
··~·

RSX-11
Utilities Manual

Order No. AA-H268A-TC

RSX-11M Version 3.2
RSX-11 M-P LUS Version 1.0

lr·o order additional copies of this document, contact the Software Distribution
L,:enter, Digital Equipment Corporation, Maynard, Massachusetts 01754

digiital equipment corporation · maynard, massachusetts

First Printing, June 1979

The information in this document is subject to change without notice
and should not be construed as a conunitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
·and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @ 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

2 I

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-lo
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

10/79-14

;;

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

1 I t t !i!iJii ii!!ii Ji! !qi UL iii iliiiiii; 1Jiiiii4 ;;::::

\...,..;

CONTENTS

Page

SUMMARY OF TECHNICAL CHANGES xvii

PREF'ACE xxi

PART 1 INTRO DUCT ION

CHAPTER 1 INTRODUCTION 1-1

Ll RSX-11 UTILITY PROGRAMS 1-1
1..1.1 Editing Utilities 1-2
Ll.2 File Manipulation Utilities 1-2

\.,J 1..1.3 File Spooling Utilities 1-2
1.1.4 Volume Maintenance Utilities 1-3
1..1.5 Programming Utilities 1-4
1..1.6 Program Maintenance Utilities 1-4
1..2 ENTERING RSX-11 COMMAND LINES 1-4
1. 3 ENTERING FILE SPECIFICATIONS 1-5
1..4 INVOKING RSX-11 UTILITIES 1-6
1.. 4 .1 Installing Utilities on Your System 1-7
1.. 4. 2 Invoking Installed Utilities 1-7
1. 4. 3 Invoking Uninstalled Utilities 1-9
1..4.4 Using Indirect Command Files 1-9

PART 2 EDITING UTILITIES

CHAPTER 2 DEC EDITOR (EDT) 2-1

2 .. 1 INVOKING EDT 2-2
2 .. 2 THE EDT COMMAND STRING 2-4
2v2el EDT Commands 2-5
2n2e2 Range Specification 2-10
2o2e3 Options 2-19
2 .. 3 DETAILED COMMAND DESCRIPTIONS 2-20

'-'/ 2o3el CHANGE 2-21
2o3e2 COPY 2-22
2o3.3 DELETE 2-23
2o3e4 EXIT 2-25
2 .. 3.5 FIND 2-25
2o3.6 INCLUDE 2-26
2.3.7 INSERT 2-28
2o3e8 MOVE 2-30
2.3.9 PRINT 2-32
2a3.10 QUIT 2-33
2o3.ll REPLACE 2-34
2" 3 .12 RESEQUENCE 2-35
2 .. 3.13 RESTORE 2-37
2o3ol4 SAVE 2-38
2.3.15 SET 2-38
2 .. 3.16 SHOW 2-40
2~3.17 SUBSTITUTE 2-42
2 .. 3.18 TYPE 2-44
2 .. 3.19 WRITE 2..:.45

~

iii

'Ill

2.3.20
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.6

CHAPTER 3

3.1
3 .1.1
3.1. 2
3.1. 3
3.1. 4
3 .1. 5
3.1. 6
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15
3.2.16
3.2.17
3.2.18
3.2.19
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11

CONTENTS

XEQ {Execute)
CHARACTER MODE

Editing Subconunands
Cursor Manipulation
Subconunand Concatenation
Subconunands to Terminate Character Mode

SUMMARY OF EDT COMMAND MODE COMMANDS
ERROR REPORTING AND ERROR MESSAGES

LINE TEXT EDITOR {EDI)

USING EDI
Invoking EDI
Control Modes: Input and Edit
Text Access Modes
Text Files
Terminal Conventions
EDI Conunand Conventions

BASIC EDI COMMANDS
ADD
ADD & PRINT
BOTTOM
CHANGE
<CTRL/Z>
DELETE
DELETE & PRINT
<ESCape>
.l:!;XIT
INSERT
LOCATE
NEXT
NEXT & PRINT
PRINT
RENEW
<RETURN>
RETYPE
TOP
TOP OF FILE {TOF)

EDI COMMANDS: FUNCTION SUMMARY
Setup Conunands
Locator Conunands {Line-Pointer Control)
Text Modification and Manipulation Conunands
Macro Commands
File Input/Output Conunands
Device Output Conunands
CLOSE and EXIT commands

EDI COMMANDS: DETAILED REFERENCE SUMMARY
ADD
ADD & PRINT (AP)
BEGIN
BLOCK ON/OFF
BOTTOM
CHANGE
CLOSE
CLOSE SECONDARY {CLOSES)
CLOSE & DELETE (CD)
CONCATENATION CHARACTER {CC)
CTRL/Z

iv

Jill! I iii I I

Page

2-46
2-48
2-49
2-55
2-58
2-59
2-60
2-62

3-1

3-1
3-1
3-3
3-3
3-6
3-7
3-8
3-10
3-11
3-12
3-12
3-13
3-13
3-13
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-17
3-18
3-19
3-19
3-19
3-20
3-20
3-20
3-21
3-23
3-24
3-25
3-25
3-25
3-27
3-27
3-27
3-27
3-28
3-28.
3-28
3-28
3-29
3-29
3-29
3-30

iiiiii I IJ4i!I iiii2 i!UiiiJ.lii.i I 1111041

'-''

\...r·

3.4.12
3.4.13
3.4.14
3.4.15
3.4.16
3.4.17
3.4.18
3.4.19
3.4.20
3.4.21
3.4.22
3.4.23
3.4.24
3.4.25
3.4.26
3.4.27
3.4.28
3.4.29
3.4.30
3.4.31
3.4.32
3.4.33
3.4.34
3.4.35
3.4.36
3.4.37
3.4.38
3.4.39
3.4.40
3.4.41
3.4.42
3.4.43
3.4.44
3.4.45
3.4.46
3.4.47
3.4.48
3.4.49
3.4.50
3.4.51
3.4.52
3.4.53
3.4.54
3.4.55
3.4.56
3.4.57
3.4.58
3.5
3.6
3.6.l
3.6.2
3.6.3
3.6.4

CH.A.PTER 4

CONTENTS

DELETE
DELETE & PRINT (DP)
END
ERASE
<ESCape>
EXIT
EXIT & DELETE (ED)
FILE
FIND
FORM FEED (FF)
INSERT
KILL
LINE CHANGE (LC)
LIST ON TERMINAL (LI)
LIST ON PSEUDO-DEVICE (LP)
LOCATE
MACRO
MACRO CALL (MC)
MACRO EXECUTE
MACRO IMMEDIATE
NEXT
NEXT & PRINT
OPEN SECONDARY
OUTPUT ON/OFF
OVERLAY
PAGE
PAGE FIND
PAGE LOCATE
PASTE
PRINT
READ
RENEW
<RETURN>
RETYPE
SAVE
SEARCH & CHANGE
SELECT PRIMARY
SELECT SECONDARY
SIZE
TAB ON/OFF
TOP
TOP OF FILE (TOF)
TYPE
UN SAVE
UPPER CASE ON/OFF
VERIFY ON/OFF
WRITE

EDI USAGE NOTES
EDI ERROR MESSAGES

Command Level Information Messages
File Access Error Messages
Error Messages Requiring EDI Restart
Fatal Error Messages

PART 3 FILE MANIPULATION UTILITIES

PERIPHERAL INTERCHANGE PROGRAM (PIP)

v

Page

3-30
3-30
3-31
3-31
3-31
3-31
3-32
3-32
3-32
3-33
3-33
3-33
3-34
3-34
3-35
3-35
3-35
3-36
3-37
3-37
3-38
3-38
3-38
3-39
3-39
3-40
3-40
3-41
3-41
3-41
3-42
3-42
3-42
3-43
3-43
3-44
3-44
3-45
3-45
3-45
3-46
3-46
3-47
3-47
3-47
3-48
3-48
3-49
3-50
3-50
3-54
3-55
3-57

4-1

'!1111 iii!

4.1
4 .1.1

4. 1. 2
4 .1. 3
4.2
4.2.1
4.2.2
4.3
4.4

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.6
5.7

CHAPTER 6

6.1

6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5

6.5.1
6.5.2

6.6

CHAPTER 7

7.1
7.2

CONTENTS

PIP COMMAND STRING
PIP Defaults for File Specification
Elements
PIP Switches and Subswitches
Wildcards

PIP COMMAND FUNCTIONS
Copying Files-11 Files
Performing File Control Functions

PIP ERROR MESSAGES
PIP ERROR CODES

FILE TRANSFER PROGRAM (FLX)

FLX COMMAND STRING
FLX SWITCHES

Volume Format Switches
Transfer Mode switches
Control Switches

DOS-11 VOLUME DIRECTORY MANIPULATION
Displaying DOS-11 Directory Listings
Deleting DOS-11 Files
Initializing DOS-11 Volumes

RT-11 VOLUME DIRECTORY MANIPULATION
Displaying RT-11 Directory Listings
Deleting RT-11 Files
Initializing RT-11 Volumes

FLX TA11/TU60 CASSETTE SUPPORT
Multivolume Cassette Support
FLX Cassette Output Files
FLX Cassette Input Files

FLX PAPER TAPE SUPPORT
FLX ERROR MESSAGES

PART 4 FILE SPOOLING UTILITIES

PRINT AND QUEUE UTILITY

INTRODUCTION TO THE PRINT COMMAND AND
QUEUE MANAGER
PRINT COMMAND FORMAT
PRINT COMMAND DESCRIPTION
QUEUE MANAGER COMMAND FORMAT

QUEUE /LIST Command
QUE /MOD Command
QUEUE /HOLD Command
QUEUE /RELEASE Command
QUEUE /DELETE Command

PRINT JOBS QUEUED BY USER TASKS - OUTPUT
SPOOLING

Opening A File On Disk and Using FCS
Opening A File On Disk and Using the
Print Command

ERROR MESSAGES

THE QUEUE MANAGER

NARRATIVE INTRODUCTION AND REVIEW
REFERENCE EXAMPLE

vi

Page

4-1

4-1
4-3
4-4
4-5
4-5
4-9
4-38
4-46

5-1

5-2
5-3
5-3
5-4
5-6
5-8
5-8
5-10
5-10
5-10
5-10
5-11
5-11
5-12
5-13
5-13
5-14
5-15
5-16

6-1

6-1
6-3
6-4
6-9
6-9
6-13
6-14
6-15
6-16

6-17
6-18

6-18
6-18

7-1

7-2
7-4

iii Uiiii ! !. . ii 2 I I .iiiii! tt I .Jiii! ij iii$211!41 $l!ili23!!!1!ii21A

CHA.PTER

\.._.,·

cm.PTER

7.3
7.3.l
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4

8

8.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2

8.3.3
8.3.4
8.3.5
8.3.6
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.5

9

9.1
9.2
9.2.1
9.2.2
9.3
9.3.l
9.3.2
9.3.3
9.4
9.4.1
9.5
9.5.1

9.5.2
9.5.3

9.6

9.7

CONTENTS

QUEUE MANAGER COMMAND DESCRIPTIONS
STOP
START
SPOOL
UN SPOOL
ASSIGN
DEASSIGN

ERROR MESSAGES

PART 5 VOLUME MAINTENANCE UTILITIES

DISK VOLUME FORMATTER (FMT)

INITIATING AND TERMINATING FMT
MODES OF FMT OPERATION

Normal Operating Mode
Manual Operating Mode

FMT-SUPPORTED DEVICES
DB: Devices (RP04/RP05/RP06 Disk Packs)
DK: Devices (RKOS Disk Cartridge or
RK05F Fixed Media Disks)
OM: Devices (RK06/RK07 Disk Cartridges)
DP: Devices (RPR02/RP02/RP03 Disk Packs}
DR: Devices (RM02/RM03 Disk Packs)
DY: Devices (RX02 Floppy Diskettes)

FMT SWITCHES
/BAD
/DENS
/ERL
/MAN
/OVR
/VE
/WLT
/@Y

FMT MESSAGES

BAD BLOCK LOCATOR UTILITY (BAD)

INTRODUCTION TO BAD
INVOKING BAD

BAD Switches
BAD And Indirect Files

PROCESSING BAD BLOCK DATA
Verifying Devices
Format of Bad Block Descriptor Entries
The INI Conunand and BAD

USING THE BAD UTILITY
Progranuning Considerations

BAD SWITCH DESCRIPTIONS
Switches for both Task and Stand-Alone
System Versions Of BAD
The Manual and Update Switches
Switches for Stand-Alone System Version
Only

DEVICES SUPPORTED BY THE STAND-ALONE
VERSION
BAD MESSAGES

vii

Page

7-4
7-5
7-6
7-8
7-10
7-10
7-11
7-11

8-1

8-1
8-2
8-2
8-3
8-4
8-5

8-5
8-5
8-6
8-6
8-6
8-6
8-7
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-8

9-1

9-1
9-1
9-1
9-2
9-3
9-3
9-3
9-4
9-4
9-4
9-5

9-5
9-6

9-7

9-8
9-8

CHAPTER 10

10.1
10 .1.1

10 .1. 2

10 .1. 3

10 .1. 4

10 .1. 5

10 .1. 6
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.4
10.4.1

10.4.2

10.4.3

10.4.4
10.4.5

10.4.6
10.5

10.5.1
10.5.2
10.5.3
10.6

CHAPTER 11

11.1
11.2
11. 3
11. 4
11.5
11. 5 .1
11. 5. 2
11. 5. 3
11. 5. 4
11. 5. 5
11. 5. 6
11. 5. 7
11. 5. 8
11. 6

CONTENTS

BACKUP AND RESTORE UTILITY (BRU)

OVERVIEW OF COMMAND QUALIFIERS AND DEFAULTS
Command Qualifiers For Selective Backup
And Restore
Command Qualifiers for Controlling Disk
Processing
Command Qualifiers for Controlling Tape
Processing
Command Qualifiers for Verifying the
Accuracy of Data Transferred
Command Qualifiers for Displaying
Information About Files Transferred
Command Qualifiers for Initializing Disks

DISK AND TAPE DEVICE INFORMATION
Files-11 Structures
Disk Volume Labels and Backup Set Names
Devices Supported for Backup and Restore

BACKUP AND RESTORE COMMAND LINE DESCRIPTIONS
Command Line Syntax Definition
Descriptions of Prompts
Description of Command Line Parameters
Description of Command Qualifiers

USING BACKUP AND RESTORE
Using the Format Utility with Backup and
Restore
Using the Bad Block Utility with Backup
and Restore
Using Backup and Restore to Initialize
Disks
Selective Transfer of Data
Backup and Restore to Disks of Different
Size
BRU and File Characteristics

TAPE FORMAT INFORMATION FOR BACKUP AND
RESTORE OPERATIONS

Backup Sets
Tape Sets
Multivolume Tape Operations

BACKUP AND RESTORE ERROR PROCESSING

DISK SAVE AND COMPRESS (DSC)

DSC-SUPPORTED VOLUMES
INITIATING AND TERMINATING ONLINE DSC
INITIATING AND TERMINATING STAND-ALONE DSC
DSC COMMAND FORMAT
DSC FILE LABELS, SWITCHES, AND OPTIONS

File Label
Append Switch
Bad Block Switch
Block Factor Switch
Compare Switch
Density Switch
Rewind Switch
Verify Switch

DSC OPERATION OVERVIEW

viii

Page

10-1

10-1

10-3

10-5

10-5

10-6

10-6
10-7
10-7
10-7
10-9
10-9
10-10
10-10
10-10
10-11
10-13
10-21

10-22

10-22

10-23
10-24

10-24
10-25

10-26
10-27
10-27
10-27
10-28

11-1

11-4
11-6
11-6
11-7
11-8
11-9
11-10
11-10
11-13
11-14
11-15
11-16
11-18
11-19

.~
::~~' : ~

11

'·•

1••:z•••••••-------.•••: 1••••••:•1!!1•1 •u•:.•: l2•u•:•;•JJ•11•1J!lll• .. •::•.: ••:•. ••ilii•2 ••12s•1•••t•z••!S•¥1111•u:•m•

CHAPTER

CHAPTER

11. 7
11. 7 .1
11. 7. 2
11. 7. 3
11. 7. 4
11. 8
11. 8 .1
11. 8. 2
11. 8. 3
11. 8. 4
11.9
11. 9 .1

11. 9. 2
11. 9. 3

12

12.1
12 .1.1
12 .1. 2
12 .1. 3
12.2
12.2.1
12.2.2
12.2.3
12.3
12.3.l
12.3.2
12.3.3
12.3.4
12.3.5
12.4

12.5

13

13.1
13.2
13.3
13.3.l
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
13.3.7
13.3.8
13.4
13.5

CHAPTER 14

14.1
14.2

CONTENTS

STAND-ALONE DSC
Control Status Register Switch
TM02 Switch
Unit Switch
Vector Address Switch (/VEC=)

DSC OPERATION
Data Transfer from Disk
Data Transfer to Tape
Data Transfer from Tape
Data Transfer to Disk

DSC MESSAGES
DSC Messages: Text, Explanation, and
Corrective Action
DSC I/O Messages
Stand-Alone DSC Messages

VOLUME PRESERVATION UTILITY (PRESRV)

INTRODUCTION TO PRESRV
Files-11 Format
Logical Tape Format
Image Format

PRESRV OPERATING PROCEDURES
Bootstrap Procedure
Tape Handling
Disk and DECtape Handling

PRESRV COMMAND LINE AND SWITCHES
List Switches (/HE and /LI)
Format and Blocking Switches
Administrative Switches
Magnetic Tape Switches
Stand-Alone PRESRV Switches

COMPUTING THE NUMBER OF BLOCKS REQUIRED
FOR BUFFERING
PRESRV ERROR MESSAGES

FILE STRUCTURE VERIFICATION UTILITY {VFY)

INTRODUCTION TO VFY
VFY COMMAND STRING
VFY SWITCHES

Validity Check
Delete Switch (/DE)
Free Switch (/FR)
List Switch {/LI)
Lost Switch (/LO)
Read Check Switch (/RC)
Rebuild Switch (/RE)
Update Switch (/UP)

VFY ERROR MESSAGES
VFY ERROR CODES (IAS SYSTEM ONLY)

PART 6 PROGRAMMING UTILITIES

LIBRARIAN UTILITY PROGRAM (LBR)

INTRODUCTION TO LBR
LBR COMMAND STRING

ix

Page

11-19
11-20
11-21
11-22
11-22
11-23
11-23
11-23
11-25
11-25
11-26

11-27
11-39
11-41

12-1

12-1
12-1
12-2
12-3
12-4
12-6
12-7
12-9
12-10
12-13
12-13
12-18
12-20
12-21

12-25
12-27

13-1

13-1
13-2
13-3
13-4
13-8
13-8
13-9
13-9
13-9
13-10
13-11
13-11
13-14

14-1

14-1
14-1

14.3
14.4
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.6
14.6.1
14.6.2
14.6.3
14.6.4
14.6.5
14.6.6
14.6.7
14.6.8

14.6.9
14.6.10
14. 6. 11
14.6.12
14.6.13
14.6.14
14.7
14.8
14.9
14.9.1
14.9.2

CHAPTER 15

15.1
15 .1.1
15 .1. 2
15.2
15.3
15.4

CHAPTER 16

16.1
16.2
16.2.1
16.2.2
16.2.3
16.3

CHAPTER 17

ii I

17.1
17.1.1
17.1.2
17.1.3
17.1.4
17.2

CONTENTS

DEFAULTS IN LBR FILE SPECIFIERS
LBR SWITCHES
FORMAT OF LIBRARY FILES

Library Header
Entry Point Table
Module Name Table
Module Header

LBR SWITCHES
Compress Switch (/CO)
Create Switch (/CR)
Delete Switch (/DE)
Default Switch (/DF)
Delete Global Switch (/DG)
Entry Point Switch (/EP)
Extract Switch (/EX)
Insert Switch (/IN) for Object and Macro
Libraries
List Switches (/LI, /LE, /FU)
Modify Header Switch (/MH)
Replace Switch (/RP)
Spool Switch (/SP)
Selective Search Switch (/SS)
Squeeze Switch (/SZ)

COMBINING LIBRARY FUNCTIONS
LBR RESTRICTIONS
LBR ERROR MESSAGES

Effect of Fatal Errors on Library Files
LBR Error Messages

FILE DUMP UTILITY (DMP)

INTRODUCTION TO DMP
File Mode
Device Mode

DMP COMMAND STRING
DMP SWITCHES
DMP ERROR MESSAGES

PART 7 PROGRAM MAINTENANCE UTILITIES

THE FILE COMPARE UTILITY (CMP)

CMP SWITCHES
FORMATS OF CMP OUTPUT FILES

Differences Format
Change Bar Format
SLP Command Input Format

CMP MESSAGES

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP INPUT AND OUTPUT FILES
The Input File
Command Input
The SLP Listing File
The SLP Output File

HOW SLP PROCESSES FILES

x

;: ii

Page

14-2
14-3
14-4
14-4
14-4
14-5
14-5
14-10
14-10
14-11
14-12
14-13
14-15
14-16
14-17

14-18
14-20
14-21
14-22
14-27
14-28
14-29
14-31
14-32
14-32
14-33
14-33

15-1

15-1
15-1
15-1
15-2
15-2
15-6

16-1

16-2
16-4
16-4
16-5
16-6
16-6

17-1

17-2
17-2
17-2
17-3
17-3
17-4

CHS i iiiii! iii jL! I Ji! 1111

'-";

17.3
17.3.1
17.3.2
17.3.3
17.3.4
17.4
17.4.1
17.4.2
17.4.3

17.4.4
17.4.5
17.4.6
17.5
17.5.1
17.5.2

CHl~PTER 18

CHllPTER

18.1
.18.2
18.2.1
18.2.2
18.2.3

18.2.4

18.3
18.3.1
18.3.2
18.3.3
18.3.4
18.3.5
18.3.6
18.3.7

19

19.1
19.2
19.3
19.3.1
19.3.2

19.4

19.4.1
19.4.2
19.4.3
19.4.4
19.4.5
19.4.6

19.5
19.5.1
19.5.2
19.5.3

CONTENTS

USING SLP
Specifying SLP Edit Commands
Entering SLP Edit Commands
Updating Source Files Using SLP
Creating Source Files Using SLP

CONTROLLING SLP
SLP Switches
Controlling the Audit Trail
Setting the Position and Length of the
Audit Trail
Changing the Value of the Audit Trail
Temporarily Suppressing the Audit Trail
Deleting the Audit Trail

SLP MESSAGES
SLP Information Message
SLP Error Messages

OBJECT MODULE PATCH UTILITY {PAT)

SPECIFYING THE PAT COMMAND STRING
HOW PAT APPLIES UPDATES

The Input File
The Correction File
How PAT and the Task Builder Update
Object Modules
Determining and Validating the Contents
of a File

PATCH MESSAGES
Information Messages
Command Line Errors
File Specification Errors
Input/Output Errors
Errors in File Contents or Format
Internal Software Error
Storage Allocation Error

TASK/FILE PATCH PROGRAM {ZAP)

INVOKING AND TERMINATING ZAP
ZAP SWITCHES
ADDRESSING LOCATIONS IN A TASK IMAGE

Relocation Biases
ZAP Addressing Modes: Absolute and Task
Image

THE ZAP COMMAND LINE AND COMMAND LINE
ELEMENTS

ZAP Commands
ZAP Internal Registers
ZAP Arithmetic Operators
ZAP Command Line Element Separators
The Current Location Symbol
ZAP Command Line Location-Specifier
Formats

USING ZAP OPEN/CLOSE COMMANDS
Opening Locations in a Task Image File
Changing the Contents of a Location
Closing Task Image Locations

xi

Page

17-5
17-5
17-7
17-10
17-14
17-15
17-15
17-16

17-17
17-17
17-18
17-19
17-19
17-20
17-20

18-1

18-2
18-3
18-3
18-3

18-4

18-7
18-7
18-8
18-8
18-9
18-11
18-12
18-13
18-13

19-1

19-1
19-2
19-3
19-3

19-3

19-5
19-5
19-6
19.-6
19-7
19-8

19-8
19-9
19-10
19-11
19-11

19.6
19.6.1
19.6.2

19.6.3

19.6.4
19.6.5
19.6.6
19.7

APPENDIX A

A.l
A. 2
A. 3
A. 4·
A. 5
A. 6
A. 7
A. 8
A.9
A.10
A.11
A.12
A.13
A.14
A.15
A.16
A.17
A.18
A.19

APPENDIX B

B.l

B.1.1
B.1. 2

B. l. 3

B.l. 4

B.2

B.2.1
B.2.2

B.3
B.3.1
B.3.2
B.3.3
B.3.4

CONTENTS

USING ZAP GENERAL-PURPOSE COMMANDS
Exit from ZAP
Compute an Off set and Store It in the
Quantity Register
Display the Branch and Jump Displacements
from the Current Location
Display the Value of an Expression
Verify the Contents of a Location
Set The Value For A Relocation Register

ZAP ERROR MESSAGES

APPENDIXES

COMMANDS AND SWITCHES

INTRODUCTION
EDT COMMAND SUMMARY
EDI COMMAND SUMMARY
PIP COMMAND SUMMARY
FLX COMMAND SUMMARY
PRINT AND QUE COMMAND SUMMARY
QUEUE MANAGER COMMAND SUMMARY
FMT COMMAND SUMMARY
BAD COMMAND SUMMARY
BRU COMMAND SUMMARY
DSC COMMAND SUMMARY
PRESRV COMMAND SUMMARY
VFY COMMAND SUMMARY
LBR COMMAND SUMMARY
DMP COMMAND SUMMARY
CMP COMMAND SUMMARY
SLP COMMAND SUMMARY
PAT COMMAND SUMMARY
ZAP COMMAND SUMMARY

LBR, EDI AND DMP EXAMPLES

SAMPLE LISTINGS FOR LBR LIST SWITCHES
(OBJECT LIBRARY}

List Module Names
List Module Names and Full Module
Information
List Module Names, Full Module Information
and Module Entry Points (Global Symbols}
List Module Names and Module Entry Points
(Global Symbols}

SAMPLE LISTING FOR LBR LIST SWITCHES
(MACRO LIBRARY}

List Module Names
List Module Names and Full Module
Information

SAMPLE EDITING OPERATIONS
File Editing Sample
SAVE and UNSAVE Example
Use of Inunediate Macro Conunand
Use of Macro Conunands

xii

:;

Page

19-13
19-13

19-13

19-14
19-15
19-15
19-16
19-16

A-1

A-1
A-1
A-3
A-8
A-10
A-12
A-15
A-17
A-18
A-18
A-22
A-23
A-24
A-25
A-26
A-28
A-29
A-30
A-30

B-1

B-1
B-1

B-2

B-3

B-7

B-13
B-13

B-14
B-15
B-16
B-20
B-23
B-24

~
1

USS

B.4
B.4.1
B.4.2
B.4.3
B.4.4

APPENDIX C
C.l
c.2
C.3
C.4

APPENDIX D

FIGURE

D.l
D.1.1
D. l. 2
D.2
D.3
D.4

2-1
4-1

4-2

4·-3
4·-4
4·-5
4·-6

5-1
5·-2
6·-1
10-1
11-1
11-2
12-1
13-1
14-1

14-2
14-3
14-4
14-5
14-6

14-7
14-8
14-9

14-10

CONTENTS

SAMPLE DMP LISTINGS
Use of /LB Switch
"Standard" Command Line
Dump Only the Header from SYSGEN.CMD
Use of /BA Switch

RSX-llM SERIAL DESPOOLER TASK
RECEIVE QUEUE OPERATION
TEXT REQUIREMENTS
TASK-BUILD INFORMATION
PRT ERROR MESSAGES

CRF--THE RSX-11 CROSS-REFERENCE PROCESSOR

HOW CRF PROCESSES DATA
MACR0-11/Task Builder Processing
CRF Processing

THE CRF SYMBOL TABLE FILE
THE CRF SEND PACKET
CRF ERROR MESSAGES

FIGURES

Input Line Number Sequencing
Results of Copy Command With and Without
/NV Specified
Sample Directories Before and After
Execution of /EN
Directory Listing Examples
Format of Protection Word
Use of the Purge Switch
Results of Rename Switch With and Without
/NV Specified
DOS-11 Directory Listings
RT-11 RK05 Cartridge Disk Directory Listing
Job Flag Page and File Flag Page
Standard Tape Format for Magnetic Tapes
Data Transfer for DSC Copy Operation
Data Transfer for DSC Compare Operation
Logical Tape Format
VFY Listing Sample Using the /LI Switch
General Format for Object and Macro Library
Files
Universal Library File Format
Contents of Library Header
Format of Entry Point Table Element
Format of Module Name Table Element
Module Header Format for Object and Macro
Libraries
Module Header Format for Universal Libraries
Sample Files Used in LBR Examples 1-4
Output Library File After Execution of
Example 1
Output Library File After Execution of
Example 2

xiii

Page

B-26
B-26
B-26
B-28
B-28

C-1
C-1
C-1
C-1
C-2

D-1

D-1
D-1
D-3
D-3
D-4
D-5

2-13

4-10

4-17
4-23
4-26
4-28

4-30
5-9
5-11
6-6
10-26
11-2
11-3
12-5
13-9

14-5
14-6
14-7
14-8
14-8

14-8
14-9
14-24

14-25

14-25

FIGURE

TABLE

' 1 ~• Et&.!! Si

14-11

14-12

14-13

14-14

17-1

18-1

c-1
D-1

D-2
D-3

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
3-1
3-2
3-3
3-4
3-5
3-6

3-7
3-8
3-9
3-10
4-1
4-2
4-3
4-4
4-5

4-6
5-1
5-2
5-3
7-1
8-1
8-2
8-3

CONTENTS

FIGURES (Cont.)

Output Library File After Execution of
Example 3
Sample Files for Universal Library Replace
Example
Output Library File After Execution of
Universal Library Replace Example
MACRO Listing Before and After Running LBR
with /SZ Switch
Input Files and Output Files Used During SLP
Processing
Processing Steps Required to Update a
Module Using PAT
PRT Send Data Buffer Format
How MACR0-11, Task Builder, and CRF
Generate Cross-Reference Listings
Format of the CRF Symbol Table File
Format of the CRF SEND Packet

TABLES

EDT File Specification Defaults
EDT Commands
Single Line Specifications
Variable Line Specifications
Compound Line Specifications
Inclusive Line Specifications
Command Options
Cursor Manipulation Subcommands
EDI Default File Specifications
Line-by-Line vs. Block Mode
Basic EDI Commands
EDI Setup Commands
EDI Locator Commands
EDI Text Modification and Manipulation
Commands
EDI Macro Commands
EDI Input/Output Commands
EDI Device Output Commands
EDI Close Operation Commands
PIP Default File Specifications
PIP Copy Command and Merge Subswitches
PIP Switches and Subswitches
List Switches
Response Choices for the Selective Delete
(/SD) Switch
PIP Error Codes
FLX Volume Format Switches
FLX Transfer Mode Switches
FLX Control Switches
Demonstration Forms Settings
Valid Ranges for Manual FMT Operations
FMT-Supported Devices
FMT Device Status

xiv

:;: :; 222 !iiliiiii!Si

Page

14-26

14-27

14-27

14-31

17-4

18-2
C-2

D-2
D-4
D-5

2-4
2-5
2-15
2-17
2-17
2-19
2-20
2-56
3-3
3-5
3-10
3-21
3-22

3-23
3-24
3-25
3-26
3-26
4-2
4-7
4-10
4-21

4-33
4-47
5-3
5-4
5-6
7-9
8-4
8-4
8-5

I sq:: I !1$Jl2Uiiil4J411S

TABLE 9-1
10-1
10-2

10-3

10-4

10-5

10-6
10-7
10-8
11-1
11-2
1.1-3
11-4
11-5
11-6
11-7
11-8
12-1

12-2
12-3
12-4
13-1
13-2
13-3
14-1
14-2
15-1
17-1
17-2
19-1
19-2
19-3
19-4

CONTENTS

TABLES (Cont.}

BAD Switches
Summary of BRO Command Qualifiers
Command Qualifiers That Perform Selective
Backup and Restore Operations
Command Qualifiers That Control Disk
Processing
Command Qualifiers That Control Tape
Processing
Command Qualifiers That Verify the Accuracy
of Data Transfers
Command Qualifiers That Provide Information
Initialization Qualifiers
Devices Supported by BRO
DSC-Supported Devices
DSC Device Status
DSC Switches and Options
Operating System Limits for DSC Block Factor
Commands Using DSC Rewind Switch
Stand-Alone DSC Switches
System-Generated CSR and Vector Addresses
General Error and I/O Error Message Codes
Legal Multifile/Volume Format in Logical
Tape
Summary of PRESRV Switches
Default Blocking Factors
CSR and Vector Addresses
VFY Default File Specifiers
VFY Functions and Switches
VFY Error Codes
Defaults in LBR File Specifiers
LBR Switches
DMP Switches
SLP Operators
SLP Switches
ZAP Arithmetic Operators
ZAP Command Line Element Separators
ZAP Open/Close Commands
ZAP General-Purpose Commands

xv

Page

9-2
10-2

10-4

10-5

10-6

10-6
10-7
10-8
10-9
11-5
11-6
11-8
11-14
11-17
11-20
11-21
11-27

12-8
12-10
12-17
12-22
13-3
13-4
13-14
14-2
14-3
15-2
17-9
17-16
19-7
19-7
19-9
19-14

"
11.lllJ !iiiiii iiii!iii ii lli iii! . u::: ill iii iii!i!i :::= I.I ilii! !.ti iiiil ii ili!il ii!! I i!iii:U I iiiill!lh I .

\......:'

SUMMARY OF TECHNICAL CHANGES

Utilities can now be used from the DIGITAL Command Language (DCL)
environment (on RSX-llM-PLUS) as well as from the Monitor Console
Routine (MCR) environment (on RSX-llM and RSX-llM-PLUS).

The RSX-llM Print Spooler Task (PRT) is now called the Serial
Despooler Task. The new name distinguishes it from another task named
PRT that is part of the Queue Manager (see below). The choice of
Serial Despooler or Queue Manager is made at system generation. All
switches or commands that despool output operate the same way with
either task.

The following lists the technical changes (such as new functionality,
new and revised switches, and new utilities) by utility, in the order
in which the utility appears in this manual.

Peripheral Interchange Program (PIP)

/CD - Creation Date (new) - allows the output file to take the
creation date of the input file rather than the date of transfer.

/EOF -· End-of-file (new) - specifies the end-of-file pointer for
a file.

/FR - Free blocks (revised) - displays the amount of free space
on the specified volume and the largest contiguous free space on
that volume.

/LD - List Deleted files (new) - lists the files that have been
deletE~d.

/NM - No Message (new) - suppresses certain PIP error messages.

/TR - Truncate (new) - truncates file(s) to logical end-of-file.

/SD - Selective Delete (new) - deletes files selectively by
prompting for user response before deleting them.

/SR - Shared Reading (new) - allows shared reading of a file that
has already been opened for writing by another user or task.

/SU - Supersede (revised) - allows you to copy one or more input
files to a file whose file name, file type, and version number
already exist in a User File Directory.

xvii

1! I ll!i5 lid

File Transfer Program (FLX)

FLX now supports RK06/RK07, RLOl, and RX02 disks, and the TU58
data cartridge. All devices are RT-11 compatible only.

/DNS:n - Density (new) - specifies the density of the magnetic
tape; n is 800 or 1600 bpi.

/RW - Rewind (new) - rewinds the magnetic tape before beginning
the file transfer.

The Queue Manager

The Queue Manager is a collection of programs that provides for
the orderly processing of queued files. The Queue Manager allows
you to specify how, when, and where a file will be despooled.
You can also display information about the queue. On
RSX-llM-PLUS only, the Queue Manager supports batch processing.

This manual describes the Queue Manager for RSX-llM V03.2 only.
For information on the Queue Manager for RSX-llM-PLUS, see the
RSX-llM-PLUS Batch and Queue Operations Manual.

Disk Volume Formatter (FMT)

FMT is a new utility that formats disk volumes (cartridges,
packs, and flexible disks) and, optionally, spawns the Bad Block
Locator Utility (BAD) if your system supports spawned tasks. FMT
allows you to format an entire volume or, where permitted,
individual tracks or sectors of a volume.

Bad Block Locator Utility (BAD)

/MAN - Manual (new) - prompts you for bad block information and
enters the blocks you specify in the bad block descriptor file.

/UP - Update (new) - allows you to update the bad block
descriptor file by entering additional bad block information in
response to prompts.

Back-Up and Restore Utility (BRU)

BRU is a new fast back-up and restore utility that features:

• Disk-to-tape back-up

• Tape-to-disk restore

• Disk-to-disk copying

• Incremental back-up or restore

• Copying from an unmounted disk

• Copying to a disk that is either unmounted (BRU initializes
the disk) or mounted (using the file system)

xviii

$$ I i!ii I ii I I I I I iii !i! p: iii I I ii Sil iii JUI! ii !iij iii! I ii Jiiii!2!U iiiill Sh 121 i!i i

Disk Save and Compress Program· (DSC)

DSC now supports TS04 magnetic tape drives.

Specifying a label name for an output volume is now permitted.

/BAD - Bad Block Locator Utility (revised) - agrees with the
syntax for the current version of the BAD utility.

/BL - Blocking Factor (new) - sets the blocking factor at which
DSC accesses blocks of data by enabling the user to change the
number of 512(10)-byte blocks in each of DSC's internal buffers.

Librarian Utility Program (LBR)

LBR can now create and maintain universal libraries. Any file
can be installed as a module into a universal library.

/MH - Modify Header (new) - allows you to add information to a
universal library header.

File Dump Utility (DMP)

/FI - File Identification (new) - allows you to enter a file
number as a file identifier instead of a file name.

/HF - Header Format (new) - formats
header structures. Other blocks
octal dump.

blocks that have Files-11
are output as an unformatted

/RW - Rewind (new) - issues a rewind command before it refers to
a specific tape.

Source Language Input Program (SLP)

SLP and its audit trail switch (/AU) have been modified to allow
a maximum line-length of 132(10) characters.

/CS - Checksum (new) - calculates the checksum value for the edit
commands.

/TR - Truncate (new) - reports lines that have been truncated by
the audit trail.

xix

·"•

1••1112•u•a•. 1111•:•£•2 •: ::•:m:m•s •,•£:•2!•::•: •1.11:::•--11!411m••: :u••a•::•: •a•t •::::•,:s::•: •t:•::::••u•l!•&"; •: ••: ;~::•••H•: •2•:: •: •t•:a:•:•u•. •::•:: •:a•:••:•:s•t;u•:::a•c.•Je•sa•:::•:

PREFACE

MANU.~L OBJECTIVES

The RSX-11 Utilities Manual is a reference manual describing the use
of the 17 utilities supported by DIGITAL on the RSX-llM and
RSX-llM-PLUS operating systems.

INTENDED AUDIENCE

This manual is for all users of the RSX-llM and RSX-llM-PLUS operating
systems.

STRUCTURE OF THIS DOCUMENT

Chapter l describes briefly each of the utilities, and explains how to
enter command lines and how to invoke and use the utilities.

Chapter 2 describes the DEC Standard Editor (EDT).

Chapter 3 describes the Line Text Editor (EDI).

Chapter 4 describes the Peripheral Interchange Program (PIP).

Chapter 5 describes the File Transfer Program (FLX).

Chapter 6 describes the Print and Queue Utility (PR! and QUE).

Chapter 7 describes the Queue Manager.

Chapter 8 describes the Disk Volume Formatter (FMT).

Chapter 9 describes the Bad Block Locator Utility (BAD).

Chapter 10 describes the Back-Up and Restore Utility (BRU).

Chapter 11 describes the Disk Save and Compress Program (DSC).

Chapter 12 describes the Preservation Utility (PRESRV).

Chapter 13 describes the File Structure Verification Utility (VFY).

Chapter 14 describes the Librarian Utility Program (LBR).

Chapter 15 describes the File Dump Utility (DMP).

Chapter 16 describes the File Compare Program (CMP).

xxi

iii iii I

Chapter 17 describes the Source Language Input Program (SLP).

Chapter 18 describes the Object Module Patch Utility (PAT).

Chapter 19 describes the Task/File Patch Program (ZAP) •

Appendix A is a summary of the commands and switches for the
utilities.

Appendix B contains examples of the LBR, EDI, and DMP utilities.

Appendix c describes the RSX-llM Serial Despooler Task (see the
Summary of Technical Changes).

Appendix D describes the Cross-Reference Processor (CRF).

ASSOCIATED DOCUMENTS

The RSX-llM/RSX-llS Documentation Directory and the RSX-llM-PLUS
Documentation Directory briefly describe the manuals in the
documentation set for each system. With them, you can find out where
to obtain more information.

The RSX-llM/M-PLUS MCR Operations Manual describes the Monitor Console
Routine (MCR) environment and its commands. The utilities can be
invoked from the MCR environment. This manual provides background
information about MCR.

The RSX-llM~PLUS Command Language Manual describes the DIGITAL Command
Language routine (DCL) and its commands. The utilities can be invoked
from the DCL environment. This manual provides background information
about DCL.

CONVENTIONS USED IN THIS DOCUMENT

Use of Second Color

User (operator) input appears in red.

Use of Uppercase Characters

Uppercase characters in a command line indicate characters that must
be entered as they are shown. For example, utility switches must
always be entered as they are shown in format specifications. An
exception is the <CR> symbol, which denotes a carriage return.

Use of Lowercase Characters

Lowercase letters, words, or symbols
specifications represent variables for
values. For example:

filename.filetype;version

in command line format
which the user substitutes

The line represents the values that comprise a file specification;
values are substituted for each of these variables as appropriate.

xx ii

ii I JIJ! i2 :; . I

',~,-,···,_ '~ --:,

iiiiiii

Command Abbreviations

Where short forms of commands are allowed, the shortest form
acceptable is represented by uppercase characters. The following
example shows the minimum abbreviation allowed for the EDI WRITE
command:

Write

This notation means that W, WR, WRI, WRIT, and WRITE are all valid
specifications for the WRITE command.

Use iof Brackets ([])

Brackets denote optional entries in a specification. Brackets also
are a part of the User File Directory portion of file specifications,
that is, [group,member]. When this portion of a file specification is
entered explicitly, brackets are required syntax elements; that is,
they do not indicate optional entries. Note that when an option is
entered, the brackets are not included in the command line.

~ Use 1of commas (,)

Commas are used as separators for command line parameters and indicate
positional entries on a command line.

Use iof At Sign (@)

The at sign
immediately
:file:

(@) invokes an indirect command file. The at sign
precedes the file specification for the indirect command

@filename.filetype;version

Use iof Periods (.)

Periods in the file specification separate the file name and file
type. When only the file name is used as the file specification, the
period need not be specified.

~ Use 1of Semicolons (;)

Semicolons in the file specification separate the file type from the
file version. If the version is not specified, the semicolon may be
omitted from the file specification.

Use of Slashes (/)

Slashes precede switches in the file specification. When shown in the
command line format, they must be specified as shown.

Carriage Return

Command lines are terminated by typi~g the RETURN key (carriage
return) unless otherwise indicated in the text. Two forms used to
denote the RETURN key are <CR> and~.

xx iii

.11:"1•••12•t•t•t•••••1L••t• '········-------------··-·1111••••••••111!1••··--RR i!j I ii iii Ji!! r· .,,J i!i lb$! h I

PART 1
INTRODUCTION

~iiia !!bi! ill!! " Li ii iii 5 I I I l2 !SIS Ji

CHAPTER l

INTRODUCTION

The RSX-llM and RSX-llM-PLUS operating systems provide several kinds
of utilities for your use. Utilities are programs that allow you to
work with different kinds of files and the contents of those files,
and also with different kinds of media (such as disks, magnetic tapes,
and cassettes). The RSX-11 utility programs are listed and described
briefly in Section 1.1; reference information for each utility is
presented in a separate chapter of this manual. Four appendixes are
also included to provide you with information related to the utilities
and to describe the Cross-Reference Processor (CRF), which is used
with the MACR0-11 assembler and the Task Builder.

In addition to summarizing the RSX-11 utilities, this introduction:

• Describes how to enter RSX-11 command lines
specifications (Sections 1.2 and 1.3)

• Describes how to invoke utilities (Section 1.4)

1.1 RSX-11 UTILITY PROGRAMS

and file

This manual provides reference information for the following RSX-11
utilities:

Editing Utilities
DEC Editor (EDT)
Line Text Editor (EDI)

File Manipulation Utilities
Peripheral Interchange Program (PIP)
File Transfer Program (FLX)

File Spooling Utilities
Print and Queue Utility (PRI and QUE)
The Queue Manager

Volume Maintenance Utilities
Disk Volume Formatter (FMT)
Bad Block Locator Utility (BAD)
Bac~-Up and Restore Utility (BRU)
Disk Save and Compress Program {DSC)
Preservation Utility (PRESRV)
File Structure Verification Utility (VFY)

Programming Utilities
Librarian Utility Program (LBR)
File Dump Utility (DMP)

1-1

JS

INTRODUCTION

P~ogram Maintenance Utilities
File Compare Utility (CMP)
Source Language Input Program (SLP)
Object Module Patch Program (PAT)
Task/File Patch Program (ZAP)

The following sections briefly describe each utility.

1.1.1 Editing Utilities

DIGITAL supports two editing programs for creating and maintaining
text and source files.

1.1.1.l ,DEC Editor (EDT) - EDT is an interactive text editor that is
particularly useful for creating and maintaining text files. EDT has
two features that distinguish it from EDI:

• Provides unlimited access to an entire file at one time,
making it unnecessary to work with most files in smaller
sections. (However, a file can be too large for EDT.)

• Provides character-mode editing for users with video
terminals. Character mode allows you to edit at the character
and word levels as well as at line level.

1.1.1.2 Line Text Editor (EDI) - EDI is a line-oriented, interactive
editor used to create and maintain text and source files.

1.1.2 File Manipulation Utilities

DIGITAL provides two file manipulation
utilities, you can, among other jobs,
transfer files between volumes.

utilities. With these
copy and spool files and

1.1.2.1 Peripheral Interchange Program (PIP) - PIP copies files and
performs several file control functions, such as concatenating,
renaming, spooling, listing, deleting, and unlocking.

1.1.2.2 File Transfer Program (FLX) - FLX is a file transfer and
format conversion program that transfers files between DOS-11, RT-11,
and Files-11 volumes, with some restrictions.

1.1.3 File Spooling Utilities

File spooling is handled differently on RSX-llM and RSX-llM-PLUS. For
RSX-llM-PLUS, see the RSX-llM-PLUS Batch and Queue Operations Manual.
RSX-llM systems can include either the Queue Manager or the Print
Spooler task, ••• PRT. PRT is described in Appendix c.

1-2

a a Uf qaa sq ¢4

\...I'

INTRODUCTION

1.1.3.l Pribt Command and the Queue Manager (PRI and QUE) - This
chapter describes how the user interfaces with the Queue Manager.
With the Queue Manager, files can be spooled with the Print command.
Files spooled by tasks will also be queued automatically. You can set
many attributes of the job with the Print command or with the
QUE /MODIFY commands. You can also display the queues and you can
alter, hold, or release a job after it has been placed in the queue.

1.1.3.2 The Queue Manager - This chapter describes the privileged
commands for setting up and running the Queue Manager.

1.1.4 Volume Maintenance Utilities

Volume maintenance includes backing up files onto the volumes,
locating bad blocks on the volumes, and verifying the contents of the
volumes. DIGITAL provides six volume maintenance programs.

1.1.4.1 Disk Volume Formatter. (FMT) - FMT formats and verifies
RP02/RP03, RP04, RPOS, RP06, RM02, and RM03 pack disks, RKOS, RK06,
and RK07 cartridge disks, and RX02 flexible disks. FMT can:

• Write complete headers for each sector of a disk

• Verify the headers it writes

• Set the.density for RX02 flexible disks

• Set the maximum error limit for a disk pack and terminate
processing when the limit is reached

• Allow spawning of the Bad Block Locator Utility (if your
system allows spawned tasks)

1.1~4.2 Bad Block Locator Utility (BAD) - BAD determines the number
and location of bad blocks on a volume (including magnetic tape). The
information gathered from running BAD on a volume can be used in
different ways when that volume is initialized.

l.lti4.3 Back-Up and Restore Utility (BRU) - BRU transfers files from
a Files-11 volume to one or more back-up volumes (including
non-Files-11 volumes) and retrieves files from the back-up volume(s).
BRU is faster than DSC or PRESRV (described below) in most areas.
Also, BRU compresses data, the volumes do not have to be initialized,
and incremental back-ups are possible.

l.lu4.4 Disk Saye and Compress Program (DSC) - DSC copies Files-11
disk files to disk or tape and from DSC-created tape back to disk.
While copying the files, DSC also consolidates the data storage area
and writes files in contiguous blocks unless it encounters a bad
block. DSC can be run either online or stand-alone.

1-3

INTRODUCTION

1.1.4.S Preservation Utility (PRESRV) - PRESRV is a
program that allows you to create copies of volumes.
PRESRV does not flag bad blocks or compress volumes.

stand-alone
Unlike DSC,

1.1.4.6 File Structure Verification Utility (VFY) - VFY is a disk
verification program that verifies the consistency and validity of the
file structure on a Files-11 volume.

1.1.5 Programming Utilities

DIGITAL supports two programming utilities. The utilities allow you
to work with library files and to examine file contents.

l~l.5.1 Librarian Utility Program (LBR) - LBR is a library
maintenance program that creates and modifies library files. LBR can
process macro, object, and universal libraries.

1.1.5.2 File Dump Utility (DMP) - DMP is a file listing program that
allows you to examine file contents. DMP also provides options that
control the format of the contents.

1.1.6 Program Maintenance Utilities

Program maintenance includes modifying, patching, and comparing files.
DIGITAL provides four program maintenance utilities.

1.1.6.l File Compare Utility (CMP) - CMP compares two text files,
record by record, and lists the differences between the two files.

1.1.6.2 Source Language Input Program (SLP) - SLP is a noninteractive
editing program that is used to maintain and audit source files.

1.1.6.3 Object Module Patch Program (PAT) - PAT is an object module
patch utility that updates, or patches, a relocatable binary object
module.

1.1.6.4 Task/File Patch Program (ZAP) - ZAP is a patch utility that
examines and directly modifies locations in a task image or data file.

1.2 ENTERING RSX-11 COMMAND LINES

The general format for entering command lines to RSX-11 utilities is:

outfile, ••• outfile=infile, ••• infile<CR> f"'\

1-4

U JUI! I .iilt..£111 Uiiii Ji i2 ii L.i!i!iil I !ill iii! ::: ; !fall : .. ::::::: iii!!! ii \ . iii I ii iii iiiiii:S ifaiiiiS .iiiiiiiii I Ir Ji iil!iil Q ii!llii ;:. I .JI&! ... ; i I I I I

INTRODUCTION

wherE~ outfile and inf ile are file specifications for the output and
input files to be operated on by the utility.

This general format varies from utility to utility. Some use the
entire command line and others use abbreviated forms of the command
line.. For some other utilities (such as BRU), the format is
different. The syntax for each utility is described in the chapter
that describes that utility. The utilities also accept indirect
command files containing command lines, as described in Section 1.4.4.

1.3 ENTERING FILE SPECIFICATIONS

In the command line format described in Section 1.2, outfile and
inf ile represent file specifications. The number of file
specifications you can enter depends on the utility. The maximum
terminal line length depends on the size of the output buffer for your
terminal.

The format for entering file specifications is:

dev:

dev: [group,member]filename.filetype;version/sw ••• /subsw ••• <CR>

The physical device containing the desired volume. The name
consists of two or three ASCII characters followed by an option~l
1-, 2-, or 3-digit octal unit number and a colon, for example,
DKO:, TTlOO:, or DBAO:. For RSX-llM, device names are limited to
two ASCII characters.

The default is the system device, SYO:.

[group, member]

The group number and member number associated with the User File
Directory (UFD) containing the desired file. Both numbers are
octal.

The default is the current UIC.

filename

The name of the file. RSX-11 file names can be null or consist
of up to nine alphanumeric characters.

There is no default.

filetype

The file type of the file. The file type provides a convenient
means for distinguishing different forms of the same file. For
example, a FORTRAN source program file might be named COMP.FTN
and the object file for the same program might be named COMP.OBJ.
File type and file name are separated by a period. The file type
can be zero to three alphanumeric characters. See the
RSX-llM/M-PLUS MCR Operations Manual for a list of standard file
types.

There is no default.

1-5

iii i iii!iii

INTRODUCTION

version

/sw

An octal number that specifies different versions of the same
file. For example, when a file is created, it is assigned a
version number of l by default. Thereafter, each time the file
is opened and unless you specify otherwise, the file system
creates a new file with the same file name and file type, but
with a version number incremented by 1. Version numbers can
range from O through 77777(8). Version number and file type are
separated by a semicolon.

The default is the latest version.

An ASCII name specifying a switch associated with a function to
be executed by the utility. Most utility functions are
implemented by means of switches and subswitches. Switches can
take one of three forms:

/sw
/-sw
/NOsw

invokes the switch function
negates the switch function
negates the switch function

Switches can take values in the form of ASCII strings and numeric
strings.

Most numeric values are octal by default. To specify a decimal
number, terminate the number with a decimal point. Values
preceded by a pound sign (#) are octal; this optional notation
provides explicit documentation of octal values. Any number can
be preceded by either a plus (+) or minus (-) sign; plus is the
default. Where explicit octal notation (#) is used, the sign, if
specified, must precede the pound sign.

The following are valid switch specifications:

/SW:27.:MAP:29.
/-SW
/NOSW:-#SO:SWITCH

/subsw

An ASCII name specifying a subswitch associated with a switch.
Subswitches provide a subset of functions related to the main
switch function. The following is an example of a subswitch
specification:

PIP> [200,200] *• *;*/PR/FO<CR>

In this example, /FO is a subswitch applied to the PR switch.

Syntactically, subswitches are identical to switches. The rules
for entering switches also apply for entering subswitches.

1.4 INVOKING RSX-11 UTILITIES

You can invoke a utility from the Monitor Console Routine (MCR) or
DIGITAL Command Language (DCL) environment. MCR is on both the
RSX-llM and RSX-llM-PLUS systems. DCL is on RSX-llM-PLUS only. Both
MCR and DCL monitor your terminal activity; that is, they accept or
reject commands you enter and they display messages. (For more

1-6

!iii& ii J I Ii fl j iii 221 Ji it if i&ih

INTRODUCTION

information on MCR, see the RSX-llM/M-PLUS MCR Operations Manual. For
more information on DCL, see the RSX-llM-PLUS Command Language
Manual.)

To determine whether you are using MCR or DCL, type CTRL/C, which
returns the explicit monitor prompt: either MCR> or DCL>.

You invoke a utility and then work with it directly or by means of
indirect command files. For systems in which all utilities are
installed, you can use any of three methods to invoke a utility.
Sections 1.4.l and 1.4.2 describe these methods. For systems in which
not all utilities are installed, you can use two methods for invoking
a utility. Section 1.4.3 describes these methods.

Section 1.4.4 describes how to invoke a utility that can then accept
commands from an indirect command file.

You invoke a utility when the RSX-llM/M-PLUS MCR or RSX-llM-PLUS DCL
routine prompts you.

For HSX-llM/M-PLUS, the MCR prompts are:

> or (if you type CTRL/C first) MCR>

For HSX-llM-PLUS, the DCL prompts are:

> or (if you type CTRL/C first) DCL>

DCL has commands that access utilities transparently to the user, that
is, you do not have to explicitly specify the utility in order to use
it. For example, the DCL command DIFFERENCES invokes the File Compare
Utility (CMP); and the DCL commands COPY~ DELETE, and PURGE invoke
the Peripheral Interchange Program (PIP). This transparent access to
utilities covers most common instances of utility needs for DCL users.
If you use these DCL commands, the general format for specifying files
is:

>command[/qualifiers] infile outfile

DCL users can also use any MCR command forms by using the DCL MCR
command. However, if you are using DCL and you want to have full
access to the utilities as detailed in this manual, you must invoke
the utility using the RUN command. Sections 1.4.2.3 and 1.4.3
describe this procedure.

1.4.l Installing Utilities on Your System

RSX-11 systems provided in distribution kits require the use of the
MCR RUN or DCL RUN command to invoke a utility. Utilities must be
installed on your system before you can invoke a utility by its name.
To install utilities on your system, use the MCR command INSTALL or
the DCL command INSTALL.

1.4.2 Invoking Installed Utilities

You can use three primary methods for invoking installed utilities.
Sections 1.4.2.1, 1.4.2.2, and 1.4.2.3 describe the methods.

1-7

12!2 lits ii

INTRODUCTION

1.4.2.l Invoking a Utility and Returning Control to MCR - Use one of
the following forms of command lines to invoke a utility to execute a
function and then return control directly to MCR:

>utilityname commandstring<CR>

or

MCR>utilityname commandstring<CR>

Using this method to invoke the utility allows you to enter a single
command for execution. The utility is loaded, the command is
executed, and control returns to MCR. (The method described in
Section 1.4.2.3 allows you to enter more than one command line because
control returns to the utility rather than to MCR.)

Two exceptions to this command format are the SLP and ZAP utilities.
You must first invoke these utilities and then enter the command lines
as described in Section 1.4.2.3. (However, you can specify SLP
@indirectcommandfile; see Section 1.4.4.)

1.4.2.2 Invoking a Utility and Returning Control to DCL - Use the
following form of command line to invoke a utility to execute a
function and return control directly to DCL:

>command<CR>

Using this method to invoke the utility allows you to enter a single
command for execution. The DCL command transparently accesses the
utility (see Section 1.4), the utility is loaded, the command is
executed, and control returns to DCL.

Two exceptions to this command format are the SLP and ZAP utilities.
You must first invoke these utilities and then enter the command lines
as described in Section 1.4.2.3. (However, you can specify SLP
@indirectcommandfile; see Section 1.4.4.)

1.4.2.3 Invoking and Passing Control to a Utility - Use one of the
following forms of command lines to invoke a utility and pass control
to it:

• For MCR:

>utilityname<CR>

e For DCL:

>RUN $utilityname<CR>

or

>MCR utilityname<CR>

These commands do not execute a function; rather, they make a utility
available for execution of more than one function without returning
control to MCR or DCL. When invoked using one of these forms, the
utility responds with the prompt:

utilityname>

1-8

ii a ;; I 22 Ji t Ji iii J liii!ib I lilfl I at

INTRODUCTION

You may then enter the command string that specifies the function you
want executed. For example, if you are executing a PIP function, PIP
displays the prompt:

PIP>

To terminate the utility and return to MCR or DCL, type CTRL/Z.

1.4.3 Invoking Uninstalled Utilities

There are two methods for invoking uninstalled utilities. These
methods are useful for smaller systems in which not all utilities are
installed. Both methods use either the MCR command RUN or the DCL
command RUN (depending on which monitor you are using) to invoke the
utility.

The first method invokes the utility by means of the following
command:

>RUN $utilityname<CR>

RUN is the MCR command RUN or the
($) directs MCR or DCL to search
and to bring it into storage. On
in the system directory, MCR
directory and invokes the utility

DCL command RUN; the dollar sign
the system directory for the utility
RSX-llM-PLUS, if the utility is not
or DCL then searches in the library
from there.

When the utility gains control, it displays the prompt:

utilityname>

Then it waits for you to enter a command line. The utility continues
to prompt you after each command is executed. To terminate the
utility, enter CTRL/Z.

The second method for invoking an uninstalled utility is the same as
the first except that it allows the utility to run under a UIC other
than the current UIC:

• For MCR:

>RUN $utilityname/UIC=[group,member]<CR>

• For DCL:

>RUN/UIC: [group,member] $utilityname<CR>

When the utility gains control, it prompts for functions to execute
until you enter CTRL/Z.

1.4.4 Using Indirect Command Files

An indirect command file contains a sequence of command lines that can
be interpreted by a single task (usually a system-supplied task such
as a utility, the MACR0-11 assembler, or the Task Builder). These
command lines appear in the indirect command file exactly as you would
enter them from your terminal.

1-9

·11111 t. z Jii!ii!JJIJI

INTRODUCTION

The commands contained in the indirect command file are executed when
the indirect command file is invoked. For example, an indirect
command file might contain a series of PIP command lines. To invoke
such an indirect command file, enter one of the following sets of
commands:

• For

• For

or

or

MCR:

>PIP @PIPCMDS.CMD<CR>

DCL:

>RUN $PIP<CR>
PIP>@PIPCMDS<CR>

>MCR PIP @PIPCMDS<CR>

>MCR PIP<CR>
PIP>@PIPCMDS<CR>

In this example, PIP is invoked and accesses the file PIPCMDS.CMD,
which contains the sequence of PIP commands. PIP executes the
commands and returns control to MCR, DCL, or PIP, depending on which
commands you use.

RSX-llM and RSX-llM-PLUS also allow you to use indirect command files
that contain MCR commands. The indirect command file contains both
the commands for invoking the utility and the commands that you want
the utility to execute. An indirect command file can contain command
lines for more than one utility.

You invoke the
specification
prompt:

indirect
preceded

command
by the

>@indirectcommandfile<CR>

file by
at sign

entering only the file
(@) in response to the MCR

The default values for indirect command file specifications are:

• Device -- SYO:

• [group,member] -- the current UIC

• File name -- no default; must be specified

• File type -- .CMD

• Version -- the latest version of the file

For complete information on how to use MCR indirect command files,
refer to the RSX-llM/M-PLUS MCR Operations Manual.

1-10

a !illil I ii i mt JIU I iiiiii iii! Ji!iii!li!i :::: :; 1 ii .I I 42 !1111112$ l ii I Ji Ji i!4 iii!!! i!U!i I ¥# ii\ (kii I

PART 2
EDITING UTILITIES

CHAPTER 2

DEC EDITOR (EDT)

The DEC Editor (EDT) provides a means of creating and editing text
files. While editing a file using EDT, you always have access to the
entire file. It is not necessary to deal with the file in pages or
buffers of fixed size.

Within EDT, there are two basic modes of operation: Command Mode and
Chara1cter Mc>de.

• Command Mode allows you to usa EDT as a line-oriented editor.
In Command Mode, each line has a line number assigned by EDT.
By issuing commands that ref er to these numbers or to
character strings within a line, you can manipulate lines or
groups of lines. You can also replace character strings
within a line or a group of lines. While in Command Mode, EDT
maintains a line pointer that points to one line, called the
current line.

• Character Mode can only be used on video terminals. It allows
you to maneuver the cursor from character to character within
a line, or from line to line within a file. Using the cursor
as a pointer, you can manipulate individual characters, words,
lines, and groups of lines.

You gain access to Character Mode through the Change command, which
you issue at Command Mode. It is not possible to go directly from the
monitor to Character Mode without passing through Command Mode. In
this respect, Character Mode can be viewed as one function of Command
Mode. However, you should treat Character Mode as a separate editor
from Command Mode. Character Mode and Command Mode complement each
other to provide a complete editing system.

EDT offers several other features. Among them:

• Main and alternate text buffers. A buffer is a text storage
area. The editing commands that you issue affect text in
buffers; they do not affect files directly. By default, EDT
maintains a single text buffer, called the main buffer.
However, you can create alternate buffers to contain text
which, for some reason, you wish to hold apart from the main
body of text. EDT commands allow you to move lines and groups
of lines back and forth between buffers.

• Editing session backup commands. You can save the current
state of your editing session, including alternate buffer
contents and line pointer location, in a specially formatted
file. At a later time, you can restore the state of your
editing session and take up exactly where you left off. This
feature allows you to pause during a complicated editing
session and also to protect yourself against the accidental
loss of text generated during the session.

2-1

·"
11 iii iii421CU iii!!!

DEC EDITOR (EDT)

• File and buffer I/O commands. While working in Command Mode,
you can create a file from a text buffer or part of a text
buffer. You can also copy the contents of an existing file
into a text buffer. This feature allows you to incorporate
material from several different files into one buffer during a
single editing session.

This chapter is organized into six sections:

• Section 2.1 describes the procedures used to invoke EDT, and
discusses EDT input and output files.

• Section 2.2 describes the elements of an EDT Command Mode
command string, provides a functionally organized list of EDT
commands, and explains range and option specification in EDT.

• Section 2.3 lists Command Mode commands alphabetically, and
provides a detailed description of each.

• Section 2.4 contains a complete guide to EDT's Character Mode,
including the special Character Mode subcommands.

• Section 2.5 contains a summary, in tabular form, of the EDT
Command Mode commands.

• Finally, Section 2.6 lists EDT error messages, and provides
explanations and corrective actions for them.

2.1 INVOKING EDT

You can use most of the methods described in Chapter 1 to invoke EDT.
However, there is one major difference, which occurs if you invoke EDT
using the form

>utilityname commandstring

In this situation, EDT replies with its Command Mode prompt (*). Most
utilities, when invoked in this manner, perform the function specified
in the command string and return to the monitor.

To invoke EDT, follow one of these two sequences:

or

>EDT [outfile=] [infile]<RET>
*

>EDT<RET>
EDT> [outfile=] [infile]<RET>
*

outfile

Specifies the output file that EDT creates at the end of the
editing session. When you exit EDT at the end of the session,
EDT creates the output file and fills it with the contents of the
main text buffer.

If you do not specify the output file, the output file name and
type default to the input file name and type. The output file
version number defaults to the version number of the input file,
plus one.

2-2

I iii 2 i!ii!i!i 2241! 4 iii .Ji! !Ziiiii 2iJ I iii! ::4: I;: 21 I tu Ji $! t ii 112!1 I

DEC EDITOR (EDT)

inf ile

*

Specifies the file that EDT uses as an input file; or, if infile
names a file that does not exist, sets the default file name and
type for the output file that EDT creates when you exit at the
end of the editing session. If you specify an existing input
file, EDT loads its main text buffer from that file. If you do
not specify an input file, or specify an input file that does not
exist, EDT does not load the main text buffer; this means that
you begin the editing session with an empty buffer.

EDT's Command Mode prompt, indicating that EDT is in Command Mode
and ready to accept editing commands.

Note that you do not have to specify either an input file or an output
file. If you specify neither one, you begin the EDT session with an
empty main text buffer; furthermore, you must specify an output file
when exiting EDT if you wish to save the text generated during the
session. If you specify an output file only, you begin the session
with an empty buffer, but you will not need to specify the output file

""1 when you exit. For example:

>EDT BILBO. TXT=
*

or

>EDT
EDT> BI I..BO. TXT=
*

both cause EDT to create the output file BILBO.TXT upon exit. (This
example illustrates two principal methods of invoking EDT; the two
methods are equivalent.) By default, the version number of the output
file is 1, if the file did not exist previously; or, if the file
already exists, n+l, where n is the highest current version number.
(See Table 2-1 for a complete list of EDT file specification
defaults.)

If you specify only the input file, there are two possibilities: the
input file that you specify exists, or it does not exist. If the file
exists, EDT loads its main text buffer from the contents of the file
and also sets the default output file to match the input file, with a
version number one higher than that of the input file. If the input
file does not exist, EDT does not load the text buffer; it simply
sets the default output file to match the input file. For example:

>EDT FRODO.TXT
*

is equivalent to

>EDT FRODO.TXT=FRODO.TXT

if the file FRODO.TXT currently exists, and equivalent to

>EDT FRO DO. TXT=

if the file FRODO.TXT does not currently exist.

2-3

,I! .Iii! SJ i!2 I I

DEC EDITOR (EDT)

Table 2-1
EDT File Specification Defaults

Default Value Default Value
Element for Input File for Output File 1

dev: SYD: Same as input device

[ufd] UFD under which EDT Same as input [ufd]
is currently running

filename No default--must Same as input file name
be specified

.filetype Null Same as input file type

;version Latest version Latest version+l

1 Output file defaults take effect only when no output file
is specified. If you specify an output file name and type,
the output file device and UFD default to your current SYO:
and UFD, even if the device and/or UFD of the input file are
different.

In the normal situation of editing an existing file with the intention
of creating a new version of the file, you need only specify an input
fi~e. If you are creating a new file, you also need only specify an
input file in order to set EDT's default output file. Note, however,
that EDT does not explicitly distinguish between these two situations;
you do not receive a message that tells you whether your input file
existed or not. It is possible to mistype the name of an existing
file and then begin your editing session in the belief that EDT has
loaded the text buffer. You usually find out that, the buffer is empty
as soon as you issue an editing command. In these cases, issue the
Quit command to leave EDT without creating an output file, and start
over again.

2.2 THE EDT COMMAND STRING

EDT makes changes to the text in response to commands that you enter
at your terminal. You can issue commands only when you receive the
asterisk prompt that indicates Command Mode.

When you enter a command, you have to specify the action you want EDT
to take, and you have to specify the buffer and buffer portion you
want to affect. The buffer and buffer portion, taken together, are
called the range. Finally, you can modify the action of the command
by specifying an option or options to the command. Thus, the entire
command string can consist of:

• Command name

• Range specification

• Options

• Carriage return

2-4

4 :; ii ii ii ;;; llL!li!ISJ

DEC EDITOR (EDT)

The command name tells EDT which command to execute. The range
specification tells EDT which buffer or buffer portion is to be
affected by the command. The options let you control the command

\.,i execution or specify actions for EDT to perform during_ execution.

In one command or another, all of the above command string components
are optional except the carriage return. Most commands provide a
default range specification if you do not specify a range explicitly.
If you do not specify a command explicitly, EDT defaults to the Type
command. However, EDT takes no action on any command string until you
terminate it with a carriage return.

2.2.JL EDT Commands

EDT commands are English words that tell EDT what action to take. In
each case, the full command name suggests the intended action.
However, you need not type the full command name; you can type an
abbreviation for the command. Most of these command abbreviations are
one or two letters long.

Table 2-2 lists the commands by category; a brief description of each
category follows. Section 2.3 contains complete descriptions of each
command, presented in alphabetical order.

Table 2-2
EDT Commands

I Section
Function Reference

"'--- ·----'------t

Command

Find

Type

Copy

Move

Delete

Insert

Replace

Substitute

Commands to Locate and Display Lines

Repositions the line pointer to the
specified line

Displays lines of the text buffer on the
terminal

Commands to Input and Modify Text

Copies one or more lines from one buffer
location to another

Moves one or more lines from one buffer
location to another, and deletes the
lines from the original location

Deletes one or more lines from the text
buffer

Inserts terminal input
buffer

into the text

Deletes one or more lines, and replaces
the deleted lines with terminal input

Changes characters within lines of the
text buffer

2.3.5

2.3.18

2.3.2

2.3.8

2.3.3

2.3.7

2.3.11

2.3.17

(continued on next page)

2-5

;11111 iii!! iiilk!i I iiiiJ

Command

Exit

Quit

DEC EDITOR (EDT)

Table 2-2 (Cont.)
EDT Commands

Function

Commands to Leave EDT

Outputs the main text buffer contents to
a file, and then returns to the monitor

Returns to the monitor without creating
an output file

Commands to Back Up and Restore Editing Sessions

Save

Restore

Write

Print

Include

Set

Show

Change

Resequence

XEQ
(Execute)

Creates a file containing the contents of
all text buffers currently in use

Recreates all text buffer contents from a
temporary file created by the Save
command

Commands to Output To and Input From Files

Creates a file from text buffer contents

Creates a file from text buffer contents,
including the line numbers that EDT
assigns

Copies a file into a text buffer

Commands to Establish and Display Parameters

Specifies display and match criteria to
be used by EDT for character searches

Displays current match
criteria and buffer status

and display

Miscellaneous Commands

Invokes Character Mode

Renumbers the lines in the text buffer

Executes a group of previously entered
EDT commands

2-6

Section
Reference

2.3.4

2.3.10

2.3.14

2.3.13

2.3.19

2.3.9

2.3.6

2.3.15

2.3.16

2.3.1

2.3.12

2.3.20

iii iii& ii !!Iii$!ii ISilii .. it iii I ijS JI iii i!iiii!i iii ii !iiii! !iiiiiilll!i iij! I I ii !iiil(.ii!llU iii!! iii iii! I iiiiiii 22 . !JQ I I ii 2 J2lih Iii!$ 2J 2ii Uii!ZS::

DEC EDITOR (EDT)

Commands to Locate and Display Lines

The two commands in this group both cause EDT's line pointer to point
to a new line, but they do not modify any text. The Find command
positions the line pointer at the line that you specify. You can
specify the line in any of a variety of ways, as explained in Section
2.2.2. The Type command also repositions the line pointer, but Type
additionally prints the line or lines you specify on your terminal.

Commands to Input and Modify Text

Use the commands in this group to modify existing text or create new
text. All of these commands, with the exception of Substitute, work
on a line basis; that is, the smallest unit of text they can handle
is a complete line.

The Copy and Move commands are similar in that they direct EDT to move
a line or group of lines from one location to another. However, the
Copy command does not delete the lines from the original location,
while the Move command does. Both the Copy and Move commands can
affect the position of the line pointer.

The Copy and Move operations can take place within a buffer or between
buffers; in fact, it is possible to Copy or Move an entire buffer to
a specified location within another buffer. This is useful in cases
where you wish to take text from a file, modify it, and insert it into
your main text buffer. Typically, you might first use the Include
command to place the file into an alternate text buffer; then issue
various editing commands to modify the text in the alternate buffer;
and finally Copy the text to the desired location in the main buffer.

The Delete command allows you to delete a single line of text; a
block of lines in a text buffer; all lines in a text buffer that
contain a specified character string; or an entire buffer.

The Insert and Replace commands are similar in that both allow you to
insert one or more lines of text in a text buffer. However, Replace
deletes the line or lines that you specify before you insert the text;
in other words, Replace replaces specified lines with text that you
supply. Insert and Replace are unusual in that they do not return
directly to the Command Mode asterisk prompt when you enter them.
Instead, there is no prompt; EDT waits for you to supply input. You
then insert one or more lines of text until you type a <RET> at the
end of a line, followed by a <CTRL/Z>. At this point, EDT recognizes
that the insert is finished and returns the asterisk prompt; you can
then issue more Command Mode commands.

The Substitute command is the only Command Mode command that can
affect text within a line, instead of affecting the entire line. It
allows you to replace a specified character string with another
character string. The strings need not match in length. You can
replace a string in a single line; in each of a group of lines; or
in all lines in a buffer. If you wish, you can substitute
selectively: you specify a substitution to be made in all lines, and
EDT prompts you at each substitution opportunity, allowing you to
accept or reject each substitution as appropriate.

All the commands in this group can affect the position of the line
pointer as part of their function. See the individual command
descriptions in Section 2.3 for detailed information.

2-7

IS

DEC EDITOR (EDT)

Commands to Leave EDT

The Exit and Quit commands both direct EDT to terminate the current
editing session and return to the monitor. The Quit command does this
without creating an output file; in other words, EDT does not output
the contents of its main text buffer into a file when you issue the
Quit command. Note, however, that you can direct EDT to create a file
during the editing session by issuing a Write command.

The Exit command terminates the editing session and does direct EDT to
output the contents of its main text buffer into an output file.
There are two ways to specify the name of this file:

• When you first invoke EDT, you can specify the output file as
described in Section 2.1, that is, explicitly, or implicitly,
by specifying only the input file.

• When you issue the Exit command to leave EDT, you can use the
/Rename option to specify the output file. The output file
specification that you provide with the /Rename option
overrides the output file specification that you provide when
you invoke EDT. If you specify neither an input file nor an
output file when you invoke EDT, you must use the /Rename
option with the Exit command; otherwise, EDT cannot create an
output file because it has no output file specification
available.

Note that the Exit command automatically outputs the entire contents
of the main text buffer to the output file. You cannot specify that
an alternate text buffer be output instead of the main text buffer,
and you cannot specify that only a portion of the main buffer be
output. If you wish to create a file from a buffer other than the
main buffer, you can use the Write command. The Write command
provides greater flexibility than the Exit command, because it allows
you to specify the buffer, and lines within the buffer, to be output.

Commands to Back Up and Restore Sessions

The Save and Restore commands work as a pair to provide a means of
backing up the work that you do during an editing session. You can
issue the Save command at any time during an editing session. This
directs EDT to create a file containing the following information:

• Contents of main and alternate text buffers

• Current line pointer location

• Input and/or output file specifications

• EDT parameters

After EDT creates the file, you can continue your editing session as
if you had never paused to issue the command. If you want, you can
create an output file by issuing the Exit command. However, at a
later time, you might want to recreate the editing session as it was
when you issued the Save command. To do this, invoke EDT without
specifying either an input or an output file, and issue the Restore
command, specifying the same file that you specified when you issued
the Save command. EDT will reconstruct its buffers, its line pointer,
its file specifications, and its parameters from the contents of the
file that you specify. It will be as if you had never left the Saved
session.

2-8

I I

""" ·-ii

ii iWS41

DEC EDITOR (EDT)

There are two principal uses for the Save and Restore commands:

• In the middle of a long, complicated editing project involving
several text buffers, you can use the Save command to save all
text buffers. This allows you to spread your work over
several sessions.

• If you fear the accidental loss of text that you have
generated during a session, you can use the Save command to
create a backup file at any time during the session. Later,
after you have issued the Exit command and successfully
created the output file, you can delete these backup files.

The file that EDT creates as a result of a Save command is in a
special format and is useful only as input to EDT's Restore command.
For this reason, you should be sure to provide a file specification
with the Save command that is different from your output file
specification. Typically, you might want to reserve a special file
type to be used only with the Save command.

Commands to Output To and Input From Files

The Write and Print commands allow you to create an output file while
your editing session is in progress, in contrast to the Exit command,
which creates the output file and then returns control to the monitor.
Additionally, Write and Print offer you more flexibility in creating
an output file than the Exit command, since Write and Print allow you
to specify the text buffer and the lines within the buffer that you
want to output.

The Write and Print commands differ in that Print creates a file that
contains the line numbers assigned by EDT, while Write creates a file
without the line numbers. The format of a file created by the Write
command is identical to that of a file created by the Exit command.

The Include command allows you to bring the contents of a file into a
text buffer during an editing session. You can insert the file's
contents into a buffer that already contains text, or you can create a
new buffer to hold the file's contents. The Include command is
particularly useful in situations where you need to prepare a file
using parts of several existing files~

Commands to Establish and Display Parameters

The Set and Show commands work as a
examining and altering several EDT
include:

pair to provide a means of
parameters. These parameters

• String match criteria. When searching for strings, EDT can
require that both the characters and the cases of the
characters match, or that only the characters match. The
strings ABC and abc are a match in the second instance, but
not in the first.

• Case display criteria. EDT can flag either upper- or
lower-case characters with an apostrophe while displaying
text, or can display text "as is." If you are working at a
terminal that displays only upper-case characters, you may
want EDT to flag those characters that are upper case in the
text buffer, in order to distinguish them from lower-case
characters.

2-9

DEC EDITOR (EDT)

• Terminal type. When EDT is in Character Mode, it requires
information about what kind of terminal is in use. Before
using Character Mode, you should be sure that the terminal
type is set correctly.

You can use the Set and Show commands to establish and examine each of
these parameters. In addition, you can use Show to display
information about the current state of EDT's text buffers and the
version of EDT in use.

Miscellaneous Commands

:he Change command invokes EDT's Character Mode. You should only
issue it from a video terminal. Although many Character Mode
operations are analogous to the Command Mode operations discussed in
this section, you should treat Character Mode as a separate editor.
Section 2.4 contains a complete description of Character Mode.

The Resequence command directs EDT to renumber the lines in a
specified text buffer. EDT initially numbers the lines in a text
buffer by tens; that is, the first line is line 10, the second line
is line 20, and so on. Following any one of several text modification
commands, there may not be enough line numbers available to number all
the lines in an area of the buffer. For example, if you insert 15
lines between lines 10 and 20, there will be six lines without line
numbers. By issuing a Resequence command, you can restore orderly
line numbering to the buffer.

The Resequence operation is available to several Command Mode commands
as an option. See the individual command descriptions in Section 2.3
for details.

The Execute command directs EDT to execute a series of commands that
you have previously placed in a text buffer. The Execute command is
particularly useful when you need to repeat a series of operations
several times.

2.2.2 Range Specification

When you issue an EDT editing command, you must also specify
portion of the text buffer you wish that command to affect.
portion of the buffer is called the range; the information that
give EDT to allow it to find the range is called the
specification.

what
The
you

range

A range can be as small as a single line, or as large as an entire
buffer. It can consist of a contiguous group of lines within a
buffer, or all lines in a buffer that contain a certain string.

Most commands allow you to omit an explicit range specification.
These commands provide default range specifications when you do not
specify the range explicitly. The individual command descriptions in
Section 2.3 provide details.

A complete range specification contains two broad elements:

1. A buffer specification. The buffer specification tells EDT
which buffer contains the range. The buffer can be the main
text buffer or one of the alternate text buffers.

2-10

~1111••JJ111:::e•: •: •:s•••••u•: ••••::•:•:•••1111•:: :•:•••••••2•JJ•&&••••111;•2 ••1:•11!! •:1uu1::r••••••••••••••t•o•. :•s•n•

DEC EDITOR (EDT)

2. A line specification. The line specification tells EDT which
lines within the buffer make up the range. There are four
general types of line specification:

• Single line specifications. Single line specifications
allow you to specify one line of text.

• Variable line specifications. Variable line
specifications allow you to specify an indeterminate
number of contiguous lines. Examples are: all lines in
the current text buffer, all lines between the current
line in the text buffer and the end of the buffer~

• Compound line specifications. Compound line
specifications combine single line specifications,
operators, and integers to allow you to strictly define
groups of lines within the buffer. Examples are: all the
lines between two specified lines, a group consisting of a
specified number of lines following a specified line.

• Inclusive line specifications. Inclusive line
specifications allow you to specify a string that each
line in the range must contain. The range consists of all
lines containing the specified string.

You can combine these different types of line specifications
to produce the desired effect. For example, by combining
compound and inclusive line specifications, you can specify a
range consisting of all lines between lines 70 and 180 that
contain the string ABC.

The remainder of this section discusses each of the elements that make
up a range specification. Also presented are three concepts common to
all forms of line specification:

• The line pointer

• Line numbers and line sequencing

• String searches

2.2.2.1 Buffer Specification - When you invoke EDT, EDT creates a
text buffer, or storage area, called MAIN. If you specify the name of
an existing file as an input file when you invoke EDT, EDT copies the
contents of that file into the main text buffer. However, if you
specify the name of a new file, EDT creates MAIN with no data stored
in it. EDT performs the editing commands you issue on the contents of
the text buffer. Commands can add to or take away from the contents
of a buffer, move text from one buffer to another, or simply change
EDT's position within a buffer.

If you are working your way through an EDT text buffer and you reach
the end of the buffer, EDT prints the following message:

[EOB]

In effect, the [EOB] designation is a line that follows the final text
line of the buffer and tells you that you have passed that final line.
Since EDT inserts lines in front of a specified line, you must specify
the [EOB] line if you want to insert text at the end of the buffer.
(See Section 2.2.2.5 for a discussion of single line range
specifications, and Section 2.3.7 for a description of the Insert
command.)

2-11

DEC EDITOR (EDT)

EDT can create text buffers other than MAIN. For example, you can
access other files using the Include command to copy their contents
into an alternate text buffer. EDT allows you to name the alternate
text buffers you use, and to make edits to the buffer contents in the
same way you edit the main text buffer.

There is no limit to the size of text buffers other than the limits of
the system that you are using; however, EDT does not assign line
numbers above 65535.

EDT creates a text buff er when
buffer name as part of a
alphanumeric characters long.
must precede the buffer name
notation. Thus, the following

%BUF MAIN
=MAIN
%BUF ALTl
=AL Tl
%BUF lOSNEl
=lOSNEl

you give it a name and then use the
command. Buffer names can be up to six
Each time you refer to a buffer, you
with either an equal sign (=) or a %BUF
are all legal buffer references:

The first two examples above both refer to the main text buffer.

The number of text buffers available during an editing session is
determined when EDT is installed in your system. You will always be
able to use the main buffer and at least two alternate buffers, but
you should check with your system manager to find out the maximum
number of buffers available on your system.

EDT does not save the contents of any alternate buffers when you
terminate the editing session. You can save the contents of alternate
text buffers either by using the Write command to directly create a
file from the buffer, or by using the Move or Copy command to place
the alternate buffer's contents in the main text buffer.

EDT maintains an internal record of which buffer is currently in use.
This buffer is called the current buffer. A buffer becomes current
when an EDT command moves the line pointer into the buffer and leaves
it there. (Section 2.2.2.2 describes the line pointer; the command
descriptions in Section 2.3 provide information on each command's
effect on the line pointer.) You can use the Show command (Section
2.3.16) to find qut which buffer is the current buffer.

The current buffer can serve as an implied range specifier. Several
commands take the current buffer as their range argument if you do not
specify range explicitly.

2.2.2.2 The Line Pointer - The line pointer is an internal EDT
mechanism that keeps track of EDT's position within text buffers. As
you issue commands, EDT moves from line to line and from buffer to
buffer, using the line pointer to keep track of its position. The
line pointer does not point at any part of the line; rather it
indicates an entire line. The current position of the line pointer
(the current line) can be displayed by typing a period followed by a
carriage return in response to the Command Level asterisk prompt. A
carriage return immediately following the asterisk prompt advances the
line pointer to the next line and displays that line.

2-12

•r• iii l!ibi!!i!!!Liii!i!iiii !!iii! l!!i! Lili I.ii
' 1

:; I iill! l:Uiiiltiiiii iiiii !iii J I 114 ii I !ii!il&U!ii I L!!ii!iiijiilllii!iii!li

DEC EDITOR (EDT)

The position of the line pointer changes as EDT executes commands.
Each command's effect on the line pointer is documented in the
detailed command descriptions in Section 2.3.

The line pointer can serve as an implied range specifier. Several
commands take the current line as the range argument if you do not
specify a range explicitly.

2.2.2.3 Line Numbers and Line Number Sequencing - EDT automatically
assigns a line number to each line in a text buffer to help you locate
and reference the lines in the buffer~ Line numbers are integers in
ascending order from l to 65535. They appear at the left margin of
the terminc1l display, separated from the text by a tab. Line numbers
can be changed or completely removed from the buffer, but are not part
of the text.

By default, EDT assigns 10 as the number
increments by 10 for each additional line.
line numbers are 10, 20, 30, 40, and so on.
Rese·quence command (Section 2.3.12) to
specify the line numbers you want assigned.

of the first line and
Thus, the default system

However, you can use the
override this default and

Many commands that transpose, insert, or delete lines have an option,
/Sequence, that allows you to specify numbers for the transferred or
inserted text. Often the line numbers that result after one of these
commands have varying increments between them, and some lines may not
have numbers at all. If this occurs, you can use the Resequence
command to reassign uniform line number increments to all the lines in
you r bu ff er •

The Move, Replace, Include, and Insert commands, among others, put
lines into text buffers. The following example shows how EDT assigns
line numbers to new lines in buffers. If the lines in the buffer are
numbered 10, 20, 30, and so on up to 80, and if 12 lines are inserted
between lines 50 and 60, EDT assigns line numbers to the group as
shown in Figure 2-1.

10 THIS
20 EXAMPLE
30 SHOWS
40 HOW

\
50 EDT

l PUTS 51 PUTS
2 NEW 10 THIS 52 NEW
3 LINES 20 EXAMPLE 53 LINES
4 OF 30 SHOWS 54 OF
5 TEXT 40 HOW

Q
55 TEXT

6 INTO - 50 EDT 56 INTO
7 A 60 HANDLES 57 A
8 TEXT I 70 LINE 58 TEXT
9 BUFFER 80 NUMBERING 59 BUFFER
10 AND AND
11 HOW HOW
12 IT IT

60 HANDLES
70 LINE
80 NUMBERING

Lines Being Original Resulting
Inserted Buffer Buff er

Figure 2-1 Input Line Number Sequencing

2-13

um Li

DEC EDITOR (EDT)

As Figure 2-1 shows, EDT numbers as many of the new lines as possible
without reassigning or changing any line numbers alr'eady in use. EDT
then puts the remaining lines in their proper position without
assigning them any numbers.

The Move, Replace, and Delete commands take lines out of text buffers.
When you use these commands, EDT removes the lines you specify, as
well as their line numbers, from the buffer. The numbers of the lines
that remain in the text buffer do not change. If a line number is no
longer assigned to a line, it is available for either EDT or you to
assign to a new line or to reassign to an existing line.

2.2.2.4 String Searches - Line numbers are not the only way for you
to specify a line in a buffer. You can direct EDT to search the
buffer contents for a string, which consists of a specific word or
combination of letters. When you specify such a character string, you
give EDT an object string to search for, and EDT examines the text
buffer looking for an equivalent or match string.

In its search, EDT normally examines the current line first to see if
it contains a match of the object string. If no match is found in the
current line, EDT then examines the next line, and the next, and so on
until it either finds a match or reaches the end of the buffer.

An exception to this arises if EDT located the current line through a
previous string search or through a Substitute command (see Section
2.3.17). In these cases, the search proceeds from a point in the line
immediately following the string that was searched or substituted for.

For example, you search for the string ILLUSTRATES, and EDT locates
the line:

120 THIS LINE ILLUSTRATES STRING SEARCHES

You can now successfully search forward for STRING or SEARCHES, but
not for THIS, LINE, or ILLUSTRATES. You could, however, successfully
search backward for THIS, LINE, or ILLUSTRATES.

This mechanism allows you to search through
occurrences of a string without having to
forward each time you search.

Once you determine the object string and the
perform, you must:

• Specify the string

• Dictate the direction of the search

• Determine what constitutes a match

a file for repeated
move the line pointer

action you want to

EDT treats characters enclosed in apostrophes or quotation marks as
object strings. If you enclose a character or group of characters in
two apostrophes (') or two quotation marks ("), you direct EDT to
search for the first occurrence of an identical string of characters
(without the delimiters) contained in the text buffer. Apostrophes
and quotation marks are the only character string delimiters that EOT
accepts as part of a range specification.

The way you specify the object string determines the direction of
EDT's search. If you enter "ABC", EDT searches from the current line
toward the bottom of the buffer looking for the first occurrence of

2-14

::::: 4 ii !. 121 I ii !ii22

\w·

DEC EDITOR (EDT)

ABC. If you precede the object string with a minus sign (-), that is,
-"ABC", EDT searches from the current line toward the top of the
buffer looking for the first occurrence of ABC.

EDT lets you specify whether or not a match occurs when the case of
the characters in the match string differs from the case of the
characters in the object string. For example, if you are searching
your text buffer for an occurrence of BASIC, do you want EDT to return
a match when it encounters the string basic?

The Set command (see Section 2.3.15) allows you to specify whether
match strings must correspond to the cases specified in the object
string. If you issue the Set Exact Case command, EDT returns as a
match only those strings that are identical in both case and content
to the object string. If you issue the Set Exact None command, EDT
returns any occurrence of the characters in the object string as a
match, regardless of case. Exact None is the default setting.

2.2.2.5 Single Line Specifications - Single line specifications
identify one line of a text buffer~ Single line specifications and
the lines they specify are listed in Table 2-3. Square brackets
enclose optional portions of the specifications.

All of the single line specifications, with the exception of %L, can
be preceded by a buffer specification (see Section 2.2.2.1). A space
must separate the buffer specification from the line specification.
If you do not provide a buffer specification, EDT locates the single
line in the current text buffer.

Table 2-3
Single Line Specifications

Line
Specification Meaning

nn Line number nn

. (period) The current line

"object string" or Starting with the current line, the first
'object string' line located that contains an acceptable

match of the object string

-"object string" or The first preceding line that contains
-

1
' object string' acceptable match of the object string

%BE [GIN] The first line of the text buffer

%g [ND] The [EOB] designation that follows the
last line of the text buffer

% L [AST] The line in a previous text buffer at
which the line pointer was positioned
when the command to enter the current
buffer was issued

2-15

'"'Ill!

DEC EDITOR (EDT)

Examples

!JI L LI

*40

Locates and displays line 40 in the current text buffer. If line
40 currently does not exist, locates and displays the first line
with a number higher than 40.

Locates and displays line 130 in buffer X.

*'THIS HOUSE'

Locates and displays the first line of the current buffer that
contains the string THIS HOUSE.

*=NEWBUF "FOR SALE"

Locates and displays the first line in buffer NEWBUF containing
the string FOR SALE.

*"FIND THIS STRING'
Missing string quote.

In this example, the string delimiters were mismatched; EDT
returned an error message.

Locates and displays the first line in the current text buffer.

* =MORDOR %E

Locates and displays the [EOB] designation that follows the last
line in buffer MORDOR.

*=MAIN %L ~
Buffer Specification Conflict.

In this example, %L specifies a line in a previous text buffer.
Since %L already provides a text buffer specification, you cannot
explicitly specify a buffer with %L. EDT returned an error
message indicating a conflict in buffer specifications.

2.2.2.6 Variable Line Specifications - Variable line specifications
identify an indeterminate number of lines in the text buffer. The
specifications and the lines they identify are listed in Table 2-4.
Square brackets enclose optional portions of the specifications.

As indicated in Table 2-4, a buffer specification used by itself is a
variable line specification, because it implies all lines in the
buffer. The remaining variable line specifications (%BEF, %R, and

2-16

iiiill I jiJI lhliL&S !J&!!IJU 21! (j 22!il:ZZ iiiiil i!()U:iQISi

DEC EDITOR (EDT)

%WH) imply the current text buffer; therefore, you cannot use them in
combination with an explicit buffer specification. If you attempt to
do so, EDT returns the error message:

Buffer Specification Conflict.

Line
Specification

=bufname or
%BUF[FER] bufname

%BEF[ORE]

%R[EST]

%WH [OLE]

Table 2-4
Variable Line Specifications

Meaning

All lines contained in the text buffer
bufname

All lines in the current text buffer
from the first line in the buffer
through the current line

All lines in the current text buffer
from the current line through the last
line in the buffer

All lines in the current text buffer

2.2.:2.7 Compound Line Specifications - Compound line specifications
identify a specific number of lines in the buffer and consist of
single line specifications, operators, and integers. Table 2-5 lists
the forms that compound line specifications may take. In the table,
sl stands for any of the single line specifications from Table 2-3.

Table 2-5
Compound Line Specifications

Line
Specification

sl.l:sl2
or
sl.l %THRU sl2

sl;i
or
sl %FOR i

sl.l,sl2,sl3, •••
or
sll %AND sl2 %AND sl3

sl+i

sl·-i

Meaning

The lines between and including the
first single line (sll) and the second
single line (sl2) where sll must precede
sl2

The total number of lines specified by
the positive integer i that begins with
the line specified by the single line sl

The individual lines identified by the
single line specifications

The single line that is i lines after
the single line specified by sl

The single line that is i lines before
the single line specified by sl

2-17

!~ II & i!!!Ui!Jl

DEC EDITOR (EDT)

Any of the compound line specifications can be preceded by a buffer
specification (see Section 2.2.2.1). A space must separate the buffer
specification from the line specification. If you do not provide a •,,,,,,"'I\,&~,·.:..,,'_
buffer specification, EDT locates the lines in the current buffer. .

Examples

*40:80

Locates and displays lines 40 through 80 of the current text
buffer.

*•ALTl 'ABC' %THRU %E

Locates and displays the block of lines beginning with the first
line in buffer ALTl that contains the string ABC, and ending with
the last line in the buffer.

*150;20

Locates and displays a block of lines in the current text buffer
that begins with line 150 and extends for 20 lines.

*•MAIN "STARTLINE" %FOR 35

Locates and displays a block of lines in the main text
that begins with the first line that contains the
STARTLINE and extends for 35 lines.

*%BUF GHORT 10,30,'KLATAAU',%E

buffer
string

Locates and displays the following lines from buffer GHORT: line
10, line 30, the first line following line 30 that contains the
string KLATAAU, and the [EOB] designation following the last line
of the buffer.

*"WORLD"+6

Locates and displays the sixth line following the line that
contains the string WORLD in the current buffer.

2.2.2.8 Inclusive Line Specifications - The inclusive line
specifications identify lines of a buffer that contain a specific
string. You can find all lines in the buffer that contain the string,
or you can limit the lines that are checked for the string by
qualifying the inclusive line specification with another line
specification. Table 2-6 illustrates inclusive line specifications.

You can precede an inclusive line specification with a buffer
specification (see Section 2.2.2.1). A space must separate the buffer
specification from the line specification. If you do not include a
buffer specification, EDT locates the lines in the current buffer.

2-18

l&EL 22 I #I I 2 I ;: I I iii!ii! I :mm ii

DEC EDITOR (EDT)

Table 2-6
Inclusive Line Specifications

Line
Specification Meaning

%.~LL 'string' All lines in the text buff er that
or contain acceptable matches of the

%.~LL "string" specified object string

ls %ALL 'string' All lines that contain acceptable
or matches of the object string

ls %ALL "string" within the line specification ls

Exa11nples

2.2.3

*%ALL ' VAN GOGH'

Locates and displays all lines containing the string VAN GOGH in
the current text buffer.

*%R %ALL 'MONET'

Locates and displays all lines in the current text buffer between
the current line and the end of the buffer that contain the
string MONET.

*=PAINT 50:300 %ALL 'PICASSO'

Locates and displays all lines between lines 50 and 300 of buffer
PAINT that contain the string PICASSO.

Options

Command line options either allow you to control the command execution
or specify actions that EDT is to take when the execution has been
completed. Each detailed command description in Section 2.3 includes
a description of each option that is allowed with the command. Table
2-7 shows options with their functions and associated commands.

Each option has an abbreviation that you can use instead of the full
option name. Table 2-7 shows the abbreviation outside of brackets;
the remainder of the option name is inside the brackets. When you
specify an option, you can use either the abbreviation or the full
name.

2-19

ilP• Iii!& llZ!iii:S

Option

/BR [IEF]

/FI [LE]

/NL

/Q [UERY]

/RE [NAME]

/SEQ [UENCE]

/-T[YPE]

/UN [SEQUENCED]

DEC EDITOR (EDT)

Table 2-7
Command Options

Meaning

Displays first ten
characters of lines
in range

Specifies a file
that is either
accessed or created

Allows deletion of
line terminators

Prompts you to con
trol execution of
command

Specifies an output
file

Specifies sequence
numbers

Inhibits display of
lines affected by
the command

Inhibits renumbering
of lines

2.3 DETAILED COMMAND DESCRIPTIONS

Commands

Type,
Substitute

Write, Save,
Include, Print,
Restore

Change

Substitute,
Move, Copy,
Delete

Exit

Include,
Insert, Copy,
Move, Replace,
Resequence

Substitute

Include,
Insert, Copy
Move, Replace,
Resequence

This section lists the EDT Command Mode commands alphabetically. Each
command description includes the format of the command, a description
of each of the options available with the command, examples of the
command in typical editing situations, and usage notes.

In the command format descriptions, the command abbreviation is shown
outside of brackets, while the remainder of the command name is shown
in brackets. When issuing a command, you can use either the
abbreviation or the full command name. Thus,

REST[ORE]

in the format description for the Restore command indicates that you
can type either REST or RESTORE when you issue the command.

2-20

!E!iiill SZ!d& iii!! Qi! JS .,

• :---,,-,---!"'~~

DEC EDITOR (EDT)

2.3.l CHANGE

Use the Change command to invoke EDT's Character Mode.
contains a complete description of Character Mode.)

(Sect ion 2. 4

Format

c [HANGE] [range] [/NL]

CHANGE

range

/NL

Specifies the Change command.

Specifies the lines that you will be able to access while in
Character Mode. If you do not specify a range, the entire
contents of the current text buffer can be accessed.

Specifies that, while in Character Mode, you can delete line
terminators such as form feeds, line feeds, and carriage returns.

Examples

c

This command invokes Character Mode and gives you access to all
of the current text buffer.

C =:X 50:200/NL

This command invokes Character Mode, giving you access to lines
50 through 200 of the text buffer named X. While in Character
Mode, you will be able to delete line terminators.

• You can use the Change command only if you are using a video
display terminal. You must use the Set Terminal command to
correctly establish your terminal type before you can edit in
Character Mode. Section 2.3.15 contains a description of the
Set command.

• While in Character Mode, you only can edit the contents of the
range you specified in the Change command. If you want to
edit lines that are outside the range, you first must issue an
EX (Exit) subcommand and then re-enter the Change command
specifying the new range.

• When you invoke Character Mode and specify the /NL option, EDT
treats end-of-line characters as single characters that may be
inserted or deleted. EDT displays these characters as
follows:

<FF>
<LF>
<VT>

indicates an ASCII form feed
indicates an ASCII line feed
indicates an ASCII vertical tab character

2-21

•:u a; I II I

DEC EDITOR (EDT)

Character Mode does not give any special representation to a
carriage return, but allows you to delete i~ as well~ When
you delete an end-of-line character, EDT concatenates the
following line to the line whose end-of-line character w~s
deleted.

If you attempt to delete a line terminator without having
specified the /NL option, EDT takes no action in response to
the subcommand you enter.

• Two Character Mode subcommands, EX (Exit) and Quit, terminate
Character Mode. Typing EX returns EDT to Command Level from
Character Mode. Typing EX does not terminate EDT if issued
from Character Mode. Typing QUIT terminates both Character
Mode and EDT. The Quit subcommand does not create or update
any files.

2.3.2 COPY

Use the Copy command to transfer lines from one location to another
without deleting them from their original location.

Format

CO[PY] range-1 %TO range-2 [/Q[UERY]]
[/SEQ[UENCE] :initial-number: increment]
[/UN[SEQUENCED]]

COPY ••• %TO

Specifies the Copy command.

range-1

Specifies the lines that are to be copied. If you specify more
than one line in range-1, all the lines you specify are copied.

range-2

Specifies the line ahead of which the lines in range-1 are
copied. If you specify more than one line in range-2, the lines
in range-1 are copied ahead of the first line in range-2.

/QUERY

I ii

Allows you to specify how each line in range-1 is to be treated.
Before EDT transfers each line, it prints the line and waits
until you type one of the following responses:

Response

Y or YES
N or NO
Q or QUIT

A or ALL

iii! ;

Result

Copies the line
Does not copy the line
Stops copying lines and displays the asterisk
prompt
Copies the remaining lines in the range
without printing them first

2-22

2 ft I I ii I I lh I !IL.ii)

DEC EDITOR (EDT)

/SEQUENCE: initial-number: increment

Assigns specific line numbers to the copied lines. The
initial-number argument specifies the number of the first line
that was copied, and the increment argument specifies the
increment between numbers. For example, /SEQ:lOO:lOO creates the
copied lines with line numbers of 100, 200, 300, 400, and so on.

/UNSJE:QUENCED

Causes EDT to copy the lines without assigning them line numbers.

Exam1ples

Notes

CO.:".MAC"%TO=X 40

This command copies all lines, beginning with the current line
and continuing through the first line containing .MAC, to a
position preceding line 40 in buffer X.

C0.;20 %TO %BE

This command copies 20 lines, starting with the current line, to
the beginning of the current text buffer.

• After a line or group of lines has been copied, EDT positions
the line pointer at the first line of the copied lines in
their new position preceding the first line in range-2.

• You cannot overlap ranges: range-! and range-2 cannot contain
any of the same lines.

• If you do not use either the /Sequence or /Unsequenced option
to specify line numbers, EDT numbers the new lines in the
following manner:

If EDT can number the new lines by incrementing the
existing line numbers in steps of 10, it does so as long
as the resulting line numbers do not duplicate existing
line numbers or violate the ascending order of line
numbers.

If incrementing by 10 would result in an illegal line
number, EDT begins incrementing subsequent new lines in
steps of 1.

If incrementing the new lines in steps of l would result
in illegal or duplicate line numbers, EDT places all
further lines in the correct order, but does not assign
them any line numbers.

2.3.3 DELETE

Use the Delete command to delete lines from a text buffer.

2-23

11
·• Li . 2iii!6S ii ii!iiiil!I iii2£iiii!L I

DEC EDITOR (EDT)

Format

D[ELETE] [range] [/Q[UERY]]

DELETE

range

Specifies the Delete command.

Specifies a range of lines to be deleted. If you do not specify
a range, the current line is deleted.

/QUERY

Specifies that you want to control the Delete operation using EDT
prompts and responses. EDT prompts you by displaying the line to
be deleted; you can then enter any one of the following
responses:

Response Result

y or YES Deletes the prompt line
N or NO Does not delete the prompt line
Q or QUIT Stops deleting lines and returns to Command

Mode
A or ALL Deletes all remaining lines in the range; does

not display the deleted lines

Examples

D 20:40

This command deletes lines 20 through 40, inclusive, from the
current text buffer.

Notes

D %ALL 'ABC'/Q

This command finds all the lines in the current text buffer
containing the string ABC, displays each line, and then waits for
you to enter a Y, N, Q, or A response.

D =BUF2 %ALL '438'

This command deletes all lines containing the string 438 from
text buffer BUF2.

• After a line or a group of lines has been deleted, EDT
positions the line pointer at the line immediately following
the last line deleted.

• The /Query option allows you to delete specific lines at
random from the specified range of lines. After you delete
lines using the /Query option, EDT positions the line pointer
at the undeleted line nearest the beginning of the range.

• If you enter
specification,
error message.

nonexistent line numbers in a range
EDT rejects the specification and displays an

2-24

i.i iiilli!i I 2 iiii;tll iii S iiiii i U!fi & 4 ii 2ii2

·~

:u ;cm

'-''

DEC EDITOR (EDT)

2.3.4 EXIT

Use the Exit command to terminate EDT, return control to the system
monitor, and save the contents of the main text buffer.

Format

EX [IT] [/RE [NAME] : f ilespec]

EXIT'

Specifies the Exit command.

/RENAME: f i lespec

Specifies the output file to which the contents of the main text
buffer are written. The /Rename option overrides the output file
specified when EDT was invoked. Section 1.3 contains a complete
description of file specifications.

Example

NotE~S

EX/RE:SYS.MAC

This command causes EDT to write the contents of the main text
buffer to the file SYS.MAC, then terminate.

• The Exit command only saves the contents of the text buffer
named MAIN. The contents of all other text buffers are lost
if they are not incorporated into MAIN or written to permanent
files through the Write command. (See Section 2.3.19.)

• The /Rename option allows you to specify an output file
whether or not an output file was originally specified in the
EDT invocation command.

2 .3 .• 5 FIND

Use the Find command to move the line pointer.

Format

FIND

F[IND] range

Specifies the Find command.

Specifies the line to which the line pointer is positioned. If
you specify a range of more than one line, EDT positions the line
pointer at the first line in the range.

2-25

I I (. .. I I

DEC EDITOR (EDT)

Examples

Notes

F = X 20

This command causes EDT to position the line pointer at line
number 20 in text buffer X.

F-'ABC'

This command causes EDT to search upward and position the line
pointer at the first line encountered that contains ABC.

F 20:40

This command causes EDT to position the line pointer at line 20,
the first line of the range.

• The Find command does not generate any terminal output.

2.3.6 INCLUDE

Use the Include command to locate a file and to copy it into a text
buffer.

Format

INC [LUDE] [range]
/FI: f ilespec
[/SEQ[UENCE]: initial-number: increment]
[/UN [SEQUENCED]]

INCLUDE

range

Specifies the Include command.

Specifies the line ahead of which the contents of the file are to
be inserted. If you specify a range of more than one line, EDT
inserts the file ahead of the first line in the range. If you do
not specify a range, EDT inserts the file ahead of the current
line.

/FI:filespec

Specifies the file that is to be copied. (See Section 1.3 for a
complete description of file specifications~)

/SEQUENCE: initial-number: increment

Assigns specific line numbers to the included lines. The
initial-number argument speciifes the number assigned to the
first line, and the increment argument specifies the increment
between numbers. For example, /SEQ:lOO:lOO creates the new lines
with line numbers of 100, 200, 300, 400, and so on.

2-26

LU iii! I p i I . t .. I ::x au ill)! I 14££$JJU4 . ii U:

DEC EDITOR (EDT)

/UNSEQUENCED

Causes EDT to include the lines without assigning line numbers.

Examples

Notes

INC =ADD /FI:SYS.MAC

This command causes EDT to copy the contents of file SYS.MAC into
text buffer ADD. If ADD contains some data, EDT inserts the new
lines at the beginning of the buffer.

INC 'ABC' /SEQ:l00:2/FI:EDT.FTN

In this example, EDT first copies the contents of file EDT.FTN,
then inserts them before the next line in the current buffer that
contains the character string ABC, and finally numbers the new
lines as 100, 102, 104, 106, and so on.

• After a file has been included into a text buffer, EDT
positions the line pointer at the first line following the
newly included text.

• The Include command copies a file into your current text
buffer or to an alternate text buffer, allowing access to any
portion of that file during your editing session. Once the
file is copied, you can use other EDT commands to manipulate
its contents.

For example, to access a portion of a file other than the one
you are currently editing, perform the following steps:

l. Issue the Include command to copy the file into an
alternate text buffer.

2. Issue the Move command to transfer the desired
portion of the file from the alternate text buffer to
the main buffer.

• If more lines exist in the file being included than there are
line numbers available, EDT correctly inserts the extra lines
into the text buffer but does not assign them any line
numbers.

If you use the /Sequence option to specify line numbers that
conflict with other line numbers in the file, the new lines
are included without line numbers.

If you do not use either the /Sequence or /Unsequenced option
to specify line numbers, EDT numbers the new lines in the
following manner:

If EDT can number the new lines by incrementing the
existing line numbers in steps of 10, it does so as
long as the resulting line numbers do not duplicate
existing line numbers or violate the ascending order
of line numbers.

If incrementing by 10 would result in an illegal line
number, EDT begins incrementing subsequent new lines
in steps of l.

2-27

1 •: lilt -iii

DEC EDITOR (EDT)

If incrementing the new lines in steps
result in illegal or duplicate line
places all further lines in the correct
does not assign them any line numbers.

of 1 would
numbers, EDT
order, but

When you use the Include command to insert a file into a text
buffer that already contains some data, you may want to use
the Resequence command to establish uniform line number
increments throughout that buffer.

2.3.7 INSERT

Use the Insert command to place text you type at your terminal into a
text buffer.

Format

I[NSERT] [range] [/SEQ[UENCE]: initial-number: increment]
[/UN [SEQUENCED]]

text

<CTRL/Z>

INSERT

Specifies the Insert command.

range

Specifies the line ahead of which the text you type is to be ~
inserted. If you specify more than one line in the range, the
text is inserted ahead of the first line in the range. If you do
not specify a range, the text is inserted ahead of the current
line.

/SEQUENCE: initial-number: increment

Assigns specific line numbers to the newly inserted lines. The
initial-number argument specifies the number assigned to the
first new line and the increment argument specifies the increment ""'--·""': ____ :_
between numbers. For example, /SEQ:lOO:lOO creates new lines -
with line numbers of 100, 200, 300, 400, and so on.

/UNSEQUENCED

text

Causes EDT to insert the new lines without assigning them line
numbers.

Represents one or more complete lines of text.
must end with a carriage return.

The last line

<CTRL/Z>

Causes EDT to stop accepting insert text and display the asterisk
prompt.

2-28

I 2 :;a 22 ii ::um ; _ ::

DEC EDITOR (EDT)

Exan1ples

NotE~S

*I <RET>
LINE 1 <RET>
LINE 2 <RET>
LINE 3 <RET>
<C~rRL/Z >
*

This example illustrates the entire Insert command sequence. The
command, I, which is issued while EDT is displaying the asterisk
prompt, directs EDT to insert the text that follows above the
current line. EDT then accepts three lines of input from the
terminal, inserting them above the current line. Finally,
<CTRL/Z> causes EDT to terminate the insert and display the
asterisk prompt.

I ==B 40

This command causes EDT to insert all the lines you enter ahead
of line 40 in buffer B.

I II. OR II

This command causes EDT to insert the lines you enter ahead of
the next line encountered that contains the string .OR.

I %E

This command causes EDT to insert the lines you enter at the end
of the buffer (that is, between the last line of the buffer and
the [EOB] designation).

• After a line or group of lines has been inserted into a text
buffer, EDT positions the line pointer at the line following
the last inserted line.

• When you issue an Insert command, EDT first positions the line
pointer ahead of the first line in the range. Without
prompting you, EDT begins to accept lines of text you enter at
the terminal. When all the lines have been entered from the
terminal, terminate the insert by typing <CTRL/Z>. EDT
inserts the lines you typed ahead of the first line in the
specified range.

It is important to remember that EDT does not prompt you for
input following an Insert command. Type the command line and
a carriage return, and then the lines you want to insert.

• If you specify line numbers with the /Sequence option that
conflict with other line numbers in the file, EDT inserts the
new lines without line numbers.

2-29

I. ii

DEC EDITOR (EDT)

If you do not use the /Sequence or /Unsequenced option to
specify line numbers, EDT numbers the new lines in the
following manner: ""'

If EDT can number the new lines by incrementing the
existing line numbers in steps of 10, it does so as
long as the resulting line numbers do not duplicate
existing line numbers or violate the ascending order
of line numbers.

If incrementing by 10 would result in an illegal line
number, EDT begins incrementing subsequent new lines
in steps of 1.

If incrementing the new lines in steps
result in illegal or duplicate line
places all further lines in the correct
does not assign them any line numbers.

of 1 would
numbers, EDT
order, but

If you insert a large number of lines, you may want to enter a
Resequence command to uniformly renumber the lines in the
buffer. (See Section 2.3.12.)

• After you type all the lines to be inserted, type a line that
contains only <CTRL/Z>. This <CTRL/Z> causes EDT to terminate
the insert and display the asterisk prompt, allowing you to
enter further commands.

2.3.8 MOVE

Use the Move command to transfer lines from one location to another
and to delete them from their original location.

Format

M[OVE] range-1 %TO range-2

MOVE ••• %TO

Specifies the Move command.

range-1

[/Q[UERY]]
[/SEQ[UENCE]: initial-number: increment]
[/UN[SEQUENCED]]

Specifies the lines that are to be moved. If you specify more
than one line in range-1, all the lines you specify are moved.

range-2

Specifies the line ahead of which the lines in range-1 are moved.
If you specify more than one line in range-2, the lines in
range-1 are moved ahead of the first line in range-2.

2-30

Ji! I ::Si a t.t I J JUI JUJ5$ J Ji41

DEC EDITOR (EDT)

/QUERY

Allows you to specify how each line in range-1 is to be treated.
Before EDT transfers each line, it prints the line and waits
until you type any one of the following responses:

Response Result

y or YES Moves the line
N or NO Does not move the line
Q or QUIT Stops moving lines and displays the asterisk

prompt
A or ALL Moves the remaining lines in the range

without printing them first

/SEQUENCE: initial-number: increment

Assigns specific line numbers to the transferred lines. The
initial-number argument specifies the number of the first line
that was moved, and the increment argument specifies the
increment between numbers. For example, /SEQ:lOO:lOO creates the
transferred lines with line numbers of 100, 200, 300, 400, and so
on.

/UNSEQUENCED

Not.es

Causes EDT to transfer the lines without assigning them line
numbers.

M.:"MAC" %TO =X 40

This command moves all lines, beginning with the current line and
continuing through the first line containing the string MAC, to a
position preceding line 40 in buffer X.

M.; 2 0 % TO % BE

This command moves 20 lines, starting with the current line, to
the beginning of the current text buffer.

M =X %TO =MAIN %E

This example appends the contents of text buffer X to the end of
buffer MAIN.

• After a line or group of lines has been moved, EDT positions
the line pointer at the first line of the transferred lines in
their new position preceding the first line in range-2.

• You cannot overlap ranges: range-1 and range-2 cannot contain
any of the same lines.

• If you use the Move command to transfer a large number of
lines, you can issue a Resequence command to establish uniform
line number increments. (See Section 2.3.12.)

2-31

DEC EDITOR (EDT)

If you do not use either the /Sequence or /Unsequenced option
to specify line numbers, ~OT attempts to number the new lines
in the following manner:

If EDT can number the new lines by incrementing the
existing line numbers in steps of 10, it does so as
long as the resulting line numbers do not duplicate
existing line numbers or violate the ascending order
of line numbers.

If incrementing by 10 would result in an illegal line
number, EDT begins incrementing subsequent new lines
in steps of 1.

If incrementing the new lines in steps
result in illegal or duplicate line
places all further lines in the correct
does not assign them any line numbers.

of 1 would
numbers, EDT
order, but

2.3.9 PRINT

Use the Print command to create a file from the contents of a text
buffer. The file that you create in this way contains as part of the
text the EDT line numbers assigned to the lines in the range.

Format

PRINT

range

PR [INT] [range] /FI : f ilespec

Specifies the Print command.

Specifies the buffer contents that you want placed in the
permanent storage file you create. If you do not specify a
range, EDT uses the entire current text buffer as the range.

/FI: f ilespec

Specifies the output file that you create. You must specify the
filespec using the /FI option. Section 1.3 contains a complete
description of file specifications.

Examples

PR =B 10:70/FI:INT.FOR

This command creates a file called INT.FOR that contains lines 10
through 70, inclusive, of buffer B.

PR =MAIN/FI:SY.MAC

This command creates a file called SY.MAC from the contents of
the main text buffer. The file SY.MAC has as part of the text of
the file the line numbers that existed in the MAIN buffer at the
time the Print command was issued.

2-32

..... ,~, ,;: ... ,;a ,.a•:•:: .. ::•s•;11 .. ;•s:•:•:•122•:•11:•::: ..

'-')

Note1s

DEC EDITOR (EDT)

• EDT does not reposition the line pointer after the Print
command generates on output file.

2.3.10 QUIT

Use the Quit command to terminate EDT and to return control to the
system monitor without saving the contents of any text buffers.

Format

QUIT

QUI'l'

Specifies the Quit command.

Example

NotE!S

QUIT

This command erases all text buffer contents and returns control
to the system monitor.

• The Quit command does not modify any buffers. It does not
write out the contents of the main buffer or any other buffer,
nor does it generate any files.

•

•

If you invoke EDT with only an input file, you must either
issue a Quit command to return to the system monitor or issue
an Exit command with the /Rename option to specify an output
file. You can also use the Write command to generate a file
from the contents of the main text buffer or an alternate text
buffer. See Section 2.3.19 for a description of the Write
command.

If you use the Write command to generate a file before you
issue the Quit command, that file is not affected by Quit or
any other subsequent EDT command.

The Quit command is especially useful if you have made
error that results in the loss of all or part of a buffer
are editing. If you make a mistake that results in a loss
your buffer's contents, issuing a Quit command negates
changes made since EDT was invoked.

2-33

an
you

of
all

··!11111 ill

DEC EDITOR (EDT)

2.3.11 REPLACE

Use the Replace command to delete one or more lines of text in a text
buffer and replace them with new lines.

Format

R [EPLACE] [range]

text

<CTRL/Z>

REPLACE

[/SEQ[UENCE]: initial-number: increment]
[/UN [SEQUENCED]]

Specifies the Replace command.

range

Specifies those lines that are to be deleted. The replacement
lines begin with the first line in the range. If you do not
specify a range, the Replace command deletes the current line and ~
inserts the replacement lines in its place.

/SEQUENCE: initial-number: increment

Assigns specific line numbers to the replacement lines. The
initial-number argument specifies the number of the first line,
and the increment argument specifies the increment between
numbers. For example, /SEQ:lOO:lOO creates replacement lines
with line numbers of 100, 200, 300, 400, and so on.

/UNSEQUENCED

text

Causes EDT to create the replacement lines without assigning them
line numbers.

Represents one or more complete lines of text.
must end with a carriage return.

The last line

<CTRL/Z>

Causes EDT to stop accepting replacement text and display the
asterisk prompt.

Examples

a

R <RET>
GOTO 40 <RET>
<CTRL/Z>

This example deletes the current line, replaces it with GOTO 40,
and terminates the replacement text with <CTRL/Z>.

R 'ABC'+20 <RET>
IF XYZ THEN DEF <RET>
<CTRL/Z>

This example deletes the twentieth line after the first
occurrence of ABC, replaces it with the "IF ••• THEN ••• " statement,
and terminates the replacement text with <CTRL/Z>.

2-34

:::: ;u: I ii Ji I I t; I ii I Jlillll!l iii i

Note1s

•

DEC EDITOR (EDT)

After a line or group of
positions the line pointer
replacement line.

lines has been replaced, EDT
at the line following the last

• If you replace a single line with several lines, you can issue
a Resequence command to assign uniform line number increments
to all lines in the text buffer. (See Section 2.3.12).

• If you specify line numbers with the /Sequence option that
conflict with other line numbers in the file, EDT inserts the
replacement lines without line numbers.

If you do not use the /Sequence or
specify line numbers, EDT numbers
following manner:

/Unsequenced option to
the new lines in the

If EDT can number the new lines by incrementing the
existing line numbers in steps of 10, it does so as
long as the resulting line numbers do not duplicate
existing line numbers or violate the ascending order
of line numbers.

If incrementing by 10 would result in an illegal line
number, EDT begins incrementing subsequent new lines
in steps of 1.

If incrementing the new lines in steps
result in illegal or duplicate line
places all further lines in the correct
does not assign them any line numbers.

of 1 would
numbers, EDT
order, but

• When you issue the Replace command, EDT does not prompt you to
begin entering the replacement lines of text. You should type
the Replace command line, a carriage return, and then type the
lines you want to insert.

After you type the replacement lines, type a line that
contains only <CTRL/Z>. <CTRL/Z> causes EDT to terminate the
replacement and display the asterisk prompt, allowing you to
issue further commands.

2.3~12 RESEQUENCE

Use the Resequence command to assign new line numbers to the lines in
text: buffers.

For111at

RES[E(JUENCE] [range] [/SEQ[UENCE]: initial-number: increment]
[/UN [SEQUENCED]]

RESgQUENCE

ran9e

Specifies the Resequence command.

Specifies the lines and text buffer to be renumbered. If you do
not specify a range, EDT resequences all lines in the current
text buffer.

2-35

DEC EDITOR (EDT)

/SEQUENCE: initial-number: increment

Assigns specific line numbers to the lines in the range. The
initial-number argument specifies the number of the first line in
the range, and the increment argument specifies the increment
between numbers. For example, /SEQ:lOO:lOO renumbers the range
with line numbers of 100, 200, 300, 400, and so on.

/UNSEQUENCED

Causes EDT to remove line numbers from the range.

Examples

Notes

RES

This command causes EDT to renumber the current text buffer's
lines at 10, 20, 30, and so on.

RES =A /SEQ:l:l

This command causes EDT to renumber the lines of buffer A as 1,
2, 3, 4, and so on.

• After a buffer or a group of lines has been resequenced, EDT
positions the line pointer at the first line that was
resequenced.

• If you d~ not specify the /Sequence or /Unsequenc~d option,
EDT assigns to the lines in the text buffer the default line
numbers 10, 20, 30, and so on.

• As a general practice, resequence the entire text buffer
instead of a portion of it. This ensures that uniform line
number increments exist for your convenience.

When you renumber only ~art of the text buffer, none of the
line numbers you assign can match those in the part of the

i'"""

buffer not being renumbered. If you specify a line number for .. _-.:;~ .. ·. '~··· .. , ...
the resequenced range that is less than the line numbers .
before it, all lines in the range are written without numbers.

Uii! ill lit iiiti Ji lit

The highest sequence number that you can use is 65535; the
lowest is 1.

• After you insert or delete a large number of lines, the line
numbers of the remaining lines may be difficult to work with.
Use the Resequence command to restore uniform line number
increments to the text buffer.

• Use the Type command (Section 2.3.18) to display on your
terminal the line numbers that are currently assigned to the
contents of the buffer. Use the Print command (Section 2.3.9)
to create a file that contains the new line numbers as part of
the text.

2-36

iiiiiiii I ii ;::: :::: itiilll!t :a:12!!iili! ::::bm lift !iiii ::u ;::u: !!1!4 m::m:

DEC EDITOR (EDT)

2 • 3 • 13 RES'tORE

Use the Restore command first to locate a file created by a save
command and then to use the file to recreate the status of all files
and the contents of all text buffers as they were preserved in the
file ..

Format

REST[ORE] /FI:filespec

RESTORE

Specifies the Restore command.

/FI: :file spec

Specifies the file that was created by previously issuing a Save
command. That file, when accessed by the Restore command,
recreates the contents of all text buffers in use at the time the
Save command was entered.

EDT does not provide defaults for either the file name or the
file type in the Restore and Save commands. See Section 1.3 for
a complete description of file specifications.

Exam]Ple

Notes

»EDT <RET>
EDT> <RET>
*REST /FI:TXT.SAV
*

This example illustrates the sequence you must follow if you want
to use the Restore command. Restore must be the first command
you issue after invoking EDT without specifying either an input
or an output file. EDT then locates the file TXT.SAV, and uses
that file to recreate the contents of all text buffers in use at
the time the Save command created TXT.SAV.

• In ord~r to issue a Restore command, Restore must be the first
command that you issue after you invoke EDT. Therefore you
must:

l. Invoke EDT without specifying either an input or
output file.

2. Have all text buffers empty.

3. Issue the Restore command, and
created by a Save command in
session.

specify the file
a previous editing

After your text buffer contents have been restored, EDT
positions the line pointer at the line that was the current
line when the Save command created the input file.

2-37

1111111111 I 11

DEC EDITOR (EDT)

2.3.14 SAVE

Use the Save command to preserve in a file that you specify the
contents of the text buffers and the status of all files you use
during your editing session. You can later use the Restore command to
recreate your editing session as it was when you issued the Save
command.

Format

SA[VE] /FI:filespec

SAVE

Specifies the Save command.

/FI:filespec

Specifies the file that EDT creates. This
current status of all the buffers in use.
option to specify the name of the file.

file contains the
You must use the /FI

EDT does not provide defaults for either the file name or the
file type in the Restore and Save commands. See Section 1.3 for
a complete description of file specifications.

Example

Notes

SA /FI:TXT.SAV

This command saves all text buffer contents by creating the file
TXT.SAV. The file TXT.SAV contains the contents of all the text
buffers in use at the time the Save command was issued. You can
use the TXT.SAV file only by issuing a Restore command to
recreate the contents of the text buffers.

• EDT does not reposition the line pointer after the Save
command generates the file, nor does the Save cqmmand alter
the contents of text buffers. After a Save command, you can
continue to edit as if you had never issued the command.

• The file created by a Save command is in a special format and
is useful only as input to the Restore command (see Section
2.3.13). Do not try to use the file created by a Save command
as a normal EDT input file.

2.3.15 SET

Use the Set command to establish criteria that are used by other EDT
commands to flag upper-case or lower-case characters, to determine if
two strings match, and to establish the correct parameters for the
terminal you use.

2-38

Si ii iii!! I. & ;:: :221

DEC EDITOR (EDT)

Format

SET

~ CASB

"'-'; EXACT

CA[SE]

EXACT

SET

TE[RMINAL]

Specifies the Set command.

[UPPER~ LOWER
NONE

CCA [SE]]
NONE

HCPY
VTOS
VTSO
VT52
VTSS
VT61
LA30
LA36

Specifies that characters of the case you specify, either Upper,
Lower, or None, are to be preceded by an apostrophe when they are
displayed on the terminal. If you specify Case Upper, all
upper-case characters are flagged. If you specify Case Lower,
all lower-case characters are flagged. If you specify Case None
(the default setting), no characters are flagged, and any
previously entered Case specifications are terminated. EDT does
not flag characters while in Character Mode.

Specifies whether object string matches must conform to the cases
specified in the object string. If Exact Case is specified,
match strings must conform to the cases of characters specified
in the object string. If Exact None (the default setting) is
specified, only the characters must match; case matches are not
required.

TERMINAL

Specifies the terminal type that you are using. The valid
terminal types are listed above in the command format. Enter the
terminal type that corresponds to the terminal you are using.
The default setting for the Terminal parameter is established
when EDT is installed.

Exa1nples

*SET CASE LOWER <RET>
*40 <RET>
40 IF ABC 'L'T 'X'Y'Z GOTO 'X'X'X

Text of line 40 actually exists in the buffer as:

40 IF ABC lt xyz GOTO xxx

This example illustrates that Set Case Lower displays all
lower-case characters with a leading apostrophe.

2-39

Notes

DEC EDITOR (EDT)

*SET EXACT CASE <RET>
*'ABC' <RET>
No such line found.
*SET EXACT NONE <RET>
*'ABC'<RET>
130 IF abc, GOTO x

This example illustrates that, when Set Exact Case has been
specified, EDT accepts only exact case matches.

Using the Set Case Command

• The Set Case Upper and Set Case Lower commands do not alter
the characters in the text buffer; they only change the way
the characters are displayed on the terminal.

You should generally use the Set Case Lower command when you
have an upper-case-only terminal. All characters that
subsequently appear with a preceding apostrophe are lower-case
characters. Lower-case characters cannot be changed or
inse~ted from an upper-case-only terminal, but they can be
deleted.

• EDT does not flag characters while in Character Mode. You
therefore cannot distinguish between upper-case and lower-case
while in Character Mode if you have an upper-case-only
terminal.

Using the Set Exact Command

• The Set Exact commands do not cause any changes in the text
buffer. These commands only control the criteria that EDT
uses to evaluate a string match.

Using the Set Terminal Command

• Setting the correct terminal type is mandatory only when you
edit in Character Mode. Generally, however, you should always
have the correct terminal type set.

The default setting for the Terminal parameter is established
when EDT is installed in the system. Use the Show Terminal
command (Section 2.3.16) to find out what default terminal
type is in effect, then use the Set Terminal command to alter
the Terminal parameter if necessary.

2.3.16 SHOW

Use the Show command to display buffer and software version
information, and EDT parameters established by the Set command.

Format

SH [OW]

[

BU [FFERS] J CA [SE]
EXACT
TE[RMINAL]
VE [RS ION]

2-40

·~
J 1~'

· '

1

•

1•••t1:•2:•:::•:1:1u•••:•: •:::•::::••:.•: ••••:•t••:•u •t111 •••••••••••••:•:•••:•nz•:•iiii•ii!•t•u••:: •: :•::1111; ••:•ii!i•l•t1•t•t:,•::;•:111 .. •

' .' ·~I

DEC EDITOR (EDT)

SHOW

SpeciUes the Show command.

BUFF'ERS

CASE:

EXACT

Specifies that EDT display the name and summarized contents of
each buffer you have used since invoking EDT, and indicate the
current buffer with a leading equal sign (=).

Specifies that EDT display the Case parameter currently in effect
as established by the Set command.

Specifies that EDT display the Exact parameter currently in
effect as established by the Set command.

TERMINAL

Specifies that EDT display the Terminal parameter currently in
effect as established by the Set command.

VERSION

Specifies that EDT display the version number of the current EDT
program.

Examples

Notes

*SH CASE
UPPER
*

This example shows that the Case Upper parameter is in effect.

*SH BU
MAIN
A
BUF2
=BUF
*

14 LINES
0 LINES
143 LINES
390 LINES

This example display~ the buffers referenced since EDT was
invoked, the order in which they were created, and a summary of
their contents. The current buffer is shown with a leading equal
sign (=).

• The Show command, except for the Buffers and Version options,
displays only those options that have been specified, or that
can be specified, through the Set command (see Section
2.3.15).

2-41

. 11• Qi.I !Iii!! 2 2!1221

DEC EDITOR (EDT)

2.3.17 SUBSTITUTE

Use the Substitute command to change characters within lines of the .~
text buff er.

Format

[/BR [IE F]] [: n]
S[UBSTITUTE]/object-string/replacement-string/[range] [/Q[UERY]]

[/-T[YPE]]

or

S[UBSTITUTE] N[EXT]

SUBSTITUTE

I

Specifies the Substitute command.

Represents a string delimiter. String delimiters can be slashes
or any other printing, nonalphanumeric character. The delimiters
in a given Substitute command must match each other.

object-string

Specifies the characters in the text buffer that you want to
locate and to change. See Section 2.2.2.4 for more information
about object strings.

replacement-string

range

Specifies the characters with which you want to replace the
object string characters.

Specifies the range of lines within which all occurrences of the
object string are changed to the replacement string. If you do
not specify a range, EDT changes only the first occurrence of the
object string that it locates.

/BRIEF

Specifies that EDT display the first n characters of each line in
which it makes a substitution. If you omit the n argument, EDT
displays the first 10 characters.

/QUERY

Specifies that you want to control the operation by using EDT
prompts and responses. EDT prompts you by displaying the
substitution about to be made and waits for you to enter any one
of the following responses:

Response

Y or YES
N or NO
Q or QUIT

A or ALL

:ams m: : :: T I Li! iii! !iii

Result

Makes the substitution
Does not make the substitution
Stops substituting and displays the asterisk
prompt
Makes substitutions in the rest of the
appropriate lines in the range without printing
them first

2-42

ii:;: I JM

L ~' ~I

DEC EDITOR (EDT)

/-TYPE

NEXT

Inhibits EDT's automatic display of
substitution is made in that line.

each line after a

Repeats the operation of the Substitute command that it must
immediately 1:ollow.

Exam1ples

S/ABC/XYZ

This command causes EDT to change the next occurrence of ABC to
XYZ. If ABC exists on the current line, it is changed. If not,
the contents of the buffer are searched, and the first occurrence
is changed.

S'/'\'

This command causes EDT to
backslash (\), and uses
delimiter.

S/A/B/.

change the first slash (/)
an apostrophe (') as the

to a
string

This command changes every occurrence of A to B in the current
line cmly.

Note that the final slash (/) string delimiter must be included
here since the current line range is specified by the period (.).

S/001/100/%WH/Q

In this example, EDT attempts to change every occurrence of 001
to 100 in the entire text buffer but queries you before making
each substitution.

S/ .. AND/. OR/%REST /-T

In th:is example, EDT changes every occurrence of .AND to .OR from
the current line through the end of the text buffer but does not
display any of the resulting lines.

*S/.MAC/.BAS//-T
*S N
150 IF THE FILE TYPE IS .BAS, THE COMPILER MAKES

In this example, EDT changes the first occurrence of .MAC to
.BAS, but does not display the changed line. The S N command
then changes the next occurrence of .MAC to .BAS and
automatically displays the line.

Note in the first command line that two consecutive slashes (/)
are used. The first of these indicates the end of the
replacement string and the second that an option follows.

2-43

1~1111 I ill$ $Sill&

Notes

DEC EDITOR (EDT)

• EDT displays each line that contains a substitution on the
terminal after it makes the substitution. If you specify a
range that requires substitutions in more lines than you wish
to have displayed, specify the /-Type option to inhibit the
display.

• The S N or Substitute Next command format must immediately
follow another Substitute command. When entered, S N repeats
a single substitution as performed by the command it follows.

The S N command format does not accept a range or any options.
It allows you to perform one more substitution that has
already been defined without requiring you to retype the
command string.

• After EDT makes substitutions, it positions the line pointer
at the last line in which a substitution was made.

You can replace the slash (/) string delimiter with any
printing character except a letter or number, for example, a
question mark (?),semicolon (;),apostrophe ('),and so on.

You can omit the final string delimiter if no range or options
follow and if the omitted delimiter is the last character in
the command line.

2.3.18 TYPE

Use the Type command to display lines of text at your terminal.

Formats

TYPE

range

[T[YPE]] [range]

or

T[YPE] [range] [/BR[IEF]] [:n]

Specifies the Type command. Note that this field is optional
you do not specify the /Brief option.

if

Specifies the lines that you want displayed at your terminal. If
you omit the range argument, the range defaults to the line
following the current line (see Notes).

/BRIEF

Specifies that EDT display only the first n characters of each
line in the range. If you omit the n argument, EDT displays the
first 10 characters.

2-44

iJ u llJ!ij$ lib iii

""'

DEC EDITOR (EDT)

Examples

'ABC': "DEF"

This command displays all lines of text from the first line that
contains ABC through the first line that contains DEF, inclusive.

Notes

T 1 0 : 1 0 0 /BR : 5

This command displays the first five characters of each line with
line numbers between 10 and 100, inclusive.

%WH

This command displays the entire text buffer contents.

*<RET>
120 DID GYRE AND GIMBLE IN THE WABE

*
This command, consisting only of a carriage return, advances the
line pointer to the next line and prints the line. Line 120
becomes the new current line.

• You can issue a Type command that consists of only a range.
The contents of that range are displayed on the terminal.
However, if you issue this format of the Type command, you
cannot include any command options.

• After EDT displays the lines in the range on your terminal, it
positions the line pointer at the first line in the range.

• A special case of the Type command occurs when you omit both
the command and the range; that is, when you enter a command
line that consists only of a carriage return. EDT first
advances the line pointer to the next line, then types that
line. The line just typed becomes the current line. This
variation of the Type command allows you to step through the
lines in a file simply by pressing <RET> repeatedly.

2.3.19 WRITE

Use the Write command to create a file from the contents of a text
bu Her.

For·mat

WR [ITE] [range] /FI : f i lespec

WRITE

Specifies the Write command.

2-45

·:iuu:m till I .ii

range

DEC EDITOR (EDT)

Specifies the buffer contents that you want to store in the file.
If you do not specify a range, EDT uses the entire contents of
the current text buffer as a range.

/FI: f ilespec

Specifies the output file that EDT creates. You must use the /FI
option to specify your output file. Section 1.3 contains a
complete description of file specifications.

Example

Notes

WR =B 10:70/FI:INT.FOR

This command creates a file named INT.FOR that contains lines
through 70, inclusive, of buffer B.

10

• EDT does not reposition the line pointer after a Write
command, nor does the Write command alter the contents of the
range or buffer.

• Use the Write command to generate a file that contains the
contents of alternate text buffers that you want to save.
When you issue the Exit command, EDT saves only the contents
of the main text buffer; all other buffers are erased. (See
Section 2.3.4 for a description of the Exit command.)

You can also use the Write command to save the contents of the
main buffer if you did not specify an output file when you
invoked EDT.

2.3.20 XEQ (Execute)

Use the Execute command to execute a previously entered sequence of
EDT commands.

Format

XEQ

range

Li

X[EQ] range

Specifies the Execute command.

Specifies the lines of text that contain the EDT commands to be
executed.

2-46

Iii$ ii!!i!JS ; ii !GO :U .CAZ Ui. JIH

DEC EDITOR (EDT)

Exam.pl es

x l.0:30

where lines 10 through 30 contain:

10 I ABC I

20 S/40/70/.
30 <RET>

In this example, EDT searches for the next line that contains
ABC, and attempts to change all occurrences of 40 to 70 within
the line. The blank line implied by the <RET> symbol advances
the line pointer past the now current line that contains ABC so
that further X 10:30 commands locate the next succeeding line
that contains ABC.

Not4~S

x 1•8

where buffer B contains:

=MAIN %BE
'ABC'
R
XYZ
"'Z

This example returns the line pointer to the first line of the
main buffer, locates and deletes the first line that contains an
occurrence of ABC, inserts a line consisting of XYZ, and
terminates the insert with the circumflex-z ("'Z) combination.

• Use the Execute command if you have identical or complex edits
to perform, or if you have an established series of commands
that are often issued.

• EDT positions the line pointer as directed by the commands
contained in the range specified with the Execute command.

• The Execute command cannot alter the contents of the range
containing the commands in any way.

• If the range specified with the Execute command contains an
Insert or Replace command, use the following steps to
terminate the Insert or Replace command properly:

l. Create the sequence of commands that will be excuted
by the Execute command, including the Insert or
Replace command.

2. Enter the new or replacement lines as part of the
sequence of commands contained in the range.

3. When all new or replacement lines are entered, enter
a circumflex-z ("'Z) combination as part of the
sequence of commands. When EDT executes the sequence
of commands, the "'z is interpreted as <CTRL/Z>.

• When the commands in the range have been executed, EDT
displays the asterisk prompt.

2-47

DEC EDITOR (EDT)

2.4 CHARACTER MODE

When you issue the Change command from EDT's Command Mode, you invoke
Character Mode. Character Mode allows video terminal users to work at
the character and word levels, in addition to the line level provided
by Command Mode. Character Mode does this by using the video
terminal's cursor as a pointer to the current position in the buffer.

All Character Mode editing operations use the position of the cursor
as a reference point. Unlike Command Mode's line pointer, which
points to an entire line, the cursor in Character Mode points to one
character within a line. Similarly, where Command Mode commands
generally operate on no unit smaller than an entire line of text,
Character Mode subcommands can operate on the single character
indicated by the cursor. Character Mode can also operate on multiple
characters, words, and lines.

Character Mode differs from Command Mode in several other respects.
The most obvious difference is the lack of line numbers in Character
Mode. A second difference is that Character Mode only operates in one
buffer at a time. As a result of these two differences, Character
Mode is not useful for moving lines of text from place to place and ~: __ --,,..:·----~_,_,_,-
especially from buffer to buffer. You should use Command Mode for • __ _
these operations. Character Mode is at its best when you must perform
extensive editing operations within a line.

When you are working in Character Mode, the video terminal screen
always displays the exact contents of the buffer. After each edit,
Character Mode updates the display to reflect the current text.

When you issue the Change command, the video terminal screen goes
blank, except for the current line of the buffer, which appears at the
top of the screen. The cursor is positioned at the first character of
the line. Although there is no indication on the screen, Character
Mode is waiting for a subcommand (so called because Character Mode is
a subfunction of the Change command). If you type something, whatever
you type appears at the bottom of the screen, in a zone reserved for
subcommands. Depending on the subcommands you issue, you can perform
some editing operation within the line at the top of the screen, or
cause Character Mode to display more lines of the buffer.

When Character Mode is in use, you have access to the entire range
specified in the Change command. However, since your screen can only
display a certain number of lines of text, the screen is like a window
on the text buffer. If you direct the cursor to a line that is not in
the current display, Character Mode scrolls the display up or down, as
appropriate, to bring the specified line into view. (If you mQve the
cursor a large number of lines, the display does not scroll; it
vanishes, and the specified line is displayed at the top of the
screen.)

Once the cursor is positioned at the beginning of the line you wish to
change, you direct the cursor to the desired character within the
line. You do this either by issuing subcommands or by using the arrow
keys on your terminal's keypad (if your terminal is so equipped) to
move the cursor. You can then perform any of these actions:

• Delete a specified number of characters, words, or lines

• Replace a specified number of characters, words, or lines with
new text

2-48

~I

:r• I i IL I .JtJJl!iiiii!i!S!!.!b ii I ii!iiiiii21 I .ii iiiiiii I l!i.111 Jiliiiiii!! iii iii ;; :::; $&$.Ii ISL!iiii I I ii $! .i .I I U iil!Q ti IJSM fa!JIJ iiii!l!U$

DEC EDITOR (EDT)

• Insert text in front of the cursor

• Substitute the next (or previous) occurrence of a specified
string with another string

At the end of the Character Mode session, you issue the Exit
subcommand to terminate Character Mode and return to Command Mode.

When you use Character Mode, it is important that EDT's Terminal
parameter matches the type of terminal you are working on. Sections
2.3.15 and 2.3.16 describe the Set and Show commands, which allow you
to establish and display the value of the Terminal parameter.

In addition, you should be sure that your terminal is correctly
described in the operating system's list of devices. Use the MCR Set
command or (for RSX-llM-PLUS users) the DCL Show command to make sure
your terminal is set correctly (see the RSX-llM/M-PLUS MCR Operations
Manual or the RSX-llM-PLUS Command Language Manual, respectively).

The remainder of this section describes:

• Editing subcommands, which allow you to position the cursor
and perform editing operations

• Methods of cursor manipulation other than those available with
the editing subcommands

• Subcommand concatenation, which allows you to enter several
subcommands on one line

• Two subcommands to terminate Character Mode

'--' 2.4.1 Editing Subcommands

Editing subcommands are divided into three basic groups:

• Subcommands that move the cursor, delete, or replace a
specified number of characters, words, or lines

• The Insert subcommand, which allows you to insert text in
front of the cursor position

• The Substitute subcommand, which allows you to substitute for
the next (or previous) occurrence of a string

Each of these groups is treated individually in the sections that
follow.

2.4.1.1 Subcommands That Move the Cursor, Delete, or
Replace - Subcommands in this group are made up of three fields:
action, repetition count, and unit. The action field specifies what
you want to do; the repetition count field specifies how many times
you want to do it, and in which direction; and the unit field
specifies whether you want to do it to characters, words, or lines.
The action and repetition count fields are optional, but you must
specify a unit. You cannot separate the fields with spaces or tabs.

Forllllat

[actic>n] [-] [repcount]unit<RET>

2-49

DEC EDITOR (EDT)

action

Represents a 1-letter abbreviation (or a null field) that ~
specifies the editing operation that you wish to perform. !"'"""·~

If this field is null, Character Mode moves the cursor the
specified number of units in the buffer, and displays the text if
it has not already been displayed.

If this field is a D (for Delete), Character Mode deletes the
specified number of units, starting at the current cursor
position.

If this field is an R (for Replace), Character Mode first deletes
the specified number of units, then waits for you to insert text
in place of the deleted units. When you finish inserting the
replacement text, enter a <CTRL/Z>. This directs Character Mode
to terminate the insert operation and wait for another
subcommand. (See Section 2.4.1.2 for a full description of the
Insert subcommand.)

repcount

unit

Represents an integer that specifies the repetition count. The
repetition count tells Character Mode how many times to perform
the action. If the repetition count is positive, the action
takes place for the specified number of units following the
cursor, including the unit at which the cursor is currently
positioned. If the repetition count is negative, the action
takes place for the specified number of units preceding the
cursor, not including the unit at which the cursor is currently
positioned.

If you leave this field null, the repetition count defaults to 1,
and the action takes place on the unit at which the cursor is
currently positioned. If you do not enter a minus sign (-) with
the repetition count, the sign defaults to positive.

Repfesents a 1-letter abbreviation that specifies the unit on
which the action is to take place. The unit can be C (for
character), W (for word), or L (for line).

A character is a
tabs. If you
line terminators
deleted. (See
command.)

single ASCII character, including spaces and
specify the /NL option with the Change command,
are also considered single characters and can be
Section 2.3.1 for a description of the Change

A word is any string of printing characters and trailing word
terminators. A word begins at its first character and includes
all characters in the word and all word terminators (spaces
and/or tabs) up to the first character of the next word.

A line begins at the first character of the line and includes all
characters in the line up to (and including) the line terminator.
The line terminator can be a carriage return, line feed, form
feed, or vertical tab.

2-50

" 2ti i I I 2 iiiii4 J

~I

I 4U::: J ii il1411Z¥

·-....,

DEC EDITOR (EDT)

Examples

D3W

This subcommand deletes three words, beginning with the word at
which the cursor is currently positioned.

DW

In this subcommand, the
therefore, the subcommand
cursor is positioned.

repetition count defaults to l;
deletes the single word at which the

-4W

In this subcommand, the action field is left null; therefore,
the cursor moves backwards in the buffer by four words, coming to
rest on the first character of the fourth word preceding its
starting position.

DC

This subcommand deletes the single character at which the cursor
is currently positioned.

DSC

This subcommand deletes the character at which
currently positioned and the four characters
position, for a total of five characters.

D--sc

the cursor is
following that

This subcommand deletes the character immediately preceding the
cursor position and the four characters preceding that one, for a
total of five. Note that this subcommand does not delete the
character at which the cursor is positioned.

This subcommand deletes the three words immediately preceding the
word in which the cursor is positioned. Note that the word in
which the cursor is positioned is not deleted if the repetition
count is negative.

D2L

This subcommand deletes the line in which the cursor is
positioned and the following line, for a total of two lines.

2-51

:i~• 2i2 !l I 2iii lilSS!i I 2 I

DEC EDITOR (EDT)

D-3L

This subcommand deletes the three lines immediately preceding the
line in which the cursor is positioned. Following the operation,
the cursor comes to rest at the beginning of the line in which it
was originally positioned, that is, the first line following the
deleted lines.

R2C

This subcommand first deletes two characters starting at the
current cursor position, then waits for you to input replacement
text. When you enter <CTRL/Z>, the replacement operation
terminates and Character Mode waits for another subcommand.

In practice, when you issue a Replace subcommand, the specified
characters and the remainder of the affected line vanish. You
can then enter the replacement text, including carriage returns
if necessary. When you enter <CTRL/Z>, the remainder of the
affected line reappears in its proper position following the
replacement text.

R3W

This subcommand first deletes three words, starting with the word
in which the cursor is currently located, then waits for you to
input replacement text. When you enter <CTRL/Z>, the replacement
operation terminates and Character Mode waits for another
subcommand.

When replacing words, it is important to remember that you must
also replace the word terminator(s). A word includes all spaces
or tabs until the first character of the next word, or the first
line terminator.

2W3C

This subcommand string first moves the cursor two words forward
from the current position, to the first character of the second
word. It then moves the cursor three characters further, to the
fourth character of the word.

This example and the following one illustrate subcommand
concatenation. For more information on subcommand concatenation,
see Section 2.4.3.

2L3WD2W

This subcommand string first moves the cursor down two lines to
the beginning of the second line following its original position.
It then moves the cursor three words into the line, to the
beginning of the fourth word. Finally, it deletes two words,
starting at the current cursor position; that is, the fourth and
fifth words of the line.

2-52

I 2 !iiJi :; if ;; :;z $bi221

Not:es

DEC EDITOR (EDT)

• When you are deleting or replacing characters or words,
normally you cannot delete beyond the end or beginning of the
current line. For example, the cursor is two words from the
end of the line, and you issue the subcommand:

•

DSW

In this situation, Character Mode does not delete the last two
words on the current line and the first three on the next
line, as you might expect. Only the last two words on the
current line are deleted. The situation is the same if you
try to delete or replace characters beyond the end or
beginning of the current line.

The situation changes, however, if you specify the /NL option
when you issue the Change command. The /NL option directs
Character Mode to treat line terminators as single characters
that can be deleted. If you specified /NL, and you try to
delete beyond the end or beginning of a line, you will
succeed; Character Mode deletes the line terminator and joins
the two lines that the line terminator used to separate.

This distinction becomes important if you wish to delete or
replace all the words or characters between the current cursor
position and the end or beginning of the current line. If you
issued the Change command without the /NL option, you can
simply specify a repetition count that is larger than the
number of words or characters you wish to delete. Character
Mode will delete only to the end or beginning of the line,
depending on whether the repetition count is positive or
negative. If, however, you specified the /NL option, you must
specify a repetition count that exactly malches the number of
words or characters you wish to delete. If the repetition
count you specify is too large, you will delete the line
terminator and possibly some words in the following or
preceding line.

I:E you specified the /NL option and you delete or replace
characters beyond the end or beginning of a line, remember
that the line terminator counts as a single character and must
be accounted for when you calculate the repetition count.
However, if you are deleting words, you do not have to include
the line terminator in the repetition count, because the line
terminator is treated as part of the last word in the line.

Spaces are not allowed between the elements of a subcommand •
If, for example, you attempt to issue the subcommand

D 5 W

Character Mode returns the error message

Illegal subcommand

• The DELETE key on your terminal can be used directly to delete
characters from the text buffer. deletes the character
directly to the left of the cursor. Thus, a single
keystroke is equivalent to the subcommand:

o-c

2-53

DEC EDITOR (EDT)

Use care when deleting a subcommand that you have entered
incorrectly. If you inadvertently delete more characters than
are in the subcommand, you will also delete some characters
from the text buffer.

2.4.1.2 The Insert Subcommand - The Insert subcommand allows you to
insert text at any point in the text buffer. The text can consist of
any combination of characters, including carriage returns and other
line terminators. When you want to terminate the insert operation, a
<CTRL/Z> directs Character Mode to stop accepting text for insertion
and wait for another subcommand.

Format

loc

I

Notes

l.iiiiii! ii. Sill Lii!ii iiiiii t

[loc]I<RET>

Represents a Character Mode subcommand or combination of
subcommands that results in a new cursor position. (Note,
however, that a string search operation must be the last element
entered in a subcommand string; see Section 2.4.3.)

Specifies that the text you enter following the <RET> be inserted
immediately preceding the current cursor position. Character
Mode continues to insert text until you enter a <CTRL/Z>.

• In practice, the Insert subcommand causes the remainder of the
line in which the cursor is currently positioned to vanish,
leaving the cursor at the position where the insert will
occur.

When you finish typing the insert text and enter a <CTRL/Z>,
the remainder of the line reappears in the proper position.
It is not necessary to type a <RET> before the <CTRL/Z>, as is
the case when inserting in Command Moda. Any carriage returns
that you enter while inserting become part of the insert.

If you position the cursor under the first character of a line
and issue the Insert subcommand, the entire line vanishes.
You can then insert one or more complete lines, including line
terminators. These lines will go into the text buffer above
the line in which the cursor was originally positioned. When
you enter a <CTRL/Z>, the line above which the new lines have
been inserted reappears.

If you position the cursor at the end of a line and issue the
Insert subcommand, the resulting insert occurs between the
last character of the line and the line terminator.

• A long insert in a long line can result in text disappearing
off the right edge of the screen. The text is still in the
buffer, however, and can be recovered by inserting a carriage
return in the line.

2-54

iiii I ;: ii a : a ;:::::::: .I SJ 42 2 ti $l ... 114 . 14141

DEC EDITOR (EDT)

2.4.1.3 The Substitute Subcommand - The Substitute subcommand works
in much the same way as the Substitute command works in Command Mode,
and follows similar format rules. It allows you to substitute a

~ specified string with another string.

"'-''

Format

s

I

[-]S/objstring/repstring[/]

Specifies that the direction of search for the object string
should be toward the top of the buffer, rather than toward the
bottom. If this field is null, the search is toward the bottom
of the buffer.

Specifies the Substitute subcommand.

Represents the string delimiter. The delimiters can be slashes
or any other printing, nonalphanumeric characters; however, the
delimiters used in a given Substitute operation must match. Note
that the final terminator is optional, as long as you do not
place additional subcommands at the end of the Substitute
subcommand. (For a complete description of subcommand
concatenation, see Section 2.4.3.)

objs tr ing

Specifies the object string that is to be replaced with the
replacement string. The criteria that Character Mode uses to
determine whether two strings match are those established by the
Command Mode Set command (see Section 2.3.15).

reps:tring

Note~s

Specifies the replacement string that is to replace the object
string.

• When you issue the Substitute subcommand, the object string
you specify becomes the last-specified object string. This
means that you can later locate the next (or preceding)
occurrence of the object string by entering paired quote marks
("") or apostrophes (''). See Section 2.4.2.2 for a full
description of Character Mode string searches.

2.4~2 Cursor Manipulation

You can us~~ the editing subcommands presented in Section 2.4.1.l to
move the cursor in the text buffer. There are three additional
methods of moving the cursor:

• Subcommands that move the cursor to the beginning or end of a
specified unit of text

2-55

DEC EDITOR (EDT)

• String searches, which move the cursor to the beginning of a
specified object string

• Keypad arrows, on terminals that are equipped with them

2.4.2.1 Cursor Subcommands - The cursor manipulation subcommands
consist of two letters. The first letter is B or E, and specifies the
beginning or end of the unit specified by the second letter. The
second letter can be w, for word; L, for line; or R, for range. The
range is equivalent to the range that you specified when you issued
the Command Mode Change command. Table 2-8 summarizes the cursor
~anipulation subcommands.

Table 2-8
Cursor Manipulation Subcommands

Subcommand Function

BL Moves the cursor to the beginning of the current line

BW Moves the cursor to the beginning of the current word

BR Moves the cursor to the first character in the range
specified in the Change command

EL Moves the cursor to the end of the current line

EW Moves the cursor to the end of the current word

ER Moves the cursor to the end of the range that was
specified in the Change command

2.4.2.2 String Searches - String searches move the cursor to a
specified object string, either before or after the beginning cursor
position. The format of a string search request is as follows:

n

11'•t !iii I !US! i!iiiii iii! iiii!E.iiiiiiiii

[-] [n] '[objstring] [•]

Specifies that the search should proceed toward the top of the
text buffer. If you leave this field null, the search proceeds
toward the bottom of the text buffer.

Specifies which occurrence of the object string to locate. The
value of n defaults to 1.

Represents the string delimiter. For string searches, the
apostrophe (') and the quote mark (") are legal string
delimiters. The delimiter that you use at the beginning of the
string must match the one you use at the end of the string.

2-56

a I !lip ta a & QSSSiittA 42

L. ' ~,

DEC EDITOR (EDT)

objstr ing

Specifies the object string. Following a successful search, the
cursor is positioned at the first character in the object string.
If the objstring field is left null, the search is made for the
object string that was specified in the most recent string search
operation or Substitute subcommand.

Exam1ples

'BOMBARD'

This example moves the cursor to the first letter of the first
occurrence of the word BOMBARD. If the cursor is already
positioned at the first letter of BOMBARD, it moves toward the
end of the buffer searching for another occurrence of BOMBARD.

HotttS

·-2 I FLUGELHORN I

This example moves the cursor to the second occurrence of
FLUGELHORN preceding the starting cursor position. If the
starting cursor position is on the first letter of an occurrence
of FLUGELHORN, that occurrence does not count in the total.
Howevetr, if the cursor is in the middle of an occurrence of
FLUGELHORN, that occurrence is counted.

I I

This example moves the cursor to the first occurrence of the last
string specified as the object string in a search or substitute
operation. Repeated executions of the same subcommand will move
the cursor to subsequent occurrences of the string in the buffer.
This feature allows you to step through repeated occurrences of a
given object string without reentering the string each time.

• To determine whether two strings match, Character Mode uses
the criteria specified in a Command Mode Set command.
Specifically, if Exact Case is in effect, both the characters
and their cases must match before a match is declared. If
Exact None (the default) is in effect, only the characters in
the two strings must match. Sections 2.3.15 and 2.3.16
describe the Set and Show commands, which allow you to
establish and examine the Exact parameter.

• When Character Mode carries out a string search operation, it
always moves the cursor one character in the direction of the
search before beginning. This means that a search operation
does not find a particular object string if it starts from the
first letter of that object string.

2.4.2.3 B:eypad Arrows - Many terminals are equipped with a numeric
keypad, and some keypads have a set of four directional arrows. These
arrows provide yet another means of moving the cursor. The two
vertical arrows move the cursor up or down a line each time you press

2-57

DEC EDITOR (EDT)

them, while the two horizontal arrows move the cursor one character to
the left or right. The four arrows are therefore equivalent to the
following cursor manipulation subcommands:

Arrow

' t
--

Equivalent Subcommand

L

-L

c

-c

2.4.3 Subcommand Concatenation

You can enter two or more subcommands on a single line. This is
called subcommand concatenation; a group of concatenated subcommands
is called a subcommand string. Subcommand concatenation allows you to
direct Character Mode to perform a series of editing operations
without waiting for each operation to complete before entering the
next subcommand.

When you concatenate subcommands, Character Mode carries out each
subcommand in the order that you enter it. When Character Mode
finishes a given operation, it checks to see if there are more
characters on the subcommand line. If there are, Character Mode scans
the characters until it assembles a complete subcommand or encounters
an error. If it finds a complete subcommand, it carries it out; if
it finds an error, it returns an error message and ignores the rest of
the subcommand line.

You may, if you wish, separate concatenated subcommands with a space.
However, because the syntax of Character Mode subcommands is so
tightly defined, Character Mode does not require that subcommands be
delimited with spaces or other characters.

There are two limitations on the concatenation of subcommands:

• You cannot enter a subcommand string
characters.

longer than 67

• If your string of subcommands includes a string search, the
string search must be the last subcommand entered. Character
Mode ignores any subcommands entered on a line after a string
search.

There are no other limitations on the subcommands you can string
together. You can even embed Insert and Replace subcommands in a
subcommand string. If you do so, the <CTRL/Z> you enter to terminate
the insert or replacement sends Character Mode looking for another
subcommand.

In practical terms, however, subcommand concatenation is useful only
up to the point at which it becomes difficult to think that many moves
ahead. Too much subcommand concatenation defeats one of the goals of
Character Mode, which is to provide a fast, intuitive means of editing
within lines. How much concatenation you do will depend on your
expertise in Character Mode and your ability to think ahead.

2-58

!!!$ iii . I.if I J 44Uh2iii ta; U:jiil 4

DEC EDITOR (EDT)

The f:ollowing examples illustrate some subcommand strings that are
often useful. Some of the examples separate their subcommands with
spaces in order to clarify the example; others do not.

Exam1~les

2.4.4

EL I

This subcommand string directs Character Mode to go to the end of
the current line and insert text.

EL OW

This subcommand string directs Character Mode to go to the end of
the current line and delete the last word on the line.

ER L I

This subcommand string directs Character Mode to go to the end of
the range (that is, to the last line of the range specified in
the Change command); go down an additional line, to the [EOB]
(End of Buffer) position; and insert text above the [EOB]. Use
this subcommand string to insert text at the end of the range.
If you do not include the L, directing Character Mode to the
[EOB] marking, you insert text above the last line in the range,
instead of below it.

-2LEL-2WRW

This subcommand string directs Character Mode to move the cursor
two lines above its current position; to move to the end of that
line; to back up two words to the third word from the end; and
to replace that word. It is often easier to count from the end
of the line to a word than from the beginning of the line.

3WEWRC

This subcommand string directs Character Mode to move the cursor
three words beyond the current word; to go to the end of the new
current word; and to replace the last character of that word.

Subcommands to Terminate Character Mode

If you wish to terminate Character Mode and return to Command Mode,
issue the subcommand:

EX stands for Exit. It terminates Character Mode and returns the
Command Mode asterisk prompt (*). The range that you specified with
the Change command will contain the edits you made while in Character
Mode. When you start editing in Command Mode, your current line will
be the same as it was when you issued the Exit subcommand.

2-59

q1; ii IL

DEC EDITOR (EDT)

If you wish to terminate Character Mode and return directly to the
monitor, issue the subcommand:

QUIT

Quit behaves like its Command Mode counterpart (see Section 2.3.10).
No output files are generated when you issue the Quit subcommand.

2.5 SUMMARY OF EDT COMMAND MODE COMMANDS

Command Format

C [HANGE] [range] [/NL]

CO[PY] range-1 %TO range-2 [/Q]
[/SEQ]
[/UN]

D[ELETE] [range] [/Q]

EX[IT] [/RE:filespec]

F [IND] range

INC[LUDE] [range] /FI:filespec
[/SEQ]
[/UN]

I [NSERT] [range] [/SEQ]
[/UN]

<CTRL/Z>

M[OVE] range-1 %TO range-2 [/Q]
[/SEQ]
[/UN]

PR[INT] [range] /FI:filespec

QUIT

[REPLACE] [range] [/SEQ]
[/UN]

<CTRL/Z>

Description

Invokes Character Mode.

Copies the lines in range-1
to a position ahead of the
first line in range-2.

Deletes lines from the
buffer.

Terminates EDT; writes
contents of the main text
buffer to specified out
put file.

Moves the line pointer to
the first line in the range.

Locates a file and copies
it into a text buffer.

Inserts text typed at the
terminal in the buffer
ahead of the first line in
the range.

Transfers the lines in
range-1 to a position
ahead of the first line in
range-2.

Generates an output file
from the contents of the
range. The output file
contains EDT line num
bers as part of the text.

Terminates EDT; saves no
edits or text buffers; gen
erates no files.

First deletes the lines in
the range, then inserts
text typed at terminal into
buffer in place of deleted
text.

2-60

L iiii iii iiiiiiii!.jiiiiiii ::; ii! ii!Lii I 2!12421 I 4 S JSZ 4#1! I

DEC EDITOR (EDT)

Command Format

RES[EQUENCE] [range] [/SEQ]
[/UN]

REST[ORE] /FI:filespec

SA[VE] /FI:filespec

CA [SE]

EXACT

SE [T]

TE[RMINAL]

[
UPPER]
LOWER
NONE

CCA[SEn
NONE j

HCPY
VTOS
VTSO
VT52
VT55
VT61
LA30
LA36

SH[OW] [BU [FFERS]] C:A[SE]
EXACT
TE [RMINAL]
VE [RS ION]

S[UBSTITUTE]/str-l/str-2/(range]
[/BR]
[/Q]
[/-T]

S[UBSTITUTE] N[EXT]

[T'[YPE]] [range]
or

T[YPE] [range] [/BRief]

WR. [ITE] [range] /FI : f i lespec

X[EQ] range

Description

Assigns new line numbers
to the lines in the range.

Locates specified file cre
ated by a Save command;
uses the file's contents to
restore the status and
contents of the text buff
ers.

Creates a file that con
tains the status and con
tents of the text buffers
currently in use.

Establishes criteria that
other EDT commands
use in their operation;
flags upper-case or lower
case characters; and es
tablishes proper terminal
parameters.

Displays the values
established by the Set
command, as well as
current buffer status
and software version
information.

Changes str-1 to str-2.
If range is specified,
changes all str-ls in the
range. If no range,
changes only the first
str-1 encountered.

Repeats the operation of
the substitute command
that it must immediately
follow.

Displays the contents of
the range on your terminal.

Creates an output file from
the contents of the range.

Executes the EDT com
mands contained in the
range.

2-61

i.Xiliii.!!iii!ii!Ji

DEC EDITOR (EDT)

2.6 ERROR REPORTING AND ERROR MESSAGES

As you use EDT, you may from time to time make errors in your use of
the commands. EDT provides a set of error messages that inform you of
the nature of the error you have made.

If you are unfamiliar with the operation of EDT, and you need more
information than you get from a single error message, you can type a
question mark {?) in response to the Command Mode prompt that appears
following the error message. In many cases, EDT replies with further
information about the error you have made. In some cases, even more
information can be obtained by typing another question mark. This
feature is available in Command Mode only.

The EDT error messages are listed below alphabetically. Those
messages that provide further information in response to a question
mark contain that information as well. These messages appear in the
list below as they would on your terminal.

Most of EDT error messages are self-explanatory. Those that are not
are followed by a brief explanation.

An argument is required.
*?

You must specify a valid argument for this command.

Bad option format.
*?

An editor option is of the form /xx.

Bad option value in this context.
*?

The switch option value specified is invalid in context of its
usage.

Bad Range Format.
*?

The range you specified is not legal.

Explanation: You attempted to specify a range in an unacceptable
format. This error message can often result from mistyping of :~
commands.

Buffer Specification Conflict.
*?

*?

The command you typed implied
specification.

more than one buffer

For instance, this may occur by using "N:M" in the same line
as "%L".

Cannot mix "-" and value in option.
*?

An option cannot have a modifier as well as a value.

2-62

JS .:mmm :::m::: :u:::::::: am:: Ji! i!iii I ii!lii ;.: ; a u :a a 22 u: 1124 iii2)Ul l!IJ j4!i#i I

DEC EDITOR (EDT)

Cannot recognize terminal type.
*?

*?
The terminal type you specified was unrecognizable.

The legal terminal types are HCPY, LA30, LA36, VTOS, VT50,
VT52, VT55, VT61.

Cannot yet be performed on hard copy devices.
*?

ThE~ CHANGE command w i 11 not work on hard copy devices.

Command I/O error.

Explanation: An I/O error occurred while EDT was trying to read
a command line.

Destination range must be contiguous.
*?

A MOVE or COPY command can have only one destination.

FATJ!~L - Ed:itor consistency error.

Explanation: An internal EDT error occurred.
not affected, but no output file is created.

FATAL - I/O error on work file.

The input file
EDT terminates.

is

Explanation: EDT encountered an I/O error while trying to read
from or write to its internal work file. The input file is
unaffected, but no output file is generated. EDT terminates.

FATAL - Open error on work file.

Explanation:
input file
terminates.

EDT was unable to open its internal work file.
is unaffected, but no output file is generated.

FATil\L - Work file consistency error.

The
EDT

Explanation: The editor detected an inconsistency in its
internal work file. This condition can result from a system
problem or an internal EDT error. The input file is unaffected,
but no output file is generated. EDT terminates.

FATAL - work file memory error.

Explanation~ While trying to read from or write to a work file,
EDT encountered a system memory error.

File name syntax error.
*?

The file name you specified does not have the correct format.

2-63

Pl I iii! ill! I ii iii!

File name table exhausted.
*?

DEC EDITOR (EDT)

You have explicitly referenced more files than the editor
tables can accommodate.

*?
The INCLUDE or RESTORE has exhausted tables internal to the
editor.

File name wild cards not allowed.
*?

An explicit file must be specified to the editor.

File open error.
*?

The editor is unable to correctly open the requested file.

Illegal command option.

Explanation: You specified a command option that was not legal
for the command you issued.

Illegal form for N:M.

Explanation: You gave a range specification in the form N:M that
did not follow syntax rules.

Illegal line number.
*?

A line number must be in the range l to 65535.

Illegal option name modifier.
*?

An option name modifier can consist only of a "-" preceding
the option.

Illegal string delimiters.
*?

The string delimiter may not be an alphanumeric character.

Illegal subcommand.

Explanation: This error message appears in Character Mode. The
subcommand you issued was not in the correct format.

Illegal termination of command line.
*?

A line was terminated by other than an end of line or comment.

Illegal text buffer name.
*?

A text buffer name may consist only of from one to six
alphanumeric characters.

*?
A text buffer name must be preceded by either '•' or '%BUF'.

2-64

a 21 iiiiiiip ;; ;2:::21w:z I Ji)$ ti. !Ullii#iii

DEC EDITOR (EDT)

Input record too big.
*?

*?

*?

The editor was unable to read the input record because of its
size.

The input record is longer than 255 characters in length.

The editor treats this condition as an EOF condition on the
input file.

I/O error on source file.

Explanation: EDT encountered a system I/O error while attempting
to read from a file.

"%LAST" has no meaning in this context.

Missing string quote.
*?

*?

A legal string must be surrounded by a pair of matching quote
marks.

A quoted string consists of one or more characters delimited
by "or ' For instance, "ABC" or 'DEF'.

Nested XEQ not yet implemented.
*?

This version of the editor allows no XEQ command nesting.

No destination range.
*?

In MOVE or COPY, a destination range must always exist.

No input file specified.
*?

"INCLUDE" or "RESTORE" requires the /FI switch to specify the
input file.

Non-contiguous range not allowed.
*?

The CHANGE command will work only on a contiguous range of
lines.

No output file specified.
*?

The command you specified requires an output file.

No previous string entered.
*?

'' or "" cannot be used unless a previous string was
specified.

2-65

~1.i&;:

DEC EDITOR (EDT)

No range specification allowed.
* ?

* ?
A range specification is _not meaningful in SAVE or RESTORE.

SAVE and RESTORE only work on the entire state of the edit.

No repetition count allowed.

Explanation: This error message occurs in Character Mode. You
attempted to specify a repetition count in a subcommand that does
not accept a repetition count, for example, EL.

No room for buffer.
* ?

The number of buffers allowed by the editor has been exceeded.

No room in output file.
* ?

~~~P~~v~~~e ~s full, the editor is unable to gener~te the ·~ 

No string-type allowed. 

No such file. 
* ? 

The input file you requested does not exist. 

No such line found. 
* ? 

The line referenced in the range specification could not be 
found. 

* ? 
The line may exist but could not be found in the range 
specified. 

No such string in this range. 
* ? 

* ? 

The string referenced in the range specification could not be 
found. 

The string may exist but could not be found in the range 
specified. 

Not a SAVE file. 
* ? 

Cannot RESTORE a non-SAVEed file. 
* ? 

RESTORE can only be used on a file which was generated by the 
SAVE command. 

No value allowed. 
* ? 

A value has no meaning for this option. 

2-66 

IL Ill 11 4 a !£ 4 45 ta M 21 



'-' 

No value specified. 
* ? 

DEC EDITOR (EDT) 

This option requires a value. 
* ? 

An option value consists of a colon followed by the value. 

Object-string required with "%ALL". 
* ? 

When typing "%ALL", a string must be specified as a search 
ob.ject. 

* ? 
The string specification must follow "%ALL". 

Offset must be non-zero. 
* ? 

A range offset must be non-zero i.e. - it may be +l or -1, but 
not +o or -o. 

Only one value allowed. 
* ? 

This option only allows one value to be specified. 

Output file error. 
* ? 

The editor was unable to generate the output file without 
error. 

Range must have at least one line. 
* ? 

Zero lines cannot be moved or copied. 

Ran9e not allowed here. 
* ? 

The command you typed does not allow a range specification. 

Ranc.;re required. 
* ? 

ThE! XEQ command always requires an explicit range 
spc:!c i fi cat ion. 

Ran9es overlap. 
* ? 

ThE! range specifications in the MOVE or COPY command cannot 
overlap. 

* ? 
ThE! source and destination ranges must have no lines in 
common. 

Repetition count cannot be zero or negative. 

Explanation: In a range specification of the form n;i, i cannot 
be zero or a negative number. 

2-67 



i111 I US Ii 

DEC EDITOR (EDT) 

RESTORE must be first command issued. 
*? 

*? 
No editing is allowed preceding a RESTORE command. 

The RESTORE must be the first command of an editing session, 
nothing may precede it. 

String search cannot have a modifier. 

Explanation: This error message occurs in Character Mode. A 
string search in Character Mode cannot be combined with or 
modified by a command. 

String too long. 

Explanation: This error message occurs in Character Mode. The 
string specified in a string search cannot exceed 62 characters 
in length. 

"SUBSTITUTE NEXT" is not legal here. 
*? 

*? 
"SUBSTITUTE NEXT" can be used only after "SUBSTITUTE". 

"SUBSTITUTE NEXT" has no meaning unless a prior 
command has been executed to establish the 
replacement strings. 

"SUBSTITUTE" 
object and 

The memory internal to ~he editor has overflowed. 
*? 

The editor's memory is full. No additional text will fit. 
Use WRITE if you desire to save what already exits. 

The /QUERY switch cannot be used here. 
*? 

The XEQ command and /QUERY are incompatible. 

The RESTORE command is not allowed in this context. 
*? 

*? 

When you invoked the editor, you gave a file specification. 
This specification prohibits subsequent usage of RESTORE. 

Input the QUIT command and then invoke the editor again 
without any file specification. You can then use the RESTORE 
command. 

The /SEQ and /UN options are not supported for this command. 
*? 

These switches are not implemented for EXIT, PRINT, and WRITE. 

This feature is not implemented yet. 
*? 

You are using a feature which is not supported by this version 
of EDT. 

2-68 

I ii 211; :a c a ; :a e; : $ £! 4 a : z: u 124 :::;:u :: 



Unrecognized command. 
*? 

DEC EDITOR (EDT) 

The command you typed is not a legal editor command. 

Unrecognized option name. 
*? 

The option name you specified could not be recognized. 

XEQ range non-contiguous. 
*? 

A range specification in XEQ must always be a contiguous block 
of lines. 

You must specify a source range. 

The MOVE or COPY 
specification. 

command 

2-69 

requires a source range 



~II fa!& !i!ilj ii !iii!!$ i!22 

~ .. "' ,, 

I I Lliiit!Siii24 ii ili211 Si!! iii!Pliii!!iiiliiii!iii ;::::I !iiiii4Wiiii ii 



CHAPTER 3 

LINE TEXT EDITOR (EDI) 

EDI is a line-oriented editor that allows you to create and modify 
text files. EDI operates on most ASCII text files; it is frequently 
used to create and maintain FORTRAN or MACRO source files. 

~DI accepts over 50 commands that determine its mode of operation and 
control its actions on input files, output files, and working text 
buffers. The commands fall into the following seven categories: 

• Setup commands - select operating conditions, close and open 
files, select data modes. 

• Locator commands - control the position of the current line 
pointer and thus determine which text line is acted upon. 

• Text modification command - change text lines. 

• Macro commands - define, store, recall, and use sequences of 
EDI commands. 

• File input/output commands - transfer text to and from input, 
output, and save files. 

• Device output commands - send output to terminal or printer. 

• Close and exit commands - terminate editing operations. 

Commands are categorized in this chapter as Basic EDI Commands 
(Section 3.2), EDI Commands: Function Summary (Section 3.3), EDI 
Commands: Detailed Reference Summary (Section 3.4). Restrictions, 
system device considerations, and error messages for these commands 
are discussed in Sections 3.5 and 3.6o 

3.1 USING EDI 

This section gives background information about the RSX-llM/M-PLUS 
Line Text Editor that is important for you to know before you read the 
command descriptions. 

3.1.l Invoking EDI 

You can invoke EDI using any of the methods for invoking a utility 
described in Chapter 1. If any format except ">EDI filespec" is used, 
EDI issues the following prompting message: 

EDI> 

3-1 



11111 Ii 

LINE TEXT ~DITOR (EDI) 

At this point, you must enter a file specification for the file to be 
edited. 

Entering File Specifications 

Enter file specifications in the following format: 

dev: [ufd]filename.filetype;version 

The abbreviation "filespec" is used throughout this chapter to denote 
a file specification that you supply. 

If the file specification is a new file (that is, the file specified 
cannot be found on the specified device), EDI assumes that you wish to 
create a new file with the given file name. EDI then prints the 
following comment lines: 

[CREATING NEW FILE] 
INPUT 

and enters input mode. 
3.1.2.) 

(EDI control modes are described in Section 

If the message FILE DOES NOT EXIST is displayed, it means that the 
user file directory corresponding to the specified UIC is nonexistent. 

EDI does not accept indirect command file specifications. 

If you specify an existing file name, EDI prints: 

[OOOnn LINES READ IN] 
PAGE O] 
* 

and waits in edit mode for you to issue the first command. 

If the ">EDI filespec" format is used, the prompt message (EDI>) is 
not issued and EDI starts up in either input or edit mode, depending 
on the file name specified -- input mode if the file name is new, and 
edit mode if the file name already exists. 

At program startup, after EDI has identified the input file and 
created the output file, the program is ready for commands. In edit 
mode, the first line available for editing is one line above the top 
of the input file or the block buffer. Therefore, you can insert text 
at the beginning of the input file or the block buffer by issuing an 
INSERT command. To manipulate the first line of text, on the other 
hand, you must perform a NEXT operation to make that line available. 

Defaults in File Specifications 

EDI uses a default if any of the elements of the file specification, 
except input filename, is omitted. In general, EDI processing creates 
an output file. When you are modifying an existing file, EDI uses 
that file and your modifications to create an output file. When the 
edit session is complete, the output file usually has the same file 
specification as the input file, except the file system renumbers the 
version to one greater than the previous version. The default values 
for input and output files are listed in Table 3-1. 

3-2 

I 

_,. 
I' 

;arm 



LINE TEXT EDITOR (EDI) 

Table 3-1 
EDI Default File Specifications 

Default Value Default Value 
Element for Input File for Output File 

dev: SYO: Same as input device 

[ufd] UFO under which EDI Same as input [ufd] 
is currently running 

filename No default--must Same as input filename 
be specified 

• f iletype Null Same as input file type 

;version Latest version Latest version+l 

3.1.2 Control Modes: Input and Edit 

EDI runs in two control modes: 

• Edit mode (command mode) 

• Input mode (text mode) 

Edit mode is invoked automatically when you invoke an existing file. 

In edit mode, EDI issues an asterisk (*) as a prompt. EDI accepts and 
acts upon commands and data strings to open and close files; to bring 
in lines of text from an open file; to change, delete, or replace 
information in an open file; or to insert single or multiple lines 
anywhere in a file. 

Input mode is invoked automatically at program startup if you specify 
a nonexistent file. 

When in input mode, EDI does not issue an explicit prompt. Lines that 
you enter at the terminal are treated as text and are inserted into 
the output file. When you complete each input line with a carriage 
return, EDI outputs a line feed to the terminal. 

To switch from edit mode to input mode, enter the INSERT command 
followed by a carriage return. To return to edit mode, enter a 
carriage return as the only character on an input line. EDI will 
issue the * prompt, signifying edit mode. 

3.1.3 Text Access Modes 

EDI provides two modes you can use to access and manipulate lines of 
text in the input file. (A line is defined as a string of characters 
term:lnated by a carriage return.) The two modes are: 

• Line-by-Line Mode -- Allows access to one line of text at a 
time; backing up is not allowed. 

• Block Mode -- Allows free access within a block of lines, on a 
line-by-line basis. Backing up within a block is allowed; 
backing up to the previous block is not allowed. 

3-3 



Ci ill 

LINE TEXT EDITOR (EDI) 

Block mode is the default text access mode. 

In addition to these two text access modes, EDI provides a way to 
process text in terms of "pages." This feature is described under the 
heading Processing Text in Pages, in this section. 

Line-by-Line Mode 

In this mode, a single line is the unit of the input file available 
for modification. Line-by-line mode is entered by issuing a BLOCK OFF 
command and is terminated by issuing a BLOCK ON command. 

The single available line the "current" line -- is specified by a 
pointer, which you can move sequentially through the file, starting 
just before the first line in the file. You can manipulate the line 
pointer using the locator commands and the text modification and 
manipulation commands listed in Tables 3-5 and 3-6. However, you 
cannot easily direct the pointer backward within the file. 

When you open a file at the beginning ~f an editing session, you can 
specify that the first line be brought into memory and made available 
for modification. This line remains in memory until you request that 
a new line be brought in. The pointer then moves down the file until 
the line you requested is encountered. That line is brought into 
memory and, as the current line, can be modified. When a new line is 
brought in, the previous line is written into the output file, as are 
all lines that may be passed over in reaching the new current line. 

Once the pointer moves past a given line, that line is no longer 
accessible unless you enter a TOF or TOP command (described in Section 
3.4). TOF causes the input and output files to be closed, and the 
output file to become the new input file. TOF also has the effect of 
ending line-by-line mode. 

Block Mode 

In this mode, a portion of the input file is held in a buffer for 
editing until you request that the contents of the buffer be added to 
the output file. 

In block mode you can access lines of text backward as well as forward 
within the buffer. Thus, you can back up to a previously edited line 
without having to reprocess the entire block or file, and without 
having to issue a TOF command. 

When you finish editing a block, you can write it out and read in the 
next block with the RENEW command. However, you cannot access a 
previously edited block except by using TOF. 

EDI buffer space is computed dynamically at run time. The number of 
lines initially read into the buffer is computed by using the formula: 

buffersize/132 

3-4 

12221!ii t I 42 !4 iii!! 2 I 



LINE TEXT EDITOR (EDI) 

A block is the number of lines read into the buffer by a RENEW or READ 
command. This number is either: 

1. specified by the user by means of the SIZE command (default 
is 38 lines if the SIZE command is not issued), 

or 

2. determined by the presence of a form feed at a point in the 
text where the number of lines is less than that specified in 
the SIZE command (or its default value, if SIZE was not 
issued). 

When the current line pointer reaches End-Of-Block, the message 
[*EOB*] is displayed and the current line pointer points to the last 
line in the block. To move the current line pointer to the top of the 
block, use TOP. 

Table 3-2 provides a brief summary of the differences between 
line-by-line and block mode. 

Table 3-2 
Line-by-Line vs. Block Mode 

Line-by-Line Mode 

One line available for 
modification at a time. 

Lines can only be 
accessed forward through 
the file. 

Search commands can be 
applied to search the 
entire file. 

Block Mode 

Entire block of lines available 
for modification at a time, on 
a line-by-line basis. 

Lines can be accessed forward 
and backward within a block. 

Search commands search only 
the block in memory. 
To search more data, you must 
read in another block. 

Regardless of editing mode the line pointer always points to the first 
character in the line. 

Processing Text in Pages 

EDI provides features that allow you to access portions of a text file 
by page. A "page" is a segment of text delimited by form feed 
characters (the last page in a file is terminated by the end-of-file 
marker}. 

Two commands are provided to handle paged text -- FF, which defines a 
page boundary by inserting a form feed; and PAGE, which accesses a 
page of text. (The commands PAGE FIND and PAGE LOCATE do not ref er to 
form feed-delimited pages -- they are actually global searches.) 

EDI handles paged text in block mode. If block mode is not already in 
effect, it is entered when you issue a PAGE command. 

3-5 



LINE TEXT EDITOR (EDI) 

If a form feed is encountered in text during a READ or RENEW 
operation, the page thus delimited, for purposes of the READ or RENEW, 
is interpreted as a block. 

The message [PAGE n], issued after a READ or RENEW operation, gives 
the value of EDI's page counter. If your text contains no form-feed 
characters, the count is zero until the last block in the file is read 
into the buffer. Upon encountering the end-of-file, EDI increments 
the page count to 1. 

3.1.4 Text Files 

The following sections describe how data may be added to files, and 
the operations performed on output files. 

Input and Secondary Files 

EDI accepts input from: 

• The input terminal (that is, commands and text entries) 

• Files-11 volumes that contain any of the following: 

1. The file to be edited 

2. A secondary file 

3. A save file 

4. A macro f i 1 e 

The input file is always preserved. 1 Any system failure, EDI failure, 
or lack of space on the output volume does not cause the loss of the 
input file. Only the output file is affected. In cases of failure, 
the output file is not completely destroyed; it becomes a truncated 
version of the input file containing all of the edits to the point of 
failure. 

In general, the current block buffer is not written to disk when an 
error of this type occurs. 

Output Files 

The output device defaults to the input device, as do the directory, 
filename, and filetype, with the version number incremented by one. 

If you wish to change any of these parameters (except device and 
directory), specify a completely new file specification when closing a 
file or exiting at the end of an EDI session. 

~ To delete the input file, use the CLOSE-AND-DELETE command or the 
EXIT-AND-DELETE command; or use PIP. 

3-6 

111•1 Hs:ou: ma: a ii &!I iii! L!J 12 j I II it .I Pi Mi 



LINE TEXT EDITOR (EDI) 

3.1.5 Terminal Conventions 

RSX-11 and EDI provide terminal keyboard functions that provide the 
means to: 

• Delete characters on an input line (MCR function) 

• Delete an entire input line (MCR function) 

• Move the current line pointer forward in a file (EDI function) 

• Move the current line pointer backward in a file (EDI 
function) 

• Terminate an edit session and pass control to MCR (EDI 
function) 

Character Erase (RUBOUT or DELETE; CTRL/R) 

Typing the RUBOUT key (marked DELETE on some terminals) deletes 
individual characters if used before carriage return is pressed. 
During editing operations, RUBOUT does not affect previously prepared 
text. 

When the RUBOUT key is typed it is echoed first as a backslash (\), 
and is followed by the previously typed character. Each successive 
RUBOUT typed results in the echo of an earlier typed character. When 
the first non-RUBOUT character is typed, it is echoed as a backslash 
(closing the RUBOUT sequence) followed by the typed character. For 
example: 

First RUBOUT typed 
Second RUBOUT 
Third RUBOUT 

rFirst non-RUBOUT 

MISTKAE\EAK\AKE 

For some CRT terminals, RUBOUT (or DELETE) works in a more obvious 
way. Each RUBOUT typed causes the cursor to backspace, erasing the 
previous character. Your CRT terminal may work this way if a certain 
option was selected when your system was generated. 

Another useful system generation option is CTRL/R. If this option was 
selected, your system responds to CTRL/R by printing the incomplete 
input line. For example, at a hardcopy terminal you enter: 

MISTKAE rubout rubout rubout CTRL/R 

The echoed result is: 

MI STKA.E\EAK 
MIST 

Line Erase (CTRL/U) 

CTRL/U deletes the line being input, if typed before the line is 
terminated with a carriage return. It is typed by holding down the 
CTRL key and pressing U. CTRL/U echoes as ~u followed by carriage 
return and line feed. 

3-7 



i 

LINE TEXT EDITOR (EDI) 

Carriage Return 

The carriage return has the following effects, depending on how it is 
used: 

• When issued in place of an input file specification, carriage 
return causes EDI to terminate. 

• When issued in edit mode, carriage return causes the next line 
to be printed. That line becomes the current line. 

• When issued in input mode as the only character in an input 
line, carriage return causes a return to edit mode. 

• When issued alone after an INSERT command, car~iage return 
invokes input mode. 

ESCape or Altmode 

When EDI is in edit mode, typing ESCape ~r Altmode) causes the 
previous text line to be printed. That line becomes the current line. 
ESC can be used this way only in block mode, not in line-by-line mode. 

CTRL/Z 

CTRL/Z causes EDI to terminate. EDI writes the remainder of the input 
file into the output file and closes both files before terminating. 
Use CTRL/Z to terminate EDI in edit mode, input mode, or in the middle 
of an incomplete input line. CTRL/Z erases your last input line if 
you enter the command as a line terminator. 

3.1.6 EDI Command Conventions 

EDI uses asterisks (*) and ellipses ( ••• ) in special ways described in 
the following paragraphs. Also described below is the notation 
convention used to define EDI command abbreviations. 

Use of Asterisk (*) 

The asterisk character, *, can be used in place of any numeric 
argument. It evaluates to 32767 (decimal). 

Example 

The following command results in the printing of the remainder of 
the block buffer or file. 

PRINT * 

Use of Ellipsis ( ••• ) in Search Strings 

In a number of the EDI commands, 
characters to be located and/or 
terminal entries, the more advanced 
special string constructs. In these 
represents any number of intervening 

you must identify a string of 
changed. To reduce the necessary 
user can employ the following 
special cases, the ellipsis ( ••• ) 
characters. 

3-8 

"" - ; --·1? 

·~ ..... L•2•a•c::•:: .. uiii .. ::•aa .. :•1:•:1111:•::•:::::•: ....... :: ................................................................ 14., .... , ••• ,. 



LINE TEXT EDITOR (EDI) 

Case 1. stringl.G.string2 Any string that starts with string!, 
continues with any number of intervening 
characters, and ends with the first 
occurrence of string2. 

Case 2 •••• string 

Case 3. string •• ~ 

Case 4. 

Examples 

Any string that starts at the beginning 
of the current line and ends with the 
first occurrence of string. 

The first string that starts with string 
and ends at the end of the current line. 

The entire current line. 

In the following examples, the CHANGE command is used with the 
four cases of special string constructs given above. In each 
case the current line reads: 

THIS IS A SAMPLE OF SPECIAL STRING CONSTRUCTS. 

Case 1. C /S A ••• E O/S AN EXAMPLE 0 

results in 

THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS. 

Case 2. C / ••• SPEC/THIS IS AN EXAMPLE OF SPEC 

results in 

THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS. 

Case 3. C /STRING ••• /EDI STRING CONSTRUCTS. 

results in 

THIS IS A SAMPLE OF SPECIAL EDI STRING CONSTRUCTS. 

Case 4. C / ••• /EXAMPLES OF SPECIAL EDI CONSTRUCTS. 

results in 

EXAMPLES OF SPECIAL EDI CONSTRUCTS. 

Command Abbreviations 

EDI permits the use of abbreviated commands. Where these shorter 
forms are allowed, the command format specifications represent the 
shortest acceptable form in upper-case letters. Lower-case letters 
may be entered optionally. The following example shows the 
abbreviations allowed for the VERIFY command. The command format 
specification is: 

Verify 

The follow:lng abbreviations are valid for the VERIFY command: 

v 
VE 
VER 
VER! 
VERIF 
VERIFY 

3-9 



LINE TEXT EDITOR (EDI) 

3.2 BASIC EDI COMMANDS 

The basic EDI commands listed in Table 3-3 allow you to create a file, 
to modify a file by adding, deleting, or changing its contents, and to 
exit after the desired operations have. been completed. More detailed 
description of each command .follows the table. These commands are the 
most important EDI commands. As you become more familiar with EDI 
operations, the additional commands listed in Section 3.3 and 
described in Section 3.4 will allow you to use all of EDI'S 
capabilities. 

Command 

ADD 

ADD & PRINT 

BOTTOM 

CHANGE 

CTRL/Z 

DELETE 

DELETE & 
PRINT 

<ESCape> 

EXIT 

INSERT 

LOCATE 

ii 12. iii :::SISJ I iii !i!J iiiiiii iii I 2 iiii2 I t I 

Table 3-3 
Basic EDI Commands 

Command Format 

Add string 

AP string 

Bottom 

[n]Change /stringl/ 
string2[/] 

Type a control z 

Delete [n] 
or 

Delete [-n] 

DP [n] or DP [-n] 

Type the ESC (or ALT) 
key 

EX it [f ilespec] 

INsert [string] 

[n]Locate string 

3-10 

Description 

Append string to current line. 

Append string to current line, 
and print resultant line. 

Move the current line pointer 
to the bottom of the current 
block (in block mode) and to 
the bottom of the file (in 
line-by-line mode). 

Replace string! with string2 
n times in the current line. 

Close files and 
editing session. 

terminate 

Delete 
lines 
lines 
n is 
block 

current line and n-1 
if n is (+);delete n 

preceding current line if 
(-). [-n] operates in 
mode only. 

Same as DELETE, except 
current line is printed. 

new 

Print previous line, and make 
it new current line (block mode 
only). Same as NP-1. 

Close files, rename 
file, and terminate 
session. 

output 
editing 

Enter the string immediately 
following the current line. If 
no string is specified, EDI 
enters input mode. 

Locate nth occurrence of 
string. In block mode, search 
stops at end of current block. 

(continued on next page) 

" ;; !iii I I 

"' 

::; ;a: s; 



LINE TEXT EDITOR (EDI) 

Table 3-3 (Cont.} 
Basic EDI Commands 

Command 

NEXT 

Command Format 

Next [n] or 
Next [-n] 

NEXT & PRINT NP [n] or NP [-n] 

PRINT Print[n] 

RENEW RENew[n] 

<RE:TURN> Carriage return 

RE1~YPE Retype string 

TOP Top 

TOP OF FILE TOF 

3 .2 .. 1 ADD 

Description 

Establish new current line n 
lines away from current line. 

Establish and print new current 
line. 

Print current line and the next 
n-1 lines. The last printed 
line is the new current line. 

Write current block to output 
file and read new block from 
input file (block mode only}. 

Print the next line, make it 
new current line; exit from 
input mode. Same as NP+l. 

Replace current line with 
string; or delete current line 
if string is null. 

Move the current line pointer 
to the top of the current block 
(in block mode} or top of file 
(in line-by-line mode}. TOP 
creates. a new version of the 
file each time it is invoked in 
line-by-line mode. 

Return to top of input file and 
save all pages previously 
edited. TOF creates a new 
version of the file each time 
it is invoked. TOF reads in a 
new block after writing the 
previous block to the output 
file. 

This command causes the specified string to be appended to the current 
linE!. 

Fon1al 

Add string 

3-11 



l$ll 

LINE TEXT EDITOR (EDI) 

Example 

The following command completes the line HAPPY DAYS ARE HERE 

*A AGAIN. 

Note that the space after the A is the command 
will not insert the space into the line. 
precede AGAIN., the command should be: 

terminator. EDI 
If a space is to 

A<space><space> AGAIN. 

3.2.2 ADD & PRINT 

This command performs the same function as the ADD command, except 
that the new line is printed. 

Format 

AP string 

Example 

Using the same line as the ADD command, the following command 
causes the new line to be printed as follows: 

*AP AGAIN. 
HAPPY DAYS ARE HERE AGAIN. 

3.2.3 BOTTOM 

BOTTOM moves the current line pointer to the beginning of the last 
line of the current block (in block mode), or to the beginning of the 
last line of the file (in line-by-line mode). In block mode, the only 
processing EDI performs is line pointer positioning. In line-by-line 
mode, all the lines are copied from the input file to the output file 
until EOF is reached. If VERIFY ON is specified, the last line of the 
file block is displayed. Note, however, that if you deleted the last 
line before you issued BOTTOM, the pointer will be located past the 
text, and thus the last line will not be printed. BOTTOM performs the ~ ... 
same function as END (see Section 3.4.14). ···· 1 

Format 

Bottom 

Example 

*V ON 
*BO 
THIS IS THE LAST LINE 

In this example, the current line pointer is moved to the bottom 
of the block buffer and the last line is displayed. 

3-12 

!iii :;; ;: till! I !IL ii.; Ui i.ldli4li J I.iii! I 4 U 



'-'' 

LINE TEXT EDITOR (EDI) 

3.2 .. 4 CHANGE 

This command searches for stringl in the current line and, if found, 
replaces it with string2. If stringl is given but cannot be located 
in the current line, EDI prints [NO MATCH] and returns an * prompt. 
If stringl is null (not given), string2 is inserted at the beginning 
of the line. If string2 is null, stringl is deleted from the current 
1 in~:!. 

The search for stringl begins at the beginning of the current line and 
proceeds across the line until a match is found. 

The characters that delimit stringl and string2 are normally slashes 
(/) .. However, any matching characters not contained in the specified 
string may be used. The first character following the command is the 
beginning delimiter; the next matching character ends the string. 
Thus, characters used as delimiters must not appear in the string 
itself. The closing delimiter is optional. 

If you precede the command with a number n, the first n occurrences of 
stringl are changed to string2. After each replacement of stringl 
with string2, scanning restarts at the first character in the line. 
This allows you to generate a string of characters as shown in the 
example below. 

If no match occurs, a [NO MATCH] message is displayed. 

Forllllat 

[n]Change /stringl/string2[/] 

Exa:mple 

TO SEPERATE THE THOUGHTS, USE SEPERATE SENTENCES. 

2C/SEPE/SEPA/ 

TO SEPARATE THE THOUGHTS, USE SEPARATE SENTENCES. 

3.2.5 <CTRL/Z> 

Typing CTRL/Z (holding the ~TRL key down while typing the letter Z) 
terminates the editing session. If an output file is open when CTRL/Z 
is typed, all remaining lines in the block buffer and the input file 
are transferred (in that order) into the output file, all files are 
closed, and EDI exits. These actions occur whether EDI is in edit or 
input mode. If EDI is prompting for another file specification when 
CTRL/Z is entered, all files are closed (including any open secondary 
input file), and EDI exits. If you enter CTRL/Z as an input line 
terminator, that line is erased. 

3 .2 .6 DEI.ETE 

This command causes lines of text to be deleted in the following 
manner: 

1. If n is given and is a positive number, the current line and 
n-1 following lines are deleted. The new current line is the 
line following the last deleted line. 

3-13 



n11 I Hill ii I 

LINE TEXT EDITOR (EDI) 

2. If n is given and is a negative number, the current line is 
not deleted, but the specified number of lines that precede 
it are deleted. The line pointer remains unchanged. A 
negative value for n can be used only in block mode. 

3. If n is null, the current line is deleted, and the next line 
becomes the new current line. 

Format 

Delete [n] 
or 

Delete [-n] 

Example 

To delete the previous five lines in the block buffer, type the 
following command: 

*D -5 

3.2.7 DELETE & PRINT 

This command performs the same function as the DELETE command, except 
that the new current line is printed when all lines have been deleted. 

Format 

DP [n] 
or 

DP [-n] 

If n is not specified, +l is assumed. A negative value for n can 
be used only in block mode. 

Example 

If the following lines are contained in a file: 

THIS IS LINE l 
THIS IS LINE 2 

i:i~ i~ ti:~ ~ ~ 
and the line pointer is at the first line, the following command 
obtains the results shown below: 

*DP 2 
THIS IS LINE 3 

3.2.8 <E~Cape> 

This command prints the previ?US line in the block (block mode only). 
That line becomes the current line. Thus, you can back up through a 
block, one line at a time, by typing a series of ESCapes. Typing 
ESCape is equivalent to typing NP-1 (NEXT & PRINT command). 

3-14 

IL i!iiSS( !Ji IS !llU: Ji I 4 ill!& 



LINE TEXT EDITOR (EDI) 

3.2.9 EXIT 

This command transfers all rema1n1ng lines in the block buffer and 
input file (in that order) into the output file, closes the files, and 
terminates the editing session. If a file specification is used, the 
output file is renamed to the specified filename. 

Fornaat 

EXit [filespec] 

Exanaple 

The C<>mmand: 

*EX 

terminates the editing session without renaming the output file. 
It causes EDI to display: 

[EXIT] 

The output filename.filetype is the same as the input 
filename.filetype, with a version number one greater than that of 
the input file. 

3. 2 .• 10 INSERT 

This command inserts string immediately following the current line. 
The string becomes the new current line. If string is not specified, 
EDI enters input mode. 

For1nat 

Insert [string] 

Exa1nple 

*I TEXT INSERT IN EDIT MODE 

*I 
TEXT INSERT 1 IN INPUT MODE 
TEXT INSERT 2 IN INPUT MODE 
ETC. 

* 

3.2.11 LOCATE 

Insert a line of text 
immediately after the current 
line. 

An I followed by a carriage 
return causes EDI to switch 
to input mode. A series 
of new lines may be input 
following the current line. 

A carriage 
character 
causes EDI 
mode and 
command. 

return as the only 
in an input line 
to return to edit 
to prompt for a new 

This command causes a search for the pattern string, beginning at the 
line following the current line. The string may occur anywhere in the 
line sought. The line pointer is positioned to the line containing 
the match. When the line is located, it is printed if VERIFY ON is in 
effect. 

3-15 



'W'I I t ts 2 

LINE TEXT EDITOR (EDI) 

LOCATE applies to the block buffer if EDI is in block mode and to the 
input file if in line-by-line mode. 

P·ormat """ 

[n] Locate string 

Example 

The following command can be used to locate the line HAPPY DAYS 
ARE HERE AGAIN. 

*L ppy 

EDI searches the file or block buffer and (if VERIFY ON is 
specified) prints the line when it is located. The current line 
pointer is set to the located line. 

If string is not specified, the line following the current line 
is considered a match, and the line pointer is positioned there. 
If "n" is specified, the nth occurrence of string is located. 

3.2.12 NEXT 

This command moves the current lir.e pointer backward and forward in 
the file. A positive number moves the current line pointer n lines 
beyond the current line; a negative number moves the current line 
pointer backward n lines. 

Format 

Next [n] 
or 

Next [-n] 

If n is not specified, a value of +l is assumed. 
can be used only in the block mode. 

Example 

A negative n 

In the block mode, the following command moves the current line 
pointer back five lines: 

*N -5 

3.2.13 NEXT & PRINT 

This command has the same effect as the NEXT command, except that the 
new current line is printed. 

Format 

NP [n] 
or 

NP [-n] 

The following conventions can be used in place of issuing a 
complete NP command: 

Pressing the carriage return key is the same as an NP+l command. 

3-16 

a au:; t I iii I ii ii !ii 



LINE TEXT EDITOR (EDI) 

Pressing the ESCape (or ALTmode) key while in the block mode is 
the same as an NP-1 command. 

If n is not specified, then a value of +1 is assumed. 

Exam1ple 

Assume the following four lines are contained in the file and the 
line pointer is at the first line. 

LINE 1 OF THE FILE 
LINE 2 OF THE FILE 
LINE 3 OF THE FILE 
LINE 4 OF THE FILE 

If the! following command 
printout: 

*NP 2 
LINE 3 OF THE FILE 
* 
LINE 4 OF THE FILE 
* <ESC> 
LINE 3 OF THE FILE 
* <ESC> 
LINE 2 OF THE FILE 

3.2.14 PRINT 

is issued, EDI returns the fallowing 

This command prints out the current line and the next n-1 lines on the 
terminal; the last line printed becomes the new current line. If it 
is not specified, a value of l is assumed. 

Fornaat 

Print [n] 

Exa111tple 

The following example illustrates both the PRINT and the TYPE 
commands: 

3-17 



220 It I I iiii2 I 

File A 

Line A 

Line B 

Line c 

Line D 

Line E 

*TYPE 

Line A 

Line B 

Line c 

Line D 

Line E 

* 

File A 

Line A 

Line B 

Line c 

Line D 

Line E 

3.2.15 RENEW 

5 

LINE TEXT EDITOR (EDI) 

Before 

Qis the 

Line Pointer 

After 

File B 

Line v 

Line w 

Line x 

Line y 

Line z 

*PRINT 5 

Line v 

Line w 

Line x 

Line y 

Line z 

* 

File B 

Line v 

Line w 

Line x 

Line y 

Line z 

This command writes the current block buffer into the output file and 
reads a new block from the input file. The optional value n is a 
repetition count: if you specify n, the process is repeated n times. 
The intermediate blocks are written into the output file, and the last 
block is left in the block buffer. If n is not specified, a single 
RENEW is performed. This command may be used only in block mode. 
Refer to Section 3.1.3 for information on how EDI block buffers are 
processed. 

Format 

RENew [n] 

3-18 

iii iiiii! ii ii iii ii I I ii 

~ 

t 142 ti! 1144 au 



LINE TEXT EDITOR (EDI) 

Exam;ple 

*RENEW 10 

Ten consecutive blocks are transferred from the input file to the 
block buffer. The initial contents of the block buffer and the 
next nine blocks are transferred to the output file. The current 
line pointer points to the first line in the tenth block, which 
is currently in the block buffero 

3.2.16 <RETURN> 

In edit mode, this command prints the next line in the file or block 
buffer. That line becomes the current line. Thus, you can scan 
through a file or block, one line at a time, by typing a series of 
RETURNs. This command is equivalent to NP+l (NEXT & PRINT command). 

In input mode, a single carriage return causes EDI to return from 
input mode to edit mode. 

3.2.17 RETYPE 

This command replaces the current line with string. If string is not 
specified, the line is deleted. 

Forniat 

Retype [string] 

Exa11ttple 

*R THIS IS A NEW LINE 

The string THIS IS A NEW LINE replaces the current line. 

3.2.18 TO:P 

TOP sets the current line pointer to the top of the current block 
block mode) or to the top of the file (in line-by-line mode). 
the current line pointer is positioned via TOP, you can enter 
preceding the first line in the block or file. 

TOP differs from TOF in the following ways: 

(in 
When 

lines 

• In line-by-line mode, TOP creates a new file 
current line pointer to the top of the file. 
does not cause EDI to return to block mode. 

and moves the 
Unlike TOF, it 

• In block mode, TOP moves the current line pointer to the top 
of the current block and does not create a new output file. 
TOF moves the current line pointer to the top of the file and 
creates a new output file. 

Format 

Top 

3-19 



. n 225U!ISl121$ C I I 

LINE TEXT EDITOR (EDI) 

Example 

*TOP 

This command directs the current line pointer to the top of the 
current block in block mode. 

3.2.19 TOP OF FILE (TOF) 

This command creates a new version of the file and returns the current 
line pointer to the first line of the file. TOF processing copies the 
input file into the output file, closes both, then opens the latest 
version of the file as the input file. If you issue this command when 
in line-by-line mode, EDI switches to block mode after saving the 
edited data. The first block is read into the block buffer. 

Format 

TOF 

Example 

*TOF 

This command writes the previously edited pages into the output 
file, resets the current line pointer to the top of the input 
file, and reads the first block into the block buffer. 

3.3 EDI COMMANDS: FUNCTION SUMMARY 

EDI commands can be arranged by functional similarity; for example, 
all the commands you use to locate a string can be grouped under the 
function heading "Locator Commands." This section contains summaries 
of the following command categories: 

• Setup commands - select operating conditions, close and open 
files, select data modes. 

• Locator commands - control the position of the current line 
pointer, and thus determine which text line is acted upon. 

• Text modification commands - change text lines. 

• Macro commands - define, store, recall, and use sequences of 
EDI commands. 

• File input/output commands 
input/output, and save files. 

transfer text to and from 

• Device output commands - send output to terminal or printer. 

• Close and exit commands - terminate editing operations. 

3.3.1 Setup Commands 

The setup commands allow you to enable or disable certain special 
features of EDI. Among these features are the block and line-by-line 
text access modes, already mentioned, and the automatic verification 
of LOCATE commands. Setup commands are listed in Table 3-4. 

3-20 

:; ;a I I! Li iiililiiiii $!lit ii I I ;:m:; JU 



Command 

BLOCK ON/OFF 

CONCATENATION 
CHAHACTER 

OPEN SECONDARY 

OUTPUT ON/OFF 

SELl~CT PRIMARY 

SELl~CT SECONDARY 

SIZI~ 

TAB 

UPP.ER CASE 
ON/OFF 

VERIFY ON/OFF 

LINE TEXT EDITOR (EDI) 

Table 3-4 
EDI Setup Commands 

Format 

BLock [ON] or 
BLock OFF 

cc [letter] 

OPens filespec 

output ON or 
output OFF 

SP 

SS 

SIZE n 

TAb [ON] or 
TAb OFF 

UC [ON] or 
UC OFF 

Verify [ON] or 
verify OFF 

Description 

Switch text access modes. 

Change concatenation character 
to specified character (default 
is & ) • 

Open specified secondary file. 

Continue or discontinue 
transfer to output file 
(line-by-line mode). 

Reestablish primary file 
input file. 

as 

Select opened secondary file as 
input file. 

Specify maximum number of lines 
to be read into block buffer. 

Turn automatic tabbing on or 
off. 

Enable or disable conversion of 
lower-case characters entered 
from terminal to upper-case 
characters. 

Select whether locator and 
change commands are verified. 

3.3.2 Locator Commands (Line-Pointer Control) 

During editing operations, EDI maintains a pointer that identifies the 
current line (that is, the line to which any subsequent editing 
operations refer). Commands that modify the line pointer's location 
are called locator commands; they are listed in Table 3-5. 

The locator commands allow you to: 

• Set the line pointer to either the top or bottom of the input 
file or block buffer. 

• Move the line pointer a specified number of lines away from 
its current position. 

• Move the line pointer to a line containing a given text 
string. 

In edit mode, the carriage return and ESCape (or ALTmode) keys act to 
relocate the line pointer. A single carriage return moves the pointer 
to the next line. A single ESCape moves the line pointer back one 
linE! (in block mode only). In each case the line is printed. 

3-21 



LINE TEXT EDITOR (EDI) 

If VERIFY ON is in effect, the located line is printed after a BOTTOM, 
END, FIND, PAGE FIND, PAGE LOCATE, or SEARCH & CHANGE command. 

Table 3-5 
EDI Locator Commands 

Command 

BEGIN or 
TOP 

BOTTOM or 
END 

<ESCape> 
(or ALTmode) 

FIND 

LOCATE 

Begin 
Top 

Format 

Bottom 
End 

Type ESC (or ALT) 
key 

[n]Find [string] 

[n]Locate string 

NEXT Next [n] 
Next [-n] 

NEXT & PRINT NP [n] or NP [-n] 

PAGE 
(Block 
Mode Only) 

PAGE FIND 
(Block 

Mode Only) 

PAGE LOCATE 
(Block 

Mode Only) 

<RETURN> 

PAGe n 

[n]PFind string 

[n] PLocate string 

Carriage return 

Description 

Set current line to the line 
preceding top line in file 
(line-by-line mode) or block 
buffer (block mode). Both 
commands create copies of the 
file each time they are invoked 
in line-by-line mode. The 
commands are equivalent. 

Set current line to last line 
in file or block buffer. The 
commands are equivalent. 

Print previous line and make it 
new current line. (Block Mode 
only.) 

Search current block or input 
file, beginning at line 
following current line for the 
nth occurrence of string. 
String must begin in column l. 
Set line pointer to located 
line. 

Locate nth occurrence of 
string. In block mode, search 
stops at end of block. 

Establish new current line n 
lines away from current line. 

Establish and print new current 
line. 

Enter block mode. Read page n 
into block buffer. If n is less 
than current page number, do 
TOF first. Pages are delimited 
by form feed characters. 

Search successive blocks for 
the nth occurrence of string. 
String must start in column l. 

Search successive blocks for 
the nth occurrence of string. 
String may occur anywhere in 
line. 

Print the next 
the current 
input mode. 

line, 
line; 

make it 
exit from 

SEARCH & 
CHANGE 

SC /stringl/string2[/] Locate stringl and replace it 
with string2. 

3-22 

'm111 t SI ii I lit hii!ii ii LS 2 I iiiiii .I iiii!JL iii!iiiii . ii I I.ii liiii iii! Ziii!L !ill Jtf I z;; :a "a I ii# ii 



LINE TEXT EDITOR (EDI) 

3.3.3 Text Modification and Manipulation Commands 

The text modification and manipulation commands enable you to modify 
~ text. Table 3~6 lists these commands. 

""' , .. I ~/ 

~I 

Table 3-6 
EDI Text Modification and Manipulation Commands 

Command 

ADD 

ADD & PRINT 

CHANGE 

DELETE 

Format 

Add string 

AP string 

[n]Change/stringl/ 
string2[/] 

Delete [n] or 
Delete [-n] 

DELETE & PRINT DP [n] or DP [-n] 

ERASE 

FOHM FEED 

INSERT 

LINE CHANGE 

OVlmLAY 

ERASE [n] 

FF 

Insert string 

[n]LC /stringl/ 
string2[/] 

Overlay [n] 

3-23 

Description 

Append string to current 
line. 

Append string to 
current line and 
resultant line. 

the 
print 

Replace stringl with 
string2 in the current 
line n times. 

Delete current 
n-1 lines if n 
delete n lines 
current line if 
[-n] operates 
mode only. 

line and 
is (+); 

preceding 
n is(-). 
in block 

Same as DELETE except new 
current line is printed. 

Erase the current line if 
in line-by-line mode. 

Erase the current block 
buffer and the next (n-1) 
blocks, if in block mode. 

Insert form feed into 
block buffer (used to 
delimit a page). 

Enter string 
current line, 
input mode if 
not specified. 

following 
or enter 

string is 

Change all occurrences of 
string! in current line 
(and n-1 lines) to 
string2. 

Delete n lines, enter 
input mode, and insert 
new line (s) as typed, in 
place of original 
line (s). 

(continued on next page) 



LINE TEXT EDITOR (EDI) 

Table 3-6 (Cont.) 
EDI Text Modification and Manipulation Commands 

Command Format Description 

PASTE PAste /string 1/ Search all remaining 
string2[/] lines in f iel or block 

buffer for stringl and 
replace with string2. 

RETYPE Retype Replace the current line 
with string; or delete 
the current line if 
string is nu 11. 

TOP OF FILE TOF Return to the top of the 
input file and save all 
pages previously edited. 

UNSAVE UNSave [f ilespec] Insert all lines from 
specified file following 
current line. If 
f ilespec is not 
specified, SAVE.TMP is 
used. 

3.3.4 Macro Commands 

These commands allow you to define, store, recall, and use macros. A 
macro is a series of EDI commands that, once defined, can be executed 
repeatedly using just a few keystrokes. Table 3-7 lists the macro 
commands. 

Command 

MACRO 

MACRO CALL 

MACRO EXECUTE 

MACRO 
IMMEDIATE 

Table 3-7 
EDI Macro Commands 

Format 

MACRO x definition 

MC all 

[n]Mx [a] 

[n] <definition> 

3-24 

Description 

Define macro number x. Up to 
three macros can be defined. 

Retrieve macro definitions 
stored in file MCALL;n. 

Execute macro x [n] 
while passing 
argument [a]. The 
may be 1, 2, or 3. 

times, 
numeric 

value x 

Define and execute a macro n 
times. Store it as macro 
number 1. 

'~ I 

·:1n1 ::: :zut . !!4 es ;zss I I II I iii .: i4J iii !St 2i!i 41 :: 2 ::m n:: :um 



LINE TEXT EDITOR (EDI) 

3. 3. 5 FilE! Input/Output Commands 

Input/output commands control 
input/output, and save files. 

the movement of text to and 
Table 3-8 lists these commands. 

Table 3-8 

from 

EDI Input/Output Commands 

Command Format 

FILE FILe filespec 

REJ~D REAd [n] 

RENEW RENew [n] 

SAVE SAve [n] [filespec] 

WRITE Write 

3.3.6 Device Output Commands 

Description 

Transfer lines from input file 
to both the output file and the 
specified file until a form 
feed or end-of-file is 
encountered. (Line-by-line 
mode only.) 

Read next n blocks of text into 
b 1 o ck bu ff e r • I f buff e r 
contains text, new text 
appended to it. 

is 

Write the current block to the 
output file and read new block 
from the input file. 

Save current line and the next 
n-1 lines in the specified 
file. If filespec is not 
given, lines are saved in file 
SAVE.TMP. SAVE puts the 
temporary file in the UFD and 
on the device of the file you 
are editing. You can override 
the default by specifying a 
different device and UFD. 

Write contents of block buffer 
to output file and erase block 
buffer. 

These commands direct output to your terminal or to a pseudo-device 
(CL:). They are listed in Table 3-90 

3.3.7 CLOSE and EXIT Commands 

The CLOSE and EXIT commands terminate EDI operations and write the 
remainder of the input file into output file. Table 3-10 lists these 
commands. 

3-25 



1"r• Ziiiiiii . JC I 2i2 !!!$ ;sq: 

Command 

LIST ON TERMINAL 

LIST ON PSEUDO
DEVICE 

PRINT 

TYPE 

Command 

CLOSE 

CLOSE SECONDARY 

CLOSE & DELETE 

CTRL/Z 

EXIT 

EXIT & DELETE 

KILL 

ii !!Sit i2!1!!1 

LINE TEXT EDITOR (EDI) 

Table 3-9 
EDI Device Output Commands 

Format 

LI st 

Description 

Print on the terminal all 
remaining in block buffer 
mode} or input 

lines 
(block 

file 
beginning 

LP 

Print [n] 

TYpe [n] 

(line-by-line mode}, 
at current line. 

Same as LI, except that printing 
is performed on pseudo-device 
CL:. 

Print the current line and the 
next n-1 lines. The last 
printed line is the new current 
line. 

Print next n lines. In 
line-by-line mode, identical to 
PRINT command. In block mode, 
line pointer remains at current 
line, unless end-of-block was 
reached. 

Table 3-10 
EDI Close Operation Commands 

Format Description 

CLose [filespec] Transfer rema1n1ng lines in 
block buffer and input file, to 
output file and close files. 
If file specification is used, 
output file is renamed. EDI> 
prompt is issued. 

CLOSES Close secondary file. 

CDl [f ilespec] Same as CLOSE, except that 
input file is deleted. EDI> 
prompt is issued. 

Type a control Z Close files, and terminate edit 
session. 

EX it [f ilespec] 

EDx [f ilespec] 

KILL 

3-26 

Close files, rename output 
file, and terminate edit 
session. 

Transfer remaining lines in 
block buffer and input file to 
output file, and close file. 
Rename file if file 
specification is given. Delete 
input file and terminate EDI. 

Close input and output files, 
delete output file. EDI> prompt 
is issued. 

iii I;:: 

~ 
'!'':~ 

!J1$4iliiil4Jll!IUI It 



LINE TEXT EDITOR (EDI) 

3.4 EDI COMMANDS: DETAILED REFERENCE SUMMARY 

This section lists each EDI command in alphabetical order. Each 
command description comprises the function of the command and the 
command format. Most descriptions include examples and usage 
information. The exceptions are the basic commands, which are 
described in detail in the preceding section. In this section, only 
the function and format of basic commands are described. 

3.4.1 ADD 

ADD causes the specified string to be appended to the current line. 

Forn1at 

Add string 

For examples and information describing how to use ADD, refer to 
Section 3.2.1. 

3.4~2 ADD & PRINT (AP) 

ADD & PRINT performs the same function as ADD, except that the new 
lirn:! is printed. 

ForJDat 

AP string 

For examples and information describing how to use ADD & PRINT, refer 
to Section 3.2.2@ 

3.4.3 BEGIN 

BEGIN sets the current line pointer to the beginning of the file in 
line-by-line mode, or to the beginning of the block buffer in block 
mode. The current line is one line preceding the top line in the file 
or block buffer. Thus, you can insert text at the beginning of a file 
or block. 

If EDI is in line-by-line mode, BEGIN copies the input file into the 
output file, closes both, then opens the latest version of the file. 
BEGIN performs the same function as TOP. 

Format 

Begin 

Example 

In this example, the current line pointer is moved to the top of 
the block buffer (block mode is assumed). 

3-27 



ill. 

LINE TEXT EDITOR (EDI) 

3.4.4 BLOCK ON/OFF 

This command allows you to switch between block mode and line-by-line 
mode. When you enter BLOCK ON, block mode becomes active, and the 
next block of text is brought into the block buffer. When you enter 
BLOCK OFF, the current block being processed is written to the output 
file, and line-by-line mode becomes active. The first line from the 
next sequential block in the input file becomes the current line. 

If you enter an unnecessary BLOCK command (for example, BLOCK ON when 
EDI is already in block mode}, the command is ignored. 

BLOCK ON is the default text access mode. It is assumed when neither 
ON nor OFF is specified. 

Format 

BLock [ON] 
or 

BLock OFF 

Example 

*BLOCK ON 

This command causes EDI to switch to block mode. The next block 
of text is read into the block buffer. 

3.4.5 BOTTOM 

BOTTOM sets the current line pointer to the beginning of the last line 
of the block (in block mode} or of the input file (in line-by-line 
mode}. 

Format 

Bottom 

For examples and information on how to use BOTTOM, refer to Section 
3.2.3. 

3.4.6 CHANGE 

CHANGE searches for stringl in the current line and, if found, 
replaces it with string2. 

Format 

[n] Change /stringl/string2[/] 

For examples and information on how to use CHANGE, refer to Section 
3.2.4. 

3.4.7 CLOSE 

This command transfers all remaining lines in the block buffer and 
input file (in that order} into the output file, and closes both 
files. If a file specification is included, the output file is 

3-28 

a: ill u:;arn: u ilti 1111 I .... I Ill ii . iii!! 221 25 ;: {JI t i I !Iii.ii ... 



\._,) 

LINE TEXT EDITOR (EDI) 

renamed to the specified file. EDI then returns to its initial 
command sequence, prompts with EDI>, and waits for you to type another 
file specification. 

If a secondary file was opened during the editing session and was not 
closed, it remains open. 

Fornnat 

CLose [file spec] 

Exannple 

*CL 
EDI> 

This command closes both input and output files, and EDI returns 
to the initial command sequence. 

3.4.8 CLOSE SECONDARY (CLOSES) 

Use this command when you have finished 
secondary input file. You must enter 
another secondary file as input. 

Forn1at 

CLOS EB 

3.4o9 CLOSE & DELETE (CD) 

extracting text from a 
CLOSES before you can use 

This command transfers all remaining lines in the block buffer and the 
input file (in that order) into the output file, and closes both 
files. The input file is then deleted. If a file specification is 
included, the output file is renamed to the specified file. This 
command acts like CLOSE, except that the input file is deleted. 

If a secondary file was opened during the editing session and was not 
closed, it remains open. 

Forrnat 

CDl [ :f i lespec] 

3.4.10 CONCATENATION CHARACTER (CC) 

The concatenation character allows you to give commands on one input 
line. By default, the concatenation character is &. To reference 
text containing an & (for example in LOCATE or CHANGE commands), you 
must change the concatenation character to some other character. 

If the CC command is used without an argument, the concatenation 
character is changed to &. 

Fonnat 

CC [letter] 

3-29 



Ill " 

Example 

LINE TEXT EDITOR (EDI) 

*CC : 
*L A&B:C /A&B/ABC/ 
CONCATENATION TEST CONTAINING A&B. 
CONCATENATION TEST CONTAINING ABC. 
*CC 

In this example, the string to be located contains an ampersand. 
Therefore, the concatenation character must be changed to a 
different character before EDI can locate the line. 

The first command line changes the 
character from & to •• 

default concatenation 

The second command line instructs EDI to locate the string A&B 
and change that string A&B to ABC. (Note: this line contains 
two commands that are concatenated by the new concatenation 
character, :.) 

The third command line changes the concatenation character back 
to the normal default value, &. 

3.4.11 CTRL/Z 

CTRL/Z is an MCR function that terminates the edit session. You enter 
CTRL/Z by pressing the CTRL key and the Z character key at the same 
time. For usage information on CTRL/Z, refer to Section 3.2.5. 

3.4.12 DELETE 

DELETE deletes a specified number of lines from a file. 

Format 

Delete n 

For examples and information on how to use DELETE, refer to Section 
3.2.6. 

3.4.13 DELETE & PRINT (DP) 

DELETE & PRINT performs the same function as DELETE, except that it 
displays the new current line after the specified lines are deleted. 

Format 

DP n 

For examples and information on how to use DELETE & PRINT, refer to 
Section 3.2.7. 

3-30 

""" 1 ::;... 

~ ~:··'. ~ ~~ ~ 

as: :::Iiimt: ::;: u:: .:: ::::: ii I I I I I ii I I I I ii I Hi!iii$22 I U !iiil$2ji iii5&! ill ii &I 



....,. 

LINE TEXT EDITOR (EDI) 

3.4.14 ENI> 

END sets the current line pointer to the beginning of the last line of 
the block or input file. If EDI is in block mode, only line pointer 
positioning occurs. In line-by-line mode, all lines are copied from 
the input file to the output file until EOF is reached. The last line 
in the block or file is displayed if VERIFY ON is in effect. Note, 
hoWE!ver, that if the last line was deleted before issuance of END, the 
pointer will be located past the text, and thus the last line will not 
be printedo END performs the same function as BOTTOM. 

Foniat 

End 

Exa11!lple 

*V ON 
*END 
THIS IS THE LAST LINE 

This command moves the current line pointer to the bottom of the 
block buffer (block mode is assumed). 

3.4.15 ERASE 

In line-by-line mode, this command erases the current line. In this 
mode n may only be 1. In block mode, this command erases the current 
block buffer and the next n-1 blocks. If n is not specified, +l is 
assumed. 

Fonnat 

ERASE [n] 

Exa1mple 

*ERASE 5 

This command causes the contents of the current block buffer and 
the next 4 blocks to be erased. These blocks are not written 
into the output file. 

3.4.16 <ESCape> 

This command prints the previous line in the block (block mode only). 
That line becomes the current line. Thus, you can back up through a 
blc1ck, one line at a time, by typing a series of ESCapes. Typing 
ESCape is equivalent to typing NP-1 (NEXT & ~RINT command). 

3 • 4, • l 7 E)CI T 

EXIT writes all remaining records to the output file, closes the 
files, and terminates the edit session. 

Format 

EXIT [f ilespec] 

3-31 



'!11121 iiij I 2$ 

LINE TEXT EDITOR (EDI) 

For examples and information on how to use EXIT, refer to Section 
3.2.9. 

3.4.18 EXIT & DELETE (ED) 

This command functions in the same way as the CLOSE & DELETE command, 
except that EDI exits when finished. 

Format 

EDx [filespec] 

Example 

*EDX NEWFILE.DOC 
[EXIT] 
> 

3.4.19 FILE 

This command -- legal in line-by-line mode only -- transfers lines 
from the input file to both the output file and a specified file, 
beginning with the current line, until a form feed character is 
encountered as the first character in a line or until end-of-file is 
reached. At that time the specified file is closed. The form feed 
character is not included in the specified file. During the transfer, 
the original file remains intact {i.e., all lines written to the 
specified file are also written to the normal output file, including 
the form feed). When the command is complete, the current line in the _.-... 
input file is one line beyond the form feed. ~,,,,.,""ll 

BLOCK OFF must be in effect for FILE to work properly. 

If the specified file does not already exist, a new file is created. 
If the specified file does exist, the latest version of the file 
contains the new data. 

Format 

FILe filespec 

Example 

*FIL SEC.DAT 

EDI writes the contents of the input file, from the current line 
to the end, into both the output file and the file SEC.DAT. 

3.4.20 FIND 

This command searches the block buffer or input file for a string, 
beginning at the line following the current line. The string must 
begin in column 1 of the line matched. The line pointer is positioned 
at the line containing the match. When the line containing the string 
is found, it is printed if VERIFY ON is in effect. 

FIND applies to the block buffer if EDI is in block mode and to the 
input file if EDI is in line-by-line mode. 

3-32 

;uei ii:; Lil ;.: I iii I ; i!IG ii !iii!!! I 2 I iiiii!; 4 



LINE TEXT EDITOR (EDI) 

If a string is not specified, the line following the current line is 
considered a match. If n is specified, the nth occurrence of the 
str:ing is found. 

ForJRat 

[n]Find [string] 

Exa1nple 

*V ON 
*F LOOK 

LOOK AT THE FIRST CHARACTER IN THE LINE. 

In this example, EDI searches the block buffer (or file) for a 
line that begins with LOOK and prints the line when it is found. 

3.4.21 FORM FEED (FF) 

This command allows you to insert form feeds into the text, in order 
to delimit EDI pages. The form feed is inserted after the current 
line, and the new current line becomes the line containing the form 
feed. 

Format 

FF 

Example 

*P 
THIS IS THE LAST LINE ON THE PAGE 
*E'F 

In this example, a form feed is inserted into the text following 
the current line. 

3 • 4, • 2 2 IM SERT 

INSeRT inserts a string immediately following the current line. 
string becomes the current line. 

Format 

Insert [string] 

The 

For examples and information on how to use INSERT, refer to Section 
3.2.10. 

3 • 4 • 2 3 K:C LL 

This command returns EDI to the initial command sequence without 
retaining the output file. When this command is executed, the input 
file is closed, and the output file is deleted. 

Foirmat 

KILL 

3-33 



1111. 

Example 

*KILL 
EDI> 

LINE TEXT EDITOR (EDI) 

In this example, the output file is deleted, and EDI displays the 
prompt: 

EDI> 

At this point, you can return control to MCR by means of CTRL/Z 
or enter a file specification for a file to be edited. 

3.4.24 LINE CHANGE (LC) 

This command is similar to CHANGE, except that all occurrences of 
string! in the current line are changed to string2. A numeric value n 
preceding the command changes the current line and the next n-1 lines. 
If string2 is null, all occurrences of string! are deleted. New lines 
are printed if the VERIFY ON command is in effect. 

If string! is given but EDI cannot locate the string in the current 
line, EDI prints [NO MATCH] and returns an * prompt. 

Format 

(n]LC /stringl/string2[/] 

Example 

If the current line is: 

THES ES THE LINE TO BE ESSUED. 

The following command would correct the errors: 

*V ON 
*LC /ES/IS 
THIS IS THE LINE TO BE ISSUED 

3.4.25 LIST ON TERMINAL (LI) 

This command prints on your terminal all remaining lines in the block 
buffer (block mode) or all remaining lines in the input file 
(line-by-line mode}, beginning at the current line. At the end of the 
listing, the current line pointer is repositioned to the top of the 
input file or block buffer. 

If terminal host synchronization is installed at system generation, 
you can control printing functions using CTRL/O, CTRL/S, and CTRL/Q. 
To suppress printing at any point, type CTRL/O. Printing can be 
suspended temporarily with CTRL/S, and resumed with CTRL/Q. 

Format 

LI st 

3-34 

!. J iii UJ!i\i Siiiliiii .ii. i. I LUU I iii!J iii iii!! I.iii 4 SE I ii i2 !iii!& I I 2$.ILUI 

'~.··. ·'~"· f', 

; 21 4411; ::: 



LINE TEXT EDITOR (EDI) 

Exam];> le 

*LI 

This command causes all rema1n1n9 lines in the block buffer or 
all remaining lines in the input file to be printed on the 
terminal. 

3.4.26 LIST ON PSEUDO-DEVICE (LP) 

This command functions .in the same manner as the LIST ON TERMINAL 
command, except that the remaining lines in the block buffer (block 
mode) or the remaining lines of the input file (line-by-line mode) are 
listed on the pseudo-device CL:. In most systems, CL: is set to the 
system line printer. 

Form.at 

LP 

*LP 

This command causes all remaining lines in the block buffer or 
all remaining lines in the input file to be printed on the 
pseudo-device CL:. 

3.4.27 LOC:ATE 

LOCATE searches for a string beginning at the line following the 
current line. The string can occur anywhere in the lines searched. 

ForDlat 

[n] Locate string 

For examples and information on how to use LOCATE, refer to Section 
3.2 .. 11. 

3.4.28 MACRO 

This command is used to define macros. Space is available for three 
macro definitions. The definition portion can be any legal EDI 
command or string of legal EDI commands connected by the concatenation 
character. 

If a numeric argument is to be passed to the macro at execution time, 
a percent sign (%) must be inserted in the macro definition at the 
point where the numeric argument is to be substituted. Then the value 
passed via the MACRO EXECUTE command replaces the percent sign when 
the macro is executed. 

A MACRO definition may contain more than one percent sign. If it 
does, the single numeric value given in a MACRO EXECUTE command 
replaces each percent sign. However, a macro may not have two or more 
independent arguments. 

3-35 



LINE TEXT EDITOR (EDI) 

Format 

MACRO x definition 

x 

Specifies the macro number (1, 2, or 3). 

Examples 

To find the nth occurrence of the string ABC in the current block 
and replace that occurrence and all remaining occurrences within 
the block with the string DEF, the following macro could be used: 

*MACRO 1 %L ABC&PA /ABC/DEF 

The following command executes the macro and searches for the 
tenth and succeeding occurrence of ABC. 

*M 1 10 

The following macro definition and subsequent invocation could be 
used to change all occurrences of the strings ABC and GHI to DEF 
and JKL, respectively. The substitution is made in the current 
block and the next four blocks (five blocks in all). 

*MACRO 1 PA /ABC/DEF/&PA /GHI/JKL/&RENEW 
*SM 1 

3.4.29 MACRO CALL (MC) 

(MACRO command) 
(MACRO EXECUTE command) 

This command allows you to retrieve up to three macro definitions 
previously stored in a file. The macro definitions must contain only 
the "definition" portion of the MACRO command. The macro definitions 
are stored in successively numbered macros: the first definition 
becomes macro 1, etc. 

The file used to store the macro definitions must be the latest 
version of file MCALL -- that is, MCALL;n. The filetype must be null 
or blank. If the macro definitions to be loaded are in a file of 
another name, you can use the PIP COPY command, with the /NV switch, ~ 
to rename the file. Refer to Chapter 4 for descriptions of PIP - r~ 
commands. 

Format 

MC all 

Strings of concatenated EDI commands can be written as EDI macro 
definitions, and up to three EDI macro definitions can be stored in 
file MCALL;n. The MC command is used to call the latest version of 
file MCALL and move the three definitions into the macro storage area. 
Then you can execute the desired macro without having to type the 
complete command. 

Macro calls may not be nested. 

The concatenation character may precede, but not follow, a macro call. 

3-36 

lC!ZfA i iii :u !i!iii!ij 212 iii $4! Ip: 



LINE TEXT EDITOR (EDI) 

Exanaple 

*MC 

This command retrieves the macro definitions stored in file MCALL;n, 
where n represents the latest version of the file MCALL. 

3.4 .. 30 MAC::RO EXECUTE 

This command executes macro x n times, while passing it the optional 
numE~ric argument. a. If a macro numeric argument is defined via the 
percent sign (%) in the macro definition, the numeric argument 
contained in this command is passed for each execution of the macro. 
Before a macro can be executed, it must either have been defined via a 
MACRO command, or called via a MACRO CALL command. 

Using this command, any one of the three macro definitions stored in 
the EDI macro storage area can be executed any number of times. 

Forrnat 

n 

x 

a 

[n]Mx [a] 

Specifies the number of times the macro is to be executed. 

Specifies the macro number (1, 2, or 3). 

Specifies the numeric argument to be passed when the 
executed (ignored if % argument is not present 
definition)., 

macro is 
in macro 

Exa1mples 

*2Ml 

Execute macro number l twice. 

*3M2 5 

Execute macro number 2 three times, passing the numeric argument 
5 each time the macro is executed. 

The example in Section B.3.4 illustrates how to use the EDI macro 
commands in editing a file. 

3.4.31 MACRO IMMEDIATE 

This command defines and executes a macro in one step. The definition 
is enclosed within angle brackets and is identical to that of the 
MACRO command. The definition is copied into the macro l storage area 

3-37 



111111 I iii2 t 2 qz 

LINE TEXT EDITOR (EDI) 

and immediately executed n times. 
executed by entering an Ml command. 
two macro commands: 

MACRO 1 definition 
nMl 

Format 

n<def inition> 

Example 

*<L ABC&C /ABC/DEF> 

The macro may also be subsequently 
The command is equivalent to the 

This command causes EDI to search the current block buffer for 
the string ABC and, when it locates ABC, to change the string to 
DEF. This macro is stored as macro number 1. 

The example in Section B.3.3 illustrates the use of the MACRO 
IMMEDIATE command. 

3.4.32 NEXT 

NEXT moves the current line pointer backward and forward in the file. 
A positive number moves the current line pointer forward; a negative 
current line number moves it backward. 

Format 

Next [n] 
or 

Next [-n] 

For examples and information on how to use NEXT, refer to Section 
3.2.12. 

3.4.33 NEXT & PRINT 

NEXT & PRINT performs the same function NEXT performs, except that the 
new current line is displayed. 

Format 

NP [n] 
or 

NP [-n] 

For examples and information on how to use NEXT & PRINT, refer to 
Section 3.2.13. 

3.4.34 OPEN SECONDARY 

This command opens the specified secondary input file. The primary 
input file, if any, remains open. Subsequent text is read from the 
primary input file until the secondary input file is selected via the 
SELECT SECONDARY command (SS) for input. 

3-38 

ii ii 14 I 4 iii t i!ii 



'-'' 

v 

Forn1at 

OPens filespec 

Example 

*OPENS RICKS.MAC 
*·ss 
*.READ l 

LINE TEXT EDITOR (EDI) 

The file RICKS.MAC is opened as a secondary input file and, 
selected for input; then the first block is read in. 

3 • 4 ,, 3 5 OUTPUT ON/OFF 

This command, used only in the line-by-line mode, allows you to 
continue or discontinue the transfer of text to the output file. 
OUTPUT ON is the default condition; it is automatically reestablished 
each time a CLOSE command is issued. 

FonRat 

output ON 
or 

output OFF 

If neither ON or OFF is specified, ON is assumed. 

Exa1nple 

*BLOCK OFF 
*OUTPUT OFF 
*N 5 
*OUTPUT ON 

This example shows how to bypass five lines of text in the input 
file so that these lines are now written into the output file. 

The first command sets line-by-line mode. 

The second command disables the transfer of text to the output 
file. 

The third command bypasses five consecutive lines of text from 
the input file. 

The fourth command reenables the transfer of text to the output 
file. 

3.4.36 OVERLAY 

This command deletes n lines and replaces them with any number of 
lines that you type. If n is not specified, the current line is 
deleted and replaced with the lines typed. When you enter the OVERLAY 
command, EDI enters input mode. All text that you type goes into the 
file until you enter a carriage return as the only character in an 
input line. 

For:mat 

Overlay [n] 

3-39 



11111;; I I I I iliiiij!2 .liilll4"4 

LINE TEXT EDITOR (EDI) 

Example 

*O 2 

This command deletes two lines and causes EDI to enter input 
mode. 

3.4.37 PAGE 

This command causes EDI to enter block mode, if not already in block 
mode, and read page n into the block buffer. A page is delimited by 
form feeds. If n is less than the current page number, a TOF command 
is performed first. TOF processing writes the input file to the 
output file, closes both files, then opens the latest version of the 
file. 

If n is greater than the current page number, the necessary number 
RENEW commands is executed to read page n into the block buffer. 

Format 

Example 

*PAG 1 
[00050 LINES READ IN] 
[00050 LINES READ IN] 
[00050 LINES READ IN] 
[00050 LINES READ IN] 
[00017 LINES READ IN] 
[PAGE 1] 
* 

of 

This example shows a quick way to get to the last block in a file 
that contains no form feed page delimiters. EDI's page count is 
not incremented unless it encounters form feed characters or an 
end-of-file mark. Thus, in a file without form feeds (i.e., most 
files}, EDI renews the block buffer until it encounters an 
end-of-file mark. Note that the final block contains 17 lines of 
text. 

3.4.38 PAGE FIND 

This command performs the same function as the FIND command, except 
that successive blocks are searched until the nth occurrence of the 
string has been found. The contents of the block buffer and the 
blocks between the current block and the block in which the nth 
occurrence of the string is located are copied into the output file. 

The string must begin in column 1 of the matched line. The line is 
printed if VERIFY ON is in effect. This command may be used only in 
block mode. 

Format 

[n]PFind string 

3-40 

iii£! I; :a: Jj :u ;u: ;;:;; "II 



LINE TEXT EDITOR (EDI) 

3. 4. 39 PAG:E LOCATE 

This command causes a search of the current block, starting at the 
line following the current line, and of successive blocks until the 
nth occurrence of the string has been located. Text from the current 
block buffer is written into the output file. The string can occur 
any place in the lines checked. The line is printed if the VERIFY ON 
command is in effect. This command may be used only in block mode. 

Formi11t 

[n]PLocate string 

This command is used in the same manner as the LOCATE command, 
except that the specified string can be in a block other than the 
current block. 

PL leaves the current line pointer at end-of-file if it cannot 
locate string. 

3 .4 .·40 PASTE 

This command is identical to the LINE CHANGE command, except that all 
lines remaining in the input file or block buffer are searched, and 
all occurrences of stringl are replaced with string2. Modified lines 
are printed if the VERIFY ON command is in effect. If stringl is 
given, but no match is found, then EDI returns an * prompt. When the 
command completes, the line pointer is at the top of the buffer or 
input file. 

Format 

PAste /stringl/string2[/] 

Exam:ple 

If the lines remaining in the block buffer contain the following 
text: 

YIGER, YIGER, BURNING BRIGHY 
IN YHE FORESYS OF YHE NIGHY 

they can be corrected with the following command: 

* P/J~/Y/T 
If the VERIFY ON command is in effect, all corrected lines are 
printed. To discontinue printing, type CTRL/O. 

3.4.41 PRINT 

PRINT displays the current line and the next n-1 lines at the 
terminal; the last line printed becomes the current line. 

Format 

Print [n] 

For examples and information on how to use PRINT, refer to Section 
3.2.14. 

3-41 



·1111111 t 

LINE TEXT EDITOR (EDI) 

3.4.42 READ 

Thfis combm
1
and r:ads t

1
he ndext.n blocksbofftext ihnto thebl blko(ck) .buf(fer.) " 

I a ock is a rea y in the uf er, t e new oc s is are 
appended to it. 

EDI must be in block mode before this command can be executed. 

A READ command may not exceed the buffer capacity. If you issue a 
READ that is too large, EDI fills its buffer and then issues the 
following message: 

[BUFFER CAPACITY EXCEEDED BY) 
<offending line> 
[LINE DELETED] 

You may get this message after issuing a READ n command, where n is 2 
or larger, unless you have used the SIZE command to reduce the number 
of lines per block below its initial number. 

Format 

REAd [n] 

If n is not specified, a value of l is assumed. The value of n 
must be positive. 

Example 

*SIZE 15 
*READ 4 

This example reads four 15-line blocks of the input file into the 
block buffer. 

3.4.43 RENEW 

RENEW writes the current block buffer into the output file and reads a 
new block from the input file. Renew is used only in block mode. 

Format 

RENew [n] 

For examples and information on how to use RENEW, refer to Section 
3.2.15. 

3.4.44 <RETURN> 

In edit mode, <RETURN> represents the carriage return that displays 
the next line in the file or block buffer. In input mode, entering 
the carriage return returns EDI to edit mode. For information on EDI 
command modes, refer to Section 3.1.2. For information on <RETURN>, 
refer to Section 3.2.16. 

3-42 

Qii .Lil .. t;aq iiiiii I ii.iiiiiiiii I I I ii 4111 ;:u !Iii::; 



'-"' 

LINE TEXT EDITOR (EDI) 

3 • 4 • ·4 5 RETYPE 

RETYPE replaces the current line with string. 

Retype [string] 

For information on how to use RETYPE, refer to Section 3.2.17. 

3 • 4 •. 4 6 SAVE 

This command causes the current line, and the next n-1 lines, to be 
saved in the specified file. If the file already exists, a new 
version is created. 

If no file is specified, the save file generated has the name 
SAVE.TMP. SAVE puts the temporary file in the UFO and on the device 
of the file you are editing. 

The input file or buffer information that is transferred to the SAVE 
file remains intact. The new current line is the last line saved. 
The SAVE command does not delete lines in the block buffer or input 
file. 

Format 

SAve [n] [f ilespec] 

Example 

You can save and later insert small groups of lines in several 
places in an output file by using the SAVE and UNSAVE commands. 
For example, a file called EDIT.MAC contains six lines that you 
want to insert at several points in another file called HELP.MAC. 
The procedure is: 

l. Start an editing session using EDIT.MAC as the input 
file. 

2. Locate the lines to be inserted into HELP.MAC. 

3. Issue a SAVE 6 command. (This copies the six lines to 
be saved into the file SAVE.TMP.) 

4. Issue a KILL command to terminate the editing session. 

5. Start a new editing session using HELP.MAC as the input 
file. 

6. Locate each place the six lines are to be inserted and 
issue the UNSAVE command. 

7. Make further edits to the input file, as desired, or 
EXIT. 

EDI does not delete the save file; the save file remains on the 
specified volume until deleted. 

3-43 



Ji :s;z 

LINE TEXT EDITOR (EDI) 

3.4.47 SEARCH & CHANGE 

This command causes a search for stringl in the block buffer (block 
mode) or input file (line-by-line mode), beginning at the current 
line. The string may occur anywhere in the line. When stringl is 
located, it is replaced by string2. The located line becomes the 
current line. 

If stringl is not specified, EDI prints the error message for illegal 
string construction. The new current line is printed if the VERIFY ON 
command is in effect. If stringl is given but EDI cannot locate the 
string, EDI returns an * prompt, and the line pointer is positioned at 
the end-of-file or the bottom of the block buffer. 

Format 

SC /stringl/string2[/] 

Example 

If the following incorrect line is contained in the current 
block: 

THES IS THE LINE TO BE ISSUED. 

the following command can correct the error: 

*V ON 
*SC /THES/THIS/ 
THIS IS THE LINE TO BE ISSUED. 

The corrected line is printed since the VERIFY ON command is in 
effect. 

3.4.48 SELECT PRIMARY 

This command selects the primary file for input. It allows you to 
reestablish the primary input file as the file from which text is 
read. 

Format 

SP 

Example 

*OPENS SECOND.MAC 
*SS 
*RENEW 10 
*CLOSES 
*SP 

This example directs EDI to: 

1. Open the secondary file SECOND.MAC. 

2. Select SECOND.MAC as the secondary input file. 

3. Read ten consecutive block buffers from the secondary 
input file into the block buffer. The first nine blocks 
are automatically transferred to the output file. 

3-44 

a f&ZZ; & 4 121 ii iii ll!ii!iji I J :::;:::;a; llW 



LINE TEXT EDITOR (EDI) 

4. Close the secondary input file SECOND.MAC. The 
secondary file need not be closed before the primary 
file is reselected for input. 

5. Reselect the primary input file for input. 

3.4.49 SELECT SECONDARY 

With this command you select the secondary file as the input file. 

Format 

SS 

Example 

To add text to the output file from a secondary input file, you 
must first open the secondary input file and select it for input. 
The use of the SS command is illustrated in the example presented 
in the previous section. 

3.4.50 SUE 

This command allows you to specify the maximum number of lines to be 
read into the block buffer on a single READ or RENEW command. The 
default value for SIZE is dependent on your exact system 
configuration. Initially EDI determines how much buffer space it has 
and divides that by 132(10}, the maximum line size, to set the number 
of lines read in. In no case can it be less than 38 lines. (See '-"1 discuss ion of Block Mode in Sect ion 3 .1. 3.) 

Formiat 

SIZE n 

Examiple 

*SIZE 50 

This command conditions EDI to read 50 lines into the block 
buffer during a single READ or RENEW command. 

3.4.51 TAD ON/OFF 

This command turns automatic tabbing on or off. The automatic tab 
feature is useful for MACR0-11 language input. TAB OFF is the default 
at the start of an editing session. When TAB ON is in effect, a tab 
(equivalent to eight spaces) is automatically inserted at the 
beginning of each input line unless the line either begins with a 
label followed by a colon, or contains a semicolon in the first 
column. 

3-45 



1111111: J 2i I ,. 

LINE TEXT EDITOR (EDI) 

Format 

TAb [ON] 
or 

TAb OFF 

If neither ON nor OFF is specified when a TAB command is 
ON is assumed. 

Example 

*TAB ON 
*I 
; THIS IS A SAMPLE OF TABBING. 
THIS LINE GETS A TAB 
l: THIS ONE DOESN'T 
END 

*TAB OFF 
*N -3 
*P 4 
; THIS IS A SAMPLE OF TABBING. 

THIS LINE GETS A TAB 
l: THIS ONE DOESN'T 

END 

3.4.52 TOP 

issued, 

TOP sets the current line pointer to the top of the block buffer (in 
block mode) or to the top of the file (in line-by-line mode). In 
line-by-line mode, TOP creates a new version of the file. When the 
current line pointer is positioned via TOP, you can insert lines 
preceding the first line in the file. 

Format 

Top 

For examples and information on how to use TOP, refer to Section 
3.2.18. 

3.4.53 TOP OF FILE (TOF) 

TOF returns the current line pointer to the first line of the file and 
leaves you in block mode. TOF copies the input file to the output 
file, closes both, and opens the latest version of the file as the 
input file. 

Format 

TOF 

For examples and information on how to use TOF, refer to Section 
3.2.19. 

3-46 

ii f 

~ 
"!:~:. T'lliJ 

"" . : .... ./ 

I I 4 ! i2P 



LINE TEXT EDITOR (EDI) 

3 .4. 54 TYl>E 

This command is similar to the PRINT command (Section 3.2.14). In 
line-by-line mode, the two are identical. In block mode, TYPE does 
not move the line pointer after displaying the requested text, except 
if the end-of-block is encountered. In this case the line pointer 
remains at the last line before the end-of-block. 

If n is not specified, a value of 1 is assumed. 

Format 

TYpe [n] 

Example 

See the example of the PRINT command (Section 3.2.14). 

3 .4.,55 UNSAVE 

This command retrieves all the lines in a specified file and copies 
them after the current line. If no file is specified, the file 
defaults to SAVE.TMP. The new current line pointer is positioned at 
the last line retrieved from the file. The file used in this command 
can be any text file; it is often the file created with a SAVE 
command. 

Fon11at 

UNSavi~ [file spec] 

Exa111aple 

File SEC.DAT;l contains a group of lines to be inserted after the 
current line. The following command performs the desired 
operation. 

*UNS SEC.DAT;l 

Section B.3.2 contains an example using the SAVE and UNSAVE 
commands. 

3 • 4 ,, 5 6 UPJ?ER CASE ON/OFF 

This command allows you to enter lower-case characters from a terminal 
and have them converted to upper-case characters. If UPPER CASE OFF 
is :issued, all input characters are accepted as they are entered (no 
conversion is performed), except that all EDI commands are converted 
to upper-case characters. (If entered as lower-case characters, EDI 
commands are still echoed in lower case.) 

Format 

UC [ON] 
or 

UC OFF 

If neither ON nor OFF is specified, then ON is assumed. UC ON is 
the default when EDI is started. 

3-47 



ii ;u4 

Example 

LINE TEXT EDITOR (EDI) 

*UC OFF 
*I this line is entered in lower case 
*UC ON 
*I this line is converted to upper case 

Assuming that the input terminal is capable of generating 
lower-case input, the command in the example above would create 
the following lines in the output file. 

this line is entered in lower case 
THIS LINE IS CONVERTED TO UPPER CASE 

However, in both instances, the characters are converted to upper 
case before the file is closed. 

To create a file containing lower-case characters, use the MCR 
SET /LOWER-=TI: command and the EDI UC OFF command. 

3.4.57 VERIFY ON/OFF 

This command controls the display of lines specified by the LOCATE and 
CHANGE commands. Use VERIFY ON to display a line located by the 
LOCATE command or to display a line changed by the CHANGE command. 
Use VERIFY OFF to inhibit the display of these lines. EDI is in the 
VERIFY ON mode at the start of editing. 

Format 

Verify [ON] 
or 

Verify OFF 

If neither ON nor OFF is specified, ON ls assumed 

Example 

*V OFF 
*L VERIFY 
*P 
LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON 
*N -2 
*V ON 
*L VERIFY 
LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON 

In this example, the PRINT command is issued to demonstrate that 
the desired line has been located when VERIFY is OFF, but when 
the LOCATE command is reissued with VER.IFY ON, EDI automatically 
prints the line. 

3.4.58 WRITE 

This command causes the entire contents of the block buffer to be 
written into the output file. The block buffer is then erased. 

EDI must be in block mode before this command can be executed. 

3-48 

iii!! 
" CiJ "' "' ill :;:: I jJ th ;z;; 



LINE TEXT EDITOR (EDI) 

.Format 

Write 

Example 

*W 
*REA 2 

In this example, the block buffer is written into the output file 
and the block buffer is erased. Then, the next two blocks are 
read into the block buffer. 

3.5 EDI USAGE NOTES 

The following points contain general information involving 
restrictions on use of EDI, system device considerations, and general 
usage rules. 

• EDI can operate only on Files-11 format files and rejects all 
other file formats. 

• The output file generated by EDI always resides on the same 
device as the input file. The output file cannot be directed 
to another device. For example: 

To edit a file on DECtape and store the resulting file on 
disk, do one of the following: 

1. Transfer the file to disk and perform the editing there. 

2. Edit the file on DECtape and then use PIP to transfer the 
file to disk. 

• To use a device other than SYO:, mount it via the MCR MOUNT 
command. 

• To edit a version of a file other than the latest one, 
explicitly state the desired version number in the file 
specification. This file is opened as the input file; the 
version number of the output file is one greater than the 
latest version of the file. 

• Some EDI commands (such as TOF, and TOP when it is used in 
line-by-line mode) implicitly generate multiple versions of a 
file. In the execution of such commands, EDI copies the 
remainder of the input file into the output file and closes 
both of them. It then opens the latest version of the file 
and uses it as input. This ensures the editing of the latest 
version of the file and provides periodic backup. To delete 
any unwanted versions, use PIP with the /PURGE switch. 

• EDI accepts variable-length input lines up to 132 characters 
long. 

• The record type of output files edited by EDI is always 
variable-length .. 

• EDI preserves the record attributes of the input file. For 
example, the FORTRAN carriage control attribute is preserved 
in the output file. 

3-49 



3.6 

The 

LINE TEXT EDITOR (EDI) 

• Line feed characters may be entered in files but are 
interpreted by EDI as termination characters. You should 
avoid using them since they cause unpredictable results when 
the file is edited a second time. 

• EDI cannot process a file that contains embedded carriage 
control characters, such as PIP directory listings and TKB map 
files. To reformat such a file for EDI processing, copy the 
file to a DOS-11 volume and then back to your original volume 
using FLX. EDI can then process the file. 

EDI ERROR MESSAGES 

four classes of EDI error messages are: 

• Command level information messages 

• File access error messages 

• Error messages requiring EDI restart 

• Fatal error messages • 

The following sections describe all the messages that may be displayed 
in each class. If the recovery procedure is not evident, a suggested 
user action is given. 

3.6.l Command Level Information Messages 

Messages in this class indicate information that is designed to be 
helpful to you or to identify errors that were encountered in the 
previous command. All messages in this class are enclosed within 
square brackets and followed by a prompt for a new command. For 
example, the following output occurs if a DELETE command encounters an 
end-of-buffer in block mode: 

[ *EOB*] 
* 

The messages in this class follow. 

[BUFFER CAPACITY EXCEEDED BY] 
of fending line 
[LINE DELETED] 

Explanation: A READ, UNSAVE, INSERT, or 
exceeded the capacity of the block buffer. 
the overflow is displayed and deleted. 

OVERLAY command has 
The line that caused 

User Action: If a new file is being created, empty the buffer 
with a WRITE command and continue the editing session. 

If an existing file is being edited, it may be possible to 
continue via a RENEW or WRITE command. Otherwise, use the CLOSE 
command to close the output file and save all edits. Reopen the 
output file as the input file and, using the SIZE command, reduce 
the number of lines read into each buffer; then, using the PAGE 
LOCATE command, search to the position in the file where editing 
is to continue. 

3-50 

~.· ... • ~····r~ 
I . 

.~ ~·~··pT~ 

JA!iii! s; iiiii 14 : . : s:. a ;:uam:;::;::u 



LINE TEXT EDITOR (EDI) 

Occasionally, this message results when you try to open a file 
that was not created by EDI. You can overcome this difficulty 
via the SIZE command procedures that follow: 

1. Type KILL. 

2. When EDI prompts for 
nonexistent filename. 
input mode. 

a new file specification, enter a 
EDI creates a new file and enters 

3. Type carriage return to enter edit mode. 

4. Using the SIZE command, reduce the number of lines read into 
each buffer. 

5. Use the KILL command to abandon the file. 

6. When EDI prompts for a new file specification, enter the name 
of the desired file. 

[CREATING NEW FILE] 
INPUT 

Explanation: The input file specified in the command does not 
exist and EDI has created a new file. EDI automatically enters 
input mode and waits for the input of text lines. 

User Action: If you intend to create a new file, continue 
entering new lines as required. Otherwise, enter edit mode by 
typing carriage return; use the KILL command to delete the 
undesired new file. When EDI prompts for a new file 
specification, enter the correct file specification. 

[ILL CMD] 

Explanation: Either EDI does not recognize the command, or you 
have entered a command that is not compatible with the current 
mode (e.g., a READ command in line-by-line mode). 

[ILL NUM] 

Explanation: Either you have supplied a non-numeric character 
when a numeric is required, or you have given a negative number 
when a positive number is required. 

[ILL STRING CONST] 

Expla.nation: A search string specified in a CHANGE, LC, PASTE, 
or SC command does not contain a matching string termination 
character {e.g., PASTE /ALPHABETA, instead of PASTE /ALPHA/BETA). 

[ILLEGAL IN BLOCK ON MODE] 

Explanation: You have tried to execute a command that is illegal 
in block mode, such as FILE or OUTPUT ON/OFF. 

3-51 



.1, 2 ;sz 

LINE TEXT EDITOR (EDI) 

[ILLEGAL FILE NAME GIVEN IN CLOSE OR EXIT] 

or 

[FILE WAS NOT RENAMED] 

Explanation: A syntactically incorrect file specification was 
given in a CLOSE or EXIT command, the attempt to rename the 
output file failed, or the attempt to EXit or Close to rename the 
file to another device failed. 

User Action: Use PIP to rename the file, if desired. 

[MACRO NOT DEFINED] 

Explanation: You have tried to execute a macro with the M 
command, but the specified macro has not been defined. 

User Action: Use the MACRO command to define the desired macro 
and then execute it with the M command. 

[MACRO NUMERIC ARG UNDEFINED] 

Explanation: You have tried to execute a macro without supplying 
a numeric argument. The macro definition, however, contains the 
% character and thus demands a numeric argument. 

User Action: Retype the command, specifying the appropriate 
numeric argument. 

[MCALL FILE DOES NOT EXIST] ~ 

Explanation: An MCALL command has been executed to define a set 
of macros, but the file MCALL cannot be found. 

User Action: The desired set of macro definitions may exist 
under another User File Directory. If this is the case, use PIP 
to copy or rename the MCALL file into the current directory. 

[NO INPUT FILE OPEN] 

Explanation: A PAGE, READ, or RENEW command has been attempted 
while a new file is being created (that is, while there is no 
input file). These commands can be executed only when an 
existing file is being edited. 

[NO MATCH] 

Explanation: A CHANGE command has specified a string to be 
changed that is not in the current line. 

[OVERLAYING PREVIOUSLY DEFINED MACRO] 

Explanation: A MACRO command has resulted in the redefinition of 
a previously defined macro. This message lets you know that the 
previous definition is no longer in effect. 

3-52 

L L LU. Li. JI! .. I I.I II. I .. I iii#iiiUllUU ... 



LINE TEXT EDITOR (EDI) 

[SAVE FI LE DOES NOT EXIST] 

Explanation: The file specified in an UNSAVE command cannot be 
located. 

User Action: If you provided a file specification, make sure it 
is correct. If you did not give a file specification, this 
message means that no previous SAVE command (without file 
specification) was issued. 

[SECONDARY FILE ALREADY OPEN] 

Explanation: You may have tried to open a secondary input file 
while another secondary file is still open. Or you may have a 
secondary file open when you issue a CLOSE or KILL command, or 
when EDI encounters an error and is forced to restart. The 
former case represents an error: the latter informs you that you 
still have a secondary file open. 

User Action: Close the secondary input file using the CLOSES 
command, and then open the desired secondary file with the OPENS 
command. 

[SECONDARY FILE CURRENTLY SELECTED FOR INPUT] 

Explanation: A CLOSE or KILL command has been issued, or an 
error has caused EDI to restart, when a secondary input file is 
open and selected for input. 

User Action: Issue an SP command, then a CLOSES command. 

[SYNTAX ERROR] 

Explanation~ A command has been entered that is syntactically 
incorrect. 

[TOO MANY CHARS] 

Explanation: A CHANGE, LC, PASTE, SC, or ADD 
resulted in a line that contains too many characters. 

command has 
EDI lim1 ts 

the length of a line to 132 characters. 

User Action: Retype the line to ensure that the line is valid. 

[*BOB*] 

Explanation: The beginning-of-buffer has been reached. The 
current line pointer is positioned just before the first line in 
the buffer. Thus, new text lines can be entered before the first 
line. 

[*E:OB*] 

Explanation: The end-of-buffer has been reached. 
line pointer now points to the end of the buffer. 
lines are inserted, they appear after the last 
bu ffHr. 

3-53 

The current 
Thus, if new 

text in the 



LINE TEXT EDITOR (EDI) 

[*EOF*] 

Explanation: The end-of-file has been reached on the input file. 

User Action: If the editing session is complete, use the CLOSE 
or EXIT command to close the output file. Otherwise, use the TOF 
command to return to the first block in the file. 

3.6.2 File Access Error Messages . 
Messages in this class mean that you have tried to access directories, 
files~ or devices that are not present in the host system. Each 
message is prefixed with: 

EDI --

After the message is displayed, EDI returns to command level and 
prints an asterisk to request input. 

The messages in this class follow. 

EDI -- BAD FILE NAME 

Explanation: The file name was not accepted by EDI. The most 
common error is a file name containing embedded blanks. 

User Action: Make sure that the file name is correct, and 
reenter it. 

EDI -- DEVICE NOT IN SYSTEM 

Explanation: You have given a FILE, OPENS, SAVE, or UNSAVE 
command, specifying a device that does not exist in the host 
system. 

User Action: Reenter the command line, specifying only devices 
available in the system. 

EDI -- FILE DOES NOT EXIST 

Explanation: You have given a FILE or SAVE command, specifying a 
user file directory that does not exist on the speaified volume. 

NOTE 

The rema1n1ng error messages in this 
class should not occur and represent 
failures in EDI. If such errors 
persist, submit a Software Performance 
Report. 

EDI -- BAD DEVICE NAME 

EDI -- DEVICE NOT READY 

3-54 

: ::s am 2411 (! ;; )ii I ;s:a !!&$$ Z.i!A4J 



LINE TEXT EDITOR (EDI) 

EDI -- FILE ALREADY OPEN 

~ EDI -- RENAME NAME ALREADY IN USE 

~· 

EDI -- RENAME ON TWO DIFFERENT DEVICES 

EDI -- WRrrE ATTEMPT TO LOCKED UNIT 

3.6"3 Error Messages Requiring EDI Restart 

The error messages described in this section are caused by conditions 
that make it impossible for EDI to continue the current editing 
session. EDI closes all open files (with the exception of any open 
secondary input file), reinitializes, and then prompts for the next 
file to be edited. 

As with file access warning messages, each message in this class is 
prefixed with: 

EDI 

After the appropriate message has been displayed, EDI prompts with: 

EDI> 

You may terminate the editing session at this point by typing carriage 
return or CTRL/Z, or you may continue by entering another file 
specification. If a secondary file was open when the error condition 
was encountered, it remains open. 

The messages in this class follow. 

EDI -- BAD RECORD TYPE - FILE NO LONGER USABLE 

Explanation: The record type defined in the header block of the 
input file (primary input, secondary input, UNSAVE, or MCALL) is 
not supported by File Control Services (FCS); thus, the file 
cannot be used for input to EDI. 

User Action: The referenced file has been created without using 
FCS, or the file structure on the volume is damaged. In the 
latter case, verify the file structure with the verification 
utility (VFY) to determine the extent of the damage. VFY is 
described in Chapter 13. 

EDI -- FILE IS ACCESSED FOR WRITE 

Explanation: The input file (primary input, secondary input, 
UNSAVE, or MCALL) is currently being written by another task. 

User .Action: Wait for the write to complete, then reenter the 
command line. 

3-55 



LINE TEXT EDITOR (EDI) 

EDI -- FILE IS LOCKED TO WRITE ACCESS 

Explanation: The output file (text output, FILE, or SAVE) is 
currently accessed for read by one or more tasks and is locked 
against all writers. 

User Action: Wait for all readers of the file to finish, then 
reenter the command line. 

EDI -- ILLEGAL RECORD ATTRIBUTES - FILE NOT USABLE 

Explanation: The record attributes defined in the header block 
of the input file (primary input, secondary input, UNSAVE, or 
MCALL) are not supported by FCS; thus, the file cannot be used 
for input to EDI. 

User Action: The referenced file has been created without using 
FCS, or the file structure on the volume is damaged. In the 
latter case, run the file structure verification utility (VFY) to 
determine the extent of the damage. VFY is described in Chapter 
13. 

EDI -- PRIMARY FILE NOT PROPERLY CLOSED 

Explanation: When the primary input file was last written, a 
close check was specified, and the writing task did not properly 
close the file (e.g., the task was aborted). Thus, the file 
attributes were not written, and the file may contain 
inconsistent data. 

User Action: Exit from EDI by typing carriage return or CTRL/Z. 
Run the Peripheral Interchange Program (PIP) and use the /UN 
switch to unlock the file. Reinitiate EDI and try to recover the 
data in the file. 

EDI -- PRIVILEGE VIOLATION 

Explanation: A privilege violation occurred during a file access 
for one of the following reasons: 

1. The specified volume is not mounted. ~ 

2. The UIC under which EDI is running does not possess the 
necessary privileges to access the specified directory. 

3. The UIC is not privileged to access the specified file. 

User Action: If the volume is not mounted, then mount it using 
the MCR MOUNT command. Otherwise, reinitiate EDI under a UIC 
that has appropriate access privileges to both the specified 
directory and file. 

EDI -- RECORD IS TOO LARGE FOR USER BUFFER 

211; 411 "j 

Explanation: The input file (primary input, secondary input, 
UNSAVE, or MCALL) being accessed was not created by EDI (or SLP) 
and contains records that are too large. The maximum record 
length supported by EDI is 132 bytes. 

3-56 

. I ·'* Lt .L:.: t n..rs: 22 u:4::2aqa:a.:. 



LINE TEXT EDITOR (EDI) 

EDI -- SECONDARY FILE NOT PROPERLY CLOSED - NOT USABLE 

Explanation: When the secondary input file was last written, a 
close check was specified, and the writing task did not properly 
close the file (e.g., the task was aborted). Thus, the file 
attributes were not written, and the file may contain 
inconsistent data. 

User Action: Run PIP and use the /UN switch to unlock the file. 
Reinitiate EDI and try to recover the data in the file. 

EDI -- BAD DIRECTORY SYNTAX 

Explanation: Directory field ([g,m]) is in improper format. 

NOTE 

The remaining error messages in this 
class should not occur and represent 
failures in EDI. If such errors 
persist, submit a Software Performance 
Report. 

EDI -- DUPLICATE ENTRY IN DIRECTORY 

EDI -- END OF FILE 

EDI -- ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE 

EDI -- ILLEGAL RECORD NUMBER - FILE NOT USABLE 

3.6.4 Fatal Error Messages 

The fatal error messages represent system and/or hardware conditions 
that make it impossible for EDI to continue execution. All files are 
closed and EDI terminates its execution. The output file may be 

'-'/ truncated. Each error message is prefixed with: 

EDI --

and followed by the exit message: 

[EXIT] 

on the next line. 

The advanced user may work with 
truncated version of an output 
before the fatal error occurred. 

the following procedures on the 
file to save the editing performed 

l. Use PIP to rename the truncated version of the output file to 
avoid confusion. 

2. Restart the editing session to the original input file. 

3-57 



u 

LINE TEXT EDITOR (EDI) 

3. Issue an OPENS command, specifying the renamed file as the 
secondary file. 

4. , Issue an SS command to select the secondary file for input. 

5. Issue an ERASE command to erase the first block of the input 
file (unless the truncated output file did not contain the 
entire first block). 

6. Issue as many READ 1 and WRITE commands as necessary to reach 
the EOF on the secondary file. 

7. Issue an SP command to select the primary file for input. 

8. Issue a CLOSES command to close the secondary file. 

9. Issue a WRITE command to ensure that the last block was 
written into the output file. 

10. Issue as many READ 1 and ERASE commands as necessary to 
bypass all input file blocks that are complete in the renamed 
file. 

11. Continue the normal editing session. 

The messages in this class follow. 

EDI -- CALLER'S NODES EXHAUSTED 

Explanation: System dynamic storage has been depleted, and 
insufficient space is available to allocate the control blocks 
necessary to open, close, read, or write a file. 

User Action: This probably is a system failure, but it could 
also represent a transient overload condition. Wait until system 
load has diminished and reinitiate EDI. 

EDI -- DEVICE FULL 

Explanation: Insufficient space exists on the output volume to 
extend an output file (text output FILE, or SAVE). 

User, Action: Determine which volume is being written. If it is 
required that the specified file be written on this volume, then 
space must be made available. Use PIP to purge (/PU) or delete 
(/DE) unwanted files. 

EDI -- FILE HEADER CHECKSUM ERROR 

Explanation: An input file 
UNSAVE, or MCALL) has a 
proper checksum. 

(primary input, secondary input, 
header block that does not contain a 

User Action: The file structure on the specified volume is 
damaged. Run the file structure verification utility (VFY) to 
determine the extent of the damage. VFY is described in Chapter 
13. 

3-58 

'"""' ,. . i ,,F 

I.I ;: IJl!i iii $ 121 I !j I ii!Z i!i2 j(.121 iil!. 44 21 jl 22 



LINE TEXT EDITOR (EDI) 

EDI -- FILE HEADER FULL 

Explanation: 
header block 
SAVE),, 

Insufficient retrieval pointer space exists in the 
to extend an output file (text output, FILE, or 

User Action: Split the file into two or more files and process 
them separately. 

EDI -- FILE PROCESSOR DEVICE WRITE ERROR 

Explanation: This error message may indicate that the device 
specified for an output file is write-locked. 

User Action: Unlock the device if it 
Otherwise, a hardware problem may exist. 
field service representative. 

EDI -- INDEX FILE FULL 

is write-locked. 
Consult the DIGITAL 

Explanation: The file header block is not available to create an 
output file (text output, FILE, or SAVE). When a volume is 
initialized, the maximum number of files that may be created on 
the volume is established. Your write request would have 
exceeded this maximum. 

User Action: Determine which volume is being referenced. If it 
is required that the specified file be created on this volume, 
then space must be made available. Use PIP to purge (/PU) or 
delete (/DE) unwanted files. 

NOTE 

The following error messages signify 
hardware problems. If possible, remove 
all important files from the volume. 

EDI -- BAD BLOCK ON DEVICE 

EDI -- FILE PROCESSOR DEVICE READ ERROR 

EDI -- HARDWARE ERROR ON DEVICE 

EDI -- PARITY ERROR ON DEVICE 

NOTE 

The remaining error messages in this 
class should not occur and represent 
failures in EDI. 

EDI -- BAD DIRECTORY FILE 

EDI -- BAD PARAMETERS ON A QIO 

3-59 



LINE TEXT EDITOR (EDI) 

EDI INVALID FUNCTION CODE ON A QIO 

EDI NO BLOCKS LEFT 

EDI REQUEST TERMINATED 

EDI UNEXPECTED ERROR - EDITOR WILL ABORT 

EDI -- WRITE ATTRIBUTE DATA FORMAT ERROR 

TASK " ••• EDI" TERMINATED 

3-60 

l!J!iii ;4 J !A.!4 'I I I .I.I .I . ! iiiillli i I 1#21 i.iii!IQ!l22& Ji!! U4!iiii$0:111112 



PART 3 
'-' FILE MANIPULATION UTILITIES 





CHAPTER 4 

.PERIPHERAL INTERCHANGE PROGRAM (PIP) 

The Peripheral Interchange Program (PIP) is an RSX-11 file utility 
program that transfers data files from one standard Files-11 device to 
another. PIP also performs file control functions. Some of the 
functions PIP performs are: 

• Copy files from one device to another 

• Delete files 

• Rename files 

• List file directories 

• Set the default device and UIC for PIP operations 

• Unlock files 

• Spool files 

You invoke the PIP utility using any of the methods for invoking a 
utility described in Chapter 1. You invoke PIP file control functions 
by means of switches and subswitches. 

4.1 PIP COMMAND STRING 

You request PIP functions by entering PIP command strings through the 
initiating terminal or by means of an indirect command file. (Using 
indirect command files is described in Chapter 1.) The format of PIP 

·command strings differs for each function. Therefore, the command 
string formats are described in separate sections. 

4 .1.1 PIP Defaults for File Specificatio·n Elements 

With the exception of the version number, PIP generally uses the last 
value encountered in the command line as the default. That is, PIP 
uses values you enter to set defaults, and changes the default when 
you change the value. Exceptions to this are noted in the 
descriptions of each switch. 

4-1 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

The following command string sets a new default value for each file 
specified on the command file: 

>PIP TI.MAC;5,T2,.TSK,;6/LI 

Tl.MAC; 5 
T2.MAC;5 
T2.TSK;5 
T2.TSK;6 

Table 4-1 summarizes the rules PIP uses to set defaults. 

Element 

dev: 

[ufd] 

filename 

• filetype 

;version 

7tli!i I 12 i#i!UW iJ iiiii iii! jj s::: 

Table 4-1 
PIP Default File Specifications 

Default Value 

For the first file specification, the unit on which 
the syst£m disk is mounted (SY:) or the default that 
you specify with /OF (see Section 4.2.2.5). For 
subsequent file specifications, either you 
explicitly specify a new device or PIP assumes the 
device from the previous specification. 

For the first file specification, your current UIC, 
that is, the UIC under which you log on, the UIC you 
specify with the MCR SET command, or the default you 
specify with /DF (see Section 4.2.2.5). For 
subsequent file specifications, either you 
explicitly specify a new ufd or PIP assumes the ufd 
from the previous specification. An asterisk 
(wildcard) specification is valid (see Section 
4.1.3). 

No default 
subsequent 
that you 
(wildcard) 
4.1.3) • 

No default 
subsequent 
that you 
(wildcard) 
4.1.3). 

for the first file specification. For 
file specifications, the rast filename 
explicitly specified. An asterisk 
specification is valid (see Section 

for the first file specification. For 
file specifications, the last file type 
explicitly specified. An asterisk 
specification is valid (see Section 

The default for input files is the most recent 
version number. The default for output files is the 
next higher version number, or version 1 if the file 
does not already exist in the output directory. An 
exception is the PIP file delete funciton, which 
requires an explicit version number or a wildcard 
specification. An explicit version number is 
defined to be of the form ;n where n is greater than 
0 (n>O). 

A version number of ;-1 may be used to specify the 
oldest version of a file. A version number of ;O or 
; may be specified to signify the most recent 
version. In certain cases, the asterisk (or 
wildcard) may be specified, as described in Section 
4.1.3. 

4-2 

!if z; :; '; 4iii ; $ .Jii4¥ 



L .-' ~; 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4.1.2 PIP Switches and Subswitches 

PIP provides several file control switches and subswitches. A switch 
specification consists of a slash (/) followed by a 2- or 3-character 
switch name. The switch specification is optionally followed by a 
subswitch name separated from the switch name by a slash. The 
subswitch name can have arguments that are separated from the 
subswitch name by a colon (:). Each is preceded by a slash. 

All but one of the 
specifications. The 
itself. 

PIP switches 
exception is· 

operate on lists of file 
the ID switch, which is used by 

Section 4.1.2.l describes switches and Section 4.1.2.2 describes 
subswitches. 

4.1.2.l Switches - PIP accepts some switches with no file 
specification. However, when you use a switch in a command line, it 
must follow the file or UFD specification. It cannot come before the 
file name, file type, version, or UFD of the file on which it is to 
operaite. 

You may specify switches once for an 
specifications. For example: 

stringl,string2,string3/DE 

entire 

The DE switch applies to all of the strings. 
specified file from its User File Directory. 

list of file 

PIP deletes every 

You specify switch arguments as octal (default), decimal, or 
alphabetic characters, depending on the switch. The sections that 
explain the individual PIP switches discuss these values. 

4.1.2.2 Subswitches - Subswitches are local. They apply only to the 
file specification which immediately precedes them. In the following 
example, the New Version subswitch (/NV) is applied to the file 
ASDG~MAC. (The NV subswitch is used with the Rename switch, RE.) 

PIP>*.SMP=PRT2.QRT,ASDG.MAC/NV,KG.BAC/RE 

PIP renames the files PRT2.QRT and KG.SAC, but they maintain their 
associated version numbers. File ASDG.MAC is also renamed, but the 
version number is forced to a number one greater than the latest 
version of file ASDG.SMP. 

When you explicitly apply a subswitch to a file specification, you 
implicitly apply the switch with which the subswitch is associated. 
On a command line with more than one file specification, the explicit 
subswitch affects only the file to which it is applied. The implicit 
switch affects all the files on the command line. 

Exam]> le 

PIP>FILE1/GR:R/WO,FILE2/GR:RW 

This command is equivalent to: 

PIP>FILE1/GR:R/WO,FILE2/GR:RW/PR 

4-3 



t 111 I !$ ( i!i 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

The command results in the following file protection: 

a. FILEl SYSTEM 
MEMBER 
GROUP 
WORLD 

b. FILE2 SYSTEM 
MEMBER 
GROUP 
WORLD 

Unchanged 
Unchanged 
Read access 
No access 

Unchanged 
Unchanged 
Read/write access 
Unchanged 

(For more information on altering the protection level of a file, see 
Section 4.2.2.14). 

4 .1. 3 Wildcards 

PIP allows you to specify wildcards by means of an asterisk (*) 
charqcter in the file specification. The asterisk (*) character in 
one or more fields of a file specification stands for "all"; for 
example, all files, file types, or versions. However, using wildcards 
is restricted in some cases. The following sections describe the uses 
of wildcards for input and output files. 

4.1.3.l Wildcards in Output File Specifications - Using wildcards in 
the output file specifications is restricted. For the following PIP 
functions, the output file specification cannot have any wildcards: 

• Copying a single file 

• Concatenating files to a specified file 

• Appending to an existing file 

• Updating (rewriting) an existing file 

• Listing a directory 

If you use wildcards in the output file specification for any of the 
above functions, the meaning of the command iine would be ambiguous or 
imply an infinite number of output files. For example: 

PIP>[200,200]*.*;*=TEST.DAT 

PIP would try to create an infinite number of files in [200,200] from 
one single file. 

When you make copies of several files, the output specification must 
be *.*;*or default. 

For the Rename (/RE) and Enter (/EN) switches, the output 
specification may have wildcards mixed with specified fields. For 
either switch, the equivalent field of the input file specification is 
used. 

For all cases in which wildcards are allowed in the output file 
specification, the wildcard UFO form [*,*] (but not [n,*] or [*,n]) is 
used to indicate that the output UFO is to be the same as the input 
UFO. 

4-4 

41 I. I! LL ii I ii ii i!!!iii iii! . Lii!.iiill) lib.iii! 



'-'i 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4.1.3.2 Wildcards in Input Specifications - PIP provides the 
following wildcard features for input file specifications: 

• *.*;*means all versions of all files. 

• *.DAT;* means all versions of all files of file type DAT. 

• TEST.*;* means all versions and all types of files named TEST. 

• TES1~.DAT;* means all versions of file TEST.OAT. 

• *·*means the most recent version of all files. 

• *.DAT means the most recent version of all files of file type 
.OM~. 

• TES1~.* means the most recent version of all file types for 
files named TEST. 

PIP also provides the following wildcard UFO features: 

• [*,*] means all group, member number combinations from 1 to 
377 octal. 

• [nl,*] means all member numbers under group nl. 

• [*,n2] means all group numbers for member n2. 

4.2 PIP COMMAND FUNCTIONS 

PIP copies Files-11 files and performs file control functions. 
Section 4.2.1 describes the copying function and Section 4.2.2 
describes the file control functions. 

4.2.1 Copying Files-11 Files 

To copy Files-11 files, you can enter the PIP command line without 
specifying any switches. 

The simplest format for the PIP command line is: 

outf i fo=inf i le 

outfUe 

The output file specification. If the output file name, file 
type, and version are either null or *.*;*, the input file name, 
file type, and version are preserved (see NV and SU subswitches). 
If you enter any portion of the output file specification (file 
name, file type, or version), wildcards cannot be used in this 
specification. Similarly, for a copy command, if you enter any 
portion of the output specification, you can enter only one file 
as the input file. 

inf ile 

The input file specification. If the file name, file type, and 
version fields are all null, then *.*;* is the default. 

4-5 



:•a I$ U 14 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

One switch that you can specify when copying Files-11 files is the 
Merge switch. The Merge switch (/ME) creates a new file from two or 
more existing files. PIP assumes /ME when you explicitly specify an 
output file, two or more input files, and no switches. Because the 
basic copy function and the Merge switch are logically related, the 
Merge switch is described here rather than below with the other 
switches. 

The most general format of the PIP command line is: 

outfile=infilel [, infile2, ••• infilen] [[/ME] [/subswitch]] 

outfile 

The output file specification. 

inf ile 

The input file specification. 

/ME 

Specifies the Merge switch. 

/subswi tch 

Specifies any of the subswitches that you can enter as part of 
the basic command line or with the Merge switch. Table 4-2 
describes these subswitches. Subswitches can appear in either 
the output or input file specification. If you place the 
subswitch in an input file specification, it applies only to that 
file. If you place the subswitch in the output file 
specification, it applies to the entire list of input 
specifications. 

Examples 

1. PIP>DKl:SAMP.DAT=DK2:TEST.DAT 

Copies the latest version of file TEST.DAT (in the current 
UFD) from DK2: to DKl: as SAMP.DAT. 

2. PIP>DKl:[*,*]=DKO:[ll,*] 

Copies all files from all members in group number 11 of DKO: 
to DKl:. The files are in the same UFD on DKl: that they 
were in on DKO:. 

3. PIP>LP:=*.LST 

Copies the latest version of all files with a type of .LST in 
the current UFD to the line printer. If the Print Spooler is 
installed on your system, use the SP switch instead of this 
command. The command line using /SP is in the format: 

PIP>*.LST/SP 

4-6 

~ 
I· 

:: I.I ;; JI J 2 ii ii! 12 fat :z : :: a: :q:u u;a:;:a; 



'-' 

'-'·I 

4. 

PERIPHERAL INTERCHANGE·PROGRAM (PIP) 

Note: Transparent spooling (that is, PIP>LP:=files) is 
implemented on RSX-llM-PLUS only. When you specify LP: as 
your output device, the data to be printed is written into an 
intermediate file and then the file is given to the Queue 
Manager, which handles the spooling. Making intermediate 
files allows you to dismount the volume the files are on 
without having to wait until after they have been printed. 

P IP>DKl: SAMP .DAT=DK2: TEST. DA'l'; 1,NEW. DAT; 2/ME 

Concatenates version 1 of file TEST.DAT and version 2 of file 
NEW.DAT from DK2:, generating file SAMP.DAT on DKl:, using 
the cur r1

ent UFD. 

5. PIP>DKl:=SY:TESTPROG.MAC,.OBJ 

Copies the latest versions of TESTPROG.MAC and TESTPROG.OBJ 
from the system device (SY:) to DKl:, using the current UFO 
for both SY: and DKl:. 

6. PIP>DKl:=DKO:*.DAT;* 

Copies all versions of all of the files of file type .DAT in 
the current UFO from DKO: to DKl:. 

7. PIP>DT0:=[200,10]*.*;* 

Copies all files under [200,10] from the default device to 
D'I'O : , using the current UFO. 

8. PIP>DP0:[200,10]=DTO:*.* 

Copies all files from OTO: in the current UFO to 
DP 0 : [ 2 0 0 , l 0 ] • Note that the user must have write access to 
(200,10]. 

Table 4-2 
PIP Copy Command and Merge Subswitches 

Subswi tch Description 

/BL:n[.] 

/CO 

Blocks Allocated -- This subswitch specifies the 
number of contiguous blocks (n) to allocate 
initially to the output file. You can specify n as 
either an octal or decimal value (decimal values 
must be followed by a decimal point). You use the 
/BL:n subswitch when you are copying a contiguous 
file and changing its size. 

Contiguous Output -- This subswitch specifies that 
the output file be contiguous. When you are copying 
contiguous files from magnetic tape (for example, 
task images), specify both /CO and /BL:n. You must 
specify /BL:n because PIP cannot determine the 
length of the input file when it allocates a file. 
(PIP allocates file space before the copy operation 
is executed. The length of magnetic tape input 
files is on the trailing label of such tapes.) 

(continued on next page) 

4-7 



Subswi tch 

/-CO 

/FO 

/SU 

·~:au; !£! I 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Table 4-2 (Cont.) 
PIP Copy Command and Merge Subswitches 

Description 

Noncontiguous output -- This subswitch specifies 
that the output file does not have to be contiguous. 

If you do not specify any of the above switches, PIP 
defaults to the size and attributes of the input 
file. 

Set File Ownership -- This subswitch specifies that 
the owner of the input file also owns the output 
file. If you do not specify /FO, the owning UIC of 
all new files is the UIC under which PIP is running, 
regardless of which directory the files belong to. 
You can use this subswitch with both copy and merge 
commands. 

Examples 

l. If PIP is running under the UIC [1,1], the 
command: 

DK0:[200,200]=DK1:[200,220]TEST.DAT 

creates a new file in the [200,200] directory on 
DKO:, but the file is owned by UIC [1,1]. 

However, the command: 

DK0:[200,200]=DK1: [200,220]TEST.DAT/FO 

creates a file owned by UIC [200,200]. When you 
specify /FO, PIP must be running under a UIC 
that has write-access to all output directories. 

2. DKl: [*,*]/FO=DPO: [13,10), [32,10], [34,10] 

Copies all the files from the specified input 
directories to the corresponding directories on 
DKl:. The file owners are the output 
directories. 

3. DKl:[*,*]=DK0:[*,10]*.MAC/FO 

Copies all the .MAC files from all group numbers 
with member 10 to DKl:, preserving the UFO and 
setting the file owner for each file to that 
UFO. 

Supersede -- This subswitch allows you to copy one 
or mor'e input files to a file whose file name, file 
type, and version already exist in a User File 
Directory. The existing file is deleted and a new 
one is created with the data from the input file(s). 

(continued on next page) 

4-8 

ii I ii 

~ I • 

Ill! I J!ijJ i2i2 $ di$ Qii# Ji I 



Subswitch 

/SU (Cont. ) 

/NV 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Table 4-2 (Cont.) 
PIP Copy Command and Merge Subswitches 

Description 

The output file's name, type, and version number 
remain the same, but its file identification number 
(File-ID) is different. Also, the attributes for 
the output file are taken from the first input file 
and the number of blocks allocated to the output 
file can be different (less than or more than) the 
number of blocks allocated to the existing file. 

New Version -- This subswitch forces the output 
version number of the file being copied to become 
one greater than the latest version of the file 
already in the output directory. If the file does 
not already exist in the output directory, a version 
number of 1 is assigned. Figure 4-1 shows the 
results when you specify /NV. (Specifying /NV is 
not necessary when both the input and output files 
are under the same file directory.) 

4.2.2 Performing File Control Functions 

PIP provides several switches and subswitches for file control 
processing. These switches and subswitches perform such functions as 
deleting files, displaying the contents of a User File Directory, and 
specifying file protection values. 

You c:an specify two PIP switches, /ID and /LI, on a command line with 
no file specifications (that is, they may be entered by themselves). 

You can specify only one switch in a command line. However, more than 
one subswitch can be specified. 

The values that you specify with the switches and subswitches default 
to octal. You can specify decimal values by adding a decimal point 
after the value. 

Table 4-3 lists PIP switches and subswitches and summarizes the 
functions performed by them. The subswitches are listed with their 
respective switches. (The switches and subswitches are described in 
detail following the table.) 

4-9 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Directories Before COPY 

INPUT DIRECTOR~ OUTPUT DIRECTORY 
[2.0'1, 2-'fl J l in, 1$¥$JJ 

RICK.DAT;! RICK.DAT;2 
RICK.DAT;4 

Directories After COPY Without /NV Switch Set 
(version number preserved) 

INPUT DIRECTORY OUTPUT DIRECTORY 
[ 2,01 , 2,01] [ 1,0,0, 1,0,0] 

RICK.DAT;l RICK.DAT;2 

RICK.DAT;4 

RICK.DAT;l 

The conunand used was: 

DKl: ( U),0, 1,0,0) = DK2: [ 2$¥1, 2$¥1] RICK. DAT; l 

Directories After COPY With /NV Switch Set 

INPUT DI RECTORY OUTPUT DIRECTORY 
[2$¥1,2$¥1] r in, 1$¥$JJ 

RICK.DAT;l RICK.DAT;2 

RICK.DAT;4 

RICK.DAT;S 

The conunand used was: 

DKl: [1,0,0,lnJ = DKl: [2,01,2,0l)RICK.DAT;l/NV 

NOTE 

The version specified with the /NV sub
switch must be explicit or default; no 
wild cards allowed. 

Figure 4-1 Results of Copy Command With and Without /NV Specified 

Table 4-3 
PIP Switches and Subswitches 

Switch Subswi tch Function 

/AP Appends file (s) to the end of an existing 
file. 

/FO Specifies the file ownership for a file. 

/BR Lists a directory file in brief format (an 
alternate mode for the LI switch). 

/BS: n [.] Defines the blocksize for magnetic tape. 

(continued on next page) 

4-10 

11
• .. ii I. I 2111 I I iiiii I Liii!Z!iiii &Ci14 Uii I iiii!i 2222!!2ili! 2!i ;: I I u :;; I a I I .:g;p a 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Table 4-3 (Cont.) 
PIP Switches and Subswitches 

Switch 

/CD 

/DE 

/DF 

/EN 

Subswi tch 

/LD 

/NV 

/EOF[:block:byte] 

I 
/FI:filenum:seqnum 

/FR 

/FU [: n [.] ] 

/ID 

/LI 

/ME 

/NM 

/BL :n [.] 

/CO 

/FO 

/NV 

/SU 

Function 

Allows the output file to take the creation 
date of the input file rather than the date 
of transfer. 

Deletes one or more files. 

Lists the deleted files. 

Changes PIP's default device and/or UFD. 

Enters a synonym for a file in a directory 
file. 

Forces the version number of a file to one 
greater than the latest version. 

Specifies the end-of-file pointer for a 
file. 

Accesses a file by its file identification 
number (File-ID) . 

Displays the amount of free space on the 
specified volume and the largest contiguous 
free space on that volume. 

Lists a directory file in full format (an 
alternate mode for the LI switch). 

Identifies the version of PIP being used. 

Lists directory files. 

Concatenates two or more files into one 
file. 

Allocates a number (n) of contiguous blocks. 

Specifies that the 
contiguous. 

output file(s) 

Specifies the file ownership for a file. 

be 

Forces the version number of a file to one 
greater than the latest version. 

Supersedes (replaces) an existing file. 

Suppresses certain PIP error messages. 

(continued on next page) 

4-11 



I iii I 2J!2 !iiiiii t 

Switch 

/PR 

PERIPHERAL INTERCHANGE PROGR~ (PIP) 

Table 4-3 (Cont.) 
PIP Switches and Subswitches 

Subswitch Function 

Changes the protection status of a file. 

/FO Specifies the ownership for a file. 

/GR[:RWED] Sets the read/write/extend/delete protection 
at the group level. 

/OW[:RWED] Sets the read/write/extend/delete protection 
at the owner level. 

/SY[:RWED] Sets the read/write/extend/delete protection 
at the system level. 

/WO[:RWED] Sets the read/write/extend/delete protection 
at the world level. 

/PU[:n[.]] Deletes obsolete version(s) of a file. 

/RE 

/RM 

/RW 

/SB 

/SD 

/SP [ : n [. ] ] 

/SR 

/TB 

/TR 

/UF 

/UN 

/UP 

/LD 

/FO 

Lists the deleted files. 

Renames a file. 

Removes a file entry from a directory. 

Rewinds a magnetic tape. 

Spans the block boundaries of records when 
copying from magnetic tape to disk. 

Selectively deletes files by prompting for 
your response before deleting. 

Spools file(s) to the line printer for 
printing. 

Allows shared reading of a file that has 
already been opened for writing by another 
user or task. 

Lists the total number of blocks used for a 
directory, along with the total number of 
blocks allocated and the number of files in 
that directory (an alternate mode for the LI 
switch). 

Truncates file(s) to logical end-of-file. 

Creates a User File Directory entry on the 
volume to which a file is being transferred. 

Unlocks a file. 

Updates (rewrites) an existing file. 

Specifies the ownership for a file. 

4-12 

2 I 
" 21 

I !ii $2 :;4 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4.2.2.1 /AP -- Append Switch - The Append switch {/AP) opens an 
existing file and appends the input file {s) to the end of it. SpecHy 
the Append switch in the following format: 

outfi.le=infilel [, infile2, ••• infilen]/AP [/FO] 

outfile 

The output file specification. Wildcard specifications are not 
allowed in the output file specification. The file type and the 
record attributes for the output file remain the same after the 
input file or files have been appended to it. The file name and 
file type for the output file must be specified explicitly. 

inf ile 

/AP 

/FO 

The input file specification. If the file name, file type, and 
version are null, then *.*;* is the default. 

The Append switch. 

The Set File Ownership subswitch, which specifies that the owning 
UIC of the output file is the same directory to which the input 
file belongs. If you do not specify /FO, the owning UIC of the 
output file is unchanged, regardless of which directory the input 
files belong to. See Section 4.2.1 for examples of using /FO. 

Exa:mple 

PIP>I>Kl:FILEl.DAT;l=FILE2.DAT;l,FILE3.DAT;lFILE4.DAT;l/AP 

Opens FILEl.DAT;l on DK!: and appends the contents of 
FILE2.DAT;l, FILE3.DAT;l and FILE4.DAT;l to it. 

Note: If the output file is contiguous before the appending, it 
may not be contiguous afterwards. 

4.2:.2.2 /BS:n -- Block Size Switch - The Block Size switch defines 
thei block size for magnetic tapes. This switch allows you to read or 
write bigger blocks onto magnetic tape, thereby saving some of the 
sps1ce taken by interrecord gaps. Specify /BS using the following 
format: 

outfile/BS:n=inf ile 

or 

outfile=infile/BS:n 

out.file 

The output file specification. 

4-13 



4 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

inf ile 

The input file specification. 

/BS :n [.] 

Specifies the Block Size switch where n is an octal or decimal 
number specifying the number of bytes in a block. 

In the output specification, /BS specifies the block size of the 
output file. In the input specification, /BS specifies the block size 
of the input file. If the block size specified is smaller than the 
actual block size, an I/O error occurs. 

4.2.2.3 /CD -- Creation Date Switch - The Creation Date switch (/CD), 
used in a file transfer command, allows the output file to take the 
date on which the input file was created rather than the date of 
transfer. You cannot use this switch with the Merge switch (/ME). 
Specify the CD switch in the following format: 

outfile/CD=infile 

outfile 

The output file specification. 

inf ile 

The input file specification. 

/CD 

The Creation Date switch. 

Example 

DIRECTORY DB1:[200,200] 
21-NOV-78 14:02 

FILE.DAT;? 12. 

PIP>TEST.DAT/CD=FILE.DAT 

DIRECTORY DB1:[200,200] 
21-NOV-78 14:05 

FILE.DAT;? 
TEST.DAT;l 

12. 
12. 

6-0CT-78 16: 13 

6-0CT-78 16:13 
6-0CT-78 16:13 

The command creates a new file, TEST.DAT, from FrLE.DAT and gives 
it the creation date of FILE.DAT rather than the transfer date. 

4.2.2.4 /DB -- Delete Switch - The Delete switch (/DE) deletes files 
from a User File Directory. Optionally, you can specify that the 
deleted files be listed on your terminal. Specify /DE in the 
following format: 

infilel[,infile2, ••• infilen]/DE[/LD] 

4-14 

IL q: &$2l !lb iii SIS$ $2 

.a.i. 
~··· 11' 

;:;;; :a' 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

infUe 

The input file specification. 

\w.! /DE 

The Delete switch. 

/LD 

The List Deleted files subswitch. 

You must specify a version number or a wildcard in its place when 
using the Delete switch. 

Use a version number of ;-1 to specify the oldest version of a file. 
Use a version number of ;O or ; to specify the most recent version. 

Exa1111ples 

l. PIP>TEST.DAT;-1/DE 

Deletes the oldest version of file TEST.DAT. 

2. PIP>TEST1.DAT;O,TEST2.DAT;/DE 

Deletes the latest version of files TESTl.DAT and TEST2.DAT. 

Wildcards in the file name or file type fields are illegal when a 
version of ;-1, ;O, or ; is specified. 

You must issue the file specification because a null file name, file 
type, and version do not default to *.*;*. 

The input file specification can take all the usual forms, including 
wildcards (even in the group, member number [ufd]). The only special 
requirement is that the version field must always be explicit or *· 

Exa11llples 

1. PIP>TEST.DAT;S/DE 

Deletes version 5 of file TEST.DAT in the current default 
directory on the default device. 

2. PIP>TEST.DAT;l,;2/DE 

Deletes versions 1 and 2 of file TEST.DAT in the current 
default directory on the default device. 

3. PIP>*.OBJ;*,*.TMP;*/DE/LD 

Deletes all versions of all files of the file type .OBJ and 
.TMP from the current default directory on the default 
device. Lists all deleted files of file type .TMP. 

4. PIP>*.OBJ;*/LD,*.TMP;*/DE 

Deletes all versions of all files of the file type .OBJ and 
.TMP from the current default directory on the default 
device. Lists all deleted files of both file types. 

4-15 



I !Ji(j IL I I iiij 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4.2.2.5 /DF -- Default Switch - The Default switch (/OF) changes the 
default device and/or UFO. 

The usual default device of PIP is SYO:. ~ 
The normal default UFO is the UIC under which PIP is currently 
running. /DF alters only the default UFO. It does not affect the UIC 
under which PIP is running, nor does it circumvent file protection. 

Specify /DF in one of the following formats: 

dev: 

dev: [group,member]/OF 

or 

dev:/DF 

or 

[group,member]/DF 

If specified, the new default device to be applied to subsequent 
PIP command strings. You must specify the device if you do not 
specify a UFO. 

[group, member] 

/OF 

If specified, the new default UFO to be applied to subsequent PIP 
command strings. You must specify a UFO if you do not specify a 
device. 

The Default switch. 

Examples 

1. PIP>[27,27]/0F 

Sets the default UFO to (27,27]. 

2. P IP>OKl: /OF 

Sets the default device to OKI:. 

3. PIP>OKl: [27,27]/0F 

Sets the default device to OKl: 
(27 ,27]. 

and the default UFD to 

4.2.2.6 /EN -- Enter Switch - The Enter switch (/EN) lets you enter a 
synonym for a file in a directory or directories on the same device. 
This allows the file to be accessed by more than one name. Also 
provided is a subswitch, New Version (/NV), which forces the version 
number of the file being entered into the directory to a number one 
greater than the latest version of the file. Specify the Enter switch 
in the following format: 

outfile=infilel[,infile2, ••• infilen]/EN[/NV] 

4-16 

liiilli iii:; 4 

~ 
i ' 

; bi ;:s;z 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

outfi le 

The file specification of the new directory entry. The output 
file specification has a special property in that the file name, 
file type, or version may be explicit, wildcard (*), or defaulted 
(null). A filename, filetype, or version field that is either 
wildcard (*) or default (null) means that the corresponding field 
of the input file is to be used. 

inf Jlle 

/EN 

/NV 

The file specification for the input file in the format: 

dev: [ufd]filename.filetype;version/sw[/subsw] 

If you specify a device in either the input or output file 
specification, that device sets the default for the other side. 
If you do not specify a device on either the input or output 
side, the current default device is assumed to be the default 
device. If both the input side and the output side explicitly 
reference different devices, PIP signals an error and requests 
that the line be reentered. 

The default input file specification is * *·* • I • 

The Enter switch. 

The New Version subswitch. The NV subswitch may appear on either 
side of the equal sign. If it appears on the output side, all of 
the files being entered are forced to a version number one 
greater than the latest version of the file. If it appears on 
the input side, only files that have the NV subswitch appended to 
them are forced to a number one greater than the latest version. 

Exa1n1ple (see Figure 4-2) 

PIP>[l01,10l]TWIG/EN=[200,200]RICK.DAT;l 

Before 

DIRECTORY [200,200] DIRECTORY (101,101] 

RICK.DAT;! JEN.OBJ;2 

LAU.OBJ;3 

Figure 4-2 Sample Directories Before and After Execution of /EN 

4-17 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

After 

DIRECTORY [200,200] DIRECTORY [101,101] 

RICK.DAT;! JEN.OBJ;2 

LAU.OBJ;3 

TWIG.DAT;! 

NOTE 

The directory items for RICK.DAT;! and 
TWIG.DAT;! both reference the same file. 

Figure 4-2 (Cont.) Sample Directories Before and After Execution 

4.2.2.7 /EOF -- End-of-File Switch - The End-of-File switch (/EOF) 
allows you to specify where the file's end-of-file will be. This 
helps in certain situations (for example, system crashes) when a file 
contains useful information but its EOF pointers are wrong, preventing 
you from obtaining the information. 

EOF is an unprotected file attribute. If you are 
have a system-level UIC, you do not need read- or 
or change this attribute. If you are group or 
owner's UIC, you need read-access to read 
write-access to change it. 

the file owner or 
write-access to read 
world to the file 

the attribute and 

Specify /EOF in the following format: 

inf ilel/EOF [:block: byte] [, ••• inf i len/EOF [:block: byte]] 

inf ile 

block 

byte 

The input file specification. 

The file specification must be issued because a null file name, 
file type, and version do not default to *.*;*. 

The block number where the EOF pointer is to be placed. The EOF 
pointer cannot be placed beyond the highest number of blocks 
allocated to the file. The block number can be octal or decimal. 

The byte location of EOF or the first unused byte of the block. 
The byte number can be octal or decimal. The maximum value for 
byte is 7 7 7 ( 8) • 

If you do not enter either of the values for block and byte, PIP 
places EOF at the last byte of the last block allocated to the file. 
If you specify a value for either block or byte that is greater than 
the maximum value allowed, PIP signals an error. 

Note that /EOF is local to each file specification and therefore does 
not default from left to right. 

4-18 

1
••

1

•: ... -.u: .. u•u ................ !!ILlll .... 111 ............................ ._. .... _. ...................... ,z111111 .... •a•c:•,•t•t•1•2:11m1 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Exa11~ple 

PIP>A.TMP/EOF:l7:253,AA.TMP/EOF 

is equivalent to 

PIP>A.TMP/EOF:l7:253,AA.TMP/EOF:22:777 

where the file AA.TMP has 22 blocks allocated. 

4.2.2.8 /FI -- File Identification Switch - The File Identification 
switch (/FI} allows you to access an existing file by its file 
identification number (File-ID}. Specify /FI in the following format: 

outfile=/FI:filenum:seqnum 

/FI 

The File Identification switch. 

The file number of the file. 

seqnum 

The sequence number of the file. 

The file identification number of the file is assigned by RSX-11 when 
the file is created. To find the file identification number of a 
file, use the Full List switch (/FU}. /FU displays the file 
identification number and other information describing the file. 

You can use /FI to create a directory entry for a file. For example: 

FOO.TSK=/FI:301:27/EN 

Also, you can copy a file using /FI: 

A.B=/FI:301:27 

To list the directory file whose identification number is 301,27, use 
/FI in the format: 

/FI:301:27/LI 

4.2.2.9 /FR -- Free Switch - The Free switch (/FR} displays the 
amount of available space on a specified volume and the largest 
contiguous space on that volume. Specify /FR in the following format: 

[dev:] /FR 

If you do not specify dev:, PIP defaults to SYO:. 

The format of the information from /FR is shown below. 

dev: HAS xxxx. BLOCKS FREE, yyyy. BLOCKS USED OUT OF zzzz. 
LARGE:ST CONTIGUOUS SPACE = nnnn.. BLOCKS 

4-19 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4.2.2.10 /ID Identify 
identifies the version of 
following format: 

/ID 

Switch - The Identify switch 
PIP being used. Specify /ID 

(/ID) 
in the 

When you specify this switch, the version number is listed on the 
input terminal as follows: 

PIP VERSION Mvvee 

vv 

The version number. 

ee 

The edit number. 

Example 

PIP>/ID 

PIP VERSION Ml332 

4.2.2.11 /LI -- List Switch - The List switch (/LI) lists one or more 
files contained in a User File Directory, along with their status 
information. Three alternate mode switches (/BR, /FU, and /TB) allow 
you a choice of directory listing formats. Table 4-4 describes these 
switches. Specify /LI in the format: 

[listfile=]infilel[,infile2, ••• infilen]/LI[/switch] 

listfile 

The listing file specification in the format: 

dev: [ufd]filename.filetype;version 

If listfile is not specified, it defaults to TI:. 

inf ile 

/LI 

The input file specification in the format: 

dev: [ufd]filename.filetype;version 

The default for infile is * *·* • I • 

The List switch. This switch lists the following information: 

1. filename.filetype;version 

2. number of blocks used (decimal) 

3. file code: 

(null) 
c 
L 

= noncontiguous 
contiguous 
locked 

4-20 

42 

~.···. ~~ r~ 

i!&Qt ;s:;c::p::e 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4. creation date and time 

5. summary line, which includes 
used/allocated and files printed 

the number of blocks 

/switch 

The alternate mode switches of the List switch described in Table 
4-4. 

Switch 

/IBR 

/FU [: n [.] ] 

Table 4-4 
List Switches 

Description 

This switch specifies the brief form of directory 
listing. This switch lists only the file name, file 
type, and version. 

This switch specifies the full directory format. 

Because the /FU format involves protected file 
attributes, you may need read-access to get a full 
directory listing of a file. If you are the file 
owner or have a system-level UIC, you do not need 
read-access. If you are group or world to the file 
owner's UIC, you need read-access to read the 
protected attributes of the file. (To change the 
protection level attribute, see Section 4.2.2.14, 
below.) 

If specified, n is the number of characters per 
line. If not specified, the number defaults to the 
buffer size of the output device. This switch lists 
the following information: 

1. filename,filetype;version 

2. file identification number in the format: 

(file number, file sequence number) 

3. number of blocks used/allocated (decimal) 

4. file code: 

(null) 
c 
L 

= noncontiguous 
= contiguous 
= locked 

5. creation date and time 

6. owner UIC and file protection in the format: 

[ g r o up, me mb e r ] 

[system,owner,group,world] 

(continued on next page) 

4-21 



). II!! 14 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Table 4-4 (Cont.) 
List Switches 

Switch Description 

/FU [: n [.] ] 
(Cont. ) 

These protection fields can contain the values 
R, w, E, or D. 

/TB 

where: 

R 
w 
E 
D 

= 
= 
= 
= 

Read access permitted 
Write access permitted 
Extend privilege permitted 
Delete privilege permitted 

7. date and time of the last update plus the number 
of revisions. 

8. summary line, which contains the number of 
blocks used, the number of blocks allocated, and 
the number of files printed. 

This switch specifies the summary line in the 
following format: 

TOTAL OF nnnn./mmmm. BLOCKS IN xxxx. Files 

where: 

nnnn = blocks used 
mmmm = blocks allocated 
xxxx = number of files 

Figure 4-3 contains sample directory listings in the various formats. 

Examples 

1. PIP>/LI 

Lists the directory of the current default device and UIC. 
(This is equivalent to TI:=*.*;*/LI.) 

2. PIP>LP:=[*.*]/FU:l32 

Lists on the 
listing), all 
device. 

line printer in full format (132-column 
of the directories on the current default 

Note: Only RSX-llM-PLUS has transparent spooling (see 
Section 4.2.1). 

3. PIP>TI:=TEST.DAT/FU 

Lists on TI: the full directory listing for the latest 
version of TEST.DAT in the current default device and 
directory. 

4. PIP>JUL13.DIR=[200,200]*.*/LI 

hi I. 

Lists the latest version of all files in directory [200,200] 
on the current default device to file JUL13.DIR in the 
default directory on the default device. 

4-22 

I l t; 21 4211 

.~.···.-.· ~ff-T~ 

~ 
i. 

;:sc:::::a441211 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Total Blocks (/TB) Format 

STORAGE USED/ALLOCATED FOR DIRECTORY DK2:C200•270l 
15-JUL-751 15:46 

TOTAL OF 145./150. BLOCKS IN 5. FILES 

Brief (/BR) Format 

DIRECTORY DK2:C200,270J 

CKTST.HAC:f6 
I Q1TST • HAC: f 4 
I 01TST. TBf(~ f 1 
CKTST.TSKf1 
CKTST. HAC: f 7 

Standard (/LI) Format 

DIRECTORY DK2:t200•270J 
1:.li-JUL-n5 15:46 

Ct<:TST. HAC f 6 
ICITST.HAC:f4 
IOITST. TS~C f 1 
CK:TST • TBK f 1 
Ct<:TST. HAG f 7 

3. 
4. 
69. 
69. 
o. 

15-JUL-75 15:39 
15-JUL-75 15139 

C 15-JUL-75 15:39 
C 15-JUL-75 15:40 

L 15-JUL-75 15:40 

TOTAL OF 145. BLOCKS IN 5. FILES 

Full (/FU) Format 

DIRECTORY DK2:C200•270l 
1 ~i-JUL-75 15: 46 

C~CTST • HAC: f 6 <10.10> 3.13. 
C200•270JCRWEDrRWEDrRWEDrRJ 

IUTST.HAGf4 (11r11) 4.14. 
C200,270JCRWED•RWEDrRWEDrRJ 

IUTST • TSIO 1 ( 7 '12) 69./69 •. 
C200r270lCRWED•RWED,RWEDrRJ 

Ct\TST • TSI( f 1 (12r13) 69./69. 
C200,270JCRWED•RWED,RWED,RJ 

CtCTST • HAC P 7 <13•14) 0.15. 
C200r270JCRWED•RWED,RWEDrRJ 

TOTAL OF 145./150. BLOCKS IN 5. FILES 

c 

c 

15-JUL-75 

15-JUL-75 

15-JUL-75 

15-JUL-75 

L 15-JUL-75 

Figure 4-3 Directory Listing Examples 

4-23 

15139 

15139 

15139 

15140 

15140 



'II. Ji)£ $C $( ii![ij ii!J iii! 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

5. PIP>LP:=[ll,*]*.CMD;*/LI 

Lists on the line printer all versions of all files with the 
file type .CMD in all directories in group 11. 

Note: Only RSX-llM-PLUS has transparent spooling (see 
Section 4.2.1). 

6. PIP>LP:/BR=[ll,11]*.CMD;*,*.DAT;*,*.MAC;l 

Lists on the line printer in brief format all versions of all 
files with a file type of .CMD; all versions of all files 
with a file type of .DAT; and all files of file type .MAC 
with a version number of 1. These files all reside in the 
directory [11,11] on the current default device. 

Note: Only RSX-llM-PLUS has transparent spooling (see 
Section 4.2.1). 

4.2.2.12 /ME -- Merge Switch - The Merge switch (/ME) creates a ~ 
single file from two or more existing files. Merge is used in copying =-1, 
Files-11 files and is described in Section 4.2.1. 

4.2.2.13 /NM -- No 
suppresses the PIP 
manipulating files. 

Message Switch - The No Message switch (/NM) 
error message, NO SUCH FILES(S), when you are 

Specify the NM switch in the following format: 

infilel[,infile2, ••• infilen] [/sw]/NM 

inf ile 

/sw 

/NM 

The input file specification. 

Any combination of appropriate switches and subswitches, for 
example, the LI, DE, or PU switches and any of their respective 
subswitches. 

The No Message switch. 

Example 

PIP>*.MAC;*,TEST.DAT;l,FILES.OBJ;*/DE/NM 

If none of these files exists in the default directory, you will 
not get the error message, NO SUCH FILE(S}, when PIP tries to 
delete them. 

4-24 

~ 
i 

I I I Uiiiii iii iii i :;::s ::..: lilt ii ii $ I ZS! 14 JSIJLij#li 



\._,i 

~; 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4.2~2.14 /PR -- Protect Switch - The Protect switch 
the facility to set the protection status of a file. 
is provided for four categories: 

(/PR) provides 
File protect ion 

System 

OwnE~r 

Group 

World 

Specifies which categories of access the system UICs are allowed 
to the file (that is, UICs with group numbers less than or equal 
to 10 octal). 

Specifies which categories of access the owner has allowed 
himself. 

Specifies which categories of access other members in the same 
group have. 

Specifies categories of access given all other UICs. 

For each category, you can specify whether that category can read, 
write, extend, or delete the file. To alter the protection level of a 
fil~e, you can use either /PR subswitches (/SY, /OW, /GR, /WO) or octal 
representations (PR:n). For either method, if you are the file owner 
or have a system-level UIC, you can alter the protection level without 
having read- or write-access. However, because the protection level 
of a file is a protected attribute, you cannot alter the protection 
level if you are group or world to the file owner's UIC. (You can 
read protected attributes if you have read-access.) 

Specify the PR switch in the following format: 

inf i le/PR [/SY [: RWED] ] [/OW [: RWED] ] [/GR [: RWED] ] [/WO [: RWED] ] [/FO] 

inf ile 

/PR 

The file specification for the file whose protection is being 
changed, in the format: 

dev: [ufd]filename.filetype;version/switch 

File specification must be issued because a null file name, file 
type, and version do not default to *.*;*. 

The Protect switch. 

4-25 



'i ·•.t SUI 2 Si2!ii4 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

/SY,/OW,/GR, and /WO 

/FO 

a zas 

The subswitches which specify protection level for a file. These 
subswitches specify which protection level is to be altered 
(others are left intact). The values which follow the switch are 
any of the four letters, R, W, E, and D (for read, write, extend, 
and delete), in any order. They specify which privileges the 
respective categories can have. If you enter the subswitch and 
do not specify a value, no privileges are granted for that 
category. 

The subswitches are identified as follows: 

/SY is the System subswitch. 
/OW is the Owner subswitch. 
/GR is the Group subswitch 
/WO is the World subswitch. 

Protection can also be specified by an optional octal value on 
the PR switch itself, in the format: 

/PR:n 

where n is the octal representation of the protection to be 
assigned to the file. This octal number is taken as the new 
protection word. (See the RSX-llM Mini-Reference for the list of 
octal codes.) The format of the protection word is shown in 
Figure 4-4. 

The Set File Ownership subswitch, which provides the facility to 
set the ownership of a file to that of the UIC of the directory 
in which it is entered. (You can change the file ownership at 
the same time you set the protection value.) If there are files 
in the [200,200] directory which are owned by another UIC, the 
command: 

PIP>[200,200]*.*;*/PR/FO 

causes all files to be owned by (200,200]. 

15 12 11 8 7 4 3 0 
I WORLD I GROUP I OWNER,, I SYSTEM I Protection 

word ,,,,," ,,. .,,..""" 
_,.;ti"' }"2 1 0 -

fo!E!w!R( 

(bit set means NO access permitted.) 

Example 

TEST.DAT15/PR:3 
(bits 0 & 1 set) 
deny write and read access to the system 
for file TEST.DAT15. 

Figure 4-4 Format of Protection Word 

4-26 

:; 

~~ .. =' f"~ 

·~ , .. 

..I I I I L :;::; 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Examples 

1. 

2. 

PIP>TEST.DAT;S/PR/OW:RWE/GR:RWE:/WO 

Sets the protection level so that the owner and group have 
RWE privileges (not delete), world has no access privileges, 
and system privileges are unchanged. 

PIP>[*,*]*.*;*/PR:O 

Sets the protection level of all files so that all categories 
are granted all access privileges. 

3. PIP>DKO:[*,*]*.*;*/PR/FO 

Causes all file owners to be the same UIC as the UFD in which 
the files are entered. 

4.2.2.15 /PU -- Purge Switch - The Purge switch (/PU) deletes a 
specified range of obsolete versions of a file. Optionally, you can 
specify that the deleted files be listed on your terminal. 

Specify the Purge switch in the following format: 

inf i lE!l [,inf i le2, ••• inf ilen] /PU [: n] [/LD] 

inf i. le 

The file specification for the file to be deleted. 
specification takes the form: 

dev: [ufd]filename.filetype 

The file 

/PU I[ : n [. ] ] 

/LD 

The Purge switch. If you specify the optional value n and the 
latest version of the file is m, then all existing versions less 
than or equal to m-n are deleted (see Figure 4-5). Although it 
is useful to think of this command as deleting all but the n most 
recent.versions, it is important to understand that if any 
versions are already deleted between m-n and m, fewer than n 
versions will be retained. The most recent version of the file 
is always retained. 

If you omit the value n, PIP defaults to l, and all but the 
latest version of the file are deleted. If n is greater than the 
number of versions of the specified files, no files are deleted. 

The value n is local and defaults from left to right. This means 
that if you specify n at the end of the command line, it only 
applies to the inf ile immediately preceding it. All other 
infiles default to one. However, n applies to all following 
inf iles until you make a new specification for n. 

A version number is not required when using the Purge switch. If 
specified, it is ignored. 

The List Deleted files subswitch. 

4-27 



I ii ii II( 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Examples 

1. PIP>*.OBJ,*.MAC/PU:2/LD 

Deletes all but the highest version of all files with ~ file 
type of .OBJ, and all but the two highest versions of all 
files with a file type of .MAC. Lists all of the deleted 
files having a file type of .MAC. 

2. PIP>*.OBJ/PU:2/LD,*.MAC 

Deletes all but the two highest versions of all files with 
file types of .OBJ and .MAC. Lists all deleted files. 

Directory Before Purge 

GARY;l 

GARY; 2 
GARY;3 

GARY;4 

GARY;5 c) GARY /PU : 3 , RICK/PU : 2 

RICK;4 

RICK;S 

RICK;7 

Directory After Purge 

GARY;3 

GARY;4 
GARY;5 

RICK;7 

In the case of the files named GARY, the 3 latest versions 
(3, 4, and 5) are retained; versions 1 and 2 are deleted. 
In the case of the files named RICK, since version 6 did not 
exist, only version 7 is retained; and all existing versions 
less than or equal to 5, i.e., versions 4 and 5, are deleted. 

Figure 4-5 Use of the Purge Switch 

4.2.2.16 /RE -- Rename Switch - The Rename switch (/RE) changes the 
name of a file. There is also a New Version subswitch {/NV) that 
forces the renamed file to have a version number one greater than the 
latest version of the previously existing file with the same name. 
Specify the Rename switch in the following format: 

outfile=infilel[,infile2, ••• infilen]/RE[/NV] 

outfile 

The file specification to be given to the new file. The output 
file specification has a special property in that the file name, 
file type, and version are each allowed to be explicit, wildcard 
(*), or defaulted (null). A UFO, filename, filetype, or version 
field that is either wildcard (*) or defaulted (null) means that 
the corresponding field of the input file is to be used. Thus, 
the Rename switch can change one or more fields while preserving 
the others. Enter the output specification in the following 
format: 

dev: [ufd]filename.filetype;version 

4-28 

m;:m 2; 12 I i.11 ;: :;a ;a ; ii 

·~ 
I 

"""" I I "~' 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

inf ile 

/RE 

/NV 

The file specification of the file to be renamed. The input file 
specifications are standard and allow wildcards in all fields, 
including UFD. Enter this specification in the following format: 

dev: [ufd]filename.filetype;version 

A null file name, file type, and version defaults to * *·* . ' . 
/RE does not transfer data. The file is entered in the new 
directory and deleted from the old directory. The directories 
must be on the same device because data is not transferred. You 
can move files out of one directory into another, preserving the 
file name, file type, and version, or changing them if desired. 
(This is permitted only if PIP is running under a UIC with write 
privileges for each of the directories involved.) 

If you specify a device on either the input or output side, that 
device sets the default for the other side. If both the input 
side and the output side explicitly reference different devices, 
PIP signals an error and requests that you reenter the line. 

The Rename switch. 

The New Version subswitch. The NV subswitch forces the version 
number of the renamed file to a number one greater than the 
latest version for the file. 

The NV subswitch may appear on either side of the equal sign. If 
it appears on the output side, all of the version numbers of 
files being renamed are forced to a number one greater than the 
latest version for the file. If it appears on the input side, 
only the file that has the subswitch appended to it has its 
version number forced to one greater than the latest version of 
the f i.le. 

Exam1ples 

1. PIP>TESTFILE.DAT;l=TEST.DAT;S/RE 

1~: Renames TEST.DAT; 5 to TESTFILE.DAT; 1. 

2. PIP>BACKUP.*;*=TEST1.l;*,TEST2.2;*,TEST3.3;*/RE 

Renames all versions of all files with the file names TESTl, 
TEST2, and TEST3 to BACKUP, preserving the file type and 
version of each file. 

3. PIP>*.*;l=*.*;*/RE 

Renames all copies of all files to version 1. 

NOTE 

There should be only one version of each 
of these files before renaming. 
Otherwise, PIP continues to rename files 
until you abort the task. 

4-29 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4. PIP>[200,220]=[200,200]/RE 

Renames all files from (200,200] to [200,220], preserving the 
file name, file type, and version of each file. 

5. PIP>EXAMPLE.*;*=TEST.*;*/RE 

Renames all versions of all files with the file name TEST to 
the file name EXAMPLE, preserving the file type and version 
of each file. 

6. PIP>SAVE.DAT/RE/NV=OUTPUT.DAT;l 

Renames OUTPUT.DAT;l and forces the version number to one 
greater than the latest version of SAVE.DAT. Figure 4-6 
illustrates the results with and without the NV switch. 

Directory Before Rename 

SAVE.DAT;2 
SAVE.DAT;3 
SAVE.DAT;4 
OUTPUT.DAT;! 
OUTPUT.DAT;2 

Directory After Rename Without /NV Switch Set 

SAVE.DAT;2 
SAVE.DAT;3 
SAVE.DAT;4 
SAVE.DAT;! 
OUTPUT.DAT;2 

Directory After Rename With /NV Switch Set 

SAVE.DAT;2 
SAVE.DAT;3 
SAVE.OAT;4 
SAVE.DAT;5 
OUTPUT.DAT;2 

Figure 4-6 Results of Rename Switch With and Without /NV Specified 

4.2.2.17 /Rll -- Remove Switch - The Remove switch (/RM) removes an 
entry from a User File Directory, but does not delete the file 
associated with that entry. Remove is particularly useful for 
deleting directory entries which, for whatever reason, point to 
nonexistent files. It is also used to delete synonyms generated by 
the Enter switch. If the last entry for an existing file is removed, 
that file can be located only by using the VFY utility with its LO 
switch (see Chapter 13). Specify the Remove switch in the format: 

infilel[,infile2, ••• infilen]/RM 

4-30 

11•1 Uiiilil 1$!!i!IU!Z 2 2 4 ii 2 '!il!llEI! £U! lid 4 I.! d 

~ I 

U:i I I# 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

inf ile 

/RM 

The file specification for the directory file entry to be 
removed. The file specification takes the form: 

dev: [ufd]filename.filetype;version 

The file specification must be issued because a null file name, 
file type, and version do not default to *.*;*. 

The Remove switch. 

Example 

PIP>.DIU: [10,10] RICKSFILE.OAT; 1/RM 

Removes the file entry RICKSFILE.DAT;l from the directory [10,10] 
on DKl:. 

4.2.2.18 /RW -- Rewind Switch - The Rewind switch (/RW) directs PIP 
to rewind magnetic tape. (/RW cannot be used for DECtapes.) You can 
apply this switch to both input and output specifications. When you 
specify /RW with the output specification, it erases the tape. You 
can use this technique to erase a tape before writing files on it. 

Specify thE! Rewind switch in the following format: 

outfile/RW=infile 

or 

outfile=infile/RW 

outf:ile 

The output file specification. 

inf i. le 

The input file specification. 

/RW 

The Rc~w ind switch. 

When you apply /RW to the input specification, it rewinds the tape 
before opening the input file. The magnetic tape processor performs 
the following process when it searches for a file to open: 

l. Searches from the current position to end of tape 

2. Rewinds the tape 

3. Searches from the beginning of tape to the point where search 
processing began 

You can use /RW with the input specification to save search time. If 
you know a file is behind the tape's current position, /RW rewinds the 
tape before searching for the file to open. This saves the time that 

4-31 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

otherwise would have been taken to search for the file between the 
current position and the end of the tape. 

4.2.2.19 /SB -- Span Blocks Switch - The Span Blocks switch (/SB) 
allows you to control whether records copied from disk to magnetic 
tape or vice versa will cross block boundaries. If you omit this 
switch, the file is copied with records possibly crossing block 
boundaries. If you specify /-SB, the records will not cross block 
boundaries. 

Specify the Span Blocks switch in the following format: 

outfile/SB = infile 

outfile 

The disk output file. 

inf ile 

The magnetic tape input file. 

/SB 

The Span Blocks switch. 

Example 

PIP>DKl:T3/-SB=MMO:T3 

Copies T3 records to the disk from magnetic tape and does not 
cross block boundaries. 

4.2.2.20 /SD -- Selective Delete Switch - The Selective Delete switch 
(/SD) prompts for your response before deleting a file that you have 
specified in the command line as a candidate for deletion. The 
response choices are carriage return (<CR>) or control-Z (~Z), or Y, 
N, G, or Q, each followed by either a carriage return (<CR>) or 
control-Z (~Z). Table 4-5 describes the effect of each combination of 
letter and terminator. 

Specify the SD switch in the following format: 

infilel[,infile2, ••• infilen]/SD 

inf ile 

/SD 

The input file specification in the form: 

dev: [ufd]filename.filetype;version 

The file specification must be issued because a null file name, 
file type, and version do not default to *.*;*. 

The Selective Delete switch. 

4-32 

.... ·~- l·~ 
l p' 

~ 
I 

ii hiii iii 4 ii h 2 Q 2i22 4JllPU 



'-" 

~ 

LE~tter 

y 

y 

N 

N 

Q 

Q 

G 

G 

Exa1nples 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Response Choices 

Terminator 

(<CR>) 

< "z > 

(<CR>) 

< "z > 

(<CR>) 

( "z > 

(<CR>) 

< "z > 

(<CR>) 

("Z) 

Table 4-5 
for the Selective Delete (/SD) Switch 

Operation 

Delete this file and continue 

Delete this file and exit from PIP 

Save this file and continue 

Save this file and exit from PIP 

Save this file and continue 

Save this file and exit from PIP 

Save this file and return to command mode 

Save this file and exit from PIP 

Delete this and all rema1n1ng candidates, 
list deleted files, and return to PIP 
command mode 

Delete this and all remaining candidates, 
list deleted files, and exit from PIP 

1. PIP>MYFILE.DAT;*/SD 

2. 

DELETE FILE DB1:[200,200]MYFILE.DAT;l [Y/N/G/Q]? Y(<CR>) 
DELETE FILE DB1:[200,200]MYFILE.DAT;2 [Y/N/G/Q]? G(<CR>) 

THE FOLLOWING FILES HAVE BEEN DELETED: 
DB1:[200,200]MYFILE.DAT;2 
DB1:[200,200]MYFILE.DAT;3 
PIP> 

Deletes MYFILE.DAT;l and PIP goes to the next candidate, 
MYFILE.DAT;2. Deletes this file and all remaining versions 
of MYFILE.DAT. Lists the deleted files and returns you to 
PIP command mode. 

PIP>TEST.*;*/SD 

DELETE FILE DB1:[200,200]TEST.DAT;l [Y/N/G/Q]? N(<CR>) 
DELETE FILE DB1:[200,200]TEST.TXT;3 [Y/N/G/Q]? Q("Z) 

Saves TEST.DAT;!. PIP goes on to the next candidate, 
TEST.TXT;3. Saves this file and all remaining files with 
file name TEST. Returns you to monitor control mode. 

4.2.2.21 /SP -- Spool Switch - The Spool switch (/SP) directs a file 
to a line printer for printing. This switch applies only if you have 
the Print Spooler task (RSX-llM) or the Queue Manager (RSX-llM/M-PLUS) 
installed. (See Chapter 6 for an explanation on using the Queue 
Manager and Appendix C for a description of the Print Spooler.) 

4-33 



:111111 12 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Specify the Spool switch in the following format: 

infilel[,infile2, ••• infilen]/SP[:n] 

inf ile 

/SP 

n 

The file specification of the file to be spooled for printing. 
The file specification takes the form: 

dev: [ufd]filename.filetype;version 

The file specification must be issued because a null file name, 
file type, and version do not default to *.*;*. 

In RSX-llM and RSX-llM-PLUS only, if the file is specified by its 
file identification number (File-ID), it will be printed. File 
identification numbers are discussed in Section 4.2.2.8. 

The Spool switch. 

The number of copies you want spooled. (If a deleting spooler 
was specified during SYSGEN, only one copy of a file is printed, 
regardless of the value of n. The file is deleted after the 
first copy has been printed.) If n is omitted, a value of l is 
assumed. 

Example 

PIP>RICK1.LST;l,KATHY.LST;l,/FI:l2:22/SP 

Spools the files RICKl.LST;l, KATHY.LST;l, and the file whose 
file identification number (File-ID) is 12:22 for asynchronous 
printing. 

4.2.2.22 /SR -- Shared Reading Switch - The Shared Reading switch 
(/SR) allows you to read a file that has already been opened for 
writing by another task. You have no guarantee that you will get the 
information you want since the EOF pointer may be incorrect at the 
time you open the file. Specify the SR switch in the following 
format: 

outfile=inf ile/SR 

outfile 

The output file specification. 

inf ile 

The input file specification. 

/SR 

The Shared Reading switch. 

Example 

PIP>TI:=[210,20]FILES.DAT/SR 

Enables you to read FILES.DAT even though another task may have 
already opened it for writing. 

4-34 

1 a $ I 

~ 
I 

~ I., 

~"" "" 1:i 
i 

qq 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

4.2.2.23 /TR -- Truncate Switch - The Truncate switch (/TR) allows 
you to truncate files back to their logical end-of-file point. Note 
that RMS-11 files other than those that are fixed-length, 
variable-length, or sequenced cannot be truncated. Specify /TR in the 
following format: 

infilel[,infile2, ••• infilen]/TR 

infUe 

/TR 

The input file specification. 

The file specification must be issued because a null file name, 
file type, and version do not default to *.*;*. 

The Truncate switch. 

Example 

PIP>*.MAC/TR 

Directory before TRUNCATE 

A.MAC;l 
B.MAC;l 
C.MAC;2 

3. 
2. 
5. 

20-SEP-78 14:02 
20-SEP-78 15:38 
28-SEP-78 09:54 

TOTAL OF 10/15. BLOCKS IN 3. FILES 

Directory after TRUNCATE 

A.MAC;l 
B.MAC;l 
C.MAC;2 

3. 
2. 
5. 

20-SEP-78 14:02 
20-SEP-78 15:38 
28-SEP-78 09:54 

TOTAL OF 10./10. BLOCKS IN 3. FILES 

4.2.2.24 /UF -- User File Directory Switch - The User File Directory 
switch (/UF) creates a UFO entry in the Master File Directory (MFD) on 
the volume to which you are transferring a file. You must also 
transfer ownership of the file in order to access the file. Use the 
FO subswitch to 'transfer file ownership, and use [*, *] as the UFO in 
the output file specification if you want to assign the UIC under 
which you are running to all the files being transferred. 

Specify the UF switch in the following format: 

outfile/UF[/FO]=infile, ••• infilen 

outfile 

The file specification for the output file. 

inf: ile 

The file specification for the input file. 

4-35 



l~lllllll I a 

/UF 

/FO 

PERIPHERAL INTERCBARGE PROGRAM (PIP) 

The User File Directory switch. 

The File Ownership subswitch. /FO is described above in the 
section, /AP -- Append Switch. 

To use /UF, you must have write-access to the Master File Directory of 
the volume on which the files are being written. If that volume is a 
system volume, you must have a system-level UIC to use /UF. If the 
volume to which you are writing files is your own private volume, use 
the following procedure to change your UIC so that you can write to 
it. 

1. Log onto the system under your UIC. 

2. Reset your UIC to a privileged class using the SET command: 

SET /UIC=[group,member] 

where group and member specify a privileged class. 

A typical use of /UF is creation of a backup volume. In the following 
command, you are writing all files with file types .OBJ and .MAC in 
UFD [104,20] to a backup volume called DK6:. 

PIP>DK6:[*,*]/UF/FO=SY:[l04,20]*.MAC,[104,20]*.0BJ 

4.2.2.25 /UN -- Unlock Switch - The Unlock switch (/UN) unlocks 
(gives permission to open) a file that was locked because it was 
improperly closed. If a program using File Control Services (FCS) has 
a file open with write-access and exits without first closing the 
file, the file is locked against further access as a warning that it 
may not contain proper information. Typically, the following 
information is not written to the file: 

1. The current block buffer being altered 

2. The record attributes 
information 

which contain the end-of-file 

Using the Unlock switch, you can access the file, determine the extent 
of the damage, and, if possible, take corrective action. Specify the 
Unlock switch in the following format: 

infilel[,infile2, ••• infilen]/UN 

inf ile 

The file specification for the file to be unlocked. 
specification takes the form: 

dev: [ufd]filename.filetype;version 

The file 

The file specification must be given because a null file name, 
file type, and version do not default to *.*;*. 

You must run PIP under the UIC of the file owner or under a 
system-level UIC. 

4-36 

~ 
~···· ri 

~ I ! 

;; IL ii;; zza u ;o 



~· 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

/UN 

The Unlock switch. 

Exa1nple 

PIP>DK1:[100,100]RICK1.0BJ;3/UN 

Unlocks a file RICK1.0BJ;3 in directory [100,100] on device DKl:. 

4.2.2.26 /UP -- Update Switch - The Update switch (/UP) is similar to 
the basic PIP copy function or the Merge switch except that an 
existing file is opened and new data is written into it from the 
beginning. Existing data in the output file is destroyed and replaced 
by the data that constitutes the input file(s). Unlike _the Supersede 
switch (/SU, Section 4.2.1), /UP does not delete the existing file 
before rewriting the data and its file identification number (File-ID) 
remains the same. Also, the number of blocks allocated to the output 
file can be the same or greater, but never less than the number of 
blocks allocated to the existing file. However, as with /SU, the 
file's name, type, and version number remain the same. 

Specify the Update switch in the format: 

outfile=infilel[,infile2, ••• infilen]/UP[/FO] 

outfile 

The file specification for the file to be rewritten. 
specification takes the form: 

The file 

dev: [ufd]filename.filetype;version 

As in the Merge and 
specification must be 
allowed. 

the Append 
explicit, 

switches, 
that is, 

the output 
no wildcards 

file 
are 

The characteristics and record attributes of the output file are 
taken from the first input file. 

inf:i le 

/UP 

/FO 

The f:ile specification for the file to be copied into the file 
that is being rewritten. Specify infile in the format: 

dev: [ufd]filename.filetype;version 

A null file name, file type, and version default to 

The Update switch. 

* *·* . , 

The Set File Ownership subswitch which specifies that the owning 
UIC of the output file corresponds to the directory into which 
the file was entered. If you do not specify /FO, the owning UIC 
of all new files is the UIC under which PIP is running, 
regardless of the directory into which the file was entered. 
Refer to Section 4.2.1 for examples on using the FO subswitch. 

4-37 



iii i!ii 21 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

Example 

PIP>DKl:SAMPLE.DAT;l=TESTl.DAT;l,TEST2.DAT;l,TEST3.DAT;l/UP 

Opens SAMPLE.DAT;l on DKl: and replaces the data currently in 
the file with the contents of files TESTl.DAT;l, TEST2.DAT;l and 
TEST3.DAT;l. 

4.3 PIP ERROR MESSAGES 

Errors encountered by PIP during processing are displayed in the 
following format: 

PIP -- <main error message> 

<filename or filespec> - <secondary error message> 

The file name or file specification, if present, identifies the file 
or set of files being processed when the error occurred. If the error 
was detected by the operating system, file system, or device driver, 
the secondary error message is included to explain the cause of the 
error. 

PIP error messages are 
device. If PIP cannot 
in the following format: 

contained in message files on the system 
access the message files, errors are reported 

nn 

-mm 

-qq 

PIP -- ERROR CODE nn. 

<filename or filespec> - <Driver Code -mm.> 

or 

<QIO Error Code -qq.> 

One of the PIP error codes contained in Table 4-6. 

One of the standard system, file primitive, or file control 
service codes listed in the IAS/RSX-11 I/O Operations Reference 
Manual. 

One of the directive error codes listed in IAS/RSX-11 I/O 
Operations Reference Manual. 

The PIP error messages, their descriptions and suggested user actions 
are as follows: 

PIP ALLOCATION FAILURE - NO CONTIGUOUS SPACE 

Explanation: Not enough contiguous space was available on the 
output volume for the file being copied. 

User Action: Delete all files that are no longer required on the 
output volume, and reenter the command line. Also, use the BRU 
or DSC utilities to compress the files on your disk. BRU is 
described in Chapter 10 and DSC is described in Chapter 11. 

4-38 

~ 
I .' 
I 

242 :; :; :::: iii! a ;ee::: m;::;s 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

PIP -- ALLOCATION FAILURE ON OUTPUT FILE 

PIP 

or 

ALLOCATION FAILURE - NO SPACE AVAILABLE 

Explanation: Not enough space was available on the output volume 
for the file being copied. 

User Action: Delete all files that are no longer required on the 
output volume, and reenter the command line. Also, use the BRU 
or DSC utilities to compress the files on your disk. BRU is 
described in Chapter 10 and DSC is described in Chapter 11. 

PIP -- BAD USE OF WILD CARDS IN DESTINATION FILE NAME 

Explanation: A wildcard * was specified for an output file name 
when use of a wildcard was explicitly disallowed. 

User Action: Reenter the command line with the proper output 
file explicitly specified. 

PIP -- CANNOT FIND DIRECTORY FILE 

Explanation: Specified UFD does not exist on this volume. 

User Action: Reenter the command line, specifying the correct 
UFD or the correct volume. 

PIP -- CANNOT FIND FILE(S) 

Explanation: The file(s) specified in the command were not found 
in the designated directory. 

User Action: Check the file specification and reenter the 
command line. 

PIP -- CANNOT RENAME FROM ONE DEVICE TO ANOTHER 

Explanation: You attempted to rename a file across devices. 

User Action: Reenter the command line, renaming the file on the 
input volume, then enter another command to transfer the file to 
the intended volume. 

PIP -- CANNOT TRUNCATE THIS FILETYPE 

Explanation: PIP can only truncate files containing 
fixed-length, variable-length, and sequenced records. 

User Action: Check the file specification and reenter the 
command line. 

4-39 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

PIP -- CLOSE FAILURE ON INPUT FILE 

or 

PIP -- CLOSE FAILURE ON OUTPUT FILE 

Explanation: The input or output file could not be properly 
closed. The file is then locked to indicate possible corruption. 

User Action: Reenter the command line. If the error recurs, run 
a validity check of the file structure using the Verify utility 
(VFY) on the volume in question to determine if it is corrupted. 

VFY is described in Chapter 13. 

PIP -- COMMAND SYNTAX ERROR 

Explanation: Command did not conform to syntax rules. 

User Action: Reenter the command line with the correct syntax. 

PIP -- DEVICE NOT MOUNTED/ALLOCATED 

Explanation: The device was not mounted, or another user had 
mounted the device. 

User Action: Mount the device, and reenter the command line. 

PIP -- DIRECTORY WRITE PROTECTED 

Explanation: PIP could not remove an entry from a directory 
because the device was write-protected, or because of a privilege 
violation. 

User Action: Enable the unit for write operations or have the 
owner of the directory change its protection. 

PIP -- ERROR FROM PARSE 

Explanation: The specified directory file does not exist. 

User Action: Reenter the command line with the correct UIC 
specified. 

PIP -- EXPLICIT OUTPUT FILENAME REQUIRED 

Explanation: Self-explanatory. 

User Action: Reenter the command line with the output filename 
explicitly specified. 

4-40 

Li a : :: 24 I I iiS to 

·~ 
I 

:~ 
l --:' 
I 

'*' 



"-'' 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

PIP -- FAILED TO ATTACH OUTPUT DEVICE 

or 

PIP -- FAILED TO DETACH OUTPUT DEVICE 

Explanation: An attempt to attach/detach a record-oriented 
output device failed. This is usually caused by the device being 
offline or non-resident. 

User Action: Ensure that the device is online and reenter the 
command line. 

PIP -- FAILED TO CREATE OUTPUT UFO 

Explanation: PIP could not create an entry in a directory 
because the device was write-protected or because of a privilege 
violation. 

User Action: Enable the unit for write operations or have the 
owner of the directory change its protection. 

PIP -- FAILED TO DELETE FILE 

or 

PIP -- FAILED TO MARK FILE FOR DELETE 

Explanation: You attempted to delete a protected file. 

User Action: Request PIP under the correct UIC and reenter the 
command line. 

PIP -- FAILED TO ENTER NEW FILE NAME 

Explanation: You specified a file that already exists in the 
directory file, or you did not have the necessary privileges to 
make entries in the specified directory file. 

User Action: Reenter the command line, ensuring that the file 
name and UFO are specified correctly, or request PIP under the 
correct UIC and reenter the command line. 

PIP -- FAILED TO FIND FILE(S) 

Explanation: The file(s) specified in the command line were not 
found in the designated directory. 

User Action: Check the file specification and reenter the 
command line. 

PIP -- FAILED TO GET TIME PARAMETERS 

Explanation: An internal system failure occurred while PIP was 
trying to obtain the current date and time. 

User Action: Reenter the command line. If the problem persists, 
submit a Software Performance Report. 

4-41 



,,._.iii!! 2 I :U 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

PIP -- FAILED TO OPEN STORAGE BITMAP FILE 

Explanation: PIP could not read the specified volume's storage 
bit map, probably because of a privilege violation. 

User Action: Retry by running PIP under a system UIC, or have 
the system manager change the protection on the storage bit map. 

PIP -- FAILED TO READ ATTRIBUTES 

Explanation: The volume you specified was corrupted or you did 
not have the necessary privileges to access the file. 

User Action: Ensure that PIP is running under the correct UIC. 
If the UIC is correct, then run the validity check of the file 
structure Verification utility (VFY) against the volume in 
question to determine where and to what extent the volu~e is 
corrupted. VFY is described in Chapter 13. 

PIP -- FAILED TO REMOVE DIRECTORY ENTRY 

Explanation: 
because the 
violation. 

PIP could not remove an entry from a directory 
unit was write-protected or because of a privilege 

User Action: Enable the unit for write operations or have the 
owner of the directory change its protection. 

PIP -- FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY - FILE IS LOST 

Explanation: PIP has removed a file from a directory, failed to 
enter it into another directory (using /RE), and failed to 
replace the original directory entry. 

User Action: Run the lost check of the file structure 
Verification utility (VFY) to recover the filename. VFY is 
described in Chapter 13. 

PIP -- FAILED TO SPOOL FILE FOR PRINTING 

·~.·. ·. I:;! 

~ 
I 

Explanation: Not enough system dynamic memory was available, or ..,,.1' .. ·. 
the spooler task is not installed. 

User Action: Wait for spooler queue to empty, or install the 
spooler task and reenter the command line. 

PIP -- FAILED TO TRUNCATE FILE 

Explanation: The volume you specified is corrupted or you did 
not have the necessary privileges (write, extend) to truncate 
this file. 

4 LS 4 

User Action: Ensure that PIP is running under the correct UIC. 
If the UIC is correct, then run the validity check of the file 
structure Verification utility (VFY) against the Volume in 
question to determine where and to what extent the volume is 
corrupted. VFY is described in Chapter 13. 

4-42 

iii! I& 

~ - I •r 

iiiiiii i!IU! 5.11 qz; 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

PIP ··- FAILED TO WRITE ATTRIBUTES 

Explanation: Volume is corrupted or you did not have the 
necessary privileges to write the file attributes. 

User Action: Ensure that PIP is running under the correct UIC. 
If the UIC is correct, then run the validity check of the file 
structure Verification utility (VFY) against the volume in 
question to determine where and to what extent the volume is 
corrupted. VFY is described.in Chapter 13. 

PIP -- FILE IS LOST 

Explanation: PIP has removed a file from its directory, failed 
to delete it, and failed to restore the directory entry. 

User Action: Run the lost check of the file structure 
Verification utility (VFY) to recover the filename. VFY is 
described in Chapter 13. 

PIP -- FILE NOT LOCKED 

Explanation: The UN switch was entered for a file that was not 
locked. 

User Action: Reenter the command line, specifying the correct 
file. 

PIP ·-- GET COMMAND LINE - BAD @ FI LE NAME 

Explanation: An illegal indirect 
specified. 

command file name was 

User Action: Reenter the command line, specifying the correct 
name for the indirect command file. 

PIP - GET COMMAND LINE - FAILED TO OPEN @ FILE 

Explanation: PIP could not find the specified indirect command 
file. 

User Action: Check the specification for the indirect command 
file and reenter the command line. 

PIP -- GET COMMAND LINE - I/O ERROR 

Explanation: An I/O error occurred during an attempt to read a 
command line. 

User Action: Check the command to ensure that you entered it 
correctly, then retry the command. If the error persists, submit 
a Software Performance Report. 

4-43 



'll'W !! iii!! 1$ 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

PIP -- GET COMMAND LINE - MAX @ FILE DEPTH EXCEEDED 

Explanation: The maximum level of nesting for indirect command 
files (4) was exceeded. 

User Action: Reduce the level of nesting. 

PIP -- ILLEGAL COMMAND 

Explanation: Command was not recognized by PIP. 

User Action: Reenter the command line with the PIP command 
correctly specified. 

PIP -- ILLEGAL SWITCH 

Explanation: Specified switch was not a legal PIP switch. 

User Action: Reenter the command line with the correct switch 
specification. 

PIP -- ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY 

Explanation: You attempted to copy all versions of a file 
the same directory that is being scanned for input files. 
would result in an infinite number of versions of the same 
so is not allowed. 

into 
This 
file 

User Action: Reenter the command line, renaming the files or 
copying them into a different directory. 

PIP -- ILLEGAL USE OF WILDCARD VERSION 

Explanation: The use of a wildcard version number in the 
attempted operation would result in inconsistent or unpredictable 
output. 

User Action: Reenter the command line with different options 
with an explicit or default version number. 

or 

PIP -- INPUT FILES HAVE CONFLICTING ATTRIBUTES 

1114 

Explanation: The input files specified in a Merge, Update, or 
Supersede command had conflicting attributes or the attributes of 
the input file(s) specified in an Append command conflicted with 
those of the output file. 

User Action: The message is a warning only. The specified 
action was completed despite the conflict. In a Merge, Update, 
or Supersede command, the attributes of the output file will be 
those of the first input file. In an Append command, the 
attributes of the output file are unchanged. The resulting file 
should, however, be suspect because its attributes may not 
correctly represent all the records in the file. 

4-44 

4 iii 

·""' 1--q 

·~ 
l 

pi;: I 



PERIPHERAL INTERCHANGE PROGRAM (PIP) 

PIP -- I/O ERROR ON INPUT FILE 

or 

PIP -- I/O ERROR ON OUTPUT FILE 

Explanation: One of the following conditions may exist; 

• The device is not online 

• The device is not mounted 

• The hardware has failed 

• The volume is full (output only) 

• Input file is corrupted 

User Action: Determine which condition caused the message and 
correct that condition. Reenter the command line. 

\..,I PIP -·- NOT A DIRECTORY DEVICE 

Explanation: A directory-oriented command was issued to a device 
that does not have directories (such as a printer). 

User Action: Reenter the command line without specifying a UFO. 

PIP -- NOT ENOUGH BUFFER SPACE AVAILABLE 

Explanation: PIP did not have enough I/O buffer space to perform 
the requested command. 

User Action: Have the system manager install PIP in a larger 
partition or increase the size specified by the INC switch on the 
MCR INSTALL command. See the RSX-llM/M-PLUS MCR Operations 
Manual.. 

PIP -- NO SUCH FILE(S) 

Explanation: The file(s) specified in the command were not found 
in the designated directory. 

User Action: Check the file specification and reenter the 
command line. 

PIP -- ONLY [*,*] IS LEGAL AS DESTINATION UIC 

Explanation: A UFO other than [*,*] was specified as the output 
file UFO for a copy operation. 

User Action: Reenter the command line with [*,*] specified as 
the output UFO. 

4-45 



i!l!llJ Jl . I q;; 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

PIP -- OPEN FAILURE ON INPUT FILE 

or 

PIP -- OPEN FAILURE ON OUTPUT FILE 

Explanation: The specified file could not be opened. One of the 
following conditions may exist: 

• The file is protected against access 

• A problem on the physical device (for example, device down) 

• The volume is not mounted 

• The specified file directory does not exist 

• The named file does not exist in the specified directory 

User Action: Determine which condition caused the message and 
correct that condition. Reenter the command line. 

PIP -- OUTPUT FILE ALREADY EXISTS -- NOT SUPERSEDED 

Explanation: An output file of the same name, type, and 
as the file specified already exists. 

version 

User Action: Retry the copy with /NV to assign a new version 
number of /SU to supersede the output file. 

PIP -- TOO MANY COMMAND SWITCHES - AMBIGUOUS 

Explanation: Too many switches were specified, or the switches 
conflict. 

User Action: Reenter the command line, specifying the correct 
set of switches. 

PIP -- VERSION MUST BE EXPLICIT OR "*" 

Explanation: The version number of the specified file must be 
expressed explicitly or as a wildcard *· 

User Action: Reenter the command line with the version number 
correctly expressed. 

4.4 PIP ERROR CODES 

Table 4-6 identifies the error codes PIP issues when it does not have 
access to the message files. The descriptions and suggested user 
actions for these error codes are identical to those described in 
Section 4.3. 

4-46 

!1$!i!i I ii ! I L ii I I.I !Iii I Ji# l!iiii 

~ 
I ' 

I !PP I 



Ei:·ror Code 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

PERIPHERAL INTERCBARGE PROGRAM (PIP) 

Table 4-6 
PIP ·Error Codes 

Error Message 

COMMAND SYNTAX ERROR 
ILLEGAL SWITCH 
TOO MANY COMMAND SWITCHES - AMBIGUOUS 
ONLY [*,*] IS LEGAL AS DESTINATION UIC 
ILLEGAL COMMAND 
ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY 
BAD USE OF WILDCARDS IN DESTINATION FILE NAME 
EXPLICIT OUTPUT FILE NAME REQUIRED 
ALLOCATION FAILURE.- NO CONTIGUOUS SPACE 
ALLOCATION FAILURE - NO SPACE AVAILABLE 
ALLOCATION FAILURE ON OUTPUT FILE 
I/O ERROR ON INPUT FILE 
I/O ERROR ON OUTPUT FILE 
ILLEGAL USE OF WILDCARD VERSION 
FAILED TO CREATE OUTPUT UFO 
INPUT FILES HAVE CONFLICTING ATTRIBUTES 
OPEN FAILURE ON INPUT FILE 
OPEN FAILURE ON OUTPUT FILE 
CLOSE FAILURE ON INPUT FILE 
CLOSE FAILURE ON OUTPUT FILE 
FAILED TO DETACH OUTPUT DEVICE 
DEVICE NOT MOUNTED/ALLOCATED 
OUTPUT FILE ALREADY EXISTS - NOT SUPERSEDED 
FAILED TO MARK FILE FOR DELETE 
FILE IS LOST 
VERSION MUST BE EXPLICIT OR "*" 
ERROR FROM PARSE 
FAILED TO DELETE FILE 
CANNOT FIND DIRECTORY FILE 
FAILED TO ATTACH OUTPUT DEVICE 
FAILED TO GET TIME PARAMETERS 
NOT A DIRECTORY DEVICE 
FAILED TO WRITE ATTRIBUTES 
FAILED TO READ ATTRIBUTES 
FILE NOT LOCKED 
FAILED TO ENTER NEW FILE NAME 
FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY -
FILE IS LOST 
CANNOT RENAME FROM ONE DEVICE TO ANOTHER 
FAILED TO SPOOL FILE FOR PRINTING 
CANNOT SPOOL BY FILE ID (RSX-llD only) 
FAILED TO OPEN STORAGE BITMAP FILE 
FAILED TO FIND FILE(S) 
CANNOT FIND FILE(S) 
NO SUCH FILE(S) 
FAILED TO REMOVE DIRECTORY ENTRY 
DIRECTORY WRITE PROTECTED 
NOT ENOUGH BUFFER SPACE AVAILABLE 
FAILED TO TRUNCATE FILE 
CANNOT TRUNCATE THIS FILETYPE 

4-47 



·!llllHll JS I I 114 so a ii ! IS il . I I Ii# 



CHAPTER 5 

FILE TRANSFER PROGRAM (FLX) 

The File Transfer Program (FLX) is a file utility program that 
transfers files from one volume to another. In addition, when a file 
is being transferred from a volume with a different format than the 
one the file is going to, FLX converts the format of the file to 
conform to the format of the volume to which the file is transferred. 

\.,! FLX allows you to: 

• List directories of cassettes, RT-11, or DOS-11 volumes 

• Delete files from DOS-11 and RT-11 file-structured volumes 

• Initialize cassettes, RT-11, or DOS-11 volumes 

FLX performs file transfers (and format conversions, as appropriate) 
from: 

• DOS-11 to Files-11 volumes 

• F il.es-11 to DOS-11 volumes 

• DOS-11 to DOS-11 volumes 

• Files-11 to Files-11 volumes 

• Files-11 to RT-11 volumes 

• RT-·11 to RT-11 volumes 

• RT··ll to Files-11 volumes 

Valid DOS-11 devices are: 

Device 
Abbreviation 

CT 
DK 
DT 
MM 
MS 
MT 
l?P 
l?R 

Device 

TU60 tape cassette 
RKOS cartridge disk 
TU56 DECtape 
TE16, TU16, TU45, or TU77 magnetic tape 
TS04 magnetic tape 
TUlO or TS03 magnetic tape 
PCll paper tape punch 
PCll or PRll paper tape reader 

5-1 



FILE TRANSFER PROGRAM (FLX) 

Valid RT-11 devices are: 

Device 
Abbreviation 

DD 
DK 
DL 
DM 
DT 
DX 
DY 

TU58 
RK05 
RLOl 
RK06 
TU56 
RXOl 
RX02 

Device 

DECtap~ II data cartridge 
cartridge disk 
cartridge disk 
or RK07 cartridge disk 
DECtape 
flexible disk 
flexible disk 

FLX supports all Files-11 devices, including RSX-format cassettes. 
Files-11 volumes are the default volumes. They are volumes that you 
have initialized using the MCR command, INITVOL. DOS-11 and RT-11 
volumes are initialized using FLX. On RSX-llM-PLUS only, DOS-11 and 
RT-11 volumes must be mounted with foreign characteristics before you 
can use FLX. 

The switches for the three formats are: /RS for Files-11 format, /DO 
for DOS-11 format, and /RT for RT-11 format. These switches are 
described in Section 5.2. 

You can use FLX interactively or by means of an indirect command file. 
FLX allows only one level of indirect command file specification. 

You can invoke FLX in two ways: 
FLX and a command string. 
responds with the prompt: 

FLX> 

5.1 FLX COMMAND STRING 

by specifying FLX or by specifying 
If you only specify FLX, the utility 

Although formats for specifying FLX functions vary, the general format 
for entering FLX command strings is: 

devicespec/sw=infile/sw, ••• ,infilen/sw 

device name 

The device specification for the FLX output device, which takes 
the form: 

dev: [ufd] 

The [ufd] field is optional: if it is not specified, FLX uses 
the current UIC. 

If you explicitly enter the output device specification, you must 
enter the equal sign. 

FLX does not permit output file specifications. The output files 
take the names of the input files. 

infilen 

The input file specifications, which are entered as described in 
Chapter 1. 

5-2 

2 Ji 1141 ii :.; . 2 

~ I . 
I 

. ..,., 
I 

'~ 
I 

a ;su f '' 



'-'j 

FILE TRANSFER PROGRAM (PLX) 

/sw 

One of three types of FLX switches described below in Section 
5.2. 

FLX now supports 9-character file names for DOS-11-format magnetic 
tapE~S. 

Wildcards are valid only for input file specifications. 

Version numbers are valid only for Files-11 files and cannot be 
specified as wildcards. The standard rules for updating version 
numbers apply (see the RSX-llM/M-PLUS MCR Operations Manual). 

5.2 FLX SWITCHES 

FLX provides three types of switches for file transfers: 

• Volume format switches 

• Transfer mode switches 

• Control switches 

Volume format switches specify the format of the volume on which files 
are stored; that is, Files-11, DOS-11, or RT-11 volumes. 

Transfer mode switches provide the means for specifying the format of 
a :file on a non-Files-11 volume. Files can be in formatted ASCII, 
formatted binary, or file image format. 

Control switches provide control functions useful during file 
transfers. Using file control switches, you can specify, for example, 
the number of blocks to be allocated to an output file or the UFO for 
an (.>Utput file. 

5.2.1 Volume Format Switches 

FLX has three volume format switches that define the format of the 
specified volumes. Table 5-1 describes these switches. 

Table 5-1 
FLX Volume Format Switches 

Switch Description 

/DO Identifies the volume as a DOS-11 formatted volume. 

/RS Identifies the volume as a Files-11 formatted volume. 

/RT Identifies the volume as an RT-11 formatted volume. 

Initially, input volumes default to DOS-11 format and output volumes 
default to Files-11 format. FLX assumes these default volume formats 
if you do not specify switches in the command string. 

5-3 



Ji 

FILE TRANSFER PROGRAM (FLX) 

You can change the initial default by entering /RS or /DO on a command 
line by itself. /RS sets the default for input volumes to Files-11 
format and output volumes to DOS-11 format. /DO sets the default for 
input volumes to DOS-11 format and output volumes to Files-11 format. 

For example, to specify the default transfer direction from Files-11 
to DOS-11, type: 

FLX>/RS 

To specify the default transfer direction from DOS-11 to Files-11, 
type: 

FLX>/DO 

If /RT is specified on one side of a command string, the default entry 
for the other side is /RS. 

Examples 

1. FLX>DKO:=DTO:SYSl.MAC/RT 

The output is defaulted to /RS. 

2. FLX>DKO:/RT=DKO:SYSl.MAC 

The input is defaulted to /RS. 

5.2.2 Transfer Mode Switches 

FLX has three transfer mode switches, one for each type of file 
format. Files can be in formatted ASCII, formatted binary, or file 
image format. Format conversions can be in either direction, and are 
between DOS-11 files and Files-11 files or between RT-11 files and 
Files-11 files. Specifying a transfer mode switch determines which 
format the output file will be in after the conversion of the file. 
Table 5-2 describes the transfer mode switches. 

Switch 

/FA:n 

i!IQ 54 I&$ 

Table 5-2 
FLX Transfer Mode Switches 

Description 

Formatted ASCII 

The DOS-11 or RT-11 output file is to be formatted 
ASCII. Formatted ASCII is defined as ASCII data 
records terminated by carriage return/line feed 
(CR-LF), form feed (FF), or vertical tab (VT). In 
transfers from DOS-11 or RT-11 files to Files-11 
files, CR-LF pairs are removed from the end of 
records. In transfers from Files-11 files to DOS-11 
or RT-11 files, CR-LF pairs are added to the end of 
each record that does not already end with LF or FF. 
In both directions, all nulls, rubouts, and vertical 
tabs are removed from input records. 

If you specify /FA:n with Files-11 
fixed-length records of size n are generated. 
records are padded with nulls, if necessary. 

output, 
Output 

(continued on next page) 

5-4 

us: a ii can ,pt :: I bJ iii 

~ I,, 

I It 



Switch 

/FlB: n 

/IM:n 

FILE TRANSFER PROGRAM (FLX) 

Table 5-2 (Cont.) 
FLX Transfer Mode Switches 

Description 

If you do not specify /FA:n with Files-11 output, FLX 
generates variable-length records. The output record 
size equals the input record size. 

ASCII data is transferred as 7-bit values. Bit 8 of 
each byte is masked off before transfer. CTRL/Z 
(ASCII 032 octal) is treated as the logical end of 
input file for formatted ASCII transfers from DOS-11 
cassette or paper tape to Files-11. 

Formatted Binary 

The DOS-11 or RT-11 output file is to be formatted 
binary. In this mode, formatted binary headers and 
checksums are added to records output to DOS-11 or 
RT-11 files, and removed when transferred to Files-11 
files. 

If you specify /FB:n with Files-11 output, 
fixed-length records of size /FB:n are output (512 
decimal bytes is the maximum). FLX pads records with 
nulls to create the specified length. 

If you do not specify /FB:n with Files-11 output, FLX 
generates variable-length records. The output record 
size equals the input record size. 

Image Mode 

The transfer is to be in image mode. Image mode 
forces fixed-length records. You can use the value n 
to indicate the desired record length (in decimal 
bytes) for Files-11 output (512 decimal bytes 
maximum). If you do not specify n, FLX assumes a 
record length of 512(10) bytes. 

FLX assumes the following default transfer modes for these file types 
(with the exception of paper tape transfers~ see Section 5.6). 

Image 

Formatted Binary 

Formatted ASCII 

Switch 

/IM:n 

/FB:n 

/FA:n 

File Type 

• TSK, • OLB, • MLB, • SYS, • SML, • ULB 

.OBJ, .STB, .BIN, .LDA 

All others 

If you specify n with /FA, /FB, or /IM when the output file is not a 
Files-11 file, FLX ignores n. 

See the RSX-llM/M-PLUS MCR Operations Manual for the definitions of 
the above file types. 

5-5 



FILE TRANSFER PROGRAM (FLX) 

5.2.3 Control Switches 

FLX provides a number of control switches to control file processing. 
Table 5-3 describes these switches. 

Switch 

/BL:n 

/BS:n 

/CO 

/DE 

4 42214 ill 

Table 5-3 
FLX Control Switches 

Description 

Indicates the number of contiguous blocks (n) to be 
allocated to the output file. 

This switch is normally used with /CO (described 
below). 

If you do not specify /BL, the input file size is 
used as the output file size. 

The file allocation scheme used for RT-11 volumes 
normally allocates the largest available space on the 
volum~ for a new file. Using /BL:n with the RT 
switch for the output file causes the output file to 
be allocated the first unused space of size n. 
However, when the RT-11 file is closed, the input 
file size is used as the output file size. If the 
input file is not n, an error results. Because all 
RT-11 files are contiguous, the CO switch is not 
required with the BL:n switch for RT-11 output. 

Specifies the block size (n) in bytes for cassette 
tape output. 

If you do not specify /BS, a block size of 128(10) is 
assumed. /BS is only valid in a cassette tape (CT} 
output file specification with /RS specified. 

Indicates that the output file is to be contiguous. 

The /CO switch is used only with disks and DECtapes. 

If the input file is paper tape, cassette, or DOS-11 
magnetic tape, /BL is also required. FLX transfers 
the file types .TSK, .SYS, and .OLB to Files-11 
volumes with /CO implied when the input is a Files-11 
volume, or a DOS-11 or RT-11 DECtape or disk. 

Deletes files from a DOS-11 DECtape or disk. It is 
used also with /RT to delete files from an RT-11 
DECtape or disk. When you specify /DE, the FLX 
command string has no output specification. 

(continued on next page) 

5-6 

$$ 

'i' 
I 

~ 
I 

~ i .. 

q a" 



Sw:i.tch 

/DI 

/DNS:n 

/FC 

/ID 

/I,I 

/NU:n 

FILE TRANSFER PROGRAM (FLX) 

Table 5-3 (Cont.) 
FLX Control Switches 

Description 

Causes a directory listing of cassettes or DOS 
volumes to be listed on a specified output file. It 
is used also with /RT to generate a directory listing 
of RT-11 volumes in a specified output file. 

You cannot list Files-11 volume directories using 
FLX. 

If you do not specify an output device, the directory 
is sent to TI:. 

If you do not specify file name and file type on the 
input file specification, *·* is assumed. 

See Section 5.3 for information on DOS-volume 
directory manipulation. See Section 5.4 for 
information on RT-11-volume directory manipulation. 

Specifies the density of the magnetic tape: n is 
either 800 or 1600. If n is any other value or not 
specified at all, FLX prints an error message. If 
you do not specify /DNS:n, the magnetic tape density 
defaults to 800 bpi. If you specify /DNS with a 
non-magnetic-tape device, FLX ignores the switch. 

When using FORTRAN files, indicates that FORTRAN 
carriage control conventions are to be used, that is, 
FORTRAN interprets certain characters in the FORTRAN 
files as carriage control characters. The FC switch 
applies only to Files-11 output files. (If you have 
the PDP-11 FORTRAN Language Reference Manual, refer 
to it for more information on FORTRAN carriage 
control conventions. Otherwise, refer to the 
IAS/RSX-11 I/O Operations Reference Manual for a 
discussion of the file data block and record 
attributes, of which setting carriage control is a 
part. ) 

Requests the current version number of FLX to be 
printed. You can specify /ID as part of an output or 
input specification or type it in response to the FLX 
prompt (FLX>) • 

Same as /DI. 

Used with the /ZE and /RT switches to 
number of directory blocks (n) to 
initializing an RT-11 disk or DECtape. 
specify /NU:n, four directory blocks 
The maximum number of blocks which can 
is 37(8) (31 decimal). 

specify the 
allocate when 
If you do not 

are allocated. 
be allocated 

(continued on next page) 

5-7 



ii::;: 

Switch 

/RW 

/SP 

/UI 

/VE 

/ZE 

FILE TRANSFER PROGRAM (FLX) 

Table 5-3 (Cont.) 
FLX Control Switches 

Description 

Rewinds the magnetic tape before beginning the file 
transfer. Specifying /-RW causes FLX to begin the 
transfer without first rewinding the magnetic tape. 
If you do not specify either rewind option, the 
switch defaults to /RW. If you specify the rewind 
switch with a non-magnetic-tape device, or with /LI, 
/DI, or /ZE, FLX ignores the switch. 

Indicates that the converted file is to be spooled by 
means of the old print spooler task or the queue 
management system. The SP switch applies only to 
Files-11 output files. The print spooler is 
described in Appendix C and the queue management 
system is described in Chapter 7. 

Indicates that the output file is to have the same 
UFO as the input file. FLX ignores the UI switch if 
the output specification contains an explicit UFO. 
/UI is valid only for output files in DOS-11 or 
Files-11 format. 

Causes each record written to the cassette to be read 
and verified. The VE switch is only valid with a CT 
output file specification. 

Initializes cassettes or DOS-11 volumes. It is also 
used with /RT (and /NU) to initialize RT-11 volumes. 
Initializing erases any files already on the device. 

For DOS-11 DECtape, /ZE creates an entry for the 
current UIC. 

The ZE switch does not require a file specification. 

5.3 DOS-11 VOLUME DIRECTORY MANIPULATION 

This section contains examples that show how to display DOS-11 
directory listings, delete DOS-11 files, and initialize DOS-11 volumes 
using the FLX switches. 

On RSX-llM-PLUS only, DOS-11 volumes must be mounted with foreign 
characteristics before you can use FLX. 

5.3.1 Displaying DOS-11 Directory Listings 

The LI or the DI switch instructs FLX to send the directory of the 
cassette or DOS-11 volume specified in the input specification to the 
Files-11 file specified in the output specification. If you do not 
enter an output specification, FLX sends the directory to TI:. For 
example: 

FLX>DTO: [100,100]*.MAC/LI 

5-8 

Ii 42 41 

~ -·· I ·fJ! 
I 

~ i: 

ij!i! p;: 



FILE TRANSFER PROGRAM (FLX) 

This command lists on your terminal the directory of all 9MAC files 
under UIC [100,100] on the DOS-11 DECtape on OTO:. 

Figure 5-1 shows sample directory listings for a DOS-11 DECtape and a 
TU60 cassette. 

DECtape Directory Listing 

e DIRECTORY 0 DT: [200,200] e 
0 19-SEP-·78 

8 FLX.TSK 
UFD.TSK 
TKN.TSK 
MOU.TSK 

0104. 
8. 
6. 
14. 

019-SEP-78 
19-SEP-78 
19-SEP-78 
19-SEP-78 

G•TOTAL OF 132. BLOCKS IN 4. FILES 

Cassette Directory Listing 

<233> G) 
<233> 
<233> 
<233> 

e DIRECTORY e CT: [200,200] e 
~ 0 19-SEP--78 

'-" 

8 UFD.TSK-0 
TKN.TSK-0 
MOU.TSK-0 

02s. 
20. 
52. 

019-SEP-78 128. 8 
19-SEP-78 128. 
19-SEP-78 128. 

t• TOTAL OF 100. BLOCKS IN 3. FILES 

Figure 5-1 DOS-11 Directory Listings 

Notes on Figure 5-1: 

e 
e 
e 
e 
e 
0 
0 
8 

e 
G) 

This line identifies the listing as a directory listing. 

The device name and unit number. 

The User File Directory. 

The date the directory was listed. 

The file name, file type, version number, and sequence number 
(cassettes only). 

The file size in decimal blocks. 

The file creation date. 

The record size in decimal bytes for the file (cassettes 
only). 

A total of the actual file sizes and the total number of 
files in the directory. 

The protection code (disk and DECtape only). A protection 
code of 233 is the default code provided by the system. This 
code allows read, run, write, and delete access to the owner, 
and read and run (but not delete or write) access to the 
group and world. See the DOS/Batch Handbook for more 
information on protection codes. 

5-9 



FILE TRANSFER PROGRAM (FLX) 

5.3.2 Deleting DOS-11 Files 

You can delete files from DOS-11 disks or DECtapes using the Delete ""' 
switch (/DE). The command string on which you specify /DE requires I.: y 
only the file specification for the file you are deleting. For 
example: 

FLX>DKl:[lOO,lOO]SYSl.MAC/DE 

This command deletes SYSl.MAC under UFO [100,100] from the DOS-11 disk 
on DKl:. 

5.3.3 Initializing DOS-11 Volumes 

You can initialize cassettes and DOS-11 volumes using the ZE switch. 
This switch requires only the device specification for the volume you 
are initializing. For example: 

FLX>DTl:/ZE 

This command initializes the DECtape on DTl: in DOS-11 format. 

5.4 RT-11 VOLUME DIRECTORY MANIPULATION 

You can display RT-11 directory listings, delete RT-11 files, and 
initialize RT-11 volumes using the FLX switches described in this 
section. 

On RSX-llM-PLUS only, RT-11 volumes must be mounted with foreign 
characteristics before you can use FLX. 

5.4.l Displaying RT-11 Directory Listings 

The LI or the DI switch, when combined with the RT switch, instructs 
FLX to send the directory of the RT-11 volume in the input 
specifications to the Files-11 file in the output specification. If 
you do not enter an output specification, FLX sends the directory to 
TI:. For example: 

FLX>DTO:*.MAC/LI/RT 

This command lists on your terminal all .MAC files on the RT-11 volume 
on DTO:. 

Figure 5-2 shows a sample directory listing of an RT-11 disk. 

5-10 

$! d&Q ii :::; ii It !!!! ill iiili.11! !iii! I I 4 

~ I 

Qt 14 



OoIRECTORY 9oK: 
8 4-JUN-·78 

FILE TRANSFER PROGRAM (FLX) 

aSIPBOO.MAC e 49. 84-JUN-78 
W < UNUSED > 6. 

SIP .MAC 10. 4-JUN-78 
SIPCO .MAC 7. 4-JUN-78 
< UNUSED > 21. 
SIPQIO.MAC 7. 4-JUN-78 
< UNUSED > 4686. 

0 4 713. FREE S:LOCKS 

ft TOTAL OF 73. BLOCKS IN 4. FILES 

Figure 5-2 RT-11 RK05 Cartridge Disk Directory Listing 

Notes on Figure 5-2: 

0 This line identifies the listing as a directory listing. 

8 ThE~ device name and unit number. 

e ThE~ date the directory was listed. 

e The file name and file type; <UNUSED> indicates free space. 

e The~ number of blocks in the file or free space. 

e The file creation date, or blank for free space. 

e The total number of free blocks on the volume. 

e The total number of blocks allocated to files on the volume. 

5. 4. :2 Deleting R'l'-11 Files 

You can delete files from RT-11 disks or DECtapes using the Delete 
switch {/DE) with the RT-11 switch {/RT). The command string on which 
you :specify /DE/RT requires only the file specification for the file 
you are deleting. For example: 

FLX>oKl:SYSloMAC/DE/RT 

This command deletes SYSl.MAC from the RT-11 volume on DKl:. 

5.4.3 Initializing RT-11 Volumes 

You can initialize RT-11 volumes using the ZE switch with the RT 
switch. /ZE requires only the device specification for the volume you 
are initializing. For example: 

FLX>o'!1l: /ZE/RT 

This command initializes the DECtape on DTl: in RT-11 format. 

5-11 



:111111 I;;; 4 

FILE TRANSFER PROGRAM (FLX) 

When you initialize RT-11 volumes, /ZE takes an optional argument in 
the form: 

/ZE:n 

The value n specifies the number of extra words per dictionary entry. 
A directory segment consists of two disk blocks with a total of 
512(10) words. The directory header uses five words, leaving 507(10) 
words for directory entries. 

Normally, each directory entry is seven words long: two directory 
entries within each directory segment are allocated to the file 
system. Therefore, the number of entries in each segment (when no 
extra words are specified) is determined as follows: 

Directory entries = (507/7)-2 

= 72-2=70 entries 

Some RT-11 applications require extra words in the directory entries. 
(The default is no extra words.) When you specify extra words for 
directory entries (by means of /ZE:n), the number of directory entries ~, .• _ .. 
is determined as follows: 

Directory entries= [507/(n+7)]-2 

For example, 61(10) entries can be made per directory segment if you 
specify /ZE: 1. 

Use of /NU with /ZE and /RT specifies the number of directory segments 
to allocate to the RT-11 volume. The NU switch has the following 
form: 

/NU:n 

The value n specifies the number of directory segments to allocate. 
Four directory segments are allocated by default. The maximum number 
of segments that can be allocated is 37(8) or 31(10). For example: 

FLX>DTO:/ZE:2/NU:6/RT 

This command initializes the DECtape on OTO: in RT-11 format, 
allocates two extra words per directory entry, and allocates six 
directory segments. This results in a total of 54(10) directory -~-.. ,.,:_ .. 
entries, each of which is 9 words long. 

5.5 FLX TA11/TU60 CASSETTE SUPPORT 

FLX supports the DIGITAL standard cassette file structure. Files can 
be transferred to and from cassettes in either Files-11 format (/RS) 
or DOS-11 format (/DO). The transfer mode selected depends on the 
file format requirements. 

5-12 

Ulli ii ii " I:;: 



FILE TRANSFER PROGRAM (FLX) 

The file formats for Files-11 or DOS-11 cassette files are almost the 
same~~ that is, they both conform to the DIGITAL standard cassette 
file format,, The differences between the Files-11 and DOS-11 cassette 

~ file formats are as follows: 

F:iles-11 Format 

Standard level 2 

12-character file name (9-
character file name and 3-
character extension) 

Blocks of any size up to 512(10) 
bytes (128 decimal bytes default) 

Version numbers 

DOS-11 Format 

Standard level 0 

~-character file name (6-
character file name and 3-
character extension) 

128(10)-byte blocks 

No version numbers 

Files-11 cassette file format (level 2) is a superset of the DOS-11 
cassette file format (level 0). Therefore, any cassette written in 
DOS-11 format can be read in Files-11 format. The reverse of this, 
however, is true only when: 

• The Files-11 file is written with 128(10)-byte blocks 

• The extra file header data (such as version number), which 
does not appear in DOS-11 files, can be ignored 

Files-11 files and DOS-11 files can be mixed on a given cassette as 
long as you use a proper retrieval mode when you access the file. 
Files of various blocksizes can also share a given cassette. FLX uses 
the block size contained in the file labei data when reading a file. 

5.5.1 Multivolume Cassette Support 

FLX supports multivolume cassettes 
formats. No special switches are 
multivolume file is being accessed. 

5.5.2 FLX Cassette Output Files 

in both 
required 

Files-11 and DOS-11 
to notify FLX that a 

When FLX detects the physical end-of-tape for an output cassette, the 
following sequence of events occurs. 

1. FLX issues the following message: 

FLX -- END OF VOLUME ON CASSETTE 
CTn:[g,m] 

where n, g, and m specify the unit number, group number, and 
member number. 

2. The cassette is rewound. 

3. FLX issues an additional message: 

MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR) 
FLX> 

5-13 



·1n:•e 1211 : ms 

FILE TRANSFER PROGRAM (FLX) 

4. At this point, you have three alternatives: 

a. Mount the next output cassette volume and type Y, ~ 
followed by a carriage return. If you select this . 
alternative, the new cassette is rewound, FLX searches 
for the logical end-of-tape (end 0£ the last file), and 
then continues transferring data onto the tape. If FLX, 
while searching for logical end-of-tape, encounters a 
file with the same file name as the current input file, 
it displays the following message: 

FLX FILE ALREADY EXISTS 

FLX then returns to step 3 above. 

b. Mount the next output cassette volume and type z, 
followed by a carriage return. The new cassette is 
rewound, and FLX continues by transferring data onto it. 
Thus, the tape is effectively zeroed before data is 
transferred to it. 

c. Enter a carriage return to terminate the transfer. 

If you choose alternative 4c, FLX assumes that EOF is desired, and 
issues the following message: 

FLX -- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN 

This message indicates that the last input file block processed was 
not written onto the tape. 

5.5.3 FLX Cassette Input Files 

When FLX detects the physical end-of-tape for an input cassette, the 
following sequence of events occurs: 

1. FLX issues the following message, including the input file 
specification on which the end-of-tape was detected: 

FLX -- ENO OF VOLUME ON CASSETTE 
CTn: [g,m]filename.type 

where n, g, and m specify the unit number, group number and ""'1·~ 
member number. 

2. The cassette is rewound. 

3. FLX issues an additional message: 

MOUNT NEW CASSETTE: (Y, Z (OUTPUT ONLY) OR CR) 
FLX> 

4. At this point you have two alternatives: 

a. Mount the next input cassette volume and type Y, followed 
by a carriage return to continue. 

b. Type a carriage return to terminate the transfer. 

5-14 

Ji ;e z;z 



~· 

FILE TRANSFER PROGRAM (FLX) 

If you choose alternative 4a, the new input cassette is rewound, and a 
validity check is performed on the file label and sequence number. If 
the JEile label and sequence number are correct, FLX begins processing 
data from the volume. If, however, the file label and sequence number 
are not correct, FLX issues the following message: 

FLX -- FILE NOT FOUND 

The process then returns to step 3 above. 

If you choose alternative 4b, FLX assumes that EOF is desired, and the 
transfer is terminated. If the input file is being processed as a 
formatted binary or an ASCII file, a format error may occur. 

If you enter z, FLX prints the message: 

FLX -- BAD RESPONSE 

The process then returns to step 3 above. 

5.6 FLX PAPER TAPE SUPPORT 

PLX supports the standard DIGITAL paper tape devices, such as the 
PC-11 Paper Tape Reader/Punch and the PR-11 Paper Tape ~eader, as 
DOS-11 devices. 

FLX provides the ability to delimit records on paper tape for files in 
formatted binary mode or in formatted ASCII mode. Formatted binary 
records are delimited by standard DOS-11 4-byte headers and a trailing 
checksum. Formatted ASCII records that do not already end with line 
feeds or form feeds are delimited by carriage return-line feed pairs. 

FLX gives special treatment to files that normally default to image 
mode transf:ers, that is, .TSK, .OLB, oMLB, .SYS, .SML, and .ULB files. 
On output to paper tape, these files are written, by default, in 
formatted binary. When read back from paper tape to a Files-11 
volume, the! file is written with fixed-length, 512(10)-byte records as 
the default:. 

These defaults ensure that when the files are read back from paper 
tape they are in the same format as they were before being punched. 
However, the new files are not contiguous unless you specify /CO/BL:n 
with the output file specification. You must know an appropriate 
value for n (the number of contiguous blocks to allocate) before 
issuing the command. You can use PIP to create a contiguous file (see 
Chapter 4). 

The use of explicit transfer mode switches when transferring .TSK, 
.OLB, .MLB, .SYS, .SML and .ULB files between paper tape and Files-11 
volumes can cause files read back in from paper tape to be different 
from the files that were originally written out. 

5-15 



FILE TRANSFER PROGRAM (FLX) 

For FLX paper tape transfer commands, you cannot specify file names in 
the output specification. The file name entered for the input file 
~~~~~f !~ation is used as the file name for the output file. For "f' 

FLX>DKl:/RS=PR:CRTMAC.DAT/DO

This command writes a file whose file name is DKl:CRTMAC.DAT.

If you do not specify a file name on the input file specification, the
default file name is .;n where n represents the latest version number.

RSX-llM and RSX-llM-PLUS systems support paper tapes only as DOS-11
devices: you should specify /DO with paper tape file specifications.
RSX-llD supports all formats. The examples below show paper tape
specifications for input and output file specifications:

FLX>PP:/DO=CRTMAC.DAT/RS
FLX>DK:/RS=PR:CRTMAC.DAT/DO

To copy paper tapes from one paper tape to another, use the image-mode
:;!~~~e: (/IM) regardless of the format of the paper tapes. For ~

FLX>PP:/DO/IM=PR:/DO

5.7 FLX ERROR MESSAGES

Errors encountered by FLX during processing are reported on the
initiating terminal. The FLX error messages, their descriptions, and
suggested user actions are described below.

FLX -- BAD LIST FILE SPEC

Explanation: One of the following was specified:

1. More than one output file for an /LI or /DI operation

2. Wildcards in the output file for an /LI or /DI operation

User Action: Reenter the command line correctly.

FLX -- BAD RESPONSE

4

Explanation: z was entered in response to the message:

MOUNT NEW CASSETTE (Y, Z (OUTPUT ONLY) OR CR)
FLX>

The cassette in question is an input volume.

User Action: Respond with Y or CR after the message is
redisplayed.

5-16

I$! 12 It I a $21 ,.

FILE TRANSFER PROGRAM (FLX)

FLX -- CAN'T OPEN @ FILE

Explanation: The specified indirect command file could not be
opened for one of the following reasons:

• The file is protected against access.

• A problem exists on the physical device (for example, disk is
not spinning).

• The volume is not mounted or is allocated to another user.

• The specified file directory does not exist.

• The named file does not exist in the specified directory.

• The volume is not online.

User Action: Correct the condition and reenter the command line.

FLX -- CO FILES TO OUTPUT DEVICE NOT ALLOWED

Explanation: An illegal output device (for example, MT, CT, or
PP) was entered with the CO switch.

User Action: Reenter the command line without /CO specified.

FLX -- CASSETTE ERROR I/0 TERMINATED

Expla.nationi
end-of-volume
aborted.

An unexpected hardware error occurred during the
sequence on a cassette volume. The transfer was

User Action: Reenter the command line using a new cassette.

FLX -- COMMAND SYNTAX ERROR

Explanation: The command was entered in a format that does not
conform to syntax rules.

User Action: Reenter the command line with the correct syntax.

FLX -- CONFLICTING TRANSFER MODES SPECIFIED

Explc:mation: Conflicting transfer mode switches were entered.
For E~xample:

SY:=DT:FOO.OBJ/IM/FB

User Action: Reenter the command line with only one transfer
mode switch specified.

FLX -- DOS-11 OR RT-11 DEVICE NOT VALID FORMAT

Explanation: The device specified with /DO has an incorrect
DOS-11 file structure, or the device specified with /RT has an
incorrect RT-11 file structure.

User Action: Correctly identify the file structure on each
volume, and reenter the command line.

5-17

·11111 iii ill !!(!!

FILE TRANSFER PROGRAM (FLX)

FLX -- DT: UFD FULL

Explanation: The DECtape directory is full.

User Action: Clean up the directory by deleting all unnecessary
files.

FLX -- END OF VOLUME ON CASSETTE
MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)

Explanation: Physical end-of-tape was encountered durinq a
cassette transfer. The tape is rewound, and you are asked to
mount the next cassette.

User Action:
performed1
performed.

See Section 5.5.2 if an output transfer is being
or Section 5.5.3 if an input transfer is bein~

FLX -- ERROR DURING DIRECTORY I/O

Explanation: One of the following conditions may exist:

1. The volume is not write-enabled.

2. The DO, RT or RS switches were incorrectly specified.

3. The volume is not of the proper format.

4. A hardware error occurred during a directory I/O operation
(that is, bad tape).

User Action: The following responses correspond (by number) to
the conditions listed above.

1. Write-enable the volume.

2. Respecify /DO, /RT, or /RS correctly.

3. No recovery is possible with the volume currently mounted.
Mount a volume that is in the proper format, and retry the
operation.

4. Retry the operation.

FLX -- FILE ALREADY EXISTS

Explanation: The specified output file already exists on the
output device.

User Action: Reenter the file specification using a new or
corrected file name.

FLX -- FILE NOT FOUND

Explanation: The named file does not appear, as specified, in
the requested directory.

User Action: Retry the operation with the file name
directory correctly specified.

5-18

4 SU 24

and

St 12 h. $ 14

FILE TRANSFER PROGRAM (FLX)

FLX -- WARNING --· INPUT FILE OUT OF SEQUENCE

Explanation: A cassette rnultivolume file is being accessed out
of sequence.

User Action: This is a warning message. The transfer will
continue unless you terminate it by means of the ABORT command.

FLX -- @ FILE NESTING EXCEEDED

Explanationg More than one level of indirect command file was
specified.

User Actiong Retry the operation with only one level of indirect
command file specified.

FLX -- @ FILE SYNTAX ERROR

Explanation: A syntax error occurred in the indirect command
file specification.

User Actions Edit the indirect command file.
the corrected indirect command file.

FLX -- FMTD ASCII RECORD FORMAT BAD

or

FLX -- FMTD BINAUY RECORD FORMAT BAD

Rerun FLX using

Explanation: Either the file is corrupted, or the file is not of
the specified type.

User Action: If the file is corrupted, no recovery is possible.
If the file type is incorrect, retry the operation specifying the
correct transfer mode switch.

FLX -- ILLEGAL /BS SIZE -- USE O<N<=512. AND EVEN

Explanation: An illegal block size was specified with /BS on
cassette output.

User Action: Reenter the command line with a legal block size.

FLX -- INCORRECT # IN/OUT SPECS

Explanationg More than one input or output specification in a
command was entered where only one is allowed.

User Actionx Reenter the command line with the proper syntax.

FLX -- INVALID DgVICE

Expl•nation: A device was specified that cannot be used as an
input or output device, for example, trying to read from a line
printer.

User Action: Reenter the command line with a legal device
specified.

5-19

'
11111• 2 US! ii(

FILE TRANSFER PROGRAM (FLX)

FLX -- INVALID DOS OR RT-11 FILE SPEC

or

FLX -- INVALID RSX FILE SPEC

Explanation: The file specification does not conform to proper
syntax, or the specified operation could not be performed on the
specified device.

User Action: Reenter the file specification with the proper
syntax.

FLX -- INVALID SYNTAX

Explanation: A switch was entered that is not a valid FLX switch
or does not conform to proper syntax.

User Action: Reenter the command line with a correct switch
specification.

FLX -- I/O ERROR

Explanation: One of the following conditions may exist:

• The specified device is offline.

• A hardware error occurred (for example, bad tape).

User Action:
command line.
possible.

Ensure that the device is online. Reenter the
If a hardware error occurred, recovery may not be

FLX -- I/O ERROR DELETING LINKED FILE

Explanation: An uncorrectable error occurred while a DOS linked
file was being deleted.

User Action: No action required; the file is effectively
deleted, but the volume may be corrupted.

FLX -- I/O ERROR INITIALIZING DIRECTORY

Explanation: One of the following conditions may exist:

• The specified directory is not online.

• The specified volume is not mounted.

• A hardware error occurred (for example, bad tape).

User Actiori: Ensure that the device is online and is operable.
Reenter the command line with the required switch specified.

5-20

JS h

...,,,
I

~ .. ·--· ...
- :···-1

i

L$2 & iii

FILE TRANSFER PROGRAM (FLX)

FLX -- I/0 ERROR ON COMMAND INPUT

Explan21tion:
encountered
exits.

An unexpected error in command input
from either an indirect command file, or TI:;

was
FLX

User Action: Restart FLX.

FLX -- I/O ERROR ON FLX TEMPORARY FILE

Explanation: FLX encountered an .error condition
temporary file. FLX creates a temporary file
operations involving DOS-11 CT, DT, or MT. This
when one of the following conditions exists:

• SY: is not online and mounted.

• SY: is write-locked.

• A protection violation occurred.

• A hardware error was encountered.

with its
on SY: for

error occurs

User Action: Correct the error condition and reenter the command
line.

FLX -- I/O ERROR ON LIST FILE

Explanation: An error occurred on the output device during a /DI
or /LI sequence. There is a hardware problem with the output
device (for example, device powered down).

User Action: Correct the condition. Reenter the command line.

FLX -- OUTPUT DEVICE FULL

Explanation: The DOS-11 or RT-11 output volume does not contain
enough space for the output file.

User Action: Delete all unnecessary files and reenter the
command line.

FLX -- OUTPUT FILE SPEC NOT ALLOWED

Explanation: An output file specification was entered for a
command that does not allow one.

User Action: Reenter the command without an
specification.

FLX -- RECORD TOO LARGE

output file

Explanation: FLX detected an input record in a Files-11 transfer
that is larger than the specified or implied record size for the
file, that is, the file is corrupted.

User Action: The file in question is unusable.

5-21

'!l!ICZU!

FILE TRANSFER PROGRAM (FLX)

FLX -- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN

Explanation: The <CR> reply was given to indicate that no new
volume would be mounted when an end-of-volume was encountered on
cassette output. The block that FLX was attempting to write when
it encountered the end of the cassette has not been written1 the
output file is incomplete.

User Action: This message is informational1
required.

FLX -- WARNING -- SPECIFIED RECORD SIZE BAD, 512. USED

no action is

Explanation: The record size specified with /FA, /FB, or /IM is
not acceptable. A record size of 512(10) bytes is assumed.

User Action: This is a warning message. No action is required.

FLX --UNABLE TO ALLOCATE FILE

Explanation: No space is available on the DOS-11 or Files-11
volume for the specified file.

User Action: Delete all unnecessary files and reenter the
command line.

FLX -- UNABLE TO OPEN FILE

Explanation: A specified input or output Files-11 file could not
be opened. Possible reasons are:

• The input file does not exist.

• The volume is not mounted.

• A protection violation occurred.

User Action: Correct the condition and reenter the command line.

FLX -- UNABLE TO OPEN LIST FILE

~ ! r

Explanation: The list file cannot be opened under the specified 'i'
file name and UFD, or the specified device may not be a valid
F iles-11 volume.

User Action: Reenter the command line specifying the correct
file name and UFD.

FLX -- UNDIAGNOSABLE REQUEST

Explanation: FLX does not recognize the command line syntax.

User Action: Reenter the command line with the proper syntax.

5-22

"' &!
h I Iµ

FILE TRANSFER PROGRAM (FLX)

FLX -- /CO F'ILES FROM INPUT DEVICE NOT ALLOWED UNLESS BL: SPEC

Explanation: When transferring files from MT, PR, or CT, /CO can
only be specified when /BL is also specified.

User Ac:tion: Reenter the command line, specifying /BL.

FLX -·- * IN VERSION NUMBER NOT ALLOWED

Explanation: A wildcard was detected in the version number field
of a file specification.

User Ac:tion: Reenter the command line with all version numbers
explicitly specified.

5-23

JUI$ s; a ii ii; pl#

PART 4
FILE SPOOLING UTILITIES

i\& I I I L ii ,. ;: 2l ii mt a)!iii

CHAPTER 6

PRINT AND QUEUE UTILITY

This chapter is for RSX-llM only. Users of RSX-llM-PLUS should see
the RSX-llM-PLUS Batch and Queue Operations Manual for corresponding
information.

6.1 INTRODUCTION TO THE PRINT COMMAND AND QUEUE MANAGER

The Print command spools print jobs and places them in a queue
controlled by the Queue Manager for despooling.

The most common use of this command is printing files on the system's
line printer. Some systems may use a high-speed terminal as a line
printer. There may be more than one output device receiving jobs from
the Queue Manager.

Other likely output devices include paper-tape punches, electrostatic
plotters, or magtapes. Jobs sent to such devices are still called
print jobs because they are sent by the Print command.

In general, in this chapter, "to print" and "to despool," and
"printer" and "output device," are synonyms.

"Spool" is an acronym for Shared Peripheral Operations On-Line.
Spooling on RSX-llM is gathering output sent to an output device on a
mass-stora9e device - usually a disk ·- to be passed in an orderly
fashion to the output device. Despooling is the orderly transfer of
this output from the mass-storage device to the output deviceo

The Print command requires the presence of the Queue Manager. Not all
installations have the Queue Manager.

To be sure, check the list of installed tasks (issue the TAL command)
to see if both QMG... and PRT... are installed. If both are
installed, your system includes the Queue Manager. If only PRT ••• is
installed, your system has the serial print despooler. In this case,
you can only use the PIP /SP switch to send files to the line printer.
If neither is installed; you must use PIP to send files directly to
the line printer with a command in the form PIP LPO:=filespec. If you
use this command, you have no protection against another user issuing
the same command at the same time, in which case your output and the
other user's may be interspersed on the line printer.

If you have any doubts about the situation at your installation, see
your system management for information. Documentation on the serial
despooler appears in Appendix C of this manual. For further
information on PIP, see Chapter 4 of this manual.

6-1

PRINT AND QUEUE UTILITY

The Print command, in its simplest form,

>PRI f ilespec

places an entry in the file SY: [l,7]QUEUR.SY~. This queue entry has a
unique number and a name based on the first six characters of the file
name. The entry is placed in the default queue PRINT. When the line
printer is free, the file is despooled by the print processor and
passed by the processor to the line printer and printed. After
printing, the entry disappears from the queue file in (1,7]. Some or
all of the contents of the queue file can be displayed by using QUE
commands discussed later in this chapter.

The Print command accepts multiple file specifications and wildcards.
Files are despooled in the order given, without interruption, on the
same print processor. With wildcards, the files are despooled in the
order they appear in the UFO, as displayed by a PIP /LI command.

The Print command defines a print job for the Queue Manager. A print
job can have one or more files in it.

Switches on the Print command can specify many attributes of the print
job. These attributes include the following:

• Time the spooling is to be done

• Device to accept spooled output

• Queue priority of the job

• Restartability of the job

• Forms the job is to be printed on

• Number of lines per page

• Number of copies of each file to be printed

• Choice of deletion after spooling

Commands to the Queue Manager permit the user to display the queues or
an individual job in a queue or to modify most attributes of a job in
a queue. Users can also hold a job in a queue, release it, or remove
it from a queue.

You do not have to invoke the Queue Manager to get access to it8 The
Print command does this automatically. Commands directly to the Queue
Manager are on one line and start with QUE. Unlike other RSX-llM
utilities, the Queue Manager does not issue a QUE> prompt. The Queue
Manager can only be accessed through the one-line format. User
commands to the Queue Manager are described in this chapter. For full
details see Chapter 7 of this manual.

A number of system tasks can create printable output. The output
includes Task Builder maps, MACR0-11 assembly listings, and listings
from the high-level language compilers. These tasks are accessible
directly from MCR. These tasks follow their own rules for spooling
output, but when you request that such output be spooled, it will be
handled by the Queue Manager.

You cannot control the despooling of such output directly, as you can
through the Print command, but once the jobs appear in a queue, you
can alter their attributes through the QUE /MOD commands.

6-2

'~
I

PRINT AND QUEUE UTILITY

If the Queue Manager is not installed and the serial despooler is
installed, system tasks that create printable output work as usual.
If neither the Queue Manager nor the serial despooler is installed,
the map or listing file is created and written on the disk, but is not
printed on the line printer.

You can also use PIP, the Peripheral Interchange Program, to queue
print jobs.

The following PIP command:

PIP> NAME.TYP /SP

causies the file NAME.TYP to be queued for despooling. The print job
has a name derived from the name of the first file in the job.

You cannot control the despooling of such jobs directly, as you can
through the Print command, but once the jobs appear in a queue, you
can alter their attributes through the QUE /MOD command. ·

For information on writing user tasks to spool output, see Section
6.5.

6.2 PRINT COMMAND FORMAT

The format of the Print command is:

>PRIN11 [[ddnn:]jobname [/jsw]=filespec [/fsw [/fsw]] [,filespec [/fsw]]

ddnn:

Specifies the despool device to be used.

jobname

Specifies the name to be given to the print job.

/jsw

Specifies one or more job-related switches

Specifies the file to be spooled, in standard RSX-llM format.

f sw

Specifies one or more file-related switches.

There are defaults for most of these fields:

• ddnn: defaults to the PRINT queue.

• jobname defaults to a name derived from the first six
characters of the file name.

• filespec defaults are SY: for the device, current UFO, and
.LST for the file type.

• Switch defaults are included in the command descriptions in
Se<::tion 6. 3.

6-3

PRINT AND QUEUE UTILITY

6.3 PRINT COMMAND DESCRIPTION

The Print command passes print jobs to the Queue Manager for
despooling, as described in Section 6.1.

Multiple filespecs, separated by commas, are acceptable.
(*) are also acceptable.

Wildcards

A detailed description of each field of the Print command is provided
below.

ddnn:

Each output device is served by a device-specific queue. This
queue is named after the device it serves. Thus, LPO: has the
device-specific queue LPQO, TT21: (if set spooled) has the
device-specific queue TTQ21. To send a print job to a specific
device, include the device name in this field. The Queue Manager
directs the job to the proper queue for that device. If the file
does not exist, the command is rejected.

The device named must be set spooled or the job will not run.

If no device is named, jobs are sent to the default queue PRINT.

job name

/jsw

Job names can be from one to six alphanumeric characters. The
job is displayed in the queue under this name. The name also
appears on the job flag page. See Figure 6-1 for the layout of
the job and file flag pages.

If no job name is supplied, the name is derived from the first
six characters of the first file name in the job. If the first
file name in the job is *, then the name PRINT is given to the
job.

Each job also has a queue entry number that is displayed in the
QUEUE /LI display.

Job-related switches must be placed to the left of the equals
(=). The is required syntax if you include any job-related
switches.

All switches can be abbreviated to two characters, not counting
any preceding NO or minus -) if permitted. Switches can be
listed in any order.

A blank before the slash (I) is accepted but not required.

A description of each of the job-related switches is provided
below.

/AFter:hh:mm

iii!

The job is time-blocked in its queue until after the stated time;
hh can be from 0 to 23; mm can be from 0 to 59.

If this switch is not specified, the job is enqueued after 0:00
on the present day, that is, immediately.

6-4

I.I

·~

l$ l"''

PRINT AND QUEUE UTILITY

This switch does not set the time the job will be printed. It
sets the time after which the job is eligible to be printed. If
there are other jobs in the queue ahead of it when the specified
time arrives, these jobs are printed before your job.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/[NO]FLag

If the /FL switch is applied, each file in the job is preceded by
one ()r more file flag pages (depending on how the printer is set
up) in addition to the one or more job flag pages that precede
the entire job.

The default for files is /NOFLAG. Only job flag pages are
printed. Files are printed sequentially, separated only by form
feeds.

A SYSGEN option permits overriding the default and forcing flag
pages. If this option has been applied, it can be overridden by
setting /NOFLAG.

The job flag pages have the UIC the
under and the job name printed
characters.

Print command was
on them in large

issued
banner

The file flag pages have the file name and type printed on them
in large banner characters. See Figure 6-1 for the layout of the
job and file flag pages.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/PRiority: n

/ff Old

This switch sets the priority of the job in its queue.
can be from 0 through 250.

The default priority is 50.

Priority

The Queue Manager places jobs in the queue according to priority.
Jobs of equal priority appear in the queue in the order they were
submitted. The highest priority job is the first job processed
when the printer becomes available. Within a group of jobs of
the same priority, the one that has been waiting the longest is
processed first.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

This switch holds the job in its queue until it is released by
the QUE jobname /RElease command. See the examples at the end of
this section.

6-5

Ill i!3tl5o789<112 J115& 78'1
ll U3115&789,ll 2l115&789
912311511789111231151>78'1
Ill 23115b7A'lu 12l45b 789

C ll [11 l333ll
[l[l[I 3l33U
[l 33
[l 33
[I
[I
[I 33
[I 33
II
[I
[l 33
[l 33
ti [[[(333333
[ll I [[333333

,.,,,,,,,,,, Itllll ,.,,.,,,,,,,, 111111 ,,. 11 ,,,. II ,,, ll ,., II ,,,,,,.,,,, II ,,,,,,,,, 11 ,, II ,,,. 11
FF II ,,,. II ,,, II 1111 ,, 111111

8123115b7890 l23115&7H
"12311511789012311511789
812345117891! 12345&789
ll I U11'36 7&9012345678•

1111231151178'1! I "3456789
81UllS6789;.112311S&789
1111234'511789~ 123456 789

,,,,.,.,,,,,,, IIIIl I
""'rf'l'Fl'FF 111111 ,,,. II ,.,, 11 ,,, II ,,, II ,.,,,.,.,,.,.,, II ,,,,,,,.,,. II ,.,, II ,,,, II ,.,. II ,.,. II ,.,, 111111 ,,,. 111111

HS HHS WW
USHSU WW .. WW

SS WW
II
SS WW

SS SS SS WW
HUSS WW

SS WW WW

SS "" WW

:u
ll
33
l3

33
33
33
33

WW
WW
WW
WW
WW
WW
WW
WW
WW
WW

SS wwww wwww
SS wi.ww wwww

ssssssss
uuuss

111123115678•" 1231151178•
8123115117891! I i!345b789
11112345678914 I i!34Sb789

"a::z

""

PRINT AND QUEUE UTILITY

** RSX•l IM V3,2 **
RO•tl" n.z ••

•• RSX•ttH v3,z ••
•• RSx•11H v1,2 ••

l3;ii3,5J~ISt< •NO PAGE LIMIT
FOllM ll<) • /loORMAL MAMD~ARE FURH8
··o IHPL!fO rnRH FEED
11~01 [303,S)F!$H,S•M1 I

l'lil01/10il 333333 5555555555
1111001hl 333333 5555555555

1!0 110 33 33 55
II~ 0k' 33 33 55
l!hl 001111 33 555555
03 0111!0 33 555555
011 00 (.I~ 3J ,,,, 55

"" ""' Ill• 33 ,,,, 55
0000 0il 33 55
031!0 110 33 55

"" "" 33 33 55 55
00 00 H 33 55 55

11000011 333333 555555
01!0000 33333J 555555

ssussss Ht< HM
ssnssss Ht< HM

SS HI< HM
SS HM HM
SS HM HH
SS MM HM

SSS SSS HHHHHMHl'IHH
SSS SSS MHMHHHHl'IHH

u MH HH
SS HH HH
SS HH HM
SS HH HH

ssssssss HH HH
sssssssa HH HH

** ~SX•llM V3,2 **
** RSX•ll" V],2 **
•• l!SX•11H v3,z ••

l3111315l'!St- • NO PAGt LlMIT

** l!SX•llH VJ,2 **

RSX•t IM V3o2
RSX•ll~ V3o2
RSX•llM V3,2

SS88SSSS
snsssss

sa
SS
SS
SS

HH
HM
HI'!
HH
HM
HH

FOR" 10 • "'0RMAI. HARDWARE P'ORMI
NO IMPLIED FORM FEED
L'Bl'll [30315JFISt<,SWH1I

0801 [303,SI F!St<,SWMI I
~ QPY l OF I
DELETION NOT SPECIFIED

HM
Ml'!
HH
HH
HH
HH

USS SS 'IHHHHHHHHH
suns HHHHHHHHHM

SS HM
SS HM
SS HH
SS HM

ssussss HM
ussuas HI<

HH MM
MM HM
MHMM MMMM
MMHH HHHM
HM MM MM
MM MM ""' "'" H'I

""' MM
MM MM
MM HM
l'M MM
HM MM
MM MH
MM MM

** ASX•l IH VJ,2 **
** llSX•llH VJ.2 **
u llSX•llM V3o2 **

HH
HH
HH
HH
HI'!
HH

"" II

"" II

"" 1111

'"' 1111
II
II

"" II

"" II
111 I II

'"' II

" II ,, II

" 111111

" 111111

0801 [l0l,SJF1SH,SwH1I
COPY l OF I
liELETION "'OT SPECIFIEO

25•MAY•79
i!S•HAY•7'
i!5•MAV•79
25•MAV•79

l JI 1 l I
I II l l I

ll
II
ll
JI
ll
JI
II
ll
JI
IJ

l JI 111
llllll

i!S•MAY•7•
25•MAY•79
i!S•MAY•79
i!5•MAY•79

i!5•HAY•79
i!5•MAY•79
i5•MAY•79

25•HAY•79
25•MAY•7'
25•11AY•79

131111 lli
131111132
131111132
1314111 Ji!

UlllllU
UlllllJ2
IJlllllJ2
IJl4113i!

131111135
l3111llJ5
13141135

l31lll1l5
UllllllS
131111135

IUJllS6'7 .. llUllU7 ..
IUJli5'7lt111:SiSi7H
llUS4U78tllU4Sii7 ..
11U~Sli?it11U4Si7H

111u11s.1n112s11n11t
llU4Sli71911U4Sii7H
llUJ4SOit112J4Si?H

Figure 6-1 Job Flag Page and File Flag Page

6-6

~
I

~

~

s:::

PRINT AND QUEUE UTILITY

/LEngth:n

This switch sets the number of lines per page. Length can be ~et
from 1 through 65535. When this switch is applied, the print
processor issues a form feed if one is not encountered within n
lines. A form feed causes the line printer to move the paper
down to the beginning of the next form. Form length is
determined by the hardware and the print processor software.

The default is a page of infinite length.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/FOrm:n

This switch sets the forms setting that an output device must
have to accept the job. Your system manager has information on
which forms used in your installation take which numbers. If
this switch is set, the job waits until a printer with the
matching forms setting is available.

The default n is O, which is the standard line-printer setup in
most installations.

This switch is used to print jobs
checks, invoices, or other
installation.

on special forms,
special forms used

such as
in your

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/[NO]REstart

This switch makes the job restartable [or not]. If /RE is
specified and the job does not complete its run for some reason,
when the system, or print processor, or Queue Manager is
restarted, the job is restarted from the beginning of the first
file in the job.

/NOREstart is the default. If the job's run is interrupted, it
is restarted at the top of the file that was being despooled at
the time the job was interrupted.

In no case is any job or part of a job lost, but if you set the
switch, the job will be all in one piece.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

filespec[s]

Users can print any file to which they have Read access.

The usual rules on wildcards and defaults apply, except that the
default file type is .LST.

Multiple filespecs must be separated by commas.

Files cannot be renamed or deleted before they are printed.
Files must have the same name and type, be on the same volume,
and reside in the same directory from the time they are placed in
the queue until they are despooled.

6-7

·u11 22122

/f sw

PRINT AND QUEUE UTILITY

If the files are on a volume on a medium mounted on a private
device, the volume cannot be removed or dismounted before the
files are despooled. If the volume is dismounted, the print job
remains in the queue and the flag pages are printed, with an
error message noting a failure to open the file.

File-related switches can follow any filespec in the command
line.

File-related switches are applied to all filespecs that follow
the f ilespec to which they are attached unless overridden. See
the examples at the end of this section.

All switches can be abbreviated as indicated, not counting any NO
or minus (-) if permitted. Switches can be listed in any
order.

/COpies:n

This switch sets the number of copies of the file to be
despooled.

If applied to multiple filespecs, each file is printed n times
before any copies of the next file are printed. That is, this
switch does not queue up two copies of the entire job, it only
determines how many copies of each file are to be made.

If you do not specify this switch, the default n is 1.

/[NO]OELete

This switch directs the Queue Manager to delete the file from its
UFO after it is despooled.

NOOELete is the default.

Examples

4

>PRINT JAM

The most recent version of JAM.LST from the default device and
UFO goes in the default queue PRINT taking all defaults.

>PRINT /FLAG=PAUL.MAC,ALAN.MAC,TOM.MAC

The files named go to the default queue PRINT as one print job.
They are printed in the order listed. The job name is PAUL. The
name appears on the first flag page along with the UIC the Print
command was issued under. Each individual file is preceded by
file flag pages with the file name, file type, and version
number. Any command including a job-related switch, such as
FLAG, must include the equals (=).

>PRI /FL=PAUL.MAC,ALAN.MAC /C0:2,TOM.MAC

The Print command defines a single print job consisting of one
copy of PAUL.MAC, followed by two copies of ALAN.MAC, and two
copies of TOM.MAC. Each copy of each file is preceded by flag
pages.

6-8

I Qt! i I :; (Jj411¢1

PRINT AND QUEUE UTILITY

>PRI /FORM:2 /PRIORITY:75=PAYROLL

The job name is PAYROL. It has a priority of 75, but it will not
be despooled until an output device with the proper
forms - paychecks in this case is available. The file is
PAYROLL.LST.

>PRI INDEX /AFTER:l6:00=CHAP1.NDX,CHAP2.NDX,CHAP3.NDX,CHAP4.NDX

The job is named INDEX. It is time-blocked in the PRINT queue
until after 4:00 pm. At that time, it is placed in contention
for the pr~nter, but the time it will be printed depends on what
else is in the queue when INDEX is released. This is the
equivalent of issuing the same Print command at exactly 16:00.

6.4 QUEUE MANAGER COMMAND FORMAT

The format of commands to the Queue Manager is

>QUE job-id /switch[:option]

The job identification (job-id) can be either the name assigned to the
job at the time of submission or the unique entry number assigned the
job by the Queue Manager and displayed by the QUE /LI command.

The entry number is displayed in the form (nl,n2).
commands in the form JOB:nl:n2.

Queue Manager commands allow the nonprivileged user to

• List queue entries in various format~

• Modify attributes of jobs after submission

• Hold jobs in a queue

• Release held jobs

• Delete jobs f r~m a queue

All Queue Manager commands are in single-line format.

6.4.1 QUEUE /LIST Command

It is used in

This command is used to list the queue entries. Unless you specify
options, or name an output device, only jobs in the default queue
PRINT are displayed.

The display also shows which output devices queues are assigned to.

Forn1at

>QUE job-id /sw[:option]

Switches

/BRief
/LI st
/FUll

Options

:QUE
:ALLQUE
:DEV
:ALLDEV

6-9

PRINT AND QUEUE UTILITY

Job Identification Field

There are three ways you can specify the contents of this field.
Details on each are provided below.

[ddnn: [uic]]jobname

The job name alone is sufficient identification if the job is
from the same UIC you are logged in to and if you have not
specified a device in your Print command. Although the UIC is
optional, the brackets around the UIC must be included if you
include the UIC in the command line. If you wish to display only
entries queued to a particular output device, name the output
device in the command. Each output device has a queue named
after it (device LPO: has queue LPQO). When you name the
device, you are specifying the queue whose contents you wish to
display.

/JOB:nl:n2

[uic]

Note that the display format and
entry number are different.
I JOB: nl : n2 •

the command format for this
Display: (nl,n2). Command:

This form of job identification displays all jobs in queues from
a particular UIC.

Switches

/BRief

The brief format displays only the job names, the UIC from which ~-·
the Print command was issued, the queue entry number, and the

/LI st

/FUll

il!llZ ii JU

status of the job. Jobs can be ACTIVE, HELD, PRINT AFTER
(time-blocked), or waiting. A blank status field indicates a
waiting job.

The standard format displays job names, the UIC from which the
Print command was issued, the queue entry number, the status of
~~~-job, and the filespecs of all files necessary to complete the '1'11 
If you have not specified restartability in 
only the file being printed and any 
displayed. 

the Print command, 
remaining files are 

If you have specified restartability, then all files in the job 
are displayed. 

The full format displays job names, the UIC from which the Print 
command was issued, the queue entry number, the status of the 
job, the filespecs of all files necessary to complete the job, 
and all attributes of the job, whether set explicitly or by 
default. 

6-10 

4 14 



PRINT AND QUEUE UTILITY 

Opti~ons 

:QUE 

This is the default. 
PRINT. 

Displays entries in the default queue 

:ALLQUE 

:DEV 

Displays all entries in all queues. 

Displays characteristics of a device. If you have not specified 
a device in the job-identification field of the command line, you 
will get an error message. 

:ALLDEV 

Displays characteristics of all spooled devices. 

Examples 

>QUE /LIST 

** PRINT QUEUES ** 
PRI.NT => LPO: 

[304,303] SCNDIR (20000,126) 
DB0:[304,303]SCNDIR.LST;l74 

[7,372] RELABE (2100,130) 
DB0:[7,372]RELABEL.FL0;2 

ACTIVE ON LPO: 

This example displays all the jobs in the default queue PRINT. 

The display shows the line printer to which the queue is 
assigned. 

For each job in the queue, the display shows the UIC from which 
the Print command was issued, the job name (based on the name of 
the first file in the job), a unique queue entry number, the 
status of the job, and the filespecs for all files in the job. 

The job named SCNDIR is active, as shown. The job named RELABE 
is waiting, as indicated by a blank status field. Status field 
may also show HELD jobs and PRINT AFTER (time-blocked) jobs. 

>QUE /LIST:QUE 

** PRINT QUEUES ** 
PRINT => LPO: 

[304 ,303] SCNDIR ( 2000 ,126) 
DB0:[304,303]SCNDIR.LST;l74 

[7,372] RELABE (2100,130) 
DB0:[7,372]RELABEL.FL0;2 

This example is the equivalent 
option :QUE is the default 
queue PRINT are displayed. 

6-11 

of the 
option. 

ACTIVE ON LPO: 

previous example. The 
Only jobs in the default 



d 2$11 U22 SQ 

PRINT AND QUEUE UTILITY 

>QUE LPl: /LIST 

** PRINT QUEUES ** 
LPQl => LPl: ACTIVE ON LPl: 

[303 ,5] IZZY ( 2400 ,132) 
DB0:[303,5]IZZY.TXT;l 

This example displays queue LPQl, which is assigned to printer 
LPl:. The user specified this queue by naming the printer in the 
QUE /LI command. 

>QUE PRTJOB /LIST /FU 

** PRINT QUEUES ** 
PRINT => ( LPl:) 

[301,370]PRTJOB (2140,162) FORM:O 
PRI:50 LEN:O PAGE:O NORESTART NOFLAG 

DB0:[301,370]PRTJOB.TXT;22 COP:l NODELETE 

This example displays in full mode information about the job 
named PRTJOB from the default queue PRINT. 

The display shows all attributes of the job, either explicitly 
set or set by default. 

NOTE 

Parentheses around the line printer name 
mean that the printer has been stopped 
by the Queue Manager at the operator's 
request. 

>QUE [301,370 /BR 

** PRINT QUEUES ** 
PRINT=> LPO: 

[301,370]DUNGEO (2200,116) 
[301,370]RUNOFF (1320,660) 

ACTIVE ON LPO: 
HELD 

This example displays in brief mode all the jobs 
(301,370] in the default queue PRINT. No 
displayed. 

>QUE /LI :ALL 

** PRINT QUEUES ** 
PRINT => LPO: 

created under 
f ilespecs are 

[7 ,372] RELABE ( 2100 ,130) 
DB0:[7,372]RELABEL.FL0;2 

[7,372] LPDRV (2000,134) 
DB0:[7,372]LPDRV.MAC;2 

LPQO => LPO: 

ACTIVE ON LPO: 

HELD 

~ I. 

~ I 

[222,333] CORFIL (2200,136) 
DB0:[222,333]CORFIL.COR;4 

PRINT AFTER 18-DEC-78 17:00 

This example displays all the jobs in all the queues. All jobs 
are displayed because there is no job identification given. All 
queues are displayed because :ALL is specified. 

6-12 

!!!!!$ Liii! Ji iii I . " !Si&liiii 22 4:; 



PRINT AND QUEUE UTILITY 

>QUE /FU :ALL 

** PRINT QUEUES ** 
PRINT=> LPO: 

[7,372] RELABE (2100,130) FORM:O ACTIVE ON LPO: 
PRI:50 LEN:O NORESTART FLAG 

DB0:[7,372]RELABEL.FL0;2 COP:l NODELETE 
[7,372] LPDRV (2000,134) FORM:O HELD 

PRI:50 LEN:55 PAGE:O NORESTART NOFLAG 
DB0:[7,372]LPDRV.MAC;2 COP:SO NODELETE 

LPQO => LPO: 
[222,333] CORFIL (2200,136) FORM:l PRINT AFTER 18-DEC-78 17:00 

PRI:lOO LEN:O PAGE:O RESTART NOFLAG 
DB0:[222,333]CORFIL.COR;4 COP:l DELETE 

This example displays in full format all the jobs in 
queues. All jobs are displayed because there is 
identification given. All queues are displayed because 
specified. 

>QUE LP: /LI:DEV 

** SPOOLED DEVICES ** 
LPO: <= PRINT LPQO 

.FORM: 0 FLAG : 1 
CURRENT JOB: [7,2]SYSXTN (2000,127) 

all the 
no job 

:ALL is 

This example displays all spooled devices, shows queue 
assignments to them, and shows the attributes of the devices. 

If there is no current job on a device, the current-job line does 
not appear. 

6.4.2 QUE /MOD Command 

This command is used to modify the attributes given to queue entries 
by the Print command. Only the attributes listed here can be 
modified. 

Form.at 

>QUE job-id /MODify /sw 

Switches 

/AFTER:hh:mm 
I [NO] li'LAG 
/LEngt.h:n 
/PRiol'i ty: n 
/FOrm:n 
/[NO]REstart 

6-13 



. lllSSSS!iiil iii!) 

PRINT AND QUEUE UTILITY 

Job Identification Field 

There are two ways you can specify the contents of this field. 'i': __ --. 
Details on each are provided below. 

[ddnn: [uic]]jobname 

The job name alone is sufficient identification if the job is 
from the same UIC you are logged in to and if you have not 
specified a device in your Print command. Although the UIC is 
optional, the brackets around the UIC must be included if you 
include the UIC in the command line. 

/JOB:nl:n2 

Note that the display format and 
entry number are different. 
I JOB: nl : n2 • 

Switches 

the command format 
Display: (nl,n2). 

for this 
Command: 

Switches name the attribute to be modified. All sw~tches can be "'i"i-'-'-
abbreviated as indicated, not counting any NO or - if permitted. 

The QUE /FU commands display attribute information. The Print 
command description includes a discussion of the meaning of each 
attribute. 

/AFter:hh:mm 

Modifies the time after which the job is to be despooled. 

/[NO]FLag 

Modifies the FLAG attributes of the job. 

/LEngth:n 

Modifies the LENGTH attribute of the job, which is the number of 
lines to the page. 

/PRiority:n 

Modifies the queue priority ot the job. 

/FOrm:n 

Modifies the FORM attribute of the job. 

/[NO]REStart 

Modifies the RESTART attribute of the job. 

6.4.3 QUEUE /HOLD Command 

This command holds a job in its queue. The job will not be despooled. 

Format 

>QUE job-id /HOLD 

6-14 

;;; a I 



PRINT AND QUEUE UTILITY 

Job Identification Field 

There are two ways you can specify the contents of this field. \..I Details on each are provided below. 

[ddnn: [uic]]jobname 

The job name alone is sufficient identification if the job is 
from the same UIC you are logged in to and if you have not 
specified a device in your Print command. Although the UIC is 
optional, the brackets around the UIC must be included if you 
include the UIC in the commmand line. 

/JOB:nl:n2 

Note that the display format and the command format 
entry number are different. Display: 
Command: /JOB:nl:n2. 

/HOLD 

for this 
(nl,n2). 

The job is held in its queue. The job remains in its queue, but 
is not eligible for processing. The effect is the same as the 
/HOLD qualifier to the Print command. 

You cannot hold an active job. An active job is a job currently 
being printed. 

Exam:ples 

>QUE BIGJOB /HOLD 

The job named BIGJOB from the default device and UIC is held in 
the PRINT queue. 

>QUE LP1:[303,5]LILJOB /HOLD 

The job named LILJOB from UIC [303,5] is held in the queue for 
LPl:. This queue is named LPQl. 

~ 6 • 4 • 4 QUEUE /RELEASE Command 

This command releases held jobs from their queues. The job to be 
released must be marked HELD. You cannot release PRINT AFTER jobs 
with this command~ You must use QUE /MOD /AFTER to release such 
time-blocked jobs~ 

Format 

>QUE job-id /RELease 

6-15 



22 41 

PRINT AND QUEUE UTILITY 

Job Identification Field 

There are two ways you can specify the contents of this field. 
Details on each are provided below. 

[ddnn: [uic]]jobname 

The job name alone is sufficient identification if the job is 
from the same UIC you are logged in to and if you have not 
specified a device in your Print command. Although the UIC is 
optional, the brackets around the UIC must be included if you 
include the UIC in the command line. 

/JOB:nl:n2 

Note that the display format and the command format 
entry number are different. Display: 
Command: /JOB:nl:n2. 

for this 
(nl,n2). 

Switch 

/RELease 

Releases a held job making it eligible for processing. This is 
equivalent to placing the job in its queue. The job must still 
wait its turn to be despooled. 

Example 

>QUE READY /REL 

The job named READY from the default device and UIC is released 
from the held state and is eligible for processing. 

>QUE LATER /REL 
QUE -- JOB DOES NOT EXIST 

The user attempted to release a PRINT AFTER (time-blocked) 
The job exists, but no HELD job of that name exists. 

6.4.5 QUEUE /DELETE Command 

This command deletes print jobs from queues. 

job. 

It does not delete files from directories. It has no connection to 
the PIP /DE or PRINT /DE command switches. 

Format 

>QUE job-id /DELETE 

6-16 

I u:; ).! t;UP 



PRINT AND QUEUE UTILITY 

Job Identification Field 

There are two ways you can specify the contents of this field. 
Details on each are provided below. 

[ddnn: [uic]]jobname 

The job name alone is sufficient identification if the job is 
from the same UIC you are logged in to and if you have not 
specified a device in your Print command. Although the UIC is 
optional, the brackets around the UIC must be included if you 
include the UIC in the command line. 

/JOB: nl: n2 

Note that the display format and the command format 
entry number are different. Display: 
Command: /JOB:nl:n2. 

Switch 

/DELETE 

for this 
( nl ,·n2) • 

Deletes the specified queue entry. If the job is active at the 
time the command is issued, the output ceases and the queue entry 
is deleted. 

Exa1mple 

>QUE BADJOB /DELETE 

The job named BADJOB from the default device and UIC is deleted 
from the default queue PRINT. 

6.5 PRINT JOBS QUEUED BY USER TASKS - OUTPUT SPOOLING 

There are two means of spooling output from user-written tasks. The 
first is from within the task: 

• Open a file on disk and use PRINT$ macro or .PRINT subroutine 
using FCS. 

Because the line printer (or other output device) is attached and 
owned by its despooling task (print processor), you cannot attach and 
write logical blocks to the device. The Write Logical Blocks 
operation fails and an Attach operation does not complete. Thus, you 
cannot in your user program issue an ALUN$ directive and expect QIOs 
to that LUN to work. If you wish to use this procedure, you must set 
the device unspooled by deleting the processor. An unspooled device 
is not accessible by the Queue Manager. 

You cannot control the despooling of jobs queued with the PRINT$ macro 
or .PRINT subroutine directly, as you can through the Print command. 
Once the jobs appear in a queue, however, you can alter their 
attributes through the QUE /MOD command. 

The alternate method of spooling output is from outside the task: 

• Open a file on disk and use the Print command on task exit. 

This is the only means of spooling output that gives you full control 
over how, when and where your output is despooled. 

6-17 



q 

PRINT AND QUEUE UTILITY 

6.5.l Opening A File On Disk and Using FCS 

Your task should open a file on disk and output to it. The task can ·~.l 
then issue the PRINT$ macro call or call the .PRINT subroutine to . . 
close the file and spool the output. 

The file is placed in the default queue PRINT. 

In FORTRAN, the equivalent is to use DISP= 'PRINT' in your OPEN or 
CLOSE statement. 

You cannot control the despooling of such output directly, as you can 
through the Print command, but once the jobs appear in a queue, you 
can alter their attributes through the QUE /MOD commands. 

See Chapter 8 of 
more information 

Reference Manual for 

6.5.2 Opening A File On Disk and Using the Print Command 

Your task should open a file on disk, output to it, and close it. 
Once your task exits, despool the file with the Print command. 

While this is not the simplest method of spooling, it is the only 
method that gives you access to the qualifiers on the Print command. 
You can accomplish much the same thing using the other method by 
waiting until the job is in the queue and then altering its attributes 
with the QUE /MOD command. 

If you run your task from an indirect command file that includes a 
Print command after task exit, the difference between spooling from 
within the task or from outside it will probably not be noticeable. 

6.6 ERROR MESSAGES 

Error messages from the Queue Manager may be preceded by the letters 
PRI or QUE, depend1ng on where within the software the error detection 
takes place. Here is how they appear on your terminal: 

PR! NO SUCH FILE 

QUE NO FUNCTION SPECIFIED 

The PRI and QUE identifiers are not used in this section. When you 
receive an error message such as those above, look for the message 
portion (NO SUCH FILE or NO FUNCTION SPECIFIED in the examples above). 
The message portion of each error message appears in alphabetical 
order in this section along with a description of the error that 
produced the message and a suggested correction. 

If you issue a QUE /LI (or /BR or /FU) and only a prompt is returned, 
this means no queue file exists on your system. 

In most cases, the error will be a typing mistake or other syntax 
error. In a few cases, you will be directed to inform your system 
manager of the error. 

6-18 

""' .•. I [, 

·~ 
i 

Si ii I iii !iii! I !$$$ iiiii 44 



PRINT AND QUEUE UTILITY 

BAD COMMAND LINE 

Explanation: Invalid MCR line, or invalid syntax in Print or QUE 
command. 

User Action: Retype command line. 

BAD FILE SP.EC SWITCH VALUE 

Explanation: Bad value for file switch (/CO). 

User Action: Retype command line after checking switch value. 

BAD JOB SWITCH VALUE 

Explanations Bad value for job switch (/AF, /FO, /LE, /PR). 

User Action: Retype command line after checking switch value •. 

'-'/ BAD MODIFY VALUE 

Explanation: Bad Modify switch value. 

User Action: Retype command line after checking switch value. 

BAD SWITCH TYPE 

Explanation: Bad ASCII switch value (QMG, EOF, etc.). 

User Action: Retype command line after checking switch type. 

BAD SWITCH VALUE 

Explanation: Bad numeric switch value. 

User Action: Retype command line after checking switch value. 

BAD SWITCH FOR FUNCTION 

Explanation: The switch specified is not allowed for this 
function. 

User Action: Retype command line after checking switch type. 

DEVICE/QUEUE DOES NOT EXIST 

Explanation: Command directed to device or queue not controlled 
by QMG. 

User Action: QUE /LI:ALLDEV lists all devices. 
lists all queues. 

DIRECTORY NOT ALLOWED 

Explanation: UIC not allowed on this command. 

User Action: Retype command line without UIC. 

6-19 

QUE /LI:ALLQUE 



!ill 

PRINT AND QUEUE UTILITY 

ILLEGAL ARGUMENT VALUE 

Explanation: The argument value is not valid. 

User Action: Retype command after checking syntax. 

QMG ERROR ( n) 

Explanation: Command in error or QMG task in error. 

User Action: Look up n on list. If QMG task is in error, n will 
help pinpoint error. See your system manager. Retype command. 

n 

63. 
68. 
69. 
71. 
72. 
73. 
84. 
91. 
9 2. 

100. 
104. 
105. 

QE.BSN 
QE .QMD 
QE .SMD 
QE.SDF 
QE.TYP 
QE .JEA 
QE.RED 
QE. IDB 
QE.BQN 
QE .NVT 
QE. I ID 
QE.INM 

Meaning 

BAD PROCESSOR NAME 
QUEUE MARKED FOR DELETE 
PROCESSOR MARKED FOR DELETE 
PROCESSOR DIRECTORY FULL 
QUEUE AND PROCESSOR NOT SAME TYPE 
JOB EXISTS ALREADY. 
SPOOLED DEVICE REDIRECTED 
INTERMEDIATE DEVICE BUSY - TRY AGAIN 
BAD QUEUE NAME 
VIRTUAL TERMINALS NOT SUPPORTED 
ILLEGAL OR NON-EXISTENT INTERMEDIATE DEVICE 
INTERMEDIATE DEVICE NOT MOUNTED 

INVALID FILE SPEC SYNTAX 

Explanation: Invalid syntax in a filespec. 

User Action: Retype command line after correcting f ilespec. 

INVALID ENTRY NUMBER 

Explanation: Invalid syntax for entry number. 

User Action: Retype command after correcting entry number. The 
display format and the command format for entry number are 
different. Display: (nl,n2). Command: /JOB:nl:n2. 

INVALID JOB SYNTAX 
Preceded by PR! 

Explanation: 

• Invalid syntax in the job field 

• Wildcards in job name 

• Multiple job fields 

• UIC present 

• Bad terminator for job name ( = or I are the only legal 
terminators) 

User Action: Retype command line after checking proper syntax. 

6-20 

I h iil!i !LU 'C4 ii lid! i!i!ilili ct 

~ 
I 

42 iifkl 



PRINT AND QUEUE UTILITY 

Preceded by QUE 

Explanation: 

• Invalid syntax in the command 

• Invalid job name 

• Both job name and entry number specified 

• Neither job name nor entry number specified 

User Action: Retype command line after checking proper syntax. 

I/O ERROR ON SY:QUEUE.SYS 

Explanation: Error encountered reading the queue file. 

User Action: See your system manager. 

JOB DOES NOT EXIST 

Explanation: 
current UIC 
command. 

Specified job does not exist in queue under the 
and the status (example, HELD) that you supplied in 

User Action: Retype command after checking job status and job 
identification with QUE /LI. 

JOB NAME NOT ALLOWED 

Explanation: Job name or other form of job identification not 
allowed on this command. 

User Action: Retype command line after checking proper syntax. 

MULTIPLE FUNCTIONS DETECTED 

Explanation: More than one function specified. 

User Action: Retype command line after checking proper syntax. 

MUTUALLY EXCLUSIVE SWITCH/VALUE 

Explanation: Function value and switch mutually exclusive. 

User Action: Retype command line after checking proper syntax. 

NO E'ILE NAME GIVEN 

Explanation: No file name given in a file spec. 

User Action: Retype command including file name. 

6-21 



. 'Ill• Jiiiiii I 

PRINT AND QUEUE UTILITY 

NO JOB FIELD GIVEN 

Explanation: The command syntax requires a job field. 

User Action: Retype command line after checking proper syntax. 

NO FUNCTION SPECIFIED 

Explanation: No function specified in command line. 

User Action: Retype command line after checking proper syntax. 

NO POOL SPACE 

Explanation: Dynamic storage region has been exhausted; the 
system is either heavily loaded or there is a system problem. 

User Action: See your system manager. 

NO SWITCH(ES) ALLOWED 

Explanation: The command syntax does not allow switches. 

User Action: Retype command line after checking proper syntax. 

NO SUCH COMMAND 

Explanation: QMGCLI installed and run under wrong name. 

User Action: See your system manager. 

NO SUCH FILE f1lespec 

Explanation: Print command named nonexistent file. 
message displays filespec given. 

User Action: Retype command line after correcting 
Default file type for Print command is .LST. 

NO SWITCHES ALLOWED 

Explanation: Switches not allowed with this command. 

Error 

filespec. 

User Action: Retype command line after checking proper syntax. 

PRIVILEGED COMMAND 

iii!j ii ii.I I.( 

Explanation: Command reserved for privileged users: 
/START, /STOP, /SPOOL, /PUBLIC, /NOSPOOL, /NOPUBLIC, 
/MODIFY, /HOLD, /RELEASE, /DELETE on another UIC. 

User Action: See your system manager. 

6-22 

22 I. I ii I I Id i 5ii II ii a:: u r4 : 



PRINT AND QUEUE UTILITY 

QUEUE DIRECTORY FULL 

Explanation: All devices and queue slots full in queue. 

User Action: See your system manager. 

QUEUE FULL 

Explanation: The queue file is saturated; your job cannot be 
queued. 

User Action: Enter the command again later, check the queue with 
QUE /LI, and see your system manager. 

QUEUE/DEVICE NOT ALLOWED 

Explanation: Command syntax does not allow a queue or device to 
be named. 

User Action: Retype command after checking proper syntax. 

QUEUE/DEVICE NOT SPECIFIED 

Explanation: Command syntax requires a queue or device to be 
named. 

User Action: Retype command after checking proper syntax. 

QMG MARKED FOR EXIT 

Explanation: Attempt to spool after /STOP:QMG issued. 

User Action: Wait or see your system manager. 

REQUEST FAILURE ON PROCESSOR TASK 

Explanation: Device despool task failed to start. 

User Action: See your system manager. 

UIC NOT ALLOWED 

Explanation: The command syntax does not include a UIC. 

User Action: Retype after checking proper syntax. 

6-23 



;a sue ti$ q; a )! 44 



CHAPTER 7 

THE QUEUE MANAGER 

This chapter is directed to the system manager or operator who is 
setting up and running the Queue Manager on an RSX-llM system. (For 
RSX-llM-PLUS systems, see the RSX-llM-PLUS Batch and Queue Operations 
Manual.) Except where noted, all commands in this chapter are 
pr!Vfieged. 

Most systems include the Queue Manager for the convenience of 
multistream line printer spooling. If not, the serial despooler, 
PRT ••• , can be installed instead. Note that the Queue Manager 
includes QMGPRT, which installs as PRT ••• , to intercept output from 
the PIP /SP switch and other utilities and system tasks. 

The RSX-llM V3.2 Queue Manager consists of three components: 

1. A command line interpreter (CLI) which processes both print 
requests and queue access commands as described in Chapter 6 
of this manual. CLI communicates with the Queue Manager by 
sending data packets to it describing the print job. 

2. The Queue Manager (QMG), which controls the queueing and 
dequeueing of print jobs. QMG communicates with CLI and the 
despooler tasks to process print jobs. 

3. The despool prototype task (LPP). This task attaches a 
device and despools print jobs to it. A task must be 
installed for each device to be used as a despool device with 
the task name ddPn, where dd is the generic device name and n 
is the unit number. A despool device is a device under the 
control of QMG. 

"Spool" is an acronym of Shared Peripheral Operations On-Line. 
"Spooling" on RSX-llM is gathering output sent to the line printer on 
a mass storage device - usually a disk - to be passed in an orderly 
fashion to the line printer. "Despooling" is the orderly transfer 
from the mass storage device to the line printer. 

CLI takes a Print command and interprets the print request it 
specifies. The information is sent to QMG which creates a print job 
consisting of the names of the files to be ·printed and the attributes 
of the job. The print job entry is placed in a print queue kept in 
the disk file SYO:[l,7]QUEUE.SYS. Queues are assigned to despool 
devices which are controlled by despool tasks. When a despool device 
is idle the Queue Manager selects the next job in the queue(s) 
assigned to its device and processes it. Finally the queue entry is 
deleited. 

7-1 



!!ill!I 211 

THE QUEUE MANAGER 

This chapter consists of a narrative introduction and review of the 
process of setting up the Queue Manager, detailed descriptions of all 
commands to the Queue Manager, and a listing of an indirect command 
file to be included in the system STARTUP procedure as a reference 
example. 

7.1 NARRATIVE INTRODUCTION AND REVIEW 

Here is the procedure for bringing the Queue Manager into the system. 

This can be done interactively, but in most cases it is more 
convenient to include it in an indirect command file invoked as part 
of the system's STARTUP procedures. 

Note that this procedure must be adapted for each installation. The 
example is based on the procedure used for the RSX-llM development 
system. QUE setup commands allow considerable flexibility in setting 
up the Queue Manager system. Dynamic alteration of the Queue Manager 
is also permitted. 

1. Install the Queue Manager. It is found with the privileged 
utility tasks. 

>INS DBO:QMG /PRI=70 

2. Install the output despooler task. 

>INS DSO:LPP /PRI=70 

This task installs automatically as LPPO. You must install 
this task for each physical device under the direction of the 
Queue Manager. This task "owns" the output device and must 
have a name based on the name of the device. Thus, the 
output despooler for LPl: must be installed under the name 
LPPl, using the /TASK= option. There can be up to 15 output 
devices controlled by the Queue Manager. 

3. Install PRT ••• 

>ms QMGPRT 

This task installs automatically as PRT... and is the 
interface to PIP and other tasks that use PRINT$ or .PRINT. 
The Queue Manager can then accept jobs from the PIP /SP 
switch. (Although this task has the same name as the Serial 
Despooler used on previous versions of RSX-llM (and available 
on RSX-llM V3.2), it is not the same task. It replaces this 
task.) 

4. Install the Print Command Line Interpreter and the Queue 
Command Line Interpreter. 

>INS QMGCLI /TASK= ••• PRI 

>INS QMGCLI /TASK= ••• QUE 

The same task parses both the PRI and QUE commands and 
therefore must be installed twice, once under each name. 

7-2 

JO f4¢ 



THE QUEUE MANAGER 

S. Start the Queue Manager. 

>QUE /START:QMG 

\...-1 This command starts the Queue Manager and initializes the 
default queue PRINT. It creates the queue file QUEUE.SYS on 
SY:[l,7] if it is not there. The command also clears all 
assignments previously recorded. If the queue file was 
intact, all queues will still contain their jobs, but are not 
assigned to processors. (Processors will have to be spooled 
ag.ain.) 

6. Spool the processor. 

>OUE LP: /SPOOL /FLAG:l /FORM:O 

This command creates a queue LPQO and starts the previously 
installed despool task LPPO. This task attaches device LPO: 
for de~pooling. Queue LPQO is assigned to processor LPPO. 
Repeat this step for each output device under control of the 
Queue Manager. 

The /FORM switch establishes this attribute of the despooler. 
This means the despooler accepts jobs initiated by Print 
commands with the same FORM attribute given. Jobs with other 
FORM attributes remain in the queue until a despooler with 
the proper FORM attribute is available. 

The /FLAG switch sets the number of flag pages that precede 
each job. If users specify /FLag in their Print commands, 
each file in the job will be preceded by this many file flag 
pages as well. 

7. Assign queues to processors. 

>QUE LP: /ASSIGN:PRINT 

This command assigns the default queue PRINT to processor 
LPPO. Normally, only the PRINT. queue has to be assigned. 
Device-specific queues are assigned to their device 
despoolers by /SPOOL. This assignment of device-specific 
queues is a default, however, and not a requirement. A 
device-specific queue must exist for every spooled device, 
but these queues can be assigned to other devices. 

You can assign a queue to more than one processor and you can 
assign more than one queue to a processor. You can assign a 
device-specific queue to another device if necessary. For 
example, if printer LPO: is temporarily unavailable, you 
could assign LPQO to LPl:. 

7-3 



THE QUEUE MANAGER 

7.2 REFERENCE EXAMPLE 

Here is a listing of SY:[l,2]QMGSTART.CMD from the RSX-llM development 
system: 

. 
I 

INS DBO:QMG /PRI=70 
INS DSO:LPP /PRI=70 
INS DSO :QMGPRT 
INS DSO:QMGCLI /TASK= ••• PRI 
INS DSO:QMGCLI /TASK= ••• QUE 
QUE /START:QMG 
QUE LP: /SPOOL /FLAG:l /FORM:O 
QUE LP: /ASSIGN :PRINT 

7.3 QUEUE MANAGER COMMAND DESCRIPTIONS 

The configuration of the Queue Manager can be controlled through a 
number of special functions applied to the QUE command. 

The format of the Queue Manager setup commands is: 

>QUE ddnn: /function[:option[s]] [/sw[s]] 

ddnn: 

Specifies the name of the device affected by the command. 

/function 

Specifies the function performed by the command. 

:option[s] 

Specifies one or more options for a function. 

/sw[s] 

Specifies one or more switches for a function or option. 

These commands allow a privileged user to attach or detach devices for 
spooling, start and stop devices, assign the default queue to devices 
and start and stop the Queue Manager. 

7-4 

t 4222 z JU a lili! ii a: ii I; H 



THE QUEUE MANAGER 

7.3.1 STOP 

This function suspends a device or stops the Queue Manager. 

Form,at 

ddnn: 

>QUE ddnn: /STOP[:option] 

Options 

:EOF 
:EOJ 

>QUE /STOP:QMG 

The device name is required with all options except /STO:QMG. 
You cannot include a device when stopping the Queue Manager. 

Options 

:EOF 

: EOJ 

If you do not enter an option (null option) the device stops 
immediately. This is a pause. 

The device stops at the end of the current file. 

The device stops at the end of the current job. 

/STO:QMG 

The Queue Manager stops at the end of the current job. All 
assignments of queues to devices are broken (deassigned). All 
despooler tasks are detached from their devices. The Queue 
Manager stops. 

Exam.pl es 

>QUE LPO: /STOP 

This example stops printing on LPO:. No jobs will be taken from 
queues assigned to the device, but jobs can still be added to 
queues. 

>~UE LP2: /STO:EOJ 

This example stops printing on LP2: at the end of the active 
job. 

>QUE /STOP :QMG 

This E~xample stops the Queue Manager. QMG is marked for stop and 
the current job is allowed to finish. 

7-5 



ii 

THE QUEUE MANAGER 

7.3.2 START 

This command starts printing on a previously stopped device or starts 
the Queue Manager after a STOP. This command counteracts STOP. 

Format 

ddnn: 

>QUE ddnn: /STArt[:option] [/sw] 

Options 

:NExt 
:TOP 
:PAge:n 
:BAck:n 
:FOrward:n 

>QUE /STArt: QMG 

Switches 

/FOrm:n 
/FLag:n 

A device name is required with all options except /STA:QMG. 
cannot include a device when starting the Queue Manager. 

You 

Options 

:NExt 

: TOP 

Option and switch are mutually exclusive fields. Use one or the 
other. 

If you enter nothing (null option), the device 
from the point at which printing stopped. 
resumes printing after a pause. 

Printing starts at the top of the next job. 

Printing starts at the top of the current file. 

starts printing 
This, in effect, 

:PAge:n 

Printing starts at page n of the current file. 

:BAck:n 

Printing starts n pages back from the point at which it was 
stopped. 

: Forward: n 

Printing starts n pages forward from the point at which it was 
stopped. 

/STA:QMG 

::;a 

This option is entered without ddnn: as it starts Queue Manager 
and initializes the default queue PRINT. It creates the file 
SY:[l,7]QUEUE.SYS if it is not there. The command also clears 
all assignments previously recorded. If the queue file was 
intact, all queues still contain their jobs, but are not assigned 
to processors. (Processors will have to be spooled again.) 

7-6 

ii Ii ;; jj ; :m:; 



THE QUEUE MANAGER 

Switc::hes 

The switch and option fields are mutually exclusive. Use one or 
the other. You can enter more than one switch, however. 

/FOrm:n 

This switch resets the forms type of the despooler task from the 
type set with the SPOOL function 

This switch resets the flag setting of the despooler task from 
the number of flag pages set with the SPOOL function. Print jobs 
have n job flag pages preceding the job~ If users specify /FLA 
in their Print command, each file in the job will also be 
preceded by n file flag pages in addition to the job flag pages. 
n can be O, 1, 2, or 3. 

If you are using special forms in your printer, you should set 
n=O so that no flag pages are printed on your special forms. 

Examples 

Note·s 

>QUE LPO: /STA 

This example starts LPO:; printing proceeds from where it was 
stopped. 

>QUE LP2: /START:NE 

This example starts printing with the next job queued to LP2:. 

>QUE LP: /STA /FO:ll 

This example starts printing on LPO: with the FORMS attribute 
reset to 11. 

Page-related options have no effect unless the user specified a 
/LEngth:n quantity in the Print command. 

If you are restarting a processor to handle special forms types, 
you may want to set /FL to 0 to avoid printing banner pages on 
your special forms. 

7-7 



'!ll!lllJ iii $ ll2l 

THE QUEUE MANAGER 

7.3.3 SPOOL 

This function attaches a device for despooling. The command names and 
starts a despool task and a queue named after it, and assigns the 
queue to the despool task. 

Format 

>QUE ddnn: /SPool [/sw] 

Switches 

/FOrm:n 
/FLag:n 
/External 

ddnn: /SPOOL 

ddnn: /SPOOL creates queue ddQn and starts the despool task ddPn 
which must be installed previously for device ddn:. This 
attaches device ddnn: for despooling by the despool task ddPn 
open to jobs from queue ddQn. 

Switches 

More than one switch can be used with this function. 

/FOrm:n 

Sets the device despooler to accept jobs with forms type n. 

You can set a despooler to accept more than one forms type, but 
the forms definition must be duplicated. 

The number n can be anything from 0 to 255. The default is O. 

These numbers are to be specified by your users in their Print 
commands. If the right forms are not in an available printer, 
then their jobs will be waiting until the printer has been 
stopped, the proper forms put in place, and the printer restarted 
using the /FORMS: qualifier and the proper value for n in the 
START command. 

Forms differ by their length and width. Both values can be set 
in the forms table. 

Setting width is simply a matter of how many columns are needed 
to fill in the form. There are no standard widths for forms, but 
80. and 132. are the most common. 

Setting length requires you to determine whether your forms are 
of a standard length. 

"Standard 
printing 
setting a 
standard 
hardware, 

length" is any form length that can be set on your 
hardware. If the hardware can handle the form by 
response to a form-feed character <FF>, then it is a 
length form, and the form feed is a "real," that is, 
form feed. 

If the form length cannot be set on the hardware, then it is a 
non-standard length. In this case, the form feed <FF> must be 
replaced by an appropriate number of line feeds <LF>. This is 
called a "simulated," that is, software, form feed. 

7-8 

" ! 

'~ .... c . I ·r~ 

::au ft4 



'-'·· 

THE QUEUE MANAGER 

You should determine which forms are used on your system and 
assign each a number. This number points to a table of form 
definitions. The form definitions consist of a single 16-bit 
word. The length is the low-order byte and the width is the 
high-order byte. The high bit of the length byte is set when 
simulc1ted forms (forms whose length cannot be set on your 
hardware) are needed. This form definition word can be changed 
by editing the Task Builder command file for the despooler task. 
You must add a global patch statement of the following form: 

TKB>GBLPAT=INIT+FRMTBL+n*2:value 

where n is the assigned form number and value is the form 
definition word. 

Table 7-1 shows the forms requirements for a hypothetical 
installation. The form names describe different uses that 
special forms might be put to, but have no significance 
otherwise. 

Table 7-1 
Demonstration Forms Settings 

Form Assigned n Width Length Standard? 

Accordion 0 132 66 
Paychecks 1 40 10 
Invoices 2 80 66 
Stationery 3 80 66 
Mo<>n Diary 4 22 43 
Star Log 5 112 113 

NOTE 

As shipped, FORMS:O is 66 lines long by 
132 columns with real form feeds. 
FORMS:l is 1 line long by 132 columns 
with simulated form feeds; FORMS:2 is 2 
lines long by 132 columns with simulated 
form feeds; and so on through FORMS:66 
which is 66 lines long by 132 columns 
with simulated form feeds. The 
remaining FORMS:n entries are set to l 
line long by 132 columns with simulated 
form feeds. Thus, if you specify 
FORMS:43, when the printer encounters a 
form feed, it counts the number of lines 
on the page and subtracts that number 
from 43. The printer then outputs a 
number of line feeds equal to the 
difference. You may find this 
arrangement satisfactory if your 
installation rarely uses forms other 
than standard line-printer paper, but if 
you have more than one standard form, 
you will probably want to make the 
changes in the forms table entries. 

7-9 

y 
y 
y 
y 
N 
N 



THE QUEUE MANAGER 

/FLag:n 

Sets the number of flag pages to precede all jobs printed on the 
device. Note that if you are using special forms, you may want 
to set this attribute to 0 to avoid printing banner ~ages on your 
special forms. This also sets the number of file flag pages to 
be printed when users specify the /FLAGS switch in their Printer 
commands. The default value of n is O. 

/EXternal 

Specifies that a device is being set spooled that is not 
currently part of the local system configuration. Use this 
switch when you wish to despool to an applications task, or a 
network, or in some other instance of using the Queue Manager for 
down-line loading. 

Examples 

>QUE LPO: /SPOOL 

This example attaches LPO: for despooling. 

>QUE LP3: /SP /F0:2 

This example attaches LP3: for despooling with forms set to 2. 

7.3.4 UNSPOOL 

This function removes a device from despooling. 
longer assigned to the queue. The despooler 
associated device-specific queue is deleted. 

Format 

>QUE ddnn: /UNSPool 

ddnn: /UNSPool 

The 
task 

device is 
exits. 

no 
The 

ddnn:/ UNSPOOL frees a device used in despooling for general use. 
The despool task for the device exits but its entries in queues 
assigned to it remain in the queue file. 

Example 

>QUE LPO: /UNSP 

This example removes the device LPO: from active use by the 
despooler LPPO and the Queue Manager. 

7.3.5 ASSIGN 

This function creates a path between a queue and despooler. 

Format 

>QUE ddnn: /ASsign:queuename 

ASSIGN is normally used to assign the default queue PRINT to one or 
more despooler tasks, but you can assign any queue to any despooler. 

7-10 

h IL!iiiiii It I:; 



'-'' 

THE QUEUE MANAGER 

Example 

>QUE LPO: /AS:PRINT 

This example assigns the PRINT queue to LPO:. 

Remember that SPOOL automatically assigns a device-specific queue 
to its related device. For example, LPQl is automatically 
assigned to LPl:. 

7.3.6 DEASSIGN 

This function breaks the assignment of a queue to a despooler. 

For11nat 

>QUE ddnn: /DEAssign:queuename 

DEASSIGN eliminates the path between a queue and a despooler, but the 
queue still exists with all its jobs. Jobs can be added to the queue, 
but none will be dequeued while the queue is not assigned. 

7.4 ERROR MESSAGES 

Error messages from the Queue Manager may be preceded by the letters 
PRI or QUE, depending on where within the software the error detection 
takes place. Here is how they appear on your terminal: 

PRI NO SUCH COMMAND 

QUE DIRECTORY NOT ALLOWED 

The PRI and QUE identifiers are not used in this section. When you 
get an error message such as those above, look for the message portion 
(NO SUCH COMMAND or DIRECTORY NOT ALLOWED in the examples above). The 
message portion of each error message appears in alphabetical order in 
this section, along with a description of the error that produced the 
message and a suggested correction. 

If you issue a QUE /LI (or /BR or /FU) and only a prompt is returned, 
this means no queue file exists on your system. 

In most cases, the error will be a typing mistake or other syntax 
err·or. 

BAD COMMAND LINE 

Explanation: Invalid MCR line or invalid syntax. 

User Action: Retype command line after checking proper syntax. 

BAD SPOOL DEVICE TYPE 

Explanation: Only record-oriented devices can be spooled. 

User Action: Check device type. 

7-11 



I ii iii& q 

THE QUEUE MANAGER 

BAD SWITCH TYPE 

Explanation: Bad ASCII switch value. 

User Action: Retype command.line after checking proper switch 
value. 

DEVICE ALREADY SPOOLED 

Explanation: Specified device already spooled by a previous 
command. 

User Action: Issue QUE /LI:ALLDEV to check list of spooled 
devices. 

DIRECTIVE FAILURE 

Description: Program error. Executive directive failed. 

User Action: Detect and correct error. 

DIRECTORY NOT ALLOWED 

Explanation: UIC included in command that does not accept it. 

User Action: Retype command line after checking proper syntax. 

ILLEGAL ARGUMENT VALUE 

Explanation: Bad switch value. 

User Action: Retype command line after checking proper switch 
value. 

INVALID JOB SYNTAX 

Explanation: 

• Invalid syntax in the command 

• Invalid job name 

• Included both job name and job identification 

• Omitted both job name and job identification 

User Action: Retype command line after checking proper syntax. 

I/O ERROR ON SYO:QUEUE.SYS 

Explanation: Error encountered in reading queue file. 

User Action: Check SYO:[l,7] for presence of QUEUE.SYS. 

7-12 

22#1& a )$ 

"' 



THE QUEUE MANAGER 

JOB DOES NOT EXIST 

Explanation: Specified job not found in queue under current UIC. 

User Action: Retype command line, including correct UIC in job 
identl f ication. 

JOB NAME NOT ALLOWED 

Explanation: Job name or other form of job identification not 
accepted in this command. 

User Action: Retype command line after checking proper syntax. 

MULTIPLE FUNCTIONS DETECTED 

Explanation: More than one function specified. 

User Action: Retype command line after checking proper syntax. 

MUTUALLY EXCLUSIVE SWITCH/VALUE 

Explanation: Command line specified mutually exclusive function 
value and switch. 

User Action: Retype command line after checking proper syntax. 

NO FUNCTION SPECIFIED 

Explanation: Command line did not include required function. 

User Action: Retype command line after checking proper syntax. 

NO SUCH COMMAND 

Explanation: QMGCLI installed and run under wrong name. 

User J\ction: Install and run QMGCLI under proper name: 
or ••.. QUE. 

NO SWITCHES ALLOWED 

Explanation: No switches allowed with this command. 

••• PRI, 

User Action: Retype command line after checking proper syntax. 

PRIVILEGED COMMAND 

Explanation: The following functions are privileged: /START, 
/STOP, /SPOOL, /UNSPOOL, /ASSIGN, /DEASSIGN, /MODIFY, /HOLD, 
RELEASE, /DELETE jobs from another UIC. 

User Action: Enter command from a privileged terminal. 

7-13 



THE QUEUE MANAGER 

QUEUE/DEVICE NOT ALLOWED 

Explanation: /STOP:QMG or START:QMG command issued with device 
name. 

User Action: Retype command without device name. 

QUEUE/DEVICE NOT SPECIFIED 

Explanation: /START, /STOP, /UNSPOOL, /ASSIGN, and /DEASSIGN 
require device name. 

User Action: Retype command with device name. 

QMG DID NOT START 

Explanation: /START:QMG did not work. 

User Action: 

• Check to see if QMG is installed under name QMG ••• 

• Check to see if pool is low. 

7-14 

JG !IHI! tq .ii bill Li!iii ;;:: "' . 
L ii 2i! t t :mumm ; e ::sur a tu 



PART 5 
VOLUME MAINTENANCE UTILITIES 



1:122aa ii 
! " 

21 JI lll:P 



CHAPTER 8 

DISK VOLUME FORMATTER (FMT) 

The Disk Volume Formatter (FMT) utility formats and verifies DB:, DK:, 
DM:, DP:, DR: and DY: disk volumes under any RSX-llM, RSX-llM-PLUS, 
or !AS operating system which includes diagnostic support in the 
Executive. (Check with your system manager to determine whether your 
system includes this feature.) 

The disks can be completely formatted (in normal operating mode) or 
formatted on an individual sector (or track for DM: volumes) basis 
(in manual operating mode). 

Formatting in manual operating mode sometimes allows you to recover 
use of a bad sector or track. 

In general, FMT performs the following tasks: 

• Writes a complete header for each sector of the disk it is 
formatting. 

• Verifies the address contents of each sector header. 

• 
• 

Sets the density for DY: 

Lets you specify a maximum 
volume being formatted. 
error limit is reached. 

floppy diskettes • 

pack error limit for the disk 
FMT terminates processing when the 

• Allows the Bad Block Locator (BAD) task to be run (spawned) if 
your system permits spawned tasks. 

8.1 INITIATING AND TERMINATING FMT 

To initiate FMT, enter the appropriate command following the system 
monitor prompt, as explained in Chapter 1 of this manual. 

The general form of the FMT command line is: 

>FMT ddn:/[switch l ••• switch m] 

where dd: is the abbreviation for the volume you are formatting, n is 
the unit number of the volume, and the possible switches are: 

/BAD Runs the Bad Block Locator task (BAD) if it is installed 
on the system. 

Note that this switch can only be used with operating 
systems that allow spawning of tasks. RSX-llM and 
RSX-llM-PLUS provide spawned tasks as a System Generation 
option. 

8-1 



4l!i 

/DENS 

/ERL 

/MAN 

/OVR 

/WLT 

DISK VOLUME FORMATTER (FMT) 

Selects high (double) or low (single) density for RX02 
floppy diskettes. 

Determines the maximum number of errors FMT will allow on 
the volume. 

Enters manual operating mode and formats the sector or 
track you specify. 

Overrides or ignores the Manufacturer's Defined Bad 
Sector File (MDBSF) • 

Rewrites the MDBSF to add bad sectors found during FMT 
operation. 

/VE Verifies that a FMT operation was successfully completed. 

/@Y Informs FMT that it is executing from an indir~ct command 
file. An FMT command in this form does not allow 
operator intervention in the process. 

These switches are described in detail in Section 8.4. 

8.2 MODES OF FMT OPERATION 

FMT allows you to format volumes in two ways: normal operating mode, 
which formats an entire volume, and manual operating mode, which 
formats the sector (or track on DM: volumes) you specify in response 
to FMT prompts. FMT uses normal operating mode unless you specify 
manual mode with a /MAN in the command line. 

FMT normally ~etries an operation twice when it encounters an error. 
If the operation still fails, FMT flags the sector as bad and displays 
the following message: 

ERROR WRITING HEADER 

If you specify the verify switch with an FMT operation, and FMT 
encounters an error, it prints one of the following messages on your 
terminal: 

ERROR READING HEADER 
or 

HEADER COMPARE ERROR 

FMT then continues the verification operation. 

8.2.1 Normal Operating Mode 

When you invoke FMT in normal operating mode (without the Manual 
switch), it prints the following message: 

** WARNING - DATA WILL BE LOST ON ddn: ** 
CONTINUE [Y OR N] 

After a Y (yes) response, FMT returns the message: 

START FORMATTING 

8-2 

::;:: lh!. ll ! I ti 
Si " 

I !!!P 



DISK VOLUME FORMATTER (FMT) 

It then performs the formatting functions you specify with switches in 
the FMT command. After an N (no} response or a carriage return <CR>, 
FMT returns control to the system monitor. 

Normal FMT operation varies slightly according to the volume you are 
formatting (see Section 8.3}. 

8.2.2 Manual Operating Mode 

If ycrn specify manual operating mode (/MAN}, FMT prints: 

** WARNING - DATA WILL BE LOST ON ddn: ** 
CONTINUE [Y OR N] 

After a Y (yes} response, FMT returns the message: 

ENTERING MANUAL MODE 

It then displays the following prompts: 

CYLINDER= 
TRACK = 
SECTOR 

After you enter your response to the prompts, FMT formats the sector 
or track you specify. FMT assumes the responses are in decimal unless 
they are preceded by a number sign (#}. If you enter a parameter that 
is out of range of the volume FMT returns an error message and exits. 
Table 8-1 lists the valid ranges for FMT manual mode operations. 

FMT manual operating mode works the same on all disk volumes, with one 
exception: On DM: volumes (RK06 and RK07} FMT formats a specific 
track of the volume. 

For example: 

FMT>DMO:/MAN 

This command causes FMT to prompt: 

** WARNING - DATA WI LL BE LOST ON OMO: ** 
CONTINUE [Y OR N] Y 

ENTERING MANUAL MODE 
CYLINDER= 
TRACK 

FMT then formats the entire track you specified. 

8-3 



1rn111z $2 

DISK VOLUME FORMATTER (FMT) 

Table 8-1 
Valid Ranges for Manual FMT Operations 

Disk Volumel Sectors Tracks Cylinders 

RP02/RPR02 0-9 0-19 0-199 

RP03 0-9 0-19 0-399 

RP04 0-21 0-18 0-410 

RPOS 0-21 0-18 0-410 

RP06 0-21 0-18 0-814 

RKOS/RKOSF 0-11 0-1 0-199 

RK06 0-21 0-2 0-410 

RK07 0-21 0-2 0-814 

RM02 0-31 0-4 0-822 

RM03 0-31 0-4 0-822 

1 Note that FMT manual operating mode cannot be used with RX02 floppy 
diskettes. 

8.3 FMT-SUPPORTED DEVICES 

The following sections describe normal FMT operating mode. Table 8-2 
lists the devices that allow formatting and their abbreviations. 

I 4 I diiii 124$ 

Table 8-2 
FMT-Supported Devices 

Device Abbreviation 

RP04 disk pack DB: 
RPOS disk pack DB: 
RP06 disk pack DB: 

RKOS disk cartridge DK: 
RKOSF fixed media disk DK: 

RK06 disk cartridge DM: 
RK07 disk cartridge OM: 

RPR02 disk pack DP: 
RP02 disk pack DP: 
RP03 disk pack DP: 

RM02 disk pack DR: 
RM03 disk pack DR: 

RX02 floppy diskette DY: 

8-4 

$& 
. " it :: sq a; 



'-'i 

DISK VOLUME FORMATTER (FMT) 

The status FMT requires for the devices varies with the operating 
system. Table 8-3 lists the status required for devices with RSX-llM, 
RSX-llM-Plus, or IAS. 

Table 8-3 
FMT Device Status 

Operating System Device Status Required 
for FMT Operation 

RSX-llM-PLUS Mounted with Foreign 
Characteristics 

RSX-llM V3.2 Unmounted 

!AS Mounted with Foreign 
Characteristics 

8.3.1 DB: Devices (RP04/RP05/RP06 Disk Packs) 

When FMT formats a DB: volume, it tries to write 22 headers at a time 
until it has formatted the entire volume. If FMT encounters an error, 
it attempts to write each header individually and designates which 
headers are bad. 

If you specify the Verify switch (/VE), F~T verifies 11 headers at a 
time until it has verified the entire volume. If FMT encounters an 
error, it attempts to verify the headers individually to determine 
where the error occurred. It then reports any bad headers and 
continues the operation. 

8.3.2 DK: Devices (RKOS Disk Cartridge or RKOSF Fixed Media Disks) 

When FMT formats a DK: volume, it tries to write each header 
individually until it has formatted the entire volume. If FMT 
encounters an error, it retries each header twice before reporting the 
header as bad. 

If you specify the verify switch (/VE), FMT verifies the headers 12 at 
a time, until it has verified the entire volume. If FMT encounters an 
error, it attempts to verify the headers individually to determine 
where the error occurred. It then reports any bad headers and 
continues the operation. 

8.3.3 DM: Devices (RK06/RK07 Disk Cartridges) 

FMT writes DM: headers one track (22 sectors) at a time and sets the 
header flags of those sectors marked bad in the MDBSF. If FMT 
encounters errors, it retries the operation twice before it designates 
which headers are bad. 

If you specify the verify switch (/VE), FMT verifies that each sector 
from 0 to 21 is addressable. It does this by issuing a full 256-word 
write, made up of the 2-word address pattern (the sector number and 
its complement) into each sector. Once the entire track has been 
written, each sector is read and the full 256 words of data are 

8-5 



DISK VOLUME FORMATTER (FMT) 

compared with the expected data pattern. 
this operation, FMT reports that sector as 
operation. 

If an error occurs during 
bad and continues the 

When FMT writes headers on OM: devices, it sets bad sector flags in 
the headers already marked as bad in the MDBSF. If you also specify 
the verify switch, FMT indicates whether the bad sector was flagged in 
the MDBSF. 

8.3.4 DP: Devices (RPR02/RP02/RP03 Disk Packs) 

When FMT formats a DP: volume, it tries to write 10 headers at a time 
until it has formatted the entire volume. If FMT encounters an error, 
it attempts to write each header individually and designates which 
headers are bad. 

If you specify the Verify switch (/VE), FMT verifies the headers 10 at 
a time, until it has verified the entire volume. If FMT encounters an 
error, it attempts to verify the headers individually to determine 
where the error occurred. FMT reports that sector as bad and 
continues the operation. 

8.3.5 DR1 Devices (RM02/RM03 Disk Packs) 

When FMT formats a DR: volume, it tries to write 32 headers at a time 
until it has formatted the entire volume. If FMT encounters an error, 
it attempts to write each header individually and designates which 
headers are bad. 

If you specify the Verify switch (/VE), FMT verifies the headers 16 at 
a time, until it has verified the entire volume. If FMT encounters an 
error, it attempts to verify the headers individually to determine 
where the error occurred. It then reports any bad sectors and 
continues the operation. 

When FMT writes headers on DR: volumes, it sets bad sector flags in 
headers already designated as bad by the MDBSF. If the command also 
specifies the Verify switch, FMT indicates whether the sector was 
marked in the MDBSF. 

8.3.6 DY: Devices (RX02 Floppy Diskettes) 

You can use FMT to set an RX02 floppy diskette to either high (double) 
or low (single) density. If you specify the Verify switch, FMT writes 
and reads block O and the last block on the diskette to determine that 
the density is correct. 

Note that manual operating mode cannot be used with DY: devices. 

8.4 FMT SWITCHES 

The following sections describe the switches you can use with FMT 
commands. The descriptions include information on restrictions for 
formatting specific devices and default values for the switches, where 
appropriate. 

8-6 

. i2 r I " a 12 ,. 



DISK VOLUME FORMATTER (FMT) 

8.4.1 /BAD 

The Bad switch spawns the Bad Block Locator task (BAD} after FMT 
completes an operation. If BAD is not installed on the system, FMT 
prints a warning message on your terminal and exits. 

The format for an FMT command, using the BAD switch, is: 

FMT>dev:/BAD 

8.4.2 /DENS 

The Density switch sets DY: floppy diskettes to either high or low 
density. The default is low density. (This switch can also use 
single and double density as options.) 

The formats for an FMT command, using the DENS switch, is: 

FMT>DYn:/DENS=HIGH (or DOUBLE) 
FMT>DYn:/DENS=LOW (or SINGLE} 

8.4.3 /ERL 

The Error Limit Switch sets an error limit for the volume you are 
formatting~ If the error count reaches this limit, FMT generates an 
appropriate message and terminates operation. The default error limit 
is 256 err.ors. Any value greater than O or less than or equal to 256 
is valid. 

The format for an FMT command, using the ERL switch, is: 

FMT>d1av: /ERL=n 

8.4 .. 4 /MAN 

The Manual switch puts FMT in manual operating mode and permits you to 
format an individual sector (or track for DM: disk cartridges}. FMT 
assumes cylinder, track, and sector numbers are decimal values unless 
they are preceded with a number sign (#}. 

In manual operating mode, FMT displays the following prompts: 

** WARNING - DATA WILL BE LOST ON DK!: ** 
CONTINUE [YORN]? 
ENTERING MANUAL MODE 
CYLINDER= 
TRACK 
SECTOR 

OPERATION COMPLETE 

The format for an FMT command, using the MAN switch, is: 

FMT>dev:/MAN 

8-7 



DISK VOLUME FORMATTER (FMT) 

8.4.5 /OVR 

The override switch causes FMT to ignore the Manufacturer's Detected 
Bad Sector File (MDBSF) on DM: and DR: disk volumes. When FMT 
writes headers on these disks, it normally sets bad sector flags in 
those headers marked bad in the MDBSF. When the verification process 
discovers a bad sector, it reports that the sector was marked in the 
MDBSF. The Override switch inhibits this operation. 

The format for an FMT command, using the OVR switch, is: 

FMT>dev:/OVR 

8.4.6 /VE 

The Verify switch confirms that an FMT operation was successful. It 
does this by reading back the headers and determining that they were 
written correctly. 

The format for an FMT command, using the VE switch, is: 

FMT>dev:/VE 

8.4.7 /WLT 

The Write Last Track switch, when used with the verify switch on DM: 
and DR: volumes, rewrites the MDBSF after an FMT operation to add the 
bad sectors that FMT found to the bad sectors already in the MDBSF. 
FMT also rewrites each bad sector's header to flag it as a bad sector. 

The WLT switch requires a decimal number (n below) which is used as 
the volume's pack serial number. 

The format for an FMT command, using the WLT switch, is: 

FMT>dev:/WLT:n 

8.4.8 /@Y 

If you specify the @Y switch, FMT executes from an indirect command 
file. In this method of operation, FMT will not generate any 
operational messages or warnings to your terminal until the operation 
is complete and no operator intervention is possible. 

The format for an FMT command, using the @Y switch, is: 

FMT>dev:/@Y 

8.5 FMT MESSAGES 

This section describes the messages FMT generates, along with possible 
user action in response to the messages. 

8-8 

.,11!1•
1••••q11: •••: 1•11:•11.11•: :•a•••••••••••••••••••••••:•s•••••••••••••s•s•. •:•: •~;111•11111r • 



DISK VOLUME FORMATTER (FMT) 

COMMJ.\1ND I/O ERROR 

Explanation: A hardware transmission error occurred from the 
keyboard. 

User Action: Reenter the command. 

COMMAND TOO LONG 

Explanation: The command was longer than 80 (10) characters. 

User Action: Enter a shorter command. 

DEVICE DOES NOT SUPPORT FORMATTING 

Explanation: A device was specified that does not allow the use 
of FMT. 

User Action: Determine the correct device and, if FMT operation 
is legal, reenter the command. 

DEVICE DRIVER MISSING 

Explanation: The disk device driver is not loaded. 

User Action: Load the driver (if it is loadable) and reenter the 
command, or use a different device in the command line. 

DEVICE NOT IN SYSTEM 

Explanation: The specified device was not identified as part of 
the system during system generation, or the device does not exist 
on the system configuration. 

User Action: Determine the correct command line with the correct 
device abbreviation, and reenter the command. 

DEVICE NOT READY 

Explanation: The disk volume was not at operating speed when FMT 
attempted to access it. 

user Action: Allow the volume to reach operating speed and 
reenter the FMT command. 

DEVICE OFFI.INE 

Explanation: The device is not in the hardware configuration. 

user Action: Determine the correct command line with the correct 
device abbreviation and reenter the command. 

DEVICE WRITE LOCKED 

Explanation: The volume is write-locked; any write access is 
prohibited. 

User Action: Write-enable the unit and reenter the FMT command. 

8-9 



I( 

DISK VOLUME FORMATTER (FMT) 

DISK IS AN ALIGNMENT CARTRIDGE 

Explanation: The device is a factory-created disk used to align 
the heads in a disk drive and should not be used for other 
purposes. 

user Action: Use a disk that is not an alignment cartridge and 
reenter the FMT command. 

ERROR LIMIT EXCEEDED 

Explanation: The number of errors FMT found on the disk pack 
exceeded either the number of errors specified with the ERL 
switch, or the default 256 error limit that FMT sets. 

user Action: Set a higher error limit, if the ERL switch was 
used. 

ERROR READING DATA 

Explanation: FMT encountered an error in reading data from a 
disk. 

user Action: None required; FMT retries the operation twice and 
continues the verification. 

ERROR READING HEADER 

Explanation: FMT encountered an error when it tried to read a 
header during a verification operation. 

User Action: None required; FMT retries the operation twice and 
continues the verification. 

ERROR SETTING DISKETTE DENSITY 

Explanation: FMT tried to format a DY: floppy diskette and the 
operation failed. 

user Action: Check the syntax and reenter the command, resetting 
the density. 

ERROR WRITING DATA 

Explanation: FMT encountered an error when it attempted to write 
sector headers. 

user Action: None required; FMT retries the operation twice and 
continues the verification. 

ERROR WRITING HEADER 

Explanation: FMT encountered an error when it tried to write a 
header. 

User Action: None required; FMT retries the operation twice. 

8-10 

$ 4 ii I ;z 



DISK VOLUME FORMATTER (FMT) 

FAILED TO ATTACH DEVICE 

Explanation: FMT could not attach the device to be formatted. 

User Action: Determine whether another task has attached the 
device. If so, wait until the task exits, or abort the task and 
run FMT again. 

FAILED TO READ MANUFACTURER'S BAD SECTOR FILE 

Explanation: A disk hardware error occurred while FMT attempted 
to read the MDBSF on the last track on the last track of a 
device. 

User Action: Reenter the command, including the Override switch. 

FATAL HARDWARE ERROR 

Explanation: A fatal error occurred somewhere in the system 
hardware configuration. 

User Action: Contact the DIGITAL Field Service representative. 

HEADER COMPARE ERROR 

Explanation: FMT found an error in comparing headers with the 
expected value during a verification error. 

User Action: None required; FMT retries the operation twice. 

INVALID SWITCH 

Explanation: An illegal switch or a switch not valid for the 
specified device was used in an FMT command. 

User Action: Check the syntax and reenter the command. 

MANUFACTUHER'S BAD SECTOR FILE CORRUPT 

Explanation: The factory-written bad block data (MDBSF) on the 
last track of the disk is in an unusable format. 

User Action: Reenter command with the override switch (/OVR) to 
prevent FMT from trying to use the corrupt bad block data. 

MAHKED BAD IN MANUFACTURER'S BAD SECTOR FILE 

Explanation: Indicates that bad block information is recorded in 
the MDBSF on the disk. 

User Action: None required. This message is for information 
only. 

8-11 



'111111! iii 

DISK VOLUME FORMATTER (FMT) 

PRIVILEGE VIOLATION 

Explanation: FMT attempted an operation on a device that was 
mounted or allocated to another user. 

user Action: Reenter the FMT command, using a device that is not 
allocated to another user. 

RESPONSE OUT OF RANGE 

Explanation: Parameters entered for manual formatting of an 
individual sector or track were out of the range of the volume. 

User Action: Check Table 8-1 for legal parameters and reenter 
the command. 

SYNTAX ERROR 

Explanation: FMT detected a syntax error in the command line. 

User Action: Determine the correct command syntax and reenter 
the command. 

UNABLE TO RUN BADBLOCK UTILITY 

Explanation: A FMT command specified the Bad switch (/BAD), but 
BAD could not be spawned. Either the operating system does not 
spawn tasks or BAD was not installed. 

user Action: Run the BAD utility separately. 

UNRECOVERABLE ERROR - n 

Explanation: An I/O error (number n) caused FMT to terminate. 

User Action: Reenter the FMT command and if the error occurs 
again, try the command, specifying a different device. 

8-12 

) ii i2I I :::::: ii " 21 

~ 
I !' 

; IP 



CHAPTER 9 

BAD BLOCK LOCATOR UTILITY (BAD) 

9.1 INTRODUCTION TO BAD 

The Bad Block Locator Utility (BAD) tests disks and DECtapes for the 
location and number of bad blocks. BAD then records this bad-block 
information on the device. When you use the MCR Initialize Volume 
command (IN!) the bad blocks are marked as in-use;.· that is, !NI 
allocates the bad blocks to the file [O~O]BADBLK.SYS. Thus, the bad 
blocks cannot be allocated to other files. BAD supports any last 
track device, as well as vendor-supplied cartridges that do not have a 
prerecorded manufacturer's bad-sector file on the last track. You can 
use BAD in its task version, which runs at the same time as other 
tasks, or in its stand-alone version, which runs -by itself on the 
computer. The stand-alone version is preferable if you have a system 
with a single disk drive. 

9.2 INVOKING BAD 

You can invoke the BAD utility as follows: 

dev: 

/SW 

>BAD dev: [/sw] ••• 

Specifies a physical device. The specification consists of two 
alphanumeric characters followed by a 2- or 3-digit octal unit 
number and colon. 

Specif:ies an optional switch that qualifies the BAD command line. 
Multiple BAD switches for a device must be specified on one line. 
If you do not specify any switch, BAD begins its pattern checking 
of individual blocks. 

9.2.l BAD Switches 

Table 9-1 c:ontains a reference list of BAD switches along with a brief 
description of each. For a detailed description of BAD switches see 
Section 9.S. 

9-1 



Switch 

/LI 

/MAN 

/OVR 

BAD BLOCK LOCATOR UTILITY (BAD) 

Table 9-1 
BAD Switches 

Function 

BAD switches for Task and Stand-Alone Versions 

Lists bad blocks as they are located 

Prompts you for additional bad blocks 

Creates bad block descriptor file on 
last-track device 

Recovers soft errors 

a 

/RETRY 

/UPDATE Reads the bad block descriptor file and 
prompts for input 

BAD Switches for Stand-Alone Version Only 

/CSR=nnnnnn 

/VEC=nnn 

/WCHK 

/NOCHK 

Alters the CSR address of the device 

Alters interrupt vector address of the device 

Causes a write check 

Negates /WCHK 

9.2.2 BAD And Indirect Files 

BAD can access an indirect file that contain a series of BAD command 
strings in the following manner: 

>BAD @BADCMDS.CMD 

In this example, BAD is invoked and accesses the file BADCMDS.CMD, 
which contains a sequence of BAD command strings. BAD executes the 
commands and returns control to MCR. The BAD utility allows nested 
command files; one command file can invoke another to a maximum depth 
of three. 

BAD can also be invoked by an indirect file. Such an indirect file 
can contain command strings for more than one utility and is accessed 
by entering only the file specification preceded by the at sign: 

>@INDIRECT. CMD 

The default values for indirect file specifications are: 

dev 
uic 
file name 
file type 
version 

SYO: 
The current UIC 
No default 
.CMD 
The latest version of the file 

For complete information on how to use indirect files, refer to the 
RSX-llM/M-PLUS MCR Operations Manual. 

9-2 

I( .I !. I iiiji Ji u Ji , .. , 



BAD BLOCK LOCATOR UTILITY (BAD) 

9.3 PROCESSING BAD BLOCK DATA 

This section contains information on how BAD tests the reliability of 
disks and DECtapes, formats bad block descriptor entries, and how the 
INI command uses bad block information. 

9.3.1 Verifying Devices 

BAD verifies disks and DECtapes by writing a test pattern onto each of 
the blocks on the device, reading the pattern back into· a buffer in 
storage, and comparing the blocks in the buffer with those on the 
device. When BAD processes a disk or DECtape, all existing data is 
destroyed. 

BAD writes the test pattern to several blocks in a single write 
operation. If an error occurs in writing, reading, or comparing any 
of these blocks, BAD tests each of the blocks individually. The test 
pattern, 165555 and 133333(octal), is replicated 128(decimal) per 
block. If BAD finds no bad blocks during individual testing, the 
error-logging subsystem may still log errors due to long data 
transfers. 

9.3.l.l BAD and Non-Last Track 
it stores their addresses in a 
blocks on a device, BAD records 
last good block of the device. 
single entries. There must be 
(decimal) blocks of the volume 
bad block descriptor file. 

Devices - As BAD locates bad blocks, 
memory buffer. After locating all bad 
the addresses of the bad blocks on the 
Consecutive bad blocks are recorded as 

at least one good block in the last 256 
for BAD to create this file, called the 

9.3.JL.2 BAD and Last-Track Devices - BAD records bad block 
information differently on last-track devices, such as the RK06/07, 
RLOl/02, and the RM02/03. The last track is divided into two areas, 
the Manufacturer's Detected Bad Sector File (MDBSF) and the Software 
Detected Bad Sector File (SDBSF). The MDBSF is created wh~n the 
hardware servo/header writer formats the pack. This operation also 
sets bits in any header that is marked bad in the MDBSF, and sets the 
SDBSI~ to be empty. When you run BAD, entries are made in the SDBSF. 
The information contained in the two last-track files is combined to 

'-" form [O,O]BADBLK.SYS when you issue the INI Cofllmand. 

9.3.2 Format of Bad Block Descriptor Entries 

For non-last track devices, BAD uses the last good block as a 
descriptor file for bad blocks. The address of a bad block, or the 
first address in a sequence of consecutive bad blocks, is stored as a 
double-word entry in the bad block descriptor file. The first word of 
this double-word contains two entries: the high-order byte contains 
the number of bad blocks minus 1 and the low order byte contains bits 
16 through 23 of the logical block number of a bad block or a range of 
bad blocks. The second word of the double-word contains bits 0 
through 15 of that block number. 

9-3 



JtiJ 4 

BAD BLOCK LOCATOR UTILITY (BAD) 

For last-track devices, bad block descriptor entries are also recorded 
as a double-word in the SDBSF. Word 1 of the double word contains the 
address of the cylinder on which the bad block exists. The high-order 
and low-order bytes of word 2 contain, respectively, the track and 
sector addresses of the bad block. 

9.3.3 The INI Command and BAD 

Use BAD with the MCR IN! Command to produce a Files-11 
IN! command uses the bad block information to create 
BADBLK.SYS. The BADBLK.SYS file has allocated to it 
found to be bad, thus ensuring that file system does 
known bad block to a file. 

volume. The 
the file [0,0] 
those blocks 

not allocate a 

For information on how to use the !NI, refer to the RSX-llM/M-PLUS MCR 
Operations Manual. 

9.4 USING THE BAD UTILITY 

Before BAD can validate a device, that device must be formatted by the 
manufacturer, by the FMT utility, or by one of the diagnostic programs 
supplied in your distribution kit. These programs are described in 
the RSX-11 Utilities Manual and the RSX-llM/M-PLUS user Mode 
Diagnostics Reference Manual, respectively. 

In the RSX-llM system, the volume must not be mounted. Issue the MCR 
dismount command if the device contains a mounted volume. 

In an RSX-llM~PLUS system, the volume must be mounted as foreign. 

The following example illustrates a typical sequence of steps for 
introducing the disk DKl: to an RSX-llM or RSX-llM-PLUS system. 

System 

M/M+ 
M+ 
M/M+ 
M/M+ 
M/M+ 
M+ 
M/M+ 

Command 

ALL DKl: <CR> 
MOU DKl:/FOR<CR> 
FMT DKl:[/sw]<CR> 
BAD DKl:[/sw]<CR> 
INI DKl: [label] [/sw] <CR> 
DMOU DK 1: <CR> 
MOU DKl:[label] [/sw]<CR> 

You may execute BAD while other RSX-11 tasks are executing. 

9.4.l Programming Considerations 

This section contains information you should know before you use the 
BAD u t i 1i t y • 

9.4.1.l Use of Block Zero - On bootable disks, block zero contains 
the bootstrap block. If block zero is bad, BAD prints a message 
warning the operator not to use the disk for a bootable system image. 

9-4 

" iii! 21 u usa: 



BAD BLOCK LOCATOR UTILITY (BAD) 

9.4.1.2 Device Controller Errors - The error-logging subsystem may 
record errors even though BAD is not reporting bad blocks. These 
errors may be encountered during long data transfers and may originate 
with the device controller. 

9.4.1.3 Maximum Entries in the BAD Block Descriptor - on non-last 
track devices BAD storage allows 102.(decimal) entries of bad block 
addresses. On last-track devices BAD allows 126. entries. On 
non-last track devices, a single BAD entry can address one bad block 
or several consecutive bad blocks. If more than the maximum number of 
entries is recorded, BAD terminates with an error message. 

9.5 BAD SWITCH DESCRIPTIONS 

9.5.l. Switches for both Task and Stand-Alone System Versions Of BAD 

"-'
1 

/LI 

/MAN 

/OVR 

Causes all bad blocks to be printed by number in decimal on your 
terminal. This switch causes bad blocks to be listed as BAD 
performs a data pattern check on each block. Blocks entered 
manually which BAD tests as reliable are not listed. This switch 
is valid for all devices. 

Causes BAD to first prompt you for bad block information and to 
then perform data pattern checking. Any block that you enter is 
included in the bad block descriptor file. 

Causes BAD to ignore last track information and write a bad block 
descriptor file on the last good block before the last track. In 
other words, the override switch causes BAD to treat a last-track 
device as a non-last track device. If your device has no bad 
block file on the last track, or if you suspect the reliability 
of the last track, use the override switch before using the MCR 
!NI command. The override switch is valid only for last-track 
devices. 

NOTE 

If you use this switch, the /BAD=[OVR] 
option for initializing a volume must 
also be used to construct the bad block 
file [O,O]BADBLK.SYS. See the 
RSX-llM/M-PLUS MCR Operations Manual for a description of the MCR INI command. 

9-5 



'iiQJiiii!iiiii 

BAD BLOCK LOCATOR UTILITY (BAD) 

/RETRY 

Causes BAD to attempt a recovery of hardware errors via the 
device driver. This also means that soft errors, such as an ECC 
correctable error, will be recovered and the block will be marked 
as good. 

/UPDATE 

causes BAD to immediately read the bad block descriptor file and 
prompt you for additional bad block input. This switch does not 
cause BAD to write pattern checks. 

NOTE 

Updating the bad block descriptor file 
on file structured volumes does not 
cause the file [O,O]BADBLK.SYS to be 
updated. 

9.5.2 The Manual and Update Switches 

If you wish to enter bad blocks in manual or update mode, BAD will 
prompt you as follows: 

BAD>LBN(S)= 

You may then enter bad blocks in the format: 

blocknum:number 

Where number specifies the number of sequential bad blocks beginning 
at the specified block number blocknum. The colon is required when 
you specify a sequence of bad blocks in this form. Both blocknum and 
number default to decimal values, unless preceded by a number sign (#) 
to indicate an octal value. For example: 

BAD LBN ( S) = 7 0 • 3 

enters the block numbers 70,71, and 72 in the bad block descriptor 
file. 

You can also specify a single bad block. For example: 

BAD> LBN ( S) = 3 

enters block 3 in the bad block file. 

You can use both of these forms on the same command line. For 
example: 

BAD>LBN(S)= 100:2,3, 200:100 45:1 

enters blocks 100, 101, 3, 200 through 299, and 45 in the bad block 
file. You can separate bad block sequences with a space, tab, or 
comma. 

9-6 

Ull 2ii I. I J ) ii ::::m 02 H 



BAD BLOCK LOCATOR UTILITY (BAD) 

When you enter a carriage return in response to the prompt, BAD will 
list all the sequences in the bad block descriptor file. For example: 

BAD>LBN(S)= 
000100:002 
000003:001 
000200:100 
000045:001 

BAD>LBN(S)= 

The first number in the display represents the beginning block of the 
sequence; the second number represents the number of bad blocks. Bad 
block numbers are listed in decimal. 

When a bad block sequence is entered, BAD determines if these bad 
blocks are adjacent to an already existing sequence. If you are using 
a non-last track device, BAD appends your bad block entry to the 
existing sequence. If you are using a last track device, BAD records 
individual bad blocks in core memory but lists entries at your 
terminal as part of existing bad block sequences. 

When you have finished supplying information in manual or update mode, 
enter ESCAPE, ALTMODE, or <CTRL/Z> in response to the prompt. The bad 
block will then either be rewritten with the new bad block information 
if in update mode or pattern checking will start if in manual mode. 
Blocks entered manually which BAD tests as reliable are included in 
the bad block descriptor file. 

9. 5. 3 Swi t:ches for Stand-Alone Syste10 Version Only 

/C SR=nnnnnn 

nnnnnn is a new CSR address 

This switch alters the CSR address of the device so that it 
conforms to that of the device in te user's system. /CSR remains 
in effect and need not be repeated if more commands are issued. 

/VEC=nnn 

/WCHK 

nnn is a new interrupt vector address 

This switch alters the interrupt vector address so that it 
conforms to the vector address of the device in the user's 
system. /VEC remains in effect if more commands are issued. 

This s;witch causes a write check operation to occur after each 
write operation. The switch is not available for devices DT, DX, 
or DY. 

/NOCHK 

This i:iwitch negates /WCHK. 
default. 

This switch returns you to the 

9-7 



BAD BLOCK LOCATOR UTILITY (BAD) 

Unlike PRESRV and DSC, BAD expects to see all switches on a single 
command line. For example: 

BAD>DM3:/0VR/LI/VEC=300/CSR=l74406 

locates all bad blocks on DM3, ignores the last track data, lists all 
bad blocks, changes the interrupt vector to 300, and changes the CSRss 
to 174406. All switches are validated for prop syntax before the 
actual bad block detection takes place. 

9.6 DEVICES SUPPORTED BY THE STAND-ALONE VERSION 

The following devices are supported by the stand-alone version of BAD. 
If you have a task version of BAD, your executive will support any 
device suitable to your system's configuration. 

Mnemonic Type CSR Vector 

DB RH11-RP04/05/06 and RH70-RP04/05/06 176700 254 
Disk Pack 

DD TU58 DECtape II 175600 300 

DF RFll/RSll Fixed-Head Disk 177460 204 

DK RK11-RK03/05/05F Cartridge Disk 177404 220 

DL RL11/RL01/RL02 Cartridge Disk Pack 174400 160 

DM 

DP 

DR 

OS 

OT 

DX 

DY 

RK611-RK06/07 Cartridge Disk Pack 

RPll-C/E RPR02/RP02/03 Disk Pack 

RH70/RM03 and RH11/RM02 Disk Pack 

RH11-RS03/04 and RH70-RS03/04 

TC11/TU56 DECtape 

RXll/RXOl Floppy Disk 

RX211/RX02 Floppy Disk 

177440 210 

176714 3201 

176700 340 1 

172040 3101 

177342 214 

177170 264 

177170 3501 

1 Nonstandard Vector Address 

9.7 BAD MESSAGES 

This section lists the BAD messages, gives a brief description of the 
condition that causes each message, and suggests a response to the 
condition. BAD error messages are arranged alphabetically beginning 
with the text following after the device symbol, [ddu:]. 

BAD -- ddu: BAD BLOCK FILE NOT FOUND 

Explanation: The bad block descriptor file could not be read in 
update mode. 

User Action: You must use the device without updating the bad 
block file, or reformat the device and destroy all data. 

9-8 

'"i1111111-----------------------------------------------·+•••••t 



BAD BLOCK LOCATOR UTILITY (BAD) 

BAD .-- ddu: BAD BLOCK FILE OVERFLOW 

Explanation: BAD detected more than 102 sets of bad blocks. For 
last-track devices, the maximum number of bad blocks that can be 
recorded is 126. This message usually indicates a device unit 
failure. 

user Action: 
maintainance; 

Either the volume is bad or the drive requires 
contact your DIGITAL Field Service Representative. 

BAD ·-- ddu: BAD BLOCK FOUND - LBN= nnnnnn. 

Explanation: Bad blocks are reported in this format, where LBN 
is the Logical Block Number (decimal). 

User Action: None. This message is informational and applies to 
the /LI switch only. 

BAD -- ddu: BLOCK 0 BAD - DO NOT USE AS SYSTEM DISK 

Explanation: This is a warning message. 
a bootstrap block cannot be written 
useless as a system disk. 

When block zero is bad, 
on the disk, making it 

User Action: Label the disk to ensure that no one attempts to 
use it as a system disk. 

BAD -- COMMAND I/O ERROR 

Explanation: There was a hardware transmission error from the 
keyboard. 

user Action: Retype the command~ 

BAD -- COMMAND TOO LONG 

Explanation: The command was longer than 80. characters. 

User Action: Retype the command~ 

BAD -- ddu: CSR ADDRESS NOT IN SYSTEM 

Explanation: Self-explanatory. This message occurs only in the 
stand-alone system version of BAD. 

User Action: Retype the command including the /CSR switch with 
the proper value. 

BAD -- ddu: DEVICE OFFLINE 

Explanation: In the stand-alone version of BAD, the specified 
devicE~ is not in the hardware configuration, or the Control 
Status Register switch (/CSR) is improperly set. 

User Action: Retype the command, setting the /CSR and /VEC 
addresses for the device to the proper addresses. 

9-9 



•• !i2$Jllli ;:: 4 

BAD BLOCK LOCATOR UTILITY (BAD) 

BAD -- DUPLICATE BLOCK NUMBER - [numb] 

Explanation: The block number sequence you entered is already 
present in the bad block file. The value [numb] is the sequence 
you entered. 

User Action: Reenter the command line with another value. 
message applies to the /MAN or /UP switch only. 

This 

BAD -- ddu: FAILED TO ATTACH 

Explanation: BAD could not gain control of the unit to be 
tested. 

User Action: Determine if another task has attached the unit. 
If so, wait until the task exists, or abort the task to gain 
control of the unit for BAD. 

BAD -- ddu: FAILED TO READ MANUFACTURER'S BAD SECTOR FILE 

Explanation: A disk-read hardware error occured while attempting 
to read the factory-written bad block data on the last-track 
device cartridge. 

User Action: Reenter the command with the /OVR switch included. 

BAD -- ddu: FAILED TO READ SOFTWARE BAD SECTOR FILE 

Explanation: The software-detected bad sector file could not be 
read in update mode. 

User Action: Reenter the command with the /OVR switch included. 

BAD -- ddu: FAILED TO WRITE BAD BLOCK FILE 

Explanation: BAD could not write the bad block file. 
condition usually results from a disk write error. 

This 

User Action: Reenter the command. If the problem persists the 
disk pack should be discarded. 

BAD -- ddu: FATAL HARDWARE ERROR 

Explanation: Self-explanatory. 

User Action: Contact your DIGITAL Field Service Representative. 

BAD -- ddu: HANDLER/DRIVER MISSING 

Explanation: The disk driver is not loaded. 

User Action: Load the disk driver and reenter the command. 

9-10 

IA ii #!LI f Z?U 



'-'; 

BAD BLOCK L.OCATOR UTILITY (BAD) 

BAD -- ddu: ILLEGAL DEVICE 

Explanation: The device to which bad block processing is 
directed does not support a Files-11 structure. 

User Action: You must re-format your device before running BAD. 

BAD -- INVALID BLOCK NUMBER - [numb] 

Explanation: You entered an invalid block number sequence. The 
value [numb] is the sequence. 

User Action: Type another value and reenter the command line. 
This message applies to the /MAN or /UP switch only. 

BAD -- INVALID SWITCH 

Explanation: Self-explanatory 

User Action: Reenter the command with a proper switch. 

BAD -- ddu: IS AN ALIGNMENT CARTRIDGE 

Explanation: The factory written label on the last track of a 
last-track device cartridge indicates an alignment cartridge. 

User Action: Mount and process another cartridge. 

BAD -- ddu: NOT IN SYSTEM 

Explanation: The requested device was not made part of the 
system during system generation, or the device does not exist on 
the host configuration. 

User Action: Ensure that you entered the command line correctly. 

BAD -- ddu: NOT READY 

Explanation: The unit had not reached operating speed when BAD 
attempted to access it. 

User Action: Allow the unit to reach operating speed and reenter 
the command line. 

BAD -- ddu: MANUFACTURER'S BAD SECTOR FILE CORRUPT 

Explanation: The factory-written bad block data in the last 
track of a last-track device is in an inconsistent format. 

user Action: Reenter the command with the /OVR switch included. 

BAD -- ddu: PRIVILEGE VIOLATION 

Explanation: An operation was attempted for a device that was 
mounted or allocated to another user. 

User Action: Mount another device and reenter the command line. 

9-11 



z: 

BAD BLOCK LOCATOR UTILITY (BAD) 

BAD -- SYNTAX ERROR 

Explanation: BAD detected a syntax error on the command line. 

User Action: Determine the correct syntax and reenter the 
command line. 

BAD -- ddu: TOTAL BAD BLOCKS= [n]. 

Explanation: This is an information message indicating the total 
number (in decimal) of bad blocks on the disk. 

User Action: Write the bad blocks count on the disk label. 

BAD -- ddu: UNRECOVERABLE ERROR [n] 

'4 

Explanation: An I/O error caused BAD to terminate. The value 
[n] is number of the I/O error returned by the driver. 

User Action: If the same error persists, contact your local 
Digital field representative. 

BAD -- ddu: VECTOR NOT MULTIPLE OF FOUR 

Explanation: Self-explanatory. 

User Action: Retype the command including the /VEC switch with 
the proper value. 

BAD -- ddu: WRITE LOCKED 

Explanation: The unit is write-locked. 

User Action: Write-enable the unit and reenter the command line. 

9-12 

!!Ell SJ! ii IS ii hi I e:;e 



'-') 

CHAPTER 10 

BACKUP AND RESTORE UTILITY (BRO) 

The RSX-11 Backup and Restore Utility (BRU) provides functions that 
allow you to back up and restore Files-11 volumes. BRU transfers 
files from a volume to a backup volume or volumes to ensure that a 
copy of the files is available in case the original files are 
destroyed. If the original files are destroyed, or if for any other 
reason the copy needs to be retrieved, you can restore the back-up 
fileis with the BRU command. 

Backup and restore operations take place on disk and tape volumes: 

• Disk to tape for backup operations 

• Tape to disk for restore operations 

• Disk to disk for either backup or restore operations 

In addition to these basic data transfer functions, the Backup and 
Restore Utility provides command qualifiers to: 

• Perform backup and restore operations by file specification, 
date, and time 

• Control disk processing, which provides disk initialization 
features that allow you to enter the locations of bad blocks 
on a disk and initialize the disk before a backup or restore 
operation 

• Control tape processing such as density, length, ANSI tape 
labeling, rewind, and append 

• Verify accurate data transfers 

• Display information such as backup set names and file names 

10.l OVERVIEW OF COMMAND QUALIFIERS AND DEFAULTS 

Table 10-1 summarizes the command qualifiers available for backup and 
restore operations. 

10-1 



q 

BACKUP AllD RESTORE UTILITY (BRU) 

Table 10-1 
Summary of BRU Command Qualifiers 

Command Qualifiers Options Default 

/APPEND 

/BACKUP_SET:name 

/BAD: 

/BUFFERS:number 

/COMPARE 

/CREATED: 

/DENSITY:number 

/DIRECTORY 

/DISPLAY 

/ERRORS:number 

/EXCLUDE 

/EXTEND:number 

/HEADERS:number 

/INITIALIZE 

/INVOLUME:name 

/LENGTH:number 

/MAXIMUM: number 

/MOUNTED 

a 

[ MANUAL 
[ AUTOMATIC 
[ OVERRIDE 

] 
] 
] 

None 

None 

BAD:AUTOMATIC 

Number of 
buffers from 
the input 
disk 

[BEFORE:dd-mmm-yy hh:mm:ss] Current date 
[AFTER:dd-mmm-yy hh:mm:ss ] 

10-2 

DENSITY:SOO. 

None 

None 

ERRORS:25. 

None 

Number of 
blocks from 
the input 
disk 

Number of 
headers from 
the input 
disk 

None 

None 

The length of 
the output 
tape 

Maximum 
number of 
files from 
the input 
disk 

None 

(continued on next page) 

Ii ;:; 



BACKUP ARD RESTORE UTILITY (BRO) 

Table 10-1 (Cont.) 
Summary of BRU Command Qualifiers 

Command Qualifiers Options 

/NEW_ VERSION 

/NOINITIALIZE 

/NOPRESEFtVE 

/NOSUPERSEDE 

/OUTVOLUME:name 

/POSITION: 

/PROTECT ION: 

[ BEG INN ING ] 
[ MIDDLE ] 
[ END ] 
[block:number ] 

(protection value) 

SYSTEM:value 
OWNER: value 
GROUP:value 
WORLD: value 

Default 

None 

None 

None 

None 

Input disk 
volume name 

Index file 
position on 
the input 
disk 

Protection of 
the input 
disk 

/11lEVISED:: [BEFORE:dd-mmm-yy hh:mm:ss] Current date 
[AFTER:dd-mmm-yy hh:mm:ss ] 

/HEWIND 

/SUPERSEDE 

/'I'APE_LABEL: label 

/VERIFY 

/WINDOWS:value 

None 

/NOSUPERSEDE 

None 

None 

Number of 
mapping 
pointers on 
input disk 

10.Jl.l Command Qualifiers For Selective Backup And Restore 

The command qualifiers described in Table 10-2 allow you to backup or 
restore data, using one of the following criteria for file selection: 

• File specification 

• Date and time of creation 

• Date and time of revision 

10-3 



BACKUP AllD RESTORE UTILITY (BRO) 

Table 10-2 
Command Qualifiers That Perform Selective Backup and Restore Operations 

Qualifier 

/CREATED 

/EXCLUDE 

/NEWVERSION 

/NOSUPERSEDE 

/REVISED 

/SUPERSEDE 

: au a ;u 

Options 

BEFORE:(dd-mmm-yy[hh:mm:ss]) 
AFTER:(dd-mmm-yy[hh:mm:ss]) 

BEFORE:(dd:mmm:yy[hh:mm:ss]) 
AFTER:(dd:mmm:yy[hh:mm:ss]) 

10-4 

Explanation 

Directs BRU to 
process files created 
before or after a 
specified date and/or 
time. 

Selectively excludes 
from a backup or 
restore operation all 
files specified on 
the command line. 

Directs BRU to 
resolve conflicts 
resulting from files 
with identical file 
specifications by 
creating a new 
version of the file. 
Both versions of the 
file are kept on the 
output volume. 

When files on the 
output volume have 
file specifications 
identical with files 
on the input volume, 
resolves the conflict 
by keeping the file 
on the output volume 
rather than that on 
the input volume. 

Directs BRU to 
process files revised 
before or after a 
specified date and/or 
time. 

In restore 
operations, restores 
files to an existing 
disk; resolves file 
specification 
conflicts by deleting 
the old file on the 
output disk and 
replacing it with the 
file being restored 
from the input disk. 

22 !IL! ;a;• 



BACKUP ARD RESTORE UTILITY (BRU) 

The :following qualifiers resolve file specification conflicts when, 
during a restore to an existing disk, a file specification on the 
output volume is identical to one for a file being transferred from 
the input volume: 

• /NEWVERSION 

e /SUPERSEDE 

• /NOSUPERSEDE 

10.1.2 Command Qualifiers for Controlling Disk Processing 

The command qualifiers described in Table 10-3 allow you to control 
the way the operating system manages disk data transfer operations. 

Table 10-3 
Command Qualifiers that Control Disk Processing 

Qualifier Options 

/UHTIALIZE 

/INVOLUME name 

/NOINITIALIZE 

/MOUNTED 

/NOP RESERVE 

/OUTVOLUME name 

Explanation 

Directs BRU to initialize 
a disk before proceeding 
with the data transfer. 

Specifies the volume label 
of the input disk. 

Specifies that you do not 
want to initialize the 
output disk; it already 
has a Files-11 structure 
and is mounted as 
Files-11. 

Allows you to back up 
files from a disk that is 
mounted as a Files-11 
volume (via the MCR MOUNT 
command). 

Specifies that you do not 
want BRU to preserve file 
identifiers. 

Specifies the volume label 
of the output disk. 

10.1.3 Command Qualifiers for Controlling Tape Processing 

The qualifiers in Table 10-4 allow you to control backup and restore 
tape processing. 

10-5 



':!lllllU ii $J1 

BACKUP AllD RESTORE UTILITY (BRO) 

Table 10-4 
Command Qualifiers That Control Tape Processing 

Qualifier Options 

/APPEND 

/BACKUP_SET name 

/DENSITY number 

/ERRORS number 

/LENGTH number 

/REWIND 

/TAPE_ LABEL label 

Explanation 

Appends new backup data to a tape 
with one or more backup sets. 

Specifies the name of the backup 
set to be placed on tape. Refer 

.to Section 10.s.1. 

Specifies the data density 
which BACKUP writes to tape. 

at 

Specifies the number of nonfatal 
I/O errors BRU tolerates on tape 
reads before automatically 
terminating execution. 

Specifies the length of the output 
tape in decimal feet. 

Rewinds the first tape of a tape 
set before execution of a command 
line. 

Specifies a 6-character ANSI tape 
label. 

10.1.4 Command Qualifiers for Verifying the Accuracy of Data Transferred 

The command qualifiers in Table 10-5 allow you to detect differences 
between data on the input volume and data on the output volume. 

Table 10-5 
Command Qualifiers That Verify the Accuracy of Data Transfers 

Qualifier Explanation 

/COMPARE Compares the data on the output volume to the data 
on the input volume and reports any differences. 

/VERIFY Copies data from the input volume to the output 
volume, performs a compare operation, and reports 
differences. 

10.1.5 Command Qualifiers for Displaying Information About Files Transferred 

The command qualifiers listed in Table 10-6 display information about 
the data being transferred. 

10-6 

iii# iii! Uh I J$1iiilil! 4422 $ 



'-'i 

BACKUP AllD RESTORE UTILITY (BRO) 

Table 10-6 
Command Qualifiers That Provide Information 

Qualifier Explanation 

/DISPLAY Displays at your terminal the UFO 
and filename of each file being 
backed up. 

/DIRECTORY Display information (such as 
backup set names, file names, or 
volume number of a tape) on a 
specified tape volume. 

10.1.6 Command Qualifiers for Initializing Disks 

When you are initializing a disk using the BRU /INITIALIZE qualifier, 
you may want to specify various characteristics for the output disk. 
The qualifiers in Table 10-7 allow you to set the characteristics. 

10.2 DISK AND TAPE DEVICE INFORMATION 

You can use the Fast Backup and Restore Utility only on Files-11 
volumes. The following sections give a brief overview of the Files-11 
format and also present some general disk device information. 

For more detailed information on Files-11, refer to the IAS/RSX-11 I/O 
Operations Reference Manual. 

10.2.l Files-11 Structures 

BRU requires that an input disk be a Files-11 volume. Also, when you 
initialize a volume. for Files-11, five control files are created. 
These five files are catalogued in the Master File Directory ([O,O] 
also called the MFD) : 

• The Index File -- identifies the volume to the operating 
system as a Files-11 structure contains control data for 
accessing all files on the volume. The index file is listed 
in the Master File Directory as INDEXF.SYS. 

• The Storage Bit Map File -- controls the available space on 
the volume. This file is listed in the MFD as BITMAP.SYS. It 
contains a storage control file, which consists of summary 
information for optimizing the allocation of storage. It also 
contains the bit map itself, which lists available blocks of 
st<> rage. 

e The Bad Block File -- is listed in the MFD as BADBLK.SYS. It 
contains all of the bad blocks on the volume. Bad block 
processing is discussed in more detail in Section 10.4.2. 

• The Master File Directory (MFD) -- listed in the MFD as 
000000.DIR. The MFD is the root of the volume directory 
structure. It lists both the reserved files that control the 
volume structure and user file directories. 

10-7 



'i'RI 2!ii 4 

BACKUP ARD RESTORE UTILITY (BRO) 

e The Core Image File -- listed in the MFD as CORIMG.SYS. This 
file contains the system checkpoint file. 

The following sections give you background information you need to 
efficiently use the BRU command qualifiers for controlling operating 
system disk processing operations. 

Qualifier 

/BAD 

/BUFFERS 

/EXTEND 

/HEADERS 

/MAXIMUM 

/POSITION 

/PROTECT ION 

/WINDOWS 

:au;: a: 

Table 10-7 
Initialization Qualifiers 

Options 

MANUAL 
AUTOMATIC 
OVERRIDE 

number 

number 

number 

number 

BEGINNING 
MIDDLE 
END 
BLOCK:number 

protection value 
SYSTEM:value 
OWNER:value 
GROUP:value 
WORLD:value 

number 

10-8 

Explanation 

Enters the locations of 
bad blocks on volumes. 

Specifies the number of 
directory File Control 
Blocks (FCBs) per 
volume kept in memory 
by the ACP. 

Specifies the number of 
blocks to extend a file 
when that file has 
exhausted its allocated 
space. 

Specifies the number of 
file headars to 
allocate initially to 
the index file. 

Specifies the maximum 
number of files that 
can be placed on a 
volume. 

Specifies the location 
of the index file, 
Master File Directory, 
and the storage 
allocation file on a 
disk. 

Specifies the global 
protection status of 
the disk. 

Specifies the number of 
retrieval pointers 
allocated for use with 
file windows. 

scaa a a ;; ; 21512 



BACKUP Al1D RESTORE UTILITY (BRO) 

Table 10-6 
Command Qualifiers That Provide Information 

Qualifier Explanation 

/DISPLAY Displays at your terminal the UFD 
and filename of each file being 
backed up. 

/DIRECTORY Display information (such as 
backup set names, file names, or 
volume number of a tape) on a 
specified tape volume. 

10.1.6 Command Qualifiers for Initia:Uzing Disks 

When you are initializing a disk using the BRU /INITIALIZE qualifier, 
you may want to specify various characteristics for the output disk. 
The qualifiers in Table 10-7 allow you to set the characteristics. 

10.2 DISK AND TAPE DEVICE INFORMATION 

You can use the Fast Backup and Restore Utility only on Files-11 
volumes. The following sections give a brief overview of the Files-11 
format and also present some general disk device information. 

For more detailed information on Files-11, refer to the IAS/RSX-11 I/O 
Operations Reference Manual. 

10.2.1 Files-11 Structures 

BRU requires that an input disk be a Files-11 volume. Also, when you 
initialize a volume. for Files-11, five control files are created. 
These five files are catalogued in the Master File Directory ([O,O] 
also called the MFD) : 

• The Index File -- identifies the volume to the operating 
system as a Files-11 structure contains control data for 
accessing all files on the volume. The index file is listed 
in the Master File Directory as INDEXF.SYS. 

• The Storage Bit Map File -- controls the available space on 
the volume. This file is listed in the MFD as BITMAP.SYS. It 
contains a storage control file, which consists of summary 
information for optimizing the allocation of storage. It also 
contains the bit map itself, which lists available blocks of 
storage • 

• The Bad Block File -- is listed in the MFD as BADBLK.SYS. It 
contains all of the bad blocks on the volume. Bad block 
processing is discussed in more detail in Section 10.4.2. 

• The Master File Directory (MFD) -- listed in the MFD as 
000000.DIR. The MFD is the root of the volume directory 
structure. It lists both the reserved files that control the 
volume structure and user file directories. 

10-7 



i 

BACKUP ARD RESTORE UTILITY (BRU) 

• The Core Image File -- listed in the MFD as CORIMG.SYS. This 
file contains the system checkpoint file. 

The following sections give you background information you need to 
efficiently use the BRU command qualifiers for controlling operating 
system disk processing operations. 

Qualifier 

/BAD 

/BUFFERS 

/EXTEND 

/HEADERS 

/MAXIMUM 

/POSITION 

/PROTECT ION 

/WINDOWS 

Table 10-7 
Initialization Qualifiers 

Options 

MANUAL 
AUTOMATIC 
OVERRIDE 

number 

number 

number 

number 

BEGINNING 
MIDDLE 
END 
BLOCK:number 

protection value 
SYSTEM:value 
OWNER: value 
GROUP:value 
WORLD: value 

number 

10-8 

Explanation 

Enters the locations of 
bad blocks on volumes. 

Specifies the number of 
directory File Control 
Blocks (FCBs) per 
volume kept in memory 
by the ACP. 

Specifies the number of 
blocks to extend a file 
when that file has 
exhausted its allocated 
space. 

Specifies the number of 
file headers to 
allocate initially to 
the index file. 

Specifies the maximum 
number of files that 
can be placed on a 
volume. 

Specifies the location 
of the index file, 
Master File Directory, 
and the storage 
allocation file on a 
disk. 

Specifies the global 
protection status of 
the disk. 

Specifies the number of 
retrieval pointers 
allocated for use with 
file windows. 

1

'''!111'••••::•••:•. ••&•li!ili •t•""""'F.-z••··----------------4••··-····i•l ••::•.JJ•ii!•l I•. •I •t••l•/1114-S I 



BACKUP AllD RESTORE UTILITY (BRU) 

10.2.1.l The Index File - The index file contains the following 
infc•rmation: 

• Bootstrap Block -- is virtual block number l of the index 
file. If the volume is a PDP-11 system device, this block 
contains a bootstrap program that loads the operating system 
into memory. 

If the volume is not a system device, this block contains a 
program that displays a message indicating that the volume 
does not have a hardware-bootable system. 

• Home Block -- establishes the specific identity of the volume, 
providing such information as the volume name and protection, 
maximum number of files allowed on the volume, and volume 
ownership information. The home block is virtual block number 
2 of the index file. 

• Index File Bit Map -- controls the allocation of file headers 
and thus the number of files on the volume. The bit map 
contains a bit for each file header allowed on the volume. 
Tht~ index file bit map starts at virtual block number 3 of the 
index file and continues for the number of blocks necessary to 
contain the bit map. 

• File Headers -- comprise the largest part of the index file. 
Each file on the volume has a file header, which describes 
such attributes as file ownership, creation date and time, and 
file protection. The file header contains all the information 
necessary for accessing the file. 

10.2.2 Disk Volume Labels and Backup Set Names 

If you omit the backup set name in a backup operation, BRU uses the 
volume label of the input disk as the backup set name of the output 
tapE~ • 

10.~~.3 Devices Supported for Backup and Restore 

Table 10-8 lists all the devices that BRU supports. 

Mnemonic 

DD 

OM 

DB 

DK 

Table 10-8 
Devices Supported By BRU 

Type 

TU58 cassette (DECtape II) 

RK6ll/RK06/RK07 cartridge disk 

RH11/RP04/RPOS/RP06 and 

RH70/RP04/RPOS/RP06 disk 
pack 

RK 11/RKO 5/RKO SF cartridge 
pack 

Class 

Block-structured 

Block-structured 

Block-structured 

Block-structured 

(continued on next page) 

10-9 



I 

BACKUP AllD RESTORE UTILITY (BRO) 

Mnemonic 

DF 

DL 

DP 

DR 

DS 

DT 

DX 

Table 10-8 (Cont.) 
Devices Supported By BRU 

Type 

RFll/RSll fixed head disk 

RLll/RLOl cartridge disk 

RP11/RP02/RP03 disk pack 

RH70/RM03 

RH11/RM02 disk pack 

RH11/RS03/RS04 and RH70/RS03 

RS04 fixed head disk 

TC11/TU56 DECtape 

RXll/RXOl Floppy Disk 

Class 

Block-structured 

Block-structured 

Block-structured 

Block-structured 

Block-structured 

Block-structured 

Block-structured 

DY RX211/RX02 Floppy Disk Block-structured 

MM RH11/TM02-03/TE16/TU16/TU45/TU77 Tape 
and RH70/TM02-03/TE16/TU16/TU45 

MT 

MS 

and TU77 9-track magnetic tape 

TMll/TUlO/TElO 7- or 9-track 
magnetic tape and TS03 9-track 
magnetic tape 

TS04 magnetic tape 

Tape 

Tape 

10.3 BACKUP AllD RESTORE COMMAND LIRE DESCRIPTIONS 

This section describes the rules for entering command lines for the 
Backup and Restore utility. The section includes the definition of 
the command line syntax and descriptions of command line parameters, 
command qualifiers, and prompts. 

10.3.l Command Line Syntax Definition 

The general syntax of the BRU command line is: 

BRU /qualifiers indevicel:, ••• [filespec, ••• ] outdevicel:, ••• [filespec, ••• ] 

10.3.2 Descriptions of Prompts 

Prompts 

FROM: 

TO: 

INITIALIZE [Y/N]: 

10-10 

~ 
~--··· r ~v 

ll!lillllllll•------~·-·.,;•t -----------------·-·•:•ts•-----------------·-•1•:s1•:•• 



FROM 

TO 

BACKUP ARD RESTORE UTILITY (BRO) 

Requests that you enter the name(s) of the devices on which the 
input volume(s) reside in the form specified in the description 
below of the command parameters. 

Requests that you enter the name(s) of the output devices in the 
form specified in the description below of the command 
parameters. 

INI'rIALI ZE [ Y/N] 

Issued as a precaution to ensure that you want to erase the 
output volume. Enter Y (for YES) if you want to initialize the 
volume. 

10.3.3 Description of Command Line Parameters 

qualifiers 

Specifies any of the command qualifiers specified above. If more 
than one qualifier is specified, they must be contiguous; that 
is, you may not separate the qualifiers with blanks or any other 
delimiters. The qualifiers may appear in any order. 

You may abbreviate a qualifier as long as you use a unique 
abbreviation. For example: 

BRU>/REW/INI/OUT:BACKUP MMO: DKO: 
BRU - STARTING TAPE 1 ON MMO: 

BRU -- *WARNING* 
BOOTABLE SYSTEM 

THIS DISK WILL NOT CONTAIN A HARDWARE 

BRU - END OF TAPE 1 ON MMO: 

BRU - COMPLETED 

When a qualifier has options, you must separate the qualifier from the 
option by a colon in the form: 

/qualifier: option 

indi:?vice 

Specifies the physical device or devices from which data is 
transferred. For tapes, you may specify more than one input 
device. Devices are specified in the form: 

DD[uu] ~ 

where DD represents 
octal unit number 
may be specified as 
is o. For example, 
MMO : , MM: , MMO 1 : , 
configuration. The 

the device mnemonic and uu represents the 
associated with that device. The unit number 
one or two digits; the default unit number 
a TU77 tape drive can be referenced as MMOO:, 

MMl:, and so forth, depending on your 
colon is a required delimiter. 

When more than one device is specified, the device mnemonics must 
be separated by commas. 

10-11 



BACKUP AllD RESTORE UTILITY (BRO) 

fil~spec 

Indicates the file specification used to select particular files 
or categories of files to be backed up or restored. The filespec 
takes the form: 

[n,m]filename.filetype;version 

You may specify up to 16 filespecs per command line. 

Files can be backed up or restored selectively by UFO, filename, 
filetype, or version number. When backing up or restoring 
selectively by version number, you must specify either an 
explicit version number or no version number at all or a wildcard 
(*), which has the same effect as no version number. BRU does 
not support O or -1 as version numbers. 

outdevice 

Specifies the output device to which data is being transferred. 
For tapes, you may specify more than one output device. The 
rules are the same as for the "indevice" above. 

10.3.3.1 Entering Command Lines with Ro Pile Specifications - When 
you enter a command line with no file specification, all the files on 
the input volume are copied to the output volume. 

10.3.3.2 Wildcards in Input Specifications - The following wildcard 
features are provided for file specifications: 

[*,*] means all group,member combinations. 
[nl,*] means all member numbers under group nl. 
[*,n2] means all group numbers for member n2. 

BRU supports the wildcard (*) in all the 
specification: file name, file type, and 
generally follows the RSX-llM rules for use of 
the following two instances: 

elements of a 
version number. 
wildcards, except 

file 
BRU 

in 

• When you omit a file specification element, BRU treats the 
omitted element as if it were a wildcard. That is, when you 
specify only file name and file type in a file specification, 
all version numbers are transferred in the backup or restore 
operation. 

• When you specify particular UFOs on a command line, all the 
files in those UFOs are transferred in the backup or restore 
operation. 

10.3.3.3 Continuation Lines - BRU allows you to continue a command 
line onto more than one line by using a hyphen (-) as the continuation 
character. 

On RSX-llM Version 3.2 systems, BRU supports continuation lines only 
when invoked as BRU>. BRU does not support continuation lines when 
run from an indirect command file or when the command line is entered 
on the same line as the one on which BRU is invoked. 

10-12 

1$11 22122; I J 

""" ... Ir 

;:; 



BACKUP ARD RESTORE UTILITY (BRO) 

On RSX-llM-PLUS systems BRU supports continuation lines under all 
ci rc::umstances. 

The following examples show continued BRU command lines on RSX-llM and 
RSX·-llM-PLUS. 

RSX-UM 

>RUN BRU 
BRU> /REWIND ... 
BRU>/INVOLUME:BACKUP
BRU>/BACKUP SET:25MAY79-
BRU>/TAPE LABEL:BRU123 
FROM: DKO: 
TO: MMO~ 

BRU - STARTING TAPE 1 ON MMO: 

BRU - END OF TAPE 1 ON MMO: 

BRU - COMPLETED 

BRU>".z 

RSX-UM-PLUS 

>BRU /REWIND-
MCR> /INVOLUME:BACKUP
MCR> /BACKUP SET:25MAY79-
MCR> /TAPE_LABEL:BRU123 DKO: MMO: 
> 

10.:3.4 Description of Command Qualifiers 

/APPEND 

Directs BRU to append a backup set from the input volume to the 
last backup set on the output tape. 

The output tape may not be a continuation tape in a backup set; 
it cannot contain a backup set that is continued on another 
volume. 

/APPEND causes BRU to skip to the logical end-of-tape before it 
writes the new backup set, if the tape was positioned at the 
beginning. BRU searches the output volume for the last logical 
end-of-fileQ If the tape is a continuation tape, i.e., not the 
first tape of a tape set, BRU displays an error message. 

If the last backup set does not end on the tape, BRU displays an 
error message. 

If the tape is not positioned at the beginning, /APPEND will 
cause BRU to start writing where the tape is currently 
positioned. /APPEND/REWIND will cause BRU to rewind the tape and 
then space forward until the end of the volume. 

/BACKUP_SET:name 

Specifies the name of the backup set (refer to Section 10.5.2) to 
be placed on tape. Default is the volume name of the disk being 
backed up. This name may be up to 12 characters long. 

10-13 



'''~•1111 

BACKUP ARD RESTORE UTILITY (BRU) 

When applied to an output tape volume, the backup set name 
assigns the name of the backup set being placed on the volume. 
BRU supports multiple backup sets on a single volume. 

If you specify no backup set name for the output volume, BRU uses 
the volume name of the input disk to name the backup set. 

When applied to an input tape volume, BRU searches the first tape 
for the specified backup set name. If you specify no backup set 
name with the input volume, BRU restores the first backup set it 
finds on the tape. 

BRU does not rewind the first tape in a backup set unless you 
specify /REWIND. 

/BAD:[ 
[ 
[ 

AUTOMATIC 
OVERRIDE 
MANUAL 

The /BAD qualifier is used with the /INITIALIZE qualifier during 
tape to disk or disk to disk operations. 

For complete information on how to use the /BAD qualifiers, refer 
to Section 10.4.2, "Using the Bad Block Utility with Backup and 
Restore." The following are summary descriptions only. 

For last-track devices, AUTOMATIC causes BRU to use the 
manufacturer-written bad block information and the 
software-detected bad sector file to create BADBLK.SYS. For 
nonlast-track devices, it uses the software bad block descriptor 
block to create BADBLK.SYS. 

OVERRIDE applies only to last-track devices, causing the 
last-track device to appear to be a nonlast-track device. When 
OVERRIDE is specified, BRU uses the software bad block descriptor 
block to create BADBLK.SYS. 

MANUAL specifies that BRU use both the manufacturer-written bad 
block information and either the software-detected bad sector 
file (for last-track devices) or the bad block descriptor block 
(for nonlast-track devices) to create BADBLK.SYS. Also, MANUAL 
accepts the addresses of bad blocks entered manually from the 
terminal. 

/BUFFERS:fcbcount 

It specifies the default number of directory File Control Blocks 
{FCBs) per volume kept in memory by the ACP when the volume is 
mounted. The more FCBs that are kept in memory, the faster that 
files contained in heavily used directories are found. The 
default value for fcbcount is the same as the default for the 
input disk. 

The /BUFFERS qualifier is used with the /INITIALIZE qualifier 
during tape-to-disk or disk-to-disk operations. 

/COMPARE 

Compares the data on the output device with the data on the input 
device and reports any differences. No data transfer takes place 
during a COMPARE operation. The command string specifying the 
COMPARE operation must be identical to that entered when the data 
on the output disk or tape was created, with the exception of the 
/INITIALIZE and /NOINITIALIZE qualifiers. 

10-14 

UL 114 iii! I*' 



BACKUP AND RESTORE UTILITY (BRO) 

/COMPARE Output: When /COMPARE detects differences, it displays 
a warning message at your terminal. /COMPARE always displays the 
device mnemonic on which the difference was detected and the type 
of record in which the difference is encountered (a control 
record, a header record, or a data record). 

If the file is a header file, /COMPARE displays the file-ID for 
the file. If the file is a data file, /COMPARE displays the 
file-ID, the retrieval pointer for the file, and the name of the 
file if it is available. 

/CREATED:[BEFORE:(dd-mmm-yy [hh:mm:ss])] 
[AFTER:(dd-mmm-yy [hh:mm:ss])] 

Backs up or restores files created on or before or after the 
specified date and/or time. 

If you specify both a date and a time, the date and time must be 
enclosed in parentheses. If you specify only a date or only a 
time, the parentheses are not necessary. If you specify only a 
time, BRU uses today's date as the default. 

/DEN:SITY:number 

Specifies the density at which BRU writes to tape. The following 
table shows legal values you can specify. 

Drive Default Density Optional Density 

TUlO 800 None 
TU16 800 1600 
TU45 800 1600 
TU77 800 1600 
TS04 1600 None 

If you specify /DENSITY with /APPEND, you must specify the 
density at which the old tape data was written. For example, if 
the tape was first written at a density of 800, you must specify 
a density of 800. If you specify a density other than the 
original density, BRU displays a warning message and continues 
processing at the correct density. 

If you enter an incorrect density for a restore operation, BRU 
displays an error message and terminates the operation. 

/DIFtECTORY 

Lists backup set names or files on the specified tape volume. 

Using /DIRECTORY to Display Backup Set Names: When specified 
with no backup set name, /DIRECTORY lists all the backup sets on 
the v<>lume: 

BRU /DIRECTORY MMO: 

VOLl 
VOLl 

BACKUP! LABEL! 12-MAY-79 
BACKUP2 LABEL! 13-MAY-79 

If a continuation tape is mounted when you enter the /DIR 
qualifier, BRU lists the backup sets on that volume, not the 
backup sets on the first or previous volumes. Also, /DIRECTORY 
displays continuation tape number. 

10-15 



BACKUP ARD RESTORE UTILITY (BRU) 

Using /DIRECTORY to Display Files: To display the files in a 
backup set, enter the backup set name with /DIRECTORY in the 
form: 

> 
>RUN BRU 
BRU>/BACKUP SET:23MAY79A/DIRECTORY MM!: 
VOLl. 23MAY79A CDADOC 23-MAY-79 23:37:11 
[000,000] 
[303,013] 
27DECE.LST;l 
2JANA. LST; 1 
18JANC.LST;l 
4JANA.LST; 2 
ASTCRSH.MAC;l 
9DECA.LST;2 
X.MAC;l 
X.OBJ;l 
X.TSK; 1 
APNDXC. TXT; l 
X.MAP;l 
[001,054] 
RSXllM.STB; 45 
[002,054] 
RSXllM.STB; 36 
[003,054] 
27DECE. CDA; l 
2JANA. CDA; 1 
18JANC.CDA;l 
4JANA. CDA; l 
5JANZ .CDA; l 
19JANB.CDA;l 
4JANB.CDA;l 
6JAN79 .CDA; l 
9DECA. CDA; 1 
llJANA. CDA; 1 
15JANB.CDA;2 
15JANC.CDA;2 
llJAND.CDA; 1 
llJANA. CDA; 2 
15JANA.CDA;l 
16JANA. CDA; 1 
12JANE.CDA;l 
RSXllM.STB; 3 
[005,054] 
[306,006] 
APNDXB.MAC;l 
BRU - COMPLETED ON MMl: 

BRU>~Z 
>BYE 
> 
HAVE A GOOD MORNING 

If the backup set is not on the tape, BRU halts execution and 
displays a message at your terminal. 

/DISPLAY 

4 2! 

Prints at your terminal the file name and UFO of each file as the 
header for that file is being transferred by BRU. 

10-16 

SA I Ci$i a 



'-'' 

BACKUP AltD RESTORE UTILITY (BRO) 

/ERROHS:number 

lRequests termination of a restore operation after the specified 
number of nonfatal tape read errors. The default number of 
errors before termination is 25. 

/EXCL!UDE 

:Selectively excludes from a backup or restore operation the files 
specified on the command line. 

/EXTEND: number 

Specifies the default number of blocks by which a file can be 
extended when that file has exhausted its allocated space. This 
value is used by an ACP when the volume is mounted. 

The /EXTEND qualifier is used with the /INITIALIZE qualifier 
during tape to disk or disk to disk operations. 

/HEADERS:number 

Specifies the number of file headers to allocate initially to the 
index file. The primary reason for preallocating file headers is 
to locate them near the storage bit map file. (The storage bit 
map flle is generally located in the middle of the disk.) Proper 
placemE~nt of file headers can help reduce head motion during I/O 
operati.ons. 

The /HEADERS qualifier is used with the /INITIALIZE qualifier 
during tape to disk or disk to disk operations. 

/INI'I1 IAL I ZE 

Specifies that you want to initialize the 
tape to disk or disk to disk operation. 
Files-11 structure on the disk, including 
cases), the home block, and such 
BADBLKS.SYS, and 000000.DIR. 

output volume during a 
Initialization places a 
the boot block (in some 
files as INDEXF.SYS, 

Along with the INITIALIZE qualifier, you. can specify the 
following qualifiers when you are initializing a disk: BAD, 
BUFFERS, EXTEND, MAXIMUM, POSITION, PROTECTION, HEADERS, and 
WINDOWS. If you do not specify any of these qualifiers, BRU 
defaults to the characteristics of the input disk. 

/NOINITIALIZE specifies that you 
structure placed on the disk 
specify neither /INITIALIZE nor 
your terminal to ask whether 
being processed. 

do not want a Files-11 disk 
(one already exists). If you 

/NOINITIALIZE, BRU prompts at 
you want to initialize the disk 

When restoring a volume containing a disk boot block and a system 
that you want to be bootable, ensure that the volume to which you 
are restoring is the same as or greater than the size of the 
original volume. Also, the disk controller for the device on 
which the output device resides must be compatible with the 
device controller on which the original volume was created. 

/INVOLUME:name 

Specifies the volume label of the input disk or tape. This name 
can b~ up to 12 characters long. 

10-17 



!ii 

BACKUP ARD RESTORE UTILITY (BRO) 

For backup or disk-to-disk operations, /INVOLUME directs BRU to 
look for the volume label of the input volume in order to verify 
that the disk has the correct label. This check ensures that you 
do not back up the wrong volume. 

For restore operations, /INVOLUME directs BRU to look on the 
input tape for the volume label in order to locate the correct 
backup set. If BRU cannot locate the label, it displays a 
message and terminates the operation. 

/LENGTH:number 

Specifies the length of the output tape in decimal feet. If the 
length specified exceeds the length of the tape, the entire 
length of the output tape will be used. In cases where you know 
the end of a tape must not be used, you can specify a shorter 
length to ensure that you do not write on that part of the tape. 

/MAXIMUM:number 

Specifies the ~aximum number of files that can be placed on a 
volume as determined by the number of file headers on the 
volume's index file. The default maximum is the maximum number 
of files on the input disk. The /MAXIMUM qualifier and the 
/HEADERS qualifier are particularly useful when you are 
initializing an output disk which is different in size from the 
input disk. Refer to section 10.4.5 for more detailed 
information about using the initialization qualifiers when you 
are transferring data between disks of different sizes. 

/MOUNTED 

Backs up or restores files on volumes that are mounted as 
Files-11 volumes (via the MCR MOUNT command). 

BRU does not use Fl lACP (F iles-11) to access files on an input 
disk; rather, it uses logical I/O (QIO functions such as 
IO.RLB). BRU first backs up groups of headers, then backs up the 
files to which those headers point. 

When backing up files from a mounted volume, disk activity 
(changes to or deletions of files) at while BRU is running causes 
the following results: 

ii;: 

• If the file is being changed while BRU is backing up the 
disk, BRU copies only the data that comprises the file at 
the time of the transfer; any changes made to the file 
after the transfer will not appear on the volume to which 
you are backing up. 

• If the file is deleted while BRU is backing up the disk, 
the data that comprises the file may be corrupted. 

If the file-ID from the deleted file is reused in a UFO 
that BRU has not yet backed up, BRU will back up the new 
file (with the previously allocated file-ID) when that file 
is encountered. When restored, this new file (with the 
duplicate file-ID) will appear as a synonym for the old 
file with the same file-ID. 

10-18 

ii iii I !j4JUIE 



BACKUP ARD RESTORE UTILITY (BRO) 

• I:f the disk is changed (files are deleted or changed) after 
BRU generates the directory, the directory on the first 
tape of the tape set will not be accurate. Because BRU 
generates the directory for the backup set as its first 
processing step, changes to the disk after the directory is 
generated will not be reflected in the directory. 

In order to back-up and restore files on mounted volumes, BRU 
must be built as a privileged task. For operations on unmounted 
volumes, BRU need not be a privileged task. 

BRU will back up from both mounted and unmounted volumes. On 
RSX-llM-PLUS systems BRU treats a disk that is mounted foreign as 
an unmounted disk. BRU does not use the file system in either 
case. However, when you are doing a backup operation from a 
mounted volume BRU checks read access privileges of both UFOs and 
files against the UIC under which BRU is running. 

BRU will restore to both mounted and unmounted volumes. To 
restore to an unmounted volume (or one mounted foreign on an 
RSX-llM-PLUS system), specify the /INITIALIZE qualifier to 
initialize the disk to a Files-11 structure. To restore to a 
mounted volume, specify /NOINITIALIZE to indicate to BRU that the 
disk is mounted and already has a Files-11 structure on it. 

/NEWVERSION 

Resolves filespec conflicts that occur during restore operations 
to an existing disk by creating new versions of the duplicate 
files. 

/NOINITIALIZE 

Sp~cif ies that you do not want to initialize the disk; it 
already has a Files-11 structure. The output disk must be 
mounted as a Files-11 volume. You cannot enter any of the 
initialization qualifiers listed above when you specify 
/NOINITIALIZE. If you enter any of these qualifiers, BRU issues 
an error message. 

When you are restoring to a mounted volume (when you have 
specified /NOINITIALIZE), BRU uses the file system to access the 
output device. Therefore, a restore operation to a mounted 
volume is slower than a restore to an unmounted volume. 

\.,i /NOPHESERVE 

Specifies that you do not want to preserve 
specify /NOPRESERVE, BRU suppresses the 
file-IDs are not being preserved. 

file-IDs. If you 
warning message that 

When file-IDs are not preserved BRU assigns new file-IDs starting 
at 6 and incrementing them sequentially. 

/NOSUPERSEDg 

When you are restoring to a mounted disk, 
file specifications on the output disk are 
the input disk, the file on the input disk 
That is, the file on the output disk is 
file on the input disk. NOSUPERSEDE is the 

10-19 

specifies that when 
identical to those on 
is not transferred. 
not superseded by the 
default. 



BACKUP AllD RESTORE UTILITY (BRO) 

/OUTVOLUME:name 

Specifies the volume label of the output disk. This label can be 
up to 12 characters long. 

For backup operations, the name of the disk volume stored on the 
output tape volume is changed to the name specified with the 
/OUTVOLUME qualifier. 

For restore operations or for disk-to-disk transfers, the name of 
the output disk volume is changed to the name specified with the 
/OUTVOLUME qualifier. 

When you omit /OUTVOLUME, BRU provides the following defaults: 

• When you omit /OUTVOLUME in backup operations, the input disk 
volume name is used as the volume name stored on tape. 

• When you omit /OUTVOLUME in restore operations, the volume 
name stored on tape is used as the name of the output disk 
volume. 

• When you omit /OUTVOLUME in disk-to-disk transfers, the volume 
name of the input volume is used as the volume name of the 
output volume. 

/POSITION:[ BEGINNING 
[ MIDDLE 
[ END 
[ BLOCK:number 

When initializing an output d1sk, specifies the location of the 
index file on the volume, usually to minimize access time. 
BEGINNING, MIDDLE, and END specify the beginning, middle, and end 
of a volume. BLOCK:number specifies a block number where the 
index file is to be placed. The BEGINNING position is generally 
used only when a disk contains predominently large contiguous 
files. 

When you do not use the /POSITION qualifier, BRU places the index 
file in the same location as that on the input volume. 

/PROTECTION:( [protection value]) 

" $12 

protection values: 
SYSTEM:RWED 
OWNER:RWED 
GROUP:RWED 
WORLD:RWED 

When initializing an output disk, specifies the default 
protection status for all files created on the volume being 
initialized. This protection value does not apply to files being 
transferred by BRU, but rather to subs~quent files created on 
that volume by an ACP when the volume is mounted. The protaction 
values ,above are standard for RSX-llM files; however if not 
specified, the values are defaulted to the protection values of 
the input disk. 

/REVISED:[BEFORE:(dd-mmm-yy [hh:mm:ss])] 
[AFTER:(dd-mmm-yy [hh:mm:ss])] 

q: 

Backs up or restores files revised or created on, before, or 
after the specified date and time. 

10-20 

it $(j 

-- 1---r~ 

ii ;::; 



BACKUP ARD RESTORE UTILITY (BRU) 

/REWIND 

newinds the first magnetic tape of a tape set before executing a 
backup or restore operation. 

When specified with an input tape, BRU rewinds the first tape of 
the tape set before searching for backup sets. 

When specified with /APPEND, BRU rewinds the first set of the 
tape set and then searches for the logical end of the last backup 
set on the ~ape before executing the backup operation. 

/SUPEHSEDE 

Specifies that when file specifications on the output volume are 
identical to file specifications on the input volume, the file on 
the output volume is deleted and replaced with the file from the 
input volume. NOSUPERSEDE is the default. 

/TAPE __ LABEL 

Specifies the 6-character volume identifier on the ANSI VOL! 
label to be placed on a tape during a backup operation or to be 
compared with the label on the tape on append and restore 
•operations. This allows you to check that you have mounted the 
correct tape. 

/VERI:~y 

Copies data from the input volume, performs a compare operation 
after the transfer, and reports any differences. 

/WINDOWS:value 

When initializing an output disk, specifies the default number of 
mapping pointers to be allocated for file windows. This value is 
used by an ACP when the volume is mounted. A file window 
consists of a number of pointers and is stored in memory when the 
file is opened. The default number of mapping pointers is the 
same as the default for the input disk. 

Choosing a large number of mapping pointers may speed up file 
access; however, a large file window uses up system dynamic 
memory (pool space}. If pool space is more critical than file 
access time, choose a smaller number of pointers. 

Refer to Appendix F of the IAS/RSX-11 I/O Operations Reference 
Manual for further information. 

10.4 USING BACKUP AND RESTORE 

This section contains information on how to use the following BRU 
functions: 

e Using the Bad Block Utility (BAD} with BACKUP and RESTORE 

e Using the Format Utility (FMT} with BACKUP and RESTORE 

• Using BRU to Initialize Disks 

• Restoring Data Selectively 

10-21 



2J!i 

BACKUP AND RESTORE UTILITY (BRU) 

• Transferring Data Between Disks of Different Size 

• BRU and File Characteristics 

10.4.1 Using the Format Utility with Backup and Restore 

The Format (FMT} utility places magnetic sector and timing marks on 
disks. In general, disks need to be formatted only once. However, 
you may want to run FMT to ensure that the sector and timing marks are 
accurate. 

The format for invoking FMT is: 

>FMT disk: 

Where disk: is the logical name of the disk drive on which your pack 
resides, for example: 

>FMT DBO: 

10.4.2 Using the Bad Block Utility with Backup and Restore 

Once the disk has been formatted, use the Bad Block (BAD) utility to 
locate bad blocks on the disk you are initializing. 

BAD uses two types of processes for disks: one for last-track devices 
and the other for nonlast-track devices. Last-track devices have 
manufacturer-written bad block information on the last half of the 
last track. Nonlast-track devices have no such information. 

BAD does pattern checking on the disk being formatted. That is, BAD 
writes a pattern on the tracks of the disk being formatted, reads the 
pattern from the disk, and then checks to ensure that the pattern was 
read correctly. 

For last-track devices, BAD uses the results of this checking, along 
with the manufacturer-written bad block information, to create the 
software-detected bad sector file, which is also placed on the last 
track of the device. 

For nonlast-track devices, BAD uses only the results of its pattern ·~ 
checking to create the bad block descriptor block. This block is then 
placed on the last good block on the disk. 

BRU uses this bad block information to create BADBLK.SYS, a file 
occupying the bad blocks on a disk so that they cannot be used by the 
file system. 

10.4.2.1 BRU Bad Block Processing - Once you have formatted the disk 
with the FMT utility and located the bad blocks using the BAD utility, 
you can run BRU to complete initialization of the disk. 

If you specify /BAD with the INITIALIZE qualifier, you can use one of 
three options: AUTOMATIC (the default), MANUAL, or OVERRIDE. The 
following sections describe how to use these options. 

10-22 

' a !iii :; :; :;a;u::: 



BACKUP ARD RESTORE UTILITY (BRU) 

10.4 .. 2.2 Oi;ing the AUTOMATIC Qualifier - The AUTOMATIC qualifier 
specjlf ies that BRU use the existing bad block information on the disk 
to create the file BADBLK.SYS. For last-track devices BRU uses the 
manuj:acturer-written bad block information and the software bad sector 
file.. For nonlast-track devices BRU uses the bad block descriptor 
block. 

10.4 .. 2.3 Using the 
last-track devices. 
devic:e. 

OVERRIDE Qualifier - OVERRIDE applies only to 
It makes the disk appear to be a nonlast-track 

When yo~ use OVERRIDE with BRU, ensure that the disk you are 
processing has previously been processed by the BAD utility with the 
BAD /OVR sw:itch specified. 

Usin~J /OVR with BAD makes last-track devices look like nonlast-track 
devices by using the last good block before the last track as the bad 
bloc~: descriptor block. /OVR processing includes that last track as 
bad data when it creates the bad block descriptor block. 

OVERRIDE processing for BRU assumes that the bad block descriptor 
block written by BAD exists on the disk being processed. 

10.4 .. 2.4 Using the MANUAL Qualifier - The MANUAL qualifier uses the 
manufacturer-written bad block information written on the last track 
and E~ither the software-detected bad sector file or the bad block 
descriptor block to create BADBLK.SYS. In addition, it accepts the 
addresses of bad blocks you enter interactively at your terminal. If 
ther•~ is no software-written bad block information, a message will be 
displayed warning that BAD has not processed the disk. 

When you specify /BAD:MANUAL, BRU will issue a prompt at your 
terminal. To enter bad blocks, respond to the prompt with the 
starting logical block number followed by a count of how many 
consecutive blocks are bad, in the following format: 

LBN :COUNT 

This format is compatible with both the BAD and INI utilities. BRU 
interprets both the LBN and the count as decimal numbers. You can 
specify the LBN in octal, but you must specify the count in decimal. 
To specify an octal value for the LBN, precede it with a #. 

When you have finished entering bad blocks, type <RET> to return to 
BRU command level. 

10.4.3 Using Backup and Restore to Initialize Disks 

You can use BRU commands in conjunction with the FMT and BAD utilities 
to initialize (format a Files-11 structure on) a disk. The BRU 
initialization qualifiers provide the same capabilities as those of 
the INI utility. Selecting appropriate values for the initialization 
qualifiers requires an in-depth knowledge of Files-11. Refer to the 
IAS/RSX-11 I/O Operations Reference Manual for details of the Files-11 
disk structure. The following example shows the steps involved in 
initializing a disk using BRU. 

10-23 



I 

BACKUP AllD RESTORE.UTILITY (BRO) 

RUN $FMT 
FMT>DK2: 

** WARNING - DATA WILL BE LOST ON DK2: ** 

CONTINUE? [Y OR N] : Y 

START FORMATTING 

OPERATION COMPLETE 

FMT>"'Z 
>BAD DK2: 
BAD -- DK2: TOTAL BAD BLOCKS= O. 
>RUN BRU 
BRU>/INITIALIZE/OUTVOLUME:BACKUP/HEADERS:24/MAXIMUM:45/BAD:
BRU>AUTOMATIC/POSITION:END/WINDOWS:3 
FROM: DKl: 
TO: DK2: 
BRU -- *WARNING* -- THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM 

BRU - COMPLETED 

BRU>""Z 
> 

10.4.4 Selective Transfer of Data 

BRU provides functions that allow you to transfer data selectively. 
That is, you can select categories of files to be backed up using file 
specification elements, date, and time. For example, you can specify 
that only files with the file type .OBJ or with UICs [1,54] be backed 
up; similarly, you can specify that only files created before August 
4, 1978 at 2:00 PM be backed up. 

10.4.5 Backup and Restore to Disks of Different Size 

BRU allows you to transfer data between disks of different sizes. 
However, when you restore a volume containing a boot block, the new 
volume is not bootable if the controller for the output device is not ~ 
compatible with the device controller on which the volume was created. I~ ~ 
BRU prints a warning message. 

NOTE 

When restoring to an existing volume, 
BRU will not issue the warning message. 

If the new disk is smaller than the original, you may have problems 
with the preservation of file-IDs. In this event you should use some 
of the qualifiers described in Section io.3.3 under the /INITIALIZE 
qualifier. If you make the index file smaller, BRU does not preserve 
the file-IDs and a message is printed. 

10-24 

i"illlllllllll··· ---·-···••: •tl!Jll•i ··-----------------------------·-i!ii•••••1
•
1 
•• , •• _ 



BACKUP ARD RESTORE UTILITY (BRO) 

If you are transferring to a larger disk than the original, you must 
use the /MAXIMUM and /HEADERS qualifiers to make full use of the 
larger disk. If you do not specify a maximum number of files or file 
headers, BRU uses the values of the original disk and you will end up 
with a large disk that can contain only a small number of files. 

Once you have initialized a disk with a maximum number of files, that 
maximum cannot be extended. So the value for the /MAXIMUM qualifier 
should be carefully chosen. 

Refer to the IAS/RSX-11 I/O Operations Reference Manual for a detailed 
description of Files-11 structure before choosing values for the 
initialization qualifiers. 

10.4.6 BRU and File Characteristics 

This section explains in detail how BRU treats the following file 
characteristics: 

• Creation and revision dates 

• File headers 

• File synonyms 

• Lost files 

10.4.6.1 Creation and Revision Dates of Files - BRU always preserves 
the creation and revision dates of files that it transfers. However, 
since BRU creates UFOs during a restore operation to an unmounted 
volume the creation date of the UFD is the date on which BRU created 
it. 

10.4.6.2 File Headers - BRU preserves all characteristics of a file, 
if possible. There are three exceptic>ns: 

• If there is insufficient room on the output volume to restore 
the file contiguously, it is restored noncontiguously. 

• The file name is updated on the file's header to match the UFO 
entry. 

• The physical end-of-file in the user attribute area is updated 
to reflect correctly the file's size. 

10.4.6.3 File Synonyms - BRU copies file synonyms to tape as separate 
file,s. 

If you restore files with synonyms to an unmounted volume and you 
preserve file ids, the file synonyms are restored as synonyms. 
However, if you do not preserve file ids or you restore to a mounted 
volume, file synonyms are restored as separate files. 

10-25 



2 J iii$. ii 

BACKUP AND RESTORE UTILITY (BRU) 

10.4.6.4 Lost Files - A file that is not contained in any UFO is 
known as a lost file. BRU does not find lost files. To find lost 
files, use the VFY utility with the /LO qualifier before using BRU to 
back up the disk. 

10.5 TAPE FORMAT INFORMATION FOR BACKUP AND RESTORE OPERATIONS 

Magnetic tapes have ANSI standard tape label formats, 
Figure 10-1. The items at the beginning of the tape 
drive what it is reading: BOT means beginning of tape; 
beginning of tape information; and HDRl and HDR2 
beginning of a backup set. 

BOT 

VOLl 

BOOT 

HDRl 

HDR2 

Control 
Record 

Boot 
Block 

Home 
Block 

Directory 

Headers . . . 
Headers 

Data . . . 
Data 

Headers . . . 
Data . . . 
EOFl 

EOF2 

EQT 

as shown in 
tell the tape 

VOLl means 
indicate the 

Figure 10-1 Standard Tape Format for Magnetic Tapes 

10-26 

Qi! u I.I 2 ii !! p:;: 



'-'i 

BACKUP AND RESTORE UTILITY (BRU) 

10.5.l Backup Sets 

A backup set consists of all the data directed to a volume (or 
volumes} during a backup or restore operation. A backup set includes 
tape control data (one for each tape volume required}, header records, 
and data records. Physically, more than one backup set may be 
contained on a tape, or a backup set can extend over several tapes. 

The tape control data is written at the beginning of each backup set. 
It contains a control record and on the first tape of a backup set, 
the contents of the home block and boot block for the disk volume 
being backed up. Directory records are interspersed with UFO records 
to identify the owning UFO of the following directory records. Each 
entry in a directory record represents a file to be backed up and is 
identical to the file's entry in the UFO that contains it. 

The header data consists of an identifying record, UFO records, and 
file header records. The UFO identifier record identifies the UFO 
containing the file headers following it. 

Data records consist of an 80-byte data identification record 
indicating that the records following are data records, and l to 10 
data blocks preceded by a 48-byte area containing file identifiers and 
retrieval pointers. 

10.5.2 Tape Sets 

More than one backup set may be contained on a tape, or a backup set 
can extend over several tapes. In either case the resulting output is 
called a tape set. 

A tape set consists of the tape volume or volumes to which data is 
transferred during a backup operation. 

10.5.3 Multivolume Tape Operations 

When you specify a magnetic tape drive as the output device in a BRU 
operation, BRU writes the data contents of the input disk to the tape 
on the drive. This data transfer often involves more than one reel of 
tape and may utilize more than one tape drive. 

You may specify multiple on-line tape drives in the following format: 

BRU>/BACKUP SET:23MAY79A OMO: MMO:,MMl: 
BRU -· STARTING TAPE l ON MMO: 

BRU -· END OF TAPE l ON MMO: 

BRU -· STARTING TAPE 2 ON MM!: 

BRU - END OF TAPE 2 ON MM!: 

BRU -· COMPL.ETED 

You can specify only one type of drive, either MM or MT, in a single 
BRU command. Although you can specify up to eight drives per command, 
you can specify an individual tape drive only once. 

If the number of tape volumes required exceeds the number of tape 
drives available, BRU lets you replace tapes on the specified drive in 
round-robin fashion. 

10-27 



11~11z )$ 

BACKUP AND RESTORE UTILITY (BRO) 

10.6 BACKUP AND RESTORE ERROR PROCESSING 

This section lists BRU error messages, describes the meaning of the 
message, and suggests actions to correct the errors. 

BRU -- *FATAL* -- ALLOCATION FOR SYS FILE EXCEEDS VOLUME LIMIT 

Explanation: A system file (one of the following files: 
INDEXF.SYS, BITMAP.SYS, BADBLK.SYS, 000000.DIR) requires more 
space than is available on the output disk. This will usually 
occur if the output disk is smaller than the input disk. 

User Action: You can use the POSITION qualifier to force 
allocation to start at the beginning of the disk and/or use the 
MAXIMUM and HEADERS qualifiers to reduce the size of INDEXF.SYS. 

BRU -- *FATAL* -- AMBIGUOUS KEYWORD 

Explanation: A keyword specified with a qualifier is not unique. 
For example /POSITION:B could mean either BEGINNING or BLOCK. 

User Action: You can abbreviate keywords to the shortest unique 
abbreviation. 

BRU -- *FATAL* -- AMBIGUOUS QUALIFIER 

BRU 

BRU 

Explanation: A qualifier is not unique. For example, /RE could 
mean either REVISED or REWIND. 

User Action: You can abbreviate qualifiers to the shortest 
unique abbreviation. 

*WARNING* APPENDING AT 800 BPI on device: 
or 

*WARN ING* APPENDING AT 1600 BPI on device: 

Explanation: The wrong tape density was specified with the 
/APPEND switch. BRU will perform an APPEND only at the density 
at which the tape is written. 

User Action: None. BRU will continue at the correct density. 

BRU -- *FATAL* -- ATTACH FAILED on device: 

Explanation: BRU could not attach the specified device. 

User Action: Check to see if another task has the device 
attached, or if the device has a volume mounted on it. 

BRU -- *WARNING* -- BAD BLOCK DATA ERROR 

Explanation: A manually entered bad block location, count, or 
syntax was incorrect. 

User Action: Enter the correct information. 

10-28 

~.=··· ... 
=:== -1-='.i 

14 



BACKUP AND RESTORE UTILITY (BRU) 

BRU -·- *WARNING* -- BAD BLOCK FILE CORRUPT. DATA IGNORED 

Explanation: The bad block file created by BAD contains invalid 
data. Unless you enter the bad blocks manually, BRU will assume 
there are no bad blocks. 

User Action: use the /OVERRIDE qualifier to ignore the file. 

BRU --- *WARNING* -- BAD BLOCK FILE FULL 

Explanation: The manual addition of bad blocks has resulted in 
more than 102 sets of contiguous bad blocks. 

User Action: None. You cannot enter more bad blocks, than the 
file will hold. 

BRU -- *WARNING* -- BLOCK EXCEEDS VOLUME SIZE 

Explanation: You have manually entered a bad block that is 
larger than the size of the output disk. 

User Action: Enter the correct block. 

BRU ·-- *WARNING* --- BOOT BLOCK IS BAD 

Explanation: BRU cannot write to the output boot 
Therefore the disk will not be hardware bootable. 

User Action: None. BRU will continue the operation. 

block. 

'-' BRU -- *WARNING* -- BOOT BLOCK IS CORRUPT 

"' ~.·' ~· 

Explanation: The input disk does not contain a valid boot block. 
The output disk will not be hardware bootable. 

User A~tion: None. BRU will continue the operation. 

BRU -- *WARNING* -- BOOT BLOCK READ ERROR 

Explanation: An error occurred while BRU was reading the boot 
block. 

User Action: None. BRU will continue the operation. 

BRU -- *WARNING* ·-- BOOT BLOCK VERIFY ERROR on device: 

Explanation: During a backup operation, the boot block on the 
output device did not match the boot block on the input device. 

User Action: None. BRU will continue with the operation. 

10-29 



it; iU a ; 

BACKUP AND RESTORE UTILITY (BRO) 

BRU -- *WARNING* -- CANNOT RESTORE CONTIGUOUSLY 

Explanation: The output device does not contain enough 
contiguous blocks to restore the indicated contiguous file. The 
file will be restored noncontiguously. 

User Action: You can use the PIP utility to make the file 
contiguous again. Use the PIP qualifiers /DE and /TR to reclaim 
disk space by deletion or truncation. 

BRU -- COMPLETED 

Explanation: The BRU operation is complete. 

User Action: Enter another BRU command or exit. 

BRU -- *FATAL* -- CONFLICTING QUALIFIERS 

Explanation: Two 
mutually exclusive: 

or more of the specified qualifiers are 
for example, /SUPERSEDE and /NOSUPERSEDE. 

User Action: Retype the command line. 

BRU -- *WARNING* -- DATA ID RECORD VERIFY ERROR 

Explanation: There was an error while BRU was verifying an 
80-byte DATA ID record. 

User Action: None. BRU will continue the operation. 

BRU -- *WARNING* -- DATA RECORD VERIFY ERROR [UFD]filename.type;version 
FILE ID number LBN number 

Explanation: There was a difference in a data block on input and 
output devices. The file id of the file with the error and the 
lbn of the block follow the message. 

If a [UFO] is printed with a file name, the UFO is the owner UFO 
from the file's header, not the UFO in which the file is 
contained. 

User Action: None. BRU will continue the operation. 

BRU -- *WARNING* -- DATA WAS LOST DUE TO IO ERRORS [UFO] 
filename. type; version 

42 

Explanation: A tape read error resulted in missed data. The 
files will be restored but may contain erroneous data. 

If a [UFO] is printed with a file name, the UFO is the owner UFO 
from the file's header, not the UFO in which the file is 
contained. 

User Action: None. BRU will continue the operation. 

10-30 

t I ii Ji I S 

·~ ~ I ---·~:~ 

I 5 I :qc:; t 



'-': 

BACKUP AND RESTORE UTILITY (BRO) 

BRU -- *FATAL* -- DEVICE CONFLICT 

Explanation: Both a tape and a disk drive were specified as part 
of the input or output device specification. 

User Action: The device must be either a disk or a tape but not 
both. This applies to both input and output specifications. 

BRU -- *FATAL* -- DEVICE NOT IN SYSTEM 

Explanation: A device was specified that does not exist on the 
system. 

User Action: Correct the device specification. 

BRU -- *FATAL* -- DEVICE NOT SUPPORTED 

Explanation: The specified device was not a tape or a disk. 

User Action: BRU supports only magnetic tape and disk devices. 

BRU -- *FATAL* -- DIRECTIVE ERROR 

Explanation: An internal error has occurred in BRU. 

User Action: Retry the operation. 

BRU -- *WARNING* -- DIRECTORY VERIFY ERROR 

Explanation: There was a difference in a directory record on 
input and output devices. 

User Action: None. BRU will continue the operation. 

BRU -- *FATAL* -- DISK IS AN ALIGNMENT CARTRIDGE 

Explanation: The last track identified the disk as an alignment 
cartridge, which cannot be initialized as a Files-11 volume. 

User Action: BRU can be used only on Files-11 volumes. 

BRU -- *FATAL* -- DISK READ ERROR 

Explanation: An unrecoverable read error occurred on the output 
disk. This could be caused by an undetected bad block. 

User Action: Use the BAD utility to locate all bad blocks. Then 
use BRU with the /BAD:AUTOMATIC qualifier. 

BRU -- *FATAL* -- DISK WRITE ERROR 

Explanation: An unrecoverable write error occurred on the output 
disk. This could be caused by an undetected bad block. 

User Action: Use the BAD utility to locate all bad blocks. Then 
use BRU with the /BAD:AUTOMATIC qualifier. 

10-31 



"' 

BACKUP AND RESTORE UTILITY (BRO) 

BRU -- *FATAL* -- DOUBLY DEFINED QUALIFIER 

Explanation: The same qualifier was specified more than once on 
the command line. 

User Action: Retype the command line correctly. 

BRU -- *WARNING* -- DUPLICATE BLOCKS FOUND 

Explanation: A manually entered bad block was already in the bad 
block file. 

User Action: None. BRU will continue the operation. 

BRU -- END OF tape number ON device: 

Explanation: BRU has finished transferring data or verifying a 
tape. 

User Action: None. This is an informational message. 

BRU -- *FATAL* -- END OF VOLUME ENCOUNTERED. BACKUP SET NOT FOUND 

BRU 

Explanation: The backup set specified for a restore operation is 
not on the tape volume. 

User Action: Mount the correct tape volume and retry the 
operation. 

-- *FATAL* -- ERROR READING COMMAND FILE 

Explanation: An I/O error occurred while BRU was reading the 
indirect command file. 

User Action: Retry the operation. 

BRU -- *WARNING* -- ERROR READING DATA BLOCKS 
I/O ERROR CODE-number 
FILE ID number LBN number 

or 
RECOVERED 

Explanation: An I/O error occurred while BRU was reading a data 
block from the disk. The file id of the file which contains the 
block and the lbn of the block are displayed as well as the I/O 
error code. If RECOVERED is printed after the message, the block 
was recovered by issuing 1-block reads from the disk. 

User Action: None. BRU will continue the operation. 

BRU -- *WARNING* -- ERROR READING UFO [group,number] 

Explanation: An I/O error occurred while BRU was reading a block 
from the specified UFD. Any files contained in this block of the 
UFO will not be backed up. 

User Action: You may retry the operation. If the error still 
occurs, you can find the files by using the VFY utiltity. 

10-32 

4 I ::S;t a j 

~ ...... · I t' 

j4 



BACKUP AND RESTORE UTILITY (BRU) 

BRU *WARN:CNG* -- ERROR READING UFO HEADER [group,number] 

Explanation: An error occurred while BRU was reading the header 
'--; <>f the specified UFO. Files in this UFO will not be backed up. 

User Action: Retry the operation. If the error still occurs, 
use the VFY utility to find the file. 

BRU -- *WARNING* -- EQT MARKER ERROR 

Explanation: An error occurred while BRU was writing or 
verifying the end of tape labels on the output tape. 

User Action: On a write error, BRU will rewind the current tape 
.and put it off-line. BRU will request that a new tape be mounted 
and will rewrite the tape. 

On a verify error, BRU will continue. 

BRU -- *FATAL* -- ERROR LIMIT EXCEEDED 

:Explanation: BRU has reached the specified number of tape read 
errors and terminated execution. 

User Action: Retry the operation, using a different tape drive, 
or after cleaning the tape drive heads. 

BRU -- *WARNING* -- EXTENDING INDEX FILE 

Explanation: The initial number of file headers was too small. 
Either 256 or 16 more headers will be allocated depending on the 
number of blocks on the output disk. 

User Action: None. BRU will continue the operation. 

BRU -- *FATAL* -- FAILED TO READ BAD BLOCK FILE 

Explanation: BRU was unable to read the bad block information 
from a last-track output disk. 

User Action: 
qualifier. 

Retry the operation, using the /BAD:OVERRIDE 

BRU -·- *WARNING* -- FILE HEADER READ ERROR [group,number] filename.type;version 
I/O ERROR CODE-number 

Explanation: An I/O error occurred while BRU was reading a file 
headero That file will not be backed up. 

User Action: None. BRU will continue the operation. 

BRU -- *WARNING* -- FILE HEADER VERIFY ERROR [group,number] filename.type;version 

Explanation: The file header of the specified file on the output 
device is not the same as that on the input device. 

User Action: None. BRU will continue the operation. 

10-33 



I 

BACKUP AND RESTORE UTILITY (BRU) 

BRU *WARNING* -- FILE ID AREA VERIFY ERROR 

Explanation: The BRU-generated file id area of a data record was 
different on the input and output devices. 

User Action: None. BRU will continue the operation. 

BRU -- *FATAL* -- FILE ID EXCEEDS MAXIMUM NUMBER OF FILES 

Explanation: You specified a maximum number of files with the 
MAXIMUM qualifier, which was too small to perserve file ids. 

User Action: Specify a larger value with the MAXIMUM qualifier, 
or use a larger output disk. 

BRU -- *WARNING* -- FILE ID SEQUENCE NUMBER ERROR [UFO] filename.type;version 

Explanation: There are two possible sources of this error: 

1. The sequence number in the file id of a file does not 
match the sequence number of the file's entry in the 
UFO. 

2. The sequence number of a UFO does not match the sequence 
number of the UFD's entry in the MFD. 

Therefore, the file or UFO is not valid and will not be copied. 

User Action: None. BRU will continue the operation. 

BRU -- *WARNING* -- FILE IDS WILL NOT BE PRESERVED 

Explanation: File ids cannot be preserved because the bitmap on 
the output disk is too small. This is because the value 
specified with the MAXIMUM qualifier was too small. 

User Action: None. 
preserving file ids. 

BRU will continue the operation, not 

BRU -- *WARNING* -- FILE MARKED FOR DELETE [UFO] filename.type;version 

Explanation: The marked-for-delete bit (SC.MDL) of the system 
controlled characteristics in the file header was set, indicating 
that the file was partially deleted. The file will not be 
copied. 

User Action: None. BRU will continue the operation. 

BRU -- *WARNING* FILE NOT FOUND [UFO] filename.type;version 

Explanation: During a backup operation, the specified file does 
not have a header in the index file. The file is not copied. 

During a restore operation, BRU cannot find the file being 
verified on the output disk. 

User Action: BRU will continue the operation. 

10-34 

!iiilll)ll•••t ••••:•Jt.•: •&•llblii!lii .. $•••------------------..-------··•:•32•••••: •t•t•: •• ,.,_ 



'-'' 

BACKUP AND RESTORE UTILITY (BRU) 

BRU -·· *FATAT .. * -- HANDLER NOT RESIDENT 

J~xplanation: The device driver for the specified device is not 
loaded. 

User Action: Load the driver for the specified device, or retype 
the command line specifying the correct device name. 

BRU -- *WARNING* -- HEADER ID RECORD VERIFY ERROR 

Explanation: The header id record on the output device is 
different from the one on the input device. 

User Action: None. BRU will continue the operation. 

BRU -·-*WARNING* -- HEADER READ ERROR [UFD]filename.type;version 
I/O ERROR CODE-number 

l~xplanation: An I/O error occurred while BRU was reading a file 
header in the index file during a backup operation. 

If this error occurs during a restore operation, it is fatal. 

User Action: None. 

BRU -- *FATAL* -- HOME BLOCK READ ERROR 
I/O ERROR CODE-number 

Explanation: An I/O error occurred while BRU was reading the 
home block on the input device. 

User Action: Retry the operation. 

BRU -- *WARNING* -- HOME BLOCK VERIFY ERROR 

.Explanation: The home block on the output device is different 
from the home block on the input device. 

User Action: BRU will continue, but it is suggested that you 
retry the operation. 

BRU -- *FATAL* -- HOME BLOCK WRITE ERROR 

Explanation: An unrecoverable I/O error occurred while BRU was 
writing the home block on the output device. 

user Action: Use BAD. 

10-35 



BACKUP AND RESTORE UTILITY (BRU) 

BRU -- *FATAL* -- ILLEGAL USE OF DIRECTORY QUALIFIER 

Explanation: 

1. The DIRECTORY qualifier was specified with an output 
device. 

2. The DIRECTORY qualifier was specified with a device 
otl)er than tape. 

3. Initialization qualifiers were specified 
directory qualifiers. 

with the 

User Action: Refer to Section 10.3.3 for a description of valid 
uses of the DIRECTORY qualifier. 

BRU -- *FATAL* -- INCONSISTENT INITIALIZE QUALIFIERS 

Explanation: Qualifiers that initialize the output disk were 
specified, but the NOINITIALIZE qualifier was used. 

User Action: Retype the command line. 

BRU -- *FATAL* INDEX FILE HEADER READ ERROR 
I/O ERROR CODE-number 

Explanation: An I/O error occurred while BRU was reading the 
header of the index file on the input disk. 

User Action: Retry the operation. 

BRU -- *FATAL* INDEX FILE WRITE ERROR 

Explanation: An unrecoverable I/O error occurred while BRU was 
writing the index file to the output disk. 

User Action: Use BAD to identify the bad blocks on the output 
disk. Then initialize the disk and retry the operation. 

BRU -- *FATAL* -- INDEXF.SYS IS FULL 

Explanation: The index file cannot map any more file headers. 

User Action: Retry the operation, using a larger value with the 
/MAXIMUM qualifier. 

BRU -- *FATAL* -- !NIT QUALIFIERS INVALID WHEN OUTPUT IS TAPE 

Explanation: The initialize qualifiers may be used only when the 
output device is a disk. 

User Action: Retype the command line. 

10-36 

2 42 &SJ $2 0 22 tt Ha 



'-': 

BACKUP AND RESTORE UTILITY (BRU) 

BRU -- *FATA.L* -- INPUT DEVICE EQUALS OUTPUT DEVICE 

Explanation: The input and output devices must be different. 

User Action: Retype the command line, specifying different 
devices for input and output~ 

BRU -- *FATAL* -- INPUT LINE TOO LONG 

Explanation: The maximum length of a command line is 256 
characters. 

User Action: You may abbreviate qualifiers and keywords as long 
as the abbreviations are unambiguous. 

BRU -- *FATAL* -- INTERNAL ERROR IN BRU 

Explanation: BRU has detected an error within itself. 
should not normally occur. 

This 

User Action: Please submit 
information. 

an SPR with all pertinent 

BRU -- *FATAL* -- INVALID DATE 

Explanation: A date was specified incorrectly or is out of 
range. 

User Action: Specify the correct date. 

BRU -- *FATAL* -- INVALID DENSITY 

Explanation: A density was specified that was neither 800 nor 
1600 BPI. 

User Action: Retype the command line, specifying the correct 
density. 

BRU -- *FATAL* INVALID FILENAME 

Explanation: The name of the indirect command file is not 
syntactically correct. 

User Action: Retype the command line. 

BRU *WARNING* -- INVALID TAPE FORMAT 

Explanation: An invalid tape record was read during a restore 
operation. 

User Action: None. The invalid record will not be restored. 

10-37 



11;1111a 2!$ 

BACKUP AND RESTORE UTILITY (BRO) 

BRU -- *FATAL* -- INVALID VALUE 

Explanation: A value specified for a qualifier has illegal 
syntax or is out of range. 

User Action: Refer to Section 10.3.3 to determine the valid 
values for the particular qualifier. 

BRU -- *WARNING* -- INVALID DATE ON FILE HEADER [UFO] filename.type;version 

Explanation: An invalid date was encountered on a file header 
during an incremental backup. The file is copied. 

User Action: None. BRU will continue the operation. 

BRU -- *FATAL* -- MANUFACTURER BAD BLOCK SECTOR FILE IS CORRUPT 

Explanation: BRU was unable to read the bad block information 
from a last track output disk. 

User Action: 
qualifier. 

Retry the operation, using the /BAD:OVERRIDE 

BRU -- *FATAL* -- MFD HEADER READ ERROR 

Explanation: An I/O error occurred while BRU was reading the 
header of the Master File Directory. 

User Action: Retry the operation. If the header still cannot be 
read, the files on the disk are lost and may be recovered using f'1'--·· _!l_i·.-· 
the VFY utility. 

BRU -- *WARNING* -- MFD READ ERROR 

Explanation: 
of the MFD. 

An I/O error occurred while BRU was reading a block 
BRU cannot copy the UFOs in that block of the MFD. 

User Action: Retry the operation. If the block cannot be 
use the VFY utility to recover the lost files. 

read, 

BRU -- *FATAL* -- MISSING COLON 

Explanation: A qualifier keyword that accepts a value was not 
followed by a colon. 

User Action: Retype the command line. 

BRU -- *FATAL* -- MORE THAN 1 LEVEL OF INDIRECTION 

:q 

Explanation: BRU does not support more than one level of 
indirect command files. 

User Action: Retype the command line. 

10-38 

1$ 



BACKUP AND RESTORE UTILITY (BRU) 

BRU -- MOUNT TAPE n ON ddn: 

.Explanation: There is no tape on the specified drive or the tape 
is not at load point. This message will print every two minutes 
until the tape is mounted. 

User Action; Mount the tape specified on the drive specified. 

BRU -- MOUNT ANOTHER TAPE 

Explanation: BRU is requesting that a new tape be mounted after 
encountering a fatal tape write error. 

User Action: Mount a new tape on the drive. 

BRU -- *FATA.L* -- NAME MORE THAN 12 CHARACTERS 

Explanation: A name, such as a backup set name, is longer than 
12 characters .. 

User Action: Specify a name not greater than 12 characters. 

BRU -- *WARNING* -- NO BAD BLOCK DATA FILE FOUND 

Explanation: The BAD utility has not been run on the output disk 
to produce a file of the disk's bad blocks. 

User Action: None. BRU will continue the operation. Refer to 
Section 10.4 for information on bad block processing by BRU. 

BRU -- *WARNING* -- NO FILES FOUND [UIC] filename.type;version 

Explanation: 
the UF'D or 
file. 

During a backup operation, BRU found an entry in 
MFD that had no corresponding header in the index 

During a restore, compare, or verify operation, BRU cannot find 
the specified file on the output device. 

User Action: BRU ignores the entry. 

BRU -- *WARNING* -- NON FATAL QUALIFIER CONFLICTS BEING IGNORED 

Explanation: You entered a qualifier that conflicts with the 
rest of the command line and is nonfatal if ignored. For 
example!, /REWIND on a disk-to-disk operation. 

User Action: None. BRU will continue the operation. 

BRU -- *FATAL* -- NON OCTAL NUMBER 

Explancation: A decimal number was used where an octal number was 
expecte~d. 

User Ac:tion: 
number .. 

Retry the operation, using the correct octal 

10-39 



a 

BACKUP AND RESTORE UTILITY (BRU) 

BRU -- *FATAL* -- NUMBER OF HEADERS EXCEED MAXIMUM NUMBER OF FILES 

Explanation: The number of initial file headers must be at least 
five less than the maximum number of files in order to account 
for the system files. 

User Action: Use the /HEADERS qualifier to specify the number of 
initial file headers. 

BRU -- *FATAL* -- OUTPUT DISK TOO FRAGMENTED TO RESTORE 

Explanation: Internal tables in BRU have overflowed due to 
extreme fragmentation of the output disk. If the output disk was 
initialized, then it has an unacceptable number of bad blocks and 
should not be used as a backup medium. 

User Action: Use a new disk as the output device. 

BRU -- *FATAL* -- OUTPUT VOLUME IS FULL 

Explanation: There are no free blocks on the output disk. This 
can occur when the output disk is smaller than the input disk, or 
during an append to a tape that is already full. 

User Action: If the output disk is too small, do an incremental 
backup of only the files you want. If you wore doing an append 
to a tape that is already full, repeat the operation using a new 
tape. 

BRU -- *FATAL* -- OVERRIDE INVALID WITH NON LAST TRACK DEVICE 

Explanation: The OVERRIDE keyword may be used only when the 
output disk is a last-track device. 

User Action: Refer to Section 10.4. 

BRU -- PLEASE ANSWER YES OR NO 

Explanation: BRU requires a response. 

User Action: Enter YES or NO at your terminal. 

BRU -- *FATAL* -- PRIVILEGE VIOLATION 

Si$ 

Explanation: The input volume is mounted as a Files-11 structure 
but the /MOUNTED qualifier was not entered on the command line. 

In copying from a mounted volume, the user did not have read 
access to the specified UFD or file. 

User Action: Either dismount the disk or specify the /MOUNTED 
qualifier on the command line. 

10-40 

$& 14 

-.•.;-,····-···.···. - I :r 

I I jQ! 



BACKUP AND RESTORE UTILITY (BRU) 

BRU -·- *FATJ\L* -- RAN OUT OF SPARE FILE IDS 

Explanation: The output disk is too fragmented to preserve file 
ids. 

User Action: Retry the operation using the /NOPRESERVE 
qualifier. You may want to use a different output disk. 

BRU -- *WARNING* -- RECORD NOT EXPECTED SIZE 

Explanation: The record read on the output device during a 
verify or compare operation was not the expected size. 

User Action: None. BRU will continue the operation. 

BRU -·- *FATAL* -- REQUIRED INPUT DEVICE MISSING 

Explanation: The input device was not specified on the command 
line or in response to the prompt. 

User Action: Retype the command line. 

BRU -·- *FATAL* -- REQUIRED OUTPUT DEVICE MISSING 

Explanation: The output device was not specified on the command 
line or in response· to the prompt. 

User Action: Retype the command line. 

BRU -- REWIND ERROR ON ddn: 

Explana~ion: An I/O error occurred during a tape rewind. This 
error is fatal if it occurs on the first tape of a tape set or 
during a rewind for verify. The error is not fatal if BRU is 
rewinding a tape it is finished with. 

User Action: None. 

BRU -·- *FATAL* -- SEARCH FOR HOME BLOCK FAILED 

Explanation: The home block could not be found on the input 
disk. Either the home block is bad or the disk is not Files-11. 

User Action: Check to see that you have the correct disk. 

BRU --- *FATAL* -- STACK OVERFLOW IN SORT ROUTINE 

Explanation: A stack internal to BRU has overflowed. 
should not normally occur. 

This 

User Action: 
information. 

Please submit an SPR with all pertinent 

10-41 



BACKUP AND RESTORE UTILITY (BRU) 

BRU -- STARTING TAPE n ON ddn: 

Explanation: This message tells you which tape is being copied 
to on which drive. 

User Action: None. This is an informational message. 

BRU -- STARTING VERIFY PASS 

Explanation: This message tells you which tape 
verified. 

User Action: None. This is an informational message. 

BRU -- *FATAL* -- SYNTAX ERROR 

Explanation: The command line is invalid. 

User Action: Retype the command line. 

BRU -- TAPE LABEL ERROR ON ddn: 
I/O ERROR CODE -number 

is being 

Explanation: An I/O error occurred while BRU was reading or 
writing a tape label. A write error is fatal; a read error is 
not fatal as long as BRU can continue reading the tape. 

User Action: If a write error occurred, retry the operation 
using a different tape. 

BRU -- *WARNING* -- TAPE LABEL VERIFY ERROR 

Explanation: A difference was found between the input and output 
on a tape label. 

User Action: None. BRU will continue the operation. 

BRU -- *WARNING* -- TAPE NOT AT BOT. NO REWIND OR APPEND SPECIFIED 

Explanation: For a backup operation to tape, BRU will not start 
processing a tape that is not a BOT unless the /APPEND qualifier 
was specified for BRU. 

User Action: Use the /APPEND qualifier 
writing at the current tape position. 
to position the tape to BOT. 

if you want to start 
Use the /REWIND qualifier 

BRU -- *WARNING* -- TAPE OUT OF SEQUENCE. PLEASE MOUNT CORRECT TAPE 

Explanation~ The wrong tape volume was mounted on the tape drive 
during a restore from tape operation. 

User Action: Mount the correct tape on the drive. 

10-42 

4 2&24! I 12 OJ 

~ 
~ ,~ 

I a; 



'-'' 

BACKUP AND RESTORE UTILITY (BRU) 

BRU -- *WARNING* -- TAPE POSITIONING ERROR. BACKSPACE FAILED 

Explanation: During a backup operation, the tape was 
positioned properly for a future append operation. 

User Actions Rewind the tape before attempting to appende 

BRU -·- *FATAL* -- TAPE POSITIONING ERROR. NO EOV ENCOUNTERED 
I/O ERROR CODE-number 

not 

Explanation: The space files operation to find the end-of-volume 
for an append operation failed. 

User Actions Retry the operation. 

BRU -·- *WARNING* -- TAPE READ ERROR 

Explanation: An I/O error occurred while reading a tape. 

User Action: None. BRU will continue the operation. 

BRU -·- *FATAL* -- TAPE TO TAPE NOT SUPPORTED 

Explanation: BRU will not back up a tape to another tape. 

User Action: None. 

BRU --- *WARNING* -- TAPE WRITE ERROR 
I/O ERROR CODE-number 

Explanation: An I/O error occurred while writing to tape. BRU 
will rewind the tape and request that another tape be mounted. 

User A9tion: If the error is related to the tape drive, 
terminate BRU and start over on another drive. 

BRU ··- *WARNING* -·- THIS DISK WI LL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM 

Explanation: The output disk will not be hardware bootable. 
This can be caused by: 

1. The input disk not being bootable 

2. The system image not being restored 

3. Restoring to a disk of different size or type 

NOTE 

This warning will not be issued when 
restoring to an existing volume. 

User Action: None. 

10-43 



111111111& 

BACKUP AND RESTORE UTILITY (BRO) 

BRU -- *FATAL* -- TOO MANY DEVICES 

Explanation: As an input or output device 
specified only once. However, up to eight 
constitute the input or output. 

a disk may be 
tape drives may 

User Action: Retype the command line specifying only one disk or 
no more than eight tape drives. 

BRU -- *FATAL* -- TOO MANY FILE SPECIFICATIONS 

Explanation: More than 16 file specifications were specified on 
the command line. 

User Action: Retype the command line. You may use wildcards to 
reduce the number of file specifications on the command line. 

BRU *FATAL* -- UFO OR MFD REQUIRES UNSUPPORTED EXTENSION HEADERS 

Explanation: BRU does not support extension headers for MFDs or 
UFOs. 

User Action: This error should not occur. Please submit an SPR 
with all pertinent information. 

BRU -- *WARNING* -- UFO RECORD VERIFY ERROR 

Explanation: There is a difference between input and output 
devices on a UFO record. 

User Action: None. BRU will continue the operation. 

BRU -- *FATAL* -- UNKNOWN KEYWORD 

Explanation: A keyword was specified that was. not recognized by 
BRU. 

User Action: Retype the command line. 
of valid keywords. 

See Table 10-1 for a list 

BRU -- *FATAL* -- UNKNOWN QUALIFIER 

Explanation: A qualifier was specified that was not recognized 
by BRU. 

User Action: Retype the command line. See Table 10-1 for a list 
of valid qualifiers. 

BRU -- *FATAL* -- UNSUPPORTED STRUCTURE LEVEL 

ii 4 

Explanation: The file structure level on the input disk is not 
supported by BRU. 

User Action: Check to see that you have the correct disk. 

10-44 

ii id$ ill U IL 

·~ 
/.f! 

!#A 



BACKUP AND RESTORE UTILITY (BRO) 

BRU -- *WARNING* -- VBN NOT IN FILE 

Explanation: A file id was encountered which is larger than 
maximum file id in the index file. The file is ignored. 
error message will occur if a UFO entry was corrupted on 
input disk. 

User Action: None. BRU will continue the operation. 

the 
This 

the 

BRU -- *FATAL* -- VERIFY LOST 

Explanation: During the verify pass of a disk to tape backup, 
BRU has lost synchronization between the input and the output. 
This is usually caused by tape position being lost or by backing 
up from a disk that is mounted and being changed during the 
backup operation. 

User Action: Retry the operation. 

BRU -- *FA'I'AL* -- VOLUME NOT A BACKUP TAPE 

Explanation: The tape mounted for an append or restore operation 
was not generated by BRU. 

User Action: Check to see that you have the correct tape. 

BRU -- *FA'I'AL* -- VOLUME NOT READY 

Explanation: The device is not on-line. 

User Action: Put the device on-line and retype the command line. 

BRU -- *FA'l'AL* -- VOLUME WRITE LOCKED 

Explanation: The output device is not write enabled. 

User Action: If the output device is a tape, insert a write 
ring. If it is a disk, press the write enable switch on the disk 
drive. 

BRU -- *FA'l'AL* WRONG BACKUP SET 

BRU 

Explanation: The backup set name specified with the /BACKUPSET 
qualifier does not match the backup set name on the tape. 

User Action: Retry the operation with the correct backup set 
name. 

-- *FA'l~AL* WRONG INPUT VOLUME LABEL 

Explanation: The input volume label specified with the 
/INPUTVOLUME qualifier does not match the volume label of the 
input device. 

User Action: Retry the operation with the correct input volume 
label .. 

10-45 



m a 14 a : a C' Ji 14 



'-'/ 

CHAPTER 11 

DISK SAVE AltD COMPRESS (DSC) 

The Disk Save and Compress (DSC) utility program copies entire 
Files-11 disk files either to disk or to tape, and from DSC-created 
tape back onto disk. At the same time, DSC reallocates and 
consolidates the disk data storage area: it concatenates files and 
their extensions into contiguous blocks whenever possible, and may 
reduce the number of retrieval pointers and file headers required for 
the same fi.les on the new disk volume. 

DSC copies files that are randomly scattered over a disk volume to a 
new volume, without the intervening spaces. This eliminates unused 
space between files and cuts down on the time required to access them. 

A complete DSC operation is a cycle that begins with data on one disk 
and ends with the same data on another disk, in compressed form. The 
operation can use one command (for a direct disk-to-disk 
transcription) or two commands (for a disk-to-tape and tape-to-disk 
transcript ion). 

After a DSC copy operation, individual files are written in contiguous 
blocks whenever possible, and the blocks available for new files are 
located in a contiguous area at the end of the new volume. 

DSC reads and writes data to two of its own buffers when it performs 
copy or compare operations. (See Figures 11-1 and 11-2.) Each buffer 
normally is large enough to contain four disk blocks and a 16-byte 
bufj:er prefix. However, the block factor switch (BL) in a DSC command 
line allows you to increase the number of blocks in each buffer, up to 
the maximum space available for DSC on your system. 

In a disk-to-disk copy operation, DSC: 

1. Copies data from disk to a DSC buffer 

2. Copies data from the DSC buff er to another disk 

In 4:1 disk-to-tape/tape-to-disk operation 

1. Copies data from disk to a DSC buff er 

2. Writes data from the DSC buff er to tape 

3. Copies data from tape to a DSC buff er 

4. Writes data from the DSC buff er to another disk 

You can execute operations 3 and 4, to restore data to disk, at any 
time, as long as the data on the tape is intact. 

If the contents of one disk are transferred to a disk with a larger 
capacity, the new disk takes on the attributes of the original disk, 
except that additional storage space is available. 

11-l 



I 

!Ill•! I 12 1 I I I ; I 

__.. -

---
...... -

• ---" -

--
...... -
-

DISK SAVE ARD COMPRESS (DSC) 

BLOCKS OF DATA 

DSC 
BUFFER 1 

DSC 
BUFFER 2 

I 

- - - _J 

• 

• 
DISK INPUT DEVICE DISK OUTPUT DEVICE 

0 DSC reads 8 (default) or more blocks of data from the disk 
input device to two buffers. 

• In disk-to-tape copy operations, DSC writes data from the buffers 
to magnetic tape . 

• In disk-to-disk copy operations, DSC writes data from the buffers 
to the disk output device. 

DSC repeats step 1 and 2 or 3 until it copies the entire input device. 

Figure 11-1 Data Transfer for DSC Copy Operation 

11-2 

ii !Si !iU st 212 14 



DISK SAVE ARD COMPRESS (DSC) 

BLOCKS OF DATA 

.. -

0 - DSC 
BUFFER 1 -

l L DSC 
-

BUFFER 2 --- • 1 --
I • 
@ 

DISK INPUT DEVICE • DISK OUTPUT DEVICE 

0 DSC reads 4 blocks of data from the disk input device to a buffer. 

• DSC reads 4 blocks of data from the disk output device to the 
second buffer. 

• DSC compares the contents of the two buffers. 

0 DSC prints the differences on your terminal. 

DSC repeats steps 1 through 4 until it has compared the entire device. 

Figure 11-2 Data Transfer for DSC Compare Operation 

11-3 



DISK SAVE AND COMPRESS (DSC) 

After a disk-to-disk copy operation, you can access the contents of 
the file on the new disk directly. However, after a disk-to-tape 
operatioin youf cannot access the data on tape directly, becaiuse it is ...... ,. ·. 
stored n a ormat recognizable only to DSC. To access th s data, you . 11 
must perform a second copy operation and transfer the data to another 
disk volume. 

When DSC copies and compresses a disk containing a saved system (a 
task image file created from an RSX-llM or RSX-llM-PLUS system image 
by an MCR SAVE command), it moves all task files to different physical 
addresses. However, because the Task Control Block (TCB) entries for 
each task contain file identifications rather than Logical Block 
Numbers (LBNs), a system can function normally after a SAVE when it is 
rebooted. The file identifications will not change. 

NOTE 

You can copy bootable system disks 
created on RSX-llM versions 3.0 and 
higher, IAS versions 2.0 and higher, and 
RSX-llM-PLUS. These disks will retain 
their bootable characteristics. 
However, bootable system disks created 
on earlier versions of the operating 
systems should not be copied using DSC. 

You can also use DSC to recover from hardware malfunctions which have 
made a portion of a disk volume unreadable. If the contents of a 
block allocated to a data file cause a read error, DSC copies the 
garbled contents to the output device and generates a warning message 
labeling the garbled data block. You can then access the block and 
correct its contents. 

11.l DSC-SUPPORTED VOLUMES 

You can use DSC with a variety of mass storage devices. The status 
DSC requires for the devices varies with the operating system. DSC 
can only access unmounted volumes on RSX-llM systems. However, IAS 
and RSX-llM-PLUS systems require volumes to be mounted with foreign 

~.·,· - I r' 

characteristics. Table 11-1 lists the devices that can be used with .~ ... · .. ·._.·· 
DSC operations. - lcf 

11-4 

1

1

1''i•••••••tl4l .. .,•:•iiii•Z4••2••t,¥••••••••---------•••••t•::•••••••••t•••••••a•a•••11.•;•G•••a11J 



Abbreviation 

DD* 

OM 

DB 

DK 

OF* 

DL 

DP 

DR 

OS* 

OT* 

DX* 

DY* 

MM 

MT 

DISK SAVE AllD COMPRESS (.DSC) 

Table ll.-1 
DSC-Supported Devices 

Type 

TU58 cassette (DECtape II) 

RK611/RK06/RK07 cartridge 
disk 

RH11/RP04/RP05/RP06 and RH70 
RP04/RP05/RP06 disk pack 

RKll/RKOS/RKOSF cartridge disk 

RFll/RSll fixed head disk 

RL11/RL01/RL02 cartridge 
disk 

RP11/RP02/RP03 disk pack 

RH11/RH70/RM03/RM02/RP07 
disk pack 

RH11/RS03/RS04 and RH70/RS03 
RS04 fixed-head disk 

TC11/TU56 DECtape 

RXll/RXOl floppy diskette 

RX02 floppy diskette 

RH11/TM02-03/TE16/TU16/TU45/TU77 
and RH70/TM02-03/TE16/TU16/ 
TU45 and TU77 9-track magnetic 
tape 

TMll/TUlO/TElO 7- or 9-track 
magnetic tape and TMAll/ 
TS03 9-track magnetic tape 

Class 

Block structured 

Block structured 

Block structured 

Block structured 

Block structured 

Block structured 

Block structured 

Block structured 

Block structured 

Block structured 

Block structured 

Block Structured 

Tape 

Tape 

* Indicates that the device cannot be used with stand-alone DSC. 

Table 11-2 lists the status required for devices used by online DSC 
with each operating system. 

11-5 



DISK SAVE AND COMPRESS (DSC) 

Table 11-2 
DSC Device Status 

Operating System Device Device status required 
for DSC operation 

RSX-UM-PLUS 

RSX-UM V3. 2 

IAS 

Disk 

Tape 

Disk 

Tape 

System disk 

All other 
volumes 

11.2 INITIATING AND TERMINATING ONLINE DSC 

Mounted with foreign 
characteristics 

Mounted with foreign 
characteristics 

Unmounted 

Unmounted 

Mounted with DCF 
characteristics 

Mounted with foreign 
characteristics 

You can initiate the online version of DSC in any of the ways 
explained in Chapter l of this manual. To terminate online DSC, type 
(CTRL/Z) • 

11.3 INITIATING AND TERMINATING STAND-ALONE DSC 

You can bootstrap a stand-alone version of DSC (DSCS8.SYS) from disk 
or from tapes supplied with the operating system. The exact method 
depends on which operating system you are using. 

Under either RSX-llM or RSX-llM-PLUS, you can bootstrap stand-alone 
DSC in one of two ways: 

1. Enter the privileged MCR BOOT command as follows: 

BOO[T] [l,50]DSCS8 

This command bootstraps DSCS8.SYS from the disk. 

2. Mount a volume containing stand-alone DSC and load the 
appropriate beginning bootstrap address. 

Under IAS, you can invoke stand-alone DSC by hardware bootstrapping a 
volume containing it. 

When stand-alone DSC is booted, it displays the message: 

RSX-llS V2.2 BL26 DISK SAVE AND COMPRESS UTILITY V3.0 
DSCS8> 

The prompt indicates that DSC is ready to accept commands. 

Terminate stand-alone DSC by halting the processor. 

U-6 

I. 22iiiiiiii!S 4 2446 ii ii .! came 

.~ .. 

I F 

ijik 



'-' 

'-'·· 

DISK SAVE AND COMPRESS (DSC) 

11.4 DSC COMMAND FORMAT 

Comm4ands for DSC use the format: 

DSC>outdev[s]:[filelabel] [/switch]=indev[s]:[filelabel] [/switch] 

The parameters of this command format are: 

Output Parameters 

The physical volume(s) to which data is copied. The format for 
outdev: is AA[nn]: where AA are the ASCII characters for the 
volume abbreviation, [nn] is an optional 1- or 2-digit octal unit 
number for the volume, and the colon (:) is a line terminator. 
If you omit the volume number, O is the default. DSC uses tape 
drives, in the order specified in the command line. If more 
tapes are required than specified, DSC accesses the tapes drives 
available in round-robin fashione 

DSC ignores multiple disk specifications. However, up to eight 
tape drives, separated by commas, can be specified as output 
devices in an online DSC operation. Stand-alone DSC permits only 
two tapes to be used as output devices. 

file label 

Identifies the disk volume ID or tape file or tape set DSC 
creates in a data transfer. You can specify a file label with 
either disk or tape output volumes. If you do not specify a file 
label when you create a tape or disk with DSC, the input disk 
volume label becomes the output disk volume label or tape file 
label. 

switch 

One or more of the optional switches described in Section 11.5. 

Input Parameters 

indev: 

The physical volume(s), in the format AA[nn]:, from which data is 
copied (see outdev: above). 

file label 

Identifies the DSC-created tape file that is being transferred to 
disk or compared. If you do not specify a file label, DSC 
transfers the first file it encounters after its current position 
on the tape. DSC ignores the specification of an input file 
label when the input volume is a disk. 

switch 

NOTE 

Each file on a DSC-format tape set 
contains the entire contents of the disk 
it backed up. 

One or more· of the optional switches described in Section 11.5. 

11-7 



DISK SAVE ARD COMPRESS (DSC) 

11.5 DSC FILE LABELS, SWITCHES, ARD OPTIOMS 

DSC commands can contain file labels and switches. Some switches also ~ 
use options to specify values. Table 11-3 summarizes the DSC switches · · ., 
and options. Note that all of these switches can be used with both 
online and stand-alone DSC. See Table 11-6 for switches available 
only for stand-alone DSC. 

Table 11-3 
DSC Switches and Options 

Switch 

Append 

Bad Block 

Block Factor 

Compare 

Density 

Rewind 

Verify 

a s !22¢3 

Format 

/AP 

MAN 
/BAD= NOAUTO 

MAN :NOAUTO 

/BL 

/CMP 

/DENS=l600 
/DENS=800:1600 

/RW 

/VE 

11-8 

Description 

Appends a DSC file to the 
first volume of a magnetic 
tape set that already 
contains a DSC file which is 
currently the last file of 
the set. 

Allows manual entry of 
bad block locations; can 
supplement, override, or 
ignore the disk's own bad 
block file. 

Sets the number of 256 word 
blocks DSC can include in 
each of its buffers. 

Compares input and output 
volumes for differences. 

Overrides the DSC default 
storage density for magnetic 
tapes of 800 bits per inch. 
DENS=l600 creates magnetic 
tapes at 1600 bits per inch 
density and 800:1600 (the 
split density switch) 
creates tapes with volume 
headers at 800 bits per inch 
and the rest of the tape at 
1600 bits per inch. 

Note that the DENS=l600 
switch is valid with TU16, 
TE16, or TU45 drives. The 
DENS=800:1600 is valid with 
TU16 or TU45 drives when 
they are not controlled by 
the TM03 formatter. 

Rewinds all magnetic tapes 
before DSC executes the 
current command. 

Copies data from the input 
volume and compares it with 
the output volume. 

iii lfl!Jfi 



DISK SAVE AND COMPRESS (DSC) 

11.s.1 File Label 

The file label identifies the data copied from a disk and stored on 
one or more tapes or on another disk. If you do not specify a file 
label, DSC uses the volume ID of the input disk volume label as the 
output volume label. 

The file label can consist of from l to 12 alphanumeric characters. 
However, DSC only uses the first 9 characters to identify the file it 
creates containing the disk's entire contents. Place the file label 
after the device specification and before any switches. Terminate the 
file label with one of the following: 

• An option switch 

• An equal sign (indicating the end of the output side of the 
command line) 

• A carriage return (indicating the end of the command line) 

For example: 

DSC>MM01:,MM02:SYSFILE=DB1: 

DSC uses the file label SYSFILE in the command above to identify the 
file on tape that contains the data to be copied from the input disk, 
DBl:. 

You can also use the file label when restoring data from tape to disk. 
If you enter a file label as part of the input specification, DSC 
searches the first volume for a file with that name. When it finds 
that file, DSC transfers it to the output volume. If, however, you do 
not specify an input file label, DSC transfers the first DSC-created 
file it locates on the first input volume. In both cases, using the 
Rewind switch on the input side of the command causes the tape to be 
rewound before the search for the file starts. 

If you use a file label as part of the output specification, it will 
be used as the file label of the output disk. If you do not specify 
an output file label, the output disk will have the same label as the 
original disk. (Even if the disk was copied to tape first, DSC 
ignores the file name on the tape and uses the name on the original 
disk.) 

For examplei: 

DSC>DBl:=MM01:,MM02:SYSFILE 

In this command, the Rewind switch is not specified on the input side. 
Therefore, DSC searches the first volume specified, MMOl:, beginning 
at the current position, for a DSC-created file named SYSFILE. If DSC 
finds SYSFILE on MMOl:, it completes the data transfer. If, however, 
SYSFILE is not found qn the first volume, DSC issues an error message 
and terminates the operation. 

If you enter the above command without a file label, DSC transfers the 
first DSC-created file it finds to DBl: regardless of the file name. 
(This file may or may not be SYSFILE.) If you do not specify the 
Rewind swi.tch, the tape may or may not be positioned at the beginning 
before DSC begins its operation. 

11-9 



iwa•as .ii 4 

DISK SAVE AND COMPRESS (DSC) 

11.5.2 Append Switch 

The Append switch (/AP} directs DSC to begin writing a file to the 
first specified volume of a tape set that contains only DSC-created 
files. If more than one DSC-created file exists on the first volume, 
and the last file extends to other volumes, DSC displays an error 
message and terminates the operation. 

Enter the Append switch as part of the output specification. The 
volume to which files will be appended must be specified as the first 
volume of the output side of the command string, as follows: 

outdev: [f ilelabel]/AP=indev: [filelabel] [/switch] 

When you use the Append switch with the output specification, DSC 
searches from the current position on the first specified tape output 
volume for the last logical end-of-file (EOF} created by a previous 
DSC command. If the last DSC-created file does not end on that 
volume, DSC terminates the operation and issues the following message: 

OUTPUT TAPE AAnn: IS FULL 

If the first specified tape output volume contains a portion of a DSC 
file that began on a previous volume, DSC terminates the operation and 
issues the following error message: 

OUTPUT TAPE AAnn: IS A CONTINUATION TAPE 

If DSC locates the end of a file on the tape that began on another 
volume, DSC terminates the operation and issues the following error 
message: 

OUTPUT TAPE AAnn: IS NOT THE ONLY REEL IN ITS SET 

For example: 

DSC>MMOl:,MM:SYSFILE/RW/AP=DXl: 

This command appends the contents of DXl: to the last DSC-created 
file already present on the first output volume specified, MMOl:. DSC 
first rewinds the tape on MMOl: and searches for the last EOF block 
on the tape. When it determines that only complete DSC-created files 
exist on the volume on MMOl:, DSC appends the new file, SYSFILE, to 
the file or files already on the tape. If necessary, DSC extends 
SYSFILE to additional volumes. Since the Rewind switch is specified, 
the search will not begin until the tape is rewound. 

You can only use the Append switch with output tape volumes. Any 
other use of the switch causes DSC to generate a message and terminate 
operation. 

11.5.3 Bad Block Switch 

Use the Bad Block switch (/BAD} with output disk volumes to control 
the way DSC uses bad block information. 

Three options for the Bad Block switch allow you to supplement the 
output disk bad block file with manually-entered bad block data, to 
ignore the bad block file altogether, or to use only manually-entered 
bad blocks. The bad block descriptor of the disk is never altered by 
DSC. 

11-10 

;: !.! •• .J LIL di 14' 



\...,·· 

DISK SAVE AND COMPRESS (DSC) 

The format for the BAD switch and its options are: 

MAN 

/BAD=MAN 
/BAD=NOAUTO 
/BAD=MAN:NOAUTO 

Allows manual-entry of bad block data, which is included in the 
bad block file created on the disk. 

NOAUTO 

Causes DSC to ignore the bad block descriptor on the disk, 
resulting in an empty bad block file during the DSC operation. 
Note that in this case DSC will attempt to write in any block it 
selects. 

MAN:NOAUTO 

Causes DSC to enter only manually-entered bad block data in the 
bad block file. Thus, DSC bypasses only manually entered bad 
blocks when selecting blocks to write in. 

When you specify MAN or MAN:NOAUTO with the Bad Block switch, DSC 
responds with the following prompt: 

DSC>LBN (S) = 

DSC issues this prompt after it accepts the original command line but 
before it transfers any data. 

Enter the locations of bad blocks following the LBN(S)= prompt. You 
can specify multiple bad block entries on one command line, using 
either a space, tab, or comma to separate each entry. You can also 
use separate lines for each entry. Enter bad block data immediately 
following the equal sign (=), in the format: 

n 

m 

DSC>LBN (S) :::;n: m 

Is the logical block number (LBN), in octal, of the initial bad 
block in the group. 

Is thE! number, in octal, of consecutive blocks contained in the 
groupu If you do not specify m, it defaults to 1. 

To specify a decimal number for either m or n, place a period (.) 
after the number. 

After you enter the first group of bad blocks, DSC reissues the 
LBN(S)= prompt. At this point, you can enter additional bad blocks by 
repeating the above procedure. 

To terminate manual bad block entry, enter a carriage return after the 
LBN I[ S) = p rc:>mpt. 

When you have entered all the bad blocks and terminated the entry 
process, DSC begins the data transfer. 

11-11 



DISK SAVE AND COMPRESS (DSC) 

For example: 

DSC>DB1:/BAD=MAN:NOAUTO=MM0l:,MM02:SYSFILE/RW 
DSC>LBN (S) =702: 7 ~ 644: 2 
DSC>LBN(S)=4057,5001:3 
DSC>LBN (S) =C£D 
DSC> 

DSC restores the output disk, DB!:, from the tape file SYSFILE 
contained on MMOl: and MM02:, skipping only the blocks you entered 
manually. In the example above, the following blocks will not be 
used: 

702 
703 
704 
705 
706 
707 
710 

644 
645 

4057 
5001 
5002 
5003 

Compare the above example with the following example: 

DSC>DBl:/BAD=NOAUTO=DBO: 

This example transfers data to the lowest LBNs on DBl:, regardless 
the content of the resident bad block desc~iptor. 

of 

11.5.3.l Obtaining Bad Block Information - You can obtain bad block 
information in three ways: · 

1. Running the Bad Block Locator utility (BAD), described in 
Chapter 9 of this manual 

2. Running the Field Service stand-alone diagnostic 

3. Running INI[TVOL] with the BAD=[option] switch. 

The BAD utility (number 1 above) automatically provides bad block 
information using LBNs, and creates a bad block file that DSC can use. 

The Field Service stand-alone diagnostic reads every word in a block 
and displays bad block messages on the console terminal. {This 
diagnostic is recommended for the user who wants more comprehensive 
testing of a volume). However, since the output is the physical 
address of each bad block, you must convert this address to logical 
block numbers before DSC can use it. 

11.5.3.2 Conversion To Logical Block Numbers - All DSC bad block 
information must identify bad blocks by LBN. 

The manufacturer-furnished or diagnostic bad block information usually 
identifies bad blocks by physical address {sector-track-cylinder). 
Before you enter this information manually for DSC, convert the 
physical addresses to LBN, using the following formula: 

(((cylinder number*tracks/cylinder)+track number)*sectors/track)+sector number 

11-12 

a :: a; iii 20 p;t 



\.I·· 

DISK SAVE AND COMPRESS (DSC) 

For example, suppose a bad sector of an RP06 (19 tracks per cylinder 
and 2:2 sectors per track) has the following physical address: 

Cylinder Number= 536 (8), 350 (10) 
Track Number= 16 (8), 14 (10) 
Sector Number = 13 (8), 11 ( 10) 

The LBN for the example above is calculated as follows: 

(((3500*19.)+14.)*22.)+ll.=146619. 

11.5~4 Block Factor Switch 

The Block Factor switch (/BL) allows you to set the number of blocks 
DSC uses in each of its buffers during I/O operations. The default 
DSC block factor is four blocks or the last value specified in a BL 
switch. 

11.504.1 Using the BL Switch - The format for the Block Factor switch 
is: 

outdev: [filelabel]/BL=n=indev: [filelabel]/BL=n 

The valu~ of n can be any positive integer, decimal or octal, 
than or equal to the maximum block factor available to DSC. 
maximum depends on the amount of memory DSC can access under 
system configuration. 

less 
This 

the 

The BL switch can be specified either on the input or output side of a 
DSC command line. 

If the input volume is tape, DSC determines the block factor from the 
headE~r label of the input file and ignores specification of the BL 
switch. 

If you specify the BL switch on both sides of a DSC command line with 
a disk volume, DSC uses the last value it receives, that is, the one 
from the input side of the command. However, if you specify the BL 
switch only on the output side of a command, DSC uses that value. 

DSC requires 2020(8) bytes of memory for each additional block of 
buffer space you specify. If the BL switch in a DSC command requires 
more memory than DSC has available, DSC displays the message BAD 
BLOCKING FACTOR and exits. 

For 1example: 

DSC>DBl:/BL=ll=DBO: 

In this example, DSC attempts to increase the number of blocks in each 
of its buffers to 11. DSC requires an additional 16160(8) bytes of 
memory for the expansion (7 additional blocks times 2020(8) bytes). 

If DSC does not have access to 16160(8) additional bytes of memory on 
your system, it will display the error message. 

If the expansion succeeds, DSC reads and writes 11 blocks of data at 
one time during an I/O operation instead of 4. This decreases the 
time required for DSC operations. 

11-13 



i~·= 14 

DISK SAVE AND COMPRESS (DSC) 

Once DSC has expanded its buffers in response to a new value of /BL, 
that value becomes the default value. DSC does not reduce its task 
image size if a command is executed at a lower block factor. However, 
if you specify a lower block factor in a subsequent command, DSC will 
create that volume at the lower factor. 

11.5.4.2 System-Dependent Requirements for BL Switch - Table 11-4 
describes the memory requirements for buffer expansion with RSX-llM or 
RSX-llM-PLUS operating systems. Online DSC on a mapped system (llM or 
llM-PLUS) expands automatically if memory is available. (See RSX-llM 
or RSX-llM-PLUS System Generation and Management Guide for details of 
building DSC with additional memory.) 

Table 11-4 
Operating System Limits for DSC Block Factor 

Operating System Default Maximum Maximum 
Blocking DSC Blocking 
Factor Size Factor 

RSX-llM/M-PLUS 
Mapped Systems 4 32K words 36(10) 

RSX-llM 
Unmapped Systemsl 4 20K words 10(10) 

1 On unmapped RSX-llM systems the DSC task must be rebuilt with 
additional memory for the block factor to be increased. 

NOTE 

If you create DSC tapes on an RSX-llM or 
RSX-llM-PLUS system, at a blocking 
factor greater than 10, they will be 
unusable on unmapped RSX-llM systems 
which can only use DSC tasks of 28K 
words. 

11.S.S compare Switch 

The Compare switch (/CMP) directs DSC to compare the contents of two 
disks or a disk and a tape set. Multiple tape specifications are 
valid, but multiple disks are not. If the input volume in a compare 
operation is tape, use the Compare switch on the input side of the DSC 
command line. If both input and output volumes are disk, you can use 
the Compare switch on the output side of the command line. The 
compare switch performs only comparison operations; no copy operation 
is involved. 

To perform both a copy and compare operation, use the DSC Verify 
switch (see Section 11.5.8). 

Specify the Compare switch as follows: 

outdev: [filelabel]/CMP=indev: [filelabel] 

11-14 

b$ di!! ii. t !l 3i I 1 !iii ;q:a ... 



DISK SAVE AND COMPRESS (DSC) 

When DSC detects an end-of-volume (EOV) on any reel or end-of-file 
(EOF) on other than the first reel of a tape set, the CMP switch 
causes DSC to rewind and unload the current volume and resume 

\.,I compa1rison with the next volume, until it detects an EOF. 

'-'' 

When DSC finds a difference between the volumes it is comparing, it 
displays a warning on your terminal. This warning lists the output 
volume number, file identification, and the Virtual Block Number {VBN) 
where the difference was found. DSC then continues the comparison~ 

When DSC begins a comparison involving tape, it first positions the 
specified or implied file as described in Section 11.5.7. DSC 
positions a single volume tape at the end of the current file when the 
comparison ends. Each reel of a tape set is rewound and unloaded as 
the operation on it is completed. DSC then resumes the comparison, 
using the next volume of the set. 

11.5.6 Density Switch 

The Density switch, with its two options, allows you to override the 
DSC default storage density of 800 bits per inch for TU16, TE16, TU77, 
and TU45 tape drives. The following two sections discuss these 
switches. Although you can use other tape drives with DSC, only the 
above-mentioned drives can support the Density switch. With TE16 
drives, you can use the DENS=l600 switch, but you cannot use the split 
density switch. In addition, tape drives controlled by a TM03 cannot 
use the split density switch. 

You do not have to specify a Density switch when a tape is the input 
in a DSC command. DSC determines the density of all input tapes by 
first reading the tape at 800 bits per inch and, if that fails, then 
reading at 1600 bits per inch. 

If you specify a density switch with a disk, DSC issues an error 
message and halts the operation. 

If you specify a density switch with tape drives other than those 
above~, DSC ignores the switch and does not alter the default 800 bits 
per inch density. Note that TS04 drives write all tapes at 1600 bits 
per inch. Therefore, it is not necessary to specify a density switch 
with DSC commands that use TS04's. 

11.5~6.l 1600 Bits per Inch Switch - The 1600 Bits per Inch Density 
switch directs the TU16, TE16, TU77, or TU45 drive to operate as an 
output volume at a density of 1600 bits per inch. The drive then 
writes all volumes in the tape set at that density. For example: 

DSC>MM01:,MM02:SYSFILE/RW/AP/DENS=l600=DB1: 

In this example, MMOl: and MM02:, are written at 1600 bits per inch 
dens Hy. 

ll.So6.2 Split Density Switch - The Split Density switch 
(/DENS=800:1600) directs the TU16 or TU45 drives {using the TM02 tape 
formatter) to write the entire tape set, except for the first two 

11-15 



DISK SAVE AND COMPRESS (DSC) 

blocks on each volume, at 1600 bits per inch. The first block on each 
volume contains header information and the second block is a dummy 
boot block that displays the following error message if an attempt is 
made to boot the volume: 

THIS VOLUME DOES NOT CONTAIN A BOOTABLE SYSTEM 

In the following example, DSC records the first two blocks of the 
first volume at 800 bits per inch and the remainder of each volume at 
1600 bits per inch. 

DSC>MM01:,MM02:SYSFILE/RW/DENS=800:1600=DB1: 

NOTE 

Tapes created using the Split Density 
switch violate ANSI standards. 

11.5.7 Rewind Switch 

The Rewind switch (/RW) directs DSC to rewind all volumes in a tape 
set before performing any other DSC operation, such as a copy or a 
compare. You can use it to rewind either input or output volumes (see 
Table 11-6). 

If you enter the RW switch as part of the input specification, DSC 
rewinds all of the tapes before the DSC operation begins. If you 
specify a file label with the RW switch, DSC rewinds the tapes and 
searches for the file you specified from the Beginning of Tape (BOT) 
on the first volume. 

If you do not specify a file label, DSC transfers the first 
DSC-created file it encounters on the first volume. After one volume 
of a tape set has been copied, DSC rewinds it and places it off line. 
If, however, the current file ends on the first or only tape of a set, 
the tape is positioned to read the next file on the input tape. The 
RW switch only rewinds tapes at the beginning of a DSC operation. 

If you enter the RW switch as part of the output specification, DSC 
begins by writing or comparing data from the beginning of the rewound 
output tape. Thus, in a copy operation, DSC overwrites any data 
previously stored on that tape, unless the Append switch is included 
in the command. 

If you do not en~er the RW switch with the output specification, and 
the first volume is not positioned at BOT, DSC begins its operation 
after the first DSC-created EOF it reads. 

If the tape is positioned at BOT, DSC overwrites it from there unless 
you specified the AP switch. If the file extends beyond the first 
volume of a tape set, that volume and all subsequent volumes are 
rewound and unloaded as they are filled. Otherwise, the tape is left 
at EOF to append another file to the first volume of the set. If DSC 
finds an EOV during its search for the last EOF, the command is 
aborted and DSC issues an error message. 

Table 11-5 summarizes the use of the Rewind switch with various DSC 
operations and with and without a file label. 

11-16 

~ - I 

l!"lllll•=·--·-·······------------------------------------·-1•411:•: 



'w·· 

DISK SAVE AND COMPRESS (DSC) 

Table 11-5 
Commands Using DSC Rewind Switch 

Switch Specification File Label Action 

RW Input/Output With/without Rewinds first tape 
before copy 
operation begins. 

RW Input With DSC searches for 
specified file 
from the beginning 
of the first tape 
volume. 

RW Input Without DSC transfers the 
first file it 
encounters on the 
first volume. 

RW Output File labels DSC writes data, 
specified when starting at the 
tape is output beginning of the 
volume are first tape volume. 
ignored when 
the tape is 
restored to 
disk. 

No Output DSC writes data, 
Rewind beginning after 
Switch the first 

end-of-file block 
it encounters. 

(If tape is 
already at BOT, 
DSC starts there.) 

During copy 
operations to 
multiple tapes, 
DSC rewinds the 
tape as it is 
filled, and takes 
it offline. 

The RW switch can be used only with magnetic tapes. 
with any other volume, DSC prints an error message. 

If you use it 

An example of the use of the Rewind switch follows: 

DSC>MMOl:SYSFILE/RW=DBl: 

DSC rewinds the volume on drive MMOl: and overwrites any data on the 
tape. The contents of DBl: are written to a single file identified 
as SYSFILE. DSC does not rewind the tape when the operation is 
finished unless the file extends to another volume. If the file does 
extend, DSC rewinds and unloads the filled tape. DSC ensures that 
subsequent tapes are at the beginning of tape before using them for 
read or write operations. Each subsequent volume, including the last 
one in the tape set, is rewound and unloaded when it is filled. 

11-17 



$ 

DISK SAVE AND COMPRESS (DSC) 

The following example shows the restoration of a DSC-created file: 

DSC>DBl:=MM02:,MMOl:SYSFILE/RW 

In this example, DSC restores a volume {DBl:) using a tape created by 
a previous DSC operation. DSC rewinds the first volume (on MM02:) and 
searches for a previously created DSC file labeled SYSFILE. If the 
file is found, DSC transcribes it. If it is not found on MM02:, DSC 
issues a message and terminates the operation. DSC will not go on to 
MMOl: if the file does not begin on MM02:. Each volume of the tape 
set is rewound and unloaded when the data it contains has been copied 
or compared. 

NOTE 

When you refer to tapes for the first 
time since your system was booted, you 
must use the Rewind switch. If you do 
not use the switch, the tape driver will 
return an error. 

11.5.8 Verify Switch 

The Verify switch {/VE) entered as part of the output specification 
directs DSC to perform a copy operation followed by a compare 
operation to verify that the two volumes are the same. {DSC does not 
allow you to specify either the Verify or Compare switch if both input 
and output volumes are tape.) 

If either the input or output volume is tape, the Verify operation 
takes place at the end of the Copy operation for each volume. In 
other words, DSC writes MMOl: and compares MMOl:; writes MM02: and 
compares MM02:, until the entire DSC operation is complete. In a 
disk-to-disk DSC operation, the Verify operation begins when the Copy 
operation is finished. 

You specify the Verify switch as follows: 

outdev: [filelabel]/VE=indev: [filelabel] [/switch] 

If you do not specify a file label for a tape set, the VE switch 
causes DSC to begin copying the first volume of the set. 

When DSC detects EOV or EOF on any volume of a tape set during a copy 
operation, it repositions the input volume to the beginning of the 
current file and begins the verify operation. 

During a verify operation, if DSC detects EOV on any volume, or EOF on 
other than the first volume of a tape set, it rewinds and unloads the 
tape when the operation is complete. After an EOV, the copy operation 
resumes, using the next volume from the beginning of the tape. 

NOTE 

If you specify a tape as one of the 
volumes, DSC requires extra time after 
the copy operation to rewind the tape 
and search for the current file before 
it begins to verify. 

11-18 

·""'·· I ~:::r 

I .. iii! fQCS 



'-'.• 

DISK SAVE AND COMPRESS (DSC) 

11. 6 DSC OE•ERATION OVERVIEW 

DSC initially accesses the first primary file header and writes the 
blocks mapped by its retrieval pointers to the output volume. DSC 
then checks the primary file header to determine whether it points to 
any extension headers. If extension headers exist, DSC transcribes 
them and the blocks they map until the entire file, with all of its 
extensions, has been written to the output volume. Only then does DSC 
access the next primary file header in the index file. For example: 

DSC> DBl: =DB2: 
~:J 

In this example, DSC copies all the files on DBl: to DB2:. 
'\______./ 

When DSC copies file extensions it updates the output retrieval 
pointers and file linkages involved in the transfer as required. This 
not only involves collapsing retrieval pointers, but also may reduce 
the number of file extensions required if enough retrieval pointers 
are e~liminated. 

As a result of a copy operation, each primary file header is followed 
by all of its extensions. Volumes created in a Merge mode copy 
operation have complete files written to contiguous blocks (except 
where blocks have been flagged as bad in earlier operations on the 
volume). DSC writes data, beginning at the lowest LBN possible on the 
disk. 

If an input file is contiguous, DSC will search for an area on the 
output volume with enough contiguous blocks to contain the file. If 
no such area exists, DSC will issue an appropriate message and 
terminate the copy operation. 

If an input file is not contiguous, 
contiguous sections as possible, 
available on the output volume. 

11. 7 STAND·-ALONE DSC 

data is allocated in as few 
in the first unoccupied blocks 

Stand-alone DSC (DSCS8.SYS) does not support all the features of the 
online version. DECtapes, floppy diskettes, DF/DS fixed-head disks, 
and TU58 cassettes cannot be used with stand-alone DSC. However, in 
data transfer operations, stand-alone DSC uses all of the switches 
described in Section 11.5. 

When you run stand-alone DSC without any of the switches described 
below the following default values apply: 

• Logical unit numbers of devices are limited to 0 and 1 

• Only two input or output volumes can be specified per command 

• One controller is supported for each device type 

• Nonstandard vector addresses are generated for RM03, RP02, and 
RP03 disk volumes, and TUlO/TElO, and TS03 magnetic tape 
drives 

You can overcome some of these limitations by using four switches, 
listed in Table 11-6. These switches change the standard DSC default 
values to the values your system requires. However, the switches can 
only be used with stand-alone DSC. 

11-19 



Format 

/CSR=xxxx 

DISK SAVE ARD COMPRESS (DSC) 

Table 11-6 
Stand-Alone DSC Switches 

Switch Description 

Control Status Alters control status 
Register switch addresses for specific 

device types 

/TM02=x TM02/TM03 Formatter Alters the physical 
switch unit formatter 

/UNIT=x Unit switch Specifies the physical 
unit that a LUN accesses 

/VEC=xxx Vector Address Alters the vector 
switch address of a unit 

The four switches supplied with stand-alone DSC can appear together in 
a single command line to alter the appropriate values of a single 
device or device type. However, you can only alter values for one 
device type, or generate one data transfer operation, in a single 
stand-alone DSC command line. 

Therefore, when you use these switches, you must enter at least two 
command lines; one to specify the switches with a device or device 
type, and one to initiate the DSC data transfer operation. 

NOTE 

Once you use the switches, DSC uses them 
in all subsequent commands until you 
either specify new switches in a new 
command or terminate DSC. 

The general format for a stand-alone DSC command with switches 

DSCS8> AAnn:/switchl=x ••• /switchn=y 

AAnn: 

The device identifier and unit number 

switchl through switchn 

is: 

One or more of the stand-alone switches described in Sections 
11.7.l through 11.7.4 

x,y 

The value you assign to the switch 

11.7.l Control Status Register Switch 

Use the Control Status Register switch (/CSR) to alter the device 
Control Status Register addresses generated by stand-alone DSC so that 
they conform to the addresses required by your system. 

11-20 

J¢ 3 iiii!L) ii S$b SLU4il 2211 



DISK SAVE AND COMPRESS (DSC) 

Table 11-7 displays the CSR and vector addresses of the devices 
supported by stand-alone DSC. 

Table 11-7 
System-Generated CSR and Vector Addresses 

Device Type CSR Vector 

DB: 176700 254 

DK: 177404 220 

DL: 174400 160 

OM: 177440 210 

DP: 176714 300* 

DR: 176700 320* 

MM: 172440 224 

MT: 172522 320* 

* Indicates nonstandard vector address. 

The following example illustrates the correct use of the CSR switch: 

DSCS8>MM1:/CSR=l60546 
DSCS8>DBO:/CSR=l60646 

In this example, the system using DSC has the CSR addresses of the 
MMl: tape drive and the DBO: disk drive set to 160546 and 160646, 
respectively. After you enter these values, you can enter another 
DSCS8 command line to initiate a copy and/or compare operation. 
Neither of the commands that use the CSR switch in the example cause a 
copy operation to begin. 

If a DSC operation involves multiple devices of the same type, only 
'-' specify the CSR once for each device type. 

11.7.2 TM02 Switch 

The TM02 switch (/TM02) alters the physical unit number of the 
TM02/TM03 formatter on the RH controller from the value generated by 
stand-alone DSC to the value required by your system. 

Stand-alone DSC assigns a physical unit number of O to the TM02/TM03 
formatter on the RH controller. You can change this to any octal 
digit from 1 to 7 for each MM: device. For example: 

DSCS8>MM1:/TM02=1 

This command alters the TM02/TM03 position on the RH controller from O 
(the generated value) to 1 for MMl:. The TM02 switch alters only the 
device you specify. If another MM: device requires an altered 

11-21 



DISK SAVE AND COMPRESS (DSC) 

assignment, which is the usual case, specify the new device and its 
assignment in a separate command. The TM02 switch only works with MM: 
devices; it cannot be specified with an MT: or disk device. 

11.7~3 Unit Switch 

You can use the Unit switch (UNITS=) to ~hange the unit numbers DSC 
accepts for device specifications. Stand-alone DSC is generated with, 
and accepts only, two logical unit numbers, 0 and 1. In addition, the 
unit numbers used in the command string cannot be changed. These 
constraints can be amended somewhat with the UNITS= switch. The 
numbers O and 1 must still be specified in the command line, and the 
number of devices cannot be increased. However, DSC can access 
devices with physical numbers other than 0 and 1. For example: 

DSCS8>DPO:/UNIT=5 

After you enter the above command and a command line that references 
DPO:, the disk actually accessed is the disk assigned as physical unit 
5. If DP!: also requires a physical unit change, it will have to be 
specified in another command. 

11.7.4 Vector Address Switch (/VEC=) 

The Vector Address switch (/VEC=) switch changes the stand-alone DSC 
vector addresses to the addresses required by your system. Each unit 
of the device type is accessed by the specified vector address. For 
example: 

DSCS8>DB1:/VEC=320 

After you enter the above command, all DB: devices will be accessed 
with a vector address of 320. 

Stand-alone 
conflicting 
contains: 

DSC uses nonstandard vector addresses to resolve 
unit configurations. These conflicts occur when a system 

• A TU16 drive and TElO/TUlO drive or TU16 drive and a TS03 
drive 

• Any combination of RP02/03, RP04,05/06, and RM02/03 tsuch as 
an RP02 disk and an RP04 disk). 

For example, before you can reference TElO, TUlO, or TS03 tapes, you 
must use the VEC switch to alter the DSC vector setting of 320 to the 
correct value for your system. 

DSCS8>MT1:/VEC=224 

After you enter this command, all MT devices will be accessed with a 
vector address of 224 (instead of the DSC-generated vector address of 
3 20). 

4 

If the VEC switch is not used to alter the DSC setting, DSC waits for 
a response from the incorrect vector address. This response never 
comes. 

11-22 

/$ii 



DISK SAVE AllD COMPRESS (DSC) 

11.8 DSC OPERATION 

As outlined in the beginning of this chapter, DSC's complete data 
transfer process consists of either a direct disk-to-disk operation or 
a two-step, disk-to-tape/tape-to-disk operation. DSC reads and writes 
data to and from its own internal buffers during these operations. 

The following sections describe DSC's operation in each of these data 
transfers. 

11.8.l Data Transfer from Disk 

After you enter a DSC command specifying a copy operation from a disk, 
DSC scans the input disk to ensure that it is in Files-11 format. DSC 
begins by copying an approximation of the disk index file. Because 
this file is updated to reflect the status and location of blocks as 
they are allocated on the new disk, the index file bit map, the 
storage bit map file, and the bad block file are not transcribed 
exactly: DSC transcribes only the data necessary for the construction 
of these files on the new disk. However, the index file bit map still 
reflects the maximum number of files on the input disk. 

DSC accesses the input volume index file's index of active file 
headers in numerical order to locate the next active primary file 
header. DSC transfers that header, the blocks it maps, and all 
extension headers and related blocks that are part of the file, to the 
output medium. It then accesses the next active primary file header 
from the index file. DSC continues this operation, each time writing 
a complete file, until it has transferred all the active files. 

DSC accesses and transcribes only the blocks allocated to active 
files. It ignores unallocated blocks interspersed throughout the 
input disk. This results in contiguous data blocks on the output 
disk, following the copied files. 

If DSC accesses a file that contains bad data, DSC transcribes 
whatever it reads from the block. When DSC restores the file to disk, 
it writes the block's contents as it originally read them. The 
logical block still contains garbled data, but the new physical block 
can be accessed and its contents corrected. A message identifying 
these bad areas is displayed on the console terminal. 

In summary, to transfer data from a disk, DSC: 

1. Verifies that the disk is online, and in Files-11 format 

2. Transcribes disk index files, updated for their new status 

3. Reads the data to a DSC buffer 

11.8.2 Data Transfer to Tape 

When the output volume in a DSC operation is tape, DSC writes the 
contents of the input disk to a tape on the drive you specify. This 
data transfer usually involves multiple reels of tape (a tape set) and 
multiple tape drives. 

The tapes that DSC creates serve as a back-up of the disk's contents. 
You can only use DSC-created tapes by copying them back to a disk 
volume and restoring the disk's contents to their original form. 

11-23 



i 
I 

DISK SAVE AND COMPRESS (DSC) 

Although the tapes contain many individual files from the input 
volume, DSC treats the tapes as if they contained a single file a 
file of the disk's entire contents. 

When DSC begins writing the volume's contents to tape, it allows 
writing to more than one volume. The first block DSC writes to tape 
is a header that contains the volume name (obtained from the file 
label) and the relative volume number. This header identifies the 
tape set and the volume's place within that set. It ensures that when 
DSC begins to restore the disk it will load each volume in the tape 
set in order. 

After the header, the tape set includes the data required to 
reconstruct directory files, maps and pointers, and the actu~l files 
copies from the disk. 

NOTE 

When the disk is restored, the directory 
files are at the beginning of the disk, 
regardless of their position on the 
original disk. 

To initiate the write-to-tape operation, first ensure that the tape 
devices are online. You can specify multiple tape drives in the 
following way: 

DSC>AAnn(O) :,AAnn(l) :, ••• AAnn(7): [filelabel]=indev: 

An example of a command in this format is: 

DSC>MMO:,MM1:,MM4:,MM2:SYSFILE=DB1: 

You have the option of entering a file label in this command after 
specifying the last device. You can specify only one type of tape 
drive, either MM: or MT: or MS:, in a single DSC command. Although 
you can specify up to eight drives on each side of the command line 
(two drives in the stand-alone version) you can specify each 
individual drive only once. 

If the number of volumes in the tape set exceeds the number of tape 
drives available, DSC uses volumes on the specified drives in 
round-robin fashion. Using the above example, the order of 
replacement would be 

MMO: MMl: MM4: MM2: MMO: MMl: MM4: MM2: 

until an end-of-file is reached. 

In summary, to transfer data to tape, DSC: 

l. Verifies that the first or only volume of a tape set is 
online and write-enabled 

2. Verifies that 
Beginning of 
write-enabled 

subsequent volumes of 
Tape (BOT), online 

a tape set are 
when required, 

3. Transcribes data from a DSC buffer to the tape 

11-24 

at 
and 

!i"
1

111111111111t•. i••••••u111¥•J•: :1a•z.-@••a•••••••·--------•••llll•••••••••••a•.:•:•s••t •tt•:• .. •::•::•1••;•£&•21: 



DISK SAVE AND C.OMPRESS (DSC) 

11.8 .. 3 Data T.ransfer from Tape 

DSC can only use the tapes it creates to (l) reconstruct a disk or (2) 
~ perfc>rm compare and verify operations. 

When you mount the tapes and specify tape drives as input devices, DSC 
sequentially accesses and writes the tape contents to the output 
volume. As it transfers the data, DSC creates and updates directory 
files. 

Tape drives specified as input devices must be online. The volumes in 
the tape set must be referenced in the correct order in the command 
line. 

If you specify a file label, DSC transfers only the contents of the 
file identified by that label. If you do not specify a file label, 
DSC transfers only the first DSC-created file it encounters on the 
first volume of a set. 

In summary, to transfer data from tape, DSC: 

l. Verifies that the tape drives are online 

2. Accesses the volumes in a tape set in round-robin order 

3. Creates directory files 

4. Reads the data into a DSC buffer 

ll.8u4 Data Transfer to Disk 

DSC's operation is not complete until the data involved in the 
transfer is restored to disk. 

To receive input, a disk must be online. Any disk iarge enough to 
contain all the input data can be specified as the output volume in a 
data transfer to disk. 

The disk should have an up-to-date bad block descriptor, or have bad 
block data entered in a DSC command with the BAD switch. This ensures 
that the data written on the disk will be accessible. You can update 
the bad block descriptor before a DSC operation by running the BAD 
utiHty. 

After identifying the bad blocks on the output disk, DSC examines that 
volume to ensure that it has enough free blocks to contain all the 
data being transferred. DSC compares the number of blocks being 
transferred from the input volume(s) with the number of blocks 
available on the output volume. DSC issues an error message and exits 
if too few blocks are available. 

DSC begins constructing index and storage bit map files when it begins 
transcribing files. DSC updates the file headers to reflect the 
location of the files on the new disk. This updating is required 
because blocks that were previously scattered are now copied to a 
contiguous set of blocks, beginning at the lowest LBNs available on 
the disk. DSC will write the primary file header and its contents and 
associated file extension headers and the extensions they map, as a 
unit to a contiguous series of blocks. Note that the output disk 
contains an index file of the same size as the original disk. This is 
especially important when the contents of a large disk (such as an 
RP04) are restored to a smaller disk (such as an RKOS) or vice versa. 

11-25 



rQUj 4 

DISK SAVE AND COMPRESS (DSC) 

Compression of files in this manner is beneficial when a file header's 
retrieval pointers are almost used up. Because DSC rearranges a disk 
so that contiguous blocks are allocated to a single data file, the 
number of retrieval pointers required to map the location and length 
of the file contents can be significantly reduced. DSC can also 
reduce the number of file extensions and extension headers. 

Note that when DSC writes to a disk, it begins writing data into the 
lowest block possible. Free blocks generally have higher LBNs and are 
in a contiguous section of the disk. 

The data presently on the disk is overwritten by the new data. 
Therefore, you cannot use DSC to transfer the contents of several 
small disks to a single large disk. Each copy operation eliminates 
whatever previously occupied the disk. 

In summary, to transfer data to a disk, DSC: 

l. Verifies that the disk is online. 

2. Verifies that the disk has an up-to-date bad block descriptor 
or that bad blocks are specified manually (through the 
/BAD=NOAUTO switch). Displays a warning message if no bad 
block information is available and the BAD switch was not 
specified. 

3. Verifies that the disk has enough free blocks to contain all 
the data to be transferred. 

4. Creates index and directory files (in the first part of the 
disk). 

5. Writes the data from a buffer. 

11.9 DSC MESSAGES 

DSC notifies you of fatal error conditions as well as less serious 
conditions that could cause difficulties in DSC operations. Each 
message generated by DSC has the prefix DSC--, and each is identified 
by a numeric code. 

DSC messages are printed on your terminal in either a long or a short 
form: online DSC prints the long form and stand-alone DSC prints the 
short form. You can determine the meaning of the short form message 
from the number provided with the message. The text accompanying the 
long form message of that number explains the error. 

For example, specifying a tape in the wrong format generates the 
following message in long form from DSC: 

FATAL *** 17 OUTPUT TAPE MMl: NOT ANSI FORMAT 

The same error generates the following message in short form on 
stand-alone DSC: 

FATAL *** 17 - MMl 

Table 11-8 is a quick reference to the single letter codes used in 
General messages and in I/O messages. 

11-26 

dJ " 

"'····.··· .· .... .. .. I ~~· 

'" 



T'ype of 
Code 

DISK $AVE AllD COMPRESS (DSC) 

Table 11-8 
General Error and I/O Error Message Codes 

Symbol Meaning 

G:eneral 
Error 
Miessage 

Code A 
Code B 
Code C 
Code D 
Code E 
Code F 

Failed to read storage map header 
Input data out of phase 

I/O 
E:rror 
Message 

A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 

Nondata block encountered 
Input file out of phase 
File attributes out of phase 
File header out of phase 

Reading index file bit map 
Reading index file header 
Reading storage bit map 
Reading boot or home block 
Reading file header 
Input (or output device) 
Writing index file bit map 
Writing storage bit map header 
Reading input device 
In input tape labels 
Reading file attributes 
Reading file header 
Reading index file data 
Reading summary data 
Writing file header 

11.9.1 DSC Messages: Text, Explanation, and Corrective Action 

The following are the messages DSC can return. 

1 UNDEFINED ERROR 

Ex1>lanation: 
error. 

DSC encountered an unidentifiable internal 

User Action: First, retry the operation. If error persists, 
submit a Software Performance Report. 

2 CONFLICTING DEV. TYPES 

Explanation: An illegal combination of device types was 
spc~cified. 

User Action: Check for typographical errors in device 
abbreviations: make sure that the disks and tape drives are 
not specified on the same side of the command string. 

3 MIXED TAPE TYPES 

Explanation: Two different types of tape 
specified in the command string. 

drives were 

User Action: Reenter the command, specifying only one type of 
tape drive. 

11-27 



DISK SAVE ARD COMPRESS (DSC) 

4 ILLEGAL SWITCH 

Explanations The command string was entered with a switch 
that cannot be used with that command. 

User Action: Reenter the command with only correct switches 
specified. 

5 FILE LABEL TOO LONG 

Explanation: A file label consisting of more than 12 
alphanumeric characters was specified. 

User Action: Retry the operation with a shorter file label. 

6 SYNTAX ERROR 

Explanation: An error occurred in the command string format. 

User Action: Reenter the command in the right order. 

7 DUP. DEV. NAME; 

8 

Explanation: The same device was entered more than once in 
the command. 

User Action: Reenter the command, specifying each device only 
once. 

TOO MANY DEV'S 

Explanation: More than the legal number of devices were 
specified on one side of the command line. 

User Action: Reenter the command, specifying no more than 
eight devices per side. 

9 DEV. XXn: NOT IN SYSTEM 

!!Siii¢ 

Explanation: The specified device is not present in the 
configuration of the operating system being used. 

User Action: Check the device identifier that was entered in 
the command string. Reenter the command. 

10 DEV. XXn: NOT FILES-11 

2 4 

Explanation: The specified input device is not formatted as a 
FILES-11 device. 

User Action: Check the input device to ensure it is the one 
desired, and reenter the command. 

11-28 

a 14 



DISK SAVE ARD COMPRESS (DSC) 

11 BAD BLOCK SYNTAX ERROR 

Explanations A syntax error occurred when bad block data was 
manually entered. 

User Actions Check the command that was entered, and reenter 
it. 

12 BAD BLOCK COUNT TOO LARGE 

Explanations Too many bad blocks were manually entered in a 
single group. 

User Action: Check the blocks being entered. If possible, 
enter several small groups instead of one large group. 

13 BAD BLOCK CLUSTER OUT OF RANGE 

Explanation: A manually entered bad block or group of bad 
blocks does not exist on the output disk. 

User Action: Check the numbers of the blocks entered, and 
reenter the command. 

14 OU'.rPUT TAPE XXn: NOT AT BOT 

Explanation: The specified continuation tape is not at the 
Beginning of Tape (BOT). 

User Action: Remount or reset the tape at load point and 
reenter the command. 

15 ou·rPUT TAPE XXn: FULL 

16 

Explanation: The specified tape is full, and files cannot be 
appended to it. 

User Action: Change the output tape, and reenter a command to 
begin a new tape set. 

OUTPUT TAPE XXn: NOT ONLY REEL IN SET 

Explanation: The Append switch was used with a tape that was 
not the first tape of a set created by DSC. 

User Action: Change tapes, and reenter the command (see 
message 15). 

17 TAPE XXn: NOT ANSI FORMAT 

OUTPUT TAPE 

Explanation: If device is an output tape, the AP switch was 
specified and tape is not in ANSI format. 

User Action: Reenter the command and either omit the AP 
switch to write the specified tape or change tapes. 

11-29 



li!r•u: !! 

DISK SAVE AND COMPRESS (DSC) 

INPUT TAPE 

Explanation: If device is an input tape, the tape is not in 
the correct format for a DSC operation (that is, the tape was 
not created by DSC). 

User Action: Check the tape and change it, if necessary. 
Reenter the command. 

18 OUTPUT TAPE XXn: NOT DSC TAPE 

Explanation: An Append switch was specified with a tape that 
was not created by DSC. 

User Action: Reenter the command and either omit the Append 
switch or change to a DSC-created tape. 

19 TAPE XXn: A CONTINUATION TAPE 

Explanation: If device is an input tape, the tape was mounted 
out of sequence is not the first of a set. 

User Action: Reenter the command, and specify input tapes in 
the proper order. 

21 FAILED TO FIND HOME BLOCK 

Explanation: DSC failed to find the home block on the input 
disk. Either the disk is bad, the home block is bad, or the 
disk is not in FILES-11 format. 

User Action: Check the disk in question, change drives if 
possible, and reenter the command. 

22 FILE STRUCTURE LEVEL ON xxn~ NOT SUPPORTED 

Explanation: The device is not a Files-11 Structure Level One 
disk, and, therefore, cannot be used. 

User Action: Replace the device and retry the operation. 

23 I/O ERROR A ON XXn: 
(Additional error information) 

Explanation: The I/O error indicated explains why the index 
file bitmap on the device could not be read. 

User Action: Retry the operation after correcting the cause 
of the error on the device if possible. 

24 I/O ERROR B ON XXn: 

4 2 41 

(Additional error information) 

Explanation: 
file header 
file is lost. 

The I/O error indicated explains why the index 
on the device could not be read. The specified 

User Action: Retry the operation after correcting the cause 
of the error on the device if possible. 

11-30 

I 4 ii J I ii 

~ - ,-!, 

ii I p;z: 



DISK SAVE ARD COMPRESS (.DSC) 

25 CODE A 

Explanation: The file header for the storage bit map file 
cannot be read. 

User Action: The disk is unusable and, therefore, cannot be 
copied. Replace the disk and reenter the command. 

26 I/O ERROR C ON XXn: 

27 

(Additional error information) 

Explanation: The I/O error indicated explains the error that 
occurred when DSC read the specified file. 

User Action: Retry the operation. 

I/O ERROR D ON XXn: 
(Additional error information) 

Explanation: The I/O error indicated explains the read error 
that occurred when DSC read the home or boot block of the 
disk. 

User Action: Retry the operation on a new drive. 

31 I/O ERROR E ON XXn: file id 
(Additional error information) 

Explanation: The I/O error indicated explains the error that 
occurred when DSC read the specified file header. 

User Action: Retry the operation. 

32 INPUT DEVICE XXn: fileid, Y, Y NOT PRESENT 

Explanation: The specified file does not have a file header 
in the index file; therefore, the file is not copied. 

User Action: This is a warning only. If desired, the 
operation can be retried on a different disk drive. 

33 INPUT DEVICE XXn: file id Y, y IS DELETED 

Explanation: The specified file was partially deleted on the 
input disk and was not copied. 

User Action: This is a warning only. No action is required. 

34 INPUT DEVICE XXn: FILE ID Y, Y UNSUPPORTED STRUCTURE LEVEL 

Explanation: The specified input disk is not a FILES-11 
Structure Level One disk and cannot be used. 

User Action: Replace the disk and retry the operation. 

11-31 



DISK SAVE AND COMPRESS (DSC) 

35 INPUT DEVICE XXn: FILE ID Y, Y FILE NUMBER CHECK 

Explanation: An incorrect file header was read from disk, 
causing the specified file to be lost. 

User Action: Retry the operation. 

36 INPUT DEVICE XXn: FILE ID, Y, Y FILE HEADER CHECKSUM ERROR 

Explanation: Incorrect file header contents caused the 
specified file to be lost. 

User Action: Retry the operation. 

37 INPUT DEVICE XXn: FILE ID Y, Y SEQUENCE NUMBER CHECK 

38 

Explanation: The sequence number is incorrect. 

User Action: Retry the operation and/or replace the disk. 

INPUT DEVICE XXn: FILE ID Y, Y SEGMENT NUMBER CHECK 

Explanation: The linkage connecting file segments was broken; 
the specified file is lost. 

User Action: Retry the operation. 

39 DIRECTIVE ERROR error number 

Explanation: An internal error occurred, usually the result 
of a system overload. 

User Action: Retry the operation. 

40 I/O ERROR F 
(Additional error information) 

Explanation: The I/O error indicated explains that an 
uncorrectable read/write error occurred on the specified input 
or output device. 

User Action: This message is a warning only. No action is 
requi~ed unless another error message is displayed. If 
another error message is displayed, correct the cause of the 
error and reenter the command. 

41 I/O ERROR I on XXn: 
File ID Y, Y VBN Z, Z 

(Additional error information) 

Explanation: An I/O error occurred, which resulted in bad 
data being read from the specified virtual block number of the 
indicated file on the indicated device. 

User Action: This a warning message only. You should examine 
the block specified to determine the extent of the error. 

11-32 

$ 

•.. ·····''·· ... 
.... , ,~ 



DISK SAVE ARD COMPRESS (DSC) 

42 VERIFICATION ERROR ON XXn: 
FILE ID Y, Y, Y virtual block number z, z 

Explanation: The input and output devices specified for a 
verification operation did not match. 

User Action:· This is a warning message only. No user action 
is necessary. 

43 BAD DATA BLOCK ON XXn: 

44 

45 

FILE ID, Y, Y, Y VBN Z, Z 

Explanation: A parity error occurred when DSC copied the 
contents of a block from a disk. The block specified on the 
output disk contains erroneous data. 

User Actions 
contained in 
corrected. 

When the copy operation is completed, the data 
the specified block should be examined and 

MOUNT REEL x ON XXn: AND HIT RETURN 

Explanation: This is an instruction only. 

User Action: Mount the volume number requested on the 
specified tape drive and enter a carriage return when ready. 

STARTING VERIFY PASS 

Explanation: The copy operation is complete and DSC is 
beginning the verify operation (specified with the VE switch). 

User Action: This is an informational message only. No user 
action is required. 

46 RESUME COPYING 

Explanation: The verify pass (specified with the VE switch) 
is complete, and DSC is continuing the copy operation (if 
there is more material to copy). 

User Action: This is an informational message only. No user 
action is required. 

47 XXn: IS WRITE LOCKED. INSERT WRITE RING AND HIT RETURN. 

Explanation: The indicated device is write-locked. 

User Action: Make sure the device is the one you want, 
write-enable it, and enter a carriage return. 

48 INPUT FILE ON XXn: WILL BE RESYNCHRONIZED 

Explanation: The tape position was lost while DSC was reading 
the input tape. The file specified in the message, as well as 
some subsequent files, may be lost. DSC may display 
additional error messages. 

User Action: Retry the operation from the beginning. 

11-.33 



DISK SAVE AND COMPRESS (DSC) 

49 OUTPUT DEVICE XXn: FULL 
FILE ID Y, Y, Y 

Explanation: The specified device cannot accommodate the 
indicated contiguous file in a contiguous set of blocks~ This 
may mean that there is an inconsistency in the input tapes. 

User Action: Reenter the command, using a less fragmented 
output disk. 

50 OUTPUT FILE HEADER FULL ON XXn: x, FILE ID Y, Y, Y 

Explanation: Too many bad blocks on the output disk have 
caused the generation of more retrieval pointers than can be 
stored in the header(s) of the file. The copy operation on 
the specified file is aborted and DSC copies the next file to 
the input volume. 

User Action: After DSC completes the copy operation, use PIP 
to delete the unusable file on the output volume and to copy 
the file from the input volume to the output volume. 

If the original operation included the Verify switch, this 
error will cause many errors to be flagged during the verify 
operation. To avoid this, abort the DSC operation and reenter 
the command without /VE. Then go through the procedure 
outlined above. After you copy the invalid file with PIP, you 
can use DSC with the Compare switch to verify the new disk. 

51 OUTPUT FILE HEADER ON XXn: NOT MAPPED - FILE ID Y, Y, Y 

Explanation: Space for the specified file header was not 
allocated. The file is lost. 

User Action: 
required. 

Retry the operation; a new disk may be 

52 I/O ERROR G ON XXn: 
(Additional error information) 

Explanation: The I/O error indicated explains the error that 
occurred while DSC was writing the Index File Bitmap. 

User Action: Retry the operation. 

53 FAILED TO READ FILE EXTENSION HEADER ON XXn: FILE ID Y, Y, Y 

2 I I I 

Explanation: When copying from the input disk, DSC searched 
for an extension header, but did not find one. The remainder 
of the specified file was lost. A problem may exist with the 
input disk, or a preceding I/O error may have caused an 
inconsistency. 

User Action: Retry the operation. 

11-34 

!$ 21 ti "" I JU ;we:: 



DISK·SAVE AND COMPRESS (DSC) 

54 FAILED TO ALLOCATE HOME BLOCK 

Explanation: The home block cannot be created on the 
specified disk device because it has too many bad blocks. 

User Action: Replace the disk and reenter the command. 

55 INDEX FILE ALLOCATION FAILURE 

Explanation: Too many bad blocks exist to 
allocation for the specified file. 

allow 

User. Action: Replace the disk, and reenter the command. 

the 

56 OUTPUT DISK XXn: IS NOT BOOTABLE 

Explanation: Logical block number O of the specified disk or 
tape is bad. 

User Action: This is a warning only. No action is required. 

5 7 INVJ\LID BAD BLOCK DATA 

58 

Explanation: The bad block data on the output disk is 
invalid. 

User Action: Run the BAD utility on 
enter bad block data, or reenter 
another disk. 

BAD BLOCK FILE FULL 

the disk and manually 
the command specifying 

Explanation: Too many bad blocks exist on the output disk. 

User Action: Replace the disk, and retry the command. 

5 9 NO BAD BLOCK DATA FOUND 

Explanation: No bad block data exists for the specified 
output disk. 

User Action: If bad block data is not desired, ignore the 
message. Otherwise, run the BAD program on the disk; 
manually enter bad block data; or reenter the command, using 
a new disk. 

60 OUTPUT DEVICE XXn: IS A DIAGNOSTIC PACK. DO NOT USE IT! 

Explanation: The specified output disk is a diagnostic pack, 
and cannot be used. 

User Action: 
command. 

Mount a new output disk, and reenter the 

11-35 



DISK SAVE AllD COMPRESS (DSC) 

61 CODE B ON XXn: 
FILE ID Y, Y, Y VBN Z, Z 

Explanation: The tape position was lost when DSC read the ~ 
virtual block number specified. Some data may be lost. 

User Action: 
necessary, try 
tape. 

Determine the extent of the error. If 
the tape on another drive, or create another 

62 CODE C ON XXn: 

63 

64 

FILE ID Y, Y, Y VBN z~ Z 

Explanation: The tape position was lost when DSC read the 
data file specified. Data beyond the VBN mentioned is lost. 

User Action: Recreate the tape, or retry the operation on a 
different tape drive. 

CODE D ON XXn: 
FILE ID Y, Y, Y EXPECTED P, P, P FOUND Y 

Explanation: The tape position was lost while DSC read the 
tape specified in the message. All of "Y, Y, Y" and some of 
"P, P, P" are lost. 

User Action: Retry the entire operation. 

FAILED TO MAP OUTPUT FILE ON XXn: 
FILE ID P, P, P VBN Z, Z 

Explanation: An inconsistency occurred when DSC was writing 
the specified file to output disk. The file header did not 
specify the correct number of virtual blocks required to write 
the file and the file is lost. 

User Action: Retry the operation. 

65 OUTPUT DISK XXn: IS TOO SMALL -- nn BLOCKS NEEDED 

Explanation: The output disk is not large 
accommodate the data to be transferred. 

enough to 

User Action: Retry the operation, specifying a larger output 
disk. 

66 I/O ERROR C ON XXn: 

::u as: )iii I 

(Additional error information} 

Explanation: The I/O error indicated explains the error that 
occurred while DSC was reading the storage bitmap. 

User Action: Retry the operation. 

11-36 

J a ii f 4 



67 

DISK SAVE ARD COMPRESS (DSC) 

I/O ERROR H ON XXn: 

Explanations The message that follows explains the I/O error 
that occurred while DSC was writing the header of the storage 
bitmap file. 

User Action: Retry the operation. 

68 I/O ERROR J ON XXn: 
(Additional error information) 

Explanation: The I/O error indicated explains the error that 
occurred when DSC was reading the tape labels on the specified 
device. 

User Action: Retry the operation on a different tape drive. 

69 INPUT TAPE ON XXn: MUST BE AT BOT 

Explanation: The specified tape must be at Beginning of Tape 
(BOT). This message is also displayed during a Verify 
operation, to indicate that the current volume is rewinding to 
enable the verify pass. 

User Action: If /VE was not specified, check the tape and 
remount at BOT. 

70 WRONG INPUT TAPE ON XXn: 
EXPECTING file id, FOUND file id 

Explanation: The input tapes were specified out of sequence. 

User Action: Check the tapes, and. reenter them in proper 
order after receiving mount instructions. 

71 .CODE E ON XXn: AFTER FILE ID Y, Y, y 

Explanations This is the result of a read error from tape. 
When trying to read an attribute block, DSC accessed some 
other block. The file following the file specified in the 
error message is lost. 

User Action: Retry the operation. 

72 I/O ERROR K ON XXn: 
AFTER FILE ID Y, Y, Y 

(Additional error information) 

Explanation: The message that follows explains the I/O error 
that occurred while DSC was reading the attributes of the 
specified file. 

User Action: Retry the operation. 

11-37 



a 

73 

DISK SAVE AND COMPRESS (DSC) 

I/O ERROR L ON XXn: 
AFTER FILE ID Y, Y, Y 

(Additional error information) 

Explanations The message that follows explains the I/O error 
that occurred while DSC was reading the file header from tape. 

User Actions Retry the operation. 

74 INPUT TAPE XXn: RESYNCHRONIZED AT FILE ID Y, Y, Y 

75 

76 

77 

Explanations The tape position has been recovered. Some data 
preceding the file specified was lost. 

This message is usually received with one or more error 
messages, all indicating that the input tape was either read 
incorrectly or recorded badly. 

User Actions The tape should be re-created and the operation 
reinitiated. 

TAPE FILE filelabel NOT FOUND 

Explanation: The input tape specified does not contain the 
file identified as "filelabel." 

User Action: Check the file label and the tape, reenter the 
command when the correct tape and file label are specified. 

EXPECTED EXTENSTION HEADER NOT PRESENT ON XXn: FILE ID Y, Y, 
y 

Explanation: A required file extension header could not be 
found on the tape being read. 

User Action: If the error message was preceded by one or more 
I/O warning messages, the operation should be retried. If 
not, the input tape is bad and should be regenerated. 

CODE FON XXn: AFTER FILE ID Y, Y, Y 

Explanation: This is the result of a read error from tape. 
When trying to read a file header, DSC accessed some other 
block type. The file following the file specified in the 
error message is lost. 

User Action: Retry the operation. 

78 I/O ERROR M ON XXn: 

22$ 

(Additional error information) 

Explanation: The message following the device name explains 
why the Index File data could not be read. 

User Action: Retry the operation. 

11-38 

4 ssa f4 



DISK SAVE AllD COMPRESS (DSC) 

79 INDEX FILE DATA NOT PRESENT 

Explanation: 
oth4H than 
error. 

When reading the input tape, DSC accessed a file 
the index file, due to a tape error or an I/O 

User Action: Re-create the tape, or retry the same tape on a 
diff~rent tape drive. 

80 I/O ERROR N ON XXn: 
(Additional error information) 

Explanation: The message explains the I/O error that occurred 
while DSC was restoring the index and storage bitmap files 
from the specified input tape. 

User Action: Retry the operation, using a different input 
tape drive. 

81 VOLUME SUMMARY DATA NOT PRESENT 

82 

Explanation: Either DSC did not create the input tape or the 
tape contains incomplete data. 

Use:r Action: Check the tape and reenter the command. 

I/O ERROR 0 ON XXn: - FILE ID Y, Y, Y 
(Additional error information) 

Explanation: The message explains the I/O error that occurred 
while DSC was writing the specified file header. 

User Action: Retry the operation. 

83 BAD BLOCKING FACTOR 

Explanation; The specified blocking factor is too large for 
the current operating system. 

User Action: Specify a smaller blocking factor and repeat the 
command. 

11.9.2 DSC I/O Messages 

In online and both stand-alone versions of DSC, errors identified as 
I/O errors are accompanied by one or more of the following messages 
which explain the type of I/O error that occurred. 

*BAD BLOCK NUMBER 

Explanation: The block does not exist on the disk; an 
internal DSC error has occurred. 

*BAD BLOCK ON DEVICE 

Explanation: A 
resulting in a 
error. 

bad area was encountered on the device, 
block that cannot be read or written without 

11-39 



DISK SAVE AND COMPRESS (DSC) 

BLOCK CHECK OR CRC CHECK 

Explanation: A parity error occurred indicating that bad data 
may have been transferred. 

User Action: Retry the operation. 

DATA OVERRUN 

Explanation: A physical block on tape contains more bytes 
than were requested. 

*DEVICE NOT READY 

Explanation: The device is not ready or not up to speed. 

DEVICE OFFLINE 

Explanation: The device is not in the system. 

User Action: Check the device, the device specification in .~ .. 
the command string, and reenter the command. I r 

DEVICE WRITE LOCKED 

Explanation: The disk drive is write locked. 

User Action: Write enable the disk drive and reenter the 
command. 

END OF FILE DETECTED 

END OF 

END OF 

FATAL 

Explanation: The tape position was lost. 

User Action: Retry the operation. 

TAPE DETECTED 

Explanation: The tape position was lost. 

User Action: Retry the operation. 

VOLUME DETECTED 

Explanation: The tape position was lost. 

User Action: Retry the operation. 

HARDWARE ERROR 

Explanation: A hardware malfunction occurred. 

User Action: Retry the operation: if the error repeats, call 
field service. 

HANDLER NOT RESIDENT 

!. " hh!U!ii 

Explanation: The device driver (handler) was not loaded. 

User Action: Load the appropriate device driver and retry the 
operation. 

11-40 

ti & I!! ii . 4"' Si 



DISK SAVE. AllD COMPRESS (DSC) 

INSUFFICIENT POOL SPACE 

Explanation: The operating system is overloaded. 

User Action: Retry the operation. 

PARITY ERROR ON DEVICE 

Explanation: An uncorrectable read error occurred. 

User Action: Retry the operation. 

PRIVILEGE VIOLATION 

Explan~tion: A device was mounted as Files-11 or is allocated 
to a different user. 

User Action: 

RSX·-llM/M-PLUS Users: 
operation. 

Dismount the disk and retry the 

IAS Users: Dismount the disk, mount it as a foreign device 
and retry the operation. 

ERROR CODE IS <driver code> 

ILLEGAL 

Explanation: An I/O error which DSC cannot translate 
occurred. 

Use:r Action: Translate the error code and retry the 
operation, if possible. 

FUNCTION 

Explanation: Tapes on drives have not been rewound since the 
system was booted. 

User Action: Rewind the tapes, using the Rewind switch in a 
DSC command. 

11. 9 .• 3 Stand-Alone DSC Messages 

~; The j:ollowing messages appear only with the stand-alone versions of 
DSC. 

ILLEGAL VECTOR ADDRESS 

Explanation: An illegal vector address was specified. 

User Action: Correct the vector specification and reenter the 
command. Vector addresses must be a multiple of 4 and less 
than or equal to 374(8). 

INVALID CSR ADDRESS 

Explanation: A system trap occurred when the specified CSR 
address was referenced. 

Use.r Action: Correct the address and reenter the command. 

11-41 



DISK SAVE AND COMPRESS (DSC) 

INVALID TM02 ASSIGNMENT 

Explanation: The TM02 switch applies only to TU16/TE16/TU45 ·~.#?\ .... · .. · 
tapes and cannot specify an assignment greater than seven. _ . 

User Action: Correct the error and reenter the command. 

SPECIFIED UNIT NUMBER EXCEEDS MAX. OF 1 

Explanation: The stand-alone version of DSC does not accept 
unit numbers greater than 1. 

User Action: Correct the error and reenter the command. 
Specify the Unit switch if required. 

11-42 

·~ 1•1••••••••••z•t•••••••••••--••-••••••••••••••••••••••••••a•;•a,,.a •.. 



'-'I 

CHAPTER 12 

VOLUME PRESERVATION UTILITY (PRESRV) 

12.1 INTRODUCTION TO PRESRV 

The PDP-11 Volume Preservation Utility (PRESRV) is 
program that allows you to create copies of volumes. 
volumes to and from the following device types: 

a stand-alone 
PRESRV copies 

• Disks (only those specifically indicated in Table 12-4) 

• Magnetic tapes 

• DECtapes 

• Cassette tapes 

PRESRV is most often used to preserve a system disk or master disk for 
backup purposes, usually on magnetic tape or another disk. Unlike BRU 
and DSC, PHESRV copies bad blocks. Tapes used by PRESRV to restore a 
disk must be the result of a PRESRV copy from disk. 

PRESRV creates copies in three formats: 

• Files-11 

• Logical tape 

• Image 

F iles-11 format saves only those blocl(S that have data allocated to 
them. 

'-'I Logical tape format creates real or quasi-magnetic tape output. 
Logical tape format also puts a copy of PRESRV on the backup volume, 
so PRESRV can subsequently be bootstrapped from that volume. 

Image mode format saves all blocks of the disk, regardless of 
allocation~ 

12.1.l Files-11 Format 

Files-11 format is a file structure that applies only to disks and 
DECtapes. When PRESRV is copying in Files-11 format, only blocks 
containing user data or Files-11 control information, called allocated 
blocks, are saved. Allocated blocks of the input volume are copied to 
identical output blocks of the output volume, and the remaining blocks 
of the output volume remain unchanged. Normally disks are 
read/writtErn in Files-11 mode except as described below. 

12-1 



·1~111-

VOLUME PRESERVATION UTILITY (PRESRV) 

Input: To override a Files-11 format, specify the /TP switch for a 
logical tape for~at or the /IM switch for an image mode read. The /TP 
and /IM switches are described in Sections 12.3.2.2 and 12.3.2.3, 
respectively. 

If the input and output devices are of an identical device type and 
neither a switch nor a file name are specified (DKO:=DKl:}, PRESRV 
performs an image mode copy. Image mode is described in Section 
12.1.3. 

Output: If the input is in logical tape format, and the output device 
is a disk, the resulting output will be in Files-11 format. However, 
the /TP switch may be used to override this default (see Section 
12.3.2.2). If the input and output devices are of the identical 
device type and you do not specify a switch or a file name, PRESRV 
defaults to an image mode copy. To override this default, specify 
either /TP or /FI for output in logical tape or Files-11 format, 
respectively. 

If the input is a disk in Files-11 format and the output is a disk of 
a different device type, the output disk will be written in logical 
tape format (DP:NAME[/TP=DK:). In this case only a file name is 
required. If you wish output in Files-11 format, specify /FI on the 
output side of the command line to override the logical tape default 
(DP : /FI =DK : } • 

NOTE 

When the output volume is in Files-11 
format and is larger than the input 
volume, the Files-11 control information 
copied on the output volume makes it 
appear that the output volume has the 
same number of blocks as the input 
volume. This means that copying a small 
disk to a large disk (for example, an RK 
to an RP) in Files-11 format results in 
a loss of capacity on the larger volume. 

Conversely, when the input volume is 
larger than the output volume (for 
example, an RP to an RK), the copy may 
fail if an attempt is made to copy to 
blocks that do not exist on the smaller 
volume. 

A Files-11 copy from disk or DECtape is limited to a single input 
volume per copy command. Similarly, a Files-11 copy to an output disk 
or DECtape is also limited to a single output volume per copy command. 

12.1.2 Logical Tape Format 

PRESRV writes information in logical tape format or magnetic tapes and 
cassettes when the input device is a disk. PRESRV also writes in 
logical tape format when the input and output devices are different 
types of disks. When the input and output disks are of the same type, 
PRESRV defaults to an image mode copy unless you specify the /TP 
switch to copy in logical tape format. 

When a logical tape copy is to be produced, the output side of the 
command string must include a file name, to identify the file created 
by the copy operation. 

12-2 

I ii I Ill ct 



VOLUME PRESERVATION UTILITY (PRESRV) 

When the input volume is magnetic tape or cassette, PRESRV assumes 
logical tape format by default, unless the copy is to be made to a 
device of the same type as the input device. When the input volume is 
either disk or DECtape, logical tape format is recognized only when 
the /TP switch is specified on the input side of the command string. 
Otherwise, the input is assumed to be Files-11. 

The following examples illustrate the concepts discussed above. 

PRE>MTO:URFILE=DPO: 
I 

In this example, DPO: is read in Files-11 mode (/TP was not specified 
on input). The information is written on MTO: in logical tape 
format, as a file named URFILE. The output can occupy more than one 
magtape volume. 

PRE>DTO:FILA=DKO: 

In this example, DKO: is read in Files-11 format. The information is 
recorded on DTO: in logical tape format, as a file named FILA. FILA 
can occupy more than one DECtape. 

NOTE 

A logical tape copy (disk or magnetic 
tape) can occupy more than a single 
volume. A logical tape copy on magnetic 
tape can also contain copies of more 
than one disk. However, a new copy of a 
disk volume can not begin on any magtape 
volume other that the first. 

12.l.3 Image Format 

Image format is used to copy all physical blocks of a single input 
volume, regardless of content, to an output volume. 

are the 
words, no 

no file 
string. 
string 

Image format transfers occur if the input and output devices 
same type and no other copy format is in effect. In other 
format switches (for example, /FI or /TP) are specified, and 
name is specified on the output side of the command 
(Specifying a file name on the output side of the command 
implies logical tape format.) For example: 

PRE>MTO:=MTl: 

NOTE 

When executing an image format copy 
between two magtape devices, PRESRV 
checks to ensure that both devices are 
on-line before beginning the copy. If 
these checks fail, the operation will be 
aborted with the message 

DEVICE OFFLINE 

12-3 



VOLUME PRESERVATION UTILITY (PRESRV) 

When EOT is sensed from the output tape, PRE sets up a counter to 
permit five additional blocks to be written on the output tape. 
However, each time an EOF is sensed on the input tape, the counter is 
reset to allow an additional five blocks to be written on the output 
tape following the EOF block. 

After writing five blocks beyond EOT on output, or after EOF has been 
sensed on input and the output tape is already beyond EOT, PRE will 
issue a fatal error message and prompt for a new command: 

FATAL ERROR ON OUTPUT DEVICE 
PRE> 

In some cases, it may be desirable to force a transfer in image format 
from disk or DECtape to a device of a different type. To do this, 
specify the /IM switch on the input side of the command string. For 
example: 

PRE)MTO:TOMl=DKO:/IM 

As a result of this command, a logical tape file named TOMl is created 
on MTO:. TOMl contains all the physical blocks of DKO:. 

NOTES 

1. This type of command is limited to just 
one input volume. 

2. It is illegal to specify the /IM switch 
for magnetic tape input. 

12.2 PRESRV OPERATING PROCEDURES 

Because PRESRV is a stand-alone program, it is convenient to bootstrap 
a preserved volume to get PRESRV into memory. When PRESRV copies in 
logical tape format, it places the following information on the first 
output volume: a label block, a bootstrap block, and an image of 
PRESRV. After the bootstrap operation, the tape is positioned between 
the image of PRESRV and the data to be preserved. See Figure 12-1. 

NOTE 

When the output device is a magnetic 
tape and the first copy is to be 
created, the tape must be on-line and at 
load point (BOT} for a valid bootstrap. 
Otherwise, PRESRV will write a dummy 
bootstrap and the tape will not be 
boot able. 

Bootstrapping the first volume of a logical tape brings into memory a 
stand-alone system with a running version of PRESRV. (See the CAUTION 
in Section 12.2.1.} You can then type a command string to perform any 
desired PRESRV function. 

12-4 

C!i! 212!$ sq: :um: : :: : ca ;: ii. ii :u::u !) $ I 

~ 
I 'i 

'*" 



'-'.· 

800 BPI 

800 BPI 

800 BPI 

800 or 
1600 BPI 

End of File 
Indicator 

800 BPI 

800 or 
1600 BPI 

Logical ~ 
End of Tape l 
End of 
Volume 

VOLUME PRESERVATION UTILITY (PRESRV) 

LABEL BLOCK 

BOOTSTRAP BLOCK 

PRESRV IMAGE 

DATA 

EOF 

LABEL BLOCK 

DUMMY BOOTSTRAP 
BLOCK 

DATA 

EOF 

EOF 

EOV 

FIRST VOLUME 

1256 words 

1256 words 

l xx words 

multiple 
labels are 
allowed on 
first volume 

800 
BPI 

800 
or 
1600 
BPI 

LEOT 
or 
EOV 

I 

LABEL BLOCK 

DUMMY BOOTSTRAP 
BLOCK 

DATA 

SUBSEQUENT 
VOLUME(S) 

Figure 12-1 Logical Tape Format 

12-5 

Only one label 
allowed on sub
sequent volumes. 
(Must be continu
ation of file 
started on first 
volume.) 



VOLUME PRESERVATION UTILITY (PRESRV) 

To create a volume from which PRESRV can be bootstrapped, specify a 
copy operation from one type of device to another type of device. For 
example: 

PRE>DTO:PRESRV=DKl: 

The copy operation can be stopped before it is complete, because the 
necessary bootstrap information will have been copied into the first 
few blocks of the resulting logical tape. 

12.2.1 Bootstrap Procedure 

To run PRESRV, mount the device to be copied and bootstrap the device 
on which PRESRV is recorded. Bootstrapping is accomplished by either 
setting the correct address in the console register, loading the 
address, and then depressing the START switch; or using the RSX-llM 
BOO command (on an RSX-llM system). The BOO command begins a software 
bootstrap operation. 

There are many different methods of initiating a hardware bootstrap 
operation, each of which is system depe.ndent. 

For details on 
documentation. 

bootstrap procedures, consult your system 

When PRESRV is bootstrapped, it displays an identification message 
the form: 

RSX-115 Vxx 
VOLUME PRESERVATION PROGRAM- Vyy 
FOR HELP TYPE /HE 
nn. BLOCKS AVAILABLE FOR BUFFERING 

PRE> 

of 

PRESRV is built as a task running under the RSX-115 Executive and thus 
displays the version of the stand-alone executive in use, the version 
number of PRESRV, and the number of 256-word blocks (nn.) available 
for buffering. You must use the number of blocks available for 
buffering (displayed in the identification message) to determine if a 
given PRESRV media copy has sufficient buffering space. 

If the total space required for input, output and verification 
(optional) buffers is greater than nn. blocks, PRESRV responds with 
the following message: 

INSUFFICIENT BUFFER SPACE 

Change the blocking factor(s) and retry the operation. 

The number of blocks available for buffering should be kept in mind 
when using the blocking switch (/BL) described in Section 12.3.2.4. 
An error message is issued if the combined blocking factors for the 
input and output volumes exceed the number of blocks available. 

12-6 

as 2!2ll; $. 

""' . I -t 

f4 as 



VOLUME PRESERVATION UTILITY (PRESRV) 

CAUTION 

PRESRV contains predefined CSR and 
vector addresses for devices. If these 
addresses differ from those established 
in your system, or if your system 
includes TU16 9-track magtapes (instead 
of TUlO-type tapes) or RP04/06 disks 
(instead of RP02/03 disks) you must 
modify PRESRV's standard device 
information. See Section 12.3.5 for a 
summary of PRESRV's CSR and vector 
addresses. 

To tailor PRESRV to conform to a 
specific system, bootstrap the standard 
version of PRESRV into memory and then 
use the /CSR, /VEC, and /TM02 switches, 
described in Sections 12.3.5.1, 
12.3.5.3, and 12.3.5.4 respectively, as 
required. Then create a logical tape 
copy, which will contain the modified 
bootable version of PRESRV tailored to 
your system's configuration. 

The following example shows how to 
modify in memory the vector address of 
an RP04 disk pack to 254. The vector 
address applies to both DBO: and DBl:, 
and to any other DB-type device 
reassigned later to either DBO: or DBl: 
by means of the /UNIT switch (see 
Section 12.3.5.2). 

CSR and TM02 values can be changed in 
similar fashion. 

PRE>DBO:/VEC=254 

The next example shows how to create a 
bootable image of the above modified 
version of PRESRV. 

PRE>DTO:ABBA/TP=DKO: 

NOTE 

This copy operation need not run to 
completion, because the first few blocks 
on DTO: are sufficient to bootstrap the 
tailored version of PRESRV into memory. 

12.2.2 Tape Handling 

PRESRV supports forms of multifile volumes and multivolume files on 
magnetic tape, cassettes, DECtape, and disk. Table 12-1 indicates the 
permissible combinations of files and volumes in logical tape format. 

12-7 



1:~111= 

VOLUME PRESERVATION UTILITY (PRESRV) 

Table 12-1 
Legal Multifile/Volume Format in Logical Tape 

Magtape/Cassette DECtape/Disk 

Multiple files on first One file only, which can 
volume only. Last file extend to second and 
can extend to second succeeding volumes. 
and succeeding volumes. 

Each file on a magnetic tape or cassette is terminated with an 
end-of-file (EOF) tape mark. A file copied in logical tape format is 
prefixed with a file label that identifies the file. 

NOTE 

device type, PRESRV 
each file enough 

restore a disk in 
and to recognize the end 

Regardless of the 
records within 
information to 
FILES-11 format 
of the file. 

12.2.2.1 Logical Tape Input from Magnetic Tape or Cassette - PRESRV 
determines where to begin reading a tape as follows: 

If a file label is specified, PRESRV rewinds the input tape and 
searches for the file label. If a file label is not specified, PRESRV 
assumes that the tape is correctly positioned to read the first file 
or next file (or file segment) of a volume set. To read the first 
file of a volume set, without specifying its file label, position the 
first volume to Beginning-of-Tape (BOT). 

After processing any file, PRESRV positions the tape to read the next 
file of a set. 

When PRESRV reaches the end of a tape volume by sensing two successi~e 
EOF tape marks it requests that the next input volume be mounted. 
When you mount the next volume, PRESRV assumes the volume is 
positioned at BOT. You are responsible for correctly positioning the 
tape to BOT, and for assigning the same unit number as the preceding 
volume. 

12.2.2.2 Logical Tape Output to Magnetic Tape - To write the first 
copy of a set to magnetic tape or cassette, position the volume at 
BOT. If output is to be stored on two or more volumes of a set, the 
first volume mounted must be the first volume of the set. 

After a copy operation is finished, PRESRV positions the tape to 
record a new file on the current volume by writing two EOF marks and 
then backspacing over the second EOF mark. An exception occurs when 
the copy ends on a volume that is not the first volume. In this case 
only, the backspace does not happen: any file added at that point is 
inaccessible to PRESRV. In the normal process of recording a new 
file, PRESRV overwrites the second EOF indicator that marks the 
current end of volume. 

12-8 

Hi it Hi a; 4¥ .: Si "' f4"" 



When .PRESRV 
requesting 
ensure that 
is repeated 
positioned, 

VOLUME PRESERVATION UTILITY (PRESRV) 

reaches the end of an output volume, it prints a message 
that the next output volume be mounted. PRESRV checks to 
the new tape is at BOT. If npt at BOT, the mount message 
until it is. You must ensure that the volume is correctly 
and assigned the same unit number as the preceding volume. 

Time may be saved by pre-mounting magnetic tapes (except cassettes), 
in the following way: 

1. Pre-mount the next volume on a different unit, and assign it 
a different unit number than the current volume's unit 
number. Make sure it is positioned to the load point (BOT). 

2. When PRESRV prints the request to mount the next volume, 
switch the unit numbers of the old and new volumes. 

3. The old volume can now be rewound as PRESRV processes the new 
volume. 

For ciutput to magnetic tape, PRESRV assumes that the volume is 
correctly positioned at Beginning of Tape (BOT) initially and after 
the EOF tape mark subsequently. 

On input from magnetic tape, PRESRV functions differently depending on 
whether a file label is specified in the command line. If a file 
label is specified, the input volume is rewound and searched for the 
named f ileu If no file label is specified, the next file on the tape 
is re!ad. 

A file can extend across a volume boundary, but no new files can begin 
on the second or subsequent volume of a multivolume file. 

NOTE 

Be sure that tapes are rewound when 
PRESRV requests that a new volume be 
mounted. All tapes must be mounted, and 
assigned the same unit number. 

12.2,.3 Disk and DECtape Handling 

PRESHV processes disks and DECtapes as described in the following 
sections. 

12.2.3.l Input from Disk and DECtape - When disk or DECtape input is 
in logical tape format, PRESRV processes as many volumes as necessary 
to copy the complete input file. However, when the input disk or 
DECtape is in Files-11 or image format, PRESRV processes only a single 
input volume. 

12.2.3.2 Output to Disk and DECtape ·· PRESRV can record only one file 
on a disk or DECtape output volume, regardless of format. This 
restriction exists because the first access to a disk or DECtape is to 
logical block O. However, PRESRV can create a single logical tape 
copy that extends over more than one volume. 

12-9 



rw._u 22 I 2 

VOLUME PRESERVATION UTILITY (PRESRV) 

When the output volume is disk or DECtape, and Files-11 or image 
format is specified or implied, PRESRV prints an error message if more 
than one volume is needed. 

NOTE 

Disks and DECtapes can be pre-mounted by 
following the general guidelines 
suggested in Section 12.2.2, above. 

12.3 PRESRV COMMAND LINE AND SWITCHES 

The PRESRV command line has the following format: 

outdev: [label]/switchl ••• /switchn=indev: [label]/switchl ••• /switchn 

outdev and indev 

label 

Specify the physical devices on which the output and input 
volumes are mounted, for example, DKO: or DTl:. The device name 
consists of two ASCII characters followed by an optional 1- or 
2-digit octal unit number 0 through 7. If the unit number is 
omitted, O is assumed. The unit number is always O or 1. The 
/UNIT switch must be used to reference units other than 0 or 1. 

Specifies a label for the file when a volume is written as a 
logical tape. It is used to identify files on logical tapes. 
See Section 12.2.2. The label can consist of up to nine 
alphanumeric characters. A label must be specified when the 
output is a logical tape. It is optional for input. The label 
parameter is applicable only for files on a logical tape. 

switch 

Specifi~s an ASCII name identifying the switch option desired. 
Option switches are summarized in Table 12-2. 

Table 12-2 
Summary of PRESRV Switches 

Category Switch Function 

List /HE Causes a summary of PRES RV commands, 
switches, and defaults to be printed on 
the terminal. 

/LI Causes a list of all files on a logical 
tape volume to be printed on the 
terminal. 

(continued on next page) 

12-10 

ii SQ I! I 122 2 

"" .. IT 

a ;;:• 



CatE~gory 

Format 

Administrative 

Magnetic Tc~pe 

VOLUME PRESERVATION UTILITY (PRESRV) 

Switch 

/FI 

/IM 

/TP 

Table 12-2 (Cont.) 
Summary of PRESRV Switches 

Function 

On input, indicates Files-11 format for 
reading a disk volume overriding implied 
Image Modeu On output, overrides the 
/TP default or implied /IM. 

Indicates image mode; 
all physical blocks 
Never used with tape. 
on the input side, 
Files-11 mode. 

that is, transfer 
of an input disk. 
/IM is used only 

overriding default 

Indicates a logical tape format output 
volume (which overrides the default 
image mode when device types are 
identical)o /TP also overrides the 
default Files-11 mode on an input disk. 

/BL:nnn Specifies a blocking factor for I/O 
operationso Octal is assumed; decimal 
is indicated by a trailing period (.). 

/ER 

This value applies only to 
the command in which it 
If /BL is not specified, 
blocking factor is used. 
12.3.2.4.) 

the side of 
is specified. 
the default 
(See Section 

Indicates that the PRESRV operation is 
to be terminated if an I/O error occurs. 

/RW Causes a cassette or magnetic tape 
volume (either input or output) to be 
rewound at completion of PRESRV 
operation. 

NOTE 

PRESRV rewinds only the last volume 
of a multi-volume set when it is 
completely finished. Intermediate 
volumes must be rewound by the user. 

/VE Causes the output volume to be verified 
after it is written. 

/20 Indicates a recording density of 200 bpi 
for 7-track tape. (Image transfers 
only.) 

(continued on next page) 

12-11 



Category 

Magnetic Tape 
(Cont.) 

Stand-alone 
PRES RV 

VOLUME PRESERVATION UTILITY (PRESRV) 

Table 12-2 (Cont.) 
Summary of PRESRV Switches 

Switch 

/55 

Function 

Indicates a recording density of 556 bpi 
for 7-track tape. (Image transfers 
only.) 

/80 Indicates a recording density of 800 bpi 
for 7-track tape. (Image transfers 
only.) 

/PE Indicates a recording density of 1600 
bpi (phase encoded). Can be used only 
for TE16, TU16, TU45, and TU77 tape 
drives. If /PE is not specified, a 
density of 800 bpi is assumed. Do not 
specify /PE for the TM03 formatter. 

/CSR 

/UNIT 

/VEC 

/TM02 

/TIM 

Changes the control status register for 
a device type. 

Sets the physical unit number of either 
PRESRV unit O or l to a value from 2 
through 7. 

Changes the interrupt vector address for 
a device type. 

Sets the unit number of the TM02/TM03 
formatter on an RH controller for a 
specific TU16 magnetic tape unit. 

NOTE 

/CSR, /UNIT, /VEC, and /TM02 can all be 
specified in the same command. 

Specifies the correct time of day to 
the system. 

/BO Causes PRESRV to bootstrap the system 
from the specified device. 

NOTE 

Only Physical Unit 0 may be booted 
with this command if the device is a 
disk. 

/FO Indicates that PRESRV is to format the 
output disk pack. 

PRESRV options are specified by means of switches included in the 
command string or by stand-alone switches. Switches fall into five 
categories according to the functions they perform. 

12-12 

·"1' 

14• 



VOLUME PRESERVATION UTILITY (PRESRV) 

u List switches 

• Format and blocking switches 

• Administrative switches 

• Magnetic tape switches 

• Stand-alone PRESRV switches 

12.3.l List Switches (/BE and /LI) 

The list switches are entered one at a time in response to the prompt 
(PRE>). Each switch is processed immediately by PRESRV. /HE obtains 
a printed summary of PRESRV commands, switches, and defaults. /LI 
obtains a list of all files of a logical tape volume. If the set 
consists of more than a single volume, each of the volumes must be 
listed separatelyti When the designated device is a magtape or 
cassette, the /LI switch causes an automatic rewind, followed by a 
listing of the file label and a description of all the files on that 
volumie. On magnetic tape, if the two EOF tape marks indicating End of 
Information are sensed before physical EOT, PRESRV performs a 
backspace. If the current volume is the first of the set, the tape is 
then positioned so that a new file may be added. 

The formats of the /HE and /LI switches follow. 

dev: 

PRE>/HE 

PRE>dev:/LI 

Indicates the device and unit number on which the volume is 
mounted. 

NOTE: 

The /LI switch references only a single 
volume. Since all files contained in a 
set of volumes begin on the first volume 
of a tape set, listing the first volume 
lists all of the files in the set. 
Subsequent volumes will list only their 
contents. 

12.3.2 Format and Blocking Switches 

Format switches specify the format of the input and output volumes. 
Three switches specify format. 

Switch Function 

/FI Specifies Files-11 format. 
/IM Specifies that a disk or DECtape volume is to be read 

in image format. 
/TP Specifies logical tape format. 

The /BL switch indicates the blocking factor. 

12-13 



z 22 s a 

VOLUME PRESERVATION UTILITY (PRESRV) 

If format switches are not included in the command line, PRESRV uses 
the following default values: 

For the input portion of the command line, tape devices (magnetic and 
cassette tape) default to logical tape format, while Files-11 devices 
(disk and DECtape) default to Files-11 format. 

For the output portion of the command line, logical tape format is 
used by default. 

There are two exceptions: 

1. If the input and output devices have the same device type and 
ho format switches are included in the command line, the 
transfer is in image mode. The output volume will be an 
exact image of the input volume, regardless of the format of 
the input volume. Only a single volume will be copied. 

2. If the input volume is being read in logical tape format, and 
output is to disk or DECtape, the data portion of the input 
file is written into the logical blocks corresponding to the 
blocks the data occupied on the volume from which it was 
originally copied. Output is limited to a single output "i\ 
volume. 

Default blocking factors are provided with the description of the /BL 
switch in Section 3.2.4. Each block is 256 (decimal) words. 

12.3.2.1 Files-11 Format Switch (/FI) - The Files-11 format switch 
(/FI) can be used on either the input or the output side of the 
command line. 

On the input side, /FI indicates that the input Files-11 volume is to 
be read in Files-11 format, overriding a default image-mode transfer. 
Only allocated blocks will be transferred. 

The /FI switch is particularly useful for input volumes if an image or 
logical tape transfer fails due to an unreadable block on a Files-11 
device that is being preserved. Because Files-11 transfers result in 
copying allocated blocks only, use of the /FI switch results in a 
successful transfer if the unreadable block is not allocated. 

NOTE 

If the input volume is not in 
format, PRESRV generates 
message. 

Files-11 
an error 

On the output side, /FI indicates that the output Files-11 volume is 
to be written in Files-11 format, overriding a default logical tape 
format or implied image mode transfer. 

Examples 

PRE>DKO:/FI=DKl:/FI 

Use of the /FI switches overrides the default for this case, which is 
an image transfer. A Files-11 copy of DKl: is produced on DKO:. 

12-14 

4 iiliiiiii Lid it Qt I I ii 22 ! I I 4 I Cf t 



'-'' 

VOLUME PRESERVATION UTILITY (PRESRV) 

PRE>DKO:STEVE/TP=DKl: 

In this case, DKO: will contain the file labeled STEVE, in logical 
tape format. STEVE will contain only blocks that were allocated on 
DK!: • 

PRE>DKO:/FI=DT: 

Use of the /FI switch indicates that the transfer is to result in DKO: 
containing a Files-11 copy of the information on DECtape. The default 
for the output for this case is logical tape format. Using the /FI 
switch in this manner is not recommended, because the resulting copy 
limits the capacity of DKO: to 578 blocks (the capacity of the 
DECtape). 

12.3 .• 2.2 Logical Tape Format Switch (/TP) - The logical tape format 
switch (/TP) indicates the following: 

1. The input volume is to be read in logical tape format, or 

2. The output volume is to be written in logical tape format. 

When the PRESRV input is in logical tape format, the following message 
is printed on the terminal. 

MOUNT INPUT VOLUME nn AND TYPE <CR> 

Mount the physical volume and then press the RETURN key to continue 
the PRESRV operation. If the volume is already mounted and correctly 
positioned, press RETURN only. 

When the PRESRV output is in logical tape format, the following 
message is printed on the terminal. 

MOUNT OUTPUT VOLUME nn AND TYPE <CR> 

The user response is the same as in the case of the MOUNT INPUT VOLUME 
message. 

NOTE 

Never use /TP to request that a tape be 
read or written in logical tape format 
(the fact that the device is a tape 
implies logical tape} unless input and 
output are both magtapes 

NOTE 

When PRESRV displays the message 
requesting that a tape be mounted and 
the user types <CR> in response, PRESRV 
will check to ensure that the tape is, 
in fact, on-line. If that check fails, 
the message and the subsequent check 
will be repeated until the check is 
successful. 

12-15 



li!lliiiii 4 

VOLUME PRESERVATION UTILITY (PRESRV) 

Examples 

PRE>DKO:LAB/TP=DKl: 

The volume in 
logical tape 
overrides the 
device types 
file. 

DK!: is read in Files-11 mode and is to be preserved in 
format in File LAB on DKO:. Use of the /TP switch 

default (which is an image transfer in this case because 
are identical). A label must be specified for the copy 

PRE>DKl:=DKO:LAB/TP 
or 
PRE>DKl:=DKO:/TP 

The file LAB on DKO: is in logical tape format, if it is the copy 
file created in the previous example. DKO: is now restored on DK!: 
in Files-11 mode. 

NOTE 

When the output format is to be logical 
tape and the output device is a disk, 
that disk must be physical drive O. 

12.3.2.3 Image Mode Switch (/IM) - The image mode switch overrides 
the Files-11 default in copying disk-structured volumes. By using the 
/IM switch, an operator can copy any disk that is formatted compatibly 
with DIGITAL's hardware. In image mode, every block on the input 
volume is copied to the output file. 

The image mode switch can also be used to override the Files-11 
default, as shown in the first of the following examples. This allows 
a logical tape to be used to restore a disk that was originally in any 
format compatible with DIGITAL hardware. 

Examples 

PRE>MTO:AFIL=DPO:/IM 

Copy from disk to tape. 

PRE>DPO:=MTO:AFIL 

Restore disk from tape. 

12.3.2.4 Blocking Switch (/BL:nn) - The blocking switch (/BL:nn) 
indicates the following: 

1. The blocking factor to be used when reading a disk or DECtape 
volume. 

2. The blocking factor to be used when creating a logical tape 
or disk or DECtape output volume. 

Specify the blocking switch to save time. Use the blocking switch to 
request that the specified number of 256-word blocks be read as a unit 
from a disk or DECtape, or be written as a unit to either a disk or 
DECtape, or be written in logical tape format. 

12-16 

ii $ 2i2 I 4 ill I l UC '* 



VOLUME PRESERVATION UTILITY (PRESRV) 

Note, however, that the label of a logical tape specifies the blocking 
factor that was used when the file was created. The /BL switch cannot 
be used to override that value when the file is used as input. 

\.I The block in9 switch has the fol lowing :format: 

nn 

/BL:nn (octal) 
or 
/BL: nn.. (decima 1) 

Indicates the number of 256.-word segments to be written as a 
physical block on tape or to be read from or written to disk to 
fill or empty the corresponding PRESRV buffer. The value of nn 
is limited by the number of blocks available, which is printed 
(in decimal) on the terminal when PRESRV is initiated. 

/BL can be used on both sides of a command line. 
values need not be identical. 

The associated 

Each device has a default blocking factor that is used when no 
blocking switch is specified and if the buffer space is available to 
perform the default blocking. The defaults are shown in Table 12-3. 

Table 12-3 
Default Blocking Factors 

~-·~--·--..,.---------T---------~---,.~--------------------------------~-------

Device Formatl Default Block 
Size2 

Max. Block Capacity 
(Dec ima 1) 

DK 
DF 
DP 
DS 

DT 
DB 
MT 
MM 

CT 
DX 

BS 
BS 
BS 
BS 

LT 
BS 

12. 
8. 

10. 
8. 

2. 
22. 
l. 
1. 

1. 
6. 

4800 (RK05 Cartridge Disk) 
1024 per platter (RSll Fixed Head Disk) 
40000 (RP02), 80000 (RP03) Disk Packs 
1024 (RS03) , 2048 (RS04) Fixed 
Head Disks 
578 (TC11/TUS6) DECtape 
167200 (RP04 Disk Pack) 
variable TElO or TS03 Magtape 
Variable TE16, TUll, TU45, or TU77 
Magtape 
variable TA11/TU60 Cassette 
494 (RXll/RXOl) Floppy Disk 

~---~--_..--~--------~--------~-'-~-------~------~----~------------------' 
l BS - Block Structured 

LT - Logical Tape 

2 Decimal point indicates decimal value. 

The defaults provided in Table 12-3 can be overridden by any of the 
following means: 

1. For disks and DECtape, the /BL switch can be used 
input or output file specifier to establish 
fa<::tor. 

with the 
a blocking 

2. For. logical tape output, the /BL switch can be used to 
establish the blocking factor. 

12-17 



VOLUME PRESERVATION UTILITY (PRESRV) 

3. For magnetic tape image transfers, PRESRV calculates a 
blocking factor that uses all available buffering space. 

NOTES 

1. The /BL switch has no effect when 
the input device is a logical tape. 
The blocking factor is the same as 
that used when the tape was created. 

2. The blocking factor used for disk 
type devices should be a submultiple 
of the number of blocks on the 
volume (for example, 4800 for RK) 
when copying in image mode. 

Refer to Section 12.4 for the blocking calculations used to 
available buffering space to blocking specifications for a file. 

Example 

PRE>DKO:/BL:20.=MTO: 

match 

Twenty 256-word blocks are transferred in each I/O operation. Forty 
blocks must be available for use in blocking (assuming that the tape 
was created with /BL:20). 

12.3.3 Administrative Switches 

Three administrative switches are provided. 

Switch Function 

/ER Aborts the operation if an I/O error occurs. 
/RW Rewinds a tape after PRESRV completes. 
/VE Compares the output volume(s) created by PRESRV with the 

volume(s) submitted as input to a copy operation. 

12.3.3.l Abort on I/O Error Switch (/ER) - If the abort on I/O error 
switch (/ER) is attached to a file specifier, an unrecoverable I/O 
error causes the termination of the current PRESRV operation. After 
issuing an error message, PRESRV prints 

PRE> 

and is ready to accept another command. 

The /ER switch applies to either input or output file specifiers. For 
example: 

PRE>DKl: /ER=DKO: 

If a write error occurs and the /ER switch has not been specified, 
PRESRV responds with the following message: 

VOLUME FAULTY - "R" TO RETRY, "C" TO CONTINUE> 

Type C to continue or R to retry the operation. 

12-18 

4 2224 iii Ji 4 l I 



VOLUME PRESERVATION UTILITY (PRESRV) 

NOTE 

If you type the ALTMODE key when PRESRV 
is ready to accept input, the current 
operation is aborted. 

12.3.3.2 Rewind at Completion Switch (/RW) - The rewind at completion 
switch (/RW) applies to magnetic tape and cassette tape volumes. It 
indicates that the ~olume is to be rewound after PRESRV has completed 
the specified transfer. 

The /RW switch applies to input and output file specifiers. 

NOTE 

Only the last volume of a multivolume 
input or output set is rewound. 

12.3.3.3 Verification Switch (/VE) - The verification switch (/VE) 
causes PRESRV to verify the copy operation. For example, PRESRV 
compares the output device to the input device to make sure there are 
no differences. 

When the verification operation begins, PRESRV responds with the 
following message: 

**BEGIN VERIFICATION** 

This will cause a second pass over the input and output media so that 
every block written is read back and compared with the corresponding 
block on the input device. When verification is requested, twice the 
number of output buffers are needed. The /VE switch may appear on 
either side of the command string. For example: 

PRE>DKl:/VE=DKO: 
PRE>DKl:=DKO:/VE 

If the verification is successful, PRESRV prints 

PRE> 

and will accept another command. 

If the comparison fails, PRESRV prints the following error message: 

VERIFICATION ERROR m,nnnnnn 

The number printed is the octal logical block number on the output 
device where the error was detected, where "nnnnnn" is the low-order 
word and "m" is the high-order word of the two-word LBN number. Thus 

5,031275 

indicates LBN 340669 (the last LBN on an RP06). Retry, continue, or 
abort the operation. 

12-19 



VOLUME PRESERVATION UTILITY (PRESRV) 

If the volume to be verified is faulty, PRESRV responds with the 
following error message whenever a verification error occurs: 

VOLUME FAULTY - "R" TO RETRY, "C" TO CONTINUE> 

Type R to retry or C to continue the operation. 

NOTE 

If the user types the ALTMODE key when 
PRESRV is ready to accept input, the 
current operation is aborted. 

12.3.4 Magnetic Tape Switches 

Four switches are provided to specify 
default recording density is 800 bpi. 
recorded in core dump format. 

magnetic tape options. The 
Seven-channel tapes are always 

Switch Function 

/20 Specifies 200 bpi for 7-track tape. 
/55 Specifies 556 bpi for 7-track tape. 
/80 Specifies 800 bpi for 7-track tape. 
/PE Specifies 1600 bpi (phase encoded) for TU16 tape. 

NOTES 

l. File labels, bootstraps, and system 
images are always written at 800 bpi on 
logical tapes. Therefore, logical tapes 
written with the /PE switch must be 
copied /PE specified on both sides of 
the command. For example: 

PRE>MMl:/PE=MMO:/PE 

2. Logical tapes written on a 7-track drive 
are bootable only on a 7-track drive. 
Logical tapes written on a 9-track drive 
are bootable only on a 9-track drive. 

12.3.4.1 200 bpi Switch (/20) - The 200 bpi switch (/20) indicates 
either that an input magnetic tape volume has been recorded at 200 
bits per inch, or that an output magnetic tape volume is to be 
recorded at 200 bits per inch. The tape drive must be 7-track and an 
image copy must be performed. Thus: 

PRE>MT0:/20/VE=MTl:/20 

produces and verifies an exact copy of MT!: on MTO: at 200 bpi. 

12.3.4.2 556 bpi Switch (/55) - The 556 bpi switch (/55) indicates 
either that the input magnetic tape volume has been recorded at 556 
bits per inch, or that the output magnetic tape volume is to be 
recorded at 556 bits per inch. The tape drive must be 7-track and an 
image copy must be performed. 

12-20 

1

'

11111•a••••••z•a•,•• .. ••••••••-------•••••11111;~••••••••••••••••••1114111l4• 



VOLUME PRESERVATION UTILITY (PRESRV) 

12.3 .. 4.3 800 bpi switch (/80) - The 800 bpi 
either that an input magnetic tape volume 
bits per inch or that an output magnetic tape 
at 800 bits per inch. This switch can 
transfers on 7-track magnetic tape only. 

switch (/80) indicates 
has been recarded at 800 
volume is to be recorded 

be specified for image 

12. 3 .. 4. 4 Phase Encoded Switch (/PE) - The phase encoded switch (/PE) 
indicates either that an input magnetic tape volume is recorded at 
1600 bits per inch (phase encoded) or that an output magnetic tape 
volume is to be recorded at 1600 bits per inch. The volume must be 
mounted on a TU16 (or equivalent) drive. 

NOTE 

This switch cannot be used with logical 
tapes if a TM03 formatter is involved. 

12 .3. 5 Stand-Alone PRESRV Switches 

Once a logical tape is booted into memory, PRESRV is running. Seven 
stand-alone switches are available with PRESRV. Four of the switches 
specify physical device address information. 

Switch 

/CSR 
/UNIT 
/VEC 
/TM02 

Function 

Specifies a control status register. 
Sets the unit number for a device to 2 through 7. 
Specifies an interrupt vector for a device. 
Specifies the unit number of a TM02 formatter on the RH 
controller. 

These four switches can appear together, in any combination, in a 
single command line. This has no effect on their stand-alone status; 
that is, the action specified by each switch is executed before 
another command is accepted. 

PRESHV is distributed with the control status register (CSR) and 
vector addresses shown in Table 12-4. 

Two units (0 and l) are generated for each device type. 

If the generated CSR or vector address does not correspond to the 
actual hardware configuration in use, the /CSR and /VEC switches can 
be used to correct values generated by PRESRV (see Sections 12.3.5.l 
and 12.3.5.3). 

The three remaining stand-alone switches are listed below. 

Switch Function 

/TIM Sets the current time and date. 

/BO Boots a monitor from a specified device following 
completion of PRESRV operations. 

/FO Causes PRESRV to format a disk. 

12-21 



iii) 

VOLUME PRESERVATION UTILITY (PRESRV) 

Table 12-4 
CSR and Vector Addresses 

Device CSR Vectorl 

CT 177500 260 
DB 176700 300* 
OF 177460 204 
DK 177404 220 
DP 176714 254 
OS 172040 310* 
OT 177342 214 
MM 172440 320* 
MT 172522 224 
DX 177170 264 

1 An asterisk (*) indicates that this is not a normal vector. 

12.3.5.1 Control Status Register Switch (/CSR) - The control status 
register switch (/CSR) specifies the correct CSR for a device type. 
The switch is typed in response to the PRE> prompt and has the 
following format. 

dev 

dev:/CSR=nnnnnn 

Specifies the device name and logical unit number of the device 
whose CSR is to be changed. 

nnnnnn 

Specifies the octal address of the CSR used by the device. 

The new CSR applies to all devices of the same type as the device 
specified in the command. 

12.3.5.2 Physical Unit Number Switch (/UNIT) - The physical unit 
number switch (/UNIT) allows the user to copy to or from a device 
designated as a unit other than unit 0 or 1 of that device type. Type 
the /UNIT switch in response to the PRE> prompt, in the following 
format: 

dev 

n 

dev:/UNIT=n 

Specifies the device name and unit number (0 or 1). 

Specifies the unit number of the same device type that will be 
referenced each time "dev" (as specified above) appears in a 
command line. 

12-22 

ii di 14 2 jQU41 I 



VOLUME PRESERVATION UTILITY (PRESRV) 

For e.Kample: 

JPRE> DBl: /UNIT==3 

causes the RP04 assigned as unit 3 to be referenced each time DBl 
appears in a command. 

The /UNIT switch can also 
switch, to reference MM2: 
peripherals. 

be used in 
through MM7: 

conjunction with the /TM02 
on systems with mixed MASSBUS 

12.3.5.3 Vector Address Switch (/VEC) - The vector address switch 
(/VEC) changes the interrupt vector for a device type. The switch is 
typed in response to the PRE> prompt. It has the following format: 

dev 

dev:/VEC=nnnnnn 

Specifies the device name and unit number for which the vector 
address is to be changed. 

nnnnnn 

Specifies the new octal vector address. 

NOTE 

When a tape created by online PRESRV is 
bootstrapped, if the vector address is 
incorrect, the first command issued 
after the prompt should be to set the 
appropriate vector address; for 
example: 

PRE>MMO:/VEC=224 

The new vector address applies to all 
devices of the specifi•d type. 

~· 12.3 .. 5.4 Set TM02 Unit Number Switch (/TM02) - The /TM02 switch 
changes the unit number of the TM02/TM03 formatter for a TE16, TU16, 
TU45, or TU77 attached to an RHll or RH70 controller. The TM02 
formatter for the tape is normally unit O. 

The j:orma t is: 

dev 

n 

dev:/TM02=n 

Specifies the device whose TM02/TM03 formatter position on the RH 
Controller is to be changed. 

Specifies the unit number to which the TM02/TM03 formatter is to 
be changed. 

12-23 



VOLUME PRESERVATION UTILITY (PRESRV) 

Example 

i!!Z 

PRE>MMO: /TM02=2 

The new TM02 value applies to only the device specified in the 
command. 

12.3.5.5 Time Switch (/TIM) - The time switch (/TIM) sets the time of 
day for the PRESRV system. It is typed in response to the PRE> prompt 
and has the following format: 

/TIM=mm/dd/yy hh:mm:ss 

mm 

Specifies the month. 

dd 

Specifies the day of the month. 

yy 

Specifies the year. 

hh 

Specifies hours. 

mm 

Specifies minutes. 

SS 

If present, specifies seconds. 

All values are in decimal (no decimal point is specified). 

12.3.5.6 BOOT Switch (/BO) - The PRESRV program is a 
program that runs independently of any other system. 
prompts, the user may bootstrap a monitor from a specified 
using the bootstrap (/BO) switch. For example: 

PRE> DKO: /BO 
system monitor identification 

stand-alone 
When PRESRV 

device by 

The above command string causes a monitor to be read from DKO: and 
loaded into memory. The /BO switch is a stand-alone switch and must 
be typed as a separate command. Only unit 0 of the specified device 
type can be bootstrapped in this way, unless the device to be booted 
is a tape. 

12.3.5.7 Format Disk Switch (/FO) - RK05, RP02, RP03, RP04, RP05, and 
RP06 disks delivered from the factory must be prepared to store data 
before they can be used. This preparation process is called 
"formatting", and consists of writing sector identification timing and 
information on the disk. PRESRV performs this operation in response 
to the /FO switch. 

12-24 

:;: 

"""'··· - I "T 

qqas 



VOLUME PRESERVATION UTILITY (PRESRV) 

Formatting can be specified as a separate operation or in conjunction 
with a copy operation. If a copy operation has been specified, the 
format pass is made before the copy is made. The /FO switch can be 
specified only on the output side of the command string. 

Examples 

PRE> DKO: /FO 

PRE>DPO:/FO/VE=MTO:DISK 

When formatting starts, the message 

** BEGIN FORMATTING ** 

is displaye~d. When formatting has been completed, the message 

** END FORMATTING ** 

is di splayE!d. 

Before RP02 or RP03 disks can be formatted, formatting must be enabled 
with the format enable switch on the RPll controller. This switch is 
located in the third bay from the bottom on the controller. The front 
cover must be removed to expose the switch. PRESRV prompts the user 
to enable and disable formatting at the proper times with the 
following messages: 

ENABLE FORMATTING WITH SWITCH ON CONTROLLER. TYPE CR WHEN READY> 
DISABLE FORMATTING WITH SWITCH' ON CONTROLLER. TYPE CR WHEN READY> 

When the switch is set properly, press the RETURN key to tell PRESRV 
to continue~. 

Once a disk is formatted, it requires no reformatting unless the 
control information has been destroyed. 

12.4 COMPUTING THE NUMBER OF BLOCKS REQUIRED FOR BUFFERING 

When PRESRV is initiated, it prints at the terminal the maximum number 
of 256-word blocks available for buffering. (This number is a decimal 
number.) These blocks are required for data transfer and verification 
operations. The user must refer to the number (nn.) to determine 
whether a given media copy has sufficient buffering space. 

The space required depends on blocking factors and use of the 
verification switch. Default block sizes for devices supported by 
PRESRV are provided in Table 12-3. The maximum number of buffer 
blocks depends on the memory size of the system. 

The examples below illustrate the method for determining the bloc~s 
required for PRESRV copy operations. The method is to establish the 
total number of blocks required for input, output, and verification. 

12-25 



" 

VOLUME PRESERVATION UTILITY (PRESRV) 

Example 1 

PRE>MTO:ABC=DKO: 

Thirteen blocks are required to create a logical tape file (labeled 
ABC) on magtape unit O, from an RK disk, using default blocking 
factors. 

Operation 

Input 
Output 
Verification 
Total 

Blocks Required 

12. (DK default block size) 
l. (MT default block size) 
o. (no verification specified) 

13. 

Example 2 

PRE>MTO:DEF/BL:l2.=DKO 

Twenty-four blocks are required to create a logical tape file (labeled 
DEF) on magtape unit o. The default blocking factor is used for the 
input device, while physical blocks of 3072 words each are written to 
MTO: (12 x 256). This results in fewer blocks on MTO:, and requires 
less execution time because the number of tape write operations is 
reduced. 

The blocking factor (12, decimal) will be recorded in file DEF's file 
label. 

Operation 

Input 
Output 
Verification 
Total 

Example 3 

PRE>DKO:=MTO:XYZ 

Blocks Required 

12. (DK default block size) 
12. (blocking factor specified for MTO:) 
O (no verification specified) 
24. 

Twelve blocks, plus the record size of file XYZ, are required to copy 
file XYZ from MTO: to unit DKO: and to have DKO: formatted as a 
logical tape. 

Operation 

Input 
Output 
Verification 
Total 

Blocks Required 

Record size specified in file XYZ's label 
12. (DK default block size) 
0 
12. plus record size of file XYZ. 

Example 4 

PRE>MTO:IJK/VE/BL:l2=DKO:/BL:4 

Twenty-eight blocks are required to create the file IJK on logical 
tape MTO: from DKO: with verification specified. 

Operation 

Input 
Output 
Verification 
Total 

Blocks Required 

4. (specified block size DK) 
12. (specified block size MT) 
12. (re-read block from MT) 
28. 

12-26 

tJ ( $ u a u 14 



VOLUME PRESERVATION UTILITY (PRESRV) 

Example 5 

PRE>DKO:/VE=MTO:IJK 

Twenty-four blocks, plus the record size of file IJK, are required to 
copy file IJK from MTO: to DKO:, with verification specified. 

Operation 

Input 
Output 
Verification 
Total 

Example 6 

PRE> MMO: =MMl: 

Blocks R eq u i red 

Record size of file IJK 
12. (DK default block size) 
12. (Re-read block from DKO:) 
24. plus record size of file IJK. 

The above command results in an image copy. The image copy uses all 
available memory buffer space in creating blocks on the output volume. 
If any input record is too large, the transfer is aborted. If 
verification is specified, half of the available memory buffer space 
is used to form blocks for the output volume. The other half is 
required for verification. 

12.5 PRESRV ERROR MESSAGES 

As it executes, PRESRV checks to determine the success of the 
operation. If an error is detected, PRESRV prints one of the messages 
listied below. 

BITMAP FILE HDR READ ERROR 

Explanation: An attempt has been made to perform a copy in 
Files-11 mode, but the input volume is not in Files-11 format or 
is not ready .. 

User Action: Retype the command using either the /IM or /TP 
switch. 

CONFLICTING SWITCHES 

Explanation: Two conflicting switches were specified in the 
command string. For example, /TP/FI. 

User Action: Specify the correct switch(es). 

DEVICE NOT FORMATTABLE 

Explanation: The specified device is not accepted by PRESRV. 
Devices accepted by PRESRV for formatting are RK03/05, RP02/03, 
RP04, RPOS, and RP06. 

User Action: Specify the correct device mnemonic. 

12-27 



VOLUME PRESERVATION UTILITY (PRESRV) 

DEVICE OFFLINE 

s: a 

Explanation: The specified device is not in the configuration 
hardware, the Control Status Register (/CSR} switch is improperly 
set, or the device is not on-line. 

User Action: Set the /CSR and vector (/VEC} addresses for the 
device to the proper addresses or put the device on-line. Retype 
the command. 

DICTIONARY READ ERROR 

Explanation: An error occurred in reading a dictionary (storage 
bitmap equivalent} from logical tape. 

User Action: Retry or abort the operation. 

DRIVE NOT READY 

Explanation: The specified drive is not ready or up to speed. 

User Action: Wait until the drive is ready and retype the 
command. 

ERROR IN READING COMMAND 

Explanation: An error occurred in input to the terminal or CTRL 
z ( '"'z} was illegally typed. 

User Action: Retype the command. 

EXPECTED EOF NOT FOUND 

Explanation: An End-Of-File (EOF) mark was read from the input 
volume but not from the output volume during the verification of 
a tape image copy. 

User Action: Retry the operation. 

FATAL ERROR ON INPUT DEVICE 

Explanation: An error occurred while reading the input volume 
during a tape image copy. 

User Action: Retry the operation. 

FATAL ERROR ON OUTPUT DEVICE 

Explanation: An error occurred while reading or writing the 
output volume during a tape image copy. 

User Action: Make sure the output device isn't write-protected. 
Retry the operation. 

or 

Explanation: An uncorrectable error occurred while formatting a 
disk. This error usually indicates a media or hardware error. 

User Action: Reformat the disk. 

12-28 

z:; ;: Li I ii H 



VOLUME PRESERVATION UTILITY (PRESRV) 

HOME BLOCK READ ERROR 

Explanation: An attempt has been made to perform a copy in 
Files-11 mode, but the input volume is not in Files-11 format or 
is not ready. 

User Action: Wait until 
command using the /IM 
transf'er mode. 

ILLEGAL BLOCK COUNT 

the 
or 

device is 
/TP switch 

ready or retype the 
to specify the proper 

Explanation: The number of blocks specified with the switch is O 
or is too large for the available buffer space. 

User Action: Retry with valid block count. 
default block sizes). 

INPUT DEVICE ERROR m, nnnnnn 

(See Table 12-3 for 

Explanation: An error occurred while attempting to read data. 
The octal logical block number listed is the location where the 
error occurred. The LBN is expressed as a 19-bit binary 
representation (m,nnnnnn). See the verification error message in 
Section 12.3.3.3. 

User Action: None. 

INPUT VOLUME nn. OUT OF SEQUENCE 

Explanation: The number of the input volume does not match the 
number of the required volume. 

User Action: Mount the proper volume and proceed. 

INSUFFICIENT BUFFER SPACE 

Explanation: A record on an input tape is too large for the 
available buffer space. More blocks than are available in the 
buffer are needed to complete the copy operation. 

User Action: Abort; or retry the operation specifying different 
block sizes. 

LABEL OR BOOTSTRAP WRITE ERROR 

Explanation: An error occurred while writing the initial part of 
a loglcal tape. 

User Action: Retry or abort the operation. 

LUN ASSIGNMENT ERROR 

Explanation: Device or lo~ical unit (LUN) combination specified 
in the command string is not supported by the current PRESRV 
system or is not a valid device for PRESRV operations. 

User Action: Determine the status of the device and type the 
proper command. You may be able to redirect the PRESRV operation 
to another unit by means of the /UNIT switch (Section 12.3.5.2). 

12-29 



VOLUME PRESERVATION UTILITY (PRESRV) 

NO SUCH FILE 

Explanation: File named in the command string was not found on a 
logical tape, or a magnetic tape was at End-Of-Volume (EOF) for 
input. 

User Action: Retype the command using a proper file label. 

OUTPUT DEVICE ERROR m, nnnnnn 

Explanation: An error occurred while reading or writing data. 
The number printed is the.octal logical block number where the 
error was detected. The LBN is expressed as a 19-bit binary 
representation (m,nnnnnn). See the verification error message in 
Section 12.3.3.3. 

User Action: Retry, continue or abort the operation. 

OUTPUT VOLUME OVERFLOW 

Explanation: Input has more blocks that 
(Files-11) can hold. 

the output volume 

User Action: Try an alternate transfer 
blocking factor. 

*** nnn: -- SELECT ERROR 

Explanation: Device nnn: is off-line. 

User Action: Put device on line. 

STORAGE BITMAP FILE READ ERROR 

format. Check the 

Explanation: An attempt has been made to perform a copy in 
Files-11 mode, but the input volume is not in Files-11 format or 
is not ready. 

User Action: Wait until the device is ready or retype the 
command specifying the proper transfer mode (/IM or /TP). 

SYNTAX ERROR 

Explanation: The command string was not a valid command. 

User Action: Retype the command string correctly. 

TAPE LABEL READ ERROR 

Explanation: An error occurred while reading a logical tape 
label record. 

User Action: Retry or abort the operation. 

TAPE WAS WRITTEN FOR dd 

Explanation: This is a warning message, not an error message. 
The Files-11 volume being restored from a logical tape is not of 
the same type as the one from which the tape was originally made. 
The new volume is given the bitmap of the old volume. The 
characters dd identify the intended Files-11 device. 

User Action: None. 

12-30 

" ts a ea ts; SL I it a I::; I 



\..-· 

VOLUME PRESERVATION UTILITY (PRESRV) 

TRANSFER SPECIFICATION MODE ERROR 

Explanation: An inconsistency appears in the command string. 
For example, a magnetic tape has a /FI switch associated with it. 

User Action: Retype an acceptable command. 

VERIFICATION ERROR nnnnnnn 

Explanation: The data read back from the output volume does not 
match what was written. The number printed is the octal logical 
block number on the output device where the error was detected. 

User Action: Retry, continue or abort the operation. If retry 
is specified, PRESRV performs the entire operation from the 
beginning. 

VOLUME FAULTY - "R" TO RETRY, "C" TO CONTINUE 

Explanation: An I/O error was detected during a copy operation; 
or a verification error occurred. 

User Action: Type R to retry the operation from the beginning. 
Type C to continue from the point at which the error occurred. 

12-31 



iiiii . I 1 . II a a ;z;a 



'-'' 

CHAPTER 13 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

13.l INTRODUCTION TO VFY 

The File Structur• verification Utility (VFY) program provides the 
ability to: 

• Check the readability and validity of a file-structured volume 
(default function). 

• Print out the number of available blocks on a file-structured 
volume (/FR) • 

• Search for files that exist in the index file but that do not 
exist in any directory, that is, files which are "lost" in the 
sense that they cannot be accessed by file name (/LO). (See 
the IAS/RSX-11 I/O oeerations Reference Manual for a 
description of the index file~} 

• List all files in 
filename, and owner 

the index 
(/LI) • 

file, showing the file ID, 

• Mark as "used" all the blocks that appear to be available but 
are actually allocated to a file (/UP). 

• Rebuild the storage allocation bit map so that it properly 
reflects the information in the index file (/RE). 

• Restore files that are marked for delete (/DE). 

• Perform a read check on every allocated 
file-structured volume (/RC). 

block on a 

There should be no other activity on the volume while VFY is 
executing. In particular, activities which create new files, extend 
existing files, or delete files should not be attempted while VFY is 
executing a function. 

VFY must not be aborted while a /UP, /RE, or /DE switch is being 
processed. Aborting VFY while it is in the process of modifying the 
storage allocation or index files may seriously endanger the integrity 
of that volume. 

13-1 



l''~W ... Pl 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

13.2 VFY COMMAND STRING 

All VFY functions are invoked by entering a VFY command string through 
the initiating terminal. The VFY command string is formatted as 
follows: 

listfile,scratchdev=indev/switch 

or 

indev/switch (This is a short form of TI:,indev=indev/switch) 

list:file 

Specifies the output listing file in the following format: 

dev: [ufd]filename.filetype;ver 

scratchdev 

indev 

Specifies the device on which the scratch file produced by VFY is 
to be written. This parameter is in the following format: 

dev: 

The scratch file is used by VFY during the verification scan and 
during the lost file scan. It is created but not entered in a 
directory. Therefore, it is transparent to the user. The 
scratch file is automatically deleted upon termination of the VFY 
program. 

If the system disk is faulty or full, use this parameter to force 
the scratch file to another device. The scratch file should 
always be assigned to another volume. The scratch file is not 
used for the /FR and /LI switches. 

Specifies the volume to be verified. This parameter is in the 
following format: 

dev: 

/switch 

Specifies the function to be performed. This parameter is in the 
following format: 

/sw 

The VFY switches are described in detail in Section 13.3. 

VFY normally operates in a read-only mode, assuming that the scratch 
file, if required, is on another device. VFY requires write access 
under the following conditions: 

1. If the /UP or /RE switch is used, VFY requires write access 
to the storage allocation map ([O,O]BITMAP.SYS). 

2. If the /DE switch is specified, VFY requires write access to 
the index file ([O,O]INDEXF.SYS). 

3. If the /LO switch is specified and lost files are found, VFY 
requires write access to the [1,3] User File Directory. 

13-2 

u: i!ij iii! 2 I H 



'-'i 

FILE STRUCTURE VE.RIFICATIOH UTILITY (VFY) 

VFY may be run under any UIC if only read access is required. If 
write access is required, VFY must run under a system UIC. 

If write access to the volume index or bit map files is required for 
the desired operation, the user must mount the volume using the 
/UNLOCK swHch. 

Default file specifiers for VFY command line elements are listed in 
Table 13-1.. 

Table 13-1 
VFY Default File Specifiers 

Element: Default Value 

dev: Output listing device 

TI: 

Scratch file device 

SYO: 

Volume to be verified 

SYO: 

[ufd] The UIC under which VFY is currently running. 

filename No default - must be specified. 

• filetype No default - must be specified • 

; ver Latest version plus 1. 

'--· 

13.3 VFY SWITCHES 

VFY functic>ns are specified in the form of switches appended to the 
VFY command string. Command switches and functions are summarized in 
Table 13-2 .. 

13-3 



a u 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

Table 13-2 
VFY Functions and Switches 

Function Switch 

Delete /DE 

Free /FR 

List /LI 

Lost /LO 

Read Check /RC 

Rebuild /RE 

Update /UP 

Validity Check Default 

13.3.1 Validity Check 

Purpose 

Reset marked-for-delete 
indicators. 

Print out the available space 
on a volume. 

List entire index file by file 
identification. 

Scan entire file structure 
looking for files which are 
not in any directory. 

Check entire volume to see if 
every block of every file can 
be read. 

Recover blocks which appear to 
be allocated but are not 
contained in a file. 

Allocate blocks which appear 
to be available but have been 
allocated to a file. 

Check readability and validity 
of the volume mounted on 
specified device. 

Validity Check (no switch) checks the readability and validity of the 
volume mounted on the specified device. This function entails reading 
all the file headers in the index file and ensuring that all the disk 
blocks referenced in the map area of each file header are marked as 
allocated to that file in the volume bit map. 

Requirements for running the validity check: 

1. The volume to be checked must be mounted as a Files-11 
structured volume. 

2. The volume may be write-protected if: 

a. It is not the system volume; or 

b. The required scratch file is directed 
file-structured volume. 

A validity check is specified in the following form: 

listfile,scratch dev=indev <CR> 

or 

indev <CR> 

13-4 

$Pl 

to another 

SJ 'iii CL $lliilf 4 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

Exa11tple 

>VFY DRO: 

CONSISTENCY CHECK OF INDEX AND BITMAP ON ORO: 

INDEX INDICATES 114524. BLOCKS FREE, 17156. BLOCKS USED OUT OF 131680. 
BITMAP INDICATES 114524. BLOCKS FREE, 17156. BLOCKS USED OUT OF 131680. 

13.3.1.1 File Error Reporting - As VFY verifies a volume, error 
conditions are reported. All errors for a given file are preceded by 
a file identification line that identifies the file in error. This 
line is formatted as follows: 

nn,mm 

FILE ID nn,mm filename.filetype;version OWNER [g,m] 

Represents the unique file identification number assigned to the 
file by the system at file-creation time. 

Represents the file name • 

• filetype 

Represents the file type (for example, .OBJ for object file). 

;version 

Represents the version number of the file. 

[g 'm] 

Represents the UIC that owns the file. 

This file identification line is followed by one or more of the 
following messages: 

I/O ERROR READING FILE HEADER-ERROR CODE -32 

Explanation: VFY failed to read the file header for the 
specified file ID. The device is not mounted or is off-line, or 
the hardware has failed. 

BAD FILE HEADER 

Explanation: Software checks on the validity of the file header 
indicate that the header has been corrupted. 

MULTIPLE ALLOCATION n,m 

Explanation: The specified (double precision) logical block 
number is allocated to more than one file. If this error occurs, 
a second pass is automatically taken which will indicate all 
files that share each multiply-allocated block. The second pass 
is taken after all file headers have been checked (see Section 
13.3 .. 1.3). 

13-5 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

BLOCK IS MARKED FREE n,m 

Explanation: The specified logical block number is allocated to 
the indicated file but is not marked as allocated in the storage 
allocation map (see Section 13.3.1.4). 

BAD BLOCK NUMBER n,m 

Explanation: The specified block number was found in the header 
for this file but is illegal for the device (out of range). This 
indicates a corrupted file header. 

FILE IS MARKED FOR DELETE 

Explanation: A system failure occurred while the specified file 
was being deleted. The deletion was not completed and the file 
header still exists (see Section 13.3.1.2). 

HEADER MAP OUT OF SYNC 

Explanation: VFY detected an error in the header map area which 
also indicates a corrupted file header. 

The last error message for the file is followed by a summary line for 
that file, as follows: 

MULT 

FREE 

BAD 

SUMMARY: MULT=nn, FREE=nn~ BAD=nn. 

Specifies the number of multiple block allocations. 

Specifies the number of blocks marked free that should have been 
allocated. 

Specifies the number of bad retrieval pointers in the file 
header. 

If the output for VFY is directed to a terminal device, and you do not 
wish to see all the error messages for a given file, entering <CTRL/O> 
terminates the listing of all further error messages for that file, 
that is, all messages but the summary line. 

13.3.l.2 Files Marked-for-Delete - If a file has been marked for 
delete but the deletion process was not completed, you can either 
restore the file, if you still need it, or you can delete the file to 
recover the space it was occupying. This situation only occurs when 
the system crashes during file processing. 

• Restoring a File 

2 h 1 22!1) 

To restore a file marked-for-delete, the disk volume must be 
mounted using the MCR Mount command with the /UNL switch 
specifi~d. For example: 

>MOU DKO:/UNL 

13-6 

sq 

~.···--.. -: 1--:', 

es 44u: 



'-'i 

• 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

Then, run VFY specifying the /DE switch to reset the 
marked-for-delete indicators in file headers. Once the delete 
indicator has been reset, run VFY specifying the /LO switch to 
scan the entire file structure. 

The deletion process may have proceeded partially and a 
portion at the end of the file may be missing. This condition 
can be detected by a directory listing obtained using the PIP 
/FU switch. 

Deleting a File 

Files that are marked-for-delete can be deleted directly with 
PIP, once their unique File ID has been obtained via a 
validity check. The File ID appears as the first entry in the 
file identification line which precedes each list of file 
errors (see Section 13.3.1.1). The following example 
illustrates how the File ID is used with PIP to delete a file: 

>PIP /FI:l2:20/DE 

In this example, the file with File ID 12,20 is deleted from 
the system device. PIP issues the error message: 

PIP -- FAILED TO MARK FILE FOR DELETE-NO SUCH FILE 

since the file system denies the existence of files already 
marked-for-delete; however, the file is completely deleted. 

Once! files have been restored or deleted, run VFY with the /RE switch 
specified to assure the consistency of the volume's storage allocation 
bit map. 

13.3.1.3 Deletion of Multiply-Allocated Blodks - If the file 
structure contains multiply-allocated blocks, it is necessary to 
dele!te files until there are no more such blocks. An automatic rescan 
of the volume identifies which files share which blocks. This rescan 
lists the first as well as subsequent files containing the 
multiply-allocated blocks. Using this information, you can then 
determine which, if any, of the files can be saved and delete the 
rest, using the PIP delete function. 

Be careful when deleting files containing multiply-allocated blocks. 
Afte!r the files have been deleted, VFY should be run once again to 
ensure that all of the files containing multiply-allocated blocks have 
been delet~~d. 

13.3.1.4 Elimination of Free Blocks - Once there are no 
multiply-allocated blocks, the next concern is the elimination of 
blocks that are marked Free in the storage allocation bit map but are 
actually allocated to a file. To cause these blocks to be reallocated 
in the storage allocation bit map, rerun the validity check specifying 
the /UP switch. This allocates all blocks that should have been 
marked as allocated. See Section 13.3.8 for a description of the /UP 
switch. 

13-7 



!'i•• Ji! I ill !IU 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

Once there are no multiply-allocated blocks and no blocks marked free 
that are actually in use, the file structure is safe for writing new 
files and extending existing files. However, if there were such 
errors, there may be files which have had data blocks overwritten as 
the result of multiple allocation. 

13.3.1.5 Recovering Lost Blocks - To determine whether any blocks 
have been lost on a file-structured volume, examine the last two lines 
of output from the validity check. The last two lines of output give 
the free space on the volume. The first line of the two tells how 
much room is available according to the index file (that is, the 
number of blocks that are not in use by any file in the index file). 
The last line specifies how much room is available according to the 
storage allocation bit map. Assuming there are no other errors, these 
two figures should agree. If the index file indicates that more 
blocks are free than the storage allocation bit map, then those blocks 
are "lost" in the sense that they appear to be allocated, but no file 
contains them. Lost blocks can be recovered by rerunning the validity 
check specifying the /RE switch. See Section 13.3.7 for a description 
of the /RE switch. 

13.3.2 Delete Switch (/DE) 

The Delete switch (/DE) resets the marked-for-delete indicators in the 
file header area of files that were marked for deletion but never 
actually deleted. The Delete switch is specified in the following 
form: 

listfile,scratchdev=indev/DE 

or 

indev/DE 

The volume must be mounted with the /UNL switch. 

VFY must be running under a system UIC. 

13.3.3 Free Switch (/FR) 

The Free switch (/FR) displays the available space on a specified 
volume. The Free switch is specified in the following form: 

listfile=indev/FR 

or 

indev/FR 

Free switch output is the following message: 

dev: HAS nnnn. BLOCKS FREE, nnnn. BLOCKS USED OUT OF nnnn. 

13-8 

!2l; I I ii L ,.,., 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

13.3o4 List Switch (/LI) 

The List switch (/LI) lists the entire index file by file 
identification. The output for each file specifies the file number, 
file sequence number, file name, and owner. A typical index file 
listing is illustrated in-Figure 13-1. The List switch is specified 
in the following form: 

listfile,scratchdev=indev/LI 

or 

indev/LI 

VFY> DK: /LI 
LISTING OF INDEX ON DKO: 

FILE ID 000001,000001 INDEX1'~. SYS; 1 OWNER [1,1] 
FILE ID 000002,000002 BITMAP.SYS;l OWNER [1,1] 
FILE ID 000003,000003 BADBLK.SYS;l OWNER [l, l] 
FILE ID 000004,000004 000000 .DIR; 1 OWNER [ 1, 11 
li'ILE ID 000005,000005 CORIMG.SYS;l OWNER [1,1] 
li'ILE ID 000006,000006 001001.DIR; l OWNER [l,l] 
F'ILE ID 000007,000007 001002.DIR;l OWNER [1,2] 
f 1'ILE ID 000010,000010 EXEMC~MLB;l OWNER [l,l] 
F'ILE ID 000011,000011 RSXMAC.SML;l OWNER [1,1] 
F'ILE ID 000012,000012 NODES.TBL;l OWNER [1,1] 
F'ILE ID 000013,000036 QIOSYM.MSG; 311 OWNER [1,2] 
F'ILE ID 000014,000037 F4PCOM.MSG;l OWNER [1,2] 

Figure 13-1 VFY Listing Sample Using the /LI Switch 

13.3.5 Lost Switch (/LO) 

The Lost switch (/LO) scans the entire file structure looking for 
files which are not in any directory and, thus, are lost in that they 
cannot be referenced by file name. A list of the files is produced, 
and if the "lost file directory" [1,3] exists on that volume, all the 
f ilE~S will be entered in that directory. The Lost switch is specified 
in the following form: 

listfile,scratchdev=indev/LO 

or 

indev/LO 

13.3.6 Read Check Switch (/RC) 

The Read Check switch (/RC) checks to ensure that every block of every 
file on a specified volume can be read. The Read Check switch is 
specified in the following form: 

listfile=indev/RC[:n] 

or 

indev/RC [: n] 

13-9 



·~··· 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

The optional parameter [:n] is the blocking factor which indicates the 
number of file blocks to be read at a time. The default value is the 
maximum number of blocks available in VFY's buffer area. 

Since the Read Check function is a read-only operation, the volume can 
be write-protected. 

The buffer area available may be increased by installing VFY in a 
larger partition. Five blocks are available when VFY is installed in 
an SK partition, and four blocks are added for each lK increment. 

For the fastest possible read check, the maximum block factor should 
be used. Whenever an error is encountered, each block of the portion 
in error is reread individually to determine which data block{s) 
cannot be read. 

When an error is detected, a file identification line is listed in the 
following format: 

FILE ID nn,nn filename.typ;ver. blocks used/blocks allocated 

Following this line, an error message is listed. If a blocking factor 
other than 1 is in use, an error message in the following form will be 
issued: 

ERROR STARTING AT VBN nl,n2 LBN nl,n2 - ERROR CODE -n 

Following the first error message, there should be one or more error 
messages indicating the exact block{s) in error. The second error 
message line{s) will be in the following form: 

ERROR AT VBN nl,n2 LBN nl,n2 - ERROR CODE -n 

If an ERROR STARTING AT line is displayed without one or more ERROR AT 
lines, a multiblock read operation on the selected device has failed, 
but the data blocks appear to be individually readable. 

If the VBN of the unreadable block listed in the ERROR AT line is 
beyond the block-used-count, the data portion of the file is readable. 

The negative number printed after the ERROR CODE message is usually -4 
to indicate a device parity error. Other error codes are contained in 
Appendix I of the IAS/RSX-11 I/O Operations Reference Manual. 

13.3.7 Rebuild Switch (/RE) 

The Rebuild switch {/RE) recovers lost blocks, that is, blocks that 
appear to be allocated but which are not contained in any file. The 
Rebuild switch is specified in the form: 

listfile,scratchdev=indev/RE 

or 

indev/RE 

Multiply-allocated blocks must be removed {deleted) from the file 
structure before the rebuild can be run. 

The volume being updated must be write-enabled. 

VFY must be running under a system UIC. 

13-10 

" ! $ ;: n;: :: t U!i iii a 122. a u 

""' :: j1' 

qap:. 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

The scratch file should be on another volume. If this is impossible, 
the volume must be dismounted immediately after VFY terminates. 
(Failure to do this may result in partial updating of the storage 
allocation bit map.) Then the volume should be mounted again, and the 
scratch filE! must be deleted manually. VFY issues a detailed message 
in this case~, specifying the name of the scratch file to be deleted. 

13.3.8 Update Switch (/UP) 

The Update switch (/UP) allocates all blocks 
available but are actually allocated to a file. 
specified in the following form: 

listfile,scratchdev=indev/UP 

or 

indev/UP 

that appear to be 
The Update switch is 

Files with multiply-allocated blocks must be deleted from the file 
'-'' structure bE!fore the update can be run. 

The volume being updated must be write-enabled. 

VFY must be running under a system UIC. 

The scratch file should be on another volume. If this is impossible, 
the volume must be dismounted immediately after VFY termin~tes. 
(Failure to do this may result in partial updating of the storage 
allocation bit map.) Then the volume should be mounted again, and the 
scratch file must be deleted manually. VFY issues a detailed message 
in this case specifying the name of the scratch file to be deleted. 

The message is: 

VFY TO COMPLETE THE STORAGE MAP UPDATE DISMOUNT THE VOLUME 
IMMEDIATELY. THEN MOUNT IT AND DELETE THE FOLLOWING 
FILE~ [ufd] filespec 

13.4 VFY ERROR MESSAGES 

VFY -·- COMMAND SYNTAX ERROR 

Explanation: The command entered does not conform to command 
syntax rules. 

User Ac:tion: Reenter the command line with the correct syntax 
specif:led. 

VFY -- FAILED TO ALLOCATE SPACE FOR TEMP FILE 

Explancttion: The volume specified for the temporary scratch file 
is full. 

User Action: Use PIP to delete all unnecessary files and rerun 
VFY. 

13-11 



I S 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

VFY -- FAILED TO ATTACH DEVICE 

or 

VFY -- FAILED TO DETACH DEVICE 

or 

VFY -- ILLEGAL DEVICE 

Explanation: The file specifier entered contains an illegal 
device. 

User Action: Reenter the command line with the correct device 
specified. 

VFY FAILED TO CLOSE DIRECTORY FILE (See I/O ERROR messages). 

VFY -- FAILED TO ENTER FILE 

4 

Explanation: One of the following conditions may exist: 

• VFY is not running under a system UIC. 

• The device is not on-line. 

• The device is not mounted. 

• The hardware has failed. 

User Action: Determine which of the above conditions caused the 
message and correct that condition. Reenter the command line. 

VFY FAILED TO OPEN DIRECTORY FILE (See OPEN FAILURE error messages) 

VFY -- ILLEGAL SWITCH 

Explanation: The switch specified is not a valid VFY switch or a 
valid switch is used illegally. 

User Action: Reenter the command line with the correct switch 
specified. 

VFY -- I/O ERROR ON INPUT FILE 

or 

VFY -- I/O ERROR ON OUTPUT FILE 

or 

VFY -- I/O ERROR READING DIRECTORY FILE 

or 

13-12 

4 JS !IS!. I I !ii 144 ' 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

VFY -- FAILED TO CLOSE DIRECTORY FILE 

Explanation: One of the following conditions may exist: 

• The device is not on-line. 

• The device is not mounted. 

• The hardware has failed. 

user Action: Determine which of the above conditions caused the 
message and correct that condition. Reenter the command line. 

VFY -- NO DYNAMIC MEMORY AVAILABLE - PARTITION TOO SMALL 

Explanation: VFY does not have enough buffer space to run. 

User Action: Run VFY in a larger partition (SK minimum). 

VFY -- OPEN FAILURE ON BIT MAP 

or 

VFY -- OPEN FAILURE ON INDEX FILE 

or 

VFY -- OPEN FAILURE ON LISTING FILE 

or 

VFY -- OPEN FAILURE ON TEMPORARY FILE 

or 

VFY -- FAILED TO OPEN DIRECTORY FILE 

Explanation: One of the following conditions may exist: 

• VFY is not running under a system UIC, but should be. 

• The named file does not exist in specified directory. 

• The volume is not mounted • 

• The specified file directory does not exist. 

User Action: Determine which of the above conditions caused the 
message and correct that condition. Reenter the command line. 

VFY -- THEY ARE STILL LOST, COULD NOT FIND DIRECTORY 

Explanation: UFO [1,3] did not exist on the volume. 

User Action: Use the MCR UFO command to enter UFO [1,3] on the 
volume. 

13-13 



PILE STRUCTURE VERIFICATION UTILITY (VPY) 

13.5 YPY ERROR CODES (IAS SYSTEM ONLY) 

If VFY cannot access the message file, errors are reported in the 
following format: 

VFY -- ERROR CODE nn. 

where: 

nn. is one of the error codes contained in Table 13-3. 

Refer to Section 13.4 for error descriptions and suggested user 
actions. 

Error 
Codes 

!i!Xi2$1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Table 13-3 
VFY Error Codes 

Corresponding VFY Error Message 

ILLEGAL DEVICE 
OPEN FAILURE ON BIT MAP 
OPEN FAILURE ON TEMPORARY FILE 
FAILED TO ALLOCATE SPACE FOR TEMP FILE 
FAILED TO DETACH DEVICE 
FAILED TO ATTACH DEVICE 
COMMAND SYNTAX ERROR 
I/O ERROR ON INPUT FILE 
I/O ERROR ON OUTPUT FILE 
ILLEGAL SWITCH 
OPEN FAILURE ON LISTING FILE 
OPEN FAILURE ON INDEX FILE 
NO DYNAMIC MEMORY AVAILABLE - PARTITION TOO SMALL 

13-14 

; jj j 2i ii " 4 I if 



PART 6 
PROGRAMMING UTILITIES 



·.~ 

I AA 4 JU I !St 



CHAPTER 14 

LIBRARIAN UTILITY PROGRAM (LBR) 

14.l INTRODUCTION TO LBR 

The Librarian Utility Program (LBR) allows you to create, update, 
modi.fy, list, and maintain object, macro, and universal library files. 
A library file is a direct access file which usually contains modules 
of the samE~ type. Library files are organized for rapid access by the 
Task Builder, MACR0-11 Assembler, and the Universal Library Access 
($ULA) system library routine (see the IAS/RSX-11 System Library 
Routines Manual, Appendix B.) 

LBR and library files, in conjunction with the MACR0-11 Assembler, the 
Task Builder, and the $ULA system routine, provide fast entry-point 
search time, easy update with minimal copying of entire files, and the 
ability to handle multiple module types. 

Library files contain two directory tables: an entry point table 
(EPT) that contains entry point names (global symbols), and a module 
name~ table (MNT) that contains module names. Both the EPT and MNT are 
alphabetically ordered. The EPT applies only to object libraries. 

Object module names are derived from .TITLE directives, while entry 
point names are derived from defined global symbols. Once an entry 
point is located, its associated module can be accessed directly. 

Macro module names are derived from .MACRO directives; 
point names are not applicable. 

macro entry 

Universal module names are derived from file names at insert time; 
universal entry point names are not applicable. A module of a 
universal library can be accessed by the $ULA Routine, found in the 
IAS1~SX-ll System Library Routines Reference Manual. You may use a 
universal library to contain modules inserted from any kind of file. 

You can invoke LBR using any of the methods for invoking a utility 
described in Chapter 1. 

14.2 LBR COMMAND STRING 

LBR accepts command strings in the following general format: 

outfile[,listfile]=infilel[,infile2, ••• infilen] 

LBR allows only one level of indirect command file nesting for RSX-llM 
and RSX-llM-PLUS. For a complete description of file specifiers, see 
Chapter 1. 

14-1 



LIBRARIAll UTILITY PROGRAM (LBR) 

14.3 DEFAULTS IN LBR FILE SPECIFIERS 

Defaults in LBR file specifiers are described in Table 14-1. 

Specifier 

dev: 

[ufd] 

filename 

.type 

14 21 ii 

Table 14-1 
Defaults in LBR File Specifiers 

Output File 
SYO: 

Listing File 

Default 

The device which was specified for the output 
file; otherwise, the default for the output 
file. 

Input File 
For the first input file specifier, SYO:. 

For the subsequent input file specifiers, the 
device specified in the previous input file 
specifier; otherwise, the default for the 
previous input file specifier. 

Output File 
The UIC under which LBR is currently running. 

Listing File 
The UFO which was specified for the output 
file; otherwise, the default for the output 
file specifier. 

Input File 
For the first input file specifier,. the UIC 
under which LBR is currently running. 

For the subsequent input file specifiers, the 
UFO specified in the previous input file 
specifier; otherwise, the default for the 
previous input file specifier. 

No default. Must be specified. 

Output File 
Depends on the default in effect (see Section 
14.6.4), except when the /CO or /CR switch is 
specified (see Sections 14.6.l or 14.6.~, 
respectively). 

Listing File 
.LST 

Input File 
Refer to the descriptions of /CO 
14.6.1), /IN (Section 14.6.8), 
(Section 14.6.11) switches. 

(Section 
and /RP 

(continued on next page) 

14-2 

4 0 I 2 Ji Ui ,ii iiiL !J 

-., I,,, 

1'4"' 



LIBRARIAll UTILITY PROGRAM (LBR) 

Table 14-1 (Cont.) 
Defaults in LBR File Specifiers 

r--·------------.--------------~----~-~----------------------~------~-, 

Speci f iE!r 

;ver 

/switch 

Default 

Latest version of the file, or latest version plus 1 
for the output file when the /CO, /CR, OR /EX switches 
are specified. 

Output File 
/IN (Insert) 

List File 
/SP/LI (spool and list module names) 

Input File 
None. 

14.4 LBR SWITCHES 

LBR uses switches appended to file specifiers to invoke functions. 
These switches are summarized in Table 14-2. For a detailed 
description of each LBR switch, see Section 14.6. 

Option Switch 

Table 14-2 
LBR Switches 

Function 

t--·------------~---1----------+------------------------------~--~----------1 

Compress 

Create 

Delete 

Default 

Delete Global 

Entry Pc1int 

Extract 

Insert 

/CO 

/CR 

/DE 

/DF 

/DG 

/EP 

Compress a library file. 

Create a library file. 

Delete a library module and all of its 
entry points. 

Specify the default library file type. 

Delete a library module entry point. 

Include entry point elements in the 
library entry point table. 

/-EP Exclude entry point elements in the 
library entry point table. 

/EX 

/IN 

Extract (read) one or more modules from 
a library file and write them into a 
specified output file. 

Insert a module. 

(continued on next page) 

14-3 



Option 

List 

Modify Header 

Replace 

Spool 

LIBRARIAN UTILITY PROGRAM (LBR) 

Switch 

/LI 

/LE 

/FU 

/MH 

/RP 

/-RP 

/SP 

/-SP 

Table 14-2 (Cont.) 
LBR Switches 

Function 

List module names. 

List module names and 
points. 

List module names and 
description. 

module 

full 

Modify a universal module header. 

Replace a module. 

Do not replace a module. 

Spool the listing for printing. 

Do not spool the listing. 

entry 

module 

Selective Search /SS Set selective search attribute in 
module header. 

Squeeze /SZ Reduce the size of macro source. 

1-sz Do not reduce size of a specific macro 
source. 

14.5 FORMAT OF LIBRARY FILES 

A library file consists of a library header, an entry point table, a 
module name table, the library modules and their headers, and 
(usually) free space. The entry point table has zero length for macro 
libraries and universal libraries. Figure 14-1 illustrates object and 
macro library file format and Figure 14-2 illustrates universal 
library file format. 

14.5.1 Library Header 

The header section is a full block in which the first 24. words are 
used to describe the current status of the library. Its contents are 
updated as the library is modified, so LBR can access the information 
it needs to perform its functions (Insert, Compress, and so on). The 
24th word in the library header is the default insert file type for 
universal libraries and is undefined for macro and object libraries. 
See Figure 14-3. 

14.5.2 Entry Point Table 

The entry point table consists of 4-word elements containing an entry 
point name (words 0-1), and a pointer to the module header of the 
module where the entry point is defined (words 2-3). See Figure 14-4. 

14-4 

1
1
!
1 

... : 12 . : z was " a :a: s .12; ; 222! 

I~ 

;z:;: 



LIBRARIAN UTILITY PROGRAM (LBR) 

This table is searched when a library module is referenced by one of 
its entry points. The table is sequenced in order of ascending entry 
point names. The entry point table is not used for macro or universal 
library fi.les. 

14.5.3 Module Name Table 

The module name table is searched when the library module is 
referenced by its module name, rather than by one of its entry points. 
It is made up of 4-word elements; a module name (words 0-1) and a 
pointer to the module header (words 2-3). See Figure 14-5. The 
module name table is sequenced in order of ascending module names. 

14.5.4 Module Header 

Each module starts with a header of 8 words for object and macro 
modules and 32. words for universal modules, identifying the type and 
status of the m6dule, its length (number of words), and so forth; see 
Figure 14-6, and Figure 14-7. 

In object modules, the low-order bit of the attributes byte is set if 
the module has the selective search attribute. Also, in object 
modules, the 2 words of type-dependent information contain the module 
identification defined by the .IDENT directive at assembly time. In 
mac:ro modules, these 2 words are undefined. 

For universal modules type dependent identification 
the file type ~nd version number of the input file. 

is derived from 
See Figure 14-7. 

Universal libraries allow module header changes (optional descriptive 
information) via the /MH switch. 

Fixed-
Length 
Records 

Variable-
Length 
Records 

l 

Library 
Header 

Entry Point 
Table 

Module Name 
Table 

Module 1 Header 

Module 1 

. . . 
Module N Header 

Module N 

Available Space 

~ 

Block 
boundaries 

Figure 14-1 General Format for Object and Macro Library Files 

14-5 



11•2a !IS 

Fixed
Length 
Records 

Variable
Length 
Records 

LIBRARIAll UTILITY PROGRAM (LBR) 

Library 
Header 

Entry Point 
Table 

Module Name 
Table 

Module 1 Header 
Unused Space 

Module 1 

Unused Space 

Module 2 Header 
Unused Space 

Module 2 

Unused Space 

Module N Header 
Unused Space 

Module N 

Available space 

NOTE 

Block 
boundaries 

All universal module headers and the 
first record of each universal module 
will start on a block boundary. 

Figure 14-2 Universal Library File Format 

14-6 

asp a LI ;z ii I l I 12 I 14 



LIBRARIAN UTILITY PROGRAM (LBR) 

OFFSET 

'-' WORD 0 NON ZERO ID l LIBRARY TYPE 

2 LBR (LIBRARIAN) VERSION 

4 (. IDENT ~"ORMAT) 

6 YEAR 

10 DATE AND MONTH 

12 TIME LAST DAY 

14 INSERT HOUR 

16 MINUTE 

20 SECOND 

22 

""'J 24 

RESERVED J SIZE EPT ENTR's 

EPT STARTING RELATIVE BLOCK 

26 NO. EPT ENTRIES ALLOCATED 

30 NO. EPT ENTRIES AVAILABLE 

32 RESERVED l SIZE MNT ENTR'S 

34 MNT STARTING REL BLOCK 

'-' 36 NO. MNT ENTRIES ALLOCATED 

40 NO. MNT ENTRIES AVAILABLE 

42 LOGICALLY DELETED 

44 AVAILABLE (BYTES) 

46 CONTIGUOUS SPACE 

50 AVAILABLE (BYTES) 

\...,· 52 NEXT INSERT RELATIVE BLOCK 

54 START BYTE WITHIN BLOCK 

56 UNIVERSAL DEFAULT INSERT TYPE 

(UNDEFINED FOR MACRO AND OBJECT LIBRARIES) 

Figure 14-3 Contents of Library Header 

14-7 



OFFSET 
START 

MODULE 

Figure 

i4JJ aa; a 

LIBRARIAN UTILITY PROGRAM (LBR) 

WORD 0 

1 

2 

3 

ADDRESS 
MODULE 
HEADER 

GLOBAL SYMBOL 

NAME (RADSO) 

OF RELATIVE BLK. 

BYTE IN BLOCK 

Figure 14-4 Format of Entry Point Table Element 

WORD 0 

1 

2 

3 

ADDRESS 
MODULE 
HEADER 

MODULE NAME 

(RADSO) 

OF RELATIVE BLK. 

BYTE IN BLOCK 

Figure 14-5 Format of Module Name Table Element 

FROM 
OF 
HEADER 

0 ATTRIBUTES STATUS O=NORMAL MODULE 
!=DELETED MODULE 

2 SIZE OF 

4 MODULE (BYTES) 

6 DATE YEAR 
MODULE 

10 INSERTED MONTH 

12 DAY 

14 TYPE DEPENDENT 

16 INFORMATION 

14-6 Module Header Format for Object and Macro Libraries 

14-8 

i2 I $.!Qi iii Ji 22 211 I :a; 



LIBRARIAN UTILITY PROGRAM (LBR) 

OFFSET FROM 
START OF 
MODULE HEADER 

'--' 0 ATTRIBUTES STATUS 

2 SIZE OF 

4 MODULE (BYTES) 

6 DATE YEAR 

10 MODULE MONTH 

12 INSERTED DAY 

\._,.J 14 I DENT 

16 

20 OPTIONAL 

22 INFO l 

'-'' 24 OPTIONAL 

26 INFO 2 

30 OPTIONAL 

32 INFO 3 
\., 

34 OPTIONAL 

36 INFO 4 

40 
USER 

42 FILE 
44 ATTRIBUTES . . . 
76 

Figure 14-7 Module Header Format for Universal Libraries 

14-9 



a 

LIBRARIAN UTILITY PROGRAM (LBR) 

14.6 LBR SWITCHES 

This section provides a detailed description of each LBR switch. 

14.6.l Compress Switch (/CO) 

Use the Compress switch to physically delete all logically deleted 
records, putting all free space at the end of the file, and making the 
free space available for new library module inserts. Additionally, 
the library table specification may be altered for the resulting 
library. LBR accomplishes this by creating a new file that is a 
compressed copy of the old library file. The old library file is not 
deleted after the new file is created. 

The /CO switch can be appended only to the output file specifier. The 
format for specifying the Compress switch is: 

outfile/CO:size:ept:mnt • infile 

outfile 

/CO 

:size 

:ept 

: mnt 

Specifies the file that is to become the compressed version of 
the input file. Default type is .OLB if input file is an object 
library, .MLB if input file is a macro library, or .ULB if the 
input file is a universal library. 

Specifies the Compress switch. 

Specifies the size of the new library file in 256(10)-word 
blocks. The size of the old library file is the default size. 

Specifies the number of entry point table (EPT) entries to 
allocate. If the value specified is not a multiple of 64(10), 
the next highest multiple of 64(10) is used. The number of EPTs 
in the old library file is the default value. This parameter is 
always forced to zero for macro libraries and universal 
libraries. Maximum number of entries is 4096(10). 

Specifies the number of module name table (MNT) entries to 
allocate. If the value specified is not a multiple of 64(10), 
the next highest multiple of 64(10) is used. The number of MNTs 
in the old library file is the default value. Maximum number of 
entries is 4096(10). 

inf ile 

ii iii ii!L 

Specifies the library file to be compressed. Default file type 
is .OLB for object libraries, .MLB for macro libraries, and .ULB 
for universal libraries. The actual default file type is 
determined by the current default library filetype (see Section 
14.6.4). 

14-10 

Jilli!! . ( 

.. 
' ,~ 



LIBRARIAN UTILITY PROGRAM (LBR) 

Example 

ILBR> RICK LIB/CO: 100.: 128.: 6 4. =SHE II.A. OLB 

In this example, file SHEILA.OLB is compressed, and a new file, 
RICKLIB.OLB, is created with the following attributes: 

size = 100(10) blocks 
ept = 128(10) entry points 
mnt = 64(10) module names 

The new file, RICKLIB.OLB, receives a version number that is l version 
greater than the latest version for the file. 

Both files, RICKLIB.OLB and SHEILA.OLB, reside in the 
directory file on SYO:. 

default 

14.6.2 Create Switch (/CR) 

Use the Create switch to allocate a contiguous library file on a 
direct access device (for example, a disk). It initializes the 
library file header, the entry point table, and the module name table. 

The /CR switch can be appended only to the output file specification. 
The format for specifying the Create switch is: 

outfile/CR:size:ept:mnt:libtype:infiletype 

outfile 

/CR 

: ept 

: mnt 

Specifies the library file being created. The default file type 
is .OLB if an object library is being created, .MLB if a macro 
library is being created~ or .ULB if a universal library is being 
created. 

Specifies the Create switch. 

Specifies the size of the library file in disk (256-word) blocks. 
The default size is 100(10) blocks. 

Specifies the number of entry point table (EPT) entries to 
allocate. The default value is 512(10) for object libraries. 
This parameter is always forced to O for macro libraries and 
universal libraries. Maximum number of entries is 4096(10). 

Specifies the number of 
allocate. The default 
entries is 4096(10). 

module name table 
value is 256(10). 

14-11 

(MNT) entries to 
Maximum number of 



LIBRARIAN UTILITY PROGRAM (LBR) 

: 1i btype 

Specifies the type of library to be created. Acceptable values ~ 
are OBJ for object libraries, MAC for macro libraries, and UNI ~-1~ 
for universal libraries. The default is the last value specified 
or implied with the /DF switch (see Section 14.6.4), or OBJ if 
/DF has not been specified. 

:infiletype 

Specifies the default input file type for the created universal 
library. If this value is not specified the default input file 
type for universal libraries is .UNI. This value is not defined 
for object or macro libraries. 

If the values specified for ept and mnt are not multiples of 64(10), 
EPT and MNT are automatically filled out to the next disk block 
boundary. 

Example 

LBR>RICKLIB/CR: :·128.: 64.: OBJ=SHEILA,LAURA,JENNY 

In this example, a combination of functions is performed. First, the 
library file RICKLIB.OLB is created in the default directory on SYO:. 
RICKLIB has the following attributes: 

size 
ept 
mnt 
type 

= 100(10) blocks (default size) 
128(10) entry points 

= 64(10) module names 
= .OBJ 

Second, object modules from the input files SHEILA.OBJ, LAURA.OBJ, and ~ 
JENNY.OBJ, which reside in the default directory on SYO:, are inserted ~·- ",. 
into the newly created library file. Insert is the default switch for 
input files {see Section 14.6.8). 

14.6.3 Delete Switch (/DE) 

Use the Delete switch to delete library modules and their associated 
entry points {global symbols) from a library file. Up to 15 library 
modules and their associated entry points can be deleted with one 
delete command. 

When LBR begins processing the /DE switch, it prints the following 
message on the initiating terminal: · 

MODULES DELETED: 

As modules are logically deleted from the library file, the module 
name is printed on the initiating terminal. See the example at the 
end of this section. 

If a specified library module is not contained in the library file, a 
message is printed on the initiating terminal, and the processing of 
the current command is terminated. This message is as follows: 

LBR -- *FATAL*-NO MODULE NAMED "name" 

The /DE switch can be appended only to the library file specifier. 

14-12 

Jti I ! $!i! H;:t !)! ; £2 Si! ¢4E 



LIBRARlAN UTILITY PROGRAM (LBR) 

When LBR deletes a module from a library file, the module is not 
physically removed from the file, but is marked for deletion. This 
means that, although the module is no longer accessible, the file 
space that the module once occupied is not available for use (unless 
the deleted module is the last module which was inserted). To 
physically remove the module from the file and make the freed space 
available for use, you must compress the library (see Section 14.6.1). 

The form for specifying the Delete switch is: 

outfile/DE:modulel[:module2 ••• :modulen] 

outfile 

Specifies the library file. 

/DE 

Specifies the Delete switch. 

: module 

Specifies the name of the module to be deleted. 

Example 

LBR>RICKLIB/DE:SHEILA:LAURA:JENNY 

MODULES DELETED: 

SHEILA 

LAURA 

JENNY 

In this example, the modules SHEILA, LAURA, and JENNY and their 
associated entry points are deleted from the latest version of library 
file SYO:RICKLIB.OLB. 

14.6.4 Default Switch (/DF) 

Use the Default switch to specify the default library file type. 
Acceptable values are OBJ for object libraries, MAC for macro 
libraries, and UNI for universal libraries. When a default library 
file type is not specified by the /OF switch, .OBJ is the default 
library file type. 

Specifying a default value: 

1. Sets the default file type argument for the Create switch 
(/CR) • 

2. Provides a file type default value of .MLB for macro 
libraries, .ULB for universal libraries, and .OLB for object 
libraries when opening an output (library) file, except in 
the cases of /CO and /CR. When /CO is specified, the default 
applies to the library input file. When /CR is specified, 
the default file type is .OLB if an object library is being 
created, .ULB if a universal library is being created, or 
.MLB if a macro library is being created. The /OF switch 
only affects the name of the file to be opened; thereafter, 
the library header record information is used to determine 
the type of library file being processed. 

14-13 



:a :: 

LIBRARIAN UTILITY PROGRAM (LBR) 

The /DF switch can be issued alone or appended to a library file 
specifier. The form for specifying the Default switch is: 

outfile/DF:filetype... ~ 

or 

/DF: file type 

out file 

Specifies the library file. 

/DF 

Specifies the Default switch. 

file type 

Specifies the default library file type: OBJ for object library 
files, MAC for macro library files, and UNI for universal library 
files. 

If a value other than OBJ, ULB, or MAC 
default library type will be set to 
following message will be displayed: 

is specified, the 
object libraries, 

LBR -- *FATAL*-INVALID LIBRARY TYPE SPECIFIED 

Examples 

LBR>/DF:MAC 
LBR>RICKLIB=inf ile 

File RICKLIB.MLB is opened for insertion. 

LBR>/DF:MAC 
LBR>RICKLIB/DF:OBJ=inf ile 

File RICKLIB.OLB is opened for insertion. 

LBR>/DF:MAC 
LBR>RICKLIB/CR 

Macro library RICKLIB.MLB is created. 

LBR>/DF:MAC 
LBR>RICKLIB/CR::::OBJ 

Object library RICKLIB.OLB is created. 

LBR>/DF 
LBR>TEMP/CO=RICKLIB 

current 
and the 

RICKLIB.OLB is opened for compression. If RICKLIB.OLB is an object 
library, the file TEMP.OLB is created to receive the compressed 
output. If RICKLIB.OLB is a macro library (a nonstandard use of the 
type .OLB), the file TEMP.MLB is created. 

LBR>/DF:OBJ 
LBR>TEMP/CO=RICKLIB.MLB 

Assuming that file RICKLIB.MLB is a macro library, the macro library 
file TEMP.MLB is created to receive the compressed output. 

14-14 

::: I ii JS 14" 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR>/DF': UN I 
LBR>RICHLIB=TEST 

~ile RICHLIB.ULB is opened for insertion. 

14.6.5 Delete Global Switch (/DG) 

Use the Deleite Global switch to delete a specified entry point (glo.bal 
symbol) from the EPT. Up to 15 entry points may be deleted with one 
command. This command does not affect the object module which 
contains the actual symbol definition. You may wish to delete an 
entry point if'a module to be inserted has the same entry point. 

When LBR be9ins processing the /DG switch, it prints the following 
message on the initiating terminal: 

ENTRY POINTS DELETED: 

As entry points are deleted from the library file, t~e entry point is 
printed on the initiating terminal. See the example at the end of 
this section. 

If a specified entry point is not contained in the EPT, a message is 
printed on the initiating terminal, and the processing of the current 
command is terminated. This message is as follows: 

LBR -- *FATAL* - NO ENTRY POINT NAMED "name" 

The /DG switch can only be appended to the library file specifier. 

The format for specifying the Delete Global switch is: 

outfile/DG:globall[:global2 ••• :globaln] 

outfllle 

Specifies the library file. 

/DG 

Specifies the Delete Global switch. 

global 

Specifies the name of the entry point to be deleted. 

Exam1~le 

LBR>RICKLIB/DG:SHEILA:LAURA:JENNY 

ENTRY POINTS DELETED: 

SHEILA 

LAURA 

JENNY 

In this example, the entry points SHEILA, LAURA, and JENNY are deleted 
from the latest version of the library file named SYO:RICKLIB.OLB. 

14-15 



1i UIS$ $!I iii 

LIBRARIAN UTILITY PROGRAM (LBR) 

14.6.6 Entry Point Switch (/EP) 

Use the Entry Point switch to control (include or exclude) the 
placement of global symbols in a library entry point table. The Entry 
Point switch can be specified in either a positive or negative form: 

/EP 
/-EP 
/NOEP 

Include entry points in the entry point table. 
Do not include entry points in the entry point table. 
Do-not include entry points in the entry point table. 

The positive form (/EP) causes all entry points in a module or modules 
to qe entered in the library entry point table. 

Either negative form (/-EP or /NOEP} provides for a module to be 
included in a library while excluding the entry points in that module 
from being entered in the library entry point table. 

/EP is the LBR default; if the switch is not specified, all entry 
points are entered into the library entry point table. 

The Entry Point switch has no effect on macro or universal libraries. 

The format for specifying the Entry Point switch is: 

outfile[ /EP ]=infile, ••• infilen 
[/-EP ] 
[/NOEP] 

or 

outfile=infile[ /EP] [, ••• infilen[/EP ]] 
[-/EP ] [-/EP] 
[/NOEP] [/NOEP] 

outfile 

Specifies the output file. When the entry point switch is 
applied to this file specification, LBR assumes each of the input 
files contains modules for which entry points are to be either 
included or excluded. 

inf ile 

Specifies an input file. When the Entry Point switch is applied 
to an input file specification, LBR assumes only the input files 
to which the switch is applied contain modules for which entry 
points are to be either included or excluded. 

/-EP is useful for including modules which contain duplicate entry 
point names in the same library. /-EP provides the means for entering 
a module in the library without having its entry points included in 
the library entry point table. 

/-EP is also useful in the case where the Task Builder uses only 
module names to search for modules in an object module library. In 
this case, entries in the library entry point table are not required. 
/-EP can be used to exclude entry points from being entered in the 
library entry point table. 

Depending on whether the Entry Point switch is applied to the output 
specifier or to an input specifier, it has either a global or local 
effect. 

14-16 

#ii 12 jJ ill ;4 $. 



\....J 

LIBRARIAN UTILITY PROGRAM (LBR) 

When applied to the output file specifier, the Entry Point switch has 
a global effect. That is, LBR either includes all entry points in the 
entry point table or excludes all entry points from being entered in 
the entry point table. 

When applied to an input file specifier, the Entry Point switch has a 
local effect. That is, LBR eith~r includes entry points in the entry 
point table or excludes entries from being entered in the entry point 
table for only those modules to which the switch is applied. 

The positive and negative forms of the switch may be applied to both 
the output and input file specifiers. For example, the effect of /EP 
applied to the output file can be overridden by applying /-EP to a 
specific input file. 

Entry points in an object module are not affected by the Entry Point 
switch; the Entry Point switch permits you to either include or 
exclude entries in the library entry point table. 

14.6.7 Extract Switch (/EX) 

Use the Extract switch to extract (read) one or more modules from an 
object or macro library file and write them into a specified output 
file~ If more than one module is extracted, the modules are 
concatenated in the output file. The extract operation has no effect 
on the library file from which the modules are extracted; that file 
remains intact. Up to eight modules may be specified in one extract 
operation for object and macro libraries; however, only one module 
may be specified in one extract operation for a universal library. 

For object and macro libraries, if no modules are specified on 
command line, all modules in the library are extracted 
concatenated in the output file in alphabetical order. 

the 
and 

For universal libraries, RMS fields cannot be extracted to a record 
oriented device, such as a terminal. 

The /EX switch may be applied only to input file specifiers. The 
format for specifying /EX is: 

outfile=infile/EX[:modulenamel ••• :modulenamen] 

outfile 

Specifies the file into which extracted modules are to be stored. 
The default file type for this file is .OBJ if the input modules 
are object modules; the default file type is .MAC if the input 
modules are macro modules. If the library is a universal 
library, the outfile retains the infile type of the module 
extracted. (However, you are allowed to extract only one 
universal library module at a time.) 

infile 

/EX 

Specifies the library file from which the modules are to be 
extracted. The default file type for this file is .ULB, .OLB, or 
.MLB, depending on the current default library type. 

Specifies the Extract switch. 

14-17 



e: a 

LIBRARIAN UTILITY PROGRAM (LBR) 

modulename 

Specifies the name of the module to be extracted from the 
library. 

Examples 

LBR>DRIVERS=RSXllM/EX:DXDRV:DKDRV:TTDRV 

The object modules DXDRV, DKDRV, and TTDRV are concatenated and 
written into the file DRIVERS.OBJ. 

LBR>TI:=[l,l]RSXMAC.SML/EX:QIO$S 

The macro QIO$S is written to the issuing terminal. 

LBR>TEST.OBS=TEST/EX 

All of the modules in the library TEST.OLB are written into the file 
TEST.OBS in alphabetical order. 

14.6.8 Insert Switch (/IN) for Object and Macro Libraries 

Use the Insert switch to insert library modules into a library file. 
Any number of input files can be specified. For object libraries and 
macro libraries, each input file can contain any number of 
concatenated input modules. For macro libraries, only first-level 
macro definitions are extracted from the input files. All text 
outside of the first-level macro definitions is ignored. LBR 
recognizes only upper-case characters in macro directives. (See 
Insert Switches for Universal Libraries, Section 14.6.8.1.) The /IN 
switch is the default library file option, and can be appended only to 
the library file specifier. 

If you attempt to insert an input module which already exists in the 
library file, the following message is printed on the initiating 
terminal: 

LBR -- *FATAL* DUPLICATE MODULE NAME "name" IN filename 

Likewise, if you attempt to insert a module and a module contains an 
entry point that duplicates one that is already in the EPT, the 
following message is printed on the initiating terminal: 

LBR -- *FATAL* DUPLICATE ENTRY POINT "name" IN filename 

The format for specifying the Insert switch is: 

outfile[/IN]=infilel[,infile2, ••• infilen] 

outf ile 

/IN 

Specifies the library file into which the input modules are to be 
inserted. The default file type depends on the current default 
(see Section 14.6.4). It is .OLB if the current default is 
object libraries, .MLB if the current default is macro libraries. 

Specifies the Insert switch. 

14-18 

IL 2.1 

_____ !"'·---. __ ._ 

~==- , -~, 

I:; 



LIBRARIAN UTILITY PROGRAM (LBR) 

inf ile 

Specifies the input file containing modules to be inserted into 
the library file. The default file type is .OBJ if outfile is an 
object library and .MAC if outfile is a macro library. 

Example 

LBR>RICKLIB/IN=SHEILA,LAURA,JENNY 

In this example, the modules contained in the latest versions of files 
SHEILA, LAURA, and JENNY, which reside in the default directory on 
SYO:, are inserted into the latest version of the library file 
RIC~:LIB, which also resides in the default directory on SYO:. The 
default filetype for files SHEILA, LAURA, and JENNY is .OBJ if RICKLIB 
is an object module library, or .MAC if RICKLIB is a macro library. 

14.6.8.l Insert Switch (/IN) for Universal Libraries - The Insert 
switch works basically the same for univer~al libraries as it does for 
object libraries and macro libraries. However, when inserting a file 
into a universal library, the /IN switch is normally applied to the 
input file" Furthermore, the user can specify module name and 
descriptive information as switch values in the command line. Also, 
LBR copies input file attributes to the module header. 

The high block indicator (F.HIBK of the file's FOB) and the end of 
file indicator (F.EFBK of the file's FOB) are included in the input 
file's user file attributes. LBR makes the high block indicator equal 
to the end of file indicator in the module header. This means that 
when a module is extracted to a file, that file will have as many 
blocks allocated as used. 

The Insert switch format for universal libraries is: 

outfile=infile/IN:name:op:op:op:op 

outf ile 

Specifies the universal library into which the file infile is to 
be inserted. 

inf ile 

/IN 

:name 

: op 

Specifies the input file to be inserted into outfile. The 
default for the file type is the value indicated at the universal 
library's creation time. (See Section 14.6.2.) 

Specifies the Insert switch. 

Optionally specifies the module name (up to 6 Radix-SO 
characters)" The default is the first 6 characters of the input 
file name. 

Specifies optional descriptive information (up 
characters) to be stored in the module header. 
null. If only part of the information set is 
preceding colons must be supplied. 

14-19 

to 6 Radix-SO 
The default is 

specified, all 



LIBRARIAN UTILITY PROGRAM (LBR) 

Example 

LBR>RICKLIB.ULB=JOE.TXT/IN:MODl:THIS:IS:JAN2:TEXT 

In this example, LBR 
RICKLIB.ULB as MOD!. 
the module header. 

inserts JOE.TXT into the universal library 
"THIS", "IS", "JAN2", and "TEXT" are stored in 

You can insert JOE.TXT without the Insert switch and its values. As a 
result, all the information normally specified by the switch values 
defaults as described above. 

14.6.9 List Switches (/LI, /LE, /FU) 

Use the List switches to produce a printed listing of the contents of 
a library file. Three switches allow you to select the type of 
listing desired. These switches are as follows: 

/LI 

/LE 

/FU 

Produces a listing of the names of all modules in the 
library file. 

Produces a listing of the names of all modules in the 
library file and their corresponding entry points. 

Produces a listing 
library file and 
each: that is, 
module-dependent 
sample listings of 

of the names of all modules in the 
gives a full module description for 

size, date of insertion, and 
information. Appendix B contains 
all three types of library listing. 

These switches can be appended only to the output file specifier or 
the list file specifier. 

The /LI switch is the default value; 
listing file has been specified 
included in the command. 

it need not be specified when a 
or when any other List switch is 

The format for specifying List switches is: 

outfile[,listfile]/switch(es) 

outfile 

Specifies the library file whose contents is to be listed. 

listfile 

Optionally specifies the listing file. If not specified, the 
listing is directed to the initiating terminal. 

/switch(es) 

Specifies the list option(s) selected. 

Examples 

LBR> RICK LIB/LI 

In this example, a listing of the names of all the modules contained 
in file SYO:RICKLIB.OLB is printed on the initiating terminal. 

14-20 

2 4 2$ SU 2 " 222 u: 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR>RICKLIB/LE 

In this example, a listing of the names of all the modules and their 
entry points (contained in file SYO:RICKLIB.OLB) is printed on the 
initiating terminal. 

LBR>RI CK LIB/FU 

In this example, a listing of the names of all the modules, and a full 
description of each module contained in file SYO:RICKLIB.OLB, is 
printed on the initiating terminal. 

LBR>DKl: [200,200]RICKLIB,LP.LST:/LE/FU 

In this example LBR creates file LP.LST in directory [200,200] on DKl: 
with a listing of all the module names, their entry points, and a full 
description of each module for file RICKLIB. 

14. 6 .1 O Modify Header Switch (/MB) 

The Modify Header switch pertains only to universal libraries and 
allows the user to modify the optional user-specified information in 
the module header. 

The format of the switch is: 

outfile/MH:module:op:op:op:op 

outJEi le 

/MH 

Specifies an output file for the universal library. 
type defaults to .ULB. 

Specifies the Modify Header switch. 

The file 

:module 

:op 

Specifies the name of the module whose descriptive information is 
to be modified. 

Specifies the optional user information (up to 6 Radix-50 
characters) to be stored in the module header. The default is 
null and indicates that the corresponding information field is 
not to be changed. Also, entering a pound sign (#) clears the 
corresponding information field. 

Exa:mple 

The optional descriptive information for module A of RICKLIB.ULB is: 

"MODA II "FCHCD" "OF" "FCH II 

The LBR command is: 

LBR>RICKLIB/MH:A:FCHTS:#:: 

14-21 



LIBRARIAN UTI.LITY PROGRAM (LBR) 

The optional descriptive information for Module A in file RICKLIB is 
changed to: 

"FCHTS" II II "OF" "FCH II 

14.6.11 Replace Switch (/RP) 

Use the Replace switch to replace modules in a library file with input 
modules of the same name. Any number of input files are allowed, and 
each file can contain any number of concatenated input modules. 

For ma~ro libraries, only first-level macro definitions are extracted 
from the replacement files. LBR recognizes only upper-case characters 
in macro directives. 

When a match occurs on a module name, the existing module is logically 
deleted, and all of its entries are removed from the EPT. 

As each module in the library file is replaced, a message is printed 
on the initiating terminal. This message, which contains the name of 
the module being replaced, is as follows: 

MODULE "name" REPLACED 

If the module to be replaced does not exist in the library file, LBR 
assumes that the input module is to be inserted and automatically 
inserts it without printing a message. 

The /RP switch can be specified in either of the following formats: 

• Global format - The /RP switch is appended to the library file 
specifier, and all of the input files are assumed to contain 
replacement modules. 

• Local format - The /RP switch is appended to an input file 
specifier, and only the file to which the /RP switch is 
appended is considered to contain replacement modules. 

Global Format 

outfile/RP=infilel[,infile2, ••• infilen] 

outfile 

/RP 

Specifies the library file. The default type depends on the 
current default (see Section 14.6.4). It is .OLB if the current 
default is object libraries, or .MLB if the current default is 
macro libraries. 

Specifies the Replace switch. 

inf ile 

Specifies the input file that contains replacement modules for 
the library file. The default type is .OBJ if outfile is an 
object library, or .MAC if it is a macro library. 

This format of the /RP switch allows you to specify a list of input 
files without having to append the /RP switch to each of them. To 
override the global function for a particular input file (that is, to 

14-22 

4 22iii4 24 " it iii 14 



LIBRARIAN UTILITY PROGRAM (LBR) 

instruct LBR to process a particular file in 
containing modules to be inserted but not replaced), 
/NORI? to the desired input file specifier. 

a list as a file 
append /-RP or 

Local Format 

outfile=infilel [/RP][, infile2 [/RP], ••• infilen [/RP]] 

outfile 

Specifies the library file. The local format default is the same 
as the global format default described above. 

inf ile 

/RP 

Specifies the input file which will replace modules in the output 
library file@ The local format default is the same as the global 
format default described above. 

Specifies the Replace switch. Appending the /RP switch to an 
input file specifier constitutes the local format of the switch. 
This overrides the LBR default (Insert) and instructs LBR to 
treat the module(s) contained in the specified file as modules to 
be replaced. 

Examples 

The files used in the following four examples, and the modules 
contained within each file, are depicted in Figure 14-8. For the 
examples, these files are assumed to reside in the default directory 
on the default device, and the initial state of the library file is 
assumed to be as shown in Figure 14-8. 

1. LBR>RICKLIB/RP=SHEILA,LAURA,JENNY 

MODULE "SHEILA" REPLACED 
MODULE "LAURAl" REPLACED 
MODULE "LAURA2" REPLACED 
MODULE "JENNYl" REPLACED 
MODULE "JENNY2" REPLACED 

In this example, the global format for the /RP switch is used. Object 
modules from the input files SHEILA, LAURA, and JENNY replace modules 
by the samH names in the 1i brary file named RICK LIB and modules JENNY3 
and LAURA3 are inserted. The resulting library file is shown in 
Figure 14-9. 

2. LBR>RICKLIB=CHRIS,SHEILA/RP 

MODULE "SHEILA" REPLACED 

In this example, the local format of the /RP switch is used. The 
object module SHEILA from file SHEILA is replaced in the library file 
RICKLIB. The object modules in the file CHRIS are inserted in the 
library file. (See Insert switch in Section 14.4.8.) The resulting 
library file is shown in Figure 14-10. 

14-23 



111111• 

LIBRARIAN UTILITY PROGRAM (LBR) 

3. LBR>RICKLIB/RP=SHEILA,LAURA,JENNY,CHRIS/-RP 

MODULE "SHEILA II REPLACED 
MODULE "LAURAl" REPLACED 
MODULE "LAURA2" REPLACED 
MODULE "JENNYl" REPLACED 
MODULE "JENNY2" REPLACED 

In this example, the /-RP switch is used to override the global format 
of the command. Object modules in files SHEILA, LAURA, and JENNY are 
processed as modules to be replaced, and file CHRIS is processed as a 
file which contains modules to be inserted. The resulting library 
file is shown in Figure 14-11. 

4. LBR>RICKLIB/RP=SHEILA,LAURA/-RP,JENNY 

MODULE "SHEILA" REPLACED 
LBR -- *FATAL* -- DUPLICATE MODULE "LAURAl" IN LAURA.OBJ;! 

In this example, only module SHEILA from file SHEILA was replaced. 
The user specified that the modules in file LAURA not be replaced 
(/-RP), but inserted. One of the modules contained in file LAURA 
duplicated an already existing module in file RICKLIB (see Figure 
14-8). Therefore, LBR issued the fatal error message and terminated 
the processing of the current command. 

Output 
Library File Input Files 

File Name RICKLIB.OLB:l SHEILA.OBJ:! LAURA.OBJ:! JENNY.OBJ:! CHRIS. OBJ: 1 

JENNY! SHEILA LAURA! JENNY! CHRIS! 

Object JENNY2 LAURA2 JENNY2 CHRIS2 

Modules LAURA! LAURA3 JENNY3 

LAURA2 

SHEILA 

Figure 14-8 Sample Files Used in LBR Examples 1-4 

14-24 

I £ t $!$ I 2 22 

"-

a:: 



\..,l 

LIBRARIAN UTILITY PROGRAM (LBR) 

RICKLIB.OLB;l 

JENNY! 

JENNY2 

JENNY3 * 

LAURA! 

LAURA2 

LAURA3 * 

SHEILA 

*These modules did not exist on the 
library file prior to the execution of 
this example, but they did exist on the 
input files. LBR, therefore, assumed 
that they were to be inserted. Since 
LBR handled these modules as a normal 
insert, no message was printed on the 
input terminal. 

Figure 14-9 Output Library File After Execution of Example 1 

RICKLIB.OLB;l 

CHRISl ** 

CHRIS2 ** 

JENNYl 

JENNY2 

LAURA! 

LAURA2 

* 

*This module replaced 

**These modules inserted 

Figure 14-10 Output Library File After Execution of Example 2 

14-25 



4 

LIBRARIAN UTILITY PROGRAM (LBR) 

RICKLIB.OLB;l 

CHRIS! ** 

CHRIS2 ** 
JENNY! 

JENNY2 

JENNY3 * 

LAURA! 

LAURA2 

LAURA3 * 
SHEILA 

*These modules were inserted by default. 

**These modules were specified to be 
inserted. Had a module of the same name 
been present, a fatal error message 
would have been issued. See Example 4 
above. 

Figure 14-11 Output Library File After Execution of Example 3 

14.6.11.1 Replace Switch (/RP) for Universal Libraries - Use the /RP 
switch for universal libraries in the same way as for macro and object 
libraries. In addition, you can specify the same values for the 
Replace switch as for the Insert switch for universal libraries. (See 
Section 14.6.8.1). However, you can specify the /RP switch with 
either the infile or the outflle. (See the example below}. 

The global Replace switch format for universal libraries is: 

outfile/RP:name:op:op:op:op=infile[,infile2, •••• infilen] 

The local Replace switch format for universal libraries is: 

outfile=infile/RP:name:op:op:op:op[,infile2 •••• infilen] 

outfile 

Specifies the universal library file. 

inf ile 

/RP 

Specifies the input file which will replace modules in the 
library file. The default for the file type is the value 
indicated at the universal library's creation time. (See Section 
14.6.2). 

Specifies the Replace switch. 

14-26 

z 

~ 

·~ 

a a p;mz 



: name 

: op 

LIBRARIAN UTILITY PROGRAM (LBR) 

Optionally specifies the module name to be replaced (up to 6 
Radix-SO characters). The default is the first six characters of 
the inf ile name. 

Specifies optional descriptive information (up 
characters) to be stored in the module header. 
null. If only part of the information set is 
preceding colons must be suppliedo 

to 6 Radix-SO 
The default is 
specified all 

Exam1»le 

LBR)TEXT.ULB=DEBBIE.TXT/RP::THIS:IS:JAN3:UPDATE 

MODULE "DEBBIE" REPLACED 

In this example, LBR replaces the DEBBIE module in the universal 
library TEXT.ULB with an updated module from file DEBBIE.TXT. The 
date of replacement is specified by the user optional information and 
inserted in the module header. Note that the optional name is 
omitted. 

The initial state of the library file is shown in Figure 14-12. The 
resulting library file is shown in Figure 14-13. 

Output 
Library File Input Files 

File Name TEXT.ULB;l DEBBIE.TXT 

Modules DEBBIE 
BERNrn 

Figure 14-12 Sample Files for Universal Library Replace Example 

TEXT.ULB;l 

DEBBIE * 
BERNIE 

*The module DEBBIE was replaced. If a 
different inf ile were specified, that 
file would become module DEBBIE and 
occupy the same location in TEXT.ULB. 

Figure 14-13 Output Library File After Execution of 
Universal Library Replace Example 

14.6Dl2 Spool Switch (/SP) 

The Spool switch is the list file default switch. Whether the switch 
is specified or not, the results are the same, that is, the listing 
file is spooled to the line printer. 

14-27 



IS 

LIBRARIAN UTILITY PROGRAM (LBR) 

After the listing file is created, a request is made to the print 
spooler task to print the spooled file; printing is performed 
asynchronously (see Appendix C for a description of the spooler task). 

The automatic printing of the listing file can be inhibited by 
specifying a minus sign (-) or the letters NO between the slash (/) 
and the SP in the spool switch (/-SP or /NOSP). This causes the 
listing file to be created, but the request to the print spooler task 
is not issued. Therefore, the file is not automatically printed. 

The /SP switch can only be appended to the list file specifier. 

The format for specifying the Spool switch is: 

out f i 1 e , 1 i st f i 1 e [ISP] o r [I -s P] 

outf i 1-e 

Specifies the library file. 

listfile 

Specifies the listing file. 

/SP or /-SP 

Specifies the Spool switch. 

Example 

LBR>RICKLIB/DE:SHEILA,RICKLST/-SP 

In this example, the following occurs: 

1. The module SHEILA and its associated entry points are deleted 
from the library file SY:RICKLIB. 

2. The listing of the contents of the resulting library file 
RICKLIB is written to the list file SY:RICKLST.LST. Since 
the /-SP switch is specified, the file is not automatically 
printed. 

14.6.13 Selective Search Switch (/SS) 

Use the Selective Search switch to set the selective search attribute 
bit in the module header of object modules as they are inserted into 
an object library. The switch has no effect when applied to modules 
being inserted into a macro library. The switch may be specified only 
on input files for insertion or replacement operations, and it affects 
all modules in the input file to which it is applied. 

Object modules with the selective search attribute are given special 
treatment by the Task Builder. Global symbols defined in modules with 
the selective search attribute are only included in the Task Builder's 
symbol table if they are previously referenced by other modules. 
Thus, only referenced symbols will be listed with the module in the 
Task Builder memory allocation file, thereby reducing task build time. 
The /SS switch should only be applied to object files whose modules 
contain only absolute (not relocatable) symbol definitions. See the 
RSX-llM/M-PLUS Task Builder Manual for more information. 

14-28 

ii 404 iii 22 ii'* 



LIBRARIAN UTILITY PROGRAM (LBR) 

The format for specifying the Selective Search switch is: 

outfile=infilel/SS[,infile2[/SS], ••• infilen[/SS]] 

outf ile 

Specifies the library file. 

inf i le 

/SS 

Specifies the input file that contains modules to be selectively 
searchE!d. 

Specifies the Selective Search switch. 

14. 6 .14 Squeeze Switch (/SZ) 

Use the Squeeze switch to reduce the size of macro definitions by 
eliminating all trailing blanks and tabs, blank lines, and comments 
from macro text. The /SZ switch is used to conserve memory in the 
MACR0-11 Assembler and to reduce the size of macro library files. The 
Squeeze switch has no effect on object libraries or universal 
libra1ries. 

The /SZ switch can be specified in either of the following formats: 

• Global format - The /SZ switch is appended to the library file 
specifier, and all of the input files are assumed to contain 
modules to be squeezed. 

• Local format - The /SZ switch is appended to an input file 
specifier, and only the file to which the /SZ switch is 
appended is considered to contain modules to be squeezed. 

Globa1l Format 

outfile/SZ=infilel[,infile2, ••• infilen] 

outfi.le 

Specifies the library file. 

/SZ 

Specifies the Squeeze switch. 

inf ile 

Specifies the input file that contains modules to be squeezed 
during insertion into the library file. 

Use this format of the /SZ switch to specify a list of input files 
without having to append the /SZ switch to each of them. To override 
the global function for a particular input file (that is, to instruct 
LBR to process a particular file in a list as a file containing 
modules to be inserted but not squeezed), append /-SZ or /NOSZ to the 
desired input file specifier. 

14-29 



u !( ::: 

LIBRARIAll UTILITY PROGRAM (LBR) 

Local Format 

outfile=infilel/SZ[,infile2[/SZ], ••• infilen[/SZ]] 

out file 

Specifies the library file. 

inf ile 

/SZ 

Specifies the file that contains modules to be squeezed during 
insertion into the library file. 

Specifies the Squeeze switch. 

LBR uses the following algorithm on each line to be squeezed and then 
inserts the resulting line into the library file: 

1. The line is examined for the rightmost semicolon (;). 

2. If a semicolon is located, it is deleted, along with all i-~ 
trailing characters in the line. 

3. All trailing blanks and tabs in the line are deleted. 

4. If the resulting line is null, nothing is transferred to the 
library file. 

If the line contains a semicolon embedded in meaningful (non-comment) 
text and you want comments squeezed, code a dummy comment for that 
line. /SZ uses only this rightmost comment during squeeze processing. 

Example 

Figure 14-14 illustrates the use of the LBR /SZ switch. A file 
containing input text to be squeezed is illustrated, along with the 
text actually inserted into the library file after the squeeze 
operation has been completed. 

14-30 

;:: 45\ 



'-'/' 

•*** I 

LBL: 

LIBRARIAN UTILITY PROGRAM (LBR) 

BEFORE BEING SQUEEZED 

.MACRO MOVSTR RX,RY,?I.BL 

- ·- NOTE : 
BOTH ARGUMENTS MUST BE REGISTERS 

MOVB 
BNE 
DEC 

(RX)+, (RY)+ 
LBL 
RY 

;MOVE A CHARACTER 
;CONTINUE UNTIL NULL SEEN 
;BACKUP OUTPUT PTR TO NULL 

;END OF MOVSTR 
.ENDM 

• ***' , 
; 
LBL: 

AFTER BEING SQUEEZED 

.MACRO MOVSTR RX,RY,?LBL 
- - NOTE : 
BOTH ARGUMENTS MUST BE REGISTERS 
MOVB (RX)+,(RY)+ 
BNE LBL 
DEC RY 
.ENDM 

Figure 14-14 MACRO Listing Before 
and After Running LBR with /SZ Switch 

14.7 COMBINING LIBRARY FUNCTIONS 

Two or more library functions may be requested in the same command 
line. The only exceptions are that /CO cannot be requested with 
anything else except /LI, and /CR and /DE cannot be specified in the 
same command linee 

Functions are performed in the following order: 

1. /DF 
2. /CR 
3. /DE 
4. /DG 
s. /MH 
6. /IN, /RP, /SS, /SZ, /EP 
7. /CO 
8. /EX 
9. /LI, /LE, /FU, /SP 

Example 

LBR>FILE/DE:XYZ:$A,LP.LST:/LE/FU=MODX,MODY/RP 

Functions are performed in order, as: 

1. Delete modules XYZ and $A. 

2. Insert all modules from MODX and replace duplicate modules of 
MODY. 

3. P reduce a listing of the resultant library file on the line 
printer with full module descriptions and all entry points. 

14-31 



LIBRARIAN UTILITY PROGRAM (LBR) 

14.8 LBR RESTRICTIONS 

The following restrictions apply when using LBR: 

• Limit of 65,536(10) words per module. 

• Limit of 65,536(10) blocks per library. 

• Tables should 
Expanding table 
the entire file. 

be allocated 
allocations 

to maximum anticipated size. 
requires using Compress to copy 

• A fatal error results if an attempt is made to insert a module 
into a library that contains a module with a different name 
from, but with the same entry point as, the inserted module. 
For further information, refer to the discussion of the /IN 
switch in Section 14.6.8. 

• The use of wildcards in file specifiers is not allowed (that 
is, forms such as *.OBJ, where the * indicates all modules 
with type .OBJ). 

There must be enough space in the library's tables for both the 
modules being replaced and their replacements, since the new modules 
are entered and the old modules are logically but not physically 
deleted. 

14.9 LBR ERROR MESSAGES 

There are two types of LBR error messages: diagnostic and fatal. 

Diagnostic error messages describe a condition that exists that 
requires consideration, but the nature of the condition does not 
warrant termination of the command. Diagnostic messages are issued to 
TI:, in the format: 

LBR -- *DIAG* - message 

Fatal error messages describe a condition that exists that caused LBR 
to terminate the processing of a command. When this occurs, LBR 
returns to the highest level of command input. For example, if the 
command is entered in response to the MCR prompt, that is, 

>LBR command 

then, LBR issues the fatal error message and exits. If, however, the 
command is entered in response to the LBR prompt, that is, 

LBR>command 

LBR issues the fatal error message and reprompts. 

Fatal error messages are issued to TI:, in the format: 

LBR -- *FATAL* - message 

If a fatal error occurs during the processing of an indirect command 
file, the command file is closed, the fatal error message - followed 
by the command line in error - is issued to TI:, and LBR returns to 
the highest level of command input. 

14-32 

Ult 5 Cl $ 12 4 Li 221 I 14 



\....-·· 

JUBRARIAN UTILITY PROGRAM (LBR) 

14.9.l Effect of Fatal Errors on Library Files 

The status of a library file after fatal errors is: 

1. In general, output errors leave 
indeterminate state. 

the library in an 

2. During the deletion process, the library is rewritten prior 
to the printing of the individual module-/entry-point-deleted 
messages .. 

3. During the replacement process, 
prior to the printing of the 
messages .. 

the library is rewritten 
individual module-replaced 

4. During the insert process, the library is rewritten after the 
insertion of all modules in each individual input file, that 
is, between input files. 

14.9.2 LBR Error Messages 

LBR BAD LIBRARY HEADER 

Explanation: Either the file is not a library file or the file 
is corrupted .. 

User Action: 

• If the file is not a library file, reenter the command line 
with a proper library file specified. 

• If the file is a proper library file, the user should run the 
file structure verification utility (VFY) against the volume 
to determine if it is corrupted (see Chapter 13). 

• If the volume is corrupted, it must be reconstructed before 
it can be used. 

LBR -- CANNOT MODIFY HEADER 

Explanation: An attempt was made to modify the module header of 
a module in an object library or macro library. No change is 
made to the module header. 

User Action: Reenter the command line, specifying a module in a 
universal library. 

14-33 



L!S 

LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- COMMAND I/O ERROR 

Explanation: One of the following conditions may exist: 

• A problem exists on the physical device (for example, 
cycled up). 

not 

• The file is corrupted or the format is incorrect (for 
example, record length exceeds 132 bytes). 

User Action: Determine which of the above conditions caused 
the message and correct that condition. Reenter the command 
line. 

LBR -- COMMAND SYNTAX ERROR 
command line 

Explanation: A command was entered in a format that does not 
conform to syntax rules. 

User Action: Reenter the command line, using the correct syntax. 

LBR -- DUPLICATE ENTRY POINT NAME "name" IN filename 

Explanation: An attempt has been made to insert a module into a 
library file when both contain an identically-named entry point. 

User Action: Determine if the specified input file is the 
correct file. If not, reenter the command line, specifying the 
correct input file. If the input file is the correct file, the 
user may delete the duplicate entry point from the library and 
reenter the command line. 

LBR -- DUPLICATE MODULE NAME "name" IN filename 

Explanation: An attempt has 
replacement) a module into a 
module with the specified name. 

been made to insert (without 
library that already contains a 

User Action: Determine if the specified input file is the 
correct file. If the input file is correct, decide whether to 
delete the duplicate module from the library file and insert the 
new one, or replace the duplicate module by rerunning LBR with 
the /RP switch appended to the input file specifier. 

LBR -- EPT OR MNT EXCEEDED IN filename 

Explanation: The EPT or MNT table limit has been reached during 
the execution of an Insert or Replace command. 

User Action: Copy the library, increasing the table space via 
the Compress switch. Reenter the command line. 

14-34 

;: !iii 14 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- EPT OR MN'l' SPACE EXCEEDED IN COMPRESS 

Explanation: An EPT or MNT table size was specified for the 
output library file that is not large enough to contain the EPT 
or MNT entrjes used in the input library file. 

User Action: Reenter the command line with a larger EPT or MNT 
table size specified. 

LBR -- ERROR IN LIBRARY TABLES, FILE filename 

Explanation: The library file is corrupted or is not a library 
file. 

User Action: If the file is corrupted, no recovery is possible; 
the file must be reconstructed. If the file is not a library 
file, reenter the command line with the correct library file 
specified. 

LBR -- EXACTLY ONE INPUT FILE MUST APPEAR WITH /CO 

Explanation: No file or more than one input library file was 
specified when using the /CO switch. 

User Action: Reenter the command line with only one input file 
specified. 

LBR -- FATAL COMPRESS ERROR 

Explanation: The input library file is corrupted or is not a 
library file. 

User Action: No recovery is possible. The file in question must 
be reconstructed. 

LBR -- GET TIME FAILED 

Explanation: This error occurs when LBR attempts to execute a 
Get Time Parameters directive and fails. The error is caused by 
a system malfunction. 

User Action: Reenter the command line. If the problem persists, 
submit a Software Performance Report along with the related 
console dialogue and any other pertinent information. 

LBR -- ILLEGAL DEVICE/VOLUME 
command line 

Explanation: Device specifier entered does not conform to syntax 
rules. A device specifier consists of 2 ASCII characters, 
followed by one or two optional octal digits. 

User Action: Reenter the command line with the correct device 
syntax specified. 

14-35 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- ILLEGAL DIRECTORY 
command line 

Explanation: UFO entered does not conform to syntax rules. UFO 
syntax consists of a left square bracket, followed by one to 
three octal digits, a comma, one to three octal digits, and 
terminated by a right square bracket. 

User Action: Reenter the command line with the correct UFO 
syntax. 

LBR -- ILLEGAL FILENAME 
command line 

Explanation: One of the following was entered: 

• A file specifier that contains a wildcard. 

• A file specifier that contains neither a file name nor a 
file type. 

User Action: Reenter the command line correctly. 

LBR -- ILLEGAL GET COMMAND LINE ERROR CODE 

Explanation: 
command line. 

The system, for some reason, is unable 
This is an internal system failure. 

to read a 

User Action: Reenter the command line. If the problem persists, 
submit a Software Performance Report along with the related 
console dialogue and any other pertinent information. 

LBR -- ILLEGAL SWITCH 
command line 

Explanation: A non-LBR switch was specified or a legal switch 
was specified in an invalid context. 

User Action: Reenter the command line with the correct switch 
specification. 

LBR -- ILLEGAL SWITCH COMBINATION 

Explanation: 
combination. 

Switches were entered that cannot be executed 
See Section 14.7. 

in 

User Action: Reenter the command line, specifying the switches 
in the proper sequence. 

LBR -- INDIRECT COMMAND SYNTAX ERROR 
command line 

Explanation: An indirect file was specified in a format that 
does not conform to syntax rules. 

User Action: Reenter the command line with the correct syntax. 

14-36 

11''-•ll••••t•U•••tll .. i••••••••••••••••••••••t •&4,. ••••••••••••••t••••-.i;; .. :• 



\..,i 

LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- INDIRECT FILE DEPTH EXCEEDED 
command line 

Explanation: An attempt has been made to exceed one level of 
indirect command files. 

User Action: Rerun the job with only one level of indirect 
command file. 

LBR -- INDIRECT FILE OPEN FAILURE 
command line 

Explanation: 
as specified. 

The requested indirect command file does not 
One of the following conditions may exist: 

• The user directory area is protected against access • 

exist 

• A problem exists on the physical device (for example, device 
cycled down). 

• 
• 
• 
• 

The volume is not mounted • 

The specified file directory does not exist • 

The file does not exist as specified • 

Insufficient dynamic memory in Executive • 

User Action: Determine which of the above conditions caused the 
message and correct that condition. Reenter the command line. 

LBR -- INPUT ERROR ON filename 

Explanation: The file system, while attempting to process an 
input file, has detected an error. A problem exists with the 
physical device (for example, the device cycled down}. 

User Action: Reenter the command line. 

LBR -- INSUFFICIENT DYNAMIC MEMORY TO CONTINUE 

Explanation: The partition in which LBR is running is too small. 

User Action: Remove the task (LBR), install it in a larger 
partition, and reenter the command line. (See the MCR RUN /INC 
command description in the RSX-llM/M-PLUS MCR Operations Manual.) 

LBR -- INVALID EPT AND/OR MNT SPECIFICATION 

Explanation: An EPT or MNT value greater than 4096(10) was 
entered in a /CR or /CO switch. 

User Action: Reenter the command line with the correct value 
specified. 

14-37 



! 

LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- INVALID MODULE FORMAT, insertion module 

Explanation: An attempt was made to insert a macro module into 
an object library. 

User Action: Determine if an object file was to be inserted into 
an object library. If so, reenter the command line with the 
correct object file. If a macro library was to receive the 
insertion, reenter the command line with the correct macro 
library. 

LBR -- INVALID FORMAT, INPUT FILE filename 

Explanation: The format of the specified input file is not the 
standard format for a macro source or object file, or the input 
file is corrupted. 

User Action: Reenter the command line with the correct input 
file specified. 

LBR -- INVALID OPERATION FOR OBJECT AND MACRO LIBRARIES 

Explanation: Module header information was supplied for an 
object library or macro library in an Insert or Replace command. 

User Action: No action required. The command will be executed 
as if the information had not been supplied. 

LBR -- INVALID LIBRARY TYPE SPECIFIED 

Explanation: An il1egal library type was specified when using 
the Create or Default switch. The values OBJ, MAC, and UNI are 
the only valid specifications. See Sections 14.6.2 and 14.6.4. 

User Action: Reenter the command line with OBJ, MAC, or UNI 
specified. 

LBR -- INVALID NAME -- "name" 

Explantion: A module name that contains a non-Radix-SO character 
has been specified for deletion, insertion, or replacemant of a 
module in a universal library or in a macro module, or a module 
name has been specified for modification of a universal module 
header. Radix-SO characters consist of the letters A through z, 
the numbers O through 9, and the special characters period (.) 
and dollar sign ($). 

User Action: Reenter the command line with a valid name. 

LBR -- INVALID RADSO CHARACTER IN "character string" 

Explanation: A character supplied as part of information when 
using the Insert, Replace, or Modify Header switch for a 
universal library is not a Radix-SO character. 

User Action: Determine which character of the corresponding 
switch value is not a Radix-SO character. Reenter a Radix-50 
character in place of the invalid character. 

14-38 

~--••t•Sllll l••.t••4•&••.---------------------·llm•••••••••••lllllllli •:a•••:• ... llljlll4f-' 



\._,· 

LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- I/O ERROR ON INPUT FILE filename 

Explanation: A read error has occurred on an input file. One of 
the following conditions may exist: 

• A problem exists on the physical device (for example, not 
cycled up). 

• The file is corrupted or the format is wrong (record length 
exceeds 132 bytes). 

User Action: Determine which of the above conditions caused the 
message and correct that condition. Reenter that command line. 

LBR -- LIBRARY FILE SPECIFICATION MISSING 

Explanation: A command was entered without specifying the 
library file. 

User Action: Reenter the command line with the library file 
specHied. 

LBR -- MARK FOR DELETE FAILURE ON LBR WORK FILE 

Explanation: When LBR begins processing commands, it 
automatically creates a work file and marks it for delete. For 
some reason, this marking for delete failed. 

The w<>rk file constitutes a lost file, because it does not appear 
in any file directory. 

User Action: The file may be deleted by running the file 
structure verification utility (VFY) (see Chapter 13). 

LBR -- MULTIPLE MODULE EXTRACTIONS NOT PERMITTED FOR UNV MODULES 

Explanation: An attempt was made to extract more than one module 
from a universal library. The first module specified is 
extracted but others are ignored. 

User Action: Reenter the command line for each additional 
extra<::tion. 

LBR -- NO ENTRY POINT NAMED "name" 

Explanation: The entry point to be deleted is not in the 
specified library file. 

User Action: Determine if the entry point is misspelled or if 
the wrong library file is specified. Reenter the command line 
with the entry point correctly specified. 

14-39 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR NO MODULE NAMED "module" 

Explanation: The module to be deleted is not in the specified 
library file. 

User Action: Determine if the module name is misspelled or if 
the wrong library file is specified. Reenter the command line 
with the module name correctly specified. 

LBR -- OPEN FAILURE ON FILE filename 

Explanation: 
has detected 
exist: 

The file system, while attempting to open a file, 
an error. One of the following conditions may 

• The user directory area is protected against an open. 

• 

• 
• 

A problem exists on the physical device (for example, 
cycled down). 

The volume is not mounted • 

The specified file directory does not exist • 

• The file does not exist as specified. 

device 

• Insufficient contiguous space to allocate the library file 
(Compress and Create only). 

• Insufficient dynamic memory in Executive. 

User Action: Determine which of the above conditions caused the 
message and correct that condition. Reenter that command line. 

LBR -- OPEN FAILURE ON LBR WORK FILE 

Explanation: The file system, while attempting to open the LBR 
work file, has detected an error. The LBR work file is created 
on the volume from which LBR was installed. One of the following 
conditions may exist: 

• The volume is full. 

• The device is write-protected • 

• A problem exists with the physical device. 

• Insufficient dynamic memory in Executive. 

User Action: Determine which of the above conditions caused the 
message and correct that condition. Reenter the command line. 

14-40 

t ii 4 Id 3iS! 1 J&!H ! ; 4 ii I J5 a 2 JS 40; 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- OUTPUT ERROR ON filename 

Explanation: A write error has occurred on the output file. One 
of the following conditions may exist: 

• The volume is full. 

• The device is write-protected~ 

• The hardware has failed. 

User Action: If the volume is full, delete all unnecessary files 
and rerun LBR. If the device is write-protected, write-enable 
the device, and reenter the command line. If the hardware has 
failed, swap devices and reenter the command line or wait until 
the device is repaired and rerun LBR. 

LBR -- POSITIONING ERROR ON filename 

Explanation: The device is write-locked. 

User Action: If the device is write-locked, write-enable it and 
reenter the command line. 

LBR -·- RMS l!"'I LES CANNOT BE EXTRACTED TO RECORD ORIENTED DEVICE 

Explanation: An attempt was made to extract to a record-oriented 
device a module inserted from a non-sequential RMS file. This is 
a fatal error message. 

User Action: Extract the file to a disk and then use an RMS 
conversion to make an RMS sequential file. 

LBR ··- TOO MANY OUTPUT FI LES SPEC! FIED 

Explanation: More than two output files were specified; LBR 
makes the following assumptions: 

• The first output file specified is the output library file. 

• The second output file specified is the listing file. 

• The third through n files specified to the left of the equal 
sign are ignored. 

User Action: No action is required. LBR continues as though the 
extra file(s) were not specifiede 

LBR -- VIRTUAL STORAGE REQUIREMENTS EXCEED 65536 WORDS 

Explanation: This error may occur with maximum size libraries in 
conjunction with a single command line which logically deletes a 
large number of modules and entry points, and continues to 
replace them with an equally large number of modules and entry 
points having highly dissimilar names. Normally, this message 
indicates some sort of internal system error. 

User Action: 
line into 
operations. 

Rerun the job, but divide the 
several smaller command lines 

14-41 

complicated command 
that do the same 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- WORK FILE I/O ERROR 

L LU 2 I I 

Explanation: A write error has occurred on the LBR work file. 
One of the following conditions may exist: 

• The volume is full. 

• The device is write-protected. 

• The hardware has failed. 

User Action: If the volume is full, delete all unnecessary files 
and rerun. If the device is write-protected, write enable the 
device, and reenter the command line. If the hardware has 
failed, swap devices and retry the command, or wait until the 
device is repaired and rerun LBR. 

14-42 

pre: 



\.,J 

"'-"' 

CHAPTER 15 

FILE DUMP UTILITY (DMP) 

15.l INTRODUCTION TO DMP 

The F:ile Dump utility (DMP) program produces a printed listing of the 
contents of a file or volume. The listing can be directed to any 
suitable output device line printer, terminal, magnetic tape, 
DECtape, or disk. DMP runs in two modes, file mode and device mode. 

DMP nc:>rmally handles physical records of up to 2048 bytes in length. 
If a physical record is larger than 2048 bytes, use the following 
procedure: 

:>RUN $DMP /INC=n 

where n is at least equal to the number of words in the record minus 
1024. The value of n is interpreted as an octal number unless it is 
followed by a decimal point. 

DMP can be invoked using any of the methods described in Chapter 1. 

15.1.l File Mode 

In file mode, one input file is specified and all, or a specified 
range (see /BL:n~m) of virtual blocks of the named file is dumped. 
The input device must be a Files-11 structured volume and must be 
mounted via the MCR Mount command. M-PLUS users must mount the volume 
via the MCR Mount/Foriegn command. (For a description of MOUNT, see 
the RSX-llM/M-PLUS MCR Operations Manual.) 

A virtual block refers to a block of data in a file. Virtual blocks 
are numbered sequentially from l through n, where n is the total 
number of virtual blocks in the file. 

15.1.2 Device Mode 

In device mode, only the input device is specified, and a specified 
range (/BL:n:m) of logical blocks is dumped. The /BL:n:m switch is a 
required parameter. 

A logical block refers to an actual 512-byte block on disk and 
DECtape, and physical records on magnetic tape and cassette. Logical 
blocks are numbered from 0 to n-1, where n is the total number of 
logical blocks on the device. 

When DMP is in device mode, the volume to be dumped must not be 
mounted via the MCR Mount command. 

15-1 



1~tzaa 2 I 

FILE DUMP UTILITY (DMP) 

15.2 DMP COMMAND STRING 

Enter DMP command strings in the following format: 

[outfile] [/sw] [/sw ••• ] [=infile] [/sw] [/sw ••• ] 

outfile 

/sw 

Specifies the output file. If the output file name and file type 
are null, DMP creates the file DMPFIL.DMP. Later defaults for 
DMPFIL.DMP will take the version number n+l. 

Specifies one of the switches listed in Section 15.3. Unless 
otherwise indicated in a switch description, all switches can be 
applied either to the input file or to the output file with equal 
effect. 

inf ile 

Specifies the input file. The equal sign and the input file name ~.··., 
and file type are required; DMP does not provide a default for Iv 
either the file name or type. The input file version number 
defaults to the latest version. 

For a complete description of file specifications see Section 1.3. 

15.3 DMP SWITCHES 

DMP switch specifications consist of a slash (/} followed by a switch 1' 
name, optionally followed by a value, which is separated from the . ' ··r 
switch by a colon (:}. DMP functions are implemented by means of the 
switches described in Table 15-1. 

Switch 

Default 

/AS 

i!Jiiiii ii iii I i!i!L! ; ii 

Table 15-1 
DMP Switches 

Description 

Word mode octal dump. 

Specifies that the data should be dumped in 
ASCII mode. The control characters (0-37} 
are printed as ~, followed by the alphabetic 
character corresponding to the character code 
plus 100. For example, bell (code 7) is 
printed as ~G (code 107). Lower case 
characters (140-177} are printed as %, 
followed by the corresponding upper case 
character (character code minus 40). 

(continued on next page} 

15-2 

124 " 2 SS a au 



Switch 

FILE DUMP UTILITY (DMP) 

Table 15-1 (Cont.) 
DMP Switches 

Description 

~··~--------------~---t---------------------~--------------------~---------t 

/BA:n:m 

/BL:: n: m 

/BY 

Specifies a 2-word base block address, where 
n = high-order base block address (octal), 
and m =low-order base block address (octal). 
When specified, all future block numbers will 
be added to this value to obtain an effective 
block number. This switch is useful for 
specifying block numbers that exceed 16 bits. 
For example: 

DMP>/BA:l:O 

specifies that all future block numbers will 
be relative to 65536(10) (200000(8)). 

DMP>/BA:O:O 

clears the base address. 

When the /BA switch appears in a command 
line, no blocks are dumped; the only result 
of the command is to set the base address. 

Specifies the range of blocks to be dumped, 
where n is the first block and m is the last 
block. In file mode only, the /BL switch is 
not required. If /BL is not specified, DMP 
will dump all blocks of the specified file, 
relative to the current address. 

If the /BL:n:m switch is specified in file 
mode, it specifies the range of virtual 
blocks to be dumped. If the /BL:n:m switch 
is specified as /BL:O in file mode, no 
virtual blocks are dumped. This is useful 
for dumping only the header portion of the 
f il e (see /HD) • 

The /BL:n:m switch is a required parameter in 
device mode. When used in device mode, it 
specifies the range of logical blocks to be 
dumped. 

Magnetic tapes and cassettes, when dumped in 
device mode, are always dumped starting with 
the current tape position; that is, the 
values given with the /BL switch are ignored. 
The switch values are used, however, to label 
the pages of the dump listing, and to 
determine the number of blocks to dump. When 
a switch value of /BL:n:m is specified, m-n+l 
blocks are dumped, starting at the current 
tape position. 

Specifies that the data should be dumped in 
byte octal format. 

(continued on next page) 

15-3 



Switch 

/DC 

/DENS:n 

/FI:file-number: 
sequence-number 

/HD[:F or :U] 

''•A 21: !$! 12! !$ 5 t I ii ill 

FILE DUMP UTILITY (DMP) 

Table 15-1 (Cont.) 
DMP Switches 

Description 

Specifies that the data should be dumped in 
decimal word format. 

Specifies the density of a TU16 input 
magnetic tape when DMP is in device mode 
only. The value for n can be 800 or 1600. 

DMP does not automatically determine the 
density of an input tape. If the /DENS 
switch is not specified in a DMP command, DMP 
attempts to read an input tape at the density 
currently set in the tape controller. (See 
the RSX-llM/M-PLUS MCR Operations Manual for 
a description of the MCR Mount command and 
its /DENS switch). 

The file number, used as input file 
identifier, can be used instead of a file 
name as a file identifiar. 

This switch is an optional parameter to be 
used in file mode. If specified, /HD causes 
the file header as well as the specified 
portion of the file to be dumped. 

In addition, this switch has two options. 
"F", the default, causes a Files-11 formatted 
dump of the header. "U" specifies an 
unformatted octal dump. An octal dump also 
occurs when DMP is used on non-Files-11 
headers. 

If you want only the header portion of the 
file to be dumped, specify: 

/HD/BL:O 

The file header is described in Appendix F of 
the IAS/RSX-11 I/O Operations Reference 
Manual. 

This switch formats data blocks which have 
Files-11 header structure. Other blocks are 
output as an unformatted octal dump. 

Example: 

DMP> HEAD.LST=[O,O]INDEXF.SYS/HF 

This example generates a dump of the index 
file INDEXF.SYS and formats all the headers 
in the file. 

(continued on next page) 

15-4 

$ . ii ii 44 



Switch 

/HX 

/ID 

/Ll3 

/LW 

/MD [: n] 

/RS 

/RC 

FILE DUMP UTILITY (DMP) 

Table 15-1 (Cont.) 
DMP Switches 

Description 

Specifies that the data be dumped in 
hexadecimal byte format. Note that a 
hexadecimal dump reads from right to left. 

Causes DMP's version to be identified. This 
switch may be specified on a line by itself 
at any time. 

Example: 

DMP> /ID 
DMP--DMP VERSION M0006.05 

Logical block; specifies that only the 
starting block number and a contiguous or 
noncontiguous indication for the file should 
be displayed. 

Example: 

DMP>TI:=DKO:RICKSFILE.DAT;3/LB 
START!N~ BLOCK NUMBER = 0,135163 C 

File RICKSFILEGDAT, version 3 is a contiguous 
file starting at block number 0,135163. (See 
/BA:n:m for block number description.) 

Specifies that the data be 
hexadecimal double-word format. 

dumped in 

Memory dump; allows control of line numbers. 
Line numbers are normally reset to zero 
whenever a block boundary is crossed. The 
/MD [:n] switch allows lines to be numbered 
sequentially for the full extent of the file; 
that is, the line numbers are not reset when 
block boundaries are crossed. The optional 
value (:n) specifies the value of the first 
line number. The default is o. The /MD 
switch is used with the output file. 

Specifies that data be dumped in Radix-50 
format words. 

Specifies that data be dumped a record at a 
time (rather than a block at a time). The 
data format is determined by setting one of 
the format switches, /AS, /DC, /HX, /LW, /RS, 
or /WD. The largest record DMP can process 
is limited by the amount of space available 
to the DMP task; 512 (decimal) bytes are 
allocated in the task image. To increase the 
amount of space available, use the MCR 
Install command /INC switch. For example, to 
dump a file with 1024-byte records, /INC=256. 
(at least) must be specified. _______ ,, ____ __._ _________ ·--------------··-··-·--·-

(continued on next pag~} 

15-5 



!l!IAA 

Switch 

/RW 

/SP 

/WD 

FILE DUMP UTILITY (DMP) 

Table 15-1 (Cont.) 
DMP Switches 

Description 

Causes DMP to issue rewind command before 
referencing a specified tape. This switch 
may be specified at any time to reposistion a 
tape at the load point (BOT). 

Causes the dump output file to be spooled to 
the line printer. /SP may only be specified 
on the output file specification; it is 
illegal on the input file specification. 
Spooled files may be deleted after printing. 

Specifies that the data 
hexadecimal word format. 

be dumped in 

15.4 DMP ERROR MESSAGES 

DMP -- BAD DEVICE NAME 

Explanation: An invalid device name was specified in a file 
specification. 

User Action: Reenter the command line, specifying the correct 
device. 

DMP -- BLOCK SWITCH REQUIRED IN LOGICAL BLOCK MODE 

Explanation: Self-e~planatory -- /BL switch must be specified. 

User Action: Reenter the command line with the /BL switch 
specified. 

DMP -- CANNOT FIND INPUT FILE 

Explanation: The requested file cannot be located in the 
specified directory. 

User Action: Reenter the command with the correct file name and 
UIC specified. 

DMP -- COMMAND SYNTAX ERROR 

Explanation: A command was entered in a format that does not 
conform to syntax rules. 

User Action: Reenter the command line with the correct syntax. 

DMP -- FAILED TO ASSIGN LUN 

:Si 

Explanation: An illegal device 
specification. 

was entered in a file 

User Action: Reenter the command line with the correct device 
specified. 

15-6 

Si a 44'' 



FILE DUMP UTILITY (DMP) 

DMP -- FAILED TO READ ATTRIBUTES 

Explanation: You attempted to access a file for which you did 
not have read access privileges. 

User Action: Rerun DMP under a UIC which has read access 
privileges to the file. 

DMP -- ILLEGAL DENSITY VALUE 

Explanation: A value other than 800. or 1600. was specified in 
the DMP /DENS switch. 

User Action: Reenter the /DENS switch with the proper value. 

DMP -- ILLEGAL SWITCH 

Explanation: You specified a switch that is not a valid DMP 
switch, or used a legal switch in an invalid manner. 

User Action: Reenter the command line with the correct switch 
specified. 

'-'
1 DMP -- ILLEGAL VALUE ON /HD SWITCH 

'-'' 

Explanation: You entered an option other than F or U for the /HD 
switch. 

User Action: Reenter the command line with the correct option 
specified. 

DMP -- I/O ERROR ON INPUT FILE 

or 

DMP -- I/O ERROR ON OUTPUT FILE 

DMP 

Explanation: One of the followlng conditions exists: 

• A problem exists on the physical device (for example, device 
cycled down). 

• File is corrupted or the format is incorrect. 

• Output volume is full • 

User Action: Determine which condition caused the message and 
correct that condition. Reenter the command line. 

-- NO INPUT FILE SPECIFIED 

Explanation: A command line was 'entered with no input file 
specification. 

User Action: Reenter the command line with an input file 
specified. 

15-7 



'1,~·-

FILE DUMP UTILITY (DMP) 

DMP -- NO LISTS OR WILD CARDS ALLOWED 

Explanation: Either a command with more than one input or output 
file name was entered, or a wildcard was entered as a file 
specification. 

User Action: Reenter the command line with only one input file 
specification and one output file specification. No wildcard 
specifications are allowed. 

DMP -- OPEN FAILURE ON INDIRECT FILE 

Explanation: 
as specified. 

The requested indirect command file does not 
One of the following conditions may exist: 

• The file is protected against access. 

exist 

• A problem exists on the physical device (for example, device 
cycled down). 

• The volume is not mounted. 

• The specified file directory does not exist • 

• The named file does not exist in the specified directory. 

User Action: Determine which condition caused the message and 
correct that condition. Reenter the command line. 

DMP -- OPEN FAILURE ON INPUT FILE 

or 

DMP -- OPEN FAILURE ON OUTPUT FILE 

' 

Explanation: One of the following conditions may exist: 

• The file is protected against access. 

• The named file does not exist in the specified directory. 

• The volume is not mounted. 

• The specified file directory does not exist. 

• A problem exists on the physical device (for example, device 
eye led down) • 

User Action: Determine which condition caused the message and 
correct that condition. Reenter the command line. 

15-8 

ii Cl5! l Ji ! 
i!2 " 

;;s:e 



PART 7 
PRC>GRAM MAINTENANCE UTILITIES 

u 



ea ii $ 4 I I 14 



u 

\..,: 

CHAPTER 16 

THE FILE COMPARE UTILITY (CMP) 

The File Compare Utility (CMP) compares two ASCII text files. The 
files are compared line by line to determine whether parallel records 
are identical. Using CMP, you can perform the following file-compare 
functions: 

• Generate a listing showing the differences between the two 
files. Each difference is listed as a pair; first, the lines 
from the first file that are being compared to lines in the 
second file, then the lines from the second file. 

• Generate a listing in the form of one list, with differences 
marked by change bars. 

• Generate output suitable for input to the SLP utility. This 
output contains the SLP commands and input required to make 
the first input file identical to the second input file. (For 
more information on SLP, see Chapter 17.) 

CMP provides switches that allow you to control compare processing. 
Using these switches, you can control comparison of blanks, tabs, 
form-feeds, and comments. You can also control line numbering and the 
number of lines required for CMP to consider that a match is made 
between lines in the two files. 

The format for specifying the CMP command line is: 

outfile[/sw ••• ]=infilel,infile2 

outf ile 

The file specification for the output file. This file can be in 
one of three formats, depending on the switch you specify on the 
command line. The file name of this file must be specified. The 
default file type is .LST. 

/sw ••• 

Switches that you apply to the output file specification. Some 
of the switches can be negated and some are mutually exclusive. 
Section 16.1 contains this information. 

infilel 

The input file specification for the file to be compared to 
infile2 (described below). The file name of this file must be 
specified. The default file type is .MAC. 

16-1 



a 

THE FILE COMPARE UTILITY (CMP) 

inf ile2 

The file specification for the input file to be compared to 
infilel (above). The file name for this file must be specified. 
The default file type is .MAC. 

You can invoke CMP using any of the methods for invoking a utility 
described in Chapter l. 

16.l CMP SWITCHES 

This section lists the CMP switches, describes the function of each 
one, and gives the default setting for each one. You specify switches 
on the output side of the command line. 

/BL 
/-BL 

/CB 
/-CB 

/CO 
/-CO 

/DI 
/-DI 

/FF 
/-FF 

/LI:n 

/LN 
/-LN 

a :a; a 

Specifies that blank lines in both files be included in 
compare processing. If this switch is specified in the form 
/-BL, blank lines are not included in compare processing; 
/-BL is the default setting. 

Specifies that CMP list infile2 with change bars, in the 
form of exclamation marks (1), to denote which lines do not 
have a corresponding line in infilel. /-CB is the default 
switch. 

You can change the change bar character from the exclamation 
mark to any character you wish by means of the VB switch, 
described below. 

When a section of lines in infilel has 
infile2 (the output listing file), the 
deleted is marked. 

been deleted in 
first line not 

Specifies that CMP include comments (that is, text preceded 
by a semicolon) in compare processing. /CO is the default 
for this switch. 

Specifies that CMP print the differences between the two 
files (rather than marking the lines in infile2). 

/DI is the default for this switch. 

/CB and /DI are mutually exclusive switches. If you specify 
both, /CB overrides /DI. 

Specifies that CMP include records consisting of a single 
form-feed character in compare processing. /-FF is the 
default for this switch. 

Specifies that a number (n) of lines must be identical 
before CMP recognizes a match. If you do not specify this 
switch, CMP searches for three identical lines to match. 

When it encounters a match, CMP prints all the preceding 
nonmatching lines, along with the first line of the matched 
sequence of lines to help you find the location in the code 
where the match occurred. 

Specifies that lines in the output file be preceded by 
their line number. Line numbers are incremented by one for 
each record read, including blank lines. /LN is the default 
switch. If you specify /SL (below), /LN is unnecessary. 

16-2 

Si !JUL f4 



/MB 
/-MlB 

/SL[:au] 

/SP [ :n] 
/-SP 

/TB 
/-TB 

/VB:nnn 

THE FILE COMPARE UTILITY (CMP) 

Specifies that CMP include all blank and tab characters in a 
line in compare processing. If you specify /-MB, CMP 
interprets any sequence of blank and/or tab characters as a 
single blank character. However, all spaces arid tabs are 
printed in the output listing. /MB is the default switch. 

Directs CMP to generate an output file suitable for use as 
SLP command input. When you specify /SL, CMP generates the 
SLP command input necessary to make inf ilel identical to 
infile2. If a 1- to 8-character alphanumeric symbol is 
included (:au), an audit trail is specified for SLP input. 
Section 16.2.3, below, gives an example of how CMP generates 
SLP command input. (For information on how SLP processes 
source files, refer to Chapter 17.) 

Specifies that the output file be spooled on the line 
printer. You can optionally specify the number (in octal or 
decimal) of files to be spooled. /-SP is the default value 
for this switch. This switch applies only if you have the 
Print Spooler task (RSX-llM) or the Queue Manager system 
(RSX-llM/M-PLUS) installed. 

Specifies that CMP include all trailing blanks on a line 
in compare processing. If you specify /-TB, CMP ignores all 
blanks following the last nonblank character on a line. 
When you specify /-CO and /-TB together, blanks that precede 
a semicolon (;) are considered trailing blanks and are 
ignored. /TB is the default value for this switch. 

Specifies an octal character code for use as a change bar. 
You use this switch with the CB switch. The value nnn 
specifies the octal character code. For example, you can 
specify /VB:174 for a vertical bar (if your printer is 
capable of printing the vertical bar character)& 

Summary of CMP Default Switch Settings 

CMP default switch settings are: 

/-BL 
/-CB 
/CO 
/DI 
/-FF 
/LI:3 
/LN 
/MB 
/-SL 

/-SP 
/TB 
/VB: 041 

Do not compare blanks. 
Do not generate change bars. 
Compare comments. 
List only the differences between the two files. 
Do not compare form-feed characters. 
Find three identical lines before a match can occur. 
Generate numbered lines. 
Compare all blanks and tab characters. 
Do not generate an output file suitable for use as SLP 
command input. 
Do not spool the output file. 
Compare all trailing blanks. 
Set the exclamation mark (ASCII 041) as the change bar 
character. Used with /CB. 

16-3 



THE FILE COMPARE UTILITY (CMP) 

16.2 FORMATS OF CMP OUTPUT FILES 

CMP uses the two input files you specify on the command line to create 
an output file. CMP compares each line in inf ilel to its sequential 
counterpart in infile2. When there are differences between the two 
files, CMP displays those differences in one of three output formats: 

• Differences format (default) (/DI) 

• Change bar format (/CB) 

• SLP Command Input Format (/SL) 

This section gives an example of each of these formats. In all of the 
examples in the subsequent sections, the following files are used as 
input files infilel and infile2: 

inf ilel 

TESTl.DAT 

LINE! 
LINE2 
LINE3 
LINE4 
LINES 
1234S 
23456 
34S67 
LINE9 
LINElO 
LINEll 
EXTRA 

16.2.l Differences Format 

infile2 

TEST2.DAT 

LINE! 
LINE2 
LINE3 
LINE4 
LINES 
4S678 
S6789 
67891 
LINE9 
LINElO 
LIN Ell 
EXTRA 
EXTRA 
EXTRA 
EXTRA 

If you enter a command line and do not specify any switches, CMP lists 
the differences between the two files. The differences are listed in 
pairs; first, the lines from infilel that do not have counterparts in 
inf ile2 are listed, then the lines from inf ile2 that do not have 
counterparts in infilel are listed. Each set of lines is terminated 
by the first line (or set of lines) for which a match is successful. 

The following example shows the two lists along with the CMP command 
used to generate them. The input files are TESTl.DAT and TEST2.DAT, 
which are shown in the preceding section. There are two sets of 
differences separated by a long line of asterisks. (When there are 
several sets of differences, CMP separates each set from the next set 
by the long line of asterisks.) The short line of asterisks separates 
the pair of differences that comprise the set. 

16-4 

iii I I I ; 21 j¥¥ 



THE FILE COMPARE UTILITY (CMP) 

********************************************* 
1) 

6 
7 
8 
9 

TESTl.DAT;l 
12345 
23456 
34567 
LINE9 

***************** 
2) TEST2 .DAT; l 

6 45678 
7 56789 
8 67891 
9 LINE9 

********************************************* 
l) TEST! .DAT; l 

***************** 
2) 

13 
14 
15 

TEST2.DAT;l 
EXTRA 
EXTRA 
EXTRA 

2 DIFFERENCES FOUND 
TESTDIF.DAT=TEST1.DAT,TEST2.DAT 

Note that because /LI:n was not 
required for a match defaults to 3. 

specified, the number of lines 
Thus, CMP found two differences. 

16~2.2 Change Bar Format 

You use the CB switch to generate a listing 
that show the differences between two files. 
infile2 is the listing you want generated. 

containing change bars 
In the CMP command line, 

The following example shows change bars applied to lines from two 
files that do not match line for line. The command line shown at the 
bottom of the listing directed CMP to generate the listing. 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

LIN El 
LINE2 
LINE3 
LINE4 
LINES 
45678 
56789 
67891 
LINE9 
LINElO 
LINEll 
EXTRA 
EXTRA 
EXTRA 
EXTRA 

2 DIFFERENCES FOUND 
TESTDIF.DAT=TEST1.DAT,TEST2.DAT/CB 

Notice that the change bar is applied to the first line of a match 
(line 9, above). 

16-5 



THE FILE COMPARE UTILITY (CMP) 

16.2.3 SLP Command Input Format 

Use the SL[:au] switch to generate a file containing records to. be 
used as SLP command input. /SL directs CMP to generate the SLP edit 
command lines and input lines required to make inf ilel identical to 
infile2. 

However, you must enter the command line with SLP command input. CMP 
does not generate this command line. For a complete description of 
the SLP utility, refer to Chapter 17 in this manual. · 

The following example shows the format of output generated using the 
SL switch. The output file is generated with the CMP command: 

TESTDIF.DAT/SL:BLSOOl=TESTl.DAT,TEST2.CMP 

-6,8,/;BLSOOl/ 
45678 
56789 
67891 
-12,,/;BLSOOl/ 
EXTRA 
EXTRA 
EXTRA 
I 

16.3 CMP MESSAGES 

This section lists the CMP error messages, gives a brief description 
of the condition that causes each message, and suggests a response to 
the condition. 

CMP -- n DIFFERENCES FOUND 

Explanation: CMP found n differences between the two files. 

User Action: This is an informational message. 

CMP -- COMMAND SYNTAX ERROR 

Explanation: CMP found 
specification. 

an error in the command line 

User Action: Check the syntax of the command line specification 
and reenter the command line using the correct syntax. 

CMP -- ERROR READING INPUT FILE 

"' 22.1 

Explanation: An I/O error occurred while CMP was reading an 
input file. 

User Action: Retry the command. 

16-6 

4 I 5 I 

"" ' IT 



THE FILE COMPARE UTILITY (CMP) 

CMP -- ERROR WRI'l'ING OUTPUT FI LE 

Explanation: An I/O error occurred while CMP was writing the 
output file. 

User Action: The output device may be full or bad. Check this, 
then retry the command. 

CMP -- ILLEGAL /LI VALUE 

Explanation: You specified a negative value for the number of 
lihes required for a match. 

User Action: Reenter the command line with a legal value 
specified. 

CMP -- ILLEGAL SWITCH OR SWITCH VALUE 

Explanation: An illegal switch or switch value was entered in 
the command line. 

User Action: Reenter the command using the legal switch or 
switch value. 

CMP -- OPEN FAILURE ON INPUT FILE #1 

Explanation: CMP could not open the first input file. 

User Action: Ensure that you correctly entered 
specification for the file. Reenter the command. 

CMP -- OPEN FAILURE ON INPUT FILE #2 

Explanation: CMP could not open the second input file. 

User Action: Ensure that 
specification for the file. 

CMP -- OPEN FAILURE ON OUTPUT FILE 

you correctly entered 
Reenter the command. 

Explanation: CMP could not open the specified file. 

User Action: Ensure that 
specification for the file. 

you correctly entered 
Reenter the command. 

CMP -- TOO MANY DIFFERENCES FOR AVAILABLE CORE 

the file 

the file 

the file 

Explanation: The files were too dissimilar for CMP to fit all 
the differences in memory. 

User Action: Rerun CMP using the /INC=n switch, or remove and 
reinstall CMP with a larger increment. (For information on using 
/INC=n, see the RSX-llM/M-PLUS MCR Operations Manual.) 

16-7 



. .,, 

!!Sb 4 H 



'-'' 

CHAPTER 17 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

The Source Language Input Program (SLP) is a utility program used for 
source file maintenance. SLP maintenance is usually performed on the 
latest version of the source file, ensuring that the file contains th~ 
most recent updates and corrections. The optional audit trail in the 
output files allows you to keep a record of these changes. 

SLP functions are invoked by means of edit command statements and 
switches. SLP edit command statements allow you to: 

• Update (delete, replace, add) lines in an existing file 

• Create source files 

• Run indirect files containing SLP edit commands 

Input to SLP is an input file that you want updated and command input 
consisting of text lines and edit command lines that specify the 
update operations to be performed. To locate lines to be changed, SLP 
uses locators that you specify as line numbers or character strings. 
Command input can come directly from your terminal or from an indirect 
command f il.e containing commands and input lines to be inserted into 
the file. SLP accepts data from any RSX-llM/M-PLUS file-structured 
device. 

SLP output is a listing file and an updated input file. SLP provides 
an optional audit trail that helps you keep track of the updat~ status 
of each line in the file. If an audit trail is not suppressed, it is 
shown in the listing and permanently applied to the output file. 

You can control SLP processing using SLP control switches. These 
switches allow you td create or suppress audit trails, specify the 
length and beginning position of the audit trails, calculate the 
checksum value for the edit commands, generate a double-spaced 
listing, and spool files to a file-structured volume. 

You can invoke SLP by all but one of the methods for invoking a 
utility described in Chapter 1. You cannot include a command line on 
the same line on which you invoke SLP. That is, you cannot type SLP 
files:pec. 

Also, after you invoke SLP, specifying TI: as your output file 
specification is not recommended because SLP displays the input file 
while you are editing it. When you are done editing, you do not have 
a copy of the output file and the input file is the same as before you 
began editing. 

17-1 



1141!C 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

17.1 SLP INPUT AND OUTPUT FILES 

SLP requires two types of input, an input file and command input. The 
input file is the source file you want to update using SLP. Command 
input consists of SLP edit commands and, optionally, new lines of text 
to be placed in the file. 

SLP output consists of an output file and a listing file. The output 
file is the updated input file. The listing file is a copy of the 
output file with line numbers added. Both show the changes SLP makes 
to the file. 

17.1.1 The Input File 

The input file is the file to be updated by SLP. It can contain as 
many lines of text as are required. When SLP processes the input 
file, it makes the changes specified by SLP edit ,commands. If an 
audit trail is generated, it notes these changes in the output files. 

17.1.2 Command Input 

SLP uses command input to update files. Command input can be entered 
interactively after you invoke the SLP utility or indirectly by means 
of indirect command files. 

You enter command input to SLP in two modes: command mode and edit 
mode. After it is invoked, SLP is in command mode, in which it 
expects the first line entered to be the command line defining the 
files to be processed. When SLP accepts this line, it initializes the 
files you want processed. Once these files are initialized, SLP 
enters edit mode, in which it interprets the lines you enter as SLP 
edit commands or new input lines. 

You terminate command input with a single slash as the first character 
of an edit command line. 

The following example shows the general form of command input: 

MYFILE.MAC;2/CS/AU:55:10,MYFILE.LST;l/-SP=MYFILE.MAC;l 
- 3 , , /; BJ 0 0 7 I 
INSERT THIS LINE AFTER LINE 3 
-4,4 
DELETE LINE 4 AND REPLACE IT WITH THIS LINE 
I 

NOTE 

Numeric values given for switches 
default to octal. Decimal values must 
be followed by a period (.). The 
default position for the audit trail is 
80(10) and its default length is 14(10) 
characters. (See Section 17.4.2 for 
more information about the audit trail.) 

The first line is the command line, on which SLP expects to find 
definitions for the output file, the listing file, and the input file. 
The next four lines comprise the SLP edit commands and input lines. 

17-2 

!IO&!lb 21 44, d :; as . ;4sas 



'-''' 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

Note that the input and output files in the example above have the 
same file name and file type; only the versions are different. To 
ensure that the correct files are processed, specify the version 
numbers explicitly when you enter the SLP utility command line. 
Wildcards cannot be used in any of the file specifications. 

You can also have the checksum value for the edit commands calculated. 
Specify the checksum switch with either the input or output file 
specification in the format: 

/CS [: n] 

The checksum value is calculated for ali SLP edit command lines, 
excllLlding: 

• The command line specifying the input and output files 

• Comments in the edit command lines 

• Any spaces and/or tabs 
checksum calculation 
calculation 

between characters included in the 
and those characters excluded from the 

• The second comma and anything following it in an edit command 
line (that is, audit trail and/or comment) 

• Comment delimiter (specified by first character of the last 
audit trail string before the delimiter) and any characters 
following it in an input line, whether or not it is being used 
in the line as a delimiter 

The value is then reported in a message on your terminal. If you 
specify a value for the checksum and it is not the same as the 
calculated checksum, you will get a diagnostic error message. (The 
messages are described below in Section 17.5.) 

17.1.3 The SLP Listing File 

The SLP listing file shows the updates made to the source file. Each 
line in the listing file is numbered. Updates are marked by means of 
the audit trail if one has been generated. The examples given 
throughout the chapter contain samples of listing files. 

17.1.4 The SLP Output File 

The SLP output file is the updated input file. All of the updates 
specified by means of command input are inserted in this file. The 
audit trail, if specified, is applied to lines changed by the update. 
The audit trail is included in the output file. The numbers generated 
by SLP for the listing file do not appear in the output file. 

17-3 



g; 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

17.2 HOW SLP PROCESSES FILES 

Figure 17-1 shows how SLP processes files when it receives the 
following command line and edit commands: 

MYFILE.MAC;2/AU:55:10,MYFILE.LST/-SP=MYFILE.MAC;l 
-3 
INSERT THIS LINE AFTER LINE 3 
-4,4 
DELETE LINE 4 AND REPLACE IT WITH THIS LINE 
I 

Input File 

MYFILE.MAC;1 

SLP 

Listing File 

MYFI LE.LST;1 

Command Input Processor Output File 

From Primary From Indirect File 
Input Device or INFILE.SLP;l MYFILE.MAC;2 

@LJ 
Figure 17-1 Input Files and Output Files Used During SLP Processing 

This is the input file (MYFILE.MAC;l) before SLP processes the files: 

ONE 
TWO 
THREE 
FOUR 
FIVE 
SIX 
SEVEN 
EIGHT 
NINE 
TEN 

4 Ji LUZ: iii 

17-4 

I ; SL ; '1 ii 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

The following is the listing file (MYFILE.LST;l) resulting from SLP 
processing of these files: 

1. ONE 
2. TWO 
3. THREE 
4. INSERT THIS LINE AFTER LINE 3 
5. DELETE LINE 4 AND REPLACE IT WITH THIS LINE 
6. FIVE 
7. SIX 
8. SEVEN 
9. EIGHT 

10. NINE 
11. TEN 

;**NEW** 
;**NEW** 
;**-1 

The audit trail shows the new lines (;**NEW**) and indicates where 
lines have been removed (;**-1). (The audit trails ;**NEW** and ;**-n 
are automatically generated by SLP if you have not suppressed audit 
trail generation or if you have not specified another audit trail 
string.) In this case, a line has been added after line 3, and line 4 
has been deleted and a new line added in its place. 

As shown in Figute 17-1, SLP processes ari input file using command 
input. When processing begins, SLP writes each line from the input 
file into the output file until it reaches a line to be modified, as 
requested in the command input. When SLP reaches a line to be 
modified, it makes the indicated modification, notes the change by 
means of the audit trail if the trail has been generated, and then 
continues writing lines to the output file, in sequence, until another 
command is encountered or until end of file is reached. 

17.3 USING SLP 

This section describes how to: 

• Specify the SLP edit command 

• Update files using the SLP edit command 

• Enter SLP commands interactively and by means of indirect 
files 

• Create a source file using SLP 

17.3.l Specifying SLP Edit Commands 

The SLP edit commands provide the means to update source files by 
adding, deleting, and replacing lines in a file. You enter SLP edit 
commands after invoking SLP and specifying an edit command line. 

17-5 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

The general format of the SLP edit command line is as follows: 

-[locator!] [,locator2] [,/audittrail/] [; comment] 
inputline 

- (dash) 

Specifies that this is a SLP edit command line. 

locator! 

A line locator that causes SLP to move the current line pointer 
to a specified line. If you specify only locator!, the current 
line pointer is moved to that line and SLP reads the next line in 
the command input file. This field can be specified using any of 
the locator forms described below. 

locator2 

A line locator that defines a range of lines (that is, the range 
beginning with locator! and ending with locator2, inclusive) to 
be deleted or replaced. This field can be specified using any of 
the locator forms described below. 

/audi ttrail/ 

A character string used to keep track of the update status of 
each line in the file. The string must be enclosed within 
slashes (/). It consists of a comment delimiter as the first 
character and then a text string. The semicolon (;) is the 
initial delimiter for audit trails automatically generated by SLP 
(;**NEW** and ;**-n). The comment delimiter specified in 
audittrail (usually a semicolon) is the new delimiter for all 
subsequent audit trails until redefined by a later audittrail. 

inputline 

A line of new text to be inserted into the file immediately 
following the current line. You can enter as many input lines as 
required. 

comment ~ 
A line of text (delimited by a semicolon) at the end of the SLP 
edit command line that appears only in the command input file. 

All fields in the SLP edit command line are positional and commas must 
be specified. 

The locator fields can take one of the following forms: 

-/string/[+n] 
-/string ••• string/[+n] 
-number[+n] 
- • [ +n] 

17-6 

2 ; 4 I I !l!i I iSZ: 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

string 

A string of ASCII characters. SLP locates the line in which 
string exists and moves the current line pointer to that line. 
If the locator is specified in the form /string .•• string/, SLP 
locates the line in which the two character strings delimit a 
larger character string abbreviated by an ellipsis ( ••• ). 

numb~~r 

n 

A decimal line number to which the current line pointer is to be 
moved. The largest line number that can be specified is 9999. 

A decimal value used as an offset from the line specified by the 
locator. You cannot use +n by itself. It must be specified with 
a number or string locator, or a period. SLP moves the current 
line pointer n lines beyond the line specified in the locator 
field • 

• (pe.r iod) 

The current line. 

Although the values for number and n are taken as decimal, remember 
that all other SLP values are octal by default. 

All forms of the line locator can be specified interchangeably in the 
SLP edit command line. 

'--1' 17.3.2 Entering SLP Edit Commands 

Once you have invoked SLP, you can enter SLP 
interactively or by means of indirect command files. 

edit commands 

In both cases, the first command you must enter is the command line 
defining the files to be processed during this SLP session. 

This section gives examples of how to use both methods of entering SLP 
commands. 

The following file, BASE.MAC;!, is used as the input file for the 
examples in this section: 

AAAA 
2222 
BBBB 
4444 
cc cc 
6666 
DODD 
8888 
9999 

TEN 

17-7 



2 ii! ' d l 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

17.3.2.l Entering SLP Commands Interactively - To alter the example 
file interactively, first invoke SLP: 

>SLP 

SLP responds to this command with the prompt: 

SLP> 

Once you have entered the SLP command mode, SLP does not display 
prompts. The first line you enter must always be the cdmmand line to 
tell SLP the files you want processed during this session: 

BASE.MAC;2/AU:48./TR,BASE.LST=BASE.MAC;l 

Then you enter the edit commands and input lines: 

-3 
INSERT THIS LINE AFTER LINE 3 
-4,4 
DELETE LINE 4 AND REPLACE IT WITH THIS LINE 
-6,,/;JMOlO/ 
INSERT THIS LINE AFTER LINE 6 WITH A NEW AUDIT TRAIL VALUE 
I 

Enter only the SLP edit commands and the new input lines. When you 
have entered all the corrections, enter the slash (/) to terminate the 
edit session. SLP processes the files and returns control to you with 
the prompt: 

SLP> 

This returns SLP to command mode. You can then enter the command line ~ 
and begin another editing session. ~, 1' 

The listing file resulting from SLP processing appears as follows: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8? 
9. 

10. 
11. 
12. 

AAAA 
2222 
BBBB 
INSERT 
DELETE 
cc cc 
6666 
INSERT 
DODD 
8888 
9999 
TEN 

THIS LINE AFTER LINE 3 
LINE 4 AND REPLACE IT WITH THIS LINE 

;**NEW** 
;**NEW** 
;**-1 

THIS LINE AFTER LINE 6 WITH A NEW AUDIT T;JMOlO 

The TR switch (/TR in the command line) records the truncation of 
lines by the audit trail. In the listing file, a question mark (?) 
replaces the period (.) in the line number of the lines that were 
truncated. It is possible that audit-trail strings in the input file 
will be truncated by the new audit-trail string although the commands 
or text strings will not be truncated. 

17.3.2.2 Entering SLP Commands Using Indirect Command Files - You can 
enter the same commands using an indirect command file. 

In this example, the SLP edit commands are contained in the indirect 
command file, BASE.SLP. You invoke SLP and SLP responds with the 
prompt: ,~ 

SLP> 

17-8 

SiJ I Lf U¥ 



\...,.) 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

You then enter the file specification for the indirect command file 
containing the command line, the SLP edit commands, and the input 
lines: 

@BASE.SLP 

SLP processes the files just as if you entered the commands and input 
lines interactively, returning control to you with the prompt: 

SLP> 

You can also specify SLP @BASE.SLP. 

The output listing resulting from indirect command file processing is 
exactly like the output listing resulting from the same changes made 
interactive!ly. 

Indirect command files can be nested to a maximum level of 3. This 
permits indirect command files to reference a standard editing file 
when SLP is invoked with an indirect command file reference at the 
monitor level. 

17.3.2.3 Using SLP Operators - In addition, you can enter certain 
special characters called operators, which perform specific functions. 
Table 17-1 lists the operators and the function each performs. Enter 
operators, in edit mode, as the first character of an input line. 

Operator 

\ 

% 

@ 

I 

< 

Table 17-1 
SLP Operators 

Function 

SLP interprets the dash as the first character of a 
SLP edit command. 

SLP interprets the backslash as a command to suppress 
audit-trail processing. 

SLP interprets the percent sign as a command to 
reenable audit-trail processing. 

SLP interprets the at sign as a command to invoke an 
indirect file for SLP processing. 

SLP interprets the slash as a command to terminate 
the SLP edit session, and then return to SLP command 
mode. 

SLP interprets the less-than character as an escape 
character. Escape characters are characters that 
enable you to enter characters in the input file that 
SLP otherwise would interpret as operators. For 
example, </ hides the slash character from SLP, 
thereby enabling you to enter the slash into the 
output file without terminating the SLP editing 
session. The less-than character can be used with 
all SLP operators. 

17-9 



I 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

SLP allows you to enter lines sequentially. Once past a given line in 
the file, you cannot return the line pointer to that line. To return 
the line pointer to that line, you must begin another SLP editing 
session. 

To close the file and terminate the editing session, use the slash (/) 
operator. 

17.3.3 Updating Source Files Using SLP 

This section describes the procedure for generating a numbered listing 
for use in editing source files by line number. The section also 
describes how to use SLP to add, delete, and replace lines in a file. 

17.3.3.1 Generating a Numbered Listing - SLP processes input by 
number. However, line numbers appear only in the listing file~ 
are not written to the output file. 

line 
they 

To use SLP effectively, you should use a numbered listing when you 
prepare command input. To generate a numbered listing, first invoke 
SLP, then enter the command line in the format: 

, listf ile=inf ile 
I 

In this format, listfile is the name you assign to the listing file 
SLP produces and infile is the name of the input file whose lines are 
to be numbered. The slash (/) terminates the edit mode. For example, 
suppose the input file is: 

ONE 
TWO 
THREE 
FOUR 
FIVE 
SIX 
SEVEN 
EIGHT 
NINE 
TEN 

SLP processes each line to generate a numbered listing file: 

1. ONE 
2. TWO 
3. THREE 
4. FOUR 
5. FIVE 
6. SIX 
7. SEVEN 
8. EIGHT 
9. NINE 

10. TEN 

17-10 

~I 

1

11

'"'

11••••••:•11••1•lllllt•••••••••&•••••••••••••••t•t .. •••••••••••••••••111141111s":;:•: 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

17.3.3.2 Adding Lines to a File - The three SLP edit command formats 
for adding lines to a file are: 

-locator! 
inputline 

o:r 

-locator!,, 
input.line 

or 

locatorl,,/audittrail/ 
inputline 

See above for the descriptions of these terms. 

The following example shows how to add lines to a file. 
file consists of the following lines: 

ABC 
DEF 
GHI 
KLM 
123456789 
456 
789 
CBA 
XYZ 
987 

The input 

The command input consists of the following commands and text lines: 

MYFILE.MAC~2/AU:50,LISTING=MYFILE.MAC~l 
-/123/ 
INSERT THIS LINE AFTER LINE 5 
I 

SLP processing generates the following listing file: 

1. ABC 
2. DEF 
3. GHI 
4. KLM 
5. 123456789 
6. INSERT THIS LINE AFTER LINE 5 :**NEW** 
7. 456 
8. 789 
9. CBA 

10. XYZ 
11. 987 

SLP has numbered the lines and applied an audit trail to the line 
following line 5, where SLP found the first occurrence of the string 
123. 

17-11 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

The next example uses the same input file and the following new 
command lines: 

MYFILE.MAC;2/AU:50,LISTING=MYFILE.MAC;l 
-/DEF/+2 
THIS IS NEW TEXT 
I 

SLP processing generates the following listing file: 

1. ABC 
2. DEF 
3. GHI 
4. KLM 
5. THIS IS NEW TEXT ;**NEW** 
6. 123456789 
7. 456 
8. 789 
9. CBA 

10. XYZ 
11. 987 

Again, SLP has numbered the lines and this time the new input line is 
inserted two lines beyond the line containing the first occurrence of 
the string DEF. 

17.3.3.3 Deleting Lines from a File - The SLP edit command format for 
deleting lines from a file is: 

- [locator 1] , [locator 2] , [/audit trail/] [; comment] 

In this format, locatorl and locator2 can be any of the forms of the 
locator fields described in Section 17.3.1; locatorl specifies the 
line where SLP is to begin deleting lines; locator2 specifies the 
last line to be deleted. SLP deletes all lines from locatorl through 
locator2, inclusive. 

The following example shows how to delete lines from a file using SLP. 
The input file consists of the following lines: 

ABC 
DEF 
GHI 
KLM 
123456789 
456 
789 
CBA 
XYZ 
987 

The command input for this example is: 

4 

MYFILE.MAC;2/AU:50,LISTING=MYFILE.MAC;l 
-/123 ••• 789/,/XYZ/ 
I 

17-12 

! I ' "' I ¥ 



'--' 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

SLP processing generates the following listing file: 

L ABC 
2 .. DEF 
3 .. GHI 
4. KLM 
5. 987 ;**-5 

In this example, the ellipsis ( ••• ) abbreviates the larger string 
123 1i56789. Assuming the two strings bracket a larger string, SLP 
searches for the first occurrence of the string 123 and then the first 
occurrence on the same line of the string 789, in this case the string 
123456789. SLP begins deleting lines at this line and continues 
deleting lines until it deletes the last line of the given range, 
specified here by the string XYZ. SLP applies the audit-trail count 
of the lines it deleted to the next line from the input file. 

Using the same input file as used in the example above, this example 
shows how to delete a single line using the period locator. The 
command input for this example is: 

MYFILE.MAC;2/AU:50,LISTING=MYFILE.MAC;l 
-/DEF/,. 
I 

SLP processing generates the following listing: 

1. ABC 
2. GHI 
3.. K:LM 
4. 123456789 
5. 456 
6.. 789 
7.. CBA 
8.. XYZ 
9. 987 

;**-1 

SLP moves the current line pointer to the line containing the string 
DEF and then finds the period as the second locator field. Since the 
second locator field is specified as the current line, SLP deletes the 
current line. 

17.3.3.4 Replacing Lines in a File - A replacement is the deletion of 
old text followed by the insertion of new text. The number of lines 
delE~ted need not match the number of lines added. To replace lines in 
a file, use the same SLP edit command format as used in the delete 
command. The first line locator field specifies the first line to be 
deleted. The second line locator field defines the last line in the 
range to be deleted and where the new text is to be inserted. For 
example: 

-4,. +4 

This command instructs SLP to move the line pointer to line 4, and 
replace line 4 and the next four lines with new input lines. 

17-13 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

The following example shows how to delete lines from a file and 
replace them with new lines. The input file consists of the following 
lines: 

ABC 
DEF 
GHI 
123456789 
BCN 
CRB 
BUR 

The command input is: 

MYFILE.MAC;2/AU:50,LISTING=MYFILE.MAC;l 
-2,.+l 
NEW LINE 2 
NEW LINE 3 
I 

SLP processing generates the following listing file: 

1. ABC 
2. NEW LINE 2 
3. NEW LINE 3 
4. 123456789 
5. BCN 
6. CRB 
7. BUR 

;**NEW** 
;**NEW** 
;**-2 

17.3.4 Creating Source Files Using SLP 

Using SLP to create source files is possible, but not recommended. 
SLP does not have an intraline editing mode, and you cannot return to 
a line once you have passed it. The interactive editors, EDI and EDT, 
are better for creating source files. 

To create source files using SLP, invoke SLP and enter the command 
line in the format: 

outfile/-AU[/sw] [,listfile] [/sw]=primary input device: [/sw] 

outfile 

/-AU 

The file specification for the output file. The default device 
is SYO:. 

Specifies that an audit trail is not to be generated. Otherwise, 
you will get the ;**NEW** audit trail on every line of the output 
files. 

listfile 

The file specification for the listing file (optional). 

primary input device: 

a 

Specifies that input for the file being created is coming from 
this device, for example, a terminal or a card reader. 

17-14 

ii !£ /4=• 



\..,'' 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

/sw 

Specifies any optional SLP switches you want set. 

The default device for output files is SYO:: for input files, the 
default device is your primary input device. For listing files, the 
default device is implied by the output file specification. The 
following file specification cr~ates a new file called MYFILE.MAC from 
the terminal and puts it on SYO:. 

MYFILE.MAC/-AU=TI: 

Once you have entered the file specification, SLP accepts each line as 
a variable-length record of up to 132(10) characters. Trailing blanks 
and tabs on input lines are deleted. SLP expects input to the file to 
come~ from the primary input device. End the SLP session with a slash 
(/) and then a CTRL/Z. 

1 7 • ~~ CONTROLLING SLP 

The SLP switches allow you to calculate the checksum value for the 
edit commands and to control the generation and format of the listinq 
file and the output file. 

17.4.1 SLP Switches 

The procedure SLP uses to calculate the checksum value for the edit 
commands is described above in Section 17.1.2. 

SLP output consists of two files -- a listing file and the output 
file, which is the modified version of the original input file. You 
can control the audit trail and print options associated with the two 
files using the SLP switches. 

The effects of SLP switches are the same whether you apply them to 
input or output files (except for the SP switch, which you can specify 
only with the listing file). Table 17-2 lists the SLP switches and 
gives a brief description of the functions each performs. 

17-15 



Switch 

/AU 
/-AU 

/BF 
/-BF 

/CM[:n] 

/CS[:n] 

/DB 
/-DB 

/SP 
/-SP 

/TR 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

Table 17-2 
SLP Switches 

Function 

Allows you to generate an 
audit trail generation, and 
field and length of the 
default value. 

audit trail or suppress 
specify the beginning 

audit trai1. /AU is the 

Right-justifies the audit trail by inserting spaces 
instead of tabs at the end of text information. /BF 
is the default value. 

Deletes audit trails and any trailing spaces or tabs, 
and truncates the text at a specified horizontal 
position. The value given for the beginning position 
of the audit trail is the default value for this 
switch. 

Calculates the checksum value for the edit commands. 
If you do not specify n, SLP reports the value in a 
message on your terminal. If you do specify n and 
the checksum value that SLP calculates is not the 
same as the one you specified, SLP displays a 
diagnostic error message. 

Generates the listing file in double-space format. 
/-DB is the default value. 

Spools the listing file to the printer. /SP is the 
default value. This switch applies only if you have 
the print spooler task (RSX-llM) or the queue 
management system (RSX-llM/M-PLUS) on your system. 

Reports truncation of lines by the audit trail. If 
line truncation occurs, you will get a diagnostic 
error message. There is no default value for this 
switch. 

In the listing file, a question mark (?) replaces the 
period (.) in the line number of the lines that were 
truncated. 

17.4.2 Controlling the Audit Trail 

The [-]AU switch allows you to generate, suppress, and set the length 
and contents of the audit trail. 

To suppress generation of the audit trail, specify the /-AU switch in 
either the input or output file specification. 

For example, either command line below generates an output file with 
no audit trail: 

DKl:MYFILE.MAC;3/-AU,LP.LST:=MYFILE.MAC;2 
DKl:MYFILE.MAC;3,LP.LST:=MYFILE.MAC;2/-AU 

17-16 

I t 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

By default, SLP automatically generates an audit trail; that is, you 
need not explicitly specify /AU in your command line (unless you want 
to specify the beginning position and length of the audit trail). 

LP.LST will be spooled automatically. 

17.4.3 Setting the Position and Length of the Audit Trail 

You can set the beginning position of the audit trail and the length 
of the audit trail using the AU switch in the format: 

/AU:position:length 

position 

A number, less than or equal to 132(10), designating the 
beginning character position of the audit trail on the line. SLP 
rounds this value to the next highest tab stop (a multiple of 8). 
The default value for position is 80(10). 

\._,, length 

The length of the audit trail. 
8(10) characters; no more 
specif:ied. 

The default value for length 
than 14(10) characters may 

is 
be 

The E~xample below shows how to specify the beginning position and 
length of the audit trail. The input file for this example is: 

ONE 
TWO 
THREE 
FOUR 
FIVE 

The command input is: 

MYFILE.MAC;2/AU:30.:10./TR,MYFILE.LST/-SP=MYFILE.MAC;l 
-2,.+l,/;CHANGEOOl/ 
NEW LINE 2 
NEW LINE 3 
I 

The listing file resulting from SLP processing is: 

1. ONE 
2. NEW LINE 2 
3. NEW LINE 3 
4. FOUR 
5. FIVE 

;CHANGEOOl 
;CHANGEOOl 
;**-2 

17.4.4 Changing the Value of the Audit Trail 

To change the value of the audit trail, specify: 

-[locatorl], [locator2],/;new value/ 

17-17 



~···ii 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

Audit trail values can change whenever and wherever you want them to. 
For example, 

MYFILE.MAC;2/AU:48.:10./TR,MYFILE.LST/-SP=MYFILE.MAC;l 
-3 
INSERT THIS LINE AFTER LINE 3 
-4,4 
DELETE LINE 4 AND REPLACE IT WITH THIS LINE 
-6,,/;JMOlO/ 
INSERT THIS LINE AFTER LINE 6 WITH A NEW AUDIT TRAIL VALUE 
-9,,/;BJ008/ 
INSERT THIS LINE AFTER LINE 9 WITH ANOTHER NEW AUDIT TRAIL VALUE 
I 

The listing file resulting from SLP processing appears as follows: 

THIS LINE AFTER LINE 3 
LINE 4 AND REPLACE IT WITH THIS LINE 

;**NEW** 
;**NEW** 
;**-1 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8? 
9. 

AAAA 
2222 
BBBB 
INSERT 
DELETE 
cc cc 
6666 
INSERT 
DDDD 
8888 
9999 
INSERT 
TEN 

THIS LINE AFTER LINE 6 WITH A NEW AUDIT T;JMOlO 

10. 
11. 
12? 
13. 

THIS LINE AFTER LINE 9 WITH ANOTHER NEW A;BJ008 

17.4.5 Temporarily Suppressing the Audit Trail 

You can temporarily suppress the generation of the audit trail by 
using the backslash (\) operator. You can then reenable audit-trail 
processing with the percent sign (%) operator. (You cannot enable 
audit trail processing with this operator if you have specified /-AU 
in the SLP command line.) 

Both operators are entered in the command input. The backslash (\) is 
specified in column l of the line that precedes those commands and/or 
input files for which you do not want audit-trail processing. The 
percent sign (%) is specified in column l of the line that precedes 
the lines for which you do want processing. For example: 

ij(Q 

BAK.MAC;26/AU/-BF=BAK.MAC;25 
\ 
-2,2 

.!DENT /05.03/ 
-23,23 
; VERSION 0 5 • 0 3 
-37,, 

J. MATTHEWS ll-JAN-79 

JMOll CORRECT OUT-OF-BOUNDS CONDITION FOR INPUT-BUFFER 
SIZE 

I 

% 
-106,106,/;JMOll/ 

CMP #132.,R3 IS INPUT-BUFFER SIZE IN RANGE? 
BLT 30$ IF LT, NO 

I 

17-18 

as 

.-. t"".14; 

a 1+ 



\._,,·· 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

The lines between the backslash (\) and the percent sign (%) are not 
affected by audit-trail processing. The lines following the percent 
sign (%) are affected. 

17.4.6 Deleting the Audit Trail 

The CM switch allows you to delete audit trails and trailing spaces 
and tabs from a file. The CM switch applied to the output or input 
file specification accepts a numeric argument that specifies the 
beginning position of an audit trail or other text string to be 
deleted. The default for this argument is the position argument given 
for the AU switch (or its default, decimal 80). This value is 
rounded to the next highest tab stop before use. 

When processing an input line, SLP first truncates the text to the 
next highest tab stop after the position specified, and then deletes 
any trailing spaces or tabs. The remaining text is copied to the 
output file. 

The CM switch is specified in the form: 

/CM: [position] 

position 

A number designating the beginning character position of the 
audit trail (or other text) to be deleted. 

For example: 

SLP>SLPR11.MAC;l2/CM:ll9.=SLPR11.MAC;ll 
I 

In this case, the input lines are truncated to a length of 120(10) 
characters. The specified length is rounded up to the next highest 
tab stop (decimal 120) and the audit trail begins at column 121(10). 
Trailing spaces and tabs are deleted before each line is copied to the 
output file. 

In the next example, SLP truncates input lines to the default position 
of the audit trail, column 80(10). 

17.5 

SLP>SLPR11.MAC;l2=SLPR11.MAC;ll/CM 
I 

SLP M:E$SAGES 

SLP messages are divided into two groups: information and error. The 
messages and suggested responses are given below. Section 17.5.1 
describes the information message and Section 17.5.2 describes the 
error messa9es. 

17-19 



nu• ; t 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

17.5.1 SLP Information Message 

SLP COMMAND FILE CHECKSUM IS ###### 

Explanation: By specifying 
requested SLP to calculate 
commands. 

/CS 
the 

in the command 
checksum value 

line, you 
for the edit 

User Action: This message is for your information only. No 
action is required. 

17.5.2 SLP Error Messages 

SLP error messages are issued in two formats: 

• SLP followed by two dashes, the type of error message, and the 
error message. If applicable, the command line or command 
line segment that caused the message is printed on the next 
line. For example: 

SLP -- *FATAL*-ILLEGAL SWITCH 
SHIRLEY.MAC:2 

• SLP followed by two dashes, the type of error message, the 
error message, and the name of the file with which the error 
is associated. For example: 

SLP -- *FATAL*-OPEN FAILURE LINE LISTING FILE filename 

This section lists the error messages SLP can issue. Following each 
message is an explanation of the error and recommended user action to 
correct the error. Note that all but two of the SLP error messages 
are fatal. The two exceptions are diagnostic messages, which are 
described at the end of this section. 

SLP -- *FATAL*-COMMAND SYNTAX ERROR 
command line 

Explanation: The command line format did not conform to syntax 
rules. Open files were closed and SLP was reinitialized. 

User Action: Reenter the command line. 

SLP -- *FATAL*-ILLEGAL DEVICE NAME 
command line 

Explanation: The device specified was not a legal device. 
files were closed and SLP was reinitialized. 

User Action: Reenter the command line. 

SLP -- *FATAL*-ILLEGAL DIRECTORY 
command line segment 

Explanation: The directory was not legally specified~ 
files were closed and SLP was reinitialized. 

User Action: Reenter the command line. 

17-20 

h U 2$ I a 

Open 

Open 

22 &!ii I 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

SLP *FATAL*-ILLEGAL ERROR/SEVERITY CODE pl p2 p3 

Explanation: This error message indicates an error in the SLP 
program. 

User Action: Reenter the command line. 
submit a Software Performance Report 
console dialogue and any other related 
programs or listings. 

SLP -- *FATAL*-ILLEGAL FILE NAME 
command line segment 

If the error persists, 
along with the related 

information, such as 

Explanation: A file specification was greater 
characters in length or contained a wildcard 
asterisk in place of a file specification element). 
were closed and SLP was reinitialized. 

than 30(8) 
(that is, an 

Open files 

User Action: Reenter the command line. 

\..,) SLP ··- *FATAL*-ILLEGAL GET COMMAND LINE ERROR 

Explanation: 
indicates an 
program. 

The system was unable to read a command line. This 
internal system failure or an error in the SLP 

User Ac:tion: Reenter the command line. If the error persists, 
submit a Software Performance Report along with the related 
console dialogue and any other pertinent information. 

SLP -- *FATAL*-ILLEGAL SWITCH 
command line segment 

Explanation: The switch was not a valid SLP switch or a leqal 
switch was used in an invalid manner. Open files were closed and 
SLP was reinitialized. 

User Ac:tion: Reenter the command line with the correct switch 
specified. 

SLP -- *FATAL*-INDIRECT COMMAND SYNTAX ERROR 
command linH 

Explanation: The command line format specified for the indirect 
command file did not conform to syntax rules. Open files are 
closed and SLP was reinitialized. 

User Action: Reenter the command line. 

SLP -- *FATAL*-INDIRECT FILE DEPTH EXCEEDED 
command 1 inE~ 

Explanation: More than three levels 
specified in an indirect command file. 
and SLP was reinitialized. 

of indirection were 
Open files were closed 

User Action: Correct the command file and reenter the command 
line. 

17-21 



lutQ 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

SLP -- *FATAL*-I/O ERROR COMMAND INPUT FILE 

or 

SLP -- *FATAL*-I/O ERROR COMMAND OUTPUT FILE 

or 

SLP -- *FATAL*-I/O ERROR CORRECTION INPUT FILE filename 

or 

SLP -- *FATAL*-I/O ERROR LINE LISTING FILE filename 

42 

SLP 

or 

*FATAL*-I/O ERROR SOURCE OUTPUT FILE filename 

Explanation: One of the following conditions may exist: 

• A problem exists on the physical device (for example, the disk 
is not spinning). 

• The length of the command line was greater than the specified 
number of characters. · 

• The file is corrupted or the format is incorrect. 

User Action: Determine which condition caused the message and 
correct that condition. Reenter the command line. 

SLP -- *FATAL*-INDIRECT FILE OPEN FAILURE 
command line 

or 

SLP -- *FATAL*-OPEN FAILURE CORRECTION INPUT FILE filename 

or 

SLP -- *FATAL*-OPEN FAILURE LINE LISTING FILE filename 

SLP 

a; 

or 

*FATAL*-OPEN FAILURE SOURCE OUTPUT FILE filename 

Explanation: One of the following conditions may exist: 

• The file is protected against an access. 

• A problem exists with the physical device (for example, the 
device was not online). 

• The volume is not mounted. 

• The specified file directory does not exist. 

• The named file does not exist in the specified directory. 

• The available Executive dynamic memory is insufficient for the 
operation. 

17-22 

I I \A 



SOURCE LANGUAGE INPUT PROGRAM (SLP) 

These errors cause open files to be closed and SLP to be 
reinitialized. 

User Action: Determine which condition caused the message and 
correct that condition. Reenter the command line. 

SLP -- *FATAL*-LINE NUMBER ERROR 
command line 

Explanation: The command line printed 
illegally-specified numeric line locator. 

contained an 

User Action: Terminate the SLP edit session and refer to the 
rules for specifying numeric line locators in Section 17.3.1. 
Correct the error and reenter the command line. 

SLP -- *FATAL*-PREMATURE EOF CORRECTION INPUT FILE filename 

Explanation: An out-of-range line locator 
correction file or from the terminal~ 
specified for an 800-line file. 

User Action: 

• Terminate the current editing session. 

was specified in a 
for example, -1000 was 

• Restart the editing session, entering the correct line number. 

SLP -- *FATAL*-PREMATURE EOF COMMAND INPUT FILE 

Explanation: This is caused by not terminating SLP command input 
with a slash (/) or by inadvertently typing CTRL/Z at the 
terminal, which sends an end-of-file to SLP before the slash (/) 
character is read. SLP prints SLP>, indicating that a new file 
specification is expected. 

User Action: Restart the editing session at the point where the 
CTRL/Z was typed. 

SLP -- *DIAG*-ERROR IN COMMAND FILE f ilespec CHECKSUM 

Explanation: An incorrect value was specified for the command 
file checksum. If you ente"r the edit command lines directly from 
the te!rminal, the command file in the error message is CMI.CMD. 
Thus, the error message reads: 

SLP --· *DIAG* - ERROR IN COMMAND FILE CMI.CMD CHECKSUM 

User Action: This is a warning message only. The specified 
output: file is still created, although possibly not as intended. 

17-23 



a 

SOURCE LANGUAGE INPUT PROGRAM (SLP) 

SLP -- *DIAG*-n LINES TRUNCATED BY AUDIT TRAIL 
command line 

Explanation: Line truncation by the audit trail was detected. 

User Action: This is an informational message only. The 
specified output file is still created. (In the listing file, a 
question mark (?) replaces the period (.) in the line number of 
the lines that were truncated. It is possible that audit-trail 
strings from the input file will be truncated by the new 
audit-trail string although text strings will not be truncated.) 
Determine where the truncation(s) occurred. If necessary, modify 
the command file so that it contains commands that do not cause 
truncation. 

17-24 

• 



"-'I 

CHAPTER 18 

OBJECT MODULE PATCH UTILITY (PAT) 

The Object Module Patch Utility (PAT) allows you to update, or patch, 
code in a relocatable binary object module. 

Input to PAT is two files, an input file and a correction file. The 
input file consists of one or more concatenated object modules. You 
can correct only one of these object modules with a single execution 
of PAT. The correction file consists of object code that, when linked 
by the Task Builder, either overlays or is appended to the input 
object module. Unlike the Task Builder and ZAP patching options, P~T 
allows you to increase the size of the object module because the 
changes are applied before the module is linked by the Task Builder. 

PAT uses the correction file, which contains corrections and/or 
additional instructions, to update the object module. Correction 
input is prepared in source form and then assembled by the MACR0-11 
assembler. 

Output from PAT is the updated input file. 

You invoke PAT using any of the methods for invoking a utility 
described in Chapter 1. PAT can be used interactively or by means of 
indirect command files. If you use indirect command files, PAT allows 
a maximum nesting level of 2. 

Using PAT to update a file involves several steps. First, you create 
the correction file using a text editor. Once created, the correction 
file must be assembled to produce an object module. The correction 
file and the input file (both in object module format) are then 
submitted to PAT for processing. Finally, the updated input object 
module is submitted to the Task Builder to resolve global symbols and 
to create an executable task. Figure 18-1 shows the processing steps 
involved in generating an updated task file using PAT • 

.( -

18-1 



"111•• 

TASK 
BUILDER 

OBJECT MODULE PATCH UTILITY (PAT) 

TEXT 
EDITOR 

CORRECT.SAC 

LJ :> 

CORRECT.OBJ 

LJ 
MYFILE.OBJ ~ 

LJ 

1. Generate a correction file using 
the Text Editor. 

2. Execute the assembler (or compiler) 
to generate an object module 
version of the file. 

3. Execute PAT using as input the 
correction file and the module to 
be updated. 

4. Execute the Task Builder to 
resolve new addresses and 
generate an executable task. 

CORRECT.SAC 

>LJ 
CORRECT.OBJ 

>LJ 
MYFILE.OBJ 

>LJ 

MYFILE.TSK 

->LJ 
Figure 18-1 Processing Steps Required to Update a 

Module Using PAT 

18.1 SPECIFYING THE PAT COMMAND STRING 

Specify the PAT command string in the following format: 

[outfile]=infile[/CS[:number]],correctfile[/CS: [number]] 

outfile 

The file specification for the output file. If you do not 
specify an output file, PAT does not generate one. 

inf ile 

The file specification for the input file. This file can contain 
one or more concatenated object modules. 

correctf ile 

Lu: a 

The file 
contains 
file. 

specification 
the updates 

for 
being 

the correction file. This file 
applied to one module in the input 

18-2 

~· . 

~· 



OBJECT MODULE PATCH UTILITY (PAT) 

/CS[:number] 

18.2 

Specifies the Checksum switch. This switch directs PAT to 
calculate the checksum for all the binary data that constitutes 
the module. PAT displays this checksum in octal. (Refer to 
Section 18.2.4 for information on how to use /CS.) You can 
optionally specify an octal number with /CS. Then, after PAT 
calculates the checksum value, it compares that value with the 
number you specified. If the values are not the same, PAT 
informs you with an error message. 

HOW PAT APPLIES UPDATES 

This section describes the PAT input and correction files, gives 
information on how to create the correction file, and gives examples 
of how PAT applies the corrections to a module. 

18.2.1 The Input File 

The input file is the file to be updated; it is the base for the 
output file. The input file must be in object module format. When 
PAT executes, the correction file is applied to one of the object 
modules in the file. PAT assumes a file type of .OBJ for the input 
file. If you use a file type other than .OBJ, you must specify it 
explicitly in the command line. 

18.2.2 The Correction File 

The correction file contains the patches to be applied to the input 
file. Like the input file, the correction file has a default file 
type of .OBJ. If you use any other file type. you must specify it 
explicitly in the command line. 

As shown above in Figure 18-1, the first step in using PAT to update 
an object file is to generate the correction file. Use any text 
editor to create this source file, which is usually in the following 
format: 

• TITLE: inputname 
• IDEN'l~ upda tenum 
input line 
input line 

inputname 

The name of the module to be corrected by the PAT update. You 
must specify inputname to be the same as the name of the module 
that you are updating. 

updatenum 

Any value acceptable to the MACR0-11 .!DENT assembler directive. 
Generally, this value reflects the updated version of the file 
being processed by PAT (as shown in the examples given in Section 
18.2.3). 

18-3 



'!iliJ ii 

OBJECT .MODULE PATCH UTILITY (PAT) 

NOTE 

The .!DENT assembler directive is a 
required part of the correction file. 
Failure to include a .!DENT directive in 
the file produces unusable output. 

inputline 

Lines of input to be used to correct and update the input file. 

Once you have created the source version of the correction file, you 
assemble it to produce an object module that can be processed by PAT. 

During PAT execution, new global symbols defined in the correction 
file are added to the module's symbol table. A symbol definition that 
is already being used in the input file can be superseded by the 
definition in the correction file. For a symbol definition to be 
superseded, both definitions must be either relocatable or ab'solute. 

A duplicate program section supersedes the previous program section, 
provided: 

• Both have the same relocatability attribute (ABS or REL) 

• Both are defined with the same directive (.PSECT or .CSECT) 

If PAT encounters duplicate program section names, the length 
attribute for the program section is set to the length of the longer 
program section, and a new program section is appended to the module. 

If you specify a transfer address, it supersedes the transfer address 
of the module being patched. 

18.2.3 How PAT and the Task Builder Update Object Modules 

The examples in the following sections show an input file and a 
correction file (both in object module format) to be processed by PAT 
and the Task Builder, along with a source-like representation of how 
the output file looks once PAT and the Task Builder complete 
processing. Two techniques are described, one for overlaying lines in 
a module and the other for adding a subroutine to a module. 

18.2.3.1 Overlaying Lines in a Module - The first example illustrates 
a technique for overlaying lines in a module using a patch file. 
First, PAT appends the correction file to the input file. Then, the 
Task Builder generates a task image from the patched object modules. 

The input file for this example is: 

ABC:: 

4il st 

.TITLE ABC 
• !DENT /01/ 

MOV A,C 
CALL XYZ 
RETURN 
.END 

18-4 

a if 24 



'-'; 

OBJECT MODULE PATCH UTILITY (PAT) 

To add the instruction ADD A,B after the CALL instruction, you can use 
the following patch in the correction file: 

.TITLE ABC 
• !DENT /01. 01/ 

.=.+12 
ADD A,B 
REr.rURN 
.END 

You use the MACR0-11 assembler to assemble the correction file. After 
assembly, PAT processes the resulting obj~ct module and the input 
object module. The result of PAT processing appears as follows: 

.TITLE ABC 
• !DENT /01.01/ 

ABC:: 
MOV A,C 
CALL XYZ 
RE~ruRN 

.=ABC 

.=.+12 
ADD A,B 
RETURN 
.END 

You then use the Task Builder to produce the patched object module as 
a task image. This task image looks the same as the source code would 
have looked if it had originally been written as follows: 

.TITLE ABC 
• !DENT /01. 0 l/ 

ABC::: 
MOV A,C 
CALL XYZ 
ADD A,B 
RE~ruRN 

.END 

PAT uses the .=.+12 in the program counter field to determine where to 
begin overlaying instructions in the program. It overlays the RETURN 
instruction with the patch code: 

ADD A,B 
RE'rURN 

18.2.3~2 Adding a Subroutine to a Module - The second example 
illustrates a technique for adding a subroutine to an object module. 
A patch often requires that more than a few lines be added to correct 
the file. A convenient technique for adding new code is to append it 
to the end of the module as a subroutine. That way, you insert a CALL 
instruction to the subroutine at an appropriate location. The CALL 
instruction directs the program to branch to the new code, execute 
that code, and then return to inline processing. 

18-5 



OBJECT MODULE PATCH UTILITY (PAT) 

The input file for the example is: 

.TITLE ABC 
• IDENT /01/ 

ABC:: 
MOV A,B 
CALL XYZ 
MOV C,RO 
RETURN 

.END 

The correction file for this example is: 

.TITLE ABC 
• IDENT /01.01/ 
CALL PATCH 
NOP 
.PSECT PATCH 

PATCH: 
MOV A,B 
MOV D,RO 
ASL RO 
RETURN 
.END 

PAT merges the correction file with the input file, as in the first 
example. The Task Builder then processes the files and produces a 
task image that looks the same as the source file would have looked if 
it had originally been written as follows: 

ABC:: 

PATCH: 

.TITLE ABC 
• IDENT /01.01/ 

CALL PATCH 
NOP 
CALL XYZ 
MOV C,RO 
RETURN 

.PSECT PATCH 

MOV A,B 
MOV D,RO 
ASL RO 
RETURN 
.END 

1n this example, the CALL PATCH and NOP instructions overlay the 
3-word MOV A,B instruction. (The NOP is included because this is a 
case where a 2-word instruction replaces a 3-word instruction and NOP 
is required to maintain alignment.) The Task Builder allocates 
additional storage for .PSECT PATCH, writes the specified code into 
this program section, and binds the CALL instruction to the first 
address in this section. The MOV A,B instruction, replaced by the 
CALL PATCH instruction, is the first instruction executed by the PATCH 
subroutine. 

18-6 

ii .I DUS J 4 f'I UM 



OBJECT MODULE PATCH UTILITY (PAT) 

18.2.4 Determining and Validating the Contents of a File 

You use the Checksum switch (/CS) to determine or validate the 
contents of a module. The switch directs PAT to calculate the 
checksum (in octal) for all the binary data that constitutes the 
module and then inform you of the checksum by means of a diagnostic 
message. 

To determine the checksum of a file, enter the PAT command line with 
the CS switch applied to that file's specification. For example: 

=MYFILE/CS,CORRECT.POB 

The command directs PAT to calculate the checksum for the input file, 
MYFILE~ PAT then responds with the message: 

INPUT MODULE CHECKSUM IS checksum 

PAT generates a similar message when you request the checksum for the 
correction file. For example: 

=MYFILE,CORRECT.POB/CS 

Aft~!r calculating the checksum for the correction file, PAT responds 
with the message: 

CORRECTION INPUT FILE CHECKSUM IS checksum 

If you specify /CS:number to validate the size of a file, PAT 
calculates the checksum for the file and then compares that checksum 
with the value you specified as number. If the two values do not 
match, PAT displays the following message to report the checksum 
err<>r: 

ERROR IN FILE filename CHECKSUM 

For example, you might specify: 

=MYFILE,CORRECT.POB/CS:432163 

When PAT calculates the checksum for the correction file, the number 
is different. PAT then displays the message: 

ERROR IN FILE CORRECT.PCB CHECKSUM 

Checksum processing always results in an octal, nonzero value. 

18.3 PATCIB MESSAGES 

PAT generates messages that state checksum values and messages that 
describe error conditions. For checksum values and nonfatal error 
messages, PAT prefixes the messages with: 

PAT -·- *DIAG*-error message 

For messages the describe errors that caused PAT to terminate, PAT 
uses the pref ix: 

PAT -- *FATAL*-error message 

18-7 



OBJECT MODULE PATCH UTILITY (PAT) 

The messages described below are grouped according to message type, as 
follows: 

• Lnformation messages 

• Command line errors 

• File specification errors 

• Input/output errors 

• Errors in file contents or format 

• Internal software error 

• Storage allocation error 

18.3.1 Information Messages 

The following messages describe results of checksum processing. 

CORRECTION INPUT FILE CHECKSUM IS checksum 

Explanation: When you specify /CS in the correction 
specification, PAT informs you of the file's checksum value. 
value is given in octal. 

User Action: No response necessary. 

INPUT MODULE CHECKSUM IS checksum 

Explanation: When you specify /CS in the input 
specification, PAT informs you of the file's checksum value. 
value is given in octal. 

User Action: No response necessary. 

18.3.2 Command Line Errors 

file 
The 

file 
The 

The following errors result from failure to adhere to the command line 
syntax rules. 

COMMAND LINE ERROR command line 

Explanation: The system standard command line processor (.GCML) 
detected an error in the command line. 

User Action: Reenter the command line using the correct syntax. 

COMMAND SYNTAX ERROR command line 

Explanation: The command line contained a syntax error. 

User Action: Reenter the command line using the correct syntax. 

18-8 

;: 



~· 

'--'·' 

OBJECT MODULE PATCH UTILITY (PAT) 

ILLEGAL INDIRECT FILE SPECIFICATION command line 

Explanation: You used an indirect command file specification 
that contains one of the following errors: 

• A syntax error 

• A specification for a nonexistent indirect command file 

User Action: Check for file specification syntax errors or 
ensure that the specified file is contained in the specified User 
File Directory. Reenter the command line. 

MAXIMUM INDIRECT FILE DEPTH EXCEEDED command line 

Explanation: In the command line, you specified an indirect 
command file that exceeds the maximum nesting level of 2 that is 
permitted by PAT. 

User Action: Reorder your files so that they do not exceed PAT's 
nesting limit. 

18.3.3 File Specification Errors 

The following messages are caused by errors in the specification of 
input or output files or related file switches. 

CORRECTION INPUT FILE MISSING command line 

Explanation: The mandatory correction file was not specified. 

User Action: Reenter the command line specifying the correction 
file. 

ILLEGAL DEVICE/VOLUME SPECIFIED device name 

Explanation: The device or volume name specification contained a 
syntax error. 

User Action: Check the rules for specifying devices and volumes, 
then reenter the command line. 

ILLEGAL DIRECTORY SPECIFICATION directory name 

Explanation: The directory specification contained a syntax 
error. 

User Action: Check the rules for specifying a directory and 
reenter the command line. 

ILLEGAL FILE SPECIFICATION filename 

Explanation: The file specification contained a syntax error. 

User Action: Reenter the command line using the correct syntax 
for the file specification. 

18-9 



"''a 

OBJECT MODULE PATCH UTILITY (PAT) 

ILLEGAL SWITCH SPECIFIED filename 

Explanation: An unrecognized switch or 
specified with the file. 

switch value was 

User Action: Check the rules for specifying the switch and 
reenter the command line. 

INVALID FILE SPECIFIED filename 

Explanation: The specification for filename is associated with 
one of the following error conditions: 

• Nonexistent device 

• Nonexistent directory the directory in the filename 
specification does not exist on the specified device (or on 
the default device if no device was specified) 

User Action: Reenter the command line specifying the correct 
device or directory. 

MULTIPLE OUTPUT FILES SPECIFIED command line 

Explanation: PAT accepts only one output file specification. 

User Action: Reenter the command line specifying only one output 
file. 

REQUIRED INPUT FILE MISSING command line 

Explanation: The mandatory input file was not specified in the 
command line. 

User Action: Reenter the command line specifying an input file. 

TOO MANY INPUT FILES SPECIFIED command line 

Explanation: Too many input files were specified in the command 
line. PAT accepts only the input and correction file 
specifications. 

User Action: Reenter the command line specifying the correct 
files. 

UNABLE TO FIND FILE filename 

Explanation: PAT could not locate the specified input or 
correction file. 

User Action: Check the directory to ensure that the file exists. 
Reenter the command line. 

18-10 

;: I ii ii I I 

1'' 

I I 424 



OBJECT MODULE PATCH UTILITY (PAT) 

18. 3. 4 In~•ut/Output Errors 

The error messages listed below are caused by faults detected while 
~i: PAT was peI·forming I/O to the specified file. 

ERROR DURING CLOSE: FILE: filename 

Explanation: This error is most likely to occur while PAT is 
attempting to write the remaining data into the output file 
before de-accessing it. The most likely causes of this error are 
the following conditions: 

• The device is full 

• The device is write-locked 

• A hardware error occurred 

User Action: Perform the appropriate corrective action and 
reenter the command line: if the device is full, delete all 
unnecessary files; if the device is write-locked, write-enable 
it; if the problem is a hardware error, contact your DIGITAL 
Field Service representative. 

ERROR POSITIONING FILE filename 

Explanation: PAT attempted to 
end-of:-f ile. 

position the file beyond 

User Action: Submit a Software Performance Report along with the 
relatE~d console dialogue and any other pertinent information. 

I/O ERROR ON INPUT FILE filename 

Explanation: An error was detected while PAT was attempting to 
read the specified input file. The principal cause of this error 
is a device hardware error. 

User Action: Reenter the command. 

I/O ERROR ON OUTPUT FILE filename 

Explanation: An error occurred while PAT attempted to write into 
the named output file. The most likely causes of this error are 
the following conditions: 

• The device is full 

• The device is write-locked 

• A device hardware error occurred 

User Action: Perform the appropriate corrective action and 
reenter the command line: if the device is full, delete all 
unnecessary files; if the device is write-locked, write-enable 
it; if the problem is a hardware error, contact your DIGITAL 
Field Service representative. 

18-11 



111aa 

OBJECT MODULE PATCH UTILITY (PAT) 

18.3.5 Errors in File Contents or Format 

The following errors represent inconsistencies detected by PAT in the 
format or contents of the input or correction files. 

ERROR IN FILE filename CHECKSUM 

Explanation: The checksum that PAT calculated for the named file 
does not match the one that you specified with /CS:number. 

User Action: Ensure that you specified the correct checksum. If 
the checksum is correct, then you specified an invalid version of 
the file. Rerun PAT specifying the correct version of the file. 

FILE filename HAS ILLEGAL FORMAT 

Explanation: The format of the named file is not compatible with 
the object files produced by the standard DIGITAL language 
processors or accepted by the Task Builder. The principal causes 
are: 

• Truncated input file 

• Input file that consists of text 

User Action: Ensure that the file is in the correct format and 
resubmit it for PAT processing. 

INCOMPATIBLE REFERENCE TO GLOBAL SYMBOL symbol name 

Explanation: The correction file contains a global symbol whose 
attributes do not match one or more of the following input file 
symbol attributes: 

• Definition or reference 

• Relocatable or absolute 

User Action: 
attributes. 
processing. 

Update the correction file by modifying the symbol 
Reassemble the file and resubmit it for PAT 

INCOMPATIBLE REFERENCE TO PROGRAM SECTION section name 

Sb! 

Explanation: The correction file contains a section name whose 
attributes do not match one or both of the following input file 
section attributes: 

• Relocatable or absolute 

• Defined with the same directive (.PSECT or .CSECT} 

User Action: Update the correction file by modifying the section 
attribute or changing the section type. Reassemble the file and 
resubmit it to PAT for processing. 

18-12 

41 

"" ~· I :r 

h 



OBJECT MODULE PATCB UTILITY (PAT) 

UNABLE TO LOCATE MODULE module name 

Explanation: PAT could not find the module name that was 
specified in the correction file in the file of concatenated 
input modules. 

User Action: Update the input file specification to include the 
missing module. Reenter the command line. 

18.3.6 Internal Software Error 

This error reflects internal software error conditions. 

ILLEGAL ERROR-SEVERITY CODE error data 

Explanation: An error message call, containing an 
parameter, has been generated. 

illegal 

User Actionx If these messages persist, submit a Software 
Performance Report along with related console dialogue and any 
other pertinent information. 

18.3.7 Storage Allocation Error 

The following error message indicates that not enough task memory was 
available for storing global symbol and program section data. 

NO DYNAMIC STORAGE AVAILABLE storage-l.isthead 

Explanation: Not enough contiguous task memory was available to 
satisfy a tequest for the allocation of storage. 

PAT displays the contents of the 2-word dynamic storage listhead 
in octal. 

User Action: If possible, PAT should be reinstalled with a 
larger increment or in a bigger partition. (See the 
RSX-llM/M-PLUS MCR Operations Manual.) 

18-13 



$ 4 i2 !ii I 14• 



CHAPTER 19 

TASK/FILE PATCH PROGRAM (ZAP) 

The Task/File Patch Program (ZAP) allows you to directly examine and 
modify files on a Files-11 volume. Using ZAP, you can patch data 
files or task images interactively without reassembling and rebuilding 
the task. 

ZAP performs many of the functions performed 
Debugging Technique program (ODT). Thus, 
helpful in using ZAP. See the IAS/RSX-11 ODT 
information on ODT. 

ZAP provides the following features: 

by the RSX-11 On-Line 
a knowledge of ODT is 
Reference Manual for 

• Command line switches that allow you to access specific words 
and bytes in a file, modify locations in a task image, list 
the disk block and address boundaries for each overlay segment 
in a task disk image, and open a file in read-only mode 

• A set of internal registers that include eight Relocation 
Registers 

• Single-character commands that, in combination with other 
command line elements, allow you to display, open, close, and 
manipulate the values in task images and data files 

Except in read-only mode, the results of ZAP commands are permanent. 
Thus:, the safest way to use ZAP is with a hard-copy terminal, so you 
have a record of the changes you make. 

Although the ZAP utility functions are relatively straightforward to 
use, patching locations in a task image requires knowing how to use 
the memory allocation file (or map) generated by the Task Builder as 
well as the listings generated by MACR0-11. These maps and listings 
provide information you need to access the locations whose contents 
you want to change. For information on Task Builder maps, see the 
RSX-· llM/M-PLUS Task Builder Manual. For information on MACR0-11 
listings, see the IAS/RSX-11 MACR0-11 Reference Manual. 

19.1 INVOKING AND TERMINATING ZAP 

You cannot include a command line on the same line on which you invoke 
ZAP~ That is, you cannot type ZAP filespec. 

19-1 



st a 

TASK/FILE PATCH PROGRAM (ZAP) 

To invoke ZAP, you enter only the utility name, followed by a carriage 
return, and wait for ZAP to prompt you. Then, enter the file 
specification for the file you want to change. You enter the file 
specification in the format: 

dev: [group,member]filename.filetype;version[/sw ••• ] 

The default file type is .TSK. After 
specification, ZAP prompts with an underscore 

you 
(_). 

enter the file 

You terminate ZAP by entering the X command. This command exits from 
ZAP and returns control to MCR. 

Section 19.2 describes the ZAP switches and their functions. 

19.2 ZAP SWITCHES 

Switches set the mode in which ZAP operates. There are three modes: 
task image (default) and absolute, both of which are addressing modes, 
and read-only. The modes and their switches are described below: 

• Task image mode is the default mode for ZAP. In this mode, 
addresses in ZAP command lines refer to addresses in the task 
image file as they are shown in the Task Builder map for the 
file. (ZAP processing is identical to ODT run-time processing 
in this case.) 

• When you specify absolute mode (/AB), ZAP processes the 
addresses you e'nter in ZAP command lines as absolute byte 
addresses within the file. You should specify /AB for files 
that are not in task image format, but you can also specify 
the switch for files that are. 

• When you specify read-only mode (/RO), ZAP opens the file in 
read-only mode. That is, you can execute ZAP functions that 
change the contents of locations, but these changes are not 
permanent. When ZAP exits, the original values in the task 
image file are restored. 

In addition, you can specify /LI in task image and read-only modes 
(but not in absolute mode). This switch displays the starting disk 
block and address boundaries for each overlay segment in the file in 
the format: 

ssssss: aaaaaa-bbbbbb 

ssssss: 

The starting block in octal. 

aaaaaa 

The lower address boundary in octal. 

bbbbbb 

The upper address boundary in octal. 

19-2 

'*' 



v 

TASK/FILE PATCH PROGRAM (ZAP) 

19.3 ADDRESSING LOCATIONS IN A TASK IMAGE 

To address locations in a task image, ZAP provides two addressing 
mode:s and a set of internal registers, which include eight Relocation 
Registers. This section first introduces the concept of relocation 
biases and the use of the Relocation Registers, then explains the 
addressing modes. 

19.3.1 Relocation Biases 

When MACR0-11 generates a relocatable object module, the base address 
of each program section of the module is 000000. In the assembly 
listing, all locations in the program section are shown relative to 
this base addresso 

The Task Builder links program sections to other program sections by 
mapping the relative addresses applied by the assembler to the 
physical addresses in memory (for unmapped systems) or to virtual 
addresses (for mapped systems). 

Many values within the resulting task image are biased by a constant 
whose value is the absolute base address of the program section after 
the section has been relocated. This bias is called the relocation 
bias for the program section. 

ZAP's eight Relocation Registers, OR through 7R, are generally set to 
the relocation biases of the modules to be examined. This allows you 
to refer to a location in a module by the same relative address that 
appears in the MACR0-11 listing. The addressing modes help you 
calculate the relocation biases. 

19.3.2 ZAP Addressing Modes: Absolute and Task Image 

The two modes for addressing locations in a task image are absolute 
mode and task image mode. Task image mode is the default mode for 
ZAP. 

You can examine locations in a file in either absolute or task image 
mode using the RO switch. /RO allows you to open and temporarily 
change the contents of locations. When ZAP exits, the file is still 
in its original form. 

If you specify /LI to display block/segment information, ZAP is in 
task image mode after the information is displayed. 

19.3.2.1 Using the Absolute Addressing Mode - To use ZAP in absolute 
mode, enter /AB with the file specification after you invoke ZAP. 

In absolute mode, ZAP interprets the first address in the file you are 
changing as segment l, location 000000. All other addresses you enter 
are interpreted using this address as the base location. Absolute 
mode allows you to access all the bytes in a file as well as the label 
and header blocks of a task disk image. However, to modify a task 
disk image in absolute mode, you must know the disk layout of the task 
disk image. Generally, this mode is practical only for data files or 
for task image files that are not overlaid. 

19-3 



lilll• 

TASK/FILE PATCH PROGRAM (ZAP) 

19.3.2.2 Using the Task Image Addressing Mode - In task image mode, 
ZAP allows you to address locations using the block number and 
relative offset listed in the Task Builder map. Task image mode is .,,.,_: .... -" ····.· 
useful for changing locations in a file constructed of overlay -
segments because the Task Builder and ZAP perform the calculations 
necessary to relate the task's disk structure to its run-time memory 
structure. 

The Task Builder adds blocks containing system information to the 
beginning of a task image file. The map generated by the Task Builder 
gives you the starting block and byte offset of the file you want to 
change. 

~n task i~age mode, ZAP allows you to address locations in a task 
image using the block number and byte offset listed in the Task 
Builder map and addresses that MACR0-11 prints in an assembler output 
listing. The following excerpts from a MACR0-11 listing and a map 
generated by the Task Builder show how to use ZAP in task image mode. 

The following lines represent assembled instructions from a MACR0-11 
source listing: 

71 000574 032767 OOOOOOG OOOOOOG BIT #FE.MUP,$FMASK 
72 000602 001002 BNE 2$ 
73 000604 000167 000406 JMP 30$ 
74 000610 016700 OOOOOOG 2$: MOV $TKTCB,RO 
75 000614 016000 OOOOOOG MOV T.UCB(RO),RO 
76 000620 010067 177534 MOV RO,UCB 
77 000624 032760 OOOOOOG OOOOOOG BIT #U2.HLD,U.CW2(RO) 

The following excerpt from a Task Builder map gives the information 
you need to address locations in the task image file as they appear in 
the above MACR0-11 listing: 

R/W MEM LIMITS: 120000 123023 003024 01556. 
DISK BLK LIMITS: 000002 000005 000004 000-04. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 

BLK.: (RW,I,LCL,REL,CON) 120232 002546 01382. 
120232 002244 01188. 
122476 000064 00052. 

$$RESL:(RW,I,LCL,REL,CON) 123000 000024 00020. 

TITLE !DENT 

MYFILE 01 
FMTDV 01 

FILE 

MCR.OLB;l 
MCR.OLB;l 

Using information in the map above, you can determine the block number 
and byte offset for the beginning of the file you want to change. The 
disk-block-limits line lists block 2 as the block where the code 
segment begins. The synopsis lists byte offset 120232 as the 
beginning of the file, MYFILE. To address location 574 in the 
MACR0-11 listing in task image mode, specify the command: 

2:120232+574/<CR> 

ZAP responds by opening the location and displaying its contents: 

002:121026/ 032767 

19-4 

IS 225 2 Lilt iii I 

~' 

14 



TASK/FILE PATCH PROGRAM (ZAP) 

19.4 THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS 

ZAP commands perform functions that allow you to 
the contents of locations in a task image 
comprise combinations of the following elements: 

• Commands 

• Internal registers 

• Arithmetic operators 

• Command line element separators 

• The current location symbol 

• Location-specifier formats 

examine and modify 
file. Command lines 

The command elements can be combined with each other to perform 
multiple functions. The function of a given command line depends not 
only on which elements you use, but also on the position of one 
element in relation to the next. 

The following sections describe the ZAP 
Sections 19.5 and 19.6 describe how to 
elements to execute ZAP functions. 

19.4.l ZAP Commands 

There are three types of ZAP commands: 

• Open/close location commands 

• General-purpose commands 

• Carriage return 

command line elements. 
combine the command line 

19.4.1.l Open/Close Location Commands - Open/close location commands 
are nonalphanumeric ASCII characters that direct ZAP to perform a 
sequence of functions. Open/close commands specify two general 
sequences of operations: 

• Open a location, display its contents, and store the contents 
in the Quantity Register (see Section 19.4.2) 

• Close the location after (optionally) modifying it and open 
another location as specified by the command 

Section 19.5 describes the format for specifying open/close location 
commands. 

19.4.1.2 General-Purpose Commands - ZAP provides six 
single-character, general-purpose commands. You use these commands 
for calculating displacements, verifying location contents, and 
exiting from ZAP. You can enter some of the commands on the command 
line with no other parameters. Section 19.6 describes the format for 
specifying these commands. 

19-5 



I I 

TASK/FILE PATCH PROGRAM (ZAP) 

19.4.l.3 Carriage Return - Unless there is another value or command 
on the line, the carriage return closes the current location as 
modified and opens the next sequential location. Unlike ODT, ZAP 
commands take effect only after you enter a carriage return. 

19.4.2 ZAP Internal Registers 

ZAP internal registers are fixed storage locations that ZAP uses as 
registers. These registers contain values set by both you and ZAP. 
ZAP provides the following internal registers: 

• Relocation Registers 0 through 7 (OR through 7R). These 
registers provide a means for indexing into a module to change 
the contents of locations in the module. You load the 
registers with the base address of the modules that have been 
relocated by the Task Builder. 

• The Constant Register (C). You set this register to contain a 
16-bit value, which can be specified as an expression. 

• The Format Register (F). This register controls the format of 
the displayed address. If the value of the F Register is O 
(the init~al value), ZAP displays addresses relative to the 
largest value of any Relocation Register whose value is less 
than or equal to the address to be displayed. If the value of 
the Format Register is not O, ZAP displays addresses in 
absolute format. 

• The Quantity Register (Q). ZAP sets the value in the register 
to be the last value displayed at your terminal. 

To access the contents of the registers, specify 
preceding the register when you enter a command. 

a dollar sign 
For example: 

($) 

$C/ 

This command directs ZAP to display 
Register. (The slash, /, is an 
19-3.) 

19.4.3 ZAP Arithmetic Operators 

the contents of the Constant 
open command, described in Table 

Operators are single-character command line elements that define an 
arithmetic operation in a command line expression. Generally, ZAP 
evaluates these expressions as addresses. Table 19-1 describes the 
operators. 

You use the operators in expressions in command lines. For example, 
rather than manually adding all the displacements listed in the Task 
Builder map, you can specify a location using the following notation: 

2:120000+170/ 

This method for calculating such a displacement is faster and more 
accurate than doing it manually. 

19-6 

0 21 I I hill Ji !! h I l'i\ 



TASK/FILE PATCH PROGRAM (ZAP) 

Table 19-1 
ZAP Arithmetic Operators 

Operator Function 

+ Adds a value to another value. Used in an expression 
that ZAP then evaluates to be a command line element. 

- Subtracts a value from another value. Used in an 
expression that ZAP then evaluates to be a command 
line element. 

* Multiplies a value by 50 ( 8) and adds it to another 
value. Used to form a Radix-50 string. 

The following example shows how to use the asterisk (*) to form 
Radix-50 strings. (Section 19.4.4 explains the use of the colon and 
comma; the percent sign, %, is an open command, described in Table 
19-3.) 

0,40/<CR> 
002:0,000040/ 000000 

O*l<CR> 
-/<CR> 
002:0,000040/ 000001 

l* 33<CR> 
-/<CR> 
002:0,000040/ 000103 

%<CR> 
002:0,000040% A$ 

19.4.4 ZAP Command Line Element Separators 

ZAP provides separators to delimit one command line element from 
another. Different separators are required depending on the type of 
ZAP command being executed. 

Se!parator 

Table 19-2 
ZAP Command Line Element Separators 

Function 

Separates a Relocation Register specification from 
another command line element. 

Separates an address from an internal register 
specification. Used in expressions that set values 
for Relocation Registers. 

Separates a block number base value from an offset 
into the block. Used in most of the references to 
locations in a file. 

19-7 



lllAE $iii 

TASK/FILE PATCH PROGRAM (ZAP) 

19.4.5 The Current Location Symbol 

In command line expressions that ZAP evaluates as addresses, a period 
(.) represents the last open location. 

19.4.6 ZAP Command Line Location-Specifier Formats 

ZAP has three formats for specifying locations in a command line. 
Each provides ~ means of indexing into the task image file. The 
formats are: 

• Byte off set 

• Block number:byte offset 

• Relocation register, byte offset 

19.4.6.l Byte Offset Format - You specify the byte offset format as 
follows: 

location 

If you are using ZAP in absolute moda, ZAP interprets this 
specification as a byte offset from block l, location 000000. If you 
are using ZAP in task image mode, ZAP interprets this specification as 
a byte offset from block O, location 000000. 

This format is generally useful only when you are using ZAP in 
absolute mode. For example, the following ZAP command opens absolute 
location 664: 

664/<CR> 

19.4.6.2 Block Number:Byte Offset Format - This format allows you to 
specify a byte offset from a specific block in the task image file. 
Specify the format as follows: 

blocknum:byteoffset 

You can use this format for addressing locations whether or not you 
enter /AB with the file specification. 

The Task Builder prints a map that gives information on overlay 
segments: 

R/W MEM LIMITS: 120000 123023 003024 01556. 
DISK BLK LIMITS: 000002 060005 000004 00004. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 

• BLK.: (RW,I ,LCL,REL,CON) 

$$RESL:(RW,I,LCL,REL,CON) 

a 

TITLE !DENT 

120232 002546 01382. 
120232 002244 01188. MYFILE 01 
122476 000064 00052. FMTDV 01 
123000 000024 00020. 

19-8 

I. 4 

FILE 

MCR.OLB;l 
MCR.OLB;l 

a t t Si 14* 



TASK/FILE PATCH PROGRAM (ZAP) 

In task image mode, ZAP allows you to enter the block number and byte 
offset displayed in the Task Builder map. In the example above, the 
disk-block-limits line shows MYFILE beginning on block 2. The 
synopsis shows that MYFILE has an offset of 120232. 

19.4.6.3 Relocation Register:Byte Offset Format - This format allows 
you to load a Relocation Register with the value of a location. The 
value is then used as a relocation bias. You specify this format for 
addressing locations in a task image file as follows: 

relocreg,byteoffset 

Specify relocreg in the form nR, where n is the number of the 
Relocation Register. You can then address byte offsets from the value 
loaded in the Relocation Register. For example: 

2:120232;3R<CR> 
3,574/<CR> 

The first command sets the value of Relocation Register 3, then the 
second command opens the location that is 574 bytes offset from block 
(segment ) 2 , 1 o cation l 2 0 2 3 2 • 

19.5 USING ZAP OPEN/CLOSE COMMANDS 

This section is an overview of how to use the ZAP open/close commands, 
which allow you to open locations in a task image file, modify those 
locations, and close the locations. 

Table 19-3 summarizes the open/close commands. 

Table 19-3 
ZAP Open/Close Commands 

Character Designation Function 
I---· 

I Slash Opens a location, displays its 
contents in octal, and stores the 
contents of the location in the 
Quantity Register ( Q) • If the 
location is odd, it is opened as a 
byte. 

II Quotation marks Opens a location, displays the 
contents of the location as two ASCII 
characters, and stores the contents of 
the location in the Quantity Register 
(Q) • 

% Percent sign Opens a location, displays the 
contents of the location in Radix-50 

L format, and stores the contents of the 
location in the Quantity Register ( Q) • 

(continued on next page) 

19-9 



TASK/FILE PATCH PROGRAM (ZAP) 

Table 19-3 (Cont.) 
ZAP Open/Close Commands 

Character Designation Function 

\ 

t 

-
@ 

> 

< 

Backslash 

Apostrophe 

Circumflex or 
Up-arrow 

Underscore or 
Back-arrow 

At sign 

Right angle 
bracket 

Left angle 
bracket 

Opens a location as a byte, displays 
the contents of the location in octal, 
and stores the contents of the 
location in the Quantity Register (Q). 

Opens a location, displays the 
contents as one ASCII character, and 
stores the contents of the location in 
the Quantity Register (Q). 

Closes the currently open location as 
modified and opens the preceding 
location. 

Closes the currently open location as 
modified, uses the contents of the 
location as an offset from the current 
location value, and opens that 
location. 

Closes the currently open location as 
modified, uses the contents of the 
location as an absolute address, and 
opens that location. 

currently open location as 
interprets the low-order 

the contents of the location 
relative branch offset and 

the target location of the 

Closes the 
modified, 
byte of 
as the 
opens 
branch. 

Closes the currently open location as 
modified, returns to the location from 
which the last series of underscore 
( ) , at sign (@), and/or right angle 
bracket (>) commands began, and opens 
the next sequential location. 

19.S.l Opening Locations in a Task Image File 

Use any of the five ZAP open commands -- slash (/), quotation marks 
("), percent sign (%), backslash (\), or apostrophe (') -- to open a 
location in a task image file. The format in which ZAP displays the 
contents of the open location depends on which operator you use. 

Once you open a location in a given format, ZAP displays in that 
format any other locations you open. For example, if you enter the 
percent sign (%) command, the contents of the open location are 
displayed in Radix-SO format. If you enter consecutive carriage 
returns, consecutive locations are displayed in Radix-SO format until 
you change the format by entering a different special-character open 
command. 

19-10 

ti $ ' 22 I a; 



TASK/FILE PATCH PROGRAM (ZAP) 

19.5.2 Changing the Contents of a Location 

When you open a location with a special-character open command, you 
can change the contents of that location by entering the new value and 
a carriage returne The following example is a sequence of commands 
and ZAP responses that shows how to open a location, change the value 
of the location, and close the location. 

<CR> 
002:120000/ 000000 

44444<CR> 
-./<CR> 
002:120000/ 44444 

The first command ( ) displays the contents (000000) of a word 
location. The contents are changed by entering the value 44444, and 
then the location is closed as modified by entering a carriage return. 
The slash (/) followed by a carriage return displays the new contents 
of the location (last line of example). The slash indicates that word 
locations are being opened and their contents displayed in octal 
format. 

19.5.3 Closing Task Image Locations 

ZAP has five special-character commands for closing a location in a 
task image. (The carriage return also closes locations.) The close 
commands perform three functions: 

• Close the current location 

• Direct ZAP to another location. (such as the preceding location 
or a location refered to by the current location) 

• Open the new location 

The following sections give examples of how each command works. 

19.5.3.l Close a Location and Open the Preceding Location - Use the 
circumflex (A) or up-arrow Ct) command (depending on the type of 
terminal you are using) to close the current location, to direct ZAP 
to the preceding location, and to open that location. The ASCII 
representation of both the circumflex and up-arrow is 136(8). The 
following sequence of ZAP commands and responses shows how this 
command works: 

2:120100/<CR> 
002:120100/ 000000 

<CR> 
002:120102/ 000111 

<CR> 
002:120104/ 000222 

<CR> 
002:120106/ 000333 

"'<CR> 
002:120104/ 000222 

The carriage return closes the first three open locations and then 
opens the next location. The circumflex closes location 120106 and 
directs ZAP to open the preceding location, 120104. 

19-11 



TASK/FILE PATCH PROGRAM (ZAP) 

19.5.3.2 Close a Location and Open a Location at an Offset from the 
Location Counter - Use the underscore ( ) or back-arrow <-> command to 
close the current location, to direct ZAP to use the contents of the 
current location as an offset from the current location, and to open 
that location. The ASCII representation of both the underscore and 
back-arrow is 137(8). The following sequence of ZAP commands and 
responses shows how this command works: 

2:120100/<CR> 
002:120100/ 000000 

<CR> 
002:120102/ 111111 

<CR·> 
002:120104/ 222222 

<CR> 
002:120106/ 000022 

<CR> 
002:120132/ 123456 

The carriage return closes the first three ope~ locations. The 
underscore closes location 120106, directs ZAP to use the contents 
(22) of the current location as the offset from the current location 
(120110), and then opens that offset location (120132). 

19.5.3.3 Close a Location and Open a Location Offset from the Value 
of the Just-Closed Location - Use the at sign (@) command to close a 
location, to direct ZAP to use the contents of the just-closed 
location as the absolute address of a location, and to open that 
location. The following sequence of ZAP commands and responses shows 
how this command works: 

2:120100/<CR> 
002:120100/ 000000 

<CR> 
002:120102/ 111111 

<CR> 
002:120104/ 120114 

@<CR> 
002:120114/ 114114 

The carriage return closes the first three open locations. The at 
sign closes 120104, directs ZAP to use the contents (120114) of that 
location as the absolute address of the next location to open, and 
then opens that location. 

19.5.3.4 Close a Location and Open the Target Location of a Branch 
Instruction - Use the right angle bracket (>) command to close the 
current location, to direct ZAP to use the low-order byte of the 
contents of the just-closed location as a branch offset, and then to 
open that location. The following sequence of ZAP commands and 
responses shows how this command works: 

2:120100/<CR> 
002:120100/ 005000 

<CR> 
002:120102/ 005301 

<CR> 
002:120104/ 001020 

><CR> 
002:120146/ 052712 

I I. I ii !2 ! 2 !!! $! & 

19-12 

4 .ii Ziiiii ;412 



TASK/FILE PATCH PROGRAM (ZAP) 

The carriage return closes the first three open locations. The right 
angle~ bracket command closes location 120104, directs ZAP to use the 
low-order byte of its contents (020) as the branch offset for the 

'--" addre!SS of the next location (120146), and then opens that location. 

'-' 

19.5.3.5 Close a Location and Open the Location Where the Current 
SeriE~s of Commands Began - Use the left angle bracket (<) command to 
close the current location; to direct ZAP to the location where the 
current series of underscore ( ), at sign (@), and/or right angle 
bracket (>) commands began; and tlien to open that location. The 
following sequence of ZAP commands and responses shows how this 
commaind works: 

1202;0R<CR> :·o, l 0/ <CR> 
002:0,000010/ 005212 

<CR> 
002:0,005224/ 001020 

><CR> 
002:0,005266/ 000000 

@<CR> 
002:0,000000/ 000000 

«CR> 
002:0,000012/ 000430 

The underscore command directs ZAP to location 005224. The right 
anglE~ bracket command directs ZAP to location 005266, and the at sign 
command directs ZAP to location 000000. The left angle bracket 
command then directs ZAP to location 000012, which is the next 
sequential address after the location where the sequence of commands 
began. 

19.6 USING ZAP GENERAL-PURPOSE COMMANDS 

This section explains the functions of ZAP general-purpose commands 
and shows the formats for specifying them. Table 19-4 describes the 
commands. (Table 19-4 is on the following page.) 

19.6~1 Exit from ZAP 

Use the X command to terminate ZAP and then return control to MCR. 

Specify the X command in the format: 

x 

The underscore (_) is the ZAP prompt. 

19.6.2 Compute an Offset and Store It in the Quantity Register 

Use the K command to compute the offset between the value of the 
near~~st (less than or equal to) Relocation Register and the currently 
open location, to display the offset value, and to store it in the 
Quantity Register (Q). 

19-13 



m ess 

TASK/FILE PATCH PROGRAM (ZAP) 

Table 19-4 
ZAP General-Purpose Commands 

Command Function 

x 

K 

0 

v 

R 

Exits from ZAP, returns to MCR 

Computes the offset between the value of the nearest 
(less than or equal to) Relocation Register and the 
currently open location, displays the offset value, 
and stores it in the Quantity Register (Q) 

Displays the jump and branch displacements from the 
current location to a target location 

Displays in octal the value of the expression to the 
left of the equal sign 

Verifies the contents of the current location 

Sets the value of a Relocation Register 

You can enter the K command in the following formats: 

K 

nK 

a;nK 

Calculates the displacement in bytes from the address of the 
last open location and the value of the Relocation Register 
whose contents are closest to but less than the value of 
that address 

Calculates the displacement in bytes from the last open 
location and Relocation Register n 

Calculates the displacement between address a and Relocation 
Register n 

ZAP responds to the K command by displaying the Relocation Register it 
used and the offset value it computed in the format: 

=reg,offset 

The following example shows how to use the K command: 

_2:1172;0R<CR> 
_2 :1232;1R<CR> 
_2:1202/<CR> 
002:000020/ 000111 
_K<CR> 
=0,000010 
_O ,100

6
· lK<CR> 

=1,000 40 

19.6.3 Display the Branch and Jump Displacements from the Current Location 

Use the O command to display the branch and jump displacements from 
the current location to a target location. A branch displacement is 
the low-order byte of a branch instruction which, when executed, 
branches to the target location. A jump displacement is the offset 
between the o~~n location and the target location. The jump 
displacement is used in the second word of a jump instruction if the 
instruction uses relative addressing. 

19-14 

4 ii !. I I j ayes 



TASK/FILE PATCH PROGRAM (ZAP) 

You can enter the 0 command in the following formats: 

ao 

a;rO 

Displays the jump and branch ~isplacements from the 
current location to the target of the branch (a) 

Displays the jump and branch displacements from location a 
to target location r 

The following example shows how to use the O command: 

0,4534/<CR> 
0,4534/ 1234 

45660<CR> 
-000030> 000014 
-4534;45660<CR> 
-000030> 000014 

The first number (000030) is the jump displacement, the second 
number (000014) is the branch displacement. 

\.....;' 19.6.4 Display the Value of an Expression 

Use the equal sign command (=) to display (in octal) the value of an 
expression to the left of the equal sign. 

Specify the equal sign command in the format: 

expression= 

The following example shows how to use the equal sign command: 

2:30/<CR> 
002:000030/ 000000 

.+177756=<CR> 
000006 

19.6o5 Verify the Contents of a Location 

Use the V command to verify that a location contains a specified 
value. 

Specify the V command in the format: 

contentsV 

You use V to ensure that, before you have ZAP change them, the 
contents being changed are what they should be. The V command is 
mainly useful in indirect command files because ZAP reports the 
error and exits if the contents do not match. That way, the 
contents are not changed incorrectly. 

The following example shows how to use the V command; if you were 
using an indirect command file, you would include this sequence of 
ZAP commands in it. 

0,1200 
6V 
10 

19-15 



n•: 

TASK/FILE PATCH PROGRAM (ZAP) 

ZAP opens the location that is 1200 offset from the value of 
Relocation Register 0 and ensures that the value contained at the 
location is 6. If so, ZAP changes the 6 to 10. If the value is not 
6, ZAP terminates. 

19.6.6 Set The Value For A Relocation Register 

Use the R command to specify the value for a Relocation Register. 
As explained above in Sections 19.3 and 19.4.2, ZAP uses these 
registers to index into a module so that you can change the contents 
of locations in the module. 

Specify the R command in the format: 

nR 

The variable n is the number of the Relocation Register (0 through 
7). 

19.7 ZAP ERROR MESSAGES 

This section lists the messages generated by ZAP, explains the 
condition that causes each message, and suggests a response to the 
message. 

ZAP -- ADDRESS NOT WITHIN SEGMENT 

Explanation: The address specified was not within the overlay 
segment specified. 

User Action: Reenter the command using the correct address or 
overlay segment number. 

ZAP -- CANNOT BE USED IN BYTE MODE 

Explanation: 
bracket (>) 
as a byte. 

The at sign (@), underscore ( ), and right angle 
commands cannot be used when a location is opened 

User Action: If the location is an even address, open the 
location as a word. 

ZAP -- ERROR IN FILE SPECIFICATION 

Explanation: The file specification was entered incorrectly. 

User Action: Check the file specification and reenter it. 

ZAP -- ERROR ON COMMAND INPUT 

Ct ULQ 

Explanation: An I/O error occurred while a command was being 
read. This could be a hardware error. 

User Action: Ensure that the hardware is functioning properly. 
If it is, retry the command. If not, call your Field Service 
representative. 

19-16 

a # di 

"" ' IT 

;;a 



TASK/FILE PATCH PROGRAM (ZAP) 

ZAP -- I/O ERROR ON TASK IMAGE FILE 

Explcmation: 
modi 1:ied was 
error. 

An I/O error occurred 
being read or written. 

while the file being 
This could be a hardware 

User Action: Ensure that the hardware is functioning properly. 
If it is, retry the command. If not, call your Field Service 
repn~sentat i ve. 

ZAP -- NO OPEN LOCATION 

Explcmation: 
location. 

You attempted to modify data in a closed 

User Action: Open the location to perform the modification. 

ZAP -- NO SUCH INTERNAL REGISTER 

Explanation: The character following a dollar sign was not a 
valid specification for the internal register. 

User Action: Reenter the command using 
specification for the internal register. 

ZAP -- NO SUCH RELOCATION REGISTER 

the correct 

Explanation: An invalid number was specified for a Relocation 
Register. 

User Action: Relocation Registers are numbered 0 through 7. 
Any other numbers are illegal. Reenter the command using a 
valid Relocation Register number. 

ZAP --· NO SUCH SEGMENT 

Explanation: The starting disk block was not the start of any 
segment in the task disk image. 

User Action: Reenter the command using the correct disk block 
add rE~SS. 

ZAP-- NOT A TASK IMAGE OR NO TASK HEADER 

Explanation: An error occurred while the segment description 
tables were being constructed. Possibly, the file is not a 
task image, /AB was not specified, or the task image is 
defective. 

User Action: Terminate the ZAP session, and try invoking ZAP 
with /AB specified. 

ZAP -- NOT IMPLEMENTED 

Explanation: You entered a command that is recognized by ZAP, 
but not implemented. 

User Action: Ensure that you entered the command correctly. 

19-17 



TASK/FILE PATCH PROGRAM (ZAP) 

ZAP -- OPEN FAILURE FOR TASK IMAGE FILE 

Explanation: The file to be modified could not be opened. 
Possibly, the file does not exist, the file is locked, the 
device is not mounted, or you do not have write-access to the 
file. 

User Action: Check the file specifier for errors; ensure that 
the volume is properly mounted; or use PIP to check your file 
access privileges (see Chapter 4). 

ZAP -- SEGMENT TABLE OVERFLOW 

Explanation: ZAP does not have enough room in its partition to 
construct a segment table. 

User Action: Install ZAP in a larger partition, or install ZAP 
using a larger /INC value. (See the RSX-llM/M-PLUS MCR 
Operations Manual for information on /INC.) 

ZAP -- TOO MANY ARGUMENTS 

Explanation: You entered more arguments on the command line 
than are allowed. 

id 

User Action: 
- syntax. 

Reenter the command line using the correct 

ZAP -- UNRECOGNIZED COMMAND 

Explanation: ZAP did not recognize the command as entered. 

User Action: Check the syntax of the command you are trying to 
execute and reenter the command using the correct syntax. 

ZAP -- VERIFY FAILURE 

Explanation: The command for verification (V) determined that 
the contents of a location did not match the expected value. 
ZAP terminates. 

User Action: If applicable, check for errors in the indirect 
command file. Ensure that the contents of the file are what 
they should be. Locate the cause of the error and ret(y the 
command. Ensure that you are correcting the right file or file 
version. 

19-18 

;; 



APPENDIXES 

u 



Wllll!C 3¢ 

-., : , ,,, 



v 

APPENDIX A 

COMMANDS AND SWITCHES 

A.l INTRODUCTION 

This appendix presents a summary of the commands 
by the RSX-11 utilities described in this 
numbered sections of this appendix corresponds, 
chapter discussing that utility. For example, 
A.4 both deal with PIP. 

and/or switches used 
manual. Each of the 

in number, to the 
Chapter 4 and Section 

Commands and switches are presented alphabetically within the sections 
of this appendix, regardless of their presentation in the various 
chapters. 

A.2 EDT COMMAND SUMMARY 

Change [range] [/NL] 

Invokes Character Mode. 

[/Q] 
copy range-! %TO range-2 [/SEQ] 

[/UN] 

Copies the lines in range l to a position ahead of the first line 
in range 2. 

Del~:ite [range] [/Q] 

Deletes lines from the buffer. 

EXit [/RE:filespec] 

Terminates EDT; writes contents of the main text buffer to 
specified output file. 

Find range 

Moves the line pointer to the first line in the range. 

INClude [range) /FI:filespec [/SEQ] 

Locates a file and copies it into a text buffer. 

Ins~~rt [range] [/SEQ] 
[/UN] 

[/UN] 

Inserts text typed at a terminal in the buffer ahead of the first 
line in the range. 

A-1 



I~·-

COMMANDS AND SWITCHES 

[/Q] 
Move range-1 %TO range-2 [/SEQ] 

[/UN] 

Transfers the lines in range l to a position ahead of the first 
line in range 2. 

PRint [range] /FI:filespec 

QUIT 

Generates an output file from the contents of the range. The 
output file contains EDT line numbers as part of the text. 

Terminates EDT; saves no edits or text buffers; 
files. 

generates no 

Replace [range] [/SEQ] 
[/UN] 

First deletes the lines in the range, then inserts text typed at 
the terminal into the buffer in place of the deleted text. 

RESequence [range] [/SEQ] 
[/UN] 

Assigns new line numbers to the lines in the range. 

RESTore /FI:filespec 

Locates the specified file created by a Save command; uses the 
file's contents to restore the status and contents of the text 
buffers. 

SAve /FI:filespec 

SET 

Creates a file that contains the status and contents of the text 
buffers currently in use. 

l UPPER l 
LOWER 
NONE 

CASE 

EXACT 
{ CASE} 

NONE 

TErminal 

HCPY 
VTOS 
VTSO 
VT52 
VT55 
VT61 
LA30 
LA36 

Establishes criteria that other EDT commands use in 
operation; flags uppercase or lowercase characters; 
establishes proper terminal parameters. 

A-2 

2$ it a 

their 
and 

'I 



COMMANDS AND SWITCHES 

!Buffers l CAse 
SHow EXACT 

TErminal 
VE rs ion 

Displays the values established by the Set command, as well as 
current buffer status and software version information. 

[range] 
Substitute/str-l/str-2/[/BR] 

[/Q] 
[/-T] 

Changes string 1 to string 2. 
string ls in the range. 
string 1 encountered. 

Sub:sti tute Next 

If range is specified, changes all 
If no range, changes only the first 

Repeats the operation of the Substitute command that it must 
immediately follow. 

typ1e [range] 
or 

[Type] [range] [/BRief] 

Displays the contents of the range on your terminal. 

WRite [range] /FI:filespec 

Creates an output file from the contents of the range. 

Xeq range 

Executes the EDT commands contained in the range. 

A.3 EDI COMMAND SUMMARY 

Add (string) 

Adds the text specified by string to the end of the current line. 

AP (string) 

Begin 

Same as ADD, except that the new current line is printed. 

Sets the current line pointer to the top of the block buffer or 
input file. 

BLock[ON] or [OFF] 

Switches text access modes. 

BO[TTOM] 

Sets the current line pointer to the bottom of block buffer or 
input file. 

A-3 



COMMANDS AND SWITCHES 

[n]Change /stringl/string2[/] 

Searches for string! in the current line and replaces it with the 
text specified in string2. The integer n allows you tb change 
the first n occurrences of string! to string2. 

CLose file spec 

Transfers the remaining lines in the block buffer and the input 
file into the output file, then closes both the input file and 
the output file. 

CLOSES 

Closes secondary input file and begins selecting lines from the 
primary input file. 

COL [f ilespec] 

Same as the CLOSE command, except that the input file is deleted. 

CC [character] 

Changes the command concatenation character to the specified 
character (the default is&). 

CTRL/Z 

Same as EXIT if in Edit mode; 
exit of EDI. 

otherwise, causes an immediate 

Delete [n] or [-n] 

Deletes the current and next n-1 lines, if n is positive; 
deletes n lines preceding the current line, but not the current 
line, if n is negative. 

DP [n] or [-n] 

Same as DELETE, except that the new current line is printed out. 

End 

Same as the BOTTOM command. 

ERASE [n] 

Erases the entire block buffer, the current line, and the next 
blocks. 

EXit [filespec] 

n 

Same as CLOSE command, except that, when files are closed, EDI 
exits. 

EDx [f ilespec] 

Exits from the editing session, closes the output file, and 
deletes the input file. 

A-4 

:; at s a;: 4 I I 

-~. I r 



COMMANDS AND SWITCHES 

FF 

Inserts a form feed into the block buffer after the current line. 

FI le~ f ilespec 

Transfers lines from the input file to the file specified by 
filespec. 

[n]E~ind [st.ring) 

Finds the line starting with string or, if n is specified, the 
nth line starting with string. 

Inse~rt [string] 

KILL 

Inserts string immediately following the current line. If string 
is null, EDI enters Input mode. 

Terminates this editing session; closes the input and output 
files; and deletes the output file. 

[n]LC /stringl/string2 

LP 

Same as CHANGE, except that all occurrences of string! in the 
current line are changed to string2. 

Prints on the user terminal all lines in the block buffer or all 
remaining lines in the input file, starting with current line. 

Lists the text in the block buffer or input file on the pseudo 
device CL:, starting with the current line. 

[n]Locate string 

Searches the block buffer for string or, if n is specified, the 
nth occurrence of string. 

MAcro x definition 

Defines macro x to be definition. 

MCall 

Retrieves macros from the latest version of file MCALL;n. 

[n]Mx [a] 

Executes macro x for n executions, passing it the numeric 
argument a. 

[n]<definition> 

Allows you to define and execute a macro n times in one step. 

A-5 



iii 41 

COMMANDS AND SWITCHES 

Next [n] or [-n] 

Establishes a new current line plus or minus n lines from the 
current line. 

NP [ n] or [ -n] 

Same as Next command, except that the new current line is 
printed. 

OPens f ilespec 

Opens the secondary input file. 

output [ON] or [OFF] 

Turns the output on or off. 

Overlay [n] 

Deletes the current line and the next n-1 lines, and enters Input 
mode. 

PAGe [n] 

Enters block mode, if not already in block mode, and reads page n 
into the block buffer. 

[n]PFind (string} 

Identical to FIND command, except that it searches successive 
block buffers until the nth occurrence of string is found. 

[n]PLocate (string) ~ 
Same as LOCATE command, except that successive block buffers are 
searched for the value specified by string. 

PAste /stringl/string2 

Same as the LINE CHANGE command, except that all lines in the 
remainder of the block buffer or input file are searched for 
stringl. Wherever found, stringl is replaced with string2. 

Print [n] 

Prints the current line, and the next n-1 lines, on the terminal. 
The last line printed becomes the current line. 

REAd [n] 

Reads the next n pages into the block buffer. 

RENew [n] 

Writes the current buffer and reads in the next. 
specified, repeats n-1 times. 

Retype (string) 

If n is 

Replaces the current line wit~ the text of string. If string is 
null, the line is deleted. 

A-6 

I ii 21"5 a 



COMMANDS AND SWITCHES 

SAve [n] [f :llespec] 

Saves the current line, and the next n-1 lines, in the file 
specified by filespec. 

SC /stringl/string2 

SP 

SS 

Searches for string!, in the block buffer or input file starting 
with the line following the current line. When stringl is found, 
replaces all occurrences in the line with string2. 

Selects the primary input file. 

Selects the secondary input file. 

SIZE n 

Specifies the maximum number of lines to be read into the block 
buffer on a single read operation. 

TAb [ON] or [OFF] 

Top 

TOF 

Turns automatic tabbing on or off. 

Same as BEGIN command. 

Returns to the top of the input file, in block mode, and saves 
all pages previously edited. 

TYpE! [n] 

Same as PRINT command, except that the current line pointer does 
not change unless EOB is reached. 

UNSave [f ilespec] 

Retrieves the lines that were previously saved on filespec and 
inserts them immediately following the current line. 

UC ![ON] or [OFF] 

Turns uppercase conversion on or off. 

Verify [ON] or [OFF] 

Write 

Displays or suppresses display of lines located or changed. 

Writes the current block to the output file, and erases the 
contents of the buffer. 

A-7 



COMMANDS AND SWITCHES 

A.4 PIP COMMAND SUMMARY 

outfile[/FO]=infilel [,infile2, ••• ,infilen]/AP[/FO] 

Opens an existing file (outfile) and appends the input flle(s) 
onto the end of it. {/FO is the File Owner switch.) 

outfile[/BS:n]=infilel[/BS:n] [, ••• ,infilen[/BS:n]] 

Defines block s1zes for 7- and 9-track magnetic tape. 

outfile[/switch]=infilel[,infile2, ••• ,infilen] [/switch] 

Creates a copy of a file on the same or another device. 
can be: 

/BL: n [.] 
/CO 
/-CO 
/FO 
/NV 
/SU 

Block allocated 
Contiguous output 
Output may be noncontiguous 
File Owner 
New Version 
Supersede 

Switch 

outfile/CD=infile 

Gives the output file the creation date of the input file rather 
than the date of transfer. (This switch cannot be used with the 
Merge switch, /ME.) 

dev: [group,member]/DF 

Changes the default device and/or UFD. 

infilel[,infile2, ••• ,infilen]/DE[/LD] 

Deletes files. (/LD is the List Deleted files subswitch.) See 
the sections on Delete and Purge in Chapter 4 for a complete 
description of the List Deleted files subswitch. 

outfile=infilel[,infile2, ••• ,infilen]/EN[/NV] 

Enters a synonym for a file in a directory with an option to 
force the version number of outf ile to one greater than the 
latest version for the file. (/NV is the New Version switch.) 

inf ilel/EOF [:block: byte] [, ••• inf ilen/EOF [:block: byte]] 

Specifies the end-of-file pointer for a file. 

outfile=/FI:filenum:seqnum 

Accesses a file by its file identification number. 

A-8 

52 li I iii Ji Li I ;;us 



'-"' 

COMMANDS AND SWITCHES 

dev:/FR 

/ID 

Prints out the available space on a volume and the largest 
contiguous space on that volume. 

Causes the version of PIP currently in use to be displayed on the 
termi nc1l. 

[listfile]=infilel[, ••• ,infilen]/LI 

Lists one or more directories with an option to specify directory 
listing formats ([listfile] defaults to TI: if not specified). 
In place of /LI, you can specify one of the alternate mode 
swi tchE~s: 

/BR 
/FU [ :n] 
/TB 

Brief format 
Full format 
Total blocks format 

infilel[,infile2, ••• infilen]/sw/NM 

Deletes certain PIP error messages, for exampie, NO SUCH FILE(S); 
/sw can be /LI (List directory), /DE (Delete files), or /PU 
(Purge files), or any of their respective subswitches. 

inf ilel/PR [/SY [: RWED] [/OW [: RWED] ] [/GR [: RWED] ] [/WO [: RWED] ] [/FO] 

Alters file protection. The switches are: 

/SY system access rights 
/OW owner access rights 
/GR group access rights 
/WO world access rights 

:/RWED -- read, write, extend, delete privilege 
/FO -- File Owner subswitch 

infilel [, infile2, ••• , infilen]/PU [ :n] [/LD] 

Deletes a specified range of obsolete versions of a file. (Never 
deletes latest version.) (/LD is the List Deleted files 
subswi tch.) 

infilel[,infile2, ••• ,infilen]/RM 

Removes an entry from a directory file. (Opposite of ENTER.) 

outfile=infilel[,infile2, ••• ,infilen]/RE[/NV] 

Changes the name of a file with an option to force the version 
number of outfile to one greater than the latest version for the 
file. (/NV is the New Version switch.) 

A-9 



2 b ts 

COMMANDS AND SWITCHES 

outfile[/RW]=infile[/RW] 

Rewinds a tape. 

outdsk:outfile/SB=inmag:infile 

File copied to disk from magnetic tape may have records crossing 
block boundaries. (/SB is the default.) 

infilel[,infile2, ••• infilen]/SD 

Prompts for user response before deleting files. 

outfile=infile/SR 

Allows shared reading of a file that has already been opened 
writing. 

infilel[,infile2, ••• ,infilen]/SP[:n] 

for 

Specifies a list of files to be printed (n is the number of 
copies). This switch applies only if you have the serial 
despooler task (RSX-llM) or the queue management system 
(RSX-llM/M-PLUS) installed. 

infilel[,infile2, ••• infilen]/TR 

Truncates file(s) to logical end-of-fila. 

outfile/UF[/FO]=infile, ••• ,infilen 

Creates a User File Directory entry on a volume. 

infilel[,infile2, ••• ,infilen]/UN 

Unlocks a file that was locked as a resuLt of being improperly 
closed. 

outfile=infilel[,infile2, ••• ,infilen]/UP[/FO] 

Opens existing file (infile) and writes it, from the beginning, 
into outfile. (/FO is the File Owner switch.) 

A.5 FLX COMMAND SUMMARY 

The FLX commands generally have the form: 

outfile=infilel[,infile2, ••• ,infilen]/switch 

A-10 

;: I ; !ii& 

c-~----~, .. \ - - .... 
j 

,.,! 

£! ;;•• 



COMMANDS AND SWITCHES 

/switch can be: 

/BL:n 

/BS:n 

/CO 

/DE 

/DI 

Indicates the number of contiguous blocks to be allocated to the 
output file. 

Specifies the block size for cassette tape output. 

Indicates that the output file is to be contiguous. 

Deletes files from a DOS-11 or RT-11 volume. 

causes a directory listing of DOS-11 or RT-11 volumes; or DOS-11 
or RSX-11 cassette tape volumes to be listed. 

/DNS:n 

Specifies either an 800- or 1600-bpi density for the volume. 

/DO 

/FA:n 

/FB:n 

/FC 

/ID 

Identifies the file as a DOS-11 formatted file. 

Specifies formatted ASCII. 

Specifies formatted binary. 

Indicates that FORTRAN carriage control conventions are to be 
used. 

Requests the current version number of FLX. 

/IM:n 

/LI 

/NU:n 

Specifies Image mode (n is in decimal bytes). 

Same a1s DI. 

Used with /ZE and /RT switches; 
directory blocks to allocate. 

A-11 

specifies the number of 



COMMANDS AND SWITCHES 

/RS 

Indicates that file is a Files-11 formatted file. 

/RT 

Indicates that file is an RT-11 formatted file. 

/RW and /-RW 

/SP 

/UI 

/VE 

/ZE 

Specifies whether the tape will rewind before FLX processes the 
next command. 

Indicates that the converted file is to be spooled by means of 
the serial despooler (RSX-llM) or the queue management system 
(RSX...,. llM/M-PLUS) • 

~~~~~a~~~e~hat the output file is to have the same UIC as the ~ 

Verifies after write (for cassette only).

Initializes DOS-11 and RT-11 volumes and cassettes for DOS-11 or
RSX-11 files.

A.6 PRINT AND QUE COMMAND SUMMARY

The format of the PRint command is:

>PRint [[ddnn:] jobname /jsw=] filespec [/fsw [/fsw]] [, filespec [/fsw]]

/jsw can be one of the following:

/AFter:hh:mm

Specifies that the job is time-blocked in its queue until after
~ 1 t h , t •) k 5 --

COMMANDS AND SWITCHES

/swi.tch can be:

/BL::n

/BS::n

/CO

/DE

/DI

Indicates the number of contiguous blocks to be allocated to the
output file.

Specifies the block size for cassette tape output.

Indicates that the output file is to be contiguous.

Deletes files from a DOS-11 or RT-11 volume.

Causes a directory listing of DOS-11 or RT-11 volumes; or DOS-11
or RSX-11 cassette tape volumes to be listed.

/DNS::n

Specifies either an 800- or 1600-bpi density for the volume.

/DO

/FA:n

/FB:n

/FC

/ID

/IM:n

/LI

Identifies the file as a DOS-11 formatted file.

Specifies formatted ASCII.

Specifies formatted binary.

Indicates that FORTRAN carriage control conventions are to be
used.

Requests the current version number of FLX.

Specifies Image mode (n is in decimal bytes).

Same as DI.

/NU:n

Used with /ZE and /RT switches;
directory blocks to allocate.

A-11

specifies the number of

!it IE S

COMMANDS AND SWITCHES

/RS

Indicates that file is a Files-11 formatted file.

/RT

Indicates that file is an RT-11 formatted file.

/RW and /-RW

/SP

/UI

/VE

/ZE

Specifies whether the tape will rewind before FLX processes the
next command.

Indicates that the converted file is to be spooled by means of
the serial despooler (RSX-llM) or the queu~ management system
(RSX~llM/M-PLUS).

Indicates that the output file is to have the same UIC as the
input file. ~

Verifies after write (for cassette only).

Initializes DOS-11 and RT-11 volumes and cassettes for DOS-11 or
RSX-11 files.

A.6 PRINT AND QUE COMMAND SUMMARY

The format of the PRint command is:

>PRint [[ddnn:] jobname /jsw=] filespec [/fsw [/fsw]] [, filespec [/fsw]]

/jsw can be one of the following:

/AFter:hh:mm

Specifies that the job is time-blocked in its queue until after
the stated time; hh can be from 0 to 23; mm can be from 0 to
59.

/[NO]FLag

Specifies that each file in the job is preceded by one or more
file flag pages. The default is /NOFLAG.

/FOrm:n

Sets the forms setting that an output device must have to accept
the job. The default for n is O, which is the standard line
printer setup in most installations.

A-12

/HOld

COMMANDS ARD SWITCHES

Holds the job in its queue until it is released by the QUE
jobname /RELease command.

/LEngth:n

Sets the number of lines per page. Length can be set from l
through 6553~. The default is a page of infinite length.

/PRiority:n

Sets the priority of the job in its queue. Priority can be from
O through 250. Highest priority jobs run first. The default
priority is 50.

/[NO]REstart

Makes the job restartable or not. If /RE is specified and the
job does not complete its run for some reason, when the system or
print processor or Queue Manager is restarted, the job is
restarted from the beginning of the first file in the job.
/NOREstart is the default.

/fsw can be one of the following:

/COpies:n

Sets the number of copies of the file to be despooled. The
default for n is l.

/[NO]DELete

Directs the Queue Manager to delete the file from its UFD after
it is despooled. /NODELete is the default.

The format of the QUE command is:

>QUE job-ID /function [/sw]

/function can be one of the following:

/BRief [:option]

Displays only the job names, the UIC from which the Print command
was issued, the queue entry number, and the status of the job.

/FU LL [: option]

Displays job names, the UIC from which the Print command was
issued, the queue entry number, the status of the job, the file
specifications of all files necessary to complete the job, and
all attributes of the job, whether set explicitly or by default.

/List [:option]

Displays job names, the UIC from which the Print command was
issued, the queue entry number, the status of the job, and the
file specifications of all files necessary to complete the job.
This is the standard format.

A-13

COMMANDS AND SWITCHES

:option can be one of the following:

:QUE ~

Displays entries in the default queue PRINT. This is the default
option.

:ALLQUE

Displays all entries in all queues.

:DEV

Displays characteristics of a device. If you have not specified
a device in the job-ID field of the command line, you will get an
error message.

:ALLDEV

Displays characteristics of all spooled devices.

/DELete

/HOld

Deletes the specified queue entry. If the job is active at the
time the command is issued, the output ceases and the queue entry
is deleted.

Holds job in its queue. The job remains in its queue, but is not
eligible for processing. The effect is the same as with the
/HOLD qualifier to the Print command. You cannot hold an active
job. (An active job is a job currently being printed.)

/MODify /sw

Modifies the attributes given to queue entries by the Print
command. /sw is one of the following:

/AFter:hh:mm

Modifies the time after which the job is to be despooled.

/[NO]FLag

Modifies the FLAG attribute of the job

/FOrm:n

Modifies the FORM attribute of the job.

/LEngth:n

Modifies the LENGTH attribute of the job, which is the number of
lines per page.

/PRiori ty: n

Modifies the queue priority of the job.

A-14

·r"1 •~t\~12••r:•••••••••••••••------•••••mt11•••22••••••••••••••t•1 •t•c•:::•:•t•:.:-

COMMANDS AND SWITCHES

/[NO]REStart

Modifies the RESTART attribute of the job.

/RELease

Releases a held job, making it eligible for processing.

A.7 QUEUE MANAGER COMMAND SUMMARY

The following forms of the QUEue command are privileged.

The format of the Queue Manager setup commands is:

>QUE ddnn:/function[:option[s]] [/sw[s]]

/function can be one of the following~

/ASsign:queuename

Normally, assigns the default queue PRINT to one or more
despooler tasks, but you can assign any queue to any despooler.

/DEAssign:queuename

Eliminates the path between a queue and a despooler, but the
queue still exists with all its jobs. Jobs can be added to the
queue, but none will be dequeued while the queue is not assigned.

/SPool/sw

Creates queue ddQn and starts the despool task ddPn which must be
installed previously for device ddn. This attaches device ddnn:
for despooling by the despool task ddPn which is open to jobs
from queue ddQn. /sw is one or more of the followingo

/FLag:n

Sets the number of flag pages to precede all jobs printed on the
device. Note that if you are using special forms, you may want
to set this attribute to 0 to avoid printing banner pages on your
special forms. This also sets the number of file flag pages to
be printed when users specify the FLAGS switch in their Print
commands.

/FOrm:n

Sets the device despooler to accept jobs with forms type n. The
default for n is O; it can be between 0 and 255, inclusive.

/STArt[:option] or [/sw]

If you do not enter an option or switch, the device starts
printing from the point at which printing stopped. This, in
effect, resumes printing after a pause. Option and switch are
mutually exclusive fields; that is, you can only use one or the
other.

A-15

:; I iii &I

COMMANDS AND SWITCHES

:option can be one of the following:

:BAck:n

Printing starts n pages back from the point at which it was
stopped.

: Forward: n

:NExt

Printing starts n pages forward from the point at which it was
stopped.

Printing starts at the top of the next job.

:PAge:n

:QMG

:TOP

Printing starts at page n of the current file.

Starts the Queue Manager and initializes the default queue PRINT.
It creates the file SY:[l,7]QUEUE.SYS if it is not there. If the
queue file was intact, all queues still contain their jobs, but
are not assigned to processors. (Processors will have to be
spooled again.)

Printing starts at the top of the current file.

/sw can be one or more of the following:

/FLag:n

Resets the flag setting of the despooler task from the number of
flag pages set with SPOOL. The value for n can be O, 1, 2, or 3.

/FOrm:n

Resets the forms type of the despooler task from the type set
with SPOOL.

/STOp [:option]

: EOF

: EOJ

:QMG

I I

Stops the device immediately if you do not specify an option.
:option can be one of the following:

Device stops at the end of the current file.

Device stops at the end of the current job.

The Queue Manager stops at the end of the current job. All
assignments of queues to devices are broken (deassigned). All
despooler tasks are detached from their devices. The Queue
Manager stops.

A-16

COMMANDS AND SWITCHES

/UN:SPool

A.8

Frees a device used in despooling for general use. The despool
task for the device exits but its entries in queues assigned to
it remain in the general file.

PMT COMMAND SUMMARY

The general format of a FMT command line is:

FMT dev: [/switchl ••• /switchn]

/switch can be one or more of the following:

/BAD

/DENS

/ERL

/MAN

/OVR

/VE

/WLT

/@Y

Runs the Bad BLock
this switch can
spawning of tasks.
spawned tasks and
option was included

Locator task if it is installed. Note that
only be used with operating systems that allow

All RSX-llM-PLUS and IAS systems permit
RSX-llM systems permit spawned tasks if the

at system generation.

Selects high (double) or low (single) density for RX02 floppy
diskettes.

Determines the maximum number of errors FMT will allow on the
volume.

Enters manual mode and formats the sector or track you specify.

Overrides or ignores the manufacturer's bad block sector file
(MDBSF) •

Verifies that FMT operation was successfully completed.

Rewrites the MDBSF.

Informs FMT that it is executing from an indirect command file
and does not allow operator intervention in the process.

A-17

COMMANDS AND SWITCHES

A ... 9 BAD COMMAND SUMMARY

The format for executing BAD is:

dev:/swl ••• /swn

/sw can be one or more of the following:

/CSR=nnnnnn

/LI

/MAN

Alters the CSR address of the device to conform to CSR address of
user's system (stand-alone version of BAD only).

Causes all bad block numbers to be printed on the user's
terminal.

Allows the user to enter bad blocks.

/NOWCHK

Negates the effect of /WCHK.

/OVR

Causes BAD to ignore the last track of a last-track device.

/UPDATE

Reads bad blocks and prompts for user entries.

/VEC=nnn

/WCHK

Alters the interrupt vector address of the device to conform to
the vector address of the device in the user"s system
(stand-alone version of BAD only).

Causes a write-check operation to take place after each write
operation (stand-alone version of BAD only). Not valid for
devices DX, DL, or DT.

A.10 BRO COMMAND SUMMARY

The format for executing BRU is:

[/qualifiers] indevl:, ••• [filespec, •••] outdevl:, ••• [filespec, •••]

/qualifiers can be one or more of the following:

/APPEND

Appends new back-up data to a tape with one or more back-up sets.

A-18

2 21 ii !. !Ql 1$

COMMANDS AND SWITCHES

BACKUP _SE'.r: name

Specifies the name of the back-up set to be placed on tape.

[
MANUAL ~

/BJ\D AUTOMATIC
OVEHRIDE

Enters the locations of bad blocks on volumes.
BAD:AUTOMATIC.

/BUFFERS:number

The default is

Specifies the number of directory File Control Blocks (FCBs) per
volume kept by the ACP.

/COMPARE

Compares the data on the output volume to the data on the input
volume and reports any differences.

:: dd-mmm-yy
:: (h h : mm: s s)
~ (dd-mmm-yy hh:mm:ss)
~BEFORE:dd-mmm-yy

/CREATED :BEFORE:(hh:mm:ss)
~BEFORE(dd-mmm-yy hh:mm:ss)
~AFTER:dd-mmm-yy
~AFTER:(hh:mm:ss)
~AFTER: (dd-mmm-yy hh:mm:ss)

Directs BRU to process files created at or before or after a
specified date and/or time. If you do not specify a date or
time, BRU defaults to the current date and time.

/DE:NSITY: number

Specifies the data density at which BRU writes to tape. The
default is /DENSITY:800.

/DIRECTORY.

Displays information (such as back-up set names, file names, or
volume number of a tape)' on a specified tape volume.

/DISPLAY

Displays at your terminal the UFO and file name of each file
bein9 backed up.

/EHRORS:number

Specifies the number of nonfatal I/O errors BRU tolerates on tape
reads; before automatically terminating execution. The default is
25(10) errors.

/EXCLUDE

Excludes selectively from a back-up or restore operation all
files specified on the command line.

A-19

ca:;

COMMANDS AND SWITCHES

/EXTEND:number

Specifies the number of blocks by which to extend a file when
that file has exhausted its allocated space.

/HEADERS:number

Specifies the number of file headers to allocate initially to the
index file.

/INITIALIZE

Directs BRU to initialize a disk before proceeding with the data
transfer.

/INVOLUME:name

Specifies the volume label of the input disk.

/LENGTH:number

Specifies the length of the output tape in decimal feet.

/MAXIMUM:number

Specifies the maximum number of files that can be placed on a
volume.

/MOUNTED

Allows you to back up files from a disk that is mounted as a
Files-11 volume (by means of the MCR command MOUNT).

/NEW_ VERSION

Directs BRU to resolve conflicts resulting from files with
identical file specifications by creating a new version of the
file. Both versions are kept on the output volume.

/NOINITIALIZE

Specifies that you do not want BRU to initialize the output disk;
it already has a Files-11 structure and is mounted as a Files-11
volume.

/NOPRESERVE

Specifies that you do not want BRU to preserve file identifiers.

/NOSUPERSEDE

Resolves the conflict of files on the output volume having file
specifications identical to files on the input volume by keeping
the file on the output volume rather than the one on the input
volume. (The default is /NOSUPERSEDE.)

/OUTVOLUME:name

Specifies the volume label of the output disk.

A-20

ts! .I Si 2$

COMMANDS AND SWITCHES

!BEGINNING l /POSITION: MIDDLE
END
BLOCK:number

Specifies the location of the index file, the Master File
Directory, and the storage allocation file on a disk.

/PlilOTECTION:1~~i:~~:~~~e1
GROUP:value
WORLD:value

Specifies the global default protection status of files created
on a disk after it has been mounted.

:dd-mmm-yy
: (hh:mm: ss)
: (dd-mmm-yy hh:mm:ss)
:BEFORE:dd-mmm-yy

/RE:VISED :BEFORE: (hh:mm:ss}
:BEFORE:(dd-mmm-yy hh:mm:ss)
:AFTER:dd-mmm-yy
:AFTER: (hh:mm:ss)
:AFTER: (dd-mmm-yy hh:mm:ss)

Directs BRU to process files revised at or before or after a
specified date and/or time. If you do not specify a date or
time, BRU defaults to the current date and time.

/REWIND

Rewinds the first tape of a tape set before execution of a
command line.

/SUPERSEDE:

Restores files to an existing disk; resolves file specification
conflicts by deleting the old file on the output disk and
replacing it with the file being restored from the input disk.
(The default is /NOSUPERSEDE.)

/TAPE_LABEL:label

Specifies a 6-character ANSI volume identifier for identifying
the tape volume.

/VERIFY

Copies data from the input volume to the output volume, compares
the volumes, and reports differences.

/WINDOWS:number

Specifies for the output disk the default number of retrieval
pointers allocated for use with file windows. The default number
is specified when the disk is initialized.

A-21

COMMANDS AND SWITCHES

A.11 DSC COMMAND SUMMARY

The format for executing DSC is:

outdev: [label] [/switch]=indev: [label] [/switch]

/switch can be one or more of the following:

/AP

Appends a DSC file to a magnetic tape that already contains a DSC
file.

/BAD= NOAUTO lMAN I
/BL

/CMP

MAN:NOAUTO

Allows manual entry of bad block locations; can supplement,
override, or ignore the disk's own bad block descriptor.

Sets the number of blocks DSC will provide in each of its
buffers.

Compares an input file and an output file for differences.

/CSR=xxxx

Alters control status addresses for specific device types.

/DENS=l600
/DENS=800:1600

/RW

Overrides the DSC default storage density for magnetic tapes of
800 bits per inch; the first form of the switch creates magnetic
tapes at 1600 bits per inch density; the second form (the split
density qualifier) creates magnetic tapes with volume header
information at 800 bits per inch and the rest of the tape at 1600
bits per inch.

Rewinds all magnetic tapes before execution of the current
command.

/TM02=x

Alters the physical unit formatter.

/UNIT=x

/VE

Specifies the physical unit that a LUN accesses.

Copies data from the input volume and compares it with the output
volume following the data transfer.

/VEC=xxx

Alters the vector address of a unit.

A-22

JJ SJ I !SS ii ;:

COMMANDS AND SWITCHES

A.12: PRESRV COMMAND SUMMARY

The format for executing PRESRV is:

outdev: [label]/switchl ••• /switchn=indev: [label]/switchl ••• /switchn

/switch can be one or more of the following:

/BO

Bootstraps the system from the specified device (unit 0 only).

/BL:nnn

/CSFl

/ER

/FI

/FO

/HE

/IM

/LI

Specifies a blocking factor for I/O. Octal is the default for
nnn.

Changes ihe control status register for a device.

Indicates that the PRESRV operation is to be terminated if an I/O
error occurs.

On input, indicates Files-11 format for reading a volume, which
overrides implied image mode (/IM). On output, overrides logical
tape format (/TP) or implied image mode (/IM).

Indicates that PRESRV is to format the output volume.

Displays a summary ot PRESRV commands, switches, and defaults.

Indicates image mode: a transfer of all physical blocks of an
input volume.

Displays a list of all files on a logical tape.

Magnetic tape switches:

/20~ /55, /80, /PE

/RW

/TIM

Indicate recording densities of 200, 556, 800, and
respectively.

Rewinds a cassette or magnetic tape.

Specifies the correct time of day to the system.

A-23

1600,

q I I l

COMMANDS AND SWITCHES

/TM02

Sets the unit number of the TM02 formatter on the RH controller
for a specific TU16 magnetic tape unit.

/TP

Specifies that an output volume be in logical tape format. /TP
also overrides the default Files-11 mode on an input volume.

/VE

Verifies the output volume after file transfer.

/VEC

Changes the interrupt vector address for a device.

A.13 VFY COMMAND SUMMARY

listfile,scratchdev=indev/DE
or

indev/DE

Resets the marked-for-delete indicators in the file header area
of those files marked for deletion, but never actually deleted.

listfile=indev/FR
or

indev/FR

Prints out the available space on a volume.

listfile,scratchdev=indev/LI
or

indev/LI

Lists the entire index file by file identification.

listfile,scratchdev=indev/LO
or

:indev/LO

Scans the entire file structure looking for files that are not in
any directory.

listfile=indev/RC[:n]
or

indev /RC [: n]

Checks that every block of every file on the specified volume can
be read.

A-24

El a Ji

~
i

a ;;

COMMANDS AND SWITCHES

listfile,scratchdev=indev/RE
or

indev/RE

Recovers blocks that appear to be allocated, but are not
contained in any file.

listfile,scratchdev=indev/UP
or

indev/UP

Allocates blocks that appear to be av~ilable, but are actually
allocated to a file.

A.14 LBR COMMAND SUMMARY

outfile/CO:size:ept:mnt:=infile

Creates a new library file and transfers contents, but physically
deletes logically deleted records in the file and puts all free
space at the end of the file.

outfile/CR~size:ept:mnt:type

Allocates a contiguous library file on a direct access device.

outfile/DE:modulel[:module-2: ••• :module-n]

DeletE!S library modules and their associated entry points from a
file.

outfile/DF:type •••
or

/DF:: type

Specifies default library file type.

outfile/DG:globall[:global2: ••• :globaln]

Deletes specified library module entry points from a file.

outfile[/EP]=infile, ••• ,infilen
or

outfile=infile[/EP], ••• ,infilen[/EP]

Includes or excludes entries in the entry point table.

outfile=infile/EX[:modulename: ••• modulenamen]

Reads a module from a library; writes it to an output file.

outfile/IN=infilel[,infile2, ••• ,infilen]

Inserts library modules into a library file.

A-25

1~ I ii 4f'¥2

COMMANDS AND SWITCHES

outfile[,listfile]/switch(es)

Lists all modules in the library file plus additional information
depending on which form of the switch you use:

/LI Lists all modules in the library file

/LE Lists all modules in the library file and all their
entry points

/FU Lists all modules in the library file
full module description including
insertion, and version

outfile/RP=infilel[,infile2, ••• ,infilen]
or

outfile=infilel/RP[,infile2[/RP], ••• ,infilen[/RP]]

and provides a
size, date of

Inserts, and in certain cases, replaces library modules in a
library file.

outfile,listfile/SP

Spools the listing file out for printing. This
only if the serial despooler task (RSX-llM)
management system (RSX-llM/M-PLUS) is installed.

outfile=infilel/SS[,infile2[/SS], ••• ,infilen[/SS]]

switch applies
or the queue

Sets the selective search attribute bit in the object module
header.

outfile/SZ=infilel[,infile2, ••• ,infilen]
or

outfile=infilel/SZ[,infile2[/SZ], ••• ,infilen[/SZ]]

Reduces the size of macro sources by removing comments.

ir.. • 15 DMP COMMAND SUMMARY

The format for executing DMP is:

outfile=infile/switch

/switch can be one of the following:

/AS

Specifies that data be dumped in ASCII mode.

/BA:n:m

Specifies a base block address.

/BL:n:m

Specifies the first and last logical blocks to be dumped.

A-26

COMMAllDS AHD SWITCHES

/BY

Specifies that data be dumped in byte octal format.

/DC

Dumps in decimal format.

/DENS:n

/HD

/HX

/ID

/LB

/LW

Specifies density of a TU16 input magnetic tape when DMP is in
device mode only.

Includes the file header in the data dumped.

Specifies that data be dumped in hexadecimal byte format.

Causes the current version of DMP to be printed on the listing.

Causes starting (logical) block number and a contiguous or
noncontiguous indication for the file to be printed.

Specifies that data be dumped in hexadecimal double-word format.

V /MD[:n]

/RC

/RW

/RS

/SP

/WD

Contrc>ls line number sequencing during a memory image dump.

Dumps one record at a time in the specified format.

Issues a rewind command to the tape driver before referencing a
specij:ied tape. /RW can be used at any time to reposition a tape
at the load point (BOT).

Dumps in Radix-SO format.

Spools the dump file to the line printer. This switch applies
only :if you have the serial despooler task (RSX-llM) or the queue
management system (RSX-llM/M-PLUS) installed.

Specifies that data be dumped in hexadecimal word format.

A-27

i

COMMANDS AND SWITCHES

A.16 CMP COMMAND SUMMARY

The CMP command takes the following form:

outfile [/sw •••]=infilel[/sw •••],infile2[/sw •••]

/sw can be any one of the following:

/BL and /-BL

Specifies that blank lines in both files be included in compare
processing. If specified in the form /-BL, blank lines are not
included in compare processing; /-BL is the default setting.

/CB and /-CB

Specifies that CMP list inf ile2 with change bars, in the form of
exclamation marks (!), applied to each line that does not have a
corresponding line in infilel. /-CB is the default switch.

You can change the change bar character from the exclamation mark
to any character you wish by means of the VB switch, described
below.

When a section of lines in infilel has been deleted in infile2
(the output listing file), the first line not deleted is marked.

/CO and /-CO

Specifies that CMP include comments (that is, text preceded by a
semicolon) in compare processing. /CO is the default for this
switch.

/DI and /-DI

Specifies that CMP print the differences between the two files
(rather than marking the lines in infile2).

/DI is the default for this switch.

/CB and /DI are mutually exclusive switches.
specified, /CB overrides /DI.

If both are

/FF and /-FF

/LI:n

Specifies that CMP
form-feed character
for this switch.

include records consisting of a single
in compare processing. /-FF is the default

Specifies that a number (n) of lines must be identical before CMP
recognizes a match. If you do not specify this switch, CMP
searches for three identical lines to match.

When it encounters a match, CMP prints ali the preceding
nonmatching lines, along with the first line of the matched
sequence of lines to help you find the location in the code where
the match occurred.

A-28

1:•+•1 •••••11•: ••2111 •••z•:•••••••t•u••••·--------•••••-.•••••••••••••••-

COMMANDS AND SWITCHES

/LN and /-·LN

Specifies that lines in the output file be preceded by their line
number. Line numbers are incremented by one for each record
read, including blank lines. /LN is the default for this switch.
If you specify /SL (below), /LN is unnecessary.

/MB and /-·MB

Specifies that CMP include all blank and tab characters in a line
in compare processing. If you specify /-MB, CMP interprets any
sequence of blank and/or tab characters as a single blank
character in compare processing. However, all spaces and tabs
are printed in the output listing. /MB is the default switch.

/SL [:au]

Directs CMP to generate an output file suitable for use as SLP
command input. When you specify /SL, CMP generates the SLP
command input necessary to make infilel identical to infile2. If
a 1- to a-character alphanumeric symbol is included (:au), an
audit trail is specified for SLP input.

/SP[:n] and /-SP

Specifies that the output file be spooled on the line printer.
You can optionally specify the number (in octal or decimal) of
files to be spooled. /-SP is the default value for this switch.

This switch applies only if you have the
(RSX-llM) or the queue management
installed.

serial
system

despooler task
(RSX-llM/M-PLUS)

/TB and /-'rB

Specifies that CMP include all trailing blanks on a line in
compare processing. If you specify /-TB, CMP ignores all blanks
following the last nonblank character on a line. When you
specify /-CO and /-TB together, blanks that precede a semicolon
(;) are considered trailing blanks and are ignored. /TB is the
default.

/VB:nnn

A.17

Specifies an octal character code for use as a change bar. You
use this switch with the CB switch. The value nnn specifies the
octal character code. For example, you can specify /VB:174 for a
vertical bar (if your printer is capable of printing the vertical
bar character).

SLP C:OMMAND SUMMARY

The SLP utility has only one command:

outfile[/switch,listfile/SP or/-SP]=infile[/switch]

/switch can be any one of the following:

/AU and·/-AU

Enables and disables the editing audit trail, which indicates the
changes made during the most recent editing session.

A-29

COMMANDS AND SWITCHES

/BF and /-BF

/CM:n

Enables and disables blank fill when an audit trail is being
produced.

Deletes audit trail, and trailing spaces and tabs beginning at
line position n.

/CS[:n]

Calculates the checksum value of the edit commands.

/DB and /-DB

Enables and disables double-spaced listing.

/SP and /-SP

/TR

Enables and disables the spooling of listing files to a file
structured volume. This switch applies only if the serial
despooler task (RSX-llM) or the queue management system
(RSX-llM/M-PLUS) is installed.

Specifies that a diagnostic error message occur when lines are
truncated by the audit trail.

A.18 PAT COMMAND SUMMARY

The format for specifying execution of PAT is:

[outfile]=infile[/CS[:number]],correctfile[/CS[:number]]

The CS switch provides the facility to compute the checksum of a
specified module.

A.19 ZAP COMMAND SUMMARY

ZAP provides the following commands:

Open/Close Command

I (slash)

Opens a location, displays its contents in octal, and stores the
contents of the location in the Quantity Register (Q). If the
location is odd, it is opened as a byte.

" (quotation marks)

Opens a locationi displays the contents of the location as two
ASCII characters, and stores the contents of the location in the
Quantity Register (Q). ·

A-30

COMMANDS AND SWITCHES

% (]percent sign)

Opens a location, displays the contents of the location in
Radix-SO format, and stores the contents of the location in the
Quantity Register (Q).

\ (backslash)

Opens a location as a byte, displays the contents of the location
in octal, and stores the contents of the location in the Quantity
Register (Q).

' (i:ipostrophe)

Opens a location, displays the contents as one ASCII character,
and stores the contents of the location in the Quantity Register
(Q) •

"' o:r t (circumflex or up arrow)

Closes the currently open location as modified and opens the
preceding location.

(underscore)

Closes the currently open location as modified, uses the contents
of the location as an offset from the current location value and
opens that location.

@ (at sign)

Closes the currently open location as modified, uses the contents
of the location as an absolute address, and opens that location.

> (right angle bracket)

Closes the currently open location as modified, interprets the
low-order byte of the location as the relative branch offset and
opens the target location of the branch.

< (left angle bracket)

Closes the currently open location as modified, returns to the
location from which the last series of underscore (), at sign
(@), and/or right angle bracket (>) commands began, and opens the
next sequential location.

General-Purpose Commands

x

Exits from ZAP, returns to MCR.

A-31

K

0

v

COMMANDS AND SWITCHES

Computes the offset between the value of the nearest (less than ~
or equal to) Relocation Register and the currently open location, ~
displays the offset value, and stores it into the Quantity
Register (Q).

Displays the jump and branch displacements from the current
location to a target location.

Displays in octal the value of the expression to the left of the
equal sign.

Verifies the contents of the current location.

Sets the value of a Relocation Register.

A-32

·~
'"'

APPENDIX B

LBR, EDI AND DMP EXAMPLES

B.l SAMPLE LISTINGS FOR LBR LIST SWITCHES (OBJECT LIBRARY)

B .1.1 List; Modale Names

LBR> MAC, LP :

or
LBR> MAC , LP : /LI

r.>IRE.CTO~Y nF FILE. MAC.:.l')LRJ\
08J~CT MOOULf LlR~ARY CQFATEO ~Y• L8Q Y~~2V~
LAST INSERT OCCUR~FO 22•SEP•74 AT tlsbts50
~NT ~NT~IES ALLOCATEDI 64; AVAILAijL~t 20
FPT ENT~IES bLLOCATtDI h4~J bVAILABLES Q2
~ILE SPACE AVAJLASLEr ~~~15 ~OROS

ASl.MT
ASSEM
C:NIHL
C:ODHO
f)A TOR
ENFh)S

EN"LN
~~NOPS
DP~S

FLOAT
GETLN
(;MA~G

TNr:J L
INT FL
'.[Nl"IF L
l~AREL
l.ISTC
LSTNI;
MAC~n
MAr.~S

MCALL
1'4LI13S
MSCD~

l\IORCT
P~OCSl
P~OPC

PROSW
PST
~EAO

REPT
~OLHI'
HSDAT
RSEXEC

B-1

R5U~P

9ECfl1
SETl>T~
SE Tl)N

SF.Tl MM
RETMlt
SPACE
STMNT
SVMBL
lllOROR
w~ IT E

LBR, EDI AND DMP EXAMPLES

B. l. 2 List Module Names and Full Module Information

LBR>MAC,LP:/FU
or

LBR>MAC,LP:/LI/FU

~I~Er.To~v nF FILE MAC,OL~;t
OBJECT ~ODLlLE LIRWA~V CMEArEn ~v: LB~ VX~2VM
LAST JNS~RT OCCUR~tO 22•StP-14 AT 11:51t50
~NT ENTRIE~ ALLOCATEOI 64J AVAILAALEI 2~
~PT ENTRIES ALLOCATF.Ot b4~J AVAILABLEt 9~
FILt SPAC! AVATLABL~I ~~~1~ wu~os

AS r. t-11
ASSEM
CNn-rL
COOHO
DATO~
EN~OS
F.NnLN
ENr)PS
FXP~S

FLOAT
~ETl.M
GM A MG
J~FIL
TNJFL
TNOFL
LABEL
LIS TC
LST'IG
M.\CRO
MAC~S

t.1CALL
Mt.I t3 S
MSCD~

NDRCT
PROCSJ
PRl"IPC
PROS"'
PST
READ
REPT
ROLHD
RS04,.T
~SF. >tEC
R!5UNP

SIZEIV.~0264
SilE10"17489
SIZF.i0~727
~I ZE s '"~92J
SlZUliH~414

SilEs0"'248
~lZE. ~('11'12

SIZE !ilt'16~
SIZE. '11t~i 1
SIZE 0"'"'3o
S I Z E vl ~ Cl 1 ~
SIZE VIP129_,
SIZE ~P1941
SIZE 0V1493
SIZE 0096~
SllE 004ri'~
SIZE 0~294
S1Ht"'2l56b
SlH ~e~19
SIZE ~to4fd
~IZE 1'10264
SI2E 0V!tH~7
SIZE (.i084J
SIZE' V1n~B
~llE '10216
SIZE '108~5
SIZE: l-iel2!H4
UlE "11307
SIZE ~~198
SIZE tJltll413
SIZE ~06Ab

SllE 0"J74
SIZE ~!?1974

'H lE ~ C'Jl t7

TNSt~TEDtl7•JUL•74
TNSERH:Ot 1•Al.IG•74
tNSERTEDslt•JUL•74
TN~ERTE0:17•JUL•74

tNS~~TF.Dr17•JUL•74
tNSERTfDt1•AUG•7d
INSE~TFD1Jt•JUL•74
TNSE~TED 17•JUL•74
YN~F.RTF.D 3t•JUL•74
INSERTFO 17•JUL-74
JNS~~TfD 17-JUL•74
INSEqTED 17•JUL•74
TNSE~TF.O 9·5~P·14
INSERTED 3l•JUL•74
lN~ERTFO 9•SFP•74
INSERTED 1•AUG•74
INSERTEO 17-JUL•74
INSERTED 17•JUL•74
INSERTED 17~JUL•74
INSERTED 9•SEP•74
lNSE.RTFD 31•JUL•74
INSERT-ED J1•JUL•74
TNSERTFOtJt•JUL•74
INSE~TEDsJ1•JUL•74
JNSEQTEOt17•JUL•74
INSE~TEusl7•JUL-74
INSERTEOt17•JUL•74
JNSE~TEDt17•JUL•74
JNSERTEOt17•JUL•74
JNSEQTED131•JUL•14
JNSERTJ;011•AllG•74
TNSE~TFOt17•JUL•74
JNSERTED11•AUG•74
JNS~RTF~117•JUL•14

B-2

ID~NTIV'2
I D E. N T c ~ 5 ~1

TOENTatll4
IDENT&V'lf)
IDF.NT1rn

IDENT1lA6
IOfNTa~b
IDE~T 104
IDENTs06
Il>ENT102
IOENTl0b
JOENTJCi11

IM:.NT112
tl>FNT 10!1

IC)ENT HH
IDENT1~4

IDENTS04
IOENTco.17
JOF.NTc~n

ll)ENTl~9

IDE>..!Tt"'l
llJENTJ~*l
tDnJT10R
IOENTIPl2
TDENT101
IOENT:rn
IDE NT a 03
IOENTl04
JDENTty,1
IOFNT1'111

IDENT1~5
IOENTs~6

Il"IE"NT:l7M
lDF.NTC01

SF::C TR
SETOlt-t
SETON
SETI MM
~ETM)(

SPACE
STMNT
SVMJ;L
4'40ROe
WRITE

LBR, EDI AND DMP EXAMPLES

SlZEU!0551
SilE100U6
~ IZE 100f>70
sue: rn0292
SIZErn0131
S lZ E HHl"4.d 9
SJZE1~~31fl
St1Ernt'l7J2
SIZEIA111U1
S lZE"l 001 A9

INS~RTE011•AUG•74
JNSF.RTF.Dtl7•JUL•74
JNSEQTEDaJt•JUL•74
IN~EQTEDt17·JUL•74
INSERTED117•JUL•74
INSERTf0:22•SEP•74
INSERTE0117•JUL•74
tNSE~TED117•JUL•74
IN~~qTEOa17•JUL•74
TNSt~TEDll7•JUL•74

lDE.NTrnA
IDENT1Qt2
tDENTH'16
I DENT 1 "'2
IDENTl01
JDE'.NT104
HJF.NT I ~J
IOENT10'4
IDF.~TUl2
IDENTt01

B.1.3 Li.st Module Names, Full Module Information and Module Entry
Points (Global Symbols)

LBR>MAC,LP:/FU/LE
or

LBR>MAC,LP:/LI/FU/LE

OlRECTORV OF FILE MAC,OLRJt
O~JECT ~OOULE llBRARV CR£ATEO BVI L~R V~02VM
LAST I~SF.RT OCCU~RF.D 2'.•SEP•74 AT tlt~115~
MNT ~NTRtES ALLOCATEDI 64J AVAtLA8LE1 2~
EPT ENT~lES ALLOCATEDa 64~J AVAILABLEt 92
FILE SPACE A~AILASLEI 00015 WORDS

** MOOIJLE I AS GMT SlZEt~~264 INSERTE01t7•JUL•74 IOENT102

ASGMT ASGMTF'

u MOOULEaASSEM

ALLOCi ASSEM CLSALL EORITS LC8ITS MACPt XCTPAS XCTPRG

u MODULE t CNDTL ~IZEt~0727 JNSERTEDIJ1·J~L·74 IDENT1~4

CN06AS CNOTOP FNOC IF IFF tFT IFTF

•• MOOUL.E1C:ODHO SIZEt~092J INSERTEOs17•JUL•74 IDENT1~6

CPXSTL INSIZE ObJDMP OAJINI ORJLOC OBJPNT ORJSFC PC~CNT
PCROLL PCRTaL RLDOMP RLOPNT STCOOE TSTRLO ZAPCPX

u MODULEIOATOR SilEt~0414 tNSERTEDrl7•JUL•74 IDENT101

tOENT

u MODULEIENBDS

EDTBAS EDTTOP F.NA~L

B-3

LBR, EDI AND DMP EXAMPLES

•• MQOULEIE'.NOLN SIZE:.t00812 INSERTE01Jt•JUL•74 IOENT&~6 ~
ENOLIN E~RRT~ E~RCNT LINt:WF LINE.ND LSTFHIF

•• MODULEIENDPS SIZE Hill {1;16~ lNSERTE0117•JUL•7c1 lDENTaQl4

ENDPl ENDP2

•• MODULEIEXP~S SilEr~t211 INSERTED131•JUL•74 I t)~NT: Ol6

AB SER~ ABSF.XP ABSTRM ABSTST EXP~ GLRt.XP GL8TRM RELF.XP
~ELTRM RELTST TF ~M

•• M0DULl£1FL0AT SIZEJ~~~J~ JNSERTEDt17•JUL·7~ lDENf 1~2

•• MOOULEIGETl..N SlH.111'~67~ lNSERTE~t17•JUL•74 TOF.NTS05 ·~
FFCNT GET LIN LI NNIJM LPPCNT PAGEXT PAGNUM SE:CJEND

GMARG GMA~GF RMAF(G

•• MOOULEtINFlL SIZEt0~9c11 1N~~RTE019•SEP•74 JDENT112

CMLM2 C:MLMJ C:MLM4 CMLM') CSI~2 CSIM5 FINPt I~PM1
OPE NCH OPNSRC OPSWTt OPS~T2 OUTERM OUT Mt STKMt soPswT

•• MOOULE1I~IFL SIZE n~~49J INSE~TE01Jt•JUL-74 I OE NT It'll
~

S~CNAM SIN I FL

•• MOOULEsJNOFL SIZEUH'l961d INSERTE019•SEP•74 IDENTnH

LSTNA~ OBJNAM UNOFL

•• MOOULE1LAAEL SIZE a 0041'!'1 INSERTfDl1•AUG•74 IDENTH1A
~

LABEL LABELF

•• MOOULEILISTC SIZE.100284 INSERTED117~JUL•74 IDENT104

LCTBAS LC TT OP LI ST PAGE

•• MOOuL.E1LSTNG SlZE 100566 tNSERTED117•JuL•74 IOENT107

l::~LF LI NPPG L~TDEV LSTREr.l PAG~NE PF0 PF1 PU Tl<.13
PUT1<8L PUTL.IN PUT LP SE TB YT SET PF~ SETPF1 SETWDB SE hRO

•• MoDULE I MAC"Mo SIZEU2019 1NSERTE0117•JUL•74 IOE~Hl013

ALTSAV ASCII ASC IZ RA SC ND BASCOD BASCPX IHSl>MA SASOUM

tHSEOT ~USLCD ~ASLTFi BASLSY BAS MU FUS~AR 8ASMAC l:\ASPST

FUS~EG f:USSAT BASSEC RA~SRC RASSST FUSSTK BASSlllT BASSYM ·~

B-4

~~ oz;; :4 :: a

LBR, EDI AND DMP EXAMPLES

'-'
ALIOI BYTMOO CHRPNT Cl.CF GS CL.C:LOC Cl.CMH CLCNAM CL.CSEC
C:~DROL COOROL. CPXROL. OMAHOL DSAtiL OUMROL EOTROL E~OFLG

EOT ERRMNE EHR, F.RR,A. ERR,B F.~R,O ERR,E ERR,I
F.RR,L E~Hf,M ERR,N ERR,O ERR,P ERR,Q ER~,R E~R,T

ER~,U EQR,Z E'VEN FLAGS IMPPAS I MP PAT IMPURE l t.1PUqT
tRPC LCOROI... LI SROL LSV~OL MU~OI. MARROL MACP2 MACP2F
M.ACROL ME')(IT MOOE MOVBVT NL.IST 000 OPCERR OPCLAS
OVMAC:R OVSTMT PASS PSTROL REGBAS REGROL REGTOP ~ELLVL

ROLRAS ROLSIZ ~OLTOP RS,C~lO RS.COD RS,CPX RS,OMA rlS,OUM
RS,EDT QS,LCD i:fS,Lt8 RS,LSY RS,MAA RS,MA~ RS,MAC RS.PST
RS~~F.G RS,SAT RS.SEC R~.SRC RS, SST RS,STI< RS,SWT R51SYM
R50ABS ~5~DOT SA Tf~nt. ~AVREG SEC~OL SEC TO~ SE.TXPR SIZCND
S lZCOO SJZCPX SIZDM~ SIZOUM SIZEOT StZLCO SIZLIB SIZLSV
SlZMAA SIZMAB SUMAC SIZPST SI ZQEG SIZSAT S IZSEC StZSRC
SlZSST SI ZS Tl< SIZSWT SIZSVM S~C:~OL SSTROL ST KROL SwTROL
SVMBFG SVMROL SVMROL TOPCNO TOP COD TOPCPX TOPIH1A TOPDUM
TOPE OT TOPLCD TOPLIB TOPLSV TOP~AA TOPMAA TO~MAC TOPP ST
TOPRF.:G TOPS AT TOPSFC TOPSRC TOPSST TOPS Tl< TOPSWT TQPSVM
VALUE: wQ~D)(Cf LIN XHI10 XMIT 1 XMIT2 XMITJ XMlT4
XMIT5 XMIT6 XMIT7

\-I
•• MODllLF.t~AC~S SIZE1~1~411 tN~ERTED19•SEP•74 1 DE~IT I ~Q

fNDLOA GflBLk t-1ACR t-1.ACROC MACfrnF ~T,t-1AC MT,MAX P~OMA

PROMCF PROMT SE.TMAC WC IMT

.,,. MOOULEsMCALL SIZE.1~0264 INSE~TEOIJ1•JUL•74 tOENTHH

v MCALL

u MOOULEaMLlBS SllE:t~~8'717 INSERTEDt31•JUL•74 lDE.NTSli'J6

CPVMAC FINSML. GE.TFID INISML. Sr1LFOB

•• MOOUL.E:~SCDR SlZEeid"'84J INSERTE01J1•JUL•14 IDENTs08

ENO ERRM GLOBL P~INT SB TTL SE THOR T ITl..E

'-' u MODULE I ND~C T SIZEt~02!58 INSERTEDIJ1•JUL•74 IDENT11n

NARG NCHR NTVPE:

u MODULE I PROCS I SIZEHH'J216 INSERTE0t17•JUL•74 IDE.NTl01

DSADDH DSMSI< FNAODR ENMSI< LIA DOR LIM SK MLMSK Nl.AODR
NL.MSI< PAMSI< PROCSI, SPMSI<

•• MQDlJLEIPROPC SIZEt01l1865 INSERTED117~JUL~74 IDENT11f'2

AEXP OPCL0~ OPCLOl1 OPCL02 OPCl.03 OPCL.~4 OPCL.05 O?CL06
OPCL07 OPCUHr OPCL09 OPCL 10 P~OPC

B-5

LBR, EDI AND DMP EXAMPLES

•• MODULEIPROSW SI ZE.100258 YNSERTED117•JUL•74 IOF.NT103

""' PRl')SW swTRAS SW TT OP

•• MODULE I PST SIZE t 01307 tNSERTEDtl7•JUL•74 IOENTl04

esYTOP DFLCNO DFLGSM OFLGEV DFLMAC DFLS"1C PSTSAS PS TT OP
SS TB AS SST TOP WROSVM

•• MODULEtREAO SIZEt0'11198 INSERTEOtl7•JUL•74 IDENTl01

GETVBN $Rf AO

•• MOOUL..El~EPT SIZE1~1i'47J I~SERTEDIJ1•JUL•74 IDENTa01

ENDMAC I~P MPUSH i;E., T

~
•• MOOULEIQOLHO S l ZE I '1~685 JNS~QTED1l•AUG•74 IOEt...Tt05

APPEND INSERT LS~FGS LSFLAG LSGBAS LSRCH LSVijt<N MSRCH
NEXT OSRCH ROLNOX ROLUPD SCAN SCAN~ SEAHCH SSRCH
ZAP

•• MOOUL.F.1 ~Sr,A T ~IZEt~t'-'374 TNSERTED117•JUL•74 Jl">FNTt~6

UH~~ 6)(C:'JULVl. r.t.if)MI-. X CN0~1SK (.'IL) tlW Ml) CtHJ(.1'tl l.~Aul.- t. tJ J. l\q I

~
£0MASI< EDMAAK EDMCSI ED.AMA F.;:>,GRI. EO,LSA ED• RF. c; Et..iDVEC

F.XMFLG GMAbLK GMAf.'NT LBL.E.t..ID LCBE~L LCENOL LC FLAG LClNIT

LCLVL LC MA St< LCMCSI LC SAVE LCSAVL LC SB AK LC. LCeBEX

LC.~IN LC,CNO Lc.cnM LC,LO LC.LOC LC,MC LC.MD LCeME

LC,MEB LC.SEQ LC.SRC L.C.SYM LC.TOC LC,TTM Ll8NUM MACGSB

MACLVL ~AC NAM MACNXT MA(':TXT MAC~RT MSAARG MSBBLK MSBCNT

MS SEND MSl-\LC;H MSF\MRP MSf.\PRP MSHTXT MSR TV P PRGlDN PQGTTL

SMLLVL S"CNUM STAFi!S STLBUF TTLRRK TTLBUF

•• "400IJLEa~SEX~C SIZEa~0974 tNSe~TEOtl•AUG•/4 IDENTl17M ·"" RUFT~L CLOSRC CMIBUF C"1LBLK CNTTBL CONT CSlBLK DAT TIM

'DEF MC FOBTBL. FOR1 FOR2 GETFLG GETPLl HORTTL lOFTBL

TO!.EnF lQ,E:R~ JO.NNU IO,OPN Io.our JO, TTY LOA MAC L.SlFlL.

MACLDG n~J~UF' nHJF'tl. PASSSW PURGMC REST RT RLDBUF SPSAV

SRCCLO SRCMRK SRCPNT SRCSAV TSTSTI< VBNSAV SLIMJT !il.STVZ

SSWTCH

** MOOuLEIQ5UMP s1Ze•id"'t17 lNSERTEDtl7•JuL•74 IOENTl~l

A50UNP

•• MODULE I SEC TR SIZE11t1~051 lNSERTED1l•AUG•74 1DENTl04

A SECT C1lEC T LIMIT PSE'CT 54 TEUS SAT TOP SEC I NI

~

B-6

; ~l 41

LBR, EDI AND DMP EXAMPLES

•• MOOULEISETDJR SJH.l"A126 INSERTED117•JUL•74 IDENT102

SETO t R

•• ,.,OoULEISEToN SJlfl00b70 INSfRTEot31•JUL•74 IoENTt06

SETON SET TIM

•• MOOULEISETJMM SIZE t0CIJ292 tNSERTEDt11•JUL•74 lOENTt02

Sf.TOSP ~ET IMM

•• MODULEaSETMX SlZE101iJ131 tNSERTEOs17•JUL•74 lDENT1~1

SET MAX

•• MODULE a SPACE SIZE 10"'449 lNSEQTEDt22•SEP•74 JOENT104

M~!l<UIJT QEMMAC SHFMSB SQZSTK

•• t100UL.E1STMNT SIH.t~v.113\~ lNSERTEDt17•JUL•74 IOE"ITs~J

SlMNT

•• MOOULEsSVMBL SIZE.IWH'l732 YNSERTE0117•JUL•74 IOENT104

A~GCNT ARGPNT CHSCAN C TTBL CT.ALP CT.COM CT, E::OL C'T •LC
CT, NUM CT,PC CT,PCX Cl,SMC CT,SP CT,SPT CT, HB CVTNUM
ntv D~lC DNC:F EXPFLG GETCHR GETNR GETR5~ GETSVM
GSARG GSARGF MllL MUI. ~5~ SET CH~ SElN~ 5E T F<5ft' spsv~1
TSTARG TSHHS0

•• MOOl.JLEsl!JO~l)B SIH.10~141 INStRTEOs17•JUL•14 tOENTt~2

RVTE

•• MODULE 1.-iM I H SJZFt~V'lR9 !NSE"TED111•JUL•74 IDENTa01

St.ICMO h~IlE

B .. 1.4 L:lst Module Names and Module Entry Points (Global Symbols)

LBR>MAC , LP : /LE

or

LBR>MAC,LP:/LI/LE

DIRECTO~V nF FTLE MAC,0LRJ1
OR.J~CT MOOULE LlR!o'AlolV CRf.AH.I" AV: LBR V)(l'12VM
LASl IN~ERT occu~~ED 22•SEP•74 ~T 11:5115~

B-7

LBR, EDI AND DMP EXAMPLES

MNT F.NT~TES 'LLOCATEDI 641 AVAILABLE• 20

" EPT ENT"'IE~ ALLOCAH.DI 64U ~VAILABLEI 9~ -I

FILE SPACE AVAILARLE I l.'llMH !5 WORDS

•• MODULE'cASGMT

ASGMT ASGMTF

•• MODIJLEIASSEM

At.Lacs ASSE'M CLSALL EO~lTS LCRITS MACPt XCTPAS >CCTPRG

•• MOOULEtCNOTL

CNDfUS CNDTCIP F.NDC f F JFF JFT JFTF IIF

•• MOOULE1COO!oiD ~
CPXSTL TNSIZE OBJDMP 08JINI ORJLOC OR.JPN T OBJ SEC PC RC NT
PC ROLL PC~T~L RLl)OMP ~L,,PNT STCOOE TSTWLD ZAPCPlt

•• MQOl.ILE I DA TOR

ALl<B tOENT RAD!" iUrHH~

... MODULEIENBDS ~
F.OT~AS EDT TOP ENA BL

•• MOOULEIENDLN

ENDLIN EIH~RTS F..~QCNT Ll NBUF LINE NO LSTBUF

•• ~OOULEIE:NOPS

E~DPt ENOP2 ~

•• MODULE s ExPi:.is

U.iSE.R~ ABSEXP ARSTRM ABSTST EXPQ GLREXP Gt.~HH1 ~ELEXP
REL TR~ ~fl TST THIM

•• MOOULEtFLOAT

•• MODLJl.Ear.ETLN

FFCNT GE TLI N Ll N~Jl.IM LPPCNT PAGEXT PAGNIJM Sf QENO

B-8

111 ;a hill I I I ::umm I ;: a 121

LBR, EDI AND DMP EXAMPLES

\..I
GMARG Gti1•1o1GF QMARG

•• MnOULF. S 1 NF' ll

CMLM:? CMLMJ CMLH4 C:~LM5 CSl "1;» CS I Mb FINPl INPMl
nPENCH OPNSMC OPSwT1 OPS~T2 OU TERM OUTM1 STl<Mt SOPSWT

•• MODULP.:IINJFL

S~CN4M SIN I FL

•• MODULE: tt..JOFL

LSTNAM 08JNAM 'lNO,:"L

'-' •• MODLJLE'.tLAREL

LA REL L.ASE.LF

•• MODULEll.JSTC

LCTBAS l.CTTOP Ll~T PAr.t

'-'' •• MOOUL~Zl.STNG

C lo(l.F LI NPPG LSTDF.V LST"IF•~ PAG~NE PF~ PF1 PUT KR
fJUTt<l3L PLITLJN PUTLP SETBYT SET PF~ SET PF 1 SETwog SETWRL>

•• MOOULE1"4ACRO

ALTSAV ASC IT ASClZ RA SC NO BASCOO EU SC PX BA$l)MA ~ASDUM
FUSEDT ~Asu;o RASLJA AASLSY FUSMAA R4~MAB FUS MAC FU SP ST
RASREG BASSH RASSF.:C RASSRC 8ASSST BASSTK ~ASSWl IHSSYM

\.,,J RL,.1< w RYT MOO CH~P~IT CL.r.FGS CLCLOC CLCMAX CLCNAM CLCSEC
CN,,ROL COD~OL CP~~OL OM~~OL f'ISA9L OUMRClL EOTRl"IL ENOFLG
F.:OT E~R~NE'. FRR. E~R.A F'~R.R e:R~.D F.FH<,E ERR,J
ERR,L E'R~,M Ewr:l, N ERR,O E'Q~.P E~~.Q E.RR.~ F.RH,T
F.RQ,U lf.Q~. z FVEN FLAGS IMPPA~ IMPPAT IMPURE IMPURT
I~PC LCDROL LI~ROL LSY~OL MAA~OL MAAROL MACP2 MACP2F
MAC~OL ~PIT MODE MOVl:iVT NL I ST ODO OPCE~R OPCL.AS
OV~ACf.c ,,VSTt-1T PAS~ PSTROL REGt;AS REG~OL REG TOP RELLVL
ROL8AS ROLS!l ROLTf'IP RS,CNO RS,COD RS,CPX RS,OMA RS1r>UM
RS,EDT QS,LCO PS,LlF.:t QS.LSY ~S.~AA ~S,MAH RS,MAC RS.PST
~S.~F.G RS.SAT PS.SF.C QS,SRC RS.SST R$,5Tk RS,SWT RS1SVM
R5~A~S ~~Vl'DOT SATROL SAVRE"G SECQOL. SEC TO~ SETXP~ SI ZCND
SIZCOD ~IZCPX SIZDM.\ SIZOUM SIZEDT SI ZLCO SI ZLI 8 StZLSY
SI ZMAA SIZMAB SIZMAC S IZPS T SlZREG SIZSAT ~TZSF.C SIZSRC
SilS9T 9J2STI< SJZSWT SIZSYM S~C~OL SST~OL SHO~OL swTROL
SYM8EG SYMBOL ~n"'~"L TOPC~D TOP CM TOPCPX TOP OMA T QPl)Ut-4

TOPE:. OT TOPLCO TOPLtR TOPL.SY TOPMAA TOPMAB TOPt.1AC TOPPST
TOPRF.G TOPSAT TOP SEC TUPSRC TOP SST TOPS·TK Tl1PSWT TQPSYM
VALUE wQRO)(CTLTN)(MtT0)(MIT 1)(MJT2 XMITJ XMIU

\-1')(MJT5)(~f"'T6)(MJT7

B-9

LBR, EDI AND DMP EXAMPLES

•• MODIJLEr'1AC~~ ~

PRM1CF P~OMT StTMAC WCJMT

•• MOOlJL~rMCALL

MCALL

•• "100llLE:r~LI8~

CPVMAC FtNSML GET FI D INJSML SMLFOJi

•• Mt)OULEtMSCDR

ENO F.~~OR GLO~L P~JNT SS TTL SE THOR TITLE

"' l •• MC'IOULE1NOQCT

NARG ~CH~ NTVPF.

•• MOOULE•P~OCSI

DSADl)R DSMSI< EN~OI")~ ENMSI< LIA DDR LIMSI< ML.t-"SI< NL ADD~
Nl..t-'SI< ?A "'451< PROCSI SPMSI<

""' •• MODIJLF.tPQOJJC

AE)tp OPCLOlli ('IPCLi.'11 OPC~02 OPCl.AJ OPCL~.d OPCL05 OPCL06
OPCL~7 '1PCL08 OPCL'~9 OPCL10 PR()PC

•• Mnr>ULE I P~Oh

PROSW SjtjlBAS S~ Tl OP

""-•• MODULE•"ST

RS VT OP DFLCND DFLGRM OFLGEV DFL~UC DFLSt-1C PSTt.U~ PST TOP
SSHtAS ~ST TOP Wi-lOSYM

•• MQOULEP~EAD

GET\l~N UEAI')

•• MClDIJLEIQEPT

F.ND1'4AC JQP ~PUSH ~EPT

•• ~ODIJL.Et~OL.1-10

APPENO I NSF.RT LSRFr.S t.SFL.AG LSGcUS LSRCH LSY8KN MSMCM ~ NEXT OSRCH ROLNnX ROLUPO SCAN SCA~W SEARCH SSRCH
ZAP

B-10

OU: a

LBR, EDI AND DMP EXAMPLES

u Mt.H>UL~ I QSDAT

A~GIMA.X CNDLVL. CNOMF>l CNf'M~K CNDWRD CONCNT CRAOU EOINtT
F.:OMASK E'DM~AI< F.'OMCSI EO.AM4 EO.GBL EO.LSS ED • ..,EG E~DVE'C
E>O'IFLG GMAkLK r;MAPNT LSLENO LCBE<9L LCENOL LCFL.AG LCINIT
LCL.VL LC MAS~ LC MC SI t.CSAVE LCSAVL LCS8At< t.C • LCeBEX
LC,13IN Lc.cND LC.C0"4 LC.LI) LCel.OC LC,MC LC.MO LCeME
LC.MER LC.SF.Ctl LC.S~C LC,SYM LC.TOC: LC• TTM LIRNUM MACGSB
MACLVL MAC NAM MACN'ICT MACf)(T MAC~HH MSRAPG MSfViLK MSBCNT
MS~ENO MS~LGH MSBMRP ~S8?RP MSB TX T MSIHYP PRGIDN pqGTTL
SML.L.VL S~CNlJM ST u~s STLBUF TTLSRK TTLBUF

•• ~OOULEs~SE~FC

~UFTBL c1..os;c r.:MIBUF CMLt3LI< Ct..ITTRL CONT CSl8LI< DA TTIM
nEFMC FDBT~L FDBl FOR2 GETFLG GETPLI .-Cf>RTTL IOFTBL.
TO HOF tO,t~R ro.NNU IO,OPM IO,OUT fO,TTY LOA MAC LSTFIL
MACLDG OSJRUF ORJFIL PASSS~ PURGMC REST~T RLOBUF S?h'V

\..,1 SRCCLO SRCM~I(S~CPNT S~CSAV TSTSTK VRNSAV Sl.I MIT SL.STVZ
.'liSwTCH

•• MODULE:1Q5UNP

R!)0UNP

u MOOULEtSECTR

'-' A SECT CSECT Lit-11T PSE'CT SA TSU SATTnP SEC IN I

•• MODULEtSETOJ~

SETO IR

•• MOOULEtSETON

SETON SE.TTIM

'-"
•• MODUL.Es~f.TIMM

SETDSP SE TIM~

•• MODULE1SETM)C

SETMAX

** MCIOULE1SPACF.

MM I< OUT r:1EMMAC SHFMSB SQZSTt<

u MOOULEISTMNT

v STMNT

B-11

LBR, EDI AND DMP EXAMPLES

•• MnDULEISVMBL

Ar.IGCNT ARGPNT CHSCAN r. TT 8L CT.ALP cr.cnM CT. F.: OL r.1.u~

CT,NU~ CT,PC rT, PC x c1,s~c Cl,SP r:T,SPT Cl. Uf:t C v hlJM
DIV DNC DNCF F.X PF' LG GETCMM GETN~ GE.T~f)0 GETSVM
GSARG GSAr.IGF MUL ~ULR50 SETCHR SET NB ~El~51ii SElSVM
TSTARG TSTR!Hi

•• MOOULEIWOROB

~VTE

SQCMO

B-12

LBR, EDI AND DMP EXAMPLES

V B.2 SAMPLE LISTING POR LBR LIST SWITCHES (MACRO LIBRARY)

B.2.1 List Module Names

LBR> MAC, LP :

or

LBR>MAC,LP:LI

OlR!CTO~Y 0, ,l~! !•EMCeM~lll
MAC~O Ll8RAAV C~IATID 8VI LIR Vk03,•
LAST lNSE~T O~CUAREO 2•JUN•7! AT 17116121
MNT ENTRIES A LOCAT(OI 641 AVAlLAAL!I 52
!PT ENTRIES A ~OC•TfOI 01 AVAI~ABLEI 0
,IL! SPACE AVAlLABL!t 00780 ~OROS

U00'5
CLK on
CUCDFS
CVCOFS
OEVO"'S
!MBOFS
FllD'S
HORDF5
H~'oosrs
PC:80FS
PKT O'S
TC!BDFS

B-13

~ f l $112 I if!£

LBR, EDI AND DMP EXAMPLES

B.2.2 List Module Names and Full Module Information

LBR>MAC,LP:/LE/FU

or•

LBR>MAC,LP:/LI/LE/FU

4

DIA!CTORV 0' '11.E EMEMC,MLB•l
MACRO LIBRARY CREAT!~ BVI LBR VX0J,~
LAST I~SERT occv~~EO 2•JUN•75 AT 1111e12e
MNT ENTRIES ALLOCATED• e•• AVAILABLE• e2
!PT ENTRIES ALLOCATEOI 0' AVAILABLEI 0
'IL! SP4C~ AVAlLABL!I 00789 WORDS

** MOOULE1ABODFS SIZE100201 IN8ERTED12•JUN•15

•• MOOUL.EICLKOFS SIZE100240 l~SERTfDl2•JUN•75

** MODULEtCUCDFS SIZEt~0J'6 I~SERTED12•JUNe75

•• MODULE:tCVCOFS SIZE I 01d601 1NSERTE012•JUN•75

•• M001Jl.E1D!'VOFS sue:1~101, lNSERTfD12•JUN•7e

•• MOOUl.EtEMBOFS SIZE 100299 1NSERTiOt2•JUN•75

•• MOOUl..EIFttOFS SIZE 1 liH~!3~ INSFRTED12•JUN•75

** MODUL.EIMOROFS StZE100321 INS!RTED12•JUN"75

•• MOOUl.EIHWOl'>FS SIZE 100368 lNSfRTEOl2•JUN•15

** MOOUl..f IPCBOFS SIZE 100221 lNSERTf012•JUN•1!

u MOOUl..EIPl<TOF$ SI Z! 100233 I~SERTED12•JUN•l8

•• MODUl.E1TCBO,S SIZU1!0•39 INl!RT!Dl2•JUN•18

B-14

I (

~

~

~ ~ -

a

'-''

LBR, EDI AND DMP EXAMPLES

B .. 31 SAMPLE EDITING OPERATIONS

Four sample editing operations are included in this section to
illustrate how the various EDI commands can be used. In the first
example, a file is edited using a few basic EDI commands. The second
exaimple, illustrates the use of the SAVE, UNSAVE and PASTE commands.
In the second example, two save files are generated, modified, and
appended to the original file. Any closed file may be appended to or
inserted within an open file in the same manner shown in the second
exaimple. The third example illustrates how an immediate macro command
can be defined and executed in a single step. The last example
illustrates how a file containing errors can be edited using the macro
commands.

B-15

to
I
°'

B.3.1 File Editing Sample

>EDI PRTBLD.CMD
[PAGE 1)
*p *

COMMAND FILE TO BUILD
PRNT SYMBIONT
FOR RSX-llM MAXXED SYSTEM

;
[l,54)PRT/MM/-CP,LP:=PRTBLD/MP
;
; OPTIONS . ,
STACK=40
PAR=PARK:O:lOOOO
UNITS=4
TASK=PRT •••
ASG=C0:2,LP:3
PRI=60
UC=[lO,l)

.
I

SPECIFY
SPECIFY FLAG WHICH CONTROLS
FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE

GBLPAT=PRT;$DELET:l

TO INHIBIT DELETION USE

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENARBLED

GBLPAT=PRT:$DELET
I
[*EOB*)

-~;

))

File PRTBLD.CMD is opened for editing. A PRINT * command
is issued to print the contents of the file. The following
errors are detected:

1 - PRNT should be PRINT.
2 - MAXXED should be MAPPED.

3 - /CP should have been used instead of /-CP.

4 - INPUT should be appended to the line containing
the word OPTIONS.

5 - PARK should be PAR4K.

6 - UC should be UIC.

7 - The line containing SPECIFY should be deleted.

8 - The comment line containing the format used to inhibit
deletion is missing.

9 - ENARBLED should be ENABLED •

10 - A :1 should be appended to the line following
the word $DELET.

The end of buffer is reached and EDI causes the EOB message
to be printed.

}) J .

'

t:"'

°' ~ ...
tSJ
0
t-1

= 0

0
3:
tO

tSJ
><
>'
3:
tO
t:"'
tSJ
en

to
I

-.J

c:/

•TOP
[PAGE l]
*PL PRNT
; PRNT SYMBIONT
*C/RN/RIN/
; PRINT SYMBIONT
*
; FOR RSX-llM MAXXED SYSTEM
*C/XX/PP/
; FOR RSX-llM MAPPED SYSTEM
*NP 3

('

[l,54]PRT/MM/-CP,LP:=PRTBLD/MP
*C,/-CP,/CP,
[l,54]PRT/MM/CP,LP:=PRTBLD/MP
*PL PAR=
PAR=PARK:O:lOOOO
*C/RK/R4K/
PAR=PAR4K:O:l0000
*NP -3
; OPTIONS
*AP INPUT
; OPTIONS INPUT
*PL UC
UC=[lO,l]
*C/UC/UIC/
UIC=[lO,l]

(" ((

A TOP command is issued to move the line pointer to top of
file and editing is started.
1 - A PAGE LOCATE command is issued to locate the first

line in error and the line is printed automatically.
A CHANGE command is issued to correct the line
and the correc.ted line is displayed automatically.

2 - A carriage return is entered following the prompt to
move the line pointer and print the next line in error.
A CHANGE command is issued to correct the line and the
corrected line is displayed automatically.

3 - A NEXT PRINT 3 command is issued to locate the
next line in error and the line is printed. A CHANGE
command is issued to correct the 1 ine and the corrected
line is displayed automatically.

4 - A PAGE LOCATE command is issued to locate the next
line in error and the line is printed automatically. A
CHANGE command is issued to correct the line and the
corrected line is displayed automatically.

5 - A line in error was bypassed by mistake; therefore, a
NEXT PRINT -3 command is issued to back the line
pointer up. An ADD AND PRINT command is used to correct
·the line

6 - A PAGE LOCATE command is used to located the next line
in error and the line is printed automatically.
A CHANGE command is issued to correct the line and
the corrected line is displayed automatically.

t"'
m
~ ..
tZJ
0
1-1

~
0

i .,,
tZJ
r>c:
!; .,,
t"'
tZJ
tn

tJ:I
I

......
(X)

*
I

*
; SPECIFY
*DP
; SPECIFY FLAG WHICH CONTROLS
*PL !NH
; TO INHIBIT DELETION USE
*I

GBLPAT=PRT:$DELET:O

*PL RB
; FILE DELETION ENARBLED
*C/R//
; FILE DELETION ENABLED
*
i

*
GBLPAT=PRT:$DELET
*AP : 1
GBLPAT=PRT:$DELET:l
*TOF
[PAGE l]

__ ,) _)

7 - The line pointer is moved down two lines via the
carriage return option to locate the next line in
error. A DELETE AND PRINT command is issued to delete
the line containing ; SPECIFY and print the
next line.

8 - A PAGE LOCATE command is issued to locate the
point in the file where the new comment lines
are to be inserted. EDI is switched to the Input
mode, two lines are entered, and EDI is switched
back to Edit mode by entering a carriage return as
the first character in the line.

9 - A PAGE LOCATE command is issued to locate the next
line in error. A CHANGE command is issued to
correct the spelling error. The line is displayed
automatically.

10 - The line pointer is moved down two lines using two
carriage returns to locate the last line in error.
An ADD AND PRINT command is issued to append
:1 following the word $DELET.

The necessary corrections are complete so the line
pointer is moved to the top of the file via a TOF command.

:) _,;) -)

t'1
tJ:I
~ ...
till

" t-1

~
" " 3
tO

till
>C
>'
3
tO
t'1
till
Ol

°' I
'°

(

*P *
COMMAND FILE TO BUILD
PRINT SYMBIONT

; FOR RSX-llM MAPPED-SYSTEM

.
I

[l,54]PRT/MM/CP,LP:=PRTBLD/MP
;
; OPTIONS INPUT . ,
STACK=40
PAR=PAR4K:0:10000
UNITS=4
TASK=PRT •••
ASG=C0:2,LP:3
PRI=60
UIC=[lO,l]

.
I

.
I

SPECIFY FLAG WHICH CONTROLS
FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE

GBLPAT=PRT:$DELET:l

TO INHIBIT DELETION USE

GBLPAT=PRT:$DELET:O

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENABLED

GBLPAT=PRT:$DELET:l
I
[*EOB*]
*EX
[EXIT]

(' (" (I

A PRINT * command is issued to print the comolete
file with all corrections - -

An EXIT connnand is issued to close the file and
terminate the editing session.

('

tot .,, ,.,
~

Dll
0
M

t
" fi .,,
tlll
D<

= "' tot
N
{I)

---j;

B.3.2 SAVE and UNSAVE Example

*LI
THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]
*T
*SA 5 SAVI.DAT

*T
*SA 5 SAV2.DAT
*CL
EDI>SAVl. DAT
[PAGE l]
*LI

D:J
THIS IS LINE 1 PAGE 1

I THIS IS LINE 2 PAGE 1
t-..) THIS IS LINE 3 PAGE 1 0

THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]

*PA/PAGE l/PAGE 2/
THIS IS LINE 1 PAGE 2
THIS IS LINE 2 PAGE 2
THIS IS LINE 3 PAGE 2
THIS IS LINE 4 PAGE 2
THIS IS LINE 5 PAGE 2
*CL

_) _)

The file to be used in this example is
printed via a LIST command.

The line pointer is returned to the top.
A SAVE command is used to save the
five lines in a separate file.

The line pointer is returned to the top.
A second SAVE command is used to generate
a second saved file. The primary input file is closed.
The first save file is opened and a
LIST command is used to display the file.

A PASTE command is used to change
PAGE 1 to PAGE 2 in all lines.

The first save file is closed.

l) ~) ~>

t:1

"' ~ ~

tiil
0
1-1

~
0

0
3:
tO

tiil
>< >
3:
"C
&;
tll

°' I
I\)
.....

(

EDI>SAV2. DAT
rn,.,...n , 1
trnu.c. J. J
*LI
THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE l
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]

*PA/PAGE l/PAGE 3/
THIS IS LINE 1 PAGE 3
THIS IS LINE 2 PAGE 3
THIS IS LINE 3 PAGE 3
THIS IS LINE 4 PAGE 3
THIS IS LINE 5 PAGE 3
. *CL
EDI >START. DAT
[PAGE l]

(' (' ("

The second save file is opened.

The LIST command is used to display
the contents of the file.

A PASTE command is used to change
PAGE 1 to PAGE 3 in all lines.

The second save file is closed.
The original input file is opened again.

(

tot
to
~ ..
l'r.I
t:I
~
t:I

t:I
3
t'd

l'r.I
~ :a-
3

"" tot
l'r.I
rn

-

*BO
THIS IS LINE 5 PAGE 1 The last line in the file is located.
*UNS SAVI.DAT Two UNSAVE commands are used to
*UNS SAV2.DAT append the two save files to the
*T original input file.
*LI A LIST command is used to
THIS IS LINE 1 PAGE 1 display the contents of the
THIS IS LINE 2 PAGE 1 combined file.
THIS IS.LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
THIS IS LINE 1 PAGE 2
THIS IS LINE 2 PAGE 2
THIS IS LINE 3 PAGE 2 ~

THIS IS LINE 4 PAGE 2 ~

THIS IS LINE 5 PAGE 2
~
~

THIS IS LINE 1 PAGE 3 ~

THIS IS LINE 2 PAGE 3 0
THIS IS LINE 3 PAGE 3

M

~
THIS IS LINE 4 PAGE 3

= I THIS IS LINE 5 PAGE ~ 0
~ [*EOB*] ~ 0

*EX s
~

[EXIT]
~

E
~
~
~ m

))
L
) j)

O:I
I

"' w

(_ (

B.3.3 Use of Immediate Macro Command

*LI
ABC IN LINE l - ABC
ABC IN LINE 2 - ABC
ABC IN LINE 3 - ABC
ABC IN LINE 4 - ABC
ABC IN LINE 5 - ABC

ABC IN LINE N - ABC
[*EOB*]
*4<F ABC&C/ABC/DEF/>
ABC IN LINE 1 - ABC
DEF IN LINE 1 - ABC
ABC IN LINE 2 - ABC
DEF IN LINE 2 - ABC
ABC IN LINE 3 - ABC
DEF IN LINE 3 - ABC
ABC IN LINE 4 - ABC
DEF IN LINE 4 - ABC
*

(('

A LIST command is issued to print
the file used in this example.

The immediate macro is defined
and executed to .find the first
four lines which start with ABC
and change the first occurrence
of the string ABC to DEF.
The FIND command causes the line
to be printed before the change.
The CHANGE command causes
the line to be printed after
the change.

(

t'1

°' ~ ._

ti;I

'='

= '='
'=' • 'ti

ti;I
~
)ii
3
'ti
t'1
ll!I
tll

°' I
I\..)

~

B.3.4 Use of Macro Commands

*LI
THIS LITTLE FILE HAS
MANY CONNON ETTORS SO
WE CAN SHOW YOU ROW
YHE MACRO CONNANDS CAN
BE USED.
FIRST, YHE DESIRED MACRO
MUST BE DEFINED; YHE LINE
POINTER IS MOVED TO A LINE
WITH AN ETTOR; AND YHEN, YHE
MACRO EXECUTE CONNAND
IS ISSUED TO COTTECT YHE
ETTOR
[*EOB*]
"MACRO 1 C/NN/MM/
*MACRO 2 SC/TT/RR/
*MACRO 3 PA/YHE/THE/
*M3
THE MACRO CONNANDS CAN.
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
WITH AN ETTOR; AND THEN, THE
IS ISSUED TO COTTECT THE
"NP2
MANY CONNON ETTORS SO
"Ml
MANY COMMON ETTORS SO
"12
MANY COMMON ERRORS SO

J }

The LIST command is used to print the
file and the file is checked for errors.
The following errors are located.

1. The string NN is used in place
of MM (see macro 1).

2. The string TT is used in place
of RR (see macro 2).

3. The string YHE is used in place
of THE (see macro 3) •

The three macro definitions which will
correct the errors are typed.

Macro 3 is used to change all YHE
strings to THE.

NP2 is used to locate a line with errors.

Ml is used to change NN to MM.

M2 is used to change TT to RR.

}) .)

tot
ta
~
~

ti!!
0
~
0

0
3:
ttj

tll:I
I><

= ttj
tot
ti!!
en

tcJ
I
~
U'1

('

*NP2
THE MACRO CONNANDS CAN •1
THE MACRO COMMANDS CAN

*M2

WITH AN ERROR; AND THEN, THE
*_)
MACRO EXECUTE CONNAND
~l
MACRO EXECUTE COMMAND •2
IS ISSUED TO CORRECT THE •2
ERROR
~
~I
THIS LITTLE FILE HAS
MANY COMMON ERRORS SO
WE CAN SHOW YOU HOW
THE MACRO COMMANDS CAN
BE USED.
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
POINTER IS MOVED TO A LINE
WITH AN ERROR; AND THEN, THE
MACRO EXECUTE COMMAND
IS ISSUED TO CORRECT THE
ERROR.
[*EOB*]

(' (((_

NP2 is used to locate the next line in error.

Ml is used to change NN to MM.

M2 is used to locate the next TT strino
and change it to RR. -

A carriage return is used here to locate the next line
in error.

Ml is used to change NN to MM.

M2 is used to locate the next TT string and
change it to RR.

M2 is used to locate the last error in the
file and correct it.

After all lines have been corrected, the
file is printed using the LIST command.

t""
ti'
~ ..
tlJ
t:7
~
t:7

t:7
3:
"'O

tlJ

= 3:
"'O
t""
tlJ
tn

! '! 411

LBR, EDI AND DMP EXAMPLES

B.4 SAMPLE DMP LISTINGS

B.4.1 Use of /LB Switch

DMP>TI:=SY:BIGMAC.TSK/LB
STARTING BLOCK NUMBER = 0,135163 c

DMP>TI:=SY:SYSGEN.CMD/LB
STARTING BLOCK NUMBER = 13 ,{3JJ16{36

B.4.2 "Standard" Command Line

This conunand will dump virtual blocks 1 and 2

ASCII mode.

~LP:=SY:SYSGEN.CMD/AS/BL:l:2

~

in SYSGEN.CMD in

DUMP OF DP01[200,200]SVSGEN,CMD•15 •FILE ID 7157,3511.16,0
VIRTUAL BLOCK 0,00A~01 • SIZE 512, BVTE'S

000000 •• iii • , •• iip •• , s y s G E N p

000020 A R T 1 "'A •• ' •• b ...
'

... I D E
000040 T f. R M l N E s y s T E M f'
000060 E ,. T u R E s A N 0 A s s f

000100 t-1 B L E T H E E)(E c u T I
000120 v E ""A •• , ... , •• • s K A A •
000140 R E y 0 u 8 u I L. D l N G

000160 A M • p p E 0 s y s T E M ...
000200 < •• • A s K 8 • R E y 0 u
000220 R u N N I N G 0 N • M A

000240 c H l N f w I T 1-1 t»1 0 R E
000a60 T H A N 1 6 I< w 0 R D s •A
0003H '

ilif -6ili Af , I N s T •- L L T H

IH03Z0 E N E c c E s s • R y T A s
000340 t< s "A •• ' ••

•o • • s E T I u I c
001360 • ['

, 5 0 l •• ""'G --· I N s p I
HUH p ilif iiG •• l N s F L x •• ""N •• • I
000420 ,.. F B l N s M A c •z •• • I

0HIH•0 f' F B p l p B I G M A c •
001460 T s K ' * I D E ·Q •• • I F T B

0H5H l N s B J G M • c •• AW • I
0HJ520 I' T 8 p l p M A c • T s I(

000540 ' * I D E
,,., ,. A •• ' ••

....
' D E

IHJ5U L E T E ' l I. E s F R 0 M

HH00 p A s T s y s G E N s 4 •• , ...I
H0H0 N 0 T E I ... I 0 N v I R G I N
H0b40 D l s K s , N 0 N E 0 ,, T

QJH&H H e: fl' l L E s w E T R v
000700 T 0 3 ...

'
.-1 •1 D E L ! T E w l

100120 I. I. ! x l s T p l p w
01210740 I L L G l v e: E R R 0 R M

IH07U E s s A G ! s •• 5
'

-1 •1 T H A

B-26

II

~

"""

""

~

LBR, EDI AND DMP EXAMPLES

DUMF• OF DPB1t211,~ee]SVSGEN,CMD115. ~ILE XD 7157,3514611
VIRTUAL BLOCK 0,011012 • SUE 512, BYTES

HHIHI T s H 0 u L D I N D ! c A T
HIH21 E T H • T T H E F ! L E
HH4B D 0 E s N 0 T E)(I s T • F'
HHU .,.A u •p •• s E T I u I c • t

'-'
100100 l 1 2 ra] •s ... p I p R s)(A
HU20 s M • c M D , * I 0 E t< •s •• p I
HU40 p R s)(B L D • c M D ' • I D
000160 E "N •• p x p * • 0 B J ' • I
00UHI D ~ iltp ... s E T I u l c • [1 l
Hlc!20 , 2 4 l .. s •• p J p R s)(A s M
00QH!40 • c M 0 ' * I D E H s •• p J p
0H~!b0 R s)(B L. 0 • c M 0 ' * I 0 E ...
HUH AN iii'. p I p * • 0 B J ' * I D f
100~•20 •p •• s E T I u I c • [1 1 , 1
HU40 " l "R •• p I p s y s T B • M A
0HJJIU c

' * I D E •R •• p I p R s)(M

'-' HQHtH c • M A c ' * I D E ... •• , ... 7 • •
IHJQJttZ0 ' N 0 w w E R u N T H !
HQJtt40 s v s G E N p R 0 G R A M
0Htl60 T 0 s E L E c T T M E E)(

0H~illl0 E c u T I " E G 0 ... , F f A T
000~•20 u R E s • N D D E v I c E s
H0~i40

""
E w A N T I N • T - H E

H0!iU N E
""

s y s T E M ' -· ' •x N 0
HHH T E • I F y 0 u A R f R
00(/Jet20 U' N N I N G 0 N • 1 b t<
Hr.'Ut40 w 0 R D M A c H I N E y 0 u
0HIEt60 s M 0 u L D s 1 ... ' •1 s p E c
H0i'H I F v T H A T N 0 A s s e:
000720 M B L y L I s T I ~ G s B f
0011'40 G E N E R A T E D • R • , "I
l!HiU l ,. y 0 u A R E R u N N l

B-27

LBR, EDI AND DMP EXAMPLES

B.4.3 Dump Only the Header from SYSGEN.CMD
~

DMP>LP:=SY:SYSGEN.CMD/HD/BL:~:~

DMP>

DUMP OF OP01[212101200]SVSGEN,CMD,15 • FILE ID 71571351010
FILE MEADER

SVSGEN.CMDS 15 (7157, 35140) 1,110. 11•0CT•74 11148
[200, 20"] [RWEO, RWED, RWE01 R]

000000 027027 007157 111351 'fb 00040\ l l'J0200 1UH0 12100000 001002
000020 000077 00000121 0H012 000000 000010 HHH 000000 000000
000040 000u0 1'300000 000000 00001iJA 000000 HHH H0000 075273
0000b121 aab22t> 000000 012314 000015 000001 03121461 041517 0335i!4
000100 030464 032461 030462 030462 047461 052103 032G!Jb7 030461
000120 034064 032461 00012100 0H0flot 0Hl000 000000 000000 000000
000140 000000 001401 146000 H2HA 001Uo H0H0 044156 H141HJ ~
0001b0 044306 000900 000000 0000A0 000000 000000 01210000 000100
000200 000000 000000 090000 00000" HHH 000000 000000 000000
000i!20 e0ro000 1?100000 000000 00000'11 000000 000000 000000 IH0HJ0
0002ttB 000000 1300000 000000 0000"1il H012100 000000 H00H '1JHH0
0002b0 900000 D00000 e000H 0000AUI HH00 00000121 00000121 000000
000300 01!0000 000000 000000 0000PIA 000000 000000 00000eJ 000000
000320 000000 "00000 000000 0100000 00000121 000000 000000 00121000
000340 a00000 0001cHHI 000000 0000Aot 000000 000000 000000 000000
0003b0 0~0000 000000 000000 00001.'1111 000000 000000 000000 000000
H0400 130~000 000000 0000021 00000'11 000000 0HH0 000000 000000
0001.t20 000000 000000 000000 00000(19 000000 000000 000000 000000

~ 0210U40 000~00 000000 0000H 0000elf't 000000 000000 000000 000H0
000460 000000 13''.10000 00D0C!l0 0000A'1J 000000 000000 000000 00000QJ
000500 0t'J0000 0000130 000000 0000CJtOJ 000000 000000 000000 000000
H0520 rl00000 0000(?10 000000 000000 2100000 0000H 000000 000000
000540 000000 000000 000000 0000PIA 01210000 Hfa-000 000000 000000
H05o0 000000 000000 "100000 0000Pt"' H0H10 0001'cl00 00000121 000000
000600 '100000 B00000 000000 000000 000000 000000 000000 000000
G!J0H20 000000 000000 000000 00000"' 000000 000000 000000 0·000210
Hl0b't0 000000 00000121 000000 0HHPJ 000000 001HH 0210000 000001
0006b0 000000 LHl0000 000000 0000PI"' 0000210 00000J 00000B 000000
000700 000000 '1!000Cl0 000000 00H~PJ 000000 0002100 0000013 000000

~ 000720 000000 000000 00001210 00000A H0000 000000 000000 000000
H.10140 000000 IH0000 000000 0000PIUI 000000 000000 0H000 12100000
OH/H!J'7b0 000000 000000 000000 0000AA H0000 01210000 000000 10~212

B.4.4 Use of /BA Switch

The first command sets the base block address to 2, the next command

causes virtual blocks 3 and 4 to be dumped.

DMP> /BA:~: 2

DMP>LP:=SYSGEN.CMD/BY/BL:l:2

DMP>

~

B-28

!I~ #j a; £)$ I I

LBR, EDI AND DMP EXAMPLES

DU!~P OF DP01[2001200]SYSGEN.CMDJ15 •FILE 10 715713514610
VIRTUAL BLOCK 0100AA03 • SIZE 512, BYTES

0H000 116 107 ""0 UT 116 0/f 0 101 A40 115 101 Ul 110 111 116 105 040
0H020 1127 111 U4 110 040 115 117 t22 105 040 124 110 101 116 12140 0U
01'H040 ei&6 113 040 127 117 122 104 Ul 072 000 073 011 131 U 7 125 040
HH60 115 101 U1 040 107 105 U4 '1140 101 123 123 us 115 102 114 U1
00"100 040 114 111 123 124 111 116 107 123 040 117 116 114 131 1214121 111

'-'
0Ht20 106 04121 131 117 125 040 104 t 11 122 us 103 124 040 124 110 105
01'Ht40 us 040 124 117 073 000 073 r.u 1 124 110 105 040 114 111 116 105
01Hl60 040 120 122 111 116 124 105 t22 040 050 114 120 060 072 051 040
121H200 117 122 040 101 116 117 124 110 105 122 040 104 1 t1 123 113 2156
e'H220 l(J40 040 124 110 105 122 U5 '1140 111 123 0421 11 I> 117 124 040 040
00"240 a1~0 103 062 000 073 011 105 \16 117 125 107 110 040 123 120 Ut
09"260 !Bl 105 040 111 116 040 124 110 105 040 123 117 125 122 U3 11215
0H3HI a4e 104 111 lZ3 113 LM0 124 117 040 113 105 105 120 040 101 114
0H320 1:14 0lf 0 124 11111 105 CM0 12131 f1100 073 011 101 123 123 105 115 U2
HJU40 U4 131 040 114 111 123 124 111 116 107 040 Ub 111 114 105 123
00"360 0~56 073 iHH 000 073 105 U0 U0 122 125 1U 040 044 123 UT 11&
0H400 0U 000 073 101 063 000 073 "140 UJ1 1 C!4 040 1.24 lUJ 111 123 040

\...-1 0H420 120 117 111 116 124 040 127 us 040 12a us 116 101 115 105 040
IHH9440 1i~4 110 1B5 040 101 123 123 us 1\5 102 114 131 040 103 117 115
00"4H us 11?11 116 U4 040 106 111 114 105 040 046 000 073 040 101 116
0H500 1134 040 124 110 105 040 123 131 U3 U4 105 us 040 102 125 111
L'JH520 U4 104 ~M0 103 117 115 115 101 116 104 040 106 111 114 105 1140
0H540 124 117 020 000 056 111 106 106 040 101 040 073 011 133 0(>1 061
HG15Hl 0!)4 062 060 135 020 000 056 111 106 121.t 040 101 040 073 011 133
0Hl600 061 eu 054 0ft2 064 135 001 l'J00 073 125 057 000 056 11 t i06 10&
0Ht620 0''" 101 040 120 111 120 040 133 0U 061 051.t 062 060 135 057 122
HQl640 us 075 122 123 130 101 123 us 056 103 115 10'+ 073 052 054 122
0Htob0 1 ;?3 130 U2 114 10'4 056 103 115 U" 073 05Z 011 057 000 056 111

'-' 0H700 Uo 124 040 101 040 120 111 t20 040 133 061 061 054 062 064 135
0Ht720 0~)7 122 105 075 12&? 123 130 101 123 115 056 U3 115 104 073 12152
fJHJ740 0~)4 122 1Z3 130 102 114 104 05& 103 115 104 073 052 000 077 H0
0Ht7o0 ~~;6 101 1Z3 113 040 132 040 104 111 104 040 131 117 125 040 101

B-29

LBR, EDI AND DMP EXAMPLES

DUMP OP DPBt[2001Z0121JSYSGEN.CMDJ15 •FILE ID 715713514610
V IRTU•L BLOCK' 121, 000004 • SlZf 512, BYTES

HHH 1lb 123 127 us 122 140 124 1U 105 040 123 131 123 U7 105 11 (t
0000Z0 040 121 125 us 123 124 111 117 116 U3 040 124 117 040 131 117
000040 125 122 04121 123 Ul 124 111 123 106 Ul 103 t 24 111 117 116 040
000060 02e 000 056 111 106 124 040 132 040 12156 107 117 124 117 040 0U ~
000100 069 ldbeJ 001 000 ian 111 074 IHJ0 073 040 127 U5 041 127 111 114

:

000120 114 rolf0 105 130 111 124 040 116 117 127 040 123 117 041 124 110
000140 1B1 124 "40 131 117 us 040 115 101 131 040 122 105 123 124 101
100160 122 124 049 124 110 111 123 ot40 103 117 115 115 101 116 104 eJ40
000200 lBb 111 114 105 0b7 009 073 "140 106 122 117 115 040 124 110 105
00022121 e1.10 102 10s 101 111 116 116 111 1t6 107 056 040 124 110 111 123
·000240 040 127 111 114 114 040 101 114 114 117 127 040 101 040 103 114
H02b0 105 101 llb 040 1Z5 120 040 117 10& 04121 124 110 105 122 070 eJH
000300 S73 040 104 111 123 1U 040 OH 116 1'!14 040 101 040 116 105 127
000320 040 122 125 11& 040 117 106 "'"" 123 107 11& 040 124 117 eJ40 123
2100340 105 114 us 103 124 01.10 124 110 U5 040 120 12e! 11 '7 120 U5 122

~ 0003&0 """ 117 120 124 111 117 116 123 022 00121 073 1214121 Uf> 117 1ZC? 040
H0"f00 131 117 125 122 040 123 131 123 124 105 115 05b 001 000 013 040
HJrlJ420 a12 b00 es& 101 111 124 117 A40 0U 060 0b0 0b0 006 00,a 056 061
000440 260 060 072 073 037 000 073 "140 11b 117 127 040 127 105 040 Ul
H01.fb0 l23 123 105 115 102 114 us t'J40 124 110 105 "'40 105 130 U5 tu
010500 125 124 111 126 105 01.10 001 "100 073 124 027 000 056 111 106 106
0H520 040 101 040 123 105 124 040 "157 125 111 103 075 133 061 061 054
000540 062 060 135 000 027 000 056 111 106 124 040 101 041 li!3 105 124
IHl05(,0 040 057 125 111 103 075 133 Abl 0U 054 062 064 us 073 013 000
100600 115 101 103 040 100 122 123 130 101 123 us 000 001 0H 073 11216
H0t»20 ~62 00121 ~73 040 116 117 127 A40 127 105 040 102 125 111 11 q 104

~ 000640 040 1za 110 105 040 103 111 Ub U3 101 12'1 105 116 Ul 124 11215
HIU»60 1B4 840 117 102 112 105 103 124 040 115 117 U4 125 U4 105 040
101700 106 111 114 105 024 000 073 A40 106 117 122 04121 124 110 105 040
000120 105 130 1~5 103 125 124 111 126 105 056 0211 000 2173 104 024 000
0011740 120 1\1 120 040 122 123 130 0(> 1 0b1 115 05& 117 1B2 123 075 052
000160 056 117 102 112 026 000 120 111 120 040 056 117 102 112 057 122

B-30

a: I

APPENDIX C

RSX-llM SERIAL DESPOOLER TASK

The RSX-llM Serial Despooler task (PRT •••) provides a means of
eliminating contention for the system line printer. Rather than
waiting for the line printer to become available, a task directs the
output intended for the line printer to a disk file. The task issues
a Send Data directive to the serial despooler, placing a data block
that identifies the file to be spooled in the serial despooler queue.
A Request directive is then issued by the task to activate the serial
despooler, in case it is not already active. PRT handles FCS-created
files, but RMS files can be read only if they are sequential. All
files identified in the serial despooler queue are printed in
first-in-first-out (FIFO) order.

You may wish to compare the capability of this task with the RSX-llM
Queue Manager and its associated despooler. See Chapters 6 and 7 of
this manual for more information.

C.l RECEIVE QUEUE OPERATION

The standard method of placing a user file in the serial despooler
receive queue (and requesting its execution) is via the PRINT$ macro
call, which is described in the IAS/RSX-11 I/O Operations Reference
~al. Files are spooled in this same manner by the RSX-11 utilities
that support the spool (/SP) option. Each entry in the serial
despooler receive queue consists of a 13-word data block containing
the file-related information illustrated in Figure C-1.

'-" C.2 TEXT REQUIREMENTS

The serial despooler task prints ASCII text with a maximum line length
of 132 bytes. It will properly handle files with all modes of FCS
carriage control (that is, standard, embedded, and FORTRAN).

C.3 TASK-BUILD INFORMATION

The serial despooler task must be built during an RSX-llM system
generation because the task image file (PRT.TSK) is not distributed on
the standard release kits. Normally, the serial despooler is built to
retain all files that have been spooled, but the serial despooler
build file can be edited during system generation to enable the
automatic delete feature. (Note also, that a nondeleting despooler
can be made to delete, if the data block mentioned in Section C.l and
shown in Figure C-1 has a negative value in word 7.) When the serial
despooler is built without automatic delete, spooled files are

C-1

RSX-llM SERIAL DESPOOLER TASK

retained after printing. If the system has a deleting serial
despooler, all.spooled files are deleted after printing.

See the RSX-llM System Generation and Management Guide for detailed
system generation information.

WORD

1

2

3

4

5

6

7

8

9

10

11

12

13

File name

in

RADIX-SO

File type in RADIX-50

File version (binary)

Device name in ASCII

Unit number (binary)

File ID

Directory ID

Figure C-1 PRT Send Data Buff er Format

The serial despooler is set to spool files to LPO:. It uses LUN3 as
the spool device. The system manager can redirect print files to any
record-oriented device (that is, a device similar to the printer) by
reassigning LUN3. See the RSX-llM/M-PLUS MCR Operations Manual for
information on the Reassign command.

C.4 PRT ERROR MESSAGES

All error messages issued by PRT are sent to the console terminal via
pseudo-device CO:. The error messages have the following format:

PRT -- text

In all but the receive failure error, the messages supply information
that identifies the sender task and the file in question. All PRT
errors are fatal; upon error detection, printing of the input file is
terminated, and a cleanup/restart procedure is entered.

C-2

.~

'-1'

RSX-11.M SERIAL DESPOOLER TASK

In the case of the receive failure error, the sender and file
information are unavailable. Furthermore, PRT does not attempt to
dequeue additional spool requests because of the nature of this error
condjltion. Instead, PRT exits causing its receive queue to be purged
by the system.

RECEIVE FAILURE, d. -- TASK EXITING

Explanation: The Receive Data or Exit directive failed while
attempting to obtain the next file specifier from the queue. The
system error code (d.) is printed to identify the error.

NO DJWICE NAME - SENDER: task FILE: filename.typ;ver

Exp1anation: The dequeued print request did not contain a device
name.

NO FILE ID - SENDER: task FILE: filename.typ;ver

Explanation: The dequeued print request did not contain a file
ID.

\.-1 OPEN FAILURE INPUT FILE - SENDER: task FILE: filename.typ;ver, d.

Explanation: The specified file could not be opened. One of the
following conditions may exist:

1. The file is protected
privileges.

against access for read

2. A problem exists on the physical device (for example,
device cycled down).

3. The volume is not mounted.

4. The specified file directory does not exist.

5. The named file does not exist in
directory.

6. The file is already deleted.

the specified

The system error code (d.) is printed to identify the failure.

~ ATTACH FAILURE - SENDER: task FILE: filename.typ;ver, d.

or

DETACH FAILURE - SENDER: task FILE: filename.typ;ver, d.

Explanation: The line printer could not be attached/detached
(that is, the system does not contain a line printer). The
system error code (d.) is printed to identify the error.

PRINT ERROR - SENDER: task FILE: filename.typ;ver, d.

Explanation: A Queue I/O request to the line printer has failed.
The system error code (d.) is printed to identify the error.

C-3

RSX-llM SERIAL DESPOOLER TASK

I/O ERROR INPUT FILE - SENDER: task FILE: filename.typ;ver, d.

Explanation: An error was detected while reading the input file.
One of the following conditions may exist:

1. A problem exists on the physical device (for example,
device cycled down).

2. Length of the text line is greater than 132 bytes.

3. File is corrupted or the format is incorrect.

The system error code (d.) is printed to identify the error.

d. LINES WERE TRUNCATED

Explanation: While printing the file PRT truncated d. lines.

C-4

APPENDIX D

CRF--THE RSX-11 CROSS-REFERENCE PROCESSOR

CRF, the RSX-11 cross-reference processor, is an independent task that
produces cross-reference listings for the MACR0-11 and Task Builder
task:s. CRF is invoked by the /CR switch on the MACR0-11 or Task
Builder command line. Once execution is complete, CRF builds
cross-reference listings using the execution-time symbol tables built
by those tasks.

Two cross-reference listings are built for the Task
listing the modules that reference global symbols
execution and another that shows the modules contained
overlay segment.

Builder, one
during task
in a given

Four cross-ref~rence listings are produced for the MACR0-11 task, each
showing a page and line number reference to a type of symbol
referenced during execution of the MACR0-11 assembler.

This appendix describes how CRF processes data and shows the formats
of files CRF uses during that processing. Also, CRF error messages
are listed.

For information on how to invoke CRF via the MACR0-11 command line,
ref er to the IAS/RSX-11 MACR0-11 Reference Manual. For information on
how to invoke CRF via the Task Builder command line, refer to the
RSX-llM/M-PLUS Task Builder Manual.

D.l HOW CRF PROCESSES DATA

When the /CR switch is specified on the MACR0-11 or Task Builder
command line, those tasks perform additional processing before passing
control to the CRF proces~or. This section describes how
cross-reference listings are generated in two phases. The first phase
consists of the processing steps performed by MACR0-11 or Task
Builder; the second phase consists of processing steps performed by
CRF. Figure D-1 is an overview showing the processing steps performed
in each phase, along with input and output files used.

D .1 .1 MACll0-11/Task Builder Processing

The first steps to produce cross-reference listings are performed by
MACR0-11 or Task Builder. These processors generate three files
duri.ng exeeution: an object file (file.OBJ) or task image file
(file.TSK)u a listing file (file.LST or file.MAP), and a CRF symbol
table f i 1 e (f i 1 e • CRF) •

The object file or task image file is directed to an appropriate
device and does not affect CRF processing.

D-1

CRF--THE RSX-11 CROSS-REFERENCE PROCESSOR

INPUT PROCESS OUTPUT

Command Line

~ filename.filetype
~'-----~

1. Execute MACR0·11 or Ta1k Builder.

Direct OBJ and LST files to appropriate__. __ ___,
devices; copy CRF file to SYO:.

Construct SEND packet.

2. Execute CREF.

Generate cross-reference entries and
append them to the LST file.

§ ------- ------ DeleteCRFfile.

SEND Packet

~

Figure D-1 How MACR0-11, Task Builder, and CRF Generate
Cross-Reference Listings

The listing file consists of text information generated during the
execution of the processors, for example, the listing of the source
code in an assembler language program. If the output device for the
listing file is sequential or record-oriented, as in the case of LP:,
a temporary listing file is created on SYO:.

The CRF symbol table file consists of symbol tables built during
MACR0-11 or Task Builder execution. These tables are used by CRF to
generate cross-reference listings.

The task originating the request for cross-reference processing then
constructs a SEND packet using information contained in the listing
file and the filename and filetype specified on the command line. The
SEND packet contains enough data to identify the symbol table file and
the listing file. CRF receives the packet and uses it to locate the
symbol table file and listing file produced by MACR0-11 or Task
Builder.

The formats of the symbol table file and the SEND packet are shown in
Figures D-2 and D-3.

If spooling is requested and the output device is
device, the spooling flag in the SEND packet is set.
the listing file to the print spooler for printing.

D-2

a random-access
CRF then passes

ii QR I

CRF--THE RSX-11 CROSS-REFERENCE PROCESSOR

D.1.2 CRF Processing

The SEND packet contains pointers to the CRF symbol table file and the
listing file. CRF uses the information in the listing file and the
SEND packet to construct a file specification to use to open the
symbol table file for processing:

symbol table file name = text filename
symbol table filetype = CRF
symbol table version contents of SEND packet word 11
symbol table
device and unit = listing file device and unit

CRF then generates the requested cross-references and appends them to
the listing file. When all cross-references have been generated, CRF
deletes file.CRF.

D.2 THE CRF SYMBOL TABLE FILE

The CRF symbol table file is a series of contiguous 5-word data
records preceded by a 9-word header record, as shown in Figure D-2.
The symbol table file is assumed to reside on the same device and have
the same name as the input listing file, except that the file has a
filetype of CRF, that is:

filename.CRF

The header record contains the name of the originating task in
two-word RADIX-50 format, followed by a number value assigned by the
system to identify the task. This value allows CRF to locate the
internal tables CRF uses to format output. The next five words define
the creation date of the symbol table file. The last word contains
the flags that define the output format. Bit zero of the flag word
controls the width of the listing. When this bit is set to zero, the
listing is generated in 132-column format. When this bit is set to
one, the listing is generated in 80-column format.

The remaining records in the symbol table file are data records. The
first two words of a data record comprise the symbol name in RADIX-50
format. The symbol value is an octal quantity associated with the
symbol name. The second two words comprise the reference identifier,
which is used as the cross-reference value. In the case of global
symbols, this value is the module name in RADIX-50 format. In the
case of MACR0-11 cross-references, the value is the page and line
number of the reference. The last word of the data record comprises
the attribute flag byte and the format number byte.

The attribute flag byte contains the bits describing the attributes of
the reference. These flags cause the special characters and
abbreviations to be displayed with the reference. A pound sign (#)
means that the reference is the place where the symbol is defined. An
asterisk (*) means that there is a destructive reference to the symbol
(that is, its contents are changed). If there is nothing in front of
the reference, it means that there is a nondestructive reference to
the symbol (that is, its contents are read).

The format number byte defines the format of the output. The format
number is used by CRF to locate a set of internal tables which define
the listing format associated with the entry. The type of
cross-reference and the set of symbols associated with the flags byte
is determined by the format number. Use of the format byte permits
several types of cross-reference output to be generated by a single
originating task.

D-3

11=

CREF
Symbol
Table
File

Header
Record

Data Record 1

Data Record 2

Data Record n

CRF--THE RSX-11 CROSS-REFERENCE PROCESSOR

Header Record

Name of Originating Task l Two
-----------------1 RADIX-50

Name of Originating Task (Cont.) Words

Originating Task Identifier

Year

Month

Day

Hour

Minute

Flag Byte

Data Record

Symbol Name l Two
---------------1 RADIX-50

Symbol Name (Cont.) Words

Reference Identifier

Reference Identifier (Cont.)

Format Number

Data
Records

to
EOF

Attributes

Figure D-2 Format of the CRF Symbol Table File

D.3 THE CRF SEND PACKET

The CRF SEND packet is a block of data that contains control
information created by the Task Builder or MACR0-11 for use by CRF.
This control information enables CRF to locate the symbol table file
and the listing or memory allocation output file.

The SEND packet consists of 16 words, as described i~ Figure D-3.

Words 1 and 2 of the SEND packet contain the name of the sending task.
Words 2 through 4 contain the filename of the output listing file in
RADIX-SO format. Word 5 contains the f iletype of the output listing
file. Word 6 contains the version number of the output listing file.
Words 7 through 11 contain the directory identifier. Word 12 contains
the device name of the device on which the output listing file
resides. The first byte of word 13 is a flag byte used by CRF for
output processing. When this bit is set to 1, the output listing file
is spooled of fline when CRF completes processing. The second byte of
word 13 specifies the unit on which the listing output file resides.
Word 14 contains the symbol table file version number. Word 15
contains the device name of the output device. The first byte of word
16 is reserved. The second byte of word 16 is the unit number of the
output device.

D-4

iii'

~
" ;

tu¥¥ I

'-' ..

v

CRF--TBE RSX-11 CROSS-REFERENCE PROCESSOR

0

2

3

4

5

6

7

10

11

12

13

14

15

16

Originating Task Name

Originating Task Name (Cont.)

Text Filename

Text Filename (Cont.)

Text Filename (Cont.)

Filetype

File Version

Directory Identifier

Directory Identifier (Cont.)

Directory Identifier (Cont.)

Device Name

Flags l Unit

Symbol Table File Version

Target Device Name

Reserved l Unit

}

Two
RADIX-50
Words

}

Three
RADIX-50
Words

Figure D-3 Format of the CRF SEND Packet

D.4 CRF ERROR MESSAGES

The following error messages are output by the Cross Reference Task.
Each message is preceded by one of the following prefixes:

CRF *DIAG* - name of originating task - MESSAGE
CRF *FATAL* - name of originating task - MESSAGE

CRF INPUT FILE filename HAS ILLEGAL FORMAT

Explanation: This error is caused by a
originating task. The symbol table
processing contains no data.

software error
file submitt~d

in the
for CRF

User Action: Submit a Software Performance Report along with the
related console dialogue and any other pertinent information.

D-5

CRF--TBE RSX-11 CROSS-REFERENCE PROCESSOR

FAILED TO DELETE FILE filename

Explanation: CRF was unable to delete the specified file for one
of the following reasons:

• CRF did not have deletion privileges for the UFO under which
the file resides.

• The device was not write-enabled or ready to perform I/O.

User Action: Initialize the device appropriately and ensure that
the UFO has owner-delete privileges.

FILE filename NOT FOUND

Explanation: File filename could not be located; the file was
probably deleted before CRF could process it.

User Action: Rerun
cross-reference output.
completes processing.

the
Do

ILLEGAL ERROR/SEVERITY CODE data

appropriate
not delete

task to
any files

produce
until CRF

Explanation: This error indicates a
CRF has called its error message
parameter.

CRF software malfunction;
processor with an illegal

User Action: Submit a Software Performance Report containing a
copy of the message as printed. Correct any user errors and
rerun the initiating task.

INPUT FROM UNKNOWN TASK

Explanation: Cross-reference processing
originating task is not supported by CRF.

requested by the

User Action: Delete the request for CRF processing and rerun the
originating task.

I/O ERROR ON FILE filename

Explanation: An error has been encountered while reading or
writing the specified file. A possible hardware problem is
indicated; or the device may have insufficient space to
accommodate the CRF output file.

User Action: Isolate the problem and take corrective action.
Rerun MACRO or TKB to produce the cross-reference output.

INVALID OUTPUT FORMAT SPECIFIED

Explanation: This message indicates an inconsistency in the data
file submitted for CRF processing.

User Action: Submit a Software Performance Report along with the
related console dialogue and any other pertinent information.

D-6

CRF--THE Rsx~11 CROSS-REFERENCE PROCESSOR

NO DYNAMIC STORAGE AVAILABLE

Expl~nation: The Cross-Reference task requires more working
storage than is available within the area of memory owned by the
task.

User Action: If possible, install CRF in a larger partition or
with a larger increment.

NO VIRTUAL MEMORY STORAGE AVAILABLE

Explanation: The Cross-Reference processor work file storage
requirements exceed 65,536 words.

User Action: No recovery is possible from this error. If
possible, install the task in a larger partition.

OPEN FAILURE ON FILE filename

Explanation: CRF was unable to open the named file for one of
the following reasons:

• The device was not ready to perform I/O.
• The device was not write-enabled.
• A Files-11 device was not mounted.
• CRF did not have extend or delete privileges for the UFO under

which the file resides.
• The file was deleted before it could be processed by CRF.

User Action: Isolate the problem, take appropriate corrective
action, and rerun the task to obtain cross-reference output.

SYMBOL TABLE SEARCH STACK OVERFLOW

Explanation: This error is a CRF software error.

User Action: Submit a Software Performance Report along with the
related console dialogue and any other pertinent information.

UNABLE TO OPEN WORKFILE

Explanation: Possible causes are:

• Workfile device not mounted.
• Workfile device write protected.

The workf ile device is assigned to LUN 7 and is normally the
device from which CRF was installed~

User Action: Retry the command after ensuring that the device is
mounted and write-enabled.

D-7

ii

CRF--THE RSX-11 CROSS-REFERENCE PROCESSOR

WORK FILE I/O ERROR

111 2

Explanation:
error while
causes are:

The Cross Reference Processor encountered
reading or writing data on its workfile.

an I/O
Possible

• Device full.
• Hardware error.

User Action: If the device capacity has been
unnecessary files to make space available.
LUN7 to another Files-11 device.

D-8

exceeded, delete
Also, REASSIGN CRF

.~." ~

;s::zu::

INDEX

Switches and Subswitches

I£- P\U automatically generated,
16-17

/[-);~U default value, 17-16
/[-],~U explanation, 17-16
I[-] ,~u form.at for setting

length-position, 17-17
/[-]AU in controlling audit

trail, 17-16
/[-J,1\.U in creating source files,

17-14
I [-] .1\U in deleting audit trail,

17-19
%ALL, 2-19
%AND, 2-17
%BEFORE, 2-17
%BEGIN, 2-15
%BUF:FER, 2-12, 2-17
%END, 2-15
%FOR, 2-17
%LAST, 2-15
%REST, 2-17
%THRU, 2-17
%WHOLE, 2-1.7
& (ampersand), EDI use of, 3-21,

3-30
*(asterisk), EDI use of, 3-8
/-AU, 17-14, 17-16 to 17-17
/-CO, 4-8
• • • (ellipsis) , EDI use of, 3-8
/20, 12-12, 12-20
/55, 12-12, 12-20
/80, 12-12, 12-21
: ALL,QUE, QUE/LI , 6-11
:ALLDEV, QUE/LI, 6-11
:DEV, QUE/LI, 6-11
: QUE. I 6-11
@YI 8-2
[EOB] I 2-11
/[NO]DELETE, PRINT, 6-8
/[NO]FLAG, PRINT, 6-5
/[NO]FLAG, QUE/MOD, 6-14
/[NO]RESTART, PRINT, 6-7, 6-14
/AB, 19-2 to 19-3
/AF'I1ER:, PRINT, 6-4 to 6-5
/AF'I'ER:hh:mm, QUE/MOD, 6-14
AP, 11-8, 11-10
/AP, 4-10, 4-13
/APPEND, 10-13, 10-21
/APPEND, with REWIND, 10-21
/AS, 15-2
/ASSIGN, QUE, 7-11
/AU, 17-16, 17-17
/BA, 15-3
/BACKUP SE~r, 10-13 to 10-14
/BACKUP SE~[', used with DIRECTORY

to display files, 10-16

BAD, 8-1, 8-7, 11-8, 11-12
/BAD, 10-14
/BF, 17-16
BL, 11-8, 11-13 to 11-14
/BL, 12-6, 12-16, 15-3, 16-2
/BL:n, 5-6
/BL:N[.], 4-7, 4-11
/BO, 12-12, 12-21, 12-24
/BR, 4-10, 4-20 to 4-21, 4-24
/BRIEF, QUE, 6-10
/BS:n, 5-6
/BS:N[.], 4-7, 4-lo, 4-13 to 4-14
/BUFFERS, 10-14
/BY, 15-3
/CB, 16-2
/CD, 4-11, 4-14
/CM[:], default for, 17-16,

17-19
CMP, 11-8, 11-14 to 11-15
/CO, 4-7, 4-11, 5-6, 14-10, 16-2
/COMPARE, 10-14
/COPIES:n, PRINT, 6-8
/CR, 14-11
/CREATED, 10-15
/CS, 18-3, 18-7
/CS[:N], 17-3, 17-16
/CSR, 12-12, 12-21, 12-22
/DB, 17-16
DB:, 8-5
/DC, 15-4
/DE, 4-11, 4-14 to 4-15, 5-6,

5-10, 5-11, 13-4, 13-8, 14-12
/DEASSIGN, QUE, 7-11
/DELETE, QUE, 6-16 to 6-17
DENS, 8-2, 8-7
/DENS, 15-4
DENS=800:1600, 11-8, 11-15 to

11-16
/DENSITY, 10-15
/OF, 4-2, 4-11, 4-16, 14-13
/DG, 14-15
/DI, 5-7, 5-8, 5-10, 16-2
/DIRECTORY, 10-15
/DISPLAY, 10-16
DK:, 8-5
OM: I 8-5
/DNS:n, 5-7
/DO, 5-2, 5-3 to 5-4
DP:, 8-6
DR:, 8-6
DY:, 8-6
/EN, 4-4, 4-11, 4-16 to 4-17
/EOF[:BLOCK:BYTE] I 4-11, 4-17

to 4-19
/EP, 14-16
/ER, 12-11, 12-18

Index-1

; t; I I\' ii T

INDEX

Switches and Subswitches

ERL, 8-2, 8-7
/ERRORS, 10-17
/EX, 14-17
/EXCLUDE, 10-17
/EXTEND, 10-17
/FA:n, 5-4 to 5-5
/FB:n, 5-5
/FC, 5-7
/FF, 16-2
/FI, 12-11, 12-14
/FI:FILENUM:SEQNUM, 4-11, 4-19
/FLAG, QUE/SPOOL, 7-3, 7-7, 7-10
/FO, 4-8, 4-10, 12-11, 12-21,

12-24
/FORM, QUE/SPOOL, 7-3, 7-7
/FORM:n, PRINT, 6-7
/FORM:, QUE/MOD, 6-14
/FR, 4-11, 4-19, 13-4, 13-8
/FU, 14-20
/FU[:N[.]], 4-11, 4-21 to 4-22
/FULL, QUE, 6-10
/GR[:RWED], 4-12, 4-26
/HD, 15-4
/HE, 12-10, 12-13
/HEADERS, 10-17
/HF, 15-4
/HOLD, QUE, 6-5
/HOLD, QUE/MOD, 6-14 to 6-15
/HX, 15-5
/ID, 4-9, 4-11, 4-20, 5-7, 5-8,

5-10
/IM, 12-11, 12-13, 12-16
/IM:n, 5-5
/IN, 14-18, 14-19
/INITIALIZE, 10-17
/INVOLUME, 10-17
/LB, 15-5
/LD, 4-11, 4-15, 4-28
/LE, 14-20
/LENGTH, 10-18
/LENGTH:n, PRINT, 6-7
/LENGTH:n, QUE/MOD, 6-14
/LI, 4-9, 4-11, 4-20 to 4-24,

5-7, 5-8, 5-10, 12-10,
12-13, 13-4, 13-9, 14-20,
16-2, 19-2, 19-3

/LIST, QUE, 6-9 to 6-13
/LN, 16-2
/LO, 13-4, 13-9
/LW, 15-5
MAN, 8-2, 8-7
/MAXIMUM, 10-18
/MB, 16-3
/MD, 15-5
/ME, 4-6, 4-11, 4-24
/MH, 14-21
/MODIFY, QUE, 6-13 to 6-14, 6-18
/MOUNTED, 10-18

Index-2

/NEWVERSION, 10-19
/NM, 4-11, 4-24
/NOPRESERVE, 10-19
/NOINITIALIZE, 10-19
/NOSUPERSEDE, 10-19
/NV, 4-9, 4-11
/NV:n, 5-7, 5-12
/OUTVOLUME, 10-20
OVR, 8-2, 8-8
/OW[:RWED], 4-12, 4-26
/PE, 12-12, 12-20, 12-21
/POSITION, 10-20
/PR, 4-12, 4-25 to 4-27

· .PRINT subroutine, 6-7, 6-17
to 6-18

PRINT$ macro, 6-17 to 6-18
/PRIORITY:n, PRINT, 6-5
/PRIORITY:n, QUE/MOD, 6-14
/PROTECTION, 10-20
/PU[:N[.]), 4-12, 4-27 to 4-28
/RS, 15-5
/RC, 13-4, 13-9, 15-5
/RE, 6-7, 13-4, 13-10

PIP, 4-12, 4-28 to 4-30
/RELEASE, QUE, 6-15 to

6-16
/REVISED, 10-20
/REWIND, 10-21
/RM, 4-12, 4-30 to 4-31
/RO, 19-2 to 19-3
/RP, 14-22, 14-26
/RS, 5-2, 5-3 to 5-4
/RT, 5-2, 5-3 to 5-4
RW, 11-8, 11-16 to 11-18
/RW, 5-7, 12-11, 12-18, 12-19,

15-6
PIP, 4-12, 4-31 to 4-32

/SB, 4-12, 4-32
/SD, 4-12, 4-32 to 4-33
/SL, 16-3
/SP, 5-7, 14-27, 15-5, 16-3,

17-15, 17-16
/SP, PIP, 6-1
/SP [:N [.]] , 4-12, 4-33 to

4-34
/SPOOL, QUE, 7-8 to 7-10
/SR, 4-12, 4-34
/SS, 14-28
/START, QUE, 7-6
/STOP, QUE, 7-5
/SU, 4-8 to 4-9, 4-11
/SUPERSEDE, 10-21
/SY[:RWED], 4-12, 4-26
/SZ, 14-29
/TAPE LABEL, 10-21
/TB, l6-3

PIP I 4-12, 4-22
/TIM, 12-12, 12-21, 12-24

; 2 ;: 2

INDEX

Switches and Subswitches

/TM02, 12-12, 12-21, 12-23
/TP, 12-11, 12-13, 12-15
/TR, 17-8, 17-16

PIP, 4-12, 4-35
/UF, 4-12, 4-35 to 4-36
/UN, 4-12, 4-36 to 4-37
/UNI'I1

, 12-1~!, 1"2-21, 12-22
/UNSF100L, QUE, 7 -10
/UP, 13-4, 13-11

PIP, 4-12v 4-37 to 4-38
/VB, 16-3

VE, 8-2, 11-8, 11-18
/VE, 5-7, 8-6, 12-11, 12-18,

12-19
/VEC, 12-12, 12-21, 12-23
/VERIFY, 10-21
/VI, 5-7
/WO, 15-5
/WINDOWS, 10-21
WLT, 8-2
/WO[:RWED], 4-12, 4-26
/ZE, 5-7, 5-10, 5-11 to 5-12

Index-3

,.
!iii .I 22;; U

I

A
Abbreviations of EDI commands,

3-9
ADD command, EDI, 3-10 to 3-11,

3-23, 3-27
ADD and PRINT command, EDI,

3-10, 3-12, 3-23, 3-27
Adding subroutines to an object

module, PAT, 18-5
Address modifications, PRESRV,

12-7
Address, PRESRV,

CSR, 12-7, 12-22
predefined, 12-7
vector, 12-7, 12-22

Addressing locations in a file,
ZAP, 19-3

Administrative switches, PRESRV,
12-11, 12-18

Allocating contiguous library
files, LBR, 14-11

Ampe!rsand character, EDI, 3-21,
3-30

ANSI,
tape labE:d format, BRU, 10-26
volume labels, BRU, 10-21,

10-26
AP command,, EDI, 3-10, 3-12,

3-23, 3-27
Append switch, 4-10, 4-13
ASCII mode switch, DMP, 15-2
ASCII strings, 1-6
Asseimbler,

Zll~P use with MACR0-11, 19-1
Aste!risks,

usage of, EDI, 3-8
Attribute,

setting selective search,
LBR, 14-28

Audit trail, 17-1 to 17-19
Audit trail, SLP,

changing value of, 17-17 to
17-18

comments, 17-6
delimiter for, 17-6
controlling of, 17-16
defaults, 17-2, 17-16, 17-19
deleting lines, 17-12
EDI command for, 17-12
deletion of, 17-16, 17-19
delimiters in, 17-6
e:>1:amples of use, 17-5
explanation of, 17-16
gemerated, automatically, 17-5,

17-17
generation of, 17-2, 17-16

INDEX

Audit trail (Cont.)
listing file,

result from processing, 17-8
listing file, switch default

value, 17-16
reenabling of, 17-9, 17-18
replacing lines, 17-12
right justifying, 17-16
setting length, 17-16 to 17-17
showing updates, 17-3, 17-5
source files,

creating, 17-14
specification of, 17-6
suppression of, 17-1, 17-9,

17-16
switches, 17-1, 17-16
temporary suppression of, 17-18,

17-19
truncation, 17-8, 17-16

Automatic option, BRU,
BAD:, 10-23

B
Back up and restore, BRU,

selective, 10-3 to 10-5
to different size disks, 10-24

Back up commands, EDT, 2-1
Restore, 2-37
Save, 2-38

Back up set names, BRU,
and disk volume labels, 10-9
default, 10-13
input tape volume, 10-14
output tape volume, 10-14
specifying, 10-13
using directory to display,

10-15
Back up set, BRU, 10-27
Back-up and Restore Utility, 1-3
Bad Sector File,

manufacturer's, 9-3
BAD,

and indirect files, 9-2
BAD block data,

processing, 9-3
BAD messages, 9-8, 9-11
BAD sector file,

manufacturer's and software,
9-3, 9-4

BAD switches, 9-2
BAD utility,

using the, 9-4 to 9-5
BAD,

block zero,
use of, 9-4

Index-5

BAD (Cont.)
command, INI, 9-4
default file specifications,

values for indirect, 9-2
descriptor entries,

format of, 9-3
descriptor,

maximum entries in, 9-5
devices,

non-last track, 9-3
error messages,

listing of, 9-8, 9-11
error,

device controller, 9-5
indirect files and, 9-2
invoking, 9-1
last-track devices, 9-3
non-last track devices, 9-3
stand-alone version,

devices supported by, 9-8
switches,

description of, 9-5 to 9-7
description, 9-5 to 9-7

list of, 9-2
manual and update, 9-6 to 9-7
stand-alone system version

only, 9-7 to 9-8
task and stand-alone, 9-6
task version, 9-1
verifying devices, 9-3

Base block address switch, DMP,
15-3

Basic commands, EDI,
summarized, 3-10

BEGIN command, EDI, 3-22, 3-27
Block buffer, EDI, 3-4
BLOCK command, EDI, 3-28
Block mode, EDI, 3-4
Block Size switch, PIP, 4-10,

4-13
Block Zero,

use of, 9-4
:Block, PRESRV,

bootstrap, 12-4, 12-5
label, 12-4, 12-5

Blocking factor, PRESRV,
default, 12-17

INDEX

overriding default, 12-17
Blocking requirements, PRESRV, 12-25
Blocking switches, PRESRV,

12-13, 12-16
Blocks (to be dumped) switch,

DMP, 15-3
Blocks copied, PRESRV, 12-1
Blocks, VFY,

deleting multiply-allocated,
13-8

eliminating free, 13-8
recovering lost, 13-8

Blocksize, PIP,
switch, 4-7, 4-10, 4-13

Bootstrap block, PRESRV, 12.-4,
12-5

Bootstrap operation, PRESRV,
12-6

Bootstrap procedure, PRESRV,
12-6

Bootstrapping monitor, PRESRV,
12-24

BOTTOM command, EDI, 3-10,
3-12, 3-22, 3-28

BRU,
bad block file, 10-7
BAD utility, using with, 10-22
BAD: automatic option, 10-23
BAD: override option, 10-23
command line syntax, 10-10
command qualifiers, 10-2 to

10-21
continuation lines, 10-12 to

10-13
core image file, 10-8
error messages, 10-28
file creation dates, 10-25
manual option,

BAD:, 10-23
override option,

BAD:, 10-23
prompts, 10-10
tape format, 10-26
tape operations,

multivolume, 10-27
volume labels,

ANSI, 10-21, 10-26
disk, 10-9, 10-14
disk default, 10-20
disk input, 10-17
disk output, 10-20
tape, 10-21

volumes,
existing, 10-24
backing up from mounted,

10-18
restoring to mounted, 10-19

Buffer requirements, 12-6,
12-25

Buffer,
EDI block, 3-4

Buffers, EDT,
alternate, 2-12
copying files into, 2-26
creating, 2-12
current, 2-12
deleting lines from, 2-23
displaying status of, 2-40
inserting lines into, 2-28
MAIN, 2-11
naming, 2-12

Index-6

~:

Buffers, EDT (Cont.)
recreating contents of, 2-37
replacing lines in, 2-34
saving contents of, 2-12,

2-32, 2-38, 2-45
specification of, 2-11

Byte (octal format) switch,
DMP, 15-3

c
Capacity loss, PRESRV,

disk, 12-·2
Carriage return,

EDI usage, 3-8, 3-11, 3-19,
3-42

CC conunand, EDI, 3-21, 3-29
CD conunand, EDI, 3-26, 3-29
CHANGE command, EDI, 3-10,

3-13, 3-23, 3-28
Change, EDT, 2-21
Character mode, EDT, 2-1, 2-48

invoking, 2-21, 2-48
terminating, 2-59

Checksum processing in PAT, 18-7
Checksum, SLP,

calculation of, 17-3, 17-16
/CS[:n], 17-3, 17-16
me~ssages v 17-16
switchesv

allowing, 17-15
CLI, QUE, 7-1
CLOSE and DELETE conunand, EDI,

3-26, 3-29
CLOSE and BXIT conunands, EDI,

sununary, 3-2 5
CLOSE conunand, EDI, 3-26, 3-28
CLOSE SECONDARY conunand, EDI,

3-26, 3-29
CLOSES command, EDI, 3-26, 3-29
CMP,

conunand format, 16-1
comparing ASCII text files,

16-1
controlling comparison of,

blank lines, 16-2
comments, 16-2
form fE:~eds, 16-2
trailing blanks, 16-3

denoting differences, 16-2
formats,

change bar, 16-5
differences, 16-4
output file, 16-4
SLP command input, 16-6

generating input for SLP
with, 16-3

invoking, 16-2

INDEX

Index-7

CMP (Cont.)
listing differences in files

with, 16-1
messages, 16-6
numbering lines, 16-2
printing differences, 16-2
specifying change bar format,

16-3
specifying number of lines

for a match, 16-2
spooling output, 16-3
switches, 16-2 to 16-3

default settings, 16-3
Codes,

PIP protection, 5-12
Combining LBR functions, 14-31
Conunand conventions, EDI, 3-8
Conunand files,

using indirect, 1-9
Conunand ·format,

for CMP, 16-1
for DSC, 11-7
for FLX, 5-2

defaults, 5-2 to 5-3
for PAT, 18-2
for ZAP, 19-2

Conunand functions for PIP, 4-5
Conunand line for ZAP,

separators sununarized, 19-7
Conunand line format, PRESRV,

12-10
Conunand line interpreter (CLI),

QUE, 7-1
Conunand line syntax., BRU, 10-10
Conunand lines,

entering for RSX-11, 1-4
entering, 1-4 to 1-5

Conunand Mode, EDT, 2-1
conunand descriptions, 2-20
conunands,

sununary of, 2-60
prompts, 2-2, 2-3

Conunand qualifiers, BRU,
10-2 to 10-21

Conunand string,
EDT, 2-4

options, 2-19
PIP, 4-1

Conunands,
device output sununary, EDI,

3-26
EDT,

abbreviating, 2-20
back up, 2-1
Change, 2-21, 2-48, 2-50,

2-53
Character Mode.

See Subconunands
Copy, 2-22

Commands (Cont.)
Delete, 2-23
Execute, 2-46
executing sequence of, 2-46
Exit, 2-25
Find, 2-25
I/O, 2-1
Include, 2-26
Insert, 2-28
Move, 2-30
options to, 2-19
Print, 2-32
Quit, 2-33
Replace, 2-34
Resequence, 2-35
Restore, 2-37
Save, 2-38
Set, 2-38
Show, 2-40
Substitute, 2-42
summarized, 2-5 to 2-10, 2-60
Type, 2-25, 2-44
Write, 2-45

entering interactively, SLP,
edit commands, 17-7 to 17-8
input, 17-2

functionally arranged summary
of, EDI, 3-20

line pointer control, EDI,
3-21

lines, SLP,
add to, 17-11
delete from, 17-12
replace, 17-13

macro,
summary of, EDI, 3-24

QUE, 6-2
SLP edit, 17-2, 17-8
terminating edit sessions,

17-10
text modification, EDI, 3-23
ZAP,

carriage return, 19-6
general-purpose, 19-5
location, open/close, 19-5

Comparing files, CMP,
ASCII text, 16-1
controlling comparisons in,

16-2 to 16-3
Compress switch, LBR, 14-10
Compressing LBR files, 14-10
Concatenation character,

command, EDI, 3-21, 3-29
Continuation lines, BRU, 10-12

to 10-13
on RSX-llM, 10-12
on RSX-llM-PLUS, 10-13

Control functions, PIP,
performing, 4-9

INDEX

Control modes, EDI, 3-3
Copy formats, PRESRV, 12-1
Copy,

EDT, 2-22
PRESRV,

DECTAPE, 12-2, 12-3
disk, 12-2, 12-3
image, 12-2 to 12-3, 12-27
logical tape, 12-2 to 12-3

Core image file, BRU, 10-8
Create switch, LBR, 14-11
Creation dates, BRU, file,

10-25
CSR addresses, PRESRV, 12-7,

12-22
CSR modification, PRESRV, 12-22
CTRL/U, EDI, 3-7
CTRL/Z, EDI, 3-8, 3-10, 3-13,

3-26, 3-30
Current buffer, EDT, 2-12
Current line, EDT, 2-12
Cursor, EDT,

moving, 2-49, 2-55

D
Data transfer, DSC,

compare operation, 11-3
copy distribution, 11-2
from disk, 11-23
from tape, 11-25
to disk, 11-25 to 11-26
to tape, 11-23 to 11-24

DB: devic~s, FMT, 8-5
DCL, 1-8

invoking, 1-8
invoking utility from, 1-8
returning control, 1-8

Decimal (word format) switch,
DMP, 15-3

DECTAPE copy, PRESRV, 12-2 to
12-3

DECTAPE operating procedures,
PRESRV, 12-9

Default blocking factor,
PRESRV,

overriding, 12-17
Default formats, PRESRV, 12-17
Default switch, LBR, 14-13
Default,

EDI,
file specifications, 3-2

LBR,
file specifications, 14-2
library filetype, 14-12

PIP,
switch, 4-11, 4-15

utility file specification,
1-6

Index-8

··~

Def a.ult (Ccmt.)
va.lues for indirect command

files, 1-10
va.lues for BAD indirect file

specifications, 9-2
VF'Y,

file specifications, 13-3
Defaults,

EDT file specification, 2-3
FI,X,

command line, 5-2 to 5-3
direction transfer, 5-4
directory entries, 5-12
file blocksize for

cassettes, 5-13
file names,

paper tape, 5-16
Files-11 volumes, 5-2
format transfers,

paper tape, 5-16
switches, 5-3 to 5-5
volume formats, 5-3 to 5-4

PIP,
element specifications,

4-1 to 4-2
new value, 4-2
rules summarized, 4-2

DELBTE and PRINT command, EDI,
3-10, 3-14, 3-23, 3-30

DELl~TE command, EDI, 3-10, 3-13,
3-23, 3-30

Delete global switch, LBR,
14-15

DELl~TE key, EDT,
use of, 2-53

DelE~te switch,
LBR, 14-12
Vl?Y, 13-8

Delete, EDT, 2-23
Delete files, FLX,

/DE, 5-6
Deleting files, FLX,

DOS-11, 5-10
R~r-11, 5-11

Del1eting,
EDI,

lines from files, 3-30
L:BR,

entry point from Entry
Point Table, 14-12

from library files, 14-12
global symbols from an

Entry Point Table, 14-12
library modules, 14-12
logica.lly deleted records,

14-10
VFY,

files marked-for-delete, 13-6
multiply allocated blocks,

13-7

INDEX

Delimiters,
EDT,

string search, 2-14, 2-56
Substitute command, 2-42
Substitute subcommand, 2-55

SLP,
audit trail, 17-6
comment, 17-3
initial audit trail, 17-6
redefining of, 17-6

Description,
switches, BAD, 9-5 to 9-7

Descriptor entries,
format of, BAD, 9-3

Despool prototype task, QUE,
7-1

Despooling,
defined, 6-1

Dev:, 1-5
Device controller errors, BAD,

9-5
Device mode, DMP, 15-1
Device output commands, EDI,

3-25
Device specification, 1-5
Device status, DSC, 11-6
Device supported by stand-

alone version, BAD, 9-8
Device types, PRESRV, 12-1
Device, PRESRV,

speci~ication of, 12-10
verifying, 9-3

Qevice-specific queues, 6-4
Devices supported by BRU, 10-9

to 10-10
Devices,

BRU,
last-track, 10-22
non last-track, 10-22

FLX, 5-1 to 5-2
DOS-11, 5-1
Files-11, 5-2
RT-11, 5-2

non-last track, BAD, 9-3
specification of, PRESRV,

12-10
Diagnostic support, FMT, 8-1
Differences, CMP,

format, 16-4
listing, CMP, 16-1

Directories, FLX,
/DI, 5-7
DOS-11, 5-8
/LI, 5-7
RT-11, 5-10

Directory Manipulation, FLX,
DOS-11 volumes, 5-8

initializing volumes, 5-10
deleting files, 5-10

Index-9

i

Directory Manipulation (Cont.)
displaying directory

listings, 5-8 to 5-9
mounting, 5-8

RT-11,
deleting, 5-11
displaying directory

listings, 5-10
initializing, 5-11 to 5-12
mounting, 5-8
specifying extra words per

disk entry, 5-12
volumes, 5-10

Disk capacity loss, PRESRV, 12-2
Disk copy, PRESRV, 12-2 to 12-3
Disk formatting, PRESRV, 12-24

to 12-25
Disk operating procedures,

PRESRV, 12-9
Disk Save and Compress, 1-3
Disk Volume Formatter, see FMT
Disks, BRU,

different sizes, 10-24, 10-25
initialization of, 10-8,

10-23 to 10-24

INDEX

initializing using, 10-8, 10-23
DK: devices, FMT, 8-5
DM: devices, FMT, 8-5 to 8-6
DMP (File Dump Utility)

error messages, 15-6
identify current version of,

15-5
switches, 15-2 to 15-6

DP command, EDI, 3-10, 3-14,
3-23·, 3-30

DP: devices, FMT, 8-6
DR: devices, FMT, 8-6
DSC,

operation, 11-1 to 11-23
disk to disk, 11-1
disk to tape, 11-1
tape to disk, 11-1

.switches,
append, 11-8, 11-10
bad block man:noauto, 11-11
bad block noauto, 11-11
bad block, 11-8, 11-10,

11-12
block factor, 11-13
compare, 11-14
control status reg., 11-20
density, 11-15 to 11-16
rewind, 11-16 to 11-18
system-dependency for, 11-14
system-limits for, 11-14
TM02, 11-21
unit, 11-22
using format, 11-13
vector address, 11-22
verify, 11-18 to 11-19

Dumps, DMP,
hexadecimal format, 15-5 to

15-6
numbering lines in, 15-5
one record at a time, 15-5
RADIX-SO format, 15-5

E
EDI (Line Text Editor),

basic commands,
summarized, 3-10

block buffer, 3-4
carriage return,

use of, 3-8
CLOSE and EXIT commands

summary, 3-25
CLOSE commands, 3-28
command abbreviations, 3-9
command conventions, 3-8
commands,

ADD, 3-10 to 3-11, 3-23,
3-27

ADD and PRINT, 3-10, 3-12,
3-23, 3-27

AP, 3-10, 3-12, 3-23, 3-27
BEGIN, 3-22, 3-27
BLOCK, 3-28
BOTTOM, 3-10, 3-12, 3-22,

3-28
cc' 3-21, 3-29
CD , 3-2 6 , 3 - 2 9
CHANGE, 3-10, 3-13, 3-23,

3-28
CLOSE and DELETE, 3-26,

3-29
CLOSE SECONDARY, 3-26, 3-29
CLOSE, 3-26, 2-28
CLOSES, 3-26, 3-29
CONCATENATION CHARACTER,

3-21, 3-29
DELETE and PRINT, 3-10,

3-14, 3-23, 3-30
DELETE, 3-10, 3-13, 3-30
DP, 3-10, 3-14, 3-23, 3-30
ED, 3-32
END, 3-31
ERASE, 3-23, 3-31
escape-key, 3-10, 3-14,

3-31
EXIT and DELETE, 3-26, 3-32
EXIT, 3-10, 3-15, 3-26, 3-31
FF I 3-5' 3-33
FILE, 3-25, 3-32
FIND, 3-22, 3-32
FORM FEED, 3-23, 3-33
INSERT, 3-3, 3-10, 3-15,

3-23, 3-33
KILL, 3-26, 3-33

Index-10

i''i••11~· t1•2•::•:a11: -·-·---------------------------------------

'-'' EDI (Line Text Editor} (Cont.)
LC, 3-34
LI, 3-35
LINE CHANGE, 3-23, 3-34
LIST ON PSEUDO-DEVICE, 3-26,

3-35
LIST ON TERMINAL, 3-26, 3-34
LOCATE, 3-10, 3-15, 3-22,

3-35
LP, 3-35
M, 3-36
MACRO CALL, 3-24, 3-36
MACRO BXECUTE, 3-24, 3-37
MACRO IMMEDIATE, 3-24, 3-37
MACRO, 3-35
MC, 3-36
NEXT and PRINT, 3-11, 3-16,

3-22, 3-38
NEXT, 3-11, 3-16, 3-22,

3-38
NP, 3-11, 3-22, 3-38
OPEN SBCONDARY, 3-21, 3-38
OPENS, 3-38
OUTPUT ON/OFF, 3-21, 3-39
OVERLAY, 3-23, 3-38
PAGE FIND, 3-5, 3-22, 3-40
PAGE LOCATE, 3-5, 3-22, 3-41
PAGE, 3-5, 3-22, 3-40
PASTE, 3-24, 3-41
PF, 3-40
PL, 3-41
PRINT, 3-11, 3-17, 3-26,

3-41
READ, 3-5 to 3-6, 3-25,

3-42
RENEW, 3-5 to 3-6, 3-11,

3-18, 3-25, 3-42
RETURN·-KEY, 3-11, 3-42
RETYPE, 3-11, 3-19, 3-24,

3-43
SAVE, 3-25, 3-43
SC, 3-44
SEARCH and CHANGE, 3-22,

3-44
SELECT PRIMARY, 3-21, 3-44
SELECT SECONDARY, 3-21,

3-45
SIZE, 3-21, 3-45
SP, 3-44
SS, 3-45
TAB, 3·-21, 3-45
TOF, 3-4, 3-20, 3-24, 3-46
TOP OF FILE, 3-11, 3-20,

3-24, 3-46
TOP, 3-4, 3-11, 3-19, 3-46
TYPE, 3-26, 3-47
UC, 3-47
UNSAVE, 3-24, 3-47

INDEX

EDI {Line Text Editor) {Cont.)
UPPER CASE, 3-21, 3-47
VERIFY ON/OFF, 3-21, 3-48
WRITE, 3-25, 3-49

control modes, 3-3
CTRL/Z, 3-10
device output commands

summary, 3-26
ellipsis,

use of, 3-8
entering file specifications,

3-2
error messages, 3-50
functionally arranged summary

of commands, 3-20
line pointer control commands,

3-21
macro commands summary, 3-24
terminal conventions, 3-7
text modification commands,

3-23
usage notes, 3-49
use of asterisks, 3-8

Edit command statement, SLP,
adding lines format, 17-11
as command input, 17-2
calculating checksum for,

17-3
comments in, 17-12
creating source files format,

17-14
deleting lines format, 17-12
fields, 17-6 to 17-7
first character, 17-9
general format, 17-6
locator forms, 17-6 to 17-7
replacing lines format, 17-13
specification of, 17-5

Edit mode, EDI, 3-3
Editing,

utilities for, 1-1 to 1-2
Editor,

oreating source files with
. SLP, 17-14
DEC standard, 1-2
line text, 1-2

EDT,
command descriptions, 2-20
command string, 2-4
command summary, 2-5 to 2-10,

2-60
displaying version number of,

2-40
error messages, 2-62
error reporting, 2-62
invoking, 2-2
options, 2-19

Index-11

~!£!4tl f'

EDT (Cont.)
summarized, 2-1
terminating, 2-25, 2-33

Element, LBR,
in an Entry Point Table, 14-4

Eliminating free blocks, VFY,
13-7

Ellipsis,
EDI usage, 3-8

End of file switch, 4-11, 4-17
to 4-19

END conunand, EDI, 3-31
Enter, switch, 4-4, 4-11, 4-16

to 4-17
Entries,

maximum in descriptor, 9-5
Entry point switch, LBR, 14-16
Entry point table, LBR,

deleting an element of, 14-15
excluding an entry, 14-16
including an entry, 14-16

ERASE conunand, EDI, 3-23, 3-31
Erasing a line, EDI, 3-7
Error codes, PIP, 4-47
EI.·ror messages,

BRU, 10-28
CMP, 16-6
DMP, 15-6
EDI, 3-50
EDT, 2-62
FLX, 5-16
LBR, 14-33
listing of BAD, 9-8, 9-11
PAT, 18-7
PIP, 4-38
PRESRV, 12-27
PRI, 6-18 to 6-23
QUE, 6-18 to 6-23
Queue Manager, 7-11
VFY, 13-11
ZAP, 19-16

Error reporting,
VFY validity check, 13-4

EI.·:ror,
device controller, 9-5
DSC,

code, 11-41
fatal hardware, 11-40
on device, parity, 11-41

Escape key, EDI, 3-10, 3-14,
3-31

EXIT and DELETE conunand, EDI,
3-26, 3-32

EXIT command, EDI, 3-10, 3-15,
3-26, 3-31

Exit, EDT, 2-25
Extract a module from a library

file, LBR, 14-13

21 & I

INDEX

Extract swi~ch, LBR, 14-17

F
FCS (File Control Services),

6-17 to 6-18
FF conunand, EDI, 3-5, 3-33
File Compare utility, 1-4
File Control Services (FCS),

6-17 to 6-18
File creation dates, BRU, 10-25
File Dump utility, 1-4
File flag pages, QUE, 6-5
File headers, BRU, 10-25
File identification, VFY,

listing, 13-9
File label, PRESRV,

specification of, 12-8 to
12-10

File labels, DSC, 11-8, 11-9
switches/options, 11-8

File manipulation utilities, 1-1
File mode, DMP, 15-1
File name requirement, PRESRV,

12-2
File name, PRESRV, 12-2
File names, FLX,

cassettes, 5-13
paper tape, 5-16

File specifications,
BRU,

conflicting, 10-5
on conunand line, 10-12
wildcards in, 10-12

EDI,
defaults, 3-2
entering, 3-2

File Spooling utilities, 1-1
File Structure Verification

utility, 1-4
File synonyms, BRU, 10-25
File type specification, 1-5

separation of, 1-6
FILE conunand, EDI, 3-25, 3-32
File,

creation dates, BRU, 10-25
examining contents of, 19-10
modifying contents of a, ZAP,

19-11
ownership switch, PIP, 4-8,

4-10 to 4-13, 4-37
storage bit map, BRU, 10-7
verifying contents of a task

image with ZAP, 19-15
File-ids, BRU,

preservation, 10-19, 10-25
File-related switches, QUE, 6-8

Index-12

22

'-'' Files,
BRU,

preservation of creation
dates, 10-25 to 10-26

lost, 10-26
:synonyms, 10-25

EDT,
creating using, 2-1, 2-4,

2-25, 2-32, 2-45
editing, 2-1, 2-4
input, 2-2
output, 2-2
SAVE command, created by,

2-38
LB:R,

compressing, 14-10
library, format of, 14-1

PRESRV I
:multivolume, 12-8

SLP,
adding lines to, 17-11
deleting lines from, 17-12
indirect command, 17-1 to

17-2
initialization of, 17-2
input, 17-1 to 17-2
output, 17-1 to 17-3,

17-8 to 17-9
processing of, 17-4 to 17-5,

17-9 to 17-10
replacing lines in, 17-13
source, 17-1 to 17-2,

17-10 I 17-14
specifying in command line,

17-7
swi tche!s, 17-1
variable-length records in,

17-14
VF'Y,

ensuring readability, 13-10
lost, rebuilding, 13-11
lost, recovering, 13-8

INDEX

Fileis-11 format, PRESRV, 12-1,
12-9 to 12-10, 12-13 to 12-14

Fileis-11 structures, BRU, 10-7
Fileis-11 files,

copying, 4-5
Filespec, (lUE, 6-7 to 6-8
FIND command, EDI, 3-22, 3-32
Find, EDT, 2-25
FMT messagE~s, 8-8 to 8-12

command :r/o error, 8-9
command too long, 8-9
device driver missing, 8-9
de~vice not in system, 8-9
device not ready, 8-9
device offline, 8-9
device write locked, 8-9

FMT messages (Cont.)
device-unsupported formatting,

8-9
disk as alignment cartridge,

8-10
error limit exceeded, 8-10
error reading data, 8-10
error reading header, 8-10
failed to attach device, 8-11
failed to read manufacturer's

bad sector file, 8-11
fatal hardware error, 8-11
header compare error, 8-11
invalid switch, 8-11
manufacturer's bad sector file

corrupt, 8-11
marked bad in manufacturer's

bad sector file, 8-11
privilege violation, 8-12
response out of range, 8-12
setting diskette density, 8-10
syntax error, 8-12
unable to run bad block

utility, 8-12
unrecoverable error-n, 8-12
writing data, 8-10
writi~g header, 8-10

FMT,
switches, 8-1, 8-2, 8-4, 8-6

to 8-8
utility,

using with BRU, 10-22
f,orm definitions, 7-9
FORM FEED command, EDI, 3-23,

3-33
Form, QUE/SPOOL, 7-8 to 7-9
Form feE;?d, EDI,

as t~xt page delimiter, 3-5
Format'of library files, LBR,

14-4
Format switches, PRESRV, 12-13
Format,

entering file specifications,
1-5

FLX, 5-1 to 5-13
cassette, 5-13
command line, 5-2
defaults for volume, 5-3 to

5-4
switches for volume, 5-3

PRESRV,
command line, 12-10
files-11, 12-1, 12-9 to

12-11, 12-13 to 12-14
image mode, 12-1, 12-11,

12-14
image, 12-3, 12-9 to 12-10,

12-13

Index-13

'I as

Format (Cont.)
logical tape, 12-1 to 12-2,

12-5, 12-8, 12-11, 12-13,
12-15

Formats, ZAP,
location specifier, 19-8

Formatter,
disk volume, 1-3

Formatting,
FLX, 5-1 to 5-11

DOS-11 volume, 5-10
Files-11 volume, 5-3
RT-11 volume, 5-11
switches for, 5-3
volume, 5-3 to 5-4

PRESRV,
disk, 12-24 to 12-25

Free blocks, VFY,
eliminating, 13-8

Free storage, VFY,
displaying, 13-9

Free switch, VFY, 13-9
Full description listing switch,

LBR, 14-20
Functions,

FLX, 5-1
LBR,

combining, 14-31
SLP, 17-1

adding lines, 17-11
audit-trail processing,

17-9
deleting lines, 17-12
invoking indirect command

files, 17-9
replacing lines, 17-18
returning to command mode,

17-9
switches, 17-16
terminating edit session,

17-9, 17-15

G
General tasks, FMT, 8-1
Global symbols, LBR,

deleting from LBR Entry Point
Table, 14-12

deleting from library files,
14-12

H
Header switch, DMP, 15-4
Header, LBR,

library, 14-4, 14-7
Hexadecimal switch, DMP,

byte format, 15-4
double word format, 15-5
word format, 15-5

INDEX

Identify switch, DMP, 15-5
Image copy, PRESRV, 12-2 to

12-3, 12-27
Image format, PRESRV, 12-3,

12-9 to 12-10, 12-13
Image mode format, PRESRV, 12-1,

12-11, 12-14
Image, PRESRV, 12-3
Include, EDT, 2-26
Index file, BRU, 10-7, 10-9,

10-20
Indirect command files,

FLX, 5-2
SLP,

edit commands, entering,
17-7, 17-8

file specification, 17-9
for edit commands, 17-2
invoking, 17-9
nesting (maximum level),

17-9
using, 1-9 to 1-10

INI command, 9-4
Initializing disks using BRU,

10-8, 10-23
Initializing volumes, FLX, 5-2,

5-8, 5-12
Initializing volumes, FLX,

DOS-11, 5-10
RT-11, 5-11 to 5-12

Initializing, LBR,
entry point table, 14-11
library file header, 14-11
library files, 14-11
module name table, 14-11

Initiating and terminating FMT,
8-1

Input file, EDI,
primary, 3-6

Input mode, EDI, 3-3
Input parameters, DSC, 11-7
Input Program,

Source Language, 1-4
Input,

PRESRV,
logical tape, 12-8
tape, 12-9

SLP, 17-1 to 17-2
commands, 17-1 to 17-2
file, 17-1 to 17-2

Input/output commands, EDI,
summary, 3-25

INSERT command, EDI, 3-3, 3-10,
3-15, 3-23, 3-33

Insert, EDT, 2-28
Installed utilities,

invoking, 1-7

Index-14

Installed Utilities (Cont.)
passing control to, 1-8
returning control to DCL, 1-8
returning control to MCR, 1-8
using indirect command files

with, l·-9
Invoking BAD, 9-1
Invoking installed utilities,

JL-7
from DCL, 1-8
from MCR, 1-8

Invoking RSX-11 utilities, 1-6
from DCL, 1-6
from MCR, 1-6

Invoking uninstalled utilities,
JL-9

J
Job j:lag pages, QUE, 6-5
Job name, QUE, 6-15 to 6-17
Job names, 6-4

QUE, 6-4
Job-related switches, QUE,

6-4

K
Keyp<;i.d arrows , EDT,

USE:! Of 1 2-57
KILL command, EDI, 3-26, 3-33

L

INDEX

Label block, PRESRV, 12-4 to 12-5
Last· .. track devices, BAD, 9-3
LBR Entry Point Table,

including an entry in an,
14-16

LBR,
default file specification

•alements, 14-2
error messages, 14-33
filetype, 14-12
functions,

combining, 14-31
restrictions, 14-32
switches, 14-3 to 14-4,

14-10 to 14-13
LC command, EDI, 3-34
Leader format switch, DMP, 15-4
LI command, EDI, 3-35
Librarian Utility Program, 1-4
Library Entry Point Table, 14-4
Library file, LBR,

inserting modules in a, 14-18
Library files,

allocating, 14-11
compressing, 14-10

Library files (Cont.)
deleting global symbols from,

14-12
entry points,

listing, 14-20
extracting a module, 14-13
format of, 14-4
full description and listing

of module, 14-20
initializing, 14-11
inserting module, 14-9, 14-18
listing module and entry points

in, 14-16
listing modules in, 14-20
macro and object, 14-1,

14-5, 14-20
replacing module in, 14-26
squeezing, 14-29 .
universal, 14-1, 14-5, 14-21

Library header, LBR, 14-5
contents, 14-7

Library module, LBR,
deleting, 14-13

Line numbers, EDT, 2-13
default, 2-13
reassigning, 2-35
sequencing, 2-13

Line pointer control commands,
EDI, 3-21

Line pointer, EDT,
moving, 2-25

LINE CHANGE command, EDI, 3-23,
3-34

Line, EDT,
current, 2-12
definition of, 2-50

Line-by-line mode, EDI, 3-4
Lines,

DMP,
numbering in a dump, 15-5

EDT,
changing characters in, 2-42
deleting, 2-23
displaying, 2-44
inserting, 2-28
replacing, 2-34
transferring, 2-22, 2-30

LIST switch, VFY, 13-9
List entry points switch, LBR,

14-20
List switches,

LBR, 14-20
PRESRV, 12-10, 12-13

LIST ON PSEUDO DEVICE command,
EDI, 3-26, 3-34

LIST ON TERMINAL command, EDI,
3-26, 3-34

Listing files, LBR,
spooling, 14-27

Index-15

j

LOCATE command, EDI, 3-10,
3-15, 3-22, 3-35

Locating, VFY,
lost files, 13-9

Locator commands, EDI,
summarized, 3-21

I,ocator,
bad block, 1-3

Locators, SLP, 17-1, 17-6 to
17-7, 17-13

Logical block switch, DMP, 15-5
Logical tape copy, PRESRV, 12-2

to 12-3
Logical tape format, PRESRV,

12-1 to 12-2, 12-5, 12-8,
12-11, 12-13, 12-15

Logical tape input, PRESRV,
12-8

Logical tape output, PRESRV,
12-8

Lost files switch, VFY, 13-10
Lost blocks, VFY,

recovering, 13-8
Lost files,

handling with BRU, 10-26
LPP, QUE, 7-1

M
.M command, EDI, 3-36
.MAC file type, LBR, 14-13
.MACRO CALL command, ED I , 3-2 4 ,

3-36
:MACRO command , ED I , 3-3 5
:MACRO EXECUTE command, EDI,

3-24, 3-37
MACRO IMMEDIATE command, EDI,

3-24, 3-37
Magnetic tape switches, PRESRV,

12-12, 12-20
Manager,

Queue, 1-3
Manual and update switches, 9-6

to 9-7
Manual operating mode, FMT, 8-3

to 8-4
Manual option, BRU,

BAD:, 10-23
Marked-for-delete indicator,

VFY,
resetting, 13-8

Marked-for-delete,
VFY files, 13-6

Master file directory, BRU, 10-7
MC command, EDI, 3-36
MCR MOUNT command, DMP, 15-1
MCR,

invoking utilities from and
returning control to, 1-8

INDEX

MCR (Cont.)
MOUNT/FOREIGN command,

use of with DMP, 15-1
Memory dump switch, DMP, 15-5
Messages~ See also Error messages

DSC; 11-26 to 11-39
corrective action for, 11-27

to 11-39
explanation of, 11-27 to

11-39
I/O, 11-39 to 11-41
specified unit number

exceeds max. of 1, 11-42
stand-alone, 11-41 to 11-42
text of, 11-27 to 11-39

error,
BRU, 10-28
DMP, 15-6
LBR, 14-33
PRESRV, 12-27
Queue Manager, 7-11
VFY, 13-11

FMT, 8-8 to 8-12
SLP,

checksum, 17-3
diagnostic error (/CS), 17-3
error, 17-20 to 17-24
general information on, 17-19
information, 17-20

MLB file type, LBR, 14-13
Mode,

DMP,
device, 15-1
file, 15-1

EDI,
block, 3-4
edit, 3-3
input, 3-3
line-by-line, 3-4

Modes,
EDI,

control, 3-3
text access, 3-3

SLP, 17-2
command, 17-2, 17-8
edit, 17-2, 17-8
returning to command, 17-9

ZAP,
absolute addressing, 19-3
addressing, 19-3
default addressing, 19-3
read-only, 19-3
switches for specifying,

19-2
task image addressing, 19-4

Modification, PRESRV,
address, 12-27
CSR, 12-22

Index-16

~-!

'·~r .. "" ... a .. •n•t•••

ModHied PRJ~SRV,
bootstrapping, 12-7

. version of, 12-7
Modify headE~r switch, LBR, 14-21
Module headE~r, LBR,

library, 14-5
Module name table, LBR,

library, JL4-5
Module, LBR.,

deleting, 14-12
listing, 14-20

Monitor, PRBSRV,
bootstrapping, 12-24

MOUN'I' FOREIGN command, MCR,
USE! with DMP, 15-1

MOUN'I' command, MCR,
use1 with DMP, 15-1

Move, EDT, 2-30
Multi.file volumes, PRESRV, 12-8
Multi.ply-allocated blocks, VFY,

deleting via, 13-8
Multi.volume files, PRESRV, 12-8
Multi.volume tape operations,

BRU, 10-·27

N
NEXT AND PRINT command, EDI,

3-11, 3-16, 3-22, 3-38
NEXT command, EDI,. 3-11, 3-16,

3-22, 3-·38
No Message switch, PIP, 4-11,

4-24
Normal operating mode, FMT, 8-2

to 8-3
NP command, EDI, 3-11, 3-22,

3-38
Numbering lines in a dump, DMP,

15-5

0
OBJ file type, LBR, 14-13
Object and macro libraries,

insert switch for, LBR, 14-18
Object modules, PAT,

adding subroutines to, 18-5
overlaying lines in, 18-4
patching, 18-1
validating contents of, 18-7

ODT, ZAP,
use with, 19-1

OLB file type, LBR, 14-13
Online, DSC,

initiating, 11-6
terminating, 11-6

INDEX

OPEN SECONDARY command, EDI, 3-21,
3-38

OPENS command, EDI, 3-38

Operating modes, FMT,
manual, 8-3 to 8-4
normal, 8-2 to 8-3

Operating procedures, PRESRV,
12-3

DECTAPE, 12-9
disk, 12-9
tape, 12-9

Operation overview, DSC, 11-19
Operators,

SLP, 17-9
backslash (\), 17-18 to

17-19
functions of, 17-9
percent sign (%) addressing

audit trail, 17-18 to
17-19

ZAP, 19-6 to 19-7
Options, EDT, 2-4, 2-19, 2-20
Output despooler, QUE, 7-2
Output device, QUE, 6-10
Output file, EDT, 2-2

creating, 2-2, 2-25
renaming, 2-25

Output files, SLP, 17-1 to 17-2
double space format for listing

(/DB) , 17-16
listing, 17-1 to 17-3, 17-8

to 17-10
updated input, 17-2 to 17-3

Output parameters, DSC, 11-7
Output spooling, QUE, 6-17 to

6-18
OUTPUT ON/OFF command, EDI,

3-21, 3-39
Output, PRESRV,

logical tape, 12-8
tape, 12-9

OVERLAY command, EDI, 3-23, 3-39
Overlaying lines, PAT,

in an object module, 18-4
Overlaying segments, ZAP,

changing locations in, 19-4
displaying boundaries of, 19-2

Override option, BRU,
BAD:, 10-23

Overriding default blocking
factor, PRESRV, 12-17

p
Page, EDI,

text defined, 3-5
Page length, QUE, 6-7
PAGE command, EDI, 3-5, 3-22,

3-40
PAGE FIND command, EDI, 3-5,

3-22, 3-40

Index-17

as;

PAGE LOCATE command, EDI, 3-5,
3-22, 3-41

Pages of text, EDI,
processing, 3-5

Paper tape support, FLX, 5-15
to 5-16

default for input, 5-16
defaults,

format transfer, 5-15
file names, 5-16
transfer mode switches, 5-15

transferring between, 5-16
Parameters, EDT,

Case, 2-39
displaying, 2-40
establishing, 2-38
Exact, 2-39, 2-57
Terminal, 2-39, 2-49

PASTE command, EDI, 3-24, 3-41
PAT, (Object Module Patch

Program), 18-1 to 18-13
adding subroutines to a

module,
example of, 18-5

checksum processing,
examples of, 18-7

command format, 18-2
command line error, 18-8
correction file, 18-3
errors,

command line, 18-8
file specification, 18-9
format, file content, 18-12
input/output, 18-11
internal software, 18-13
storage allocation, 18-13

files,
validating contents of, 18-7

global symbols,
processing of, 18-4

indirect command files, 18-1
information, 18-8
input file, 18-3
input to, 18-1
invoking, 18-1
MACR0-11 assembler with, 18-1,

18-5
messages, 18-7
output from, 18-1
overiaying lines in a module,

example of, 18-4
program sections,

processing of, 18-4
steps in using, 18-1
switch, 18-3
Task Builder with, 18-4
transfer addresses,

processing of, 18-4

INDEX

Patching,
PAT,
relocatable object modules,

18-1
ZAP,

task image files, 19-1
PF command, EDI, 3-40
PIP,

uses of, 6-3
PL command, EDI, 3-41
Positioning, PRESRV,

tape, 12-9
Predefined addresses, PRESRV,

12-7
Premounting tapes, PRESRV, 12-9
Preservation utility, 1-4
PRESRV image, 12-3
PRESRV,

modified version of, 12-7
bootstrapping, 12-7

switch,
administrative, 12-11, 12-18
blocking, 12-13, 12-16
format, 12-13
list, 12-10, 12-13
magnetic tape, 12-12, 12-20
specification of, 12-10
stand-alone, 12-12, 12-21
summary of, 12-10

PRI, QUE, 7-2
Primary input file, EDI, 3-6
PRINT command and CLI, QUE, 7-1
PRINT command fields,

described, 6-4 to 6-9
PRINT command format, 6-3
Print error messages, QUE, 6-18

to 6-23
PRINT command,

EDI, 3-11, 3-17, 3-26, 3-41
uses of, 6-1

Print,
EDT, 2-32
QUE, 7-3

PRINT$ macro, 6-17
Procedure, PRESRV,

bootstrap, 12-6
Procedures, PRESRV,

DECTAPE operating, 12-9
operating disk, 12-9
operating tape, 12-9
operating, 12-3

Processing of files, SLP, 17-4
Program maintenance utilities,

1-4
Programming utilities, 1-4
Prompt,

EDT,
Command Mode, 2-2, 2-3

SLP, 17-8 to 17-9

Index-18

2 ; a ;:

Prompt:s, BRU, 10-10
Protect, PIP,

switch, 4-12, 4-25 to 4-27
Protection codes, FLX, 5-9
PRT, QUE, 7-1, Appendix C

QUE, 7-2
Purge, PIP, switch, 4-12, 4-27

to 4-28

Q
QMG,

PRI, 6-1
QUE, 6-1, 6-9, 7-1

QUE conunands, 6-2, 7-4
QUE /ASSIGN, 7-10
QUE /Dl~ASSIGN, 7-11
QUE /D:~LE.TE, 6-16 to 6-17
QUE /HOLD, 6-14 to 6-15
QUE /LIST, 6-9

job identification field,
6-10

options, 6-11 to 6-13
switiches, 6-10

QUE /MODIFY, 6-13 to 6-14, 6-18
QUE /RELEASE, 6-15 to 6-16
QUE /SPOOL, 7-8
QUE /S'rART, 7-6
QUE /S1rOP, 7-5
QUE /UNSPOOL, 7-10
Queue Manager, 1-3, 6-1, 7-1

corrunand descriptions, 6-9
to 6-19, 7-4 to 7-11

components, 7-1
error messages, 6-18 to 6-22,

7-11 to 7-14
priority, 6-5
setting up, 7-2 to 7-4
spooling output from tasks,

6-17 to 6-18
Quit, EDT, 2-·33

R
RADIX-50 format, DMP,

dumping in, 15-5
Range, EDT, 2-4, 2-10

compound li.ne, 2-17
default, 2-·10
inclusive line, 2-18
single line, 2-15
specification, 2-10
variable line, 2-16

Read check switch, VFY, 13-10
READ command, EDI, 3-5 to 3-6,

3-25, 3-42
Rebuild switc:h, VFY, 13-10
Rebuilding lost files, VFY, 13-10

INDEX

Record control switch, DMP, 15-5
Records, LBR,

compressing, 14-10
Recovering lost blocks, VFY,

13-8
Registers, ZAP,

accessing contents of, 19-6
internal, 19-6
relocation, 19-3

Relocation biases, ZAP, 19-3
Remove, PIP,

switch, 4-12, 4-30
Rename, PIP,

switch, 4-3 to 4-4, 4-12,
4-28 to 4-30

RENEW command, EDI, 3-5 to 3-6,
3-11, 3-18, 3-25, 3-42

Replace switch, LBR, 14-22
for universal libraries, 14-26

Replace, EDT, 2-34
Replacing lines in a source

file, SLP, 17-13
format for, 17-13
locator fields, 17-13

Requirements, PRESRV,
blocking, 12-25
buffer, 12-6, 12-25
file name, 12-2

Resequence, EDT, 2-35
Restore, EDT, 2-37
Restoring files marked-for-

delete, VFY, 13-7
Restrictions, LBR, 14-32
RETURN command, EDI, 3-11, 3-42
RETYPE command, EDI, 3-11, 3-19,

3-24, 3-43
Rewind switch, ·DMP, 15-6
Rewind, PIP,

switch, 4-12 4-31 to 4-32
RSX-llM and RSX-llM-PLUS

utilities, 1-1
entering command lines for,

1-4 to 1-5
entering file specifications

for, 1-5 to 1-6
invoking, 1-6
programs, 1-1 to 1-4 ,

RUBOUT character, EDI, 3-7

s
SAVE command, EDI, 3-25, 3-43
Save, EDT, 2-38
SC command, EDI, 3-44
SEARCH AND CHANGE command, EDI,

3-22, 3-44
Secondary input file, EDI, 3-6

Index-19

ij LU T a

SELECT PRIMARY conunand, EDI,
3-21, 3-44

SELECT SECONDARY conunand, EDI,
3-21, 3-45

Selective delete, PIP,
switch, 4-12, 4-32 to 4-33

Selective search attribute,
LBR,

setting, 14-28
Selective search switch, LBR,

14-28
Serial despooler, QUE, 7-1 to

7-2
Set, EDT, 2-38

Case, 2-40
Exact, 2-40
Terminal, 2-40

Setup conunands,
EDI,

sununarized, 3-21
queue manager, 7-2 to 7-4

Shared read, PIP,
switch, 4-12, 4-34

Show, EDT, 2-40
SIZE conunand, EDI, 3-21, 3-45
SLP,

generating input for with
CMP, 16-6

Source files, SLP,
creating, 17-1, 17-14
input to, 17-1 to 17-2
maintenance of, 17-1
trailing blanks - tabs in,

17-15, 17-19
updating, 17-10

SP conunand, EDI, 3-44
Span blocks switch, PIP, 4-12,

4-32
Specification,

entering file, 1-5
Specify switches, BAD, 9-1
Spool switch,

DMP, 15-6
LBR, 14-27
PIP, 14-12, 14-33 to 14-34

Spooling output, QUE, 6-17 to
6-18

Spooling,
CMP output, 16-3
defined, 6-1, 7-1
DMP output, 15-6
file, 1-2
LBR listing files to the

printer, 14-27
Squeeze library files, LBR,

14-29
Squeeze switch, LBR, 14-29
SS command, EDI, 3-45

INDEX

Stand-alone switches, PRESRV,
12-12, 12-21

Stand-alone system version only,
switches, 9-1, 9-7 to 9-8

Stand-alone, DSC,
initiating and terminating,

11-6
switches, 11-20

Standard format, QUE, 6-10
Standard length, QUE, 7-8
STARTUP procedure and queue

manager, 7-2 to 7-3
Storage bit map file, BRU, 10-7
String searches, EDT, 2-14,

2-56
delimiters for, 2-14, 2-56

Subcommands, EDT, 2-48
concatenation of, 2-58
cursor manipulation, 2-56
editing, 2-49
Exit, 2-59
Insert, 2-54
Quit, 2-60
Substitute, 2-55

Substitute, EDT, 2-42
Next, 2-42

Subswitch specification,
example of, 1-6

Supported devices,
DSC, 11-5
FMT,

allow formatting, 8-4
DB:, 8-5
DK:, 8-5
DM:, 8-5
DP:, 8-6
DR:, 8-6
DY:, 8-6
required status, 8-5

Switches,
description of, 9-5 to 9-7
FLX,

defaults, 5-3 to 5-8
file transfer, 5-3
format, 5-2 to 5-3
paper tape transfer mode,

5-15
FMT, 8-1, 8-2, 8-6 to 8-8
forms of, 1-6
manual and update, BAD, 9-6

to 9-7
PRESRV,

summary of, 12-10
SLP, 17-1

calculating checksum, 17-1,
17-15

control, 17-1, 17-15
manipulating audit trails,

17-1

Index-20

~ ~~- :~

t !!ii ¢

Switches (Cont.)
manipulating files, 17-1,

17-15
values/defaults, 17-2, 17-16

specifying, BAD, 9-1
Stand-alone system version,

JBAD, 9-7 to 9-8
ta:sk and stand-alone, BAD, 9-5

to 9-6
valid specifications for, 1-6
ZAJP, 19-2

T
TA11/TU60 cassette support,

FLX, 5-12
file formats, 5-13
input files, 5-14 to 5-15
multivolume cassette formats,

S-13
output files, 5-13 to 5-14

TAB ON/OFF command, EDI, 3-21,
3-45

Tape copy, PRESRV,
logical, 12-2 to 12-3

Tape format,
ANSI,

BRU, 10·-2 6
logical tape format, PRESRV,

12-1 to 12-2, 12-5, 12-8,
12-11 to 12-13, 12-15

Tape input, PRESRV,
logrical, 12-8

Tape operating procedures,
PRESRV, 12-9

Tape operations, BRU,
multivolume, 10-27

Tape output, PRESRV, 12-9
log·ical, 12-8

Tape posi ticming, PRESRV, 12-9
Tape set, BRU, 10-27
Tape switche!s, PRESRV,

magnetic, 12-12, 12-20
Tape, PRESRV,

premounting, 12-9
Task builder, ZAP,

use with, 19-1
Task version, BAD, 9-1
Task/File Patch Program (ZAP) ,

19-1 to 19-16
Task/file, 1-4
TEST file, EDI, 3-6
Text access modes, EDI, 3-3
Text buffers, EDT. See Buffers
Text files, EDT,

creating, 2-1, 2-4, 2-32
editing, 2-1, 2-4

Text :modification commands, EDI,
3-23

INDEX

Text page, EDI,
defined, 3-5

Text, EDI,
processing pages of, 3-5

Text truncation, SLP,
(/CM) I 17-16, 17-19

Text, EDT,
changing characters of, 2-42,

2-55
deleting, 2-23 2-49
displaying, 2-44, 2-49
inserting, 2-28, 2-54
replacing, 2-34, 2-49
transferring, 2-22, 2-30

TOF command, EDI, 3-4, 3-20,
3-24, 3-46

TOP command, EDI, 3-4, 3-11,
3-19, 3-46

TOP OF FILE command, EDI, 3-11,
3-20, 3-24, 3-46

Truncate, PIP,
switch, 4-12, 4-35

TYPE command, EDI, 3-26, 3-47
Type, EDT, 2-44

u
UC command, EDI, 3-47
UIC, 1-5

QUE, 6-10, 6-14, 6-15 to 6-17
Uninstalled utilities,

invoking, 1-9
prompt for, 1-9
running from DCL, 1-9
running from MCR, 1-9

Universal libraries, LBR,
insert switch for, 14-19

Unlock, PIP,
switch, 4-12, 4-36 to 4-37

UNSAVE command, EDI, 3-24,
3-47

Update switch, VFY, 13-11
Update switches, BAD,

manual, 9-6 to 9-7
Update,

PIP,
switch, 4-12, 4-37 to 4-38

SLP,
source files, 17-10

Updating,
relocatable object modules,

PAT, 18-1
task image files, ZAP, 19-1

UPPER CASE ON/OFF command, EDI,
3-21, 3-47

Usage notes, EDI, 3-49
User file directory, PIP,

switch, 4-12, 4-35

Index-21

Utility programs, 1-1
Utility,

invoking and passing control
to, 1-8

v
Validating contents, PAT,

files, 18-7
Validity check, VFY, 13-4

error reporting, 13-5
files market-for-delete, 13-6

Values, SLP,
defaults, 17-7
switches, 17-7

VERIFY ON/OFF command, EDI,
3-21, 3-48

Version numbers, FLX,
cassettes, 5-13

Version, 1-6
VFY {File Structure Verification

Utility),
command string described, 13-2
error messages, 13-12
switches, 13-4, 13-9 to 13-11
validity check, 13-4

Video terminals, EDT, 2-48
delete key functions, 2-53
keypad arrow function, 2-57

Volume labels, BRU,
ANSI, 10-21, 10-26
disk default, 10-20
disk input, 10-17
disk output, 10-20
disk, 10-9, 10-14
tape, 10-21

Volume maintenance utilities,
1-1

Volumes,
BRU,

backing up from mounted,
10-18

existing, 10-24
restoring to mounted, 10-19

FLX, 5-1
default {Files-11), 5-2
DOS-11, 5-1
Files-11, 5-1
initializing, 5-2, 5-10,

5-11
mounting, 5-2, 5-8, 5-10
RT-11, 5-1

PRESRV,
multifile, 12-8

Wildcards,
BRU,

w

supported by, 10-12

INDEX

Wildcards {Cont.)
FLX, 5-3
PIP, 4-2, 4-4 to 4-5, 4-15,

4-28 to 4-29, 4-39, 4-44
restrictions of, 4-4
specifying, 4-4
uses of, 4-4 to 4-5

SLP, 17-3
Word, EDT,

definition of, 2-50
WRITE command, EDI, 3-25, 3-49
Write, EDT, 2-45

x
XEQ, EDT, 2-46

z
ZAP,

addressing locations, 19-3
addressing modes, 19-3

absolute, 19-3
default, 19-3
switches for specifying,

19-2
task image, 19-4
arithmetic functions and

operators, 19-6 to 19-7
carriage return, 19-6
changing contents of a

location,
command functions, 19-11

closing locations in a file,
examples of, 19-11 to 19-13

command format, 19-2
commands,

open/close location
functions, 19-5

summarized, 19-3
displaying boundaries of an

overlay segment, 19-2
error messages, 19-16
exiting from, 19-4
functions,

examples of general purpose,
19-14 to 19-16

general purpose, 19-13 to
19-16

invoking, 19-2
location,

verifying the contents of a,
19-15

location-specifier formats,
block number: byte offset,

19-8
byte offset, 19-8
relocation register~ byte

offset, 19-9
modes, 19-2

Index-22

t''• __________________________________ __

ZAP (Cont.)
absolute, 19-3
default, 19-3
read-only, 19-3

INDEX

switches for specifying, 19-2
task image, 19-4

opening locations in a file,
19-10

overlay segments,
changing locations in, 19-4

patching Files-11 files, 19-1
prompt, 19-2
registers,

accessing contents of, 19-6

ZAP (Cont.)
=unctions, 19-6
internal, 19-6
relocation, 19-3

relocation biases, 19-3
switches, 19-2 to 19-3
terminating, 19-2, 19-14
using MACR0-11 listings with,

example of, 19-4
using MACR0-11 with, 19-1
using ODT with, 19-1
using Task Builder with, 19-1
using TKB map with,

example of, 19-4

Index-23

I~

1''f' 4
1 i · c

u
.

Cl>
.5
..,,

::e
C> c
0

"6
B ..._ ,, :::> u1 u

~
0
Cl>

0::

READER'S. COMMENTS

RSX-11 Utilities Manual
AA-H268A-TC

NOTE: 'l'his form is fo.r document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
E~ligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
:f:orm.

Did you find this manual understandable, usable, and well-organized?
PlE~ase make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
paige number.

Pl.ease indicate the type of reader that you most nearly represent.

[] Assembly language programmer
[] Higher-level language programmer
[] Occasional programmer (experienced)
[] User with little programming experience

[] Student programmer

[] Other (please specify>~~~~~~~~~~~~~~~~~~~

Street

City ------------State------- Zip Code ______ _
or

Country

- - Do Not Tear - Fold Here and Tape -

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- - - -L

-----~
No Postage
Necessary

if Mailed in the
United States

--· ~
I

I
I

·~

- - - - DoNotTear-FoldHere -I

I
I
I
'~

2$1 I 2

