


,' .... 
/~~'f '" ,' , ' "C 

( 

PDP-15 
- FORTRAN IV LANGUAGE 

PROGRAMMER'S REFERENCE MANUAL 

For additional copies, order No. D EC-15-GFW A-D from Program Library, Digital 

Equipment Corporation, Maynard, Massachusetts 01754 Price $5.00 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



Copyright © 1971 by Digital Equipment Corporation 

The material in this manual is for informa
tional purposes and is subject to change 
without notice_ 

The following are trademarks of Digital Equipment 
Corporation, Maynard, Massachusetts: 

DEC 
FLIP CHIP 
DIGITAL 

PDP 
FOCAL 
COMPUTER LAB 

1 st Edition August 1971 



CONTENTS 

Page 

CHAPTER 1 BASIC ELEMENTS OF A FORTRAN-IV PROGRAM 

1.1 The Character Set 1-2 

1.2 Program Struch .... e 1-2 

1.3 Expressing Data Values 1-3 

1.3.1 Constants 1-5 

1.3.2 Variables 1-8 

1.3.3 Express ions 1-10 
( 

CHAPTER 2 ASSIGNMENT STATEMENTS 

2.1 The Arithmetic Statement 2-1 

2.2 The ASSIGN Statement 2-3 

CHAPTER 3 CONTROL STATEMENTS 

3.1 The GO TO Statement 3-1 

3.1.1 The Unconditional GO TO Statement 3-1 

3.1.2 The Computed GO TO Statement 3-2 

3.1.3 The Assigned GO TO Statement 3-2 

3.2 The DO Statement 3-3 

3.2.1 Execution of a DO Range 3-4 

3.2.2 Nested DO Statements 3-5 

3.2.3 The CONTINUE Statement 3-6 

3.3 The IF Statement 3-6 

3.3.1 The Arithmetic IF Statement 3-7 

3.3.2 The Logical IF Statement 3-8 

3.4 Execution Control 3-9 

3.4.1 The PAUSE Statement 3-9 

3.4.2 The STOP Statement 3-9 

CHAPTER 4 SPECIFICATION STATEMENTS 

4.1 Mode Specification 4-1 

4.1.1 Mode-Dec laration Statement 4-2 

4.1.2 The IMPLICIT Statement 4-2 

4.1.3 The EXTERNAL Statement 4-3 

iii 



CONTENTS (Cont) 

Page 

4.2 Storage Allocation 4-3 

4.2.1 The DIMENSION Statement 4-3 

4.2.2 The COMMON Statement 4-4 

4.2.3 The EQUIVALENCE Statement 4-5 

4.3 The DATA Statement 4-7 

4.4 Block Data Subprograms 4-8 

CHAPTER 5 SUBPROGRAM STATEMENTS , 

5.1 Functions 5-2 

5.1.1 Statement Functions 5-2 

5.1.2 External Functions 5-6 
- ." 

5.1.3 DEC library Functions 5-7 

5.2 Subroutines 5-7 

5.2.1 Subroutine Definition 5-8 

5.2.2 Subroutine Calls 5-9 

5.3 Multiple Entries and Returns 5-9 

CHAPTER 6 DATA TRANSMISSION STATEMENTS 

6.1 The FORMAT Statement 6-2 

6.1.1 Statement Syntax 6-3 

6.1.2 Field Descriptors 6-4 

6.1.3 Object Time FORMAT Specifications 6-16 

6.2 Data-Directed Input-Output 6-16 

6.3 Input-Output Statements 6-17 

6.3.1 Input-Output lists 6-18 

6.3.2 Sequential Input-Output Statements 6-19 

6.3.3 Direct-Access Input-Output 6-20 

6.3.4 The ENCODE/DECODE Statements 6-23 

6.3.5 Auxi I iary Input-Output 6-23 

iv 



CONTENTS (Cont) 

Page 

APPENDIX A LANGUAGE SUMMARY A-1 

APPENDIX B ERROR MESSAGES 

B.1 Compiler Error Messages B-1 
B.2 OTS Error Messages B-7 

B.3 OTS Error Messages in FPP Systems B-9 

I 
APPENDIX C PDP-15 FORTRAN FACILITIES C-1 

ILLUSTRATIONS 

Figure No. Title Page 

1-1 DEC FORTRAN-IV Coding Form 1-4 

3-1 Rules for Nested DO Statements 3-6 

5-1 Main Program Sample 5-3 

5-2 Subprogram Sample 5-4 

6-1 Programming Example - Auxiliary I/O to Disk 6-25 

TABLES 

Table No. Title Page 

1-1 Sequence Rules for FORTRAN Statements 1-2 

1-2 Modes of Mixed Expressions 1-12 

6-1 Physical Record Description for Formatted and 
Unformatted Records 6-1 

6-2 Field Descriptor Control Characters 6-4 

6-3 The READ Statement 6-19 

6-4 The WRITE Statement 6-20 

6-5 Arguments for CALL DEFINE 6-21 

C-1 Versions of the Extended Compiler C-1 

C-2 Versions of the OTS Libraries for the Extended Compiler C-2 

C-3 Compilers and Libraries for Exten~ed FORTRAN 
Distributed with PDP-9/15 Systems C-2 

v 



'\ 



PREFACE 

This manual describes the elements, syntax and use of the FORTRAN IV language as implemented for 

the PDP-15 computer. Three versions of the PDP-15 compi ler are avai lable; their use is governed by 

the hardware/software configuration of the system on which FORTRAN is to be run. The most compre

hensive version of PDP-15 FORTRAN IV is described in this manual. See Appendix C for overall out

lines and descriptions, and tabularized descriptions of the differences between the various versions of 

the FORTRAN IV compilers and their associated libraries. 

All versions of PDP-15 FORTRAN IV are based on USASI Standard FORTRAN (X3.9-1966); the follow

ing features were added to the PDP-15 version of FORTRAN IV: 

ENCODE/DECODE Statements, data-directed Input/Output, multiple 
entries and returns from subroutines. 

double integer constants and variables, part-word notation for Arithmetic 
statements; 

direct access input/output statements. 

END and ERR input-output options 

octa I format descr i ptors 

The following standard features are not available: 

complex arithmetic 

adjustable arrays (done via subroutine in this version) 

One additional difference from the standard is that the blank COMMON and labeled COMMON are 

treated the same. 

A companion manual, "PDP-15 FORTRAN IV OPERATING ENVIRONMENT", order code DEC-15-

GFZA-D, describes the system software facilities needed to support the various versions of the PDP-15 

FORTRAN IV compiler and hardware features which affect the FORTRAN programmer. Included in 

this manual are descriptions of the FORTRAN IV Object Time System (OTS) and Science Library. 



-., 

., 



( 

CHAPTER 1 

BASIC ELEMENTS OF A FORTRAN-IV PROGRAM 

A FORTRAN-IV source program is a sequence of symbolic statements which are translated by the 

FORTRAN-IV compiler into an object program; that is, a program which may be executed by a comput

er. A statement, the basic unit of expression in a FORTRAN source program, may represent computer 

instructions and program data or may provide the compiler with instruttions required in the translating 

process, such as the size of an array, the number of times a loop is to be executed, or whether the pro

gram is a subroutine to be called by other programs. 

A FORTRAN statement consists of a command portion which characterizes its function and may, in ad

dition, require arguments. For example, the GO TO statement, which transfers control from one state

ment to another, requires an argument specifying the source-program statement whi ch is the target of 

the transfer. The five functional categories into which all FORTRAN-IV statements fall are given 

below. 

Category 

Assignment Statements 

Control Statements 

Specification Statements 

Subprogram Statements 

Data Transmission Statements 

General Function 

Assi gn val ues to symbol i c representations 

Govern the sequence in which opera
tions are performed 

Describe data the object program will 
process 

Estab I ish subprograms 

Govern the transfer of information be
tween the computer and peripheral de
vices (I/O) 

The format of each statement and the arguments required for each are described in detai I in subsequent 

chapters. 

1-1 



1 . 1 THE CHARACTER SET 

The character set from which FORTRAN statements may be constructed consists of the 26 letters (A-Z), 

the 10 digits (0-9), and the following special characters: 

[ 
] 

+ 

Left bracket 
Right bracket 
Colon 
Semi-colon 
Sharp sign 
Sing Ie quote 
Blank 
Equals 
Plus 

Minus 

* Asterisk 

/ Slash 
( Left parenthesis 
) Right parenthesis 

Comma 
Decimal point 

$ Dollar sign 
Quotes 

Other characters may appear on Iy ina text str i ng (Ho II er ith constant). 

1.2 PROGRAM STRUCTURE 

A FORTRAN source program's beginning is simply the first statement encountered. Its end must be de

noted by an END statement consisting of the characters END. 

Comments may precede the body of the program or be inserted between statements by means of a com

ment line which begins with the character C and is followed by text. 

The over-all rule for ordering statements is that non-executable statements (no machine code generated) 

must precede executable statements. The precise order in which statements may appear is given in 

Table 1-1 below. 

Table 1-1 
Sequence Rules for FORTRAN Statements 

Order Statements 

1 BLOCK DATA; FUNCTION; SUBROUTINE 

2 IMPLICIT 

3 INTEGER; REAL; LOGICAL; DOUBLE PRECISION; DOUBLE INTEGER 

4 DIMENSION 

5 COMMON 

6 EQUIVALENCE; EXTERNAL 

7 DATA 

8 Statement functions 

9 All other 

1-2 

. 



The form in which statements and comments are entered is governed by an 80-character line on a 

standard FORTRAN coding form, as shown in Figure 1-1. If the source program is input in card form, 

the columns on the coding sheet correspond to card columns. If paper tape is used, the columns refer 

to characters. 

Each line in a program is organized into the following fields, some of which may be blank: 

Field Name 

Statement number 

Line continuation field 

Statement field 

Identification field 

Columns 

1-5 

6 

7-72 

73-80 

Contents 

A decimal number from 1-9999 identifying 
the statement. May be in any order. 

If non-blank, indicates that the statement 
portion is a continuation of the preceding 
line. 

FORTRAN statement or portion thereof. 

Ignored by the compiler, filled at the user's 
discretion . 

A comment I ine is indicated by a C in column 1; comment text may be placed anywhere in col umns 

2-72. 

With the exception of the DO statement, which must be on one line, any statement may have as many 

continuation lines as desired. Any statement except the Arithmetic statement and the Arithmetic IF 

statement may be broken at any point. Continuation rules for these two statements are described in 

Chapters 2 and 3, respectively. In general, blanks may be freely imbedded within statements to im

prove their legibility. 

For non-card input, the first character is equivalent to the first column and a line is terminated by a 

carriage return. A statement field may begin with the seventh character or may be indicated by a 

TAB followed by an alphabetic character. A continuation line may begin with the sixth character or 

may be indicated by a TAB followed by a numeric character. 

1.3 EXPRESSING DATA VALUES 

Program data may be expressed in a variety of ways in a FORTRAN-IV program. The basic units, con

stants and variables, represent single values - a constant has the same value throughout program execu

tion, a variable has whatever value it is currently assigned. New values may be computed from 

known values of these units via expressions, which are composed of constants, variables and FORTRAN 

operators which indicate the computation to be performed. 

1-3 



PROGRAMMER NAME 

.J,. 

DEC 7·1075 

FORTRAN 

DIGITAL EQUIPMENT CORP. 
MAYNARD, MASS. 01754 

Figure 1-1 DEC FORTRAN-IV Coding Form 

I 

" 

PROGRAM TITLE DATE ,_H_ 

I PAGE OF 

) 



1 .3. 1 Constants 

A constant is, as indicated above, a value which does not change from one execution of a program to 

another. Six types of constants, each representing a different PDP-15 interna I data format, may appear 
, 

in a FORTRAN-IV program. These are: INTEGER, DOUBLE INTEGER, REAL, DOUBLE-PRECISION, 

LOGICAL, and HOLLERITH. The form of each is described below. 

INTEGERS - An integer constant represents a single word of PDP-15 storage. Its value may be ex

pressed in the source program as a decimal or octal number. 

A decimal integer consists of one to six decimal digits with no decimal point. A negative quantity is 

indicated by a minus sign. A positive quantity may optionally be preceded by a plus sign. All of the 

following are legal decimal constants: 

+97 
o 
-2176 
576 

Leading zeroes are ignored; thus -0010 is equivalent to -10. The magnitude of the integer must be less 

than or equal to 131071
10 

(i.e., 2
17

_1). 

An octal integer is indicated by a sharp sign (#) followed by one to six octal integers. The following 

are legal octal integers: 

DOUBLE INTEGERS - A double integer represents two words of storage (1 sign bit and 35 bits of magni

tude) and has a range between -34,359,738,367
10 

and +34,359,738,36710 , The notation D, pre

ceding an octal integer, indicates that it is double integer, as in: #D7777777. Note that an octal 

integer value not preceded by D may be assigned to a double integer variable (i .e., DI = #130000). 

However, the value of the assigned integer must NOT exceed the maximum size permitted integers 

(i.e., 377777
8

), If an assigned octal integer does exceed the maximum permitted value, its most 

significant digits will be truncated before it is assigned to the double integer variable regardless of 

the fact that the double integer would accept its original value. Decimal integers whose absolute 

values exceed 131071 are taken as double integers. Tf-e following are examples of legal double 
10 

integers: 

#D400000 
141520 

#DO 
# D4oo000000 
400000 

1-5 



REAL CONSTANTS - A real constant is a string of decimal digits with a decimal point, optionally 

followed by a decimal exponent. It may be a whole number (i .e., 10.), a fraction (i .e., .10), or a 

mixed format number (i .e., 10.10). The programmer may supply any number of digits in a real con

stant but only the leftmost seven are significant. Thus, 

10.111550 

and 

10.111552 

are equivalent. 

A plus or minus sign may precede the constant - plus being optional for positive quantities. All of the 

following are valid: 

325. 
0.0 
+325. 
-9.8 
999999.0 
999999999. 

If a decimal exponent is present, it is indicated by the letter E immediately following the constant. 

The decimal point may be omitted if immediately followed by an exponent. The exponent itself, which 

immediately follows the E, is an optionally signed one- or two-digit number indicating the appropriate 

power of 10, as in: 

5.E-3 (i .e., 0.005) 
5.0E3 (i.e., 5000.) 
5E2 (i.e., 500.) 

The adjusted absolute value of the exponent cannot exceed 75. Thus, the constant. 99999E75 is legal, 

but 999. 999E73 is not. 

Areal constant occupies two words of PDP-15 storage in the following arrangement. 

Low order 
mantissa 

o 

o 

Exponent 
(2's complement) 

8 9 

High order mantissa 

The mantissa and its sign are represented in signed magnitude form. 

1-6 

17 

17 



DOUBLE-PRECISION CONSTANTS - A double-precision constant is interpreted like a real constant 

but with greater accuracy (nine-digit). It is written as a string of decimal digits, including a decimal 

point immediately followed by the letter D and a signed decimal exponent no greater than 75. (Plus 

is optional.) The field following the D may not be blank but may be zero. For example: 

-3.0DO 
987.6542D15 
32. 123D+7 

Double-precision constants are stored in three words arranged as follows. 

o 

o 

o 

Exponent (2's complement) 

Sign 
of 
mantissa 

High order mantissa 

Low order mantissa 

The mantissa and its sign are represented in signed magnitude form. 

17 

17 

17 

LOGICAL CONSTANTS - There are two logical constants - . TRUE., which is stored as 777777
8

, and 

.FALSE., which is stored as O. Logical quantities may be operated upon both by arithmetic and 

logical operators yielding, respectively, arithmetic and logical results. 

HOLLERITH CONSTANTS - A Hollerith constant is a string of 1 to 5 characters. They are packed in 

7-bit ASCII in two words of storage with the rightmost bit of the second word always zero. A Hollerith 

constant may be used in CALL and DATA statements and, if the programmer exercise~ caution, in an 

Arithmetic statement. There are four forms for writing a Hollerith constant: 

(1) nH characters 

where n is the number of characters (1 to 5). Examples of this format are: 

1HA 
4HA$CD 

1-7 



When the above notation is used, the string is stored as a real constant. 

(2) 'charac ters' 

Examples of this are: 

'A' 
'A$CD' 

If quotation marks are to be included in the character string itself, this may be indicated by having 

two single quotes in sequence, as in: 

'A""CD' 

which stores the string A"CD. This and the following forms of string constants are stored as unsigned 

double integers and may be used wherever a double integer may. Double quotes may be used instead 

of single quotes. 

(3) "characters" 

Examples of this form are: 

"A BC" 

which yields string A BC and 

which yields string A" "B. 

(4) $characters$ 

Examples are: 

$A$ 
$A$$CD$ 

where the second example yields the string A$CD. 

Blanks within a Hollerith constant are considered as characters. Thus, 

'AB' 

is a three-character string. 

1.3.2 Variables 

The term variable refers to a symbolic name which represents a location in memory and to the values 

which are stored there during program execution. A variable name in FORTRAN is a string of from one 

to six characters, the first of which must be alphabeti c. Thus, ALPHA, MAX, A34, and A are legal 

variable names while 2A and MAXIMUM are not. 

1-8 



The kind of value which may be associated with a given variable name must be specified so that appro

priate storage is allocated. This specification is referred to as the mode of the variable, where mode 

is INTEGER, DOUBLE INTEGER, REAL, DOUBLE PRECISION, or LOGICAL. 

The implicit mode assumptions of the compiler are that all variables beginning with the letters I through 

N are integers and all others are real. For any modes other than integer and real, the programmer is 

responsible for establishing a variable's mode. The programmer may also establish a different set of 

mode assumptions via the IMPLICIT statement or explicitly declare a variable's mode via one of the 

FORTRAN-IV mode-declaration statements. Chapter 5 describes these statements in detail. 

A variable may also name an array, an ordered set of data whose elements are referred to by means 

of subscripted variables. A subscripted variable has the form: 

V(n) 

where n is a list of from one to three expressions which yield positive (non-zero) integer values. 

The variable name is, in effect, the name of the entire array. For example, the subscripted variable: 

A(3) 

refers to the third element of a one-dimensional array named A. Arrays in FORTRAN-IV may have up 

to three dimensions; consequently, subscripted variables (also referred to as array elements) may have 

up to three subscripts as in: 

A(l,2,2) 

which represents the value located in the first row, second column, and second plane of a three

dimensional array named A. * 

A variable which represents an array must be assigned adequate storage to contain all elements. To en

sure this, the programmer must provide dimensioning information giving the maximum value each of the 

array's subscripts can obtain. This may be done via several of the specification statements described 

*Arrays are stored in column order in ascending absolute storage locations. For example, a 2 by 2 by 
2 array is stored in the following sequence: 

A(1,1,1) 
A(2, 1, 1) 
A(1,2,1) 
A(2,2,1) 
A(1, 1,2) 
A(2, 1 ,2) 
A(l,2,2) 
A(2,2,2) 

1-9 



in Chapter 5. Note that when an array has been defined to have a certain number of dimensions, all 

references to it must contain that number of subscripts. Note also that an array must be of a given 

mode; i.e., each element is of the same specified mode. 

1.3.3 Expressions 

The term expression may broadly refer to the whole range of value descriptions which can be made in 

FORTRAN. This includes the primary units discussed so far (constants and variables, function references 

discussed in Chapter 5), and combinations which relate several units via FORTRAN operators. The 

value of this latter type of expression is, in reality, the result of the computations represented by its 

operators. 

Two types of compound expression - arithmetic and logical - may be constructed in FORTRAN. Either 

type may be enclosed in parentheses and function as a primary unit (or operand) in another expression. 

ARITHMETIC EXPRESSIONS 

An arithmetic expression is any configuration which yields a numeric value. It may be a single arith

metic unit or combination of arithmetic operands and the arithmetic operators given below. 

Operator 

+ 

* 

/ 
** 

Operation 

Addition (or unary plus) 

Subtraction (or unary minus) 

Multiplication 

Division 

Exponentiation 

An operand may be a constant, variable, function reference, or a parenthesized expression. 

The following are examples of legal arithmetic expressions: 

2.71828 
XYZ 
A+B*C 
(A+B)*C 

Precedence of Operations 

Arithmetic operations are carried out according to the following rules of precedence: 

(1) function reference 

(2) ** (exponentiation) 

1-10 



(3) unary minus 

(4) * (multiplication), / (division) 

(5) + (addition), - (subtraction) 

At the same precedence level, operations are carried out from left to right. For example, the expres

sion: 

-I + J/2 * 10 + SQRT(A) ** 3 
'-"" \.,./ ~ 

(2) (3) (1) 
~ 

(4) 

is evaluated as follows: 

(1) the square root of A is raised to a power of 3; 

(2) the value of 1 is complemented; 

(3) J is divided by 2 and 

(4) the result multiplied by 10. 

The remaining operations [(2) + (4) + (l)J are carried out from left to right. 

When an expression enclosed in parentheses appears within an expression, it is evaluated before being 

used as an operand, thus overriding the rules of precedence. Some examples are: 

Mode of Expressions 

Regular Precedence 

4 + 2 ** 2 = 8 

8-4*2=0 

-10+4=-6 

18/2 * 3 = 27 

-1 ** 2 = -1 

Wi th Parentheses 

(4 + 2) ** 2 = 36 

(8 - 4) * 2 = 8 

-(10+4)= -14 

18/(2*3)=3 

(-1) ** 2 = 1 

Expressions, like variables, have modes. In the case of an expression, however, the mode determines 

its accuracy. When an expression is composed of operands of the same mode, this mode applies to the 

entire expression . For example, an expression consisting of integer constants or variables is in integer 

mode, and so on. Different mode operands may also be used to form expressions. All legal combinations 

and the resultant mode are given in Table 1-2. 

1-11 



Table 1-2 
Modes of Mixed Expressions 

A plus sign represents any of the operators (+, -, *, or /). 

Expression 

1+1 
R-tR 

I+DI 

Mode 

Integer 
Real 

DI+I } - - - - - - - - - - - - Double integer 
DI+DI 

R+D 
D+R } - - - - - - - - - - - - - Double precision 
D+D 

1**1 Integer 

R **1 or DI } R**R - - - - - - - - - - Real 

R**D 

} D**I or DI 
D**R 
D**D 

- - - - - - - - - - Double precision 

I**DI } DI**I 
DI**DI 

- - - - - - - - - - - Double integer 

LOGICAL EXPRESSIONS 

Logical expressions consist of any configuration which yields a logical value (i .e., .TRUE. or .FALSE.). 

This may be a combination of arithmetic expressions and relational operators, a logical constant or 

variable, or a combination of logical operands and logical operators. 

An expression using relational operators has the form: 

A operator B 

where A and B are arithmetic expressions and operator is one of those listed below. 

Relational Expression 

A .LT. B 

A • LE. B 

A .EQ. B 

A .NE. B 

A .GT. B 

A .GE. B 

Relation 

A less than B 

A less than or equal to B 

A equal to B 

A not equal to B 

A greater than B 

A greater than or equal to B 

1-12 



An expression has the value .TRUE. if the relation expressed is true; otherwise, it has the value .FALSE. 

For example, assuming a variable A with the value 10 and a variable B with the value 20: 

A . LT. B has the value. TRUE. 

while 

A .GE. B has the value .FALSE. 

The following mode combinations are permitted in a relational expression: 

Mode 

Integer 

Double integer 

Real 

Double precision 

May be Related to 

Integer, doub Ie integer 

Double integer, integer 

Rea I, double precision 

Double precision, real 

Logical operators can combine logical or integer operands. The operators and their meanings are given 

below (T indicates a value of . TRUE. for logical operands and non-zero for integers, F, . FALSE. or 

zero). 

Logical Operator Meaning 

.NOT. logical negation 

.AND. logical and 

.OR. inclusive or 

.XOR. exclusive or 

Examples 
Expression Result 

• NOT. T 
. NOT. F 

T .AND. T 
T .AND. F 
F .AND . T 
F .AND. F 

T .OR. T 
T .OR. F 
F .OR. T 
F .OR. F 

T .XOR. T 
T .XOR. F 
F .XOR. T 
F .XOR. F 

F 
T 

T 
F 
F 
F 

T 
T 
T 
F 

F 
T 
T 
F 

Logical expressions are, like arithmetic expressions, evaluated according to precedence rules. These 

are: 

(1) relationals 

(2) .NOT. 

(3) .AND. 

1-13 



(4) .OR. 

(5) .XOR. 

Thus, T .XOR. F .AND. F yields the value .TRUE. 

The arithmetic operands of a relational expression are evaluated before the relation is tested. At the 

same level of precedence, operations are carried out from left to right. In addition, logical expres

sions can be parenthesized, thus overriding precedence. For example: 

F .AND. F .XOR. T = . TRUE. 

but 

F .AND. (F .XOR. T) = .FALSE. 

Following. NOT. a compound expression must be parenthesized, as in: 

. NOT. (F .AND. T) 

which has the value. TRUE. 

1-14 



CHAPTER 2 
ASSIGNMENT STATEMENTS 

An assignment statement permits the programmer to assign a value to a symbolic name. Two FORTRAN

IV statements, the Arithmetic statement and the ASSIGN statement, perform this function. In the case 

of the Arithmetic statement, the symbolic name identifies a variable or an array element and the value 

is a constant data value or the result of a computation. For the ASSIGN statement, the name is a 

symbolic address label which may be referred to by a GO TO or arithmetic IF statement (Chapter 3) 

and the value is a statement number within the source program. For either statement, the val ue assigned 

to a particular name may be changed by subsequent assignment statements; other statements or expres

sions which refer to them will automatically operate on the most recent value assigned. 

2.1 THE ARITHMETIC STATEMENT 

Genera I Form var = value 
or 
array (i) = value 

Where value = any FORTRAN constant or expression 

Examples COUNT = 1 
T ABLE (COUNT) = 100 
COUNT = COUNT + 1 
T ABLE (COUNT) = 200 

Effect The value to the right of the equal sign is assigned to the 
variable or array element to the left 

Note that the equal sign in an Arithmetic statement indicates replacement rather than equivalence; 

this permits constructions such as COUNT = COUNT + 1. If an Arithmetic statement requires a con

tinuation line, the = sign must appear on the first line. 

If an expression of one mode is assigned to a variable of another mode, the expression is converted 

before assignment. That is, integers may be converted to real, real to double-precision, and so on. 

There are, however, situations in which the value obtained will be meaningless. For example, if the 

integer variable I is assigned the value of the double-integer variable J, when J = loo, the assignment 

will be as expected. When J = 10000000, however, an unpredictable value assignment will result. 

2-1 



Conversions between logical and integer obey the following convention. Any non-zero integer is 

. TRUE. (777777), zero is .FALSE. (OOOOOO). 

In addition to the basic Arithmetic statement form, the programmer may use a part-wurd notation of 

the form: 

[m : n] 

where m and n are integer constants indicating a range from 0 to 35 (O:::'m:::'n :::,35). This construction 

may optionally follow any variable, array element, or parenthesized expression in the value portion of 

an Arithmetic statement (to the right of =) and/or the variable or array element being assigned. In the 

former case, the expression will be of type integer if (n-m) ~16 and type double integer if (n-m) ~17; 

its value is bits m through n of the actual value {right adjusted}. For ~xample, the statement: 

assigns A the value 23, and 

assigns A the value 2. If A were a double integer, the statement 

would assign A the value 23. Note that #2300 is represented internally as 002300. 

If this notation is used to the left of the equal sign, it indicates that only bits m through n of the 

variable are to be replaced by the value of the right hand side. For example, if the integer variable 

IYAR had previously been assigned the octal value 77, the statement: 

would make the new value of IYAR the octal integer 177. Also, the statements: 

I YAR= 1 00 
IYAR[9:1lJ=IYAR+l 

leave the value of IYAR unchanged (i.e., 100). The programmer must be careful not to specify a 

double integer range (n > 17) for an integer variable. For example: 

A=#D77000000[ 19:35] 

yields the single integer value O. 

Note that only the first two words of a double-precision floating variable (the exponent and first-order 

mantissa) may be manipulated via this notation. 

2-2 



2.2 THE ASSIGN STATEMENT 

General Form ASSIGN n TO label 

Examples ASSIGN 27 TO ITEST , 
ASSIGN 10 TO LOOP 

Effect The symbolic label (a variable of type integer) represents 
the specified statement number in an assigned GO TO or 
arithmetic IF statement 

The ASSIGN statement provides a symbolic addressing capability for the two control statements men

tioned above, GO TO and arithmetic IF. The statement number assigned must be that of an executable 

statement. Note that the integer variable is a symbolic label only within the context of an ASSIGN 

and its associated statements and may function as an integer variable elsewhere in the source program. 

Before this variable appears in such an expression, however, it must be redefined by an Arithmetic 

statement. For example, the statement: 

ASSIGN 20 TO IVAR 

does not assign the value 20 to IVAR but the memory location associated with the source-program 

statement 20. The sequence: 

ASSIGN 20 TO IVAR 
IVAR=20 
NEWVAR=IVAR+l 

is permitted, but IVAR may not be used as a label until redefined by another ASSIGN statement. 

2-3 





CHAPTER 3 
CONTROL STATEMENTS 

Statements in a FORTRAN-IV program are normally executed in the sequence in which they appear. 

The user may alter this sequence in two basic ways - by invoking a subprogram (Chapter 5) which re

turns control to the normal sequence after execution, or via one of the control statements described 

in this chapter. These are: 

a. the GO TO statement, which transfers control to a specified statement, thus 
originating a new sequence of execution; 

b. the DO statement, which establishes an iterative sequence of statements within 
the norma I sequence; 

c. the If: statement, which specifies conditi ons for the execution of a statement in 
sequence or transfer to a new sequence; and 

d. PAUSE and STOP, which, respectively, interrupt and halt program execution. 

3.1 THE GO TO STATEMENT 

Three forms of the GO TO statement are described below - unconditional, computed, and assigned. 

All of these forms transfer control to a statement in the source program; the difference between them is 

the manner in which that statement is specified. Any GO TO statement may appear at any point in 

the executable portion of the source program except as the terminal statement of a DO loop (3.2). 

3.1.1 The Unconditional GO TO Statement 

General Form GOTO n 

Where n == the number of an executable statement 

Example GO TO 27 

Effect Control is transferred to statement n 

The simplest form of GO TO statement, the unconditional, is a direct branch to another location in 

the source program. Program execution proceeds from this point in the usual sequence. 

3-1 



3.1.2 The Computed GO TO Statement 

General Form GOTO (n
1
,n

2
, .•. ,n

k
),i 

Where n = the number of an executable statement 
i = an integer variable 

Example GO TO (3, 17, 25, 50, 66),ITEM 

Effect Control is transferred to the statement whose number is the 
nith in the list. If ITEM = 2, control passes to statement 
17 

A maximum of 64 numbers may be listed in a computed GO TO statement. The value of the integer 

variable i must fall within the range from 1 to the number of statement numbers listed. If the value 

falls outside of this range, an OTS error statement is generated and control passes to the next statement 

in sequence. 

3.1.3 The Assigned GO TO Statement 

General Form GO TO label 
or 
GO TO label,(n

1
,n2,··· ,nk) 

Where label = an integer variable assigned a statement number 
value 

n
1 
.•• n

k 
= statement numbers which the ASSIGN state-

ment may legally assign to label 

Examples ASSIGN 13 TO KAPPA 
GO TO KAPPA 
GO TO KAPPA,(l, 13,100) 
GO TO KAPPA,(l,72, 100) 

Effect Control is transferred to the location specified by label 

The assigned GO TO statement permits symbolic addressing of statements and execution-time modifica

tion of control transfer, for example: 

ASSIGN 30 TO LOOP 

20 GO TO LOOP 

30 ASSIGN 45 TO LOOP 

GO TO 20 

In this sequence, the same statement which branched to statement 30 will next branch to statement 45. 

3-2 



3.2 THE DO STATEMENT 

General Form DO n ~=ml,m2,m3 
DO n l=m 1,m

2 
or 
DO n i=m

1
, m

2
, -m

3 
Where n = a statement number 

i = an integer variable 
m

1 
,m

2
,m

3 
= variables or constants 

Examples DO 101=2,10,2 
(iterations for 1=2,4,6,8,10) 
J=1 
DO 1,1=5, 1 , -J 
(1=5, 4, 3, 2, 1) 
DO 21=1,5 
(1=1,2,3,4,5) 

Effect Statements following the DO up to and including state-
ment n are executed repeatedly for values of i starting 
wi th m l' incremented {or decremented} by m3 unti I i has 
surpassed the limit m2. If m3 is not present, an incre-
ment of one is assumed. 

The series of statements which are executed as the result of a DO statement are called the range 

of the DO. The variable i is called the index. The values m
1
, m

2
, and m3 are, respectively, the 

initial, limit, and increment values of the index. 

If the increment variable, m
3

, is preceded by a minus sign, it is actually a decrement. For a con

stant m
3

, this is simply something of the form -3. For a variable m3 , the value of the variable itself 

must be positi ve and may be preceded by a minus sign. Thus, J= 1 and -J as on increment is correct. 

J=-l with J as an increment is invalid. 

The initial (m
1
) and limit (m

2
) values of a DO statement may be positive, negative, or zero provided 

the difference between them is less than 131072. Positive values for m
1 

and m2 may be expressed as 

positive integers or as variables assigned positive values. Explicit minus signs, however, may not pre

cede the integer (constant or variable) given within a DO statement for initial and limit index values. 

Negative initial and limit values must be expressed as a variable whose assigned value is negative. 

For example, the statements: 

DO 10 1=2, -10, -2 
and 
DO 101=2, -A, -2 

3-3 



are both incorrect since a minus sign is not permitted before the integer constants or variables given 

for limit values. The series: 

A= -2 
DO 101=2,A,-2 

is correct. 

Loop termination, as indicated in the model, occurs when m3 has a value beyond the limit. For a 

positive increment, this occurs when I is greater than m
2

; for a negative increment when I is less than 

m
2

. For example, the loop initiated by : 

DO 10 1= 1 , 1 00,2 

will not be executed when 1=101. The loop initiated by: 

DO 101=100,1,-2 

will be terminated when 1=0. 

It is the programmer's responsibility to ensure that the limit value specified will ultimately be reached. 

The statements: 

J = 10 
K = 100 
M = 10 
MINUSJ = -J 
MINUSK = -K 

DO 10 I=J,K,-M 
DO 10 J=J,MINUSK,M 

specify infinite loops which are not detected by the compiler. 

The statements: 

DO 10 I = MINUSJ,K,M 
DO 101 = J,MINUSK,-M 

specify finite loops. 

The range of a DO may contain any statement with one exception. That is, the terminal statement may 

not be a GO TO, RETURN, STOP, PAUSE, or numerical IF statement. A logical IF statement is per

mitted provided that it does not include any of the statements given above. 

3.2.1 Execution of a DO Range 

The processing of a simple DO range is shown below. 

DO 10 1= 1,10, 1 
ARRAY(I) = T AB(I*2) 

10TAB (1*2) = 0 

3-4 



The range of the DO here consists of the two Arithmetic statements, which use the 'index variable as a 

subscript index. The range may have any number of statements and the index variable may be used as 

an ordinary variable provided that its value is not changed. The statement 1=1*2, for example, would 

be illegal within the range given above, but TAB(I)=I is valid. 

The exit from the range of the DO to the next statement in sequence is referred to as the normal exit. 

In this case, the value of the index variable becomes undefined. Exit may also be accomplished by 

the occurrence of a control statement within the range, leaving the index variable with its current 

value available for use as a variable. Control may also be transferred from outside the range of a DO 

to any statement within. For example: 

DO 20 1= 1, 100 
10 IF (TAB(I) .EQ. 0) GO TO 50 
20 CONTINUE 

50 T ABO)= TAB(I+l) 
GO TO 10 

Here, a table is consolidated by replacing a zero entry with the next entry. Control is transferred out 

of the DO loop to move the entry and returned to check for zero. Note that the above example per

mits branching into the range of a DO which standard FORTRAN does not permit. PDP-15 FORTRAN 

considers statement 50 and the following GO TO as the "extended range" of the DO. 

3.2.2 Nested DO Statements 

When the range of a DO statement contains another DO statement (and its range), it is referred to as 

nesting. Nesting may occur to a depth of 9. * The ranges of nested DO's must not overlap; that is, 

the range of an inner DO must be contained entirely within the outer DO statement as shown in Figure 

3-1. T hey may, however, end on the same statement. 

Execution of nested DO's proceeds as follows. Each time the outermost DO is executed for one of its 

index values, the DO within it is executed for all of its index values. If this range contains another 

DO, that range is executed completely for each of the values of the second-level DO. For example, 

using the legal nesting example above, when range 1 is executed first for 1=1, range 2 is initiated 

with K=2 and range 3 is initiated with J=l and iterated (until J>5) five times. Then range 2 is iterated 

with K=3 and range 3 iterated until J>5. This process continues until K>10. That is, range 2 is re

peated 9 times and each of these times, range 3 is repeated five times (a total of 45 times) while I of 

range 1 is still equal to 1. At this point range 1 is repeated for 1=2 and the whole procedure recurs -

range 2 is done 9 times, range 3, 45 times. When I >10 for range 1, range 2 will have been performed 

90 times and range 3, 450 times. 

*This restriction includes any implied DO in an input-output list (Chapter 6). 

3-5 



Legal Nesting 

DO 50 1= 1, 10 ----, 

DO 20 K = 2, 10, 1 

10 10 

20 20 

50 50 

Illegal Nesting 

DO 50 I = 1, 10 -----, 

DO 10: J = 2, 10'l 
DO 20 K = 1,5 JJ 

Figure 3-1 Rules for Nested DO Statements 

3.2.3 The CO NT! NUE Statement 

The CONTINUE statement is a dummy statement, which does not generate code or cause any action. 

It consists simply of the text: 

CONTINUE 

The CONTINUE statement may appear anywhere within a FORTRAN program but is especially useful 

for terminating DO loops when the last statement would otherwise be one of the illegal terminal state

ments listed previously. For examp Ie: 

DO 10 K=ST ART, END 

7 PAUSE 
10 CONTINUE 

Here, the user can interrupt program execution at every iteration of the loop although the PAUSE state

ment cannot be the terminal statement. 

3.3 THE IF STATEMENT 

An IF statement causes control to be transferred or a statement to be executed contingent on the value 

of a test expression. Two forms of the IF statement are available - arithmetic and logical. They differ 

both in general form as well as in type of expression tested. 

3-6 

- . 



3.3.1 The Arithmetic IF Statement 

Genera I Form IF(expr)n l,n
2

,n
3 

Where expr = an arithmetic or logical expression 
n = a statement number or symbolic label established by an 

ASSIGN statement 

Examples IF(COUNT) 10,20,30 

ASSIGN 20 TO MID 
ASSIGN 30 TO FIN 
IF(AO)*B) 10, MI D I FIN 

Effect The parenthesized expression is evaluated. Control is 
transferred to: 

n1 if expr <0 
n

2 
if expr =0 

n3 if expr >0 

As shown in the model, the Arithmetic IF statement transfers control to one of three statements accord

ing to the value of the expression given. Thus, if COUNT=3, control in the first example, would be 

transferred to statement 30. 

If an Arithmetic IF statement requires a continuation line, the line must be broken at a comma. 

IF(E)10 
10,101,102 

will not compile. (The desired result is IF(E)100, 101,102.) 

Logical values .TRUE. and .FALSE. have the following decimal values: 

a .. TRUE.=-l 

b. .FALSE. = 0 

Since logical values have specific arithmetic values, logical expressions may be used in place of 

arithmetic expressions in FORTRAN statements. For example, the statement: 

IF (A.GT. B.AND.A. LT. C) 3,4,999 

is equivalent to the two statements: 

IF (A.GT.B.AND.A.LT.C) GO TO 3 

GOT04 

Note that in the above example the branch to 999 will never be executed. Logical expressions, how

ever, do not always yield the values 0 or -1; for example, in the statement: 

IF (l.XOR .J) 1,2,3 

3-7 



the branch is made to statement: 

a.2ifI=J, 

b. 3 if I 1 J but both have the same sign, 

c. 1 if the signs of I and J are different. 

3.3.2 The Logical IF Statement 

General Form IF(expr )s 

Where expr = any expression 
s = any executable statement except a DO or logical IF 

Examples IF(L 1 • LE. L2)GO TO 17 
IF(L 1)IF(X)3,5,5 
IF(L .AND. (.NOT. Ll»A=A+l 
IF(I-J)A=A+ 1 

Effect If the expression is .TRUE. (or non-zero), statement s is 
executed; if .FALSE. (zero), the statement is ignored 

Unless the statement executed as the result of a logical IF statement transfers control (i. e., GO TO), 

control continues in the normal sequence with the statement following the IF. For example, in the 

statement 

IF(L 1)IF(X)3,5,5 
10 A=B 

when L 1 is . TRUE., the numeric IF is executed and control transferred to statement 3 or 5. When L 1 

is .FALSE., control passes directly to statement 10. 

Non-logical (arithmetic) expressions are permitted within logical IF statements. In such cases, non

zero values are regarded as being logically .TRUE. and zeros as being logically .FALSE. For example, 

the statement: 

IF (X-3.0) GO TO 5 

causes a branch to statement 5 if X 13.0 (i. e., x -3.010). 

3-8 

-. 



3.4 EXECUTION CONTROL 

3.4.1 The PAUSE Statement 

General Form PAUSE 
or 
PAUSE n 

Where n = an octal interger <;;"7777778 

Examples PAUSE 
PAUSE 100 

Effect Execution is suspended and the number, if any, is printed 

The PAUSE statement interrupts program execution, but maintains the current state of all values. Exe

cution may be resumed by typing CTRL P (tP) on the console teletype. The integer n, when supplied, 

is printed on the console teletype and may be used to identify which of several PAUSE statements was 

encountered. 

3.4.2 The STOP Statement 

Genera I Form STOP 
or 
STOP n 

Where n = an octal integer '7777778 

Examples STOP 
STOP 20 

Effect Control returns to the MONITOR after n is printed 

A STOP statement is used to signify the logical end of a program. If several occur (the logical end 

depending on processing results), they may be numbered to indicate where the program ended. 

For example, the statements: 

10 IF (COUNT .GE. 100) STOP 10 

50IF (COUNT .GE. 100) STOP 50 

make program termination dependent on the value of the variable count at two different points. 

3-9 





CHAPTER 4 
SPECIFICATION STATEMENTS 

Specification statements provide the compiler with information regarding the data mode, size, and, if 

desired, initial values of variables in the source program. All specification statements must precede 

the executable portion of the program (see Table 1-1 in Chapter 1). 

Data mode specification is accomplished either explicitly via the statements INTEGER, DOUBLE 

INTEGER, REAL, DOUBLE PRECISION, and LOGICAL: or implicitly according to the initial charac

ter in the variable name. The FORTRAN-IV compiler contains implicit mode assumptions, but the 

user may override these via an IMPUCIT statement. In addition, the EXTERNAL statement specifies a 

subprogram name which will appear in a subprogram call. 

Variable size is implicit in the mode assigned to a scalar variable but must be specified in the case of 

arrays so that the compiler can allocate adequate storage space. The most common way of declaring 

the size of an array is the DIMENSION statement. The programmer may also control the way in which 

memory is allocated via the COMMON and EQUIVALENCE statements. 

Initial values may be assigned within a program via the DATA statement. A set of initial values may 

also be obtained at run time by using a BLOCK DATA subprogram. 

4.1 MODE SPECIFICATION 

Any data mode may be specified in a mode-declaration statement as described below. If INTEGER 

and REAL are the only data modes used in a program, the programmer need not have any mode

specification statements since he may use the compiler's implicit mode assumptions. 

4-1 



4.1.1 Mode-Declaration Statement 

General Form m a
1 
,a

2
, .•. a

n 
Where m = INTEGER, DOUBLE INTEGER, REAL, DOUBLE 

PRECISION, or LOGICAL 
a = variable name, array name with dimensions, or func-

tion name 

Examples INTEGER A,B,CYZ 
LOGICAL TTAB(10, 10), T ,F 
REAL XYZ 

Effect Elements in the argument list are declared to be of the 
given mode. An array is, in addition, allocated storage 
to the dimensions given 

A mode-declaration statement overrides any implicit mode assumptions. Thus, the statement: 

REAL ITAB,J 

overrides the basic compi ler assumption that IT AB and J are INTEGER. This rule also appl ies to any 

mode assumption specified in an IMPLICIT statement (4.1.2). An item may be assigned a mode only 

once in a given program. Note that any function which has not been assigned a mode in the defini

tion statement and which does not have an implicit mode must appear in a mode declaration statement. 

Note also that arguments must have the appropriate mode, as in: 

DOUBLE PRECISION B,X,DABS,DATAN 

B=DAT AN (DABS (X )) 

This declaration ensures the proper working of the external and intrinsic functions (Section 5.1.3) 

DAT AN and DABS. 

4.1.2 The IMPLICIT Statement 

General Form IMPLICIT m1(ll),m
2

(12)' ... mn(ln) 

Where m = INTEGER, DOUBLE INTEGER, REAL, DOUBLE 
PRECISION, or LOGICAL 

I = a list of one or more alphabetic characters and/or con-
secutive ranges of alphabetic characters (e.g., A-G) 

Examples IMPLICIT REAL (A-E, N,X-Z),INTEGER(F-L) 

Effect Establishes a new assumption for mode of non-declared 
variables 

4-2 



The IMPLICIT statement governs the implicit mode assumptions for a single source program. After the 

occurrence of the IMPLICIT statement shown above, for example, all variables beginning with F, G, 

H, I, J, K, or L will be assumed INTEGER while those that begin with ABC DEN X Y and 
1111"" 

Z are assumed REAL. In this case, the compiler will not assume that all letters not specified INTEGER 

are REAL. Only those listed as INTEGER are REAL. The initial mode assumption may be stated as: 

IMPLICIT REAL(A-N, O-Z), INTEG ER(I-N) 

4.1.3 The EXTERNAL Statement 

General Form EXTERNAL a
1 
,a

2
, ..• a

n 

Where a = name of a subprogram 

Examples EXTERNAL ISUM,ISUB 

. 
CALL DEBUS(ISUM,A, B) 

. 
CALL DEBUG(ISUB,A, B) 

Effect The listed symbols are defined as the names of subprograms 
for use as arguments of other subprograms 

A statement function (Section 5.1.1) may be passed as an argument to a subprogram without being de

clared EXTERNAL. If, however, a subprogram requires the name of a FUNCTION or SUBROUTINE 

subprogram as an argument, the calling program must declare the name in an EXTERNAL statement. 

The transmission of arguments to subprograms is discussed more fully in Chapter 5. In brief, a subpro

gram uses dummy symbols in statements which obtain values when called; these values must all be de

fined in the calling program. If these values are program variables, they are already defined within 

the calling program. The EXTERNAL statement ensures that subprogram names are also defined. 

4.2 STORAGE ALLOCATION 

4.2.1 The DIMENSION Statement 

General Form DIMENSION a 1(11),a2(12)" "an(ln) 

Where a = array name 
I = a list of from one to three integer constants giving the 

maximum value of each dimension of the array (i.e., 
column, row, plane) 

Examples DIMENSION A(100),B(50,50) 

Effect Consecutive storage is allocated; the sum of the dimen-
sions and the array type determine the amount 

4-3 



Each array specification in a DIMENSION statement gives the maximum value which each of its sub

scripts may assume. Array dimensions may, instead, be given within a type-declaration or COMMON 

statement using the same notation, as in: 

COMMON ARRAY(l0,4),Y,Z 
INTEGER A(10, to, 10),B 

Dimensioning information should appear only once in a given program. An array which will be passed 

as an argument to a subprogram must be declared in both the subprogram and the call ing program; with 

dummy array names and with real array names, respectively (see Chapter 5). 

4.2.2 The COMMON Statement 

General Form COMMON/b l/vl istl/b2/vlist2/' .. 

Where b = blank or a label 
vlist = a list of variable and arrays 

Examples COMMON/BLKA/X(3,3), Y(2,5) 
COMMON A,B,C/XX/X, y,Z//D,E 

Effect The items in each vlist are allocated to the specified block 
of memory where they may be shared by other programs 

The COMMON statement allows the data of a main program and/or its subprograms to share a common 

storage area. A common area may be divided into separate blocks. In this case, they are distinguished 

from one another by a label which is a unique variable name. One block may be left unlabeled; this 

area is referred to as blank COMMON. If the first block referred to in a COMMON statement is a 

blank COMMON block, the slashes may be omitted, as shown in the second example above. A blank 

COMMON area is otherwise denoted by two consecutive slashes. 

Items are assigned to a COMMON block in the order in which they appear in a COMMON statement. 

All items to be stored in a given block need not be listed at once, however, but may be given later in 

the same statement, as in: 

COMMON/BLK 1/A, B,C/BLK2/X, Y, Z/BLK 1/M, N,O 

or in a subsequent COMMON statement as in: 

COMMON/BLK 1/COUNT/BLK2/T/BLK 1/W,F 
COMMON/BLK3/ARRAY(1 O)/BLK 1/G ,R 

Entries are linked sequentially so the items assigned to BLK 1 will be A, B, C, M, N, 0, COUNT, 

W, F, G, and R, in that order. 

4-4 

-



The sharing of COMMON blocks is made possible by the fact that storage is allocated at the same loca

tion for blocks of the same name in all programs executed together. For example, if PROG1 contains 

the statement: 

COMMON A,B;R;X, Y,Z 

and SUBPROG 1 has: 

COMMON/R;'tJ, V,W//D,E,F 

the variables A and D will share the same location in blank COMMON as will the variables Band E; 

likewise, COMMON block R will store X and U, Yand V, and Z and W at the same locations. A 

COMMON block may be of any length but no program may attempt to enlarge a block declared by a 

previousl y compi led program. 

4.2.3 The EQUIVALENCE Statement 

Genera I Form EQUIVALENCE (11),(12)'··' (In) 

Where 1 = a list of two or more variables or array elements with 
constants as subscripts 

Examples EQUIVALENCE(RED, BLUE,GREEN,COLOR) 
EQUIVALENCE(RED, BLUE), (BLUE, GREEN,COLOR) 

Effect The elements of each I are assigned to the same storage 
location 

Note in the second example that the relation of equivalence, once applied to a variable, holds for 

subsequent equivalences. 

Variables located in a COMMON block may be made equivalent to other variables but not to one 

another. Quantities placed in a COMMON block via an EQUIVALENCE statement which change the 

size can only occur at the current end of the block. 

For example, the statements 

COMMON/BLK 1;X, Y,Z 
DIMENSION A(4) 
EQUIVALENCE(A, Y) 

cause BLK 1 to extend from X to A(4), arranged as follows: 

X 

Y ) same location 
A(l ) 

Z ) same location 
A(2) 
A(3) 
A(4) 

4-5 



Note that if, for example, A(l) were previously made equivalent to a variable, M, that Y, A(l), and 

M would all share the same location. 

In the following example, three arrays of different dimensions occupy the same storage locations. 

DIMENSION A(lOO),C(50), D(200) 
EQUIVALENCE(A,C, D) 

Here, of course, only the first 50 locations apply to all three, as shown. 

location 1 A(l), C(l), D(l) . . 

location 51 A(51), D(51) . . 
location 101 D(101) 

location 200 D(200) 

In the following sample program, arrays containing different numbers of subscripts are made equivalent 

using the EQUIVALENCE statement. 

C EQUIVALENCE TWO ARRAYS SUCH THAT THE FOLLOWING 
C PAIRS OF SUBSCRIPTED VARIABLES WILL OCCUpy THE SAME 
C MEMORY LOCATIONS; 
C A(l)ANDB(l,l) 
C A(2) AND B(2, 1) 
C 
C 

C 
C 

DIMENSION A(2), B(2,2) 
EQUIVALENCE (A, B) 

C FOLLOWING DATA STATEMENT WILL SET B(l,1) AND B(2,1) TO 
C THE VALUES 3.0 AND 4.0 AS WELL. 
C 
C 

C 
C 

DATA A(l),A(2)/3.0,4.0/ 

STOP 
END 

All variables equivalenced to COMMON variables are treated as COMMON variables with regard to 

subsequent EQUIVALENCE statements. EQUIVALENCE statements which would require extension of 

the beginning of a COMMON block are not allowed, as, for example: 

COMMON/BLK1/X, Y,Z 
DIMENSION A(4) 
EQUIVALENCE(X,A(3)) 

4-6 



4.3 THE DATA STATEMENT 

General Form OAT A vlist1/clistl,vlist !clistl, ... vlist/clist/ 

Where vlist = a list of variables, array elements, or array identi-
fiers (no dummy variables permitted) 

clist = a list of constants with optional signs or a construc-
tion of the form n*c where n is the number of 
variables for which c is to be assigned 

Examples DATA A,B,C/1,2,3/ 
DATA A, B,C,D,E,F/1 ,2,3,3*0/ 

Effect Each listed constant is assigned as the value of the corres-
ponding variable 

Any type of constant may appear in a "clist". A double-precision constant must be written explicitly 

in D format (e.g., 1.0D+01 or 10+01 - not 1.D+01). The mode of the variable and the constant to be 

assigned must agree with one exception - an integer constant may be assigned to a double-integer 

variable. 

The values specified in a DATA statement are compiled into the object program and become the values 

assumed by the listed variables when program execution begins. DATA statements may be given in 

BLOCK DATA subprograms described below. Note that COMMON variables may not be initial i zed 

using DATA except in the context of a BLOCK DATA subprogram; in this context the COMMON state

ment ihelf may also include data as in: 

COMMON/B 1/X, Y(5),I;X, I, Y(3)/2.0, 3,5.0/ 

Array identifiers without subscripts may be specified in the I ist of variables in a OAT A statement. The 

occurrence of an unsubscripted array identifier is equivalent to the occurrence of all of the elements of 

that array listed in ascending order. Note that in respect to the I imitations of the number of variables 

in the variable list permitted each version of FORTRAN (refer to Appendix C) an unsubscripted array 

identifier counts as one variable. For example: 

DIMENSION I (3),A(200) 
DATA I,J ,A, B/1, 2,3, 4, 201 *3. 14/ 

4-7 



4.4 BLOCK DATA SUBPROGRAMS 

A BLOCK DATA subprogram is used to enter data into a single labeled COMMON block at run time; 

it is identified by a statement consisting of the text: 

BLOCK DATA 

Between this and the END line is the body of the subprogram which may contain only DATA, COMMON, 

EQUIVALENCE, DIMENSION, and TYPE statements. 

A BLOCK DATA subprogram may not be used to initialize variables in a blank COMMON block area. 

When a given labeled block is initialized in this manner, all elements of it must be listed in a 

COMMON statement within the subprogram even if they do not appear in a DATA statement. 

More than one COMMON block may be stated in a COMMON statement but only the last one can be 

initialized with DATA statements. The following program, for example, will not give a compilation 

error but will not function properly. 

BLOCK DATA 
COMMON/N1/I/N2/J 
DATAI,J/1,2/ 
END 

Two BLOCK DATA subprograms are required to initialize the two blocks, as shown below: 

BLOCK DATA 
COMMON/N1/I 
DATA 1/1/ 
END 

BLOCK DATA 
COMMON/N2/J 
DATA J/2/ 
END 

A more extensive example of a BLOCK DATA subprogram is given below. 

BLOCK DATA 
DIMENSION X (4), Y(4) 
COMMON/NAME/A, B,C,I,J,X, Y 
DATA A,B,C/3*2. 0/ 
DATA X(1),X(2),X(3),X(4)/0.0,0. 1,0.2,0.3/, 
1Y(l), Y(2), Y(3), Y(4}/1. O,L21, 1. OE-4, O. 2/ 
END 

4-8 

-, 



CHAPTER 5 
SUBPROGRAM STATEMENTS 

A subprogram is a program which is invoked by name from other programs whenever the operations it 

performs are required. It is a convenient and efficient means for encoding frequently used or complex 

operations since the statements appear only once in the object program regardless of the number of 

times they are used. In addition, a subprogram may be designed to handle a variety of different values 

which may be transmitted as arguments whenever the subprogram is invoked. The process of establish

ing a subprogram is referred to as subprogram definition; the statements to be executed are referred to 

as the body of the subprogram; the process of invoking the subprogram and transmitting arguments is 

referred to as a subprogram call. 

Two basic types of subprogram* may be defined and called in FORTRAN-IV - functions and subroutines. 

A function is a subprogram which always returns a result - a single numeric value. This value is, by 

convention, represented in an expression by the function call. A subroutine may return several or no 

values; when results are obtained, they are assigned to variables in the calling program. The program

mer may call a variety of predefined subprograms from the science library. {Refer to "Operating 

Environment" manual DEC-15-GFZA-D for a description of the science library.} 

The transmission of arguments to a function and to or from a subroutine requires the use of dummy 

variables in the definition. That is, those variables in the subprogram which are to acquire calling 

values {real arguments} are listed in parentheses following the subprogram name in the subprogram def

inition statement. For example, if a subroutine were designed to merge two arrays {one with 500 

elements and the other with 100} into a third array, the arrays might be referred to by dummy variables 

A, B, and C in the subroutine statements which refer to them, such as: 

IF{A(I} .GE. B(I)}C(I}=A{I} 

These dummy variables would appear in the definition statements as follows: 

SUBROUTINE MERGE(A,B,C) 

*BlOCK DATA subprograms, described in Chapter 4, are a third type of subprogram in that they may 
by comp i led separate I y. 

5-1 



When the subroutine is called, the user indicates the actual arrays to be merged, as in: 

CALL MERGE(FILA,FILB,FILC) 

The statement shown above then becomes: 

IF(FILA(I) .GE. ALB(I))FILC(I)=FILA(I) 

Note that the real arguments must appear in the same order as the corresponding dummy variables in 

the subprogram definition. Real arguments must also agree in mode with the dummy arguments to which 

they correspond. When arrays are involved, DIMENSION statements must be given for the real arrays 

in the calling program and for the corresponding dummy arrays in the body of the subprogram. In the 

above example, the following DIMENSION statements would be required:. 

Ca Iii ng Program Subprogram 

DIMENSION FILA(500), FILB(l 00), FILC(600) DIMENSION A(500),B(lOO),C(600) 

Figures 5-1 and 5-2 show a main program and a subprogram which it invokes, respectively. 

5.1 FUNCTIONS 

Two types of function may be defined in FORTRAN-IV - statement and external. A statement function 

is defined within another program via a form of the Arithmetic statement and may be called only by 

the program in whi ch it is defined (except when passed as an argument to a subprogram). An external 

function, defined via the FUNCTION statement, is an independent subprogram which may be called 

by any program. Both types of function must have names which conform to the rules for variable names 

and require at least one argument. A function call may appear only within an expression and, like 

other elements of an expression, must have an associated mode. 

5.1.1 Statement Functions 

General Form f(a, ,a
2

, .•. an)=e 

Where f = function name 
a = dummy argument 
e = an expression 

Examples SUM(A, B, C)=A+B+C 
FUNC(A, B)=2. *A/B 
A(X)=3. 2+SQRT (X) 

Effect Defines function f(a"a
2

, ..• a ) to have the value of 
. n 

expression e 

5-2 



C THIS MAIN PROGRAM CALLS SUBR TO MAKE ALL ELEMENTS OF 
C THE ARRAY ICOL POSITIVE RELATIVE TO THE 
C SMALLEST ELEMENT OF THE ARRAY. THE ELEMENTS OF THE 
C ARRAY ARE ASSUMED > OR = TO ZERO. 
C 
C 
C 
C A COLUMN OF DATA IS READ INTO ICOL VIA LOGICAL 1. THEN THE 
C SMALLEST ARRAY ELEMENT IS FOUND. THE ARRAY NAME AND SMALLEST 
C ELEMENT IS PASSED TO SUBR. SUBR SUBTRACTS THIS 
C SMALLEST ELEMENT FROM EVERY ELEMENT OF THE ARRAY. 
C 
C 

C 
C 

DIMENSION ICOL(20) 

C READ IN COLUMN OF DATA 
C 
99 READ(1, 2)ICOL 
2 FORMATM) 
C 
C 
C FOLLOWING LOOP FINDS SMALLEST ARRAY ELEMENT AND 
C REMEMBERS ITS SUBSCRIPT IN JMIN. 
C 
C 
C 

JMIN=l 
DO 4 1=1, 19 
IF(ICOL(JMIN)-ICOL(I+ 1 ))4,4,6 

6 JMIN=I+1 
4 CONTINUE 
C 
C 
C CALL SUBROUTINE TO PERFORM THE SUBTRACTION OF ICOL(JMIN) 
C FROM EVERY ELEMENT OF ICOL. 
C 
C 

C 
C 

CALL SUBR(ICOL,ICOL(JMIN)) 

C LIST MODIFIED ELEMENTS OF IeOL VIA LOGICAL 2. 
C 
C 

WRITE(2,5)ICOL 
5 FORMAT(lX,I6) 
C 
C 

GO TO 99 
END 

Figure 5-1 Main Program Sample 

5-3 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

SUBROUTINE SUBTRACTS VALUE OF ONE ELEMENT FROM ALL THE 
ELEMENTS OF A ONE DIMENSIONAL INTEGER ARRAY. 
CALLING SEQUENCE IS: 
CALL SUBR(ARRAY,ARRAY ELEMENT) 
DUMMY VARIABLES OF SUBROUTINE SUBPROGRAM ARE IDUMA,IDUMAE 
WHERE IDUMA CORRESPONDS TO ARRAY NAME AND IDUMAE 
CORRESPONDS TO ARRAY ELEMENT TO BE SUBTRACTED. 
IDUMA MUST BE A 20 ELEMENT SINGLY DIMENSIONED INTEGER 
ARRAY. 

DECLARE SUBROUTINE AND ITS DUMMY VARIABLES 

SUBROUTINE SUBR (IDUMA,IDUMAE) 

DIMENSION IDUMA 

DIMENSION IDUMA(20) 

FOLLOWING LOOP SUBTRACTS VALUE OF ARRAY ELEMENT PASSED 
TO SUBR FROM EVERY ARRAY ELEMENT OF THE ARRAY PASSED TO 
SUBR. 

SET ELEMENT INTO TEMPORARY. CANNOT USE IDUMAE IN LOOP SINCE 
ELEMENTS OF THE PASSED ARRAY ARE ALL MODIFIED 

I DECR=I DUMAE 

DO 11=1,20 
I DUMA(I)=IDUMA(I)-IDECR 
RETURN 
END 

Figure 5-2 Subprogram Sample 

S-4 

- , 

-.., 

-



A statement function definition is a single non-executable statement in a FORTRAN source program. It 

may not precede any specification statement but must precede any executable statement of the program 

in which it appears. 

The expression which defines a function may include dummy variables, ordinary variables, non

Hollerith constants, and previously defined external or statement functions. The function name may 

be associated with a data mode by any of the conventions specified for variables. The dummy variables 

used to define the function may appear in a specification statement but in no other context. Up to 10 

dummy arguments may be used in a single definition. 

To call a statement function, the programmer simply includes the name, with real arguments as required, 

in an arithmetic expression. For example, assume the definition: 

OFFSET(A,B)=A+B+ 100 

where A and B are dummy variables. The function might be called as follows: 

T ABO)= 100+0FFSET (CT 1, CT2) 

which yields the same result as: 

T ABO)=200+CTl+CT2 

A statement function, in effect, permits the programmer to extend the symboli c language available to 

him. By assigning a mnemonic name to a frequently used calculation, he obtains a more readable 

source program. For example, one might define the integer function percent as: 

PERCENT(I, J)=(I*l oo)/J 

This function is used in the following statements to express the values in TABl as a percentage of each 

of the values in TAB2. 

DO 10 K=l, 10 
TOT=TAB2(K) 
DO 101=1,100 
VAL=TAB10) 
J = 100*(K-1}+1 

10 TAB3(J)=PERCENT(VAL, TOT) 

5-5 



5.1.2 External Functions 

General Form m FUNCTION f(a1 ,a2,· •. a n) 

Where m = an optional mode specification 
f = function name 
a = dummy argument 

Example INTEGER FUNCTION TOT(A,B) 
DIMENSION A(100) 
TOT=O 
DO 101=1 ,B 

10 TOT=TOT+A(I) 
RETURN 
END 

Effect Defines an external function 

An external function is an independently written program which is executed when its name appears in 

an expression in another program. The optional mode specification (m) may be INTEGER, DOUBLE 

INTEGER, REAL, DOUBLE PRECISION, or LOGICAL. If no mode is given the function is associated 

with a mode in the same manner as a variable. 

The function name must conform to the rules for variable names and must appear at least once as a 

variable within the body of the function; that is, the function name must be defined before control is 

returned to the calling program. Only non-subscripted variable names may appear as arguments in an 

external function. If an array name is used, an argument must appear in a DIMENSION statement 

within the subprogram. At least one argument must be specified for all functions. 

The body of a function may contain any FORTRAN statement with the exception of BLOCK DATA, 

SUBROUTINE, FUNCTION, or a statement containing any reference to itself. It must contain at 

least one RETURN statement, which signifies the logical end of the subprogram. When a RETURN 

statement is executed, control is returned to the calling program. The function name must have been 

assigned a value before the occurrence of a RETURN. 

An external function is called when its name and arguments appear in an arithmetic or logical expres

sion. Real arguments may be variables, array elements, array names, any other expression, or the 

name of an external function or subroutine. A sample external function is given below. 

INTEGER FUNCTION CODE(J) 
COUNT=l 
DO 20 1= 1 0, 1 00, 1 0 
IF(J .LT. I)GO TO 30 

20 COUNT=COUNT+1 
30 CODE=COUNT 

RETURN 
END 

5-6 



This function encodes values of J as follows: If J has a value between 0 and 9, it is encoded as one; if 

its value is between 10 and 19, it is encoded as 2 and so on up to 100. It is invoked by the following 

statements: 

DO 30 1= 1 , 1 00 
YAL=TAB(I) 
IF(YAL . LT. O)YAL=ABS(J) 

30 T ABO)=CODE(YAL) 

Negative numbers are avoided by calling the library function ABS which returns the absolute value of 

its argument. A table, TAB, is converted here to contain the codes associated with its original values. 

5.1.3 DEC Library Functions 

Two types of predefined functions are part of the FORTRAN Science Library - intrinsic and external. 

Both types are called in the same manner as a programmer-defined external function, as in: 

Y=2*SQRT (C) 

and 

J=2+IFIX(R) 

where SQRT is an external library function and IFIX is an intrinsic library function. In each case, the 

value of the expression will, if possible, be converted to the mode of the variable. (All library func

tions are listed and described in the "Operating Environment" manual DEC-15-GFZA-D). 

5.2 SUBROUTINES 

A subroutine is defined external to the program which invokes it in a manner similar to an external 

function. The important distinctions between the two are: a subroutine need not have any arguments 

at all but will accept numerical, logical, or Hollerith constants as arguments; a subroutine need not 

return any values to the caller but may return several; and a subroutine is called via an explicit CALL 

statement. 

5-7 



5.2.1 Subroutine Definition 

General Form SUBROUTINE name(a
1 
,a

2
, ••• a ) 

or n 

SUBROUTINE name 

(FORTRAN statements) 
. . 

RETURN 
END 

Where a = dummy argument 

Example SUBROUTINE STORE(A, B) 
DIMENSION A(100), B(100) 
DO 10 1= 1,100 

10 A(I)=B(I) 
RETURN 
END 

Effect Defines an external subroutine 

A subroutine name must conform to the rules for variable names and may not appear within any statement 

in the body of the subroutine. A subroutine's arguments may represent any FORTRAN expression (this 

includes any constant, variable, array element, or an external subroutine or function name). Dummy 

arguments may represent values supplied by the calling program or values returned by the subroutine. 

In the latter case, the dummy variable must appear on the left side of an Arithmetic statement or in an 

input list within the subroutine body. 

For example, if the function CODE given in Section 5.1.2 were defined as a subroutine rather than as 

a function, it would have the following form: 

SUBROUTINE CODE(J,C) 
C=l 
DO 201=10,100,10 
IF(J .LT. I)GO TO 30 

20 C=C+1 
30 RETURN 

END 

The statements which invoked the function would be modified to invoke the subroutine as follows: 

DO 301=1,100 
VAL=TAB(I) 
IF(J . LT. O)J=ABS(J) 
CALL CODE(VAL, T AB(I)) 

An array name argument must appear in a DIMENSION statement. EQUIVALENCE, COMMON, and 

DATA statements are permitted but may not include any dummy variables. 

5-8 



The logical termination of a subroutine is signal led by a RETURN statement. The physical end is indi

cated by an END line. 

5.2.2 Subroutine Calls 

General Form CALL subr(a 1 ,a
2

, .•• an) 
or 
CALL subr 

Where subr == the subroutine name 
a == a real argument 

Examples CALL COMPUTE(A,B,ANS) 
CALL ERROR 

Effect Control is transferred to the subroutine; real arguments, if 
any, are substituted for dummy variables at execution 

The arguments of a CALL statement may be of any type but must agree in number, order, type, and, 

in the case of arrays, dimensions with the corresponding arguments in the SUBROUTINE statement of 

the called subroutine. When subroutine execution has been completed (a RETURN has been encountered), 

control returns to the statement following the CALL. 

5.3 MULTIPLE ENTRIES AND RETURNS 

General Form SUBROUTINEjl=UNCTION 

ENT~Y name(a
1 
,a

2
, ..• a

n
) 

. 
END 

Where name = the entry name 
a = a dummy argument 

Examples SUBROUTINE MOVE(A, B,C) 
DIMENSION A(lOO), B(100),C(100) 
DO 10 1= 1 , 100 

10 C(I)=B(I) 
ENTRY MOVEl (A, B) 
DO 201=1,100 

20 B(I)=A(I) 
RETURN 
END 

Effect A call to the name associated with ENTRY will invoke a 
portion of the subprogram in wh i ch it occurs 

An ENTRY statement establishes a separately callable subprogram within a subroutine or external func

tion. Thus, as in the model, the programmer bypasses one of the operations of a subroutine or function 

5-9 



by calling MOVEl rather than MOVE. An ENTRY statement may not occur within a DO loop. The 

dummy arguments of an ENTRY may appear in the body of the subprogram prior to the entry statement 

only if they are also arguments of a prior ENTRY or of the SUBROUTINE or FUNCTION definition. 

In a multiple-entry function, the return value is always assigned to the function name itself. For ex

ample: 

INTEGER FUNCTION ADD10(A) 
DIMENSION A(10) 
ADD10=0 
J=10 

1 0 DO 20 1= 1 , J 
20 ADD10=ADD10+A(I) 

RETURN 
ENTRY ADD5(A) 
DIMENSION A(5) 
ADD10=0 
J=5 
GO TO 10 
END 

The user calls ADD5, as in 

SUBTOT =ADD5(TAB) 

which is given the value assigned to ADDlO in the body of the function. 

Multiple returns may be specified via the construction: 

RETURN I 

where I is an integer variable for which a legal statement number will be substituted when the subrou

tine or function is called. The variable I appears in the real argument list preceded by @, as in: 

CALL COMP(X, Y,@lO) 

The use of multiple returns is illustrated below. 

SUBROUTINE COMPARE (A, B,I,J) 
IF(A • EQ. B)RETURN 
IF(A .LT. B)RETURN I 
RETURN J 
END 

Here the user need not examine the result of the comparison before transferring control but control is 

automatically transferred by the subroutine. 

5-10 



CHAPTER 6 

DATA TRANSMISSION STATEMENTS 

Data transmission statements control the transfer of data between internal storage and peripheral devices. 

The numerous details involved in this process, while greatly simplified in FORTRAN-IV, require that 

the programmer be familiar with the way in which data are stored externally and, to varying extent, 

with the way data are stored internally. In general, the external data may be thought of as a contin

uous string of information (logical record) which consists of one or more physical records on the device 

being used as a particular instance. The size of a physical record varies from device to device and, 

while not specifically mentioned in any data transmission statement, influences the selection of a par

ticular type of logical record. Table 6-1 describes the type of physical record, for each device, 

which is associated with each of the two types of logical record - formatted and unformatted. 

Table 6-1 
Physical Record Description for Formatted and Unformatted Records 

Device Formatted Unformatted 

Teletypewriter one line of up to 72 characters not applicable 
terminated by carriage return 

Line printer one line of up to 80, 120, or not applicable 
132 characters 

Card reader one card (up to 80 characters) not applicable 

Paper tape reader and punch one typewritten line image 50 words 

Magnetic tape one line image of 628 characters 251 words 

Disk/DECtape one line image of 628 characters 251 words 

The terms formatted and unformatted refer to the way data are stored externally since this governs the 

techniques used in input/output. A formatted record is an ASCII character string which is interpreted 

on input and constructed on output according to conversion rules defined in a FORMAT statement. An 

unformatted record is a string of 18-bit words which may be stored into and read from program variables 

specified in an input/output list in a format determined by the compiler. 

6-1 



PDP-15 FORTRAN-IV provides a third way of treating data called Data-Directed I/O which uses 

default FORMATS for output and converts data on input to conform to the program variables which 

will contain them. A logical record need not conform in size to the size of a physical record asso

ciated with a particular device as the input/output statements which accomplish data transmission will 

automatically read or write the quantity of physical records required to accommodate the logical 

record. 

A file (a complete collection of related logical records) is identified in a source program by a logical 

device number, an integer constant associated with a particular type of device in the monitor Device 

Assignment Table* (DAT). At run time, this number is assigned to a physical unit and all program ref

erences to it interpreted accordingly. 

There are two types of input/output which may be performed via FORTRAN-IV I/O statements - se

quential and direct access. Sequential statements direct records to and from memory in the sequence 

in which they are physically recorded on the device in question. Direct access (6.3.3) statements 

permit the sequential transmission of logical records to and from a direct-access device where the 

physical records are not stored sequentially. 

In addition to the statements which perform input/output or describe a file for direct access, FORTRAN

IV provides a number of auxiliary data transmission statements. The most important of these, the 

FORMAT statement, provides program control over the conversion of data between program-required 

and device-required forms. Other auxiliary statements control mechanical aspects of device control 

such as opening and closing files and the ENCODE and DECODE statements permit conversion between 

formatted and unformatted (ASCII-binary) information in memory. ENCODE and DECODE permit the 

programmer to build a logical record in core, and to transmit data from this record into program vari

ables. 

6.1 THE FORMAT STATEMENT 

General Form n FORMAT(sl,s2'" .sn) 

Where n = statement number 
s = field specification of the form: nkw.d 

n = number of successive fields involved 
k = type of conversion** 
w = field width 
d = number of places to the right of the decimal point 

Effect FORMAT n is establ ished as a reference for formatted I/O 
operations 

*Refer to the FORTRAN "Operating Environment" manual, DEC-15-GFZA-D for a detailed descrip
tion of the Device Assignment Table. 

**The argument k, which characterizes the type of FORMAT, is always required; others may be op-
tional, depending on the value of k. 

6-2 



A FORMAT statement describes one or more records to be read or written. It may be used with or with

out an input/output list. Without the list, data are input to and output from the FORMAT specification 

itself. Otherwise, the listed variables correspond to the list of field descriptions and the appropriate 

conversions performed. 

6. 1 • 1 Statement Syntax 

A FORMAT statement may describe one or more physical records. If more than one is described, the 

character (/) denotes the end of a record, as in: 

10 FORMAT (s1' s2/s1' s2' s3) 

'--..--J~ 
Record Record 

1 2 

When a number of slashes appear at the beginning or end of a statement, that number of records will be 

skipped on input and blank records written on output. When a sequence of slashes occur within the 

statement, one is considered to be the record indicator and the rest interpreted as above. Thus: 

spec ifies three skipped or blank records before record 1, one after record 1, and three after record 3. 

Each record description, as shown above, may consist of one or more field descriptors, a field being a 

consecutive series of characters within the record. Field descriptors are, as shown above, separated 

by commas. If a particular descriptor applies to a set of consecutive fields, it may be preceded by a 

number indicating the number of fields to which it applies. For example, 3s1 applies the descriptor s1 

to three consecutive fields. In addition, a group of field descriptors may apply to a set of consecutive 

fields. In this case, the group of descriptors is enclosed in parentheses and preceded by a group count 

indicating the number of times it will be used. The statement: 

FORMAT (s1, s2, 3{s3, s4)) 

divides the record into eight fields associated with descriptors as follows: 

S 1 - field 1 
S2 - field 2 

S3 - field 3) 1) 
S4 - field 4 
S3 - field 5) 2) 
S4 - field 6 
S3 - field 7) 3) 
S4 - field 8 

6-3 



6.1.2 Field Descriptors 

The form of a field descriptor is as given in the statement model: 

nkw.d 

where n is an optional repeat count, k is a control character specifying conversions to be performed or 

special formatting functions, w is field width, and .d indicates number of decimal places to the right 

as required. Table 6-2 below summarizes the control characters and their meanings. 

Table 6-2 
Field Descriptor Control Characters 

Conversion 
Output Field 

Control 
Input Field 

I decimal integer integer or double integer variable 

E floating-point, scaled real variable 

F floating-point, mixed real variable 

G floating-point, mixed/scaled real variable 

D floating-point, scaled double-precision variable 

L Tor F logical variable 

A a Iphanumeri c ASCII characters 

R alphanumeric, right-adjusted ASCII characters 

Special 
Meaning 

Purpose 

P sets scale factor for E, F, D conversions 

X skips characters on input or output blanks 

H } I I 

~ ~ 
designate Hollerith field 

0 octal field 

T tab to specified position 

Each of these descriptors is described in detail below. All conversion descriptors must specify the field 

width. Note that the field width must be large enough to contain all characters {including decimal 

point and sign} required to constitute the data value and any blank characters needed to separate it 

from other data values. Note that during input, an inadequately sized input field enables only the 

leftmost (most significant) characters of each item input up to the width specified to be input; all other 

input characters are lost. If during output, a variable (the value of which exceeds the format specified 

6-4 



field width) is found; a string of asterisks (*) including any indicated decimal point is output in its 

place. For example, if the output field specified is 14,- the integer 12345 is output as ****. 

The interaction of the FORMAT descriptors with items in a standard or data-directed I/O I ist are de

scribed in Section 6.3. An output FORMAT for a printing device must allow for the fact that the first 

character of a record is used as a carriage control indicator. Carriage control is described later in 

this chapter; it is ignored in the examples given below to clarify the conversion descriptors illustrated. 

I-TYPE CONVERSION 

General Form: Iw or nlw 

Examples (b indicates blank) 

Descriptor Input Internal Output 
-- ---

15 bbbbb +00000 bbbbO 

13 -b5 -05 b-5 

18 bbb12345 +12345 bbb12345 

113 bbb1234567890 +1234567890 bbb1234567890 

I-conversion descriptors are used for both single and double integer variables. On input, the numbers 

specified by ware converted to a binary integer before being stored. A minus sign is required for neg

ative numbers; plus is optional. The field may not contain a decimal point. Blanks may precede the 

sign or first digit of a number; embedded blanks are interpreted as zeros. 

On output, a binary integer is converted to a string of numeric characters and right-justified in the 

field. A minus sign is provided for negative numbers. If the number does not fit within the field, a 

string of asterisks is output instead. 

The following examples illustrate the use of the I descriptor. Program variables K 1, K2, K3, and K4 

will obtain values via the input FORMAT and their values will be output via the output FORMAT. The 

two format statements are given below - fa input: 

10 FORMAT (15,13,18,12) 

and for output: 

15 FORMAT (lX,14,12,14,Il) 

Note that the output format specification contains a carriage control indicator (lX). The input data 

is the string below: 

6-5 



12345b99bb12345689 
~'-./ 

K1 K2 K3 K4 

which will be interpreted in the fields shown and will have the following internal values (in octal); 

K 1 = 030071 
K2 = 000143 
K3 = 361100 
K4 = 000131 

Using the output FORMAT given to output these variables gets the following printout: 

/i~~ 
K1 K2 K3 K4 
(14) (12) (14) (11) 

Only the second value, as shown, fits into the allotted field width. Unpredictable results may be ob

tained when a number is too large for an internal integer but fits in the field width. For example, the 

integer 131073 (stored internally as 400001) is printed out -131071 if the output field width is large 

enough. 

E-TYPE CONVERSION 

General Form: Ew.d or nEw.d 

Examples 

Format Descriptor Input Internal Output 
--

Ell.4 00. 2134E03 213.4 bO.2134E+03 

E9.2 0.2134E02 21.34 bO.21E+02 

E10.3 bb-23.0321 -23.032 -0. 230E+02 

The input format of an E-type number is a string of digits optionally preceded by a sign. A decimal 

point and an exponent may be included in the string. The number itself should be restricted to 11 

digits to ensure that the number, if given as an integer, will not exceed 2
35

_1 in magnitude. Results 

are otherwise unpredictable. The input string is converted to a floating-point number with d spaces 

reserved for digits to the right of the decimal point. 

E-type output of a floating-point number consists of a minus sign for negative numbers followed by the 

digit zero, a decimal point, d significant digits, and an exponent of the form E~nn, as shown in the 

model. The field width must be at least d+7 characters long to accommodate this notation. 

E-conversion is illustrated in the following examples. 

6-6 



Example 1. 

I nput format: 

Output format: 

Input data: 

10 FORMAT(E6.0,E9.3, El0.3,E16.4) 

20 FORMAT(1X, E6.0,E9. 3,E1 0.3, E16.4) 

-1.E2b-0. 12E-01-0. 123E-00-123456. 7891 E+01 
\ __ J 

E6.0 E9.3 

Program variables: R 1 R2 

E10.3 

R3 

E16.4 

R4 

They are stored internally, each in two words of storage, as follows: 

R1 000007 
710000 

R2 227772 
704467 

R3 704467 
662775 

R4 773716 
374025 

Output of these variables using the given format will give the printout: 

*.*****.*******-0.123E+00bbbbb-0.1235E+07 

Rl R2 
(E6.0) (E9. 3) 

R3 
(E10.3) 

R4 
(E16.4) 

Note that the output field was not large enough to accommodate the E-format of output, for R 1, 

-0.E+03[W=7], or R2, -0.120E-Ol(W=10). 

Example 2. 

Input format: 10 FORMAT(E12. 5, E7. 2, E10. 2, E 12.4) 

Output format: 20 FORMAT (lX, E12. 5/1X, E12. 5/1 X , E20. 9/1X, E30. 10) 

(Note the carriage control character preceding each output value.) 

Input data: 

Output: 

123456.000000012345-. 01E+03bb+loo. OE-2 ) 

Rl R2 R3 

bO. 12346E+06 
bO.12345E+03 
bbbb-0.100000000E+02 
bbbbbbbbbbbbbbO.10000oooo0E+01 

6-7 

R4 



F-TYPE CONVERSION 

General Form: Fw.d or nFw.d 

Examples 

Format Descriptor Input Internal Output --
a) F6.3 bl3457 13.457 13.457 

b) F6.3 313457 313.457 ** *** 
c) F9.2 -21367. -21367. -21367.00 

F-type conversion is the same as that described for E-type conversion on input. On output, however, 

the number is written with a minus sign if negative, an integer portion, a decimal point and the frac

tional part rounded to d significant digits. Note in the example an instance (item b) where the variable 

exceeds the output field width. It is important, on output, to have a field width large enough for a 

leading zero for values less than 1.0. For example, the descriptor F4.2 cannot output the value -.12 

which must be printed as -0.12. 

G-TYPE CONVERSION 

General Form: Gw.d or nGw.d 

Examples 

Format Descriptor Internal Output 

G14.6 . 12345678x1 0-1 bbO.123457E-0 

G14.6 . 12345678x 10
0 bbO. 123457bbbb 

G14.6 .12345678x10
4 bbb1234.57bbbb 

G14.6 .12345678x10
8 bbO. 123457E+08 

G-type conversion on input is the same as for E and F described above. On output, the format used 

depends on the magnitude of the internal data. If the exponent of the normalized value is greater than 

the number of decimal places specified in the output format (d), E-type output format is used. Other

wise, a modified F-type notation is used; that is: 

F{w-4). {d-e),4X [e = value of exponent] 

where 4X indicates four blanks to be appended to the val ue. The programmer must be sure to provide a 

field width sufficient to include these. E format is always used for values less than 0.1. 

Some examples of G-conversion follow. 

6-8 



Example 

Input format: 10 FORMAT(G 16. 5, G 16. 5,G 16.4; G 16.4) 

Output format: 

Input data: 

20 FORMAT(lX, G 16.5/1X,G 16. 5/1X, G 16.4/1X,G 16.4) 

.12345E+5 

.12345E+6 

.12345E+4 

.12345E+5 

Output: bbbbbb12345.bbbb 
bbbbbO.12345E+06 
bbbbbbb1234.bbbb 
bbbbbbO.1234E+05 

D-TYPE CONVERSION 

General Form: Dw . d or n Dw • d 

Examples 

Format Descriptor Input Internal Output 
--

D13.6 bb+21345D03 21.345 bO.213450D+02 

D13.6 b+3456789012 3456 . 789012 bO.345689E+o4 

D12.6 -12345.6D-02 -123.456 * ********** 

In D-type conversion, an input field conforming to the format of an E-type input field is converted to 

a double-precision floating-point number. The output format is also the same as for E-type output, 

with the exception that the E is replaced by a D. 

Example 1. 

Input format: 

Output format: 

Input data: 

Output: 

10 FORMAT(D30. 12) 

20 FORMAT(lX, D30.12) 

34359738367.* 
34359738370. 
34359738371 . 
. 34359738367* 
-34359738367.0000000000D+02 
-34359. 738367D+2* 

bbbbbbbbbbbbO.343597383680D+ll* 
bbbbbbbbbbbbO.200000000000D+Ol 
bbbbbbbbbbbbO.299999999986D+01 
bbbbbbbbbbbbO.343597383680D+OO* 
bbbbbbbbbbb-0.243597383669D+03 
bbbbbbbbbbb-0.343597383657D+07* 

*Starred values have significant digits within the limit (34359738367) representable without truncation. 
Others obtain meaningless values . 

6-9 



Example 2. 

Input format: 

Output format: 

Program variable: 

Input data: 

10 FORMAT(D 15.9, D13.3, D20. 10, D16.4) 

20 FORMAT(lX, D15. 9, D13. 3, D20. 10, D16.4) 

Dl ,D2, D3, D4 

-1234.56789D+12-1.00DObbbbbb34359738367 ) 
\.. __ )~~V 

Dl D2 D3 D4 

Output: *.*************bbbbO. 100D+OlbbbbO.3435973836D+03bbbbbbO.OOOOD+OO 
\. -- ) \. ----_ ..... / 

Dl D2 D3 D4 

P-SCALE FACTOR 

General Form: nP or -nP 

Examples 

Format Descriptor Input Scale Factor Internal Output 
-- ---

lPD10.4 12.3456 +1 +1.23456 1.2345D+00 

-3PF6.3 123.456 -3 123456 123.456 

The control character P indicates a scale factor (n or -n) to be applied to E-, F-, G-, and D-type 

conversions, for which a scale factor of zero is assumed if P is not present. When a scale factor P 

occurs in a statement, it applies to all subsequent conversions of the type to which it applies within 

that statement unless another expl i cit scale factor is encountered. 

If an exponent appears in the external field, the scale factor is not used for input conversions. Other

wise, the internal value will be the external value times lO-
n

. 

On output, for D and E conversions, the fractional part of the number is multiplied by 10
n 

and the 

exponent is reduced by n. For G-type output, the scale factor is used only if the magnitude of the 

number is such that E-type output notation is to be used. For F-type output conversion, the external 

value = internal value times 10n. 

Example 1. 

Input format: 

Output format: 

Input Data: 

10 FORMAT(l PF12.4/-3PE8. 3/3pE12. 5/-3PF15.5) 

20 FORMAT(lX, F12. 4/1 X , E8.3/1X, E12. 5/1X, F15. 5) 

-1234.5678 
-123.456 
98.76 
12345.6789 

6-10 

-, 



Output: 

Example 2. 

Input format: 

-123.4568 
******* 

0.98760E-Ol 
12345678.74995 

10 FORMAT(F12.4/E8. 3/F15. 5/E12.5} 

Output format: 

Input Data: 

20 FORMAT (lX, 1 PF12.4/1X,3PE 12. 3/1 X ,3PF15.5/1X,-3PE12. 5) 

-12.34 

Output: 

123.456 
987.654 
123.456 

-123.4000 
123.505E+00 

987653.99167 
0.00012E+06 

A-TYPE CONVERSION 

General Form: Aw or nAw 

Examples 

Format Descriptor Input 
--

A4 ABeD 

A6 ABCDEF 

Internal Output 

ABCDb ABeD 

BCDEF bBCDEF 

A-type conversion accepts an alphanumeric field of five characters and stores it as an unsigned double 

integer variable. If a field width greater than five is specified, the excessive characters are dropped 

from the left. If a field width less than five is specified, trailing blanks are appended. 

On output, if field width is greater than five, W-5 leading blanks are output followed by the five in

ternally stored characters. For a field width less than five, the leftmost w characters are output. 

R-TYPE CONVERSION 

General Form: Rwor nRw 

Examples 

Format Descriptor Input Internal Output 
--

R4 ABCD bABeD ABeD 

R6 ABCDEF BCDEF bBCDEF 

R2 AB bbbAB AB 

6-11 



R-type conversion accepts an alphanumeric field of five or less characters and right-adjusts them in an 

unsigned double integer. The descriptor R4, as shown, stores the string bASCO whereas A4 would store 

ABCDb. For strings equal to or in excess of five characters, R works exactly like A. 

H-ALPHANUMERIC FIELD TRANSMISSION 

General Form : nHtext, 'text', $text$, "text" 

Examples 

Format Descriptor Output 
Format Descriptor after 

Input of the String LETTERS 

3HASC ABC 3HLET 

'TEXT' TEXT 'LETT' 

$MESSAGES$ MESSAGES $LETTERS$ 

Character strings described as Hollerith fields are transmitted directly to and from an external device. 

Since input changes a Hollerith fjeld, a subsequent output operation using the same FORMAT statement 

will output a text string different from that specified in the source program. 

Hollerith field descriptors may be placed among other field descriptors as in: 

FORMAT (5HbANS=I3) 

which could be used to output the value of a variable (assume V1=100) in the form: 

ANS=l00 

Note that the separating comma may be omitted after a Hollerith descriptor if it is of the form nHxxx. 

L-TYPE CONVERSION 

General Form: Lwor nLw 

Examples 

Fie Id Descriptor Input Internal Output --
L4 bTbb 777777 8 bbbT 

Ll F 0 F 

When a value is read in using an L field descriptor, it is assumed to have the value 0 (.FALSE.) unless 

the letter T appears (and is not preceded by the letter F) in which case it has the value 7777778 , On 

output, a zero value is output as F and all others as T. 

6-12 



Example 1. 

Input format: 10 FORMAT{Ll,L2,L5,L8) 

Output format: 20 FORMAT(lX,Ll,L2,L5,L8) 

Input data: TbFbbFbbbb3456 
~~ 

Ll L2 L3 L4 

Internal values: L 1=777777 
L2=0 
L5=0 
L8=0 

Output: TbFbbbbFbbbbbbbF 

~~ 
Ll L2 L3 L4 

Example 2. 

Input format: 10 FORMAT06) 

Output format: 

Input data: 

20 FORMAT{lX, L 1, L2, L3, L4) 

000000 

Internal values: 

Output: 

OCTAL FIELDS 

777777 
1 
2345 

000000 
757061 
000001 
004451 

FbTbbTbbbT 
~ 

L 1 L2 L3 L4 

General Form: 

Field Descriptor 

07 

012 

06 

012 

Ow or nOw 

Examples 

Input 
--

4000000 

400000000000 

-1 

777777777777 

Internal Output 

4000000 4000000 

400000000000 400000000000 

777777 777777 

777777777777 7m77777777 

The programmer may enter values as octal numbers using the descriptor O. For integers and double in

tegers, as shown in the model, the programmer may enter an integer value in octal whose magnitude 

exceeds the specified maximum (see 1.3.1). This provides a facility for establishing masking variables. 

6-13 



T-TAB 

General Form: Tn (n must be 2,.2 for output; >1 for input) 

Examples 

Format Descriptor Input Output --
T35, 'ABC' Characters 35-37 of data To print positions 34-36 

The descriptor T is used to control the emplacement of data on an output record (in terms of print posi

tion) and the acquisition of data from an input string (in terms of character position). Print position 

refers to n-1 since the first character in an output buffer governs carriage control. 

Example 1. 

Input format: 

Input string: 

New format: 

Example 2. 

Input format: 

Input string: 

Values read: 

Example 3. 

Output format: 

Output: 

Example 4. 

Output format: 

Output: 

X-BLANK 

10 FORMAT (f4, $ABC$) 

ABCDEFGHI 

10 FORMAT(f4,$DEF$) 

10 FORMAT(f 1 O,A3, Tl,A2) 

bbABCDbEFGbABC 

A3=GbA 
A2=bb 

10 FORMAT(lX, T2,$1 WON'T$, T4,$////I'NILL$) 

Print position 1 
I 'w~wrWILL 

10 FORMAT(lX, T50, 'DATE', TlO,$NAME$) 

Print position 9 
NAME 

Print position 49 
DATE 

General Form: nX 

Examples 

Format Descriptor Output Input 

3X,$A$ bbA 4th character of input string 

6-14 



The descriptor X has appeared in previous examples of output formats to introduce a blank as the first 

character of a record to accommodate the carriage control conventions described below. Any number 

of blanks may be introduced within an output record using X. On input, X indicates that characters 

are to be skipped. 

Example 1. 

Input format: 

Input data: 

Values assigned: 

Example 2. 

Output format: 

Output: 

10 FORMAT(3X,A 1 ,5X,A2) 

ABCDEFGHIJK 

A1=D 
A2=JK 

10 FORMAT(lX, $A$ ,2X ,$B$) 

AbbB 

CARRIAGE CONTROL 

As stated previously, when a formatted record is output to a printing device, its first character is not 

printed but governs vertical spacing. The use of blank to initiate a line feed has been illustrated. 

Other characters may also be used to indicate other than line feed. Carriage control characters and 

their effects are shown below. 

Character 

blank 

o 

+ 

all others 

Effect 

line feed 

double space 

form feed 

no advance (overprinting) 

line feed 

Whatever action is specified occurs before the I ine is printed. 

Example 

Input format: 10 FORMAT~3) 

Output format: 20 FORMAT ($0$,13) 

Program variables: V1, V2, V3 

Input data: 300400500 
1.....,,-'1.....,,-'1.....,,-' 

Vl V2 V3 

6-15 



Output: [empty line] 
300 
[empty line] 
400 
[empty line] 
500 

6.1.3 Object Time FORMAT Specifications 

Format specifications may be entered along with the input data they describe. If the programmer wishes 

to do this, his formatted input/output statements, instead of referencing a FORMAT statement number, 

reference the name of an array into which one or more FORMAT specifications will be entered. The 

array must appear in a DIMENSION statement even if its size is 1. 

An object time FORMAT specification has the same general form as the source-program statement with 

two exceptions - the word FORMAT is omitted and Hollerith fields are not permitted. It can be entered 

into the appropriate internal array via the DATA statement or by using a formatted input statement 

which references an A-type FORMAT statement in the source program. 

For example, the object time format specification (I7,F10.3) may be entered via a READ statement as 

follows: 

DIMENSION AA(lO) 
13 FORMAT(10A5) 

READ(3, 13)(AA(I),I=1, 10) 

READ(3,AA)JJ, BOB 

6.2 DATA-DIRECTED INPUT-OUTPUT 

enters the FORMAT 

-- enters the data according to format 
stored in array AA 

ASCII data may be entered or written without a FORMAT statement if the data-directed (format-free) 

input-output option is indicated in an input-output statement. Externally stored data fields in this 

case are determined not by field width but by the occurrence of a del imiter (multiple carriage returns, 

spaces, ALT -MODES, or commas). Each data item will be assigned to the variable indicated after 

conversion to the variable's type. A value will be assigned in all cases even if the value cannot be 

converted properly. For example, if the value read for an integer variable is too large, the largest 

lega I integer val ue (377777 8) will be assigned to it. 

For a data-directed output statement, both the variable name (subscripted as appropriate) and its value 

are written in the form: 'NAME'=value. The format in which the value is written is selected according 

to the variable's type as follows: 

6-16 



Variable Type Output Format 

LOGICAL L1 

INTEGER 17 

REAL G16.8 

DOUBLE PRECISION D20.11 

DOUBLE INTEGER 112 

On input, the data-directed option permits a variety of input items, an item being that portion of the 

input data delimited by a space, comma, carriage return, or ALT MODE. One item is accepted for 

each program variable specified in the input-output list. Acceptable input items are: 

(1) string constants - delimited by a set of dollar signs ($), single-quotes ('), or 
double-quotes ("); may include any characters except carriage return and 
ALT MODE; rules for including the string-delimiter characters within the 
string are as given in Section 1.3.1 for Hollerith constants. If a Hollerith 
constant contains more than five characters, only the first five are stored. 
One of the item delimiters given above must follow the string terminating 
character. To ensure accuracy, a string constant should be associated with 
a double-integer variable. 

(2) octal constants - preceded by the character # (#D for double integers). Non
integer values may also be given in octal form. Some examples of octal input 
items are: 

#123 
#D 1234567 
#1.23 
#-1.00E+02 

An octal integer whose magnitude exceeds 131071 will be considered a double 
integer even if D is not supplied, except when the value is within the range 
400000 and 777777. This exception permits the programmer to perform explicit 
octal masking. 

(3) logical constants - T or F followed by any number of characters up to a legal 
item delimiter. The values -l(T) and O(F) are stored. 

(4) decimal numbers - such as: 

123 
-12.3 
-1. 23E+2 
+ 10. 234D+I5 

If an illegal character appears in any data item, an error message is printed and input proceeds . For 

Teletype input, the user may reenter the erroneous item. 

6.3 INPUT-OUTPUT STATEMENTS 

Input-output statements perform the actual transfer of data. The READ statement specifies input. Out

put is specified by one of the three synonymous statements VVRITE, PRINT I or TYPE. 

6-17 



The general format of these statements is given below (all arguments with the exception of dare 

optional). 

where: 

{

READ} WRITE 
PRINT 
TYPE 

(d (~}r, f, END=m, ERR=n) list 

d = integer constant or variable giving the logical device number (. OAT slot) 

{ ~ }r = integer expression indicating record number (# or ' indicate direct-
. access I/O) 

f = FORMAT statement number or array reference 

m, n = statement number 

list = an input-output I ist (must be present unless information is transferred 
directly to and from a FORMAT statement) 

When ,f is absent, unformatted I/O is indicated. If the comma appears alone, data-directed I/O, as 

discussed in the preceding section, is performed. The END=m and ERR=n options permit the user to 

spec ify, respecti ve I y, a statement to wh i ch contro I shou I d be transferred when an end-of-fil e or error 

condition occurs. If these opti ons are not present, OTS end-of-fi Ie or error routines are used. 

6.3.1 Input-Output lists 

An input-output list contains the names of variables, arrays, and array elements which are to be as

signed data values on input or whose values are to be output. 

An input-output list has the form: 

where each c is a variable, subscripted variable, or an array name. When an array name appears 

(with no subscripts), the effect is the same as if all elements of the array had been listed. Note that 

during input the new values of listed variables which appear in a subscript are used. Thus, for: 

I, B, C, ARRAY(I) 

the array reference will use the value input for I in that statement. For example, if the value 100 is 

read into I, the fourth data field will be read into ARRAY(100). 

If only a portion of an array is to be specified, indexing similar to that of a DO statement may be used 

to indicate several items in an array. For example, the list element: 

(X(K),K=l,4) 

6-18 



specifies X(l), X(2), X(3), and X(4). The indexing may also be compounded by nesting, as in: 

«A(I,J),I=l ,4),J=1 ,5) 

which specifies: 

A(l, l),A(2, 1), .•• ,A(4, l),A(l ,2), .•. ,A(4,5) 

The order of the list must be that in which the input data associated with its elements is stored. For 

example, if the list is A, B, C, the first three data items (as defined by the associated FORMAT state

ment or data-directed I/O delimiter) are stored in variables A, B, C. On output, the list specifies 

variables whose values are to be written either in accordance with a FORMAT statement or, for data

directed I/O, the default formats given previously. 

If the data fields in a physical record exceed the number of variables in an input-output list, excessive 

fields are simply ignored. If the data fields are not sufficient to accommodate all listed variables, 

successive records are automatically read until all list elements have been satisfied. 

6.3.2 Sequential Input-Output Statements 

The form and effect of all sequential input-output statements are given in Tables 6-3 and 6-4 below. 

The END and ERR option, which may be used in any form of these statements, is omitted in the follow

ing models for the sake of clarity. 

Table 6-3 
The READ Statement 

Data are transferred from external device (d) to internal storage. 

Form Example Effect 

READ(d,f)list READ(3, 10)A, B,C ASCII data are read, converted 
according to FORMAT reference 
10 and stored in variables A, B, 
and C 

READ(d)list READ(3)A, B,C Binary data are read into vari-
ables A, B, and C 

READ(d,)list READ(3, )A, B, C ASCII data are read, converted 
to the appropriate type, and 
stored in A, B, and C 

READ(d,f) READ(3,10) Data are read into FORMAT 
reference 10 

READ(d) READ(3) A binary record is read and ig-
nored 

6-19 



Table 6-4 
The WRITE Statement 

Data are transferred from internal storage to external device (d). 
PRINT or TYPE may be I,Jsed as synonyms of WRITE. 

Form Example Effect 

WRITE(d, f)1 ist WRITE(3, 10)A, B,C The values of A, B, and Care 
converted to ASCII according 
to FORMAT reference 10 and 
written 

WRITE(d)list WRITE (3)A, B,C The values of A, B, and Care 
written (in binary) 

WRITE(d, )list WRITE(3, )A, B, C The variable nomes A, B, and 
C are written, each followed 
by its value in the form: 'A' = 
value 

WRITE(d,f) WRITE (3, 10) FORMAT reference 10 is writ-
ten 

6.3.3 Direct-Access Input-Output* 

Direct-access input-output statements permit the user to directly reference any record in a fi Ie without 

indexing from the file's beginning up to the desired record. In addition, data may be changed in a 

single record without creating a new file. 

Before direct-access input-output may be performed, the programmer must initialize the file via a 

CALL DEFINE statement. (The format of direct-access files is given in Part II, Chapter 2). The form 

of the statement is: 

CALL DEFINE (d, rsiz, fsiz, fnam, v, mode, a deod) 

where d is a logical device number and other arguments are described in Table 6-5. 

The purpose of DEFINE is to initialize a file for direct-access operations. If the file exists already, 

arguments supplied must correspond to the characteristics of the given file. If the file specified in 

fnam does not exist on the specified logical device, a file of the given name will be created in accord

ance with the parameters supplied by the other arguments. Or if fnam=O, a file is created and assigned 

the name TMOab OTS (where ab are the decimal digits of a logical device number ~). If the deletion 

code is set to one, the file will be deleted when the file is closed. A direct-access file is closed by 

either of the statements: EN DFI LE d or CALL CLOSE (d). 

*For use with DOS-15 file structure only. 

6-20 



Argument 

rsiz 

fsiz 

fnam 

v 

mode 

a 

dcod 

Value 

Decimal integer 
<628 
[ASCII characters) 

Decimal integer 
<131071 
(Binary words) 

Decimal integer 
<131071 

Array name 

Integer variable 
name (referred to 
as the assoc iated 
variable) 

Integer variable 

Integer code 

Integer code 

Table 6-5 
Arguments for CALL DEFINE 

Represents 

Record length in 
characters 

Record length in 
words 

The number of rec
ords in the file 

An array containing 
a six-character file 
name and three
character extension 
(in sixbit ASCII) 

The number of the 
record just after 
the last one ac
cessed 

I/O mode 

Indicates file ad
justment options 

Applies only to 
temporary fi les 

Comments 

For formatted records this is given as the 
number of ASCII characters and for un
formatted as binary words. The maximum 
for rsiz is based on the fact that a phys
ical block size is 256 words. However, 
two of these are link words, two are 
header words, and the first and last 
characters of the ASCII data {automat
ically inserted} are, respectively, a 
forms control character and a carriage re
turn. The maximum number of words rsiz 
may specify is 251 *. The additional five 
words in the block are allocated as fol
lows: two header words, one I.D. word, 
and two link words. 

Only fixed length records may be ac
cessed. 

The I. D. word of a record contains its 
record number and the O-th bit is used as 
a last-record indicator. Fsiz must be less 
than or equal to the number of records 
in the existing file unless file size is to 
be adjusted {argument a, described be
low}. When fsiz is less than the actual 
number of records, no input-output op
erations may be performed on records 
with greater numbers. 

Fnam may also be 0 indicating that stand
ard default names are to be used. 

V is assigned a value at the conclusion 
of an input-output operati on. 

For unformatted I/O, mode=O; for for
matted I/O, mode=non-O 

a=O indicates no adjustment; otherwise, 
the number of records in the fi Ie speci
fied is adjusted to the number indicated 
by the curren t fs i z • 

If dcod=O, it means lido not delete. II If 
dcod=l, temporary file .TMOab OTS is 
to be deleted on device ab (decimal 
digits of device number d) 

*Logical records greater than 1 physical block are termed long records. These are specified when rsiz 
is greater than 251. 

6-21 



Two conventions are avai lable for specifying the record size for an unformatted direct-access record. 

One, for records whose size is less than one physical block, has a maximum of 251 words available 

for user data. Since the overhead components of an unformatted record comprise three words and since 

the total record. size must be even, the number of user data words must be an odd number. If an even 

number is specified, DEFINE will treat it as though rsiz +1 were specified. 

Another convention is used for "long records" - records greater in size than one physical block. All 

blocks of a long record except the last will contain unformatted records 251 words long. The last block 

will contain an unformatted record with an odd number of data words so that the total length is equiv

alent to fsiz (or fsiz +1 if even). 

When a formatted file is created, all data words are filled with 7-bit ASCII spaces (040a); for unfor

matted, all data words are set to zero. The I. D. word for all binary records is set to 400000a (see 

Part II for more detail). The associated variable is set to one. 

If the user arguments have requested adjustment of an existing file, a temporary file named •• TEMP OTS 

is created on the device specified and the existing file (temporarily associated with a system device) is 

copied into it a record at a time. When a file is lengthened, size parameters are used to add null rec

ords (spaces or zeros) after the last record is transmitted and the associated variable is set to the old 

number of records plus one. If file size is being reduced, data from the end of the old file are lost and 

the associated variable is set to one. 

Direct-access input-output transfer is accomplished by READ and WRITE statements of the following 

form (a single quote) (') may be used instead of # and the END and ERR options may be included}: 

(1) READ (d#r,f) list 

(2) READ (d#r) list 

(3) READ (d#r,) list 

(4) READ (d#r, f) 

(5) READ (d#r) 

(6) WRITE (d#r,f) list 

(7) WRITE (d#r) list 

(a) WRITE (d#r,) list 

(9) WRITE (d# r, f) 

(1O) WRITE (d#r) 

These statements have the same effect as their counterparts do on sequential input-output. The major 

distinction is that record number (r) must be supplied. This indicates the record number relative to the 

beginning of the file. The same device number may be given for direct-access READ's and WRITE's; if 

a file is to be read sequentially and direct-access read or written, two logical device numbers must be 

specified. 

6-22 

----1 



6.3.4 The ENCODE/DECODE Statements 

General Form: tENCODE} (c,v,f,ERR=n) list 
DECODE 

Where c = number of ASCII characters per logical record 
v = name of array containing ASCII record 
f = optional format reference 
ERR=n is as for input-output and optional list is a list of 
internal variables 

The ENCODE statement converts binary data stored in the variables listed, converts them to characters, 

and stores them in the array (v). If more variab les are listed than can be stored in that array, the val

ues are ignored. If the values are not sufficient to fill the array, blanks are added. Conversion is 

performed according to a FORMAT specification (f) or, in its absence, according to the data-directed 

input-output rules. In the latter case, the data-directed output form 'VAR' = value is stored. Forms

control characters are not analyzed on ENCODE and will be stored explicitly if in the FORMAT used. 

The DECODE statement converts character data stored in the array (v) into binary and assigns them to 

variables in the I/O list. 

6.3.5 Auxiliary Input-Output 

Two library subroutines, SEEK and ENTER, are available for both sequential and direct-access input

output to disk. ENTER is called as follows: 

CALL ENTER(N,A) 

where N is a device number and A is the name of an array containing an ASCII file name and extension. 

The effect of ENTER is to initialize and open a named output file. For example: 

DIMENSION FILEN(2) 
DATA FILEN(l),FILEN(2)j5HFILNA,4HM EXT/ 
CALL ENTER (1, FILEN) 

establishes a file named FILENAM EXT. 

SEEK finds and opens a named file for input. It is called as follows: 

SEEK(N,A) 

where N and A are as for ENTER. To input the file established by ENTER, the call would be: 

CALL SEEK(l ,FILEN) 

The device-control statements listed below are applicable to sequential files on magnetic tape or disk 

with the effects stated. 

6-23 



Statement 

BACKSPACE d 

REWIND d 

ENDFILE d 

Magnetic Tape 

Repositions unit to the pre
ceding record (if at begin
ning, does nothing) 

The tape is positioned to its 
initial point 

Writes an end-of-file record 

Disk* 

Repositions unit one ASCII 
line or one logical unfor
matted record (INF'UT only) 

The file is closed and re
opened for input or output 
by the next sequential I/O 
statement to that device. 
If no file is opened, does 
nothing 

Closes the named file which 
is open on device d 

The ENDFILE statement may be used to create segmented files with magnetic tape; that is, using the 

end-of-file indicator to separate the segments. For example, the statements: 

WRITE (3) list 

WRITE (3) list 
ENDFILE 3 
WRITE (3,10) list 
ENDFILE 3 

WRITE (3) list 
ENDFILE 3 

creates three segments. A segmented fi Ie can be read using the END=n option of the READ statement 

as follows: 

READ (3, END=lO) list 

10 READ (3, END=20) list 

20 READ (3, END=30) list 

30 REWIND 3 

Figure 6-1 shows a program using auxiliary input-output statements for disk. Note that the first series 

of WRITE statements cause a default file (.TM001 OTS) to be created. This file is read by subsequent 

READ statements specifying logical device 1. 

*Note that the first sequential I/O statement to the disk opens a default file if no file has been ex

plicitlyopened. 

6-24 



199 
1 

2 

3 

4 

5 

6 

7 

70 

8 
71 

9 

11 

12 

90 
91 

DIMENSION 1(10),11(10) 
DO 1 K=l, 10 
I(K)=K 
REWIND 1 
REWIND 7 
WRITE (1) I 
DO 2 K=11,20 
I(K-10)=K 
WRITE (1) I 
DO 3 K=21 ,30 
I (K-20)=K 
WRITE (1) I 
ENDFILE 1 
READ (1) II 
JT=l 
JV=II(5) 
IF (II (5)-5)90, 4, 90 
READ(1 )11 
JT=2 
JV=II(5) 
IF (II (5)-15)90,5,90 
READ(1) II 
JT=3 
JV=II(5) 
I F (II (5)-25)90,6,90 
BACKSPACE 1 
BACKSPACE 1 
READ (1) II 
JT=4 
JV=II (7) 
IF(II (7)-17)90,7,90 
CONTINUE 
PAUSE 1 
JT=5 
WRITE(7,70)1 
FORMAT(lX,16) 
REWIND 7 
D08K=1,7 
READ (7,71)JV 
FORMAT06) 
IF (JV-27)90, 9,90 
JT=6 
DO 11 K=1,3 
BACKSPACE 7 
READ (7,71) JV 
IF (JV-25)90, 12,90 
PAUSE 2 
GO TO 199 
WRITE(2, 91) JT, JV 
FORMAT (lX,I6, 2X, 16) 
STOP 
END 

/file .TM001 OTS created 
/. TM001 OTS sought automatically 

/backspacing binary data 

/fi Ie • T M007 OT S created 

/file .TM007 OTS sought 

/backspacing ASCII data 

Figure 6-1 Programming Example - Auxiliary I/O to Disk 

6-25 





Statement Model 

Arithmetic var-value 
array(i)=value 

ASSIGN ASSIGN n TO label 

BLOCK DATA BLOCK DATA 

CALL CALL subr(a
1
,a

2
,·· .a

n
) 

CALL subr 

COMMON COMMON;b l/vl ist l;b!vlist! ... 

CONTINUE CONTINUE 

DATA DATA vlistlclistl,vlist!c1ist2/"" 
vlist /clist / n n 

DECODE DECODE(c, v, f ,ERR=n)1 ist 

DIMENSION DIMENSION a
1

(11),a2(1
2
),· .. an(ln) 

DO DO n i=m1,m2,m3 

DO n i=m1,m2 

DO n i=m1,m
2

,-m
3 

A-1 

APPENDIX A 

LANGUAGE SUMMARY 

Effect 
Text 

Reference 

value is assigned to var 2.1 
or array (i) 

Statement n is assigned 2.2 
the symbol name label 

Identifies subprogram 4.4 
which enters data into a 
labeled COMMON 
block at run time 

Control is transferred to 5.2.2 
the subroutine; a

J 
,a

2
, ... 

a are substitute for 
dUmmy variables 

vlist items are allocated 4.2.2 
to b blocks where they 
are shared by other pro-
grams 

Dummy statement used to 3.2.3 
prevent illegal termina-
tion of DO loops 

clist is assigned to its cor- 4.3 
responding vlist 

Converts character data 6.3.4 
stored in the array (v) 
into binary and assigns 
them to variables in list 

Storage is allocated for 4.2.1 
array (a) to the dimen-
sions specified by the 
subscript list (I) 

Statements following the 3.2 
DO are executed re-
peatedly for values m1 
through m2 in increments 
or decrements of m3 

(continued on next pase) 



Statement Model Effect 
Text 

Reference 

ENCODE ENCODE{c, v, f, ERR=n)1 ist Converts binary data rep- 6.3.4 
resented by variables in 
list into characters ac-
cording to FORMAT 
specification (f) or data-
directed I/O rules and 
stores them in the array 
(v) 

EQUIVALENCE EQUIVALE NCE(l1)' (12)' ••• (I n) Elements of each list (I) 4.2.3 
are assigned to the same 
storage location 

EXTERNAL EXTERNAL a
1 
,a

2
,· •• a

n 
Defines subprograms 4.1.3 
named a for use as argu-
ments of other subpro-
grams 

FORMAT n FORMAT{s1 ,s2'" .sn) FORMAT statement n es- 6. 1 
tablished as field-
spec i ficati on references 

FUNCTION m FUNCTION f(a
1
,a

2
, ... a

n
) Defines FUNCTION 5.1.2 

named f with dummy ar-
guments a and optional 
mode specification m 

GOTO GOTO n Control is unconditionally 3.1.1 
transferred to statement n 

GO TO(n
1 
,n

2
, ••• n

k
), i Control is transferred to 3.1.2 

the ith statement in the 
list of n's 

GO TO label Control is transferred to 3.1.3 
GO TO label,(n

1
,n

2
,· .. nk) the location specified by 

label; the list of n's may 
specify legally ASSIGN-
able statement numbers 

IF IF(expr)n l' n2, n3 Control is transferred to 3.3.1 
statement number or 
ASSIGNed label n1' n2' 
or n3 if evaluated expr is 
<0, =0, or )() respectively 

IF {expr)s Statement s is executed if 3.3.2 
expr is . TRUE. (non-zero), 
ignored if . FALSE. (zero) 

IMPUCIT IMPUCIT m
1

(11),m2{1
2

), ... mn(ln) Declares mode (m) for var- 4.1.2 
iables beginning with al-
phabetic characters in 
list (I) 

(continued on next page) 

A-2 



Statement Model Effect Text 
Reference 

PAUSE PAUSE Interrupts program execu- 3.4.1 
PAUSE n tion; if present, integer 

n is printed on the con-
sole to distinguish one 
PAUSE from another 

PRINT PRINT(d,f)list The values of variables in 6.3.2 
I ist are converted to 
ASCII according to 
FORMAT reference (f) and 
transferred to extern a I de-
vice (d) 

PRI NT (d)1 ist The values of variables in 6.3.2 
list are written in binary 
on external device (d) 

PRINT(d,)list The variable names in list 6.3.2 
are written on external 
device (d), each followed 
by its value in the form 
'A'=value 

PRINT(d,f) FORMAT reference (f) is 6.3.2 
written on external de-
vice (d) 

READ READ(d, f)1 ist The values represented by 6.3.2 
variables in list are read 
from external device (d) 
and converted according 
to FORMAT reference (f) 

READ(d)list The binary values repre- 6.3.2 
sented by variables in list 
are read from external de-
vice (d) 

READ(d, )list The values represented by 6.3.2 
variables in list are read 
from external device (d) 

READ(d, f) Values are read into 
FORMAT reference (f) 

READ(d) A binary record is read 6.3.2 
from external device (d) 
and ignored 

STOP STOP Signifies the logical end 3.4.2 
STOP n of a program and returns 

control to the MONITOR 
after n is printed; if pres-
ent, n distinguishes one 
STOP from another 

(continued on next page) 

A-3 



Statement Model Effect 
Text 

Reference 

SUBROUTINE SUBROUTINE name (a1 ,a2,· .. a
n

) Defines an external sub- 5.2.1 
SUBROUTINE name routine named name; a's 

are dummy argum~nts rep-
resenting values supplied 
by the calling program or 
returned by the subroutine 

TYPE TYPE(d, f)1 ist The values of variables in 6.3.2 
list are converted to ASCII 
according to FORMAT ref-
erence (f) and transferred 
to external device (d) -. 

TYPE(d)list The values of variables in 6.3.2 
list are written in binary 
on external device (d) 

TYPE(d, )Iist The variable names in list 6.3.2 
are written on external 
device (d), each followed 
by its value in the form 
'A'=value 

TYPE(d,f) FORMAT reference (f) is 6.3.2 
written on external de-
vice (d) 

WRITE WRITE(d,f)list The values of variables in 6.3.2 
list are converted to ASCII 
according to FORMAT ref-
erence (f) and transferred 
to external device (d) 

WRITE(d)list The values of variables in 6.3.2 
list are written in binary 
on external device (d) 

WRIT E(d,)1 ist The variable names in list 6.3.2 
are written on external 
device (d), each followed 
by its value in the form 
'A'=value 

WRITE(d,f) FORMAT reference (f) is 6.3.2 
written on external de-
vice (d) 

A-4 



APPENDIX B 

ERROR MESSAGES 

B.l COMPILER ERROR MESSAGES 

In the F4X version of FORTRAN, compiler error messages are printed in the form: 

>mnA< 

where: 

mn is the error number 
A is the alphabetic mnemonic 

characterizing the error class. 

In F4I and F4A versions, only the alphabetic character is printed, in the form: 

>A< 

All error messages and the version(s} of FORTRAN to which they are applicable are given below. 

Number Letter Meaning 

Common, equivalence, data errors: 

01 C No open parenthesis after variable name in DIMENSION 
statement 

02 C No slash after common block name 

03 C Common block name previously defined 

04 C Variable appears twice in COMMON 

05 C EQUIVALENCE list does not begin with open parenthesis 

06 C Only one variable in EQUIVALENCE class 

07 C EQUIVALENCE distorts COMMON 

08 C EQUIVALENCE extends COMMON down 

09 C Inconsistent EQUIVALENCing 

10 C EQUIVALENCE extends COMMON down 

11 C Illegal delimiter in EQUIVALENCE list 

(continued on next page) 

B-1 



Number Letter Meaning 

Common, equivalence, data errors: (cont) 

12 C Non-COMMON variables in BLOCK DATA 

15 C III egal repeat factor in DATA statement 

16 C DATA statement stores in COMMON in non-BLOCK DATA 
statement or in non-COMMON in BLOCK DATA statement 

DO errors: 

01 D Statement with unparenthesized = sign and comma not a DO 
statement 

04 0 DO variable not followed by = sign 

05 D DO variable not integer 

06 D Initial value of DO variable not followed by comma 

07 D Improper delimiter in DO statement 

09 D Illegal terminating statement for DO loop 

External symbol and entry-point errors: 

01 E Variable in EXTERNAL statement not simple non-COMMON 
variable 

02 E ENTRY name non-unique 

03 E ENTRY statement in main program 

04 E No = sign following argument list in arithmetic statement 
function 

05 E No argument list in FUNCTION subprogram 

06 E Subroutine list in CALL statement already defined as variable 

08 E Function or array name used in expression without open 
parenthesis 

09 E Function or array name used in expression without open 
parenthesis 

Format errors: 

01 F Bad delimiter after FORMAT number in I/o statement 

02 F Missing field width, illegal character or unwanted repeat 
factor 

03 F Field width is 0 

04 F Period expected, not found 

05 F Period found, not expected 

06 F Decimal length missing (no "d" in "Fw.d") 

07 F Unparenthesized comma - . 
(continued on next pose) 

B-2 



Number Letter Meaning 

Format errors: (cont) 

08 F Minus without number 

09 F No P after negative number 

10 F No number before P 

12 F No number or 0 before H 

13 F No number or 0 before X 

15 F Too many I eft parentheses 

Hollerith errors: 

03 H Number preceding H not between 1 and 5 

04 H Carriage return inside Hollerith field 

05 H Number preceding H not an integer 

06 H More than five characters inside quotes 

07 H Carriage return inside quotes 

Various illegal errors: 

01 I Unidentifiable statement 

02 I Misspell ed statement 

03 I Statement out of order 

04 I Executable statement in BLOCK DATA subroutine 

05 I Illegal character in I/O statement, following unit number 

06 I Illegal delimiter in ASSIGN statement 

07 I Illegal delimiter in ASSIGN statement 

08 I Illegal type in IMPLICIT statement 

09 I Logical IF as target of logical IF 

10 I RETURN statement in main program 

11 I Semicolon in COMMON statement outside of BLOCK DATA 

12 I Illegal delimiter in IMPLICIT statement 

13 I Misspelled REAL or READ statement 

14 I Misspelled END or ENDFILE statement 

15 I Misspelled ENDFILE statement 

16 I Statement function out of order or undimensioned array 

17 I Typed FUNCTION statement out of order 

18 I Illegal character in context 

19 I Illegal logical or relational operator 

(continued on next page) 

B-3 



Number 

20 

21 

22 

23 

24 

26 

01 

02 

03 

04 

01 

02 

03 

04 

06 

07 

08 

09 

10 

01 

02 

03 

04 

05 

07 

08 

Letter 

L 

L 

L 

L 

M 

M 

M 

M 

M 

M 

M 

M 

M 

N 

N 

N 

N 

N 

N 

N 

Meaning 

Various illegal errors: (cont) 

Illegal letter in IMPLICIT statement 

Illegal letter range in IMPLICIT statement 

Illegal del imiter in letter section of IMPLICIT statement 

Illegal character in context 

Illegal comma in GOTO statement 

Illegal variable used in multiple RETURN statement 

Pushdown list errors: 

DO nesting too deep 

Illegal DO nesting 

Subscript/function nesting too deep 

Backwards DO loop (also caused by some illegal I/O lists), 
Appears after END statement. 

Overflow errors: 

EQUIVALENCE class list full 

Program size exceeds 8K 

Array length larger than 8K 

Element position in array larger than 8K (EQUIVALENCE, 
DATA) 

Integer negative or larger than 131071 

Exponent of floating point number larger than 76 

Overflow accumulating constant - too many digits 

Overflow accumulating constant - too many digits 

Overflow accumulating constant - too many digits 

Statement number errors: 

Multiply defined statement number or compiler error 

Statement erroneously labeled 

Undefined statement number 

FORMA T statement without statement number 

Statement number expected, not found 

Statement number more than five digits 

Illegal statement number 

(continued on next page) 

8-4 

-, 
I 

-. 



Number Letter Meaning 

Partword errors: 

01 P Expected colon, found none 

02 P Expected close bracket, found none 

03 P Last bit number larger than 35 

04 P First bit number larger than last bit number 

05 P First and last bit numbers not simple integer constants 

Subscripting errors: 

01 S Illegal subscript delimiter in specification statements 

02 S More than three subscripts specified 

03 S Illegal delimiter in subroutine argument list 

04 S Non-integer subscript 

05 S Non-scalar subscript 

06 S Integer scalar expected, not found 

10 S Two operators in a row 

11 S Close parenthesis following an operator 

12 S Non-integer subscript 

13 S Non-scal or subscri pt 

14 S Two arguments in a row 

15 S Digit or letter encountered after argument conversion 

16 S Number of subscripts stated not equal to number declared 

Table overflow errors: 

01 T Arithmetic statement, computed GOTO list, or DATA state-
ment list too large 

02 T Too many dummy variables in arithmetic statement function 

03 T Symbol and constant tables overlap 

Variable errors: 

01 V Two modes specified for same variable name 

02 V Variable expected, not found 

03 V Constant expected, not found 

03 V Array defined twice 

05 V Error: variable is EXTERNAL or argument (EQUIVALENCE, 
DATA) 

07 V More than one dimension indicated for scalar variable 

(continued on next page) 

B-5 



Number Letter Meaning 

Variable errors: (cont) 

08 V First character after READ or WRITE not open parenthesis in 
I/o statement 

09 V Illegal constant in DATA statement 

11 V Variables outnumber constants in DATA statement 

12 V Constants outnumber variables in DATA statement 

14 V Illegal dummy variable (previously used as non-dummy variable) 

16 V Logical operator has non-integer, non-logical arguments 

17 V Illegal mixed mode expression 

19 V Logical operator has non-integer, non-logical arguments 

21 V Signed variable left of equal sign 

22 V Illegal combination for exponentiation 

25 V • NOT. operator has non-integer, non-logical argument 

27 V Function in specification statement 

28 V Two exponents in one constant 

29 V Illegal redefinition of a scalar as a function 

30 V No number after E or D in a constant 

32 V Non-integer record number in random access I/o 
35 V Illegal delimiter in I/o statement 

36 V Illegal syntax in READ, WRITE, ENCODE, or DECODE 
statement 

37 V END and ERR exists out of order in I/o statement 

38 V Constant and variable modes don't match in DATA statement 

39 V ENCODE or DECODE not followed by open parenthesis 

40 V Illegal delimiter in ENCODE/DECODE statement 

41 V Array expected as first argument of ENCODE/DECODE 
statement 

42 V Illegal delimiter in ENCODE/DECODE statement 

Expression errors: 

01 X Carri age return expected, not found 

02 X Binary WRITE statement with no I/o list 

03 X Illegal element in I/o list 

04 X Illegal statement number list in computed or assigned GOTO 

05 X Illegal delimiter in computed GOTO -, 
07 X Illegal computed GOTO statement 

(contmued on next page) 

B-6 



Number Letter Meaning 

Expression errors: (cont) 

10 X Illegal delimiter in DATA statement 

11 X No close parenthesis in IF statement 

12 X Illegal delimiter in arithmetic IF statement 

13 X Illegal delimiter in arithmetic IF statement 

14 X Expression on left of equals sign in arithmetic statement 

15 X Too many right parentheses 

16 X Illegal open parenthesis (in specification statements) 

17 X III egal open parenthesis 

19 X Too many right parentheses 

20 X Illegal alphabetic in numeric constant 

21 X Symbol contains more than six characters 

22 X • TRUE., • FALSE., or • NOT. preceded by an argument 

23 X Unparenthesized comma in arithmetic expression 

24 X Unary minus in I/o list 

26 X Illegal delimiter in I/o list 

27 X Unterminated implied - DO loop in I/o list 

28 X Illegal equals sign in I/o list 

29 X Illegal partword operator 

30 X Illegal arithmetic expression 

B.2 OTS ERROR MESSAGES 

Following is a list of OT5 error messages. (R) indicates a recoverable error; (T) a terminal error. 

Error Number Error Description Possible Source 

05 (R) Negative REAL square root argument SQRT 

06 (R) Negative DOUBLE PRECISION square root DSQRT 
argument 

07 (R) Illegal index in computed GO TO .GO 

10 (T) Illegal I/O device number . FR , . FW, . F S, • FX , 
DEFINE, RANCOM 

11 (T) Bad input data - lOPS mode incorrect .FR, .FA, .FE, .FF, .FS, 
RANCOM, RBINIO, 
RBCDIO 

(continued on next page) 

B-7 



Error Number Error Description Possible Source 

12 (T) Bad FORMAT .FA, .FE, .FF 

13 (T) Negative or zero REAL logarithmic argument .BC, .BE, ALOG 
(terminal) 

14 (R) Negative or zero DOUBLE PRECISION loga- . BD, • BF, • BG, • BH, 
rithmic argument DLOG, DLOG10 

15 (R) Zero raised to a zero or negative power (zero .BB, .BC, .BD, .BE, . BF, 
result is passed) .BG, . BH 

20 (f) Fatal I/O error (RSX only) FlOPS 

1""21 (f) Undefined file RANCOM 

22 (f) Illegal record size DEFINE 
direct 

23 
access < 

(T) Size discrepancy RANCOM 

errors 24 (T) Illegal record number DEFINE, RAN COM 

25 (T) Mode discrepancy RAN COM 

26 (T) Too many open fi les DEFINE 

30 (R) Single integer overflow* RELEAE, .FPP 

**31 (R) Extended (double) integer overflow**** DBUNT, JFIX, JDFIX, 

**32 (R) Single fit. overflow 

**33 (R) Double fit. overflow t 

**34 (R) Single fit. underflow 

**35 (R) Double fit. underflow t 

**36 (R) Fit. divide check 

***37 (R) Integer divide check 

40 (f) Illegal number of characters specified [legal: 
0<c<625] -

41 (R) Array exceeded 

42 (T) Bad input data 

**50 (T) FPP memory protect/non-existent memory 

51 (f) (READ to WRITE Illegal I/O Direction Change 
to Disk) without intervening CLOSE or REWIND 

*Only detected when fixing a floating point number. 
**Also prints out PC with FPP system 
***If extended integer divide check, prints out PC with FPP system. 

ISNGL 

RELEAE 

RELEAE 

RELEAE 

INTEAE 

ENCODE 

ENCODE 

DD10 

BCOIO, BINIO 

****With software F4 system only detected when fixing a floating point number. 
tNot detected by software system (only by FPP system). 

B-8 



B.3 OTS ERROR MESSAGES IN FPP SYSTEMS 

In software systems, arithmetic errors resulting in the OTS error messages summarized above are de

tected in the arithmetic package (RELEAE and INTEAE). In the hardware FPP systems, these errors 

are detected by the hardware (with the exception of single integer divide check) and serviced by a 

trap routine in the FPP routine. FPP. 

Where applicable, on such error conditions, the result is patched for both software and hardware sys

tems as summarized in the following table. 

Error 
PATCHED VALUE*** 

FPP Hardware System Software System 

Single Floating Overflow ± largest single floating value same 
(. OTS 32) 

Double Floating Overflow ± largest single floating value not detected 
(.OTS 33) 

Single Floating Underflow zero same 
(.OTS 34) 

Double Floating Underflow zero not detected 

(.OTS 35) 

Floating Divide Check ± largest single floating value same 
(.OTS 36) 

Integer Overflow limited detection* same 

(.OTS30) 

Double Integer Overflow none** limited detection* 

(.OTS 31) 

Integer Divide Check none same 

(.OTS 37) 

*When fixing a floating point number, integer and extended integer overflow is detected. In these 
instances, plus or minus the largest integer for the data mode is patched as result. 

**With the FPP system all extended integer overflow conditions are detected, but the results are 

mean ing less. 
***Where "none" is specified, the result is meaningless unless otherwise indicated. 

Further, when converting an extended integer, the magnitude of which is >217_1, toa single 
integer, no error is indicated and the high order digits are lost. 

B-9 



- , 



APPENDIX C 

PDP-15 FORTRAN FACILITIES 

The extended FORTRAN language described in this manual and in the companion manual (Operating 

Environment Manual DEC-15-GFZA-D) is available only on the systems described below. The 

FORTRAN existing on other PDP-15 systems is described in a manual entitled "PDP-15 FORTRAN IV 

Programmer's Reference Manual" (DEC-15-K FZB-D). 

The following tables describe the existing versions of the extended compiler, the extended Object 

Time System Libraries, and the compiler-library pairs available for different systems. All versions of 

the compiler are written in PDP-9 code, however, 'PDP-9 mode' versions produce only PDP-9 code as 

output while 'PDP-15 mode' versions may produce PDP-15 instructions where suitable. Page and Bank 

Mode libraries differ not only in the use of the PDP-15 versus PDP-9 code, but also in the values of 

address masking constants used in a few of the routines. Note that the Floating Point Processor (FPP) 

is supported only on the PDP-15, thus there is no PDP-9 mode version. 

The library names used in the following tables are given for designational purposes within this appendix 

only and do not necessarily reflect the names under which the libraries are distributed. 

Table C-1 
Versions of the Extended Compiler 

Main 
Features Version System 

Approx. 
Version Size (8) 

F4X All rx Non-FPP, PDP-15 mode DOS-15 15406 
F4X9 Non-FPP, PDP-9 mode DOS-15 15363 
FPF4X FPP, PDP-15 mode DOS-15 15661 

F4B All except tB Non-FPP, PDP-15 mode, ADSS (V5B) 15251 
direct-access I/O F4B9 Non-FPP, PDP-9 mode ADSS (V5B) 15226 

FPF4B FPP, PDP-15 mode ADSS (V5B) 15522 

F4RX All except {F4RX Non-FPP, PDP-15 mode RSX 
direct-access I/O FPF4RX FPP, PDP-15 mode RSX 

C-1 



System 

D05-15 (B055-15) 

AD5S 

R5X 

Table C-2 
Versions of the OTS libraries for the Extended Compiler 

Contents Libraries 

Contains all routines, assembled for D05-15 rxp 
operation. .LBXB 

.LBXPF 
· LBXBF 

Contains all routines except direct-access t RP 
(DEFINE, RANCOM, RBINIO, RBCDIO) .LBRB 
assembled for ADS5 operation. • LBRPF 

· LBRBF 

Contains all routines except direct-access 
(DEFINE, RANCOM, RBINIO, RBCDIO) {UB~ 
and magtape subroutines (UNIT, EOF), as- • LIBFX 
sembled for RSX operation and incl udes 
added routines appl icable to R5X only. 

Table C-3 
Compilers and Libraries for Extended FORTRAN 

Distributed with PDP-9/15 Systems 

5ystem 
Non-FPP 

Page Bank Page 

D05-15 Compiler F4X F4X or F4X9 FPF4X 

(B05S-15 Library . LBXP .LBXB . LBXPF 

AD55 V5B Compiler F4B F4B or F4B9 FPF4B 

Library .LBRP . LBRB . LBRPF 

R5X Compiler F4RX F4RX FPF4RX 

Library . LIBRX . LIBRX .LIBFX 

C-2 

Subsystem 

Non-FPP, Page 
Non-FPP, Bank 
FPP, Page 
FPP, Bank 

Non-FPP, Page 
Non-FPP, Bank 
FPP, Page 
FPP, Bank 

Non-FPP, Pagel 
Bank 

F PP, Page/Bank 

FPP 
Bank 

FPF4X 

. LBXBF 

FPF4B 

.LBRBF 

FPF4RX 

. LIBFX 



A 

A (control character), 6-4 

ABS library function, 5-7 

Addition, 1-10 

Addressing, symbolic, 2-3 

Alphanumeric conversion, 6-11 

ALT -MODE field delimiter, 6-16 

.AND. logical operator, 1-13 

Arithmetic 

expressions, 1-10, 1-12 
IF statement, 3-7 
mode conversion, 2-1, 2-2 
operators, 1-10 
statement, 2-1 

Array 

format, 6-16 
merging, 5-1 
names, 1-9, 4-4 
specification, partial, 6-18 
storage, 4-4, 4-5 
unsubscripted, 4-7, 6-18 

ASCII data, 6-16 

Assigned GO TO statement, 3-1, 3-2 

Assignment statements, 2-1 

ASSIGN statement, 2-1, 2-3 

Asterisks (**) in output, 6-5 

A-type conversion, 6-11 

At sign (@) usage, 5-10 

Auxil iary input-output, 6-23 

B 

BACKSPACE statement, 6-24 

Beginning of program, 1-2 

Binary integers, 6-5 

Blank COMMON, 4-4 

Blank field spaces descriptor (X), 6-15 

Blank records, 6-3 

Blanks in I-conversion descriptors, 6-5 

INDEX 

B (Cont) 

Blanks in statements, 1-3 

BLOCK DATA statement, 4-1, 5-6 

subprograms, 4-7 

Block size, 6-21 

Branching, 3-1 

C 

CALL CLOSE statement, 6-20 

CALL Statement, 5-7, 5-9 

CALL DEFINE statement, 6-20, 6-21 

Card coding, 1-3 

Card reader record, 6-1 

Carriage control, 6-5 

characters, 6-15 

Carriage returns, 1-3 

multiple returns, 6-6 

Characters, lost input, 6-4 

Character set, 1-2 

Coding form, 1-3, 1-4 

Commas as field delimiters, 6-16 

Comments, 1-2, 1-3 

COMMON block extension, 4-5 

COMMON statement, 4-1, 4-4, 4-8, 5-8 

COMMON variables, 4-6 

Compiler, versions of the extended, C-1 

Compound expressions, 1-10 

Computed GO TO statement, 3-1, 3-2 

Constants, 1-5 

double integers, 1-5 
double precision, 1-7 
Hollerith, 1-7 
integers, 1-5 
logical, 1-7 
real, 1-6 

CONTINUE statement, 3-6 

Continuation lines, 1-3, 2-1 

1-1 



C (Cont) 

Control characters, field descriptors, 6-4 

control statements, 3-1 

arithmetic IF, 3-7 
assigned GO TO, 3-2 
computed GO TO, 3-2 
CONTINUE, 3-6 
DO, 3-3 
logical IF, 3-8 
PAUSE, 3-8 
STOP, 3-9 
unconditional GO TO, 3-1 

Conversion, arithmetic mode, 2-1, 2-2 

Conversion of data, ASCII+o--binary, 6-23 

Conversion 

A-type, 6-11 
D-type, 6-9 
E-type, 6-6 
F-type, 6-8 
G-type, 6-8 
I-type, 6-5 
L-type, 6-12 
R-type, 6-11 

D 

Data changing in single record, 6-20 

Data conversion, ASCII+o--binary, 6-23 

Data-directed input/output, 6-2, 6-16 

Data fields wrong size, 6-19 

Data I ist order, 6-19 

Data mode specification, 4-1 

DATA statement, 4-1, 4-7, 5-8,6-16 

Data transmission statements, 6-1 

input-output statements, 6-17 

Data value expression, 1-3 

D control character 

double precision constant, 1-7 
double precision variable, 6-4 

Decimal exponent, 1-6 

Decimal numbers, 1-5 

INDEX (Cont) 

D (Cont) 

Decimal point in decimal digit, 1-6 

DEC I ibrary functions, 5-7 

DECODE statement, 6-2, 6-23 

DEFINE statement, 6-20 

Definition of 

object program, 1-1 
source program, 1-1 
statement, 1-1 

Definition, statement function, 5-5 

Definition, subroutine, 5-8 

Delimiters, field, 6-16 

Device Assignment Table (DAT), 6-2 

Device number, 6-2 

D format (double precision), 4-7 

DIMENSION statement, 4-1, 4-3, 4-4, 5-6, 5-8, 
6-16 

Direct access input-output, 6-2, 6-20, 6-22 

Disk/DECtape record, 6-1 

Division, 1-10 

D notation, 1-5 

Dollar sign ($) control character, 6-4 

DO loops, 3-5, 5-9 

nested DO statements, 3-5 

DO range execution, 3-4 

DO statement, 3-1, 3-3 

DOUBLE INTEGER 

mode, 5-6 
statement, 4-1 

Double integer constants, 1-5, 2-2 

Double integers, octal, 6-13 

Double integer variable format, 6-17 

Double integer variables, 6-5, 6-11 

DOUBLE PRECISION 

1-2 

mode, 5-6 
statement, 4- 1 

-, 



INDEX (Cont) 

D (Cont) 

Double precision constants, 1-5, 1-7,4-7 

Double precision floating point number format, 
6-9 

Double precision floating variable, 2-2 

Double precision variable format, 6-17 

D-type conversion, 6-9 

Dummy arguments, 5-1, 5-2, 5-5, 5-8, 5-9 

Dummy names, 4-3 

Dummy variables, 5-1 

E 

E control character, 6-4 

E (decimal exponent), 1-6 

E format, 6-8 

E NCO DE statement, 6-2, 6-23 

ENDFILE statement, 6-20, 6-24 

End of program, 3-9 

END option, 6-18, 6-19 

END statement, 1-2, 5-8 

ENTER library subroutine, 6-23 

ENTRY statement, 5-9 

Equal sign, replacement, 2-1 

EQUIVALENCE statement, 4-1, 4-5, 4-6, 5-8 

ERR option, 6-18, 6-19 

Error messages, B-1 

Compiler, B-1 
OTS, B-7 
OTS in FPP Systems, B-9 

Error statement, 3-2 

E-type conversion, 6-6 

Exclusive OR, 1-13, 3-7 

Executable statements, 1-2 

Execution control, 3-9 

Execution sequence, control statements, 3-1 

Exit DO loop, 3-5 

E (Cont) 

Exponentlation, 1-10 

Express i on modes, 1-12 

Express ions 

arithemtic, 1-10 
logical, 3-7 

Externa I data storage, 6-1 

External functions, 5-2, 5-6, 5-7 

EXTERNAL statement, 4-1, 4-3 

Extended range DO loop, 3-5 

F 

.FALSE., 1-7, 1-12, 3-7 

F control character, 6-4 

Field descriptors, 6-3, 6-4 

control characters, 6-4 

Fields, 1-3 

Field width, 6-4, 6-6 

File 

identification, 6-2 
name, 6-21 
size, 6-21 

Files, 6-22 

segmented, 6-24 
temporary, 6-20, 6-21, 6-22 

Floating point number conversion, 6-6 

Form feed, 6-15 

FORMAT output, 6-5 

FORMAT specification, Object Time, 6-16 

FORMAT statement, 6-1 through 6-4 

Formats, variable type, 6-17 

Formatted record, 6-1 

FORTRAN Science Library, 5-7 

FPP processor, C-1, C-2 

Fracti onal number output, 6-8 

F-type conversion, 6-8 

1-3 



F (Cont) 

Function name, 5-6 

FUNCTION statement, 5-2, 5-6 

Functions, 5-1, 5-2 

external, 5-6, 5-7 
intrinsic, 5-7 

G 

G control character, 6-4 

GO TO statement, 3-1, 3-2 

G-type conversion, 6-8 

H 

H alphanumeric field transmission, 6-12 

H control character, 6-4 

Hollerith constants, 1-5, 1-7 

Hollerith fields, 6-12, 6-16 

I control character, 6-4 

Identification field, 1-3 

IF statement, 3-6 

arithmetic, 3-7, 3-8 
logical, 3-7, 3-8 

IMPLICIT statement, 1-9, 4-1, 4-2, 4-3 

Inclusive OR, 1-13 

Increment value of DO loop, 3-3 

I ndexi ng an array, 6-18 

Index of DO loop, 3-3 

Index variable, 3-5 

Infinite loop, 3-4 

Initialization, 4-7, 4-8 

Initial value DO loop, 3-3 

INDEX (Cont) 

I (Cont) 

Input-output 

auxiliary, 6-23 
data directed, 6-16 
direct access, 6-20, 6-22 
format, 6-2 
lists, 6-18 
sequential statements, 6-19 
statements, 6-17, 6-18 

INTEGER mode, 5-6 

INTEGER statement! 4-1 

Integers, 2-2 

constants, 1-5 
octal, 6-13 
variable format, 6-17 

Internal data storage, 6-1 

Intrinsic functions, 5-7 

I -type con vers ion descr i ptors, 6-5 

Labels, 2-3 

Language summary, A-1 

L control character, 6-4 

Library 

functions, 5-7 
subroutines, 6-23 

L 

Limit value of DO loop, 3-3 

Line continuation field, 1-3 

Line printer record, 6-1 

Line spacing, 6-15 

Lists, input-output, 6-18 

LOGICAL mode, 5-6 

LOGICAL statement, 4-1 

Logical 

1-4 

AND statement, 1-13 
constants, 1-5, 1-7, 1-12 



INDEX (Cont) 

L (Cont) 

Logical (Cont) 

device number, 6-2 
expressions, 1-12 
IF statement, 3-8 
negation, 1-13 
operators, 1-13 
records, 6-1, 6-2 
values, 3-7 
variable format, 6-17 
variables, 1-12 

Long records, 6-21, 6-22 

Loop termination, 3-4 

L-type conversion, 6-12 

M 

Magnetic tape record, 6-1, 6-24 

Main program sample, 5-3 

Masking, 6-13, 6-17 

Mode combinations in relational expressions, 
1-13 

Mode conversion, arithmetic, 2-1, 2-2 

Mode dec larati on statement, 4-2 

Mode specification, 4-1, 4-2, 5-6 

Modes of expressions, 1-11 

Modes of variables, 1-9 

Multiple entries and returns, 5-9 

Multiplication, 1-10 

N 

Naming subroutines, 5-8 

Negative values, 3-3 

Nested DO statements, 3-5 

Non-executable statements, 1-2 

Normal exit from DO loop, 3-5 

. NOT., 1-13 

Numbers, 1-5 

Numeric IF statement, 3-8 

o 
Object program definition, 1-1 

Object Time FORMAT specifications, 6-16 

o control character, 6-4 

Octal fields, 6-13 

Octal numbers, 1-5 

Operands, 1-10, 1-13 

Operators 

arithmetic, 1-10, 1-11 
logical, 1-13 
relational, 1-12 

.OR., 1-13 

OTS error statement, 3-2 

OTS libraries, C-1, C-2 

Output record data placement, 6-14 

Output - see Input-output 

Overprinting, 6-15 

P 

Paper tape reader and punch record, 6-1 

Parentheses - ( ) - in expression, 1-11, 1-14 

Part-word notation, 2-2 

PAUSE statement, 3-1, 3-9 

P control character, 6-4 

PDP-9 compilers and libraries for extended 
FORTRAN, C-1, C-2 

PDP-15 FORTRAN facilities, C-1 

Physi cal records, 6-1, 6-2, 6-3 

Precedence of logical expressions, 1-13 

Print position (tabulating), 6-14 

PRINT statement, 6-17, 6-20 

Program 

beginning, 1-2 
fields, 1-3 
structure, 1-2 

P scale factor, 6-10 

1-5 



IN DEX (Cont) 

Q 

Quotation mark (' or ") usage, 1-2, 1-8, 6-4, 
6-18, 6-22 

R 

Range of the DO loop, 3-3 

R control character, 6-4 

READ statement, 6-16, 6-17, 6-19, 6-22, 
6-24 

REAL mode, 5-6 

REAL statement, 4-1 

Real constants, 1-5, 1-6 

Real variable format, 6-17 

Record 

changing a single, 6-20 
number, 6-22 
size, 6-22 

Records, 6-1, 6-2, 6-3 

blank, 6-3 
logical, 6-1 
physical, 6-1, 6-3 

Recursion - see loop 

Relational 

expressions, 1-12, 1-13 
operators, 1 -12 

RETURN statement, 5-6, 5-8 

REWIND statement, 6-24 

R-type conversion, 6-11 

S 

Sample main program, 5-3 

subprogram, 5-4 

Scale factor (P), 6-10 

Science library, C-2 

SEEK I ibrary subroutine, 6-23 

Segmented files, 6-24 

Sequence of statements, 1-2 

S (Cont) 

Sequential access, 6-2 

Sequenti 01 input-output statements, 6-19 

Sharp sign (#) usage, 1-5, 6-18, 6-22 

Single integer variables, 6-5 

Slash (I) usage, 6-3 

Source program, 1-1, 3-1 

Spaces as field delimiters, 6-16 

Spacing, vertical, 6-15 

Special characters, 1-2 

Specification statements, 4-1 

Statement 

definition, 1-1 
field, 1-3 
functional categories, 1-1 
function definition, 5-5 
functi ons, 5-2 
number field, 1-3 
sequence, 1-2 
syntax, 6-3 

Statements, 

arithmetic, 2-1 
control, 3-1 
data transmission, 6-1, 6-2 
device control, 6-24 
executable, 1-2 
input-output, 6-17 
mode declaration, 4-2 
non-executab Ie, 1-2 
spec ifi cati on, 4-1 

Statement summary, A-1 

STOP statement, 3-9 

Storage, common, 4-4 

Storage 

allocation, 4-3 
sharing - see COMMON 

Storage of 

array, 1-9 
data, 6-1 

1-6 

double precision constants, 1-7 
Hollerith constants, 1-7, 1-8 
rea I constants, 1-6 

--, 



S (Cont) 

Structure of program, 1 .... 2 

Subprograms, 4-3 

BLOCK DATA, 4-7, 4-8 
definition, 5-1 
names, 4-1, 4-4 
sample, 5-4 
statements, 5-1 

Subroutine calls, 5-9 

SUBROUTINE statement, 5-6, 5-9 

Subroutines, 5-1, 5-7, 5-8 

library, 6-23 

Subscripts, 1-9 

Subtraction, 1-10 

Symbol ic addressing, 2-3, 3-2 

Symbolic address label, 2-1 

Symbol ic name, 2-1 

Syntax of statement, 6-3 

TAB, 1-3 

Tabulating, 6-14 

T 

T control character, 6-4 

T descriptor, 6-14 

Teletypewriter record, 6-1 

Temporary file, 6-20, 6-21, 6-22 

Termination of DO loop, 3-6 

Transfer of control, 3-1 

Transfer of data, 6-17 

Transmitting data, 6-1 

.TRUE., 1-7, 1-12,3-7 

Truncation, 1-5 

TYPE statement, 6-17, 6-20 

INDEX (Cont) 

U 

Unary plus or minus, 1-10 

Unconditional GO TO statement, 3-1 

Unformatted record, 6-1 

v 
Values, logical, 3-7 

Variable type formats, 6-17 

Variables, 1-8, 1-9,4-1 

dummy, 5-1 
mode, 1-9 
subscript, 1-9 

Vertical spacing, 6-15 

W 

WRIT E statement, 6-17, 6-24 

direct, 6-20, 6-22 
sequential, 6-19, 6-20 

X 

X conversion control character, 6-4 

X blank (carriage control), 6-14, 6-15 

.XOR. (exclusive OR), 1-13, 3-7 

Z 

Zeroes, leading, 1-5 

1-7 



-., 



READER'S COMMENTS 

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness 
of its publications. To do this effectively we need user feedback -- your critical evaluation of 
this manual . 

Please comment on this manual's completeness, accuracy. organization, usability and read
ability. 

Did you find errors in this manual? If so, specify by page. 

How can this manual be improved? 

Other comments? 

Please state your position . ____________________ Date: ______ _ 

Name: Organization: ---------------- -------------
Street: _________________ Department: ______________ _ 

City: ____________ State: ___________ Zip or Country ______ _ 



- - - - - - - - Fold Here --------------

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Digital Equipment Corporation 
Software Information Services 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD. MASS. 



HOW TO OBTAIN SOFTWARE INFORMATION 

Announcements for new and revised software, as well as programming notes, 
software problems, and documentation corrections are published by Software 
Information Service in the following newsletters. 

Digital Software News for the PDP-8 & PDP-12 
Digital Software News for the PDP-II 
Digital Software News for the PDP-9/15 Family 

These newsletters contain information applicable to software available from 
Digitalis Program Library, Articles in Digital Software News update the 
cumulative Software Performance Summary which is contained in each basic 
kit of system software for new computers. To assure that the monthly Digital 
Software News is sent to the appropriate software contact at your installation, 
please check with the Software Specialist or Sales Engineer at your nearest 
Digital office. 

Questions or problems concerning Digitalis Software should be reported to 
the Software Specialist. In cases where no Software Specialist is available, 
please send a Software Performance Report form with details of the problem to: 

Software Information Service 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

These forms which are provided in the software kit should be fully filled out 
and accompanied by teletype output as well as listings or tapes of the user 
program to facilitate a complete investigation. An answer will be sent to the 
individual and appropriate topics of general interest will be printed in the 
newsletter. 

Orders for new and revised software and manuals, additional Software Per
formance Report forms, and software price lists should be directed to the 
nearest Digital Field office or representative. U.S.A. customers may order 
directly from the Program Library in Maynard. When ordering, include the 
code number and a brief description of the software requested. 

Digital Equipment Computer Users Society (DECUS) maintains a user library 
and publishes a catalog of programs as well as the DECUSCOPE magazine 
for its members and non-members who request it. For further information 
please write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 



- - - - - - - - - - - - - - - - Fold Here --------------

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

momoama 
Digital Equipment Corporation 
Software Information Services 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD. MASS. 



• 


