGET 142624-R * DRGET ENTNM @ LOCAT

.ORHRC 122242-R # LOCAT

.ORHVR 122244-R ENTNM # LOCAT·

.DRINI 143050-R * DRINI ENTNM FNONM RMVNM

.ORLBN 131226-R DRWRT # FllCM

.ORLVB 122250-R ENTNM FDRMV # LO CAT

.ORNLB 134232-R DRGET ENTNM # FllCM

.ORPAC 143172-R * DRPAC ENTNM FNONM RMVNM

.DRSEF 142040-R * DREOF DREXT

.ORUCB 131224-R CLNUP OMOUNT DRGET ENTNM # FllCM
SCFAC

.ORVLB 143250-R DRCPY DRGET * DRVLB ENTNM

.ORWEX 143416-R * ORWRT ENTNM RMVNM

.ORWRT 143354-R * ORWRT ENTNM RMVNM

.ORXl 142104-R * DREX ORWRT

.OSPAT 121452-R # DI SPAT ORACC DREXT

.osw 000044 # LOWCR

.oso 043720 # LOWCR

.DSl 043760 # LOWCR

.052 044020 # LOWCR

.OTO 044162 # LOWCR

.OTl 044226 # LOWCR

.oxo 044366 # LOWCR

.ox1 044426 # LOWCR

.ENTNM 143446-R @ DI SPAT * ENTNM

.ENTRY 121330-R # DI SPAT

.ERMSG 121604-R # FllCM

.EXCMP 141550-R @ DI SPAT * EXCMP

.EXCMl 121276-R # DI SPAT DREXT EX TEN IXEXT

.EXCM2 121310-R # DI SPAT EX COM

.EXCM3 121312-R # DI SPAT EXCMP

.EXCNT 142624-R @ DI SPAT * EXCOM

.EXCOM 142114-R @ DI SPAT * EXCOM

.EXDSP 121616-R CLCRE CLNUP DI SPAT DLFIL DR EXT
FllCM IX EXT

.EXFCB 12·1630-R EXCMP E'XCOM EX THO # FllCM

.EXFNU 121626-R CL EXT EX THO # FllCM
.EXHDJ 142030-R @ DI SPAT * EXCMP
.EXHDR 121622-R CLCOM CLEXT EX COM # FllCM TRUNC
.EXIT 121510-R CLNUP # DI SPAT
.EXNHD 121624-R CL EXT EXTHD # FllCM TRUNC
.EXSTS 121617-R ACCESS CLCRE CLDAC CL EXT CLNUP

CRFIL DEA CC EX COM EXTHD # FllCM
RDATT TRUNC WRATT

.EXTEN 142770-R @ DI SPAT * EX TEN

.EXTEl 143064-R @ DI SPAT * EX TEN

9-65

C:ROSS-REFERENCES

Symbol Value Modules That Reference Symbol

.EXTHD 143320-R EXCMP * EXTHD

.EXTHl 121306-R # DISPA1' EX COM

.EXTNl 121274-R CRFIL t DI SPAT

.EXTSV 121620-R CL COM CL EXT EX COM # FllCM TRUNC

.FCBAD 121614-R ACCESS CLACC CLCOM CLDAC CLDIR
CLFCB DEA CC DLMRK DRACC DRCPY
DREOF DREXT DRGET DRPAC DRWRT
ENTNM EXCMP EX COM EXTHD FDRMV
FNDNM i FllCM GTFID INWIN IXEXT
RATCM RDATT RDHDR SCFAC TRUNC
WAC CK WATCM

.FDRMV 144032-R * FDRMV FNDNM RMVNM

.FILNO 121606-R ACCESS CLACC CLCRE CRFIL DLMRK
DRINI EXCMP FNDNM # FllCM GTFID
IX EXT RDATT RDHDR SCFCB

.FILSQ 121610-R CRFIL DRINI FNDNM # FllCM IX EXT
ROH DR SCFCB

.FNDNM 144360-R @ DISPA'l' * FNDNM

.FREPT 125620-R EXCMP EX COM # SM COM

.FRLH 121644-R ALLOC # FllCM INIT RLEAS

.FlEND 136134-R # FllCM INIT

.FlORG 134234-R # FllCM INIT RLEAS

.GTFID 121720-R ACCESS DEA CC DLMRK EX TEN # GTFID
RWATT

.GTMAP 122044-R CL COM CL EXT CLFCB CRFIL DLFIL
EXCMP EX COM EX THO # GT MAP INFCB
NXHDR RD HOR TRUNC

.HDBUF 130224-R ACCESS: CL COM CLO AC CLEXT CRFIL
DEA CC DLBLK DLHDR DLMRK DRACC
DREOF DREXT EXCMP EX COM EX THO

FllCM GT MAP INFCB NXHDR PROCK
RATCM ROH DR TRUNC WAT CM WRHDR
WTRNl

.HDLBN 130220-R CRFIL EXTHD # FllCM INFCB

.HOUCB 130216-R CL COM CLNUP CRFID DLBLK DLHDR
DMOONT1 DREXT EX THO # FllCM ROH DR
WRHDR

.INFCB 122100-R CLFCB DRACC DREXT EXCMP EX THO
INFCB RDATT WAT CM

.INIT 143772-R @ DISPA'I1 * INIT

.INWIN 144034-R ACCESS: ORA CC * INWIN

.IOPKT 121570-R CLNUP DI SPAT DLBLK DRACC DREX
DREXT DRVLB ENTNM FDRMV # FllCM
SMALC SMNXB TRUNC

.IOSTS 121600-R ACCESS CL EXT CLNUJ? DI SPAT DREXT
EXCMP EX COM EXTHD # FllCM RWVBL
SMALC WATCM

.IXEXT 144526-R @ DISPA'l1 w IXEXT

.IXEXl 121300-R CLNUP CRFIL # DI SPAT

.LBO 052002 # LOWCR

.LOR 052220 # LOWCR

.LDRHD 052040 # LOWCR

.LOCAT 122304-R ENTNM FDRMV # LOCAT

.LPO 044562 i LOWCR

.MMO 044704 # LOWCR

.MMl 044746 # LOWCR

.MPHDR 122604-R CRFIL EXTHD # MPH DR ROH DR

.MPVBN 122650-R DRVLB EX TEN MPH DR i MPVBN

.NDRLB 142126-R * DREXT

.NORSZ 142124-R * DREXT

.NLO 051570 # LOWCR

.NOOP 121566-R # DI SPAT

9-66

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

.NXHDR 122706-R ACCESS EX COM # NXHDR RDA'l'T TRUNC

.NXHDl 122724-R CLEXT DLFIL # NXHDR
.PPO 045112 # LOWCR
.PRCKl 123024-R # PROCK
.PRCK2 123034-R DLMRK # PROCK
.PRCK3 123044-R ENTNM FDRMV # PROCK
.PROCK 123014-R ACCESS EX TEN # PROCK RWATT TRUNC

WAT CM
.PRO 045234 # LOWCR
.QIOST 121574-R * FllCM RWVBL RWlLB
.RATCM 144370-R ACCESS * RATCM RDATT
.RDATT 144614-R @ DI SPAT * RDATT
.RDFHD 123256-R ACCESS CLCRE CLFCB DEACC DLMRK

DRACC DREOF DREXT EXCMP EX TEN
RDHDR RWATT

.RDHDR 123316-R CLFCB * RDHDR WIT RN

.RDNLB 124222-R DRGET # RWlLB

.RDlLB 124242-R CRFID CRFIL DLHDR DRCPY EX THO
RDHDR # RWlLB SMRVB

.RHDFN 123334-R CL EXT EXTHD NXHOR ROATT # RDHOR

.RHDLB 123342-R # ROH DR

.RLEAS 123512-R CLACC CL COM CLDIR CLNUP DEACC
DMOUNT EXT EN RATCM RDATT # RLEAS
RLFCB SCFAC WATCM

.RLFCB 123554-R CLACC CLFCB # RLFCB

.RMVNM 145002-R @ DI SPAT * RMVNM

.RWATT 144772-R RDATT * RWATT WRATT

.RWSIZ 124220-R # RWlLB

.RWVB. 145046-R @ DI SPAT * RWVB

.RWVBL 123646-R DI SPAT # RWVBL

.RWVBl 121326-R # DI SPAT RWVB

.SCFAC 124376-R ACCESS DLMRK DRACC DREXT BX TEN
RWATT # SCFAC

.SCFCB 124466-R DRPAC SCFAC # SCFCB

.SMALC 124530-R DRALC EX COM # SMALC

.SMBUF 127216-R # FllCM INWIN SMALC SMDEL SMNXB

.SMCNT 125614-R SMALC # SMCOM SMDEL SMNXB

.SMCTL 125611-R DRALC EXCMP EX COM SMALC # SMCOM

.SMDEL 145050-R CL EXT DLBLK * SMDEL

.SMEXT 125610-R EX COM # SMCOM

.SMFLG 100000 # FllCM SMALC SMNXB SMRVB

.SMNXB 125622-R SMALC # SMNXB SMSCN

.SMRVB 125730-R CLEXT DLFIL DREXT EXCMP SMALC
SMDEL SMNXB # SMRVB

.SMSCN 126102-R SMALC SMDEL # SMSCN

.SMUCB 127212-R CLACC CL COM CLNUP OMOUNT # FllCM
INWIN SMALC SMRVB

.SMVBN 127214-R CL COM CLNUP # FllCM SMALC SMNXB
SMSCN

.SMlAD 125572-R SMALC # SM COM

.SMlBT 125564-R CLEXT DRALC EXCMP EX COM EXTHD
SMALC ~ SM COM SMDEL TRUNC

.SMlMK 125570-R SMALC # SM COM

.SMlVB 125574-R SMALC # SMCOM SMDEL

.SM2AD 125600-R # SM COM

.SM2BT 125604-R SMALC # SM COM

.SM2MK 125602-R # SMCOM

.SM2VB 125576-R SMALC # SM COM

.SSTSZ 000007 # FllCM
.SSTVC 121646-R # FllCM
.STACK 120252-R CLNUP DI SPAT DRACC # FllCM
.START 121334-R # DI SPAT RWVB

9-67

CROSS-REFERENCES

Symbol Value Modules That Reference Symbol

.SVLBN 125560-R DLBLK EXCMP EX COM # SMCOM

.SYO 052026 # LOWCR.

.TIO 051706 # LOWCR

.TRUNC 145274-R DLMRK * TRUNC

.TTO 045362 # LOWCR

.TTl 045452 # LOWCR

.TTlO 046400 * LOWCR.

.TTll 046470 # LOWCR

.TT12 046560 # LOWCR

.TT13 046650 # LOWCR.

.TT14 046740 # LOWCR

.TT15 047030 # LOWCR

.TT16 047120 # LOWCR.

.TT17 047210 # LOWCR

.TT2 045660 # LOWCR

.TT20 047300 # LOWCR

.TT21 047370 # LOWCR

.TT22 050316 # LOWCR

.TT23 050406 # LOWCR

.TT24 050476 # LOWCR

.TT25 050566 # LOWCR

.TT2"6 050656 * LOWCR

.TT27 050746 # LOWCR

.TT3 045750 # LOWCR

.TT30 051036 # LOWCR

.TT31 051126 # LOWCR

.TT4 046040 # LOWCR

.TT5 046130 # LOWCR

.TT6 046220 # LOWCR

.TT7 046310 # LOWCR

.UCBAD 121572-R CLACC CLNUP CRFID CRFIL DI SPAT
DLBLK DMOUNT DREXT DRGET ENTNM

FllCM PROCK RDHDR RWVB SCFAC
SMALC SMRVB WRHDR

.USEPT 125616-R EXCMP EX COM # SM COM

.WACCK 145172-R DRACC EXTEN * WAC CK WRATT

.WATCH 145212-R CRFIL DEACC * WATCM WRATT

.WITRN 126172-R DRVLB EX TEN IN WIN IX EXT MPH DR
RWVB RWVBL # WIT RN

.WNDOW 121612-R ACCESS CLACC CLDIR DEA CC DRVLB
EXCMP EX TEN EXTHD # FllCM GTFID
IN WIN IXEXT TRUNC WRATT

.WRATT 145542-R @ DI SPAT * WRATT

.WRHDR 126272-R CL COM CLDAC CLEXT CRFIL DLMRK
DREOF DR EXT EXCMP EXTHD WRATT

WRHDR
.WRHDl 126304-R CRFID DLHDR # WRHDR
.WRlLB 124234-R DLHDR DRCPY DRWRT # RWlLB SMRVB

WRHDR
.WTRNl 126330-R ACCESS EXCMP EXTHD WIT RN # WTRNl
.ZERCT 000021 DI SPAT # FllCM

9-68

CROSS-REFERENCES

9.8 BIGFCP SEGMENT CROSS-REFERENCES

The BIGFCP segment cross-reference lists the name of each overlay and
the modules that compose it. The cross-reference follows:

Segment
Name Resident Modules

FCPHI ACCESS ATCTL CRFID CRFIL DAT IM DEA CC
DMOUNT DRACC EXCMP EX COM EX TEN EXTHD
INIT INWIN RATCM RDATT RWATT RWVB
WAC CK WATCM WRATT

FCPLO CLCOM CLCRE CLDIR CL EXT CLFCB CLNUP
DLBLK DLFIL DLHDR DLMRK DRALC DRCPY
DREOF DREX DREXT DRGET ORIN I DRPAC
DRVLB DRWRT ENTNM FDRMV FNDNM IX EXT
RMVNM SMDEL TRUNC

FllACP ALLOC BLXIO CK SUM CLACC CLO AC DARI TH
DI SPAT EX EDF FllACP FllCM GTFID GT MAP
INFCB LOCAT LOWCR MPH DR MPVBN NXHDR
OVERR PROCK RDHDR RLEAS RLFCB RWVBL
RWlLB SCFAC SCFCB SMALC SMCOM SMNXB
SMRVB SMSCN WIT RN WRHDR WTRNl

9.9 CONDITIONAL ASSEMBLY PARAMETER TO MODULE CROSS-REFERENCE

This cross-reference contains a listing of the conditional assembly
parameters that are contained in the Executive modules. Listed to the
right of each parameter are those Executive modules that contain
conditional assemblies affected by the parameter.

Conditional
Assembly
Parameter

A$$CHK

A$$CPS

A$$001

A$$Fll

A$$NSI

A$$PRI

A$$TRP

B$$00T

C$$CDA

Modules That Contain
The Parameter

DRATX DRDSP DRGLI
DRQIO DRRAS DRS ED
TTDRV

DK TAB DMTAB DRQIO
IOSUB

BFCTL

BFCTL

DRQIO MMTAB MTORV

DRDSP DRE IF DRRES

ORATX DRCIN ORO AR
ORMAP DRPUT DRREG
REQSB SYSXT TD SCH

CRASH

CRASH

9-69

DRGPP DRGTK DRGTP
DRS ST IO SUB SST SR

DRRES OTT AB DX TAB

MTTAB

ORD SP ORE IF DREXP
IOSUB LOADR POWER
TTORV

1:::ROSS-REFERENCES

Conditional
Assembly Modules That Contain
Parameter The Parameter

C$$CKP ORATX ORDCP ORD SP ORE IF OREXP ORREG
IOSUB LO.AOR REQSB SYSCM SYSXT TOSCH
TTORV

C$$INT ORCIN ORDCP REQSB SYSXT ORO SP DRE IF

C$$MPT XU ORV

C$$RSH CRASH

0$$Bll XBORV

D$$Bll-1 XBORV

D$$Hll LOWCR TTDRV

O$$IAG CTTAB OB ORV OK TAB OLD RV OMDRV OMTAB
OPORV ORiQIO OTO RV OTTAB DX TAB ERROR
IOSUB LP'TAB MMD RV MMTAB MTDRV MTTAB
PPTAB SYSTB

0$$ISK ORATX ORDCP ORO SP ORE IF ORREG ORRES
IO SUB LO.AOR REQSB TOSCH

0$$Jll TTDRV

0$$Lll TTORV

D$$Mll TTORV

O$$Pll XPORV

O$$Pll-l XPORV

D$$Qll XQDRV

0$$Qll-1 XQDRV

O$$SHF ORCIN IO.SUB PARTY REQSB TD SCH

0$$Ull XU ORV

0$$Ull-1 XUDRV

D$$Wll XWDRV

0$$Wll-1 XWDRV

D$$WCK OBORV DMD RV OPDRV

D$$YNC DREXP LO.ADR REQSB SYSCM

D$$YNM ORCIN ORO SP ORE IF DREXP ORGPP DRREG
ORREQ IO.SUB PLSUB REQSB SYSCM SYSOF
SYSXT TOSCH TT ORV

0$$Zll TTDRV

D$$ZMO TT ORV

9-70

CROSS-REFERENCES

Conditional
Assembly Modules That Contain
Parameter The Parameter

E$$DVC CTDRV CTTAB DBDRV DK TAB DLDRV DMD RV
DMTAB DPDRV DRDRV. DTDRV DTTAB DXDRV
DX TAB ERROR IOSUB LPTAB MMD RV MMTAB
MTDRV MTTAB POWER PPTAB SYSCM SYSTB
SYSXT

E$$EAE POWER SYSXT

E$$NSI DRCIN ERROR LOWCR POWER SYSCM SYSXT

E$$PER ERROR PARTY POWER

E$$XPR DRDSP DREXP LOADR SYSCM

F$$AST POWER SSTSR

F$$LPP DRDSP DRE IF DRPUT POWER REQSB SST SR
SYSXT

F$$LTP SSTSR

G$$TPP DRDSP DRGPP

G$$TSS DRDSP DRGSS

G$$TTK DRDSP DRGTK

G$$WRD BFCTL

I$$Cll LOW CR

!$$CAD BFCTL

I$$RAR DRE IF TTDRV

I$$RDN DRE IF TTDRV

K$$CNT SYSCM

K$$CSR SYS CM

K$$LDC SYSCM

K$$Wll POWER TD SCH

L$$11R LPDRV

L$$50H TTDRV

L$$ASG DRASG

L$$DRV CTTAB DKTAB DMTAB DRGLI DRQIO DTTAB
OX TAB IOSUB LP TAB MM TAB MTTAB POWER
PPTAB QUEUE REQSB SYSCM SYSTB SYSXT
TOSCH TT ORV

L$$LDR LOADR SYSCM SYTAB

L$$Pll LPDRV

9-71

CROSS-REFERENCES

Conditional
Assembly Modules That Contain
Parameter The Paramet1~r

L$$SI1 CRASH IN I TL POWER SYSCM SYSXT TTDRV

LD$$H TTDRV

LD$$J TTDRV

LD$$L TTDRV

LD$$Z TTDRV

LD$CT CTTAB

LD$DK DK TAB

LD$DM DMTAB

LD$DT DTTAB

LD$DX DXTAB

LD$LP LPTAB

LD$MM MMTAB

LD$MT MTTAB

LD$NL SYSTB

LD$PP PPTAB

LD$PR PPTAB

LD$TT SYSTB TTIDRV

LD$TT XMDRV

M$$CRI TTDRV

M$$CRX DRDSP O:REIF DRGCL

M$$EXT DBDRV DJKTAB OLD RV DMD RV DMTAB DP ORV
DRDRV o•roRv DTTAB IN I TL IOSUB MMD RV
MTDRV MrTAB POWER SYSCM SYSDF XBDRV
XMDRV X1;:)DRV

M$$IXD DBDRV !(')SUB MMD RV

M$$MGE BFCTL CRASH CTTAB DBDRV DK TAB DLDRV
DMD RV DMTAB DP ORV DRATX DRCIN DRDRV
DRDSP DRE IF DREXP DRGLI DRGPP DRGTK
DRGTP D.RQIO DRRAS DRREG DRREQ DRS ED
DRS ST o·roRv DTTAB DXDRV DXTAB IN I TL
IO SUB LOADR LOWCR LPDRV LP TAB MMD RV
MMTAB M1rDRV MTTAB PARTY PL SUB POWER
PPTAB QUEUE REQSB SST SR SYSCM SYSDF
SYS TB SYSXT SYTAB TOSCH TTDRV XBDRV
XMDRV x:eORV XQDRV XUDRV XWDRV

9-72

CROSS-REFERENCES

Conditional
Assembly Modules That Contain
Parameter The Parameter

M$$MUP CTTAB DKTAB DMTAB DRASG DRDSP DRGTK
DRMKT DRQIO DRRAS DRREQ DRRES DTTAB
DX TAB LPTAB MMTAB MTTAB PP TAB REQSB
SYS CM SYS TB TTDRV

M$$NET DRQIO LOWCR XBDRV XMDRV XPDRV XQDRV
XU ORV XWDRV

N$$MOV BFCTL

N$$UMR SYS CM

P$$D70 PARTY

P$$GMX ORD SP DRMAP

P$$LAS DRDSP DREIF DREXP DRGPP DRMAP DRPUT
DRREG LOADR LOWCR PL SUB REQSB SSTSR
SYSCM SYSXT SYTAB TTDRV

P$$P45 NULTK

P$$Rll PRDRV

P$$RFL DRDSP DREIF DRPUT POWER REQSB

P$$RTY IN I TL PARTY POWER SYSCM

P$$SRF DRDSP DREIF DRMAP DRPUT LOADR REQSB
SY TAB

P$$WRD BFCTL

Q$$22 XMDRV

Q$$IO XMDRV

Q$$0PT CORAL IO SUB SYSCM

Q$$CRC XQDRV

Q$$MPT XQDRV

R$$11S DRGTK IN I TL LOADR SYSCM SYTAB TTDRV

R$$60F DMD RV IOSUB

R$$611 DMD RV IO SUB

R$$DER CORAL

R$$EXV SYS CM SYSXT

R$$JP1 DBDRV IOSUB

R$$JPO DBDRV IOSUB

R$$JS1 IO SUB

9-73

CROSS-REFERENCES

Conditional
Assembly Modules That Contain
Parameter The Paramete·r

R$$Kll IO SUB

R$$Lll OLORV ICiSUB

R$$LKL ORQIO IOSUB SYSXT TTORV

R$$Mll IOSUB

R$$MOF IOSUB

R$$NOC TOSCH

R$$Pll OPORV ICISUB

R$$SNO ORO SP DFtEIF DRPUT DRRAS LOADR REQSB

R$$Xll DXDRV

S$$ECC DBDRV DMD RV IOSUB

S$$WPC LOADR RE:QSB TOSCH

S$$WPR LOADR

S$$YSZ SYSCM

T$$18S TTDRV

T$$30P SYSXT T'J~DRV

T$$All CTDRV

T$$ACR SYSTB T'J~DRV

T$$BTW SYS TB T'JmRV

T$$BUF DREIF DHEXP DRREG SYSXT TTDRV

T$$Cll DTDRV IO SUB

T$$CCA SYS TB T~rDRV

T$$CCO SYS TB T~rDRV

T$$CTR TTDRV

T$$ESC SYSTB T~rDRV

T$$GMC SYS TB T~rDRV

T$$GTS SYS TB T~rDRV

T$$HLD SYS TB T~rDRV

T$$Jl6 MMD RV

T$$KMG DRE IF IOSUB

T$$LWC TTDRV

9-74

CROSS-REFERENCES

Conditional
Assembly Modules That Contain
Parameter The Parameter

T$$Mll MTDRV

T$$MIN TTDRV

T$$RNE TTDRV

T$$RPR SYS TB TTDRV

T$$RST TTDRV

T$$RUB TTDRV

T$$SMC SYSXT TTDRV

T$$SYN SYSXT TTDRV

T$$TRW SYSXT TTDRV

T$$UTB SYSXT TTDRV

T$$VBF SYSXT TTDRV

U$$ADM BFCTL

V$$CTR LOWCR SYSDF

X$$18 XMDRV

X$$22 XMDRV

X$$LDM XMDRV

X$$Mll-l XMDRV

X$$Mll XMDRV

9.10 MODULE TO CONDITIONAL ASSEMBLY PARAMETER CROSS-REFERENCE

This cross-reference contains a listing of the Executive modules that
contain conditional assembly parameters. Listed to the right of each
module are the parameters that affect the assembly of the module.

Module Conditional Assembly Parameters in Module

BFCTL A$$001 A$$Fll G$$WRD !$$CAD M$$MGE
N$$MOV P$$WRD U$$ADM

CORAL Q$$0PT R$$DER

CRASH B$$00T C$$CDA C$$RSH L$$SI1 M$$MGE

CTDRV E$$DVC T$$All

CTTAB D$$IAG E$$DVC L$$DRV LD$CT · M$$MGE
M$$MUP

9-75

CROSS-REFERENCES

Module Conditional Assembly Parameters in Module

DBDRV D$$IAG D$$WCK E$$DVC M$$EXT M$$IXD
M$$MGE R$$JP1 R$$JPO S$$ECC

DKTAB A$$CPS 0$$IAG E$$DVC L$$DRV LD$DK
M$$EXT M$$MUP

OLD RV O$$IAG · E$$DVC M$$EXT M$$MGE R$$Lll

DMD RV 0$$IAG D$$WCK E$$DVC M$$EXT M$$MGE
R$$60F R$$611 S$$ECC

DMTAB A$$CPS D$$IAG E$$DVC L$$DRV LD$DM
M$$EXT M$$MGE M$$MUP

DPDRV O$$IAG 0$$WCK E$$DVC M$$EXT M$$MGE
R$$Pll

DRASG L$$ASG M$$MUP

DRATX A$$CHK A$$TRP C$$CKP O$$ISK M$$MGE

DRCIN A$$TRP C$$INT D$$SHF D$$YNM E$$NSI
M$$MGE

ORD AR A$$TRP

DROCP C$$CKP C$$INT 0$$ISK

DRDRV E$$DVC M$$EXT M$$MGE

ORD SP A$$CHK A$$PRI A$$TRP C$$CKP C$$INT
D$$ISK O$$YNM E$$XPR F$$LPP G$$TPP
G$$TSS G$$TTK M$$CRX M$$MGE M$$MUP
P$$GMX P$$LAS P$$RFL P$$SRF R$$SND

DRE IF A$$PRI A$$TRP C$$CKP C$$INT O$$ISK
D$$YNM F$$LPP I$$RAR I$$RON M$$CRX
M$$MGE P$$LAS P$$RFL P$$SRF R$$SND
T$$BUF T$$KMG

DREXP A$$TRP C$$CKP 0$$YNC 0$$YNM E$$XPR
M$$MGE P$$LAS T$$BUF

DRGCL M$$CRX

DRGLI A$$CHK L$$DRV M$$MGE

DRGPP A$$CHK 0$$YNM 'G$$TPP M$$MGE P$$LAS

DRGSS G$$TSS

DRGTK A$$CHK G$$TTK M$$MGE M$$MUP R$$11S

DRGTP A$$CHK M$$MGE

DRMAP A$$TRP P$$GMX P$$LAS P$$SRF

DRMKT M$$MUP

9·-76

CROSS-REFERENCES

Module Conditional Assembly Parameters in Module

DRPUT A$$TRP F$$LPP P$$LAS P$$RFL P$$SRF
R$$SND

DRQIO A$$CHK A$$CPS A$$NSI D$$IAG L$$DRV
M$$MGE M$$MUP M$$NET R$$LKL

DRRAS A$$CHK M$$MGE M$$MUP R$$SND

DR REG A$$TRP C$$CKP 0$$ISK 0$$YNM M$$MGE
P$$LAS T$$BUF

DRREQ 0$$YNM M$$MGE M$$MUP

DRRES A$$CPS A$$PRI 0$$ISK M$$MUP

DRS ED A$$CHK M$$MGE

DRS ST A$$CHK M$$MGE

DTDRV 0$$IAG E$$DVC M$$EXT M$$MGE ";~$.$~11

DTTAB A$$CPS O$$IAG E$$DVC L$$DRV .· -·~L~$DT
M$$EXT M$$MGE M$$MUP

DXDRV E$$DVC M$$MGE R$$Xll

DX TAB A$$CPS O$$IAG E$$DVC L$$DRV LD$DX
M$$MGE M$$MUP

ERROR D$$IAG E$$DVC E$$NSI E$$PER

IN I TL L$$SI1 M$$EXT M$$MGE P$$RTY R$$11S

IO SUB A$$CHK A$$CPS A$$TRP. C$$CKP D$$IAG
D$$ISK D$$SHF O$$YNM E$$DVC L$$DRV
M$$EXT M$$IXD M$$MGE ·Q$$0PT R$$60F
R$$611 R$$JPO R$$JS1«· R$$Cll R$$Kll
R$$Lll R$$Mll R$$Pll R$$LKL R$$MOF
S$$ECC T$$KMG

LOADR A$$TRP C$$CKP D$$ISK D$$YNC E$$XPR
L$$LDR M$$MGE P$$LAS P$$SRF R$$11S
R$$SND S$$WPC S$$WPR

LOWCR 0$$.Hll E$$NSI I$$Cll M$$MGE M$$NET
P$$LAS V$$CTR

LP ORV L$$11R L$$Pll M$$MGE · ·

LPTAB O$$IAG E$$DVC L$$DRV LD$LP M$$MGE
M$$MUP

MMD RV O$$IAG E$$DVC M$$EXT M$$IXD M$$MGE
T$$Jl6

MMTAB A$$NSI D$$IAG E$$0VC L$$0RV LD$MM
LD$MT M$$MGE M$$MUP

MTORV A$$NSI O$$IAG E$$DVC M$$EXT M$$MGE
T$$Mll

9-77

CROSS-REFERENCES

Module Conditional Assembly Parameters in Module

MTTAB A$.$NSI D$$IAG E$$DVC L$$DRV LD$MT
M$$EXT M$$MGE M$$MUP

NULTK P$$P45 ·

PARTY D$$SHF . E$$PER M$$MGE P$$D70 P$$RTY
-'.

PLSUB D$$YNM M$$MGE P$$LAS

POWER A$$TRP E$$DVC E$$EAE E$$NSI E$$PER
F$$AST F$$LPP K$$Wll L$$DRV L$$SI1
M$$EXT M$$MGE P$$RFL P$$RTY

PPTAB D$$IAG E$$DVC L$$DRV LD$PP LD$PR
M$$MGE M$$MUP

PRDRV P$$Rll

QUEUE L$$DRV M$$MGE

REQSB A$$TRP C$$CKP C$$INT: . D$$ISK D$$SHF
D$$YNC D$$YNM F$$LPP. L$$DRV M$$MGE
M$$MUP' P$$LAS P$$RFL P$$SRF R$$SND
S$$WPC

SSTSR A$$CHK F$$AST F$$LPP F$$LTP M$$MGE
P$$LAS

SYS CM C$$CKP D$$YNC D$$YNM E$$DVC E$$NSI
E$$XPR K$$CNT K$$CSR K$$LDC L$.$DRV
L$$LDR L$$SI1 M$$EXT M$$MGE M$$MUP
N$$UMR P$$LAS P$$RTY Q$$0PT R$$11S
R$$EXV S$$YSZ

SYSDF D$$YNM M$$EXT M$$MGE V$$CTR

SYS TB D$$IAG E$$DVC L$$DRV LD$NL LD$TT
M$$MGE M$$MUP T$$ACR T$$BTW T$$CCA
T$$CCO T$$ESC T$$GMC T$$GTS T$$HLD
T$$RPR

SYSXT A$$TRP C$$CKP C$$INT D$$YNM E$$DVC
E$$EAE E$$NSI F$$LPP L$$DRV L$$SU
M$$MGE P$$.LAS R$$EXV R$$LKL T$$BUF
T$$SMC T$$SYN T$$TRW T$$UTB T$$30P
T$$VBF

SYTAB L$$LDR M$$M.GE P$$LAS P$$SRF R$$11S

TOSCH A$$TRP C$$CKP 0$$ISK D$$SHF D$$YNM
K$$Wll L$$:0RV M$$MGE R$$NDC S$$WPC

9-78

CROSS-REPERENCES

Module Conditional Assembly Parameters i"'n Module

TTDRV A$$CHK A$$TRP C$$CKP 0$$811 :))$'$Jll
D$$Lll 0$$Mll D$$YNM 0$$Zll ,, D$$ZMD
I$$RAR I$$RDN L$$50H L$$DRV L$$SI1
LD$$H LD$$J LD$$L LO$$Z · .. : .. LD$TT
M$$CRI M$$MGE M$$MUP P$$LAS R$$11S
R$$LKL T$$18S T$$30P T$$ACR ,~ · .:T$$BTW
T$$BUF T$$CCA T$$CCO T$$CTR T$$ESC
T$$GMC T$$GTS T$$HLIF11

' ~T$$LWC' · ~'!'$.$MIN
T$$RNE T$$RPR T$$RST T$$RUB T$$SMC
T$$SYN T$,$TRW T$$UTB" T$$VBF r-: Y'•

XBDRV 0$$811 M$$EXT ; M$$MGE M$$NET ..

XMDRV LD$XM M$$EXT M$$MGE - M$$NET··. ;0$$22
Q$$IO X$$18 X$$22 X$$LDM ;X$·$Mll
X$$Mll-l

XPDRV M$$MGE M$$NET D$$Pl~-l O$$Pll

XQDRV 0$$011"'.'l. 0$$Qll M$$EXT M$$MGE M$$NET
Q$$CRC~ Q$$HP,..: ...

. -..
XU ORV C$$MPT D$$Uli.;.l .'D$$Ull M$$MGE: ·' -M$$NET

XWDRV C$$MPT D$$Wl+:-1 D$$Wll M$$MGE M$$NET

9-79

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	02-65
	02-66
	02-67
	02-68
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	07-59
	07-60
	07-61
	07-62
	07-63
	07-64
	07-65
	07-66
	07-67
	07-68
	07-69
	07-70
	07-71
	07-72
	07-73
	07-74
	07-75
	07-76
	07-77
	07-78
	07-79
	07-80
	07-81
	07-82
	07-83
	07-84
	07-85
	07-86
	07-87
	07-88
	07-89
	07-90
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74
	09-75
	09-76
	09-77
	09-78
	09-79

