
real time executive
rer:erence manual

digital equipment corporation

DEC-lS-GRQA-D

R S X-I 5

REAL TIME EXECUTIVE

REFERENCE MANUAL

FOR ADDITIONAL COPIES, ORDER DEC-15-GRQA-D FROM
PROGRAM LIBRARY, DIGITAL EQUIPMENT CORPORATION,
146 MAIN STREET, MAYNARD, MASS. 01754

PRICE $7.00

DEC-15-GRQA-D

Copyright © 1971 by Digital Equipment corporation

The material in this handbook, including but not
limited to instruction times and operating speeds,
is for information purposes and is subject to
change without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

INSTA LLATIO N
MANUAL

MODULE
MANUAL

HARDWAHE

ACCEPTANCE
TE ST

PROCEDURES

INTERFACE
MANUAL

PDP-15 FAMILY OF MANUALS

OPERATORS
GUIDE

SOFTWARE

B/F,15/30/40

PDP-15/20

PDP-15 110
SYSTEM USER'S 1-'---4------1

GUIDE

MACRO -15

FOCAL-15

UTILITY
PROGRAMS

MANUAL

PDP-15/10
SOFTWARE

SYSTEM

FORTRAN TIL

8/15
TRANSLATOR

STATPAC - 15

SCOLDS

15-0040

SYSTEM REFERENCE MANUAL - Over
view of PDP-15 hardware and
software systems and options;
instruction repertoire, expansion
features and descriptions of sys
tem peripherals. (DEC-15-GRAZ-D)

USER'S GUIDE VOLUME 1, PROCESSOR -
Principal guide to system hardware
includes system and subsystem
features, functional descriptions,
machine-language programming con
siderations, instruction reper
toire and system expansion data.
(DEC-15-H2DA-D)

VOLUME 2, PERIPHERALS - Features
functional descriptions and pro
gramming considerations for peri
pheral devices. (DEC-15-H2DA-D)

OPERATOR'S GUIDE - Procedural
data, including operator main
tenance, for using the operator's
console and the peripheral de
vices associated with PDP-15
Systems. (DEC-15-H2CA-D)

PDP-15/10 SYSTEM USER'S GUIDE -
COMPACT and BASIC I/O Monitor
operating procedures.
(DEC-15-GGIA-D)

PDP-15/20 SYSTEM USER'S GUIDE -
ADVANCED Monitor system operat
ing procedures. (DEC-15-MG2B-D)

PDP-15/20/30/40 ADVANCED MONITOR
SOFTWARE SYSTEM - ADVANCED Moni
tor System descriptions; programs
include system monitor and
language, utility, and applica
tion types; operation, core
organization, and input/output
operations within the monitor
environment are discussed.
(DEC-15-MR2B-D)

PDP-15/30 and 15/40 BACKGROUND/
FOREGROUND M9NITOR SOFTWARE
SYSTEM - Background/Foreground
Monitor description, including
the associated language, utility,
and application programs.
(DEC-15-MR3A-D)

PDP-15/35, RSX-15 REAL TIME
EXECUTIVE, REFERENCE MANUAL -
Reference manual for the real time,
multiprogramming RSX monitor sys-
tem. (DEC-15-GRQA-D)

MAINTENANCE MANUAL VOLUME 1,
PROCESSOR - Block diagram and
functional theory of operation
of the processor logic. Preven
tive and corrective maintenance
data. (DEC-15-HB2A-D)

VOLUME 2, PROCESSOR OPTIONS -
Block diagram and functional theory
of operation of the processor op
tions. Preventive and corrective
maintenance data. (DEC-15-HB2A-D)

VOLUME 3, PERIPHERALS (Set of
Manu"als - Block diagram and func
tional theory of operation of the
peripheral devices. Preventive
and corrective maintenance data.
(DEC-15-HB2A-D)

INSTALLATION MANUAL - Power
specifications, environmental con
siderations, cabling, and other
information pertinent to installing
PDP-15 Systems. (DEC-15-H2AA-D)

ACCEPTANCE TEST PROCEDURES - Step
by-step procedures designed to
ensure optimum PDP-15 Systems
operation.

MODULE MANUAL - Characteristics,
specifications, timing, and
functional descriptions of modules
used in PDP-15 Systems.
(DEC-15-H2EA-D)

INTERFACE ~~UAL - Information for
interfacing devices to a PDP-15
System. (DEC-15-HOAA-D)

UTILITY PROGRAMS MANUAL - Utility
programs common to PDP-15 Monitor
Systems. (DEC-15-YWZA-D)

MACRO-15 - MACRO assembly language
for the PDP-15.
(DEC-15-AMZA-D)

FORTRAN IV - PDP-15 version of the
FORTRAN IV compiler language.
(DEC-15-KFZB-D)

FOCAL-15 - An algebraic interactive
compiler-level language developed
by Digital Equipment Corporation.
(DEC-15-KJZB-D)

CHAPTER 1
1.1
1.2
1.3

CHAPTER 2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4

CHAPTER 3
3.1
3.1.1
3.1.2
3.1.3
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22

CHAPTER 4
4.1
4.2

4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

TABLE OF CONTENTS

INTRODUCTION
INTRODUCTION
HARDWARE REQUIREMENTS AND OPTIONS
SYSTEM SOFTWARE

EXECUTIVE
INTRODUCTION
EXECUTIVE ORGANIZATION
CORE AND DISK MANAGEMENT
SCHEDULING OF REAL-TIME PROGRAMS
INPUT/OUTPUT OPERATIONS
DYNAMIC SYSTEM PRIORITY CONTROL

MONITOR CONSOLE ROUTINE
INTRODUCTION
REQUESTING THE RESIDENT MCR
ERROR DETECTION AND HANDLING
COMMAND STRINGS
SUMMARY OF MCR FUNCTIONS
MCR FUNCTION DESCRIPTIONS
ENTER TIME FUNCTION
TIME FUNCTION
DATE FUNCTION
TASK LIST FUNCTION
PARTITIONS FUNCTION
COMMON BLOCKS FUNCTION
DEVICES AND ASSIGNMENTS FUNCTION
INSTALL FUNCTION
REMOVE FUNCTION
REQUEST FUNCTION
SCHEDULE FUNCTION
RUN FUNCTION
SYNCHRONIZE FUNCTION
CANCEL -FUNCTION
RESUME FUNCTION
FIX IN CORE FUNCTION
UNFIX FROM CORE FUNCTION
DISABLE FUNCTION
ENABLE FUNCTION
REASSIGN FUNCTION
SAVE FUNCTION
OPEN REGISTER FUNCTION

RSX SYSTEM DIRECTIVES
INTRODUCTION
SUMMARY OF RSX DIRECTIVES AND SYSTEM

MACROS
DESCRIPTION OF DIRECTIVES
REQUEST DIRECTIVE
SCHEDULE DIRECTIVE
RUN DIRECTIVE
SYNC DIRECTIVE
CANCEL DIRECTIVE
SUSPEND DIRECTIVE

v

Page

1-1
1-2
1-3

2-1
2-2
2-2
2-4
2-7
2-8

3-1
3-2
3-2
3-2
3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-7
3-8
3-8
3-9
3-9
3-9
3-10
3-10
3-11
3-11
3-12
3-12
3-12
3-13
3-13
3-14
3-14

4-1
4-1

4-2
4-3
4-4
4-6
4-7
4-9
4-9

4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4.3.17
4.3.18
4.3.19
4.3.20
4.3.21
4.3.22
4.3.23
4.3.24
4.3.25
4.3.26
4.3.27
4.3.28
4.3.29
4.3.30
4.3.31
4.3.32
4.3.33
4.3.34
4.3.35

CHAPTER 5
5.1
5.2
5.3

CHAPTER 6
6.1
6.2
6.3

6.4
6.5

CHAPTER 7
7.1
7.2
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7

7.5

RESUME DIRECTIVE
..MARK DIRECTIVE
WAITFOR DIRECTIVE
WAIT DIRECTIVE
EXIT DIRECTIVE
CONNECT DIRECTIVE
DISCONNECT DIRECTIVE
READ DIRECTIVE
WRITE DIRECTIVE
DSKAL DIRECTIVE
DSRDAL DIRECTIVE
DSKPUT DIRECTIVE
DSKGET DIRECTIVE
ATTACH DIRECTIVE
DETACH DIRECTIVE
SEEK DIRECTIVE
ENTER DIRECTIVE
DELETE DIRECTIVE
CLOSE DIRECTIVE
HINF DIRECTIVE
DISABLE DIRECTIVE
ENABLE DIRECTIVE
FIX DIRECTIVE
UNFIX DIRECTIVE
DECLAR DIRECTIVE
TIME SYSTEM MACRO
DATE SYSTEM MACRO
INTENTRY SYSTEM MACRO
INTEXIT SYSTEM MACRO

TASK BUILDER
INTRODUCTION
TASK BUILDER DESCRIPTION
EXAMPLE USING THE TASK BUILDER

SYSTEM CONFIGURATOR
INTRODUCTION
INSTALLING THE RSX SYSTEM
STEP BY STEP SYSTEM CONFIGURATION

PROCEDURE
EXAMPLE OF A SYSTEM CONFIGURATION
DESCRIPTION OF ERROR MESSAGES

SYSTEM ORGANIZATION

Page

4-10
4-10
4-11
4-12
4-12
4-13
4-14
4-14
4-15
4-16
4-17
4-18
4-19
4-22
4-22
4-23
4-24
4-24
4-25
4-26
4-27
4-27
4-28
4-29
4-29
4-29
4-30
4-30
4-31

5-1
5-1
5-3

6-1
6-2
6-3

6-5
6-6

INTRODUCTION 7-1
RSX BOOTSTRAP OPERATION 7-1
RSX MEMORY MAP (WARM START) 7-2
SYSTEM DEQUES 7-3
POOL 7-4
THE SYSTEM TASK LIST (STL) 7-4
THE ACTIVE TASK LIST (ATL) 7-5
THE CLOCK QUEUE 7-5
THE PARTITION BLOCKS DESCRIPTION LIST 7-6
THE PHYSICAL DEVICE LIST (PDVL) 7-7
THE SYSTEM COMMON BLOCK DEFINITION 7-8

LIST (SCDL)
INPUT/OUTPUT OPERATIONS 7-8

vi

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7

CHAPTER 8
8.1
8.2
8.3
8.4
8.5
8.6

APPENDICES
APPENDIX A

APPENDIX B
APPENDIX C

APPENDIX D
APPENDIX E

APPENDIX F

GLOSSARY

I/O HANDLER TASK INITIALIZATION
I/O REQUESTS
I/O FUNCTIONS
HANDLER TASK EXIT
DISK STRUCTURE
I/O DATA MODES
INTERRUPT PROCESSING

TASK CONSTRUCTION
INTRODUCTION
COMPUTATIONAL TASK
MeR FUNCTION TASK
FRONT-END INTERRUPT DRIVER TASK
I/O HANDLER TASK
ADDITIONAL INFORMATION

Paqe

7-9
7-9
7-11
7-13
7-13
7-14
7-15

8-1
8-2
8~2

8-10
8-19
8-36

SYNTACTICAL DESCRIPTIONS OF MCR A-l
FUNCTIONS

MACRO EXPANSIONS FOR SYSTEM DIRECTIVES B-1
CAL PARAMETER BLOCKS FOR SYSTEM C-1

DIRECTIVES
SUMMARY OF RETURNED EVENT VARIABLES D-1
REGISTERS SAVED DURING "SAVE" AND E-1

"RESTORE IJ OPERATIONS
CONVERSION TABLES F-1

vii

1.1 INTRODUCTION

CHAPTER ONE
INTRODUCTION

RSX-l5 is a real-time monitor system designed for handling real-time

information in a multiprogramming environment. The modular construc

tion of the system allows the user to configure his available hardware

and software resources to best fit his requirements.

RSX-15 controls and supervises all operations within the system in

cluding any number of core- and disk-resident programs (called Tasks)

limited in number only by available space. This control and super

vision allows an unlimited number of Tasks to share core and disk

memory, input/output device handlers, and other resources of the system.

The execution of Tasks is determined by software_priorities, hardware

interrupts, timing algorithms, and requests from other Tasks. The

user can install a new Task on-line, establish its software priority

from any of 512 distinct levels, and then request its activation at

any time with an automatic reactivation at any periodic interval of

time thereafter.

Utilizing simple time-directed commands, the user can dynamically

schedule Tasks from the console terminal or from within a Task.

1-1

Device independence in RSX then allows the user to obtain results of

that Task immediately on his Teletyp~or store them on a mass storage

device such as a disk or magnetic tape for future reference.

I/O requests from Tasks are queued and processed by RSX on a priority

basis allowing high priority requests access to heavily used devices

which have pending lower priority requests. Delays are further re-

duced by having the actual transfer of data being performed by the

I/O Processor independent of the Central Processing Unit, thus allow

ing concurrent Task execution and I/O processing.

1.2 HARDWARE REQUIREMENTS AND OPTIONS

The minimum hardware configuration required to operate the RSX-15

system on a PDP-l5/35**is as follows:

16K of core memory
API - Automatic Priority Interrupt
EAE - Extended Arithmetic Element
Real Time Clock (frequency is 16.7 msec for 60 Hz systems and 20

msec for 50 Hz systems.)
NOTE: The clock must be wired to API hardware level 3.

One (1) RS15 DECdisk (262,000 word fixed head) and one(l} RF15
.controller.

One (1) TU56 DECtape unit and controller.
One (1) KSR35 Teletype
High Speed Paper Tape Reader
High Speed Paper Tape Punch

The RSX-15 system supports the following additional hardware:

Addition of core memory in increments of 4K up to 32K.
Addition of one or more disk units. The disk controller is de

signed to acconunodate up to 8 disk units (2 million words) •
Addition of one or more DECtape units. The controller is designed

to acconunodate up to 4 TU56 DEC tape units (8 tape drives).
Addition of one or more Teletypes. Up to 16 additional Teletypes,

either model KSR33 or KSR35, may be added to the standard
system (under LT15/LT19).

One (1) VTOI storage tube display system. (Tektronix model 611
storage tube with interface).

One (1) to Eight (8) TUIO - 7 or 9 track IBr-1 compatible magtape
transport (7 and 9 track may not be mixed)

One (1) LP15 - Line Printer.

* Teletype is a trademark of the Teletype Corporation.
** A fully ECOed PDP-IS is required.

1-2

1.3 SYSTEM SOFTWARE

RSX-15 is a complete system for program preparation, compilation,

assembly, debugging, and operation in a system that has been config

ured to the user's needs.

The RSX-15 system utilizes two separate monitors, the ADVANCED Soft

ware Monitor and the Real-Time Monitor. The ADVANCED Software Moni

tor is the standard monitor for the PDP-15/20 and PDP-15/35 computers.

The ADVANCED Monitor is used in the development, debugging, and build

ing of executable Tasks for the Real-Time Monitor. The system soft

ware includes the FORTRAN IV compiler, MACRO assembler, TEXT EDITOR,

TASK BUILDER, and numerous Utility programs*.

The TASK BUILDER, TKB, is used to build user's Tasks from relocatable

binary files by linking them together along with library functions to

constitute an executable Task that runs under control of the Real

Time Monitor. TKB is quite similar to the CHAIN program allowing

very elaborate overlay structures to be built. A resultant Task is

defined by a name (Task name), default run priority, core partition

and common block requirements, and resident code. The Task, which

resides either on paper tape or DECtape, is now ready to be incorpo

rated into the real-time operating system under control of the Real

Time Monitor. Chapter five discusses the TASK BUILDER in greater

detail.

The Real-Time Monitor is used to supervise and control the execution

of real-time Tasks. The real-time software includes the RSX-15

EXECUTIVE, I/O Device Handler Tasks, Resident MCR, and the SYSTEM

CONFIGURA TOR. The SYSTEM CONFIGURATOR is a Task which is

requested by the Real-Time Monitor when the system is initially loaded.

* Refer to ADVANCED Software Monitor Manual and Utility Programs Manual.

1-3

The CONFIGURATOR is an interactive program which asks the user several

questions in order to tailor the RSX-IS EXECUTIVE to suit his partic

ular application and hardware configuration. The user is required to

supply information such as the amount of core memory available, number

of disk units and Teletypes, partition sizes and locations, common

areas, and which I/O Device-units are in the system. Chapter Six

discusses the SYSTEM CONFIGURATOR in greater detail.

1-4

2.1 INTRODUCTION

CHAPTER TWO
EXECUTIVE

The RSX EXECUTIVE is the heart of the real-time operating system.

It coordinates all activities in the system including Task scheduling,

I/O supervision, resource allocation, and interactive operator communi

cation.

The core memory of the RSX system is divided into partitions that are

occupied by the Real-Time Monitor, Monitor Console Routine (MCR)

Function Tasks, I/O Handler Tasks, user written Tasks(programs), and

COMMON Blocks used for inter-Task communications. There is no limit

to the number of core partitions and COMMON Blocks that can be defined

except for the amount of core space available. All Tasks are then

executed from these partitions allowing several programs to be in core

at any given time (multiprogramming). Normally Tasks reside on

the disk, and are brought into their partition (if unoccupied) only

when requested, and release their partitions upon exit. However,

when desirable, or necessary, a Task may be fixed in core, thereby

dedicating a partition to a single Task, but assuring core availabil

ity and rapid response. Tasks that can tolerate a response time of

100 milliseconds or more will normally be disk resident rather than

2-1

core resident. Since the Task Builder program allows a Task to con

sist of a resident program with a simple to very elaborate overlay

structure, a Task can be both core and disk resident at the same time.

The core resident program remains in core once the Task has been acti

vated,and overlay segments are requested when needed. Requested over

lay segments will be executed immediately if already in core, or

brought in from disk overlaying the previous segment(s) and then

executed. When a Task is built using the Task Builder program it can

include any number of user written programs and be assigned any core

partition (providing the partition was defined at system configuration

time and is large enough to contain the Task). The Task can also be

assigned any run priority (which may be overridden at run time) from 1

to 512 where 1 is the highest priority.

Task execution occurs because of requests by the operator, requests

from a currently executing Task, or by a predefined schedule*.

Activated Tasks are defined in the system Active Task List and sched

uled Tasks are defined in the Clock Queue to be activated at a pre

defined time. Tasks can also be installed in the system on-line

while other Tasks are currently executing.

2.2 EXECUTIVE ORGANIZATION

2.2.1 CORE AND DISK i'lAfJAGEf'iENT

Core memory in the RSX system is partitioned to allow several Tasks

to be active at any given time. All core above the resident EXECUTIVE

(first 4K) can be user specified into Partitions and COMMON Blocks

during system configuration. All unspecified space above the first

8K of core will then be used to create Partition Blocks and a reservoir

* The scheduling capabilities of RSX will be described later.

2-2

of empty nodes called the Hpool:1
• Each node in the Pool consists of

ten contiguous memory locations with internal pointers connecting the

previous node to the next node resulting in a circular or double ended

queue called a dequJ. The EXECUTIVE uses nodes to create linked lists

containing system information. These nodes are removed from and re-

turned to the Pool as needed.

Since the Pool and Partition Blocks are needed to run, sufficient

core above the lower 8K core should be left unspecified. Unspecified

core below 8K (and above the EXECUTIVE) is unused.

Partitions and SYSTEM COMMON Blocks2 are fixed at system configuration

time and cannot be altered at run time. Tasks are built to execute in

specific partitions, and, any number of Tasks may be built to execute

in the same. partition.

A Partition containing an active Task cannot be used by other Tasks,

regardless of priority, until that partition becomes available. When

two or more requests for the same partition are made and the partition

is occupied, the Task with the highest priority will be serviced first

when the partition becomes available. An executing Task releases its

partition once it EXITs to the EXECUTIVE.

RSX uses the disk for storage of user written Tasks, MCR Function

Tasks and data. Disk space is automatically allocated by the

EXECUTIVE when Tasks are installed in the system. The remaining

portions of the disk are available to the user. When a Task requires

disk space to store data, it must request it through the EXECUTIVE

via an ALLOCATE Directive. The actual allocation of disk space is

performed in increments of 12810 words of contiguous disk storage

providing the user with true random access capability_ The EXECUTIVE

maintains a record of available disk space by using a bitmap scheme.

A user can relinquish allocated disk space through the use of the

IDeque is ptonol,lnced IIdeckll.
2See Glossary: CO~~ON BLOCK, SYSTEM.

2-3

DEALLOCATE Directive.

2.2.2 SCHEDULING OF REAL-TIME PROGRAMS (TASKS)

The scheduling of Real-Time programs (Tasks) can result from anyone

of three types of events: the request for the activation of a Task,

the request for an Input/Output transfer, or the occurrence of a

hardware interrupt. It is important that the reader have a thorough

understanding of the meaning of "Significant Event"land the Active

Task List in order to understand the concepts of scheduling in RSX.

The Active Task List is a priority ordered list of Active Tasks that

is used to drive the system. This list is scanned from high to low

priority by the EXECUTIVE as a result of a Significant Event to give

control to the highest priority Task that is capable of executing at

that time.

Tasks are installed in the system either at the priority given them

at Task Building time (default priority) or at the priority specified

in the INSTALL Directive. For instance, the user can install a Task

named SCAN with default priority 100 by typing:

INSTALL SCAN

If a new default priority of 78 were desired, the user could have in-

stalled SCAN by typing:

INSTALL SCAN 78

Task priorities can also be altered at run time either by the operator

or by a currently executing Task. Once a Task has been installed in

the system it can be activated by typing:

REQUEST SCAN

SCHEDULE SCAN 13:3~:~~ 3~M

RUN SCAN 25M

(Task will execute at default
priority)
(Task will execute at default
priority at 1:3~ P.M. and be resched
uled every 3~ minutes thereafter)
(Task will execute at default
priority 25 minutes from now)

ITask initiation, task completion, and I/O completion are examples of
significant events.

2-4

SYNC SCAN H 3~M 2H 78 (Task will be executed at priority
78, 39 minutes past the hour, and
every 2 hours thereafter)

A request to activate a Task will be executed providing that a parti-

tion is available and a Task with a higher priority is not currently

executing. Once a Task is activated it will run to completion unless

interrupted by a higher priority Task. An interrupted lower priority

Task will be resumed only when higher priority Tasks have completed

or have relinquished control. Whenever one Task is interrupted by

another, its active registers are automatically saved by the

EXECUTIVE and later restored when execution is resumed. Control will

be given to a lower priority Task if a currently executing Task is

waiting for the completion of an I/O request or by issuing any of the

following Directives: WAIT; WAITFOR; and SUSPEND. Control can

be given to a higher priority Task by requesting it to be run or by

issuing any of the following Directives: REQUEST, RUN, SYNC, and

SCHEDULE.

The following example illustrates the mechanism used by the EXECUTIVE

to scan the Active Task List. Assume that two Tasks are installed in

the system with names TASKl and TASK2 and have priorities of 50 and

100 respectively: The operator requests TASKl to be executed one

minute from now and TASK2 to be executed immediately. The operator's

commands would be:

RUN TASK1 1M

REQUEST TASK2

The following chart describes the sequences of events during the

request and activation of both Tasks.

IThe larger number indicates a lower priority.

2-5

TASK2 finishes ex
ecution and system

is idle.
TASK2 resumes execution
at priority 100 •

..
r

..
.".

TASKl exits, Monitor restores
TASK2's registers and resumes
execution of TASK2.

... -
TASKl executes at
priority level 50 •

Monitor saves TASK2's registers
and Clock routine activates TASK1 •

Process Clock Interrupt
which occurs one minute
after operator requested
TASK1.

TASKl finishes
execution.

TASK2 executes
at priority 100.

Monitor requests TASK2
-

MCR Function
processes request.

Monitor requests
MCR Function.

Process Keyboard Interrupts

-oJ'

-

I

· Monitor requests MCR
Function which enters
request in Clock Queue.

Process Keyboard Interrupts

PRIORITY

0
0 0
t.n r-I

H H
~ ~
> >
ra:! ra:!
H H

~ ~
(J) (J)

< ~ E-f

Figure

2-6

2.1

Operator requests
TASK2 to be run

immediately.

Operator requests
TASKl to be run one
minute from now.

System is idle.

rz..
0

~
U
Z(J)
ME-f
QZ
Ora:!

~~

2.2.3 INPUT/OUTPUT OPERATIONS

The RSX EXECUTIVE allows the user device independent programming,

reassignment of devices on-line, and the ability to queue I/O re

quests providing him with an extremely powerful and flexible I/O

structure.

The RSX system provides the user with device handlers for standard

I/O devices supplied with the system. These handlers are called I/O

Device Handler Tasks and can be installed in the system either at

system configuration time or on-line. I/O Handler Tasks are connected

to the userls enviror~ent by means of a logical/physical device re-

lationship. This relationship allows the user to reference a Logical

Unit Number (LUN) rather than a physical device when requesting an

I/O operation. At run time the user then may reassign the LUN to the

desired physical device. Thus, a Task which normally outputs data to

LUN 4 which is currently assigned to the teleprinter can output the

same results on a paper tape punch or line printer if the user types

the following:

REASSIGN 4 PP TT~
(or)

REA 4 LP PP

(Reassign LUN 4 to the Paper Tape
Punch from TT~)
(Reassign LUN 4 to the line printer
from the Paper Tape Punch)

All requests to be serviced by I/O Handler Tasks are entered into a

priority ordered queue even though the device may be busy. The

priority of the request will be the same as the priority of the Task

issuing the request. Once the Task has issued a request, it can

either wait for its completion or continue executing and test at any

time the current state of the I/O operation it requested.

An Event Variable (software flag) may be associated with I/O requests

and its value indicates the current status of the I/O operation. When

2-7

an I/O operation completes, the user's Event Variable is set accord-

ingly and a Significant Event is declared. This causes the Active

Task List to be scanned and control to be given to the highest prior-

ity Task capable of executing.

There are two types of I/O Device Handlers in the RSX System: The

Standard I/O Device Handler Task and the System I/O Device Handler

Task. The System I/O Handlers are the Disk and Multi-Teletype Handler

Tasks which must be core resident and cannot be deleted from the

system. Standard I/O Device Handler Tasks are those which are not

System I/O Handlers supplied by the manufacturer or created by the user.

When a L{JN is assigned to a device I the Handler Task is requested and

remains in core as long as the LON is assigned to the device.

A Task can obtain the exclusive use of an I/O Handler Task by issuing

an ATTACH Directive. When the ATTACH Directive is accepted by the

Handler, only requests from that Task are serviced with requests from

other Tasks queued until a DETACH request is serviced.

Example: ATTACH 2,EV

DETACH 2,EV

Attach the device assigned to LUN
2 to the currently executing Task.
Detach the Device. EV is the event
variable.

2.2.4 DYNAMIC SYSTEf~l PRIORITY CONTROL

The priority structure of the RSX System includes both hardware and

software priority levels. Hardware levels are established by the

Automatic Priority Interrupt (API) of the PDP-IS computer and soft-

ware levels are established by the user and controlled by the

EXECUTIVE. There are 8 levels of API of which four are used for hard-

ware I/O devices and four for the EXECUTIVE. API levels 4 and 6 are

used exclusively by the EXECUTIVE and level 7 is used for Task

execution (level S is currently not used). From level 7, the

2-8

EXECUTIVE derives its 512 Task priority levels used for Task operations.

The following figure illustrates the hierarchy of the entire priority

system.

AUTOMATIC PRIORITY INTERRUPT SYSTEM

API

Task Priority Levels

Derived from API
level 7 by the

Executive

512 .1

LEVELS 7
I

Executive Priority Levels

Exclusive use by
the Executive

6 5 4

• Increasing Priority

Figure 2.2 RSX Priority Structure

Hardware Levels

Used by all
I/O Devices

3 2 1 0

The hardware API levels 0,1,2, and 3 are used to control I/O devices

in the system. Each level can have as many as 8 device controllers

connected to it allowing a total of 32 devices to be serviced by the

API system. Each of the 32 API lines are associated to unique core

locations which specify where program control will be transferred

when an interrupt signal occurs on that line.

2-9

3.1 INTRODUCTION

CHAPTER THREE
MCR

MONITOR CONSOLE ROUTINE

The Monitor Console Routine (MCR) allows the user to communicate on

line with the system from the console teleprinter to dynamically

adjust and modify the operation of the system through simple commands

(functions). The operator may obtain status information about the

system, install or replace Tasks, request Task execution based upon

time driven schedules, or fix a Task in core. Other MCR commands

permit altering of logical/physical device relationships, examination

and modification of core locations, and adjustment of the System Clock

and Calendar.

The MCR consists of the Resident MCR Task, which accepts the user's

commands, and the MCR Functions, which actually carry out the indi

cated requests. The MCR Functions are similiar to user created Tasks

in that they normally reside on the disk and are brought into a core

partition when requested. Although the MCR Functions are built (with

the Task Builder) to execute in a predefined core partition, they

can be built to run in any partition. Execution of MCR Tasks, like

all Tasks, is based upon partition availability and Task priority.

3-1

3.1.1 REQUESTING THE RESIDENT MCR

The Resident MCR must be Active in order to receive requests for

Function Tasks from the operator at the console teleprinter. To

request the Resident MCR, type CTRL C (i.e., simultaneously depressing

the CTRL and C keys). When the MCR is ready to accept a command it

will output:

MeR>

(on LUN 2)and wait for a command to be typed immediately to the right

of the prompting character (» ..

3.1.2 ERROR DETECTION AND HANDLING

Error detection is provided by the various MCR Functions and Resident

MCR where applicable. When an error is detected, an appropriate

message, prefixed by the name of the issuing MCR Function, is output

to LUN 3.

3.1.3 COf'ii"1AND STR I NGS

When typing MCR command strings the following conventions apply:

a. Command strings are terminated either by a Carriage RETURN

or by an ALT MODE. If a Carriage RETURN is typed, the

Resident MCR will be requested when the current Function is

complete. If an ALT MODE is typed, the Resident MCR will

not be requested at the termination of the current Function.

b. Each element of a command string must be separated by either

a comma (,) or a space (_).

c. If an error is discovered while typing a command string prior

to typing a terminator, the line may be deleted as far back

as the prompting character (» by typing CTRL U (formed by

simultaneously typing CTRL and U characters). A commercial

3-2

nat" (@) symbol is echoed informing the user that he can

retype the command string. The RUBOUT, echoed as a

backs lash (\), may be used to delete the last character

typed in. Every time the RUBOUT is typed, a backs lash is

echoed and a character is deleted.

d~ Any number of characters (except a comma or space) may be

inserted between a Function name and its arguments or command

string terminator (Carriage R~TURN or ALT MODE). This is

useful if the user wishes to improve the readability of his

teleprinter copy.

3.2 SUMMARY OF MCR FUNCTIONS*

Task Name

ETI[ME]

TIM[E]

DAT[E]

TAS[K LIST]

PAR[TITIONS]

COM[MON BLOCKS]

DEV[ICES AND ASSIGNMENTS]

INS [TALL]

REM [OVE]

REQ[UEST]

RUN

Function

Enter time and date into the system.

Request current time from the system.

Request current date and time from
the system.

Request System Task List.

Request list of Partition definitions.

Request list of Common Block defini
tions.

Request list of LUN device assign
ments.

Install a Task in the system.

Remove a Task from the system.

Request immediate activation of a
Task.

Schedule the activation of a Task.

Request scheduled Task a delta time
from now.

* Square brackets of the form ([]) specify optional characters.

3-3

SYN[C]

CAN [CEL]

RES [UME]

FIX

UNF[IX]

DIS [ABLE]

ENA[BLE]

REA [SSIGN]

SAV[E]

OPE[N]

3.3 MCR FUNCTION DESCRIPTIONS

Schedule .and synchronize the activa
tion of a Task.

Cancel the activation of a Task.

Resume .execution of a suspended Task.

Fix Task in core (Task becomes core
resident) •

Unfix Task in core.

Disable Task (reject future Task
activation directives).

Enable a disabled Task.

Change LUN assignment(s).

Save image of core on the disk.

Open register for examination or
modification.

The following paragraphs describe the form and function of the MCR

Functions. To simplify the interpretation of the various command

strings, the following symbols are used to represent the non-printing

teleprinter operations;

J = Carriage RETURN
., = LINE FEED
V = Terminator (either Carriage Return or ALT MODE)

= Space

Square brackets of the form ([]) specify optional characters and/or

arguments. The ampersand sign (&) is used for concatenation of a

numeric argument to an alphabetic letter.

3.3.1 ENTER TIr~E

The Enter Time Function is used to set the System Clock and Calendar.

Form: ETI[ME]_Hr:Min:Sec[_Mo/Day/Yr]V

Variables:Hr
Min
Sec
Mo

= Hours (f8-23)
= Minutes OJ-59)
= Seconds (~-59)
= Month (1-12)

3-4

Day = Day of Month (1-31)
Yr = Year (last two digits ~-99)

NOTE: The European form has the month and day reversed.

Example: The time is 3, seconds past 3:45 P.M. and the date is
March 23, 1971.

3.3.2 TIME

MCR>ETIME 15:45:30 3/23/71
:1CR>

The Time Function outputs the time of day on LUN 3.

Form: TIM[E]V

Example: The time is 41 seconds past 3:45 P.M.

3.3.3 DATE

f'1 CR> TIME
15:45:41
MCR>

The Date Function outputs the System Calendar and the time of day on

LUN 3.

Form: OAT [E] V

Example: The date is March 23, 1971 and time of day is 52 seconds
past 3:45 P.M.

3.3.4 TASK LIST

f\1CR>DATE
23/23/71 15:45:52
r1CR>

The Task List Function outputs to LUN 3 a description of each Task

which has been Installed in the system. The description consists of

the following information (printed left to right, one line per Task):

Task Name, Partition Name, Priority (decimal), Disk Unit Number

(octal), Head Track Address (octal) and Task Size (octal). Output

may be prematurely terminated by typing CTRL C.

3-5

Form: TAS[K LIST]V

Example:

r1CR> TAS:< LIST
RX P14.6 512 0 11022100 005310
PP •••• I 0.2 002 Gj 101200 00617
DT •••• I o. 1 0102 0 076600 02261
PR •••• I 0.2 002 0 075600 00736
LP •••• I 0.2 001 ZI 075000 0046~
••• DAT t1CR 002 I} 074600 00176
••• OPE MCR 002 0 07,")600 00624
••• SAV MCR 332 (3 073200 010214
• •• RF: A f1CR 002 0 072000 010410-
• •• DIS MCR 002 0 071600 00166
••• RAR r1CR 002 0 071400 0~166
••• UMF' MCR 002 0 071000 00211
• •• FIX MCR 002 0 070400 00302
••• RES r1CR 002 0 070000 100250
• •• C.4N [1CR 0212 " 067600 00166
••• SYN i'1Cn 21102 0 067200 00377
• •• RU N MCR 002 0 066600 00361
••• SCH MCR 0102 0 366000 010407
••• REQ r1CR 002 0 0654100 00335
••• REM MCn 002 10 065000 00305
• •• INS (,'1CR 0102 0 063200 01516
••• DEV MCR 002 0 0624100 010533
••• COM f1CR 002 0 062000 00263
••• PAR r1CR 002 3 ~61400 00230
• •• TAS r~CR 002 10 060600 00406
••• TH1 f1CR 002 0 060400 00145
• •• ET I f1CR 002 iii C60000 00350 \U

i~CR>

3.3.5 PARTITIONS

The Partition Function outputs to LUN 3 a description of all core

partitions defined in the system. The description consists of (printed

from left to right, one line per partition): Partition Name, Parti-

tion Base Address (octal), and Partition Size (octal). Output may

be prematurely terminated by typing CTRL C.

Form: PAR [TITIONS]V

3-6

Example:

)'lCR>PARTITIONS
MCR 10000 01600
IO.l 11600 03000
? 1 4 • 6 14600 03 200
P21.0 21000 05500
P26.5 26500 06500
IO.2 35200 ~1000
P40.0 40000 15000

:'-1CR>

3.3.6 COMMON BLOCKS

The COMMON Blocks Function outputs to LUN 3 a description of all

System COMMON Blocks defined in the system. The description consists

of (printed from left to right, one line per COMMON Block): COMMON

Block Name, COMMON Block Base Address (octal), and COMMON Block Size

(octal). Output may be prematurely terminated by typing CTRL C.

Form: COM [MON_BLOCKSl V

Example:

MCR>COMMON BLOCKS
.XX 20000 00700
FLAG 36200 00600

'1CP>

3-7

3.3.7 DEVICES AND ASSIGNMENTS

The Devices and Assignments Function outputs to LUN 3 a list of phys-

ical device units and the Logical unit Numbers assigned to them.

Output may be prematurely terminated by typing CTRL C.

Form:

Example:

DEV[ICES_AND_ASSIGNMENTS]V

MCR>DEVICES AMD A£SIGMMENTS
r!K0 1
TTr 2,3,5,1~,11,12,13,14,15,16,17,18,19

TTl
DT0
DTI
DT?
I1T3
DT4
I1T5
I1T6
DT7

20,?1,22,23,24,?5,26,27,2R,29,30,31
32

PP 0 7
PP!?! ~
LP0 9-

MCO>

3.3.8 INSTALL

The Install Function is used to input a Task into the RSX System.

The Task to be added must be a binary file (TSK extension) produced

by the Task Builder. TSK files are installed from LUN 5.

Form:

Variables:TSKNAM = Name of Task to be Installed (1 - 6 characters)
P = Task priority (I - 512)

Examples: Install Task SCAN whose default priority defined at
Task Building time is 48.

MCR>INS SCAN)
(or)

MCR>INS SCAN l~)

3-8

(SCAN is now redefined
with a priority of l~)

3.3.9 REf10VE

The Remove Function is used to delete a Task from the RSX System.

Form: REM [OVE] TSKNAMV

Variables:TSKNAM = Name of Task to be Removed (1 - 6 characters)

Example: The Task SCAN is no longer required and it is desired
to remove it from the System.

MCR>REM SCAN}

3.3.10 REQUEST

The Request Function is used to request the execution of a Task at an

indicated software priority level. Actual Task execution depends upon

priority and partition availability.

Form:

Variables:TSKNAM = Name of Task (1 - 6 characters)
P = Task priority (l - 512)

Examples: Request the execution of
defined at Task Building

MCR>REQ SCAN)
(or)

MCR>REQ SCAN l~}

3.3.11 SCHEDULE

SCAN whose default priority
or Installation time is 48.

(SCAN is requested with
a priority of l~)

The Schedule Function is used to schedule the execution of a Task at

some time in the future, specified in time-of-day, at an indicated

software priority level, and with periodic rescheduling.

Form:

Variables:TSKNAM = Name of Task (1 - 6 characters)
Hr = Hours (II - 23)
Min Minutes {(A - 59) ,,..
Sec = Seconds (II - 59)
R1 = Reschedule Interval (up to 1 day)
RU = Reschedule Units (T=Ticks, S=Seconds, M=Minutes,

and H=Hours)
P = Task Priority (1 - 512)

Examples: Schedule the execution of SCAN at 1:311 P.M. and resched
ule it every 311 minutes thereafter at its default
priority.

3-9

3.3.12 RUN

MCR>SCH SCAN 13:3~:~~ 3~MI

Schedule the execution of SCAN at 8:3~ A.M. and resched
ule it every 2/6~th's of a second (6~ cycle clock) at
priority level l~.

MCR>SCH SCAN 8:30:00 2T l~J

The Run Function is used to make a Task active at some future time,

specified in delta time from now, at an indicated software priority

and with periodic rescheduling.

Form:

Variables:TSKNAM = Name of Task (1 - 6 characters)
SI
SU

RI
RU

P

= Schedule Interval (up to one day)
= Schedule Units (T=Ticks, S=Seconds, M=Minutes,

and H=Hours)
= Reschedule Interval (up to one day)
= Reschedule Units (T=Ticks, S=Seconds, M=

Minutes, and H=Hours)
= Task Priority (1 - 512)

Examples: Schedule the execution of SCAN 3_ minutes from now and
reschedule it every hour thereafter.

3.3.13

MCR>RUN SCAN 3~M IHJ

Schedule the execution of SCAN 1_ minutes from now and
reschedule it every 32 seconds thereafter at priority
level 28.

MCR>RUN SCAN l~M 32S 28 J

SYNCHRONIZE

The Sync Function is used to activate a Task at some future time

following the occurrence of the next tick, second, minute, or hour.

The Task is executed at the indicated software priority and with

periodic rescheduling. This Function is particularly useful for

minimizing the peak loading of a system which can occur when many

Tasks are scheduled for execution at the same time.

Form:

Variables:TSKNAM = Name of Task (1 to 6 characters)

3-10

SZ = Synchronization Units (T=Ticks, S=Seconds, M=
Minutes, and H=Hours)

SI = Schedule Interval from Synchronization time
(up to one day)

SU = Schedule Units (T=Ticks, S=Seconds, M=Minutes,
and H=Hours)

RI = Reschedule Interval (up to one day)
RU = Reschedule units (T=Ticks, S=Seconds, M=Minutes,

and H=Hours)
P = Task Priority (1 - 512)

Example: Schedule the execution of SCAN 3 minutes after the next
hour and reschedule it every hour thereafter at its---
default priority level.

3.3.14

MCR>SYN SCAN H 3M 1HJ

Schedule the execution of SCAN l~ seconds after the next
minute and reschedule it every hour thereafter at prior
ity 21.

MCR>SYN SCAN M l~S 1H 21)

CANCEL

The Cancel Function is used to cancel all scheduled requests for

activation of a particular Task by removing those requests from the

Clock Queue. Cancellation does not affect the current execution of

the given Task nor does it affect schedule requests made in the

future. The latter case is covered by the DISABLE Function. However,

schedule requests which have already been made (and entered in the

Clock Queue) are discarded.

Form: CAN [CEL]_TSKNAMV

Variables:TSKNAM = Name of Task (1 - 6 characters)

Example: Cancel the activation of Task SCAN.

MCR>CAN SCAN)

3.3.15 RESUME

The Resume Function is used to resume the execution of a Task which

has been SUSPEND'ed.

Form: RES[UME]_TSKNfu~I_Resumption addressJV

3-11

Variables:TSKNAM = Name of Task (1 - 6 characters)

Example: Task SCAN has been previously SUSPEND'ed and it is
desired to resume its execution.

MCR>RES SCAN)

3.3.16 FIX IN CORE

The Fix Function is used to fix an inactive Task into a free partition.

This dedicates a partition to a Task and provides for a faster response

to the REQUEST, SCHEDULE, RUN, and SYNC Directives as well as responses

to external interrupts.

Form: FIX TSKNAMV

Variables:TSKNAM = Name of Task (1 - 6 characters)

Example: Fix Task SCAN in core.

MCR>FIX SCAN)

3.3.17 UNFIX FROM CORE

The Unfix Function is used to nullify a FIX Directive. If a FIXed

Task is active when an UNFIX Directive is issued, the partition will

be freed when the Task EXITs.

Form: UNF[IX]_TSKNAMV

Variables:TSKNAM = Name of Task (1 - 6 characters)

Example: Unfix Task SCAN from its partition.

MCR>UNF SCAN)

3.3.18 DISABLE

The Disable Function is used to instruct the system to reject further

REQUEST, SCHEDULE, RUN, or SYNC Directives or periodic rescheduling

for an indicated Task. This Function renders the specified Task in-

capable of responding to other Directives except ENABLE. A Disabled

Task is not deleted from the system. lef. REMOVE.)

3-12

Form:

Variables:TSKNAM = Name of Task (I - 6 characters)

Example: Disable the Task SCAN.

MCR>DIS SCAN)

3.3.19 ENABLE

The Enable Function is used to re-enable a DISABLEd Task.

Form: ENA[BLE] TSKNAMV

Variables:TSKNAM = Name of Task (1 - 6 characters)

Example: Task SCAN has been previously DISABLEd and it is desired
to re-enable it.

MCR>ENA SCA~

3.3.20 REASSIGN

The Reassign Function is used to alter the logical/physical device

relationships by deassigning a Logical Unit Number (LUN) from a device

and reassigning it to another device. This Function causes the

REQUESTing and EXITing of I/O Device Handler Tasks.

Form:

Variables:LUN
ND
00

= Logical Unit Number to be Reassigned
= Device to which the LUN is to be assigned
= Device from which the LUN is to be deassigned.

Examples: Assume the following LUN assignments currently exist:
LUN 2:TT~, LUN 3:TT~, LUN 4:DTS, and LUN 33:LP. It is
now desired to reassign those LUN's to the following
devices: LUN 2:TTl, LUN 3:TTl, LUN 4:DT7, and LUN 33:TT~.

MCR>REA 3 TTl TT~)
MCR>REA 2 TTl TT~)
MCR>REA 4 DTl DTS)
MCR>REA 33 TT~ LPJ

(or)
MCR>REA 2 TTl TT/3 TTl TT)
MCR>REA 4 DTl DTS/33 TT LP)

Note: The MeR Functions, including the REASSIGN Function,
use LUN's 2 and 3 for command input and output,
respectively. Therefore, it is recommended when
the user REASSIGN's these to another device, he
should do so by REASSIGNing both LUN's on the same

3-13

TT[n]

DT[n]
DK
PR
PP
LP

3,3.21 SAVE

line as shown in the second set of examples. The
first set of examples are valid when altering
LUN's 2 and 3 because the output from the REASSIGN
Function Task was altered first and further com
mands can still be input from LUN 2. Device names
associated with I/O Handler Tasks provided with
the system are:

= Teletype (n is the unit number which, if omitted,
will be assumed zero)

= DEC tape
= DECdisk
= High Speed Paper Tape Reader
= High Speed Paper Tape Punch
= Line Printer

The Save Function is used to record a core image of an RSX System

(from location 3ga to the top of core memory) at the beginning of disk

zero. The purpose of this Function is to provide a means for updating

the system after Tasks have been added or deleted. The updated system

can then be restored at any time by simply loading the RSX Bootstrap.

This Function should only be executed when the system is quiescent,

i.e., no Tasks should be active and no I/O should be in progress:

Since the entire RSX system is recorded on the disk, when the user

reloads the system, the System Calendar and clock will reflect the

previous settings at the time the Save was done. Therefore the user

should reset them to the correct date and time after reloading the

system.

Form: SAV [E] V

Example: Save a copy of the RSX system on disk zero.

MCR>SAV[E]J

3.3.22 OPEN REGISTER

The Open Register Function permits the user to access any core location

for the purpose of examination and/or modification. The user may

optionally enter a signed number in any opened location using either

IThe former does not imply the latter.

3-14

octal or decimal notation. Furthermore he may open and examine the

register whose address is specified by the low order 15 bits of the

currently open register or he may continue examination either in

ascending or descending address order.

Form: OPE [N]_AOR[Dn]V

Variables:AOR = Address of location to be examined. If

Form:

the specified address is valid, the address and
contents of that register are output followed by
the prompting character (»~

o = The letter "0" signifies a disk address (ADR)
rather than a core address to open.

n = Disk unit number.
Note: Userls response follows the prompting character

(» • The (I) symbol denotes "EXCLUSIVE OR n
•

ADDRESS/CONTENTS>[new contents] I [*V] I [tV] Iv
Variables:new contents = A number (1 - 6 digits) which is to re

place the contents of the currently opened
register. The number may be optionally
signed (+ or -) and/or a radix operator
(0 = decimal, a = octal).

EXAMPLES: Decimal -39
-039 (or) -D~~~~39

Octal 32
032 (or) +032 (or) 32

Terminators and special characters may be any of the
following:

)

ALT MODE

- Close the current register and open the
next higher register.

- Close the current register and terminate
the Function.

- Close the current register and open the
next lower register.

- Close the current register and open the
register specified by the lower 15 bits
of the current register.

Example: Comments follow the slash character and are used only to
describe the different operations.

MCR>OPE 242)
>¢¢242/¢¢2325)
>~H1243i~yJ3432*)
>~3432/¢¢¢¢5¢ ¢~~¢47)

>¢3433/~¢~432 -Dl~(ALT MODE)

MCR>OPE 243)
>¢0243/~~3432t)
>00242/0~2325 -6 (ALT MODE)
MCR>

3-15

/open register 242
/open register 243
iopen register 3432
/change contents of
/ 3432 to 47.
/change contents of
/ 3433 to -l~ decimal
/ and terminate
/ sequence.
/open register 243
/open register 242
/change contents to -6

CHAPTER FOUR
RSX SYSTEM DIRECTIVES

4.1 INTRODUCTION

Communication to the RSX System from the user is accomplished by the

use of system "Directives". Directives may be issued from within a

Task or indirectly by an operator via the teleprinter and the Monitor

Console Routine (MCR). The manner in which a Directive may be issued

varies according to its function and use.

Directive routines are structured to be reentrant and may be used to

direct the Executive to schedule and reschedule a Task, provide status

information for a Task, or queue I/O Handler Tasks to perform indicat-

ed I/O operations.

4.2 SUMMARY OF RSX DIRECTIVES & SYSTEM MACROS

CAL FUNCTION MACRO
CODE (octal) CALL

~l REQUEST
~2 SCHEDULE
~3 RUN
14 SYNC
~4 CANCEL
~6 SUSPEND
~7 RESUME

RSX DIRECTIVES

FORTRAN
CALL

REQST
SCHED
RUN
SYNC
CANCEL
SUSPND
RESUME

4-1

SYSTEM DIRECTIVE

Request Task execution
Schedule Task execution
Run Task in delta time
Sync Task execution
Cancel scheduled requests
Suspend Task execution
Resume Task execution

13 MARK

WAITFOR

WAIT

EXIT
CONNECT
DISCONNECT
READ
WRITE
DSKAL
DSKDAL
DSKPUT
DSKGET
ATTACH
DETACH
SEEK
ENTER
DELETE
CLOSE
HINF
DISABLE
ENABLE
FIX
UNFIX

MARK

WAITFR

WAIT

EXIT

READ
WRITE
DSKAL
DSKDAL
DSKPUT
DSKGET
ATTACH
DETACH
SEEK
ENTER
DELETE
CLOSE
HINF
DISABL
ENABLE
FIX
UNFIX

Set Event Variable in delta
time

Wait for an Event Variable to
be set

Wait for next Significant
Event

Terminate execution of the Task
Connect to interrupt line
Disconnect from interrupt line
Read from I/O Handler Task
Write to I/O Handler Task
Allocate disk storage
Deallocate disk storage
Put data on disk
Get data from disk
Attach Device-unit to a Task
Detach Device-unit from a Task
Seek file
Enter file
Delete file
Close file
Handler information
Disable Task
Enable Task
Fix Task in core
Unfix Task in core

SYSTEM MACROS

MACRO
CALL

DECLAR
TIME
DATE

INTENTRY

INTEXIT

FORTRAN
CALL

DECLAR
TIME
DATE

4.3 DESCRIPTION OF DIRECTIVES

SYSTEM FUNCTION

Declare a Significant Event
Obtain Time from Executive
Obtain Time and Date from
Executive

Interrupt Entry (register save
routine)

Interrupt Exit (register restore
routine)

The RSX Directives are implemented as CAL instructions* which point

to argument blocks (CAL Parameter Blocks). As a convenience to the

assembly language programmer, the Directives have been defined as

macro instructions and are commonly referred to as System Macros.

FORTRAN Tasks use Directives through standard CALL statements to a

group of FORTRAN Library Routines which themselves issue the Directives.

* See Glossary

4-2

The RSX System allows Task names of one to six characters in length,

however, not more than five characters may be used in Task names in

FORTRAN calls in order to comply with PDP-IS FORTRAN conventions.

Most Macro and FORTRAN calls to RSX Directives include the Task

priority and its Event Variable (EV). The Task priority is indicated

by a decimal number between 1 (highest priority) and 512 (lowest pri

ority). A priority value of zero instructs the Executive that the

Task's default priority is to be used. Directives usually have EV's

associated with them which provide information concerning the results

after the issuance of the Directive. If an EV is not specified

when issuing a Directive, the Executive does not attempt to provide

any information concerning the operation. Event Variables are set

positive upon successful completion, zero when the request is pending,

and negative to indicate rejection or failure. Appendix D provides

a complete list and explanation of the EV values returned by the

system.

In the following sections which describe the Directives, square brackets

of the form ([]) are used to specify optional arguments.

4.3.1 REQUEST

This Directive instructs the Executive to initiate the execution of a

Task based on an indicated software priority. The actual execution

depends upon the priority and partition availability. The Event Var-

iable, or the Event Variable and priority, may be omitted. A Task

cannot request itself. REQUEST may be issued from an interrupt service

routine. Event Variables ~turned are: +1, -2~1, -2~2, -2~4, and -777.

SYSTEM MACRO: REQUEST_TSKNAM[,P[,EV]]

Variables: TSKNAM
P
EV

= Name of Task (1 - 6 characters)
= Task Priority (1 -512)
= Event Variable Address

4-3

Examples: Request the execution of SCAN whose default priority
is 48.

REQUEST SCAN,~,EV
(or)

REQUEST SCAN,48,EV

Request the execution of SCAN at a priority of 2~.

REQUEST SCAN,2~,EV
(or)

REQUEST SCAN,2~ 'lIn this case the testing of the
IEvent Variable is not desired.

FORTRAN CALL: CALL_REQST(nHTSKNAM,IP[,IEV])

Variables: n
TSKNAM
IP

lEV

= Number of characters in Task Name
= Name of Task (1 - 5 characters)
= Task Priority (l - 512) May be either a

Variable name or a direct constant.
= Event Variable

Examples: Request the execution of SCAN whose default priority is
48.

CALL REQST (4HSCAN,~,IEV)
(or)

IP=48
CALL REQST (4HSCAN,IP,IEV)

Request the execution of SCAN at default priority and
no Event Variable is desired.

CALL REQST (4HSCAN,0)

4.3,2 SCHEDULE

This Directive instructs the Executive to initiate the execution of a

Task at an absolute time of day and to reactivate it continuously at

a specified interval thereafter based on the indicated priority. If

the Reschedule Interval is zero, the Task is executed only once at the

time of day specified. A Task may SCHEDULE itself, however, the

SCHEDULE Directive may not be issued from an interrupt service routine.

Event Variables returned are: +1, -2~1, -2~3, -2~4, and -777.

SYSTEM MACRO: SCHEDULE_TSKNAM,SH,SM,SSI,RI,RUI,PI,EV]J]

Variables: TSKN1u\1
SH
SM

= Name of Task (1 - 6 characters)
= Schedule Hour (~ - 23)
= Schedule Minute (_ - 59)

4-4

SS = Schedule Second (~ - 59)
RI Reschedule Interval (up to one day)
RU = Reschedule units (l=Ticks, 2=Seconds,

3=Minutes, and 4=Hours)
P = Task Priority (1 - 512)
EV = Event Variable Address

Examples: Schedule Task SCAN to run at 4:3~ P.M. and every'S min
utes thereafter at a priority of 2~~.

SCHEDULE SCAN~16~3~~~~5~3~2~~~EV
(or)

SCHEDULE SCAN~16?3~~~~S?3 /If Task1s default
/priority was 2~~ and
/Event Variable was
/not desired.

Schedule Task ALPHA to run at its default priority at
7:15 A.M. with no rescheduling and no Event Variable.

SCHEDULE ALPHA~7~lS

FORTRAN CALL: CALL_SCHED(nHTSKNAM,IT,IP[,IEV])

variables: n
TSKNAM
IT

IP
lEV

= Number of characters in Task Name
= Name of Task (1 - 5 characters)
= Name of 5 word (integer) array to describe

the time of scheduling and rescheduling.
The array is described below:

IT(l) = Schedule Hour (~ - 23)
IT(2) = Schedule Minute (~ - 59)
IT(3) Schedule Second (~ - 59)
IT(4) = Reschedule Interval (up to one

day)
IT(5) = Reschedule Units (l=Ticks,

2=Seconds, 3=Minutes, and
4=Hours)

= Task Priority (1 - 512)
= Event Variable

Examples: This example is equivalent to the first example in this
section using FORTRAN.

DIMENSION IT(S)
IT(l) = 16
IT(2) = 30
IT(3) = ~
IT(4) = 5
IT(S) = 3
TD

'" = 2¢¢
lEV
CALL

= ~
SCHED(4HSCAN~IT}IP~IEV)

CALL
(or)

SCHED(4HSCAN~IT~2~0}IEV)

Schedule SCAN as above with no Event Variable and at its
default priority.

IP = ~
CALL SCHED(4HSCAN,IT,IP)

4-5

4.3.3 RUN

To schedule SCAN only once, set the reschedule interval
equal to zero.

IT(4) = ¢
IP = ¢
CALL SCHED(4HSCAN,IT,IP)

This Directive instructs the Executive to initiate the execution of a

Task at a specified time interval from the time that the Directive is

issued and reactivate the Task continuously at a specified interval

thereafter. If the Reschedule Interval is zero, the Task is executed

only once. A Task may use this Directive to reschedule itself, but

the Directive may not be issued from an interrupt service routine.

Event Variables returned are: +1, -2~1, -2~3, -2~4, and -777.

SYSTEM MACRO: RUN_TSKNAM,SD,SU[,RI,RU(,P[,EV]]]

Variables: TSKNAM = Name of Task (1 - 6 characters)
SD = Schedule Delta time from now (up to one

day)
SU = Delta Units (l=Ticks, 2=Seconds, 3=Minutes,

and 4=Hours)
RI = Reschedule Interval (up to one day)
RU = Reschedule Units (l=Ticks, 2=Seconds,

3=Minutes, and 4=Hours)
P = Task Priority (1 - 512)
EV = Event Variable Address

Examples: Run the Task IN ITS 5 seconds from now and every l~
minutes thereafter at priority of 512.

RUN INITS,5,2,l¢,3,512,EV

Run the same Task at its default priority with no
Event Variable specified.

RUN INITS,5,2,l¢,3

FORTRAN CALL: CALL_RUN(nHTSKNAM,IT,IP[,IEV])

Variables: n
TSKNAM
IT

= Number of characters in Task Name
= Name of Task (1 - 5 characters)
= Name of 4 word (integer) array to describe

the time of scheduling and rescheduling.
The array is described below:

IT(l) = Schedule Delta time from now
(up to one day)

4-6

IT(2) = Delta Schedule Units (l=Ticks,
2=Seconds, 3=Minutes, and
4=Hours)

IT(3) = Reschedule Interval (up to one
day)

IT(4) = Reschedule Units (l=Ticks,
2=Seconds, 3:Minutes, and
4=Hours)

IP = Task Priority (l - 512)
lEV = Event Variable

Example: Run the Task INITS 5 seconds from now and every l~
minutes thereafter at a priority of 512.

4.3.4 SYNC

DIMENSION IT(4)
IT(l) = 5
IT(2) = 2
IT(3) = 10
IT(4) = 3
IP ::: 512
CALL RUN(5HINITS,IT,IP,IEV)

This Directive causes the Executive to execute a Task at a specified

interval after the next hour, minute, second, or tick and to reinitiate

the Task continuously at a specified interval.

A Schedule Delta Time value of zero causes the named Task to be start-

ed on the next occurrence of the Synchronization Unit. A Reschedule

Interval of zero causes the Task to be executed only once. This Di-

rective may not be issued from an interrupt service routine. A Task

may use SYNC to reschedule itself. Event Variables returned are: +1,

-2~l, -2~3, -2~4, and -777~

SYSTEM MACRO: SYNC_TSKNAM,SZ,SD,SUI,RI,RUI,Pf,EV]]]

Variables: TSKNAM Name of Task (1 - 6 characters)
SZ = Synchronization units (l=Ticks, 2=Seconds,

3=Minutes, and 4=Hours)
SO = Schedule Interval from synchronization

time (up to one day)
SU = Schedule units (l=Ticks, 2=Seconds,

3=Minutes, and 4=Hours)

4-7

RI = Reschedule Interval (up to one day)
RU = Reschedule Units (l=Ticks, 2=Seconds,

3=Minutes, and 4=Hours)
P = Task Priority (1 - 512)
EV = Event Variable Address

Examples: Assuming the time is now 14:27:47, run Task FRED at
l4:28:~9 at a priority of 2~ and reschedule it every
4 minutes thereafter.

SYNC FRED,3,9,2,4,3,2¢,SYNEV

Schedule the execution of SCAN l~ seconds after the next
minute mark and reschedule it every hour thereafter at
priority 21.

SYNC SCAN,3,1¢,2,1,4,21,SYNEV

FORTRAN CALL: CALL_SYNC(nHTSKNAM,IT,IP[,IEV])

Variables: n
TSKNAM
IT

IP
IEV

= Number of characters in Task Name
= Name of Task (1 - 5 characters)
= Name of 5 word (integer) array to describe

the time of synchronization, scheduling,
and rescheduling. The array is described
below:

IT(l} = Synchronization Units (l=Ticks,
2=Seconds, 3=Minutes and
4=Hours)

IT(2) = Schedule Interval from synchro
nization time (up to one day)

IT(3) = Schedule Units (l=Ticks,
2=Seconds, 3=Minutes, and
4=Hours)

IT(4) = Reschedule Interval (up to one
day)

IT(5) = Reschedule Units (l=Ticks,
2=Seconds, 3=Minutes, and
4=Hours)

= Task Priority (1 - 512)
= Event Variable

Examples: Schedule the execution of Tasks FRED and SCAN as
described in the examples for the System Macros.

INTEGER FREDEV,SCANEV,SCANP,FREDP
DIMENSION IT(S)
IT(1) = 3
IT(2) = 9
IT(3) = 2
IT(4) = 4
IT(S) = 3
FREDEV = ¢
FREDP = 2¢

CALL SYNC(4HFRED,IT,FREDP,FREDEV)
SCANEV = ¢
SCANP = 21
IT(2) = 1¢
IT(4) = 1

4-8

4.3.5

IT(S) = 4

12 CALL SYNC(4HSCAN,IT,SCANP,S~ANEV)
C INSURE BOTH SYNC REQUESTS WERE ACCEPTED

IF(SCANEV.OR.FREDEV.LT.~) GO TO 1~
C BOTH SYNC REQUESTS WERE ACCEPTED AT THIS POINT

C REPORT FAILURE OF SYNC REQUESTS TO BE ACCEPTED TO
CONSOLE OPERATOR.

1~ WRITEC3,11)
11 FORMATC32H TASKS FRED OR SCAN NOT SYNC'ED.//)

STOP
END

CANCEL

This Directive instructs the Executive to remove all entries which

appear in the Clock Queue for a specified Task. Cancel may not be

issued from an interrupt service routine and has no effect on an

active Task. Event Variables returned are: +1 and -2~1.

SYSTEM MACRO: CANCEL _ TSKNAM [,EV]

Variables: TSKNAM = Name of Task (1 - 6 characters)
EV = Event Variable Address

Example: Cancel the activation of Task SCAN.

CANCEL SCAN,EV

FORTRAN CALL: CALL_CANCEL(nHTSKNAM[,lEV])

Variables: n = Number of characters in Task Name
TSKNAM = Name of Task (1 - 5 characters)
lEV = Event Variable

Example: Cancel the activation of Task SCAN

CALL CANCEL(4HSCAN,IEV)

4.3.6 SUSPEND

This Directive instructs the Executive to suspend execution of the

Task issuing this Directive. The Task remains active in its core

partition but execution is not permitted until the system receives a

RESUME Directive. The Executive ignores this Directive if it is

4-9

issued from an interrupt service routine.

SYSTEM ~~CRO: SUSPEND

FORTRAN CALL: CALL SUSPND

4.3.7 RESUME

This Directive instructs the Executive to resume execution of a Task

which has been SUSPENDed. Task execution continues either at a spec-

ified Resumption Address or, if not specified, at the address immediate-

ly following the SUSPEND Directive. Event Variables returned are: +1,

-2~2, and -2{1S.

SYSTEM MACRO: RESUME_TSKNAM[,RA[,EV]]

Variables: TSKNAM
RA
EV

= Name of Task (1 - 6 characters)
= Resumption Address (octal)
= Event Variable Address

Example: Resume Task TSKA at location RSTRT.

RESUME TSKA,RSTRT,EVA

FORTRAN CALL: CALL_RESUME(nHTSKNAM[,IEV])

Variables: n
TSKNAM
lEV

= Number of characters in Task Name
= Name of Task (1 - 5 characters)
= Event Variable

Example: Resume Task TSKA.

4.3.8 MARK

CALL RESUME(4HTSKA,IEV)

Note: The RESUME subroutine permits a SUSPENDed Task
to resume only at the location immediately
following the CALL SUSPND statement.

This Directive instructs the Executive to clear a specified Event

Variable and set it to a non-zero value after a specified time inter-

val has elapsed. If the request is accepted, the Event Variable is

4-10

cleared. After t~e specified interval has elapsed, the Event Varia

ble is set to +1 and a Significant Event is declared. The user may

test the Event Variable as desired. The time interval indicates time

from the execution of the Directive. The Mark Directive is ignored

if issued from an interrupt service routine. Event Variables returned

are: +1, -2~3, and -777.

SYSTEM MACRO: MARK _ MI , MU , EV

Variables: MI
MU

EV

= Delta Interval (up to one day)
= Delta Units (!=Ticks, 2=Seconds, 3=Minutes,

and 4=Hours)
= Event Variable Address

Example: Set Event Variable TSTEV 5 minutes from now.

MARK 5,3,TSTEV

FORTRAN CALL: CALL .J-1ARK (IT, lEV)

Variables: IT = Name of 2
the time.

IT(l)
IT(2)

word (integer) array to describe
The array is described below:

= Delta Interval (up to one day)
= Delta Units (l=Ticks, 2=Seconds,

3=Minutes, and 4=Hours)
lEV Event Variable

Example: Same as above example except in FORTRAN.

4.3.9 WAITFOR

DIMENSION IT(2)
IT(l) = 5
IT(2) = 3
CALL MARK(IT,IEV)

This Directive instructs the Executive to examine a specified Event

Variable and, if zero, suspend execution of the issuing Task until

the Event Variable is found to be non-zero. The Event Variable is

examined at each occurrence of a Significant Event. Once a non-zero

value is detected, the suspended Task is resumed (contingent on pri-

ority) at the address immediately following the Directive (CAL). If

WAITFOR is issued from an interrupt service routine, it will be ignored.

4-11

SYSTEM MACRO: WAITFOR EV

Variables: EV = Event Variable Address

Example: In this example, the Mark Directive requests that an
Event Variable (MRKEV) be zeroed for 5 minutes and then
set non-zero. The WAITFOR detects the fact that the
Event Variable is zero and suspends Task execution un
til the value becomes non-zero (i.e., in 5 minutes).
The Task is then resumed at the instruction immediately
following the WAITFOR.

MARK 5,3,MRKEV
WAITFOR MRKEV

FORTRAN CALL: CALL_WAITFR(IEV)

Variables: lEV = Event Variable

Example: Same as preceding example except in FORTRAN.

DIMENSION IT(2)
IT(l) = 5
IT(2) = 3

C lEV WILL AUTOMATICALLY BE CLEARED BY MARK
CALL MARK(IT,IEV)
CALL WAITFR(IEV)

4.3.10 WAIT

This Directive instructs the Executive to suspend execution of the

issuing Task until the next Significant Event occurs. The Task is re-

surned (contingent upon priority) at the next Significant Event and con=

tinues at the location immediately following the WAIT. It is the

responsibility of the Task issuing the WAIT to determine the meaningful-

ness o~ the Significant Event which caused it to be resumed. This

Diractive is ignored if issued from an interrupt service routine.

SYSTEM MACRO: WAIT

FORTRAN CALL: CALL WAIT

4.3.11 EXIT

This Directive causes the Executive to terminate execution of the

issuing Task. If the issuing Task is not fixed-in-core (via FIX) the

4-12

core partition occupied by the Task becomes available to other Tasks.

This Directive should not be issued until all transfers to the par-

tition (e.g. I/O transfers, Task-to-Task transfers, Event Variable

settings, etc.) have been completed. This Directive is ignored if

issued from an interrupt service routine.

SYSTEM ~_~CRO: EXIT

FORTRAN CALL: CALL EX IT

4.3.12 CONNECT

This Directive instructs the Executive to create a linkage between a

specified API (Automatic Priority Interrupt) trap address and a spe-

cified entry point to an interrupt service routine (there is one trap

address for each of the 32 API lines in the PDP-IS). Event Variables

returned are: +1, -3~1, and -3~2. The following is a list of API

line assignments

LINE NUMBER DEVICE LINE NUMBER DEVICE

~4 DECtape 24 Diskpack
~5 Magtape 25 Plotter
~6 (unused) 26 (unused)
f)7 (unused) 27 (unused)
l~ Paper Tape Reader 3~ (unused)
11 *Clock 31 UDC15
12 Power Failure 32 AFC15
13 Memory Parity 33 (unused)
14 VP15 Display 34 *LT15/LT19 Printers
15 Card Reader 35 *LT15/LT19 Keyboards
16 Line Printer 36 DECtape (additional)
17 A/D Converter 37 Dataphone (additional)
2~ Interprocessor Buffer 4$l *Console TTY (Key-

board;
21 (unused) 41 *Console TTY (Print-

er)
22 Dataphone 42 Paper Tape Punch
23 *Disk 43 Memory Protect

*These l~nes are always connected to the system.

4-13

SYSTEM MACRO: CONNECT_LN,CL[,EV]

Variables: LN
CL
EV

= Interrupt line Number (octal)
= Entry Address of interrupt service routine
~ Event Variable Address

Example: Connect an interrupt service routine for an A/D Converter
(entry point called ADINT) to interrupt line 31.

CONNECT 31,ADINT,ADEV

FORTRAN CALL: No subroutine is provided for this Directive since
FORTRAN is not an appropriate language for writing
interrupt handling routines.

4.3.13 DISCONNECT

This Directive instructs the Executive to remove the linkage created

between an Automatic Priority Interrupt trap address and an interrupt

service routine entry by the CONNECT Directive. Event Variables

returned are: +1, -3~1, and -3~2.

SYSTEM MACRO: DISCONNECT_LN,CL,EV

Variables: LN
CL
EV

= Interrupt Line Number (octal)
= Entry Address of interrupt service routine
= Event Variable Address

Example: Disconnect the A/D-Converter from interrupt line 31.

DISCONNECT 31,ADINT,ADEV

FORTRAN CALL: No subroutine is provided for this Directive since
FORTRAN is not an appropriate language for writing
interrupt handling routines.

4.3.14 READ

READ generates a form of the QUEUE I/O Directive which causes input

of formatted ASCII or Binary to a specified buffer via the I/O Device

Handler Task assigned to the indicated Logical unit Number. The

Event Variable specified is set to zero when the request is accepted

and subsequently is set to an appropriate value indicating the status

4-14

of the operation. Event Variables returned are: +2, +1, -5, -7, -" ,

-12, -16, -23, -l~l, -1~2, -1~3, and -777.

SYSTEM MACRO: READ_LUN,MODE,BUFF,SIZE[,EV]

variables: LUN

MODE

BUFF
SIZE
EV

= Logical Unit Number (decimal)

= I/O Data Mode (~=IOPS BINARY, l=IMAGE
BINARY, 2=IOPS ASCII, and 3=IMAGE ASCII)

= Starting Address of user's buffer
= Maximum number of words to transfer (octal)
= Event Variable Address

Example: Read 256 (decimal) words in lOPS ASCII from the device
assigned to LUN 3 and s.tore them in a blJffer called TXTBF.

READ 3,2,TXTBF,402,INDEV
wA\-r~f INCti;1/

FORTRAN CALL: No subroutine is necessary to implement this Direc
tive. The standard READ statement as described in
the PDP-IS FORTRAN IV Manual is used.

Example:

10

4,3.15 WRITE

DIMENSION TXTBF(256)
READ (3,10) TXTBF
FORMAT(256A1)

WRITE generates a form of the QUEUE I/O Directive which causes output

of formatted ASCII or Binary from a specified buffer to the I/O Device

Handler Task assigned to the indicated Logical Unit Number. The Event

Variable specified is set to zero when the request is accepted and

subsequently set to an appropriate value indicating the status of the

operation. Event Variables returned are: +2, +1, -6, -7, -11, -12,

-15, -16, -23, -l~l, -1~2, -1~3, and -777.

Variables: Logical Unit Number (decimal) LUN =
MODE

BUFF
SIZE
EV

=

=
=

I/O Data Mode (~=IOPS BINARY, l=IMAGE
BINARY, 2=IOPS ASCII, and 3=IMAGE ASCII)
Starting Address of user's buffer
Maximum number of words to transfer (octal)
Event Variable Address

4-15

FORTRAN CALL: No subroutine is necessary to implement this Direc
tive. The standard WRITE statement as described in
the PDP-IS FORTRAN IV Manual is used.

Example: DIMENSION TXTBF(256)
WRITE(6.,10)TXTBF

4.3.16

l~ FORMAT(256~1)

write out II WARNING , XFC OSCILLATING ATII followed by a
frequency on LUN 3.

WRITE(3.,1~)IFQ
l~ FORMAT(28H WARNING., XFC OSCILLATING AT., 16//)

DSKAL

DSKAL generates a form of the QUEUE I/O Directive to reserve a disk

storage area of a specified size. If the space is available, the

starting address, physical disk number, and actual amount of, space

allocated1 (in increments of 128 decimal words) is returned to a

Control Table which is contained within the issuing Task or in a

COMMON Block. The actual allocation does not occur instantaneously;

hence; one must test the Event Variable to determine completion.

Event Variables returned are: +1, -15, -1~4, and -777.

SYSTEM MACRO: DSKAL_CTB[,EV]

Variables: CTB Address of a Control Table of the
following format:

Word 1: Desired amount of disk
storage which is replaced
by the actual amount allocated
if allocated.

Word 2: Physical disk unit number
(returned at completion of
oper a tion) •

Word 3: Absolute starting address of
the space allocated relative
to the physical disk unit
number (returned at completion
of the operation).

EV = Event Variable address

lwhich may exceed the amount requested.

4-16

Example: Request 79~ decimal words of disk storage. (Since
allocation is given in increments of 128 decimal words,
the actual allocation will be 768 decimal words.)

LAC (1274)
DAC CTB+O
DSKAL CTB,EV
WAITFOR EV

/SETUP FIRST WD OF CONT TBL.

/REQUEST ALLOCATION OF 700
/WORDS OF DISK STORAGE.

FORTRAN CALL: CALL_DSKAL (ICTB,NW[,IEV])

Variables: ICTB

lEV
. NW

= Control Table (integer array). The Control
Table is described below:

Word 1: Actual amount of space al
located (returned at comple
tion of the operation).

Word 2: Physical disk unit number
(returned at completion of
oper a tion) •

Word 3: Absolute starting address of
the space allocated relative
to the physical disk unit
number (returned at completion
of the o~eration).

Event Variable
Desired storage in words

Example: Same as above except in FORTRAN.

DIMENSION ICTB(3)
CALL DSKAL (ICTB,700,IDKEV)
CALL WAITFR (IDKEV)

Note: Space will not be allocated across disk unit
bounds (i.e., from one unit to another). No
more than l3~,944 words may be allocated by a
single DSKAL command.

4.3.17 DSKDAL

DSKDAL generates a form of the QUEUE I/O Directive to release a disk

storage area, which had previously been allocated by DSKAL, from the

Disk. Event Variables returned are: +1, -15, -1~4, and

-777.

SYSTEM MACRO: DSKDAL_CTB[,EV]

Variables: CTB

EV

Control Table Address. This address should
be the same as that used by DSKAL which
originally allocated the space.

= Event Variable Address

4-17

Example: Request deallocation of the disk storage allocated
in the previous section. There is no concern for
when the disk space is actually freed.

DSKDAL CTB

FORTRAN CALL: CALL_DSKDAL(ICTBf,IEV])

Var iables :. ICTB

lEV

= Control Table (integer array). This address
should be the same as that used by DSKAL
which originally allocated the space.

= Event Variable

Example: Same as above except in FORTRAN

DIMENSION ICTB(3)

CALL DSKDAL(ICTB,IEV)

4.3.18 DSKPUT

DSKPUT generates a form of the QUEUE I/O Directive to output data onto

the disk from a specified area in core. This Directive is used when

total freedom in data structuring and random access capabilities are

desired. Event Variables returned are: +1 and -N, where N is the

contents of the disk status register if a disk error occurs.

SYSTEM MACRO: DSKPUT_CTB[,EV]

Variables: CTB

EV

Address of a Control Table of the
following format:

Word 1: Disk unit number
Word 2: Starting address on disk
Word 3: Starting address in core
Word 4: Length of transfer in words

Event Variable address

4-18

FORTRAN CALL: CALL_DSKPUT(ICTA,IOA,NW,ARRAY[,IEV])

Variables: ICTA = Device Control Table (integer array).
This array must be the same as that used
to allocate the space onto which the data
is being written since this uses infor
mation in the Control Table obtained via
DSKAL

lOA Disk offset address. The relative position
'(in words) within an array at which the
transfer to the disk is to begin.

NW = Number of words (decimal) to transfer.
ARRAY The name of the array containing the data

to be transferreda
lEV = Event Variable

Example: Allocate 128~ decimal words of disk storage and write
out 256 words on the disk from BUF. Writing on disk
is to begin 128 words beyond the starting address of
the beginning of the disk storaqe area.

4.3.19 DSKGET

DIMENSION ICTA(3),BUF(256)
CALL DSKAL(ICTA,128~,IDKEV)
CALL WAITFR(IDKEV)
CALL DSKPUT(ICTA,128,256,BUF,IDKEV)

DSKGET generates a form of the QUEUE I/O Directive to read data from

the disk into a specified area in core. This Directive is used where

total freedom in data structuring and random access capabilities are

desired. Event Variables returned are: +1 and -N, where N is the

contents of the disk status register if a disk error occurs.

SYSTEM MACRO: DSKGET_CTB[,EV]

Variables: CTB

EV

Address of a Control Table of the
following format:

Word 1: Disk unit number
Word 2: Starting address on disk
Word 3: Starting address in core
Word 4: length of transfer in words

Event Variable address

/

4-19

FORTRAN CALL: CALL_DSKGET(lCTA,lOA,NW,ARRAY[,lEV])

Variables: lCTA = Device Control Table (integer array).
Array must be the same as that used to
allocate the space from which the data
is being read since this uses information
in the Control Table obtained via DSKAL. -

lOA Disk offset address. The relative position
(in words) within an array at which the
transfer from the disk is to begin.

NW = Number of words (decimal) to transfer.
ARRAY = The name of the array where data is to be

transferred.
lEV = Event Variable

Example: Allocate 512 decimal words of disk storage and later
read in the last 256 decimal words into BUF.

DIMENSION ICTA(3),BUF(256)
CALL DSKAL (ICTA,512,IEV)
CALL WAITFR(IEV)

CALL DSKGET(ICTA,256,256,BUF,IEV)

Example: This final FORTRAN example allocates 1024 words of disk
storage, writes 256 words from four different arrays, later reads
the last array of 256 words, and then deallocates the disk space
and EXITs.

COMMON BUF2(128) ,ICTA(3) ,BUF1(128) ,BUF3(128) ,BUF4(128)
C
C ALLOCATE 1~24 WORDS OF DISK STORAGE
C

C

CALL DSKAL (ICTA,1~24,IEV)
CALL WAITFR (lEV)

C INSURE ALLOCATION WAS MADE
C

IF (lEV .GT. ~) GO TO 2~
C
C STORAGE NOT ALLOCATED, TYPE MESSAGE & EXIT
C

WRITE (3,1~)

l~ FORMAT (2~H ALLOCATION NOT MADE)
CALL EXIT

C
C ALLOCATION MADE, WRITE OUT ARRAYS
C
2~ CALL DSKPUT (ICTA,~,256,BUF1,IEV)

CALL DSKCK (lEV)
CALL DSKPUT (lCTA,256,256,BUF2,IEV)
CALL DSKCK (lEV)
CALL DSKPUT (lCTA,512,512,BUF3,lEV)
CALL DSKCK (lEV)

4-20

C
C READ IN LAST ARRAY FROM DISK
C

CALL DSKGET (ICTA,768,256,BUF4,IEV)
CALL DSKCK (lEV)

C
C RELEASE DISK SPACE & EXIT
C

CALL DSKDAL (ICTA)
STOP
END

SUBROUTINE DSKCK (lEV)
CALL WAITFR (lEV)
IF (lEV .LT. ~) GO TO 1~
RETURN

1~ WRITE (3,2~)
2~ FORMAT (llH DISK ERROR)

CALL EXIT
END

4-21

4.3.20 ATTACH

ATTACH generates a form of the QUEUE I/O Directive which requests the

exclusive use of an I/O device. Once the Directive is accepted, no

other Task may use the device regardless of priority. All requests

by other Tasks, however, will be queued and processed whenever the

device becomes free (DETACHED). The REASSIGN MCR Function, however,

overrides the ATTACH. Event Variables returned are: +1, -6, -24,

-1,1, -1~2, -1~3, and -777.

SYSTEM MACRO: ATTACH_LUN[,EV]

variables: LUN
EV

= Logical Unit Number (decimal)
= Event Variable Address

Example: Attach device assigned to LUN 32.

ATTACH 32,ATEV

FORTRAN CALL: CALL~TTACH(LUN[,IEV])

variables: LUN
Im

= Logical Unit Number
= Event Variable

Example: Same as above except in FORTRAN.

CALL ATTACH(32,IEV)

4.3.21 DETACH

DETACH generates a form of the QUEUE I/O Directive which releases a

device from the exclusive use of the issuing Task. Previous

requests which were queued by the I/O Handler Task while ATTACHed will

now be processed. The Task issuing the DETACH Directive must be the

Task which ATTACHed the device. Event Variables returned are: +1,

-6, -1'1, -1~2, -1~3, and -777.

SYSTEM MACRO: DETACH_LUN[,EV]

Variables: LUN
EV

= Logical Unit Number (decimal)
= Event Variable Address

4-22

Example: Detach device assigned to LUN 23.

DETACH 23,DTEV

FORTRAN CALL: CALL_DETACH(LUN[,IEV])

Variables: LUN
lEV

= Logical Unit Number
= Event Variable

Example: Same as above except in FORTRAN.

CALL DETACH(23,IEV)

4.3.22 SEEK (OPEN FILE FOR INPUT)

SEEK generates a form of the QUEUE I/O Directive which requests the

I/O Handler Task assigned to the indicated Logical unit Number to

search the device's file directory for a specified file name. This

Directive is used to initiate file-oriented transfers using the READ

Directive. Once the SEEK has been accepted by the I/O device, it

effectively attaches the LUN to the issuing Task. Event Variables

returned are: +1, -6, -l~, -12, -13, -l~l, -1~2, -1~3, and -777.

SYSTEM MACRO: SEEK_LUN,FLNAM,EXT[,EV]

Variables: - Logical Unit Number
= File name (1 - 6 characters)

LUN
FLNM1
EXT
EV

= File name extension (1 - 3 characters)
= Event Variable Address

Example: Search the directory of the file-oriented device
associated with LUN 6 for a file named DATA SRC.

SEEK 6,DATA,SRC,EV

FORTRAN CALL: CALL_SEEK(LUN,nHFLNAM,nHEXT[,IEV])

Variables: LUN = Logical Unit Number
n = Number of characters in file name or

extension.
FLNAM = File Name (1 - 5 char ac ter s)
EXT = File Name Extension (1 - 3 char ac ter s)
lEV = Event Variable

Example: Same as above except in FORTRAN.

CALL SEEK(6,4HDATA,3HSRC,IEV)
C WAIT FOR SEEK TO COMPLETE

CALL WAITFR(IEV)

4-23

4.3.23 ENTER (OPEN FILE FOR OUTPUT)

ENTER generates a form of the QUEUE I/O Directive which requests the

I/O Handler Task assigned to the indicated Logical Unit Number to

search the device's file directory for a free Directory Entry Block

in which to place the file name specified. This Directive is issued

prior to issuing a WRITE Directive to a file-oriented device. The

actual recording of the file name does not occur until the CLOSE.

Once the ENTER has been accepted by the I/O device, it effectively

attaches the LUN to the issuing Task. Event Variables returned are:

+1, -6, -1~, -12, -14, -15, -1~1, -1~2, -1~3, and -777.

SYSTEM MACRO: ENTER_LUN,FLNAM,EXT[,EV]

Variables: = Logical Unit Number (decimal)
= File Name (1 - 6 characters)

LUN
FLNAM
EXT
EV

= File Name Extension (1 - 3 characters)
= Event Variable Address

Example: Enter into the directory of the file-oriented device
associated with LUN 6 the file name DATA SRC.

ENTER 6~DATA,SRC,EV

FORTRAN CALL : CALL_ENTER (LUN, nHFLNAH, nHEXT [1 lEV])

Variables: LUN = Logical Unit Number
n Number of characters in file name or

extension.
FLNAM = File Name (1 - 5 characters)
EXT = File Name Extension (1 - 3 characters)
lEV = Event Variable

Example: Same as above except in FORTRAN.

CALL ENTER(6,4HDATA,3HSRC,IEV)

4.3.24 DELETE

DELETE generates a form of the QUEUE I/O Directive which requests the

I/O Handler Task assigned to the indicated Logical Unit Number to re-

move the indicated file name from the device's file directory. Event

Variables returned are: +1, --6, -l~, -12, -l~l, -1~2, -1~3, and -777.

4-24

SYSTEM MACRO: DELETE_LUN,FLNAM,EXT[,EVj

variables: LUN
FLNAM
EXT
EV

= Logical Unit Number (decimal)
= File Name (1 - 6 characters)

File Name Extension (1 - 3 characters)
= Event Variable Address

Example: Delete the file DATA.SRC from the directory of the file
oriented device associated with LUN 6.

DELETE 6,DATA,SRC,EV

FORTRAN CALL: CALL_DELETE(LUN,nHFLNAM,nHEXT[,IEV])

variables: LUN = Logical Unit Number
n = Number of -characters in file name or

extension.
FLNAM = File Name (1 - 5 characters)
EXT File Name Extension (1 - 3 characters)
lEV = Event Variable

Example: Same as above except in FORTRAN.

CALL DELETE(6,4HDATA,3HSRC,IEV)

4.3.25 CLOSE

CLOSE generates a form of the QUEUE I/O Directive which instructs the

appropriate I/O Handler Task that the issuing Task has completed an

I/O operation to the named file which resides on the device. Once a

CLOSE is issued, subsequent transfers to or from the CLOSEd file are

not possible until an appropriate SEEK or ENTER is again issued. Event

Variables returned are: +1, -6, -11, -12, -15, -1,0'1, -1~2, -1,0'3,

and -777.

SYSTEl"v1 MACRO: CLOSE _ LUN , FLNAM, EXT [, EV]

Variables: LUN
FLNAM
EXT
EV

= Logical unit Number (decimal)
= File Name (1 - 6 characters)
= File Name Extension (1 - 3 characters)
= Event Variable Address

Example: Close the file DATA SRC on the file-oriented device
associated with LUN .6.

CLOSE 6,DATA,SRC,EV

FORTRAN CALL: CALL_CLOSE(LUN,nHFLNAM,nHEXT[,IEV])

4-25

Variables: LUN = Logical Unit Number
n = Number of characters in file name or

extension.
FLNAM = File Name (1 - 5 characters)
EXT = File Name Extension (1 - 3 characters)
lEV = Event Variable

Example: Same as above except in FORTRAN.

CALL CLOSE(6,4HDATA,3HSRC,IEV)

4.3.26 HANDLER INFORMATION

This Directive provides rudimentary information about the physical

device and the I/O handler associated with a particular Logical Unit

Number (LUN). Handler information is coded into a single word, which

is stored in the requestor's Event Variable as follows:

Bit ~

Bit 1

Bit 2

Bit 3

Bits 4
thru

11

Bits 12
thru

17

UNUSED

INPUT

OUTPUT

This bit is unused to allow a handler to
return a value of -6 if this function was
not implemented.

Set to 1 if data can be input from the
device to the computer.

Set to 1 if data can be output from the
computer to the device.

FILE-ORIENTED Set to 1 if the I/O handler treats

UNIT

the device as being "file-oriented".
A device is "file-oriented" if SEEK and
ENTER are required prior to READ and
WRITE, respectively. "File-oriented ll

implies, but does not guarantee, the
existence of a file directory or that the
device is bulk or mass storage.

Uni t number,

DEVICE CODE These six bits allow up to 63 decimal
devices (zero is not a legal device

code). The codes listed below are fixed
for standard DEC devices. Users should
assign codes to their own devices starting
with 63 and working towards lower numbers.

1 TT The TTY terminals (console, LTlS,
and LT19)

2 OK The RFlS fixed-head DECdisk
3 DP The RP~2 disk pack
4 DT The TC~2D DEC tape
5 MT The TCS9 MAGtape

4-26

6 PR
7 CD
Iff PP
11 LP
12 VP
13 VT

The PClS Paper Tape Reader
The CR~3B Card Reader
The PClS Paper Tape Punch
The LPIS Line Printer
The VPlS Storage Scope
The VTlS Display

SYSTEM MACRO: HINF_LUN,EV

variables: LUN
EV

= Logical Unit Number (decimal)
= Event Variable Address

FORTRAN CALL: CALL_HINF(LUN,IEV)

Variables:

" 3 2'7 't. I I DISABLE

LUN
lEV

Logical unit Number
= Event Variable

This Directive causes the Executive to render the specified Task in-

capable of responding to other Directives except ENABLE. The Task

is not deleted from the system. If the Task is active, it will con-

tinue to execute, however, schedule activations for that Task will

be ignored when they come due. When the Task is subsequently ENABLEd,

previously established rescheduling for the Task will continue in

effect. Event Variables are: +1 and -2~1.

SYSTEM MACRO: DISABLE_TSKNAM[,EV]

Variables: TSKNAM Name of Task (1 - 6 characters)
EV = Event Variable Address

Example: Disable Task named SCAN.

DISABLE SCAN.,EV

FORTRAN CALL: CALL_DISABL(nHTSKN~i[,IEV])

variables: n
TSKNAM
lEV

Number of characters in Task Name
= Name of Task (1 - S characters)
= Event Variable

Example: Same as above except in FORTRAN.

CALL DISABL(4HSCAN.,IEV)

4-27

4.3.28 ENABLE

This Directive causes the Executive to restore the specified Task to

its normal state (i.e., as it was before DISABLE was issuedj. Event

Variables returned are: +1 and -2~1.

SYSTEM MACRO: ENABLE_TSKNAM[,EV]

Variables: TSKNAM = Name of Task (1 - 6 characters)
EV = Event Variable Address

Example: Enable Task SCAN which is currently disabled.

ENABLE SCAN,EV

FORTRAN CALL: CALL_ENABLE(nHTSKNAM[,lEV])

Variables: n
TSKNAM
lEV

= Number of characters in Task Name
= Name of Task (1 - 5 characters)
= Event Variable

Example: Same as above except in FORTRAN.

CALL ENABLE(4HSCAN,IEV)

4.3.29 FIX

This Directive instructs the system to load an inactive Task into an

available partition. The Task is not executed, but is fixed-in-core

and may therefore respond rapidly to a request for execution. FIX

does not wait for a Task to be loaded before setting EV to +1. The

Directive may not be issued to an active Task. Event Variables re-

turned are: +1, -2gl, -2~2, -2~4, -2~7, and -21~.

SYSTEM MACRO: FlX_TSKNAM[,EV]

Variables: TSKNAM = Name of Task (1 - 6 characters)
EV = Event Variable Address

FORTRAN CALL: CALL_FlX(nHTSKNAM[,IEV])

4-28

Variables:

4.3.30 UNFIX

n
TSKNAM
lEV

= Number of characters in Task Name
= Name of Task (1 - 5 characters)
= Event Variable

This Directive instructs the Executive to nullify a FIX Directive

thereby freeing a partition for use by other Tasks. If UNFIX is issued

to a Task which is currently running, the Task will be allowed to run

to completion before the Directive becomes effective. Event Variables

returned are: +1, -2~1, and -2~7.

SYSTEM MACRO: UNFIX_TSKNAM[,EV]

Variables: TSKNAM = Name of Task (1 - 6 characters)
EV = Event Variable Address

FORTRAN CALL: CALL_UNFIX(nHTSKNAM[,IEV])

Variables: n
TSKNAM
lEV

= Number of characters in Task Name
= Name ·of Task (1 - 5 characters)
= Event Variable

4.3.31 DECLARE A SIGNIFICANT EVENT

The DECLAR Directive provides the means for declaring to the Executive

that a Significant Event has occurred. The occurrence of a Significant

Event signals the Executive to initiate a scan of the Active Task List

with control passing to the Task having the highest priority. DECLAR

is particularly useful for intertask signalling and synchronization.

SYSTEM MACRO: DECLAR

FORTRAN CALL: CALL DECLAR

4.3.32 TIME

The TIME System .r.1acro and FORTRAN subroutine obtain the time of day

from the Executive's internal clock and deposit these values in three

4-29

locations specified by the issuing Task.

SYSTEH MACRO:· TIME _ Hr ,r.1:in f Sec

Variables: Hr
Min
Sec

= Hours
= Minutes
= Seconds

(~ - 23)
(fJ - 59)
(~ - 59)

FORTRAN CALL: CALL_TIME (ITIME)

variables:

4.3.33 DATE

ITIME = Three word Integer array as follows:
ITIME(l) = Hours (fJ - 23)
ITIME(2) = Minutes (~ - 59)
ITIME(3) = Seconds (~ - 59)

The DATE System Macro and FORTRAN subroutine obtain the current time

(hours, minutes, and seconds) and date (month, day, and year) from the

Executive's internal clock and calendar. The values obtained are de-

posited in six locations specified by the issuing Task.

SYSTEM }1ACRO: DATE_Hr,Min,Sec,Mon,Day,Yr

variables: Man = Month (1 - 12)
Day = Day (1 - 31)
Yr = Year (fJ - 99)
Hr = Hours ($1 - 23)
Min Minutes (fJ - 59)
Sec Seconds (fJ - 59)

Note: The month and day reversed in European
format.

FORTRAN CALL: CALL _DATE (IDATE)

Variables: IDATE = Six word Integer array as follows:
I DATE (1) = Month (1 - 12)
IDATE(2) = Day (1 - 31)
I DATE (3) = Year (fJ - 99)
IDATE(4) = Hours (fJ - 23)
IDATE(5) = Minutes ($1 - 59)
IDATE (6) = Secnnds (fJ - 59)

4.3.34 INTENTRY

The INTENTRY System Macro results in an entry to the Executive's Register

4-30

Save Routine. The Save Routine obtains the current contents of all

active system registers, including the AC, Index and Limit Registers,

first four Autoincrement Registers, and deposits them in a save area

created by the Macro Assembler during expansion of the System Macro.

This Directive may only be issued from within an interrupt service

routine and must be the first instruction of the interrupt routine.

The saved registers are restored by execution of the INTEXIT Directive.

Appendix E provides a listing of all registers which are saved.

SYSTEM MACRO: INTENTRY CL

Variable: CL = Interrupt service routine entry address.
(connect location)

FORTRAN CALL: No subroutine is provided to implement this since
FORTRAN is not an appropriate language for writing
interrupt handling routines.

Example: See example in next section (4.3.35)

4.3.35 INTEXIT

The INTEXIT System Macro results in an entry into the Executive's

Register Restore Routine. This routine restores all active registers

saved by the INTENTRY Directive, Debreaks, and returns to the inter-

rupted Task. INTEXIT may only be issued from within an interrupt

service routine.

SYSTEM MACRO: INTEXIT CL

Variable: CL = Interrupt service routine entry address
(connect location)

FORTRAN CALL: No subroutine is provided to implement this since
FORTR~N is not an appropriate language for writing
interrupt handling routines.

Example: An interrupt service routine named ADINT for an AID
Converter is to use the INTENTRY and INTEXIT System
Macros.

4-31

INTENTRY ADINT

INTEXIT ADINT

4-32

/MUST BE PLACED AT THE ENTRANCE
/ TO THE INTERRUPT ROUTINE.

/SECTION TO SERVICE INTERRUPT.

/RESTORE REGISTERS, DEBREAK,
/ AND RETURN TO INTERRUPTED
/ TASK.

5.1 INTRODUCTION

CHAPTER FIVE
TASK BUILDER

The TASK BUILDER program, TKB, is an ADVANCED Software System's pro-

gram used to build user's Tasks from relocatable binary files. TKB

is quite similar to the CHAIN program allowing very elaborate overlay

structures to be built.

The process of Task building is one where relocatable binary files are

linked together along with library functions to constitute an executable

Task that runs under the control of the Real-Time Monitor (RSX-l5). A

resultant Task is defined by its name (Task name), default run priority,

core partition and common block requirements, and resident code. Once

a Task has been built it may be incorporated into the real-time operat-

ing system under control of the Real-Time Monitor from DECtape or

paper tape.

5.2 TASK BUILDER DESCRIPTION

The following description of TKB assumes the reade.r has a thorough

understanding of the ADVANCED' Software System CHAIN* program since only

*TKB and CHAIN have identical Input/Output Device Assignments and load
ing procedures. (See CHAIN & EXECUTE Manual DEC-l5-YWZA-DN2)

5-L

minor differences exist between the two. Only areas which are not part

of the CHAIN program will be amplified in this section. Answers to all

questions, as for the CHAIN program, must end with an ALT MODE.

LIST OPTIONS

SZ to output size in load maps, GM to output Global Symbol &
File names instead of program names in load maps, NM for no
load map, and PAR & PAL for pause after outputting resident
code and pause after outputting each Link.

NAME TASK

Identical to NAME XCT FILE in CHAIN.

SPECIFY DEFAULT PRIORITY

This is the default priority of the Task which will be assumed
at INSTALL time. Default priority is optional and can be any
number from 1 (highest priority) to 512 (lowest priority).

DESCRIBE PARTITION

This is the name of the core partition in which the Task is
to be executed. The form of the partition description is:
NAME(BASE ADDRESS,SIZE). The NAME is the name of a Partition
defined in the RSX System, BASE is the octal start address of
the partition, and SIZE is the size of the partition which
the Task is to occupy.

DESCRIBE SYSTEM COMMON BLOCKS

These are the names of the Common Blocks which are referenced
by the Task but are common to all Tasks in the RSX System.
The form of the Common Blocks is: NAME(BASE ADDRESS,SIZE).
NAME is the name of the Common Block defined in the RSX System,
BASE is the octal start address of the CornmonBlock, and SIZE
is the maximum size of the Co~~on Block in which data is to
be placed. Additional Common Block descriptions (maximum of
four) may be specified by separating the descriptions with
commas. Blank and Named Common declared in FORTRAN programs
will be included in the Task's partition block if not speci
fied in a DESCRIBE SYSTEM COMMON BLOCKS description. Blank
Common assumes the default name of .XX.

DEFINE RESIDENT CODE

Identical to CHAIN program.

DESCRIBE LINKS & STRUCTURE

Identical to CHAIN program.

5-2

5.3 EXAMPLE USING THE TASK BUILDER

fC

~,n19-1 5 V5 A

$,1\ DKI -4/DTl -6

$TK3

TAS~ 8UILDER VIA

LIS T OPT! or,ls
>SZ
NM1F: T ASl{
>5Urvt
SP~CIFY DEFAULT PRIORITY
>40
DESCRIDE PARTITION
>P40.0(40000,1500121)
DESCRI3E SYSTEM COMMON BLOCKS
> F'LA G(36200,6(20)
DEFINE RESIDENT CODE
> r1 A IN, F 1 , F' 2, r·1 A C
DESCRIBE LINKS & STRUCTURE
>
it;AIN 40020-40047 00030
FI 40050-40117 00050
F2 40120-40255 00136
~iAC 40256-40303 019026
WAF'F.l 40304-40316 0121013
DSGF'.240317-4121360 0121042
EXIF.l 40361-40363 121121003
• DA 40364-40432 121012147
• DAA 4121433-40501 00047
BCDIO 40502-43537 0312136
.ss 43540-43617 121006121
5TO.3 43620-43631 121012'12
F'I 0.3 4,3632-44311 0046121
,)TS.5 44312-44440 1210127
• sP. 3 44441-4456121 0012121
INTEAE 44561-44674 12121114
RELEAE 44675-45736 01042
.CB 45737-45756 1210020

BLMJK CDr1MON
.xx 45757-46266 012131121

CORE REQ':D
41211210121-46266 06267

$

5-3

fC

XM9-15 V5 A

$A DK1 -4/DTI -6

$TKB

TASK BUILDER VIA

LIST OPTIONS
>SZ
NAME TASK
>STORE
SPECIFY DF.FAULT PRIORITY
>35
DESCRIBE PARTITION
>P40.0(40000,15000)
DESCRIBE SYSTEM COMMON BLOCKS
> FLA G(36200,6(0)
DEFINE RESIDENT CODE
>STORE
DESCRIBE LINKS & STRUCTURE
>
STORE 40020-40317 00300
WAFF.I 40320- 4033 2 00013
RUNF.2 40333-4~404 00052
EXIF.l 42405-40407 00003
DSAF.2 40410-40433 00024
DSPF.2 43434-40475 00042
F'TS.2 40476-40543 00046
• Be 40544-40617 00054
• EE 406221-407110 00071
• EF' 40711-41026 00116
• EC 41027-41072 00044
• DA 4 1 0'73- 41 1 4 1 00047
• DAA 4 1 1 42- 41 21 0 00047
BCDIO 4 1 21 1- 44 246 03036
• SS 44241-44326 00060
STO.3 44321-44340 001012
Fla.,) 44341-45020 00460
OTS.5 45021-45141 00121
• SP. ,) 45150-45261 2101221
INTEAE 4527~-454eJ3 210 11 4
RELEAF. 45404- 46445 01042
.en 46446-46465 00020

RL~Nl{ Cm1MON
• xx 46466-47000 00313

CORE REQ'D
412000-41000 01001

KW:~-15 V5 ~

S

5-4

6.1 INTRODUCTION

CHAPTER SIX
SYSTEM CONFIGURATOR

The RSX-15 System is supplied on DECtape (RSX COLD START MASTER TAPE)

with each PDP-15/35 computer as a very generalized software package.

The Master Tape of the system consists of the RSX Executive, Multi

Teletype Handler, Disk Handler, Monitor Console Routine(MCR) Func

tion Tasks, and one running Task called the SYSTEM CONFIGURATOR. The

SYSTEM CONFIGURATOR enables the user to tailor his software to fit his

requirements.

The SYSTEM CONFIGURATOR allows the user to specify core size, disk

size, number of Teletypes, clock frequency, Partition descriptions,

system COW~ON Block descriptions, and a description of peripheral I/O

units. Partitions and COMMON Blocks may be defined anywhere between

the top of the Executive (over the SYSTEM CONFIGURATOR) thru the top

of core (as long as they do not overlap each other). Partition Blocks

and the "Pool of Empty Nodes" are constructed in core above the 8K

that has not been defined as a part of a Partition or COMMON Block.

6-1

After the Pool and Partition Blocks have been constructed, all Tasks

recorded on DT-~ that can be installed in the newly configured system,

are installed. After installation from DT-~, the number of empty

nodes in the Pool is typed out, and the system is left running.

6.2 INSTALLING THE RSX SYSTEM

When the user receives the RSX COLD START MASTER TAPE he should per-

form the following steps to configure the RSX Software to best fit his

needs and requirements:

1) Mount the RSX COLD START MASTER TAPE onto DECtape unit zero
(WRITE LOCK).

2) Read into location ~~~~~ the RSX DECTAPE BOOTSTRAP from the
High Speed Paper Tape Reader. This will cause the Cold Start
image to be read in from the Master Tape and the SYSTEM
CONFIGURATOR started.

3) Answer all questions asked by the SYSTEM CONFIGURATOR (See
section 6.3).

4) When the system configuration has completed* and the message
"MCR> " is printed on the console Teletype, the user should
install his own Tasks into the system and issue the "SAVEll
MCR Function command to save an image of the new system on
the disk.

5) To make a backup copy of the system, mount scratch tapes on
DECtape units one and two (one at a time if only a limited
number of DECtapes are available) and read into location ~~~~~
the "DISK TO DECTAPE" from the High Speed Paper Tape Reader to
copy an image of the disk(s) onto the DECtapes. This backup
system can be restored by reading in "DECTAPE TO DISK" from
the High Speed Paper Tape Reader. NOTE: Two DECtapes are
required for each disk unit saved. Writing begins on DECtape
unit one- for the first half of the first disk and automatical
ly transfers to DECtape unit two when unit one is filled.
This process is automatically repeated (from DECtape one to
two) until all disks have been saved. (Rewinding and unload
ing DECtapes between save/restore operations is performed by
the save and restore programs.) A similar procedure is used
to restore the system from DECtape to disk. The tapes may be
restored in any order with transfer beginning from DECtape
unit one and continuing with DEC tape unit two. Each DECtape
will contain l3l,~721~ disk words followed by a descriptor
block.

* The SYSTEM CONFIGURATOR is a one-time Task that automatically removes
itself once the system has been configured.

6-2

6) Read into location ~~~~~ the RSX DISK (WARM START) BOOTSTRAP
from the High Speed Paper Tape Reader. This will cause the
restored RSX System to be brought in from the disk and the
message "MCR>" to be printed on the console Teletype. The
System is now ready to accept commands from the user.

6.3 STEP BY STEP SYSTEM CONFIGURATION PROCEDURE

QUES.!ION ANSWE~

SPECIFY CORE SIZE>

16K, 2~K, 24K, 28K, or 32K (SiZe of user's core memory)

SPECIFY NUMBER OF DISK UNITS>

1 to 8 (Number of physical disk units)

SPECIFY NUMBER OF TTY'S>

1 to 17 (Number of Teletypes connected to the system.)

SPECIFY NUMBER OF CLOCK TICKS PER SECOND>

1 - l~~~ (This is the line frequency used to set the Real-Time
Clock frequency in the RSX Executive, and will normally be 5~
or 6~.)

DEFINE PARTITIONS ilNAME(BASE,SIZE)1I

These are the names (NAME) of all partitions in the System along
with their base addresses (BASE) and sizes (SIZE). A line with
only a terminator (carriage return or ALTMODE) will terminate the
response.

DEFINE SYSTEM COMMON BLOCKS "NAME(BASE,SIZE)"

These are the names of COMMONs to be used for inter-task communica
tion or extra-task data storage. Core is permanently allocated and
these COMMONs are always available. The Names, Base Addresses, and
Sizes are specified. A line with only a terminator (carriage re
turn or ALTMODE) terminates the response.

SPECIFY DEVICE NAMES AND UNIT NUMBERS (ONE PER LINE)

List only devices which will be used by the user. Device names
are two characters in length followed by a unit number. (The Tele
types and Disk are specified in the system.) The following are
names of devices for which liO Handler Tasks are supplied with the
system:

LP = Line Printer
DTn = DECtape (n=~ to 7)
PR = High Speed Paper Tape Reader
PP = High Speed Paper Tape Punch

A line with only a terminator (carriage return or ALTMODE) termi
nates the response.

6-3

INSTALLATION OF TASKS FROM DTi

This process requires no response from the user. All Tasks on DTi
that can be installed, are installed in the System at the default
priority defined at Task Building time. When all Tasks have been
installed 1 the CONFIGURATOR continues with:

nnnnn NODES IN POOL

This is the number (nnnnn) of empty nodes (in decimal) in the POOL
available for queueing and scheduling. The CONFIGURATOR continues
with:

SYSTEM IS RUNNING

This indicates to the user that the system is running and the
Resident MCR responds by typing "MCR>". The System is now ready
to accept user's commands from the console Teletype.

6-4

6.4 EXAMPLE OF A SYSTEM CONFIGURATION PROCEDURE

RSX SYSTEM CONFI GURATI ON

SP~CIFY CORE SIZ~ >24K

SPECIFY NUMBER OF DISK UNITS >1

SPECIFY NUMBER OF TTY'S >4

SPECIFY NUMBER OF CLOCK TICKS PER SECOND >60

DEFIN~ PARTITIONS "NAME(BASE,SIZE)"
>f1CR(10000,1600)
>10.1(11600,3000)
>10.2(35200,1000)
>P14.6(14600,3200)
>P21.0(21000,5500)
>P26.5C26500,6500)
>P40.0(40000,15000)
>

DEFINE SYSTEM COMMON BLOCKS "NAMECBASE,SIZE)"
>.XXC20000,700)
> FLA GC 36200,600)
>

SPECIFY DEVICE NAMES & UNIT NUMBERS (ONE PER LINE)
>DT0
>DTI
>DT2
>DT3
>PR
>P?
>

INSTALLATION OF TASKS FROM DT-0

00171 NODES IN POOL

SYSTEM IS RUNNING

IV;CR>SAVE

6-5

6.5 DESCRIPTION OF SYSTEM CONFIGURATOR ERROR MESSAGES

ttt WOULD OVERFLOW ADJACENT AREAS -- RETYPE

A Partition and/or COMMON Block has overflowed in an adjacent
area. The user must redefine the COMMON or Partition.

ttt SYNTAX ERR AT IiX Il
-- RETYPE

The illegal character "Xii was found in the command string, retype
the line.

ttt INVALID SIZE -- RETYPE

Illegal core size. Must be either 16K, 20K, 24K, 28K, or 32K.

ttt INVALID, NUMBER -- RETYPE

Illegal number of disk units, Teletype units, or clock frequency
setting.

ttt NAME ALREADY USED -- RETYPE

The name of the Partition or COMMON Block is already defined in
the system. Partitions and COMMON Blocks may not have the same
name.

ttt DEVICE NAME/UNIT ERR -- RETYPE

Device name and unit already defined.

DISK READ ERR

A disk read error has occurred. The system will halt and wait
for the user to manually depress the continue switch to retry the
disk read.

DISK WRITE ERR

A disk write error has occurred. The system will halt and wait
for the user to manually depress the continue switch to retry the
disk write.

*** RE-ENTRANT ECO PACKAGE NEEDED

The user's machine does not have the RE-ENTRANT ECO PACKAGE
required to run RSX. Contact your local field service office.

INSUFFICIENT FREE CORE ~- RE-STRUCTURE

Insufficient free core for storage of all Partition Blocks or out
of nodes in the Pool.

TASK "XXXXXX" NOT INSTALLED, TASK ALREADY IN SYSTEM

The Task XXXXXX is already installed in the system.

TASK IIXXXXXX II NOT INSTALLED, PARTITION NOT IN SYSTEM

The Task XXX XXX was built for a partition which is not defined in
the system.

6-6

TASK IIXXXXXX" NOT INSTALLED, TASK WOULD OVERFLOW PARTITION

The Task XXXXXX is larger than the partition defined for it in the
system.

TASK "XXXXXX .. NOT INSTALLED, OUT OF DISK STORAGE

The Task XXXXXX is larger than the amount of available Disk stor
age required to install the Task.

TASK IfXXXXXX" NOT INSTALLED, INPUT CHECKSUM ERR

An input checksum error occurred while installing Task XXXXXX
from DECtape.

TASK "XXXXXXiI NOT INSTALLED, INPUT PARITY ERROR

An input parity error occurred while installing Task XXXXXX from
DECtape.

TASK IIXXXXXX Il NOT INSTALLED; SYSTEM COMMON BLOCK ERR

COMMON Block not defined in system or COMMON Block BASE and/or
SIZE specified incorrectly (to the Task Builder)~

TASK IIXXXXXX" NOT INSTALLED, READ ERROR

An illegal DECtape block number was found or a DEC tape
error exists.

TASK lIXXXXXXlJ NOT INSTALLED, NO DEFAULT PRIORITY

The Task XXXXXX was not given a default priority at Task Building
time. The INSTALL MCR Function can be used to install the Task
once System Configuration has completed.

6-7

7.1 INTRODUCTION

CHAPTER SEVEN
SYSTEM ORGANIZATION

The RSX System is organized into several units consisting of: The

Executive, Partitions, Partition Blocks, System COMMON Blocks, several

linked lists, and a pool of empty list nodes. The Executive, or heart

of the system, lies entirely in the lower 4K memory bank and consists

of the Resident MCR Task, Teletype and Disk I/O Handler Tasks, and

assorted routines to properly carry out the functions of a real-time

operating system. The remaining area of core memory is available for

Partitions, Partition Blocks, System COMMON Blocks, and the Pool of

Empty Nodes. The following sections describe the system in more detail.

7.2 RSX BOOTSTRAPS

The RSX DECTAPE BOOTSTRAP is read in at location ~~~~~ and starts a

DECtape to core transfer from tape block zero into core location 3~.

The size of the image loaded is the same as the image that was recorded

and is determined by the word count and current address registers 3~ &

31. This bootstrap is normally used to initiate a COLD START, but can

also be used to initiate a WARM START of a system that does not use the

disk. i.e., to load an image of a system where all Tasks have been

7-1

fixed-in-core. viz., an emergency system in case of disk failure.

The RSX DISK (WARM START) BOOTSTRAP is a program used to restore a

core image of the system (recorded by a SAVE MeR Function), from

disk unit zero into core memory.

The DISK bootstrap is read into location ~~~~~, clears the disk con-

troller, and begins transfer starting from the beginning of disk zero

and core location ~~~3~. Transfer continues until the entire core

memory has been restored. When the system has been successfully re-

stored, control is transferred to the address specified by Rl (abso-

lute location 1~18 in the System Communications table) causing the

system to be started.

713 ~SX MEMORY MAP USAGE n 16K+32K

part~t~ons.
Part~t~on

~BIOCkS' COMMON
Blocks, and the
Pool of Empty

I Nodes.

Partitions requiredA-______________________________ ~ 8K
to install the
pre-built MCR &
I/O Handler Task
supplied on the
Cold Start Image
Tape. Normally,
the I/O Handler
Tasks are rebuilt
to run in parti
tions that satisfy
requirements of
particular
applications.

_ .-1..0,d 116H~-,-IU~.l __ _
10....3.. USU9.JU)- - - -
10.1. 0:44.» ~U) _
IO.l.. t!16.i~ t..Z6.YL __

RSX EXECUTIVE

Figure 7.1

Partitions and
COMMON Blocks*

4K

* Unspecified core space between Common Blocks and Partitions which
exist between the RSX Executive and the 8K memory boundary is not used
by the system.

7-2

7.4 SYSTEM DEQUES

The RSX System uses linked lists, rather than tables, to maintain

system information. These lists are linked together as Double Ended

Queues called deques. Each deque consists of a listhead and list.

elements, or nodes, circularly linked by both forward and backward

pointers. The first word of a node or listhead is a forward pointer

containing the address of the next node (or the listhead) looking

forward. The second word of a node or listhead is a backward pointer

containing an address of the previous node (or the listhead) looking

backward. The listhead consists of only the two pointers. All nodes

in a deque consist of the two pointers followed by eight words of data.

Some of the major deques used in the RSX System are the Active Task

List (ATL), the System Task List (STL), the Clock Queue, and the

Physical Device List (PDVL).

Figure 7.2 A three node deque

Figure 7.3 An empty deque

7-3

7.4.1 POOL

During System Configuration, core which has not been specified by the

user for other purposes (viz., Partitions and CO~10N Blocks), is

divided into ten-word blocks (empty ten-word nodes) and linked to-

gether forming a deque called "The Pool of Empty Nodes!! or HPoolll.

When a node is needed to expand a list, it is taken ("Takenll implies

changing the node pointers, not moving ten words of data) from the

Pool. When a node is no longer needed, it is returned to the Pool.

7.4.2 THE SYSTEM TASK LIST (STL)

The System Task List (STL) is a directory of Tasks in the system.

The STL is a de que consisting of one node for each Task currently in

the system.

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 10
Word 11

An STL node has the following format:

Forward pointer
Backward pointer
Task name (first half in .SIXBT)
Task name (second half in .SIXBT)
Flags and Default priority
Partition Block Address
Disk address of Task image
Size of resident image
Disk storage allocated
Task entry point

Word 4, the Flags and Default priority, has the following bit designa-

tions:

Bit 0 set when the Task is active
Bit 1 Unused
Bit 2 set when the Task is disabled
Bit 3 set when the Task is "FIXed in Core"
Bit 4 Unused
Bit 5 Unused
Bits 6 - 17 -- Task's default priority

Word 6, the Disk address, contains the disk unit number in bits 15-17.

Nodes are added to the STL whenever a Task is INSTALLed into the system,

and deleted from the STL when a Task is REMOVEd from the system.

7-4

7.4.3 THE ACTIVE TASK LIST (ATL)

The Active Task List (ATL) is a priority ordered list of Active Tasks.

The ATL is a de que consisting of one node for each Active Task in the

system. An ATL node has the following format:

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 10
Word 11

Forward pointer
Backward pointer
Task name (first half .SIXBT)
Task name (second half .SIXBT)
Task run priority
Partition block address
STL node address
Task status indicator
Start or resumption address
Event variable address

The ATL is ordered by the priority of the Active Tasks and is used to

drive the system. The order in which Tasks are considered is determined

by scanning the list, and the action to be taken is determined by

examining the Task status word. There are six levels of status, each

of which is described below:

Status 1: Task image is on the disk. If its partition is available,
flag partition unavailable and proceed to status two;
otherwise, service next Task in ATL. .

Status 2: Task image is on the disk and the partition is available for
its use. Queue disk read request with Event Variable in ATL
(Word 11) and proceed to status three.

Status 3: Waiting for an Event Variable. If the Event Variable, whose
address is in the ATL, is non-zero, proceed to status four;
otherwise service next Task in the ATL.

Status 4: Task is ready to be started or resumed. In order that its
environment will be saved if it is interrupted by the Execu
tive, set status five, and start or continue Task execution.
(Status four may be set by the WAIT or RESUME Directives.)

Status 5: Task has been interrupted by the Executive (environment saved
in partition block). Restore environment and return control
to Task.

Status 6: Task has been suspended. (Status six is set only by the
SUSPEND Directive.)

7.4.4 THE CLOCK QUEUE

The Clock Queue is a deque consisting of one node for each item to be

7-5

done at some time in the tuture. These items are: scheduling of T~sks

(SCHEDULE, RUN, and SYNC Directives), rescheduling of Tasks (Clock

interrupt service routine), and setting of Event Variables after

elapsed time periods (MARK Directive). The nodes are linked in the

order in which they come due, and have the following format:

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 10
Word 11

Forward Pointer
Backward pointer
Type indicator (TS,MT)
Unused
Run priority (TS) or Event Variable address (MT)
STL node address (TS) or zero (MT)
Schedule interval seconds (TS,MT)
Schedule interval ticks (TS,MT)
Reschedule interval seconds (TS)
Reschedule interval ticks (TS)

TS Task Scheduling usage
MT Mark Time usage

Word 2, the Type indicator, is set as follows:

o Task scheduling with no rescheduling
1 Task scheduling with periodic rescheduling
5 Mark time request
6 Null node (result of cancellation)

The schedule interval in all nodes, except the first node, is relative

to the previous node. The schedule interval in the first node is

relative to "now" and is decremented and examined at each clock tick.

Two- words are used to record the schedule interval: II-schedule ticks"

and "schedule seconds". The schedule ticks is only zero when a node

is to come due at the same time as the previous node and is never

greater than the number of ticks per second. When an interval of more

than one second is represented, the schedule seconds indicates the

number of additional whole seconds. The "reschedule ticks" and

"reschedule seconds" are the schedule interval reset values when

periodic Task rescheduling has been requested.

7.4.5 THE PARTITION BLOCKS DESCRIPTION LIST (PBDL)

Partition Blocks serve three functions: (1) They contain partition

description information to assure that a Task being installed into the

7-6

system has been built for an existent partition; (2) they provide core

for an Event Variable and disk GET (DSKGET) control table necessary to

load Tasks into partitions; and (3) they provide for saving a Task's

environment when it is interrupted by the Executive. The Partition

Blocks are generated by the System Configurator and are linked together

into a deque called the Partition Blocks Description List with abnormal

nodes having the following format:

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Word 10
Word 11
Word 12
Word 13
Word 14
Word 15
Word 16
Word 17
Word 20
Word 21
Word 22
Word 23
Word 24
Word 25
Word 26
Word 27
Word 30
Word 31
Word 32
Word 33

Forward pointer
Backward pointer
Partition name (first half .SIXBT)
Partition name (second half .SIXBT)
Partition base (address)
Partition size
Flags word (bit ~ indicates partition is occupied)
Register save routine entry point (operand address for
wd. 12)
Interrupt connect location (JMS here upon interrupt)
DBA instruction
JMS* .-3 instruction (transfer to save routine)
AC buffer
XR buffer
LR buffer
MQ buffer
SC butfer.
Rl buffer
R2 buffer
R3 buffer
R4 buffer
R5 buffer
R6 buffer
X10 buffer
Xll buffer
X12 buffer
X13 buffer
L20 buffer
SKP

(Words 15 thru 21 are used by
the Executive during status two
and three to store the disk read
Event Variable and Control
Table)
(Rl thru R6 are pseudo registers
used by re-entrant system
routines)

(XIO thru X13 are autoincrement
registers 10 thru 13)

(CAL return parameters)
SKP is an indicator to the
register save routine to trans
fer control to the Executive
(NOP indicates transfer to an
interrupt service routine).

7.4.6 THE PHYSICAL DEVICE LIST (PDVL)

When a logical I/O unit is assigned to a physical unit, the address

of a node describing the device and unit is set in a logical unit table

entry corresponding to the Logical unit Number (LUN). These nodes are

constructed by the System Configurator and linked together into a deque

7-7

called the Physical Device List. Each PDVL node has the following

format:

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 10
Word 11

Forward pointer
Backward pointer
Device name (first half .SIXBT)
Device name (second half/always zero)
Device Attach flag
Unit number
Device request queue (deque listhead) forward pointer
Device request queue (deque listhead) backward pointer
Trigger Event Variabl~ address
Assign inhibit flag

7.4.7 THE SYSTEM COMMON BLOCK DEFINITION LIST (SCDL)

The System COMMON Block Definition List (SCDL) is a deque built by the

System Configura tor consisting of a description of each COMMON Block

in the System. An·SCDL node has the following format:

Word 0 Forward pointer
Word 1 Backward pointer
Word 2 COMMON Block name (first half .SIXBT)
Word 3 COMMON Block name (second half .SIXBT)
Word 4 Unused
Word 5 Base of COMMON Block (address)
Word 6 Size of COMMON Block
Word 7 Unused
Word 10 Unused
Word 11 Unused

7.5 INPUT/OUTPUT OPERATIONS

Input/Output operations in the RSX System are device independent, with

I/O requests being made to Logical Device Units rather than Physical

Device Units. Logical Units are equivalenced to Physical Device Units

via a Logical Unit Table (LUT). The LUT is a block of contiguous core

with a one word entry, or slot, for each LUN. LUN slots are designated

sequentially from one and will contain a zero if unassigned (assigned

to NONE). The LUT is maintained by the REASSIGN MCR Function.

Physical Device Units are represented by nodes in a deque called the

Physical Device List (PDVL). When a LUN is assigned to a Physical

7-8

Device Unit, the corresponding LUT slot contains the address of the

appropriate Physical Device List node. Corresponding to the LUT is an

Attach-Flag-Table (AFT) with a two word entry for each LUT slot.

Whenever a LUN is attached to a Task, the Task name is set in the

corresponding AFT slot. Whenever a LUN and Device Unit are both

attached to a Task, the Device attach flag in the PDVL points to the

appropriate AFT slot.

7.5.1 I/O HANDLER TASK INITIALIZATION

All I/O Handlers are RSX Tasks and are called I/O.Handler Tasks

(IOHT's). They differ from most other Tasks in that they contain an

interrupt service routine and that a naming convention exists.*

When a LUN is assigned to a Physical Unit, the appropriate I/O Handler

Task is REQUESTed (by the REASSIGN MCR Function). The Handler Task

then initializes itself and instructs the system (using the WAITFOR

Directive) to suspend its execution until its Trigger Event Variable

is set. Handler Task initialization consists of CONNECTing to an

interrupt line and setting the address of the Task's Trigger Event

Variable in the corresponding Physical Device List node(s).

A Handler Task normally services all Units of a Device.

7.5.2 I/O REQUESTS

I/O requests are made using the QUEUE I/O Directive. This Directive

expects to find a PDVL node address in the LUT slot indicated by the

LUN, and a Trigger Event Variable address in the PDVL node. If the

LUT slot contains a zero, the request is rejected because the LUN has

not been assigned to a Physical unit~ If the Trigger Event Variable

address is zero, the request is rejected because t~e Handler Task has

not yet been initialized. If the LUT slot and Trigger Event Variable

* See section 8.5
7-9

address have been set, a request node is formed and inserted into a

request queue, and the Handler Task is "triggered" by setting the

Trigger Event Variable and declaring a Significant Event. If a

Handler Task is triggered while it is servicing a request, the trigger

is ignored; however, if a Handler Task is idle, the trigger will bring

it back into service.

There are separate I/O request queues for each Physical Device Unit.

These queues are deques with their listheads in the PDVL nodes for the

physical units. Requests are normally serviced in order of priority

by simply picking up the front node from the request queue. I/O

requests are processed at API level 7 and are de-queued by priority of

the requestor (software priority 1-512) with the highest priority

request at the front of the deque. Requests of equal priority are

inserted in the order that the requests were made.

If a Physical Device Unit is ATTACHed, only requests from the Task

that issued the ATTACH will be serviced, however, I/O requests from

all Tasks are queued. When the DETACH request is serviced, pending

I/O requests from other Tasks in the queue will then be serviced.

The QUEUE I/O Directive allows an I/O requestor to specify an Event

Variable to be set to indicate the status of a request. If a request

cannot be queued, the requestor's Event Variable is set to one of the

following negative values:

-1,1
-1,2
-1,3
-777

Illegal (out of range) LUN
LUN not assigned to a physical unit
Handler not resident and initialized
Request node not available (pool empty)

If a request is queued, the requestor's Event Variable is zeroed to

indicate that the request is pending and the Handler Task will set it

non-zero. If a Handler Task cannot successfully complete a request,

it will set the requestor's Event Variable to a negative value. (See

Appendix D for a complete list of returned Event Variables.

7-10

When an I/O request is successfully completed, the requestor's Event

variable is set positive, normally to one (+1).

7.5.3 liD FUNCTIONS

The following is a description of CAL Parameter Block operands for

the QUEUE I/O Directive. The FUNCTION CODE WORD contains the CAL

Function Code for the QUEUE I/O Directive (,,> in bits 12-17 and the

I/O Function code in bits 3-11. An Event Variable address of zero

implies "no Event Variable specified". ALLOCATE, DEALLOCATE, GET, and

PUT are device dependent functions, and the address of a table of con-

trol information is a part of the request, i.e., the Control Table is

not queued.

ALLOCATE (4 words)
FUNCTION CODE WORD (1500)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
CONTROL TABLE ADDRESS

DEALLOCATE (4 words)
FUNCTION CODE WORD (1600)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
CONTROL TABLE ADDRESS

ATTACH (3 words)
FUNCTION CODE WORD (2400)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

DETACH (3 words)
FUNCTION CODE WORD (2500)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

READ (6 words)
FUNCTION CODE WORD (2600)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

CORE BUFFER ADDRESS
BUFFER SIZE (max words transferred)

WRITE (5 words)
FUNCTION CODE WORD (2700)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
DATA MODE INDICATOR
CORE BUFFER ADDRESS

7-11

GET (4 words)
FUNCTION CODE WORD (3000)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
CONTROL TABLE ADDRESS

PUT (4 words)
FUNCTION CODE WORD (3100)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
CONTROL TABLE ADDRESS

SEEK (6 words)
FUNCTION CODE WORD (3200)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
FILE NAME (first half)
FILE NAME (second half)
FILE NAME EXTENSION

ENTER (6 words)
FUNCTION CODE WORD (3300)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
FILE NAME (first half)
FILE NAME (second half)
FILE NAME EXTENSION

CLOSE (3 words)
FUNCTION CODE WORD (3400)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

DELETE (6 words)
FUNCTION CODE WORD (3500)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
FILE NAME (first half)
FILE NAME (second half)
FILE NAME EXTENSION

HINF (3 words)
FUNCTION CODE WORD (3600)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

The following Control Table foromats are expected by the Disk Driver:

ALLOCATE (3 words)
REQUIRED STORAGE (IN WORDS)
DISK UNIT*
TRACK & HEAD*

* Set by the Disk I/O Handler, not the requestor.

7-12

7.5.4

DEALLOCATE (3 words)
STORAGE ALLOCATED
DISK UNIT
TRACK & HEAD

GET (4 words)
DISK UNIT
TRACK & HEAD
CORE ADDRESS
WORD COUNT

PUT (4 words)
DISK UNIT
TRACK & 'HEAD
CORE ADDRESS
WORD COUNT

HANDLER TASK EXIT

When there are no Logical Unit Numbers assigned to a physical device,

the REASSIGN MCR Function sets the lIassign inhibit flag" and clears

the Trigger Event Variable address in the Physical Device List node

for each unit of the device and inserts an EXIT request in the I/O

queue for one of the device's units. The Handler Task services the

EXIT request by: 1) DISCONNECTing from an interrupt line, 2) clearing

the assign inhibit flag, and 3) EXITing.

7.5.5 DISK STRUCTURE

A disk unit (platter) in the RSX System contains a total of 262,144

decimal words which is divided into 2g48 decimal blocks of 128 decimal

words each for purposes of storage allocation. The disk is word ad

dressable for data transfer purposes. Recorded on each disk platter

is a bit map that indicates which areas of the disk are free (to be

ALLOCATEd) and those which are reserved These

maps are initialized (cleared) by the System Configurator indicating

that all blocks· are free. Bit maps consist of 128 decimal words

• Excluding one bit map block per platter and save area on platter zero.

7-13

(1 disk block) beginning at location 7776JJa on each platter. Each

word in the bit map represents 16 decimal consecutive blocks. Bits

16 & 17 of the PDP-1S word are unused. A J-bit indicates a block is

free and a l-bit indicates it is occupied.

Since there may exist up to 8 disk platters, it is possible for an

ALLOCATE request to require 9 disk transfers (approximately 3~~ milli

seconds). To prevent holding off high priority disk requests for this

length of time, the Disk handler consists of two Tasks: "DSK", the

Disk Driver, and "DSA", a lower priority Task that handles Disk

ALLOCATE/DEALLOCATE requests. Whenever "DSK" encounters an ALLOCATE

or DEALLOCATE request in its I/O request queue, it simply moves the

request node from its own queue to another queue belonging to "DSA".

Then it sets IIDSA's" trigger event variable and declares a significant

event so that "DSA" will run ("DSA tJ runs at a priority level lower than

"DSK II
).

7.5.6 1/0 DATA NODES

The following I/O data modes are supported in the RSX System:

IOPS BINARY (mode ~)
IMAGE BINARY (mode 1)
lOPS ASCII (mode 2)
IMAGE ASCII (mode 3)

The data modes, including line buffer construction, have identical

meanings to those used in the ADVANCED Software System (see PDP-lS

ADVANCED Software System Monitors Manual section 2.2 and 2.3).

I/O Handler Tasks provided by DEC are listed below along with the data

modes each is capable of handling:

DT All
DK -- None*

* Data modes do not apply to the GET and Put functions.

7-14

LP lOPS ASCII & IMAGE ASCII
TT lOPS ASCII & IMAGE ASCII
PP All
PR All

7.5.7 INTERRUPT PROCESSING

Interrupt processing under the RSX System consists of hardware inter-

rupts having various levels of priorities. The hardware interrupts

normally suspend the execution of other functions in the System in-

eluding the Executive; however, the Executive delays the servicing of

hardware interrupts while it is completing internal operations which

cannot be interrupted. These operations are always short in duration

and involve the updating of the various lists of system information

maintained by the Executive. This delay is never greater than 30 usecs.

Real-Time programs connect themselves to hardware interrupt lines with

the use of System Directives; and when hardware interrupts occur on

those lines, control is transferred by the hardware (API) directly to

the interrupt service routines. Once an interrupt service routine has

been entered, it can either save its active registers or use the

Executive's Register Save and Restore routines to preserve the contents

of the active system registers. The user, however, might or might not

decide to save the registers of an interrupted Task depending on timing

constraints. Some cases may only require the saving of the Accumu-

lator (AC) which would be done by the interrupt service routine itself.

The Executive's Save and Restore routines, however, save and restore

several system registers including the Accumulator, Link, MQ, first

four Autoincrement, Limit, and Index Registers. The decision

whether or not to use the Executive's Save and Restore routines depends

on two considerations. First, can the interrupt service routine

tolerate delays incurred by using these routines (each operation re-

quires about 7' usecs). Second, how many of the system's active

7-15

registers are used by the interrupt service routine?

To illustrate the different methods the user can use for saving and

restoring system registers, two examples are given. Example one

illustrates an interrupt service routine which only requires saving

the Accumulator, and example two illustrates the use of the Executive's

Save and Restore routines when several registers are required in the

interrupt service routine.

Example 1: Assume the interrupt servi,ce routine requires only the
Accumulator and does not desire to use the Executive', s
routines because of timing constraints. The interrupt
service routine could be structured as follows:

SERDEV if !ENTRY POINT TO ROUTINE
DBA !ENTER PAGE ADDRESSING MODE
OAC SAVEAC !SAVE ACCUMULATOR

/REAl-TiME PROGRAM EXECUTES AT HARDWARE
/ PRIORITY LEVEL.

LAC SAVEAC IRES TORE ACCUMULATOR
DBR /DEBREAK FROM HARDWARE LEVEL
JMP:: SERDEV IRETURN TO INTERRUPTED TASK

SAVEAC ~ !TEMPORARY STORAGE FOR ACCUMULATOR

Example 2: Assume the interrupt service routine requires several
system registers and desires the use of the Executive's
Save and Restore routines.

INTENTRY SERDEV ! ENTRY PO I NT TO ROUT I NEt I NTENTRY I S A
! SYSTEM MACRO TO CALL THE EXECUTIVE'S
I SAVE ROUTINE.
IBODY OF INTERRUPT SERVICE ROUTINE

7-16

INTEXIT SERDEV IINTEXIT IS A SYSTEM MACRO TO CALL THE
I EXECUTIVE'S RESTORE ROUTINE, DEBREAK
I FROM HARDWARE LEVEL, AND RETURN TO
I INTERRUPTED TASK.

Interrupt service routines are an integral part of a Task and must be

connected to and disconnected from hardware interrupt lines before use.

That is, before a Task can process hardware interrupts the Task must

first connect itself to a particular API line. Likewise, when a Task

no longer requires the use of an interrupt line it should disconnect

and release it to the system. Note that even though several Tasks can

connect and disconnect themselves to the same API line, only one Task

can be connected to it at any given time. The following example

illustrates an interrupt service routine that uses the System Direc-

tives CONNECT and DISCONNECT to connect and disconnect itself from an

interrupt line.

Example 3:

ICODE TO INITIALIZE A TASK

ICONNECT INTERRUPT SERVICE ROUTINE,
CONNECT SERDEV,26,EVI SERDEV, TO INTERRUPT LINE 26.

INTENTRY SERDEV

INTEXIT SERDEV

ITHE VALUE OF EV, THE EVENT VARIABLE,
I SHOULD BE TESTED TO INSURE THE
I CONNECTION WAS MADE.

IENTRY POINT TO INTERRUPT ROUTINE, SAVE
I ACTIVE REGISTERS.
IBODY OF INTERRUPT SERVICE ROUTINE

IRESTORE SAVED REGISTERS, DEBREAK FROM
I HARDWARE LEVEL, AND RETURN TO IN
I TERRUPTED TASK.

IMAIN PORTION OF TASK WHICH OPERATES AT
I TASK PRIORITY LEVEL.

DISCONNECT SERDEV,26,EV/DISCONNECT INTERRUPT SERVICE ROUTINE
I FROM LINE 26.

EXIT lEND OF TASK

7-17

8.1 INTRODUCTION

CHAPTER EIGHT
TASK CONSTRUCTION

Task construction in the RSX environment falls into one of four dis-

tinct categories: (1) a Task which includes computation and/or re-

quests to I/O Handler Tasks; (2) an MCR Function Task; (3) a Front

End Interrupt Driver Task; and (4) an I/O Handler Task. All Tasks,

regardless of priority, must be built with the Task Builder before

installing into the RSX System.

When building Tasks, the following conventions must be adhered to for

successful operation of the RSX System:

(1) All hardware registers are available to the programmer except
the last 4 Autoincremerit Registers (14-17) which are used by
the system.

(2) A naming convention exists for Tasks in categories 2 and 4
(see sections 8.2 and 8.4, respectively).

(3) Tasks should not EXIT while I/O, Mark Time, or Event
Variable settings are still pending since the Task may be
overlayed by another Task before the operation has completede

(4) All Directives (viz., the issuing of the CAL instruction)
result in a loss of the original contents of the following
registers: AC, XR, LR, MQ, LINK, SC, Autoincrement Registers
1~-13, system registers Rl-R6, and location 2~. Unexpected
interrupts which suspend normal Task execution always save
and restore active registers before use.

The following sections describe the different Task categories in

8-1

greater detail.

8.2 COMPUTATIONAL TASK

The computational Task is the more common type of user written Task

since it includes programs written in FORTRAN and assembly language

which do not have interrupt routines and I/O drivers internal to the

Task. All necessary Input/Output is referenced through LUN slots.

Computational Tasks require no naming conventions except the name

must be 1-6 characters in length (Tasks called by FORTRAN programs

must be 1-5 characters in length).

8.3 MCR FUNCTION TASK

The Monitor Console Routine (MCR) consists of a resident Task called

the Resident MCR Task, and a set of MCR Function Tasks. The Resident

MCR Task reads a line of input from LUN 2 and REQUESTs the appropriate

MCR Function Task which performs the MCR function.

MCR Functions normally all share the same core partition dedicated to

MCR Functions, however, they may be IIbuiltli to run in any partition.

The name of the Resident MeR is " ..• MeR" and the name of an MeR

Function is three periods followed by the first three characters

of the name of the MeR Function (e.g., the TIME MeR Function is

named " ... TIM").

The Resident MCR Task is REQUESTed either by the Teletype Handler Task

in response to a CTRL C (from LUN 2) or by an MCR Function Task.

Two subroutines, with entry points in the System Communications (SCOM)

area, are used by both Resident MCR and MCR Function Tasks. One (FAC)

is used to Fetch-A-Character from a line of command input, and the

other (IFAC) to Initialize the Fetch-A-Character subroutine by

8-2

reading a line of command and setting the appropriate pointers.

Before reading a line, tlMCR>1I is output (on LUN-2) to indicate that

the MCR is waiting for input.

The name of an MCR Function Task is formed by reading a line of command

input (IFAC), fetching the first three characters (FAC), and preceding

them with three periods. After forming the MCR Function Task Name,

the Resident MCR Task continues to fetch characters until either a

SPACE, COMMA, CAR RTN, or ALTMODE is found. This is done so that only

as few as the first three characters of an MCR Function need be input.

After "flushing thru the first break character ll
, tl1e MCR Function

Task is REQUESTed and the Resident MCR Task EXIT's. If more informa

tion is contained in the first line of input, it will be read by the

Function Task using the FAC subroutine. If additional lines of input

are required by the Function Task, they are read using the IFAC and

FAC subroutines.

Also included in the SCOM area is the MeR Req~est Inhibit flag (MCRRI)

which is examined and set by both the Teletype Handler Task and MeR

Function Tasks. If MCRRI=~ and a CTRL C is typed in, the Teletype

Handler Task will REQUEST ••• MCR and set MCRRI=l. If MCRRIFO and a

CTRL C is typed in, the Teletype Handler Task will set MCRRI=-l.

MCRRI is cleared by MCR Function Tasks, normally just before they exit,

or at least after they have finished fetching characters from the

input line. MCRRI is set negative whenever a CTRL C does not result

in REQUESTing ••• MCR so that CTRL C may also be used to imply

"premature termination" to an MCR Function with lengthy output.

When an MCR Function has been perfo~ed, and the first line of command

input (the line read by the Resident MCR) has been terminated by a

CAR RTN, the Resident MCR Task is REQUESTed by the MCR Function Task.

When the first line of command input is terminated by an ALTMODE, the

Resident MCR Task is not REQUESTed at the completion of an MCR

8-3

Function, and a CTRL C typein is necessary to re-establish MCR

dialogue.

The MCR Function Tasks are normal Tasks that adhere to the above

conventions related to REQUESTing the Resident MeR Task. A user may

build his own MeR Function Tasks and is restricted only in naming it

(the name must start with three dots).

The following example illustrates the structure of a typical MCR

Function Task (TIME MeR Function). Note that the section between line

numbers 73-78 (cross-reference line numbers) shows the standard EXIT

procedure from an MCR Task.

8-4

~.GE 1 TIM,5 SRC

1 I
2 I
3 I
4 I
5 I
6 I
7 I
a I
9 I

10 I
11 I
12 I
13 I
14 I
15 I
16 I

~ 11 I
I 18 I
~ 19 I

20 I
21 I
22 I
23 I
24 I
25 I
26 I
27 I
28 I
29 I
30 I
31 I
32 I
33 I
34 I
35 I

EDIT #5

COPYRIGHT 1910, DIGITA~ EQUIPMENT cORP" MAYNARD, MASS.

MeA fUNCTIONI TIME R. MCLEAN

TASK NAME; ",.,TIM" TO TyPE ~UN~3 TIME ON T~E
IN RESPONSE TO THE MeR ~T!ME" REQUEST.

THE FIRST LtNE or COMMANO INPUT fOR ANY MeR fUNCTION IS READ
BY THE RE~IDENT MCR TASK ("".~C~"). FOR THE "TIME" FUNCTION.
THE SYNTAX OF TH~ FIRST ~lNE IS'

SYNTAX = "TIM"$(CHARACTER) (CR)/(AM)
(CHARACTER) = <LETTER)/(OIGIT)
<CR) = CAR RTN
(AM) = ALTMODE
$ "ANY NUMBER OP, INCLUDING 2ERO~

THE RESIDENT MeR REAOS A LINE, fETCHES T~E FIRST THREE CHARACT[RS
TO fROM THE MCR FUNCTION TASK NAME (" ••• TIM"), FLUSHES CHARACTrRS
THRU THE FIRST BREAK OR TERMINAL CHAR, REQUESTS " ••• Tl~" ANO EXITS.

~IN£ TERMINATOR, NO OATA IS TAKEN FROM THE COMMAND INPUT LINE.
THE TASK ~."T!M" FLUSHES ALL CHARACTERS T~RU T~E END OF THE l~PUT LINE,
AND SAVES THE LINE TERMINATOR, NO DATA t5 TAKEN FROM THL TNPUT LINE.

THE TIME Is TY~ED OUT "HH,MM:sSn

lr TME INPUT ~!NE IS TERMINATE~ BV A CAR RTN, THE RESIDENT MeR
IS REQUEST~D, AND THE FUNCTION TASK EXITS,

IF THE INPUT LINE IS TERMINATEn BV AN ALTMODE, THE FUNCTION
TASK (", •• TIM") EXITS WITHOUT REQUtSTING THE RESIDENT MeR,
A 'C TvptlN IS NECESSARy TO RE~ESTA8~ISH MeR DIA~OGUE.

PAGE 2 TIM.' SRC ••• MeR rUNCTION 'TIME'

36 ,TITLE ••• MeR ,UNCTION 'TIME'
31 I
38 0210163 A 5S-163
39 000164 A MM-164
.0 000165 A HH=165
41 "0"171 A MCRRl-111
42 "00174 A F'AC-l'"
43 I
44 ''''5522 A .JNH·705522 IINHIBIT INTERRUPTS
'5 705521 A .£Ns.,e'52" IENABLE INTERRUPTS
46 I
41 00000 R 120113 R TIME JMS· f'AC) 1"t.US ... INPUT THRU TERMINATOR, AND
48 000211 R 540114 R SAO (015)
'9 002102 R 6210006 R JMP TP13
50 021003 R 541ZJ115 R SAO (115)
'1 000214 R 6210006 R JMP 11M3

00
52 0000' R 6210000 R JMP TIME

I 53 "021216 R 040034 R TIM3 OAe TERM
0\ 54 I

55 00007 R 705522 A • 1 NH II/PETCH TIME
56 02101121 fit 220116 R I..AO· tloUO //1
5, "0"11 R 040101 R OAe: MHH III
58 002112 R 2221117 R LAC· CM M) III
59 "0013 R 0401214 R OAe MMM III
60 "0211' R 105521 A .tNB III
61 002115 R 220120 R L.AC· tS5) III
(t2 00016 R 040107 R DAe MSS
63 I
64 1210"11 R 211321121 R L.AC (M~H) IcONveRT TIME TO DECIMAL AND .5 00020 R 040067 R OAe CONX ISTORE IN IMAGt ALPHA eUr'tR
66 1210021 I; 100044 R JMS CON
67 00022 R 100044 R JMS cON
68 00923 R 10121044 R JMS CON
69 I
10 00024 R 000071 R CAL. TVPCPB ITYpe TI~t
11 00025 R 00012135 R CAL. wAITLP IWAIT rOR TTV TO rZNIS'"
12 I

CD

• "

13
7.
75
16
17
78
79
80
82,
82
8~
14 8,
86
17
18
89
90

PAGE 3

'1
92
93
94 9,
'6

" '8 '9
ille
2,li
ll2
113
,04
"15
,16
11,

e0"':Z6 R 2210034 R
000:21 R 540114 R
000;30 R 21000J' R
"e0:31 lit 540115 R
000;52 R 160122 R
000:33 R ~00123 R

0~0;34 R rlI000~((J A

000:3, R 000020 A
00":36 R 000016 R

l2Ie0;31 R 000001 A
l2Ie0·40 R 0121ee0e A
2100,41 R 565656 A
2100,42 R 150322 A
000,43 R 0011000 A

TIM,' SRC

0((J2I44 R 02100021 A
121132145 R 22"067 R
0Be46 R 160067 R
00041 R 041211lJ10 R
00""" R 123166 A
000 1'1 R 141100 A
000 1'2 R 600055 R
0B0~53 R 460((J61 R
00"~'4 R ~210121 41 R
0B0!55 R 221212161 R
0BIlI!', A 24121124 R
III!" R 1216006" A

EX I·T

I

L.4e
SAO
CAL
SAO
O~M·
CAl.

TERM 0
I
wAITL,P 20

TERM
(015)
REQMCR
1115)
(t"CRRI)
(10)

It' CAR RTN TERMINATED INPUT ~tNE, REQUEST
IR~SlOENT MeR TASK & EXIT, IF ALTMOnE T[RMINATEQ
IINPUT LINE. CLEAR tC REQUEST INHIBIT FLAG
lAND EXIT,

TYPEV IEVENT VARIASLE ADDRESS
I
REQMCR 1 IR'QUEST "t •• MCR" cpe

121

.SIXST " ••• "
• $1 X8T "MeR"
o

I CON ~~ SUBROUTtNE TO CONVtRT AN tNTEG£R TO ITS TWO DIGIT

••• MeR rUNCTION tTIME'

I DECIMA~ ~QUIVA~ENT (IMAGE ALPHA), 'CONX' POINTS TO THE
I BINARY WORe, THE BINARy WORD rS R[PLACEO 8Y T~E TENS
I DIGIT AND THE uNITS DIGIT IS STORED IN THE 'OLLOWING WORD,
I 'CONX' IS INCREMENTED By THREE.
I
CON

CONt

CON2

" L.AC·
DiM·
OAe
AAC
SPA
JMP
IS~"
JMP
LAC·
XOR
nA·C.

tON X
CONX
tONe
-12

eON2
CON X
CONl
c:ONX
(60)
eON)(

108 002160 R 440061 R lSi CONX
109 0212161 R 200070 R LAC cONS
110 2121062 R 240124 R XOR (60)
111 021063 R 060061 R DAC· OONX
112 002164 R 440067 R IS2 OONX
11:3 tZH!J 21 65 R 44212161 R lSi CONX
114 002166 R 620044 R JMP* CON
115 I
116 00061 R 000000 A CONX " 111 002110 R 000000 A CONa " 118 I
119 002'71 R 002100 A l'VPCPB 270~ IF'UNCTION
120 002172 R 000076 R TVPEv lEV AOR
121 021013 R 0000213 A 3 IL.UN
122 002114 R 000003 A 3 IMOOE
2,23 0212115 R 000017 R M£S:L<! IBUF"F'F"ER ADR
124 I
125 002116 R 000000 A TVPEV " I[VENT VARIABI..E
126 I
121 021077 R 01216003 A MESt2 006"'03 IHEACER

(X) 128 001013 R 01210000 A 000000
I 129 00101 R 000000 A MHH 000 IHOURS (X)

130 1210102 R 0021000 A 000
131 00103 R 000012 A 072 ICOL-ON
132 00104 R 0210000 A MMM 000 IMINUTES
133 00105 R 0000021 A 12100
134 001216 R 000072 A 012
:1,35 00101 R 0e121000 A MSS 0021 ISECONDS
136 ~12I1121 R 01210000 A 000
137 00111 R 12100015 A 01' lOR
138 210112 R 01210012 A 012 IL.,F'
2,39 I
140 000000 R .END TIME

00113 R 000174 A *L
210114 R 000015 A *L
021115 R 2100175 A *L
0121116 R 000165 A 0L.
0121111 R 000164 A ·L

!'AGE 4 T lt~ • 5 SRC *** MCR rUNCTION 'TIME'

001:20 R 000163 A *L
01211:21 R 000101 R *1..
001:22 R 000111 A *L
001:~3 R 00001121 A *L.
Ql01:~4 R 000060 A 4IoL

SI~E=0Ql125 NO ERROR LINES

I'AGE 5 TIM 115 CROSS REFERENCE

eON tZl0044 66 67 68 96410 114
CONB 210070 99 109 117.
CONX 0006' 65 91 98 103 105 10"' 108 111 11.2

ClO
:L13 116-, CONi 00041 99- 104

10 CON2 00055 :L02 105*
EXIT 1210026 13.
rAe 000174 42· 47
101101 12100165 40. 56
MCRRI 00121171 41- 77
MES12 121012177 :123 127.
MHH 1210101 57 64 129.
M11 01210164 39. 58
MMM 021104 59 132 ..
MSS 1210101 62 135.
REQMCR 00031 75 85-
S5 000163 38. 61
TERM 0012134 53 73 8O.
TIME ~0000 47. 52 140
TIM3 12121006 49 51 53.
TYPCPB 02112171 7121 119*
TYPEV 00016 83 120 125.
WAtTL.P 021035 11 82.
• ENB 7215521 45 • 60
• I NH 11215522 44. 55

8.4 FRONT-END DEVICE DRIVER TASK

The Front-End Interrupt Driver Task is a Task which has both computa-

tional and interrupt processing capabilities. Unlike the Computational

Task, the Front-End Task has an internal interrupt routine; but it does

not require the QUEUE I/O Directive to control it as do I/O Handler

Tasks.

An example Front-End Task used to generate straight line vectors on

the VP15 storage scope is given at the end of this section (VP.6).

This particular Task is a subroutine with four entry points for

CONNECTing and DISCONNECTing from the interrupt line, erasing the

display, and plotting a straight line vector.

The following paragraphs describe the separate sections of the VP.6

Task.

Line Numbers· Label

25-31 CINT

4,-47 DINT

51-54 ERASE

Description

Connect display interrupt
routine, VPINT, to interrupt
line 14. Notice that if the
Event Variable (EV) is negative,
the Task EXITs since the connec
ti~n_ could not be made.. I f a
successful connection is made,
the EV is cleared before return
to the caller.

Disconnect display interrupt
routine, VPINT, from interrupt
line 14. The testing of the EV
is not required here; hence, the
address of EV in the CAL Param
eter Block, line number 45, is
zero.

Erase the face of the storage
scope. This operation (EST)
generates an interrupt once the
display has been erased and re
quires waiting till completion.
This is done by issuing a
WAITFOR EV from routine WOINT

*Line Numbers (decimal) along the left hand column of the VP.6 Task
listing.

8-10

58-171 VECTOR

173-176 WFINT

181-189 VPINT

8-11

(line 175). The interrupt
routine, VPINT, clears the dis
play flag when the erase opera
tion has completed, sets the EV,
and declares a Significant Event
(Request API level 6). This
results in a scan of the Active
Task list and a return following
the WAITFOR (contingent upon
priority).

This is the straight line vector
plot routine which calculates
the required points to generate
the line and displays them one
point at a time. Following each
point displayed, a WAITFOR is
done to wait for the completion
of the displayed point (line 143
and 172).

Subroutine to issue a WAITFOR EV
Directive until the point or
erase operation has completed.
It then clears the EV before re
turning. (If the EV wasn't
cleared, the next WAITFOR EV
issued would return immediately
since the EV is set.)

Display interrupt service
routine which sets the EV signi
fying the operation is complete
and declares a Significant Event
(Request API level 6). The dis-
play flag is cleared and control
returned to the interrupted Task.

PAGE 1 VP.6 SRC

1 I EDIT #6
2 I
3 I ERASf. & VECTOR •• F'ORTR"N CAL.LAB~E SUBROUTINE TO ERASE
4 I SCOPE, OR TO CONSTRUCT A VECTOR rRoM P1(lXl,IYl) TO P2
5 I
6 ICALLING SEQUENCr.S,
'7 I CAI,.t.. CINr (CONNECT INTERRUPTJ
8 I CALL. DINT (otSCONNe:CT INTERRUPTJ
9 I CALL. ERASE

10 I CAL.L. VECTOR (IX1, I Y1, IX2.IV2)
11 /
12 I
13 7130504 A LX8=700504
14 700604 A I."YB=70 0604
15 700724 A EST=700724
16 700521 A SOOF"=700521

ex> 17 700722 A CDOF"1II700122
I 18 70121564 A I"X80=100564

I-' 19 71210664 A LYBOa7013664 I\J

20 I
21 .GL.OB!.. CINT,DINT.ERASE.vECTOR"OA
22 I
23 I CINT "". CONNECT INTERRUPT L.INe:
24 I
25 00000 R 000000 A CPI/T (1

26 01212101 R 000007 R CAl.. lC
27 001211212 R 200227 R LAC EV
28 00003 R 140227 R DiM e::V
29 0012'12'4 R 7413100 A SMA
30 00005 R 620000 R JMP" r.INT
31 00006 R 000232 R CAL (10)
32 I
33 021007 R 000011 A IC 11
34 00010 R 000227 R EV
35 0012111 R 0210014 A 14
36 0121012 R eH'J 12! 202 R VPINT
37 I
38 I OINT -'II! OISCONNECT INTERRUPT L.I~E
39 I

40 00211.3 R 000000 A DINT 0
41 210211,4 R 00012116 R CAL" to
42 21001,5 R 6221013 R JMP* DINT
43 I
44 2101211,6 R 210121012 A ID 12
45 21001,7 R 0212121021 A " 46 0021i~0 R 0210014 A 14
47 212102:1 R 02121202 R VPINT
48 I
49 I E:RASe: -~ ~RASE SrO~AGE SCOPE
50 I
51 212121(~2 R 21000130 A ERASE 0
52 00"t~3 R 100724 A EST
53 212112l~~4 R 100174 R JMS WF'INT
54 0004~5 R 620022 R JMP* rR.t\SE
55 I

co PAGE 2 VP.6 SRC
•
w 56 I"VECTOR .-- CONSTRUCT LINE:

" I
58 2100~~6 R 0000021 A VECTOR 0

'9 0021i~" R 1221231 E JMS" tO A IF'~" "'CH ARGl)MENT ADDRESSES
60 021030 R 60012135 R JMP ' ,
61 0021~ll R 212100210 A Xl 121
62 00"~12 R 000000 A Yi 0
63 Q"!10~t3 R 002112100 A X2 0
64 000~14 R 00211210121 A Y2 0
65 I
66 21210~'5 R 220031 R LAC·)(1 ID~TERM'~E OELTA~X & X ... I~;CR POL A
6'1 000~'6 R 14012131 A TCA
68 021"~''1 R 360033 R TAD* X2
69 02121 41121 R 722000 A PAl".
10 2100~11 R 741100 A SPA
71 000 412 R 140031 A TCA
7'2 2100'13 R 040213 R DAQ OEL.X
13 0021"14 R 130000 A PL.A
14 0004~5 R '51100 A SPAICI..A
7, 001!i'16 R 777776 A LAW ~2

16 00041 R 740030 A tAC
17 00050 R 040215 R OAC xINC
18 I
19 0012151 R 220032 R LAC· vi IO~TERMINt OE~TA.V & V~INCR POLA
80 2102152 R 7421031 A TCA
81 00053 R 360034 R TAO· y2
82 00054 R 722000 A PAL
83 00055 R 741100 A SPA
84 0012156 R 740031 A TCA.
85 00057 R 040214 R DAC oEI..Y
86 00060 R 730000 A PL.A
87 00061 R 75110121 A SPA.ICLA
138 00062 R 777776 A LAW .. 2
89 1210063 R 74003121 A lAC
90 00064 R 040216 R OAe yINC
91 I
92 1210eJ65 R 200214 R LAC De:~y lIS DELT,eX GREATER THAN OR EQUAL
93 121012166 R 74121031 A TCA
94 210067 R 340213 R TAO oEL.X
95 0007121 R 741100 A SPA ,yES flOW INITIAbI~E rOR HOR!~ L.ARGE

co 96 0121011 R 600113 R JMP v2 INO INJTIALI~E rOR VERT LARGE I
~ 97 I
"'" 98 00012 R 200213 R LAC OELX INCaOEL.x

99 12.'012113 R 040223 R OAe NC
100 21012174 R 2121121214 R LAC o£L.V INFhOELrv
101 121012175 R 121421226 R OAO NR
102 00076 R 220031 R L.AC· xi IL,CC-X
1,03 0012177 R 040221 R OAe Lec
104 1210100 R 221212132 R L.AC· vi ISCC.Y
1,05 001211 R 2140211 R OAC sCC
106 00102 R 2021233 R LAC (\.,)(80) Il.,CMIII.)(BO
107 00103 R 040111 R OAe I,..CM
108 00104 R 2021234 R LAC (I.,YB) IS9.MIIL.Y8
1,219 00105 R 040165 R OAe SCM
110 00106 R 200215 R LAC xlNC 1L.~I·)(INC

PAGE :5 VP. ,~ SRC

111 12101121';7 R 040222 R OAe LOI
112 0011'~ R 200216 R L,.AC VINC IsCt-VINe
113 121011:L R 041212221 R OAC SCI
114 0011:a R 612121133 R JMP v3
115 I
116 0011:5 R 2210214 R Va L.AC oEl..Y INC-OEL-v
111 0011 14 R 2140223 R OAC ~C
118 0011!5 R 20121213 R L.AC nEl..X INR::OEl,.x
119 00111~ R 040226 R OAe: t\iR
2,20 0011~7 R 220032 R LAC" vi IL.CC-V
121 012!121~ R 12140221 R OAC Lce
122 0012:L R 2202131 R 1..140" x1 Isec=x
123 0012:2 R 12140217 R OAe sec
124 0012:5 R 200235 R LAC n .. VSD) It..CM=L.,VBO
125 1210124 R 1214121171 R OAe LCM
126 012!12!5 R 2210236 R I..AO tL.XS) ISCM=,L X8

go 127 1210121; R 040165 R OAC SCM
I 128 121012:' R 20121216 R L,AC vlNC IL.CI=VINe

:1.29 0013'~ R 040222 R OAe LCt \It

130 0013:L R 2121121215 R I..AC XINC IScI=XJNC
131 0fa13;! R 040220 R OAe SCI
132 I
133 0013:5 R 200223 R v3 L.AC NC INT=NC
134 00134~ R 040224 R DAC NT
135 12!013!5 R 7440221 A RCR INA=NC/2
136 0013t~ R 04121225 R OAC NA
1:57 I
138 0013~' R 220031 R LAC· Xl IPI.OT INITIAL POINT
2,39 21014" R 700504 A LXA :I.." 0014~L R 220032 R 1..140· v1
2,·1 fZl014~! R 700664 A L.VBO
142 ~014~5 R 10~174 R JMS W'lNT
14:5 I
144 00144~ R 2210223 R PL.l L,AC NC IN9=0 '1
145 "014!S R 7412021 A SNA
:1.46 0014t) R 620026 R jMP* vECTOR lyE:S -~ EXIT
147 21014i' R 123777 A AAC ;;;'1 INO ... '" NC~NC""1
2,48 212115" R fZl40223 R DAC Me

149 I
150 00151 R 2021225 R LAC NA INA:rNA"'NR
151 00152 R 340226 R TAO NR
152 00153 R 040225 R O.l\C NA
153 I
:1,54 0121154 R 200224 R l..AC ~)T INA)NT
155 1210155 R 74121031 A TCA
156 0121156 R 340225 R TAO NA
157 121 I2l 151 R 741100 A SPA
158 0121160 R 61210166 R JMP PL~ INO -- DO LARGE COUNT MOVEMENT
159 0121161 R 040225 R OAC NA IvtS .- NA.NAeNT & COMBINED MOVE
1612l 00162 R 221121217 R LAC sec ISM ALL COUNT MOVEMENT
161 0121163 R 34121220 R TAD sCI
1,62 00164 R 040217 R DAC sec
163 0121165 R 740040 A SCM xx I(LYB OR "'XB)
164 I
165 0121166 R 21210221 R Pl.2 LAC Lee ILARGE COUNT MOVEMENT

ClO
I PAGE 4 VF.6 SRC

0'\

166 00167 R 340222 R TAO LCI
167 021110 R 12140221 R DAC Lec
3,68 0121111 R 1401214121 A LCM XX 1(I.,X80 OR LYSO)
169 0121172 R 100114 R JMS WrlNT
17121 I
111 00113 R 600144 R JMP P1.,1 ITO EXIT TEST
172 I
173 121121174 R 000000 A wF'INT 0
114 0121175 R 000200 R CAL,. WF"CP8
115 00176 R 140227 R DeM tV
116 0121171 R 620174 R jMP* wPINT
117 I
178 012121210 R 00012120 A wF'CP9 20
119 0021211 R 01210227 R EV
180 I
:1,81 0021212 R 01210000 A. VPINT 0
182 00203 R 04023121 R OAC ACBUF'
183 0121204 R 440227 R lSi! EV
184 0021215 R 20121237 R L.AC (41Zl112100)

185 ra02~'6 R 705504 A ISA
:1,86 002Q" R 100722 A. coor
187 211212~.0 R 200230 R L.AC ACBUF'
188 01212j~1 R 7213344 A OBR
189 01212~~2 R 62121202 R JMP* vPtNT
3,90 I
191 002j~3 R 2100000 A DE\,.X 0 IOf.LTAeX
192 0212~~4 R 000000 A DEL.V 0 IOEL"TArr'iy
193 002~L5 R 212100121121 A XINC " IX INCREMENT (·1 OR .1)
194 002~L6 R 00012100 A YINC 0 IV INCREMENT (+-1 OR ·1)
2,95 002:L7 R 000000 A. scc (1 ISMA!..!.. COUNT COORDINATE
:1,96 002~~12l R 121121012112121 A SCt \{) ISMALI... COUNT INCREMENT
197 01212.Z1 R 000000 A Lee 0 II.,ARGE COUNT COORDINATE
198 12!02:~2 R 000000 A LOI 0 I\.ARG£ COUNT INCREMENT
,,99 002:Z3 R 0012100121 A NO 0
?00 002~24 R 0121000121 A NT 0
21211 2102:25 R 000000 A NA 0
202 002:26 R 000000 A. NR 0
203 002;~7 R 02102100 A EV 0
204· 021230 R 000000 A ACBUF" 121

(X) ~05 I I 4lrll6 00001210 A ,END 0212;51 R 121210231 E IoE
002:32 R 121210010 A lot..
002:33 R 700564 A 1oL.
002;34 R 7210604 A *L
002:35 R 100664 A 4IoL
002:36 R 70051214 A *L
002·37 R 40101210 A IoL

SIiE a 00240 NO ERROR L.INES

PAGE 5 VP.6 CROSS REF'ERENCE

AceUF' 0~230 182 187 204.
CDOr 700122 17. 166
OINT !2I000~ 21 25* 30
DE~X 12!12I213 72 94 98 118 191*
OEL,Y 121121214 85 92 100 116 192~

OINT 12!12I12113 21 40_ 42
ERASE 12!0022 21 51* 54
£5T 712!0724 15. 52
EV 00227 27 28 34 115 119 183 21213*
tC 00007 26 33*
to !2l012116 41 44.
Lce 00221 103 121 165 167 191.
LeI 00222 111 129 166 198 ..
LCM 021171 107 125 168..,
LXB 700504 13. 126 139
LXSD 700564 18. 11216
L.ye '00604 14. 108
LYSO 700664 19. 124 141

Q) NA 1210225 136 150 152 156 159 201.
I NC 0121223 99 111 133 144 148 199.

00 NR 1210226 11211 119 151 2"2 ..
NT 00224 134 154 200*
PL,1 00144 144. 111
Pl.2 021166 158 165*
scc r.?J021? 105 123 160 162 195-
sct 002221 113 131 161 196*
SCM 12!0165 109 127 163.
SOOf 7r.?J0521 16.
VECTOR 12!0026 21 58. 146
VPINT 00202 36 41 181 .. 189
V2 00113 96 116.
v3 00133 114 133.
Wf'CPB 00200 174 178.
Wf'INT 1210174 53 142 169 173. 116
XINe 1210215 77 11121 13121 193.
)(2- 00031 61- 66 1212 122 138
)(2 1210033 63- 68
VINe 00216 9~ 112 128 194*
Y1 01210::52 62* 19 104 120 140
Y2 """3. 64. 81
lOA ""231 21 59

8.5 110 HANDLER TASK

An I/O Handler Task is a Task dedicated to the control of an I/O Device

Unit. I/O requests to these Tasks are made to Logical Unit Numbers

and are queued at the requestor's priority. (See section 7.5 for a

complete description of I/O operations in an I/O Handler Task.)

A naming convention exists for I/O Handler Tasks (Task Building Name),

requiring the name to be two characters in length followed by four

periods, respectively (e.g., LP •••• , PP •••• , and PR ••••).

An example I/O Handler Task used to drive the LP15C Line Printer is

given at the end of this section. The following paragraphs describe

the separate sections of the Line Printer Handler, LP.5.

Line Number· Label

78-1114 START

Description

This is the Handler initializa
tion section required by all I/O
Handler Tasks. Between lines
78-84, the Physical Device List
(PDVL) is scanned for a node for
this device. If found (line 85),
the device Name (line 1112) was
found in the PDVL and a node is
returned in the AC. If not
found (line 84), the Task EXITs
since no node having the name
IILP" was found in the PDVL.
Once the node address is return
ed in the AC, the address of the
Trigger Event Variable in the
node is calculated and saved
(line 87). The interrupt line
is then CONNECTed (if no connec
tion was made the Task EXITs)
and the address of the Trigger
Event Variable is placed in the
Physical Device node (line 92).
Lines 94 to 96 calculate an ad
dress to be used by the Index
Register later when obtaining
arguments from the PDVL. The
Handler then clears the con
troller and waits for the
Trigger Event Variable, TG, to
be set (WAITFOR TG).

• Line Numbers (decimal) along the left hand column of the LP.5 Task
listing.

8-19

115-146 PQ

159-173 ATTACH

174-293 PRINT

327-338 INT

355-38.0 CCPB

8-20

The Trigger Event Variable has
been Triggered. (The CAL
Service Routine in the Executive
Triggers the Event Variable
whenever the Handler has an I/O
request.) The Trigger is clear
ed (line 118) to prevent the
Handler from being inadvertently
called when the WAITFOR TG is
again issued. At line 129 the
request is de-queued (removed
from the queue) and if the queue
is empty, the Handler issues a
WAITFOR TG which will be set at
the next I/O request for this
device. If a node was de-queued,
the Event Variable and CAL
Function are removed and tested.
If the user's Event Variable ad
dress (line 128) is zero, the
handler substitutes an internal
Event Variable to handle I/O
completion indications. The CAL
Function is then tested for
ATTACH, DETACH, etc •••• When de
queuing a request (line 122), if
the de-queue was not made (empty
queue) return from DQRQ is im
mediately following the JMS,
otherwise the return is JMS+2
(line 125). If the de-queue was
made, the AC will contain the
address of the de-queued node.
If not, the AC contains either
zero, if the queue was empty,
or non-zero if the device has
been ATTACHed. This is useful
when device handlers are multi
unit and the REASSIGN MCR Func
tion removes one of its units
from the LUT.

Routines to ATTACH, DETACH, and
return Handler Information
(HINF).

Routines to prepare information
for and handle the hardware of
the LPl5C. Notice lines 243-246
declare a Significant Event in
dicating that a line has effec
tively been printed.

This is the interrupt service
routine which reads the status
of the Line Printer (always non
zero) and saves it in the Hand
ler's Event Variable. A Signif
icant Event is then declared and
return given to the interrupted
program.
CPB's used by the Handler.

PAGE 1 LP.6 SRC

1 I
2 I
3 I
4 I
5 I
6 I
1 I
8 I
9 I

10 I
11 I
12 I
13 I
14 I
15 I
16 I

OJ 11 I
I 18 I

l\.) 19 I I--'
221 I
21 I
22 I
23 I
24 I
25 I
26 I
21 I
28 I
29 I
30 I
31 I
32 I
33 I
34 I
35 I
36 I
37 I
38 I
39 I

e;OIT #6

COPVRIGHT 1971. DIGITAL tQUIPHrNT CORP •• MAYNARD, MASS.

RSX PRINTE.R ~A~D~ER TASK 1/APR/71 H, KREJC I

THIS HAND~ER TASK IS TO OR1VE THE LP15C HARDWARE, IT IS COMPATABlE
WITH NORMAL OUTPUT FROM FORTRAN & MACRO WRITTE~ PROGRAMS. OUTPUT IN
IMAGE HOPE: AND OUTPUT NOT BEGINNING WYTI1 A '12'_ 'j4', 't?0', OR '21'
CHARACTER IS PRECEDED BY AN UPSPACE (LINEFEEO) AND PRINTED DIRECTLY
rROM THE INDICATED CORE, ASCII OUTPUT BEGINNING WITH ONE OF THE AROVE
VERTICAL CONTRn~ C~ARACT£RS (E~G., OUTPUT VIA FORTRAN OTS) IS MOVED TO
A BUFFER WITHIN THIS HANDLER WHERE THE ~EAD[R AND POSSIBLY THE LEADING
CONTROL CHARACTER (FOR OVERPRINT, IS MODtFIEO AND THE LINE (CONSIDERED
TWO LINES BV TwE HARDWARi WHtcw TERMINATES LINES AT VERTICAL CONTROL
CHARACTERS) IS PRINTED,

THERE ARE NO IMPOSED PAG~ EJECTS AT PAGE BOTTOMS,

THE ~OLLOWING CAL PARAMETER BLOCKS ARE USED TO QUEUE REQUESTS rOR
PRINTER SE.RVICr..

CPS

CPS

CPS

CPS

3600
f:.V
LUN

2400
EVA
l.UN

2700
["VA
L UN
MOOE
LINE

2500
rVA
LUN

ATTACH PRINTER

PRINT kINE

(X)

I
I\.)
I\.)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

PAGE

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

2 LP.6

00000
00001

R
R

000012 A
000013 A
000101 A
000102 A
00"107 ..

SRC

01Zl0123 A
000240 A
02102~2 A
000325 A
000332 A
02121337 A
0000121 A
0210034 A
000035 A
706541 A
706521 A
706552 A
7216544 A
7216561 A
706621 A
7216641 A

002012!2 A
0000021 A

I
I
I
I
I
I

TH~ REQUE~TOR'S EVENT VARIA8~E IS cLEARED (~£ROEO) W~EN THE REQUEST
IS QUEUED BY T~E "QUEUE 1/0" orRECTIVE. IF THE REQUEST CAN 8E
PRE~ORMEO, THE EVENT VARIABLE IS SET TO ONE (.1) UPON COMPLETION.
IF THE REQUEST CANNOT BE PERPORMED. THE EVENT VARIAB~E IS SET TO ONE
OF THE fOLLOWING NEGATIVE VALUES,

I
I
I

-~ OAT4 MOOE (HEADER) DISAGREES WITH REQUEST MODE
ILLEGAL REQUrST FUNCTION

I
I
X12=12
)(13=13
Rl=1~1
R2=102
r-.JAOO·107

SN4Mw:123
POOL=2 40
POVL-252
4L.0=325
01..AO=332
DQRQ=337
D.TG=10
wCA=34
CAA=35
LP P1=706541
LPPM=7216521
LPRS=706552
LPEIc106544
LFDl=706561
LPGO=712!6621
LPCS-706641
I
LBF 0020e2

000~00

LUN HAS BEEN REASSIGNEO WHI~E REQUEST WAS IN QUEUE

IAUTO~INCR~MENT REG 12
IAUTO~INCREMENT REG 13
IRE~ENT~ANT REGISTeR ONE
IRe-eNTRANT REGISTER TWO
INODE ADDITION ROUTINE ENTRY POINT

INAME SCAN ROUTINE ENTRV POINT
l~lSTHEAO fOR POO~ OF EMPTY NODES
IL1STHEAO POR PHVSICiL DEVICE LIST
IATTACH LU N & OEvlcE ENTRY POINT.
IDETACH LU N & OEvlcE ENTRY POINT
IOE~QUEUE RECUEST ENTRY POINT
IPOSITION OF TRIGGER EVENT VARIABLE IN paVL NODE
,WORD COUNT ADDReSS (NOT USEO BY LP CONTROLLER)
ICURRENT ADDRESs REGISTER ADDRESS
IPRINT ONE LINt
IPRI~T MULTIPLE LINE
IREAD LP STATUS
IENABLE LP INTERRUPTS
IOISABI.,E LP INTERRUPTS
ICLEAR LP DONE FLAG
JCLE.R LP STATUs ANO ERROR rLAGS

IINTERNAL ~INE BUFfER HEADER
IINITIALIlAT!ON CODE IS USEO POR TEXT BUFrER

7, I
16 I HAND~ER INITIALIlATION
17 I
78 ""0""2 R 2021416 R START L.AC (POVL) ISvAN P~VSJCAI. OEVICF: 1",15T FOR FaR NODE
19 "021"3 R 0~0417 R OAC* (R 1) IPOR THIS OEVICE:.
80 00""4 R 200420 R LAC (HNAM)
81 "0"'" R 12160421 R OAC" (R2)
82 00""6 R 12121422 R JMS* (SNAM) I(R1, R2, R6. XR. ~ AC ARE ALTERED)
83 INooe F'OUND?
84 21tH'''' R 1211210423 R CAL.. (10) INO ... ExlT'
85 12100~L0 R 040355 R OAe PDVNA ISAVE PDV'" NODE ADDRESS
86 000~L1 R 72312110 A AAO +O.TC; IANO TRIGGER EVENT VARIABLE ADDRESS
81 12121"~~2 R 04121356 R DAC pDVT4 ITRIGGER ~Ve:NT VARIABl.E ADORESS ADORrss.
88 00"~L3 R 000351 R CA~ cepe ICONNECT INTERRUPT LINE:
89 000~L4 R 2121121341 R LAC tV ICONNECT OKAY?
90 000jL5 R 74111210 A SPA
91 0"0~~6 R 12121042~ R CAL. (10) INO ~ .. ExIT
92 000~~ 7 R 2021424 R LAC (TG) IY;5 ... sET TRIGGER EVENT VARIABLE ADDRESS
93 00"~~0 R 1216121356 R DAC· pDVTA lIN PHYSICAL., DEVICE NOOE
94 "00'!1 R 500425 R AND (0?0000)/OtTERMIN~ "XR., AOJ" co 95 000c!2 R 740031 A TCA I

I\J 96 000~!3 R 040342 R OAe XAOJ w
91 I
98 000'!4 R 706621 A LPC::O leI-EAR LP CONTROLLER
99 000'!5 R 706641 A LPC:S

100 000.~6 R 600070 R JMP WF'TGR IwAIT fOR 'RIGGER
101 I
102 1lI"0.~7 R 142000 A HNAM • S 1'<9T "LIlPCf""" IHANOL.ER TASK NAME

000~~0 R 000121021 A
103 I
:1,04 lEND OF' rNITIAl.li!ATION CODE
105 I
106 000~~1 R A • 81.0CI< 66·START ••
107 I
3,08 I 't"'""".",. T~E ABOVE CODE IS OVER. tt"""""""" :1.09 I "tt't""""" LAYEO BY OT$ ASC 1 I I..INES ,tt't"'t""""

ex>
I

N
,r::..

F'AGE

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
12'7
128
129
1321
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
14.,

LP.6 SRC

000121 R 000373 R

0012171 R 140354 R

0012172 R 20121355 R
1210073 R 06121417 R
1210074 R 12121426 R

1210075 R 60021721 R
002176 R 040353 R
00071 R 34121342 R
0010121 R 72101210 A
"0l01R 210006 A
00102 R 741200 A
00103 R 200427 R
1210104 R 2140352 R

0011215 R 21121005 A
0011216 R 5121043121 R
1210107 R 540431 R
0011121 R 600123 R
1210111 R 54121432 R
00112 R 60121132 R
0121113 R 540433 R
0121114 R 6121121143 R
21121115 R 54121434 R
121121116 R 600141 R
0121111 R 54121430 R
0121120 R 600302 R
0121121 R 777712 A
021122 R 600315 R

I
I WAIT f'OR TASK TO BE TRIGGERED (BY '110 CAL' CAL SERVICE RCIUTYNE)
I TO SIGNAL THAT A REQUEST HAS BEEN QUEUED,
I
WPTGR CAL WPTCPB IWAIT rOR TRIGGER tVENT VARIABLE TO 8E SET
I
I THE TASK HAS BEEN TRIGGERED r.. PICK A REQUEST f'ROM QUEUE (IF ANY)
I

I
P'Q

I

I

D~M

LAC
DAC"
JMS·

JMP
DAC
TAD
PAX
LAC
SNA
LAC
DAe

LAC
AND
SAO
JMP
SAO
JMP
SAO
JMP
SAO
JMP
SAD
JMP
LAW
JMP

TG

POVNA
(Rl)
(OQRO)

WF"TGR
RN
XADJ

(RE)

RE

5,X
(717)
,0,4)
ATTACH
(025)
DETACH
(027)
pRINT
(036)
1oI1NF'
(771)
OAEX
",6
stV

ICLEAR TRIGGER

IOE.OU£UE • REQUEST

IC R1, R2. R4. R5, R6,)(R, & AC ARe: Alf£REO)
IWAS A REQUEST pOUNO?
INO -. WAIT rOR TR%GGER
IY~S ~. SAVE ADDRESS or REQUEST NODE
ISlTUP XR TO ACCESS NODE

ISAVE AOORESS OF REQUESTOR'S EVENT VARIABLE

I,ETC~ CA~ PUNCTION CODE

IATTACH REQUEST?
lyES -. ATTACH TO A TASK
INO ~. OETAC~ RECUEST?
IY~S .~ oETACH rROM TASK
INO -. PRINT REQUEST?
IvES -~ wRITE RECORD
INO ~- HANDLER INPO REQUEST?
lyES ~~ RETURN INFO IN EVENT VARIABLE
INO .~ ExIT (OEASSIGNEO) REQUEST?
lyES -e OEATTACH & EXIT
INO -. UNIMPLIMENTED FUNCTION -~ SET
IEVENT VARIAB~E TO ~6

148 I ATTACH TO A TASK
149 I
150 12!2112:3 R 200355 R ATTACH LAC pDVNA IATTACH LUN & DEVICE
1'1 02112,4 R 060417 R DAC" e R 1)
1'2 021125 R 200353 R LAC RN
1'3 012112,6 R 060421 R OAC* e R2)
154 00127 R 120435 R JMS" (AL..AO) I(R3. R4, R~) , R6, X10, Xll .• XR, Ii. AC A ~~ E ALTERED)
155 IWAS LUN ATTACHED?
156 00130 R 62121315 R JMP s£v INO SET REQUESTOR'S EVENT VARIAbLE TO '!"24
151 1210131 R 62121314 R JMP REQCMP lyE:S, REQu[ST COMPLETED
158 I
159 I OET4011 PROM A TASK
160 I
161 00132 R 200355 R OETACH LAC PDVNA IOE.TACH LUN & DEVICE
162 00133 R 060417 R DAC* (R1)
163 00134 R 2210353 R LAC RN
164 00135 R 0621421 R DAC" cR2)

(X)

I
tv
(J1 PAGE 4 L~.6 SRC

165 00136 R 12"'436 R JMS" CObAD) 1(1-<3, R4, RS, R6, X10, Xli, XR, & AC ARE ALTERED)
166 IWAS I..UN DETACHEO?
161 00131 R 600315 R JMI' SEV INO .- srT REQUESTOR'S EVENT VARIA8LE TO .. ?4
168 0014121 R 6210314 R JMP REQCMP lyES ."" REQUEST CONPLETED
169 I
110 I RETURN HANOl..ER INrORMATION IN EVENT VARIABLE
"'1 1
1'2 1210141 R 200437 R HINr LAC (10121011)
1'13 1210142 R 61210315 R JMP S£V
114 I
1" I PR!NT LINE
1'6 I
111 2121143 R 21012110 A ~RINT LAC 10,X ISET ~EADER ADDRESS
1'18 1210144 R 04121350 R DAO HX1
119 210145 R 1230r212 A AAC ... 2 ISET TEXT ADORESS
18121 00146 R 040351 R OAC HX:2
181 00147 R 2221350 R LAC" \.IXl IGET MODE INDICATOR F"ROM HEAD£~
:1,82 2101"21 R 500440 R AND (003)

co
I

tv
0'\

183
184
185
186
187
188
189
1921
191
192
193
194
195
196
197
198
19 9
200
201
202
203
2~4
205
206
20'1
208
209
2121
211
212
213
214
215
216
217
218
219

00151 R 5500217 A
00152 R 600155 R
00153 R 777773 A
00154 R 600315 R
00155 R 540440 R
00156 R 6021174 R
001'7 R 220351 R
00160 R 5021441 R
00161 R 540442 R
00162 R 6002216 R
~0163 R 540443 R
021164 R 600206 R
021165 R 540444 R
00166 R 6210206 R
00167 R 540445 R
00170 R 141000 A
00111 R 6210174 R
00172 R 2210446 R
00173 R 600206 R

00174 R 200441 R
00115 R 100246 R
021176 R 706541 A
00177 R 2210350 R
021200 R 100246 R
00201 R 106541 A
'H!J202 R 600314 R

00203 R 0212003 A
00204 R 000000 A
00205 R 000012 A

SAO ?,X 100£S DATA MODE AG~EE WIT~ REQUEST MOO£?
JMP ·J·.3
LAW -5 INO •• S£T EvENT VARIABLE TO .5
JMP sEV
SAD (3) IvEs -~ tMAGE MODE?
JMP uBM lyES """ uNeUF'F'EOE'O MODE
LAC· ~X2 INO ~. fETCH fiRST C~ARACTER or TEXT
AND (774000)/ANO TEST POR LINE TERMINATING CONTROL CHARACTE~
SAO (050000)/LINE fEED (12)1
JM~ srM ,yES -~ surPEREO MODE WIT~ LP IN AC BITS 0-6
SAO (060e00)/NO -~ roRM~E£D (14)1
JMP RrM Iyts -~ eUrrEREO MODE WITH fP IN AC BITS 21.6
SAO (104000)/NO ~. oOUe~E SPACE (21)1
JMP 8,M IY~S p. sU'FEREO MODE WITH OS IN AC 81TS 0.6
SAO (100000)/NO p- OvERPRINT (~0)?
SKP IvES p~ eU"EREO MODE WITH CR IN AC 8ITS 0-6
JMP uBM INO ~- uNBur~ERto MODE
LAO l064~00)
JMP SYM

I
I UNBurrER£P OUTPUT MODE ~~ UPSPACE rORMS, ANO PRINT A SINGL~
I LINE fROM THE R£QUESTOR'~ BU;fER IN THE MODE INDICATED BV THE HEADER,
I
ueM

I
LF'L.

I

LAO
JMS
LPPl
LAC
JMS
LPPl
JMP

H .. 'L.)
pRNT

~)(1

PRNT

REQCHP

IpRINT LIN[rEEO LINE

IpRINT REQUESTED LINE

IR~QUEST COMPLETED

002~03 ILIN[PEEO LINE
000000
000~12

I BUFFERED OUTPut MODE -~ MOVE 5/7 PACKED LINE TO BUfFER IN HANDLER, IF
I CONTRO~ C~AR IS '20' COV~RPRINT). CHANGE TO '15'. AND PRINT THE TWO

,.AGE , L.P.,6 SRC

220 I lwtNES (CONT CHAR & TEXT) IN ASCl! MOOE.
212- I
222 002£'6 R 040344 R BrM DAC coer ISAVe: CONTROL CHAR
223 01212£11 R 22121350 R t..AC* ~X1 IMOVE TEXT TO INTERNAL BUFFER
224 002~.21 R 640510 A LRS 10
225 0023.1 R 500450 R ANO (776)
226 0023.2 R 140031 A TCA
227 21023.3 R 21421346 R OAe eNT
228 002~.4 R 7~3066 A AAC ... 66
229 0022.5 R 7421100 A SMA
230 0023.6 R 600221 R JMP ,+3
231 21023.1 R 177712 A l..AW ",66
232 0024~0 R 2140346 R OAe CNT
233 12l02~!1 R 200350 R L.AC ~X1
234 2102'!2 R .,421030 A lAC
235 2102t!3 R 0621451 R DAC· (Xl2)

co 236 002c!4 R 200452 R L.AO (L.BF'·l)
I 237 002c!5 R 063453 R DAO· (X13) ~

-.J 238 0024!6 R 220012 A L.AC·)(12
239 002c~1 R 2160013 A DAC·)(13
240 002~112l R 440346 R lSi! eNT
241 002~11 R 600226 R JMP 'I' !!"3
242 I
243 002~12 R 200454 R L.AC (·1) IS~T R~QUESTOR'S EVENT VARIABI,.£ TO +1 AND
244 002~13 R 0621352 R DAC· RE: IO~CLARE A SIGNIFICANT EVENT (L.INE HAS BEEN
Z45 002~14 R 200455 R L.AC (401000)/E~'[CTtvELY PRINTED)
2'6 002~15 R 70551214 A ISA
241 I
248 002~16 R 2021002 R LAC; LB'+2 IcHANGE CONTROL. CHAR TO '15' IF' '20'
249 002~11 R '00456 R AND (12103177)
2'0 002~fCll R 240344 R XOR cCBr
2'1 "02~f1 R 04012102 R 040 LSP+2
2'2 I
253 002~'2 R 200457 R LAC (L.8F') IpRINT TWO L.INES
2'" ClI02~;3 R 1021246 R JMS PRNT
2" 002~'4 R 106521 A L.PPM
256 I
2" 012.f' R 600320 A JMP RNTP IRtTURN REQUEST NODE TO POOL AND PROCESS NEXT REQUEST

258 I
259 I PRNT ~~ SUSROUTlNE TO PRINT A LINE. THE LINE BUPFER ADQRESS IS
2621 I IN AC, ANU THE lOT TO PRINT IS IN THE LOCATION ~OLLOWING THE JMS.
261 I
262 00246 R 13130000 A PRNT 0
263 0121247 R 140301 R DrM pRNT£F' ICLt£AR ERROR F"I...A G,
264 121025121 R 123777 A AAC ;1 IOETERMINE & SAVE CURRENT ADDRESS
265 00251 R 040345 R OAC CA8F
266 00252 R 0604613 R PRNT1 DAe" (CAA) ISET CURR~NT ADDRESS
267 00253 R 160461 R DlM" O/C/d IpREVENT WORO COUNT OVERFLOW
266 021254 R 420246 R XCT· PRNT IExECUTE PRINT lOT, CI...£AR EVENT VARIABLE,
269 2121255 R 140347 R O~M [V IENABL,.E LP lNTERRUPT, AND WAIT fOR THE EVENT
21121 00256 R 7216544 A LPEI IVARIABLE TO BE SET NON~2ERO BY THE INTERRUPT
211 00251 R 000315 R CAL. wP'ECF'B ISERVICE ROUTINE.
272 I
273 00260 R 200347 R LAC tV IINTERRUPT HAS OCCURREO •• EXAMINE PRINTER ST.TUS,
2'14 210261 R 500462 R ANO (200000)/A~ARM ERROR?

00
I PAGE 6 LP.6 SRC I\,)

00

275 210262 R 741200 A SNA
276 210263 R 60(11271 R JMP PRNTXT INC -'!II ExIT PRNT SUBROUTINE
211 210264 R 2003211 R LAC PRNTE"f" INEW ERROR?
218 2121265 R 740200 A StA
219 00266 R 6210273 R JMP PRNT2 INO ~"" DEL.AY AND RETRY
280 00267 R 21021371 R CAL TEMCPB lyES ... TYP£ ERR MESSAGE
281 00210 R 0210375 R CAl. ",,'tCPB
282 00211 R 200454 R LAC (1)
283 00272 R 21403211 R OAe PRNTEF
284 I
28, 00273 R 000~61 R pRNT2 CAL. MTt;;P8 IOELAV
266 210214 R 000375 R CAL. wf"ECPB
287 00275 R 200345 R LAC CAer IRE TRY
288 00216 R 621121252 R JMP pRNTl
269 I
29fZl 210277 R 440246 R PRNTXT IS~ pRNT lEX I T PRf-,JT SUBROUTINE:
291 00300 R 620246 R JMPo pRNT
292 I
293 00301 R 00012100 A PRNTEF' 0

294 I
295 I E)(IT REQUEST (fROM TASK " ,. ,REA")
296 I
297 e121J~I2 R 20121463 R OAEX LAC (POOL) IRE TURN RE.QUEST 1\;00£ TO POOL
298 003213 R 12160417 R o4C* (R l)
299 012131214 R ~k'J12I353 R l..AC F?N
312121 003~15 R 0621421 R 0140* (R2)
301 00:5el6 R 12JlJ464 R JMS* (NAOO)
;}02 0213211 R 71216561 A LPDI loISABL.E \,,1' I(\i'TE:RRUPTS
303 012131.0 R 01210363 R CAL.. cePB lolSCONN[CT I NTERRl)PT LINE
3214 12112131.1 R 440356 R IS2 pDVTA ICLEAR ASSIGN INHIBIT FLAG IN P()vL NODt:
305 012131.2 R 16121356 R Di!M* pDVTA
3216 02131.3 R 01210423 R CAL (10) IEXIT
31217 I
3218 I REQUEST COMPL.ETED .- SET REQUEsTor·p S EVENT VARIABLE TO +1
309 I ANO PICK NEXT REQUE.ST (1 f ANV) FROM COLJEl)E.
31121 I
311 12112133.4 R 2121121454 R REQCMP LAC (+ 1)
312 I

00 313 012131.5 R 060352 R SEV DAC* RE IS[T REQUESTOR'S E VEr>JT VARIA8LE
I 314 012131.6 R 200455 R LAC (4V31v.~0(2l) IOt:.CL.ARE A S I G N I rIC A ~I T EVF:hjT
~ 315 012131.1 R 705504 A lSA 1.0

316 I
311 01213~~0 R 200463 R RNTP LAC (POOL) IR~TURN REQU[Sr NODE TO POOL
31.8 003~~1 R 2160417 R OAC'" nu.)
J19 0"3~~2 R 2021353 R LAC RN
32121 003t~3 R 2160421 R DAC* (R2)
321 elI2I3,~4 R 120464 R JMS" (NADt))
322 I
323 eJI2I3,~5 R 62102112 R JMP PQ IPICK ANOiHt;R REQUEST (I F" ANY)
324 I
325 I INTERRUPT SERVICE ROUTINE
326 I
327 eJI2I3~~6 R 21000021 A INT 0 IINTERRuPT ENTRy POIN'!
328 0"~H~ ., R 707762 A DB,A IENTER I ~,'DE X (P~GE) ~1()DE

329 1211213~ieJ R (2l4~343 R DAC AC8F ISAVE AC

PAGE 7 LP,6 SRC

330 00331 R 7"'6552 A L.PRS IR~AO STATUS A.NO SET IN EV~NT VARIABLE
331 1210332 R 0421347 R DAC EV
332 0121333 R 706641 A LPCS ICl-EAR STATUS, ERR FLAG, & DONE Fl.AG
333 021334 R 706621 A LPeD
334 00335 R 2210455 R LAC (401~210)/DECLARE A SIGNIFICANT EVENT
335 00336 R 72155214 A ISlA.
336 1210337 R 21210343 R LAC AC8F IRt::STORE AC:
337 00340 R 103344 A DBR IRETURN TO INTERRUPTED PROGRAM
338 021341 R 620326 R JMP" tNT
339 I
3421 00:542 R 00121000 A XADJ 0 IXR ADJUST CONSTANT TO SUBTRACT PAGE BITS
341 00343 R 000000 A AC8F 0 lAC BUFFER
342 0121344 R 2121000121 fA. cear 0 ICONTROL C~AR BUFFER (BITS 121",,6)
343 021345 R 21121001210 A CABF 0 IINITIAL CURRENT ADDRESS BUFFER
344 00346 R 000000 A CNT 0 ICOUNTER
345 0121341 R 01210000 A EV 0 IEVENT VAR%ABL,E

co 346 1210350 R 0121121000 A HX1 0 IHEADER ADORESS
I 347 00351 R 01210000 A HX2 0 ITEXT ADDRESS

w 348 00352 R 0012112112121 A RE " IAOO~ESS OF REQu~STOR'S EVENT VARIABLE 0

349 00353 R 00021210 A RN ~ IADDRESS Of REQUEST NODE PICKED F"ROM QUEUE
350 !210354 R 0210000 A TG 121 11RIGGER (VENT VARIABLE
351 I
352 00355 R 00001210 A PDVNA

'"
IPHYSICA~ OEVICE NODE ADDRESS

353 021356 R 000000 A POVTA 0 IADDRESS OFAOR Of TRIGGER EV IN PHY OEV NODE
354 I
355 00351 R 2100011 A CC:PB 11 ICONNECT cPe
356 00360 R 000341 R EV
351 00361 R 1212102116 A. .1,6
358 00362 R 2100326 R INT
359 I
360 00363 ~ 2100012 A OCPS 12 IOISCONNEC T CPS
361 1210364 R 1212112121210 A 0
362 00365 R 01210016 A 16
363 1210366 R 000326 R INT
364 I
365 1210361 R 0210013 A MTCP8 13 IMARK TIME CPS
366 210370 R 212121347 R EV
367 00371 R 02121012 A 12
368 00372 R 00001211 A 1

369 ,
310 0031~5 R 121021020 A wF'TCPB 20 ,WAIT f"O~ TRIGGER CPS
311 00374 R 000354 R Tt;
312 I
313 ~037~) R 12100020 A WPECP6 2121 IW~IT FOR EVENT VARIABL,E CP8
314 12!031t) R 000347 R EV
375 ,
376 0037i' R 0212700 A TEMCPB 21210 ,TVEP ERR MESSAGE
317 0040~' R 0021347 R EV
3'18 0040jL R 2100003 A 3
319 00421~~ R 12100002 A 2
3821 00421~S R 21210404 R ERR MrS
381 I
382 21214~4 R 00401212 A ERRMES 01214'102, "O0000; .ASCII "0*. LP NOT REAOY"(15)

0040~) R 12'00012'0 A
0040t) R 251245 A

00
I PAGE 8 L,P dl SRC w

I-'

0040" R 221212321 A
ra041~' R 5131011 A
0041l. R 647650 A
0041,! R 2212450 A
00413 R 540610 A
0041~1 R 544320 A
0"41~i R 0210000 A

383 I
314 000002 R .ENi;l START

021416 R 01210252 A 4ItL
0121417 R 12100101 A 4ItL
00420 R 00121027 R *L
00421 R 0121121102 A *L
00422 R 01210123 A oIIoL
1210423 R 12101210121 A *L,
0121424 R 12121121354 R 4ItL
00425 R 07012l0eJ A *L
00426 R 01210337 A *L
0121427 R 121021352 R *L
1210430 R 2100777 A AL
12121431 R 121021024 A *L
021432 R 12100025 A *L
1210433 R 12121121027 A *L
1210434 R 1210012136 A iIIL
00435 R 1211210325 A "'L
00436 R 12121121332 A *L
00437 R 10121011 A *L
0044121 R 1210012103 A *L

00 021441 R 7741211210 A. *L
I !2!0442 R 1215001210 A *L w

tv 00443 R 0.612101210 A. *L
21121444 R 10401210 A "lor
00445 R l1iH?J00121 A *l
00446 R 06401210 A *L
0121447 R 121121021213 R *L
0045121 R 0210776 A *L
1210451 R 121012112112 A *L
12!0452 R 12112101211211 R *L
0121453 R 121121121013 A *L
0(()454 R 1211211211211211 A *L
12121455 R 42111210121 A *L
0121456 R 003777 A *L
00457 R 12121121121121121 R *L
0046121 R 121121012135 A Al.
0eJ461 R 12121012134 A *L
1210462 R 21211211211210 A *L
00463 R 00024121 A *L
1210464 R 00011211 A "L

SIi!E=00465 NO ERROR LIN;S

!'AGE 9 LP.6 CROSS REFERENCE

ACBF' ~12!343 329 336 341 ..
AL.AO 000325 59. 154
ATTACH 00123 136 15121*
BF'M 0021216 192 . 194 196 21211 222.
CAA "00035 64- 266
cA9r 0"345 265 287 343.
CCBF' ~0344 222 25121 342.
CCP8 00357 88 355*
CNT 00346 227 232 240 344*
I:')AEX 0121302 144 297~
DCPB 0121363 303 360ft
DETACH 00132 138 161*
DL.AD 01210332 60.· 165
OQRQ 1210121337 61- 122
olTe 00012110 62* 86
ERRMES 00404 380 382*
EV 021347 89 269 273 331 3450 356 366 374 377

00 IooIINF ~0141 142 172* I
w IoINAM "'02127 80 102*
w IooIXl 00350 178 181 2~9 223 233 346.

IooIX2 00351 180 189 347.
INT 00326 327. 338 358 363
LoBF' 0001210 73- 236 248 251 253
LF'L. 00203 206 214*
LPC:O 706621 7121- 98 333
LPCS 706641 71* 99 332
LPOI 71216561 69- 302
LPEI 706544 68* 270
LPPM 706521 66* 255
LPPl 706541 65. 208 211
LPRS 706552 67. 330
MTCPB 00367 285 365ft
NAOo 12100107 55. 301 321
PDVL 000252 58- 78
POVNA 00355 85 120 l~H'l 161 352*
POVTA 00356 87 93 304 305 353*
POOL 000240 57. 297 317
pQ 00072 120- 323
F'RINT 00143 1,40 117*

PRNT 1210246 207 210 254 2620 268 290 291
PR-NTEf." 121031211 263 277 283 2930
f:'RNTXT 00217 276 290.
PRNT1 00252 266- 288
PRNT2 00273 279 285.
RE 00352 130 131 244 313 348*
REQCMP 1210314 157 168 212 311.
RN 00353 125 152 163 299 319 349.
RNTp 00320 257 317.
R1 000101 53- 79 121 151 162 298 318
R2 00011212 54* 81 153 164 300 320
SEV 00315 146 156 167 173 186 313.
SNAM 000123 56* 82
START 00002 78- 106 384
TEMCPB 00377 280 376_
Tt; 0035. 92 118 350. 371

PAGE 10 LP.6 CROSS REf."ERENC£
ex> UBM 1210174 1.88 199 206. I
w WeA 0121"2134 63- 267 ~

WF'tCPB 210315 211 281 286 373*
Wf'TCPB 210313 114 310.
Wf'TGR 12113070 100 114. 124
XAOJ 00342 96 126 340.
X12 0021012 51- ~35 238
X2.J QJ0e013 52. 237 239

8.6 ADDITIONAL INFORMATION
Tasks written in FORTRAN:

The PAUSE statement results in the Task being SUSPENDed. The
RESUME MCR Function is used to continue after a PAUSE.

The STOP statement results in a Task EXIT.

I/O requests to standard I/O Handlers (through LUN's) always wait
until the I/O request has completed before continuing.

OTS messages are output on LUN 4.

OTS-2~ is a FORTRAN READ or WRITE failure.

Tasks Written in MACRO:

The MACRO Assembler pseudo-op .CBD (Common Block Definition) allows
the assembly language programmer to declare a COMMON of an indi
cated name and size, and to specify a word to be set to its base
address.

The .CBD pseudo-op takes a COMMON name and its size as arguments,
reserves one word of core, and outputs loader codes and parameters
to direct the Task Builder to set a vector to the first element of
the indicated COMMON in the reserved word. For example, the state
ment

BASE .CBD ABCD 6

will provide the base address of COMMON/ABCD/ in the word labeled
BASE. (This feature will become available under DOS August 71.)

Normally, 32 LUN's exist; however, this number can be changed by
reassembling the system. On a cold start image, LUN 1 is assigned
to DSK, LUN's 2, 3, and 4 are assigned to TT~, and all other LUN's
are assigned to NONE.

8-35

APPENDIX A
SYNTACTICAL DESCRIPTIONS OF MCR FUNCTIONS

The following is a description of the MCR Functions provided. The
syntax is defined in modified Backus Normal Form using the following
conventions and definitions:

< > =
II II =

=
() =
$ =

NUL =
<BC> =
<CR> =
<AM> =
<NBC> =
<NTC> =
<DV> =

A. ENTER TIME

SYNTAX =

B. TIME

SYNTAX

C. DATE

SYNTAX =

D. TASK LIST

SYNTAX

E. PARTITIONS

SYNTAX =

F. CO!.fr10N BLOCKS

SYNTAX =

Angle brackets delimit metaling:uistic variables
Quote marks delimit a. character string
A vertical bar indicates alternation (OR)
No operator indicates concatenation
Parens indicate factoring
Indicates any number (including zero) of the
following
Indicates the empty set
Break character -- blank or comma
Carriage Return
ALTMODE
Non-break character
Non-terminal character
Decimal value

"ETI" $<NBC><BC><TIME>«BC><DATE>INUL) <cR>I<AM>

<TIME> = <HOURS>II:"<MINUTES>":"<SECONDS>
<DATE> = <MONTH>"/"<DAY?"/"<YEAR>

"TIM" $<NTC> <cR>I<AM>

"DAT" $<NTC> <cR>I<AM>

II TAS II $<NTC> <cR>I<AM>

"PAR" $<NTC> <cR>I<AM>

"COM" $<NTC> <cR>I<AM>

A-l

G. DEVICES AND ASSIGNMENTS

SYNTAX = "DEV" $<NTC> <CR>/<AM>

H. INSTALL

SYNTAX = "INS" $<NBC><BC><TASK NAME>
«BC><DEFAULT PRIORITY>/NUL) <cR>I<AM>

<DEFAULT PRIORITY> = Decimal value of 1-512

I. REMOVE

SYNTAX = "REM" $<NTC> <cR>I<AM>

J. REQUEST

SYNTAX = "REQ" $<NBC><BC><TASK NAME>
{<BC><RUN PRIORITY>/NUL} <cR>I<AM>

<RUN PRIORITY> = Decimal value of 1-512

K. SCHEDULE

L. RUN

~1. SYNC

SYNTAX = "SCH" $<NBC><BC><TASK NAME><BC><TIHE>
«BC><RESCHEDULE INTERVAL> i NUL)
(<BC><RUN PRIORITY» <cR>I<AM>

<TIME> = <HOURS>":"<MINUTES>":"<SECONDS>
<RESCHEDULE INTERVAL> = <DV> ("H" "t1" "S" "T")
<RUN PRIORITY> = Decimal value of 1-512

SYNTAX = "RUN" $<NBC><BC><TASK NAME><BC><SCHEDULE DELTA>
{<BC><RESCHEDULE INTERVAL>INULL}
{<BC><RUN PRIORITY>INUL} <cR>I<AM>

<SCHEDULE DELTA> = <DV>{"H"I"M"I"S"I"T")
<RESCHEDULE INTERVAL> = <DV> ("H" I "M" I "s" I "T")
<RUN PRIORITY> = Decimal value of 1-512

SYNTAX = IISYN" $<NBC><BC><TASK NAME><BC><SYNC UNIT>
<SCHEDULE DELTA> «BC><RESCHEDULE INTERVAL>INUL}
«BC><RUN PRIORITY>INUL) <cR>I<AM>

<SYNC UNIT> = "H" I "M" I "s" I "T"
<SCHEDULE DELTA> = <DV> ("H" I "~l" I"s" I "Til)
<RESCHEDULE INTERVAL> = <DV> (IIH" I"M" I "s" I liT")
<RUN PRIORITY> = Decimal value of 1-512

A-2

N. CANCEL

SYNTAX = II CAN " $<NTC> <CR> I <AM>

O. RESUME

SYNTAX = II RES " $<NBC><BC><TASK NA11E> <cR>I<AM>

P. FIX IN CORE

SYNTAX IIFIX" $<NBC><BC><TASK NAME> <cR>I<AM>

Q. UNFIX

SYNTAX = "UNF" $<NBC><BC><TASK NM1E> <CR> I <AM>

R. ENABLE

SYNTAX = "ENA" $<NBC><BC><TASK NAME> <cR>I<AM>

S. DISABLE

SYNTAX = "DIS" $<NBC><BC><TASK NAME> <CR> I <AM>

T. REASSIGN

SYNTAX = "REA" $<NBC><BC><LUN><BC><NEW ASSIGNMENT>
<BC><OLD ASSIGNMENT> <cR>I<AM>

U. SAVE

SYNTAX = "SAV" $<NTC> <cR>I<AM>

V. OPEN REGISTER

SYNTAX = "OPE" $<NBC><BC><NUMBER>«BC> "D"«UNIT>INUL) INUL)
<CR> 1 <AM>
<NUMBER> = <SIGN><RADIX><DIGIT>$<DIGIT>
<SIGN> = n+" 1 "_" 1 NUL
<RADIX> = "0" I "D" I NUL
<DIGIT> = ()y 11121314/51617) / ()y 11/213/41516/7/8/9 >.

default: positive, octal.
<UNIT> = Disk unit nwT~er - default: zero.

A-3

I EDIT #6
I

APPENDIX B
MACRO EXPANSIONS FOR SYSTEM DIRECTIVES

I COPYRIGHT 1971, DIGITAL EQUIPMENT CORP" MAYNARD, MASS.

RSX-15 MACRO DEFINITIONS 8 APR 71 H. KREJCI
I
I
I
I
I
I

ABREVIATIONS ~- UNLESS OTHERwISE.SPECIFIEO, A~L PARAMETERS
EXCEPT ADDRESSES ARE GIVEN IN DECIMAL,

I
I
I
I
I
I
I
I
I
I
I
I

I
I

/
I
I
I
I
I
I
I
/
/
I
I

8UFF
CL.
eTR
EV
FLNAM
LN
U.JN
MI
~v100E

MU
RA
R I

RU
SO
SH
SItE
SM
ss
su
Sf
TASNAM
EXT

CORE BUFfER ADDRESS
I~TERRUPT CONNECT L.OCATION
CONTROL TABLE ADDRESS
EVENT VARIABLE ADDRESS
FILE NAME <1-6 C~ARACTERS)
INTERRUPT LINE NUMBER (OCTAL)
LOGICAL UNIT NUMBER
~ARK TIME INTERVAL (A TICK THRU A DAY)
DATA MODE INDICATOR
~'ARK TIME UNITS
RESUMPTION ADDRESS
RESCHEDULE INTtRVA~ (0~1 DAY, ~HERE 0

IMPLIES NO RrSCH[DULlNG)
RUN PRIORITy (?-512, WHERE ~ IMPLIES

DEFAULT PRIORITY) .
RESC~Er,ULE U~lrs (H,M,S,T)
SCH£DU~E DELTA (A TICK T4RU A CAY)
SCHEDULE HOURS (0~23)
CORE BUFFER sIlE (OCTAL)
SCHEDULE MINUTES (0~59)
SCHEDULE SECONDS (0~59)
SC~ECULE DELTA UNITS (H,M,S,T)
SYNCHRON12ATION UNIT (H,M,S,T)
TASK NAME (1-6 CHARACTERS)
FILE NAME EXTENSION (l~J CHARACTERS)

~=4 IHOURS INDICATOR
M=3 /MINUTES INDICATOR
S=2 ISECONDS INOICATOR
T=l ITICKS INDICATOR
I
.lNH=705522 IINTERRUPT INHIBIT lOT
.EN9=705521 IINTERRUPT ENABLE lOT
I
HH=165 IHRS IN seOM
MM=164 IMIN IN SCOM
55=163 ISEC IN SCOM
~O=166 IMON IN scaM
OA=167 /DAy IN SCOM
YR=170 IYEAR IN SCOM
SAVE=131 /SAVE ENTRY POINT (I~ scaM)
REST=134 IRESTORE ENTRY POINT (I~ SCOM)

B-1

I
I **~~ REQUEST TASNAM(,RPt,EV)J
I

I

.DErIN
CAl,.
JMP
01
EV+0
.SIXBT
0; .LOC:
,DEC
RP-0
.ENOM

REQUEST,TN,RP,EV
,+2
e+ 6

"T "J U

•• + 2

I *~o* SC~EOULE TASNA~fSH,SM.SS!,RI,RUC,RP[,EV]J]
I

I

.OEFIN SCHEDULEtTN,S~,SM,SS,Rl,RU,HP.EV
CAL •• 2
JMP ,+13
02
EV""
,SIXAT "TW'
0; .LOC ,.+2
.DEC
SHJ SMJ S5
RI+(t
RU+0
RP+0
.ENOM

,OEFIN RvN,TN,SQ,SU,RI,RU,RP,EV
CAL • +2
JMP ,+j.2
~3

EV"'0
.SiX8T "TI\]"
QlJ ,LOC: ".2
.DEC
SO J SU
RI+0
~U·0
RP"'0
,ENDM

I **** SYNC
I

• ,II d

.OErIN SYNC,TN,St,SO,SU,Rl,RU,RP.EV
CAL ,+2
JMP • +13
14
EV+0
.SIXBT "TN"
'-", .LOC • ,+2
.DEC
52. SO. SU

B-2

I

Ql+0
RU+0
RP+0

I .~** CANCEL TASNAM(t[V]
I

.. . , . -, ,

I
I ****
I

I

.OEF IN CAc~CEL.l\i,EV
CAl.. • + 2
JMP ."':>
?!4
EV+e
• S I X R T "T \)'1

0J .LOC • t+2
.ENOr-'

SUSPF.Nt)

.O[F!N SUSPEND
C,AI" (6)

I **** RESU~E TASNAMr,RAl,FVJJ
I

I
I *~HH.

I

I .~**

I

i
I .***
I

.OEFIN RESUME,TN,RA,Ev
CAL ." 2
JMP ,+6
7)7
EV"'0
.S!X8T "1 "
'~; .LOC • ,+2
RA+vi
.END~

MARK Jv,l,~'1U~EV

.tiEFIN ~1ARKdq ,MU,EV
CAL. ,+2
JMP 5
13
EV
.DEC; M I ; MU
.ENOM
WA!T~"OR EV

,OEFIN i-!AITFOR,EV
CAL ,+2
JMP ,+3
20
EV
.END~

WAIT

.DEFlf'.. \.oJA I T
CAL (5)
.ENDM

B-3

I
I ~HHH~ EXIT
I

t DEF n~ EXIl
CAl,.. (12)
,END~

I
I tHHH~ CO~>jNECT L~J,CL(,EV)
I

,orFIN CO\jNECT I LN, CL, EV
CAL ,·2
J~1P ,+5
11
E'V+0
LN
CI.
.ENOM

I
I "*0* DISCQ"Jt\ECT LN,CLC.EVJ
I

.DEF'IN OISCONNECT,L\,CL,EV
CAL 2
JMP ,+5
12
Ev ... e
LN
CL.
.ENDt~

I
I **tHt READ LUN,MQOE,BUFF,SlrEC,EVJ
I

,PEFIN READ,LUN,MOOE,BUFF',SIr.E,EV
CAL 2
JMP ,-.7
2600
EV+0
.DEC; LUN; ,OCT
~OOE
8UFF
SI2E
.END~~

I *001- WRITE LUN,MODE,BUFFC,EVJ
I

,DEFtN w~ITE,LUN,MOOE,BUrF.EV
CAL ,+2
JMP 6
2700
EV'*0
.DEC) LUNJ .OCT
~ODE
8UF"F
.ENDM

I
I -001- DSKAl CT8(.EVJ
I

.DEF'IN DSKAl,CTS,EV
CAt,. .+2

8-4

JMP ,+5
15,710
EV+0
1
Cia
.ENDM

I
I A*~'" QSKDAL CTBC.EVJ
I

.DEFJN DSKDAL.CTB,Ev
CAL ,+2
,JMP ,+5
1600
EV"''''
1
C'f8
.ENO~

I
I 0 * OSKPUT CTBC.EV)
I

.DEFIN OSKPUT,CTB,EV
CAl., ,+2
JMP ,+5
31?10
EV*0
1
eTB
.ENOM

I
I ~* OSKGET CTR(,EV]
I

.DEFJN OSKGET,CTB,EV
CAL ,+2
JMP ,+5
30e0
EV+0
1
CT8
.ENOM

I
I 0*0 ... ATTACH LliNC,EVJ
I

.DEFIN ATTACH,LUN.EV
CAL 2
JMP ,+4
;,>400
EV"0
.DEC} LUN • .OCT
• ENQM

I
I .. ~~~ rlC'"TAl"'u I I I ~,I r _ C'" \/ .,

i.~}'- ~ lI"\\,;n l-¥1"'"",,-1JI'.J

I
,OEF'1.N DETACH.LUN.EV
CAl .+2
JMP .+4
2500
EV+0

B-5

I

.DECJ LUNJ .OCT
,ENOM

I SEEK
I

I

.DE~IN SErK.~UN.r~NAK.EXTIEV
CAL ,+2
JMP ,+7
32t'!0
EV*0
.DF.:CJ LUNJ .OCT
• S I X"T "F'LNAM"
c.'I; ,LOC .. *2
.5IXBT "EXT"
.ENDM

I 600.. ENTER
I

I

.DErIN ENTER,LUN,rLNAM,EXT,EV
CAL • +2
JMP ,+1
33Q!0
EV+e
•• OEC; LUNJ .OCT
• 5 I X AT" F' L. N A M 't
C'!; .lOC ,,+2
,S!X8T "EXT"
.ENOM

I *000 DELETE LUN,FLNAM,EXTC,EVJ
I

•• iI1' • i

I
I "000

I

I
I 6000

I

,OEFtN DELETE.LUN,rLNAM,£XT,EV
CAl... •• 2
JMP •• ?
35Q!0
EV*0
.DECr LUNJ .OCT
i S I X 8 ,. !! F' L N A W'
ell .LOC • ,+2
.51 XRT "EXT"
,E;NDM

CL"OSE LUNC,EVj

.OEFtN CLOSE.LUN,EV
CAL ,+2
JMP 4
34Q!0
EV"'0
,DEC. LUNJ .OCT
.ENOM

HINr LUN,EV

.DEFIN HINF,I,.UN,EV
CAL ,+2
JMP ,+4

B-6

I

3601i'J
eY."
.DECJ LUNJ .OC'
.[NOM

I •••• Ol$ABL£ TASNAMC,EV3
I

• t •• J

I

.orrIN DISABLe,TNIEV
CAL. t.2
JMP ,.5
21
E:V·0
.SIXBT "TN"
0' .Loe ... 2
.[NOM

I •••• ENABLE TASNAMf,EVl
I

.....
I

.OEFIN ENABLE,TN,EV
CAL. ,.2
JMP ,+5
22
[V·21
.StXBT "TN"
0' ,LOe: • ,.2
.ENDM

I •••• "IX
I

TASKNAMC,EVl

••• d

I

.oerlN rIx,TN,EV
CAL. ,+2
JMP ,.,
15
EY·/2I
.SIXBT "TN"
0. ,LOC • ,.2
.ENDM

I •••• UN'IX
I'

TASNAMt.£VJ

.OErlN UN'IX.TN,EV
OAL •• 2
JMP ,+5
16
EV·QJ

.,-,1 ,StXBT "TN"
01 .LOC • ,.2
.ENOM

1
I •••• OE~LARE
1

,O£F'tN OECLARE
LAC (40100",
ISA
,[NOM

B-7

I
I TIME HRS.MIN,SEC
I

.OEFIN TIME,HRS,MIN,SEC
f 1 NH
LAC* (HH)

QAC HRS
LAC* (MM)
DAC MIN
LAC* (SS)
.ENS
O~C SEC
.ENO"~

I
I *** .. DATE HRS,MIN.SEC,MON,DAY.YEAR
I

.DEFIN OATE.HRS,MIN,SEC,MON.OAy,YEAR
,1NH
LAC* (HH)

nAC HRS
LAC* P1M)
OAt'! ~IN
LAC. (5S)
QAC SEC
LAC .. (MO)
f)AC MO~I

LAC .. (D A)

'lAC DAY
LAC. e y.~)
• Et\l8
DAC yEAR
.(NOM

I
I 4HHHt pH£'HRY eL
I

.OEFIN I \JTE~.;TI~Y. C\-.
CL 0

D8A
JMS* (SAvE)
.REPT 20
0
'~OP

.ENOM
I
I **~H. tNTE.XIT CL
I

.OEFI~ l\JTEXIT,CL
LAC (CL)
JMP* (~lS1)
, ENOlA

I
,END

B-8

APPENDIX C
CAL PARAMETER BLOCKS FOR SYSTEM DIRECTIVES

A. QUEUE I/O DIRECTIVE

Word 0

Word 1
t'Jord 2
Word 3
Word 4
Word 5

CAL Function Code (OO) in bits 12-17 and
I/O Function Code in bits 3-11
Event Variable address
Logical Unit Number (LUN)
Unique to I/O Function
Unique to I/O Function
Unique to I/O Function

B. REQUEST DIRECTIVE

Word 0
Word 1
Word 2
Word 3
Word 4

CAL Function Code (01)
Event Variable address
Task name (first half)
Task name (second half)
Run priority (0-512)

C. SCHEDULE DIRECTIVE

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 10
Word 11

D. RUN DIRECTIVE

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
tvord 7
Word 10

E. SYNC DIRECTIVE

Word 0
Word 1
~vord 2
Word 3
Word 4
Word 5

CAL Function Code (02)
Event Variable address
Task name (first half)
Task name (second-half)
Schedule hour (0-23)
Schedule minute (0-59)
Schedule second (0-59)
Reschedule interval (O-one day)
Interval units (l-tks, 2-secs, 3-mins, 4-hrs)
Run priority (0-512)

CAL Function Code (03)
Event Variable address
Task name (first half)
Task name (second half)
Schedule delta (O-one day)
Delta units (l-tks, 2-secs, 3-mins, 4-hrs)
Reschedule interval (O-one day)
Interval units (l-tks, 2-secs, 3-mins, 4-hrs)
Run priority (0-512)

CAL Function Code (14)
Event Variable address
Task name (first half)
Task name (second half)
Sync units (l-tks, 2-secs, 3-mins, 4-hrs)
Schedule delta from synchronization (O-one day)

C-l

Word 6
Word 7
Word 10
Word 11

F. CANCEL DIRECTIVE

Word 0
Word 1
Word 2
Word 3

Delta units (l-tks, 2-secs, 3-mins, 4-hrs)
Reschedule interval (O-one day)
Interval units (l-tks, 2-secs, 3-mins, 4-hrs)
Run priority (0-512)

CAL Function Code (04)
Event Variable address
Task name (first half)
Task name (second half)

G. SUSPEND DIRECTIVE

Word 0 -- CAL Function Code (06)

H. RESUME DIRECTIVE

Word 0
Word 1
Word 2
Word 3
Word 4

I. WAIT DIRECTIVE

CAL Function Code (07)
Event Variable address
Task name (first half)
Task name (second half)
Resumption address

Word 0 -- CAL Function Code (05)

J. MARK DIRECTIVE

Word 0
Word 1
Word 2
Word 3

CAL Function Code (13)
Event Variable address
Delta time (O-one day)
Delta units (l-tks, 2-secs, 3-mins, 4-hrs)

K. WAITFOR DIRECTIVE

Word 0
Word 1

L. EXIT DIRECTIVE

CAL Function Code (20)
Event Variable address

Word 0 -- CAL Function Code (10)

M. CONNECT DIRECTIVE

Word 0
. Word 1
Word 2
Word 3

CAL Function Code ell)
Event Variable address
Interrupt line number
Interrupt transfer address

C-2

N. DISCONNECT DIRECTIVE

Word 0 CAL Function Code (12)
Word 1 Event Variable address
Word 2 Interrupt line number
Word 3 Current interrupt transfer address

o. FIX DIRECTIVE

Word 0 CAL Function Code (15)
Word I Event Variable address
Word 2 Task name (first half)
Word 3 Task name (second half)

P. UNFIX DIRECTIVE

Word 0 CAL Function Code (16)
\"lord 1 Event Variable address
Word 2 Task name (first half)
Word 3 Task name (second half)

Q. DISABLE DIRECTIVE

Word 0 CAL Function Code (21)
Word I Event Variable address
Word 2 Task name (first half)
Word 3 Task name (second half)

R. ENABLE DIRECTIVE

Word 0 CAL Function Code (22)
Word I Event Variable address
Word 2 Task name (first half)
Word 3 Task name (second half)

C-3

APPENDIX D
SUMMARY OF RETURNED EVENT VARIABLES

EVENT VARIABLE CONVENTIONS

The following conventions apply to Event Variables in Tasks by the

System.

1.

2.

3.

-5

-6
-7

-1f1
-11
-12
-13
-14
-15
-16
-23
-24

-1-"1
-1-"2
-1-"3
-1-,,4
-2~1

-2,2
-2-,,3
-2-"4
-2-"5
-2-"7
-21-"
-3-"1
-3-"2
-777

positive values signal successful completion

Zero indicates a request is still pending

Negative values indicate rejection or unsuccessful
completion.

Illegal header word read from device (data mode in
correct or data validity bits improperly set) (DVH)
Unimplemented or illegal Function (DVH)
Illegal data mode (DVH)
File still open (DVH)
File not open (DVH)
DECtape error (DVH)
File not found (DVH)
Directory full (DVH)
Medium full (DVH)
Output word-pair-count or input-buffer-size error (DVH)
Input word-pair-count error (DVH)
LUN has been REASSIGNed while an ATTACH or DETACH
request was in an I/O request queue (DVH)
Out of range Logical Unit Number (10.)
Un-assigned Logical Unit Number (10.)
Non-resident Device Handler (10.)
Control Table argument error (DVH)
Task not in system (RQ., SC., RN., SY., DA., EA., FX.,

UF., CN.)
Task is active (RQ., FX.) or not active (RS.)
CAL not Task issued (SC., RN., SY., MT.)
Task is DISABLED (RQ., SC., RN., SY., FX.)
Task not suspended (RS.)
Task already FIXed (FX.) or not FIXed (UF.)
Partition occupied (FX.)
Line number rejected (CI., DI.)
Line is CONNECTed (CI.) or not CONNECTed (DI.)
Pool is empty

DVH Device Handler
IO. :QUEUE I/O: Directive
RQ. 'REQUEST' Directive
SC. 'SCHEDULE' Directive
RN. 'RUN' Directive
SY. 'SYNC' Directive
CN. 'CANCEL' Directive
RS. 'RESUME' Directive
CI. 'CONNECT' Directive
DI. 'DISCONNECT' Directive

D-l

FX. 'FIX IN CORE' Directive
UF. 'UNFIX' Directive
DA. 'DISABLE' Directive
EA. 'ENABLE' Directive
MT. 'MARK' Directive

0-2

APPENDIX E
REGISTERS SAVED DURING uSAVEu AND uRESTOREu OPERATIONS

Word 0 AC buffer (accumulator)
Word 1 XR buffer (index register)
Word 2 LR buffer (limit register)
Word 3 MQ buffer (multiplier-quotient register)
Word 4 SC buffer (step counter)
Word 5 Rl buffer (absolute location 101)
Word 6 R2 buffer (absolute location 102)
Word 7 R3 buffer (absolute location 103)
Word 10 R4 buffer (absolute location 104)
Word 11 RS buffer (absolute location 105)
Word 12 R6 buffer (absolute location 106)
Word 13 XIO buffer (autoincrement register 10)
Word 14 XII buffer (autoincrement register 11)
Word 15 X12 buffer (autoincrement register 12)
Word 16 X13 buffer (autoincrement register 13)
Word 17 L20 buffer (location 20 - CAL return)

E-l

X

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

2'
1.00069 33874 62581
1.00138 72557 11335
1.00208 16050 79633
1.00277 64359 01078
1.00347 17485 09503
1.00416 75432 38973
1.00486 38204 23785
1.00556 05803 98468
1.00625 78234 97782

SCALES OF NOTATiON

2X IN DECIMAL
X

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

2'
1.00695 55500 56719
1.01395 94797 90029
1.02101 21257 07193
1.02811 38266 56067
1.03526 49238 41377
1.04246 57608 41121
1.04971 66836 23067
1.05701 80405 61380
1.06437 01824 53360

10±n IN OCTAL

X

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

APPENDIX F

CONVERSION TABLES

2'
1.07177 34625 36293
1.14869 83549 97035
1.23114 44133 44916
1.31950 79107 72894
1.41421 35623 73095
1.51571 65665 103S8
1.62450 47927 12471
1.74110 11265 92248
1.86606 59830 73615

10" n 10-" 10" n 10-"
1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66

12 1 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77
144 2 0.005 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32

1 750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35
23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11

303 240 5 0.000 002 476 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
3 641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63

46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14
575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01

7 346 545 000 9 0.000 000 000 104 560 276 41

n 10910 2, n 109 2 lOIN DECIMAL

n n IOSlo 2 n IOS2 10 n n IOSlo 2 n iog2 10
1 0.30102 99957 3.32192 80949 6 1.80617 99740 19.93156 85693
2 0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642
3 0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 28540
5 1.50514 99783 16.60964 04744 10 3.01029 99566· 33.21928 09489

ADDITION AND MULTIPLICATION TABLES
Addition Multi pi ication

Binary Scale

o to = 0 oxo=o
0+1=1 0= 1 OX1=lxO=0

1 1 = 10 1 x 1 = 1

Octal Scale

0 01 02 03 04 05 06 07 1 02 03 04 05 06 07

1 02 03 04 05 06 07 10 2 04 06 10 12 14 16

2 03 04 05 06 07 10 11 3 06 11 14 17 22 25

3 04 05 06 07 10 11 12 4 10 14 20 24 30 34

4 05 06 07 10 11 12 13 5 12 17 24 31 36 43

5 06 07 10 11 12 13 14 6 14 22 30 36 44 52

6 07 10 11 12 13 14 15 7 16 25 34 43 52 61

7 10 11 12 13 14 15 16

MATHEMATICAL CONSTANTS IN OCTAL SCALE

rr= 3.11037 552421, e= 2.55760 521305. ,,= 0.44742 147707,

rr-I = 0.24276 301556. e- I = 0.27426 530661, In" = - 0.43127 233602.

'1--';:; = 1.61337 611067. Ve= 1.51411 230704. log2" = - ,0.62573 030645.

In rr = 1.11206 404435, loglo e = 0.33626 754251, '12= 1.32404 746320.

log2 rr = 1.51544 163223. log2 e = 1.34252 166245. In 2 = 0.54271 027760.

'110 = 3.12305 407267, log2 10 = 3.24464 741136, In 10 = 2.23273 067355.

F-l

n
2 n

1 0
2 1
4 2
8 3

16 4
32 5
64 6

128 7
256 8
512 9

1 024 10
2 048 11
4 096 12
8 192 13

16 384 14
32 768 15
65 536 16

131 072 17
262 144 18
524 288 19

1 048 576 20
2 097 152 21
4 194 304 22
8 388 608 23

16 777 216 24
33 554 432 25
67 108 864 26

134 217 728 27
268 435 456 28
536 870 912 29

1 073 741 824 30
2 147 483 648 31
4 294 967 296 32
8 589 934 592 33

17 179 869 184 34
34 359 738 368 35
68 719 476 736 36

137 438 953 472 37
274 877 906 944 38
549 755 813 888 39
099 511 627 776 40

2 199 023 255 552 41
4 398 046 511 104 42
8 796 093 022 208 43

17 592 186 044 416 44
35 184 372 088 832 45
70 368 744 177 664 46

140 737 488 355 328 47
281 474 976 710 656 48
562 949 953 421 312 49

1 125 899 906 842 624 50
2 251 799 813 685 248 51
4 503 599 627 370 496 52
9 007 199 254 740 992 53

18 014 398 509 481 984 54
36 028 797 018 963 968 55
72 057 594 037 927 936 56

144 115 188 075 855 872 57
288 230 376 151 711 744 58
576 460 752 303 423 488 59

1 152 921 504 606 846 976 60
2 305 843 009 213 693 952 61
4 611 686 018 427· 387 904 62
9 223 372 036 854 775 808 63

18 446 744 073 709 551 616 64
36 893 488 147 419 103 232 65
73 786 976 294 838 206 464 66

147 573 952 589 676 412 928 67
295 147 905 179 352 825 856 68
590 295 810 358 705 651 712 69

1 180 591 620 717 411 303 424 70
2 361 183 241 434 822 606 848 71
4 722 366 482 869 645 213 696 72

POWERS OF TWO

-n
2
1.0
0.5
0.25
0.125
0.062 5
0.031 25
0.015 625
0.007 812 5
0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25
0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125
0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25
0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125
0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
0.000 000 000 000 454 747 350 886 464 U8 957 519 531 25
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5
0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 5u7 812 5
0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125
0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25
0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625
0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5
0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25
0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125
0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5
0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25
0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625

F-2

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 2 3 4 5 6 7 0 1 2 3 4 5 6 7

00001 0000 0000 0000 0001 0002 000) 0004 0005 0006 0007
to I to

1°
010

1
0008 0009 0010 0011 0012 0013 0014 0015 0777 0511 0020 0016 0017 0018 0019 0020 0021 0022 0023 IOctal) (Decima/) 0030 0024 0025 0026 0027 0028 0029 0030 0031

0040 10032 0033 0034 0035 0036 0037 0038 0039

Octal Decimal
0050 0040 0041 0042 0043 0044 0045 0046 0047
0060 0048 0049 0050 0051 0052 0053 0054 0055

10400 0256 0257 0258 0259 0260 0261 0262 0283

1°
410 0264 0265 0266 0267 0268 0269 0270 0271

0420 0272 0273 0274 0275 0276 0277 0278 0279
0430 0280 0281 0282 0283 0284 0285 0286 0287
0440 0288 0289 0290 0291 0292 0293 0294 0295
0450 0296 0297 0298 0299 0300 0301 0302 0303
0460 0304 0305 0306 0307 0308 0309 0310 0311

10000 - 4096 0070 0056 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 0319
20000 - 8192
30000 - 12288 0100 0064 0065 0066 0067 0068 0069 OOlO 0071 0500 0320 0321 0322 0323 0324 0325 0326 0327
40000 - 16384 0110 0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 0330 0331 0332 0333 0334 0335
50000 - 20480 0120 0080 0081 0082 0083 0084 0085 0086 0087 05~0 0336 0337 0338 0339 0340 0341 0342 0343
60000 - 24516 0130 0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 0348 0349 0350 0351
70000 - 28672 0140 0096 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354 0355 0356 0357 0358 0359

0150 0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362 0363 0364 0365 0366 0367
0160 0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369 0370 0371 0372 0373 0374 0375
0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 0380 0381 0382 0383

0200 0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0388 0389 0390 0391
0210 0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398 0399
0220 0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402 0403 0404 0405 0406 0407
0230 0152 0153 0154 0155 0156 0157 0158 01~9 0630 0408 0409 0410 0411 0412 0413 0414 0415
0240 0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 0420 0421 0422 0423
0250 0168 0169 0170 0171 0172 0173. 0174 0175 0650 0424 0425 0426 0427 0428 0429 0430 0431
0260 0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438 0439
0270 0184 0185 0186 0187-0188 0189 0190 0191 0670 0440 0441 0442 0443 0444 0445 0446 0447

0300 0192 0193 0194 0195 0196 01~7 0198 0199
0310 0200 0201 0202 0203 0204 0205 0206 0207 1

0700 0448 0449 0450 0451 0452 0453 0454 0455
0710 0456 0457 0458 0459 0460 0461 0462 0463

0320 0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466 0467 0468 0469 0470 0471
0330 0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 0476 0477 0478 0479.
0340 0224 0225 0226 0227 0228 0229 0230 0231

1

0350 0232 0233 0234 0235 0236 0237 0238 0239
0360 0240 0241 0242 0243 0244 0245 0246 0247
0370 0248 0249 0250 0251 0252 0253 0254 0255 '

0740 0480 0481 0482 0483 0484 0485 0486 0487
0750 0488 0489 0490 0491 0492 0493 0494 0495
0760 0496 0497 0498 0499 0500 0501 0502 0503
0770 0504 0505 0506 0507 0508 0509 0510 0511

· 1000 1o:"
2 5 6 7

:
I 0 2 3 5 6 7

10001 0512 0513 0514 0515 0516 0517 0518 05191 1400 0768 0769 077Q 0771 0772 0773 0774 0775
to I to 1010 10520 0521 0522 0523 0524 0525 0526 05271 1141010776 0777 0778 0779 0780 0781 0782 0783

1777 1023 1020 10528 0529 0530 0531 0532 0533 0534 0535 1420 0784 0785 0786 0787 0788 0789 0790 0791
(Octal) IOecimol) 1030 10536 0537 0538 0539 0540 0541 (1542 0543 1430 0792 0793 0794 0795 0796 0797 0798 0799

1040 0544 0545 0546 0547 0548 0549 0550 0551 1440 0800 0801 0802 0803 0804 0805 0808 0807
1050 0552 0553 0554 0555 0556 0557 0558 0559 1450 0808 080~ 0810 0811 0812 0813 0814 0815
1060 0560 0561 0562 0563 0564 0565 0566 0567 1460 0816 0817 0818 0819 0820 0821 0822 0823
1070 0568 0569 0570 0571 0572 0573 0574 0575 1470 0824 0825 0826 0827 0828 0829 0830 0831

1100 0576 0577 0578 0579 0580 0581 0582 0583 1500 0832 0833 0834 0835 0836 0837 0838' 0839
1110 0584 0585 0586 0587 0588 OS89 0590 0591 1510 0840 0841 0842 0843 0844 0845 0846 0847
1120 0592 0593 0594 0595 0596 0597 0598 0599 1520 0848 0849 0850 0851 0852 0853 0854 0855
1130 0600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857 0858 0859 0860 0861 0862 0863
1140 0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865 0866 0867 0868 0869 0870 0871
1150 0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 0874 0875 0876 0877 0878 0878
1160 0624 0625 0626 0627 0628 0629 0630 0631 156Q 0880 0881 0882 0883 0884 0885 0886 0887
1170 0632 0633 0634 0635 0636 0637 0638 0639 1570 0888 0889 0890 0891 0892 0893 089-' 0895

1200 0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0898 0899 0900 0901 0902 0903
1210 0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906 0907 0908 0909 0910 0911
1220 0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914 0915 0916 0917 0918 0919
1230 0664 0665 0666 0667 0668 0669 0670 0671 163°1°920 0921 0922 0923 0924 0925 0926 0927
1240 0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931 0932 0933 0934 0935
1250 0680 0581 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 0940 0941 0942 0943
1260 0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 0948 0949 0950 0951
1270 0696 0697 0698 0699 0700 0701 0702 0703 167010952 0953 0954 0955 0956 0957 0958 0959

!
1300 0704 0705 0706 6707 0708 0709 0710 0711 170010960 0961 0962 0963 0964 0965 0966 0967
1310 0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971 0972 0973 0974 0975
1320 0720 0721 0722 0723 0724 0725 0726 0727 1720,0976 0977 0978 0979 0980 0981 0982 0983
1330 0728 0729 0730 0731 0732 0733 0734 0735 1730 1098. 0985 0986 0987 0988 0989 0990 0991
1340 0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0994 0995 0996 0997 0998 0999
1350 0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003 1004 1005 10Qe 1007
1360 0752 0753 0754 0755 0756 0757 0758 0759 1760 1008 1009 1010 1011 1012 1013 1014 1015
1370 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019 1020 1021 1022 1023

F-3

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

0 1 2 3 4 5 6 7

2000 1024 1025 1026 1027 1028 1029 1030 1031
2010 1032 1033 1034 1035 1036 1037 1038 1039
2020 1040 1041 1042 1043 1044 1045 1046 1047
2030 1048 1049 1050 1051 1052 1053 1054 1055
2040 1056 1057 1058 1059 1060 1061 1062 1063
2050 1064 1065 1066 1067 1068 1069 1070 1071
2060 1072 i073 1074 1075 1076 1077 1078 1079
2070 1080)081)082 1083 1084 1085 1086 1087

2100 1088 1089 1090 1091 1092 1093 1094 1095
2iiO 1096 i097 i098 i09S BOO lIOi 1102 1103
2120 1104 1105 1106 1107 1108 1109 1110 1111
2130 1112 1113 1114 1115 1116 1117 1118 1119
2140 1120 1121 1122 1123 1124 1125 1126 1127
2150 1128 1129 1130 1131 1132 1133 1134 1135
2160 1136 1137 1138 1139 1140 1141 1142 1143
2170 1144 1145 1146 1147 1148 1149 1150 1151

2200 1152 1153 1154 1155 1156 1157 ll58 1159
2210 1160 1161 1162 1163 1164 1165 1166 1167
2220 1168 1169 1170 1171 1172 1173 1174 1175
2231) 1176 1177 1178 1179 1180 1181 1182 1183
2240 1184 1185 1186 1187 1188 1189 1190 1191
2250 1192 1193 1194 1195 1196 1197 1198 1199
2260 1200 1201 1202 1203 1204 1205 1206 1207
2270 1208 1209 1210 1211 1212 1213 1214 1215

2300 1216 1217 1218 1219 1220 1221 1222 1223
2310 1224 1225 1226 1227 1228 1229 1230 1231
2320 1232 1233 1234 1235 1236 1237 1238 1239
2330 1240 1241 1242 1243 1244 1245 1246 1247
2340 1248 1249 1250 1251 1252 1253 1254 1255
2350 1256 1257 1258 1259 1260 1261 1262 1263
2360 1264 1265 1266 1267 1268 1269 1270 1271
2370 1272 1273 1274 1275 1276 1277 1278 1279

0 I 2 3 4 5 6 7

I 3000 1536 1537 1538 1539 1540 1541 1542 1543
3010 1544 1545 1546 1547 1548 1549 1550 1551

13020 1552 1553 1554 1555 1556 1557 1558 1559
3030 1560 1561 1562 1563 1564 1565 1566 1567
3040 1568 1569 1570 1571 1572 1573 1574 1575
3050 1576 1577 1578 1579 1580 1581 1582 1583
3060 1584 1585 1586 1587 1588 1589 1590 1591

13070 i 1592 1593 1594 1595 1596 1597 1598 1599

! liDO 1'600 1601 1602 1603 1604 1605 1606 1607
13110 1608 1609 1610 1611 1612 1613 1614 1615
13120 1616 1617 1618 1619 1620 1621 1622 1623
!3J30 11624 1625 1626 1627 1628 1629 1630 16311

1

'3140' 1632 1633 1634 1635 1636 1637 1638 1639'
3150 1640 1641 1642 1643 1644 1645 1646 1647
3160 1648 1649 1650 1651 1652 1653 16,)4 1655
317.0 1656 1657 1658 1659 1660 1661 1662 1663

3200 1664 1665 1666 1667 1668 1669 1670 1671
3210 1672 1673 1674 1615 1676 1677 1678 1679
3220 1680 1681 1682 1683 1684 1685 1686 1687
3230 1688 1689 1690 1691 1692 1693 1694 1695
3240 1696 1697 1698 1699 1700 1701 1702 1703
3250 1704 1705 1706 1707 1708 1709 1710 1711
3260 1712 1713 1714 1715 1716 1717 1718 1719
3270 1720 1721 1722 1723 1724 1725 1726 1727

3300 1728 1729 1730 1731 1732 1733 1734 1735
3310 1736 1737 1738 1739 1740 1741 1742 1743
3320 1744 1745 1746 1747 1748 1749 1750 1751
3330 1752 1753 1754 1755 1756 1757 1758 1759
3340 1760 1761 1762 176-3 1764 1765 1766 1767
3350 1768 1769 1770 1771 1772 1773 1774 1775
3360 1776 1777 1778 1779 1780 1781 1782 1783
3370 1784 178~ 1786 1787 1788 1789 1790 1791

2400
2410
2420
2430
2440
2450
2460
2470

2500
2510
2520
2530
2540
2550
2560
2570

2600
2610
2620
2630
2640
2650
2660
2670

2700
2710
2720
2730
2740
2750
2760
2770

3400
3410
3420
343("
3440
345Q
3460

'3470

3500
3510
3520
3530
3540
3550
3560
3570

3600
3610
3620
3630
3640
3650
3660
3670

3700
3710
3720
3730
3740
3750
3760
3770

0 1 2 3 4 5 6 7

1280 1281 1282 1283 1284 1285 1286 1287
1288 1289 i290 1291 1291 1293 1294 1295
1296- 1297 1298 1299 1300 1301 1302 1303
1304 1305 1306 1307 1308 1309 1310 1311
1312 1313 1314 1315 1316 1317 1318 1319
1320 1321 1322 1323 1324 1325 1326 1327
1328 1329 1330 1331 1332 1333 1334 1335
1336 1337 1338 1339 1340 1341 1342 1343

1344 1345 1346 1347 1348 1349 1350 1351
1352 1353 1354 1355 1356 1357 1358 1359
1360 1361 1362 1363 1364 1365 1366 1367
1368 1369 1310 1371 1372 1373 1374 1375
1376 1377 1378 1379 1380 1381 1382 1383
1384 1385 1386 1387 1388 1389 1390 1391
1392 1393 1394 1395 1396 1397 1398 1399
1400 1401 1402 1403 1404 1405 1406 1407

1408 1409 1410 1411 1412 1413 1414 1415
1416 1417 1418 1419 1420 1421 1422 1423
1424 1425 1426 1427 1428 1429 1430 1431
1432 1433 1434 1435 1436 1437 1438 1439
1440 1441 1442 1443 1444 1445 1446 1447
1448 1449 1450 1451 1452 1453 -1454 1455
1456 1457 1458 1459 1460 1461 1462 1463
1464 1465 1466 1467 1468 1469 1470 1471

1472 1473 1474 1475 1476 1477 1478 1418
1480 1481 1482 1483 1484 1485 1486- 1487
1488 1489 1490 1491 1492 1493 1494 1495
1496 1497 1498 1499 1500 1501 1502 1503
1504 1505 1506 1507 1508 1509 1510 1511
1512 1513 1514 1515 1516 1517 1518 1519
1520 1521 1522 1523 1524 1525 1526 1527
1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7

1792 1793 1794 1795 1796 1797 1798 1799
1800 1801 1802 1803 1804 1805 1806 1807
1808 1809 1810 1811 1812 1813 1814 1815
1816 1817 1818 1819 1820 1821 1822 1823
1824 1825 1826 1827 1828 1829 1830 1831
1832 1833 1834 1835 1836 1837 1838 1839
1840 1841 1842 1843 1844 1845 1846 1847 i
1848 1849 1850 1851 1852 1853 1854 1855'

1856 1857 1858 1859 1860 1861 1862 lee3
1864 1865 1866 1867 1868 1869 1870 1871
1872 1873 1874- 1875 1-876 1877 1878 1879/
1880 1881 1882 J883 1884 1885 1886- 188?1
1888 1889 1890 1891 1892 ,1893 1894 1895
1896 1897 1898 1899 1900 1901 1902 1903
1904 1905 1906 1907 1908 1909 1910 1911
1912 1913 1914 1915 1916 1917 1918 1919

1920 1921 1922 1923 1924 1925 1926 1927
1928 1929 1930 1931 1932 1933 1934 1935
1936 1937 1938 1939 1940 1941 1942 1943
1944 1945 1946 1947 1948 1949 1950 1951
1952 1953 1954 19';)5 1956 1957 1958 1959
1960 1961 1962 1963 1964 1965 1966 1967
1968 1969 1970 1971 1972 1973 1974 1975
1976 1977 1978 1979 1980 1981 1982 1983

1984 1985 1986 1987 1988 1989 1990 1991
1992 1993 1994 1995 1996 1997 1998 1999
2000 2001 2002 2003 2004 2005 2006 2007
2008 2009 2010 2011 2012 2013 2014 2015
2016 2017 2018 2019 2020 2021 2022 2023
2024 2025 2026 2027 2028 2029 2030 2031
2\)32 2033 2034 2035 2036 2037 2038 2039
2040 2041 2042 2043 2044 2045 2346 2047

F-4

2000 1024
to to

2777 153.s
(Octal) (Decimal)

Odal Decimal
10000 - "096
20000 - 8192
30000 - 12288
40000-163U
50000 - 20480
60000 - 2"576
70000 - 28672

3000 1.s36
to to

3777 2047
(Octal) (Decimal)

.000 I 2048
10 10

4777 2559
(Ocloll IIOf'cimoP

Octal Decimal
10000· 4096
20000· 8192
30000· 12288
"0000 • 16384
50000 • 20480
60000·24576
70000 . 28672

5000 I 2560 to to

S177 3071
(Oclol) (Decimal)

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

0 1 2 3 4 5 6 7 0 I 2 3 4 5 , 7

01000 2048 2049 2050 2051 2052 2053 2054 2055
4010 2056 2057 2058 2059 2060 2061 2062 2063
4020 2064 2065 2066 2067 2068 2069 2070 2071
4030 2072 2073 2074 2075 2076 2077 2078 2079
4040 2080 2081 2082 2083 2084 2085 2086 2087
4050 2088 2089 2090 2091 2092 2093 2094 2095
4060 2Q96 2097 2098 2099 2100 2101 2102 2103
4070 2104 2105 2106 2107 2108 2109 2110 2111

4400 2304 2305 2306 2307 2308 2309 2310 2311
4410 2312 23]3 2314 2315 2316 2317 2318 2319
4420 2320 2321 2322 2323 2324 2325 232& 2327

1 .. 30 2328 2329 2330 2331 2332 2333 2334 2335
4440. 2336 2337 2338 2339 2340 2341 2342 2343
4450 2344 2345 2346 2347 2348 2349 2350 2351

1446012352 2353 23~ 2355 2356 2357 2358 2359
447°12360 2361 2362 2363 2364 2365 2366 2367

4100 2112 2113 2114 2115 2116 2117 2118 2119
4110 2120 2121 2122 2123 2124 2125 2126 2127
4120 2128 2129 2130 2131 2132 2133 2134 2135
4130 2136 2137 2138 2139 2140 2141 2142 2143
4140 2144 2145 2146 2147 2148 2149 2150 2151
4150 2152 2153 2154 2155 2156 2157 2158 2159

4500 2368 2369 2370 2371 2372 2373 2374 2375
4510 2376 2377 2378 2379 2380 2381 2382 2383
4520 2384 2385 2386 2387 2388 2389 2390 2391
4~30 2392 2393 2394 2395 2396 2397 2398 2399
4540 2400 2401 2402 2403 2404 2405 2406 2407
4550 2408 2409 2410 2411 2412 2413 2414 2415

4160 2160 2161 2162 2163 2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423
4170 2168 2169 2170 2171 2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

4200 2176 2177 2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439
4210 2184 2185 2186 2187 2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
4220 2192 2193 2194 2195 2196 219': 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
42301 2200 2201 2202 2203 2204 2205 2206 2207
4240 2208 2209 2210 2211 2212 2213 2214 2215

425012216 2217 2218 2219 2220 2221 2222 2223
4260 2224 2225 2226 2227 2228 2229 2230 2231
.4270 2232 2233 2234 2235 2236 2237 2238 2239

.300 1'240 2241 2242 2243 2244 2245 2246
22411 4310 2248 2249 2250 2251 2252 2253 2254 2255

4320 2256 2257 2258 2259 2260 2261 2262 2263
4330! 2264 2265 2266 2267 2268 2269 2270 2271
4340- 2272 2273 2274 2275 2276 2277 2278 2279
4350 ,2280 2281 2282 2283 2284 2285. 2286 2287

4630 2456 2457 2458 2459 2460 2461 2462 24~3
4640 2464 2465 2466 2467 2468 2469 2470 2471
4650 2472 2473 2474 2475 2476 2477 2478 2479
4660 2480 2481 2482 2483 2184 2485 2486 2487
4670 2488 2489 2490 2491 2492 2493 2494 2495

1

4700 2496 2497 2498 2499 2500 2501 2502 2503
4710 2504 2505 2506 2507 2508 2509 2510 2511
4720 2512 2513 2514 2515 2516 2517 2518 2519
4730 2520 2521 2522 2523 2524 2525 2526 252'1
4740 2528 2529 2530 2531 2532 2533 2534 2535
4750 2536 2537 2538 2539 2540 2541 2542 2543

436012288 2289 2290 2291 2292 2293 2294 2295
4370 I 2296 2297 2298 2299 2300 2301 2302 2303j -

4760 254<1 2545 2546 2547 2548 2549 2550 2551
L4770 2552 2553 2554 2555 2556 2557 2558 2559

,
0 2 4 5 6 7 I 0 1 2 3 4 5 6 7

500012560 2561 2562 2563 2564 2565 2566 2567
5010 2568 2569 2570 2571 2572 2573 2574 2575
5020 2576 2577 2578 2579 2580 2581 ~5'S2 2583

1

5030 2584 2585 2586 2587 2588 258* 2590 2591
5040 2592 2593 2594 2595 2596 2597 2598 2599
5050 2600 2601 2602 2603 2£04 2605 2606 2607

540012816 2817 2818 2819 2820 281.1 2822 282'
541012824 2825 2826 2827 2828 2829 2830 2831
542012832 2833 2834 2835 2836 2837 2838 2838
5430 2840 2841 28012 2843 2844 2845 2846 :84'7
5440 2848 2849 2850 2851 2852 2853 2854 2855
5450 2856 2857 2858 2859 2860 2861 2862 2863

5060 2608 2609 2610 2611 2612 2613 2614 2615 5460 2864 28'65 2866 2867 2868 2869 2870' 2n.
5070 2616 2617 2618 2619 2620 2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878 287Y

5100 2624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
5110 2632 2633 2634 2635 2636 2637 2638 2639 5510 2888 2889 2890 2891 2892 2893 2894 2895
5120 2640 2641 2642 2643 2644 2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902 2903
5130 2648 2649 2650 2651 2652 2653 2654 2655 5530 2904 2905 ·2906 2907 2908 2909 2910 2911
5140 2656 2657 2658 2659 2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919
5150 2664 2665 2666 2667 2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927
5160 2672 2673 2674 2675 2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935
5170 2680 2681 2682 2683 2684 2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 2943

5200 2688 2689 2690 2691 2692 2693 2694 2695 5600 2944 2945 2946 2947 2948 2949 2950 2951
5210 2696 2697 2698 2699 2700 2701 2702 2703
5220 2704 2705 2706 2707 2708 2709 2710 2711
5230 2712 2713 2714 2715 2716 2717 2718 2719
5240 2720 2721 2722 2723 2724 2725 2726 2727
5250 2728 2729 2730 -2731 2732 2733 2734 2735
5260 2736 2737 2738 2739 2740 2741 2742 2743

561012952 2953 2954 2955 2956 2957 2958 2959
5620 12960 2961 2962 2963 2964 2965 2966 2967
5630 2968 2969 2970 297: 2972 2973 2974 2975
5640 \2976 2977 2978 2979 2980 2981 2982 2983
5650 2984 2985 2986 2987 2988 2989 2990 2991
5660 2992 2993 2994 2995 2996 2997 2998 2999

5270 2744 2745 2746 2747 2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007

5300 2752 2753 2754 2755 2756 2757 2758 2759 :;700 3008 3009 3010 3011 3012 3013 3014 3015
5310 2760 2761 2762 2763 2764 2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023
5320 2768 2769 2770 2771 2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031
r A I ft,"''''~ "''''' ... ", "''''0/,\ "',",0' """'0" 2783 ~.J~ ""'V "'''' "'''v "'''~ ~IOU "'0& £,10'- 5730 I')n,,"1 3033 3034 3035 3035 3037 3038 3039 ... u ... ~

5340 2784 2785 2786 2787 2788 2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047
5350 2792 2793 2794 2795 2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
5360 2800 2801 2802 2803 2804 2805 2806 2807 5760 3056 3057 3058 3059 3060 3061 3062 3063
5370 2808 2809 2810 2811 2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071

F-5

0 1 2

8000 3072 3073 3074
6010 3080 3081 3082
6020 3088 3089 3090
6030 3096 3097 3098
6040 3104 3105 3106
6050 3112 3113 3114
6060 3120 3121 3122
6070 3128 3129 3130

610013136 3137 3138
6110 1 3144 3145 3146
6120 3152 3153 3154
6130 3160 3161 3162
6140 3168 3169 3170
6150 3176 3171 3178
6160 3184 3185 3186
8170 3192 3193 3194

8200 3200 3201 3202
te210 3208 3209 3210
6220 3216 3117 3218
8230 3224 3225 3226
6240 3232 3233 3234
6250 3240 3241 3242
6260 3248 3249 3250
6270 3256 3257 3258

6300 3264 3265 3266
6310 r 3272 3273 3274
6320 3280 3281 3282
633013288 3289 3290
.340 3296 3297 3298
1535013304 3305 3306
6360

j

3312 3313 3314
15370 3320 3321 3322

I 0 2

1700013584 3585 3586
701013592 3593 3594
702013600 3601 3602
7030 3608 3609 3610
7040 3616 ~617 3618

i 7050: 362~ 3525 3626
7060\ 3632 3633 3634
7070 3640 3641 3842

'1100: 36<48 3649 3650
7110: 3656 36~7 3658
712013664 3665 3666
1130 3672 3673 3674
'114013680 3881 3682
715013888 3689 3690
7180 1 3696 3697 3698
71'10i 3704 3705 3706

7200\3712 3713 3714
7210 3720 3721 3722
7220 3728 3'l29 3730
7230 3736 3737 3738
'1240 3744 3745 3746
7250 3752 3753 3754
7280 3760 3761 3762
7270 3168 3769 3770

'1300 3776 3777 3778
7310 3784 3785 3786
7320 3792 3793 3794
'7330 ~8oo 3801 3802
7340 3808 3809 3810
'735:) 3816 3817 3818
'7380 3824 3825 3826
'3'70 3832 3833 3834

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

3 4 5 6 7 0 1 2 3 4 5 6 7

3075 3076 3077 3078 3079
3083 3084 3085 3086 3087
3091 3092 3093 3094 3095
3099 3100 3101 3102 3103
3107 3108 3109 3110 3111
3115 3116 3117 3118 3119
3123 3124 3125 3126 3127

6400 3328 3329 3330 3331 3332 3333 3334 3335
6410 3336 3337 3338 3339 3340 3341 3342 3343
6420 3344 3345 3346 3347 3348 3349 3350 3351
6430 3352 3353 3354 3355 3356 3357 3358 3359
6440 3360 3361 3362 3363 3364 3365 3366 3367
6450 3368 3369 3370 3371 3372 3373 3374 3375
6460 3376 3377 3378 3379 3380 3381 3382 3383

3131 3132 3133 3134 3135 6470 3384 3385 3386 3387 3388 3389 3390 3391

3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 3397 3398 3399
3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404 3405 3406 3407
3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 3413 3414 3415
3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 3421 3422 3423
3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430 3431
3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 3437 3436 3439
3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447
3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454 3455

3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460 3461 3462 3463
3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468 3469 3470 3471
3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479
3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3-485 3486 3487
3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494 3495
3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 3501 3502 3503
3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510 3511
3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519

3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527
3275 3276 3277 3278 3279
3283 3284 3285 3286 3287
3291 3292 3293 3294 3295
3299 3300 3301 3302 3303
3307 3308 3309 3310 3311

6710 3528 3529 3530 3531 3532 3533 3534 3535
6720 3536 3537 3538 3539 3540 3541 3542 3543
6730 3544 3545 3546 3547 3548 3549 3550 3551
6740 3552 3553 3554 3555 3556 3557 3558 3559
6750 3560 3561 3562 3563 3564 3565 3566 3567

3315 3316 3317 3318 3319
3323 3324 3325 3326 3327

6760 3568 3569 3570 3571 3572 3573 3574 3575
6770 3576 3577 3578 3579 3580 3581 3582 3583

3 4 5 6 7 I ! 7.001 3:.0
2 3 4 5 6

3:.,1
3587 3588 3589 3590 3591 i 3841 3842 3843 3844 3845 3846

3595 3596 3597 3598 3599, 7410 3848 3849 3850 3851 3852 3853 3854 3855

3603 3604 3605 3606 360'7
1

7420 3856 3857 3858 3859 3860 3861 3862 3863

3611 3612 3613 3614 3615 7430 3864 3865 3866 3867 3868 3869 3870 3871

3619 3620 3621 3622 3623 7440 3872 3873 3874 3875 3876 3877 3878 3879

3627 3628 3629 3630 3631 i 7450 i 3880 3BBl 3882 3883 3884 3885 3886 3887 j

3635 3636 3637 3638 3639; 746013eas 3889 3890 3891 3892 3893 3894 389Sj
3643 3644 3645 3846 3647! 747013896 3897 3898 3899 3900 3901 3902 3903

i
3651 3652 3653 3654 3655; 7500 3904 3905 3906 3907 3908 3909 3910 3911
3659 3660 366! 3662 3663i 7510 13912 3913 3914 3915 3916 3917 3918 3919
3667 3668 3669 3670 3671

1

1520 '3920 3921 3922 3923 3924 3925 3926 3927
3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 3933 393<4 3935
3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940 3941 3942 3943
3691 3692 3693 3694 3695

1

7550 3944 3945 3946 3947 3948 3949 3950 3951
3699 3700 3701 3702 3703, 7560 3952 3953 3954 3955 3956 3957 3958 3959
3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964 3965 3966 3967

3715 3716 3717 3718 3719 7600 3968 3969 3970 3971 3972 3973 3974 3975
3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980 3981 3982 3983
3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988 3989 3990 3991
3139 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996 3997 3998 3999
3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 4005 4006 4007
3755 3756 3757 3758 3759 7650 4008 4009 4010 4011 4012 4013 4014 4015
3763 3764 3785 3766 3767 7660 4016 4017 4018 4019 4020 4021 1022 4023
3771 3772 37'13 3774 3775 7670 4024 4025 4026 4027 4028 4029 4030 4031

3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036 4037 4038 4039
3787 3788 3789 3790 3791 7710 4040 4041 4042 4043 4044 4045 4046 4047
3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052 4053 4054 4055
3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060 4061 4062 ,4063
3811 3812 3813 3814 3815 7740 ,4064 4065 4066 4067 406a 4069 4070 4071
3819 3820 3821 3822 3823 7750 4072 4073 4074 4075 4078 4077 4078 4079
3827 3828 3829 3830 3831 7760 4080 4081 4082 4083 4084 4085 4086 4087
3835 3838 3837 3838 3839 7770 4088 4089 4090 4091 4092 4093 4094 4095

F-6

6000 3072
to to

6777 3.513
(Octal) (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7~ I 3~!'
7777 4095

(Octal) (Decimal)

OCTAL-DECIMAL FRACTION ~ONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL Ol-:C •

.000 • 000000 .100 .125000 .200 .250000 .300 .375000

.001 .001953 .101 .126953 .-201 .251953 .301 • 37G953

I .002 • d03906 .102 .128906 .202 .253906 I .302 .378906
.003 .OO~859 .103 .130859 .203 .255859

I
.303 .380859

I .004 .007812 .104 .132812 .204 .257812 .304 .382812
.005 .009765 .105 .134765 .205 .259765 .305 .384765
.006 .011718 .106 .136718 .206 .261718 .306 .386718
.007 .013671 .107 .138671 .207 .263671 .307 .388671

.010 .015625 .110 .140625 .210 .265625 .310 .390625
.• Oll .017578 .111 .142578 .211 .267578 .311 .392578

.012 .019531 .112 .144531 .212 .269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 .396484

.014 .023437 .114 .148437 .214 .273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 .277343 .316 .402343

.017 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 .281250 .320 .406250

.021 .033203 .121 .158203 .221 .283203 .321 .408203

.022 .035156 .122 .160156 .222 .285156 .322 .410156

.023 .037109 .123 .162109 .223 .287109 .323 .412109

.024 .039062 .124 .164062 .224 • 289062 .324 .414062 .

.025 .041015 .125 .166015 .225 .291015 .325 .416015

.026 .042968 .126 .167968 .226 .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 .296875 .330 .421875

.031 .048828 .131 .173828 .231 .298828 .331 .423828

.032 .050781 .132 .175781 .232 .300781 .332 .426781

.033 .052734 .133 .1'17734 .233 .302734 .333 .427734

.034 .054687 .134 .179687 .234 .304687 .334 .429687

.035 .056640 .135 .181640 .235 .306640 .335 .431640

.036 .058593 .136 .183593 .236 .308593 .336 .433593

.037 .060546 .137 .185546 .237 .310546 .337 .435546

.040 .062500 .140 .187500 .240 .312500 .340 .437500

.041 .064453 .141 .189453 .241 .314453 .341 .439453

.042 .066406 .142 . 191406 .242 .316406 .342 .441406

.043 .068359 .l43 .193359 .243 .318359 .343 .443359

.044 .070312 .144 .195312 .244 • 32G312 .344 .445312

.045 .072265 .145 .197265 .245 .322265 .345 .447265

.046 .074218 .146 .199218 .246 .324218 .346 .449218

.047 .076171 .147 .20ll71 .247 .326171 .347 .451171

.050 .078125 .150 .203125 .250 ,328125 .350 .453125

.051 .080018 .151 .205078 .251 .330078 .351 ,455078

.052 .082031 .152 .207031 .252 .332031 .352 ,457031

.053 .083984 .153 .208984 .253 .333984 .353 ,458984

.054 .085937 .154 .210937 .254 .335937 .354 ,460931

.055 .087890 .155 .212890 .255 .337890 .355 .462890

.056 .089843 .156 .214843 .256 .339843 .356 .464843

.057 .091796 .157 .216796 .257 .341796 .351 .466"196

.060 .093750 .160 .218750 .260 .343750 .360 .468150

.061 .095703 .161 .220703 .261 .345703 .361 .410703

.062 .097656 .162 .222656 .262 .347656 .362 .472656

.063 .099609 .163 .224609 .263 .349609 .363 .474609

.064 .101562 ; 164 .226562 .264 .351562 .364 ,476562

.065 .103515 .165 .228515 .265 .353515 .365 .478515

.066 .105468 .166 .230468 .266 ,355468 .366 .460468

.067 .107421 .167 .232421 .267 .357421 .367 ,482421

.070 .109375 .170 .234375 .270 .359375 .370 .484315

.071 .111328 .171 .236328 .271 .361328 .371 .486328

.072 ."113281 . .172 .238281 .272 .363281 .372 .4S8nl

.073 .115234 .173 .240234 .273 .365234 .373 .490234

.074 .117187 .174 .242187 .274 .367187 .374 .492187

.075 .119140 .175 .244140 .275 .369140 .375 .494140

.076 • i2i095 • i16 .246093 .276 .371093 .376 .496093

.077 .123046 .177 .248046 .277 .373046 .377 • ..,a048

F-7

OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC •

• 000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732
.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736
.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000140
.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743
.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747
.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751
.000006 .000022 .000106 .001)267 .000206 .000511 .000306 .000755
.000001 .000026 .00010'1 .0002iO .CCC2C1 .000514 .OOO~O1 .000'159

.000010 .000030 ,000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000166

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000710

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000714

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000718

.000015 .000049 .000115 .000293 .000215 .000531 .000315 .000182

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785

.000017 .000057 .000111 .000301 .000217 .000545 .000317 .000189

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000012 .000123 .000316 .000223 .000560 .000323 .000805

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000512 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000516 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000519 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000821

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.Ou0035 .000110 .000135 .000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 .000143 .00037' .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000813

.000046 .000144 .000146 .000389 .000246 .000633 .00034t; .000817

.(\00047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 ,000150 .000396

I

,000250 .000640 .000350 .000885
.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888

,000052 .000160 .000152 ,000404 .000252 .000648 ,000352 ,000892

I .000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 I .000154 .000411 .000254 .000656 I .000354 .000900

.000055 .000171 .000155 .000415 .i .000255 .000659 i .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000901

.000057 .000179 .000157 .000423 .000257 .000667 .000367 .000911

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .0006'75 .000361 .000919

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938

.00006'7 .000209 .000167 .000453 .000267 .000698 .00036'7 .000942

.000070 .000213 .0001'70 .000451 .000210 .000701 .000370 .000946

.000071 .00021'7 .000171 .000461 .0002'71 .000105 .0003'11 .000949

.000012 .000221 .000112 .000465 .000212 .000709 .000372 .000953

.000073 .000225 .000113 .000469 .000273 .000113 .000373 .000957

.000074 .000228 .000174 .0004'73 .000274 .000117 .000374 .000961

.0000'75 .000232 .000175 .000476 .000275 .000720 .000315 .000965

.000078 .000236 .000176 .000480 .000276 .000'724 .000318 .000968

.000071 .000240 .000171 .000484 .0002'77 .000'728 .000371 .000972

F-8

OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued)

OCTAL DEC. OCTAL DEC. OCTAL DEC. ~ OCTAL DEC.

000400 000600 000700
I

.. 6

I .000401 • .000980 .000501 .001224 .000601 .001468 .000701 .001712
000916 oooson 001464 001'70~

.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716

.000403 .000988 .000503 .001232 .000603 .-001416 .000703 .001720

.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724

.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728

.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731

.000401 .001003 .000507 .001247 .000607 .001491 .000707 .001735

.000410 .001001 .000510 .001251 .000610 .001495 .000710 .001739

.000411 .001010 .000511 .001255 .000611 .001499 .00()711 .001743

.000412 .001014 .000512 .001258 .000612 .001502 .000112 .001747

.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750

.000414 .001022 .000514 .001266 .000614 .001510 .000714 .001754

.000415 .001026 .000515 .001270 .000615 .001514 .000115 .001758

.000416 .001029 .000516 .001274 .000616 .001518 .000116 .001762

.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001166

.000420 .001031 .000520 .001281 .000620 .001525 .000720 .001770

.000421 .001041 .000521 .001285 .000621 .001529 .000721 .001713

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001171

.000423 .001049 .000523 .001293 .000623 .001531 .000123 .001781

.000424 .001052 .000524 .001296 .000624 .001541 .000124 .001185

.000425 .001056 .000525 .001300 .000625 .001544 .000725 .0017~9

.000426 .001060 .000526 .001304

I
.000626 .001548 .000726 .001792

.000427 .001064 .000521 .001308 .000627 .001552 .000721 .001796

.000430 .001068 .000530 .001312 .000630 .001556 .000130 .001800

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804

.OOO·U2 .001015 .000532 .001319 .000632 .001564 .000732 .001808

.000433 .001079 .000533 .001323 .000633 .001567 .00C/733 .001811

.000434 .001083 .000534 .001327 .000634 .001511 .000734 .001815

.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819

.000436 .001091 .000536 .001335 .000636 .001579 .000136 .001823

.000431 .001094 .000537 .001338 .000637 .001583 .000737 .001827

.000440 .001098 .000540 .001342 .000640 .001586 .00074.0 .001831

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838

.000443 .001110 .000543 .01)1354 .000643 .001598 .000143 .001842

.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846

.000446 .001117 .000545 .001361 .000645 .001605 .000745 .001850

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .001853

.000441 .001125 .000541 .001369 .000647 .001613 .000747 .001851

.000450 .001129 .~5O .001313 .000650 .001611 .000150 .001861

.000451 .001132 .000551 .001371 .000651 .001621 .000151 .001865

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869

.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001813

.00045-& .001144 .000554 .001388 .000654 .001632 .000754 .001876

.000455 .001148 .000555 .001392 .000655 .001636 .000755 .001880

.000456 .001151 .000556 .001396 .000656 .001640 .000756 .001884

.000457 .001155 .000557 .001399 .000657 .001644 .000751 .001888

.000460 .001159 .000560 .001403 .000660 .001641 .000760 .001892

.000461 .001163 .000561 .001<107 .000661 .001651 .000761 .001895

.000462 .001167 .000562 .001411 .000662 .001655 .000162 .001899

.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903

.0004&& .001174 .000564 .001419 000664 .001663 .000764 .001907

.000465 .001118 .000565 .001422 .000665 .001667 .000785 .001911

.000466 .001182 .000566 .001426 .000666 .001610 .000166 .001914

.000467 .001186 .000567 .001430 000667 .001614 .000161 .001918

.000470 .001190 .000510 .001434 . :100610 .001678 .000110 .001122

.000471 .001114 .000571 .001438 .000671 .001682 .000771 .001926

.000472 .001197 .000512 .001441 .000672 .001686 .000772 .001930

.000413 .001201 .000513 .001445 .000613 .001689 .000113 .001934
AAIUI"A .vv.,...00120$.000514 .001449 .000674 .001693 .000114 .001931

.000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941

.000476 .001213 .000516 .001457 .000676 .0017.D1 .000776 .001945

.000477 .001216 .000571 .001461 .000677 .001705 .000771 .001t4t

F-9

GLOSSPRY

AFT (ATTACH FLAG TABLE)

A table corresponding to the Logical unit Table (LUT) with 2 word
entries for each LUT slot. Whenever a Logical Unit Number (LUN)
is attached to a Task, the Task name is set in the corresponding
AFT slot. Whenever a LUN and Device-unit are both attached to·a
Task, the Device attach flag in the Physical Device List points
to the appropriate AFT slot.

ATL(ACTIVE TASK LIST)

A priority ordered list of Active Tasks used to drive the system.
The ATL is a deque consisting of one node for each Active Task
in the system.

CAL INSTRUCTION

A PDP-IS Hardware Instruction used to request Executive routines.
All System Directives issue CAL instructions to the Executive
when making their requests.

CAL PARAMETER BLOCK

A block consisting of one or more words of contiguous core used
to store parameters when issuing System Directives. The System
Directive is implemented as a CAL Instruction with the address of
the CAL Parameter Block as its operand.

CLOCK QUEUE

The Clock Queue is a deque consisting of one node for each item
to be done at some time in the future. These items are: schedu
ling of Tasks (SCHEDULE, RUN, and SYNC Directives), rescheduling
of Tasks (Clock interrupt service routine), and setting of Event
Variables after elapsed time periods (MARK Directive). The nodes
are linked in the order in which they come due.

COMMON BLOCK, INTERNAL

An area of contiguous core memory within a partition, available
only to the Task in the partition during its residency.

COMMON BLOCK, SYSTEM

An area of contiguous core memory, defined at System Configuration
time, where data can be stored and referenced by all Tasks. A
SYSTEM COMMON BLOCK is referenced by using a COMMON name matching
a SYSTEM COMMON BLOCK name and declaring that COMMON as SYSTEM
COMMON to the Task Builder.

CONSOLE TELETYPE

The control Teletype of the RSX System where MCR Function requests
may be issued by the operator.

CONTROL TABLE

A 3-word table used when requesting or relinquishing disk space
or when issuing disk GET and PUT Directives.

CORE RESIDENT TASK

A Task which has been fixed-in-core.

DEFAULT PRIORITY

A priority given to a Task during Task Building or Task Installation
that is used when a priority is not specified and the Task's ex
ecution is requested or scheduled.

DEQUE

A double ended queue consisting of a listhead and list elements
(nodes), circularly linked by both forward and backward pointers.
Deques, or link lists, are used, rather than tables, to store
system information.

DIRECTIVES

Instructions to the RSX Executive (implemented with the use of
CAL Instructions), to perform indicated operations.

DISK RESIDENT TASK

A Task which normally resides on the disk and is brought into a
core partition when requested.

EVENT VARIABLE

A ~ord or variable used to determine the status of a Directive.
The Event Variable is set to indicate successful completion,
rejection, status, or a request still pending. An Event Variable
address of zero indicates that no Event Variable is specified.

EXECUTIVE

The heart of the real-time operating system. It coordinates all
activities in the system including Task scheduling, I/O super
vision, resource allocation, and interactive operator communication.

I/O HANDLER TASK

A Task in the RSX System which contains an interrupt service routine.
I/O Handler Tasks are requested whenever they are assigned to a
LUN.

LISTHEAD

A two-word core block with forward and backward pointers pointing
to the next and previous list node or to itself if empty. The
listhead is a reference point in a circularly linked list.

LINKED LIST

A deque consisting of nodes and listhead used to store system
information. An empty list consists of only a listhead.

LUN(LOGICAL UNIT NUMBER)

Logical Unit Numbers are used to represent Logical I/O Device Units

rather than Physical units. Each Logical Unit Number is repre
sented by an entry in the Logical unit Table.

LUT(LOGlCAL UNIT TABLE)

A block of contiguous core with a one-word entry, or slot, for
each Logical Unit Number. When a LUNis assigned to a Physical
Device Unit, the corresponding LUT slot contains the address of
the appropriate Physical Device List node.

MCR(MONITOR CONSOLE ROUTINE)

The MCR allows the user to communicate on-line with the system
from the console teleprinter. The MCR consists of the Resident
MCR Task, which accepts user's commands, and the MCR Functions,
which actually carry out the indicated requests.

NODES

The list elements of a deque. All nodes (of dyna~ic lists)
consist of the listhead followed by eight words of data (list
elements).

PARTITION

An area of contiguous core memory, defined at System Configuration
time, from which Tasks are executed.

PARTITION BLOCK

An abnormal node (34 8 words) generated by the System Configurator
to serve three funct~ons. (1) It contains partition description
information to assure that a Task being installed into the system
has been built for an existing partition; (2) It provides core
for an Event Variable and disk (DSKGET) control table necessary
to load Tasks into partitions; and (3) it provides for saving
a Task's environment when it is interrupted by the Executive.

PBDL(PARTITION BLOCKS DESCRIPTION LIST)

Partition Blocks generated by the System Configurator are linked
together into a deque called the PBDL.

PDVL(PHYSlCAL DEVICE LIST)

A deque constructed by the System Configurator 'used to describe
the devices and units in the system. When a logical I/O unit
is assigned to a physical unit, the address of the node describing
the device and unit is set in a LUT entry corresponding to the LUN.

POOL(POOL OF EMPTY NODES)

Empty ten-word nodes for use in any deque. The Pool is generated
by the System Configurator from core area that has not been
specified for other use.

SCDL(SYSTEM COMMON BLOCK DEFINITIONS LIST)

A deque consisting of nodes which contain a record of the descrip
tions of each System COMMON Block.

SIGNIFICANT EVENT

An event which results in the scanning of the Active Task List.
The following events are considered "Significant Events": (1)
I/O queuing; (2) normal I/O request completion (dependent upon
I/O Handler Task) ; (3) A Task request; (4) a scheduled SCHEDULE,
RUN, or SYNC corning due; (5) a Mark time expiration; (6) a
Task resumption (RESUME Directive) i and (7) a Task EXIT.

STL(SYSTEM TASK LIST)

A directory of all Tasks in the System.

SYSTEM CONFIGURATOR

TKB

A Task which allows the user to tailor the RSX System to best
fit his requirements.

The Task Builder program used to build executable Tasks from
relocatable binary files.

TRIGGER EVENT VARIABLE

An Event Variable refexenced within a PDVL node. The Trigger
Event Variable is used to stimulate a dormant I/O Handler Task.

HOvV TO OBTA!N SOFT\A/ARE !NFORMAT!ON

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digita I Software News for the PDP-9/15 Fam ily

These newsletters contain information appl icable to software avai lable from
Digitalis Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your insta Ilation,
please check with the Software Specialist or Sales Engineer at your nearest
D igita I office.

Questions or problems concern ing D igita I's Software shou Id be reported to
the'Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg- 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per
formance Report forms, and software price lists shou Id be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Prc:,rom Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digita I Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

READER'S COMMENTS

RSX-15
. Reference Manua I

DEC-15-GRQA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manua I.

Please comment on this manual's completeness, accuracy. organization, usability and read
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
--- ------------

Name: Organization:
-- ---------------------------------

Street: Department:
-- -------------------------------

City: State: Zip or Country -------------------------- -------------------------- ----------------

- - - - - - - - - - - - - - - - Fold Here - - - - - - - - - - - - - - - - - ~ - -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATl-S

Po~tage will be paid by.

mamaama
Digital Equipment Corporation
Software Information Services
i 46 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	replyA
	replyB
	replyC
	xBack

