

i

DEC-15-GFZA-D

PDP-15 FORTRAN IV
OPERATING ENVIRONMENT

For additional copies of this manual, order DEC-! 5-GFZA-D from Digital Equipment

Corporation, Program Library, Maynard Mass. 01754 Price $6.00

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Edition September 1971

Copyright © 1971 by Digital Equipment Corporation

The material in this manual is for informa
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 Operating Procedures 1-1
1.2 Software Environments 1-6
1.2.1 DOS-IS 1-6
1.2.2 ADVANCED tvbnitor Software System (ADSS) 1-6
1.2.3 PDP-15/30 Background/Foreground tvbnitor System 1-6
1.2.4 RSX-15 Real- Time Execution 1-7
1.2.5 BOSS-IS 1-7
1.3 Hardware Environment 1-7

CHAPTER 2 INPUT-OUTPUT PROCESSING

2.1 General Information 2-1
2.1.1 Device Assignment 2-2
2.1.2 Data Structures 2-2
2.1.3 Data Transmission 2-3
2.2 OTS lOPS Communication (FlOPS) 2-3
2.3 Sequential Input-Output 2-4
2.3.1 OTS Binary Coded Input/Output (BCDIO) 2-5
2.3.2 OTS Binary Input/Output (BINIO) 2-6
2.3.3 OTS Auxiliary Input/Output (AUXIO) 2-7
2.4 Direct Access I/O 2-9
2.4.1 The DEFINE Routine 2-9
2.4.2 Formatted Input/Output (RBCDIO) 2-11
2.4.3 Unformatted Input/Output (RBINIO) 2-12
2.4.4 Initialization and Actual Data Transfer (RANCOM) 2-13
2.5 Data-Directed Input-Output (DDIO) 2-13
2.6 Encode/Decode (EDCODE) 2-15
2.7 User Subroutines 2-15
2.7.1 Magnetic Tape Input-Output Routines 2-15
2.7.2 Directoried Subroutines 2-16

CHAPTER 3 THE SCIENCE LIBRARY

3.1 Intrinsic Functions 3-2
3.2 External Functions 3-6
3.2.1 Square Root (SORT, DSORT) 3-6
3.2.2 Exponential (EXP, DEXP) 3-6
3.2.3 Natural and Common Logarithms (ALOG, ALOG 1 0, 3-8

DLOG, DLOG10)
3.2.4 Sine and Cosine (SIN, COS, DSIN, DCOS) 3-9
3.2.5 Arctangent (ATAN, DATAN, ATAN2, DATAN2) 3-10
3.2.6 Hyperbolic Tangent 3-10

3.3 Sub- Functions 3-11
3.3.1 Logarithm, Base 2 (. EE, . DE) 3-11
3.3.2 Polynominal Evaluator (. EC, .DC) 3-14
3.4 The Arithmetic Package 3-14

CHAPTER 4 UTILITY ROUTINES

4.1 OTS Routines 4-1

4.2 Floating Point Processor Routines 4-4

iii

CO NTENTS (Cont)

Page

4.3 FORTRAN - Callable Utility Routines 4-5
4.4 RSX Library (.LIBRX BIN) Routines 4-5

CHAPTER 5 FORTRAN-IV AND MACRO

5.1 Invoking MACRO Subprograms from FORTRAN 5-1
5.2 Invoking FORTRAN Subprograms from MACRO 5-2
5.3 Common Blocks 5-3

APPENDICES

APPENDIX A LANGUAGE SUMMARY A-1

APPENDIX B ERROR MESSAGES

B.1 Compiler Error Messages B-1
B.2 OTS Error Messages B-7
B.3 OTS Error Messages in FPP Systems B-9

APPENDIX C PROGRAMMING EXAMPLES

C.1 MACRO-FORTRAN Linkages C-1
C.2 IFLOW and IDZERO Examples C-5
C.3 Input-Output Examples C-6

APPENDIX D SYSTEM LIBRARIES

D.1 .LIBR - Page Mode Non-FPP D-1
D.2 • LIBRF - Page Mode FPP D-4

APPENDIX E PDP-15 FORTRAN FACILITIES E-1

ILLUSTRATIONS

Figure No. Title Page

1-1 Sample DOS-15 Session 1-4

TABLES

Table No. Title Page

3-1 Intrinsic Functions 3-3
3-2 External Functions 3-7
3-3 Sub- Functions 3-12
3-4 Arithmetic Package 3-17
4-1 FORTRAN-Callable Utility Routines 4-6
4-2 FORTRAN-Callable RSX Routines 4-9
E-1 Versions of the Extended Compiler E-1
E-2 Versions of the OTS Libraries for the Extended Compiler E-2 - ' ,

E-3 Compilers and Libraries for Extended FORTRAN Distributed E-2
with PDP-9/15 Systems

iv

PREFACE

This manual describes the system software facilities which support the PDP-15 FORTRAN IV compilers

together with hardware features which affect the FORTRAN programmer. Included are discussions of

monitor features which are of interest to the FORTRAN programmer, the FORTRAN IV Object Time

System
1

(OTS), and the Science library
2

. All descriptions presented are based on the most compre

hensive version of the FORTRAN compiler. Appendix E presents overall outlines and descriptions and

detailed data specifying the differences between the various compilers for all of the FORTRAN IV

versions offered.

A companion manual "PDP-15 FORTRAN IV LANGUAGE MANUAL", order code DEC-15-GFWA-D,

describes the elements, syntax and use of the FORTRAN IV language as implemented for the PDP-15

computer.

lThe Object Time System is a set of subroutines which are automatically invoked by certain FORTRAN
language elements. A FORTRAN input-output statement, for example is not compiled directly into
executable object code but becomes a call to the appropriate OTS input-output routine.

2The Science library is a set of intrinsic functions, external functions, subfunctions, and subroutines
which the user may invoke explicitly in a FORTRAN statement.

v

CHAPTER 1

INTRODUCTION

A FORTRAN-IV program may be compiled and run in several different environments. The FORTRAN

programmer need not be concerned with the details of his environment since the FORTRAN Object-Time

System (OTS) will ensure that his statements invoke the appropriate computer instructions. For example,

an arithmetic statement such as A = A*B will appear the same in any FORTRAN-IV program. In the

object program it may be transformed to a subroutine call, an EAE instruction, or a floating point

instruction, depending on the hardware configuration on which the program is produced.

He will need to know procedures for compiling and loading his program and for using the peripheral

devices available to him. In addition, a number of software facilities may be of interest to a

FORTRAN programmer who requires maximum program efficiency or functions not performed by

FORTRAN statements. In this case, he may invoke FORTRAN-callable functions and subroutines from

the FORTRAN library or augment his program by linking to MACRO assembler programs and invoking

the OTS utility routines. *

In this chapter, we describe the basic procedures for using FORTRAN and the major facilities

available to a FORTRAN program. These facilities are described in greater detail in subsequent

chapters, and Appendix C contains a collection of illustrative programming examples. The main

discussion is based on the DOS-IS monitor, and differences for other environments are noted.

1. 1 OPERATING PROCEDURES

The FORTRAN-IV compiler is a two-pass system program which produces relocatable object code.

This code is then linked with user-specified FORTRAN-compiled or MACRO-IS assembled routines

and with required OTS library routines. Program linkage may be accomplished via the linking

loader, LOAD, which loads the resulting program directly into core in absolute format. The user may,

alternatively, use one of the overlay linkage editors - CHAIN (DOS-IS, ADSS, B/F, Basic I/o
Monitor) or TKB (RSX). These construct core images onto auxiliary storage.

*In all MACRO calling sequences given - when an address is required as an argument, it may be
expressed as +400000 to indicate indirection.

1-1

The FORTRAN-IV compiler is called by typing F4 after the monitor has issued a $. When FORTRAN

has been loaded, the version name is typed at the left margin as in:

F4X Vnn

A carriage return is issued and the character> at the left margin indicates that a command string is

expected with the FORTRAN source program on the appropriate input.

The command string has the form:

optionlist .. filename

where the options are delimited by a left arrow and may optionally be separated by commas, and the

string is terminated by a carriage return or ALT MODE. A carriage return specifies that FORTRAN-IV

should be restarted after the current program has been compil ed. ALT MODE returns control to the

monitor.

The option list may be blank or contain any of the following options:

Option*

o
S

L

B

D

U

Meaning

object listing

symbol map

source listing

binary output

output listing on DECtape unit 2

write output on DECtape unit 1

Filename must be a legal FORTRAN symbol. The output listing always has the extension LST.

At the end of pass 1, the compiler types

END PASSl

to accomodate the repositioning of a paper-tape source file in the reader. When compiling from

paper tape, to initiate pass 2, the user types tP (control P). Otherwise, pass 2 is initiated auto

matically.

*Refer to Appendix E for list of options applicable to each version of FORTRAN

1-2

--.

The following error messages indicate that the command procedures cannot be carried out:

Message

?

lOPS 4

lOPS

Meaning

Bad command string - retype

I/o device not ready - type CTRL R when ready

See PDP-15/20 User's Guide for lOPS error codes

Other diagnostics which may be printed at compile time are FORTRAN error messages (see Appendix B,

Section B. 1). OTS errors are given at run time for those routines whose calls are generated by the

compiler (see Appendix B, Section B.2).

When the user program has been successfully compiled, it may be relocated and made absolute

(executable) via LOAD, CHAIN, or TKB (the RSX Task Builder).

The Linking Loader is called by typing LOAD or GLOAD (Ioad-and-go) after a monitor-issued $.

The Linking Loader types

LOADER Vnn
>

and awaits a command string specifying programs to be loaded and output options. See the

PDP-15/20 User's Guide
1

for detailed instructions. Figure 1-1 shows the printout from a typical

DOS-15 session from source-program preparation to loading.

With CHAIN, the user generates a system of overlays - a resident main program which may include

resident subprograms, a resident blank COMMON storage area, and a set of subroutines which

overlay each other at the user's request. Subroutines are organized into units called LINKS which

may overlay each other. Several LINKS may overlay a larger LINK without overlaying each other.

A LINK is loaded into core when a subroutine within the LINK is called and it remains resident until

overlayed. A LINK's core image is not recorded or "swapped out" when it is overlayed. The same

image is brought into core each time a LINK is loaded. See the PDP-15 CHAIN and EXECUTE

manual for detailed instructions (DEC-15-YWZA-DN2).

1 Order code DEC-15-MG2C-D

1-3

DOS-IS V02
ENTER DATE

ROG IN DEM

$P IP

DOSPIP VIA

>N OK

>fC

DOS-IS V0?
S':EDIT

EDITOR V10A
>OPEN IOTST

(t-'M/OD/YY) -

~ILE IOTST SRC NOT ~OUNO.
INPUT
C
C TTY: .DAT 6
C

\~RITE (6,100)

6/8/71

11210 FORMAT (IX,$IN:$)
READ (6,) fn ,1..:2
WRITE (6,200)

20121 ~ORt-'AT (IX, 'OUT:')
H3=Pl**R2
ltJRITE (6,) R3

EDIT
>CLOSE

STOP
END

EDITOR V10A
>fC

DOS-IS V02
$F4

~4X VISA
>8" IOTST
END PASS 1

DOS-IS V02
5A TT 6

$LOAD

Figure 1-1 Sample DOS-1S Session

1-4

- "
(continued next page)

BLOAOER VIlA
>p .. 10TST
p rOTST 77535
p 0010 007 75463
P .BE 006 75430
P .EE 002 75337
P .EF' 004 75221
P .Ee 001 75155
P BCOIO 028 71230
P .SS 005 7115el
p STOP fjfil3 71 135
P SPMSG 004 71042
P .F'UB 00.4 70554
P F'IOPS 016 67652
P DBLI NT 058 67246
p INTEAE 008 67112
P DOUBLE 004 66707
p RELEAE 016 65576
P OTSER 009 65366
P .CB 003 65346
t S 1S
IN:
11 .2 .. 3.0

OUT:
'R3'= 1404.9282

STOP 000000

00S-15 V02
$

Figure 1-1 Sample DOS-15 Session (Cont)

TKB is similar to CHAIN. Its function is to record core images in a file in the format expected by

the RSX INSTALL MCR Function. The task name is used as the file name, and TSK is used as the

extension. TKB uses the same .DAT slots and accepts the same overlay descriptions as CHAIN.

It is called by typing "TKB" following the Monitor's $ request. When loaded, TKB types its nome

and version number and makes the following requests:

LIST OPTIONS
NAME TASK
SPECIFY DEFAULT PRIORITY
DESCRIBE PARTITION
DESCRIBE SYSTEM COMMON BLOCKS
DEFINE RESIDENT CODE
DESCRIBE LINKS AND STRUCTURE

For further information, see RSX-15 Reference Manual (DEC-15-GRQA-D).

1-5

1.2 SOFTWARE ENVIRONMENTS

Each version of FORTRAN-IV has its own version of OTS and the Science Library so that routines may

utilize both hardware and software features. Each of the monitor systems under which FORTRAN

operates is summarized below.

1.2.1 005-15

DOS-15 is a single-user, interactive, disk-resident Operating System. It includes the DOS-15

Monitor, I/o device handlers r and an integrated set of system programs including FORTRAN-IV.

Program editing, loading, and debugging facilities are provided as well as powerful file manipulation

capabilities. The DOS-IS disk file structure supports both direct and sequential access to disk files,

dynamic disk storage allocation, and file protection. The DOS-IS Monitor itself provides the

interface between the user and peripheral devices via Monitor calls and allows the user to load system

or user programs, for example, FORTRAN programs r via simple commands from the user terminal. The

reader is directed to the 005-15 Software System User's Manual, DEC-15-MRDA-D, for more detailed

information.

1.2.2 ADVANCED Monitor Software System (ADSS)

The ADVANCED Monitor Software System is an integrated system of programs which includes the

ADVANCED Monitor, an Input-Output Processor (lOPS), and a set of system programs which prepare,

compile, assemble, debug, and operate user programs. The monitor itself serves as the interface

between FORTRAN and peripheral devices and between the user console and the system. Detailed

information on the components of ADSS may be obtained in the ADVANCED Monitor Software System

Manual, DEC-15-MR2B-D.

1.2.3 PDP-15/30 Background/Foreground Monitor System

The Background/Foreground Monitor (B/F) is an extension of the ADVANCED Monitor which permits

concurrent, time-shared use of the PDP-15/30. This is done through protected, foreground user

programs with a background of batch processing, through program development, or through low-priority

user programs. Details are available in the PDP-15/30/40 Background/Foreground Monitor Software

System manual (DEC-15-MR3A-D).

1-6

1.2.4 RSX -15 Real-Time Execution

RSX-15 is a monitor system designed to handle real-time information in a multiprogramming environment.

RSX-15 controls and supervises all operations within the system including any number of core- and disk

resident programs (called tasks). The user can dynamically schedule tasks via simple time-directed

commands issued from the terminal or from within a task. RSX uses the ADVANCED Software Monitor

(1.2.2) and a Real-Time Monitor. System software includes the FORTRAN-IV compiler, the MACRO

Assembler, the TASK BUILDER, and numerous utility programs required to edit, compile, debug, and

run user programs. Details are available in the RSX-15 Real/Time Executive Reference Manual

(DEC-15-GRQA-D) •

1.2.5 BOSS-15

B05S-15 is a batch-processing monitor which is part of D05-15; it, therefore, utilizes the DOS-15

system program and file structures. DOS-15 itself has a facility to batch commands from cards or

paper tape; BOSS-15, however, is a separate entity from· DOS-15 batch. BOSS-15 Is command

language is batch-oriented, noniterative, easy to use, and highly flexible.

Some highlights of BOSS-15 are:

• Procedure driven command language

• Job timing for accounting purpose

• Line editor

• Facility for user-defined commands

B05S-15 provides the user with the abil ity to use any system program (with exception of some programs

that work only in an interactive environment) and the disk-file structure of DOS-1S.

1.3 HARDWARE ENVIRONMENT

Systems with a Floating-Point Processor (FPP) have a special version of the FORTRAN -IV compiler and

OTS which utilizes hardware instructions rather than software calls. For example, RELEAE, the REAL

arithmetic package, is not included in FPP systems since REAL arithmetic expressions may be compiled

into computer instructions.

The FPP F4X System consists of the standard DOS-1S FORTRAN-IV compiler and Object-Time System

(OTS) interfaced (via conditional assembly, and additional routines) to the hardware PDP-1S FPP

(Floating-Point Processor). The interface applies to Single and Double Precision Floating-Point

Arithmetic and Extended Integer Arithmetic (double integers). Single integer arithmetic is still

handled by software.

1-7

Floating-Point (FPP) FORTRAN-N is available in different forms for use in PDP-1S software systems

other than the DOS-1S system. See Appendix E for descriptions of the available types of FORTRAN-IV.

The following points should be noted with respect to the software modifications which accompany the

FPP software systems:

(1) The calling sequence for integer power involution (raising numbers to integer powers) has
been changed. The associated OTS routines will have to be updated throughout any
systems usi ng F4X.

(2) All systems that support a bank mode will require a bank mode version of the F4X compiler
to go along with their respective OTS libraries in order to suppress generation of PDP-1S
instructions (see Appendix D). Note that a bank mode version of the FPP F4X is not
needed because the FPP cannot be added to a PDP-9.

The FPP libraries (given in Appendix D) include the program .FPP which contains a special FPP

error-handling routine, and routines which handle communication between the hardware CPU AC

used by FORTRAN and the FPP accumulator.

All routines described in the science library and OTS utility programs are available in FPP versions

with the exception of RELEAE, DOUBLE and DBLINT which are no longer required.

1-8

'- .

CHAPTER 2

INPUT-OUTPUT PROCESSING

FORTRAN data-transmission statements automatically invoke a number of OTS subroutines which serve

as an interface between the user program and the Monitor. These routines may also be explicitly

referred to in a MACRO program.

The actual transmission of data between memory and a peripheral device is, in general, performed by

the FlOPS package, a set of routines which communicate directly with the Monitor. Other packages,

each associated with a particular type of data-transmission statement, perform three major functions:

a. Initialization,

b. Transmission of data to and from the FORTRAN line-buffer in the appropriate structure, and

c. Termination;

The packages are:

(l) BCDIO, processes formatted sequential READ or WRITE statements;

(2) BINIO, processes unformatted sequential READ or WRITE statements;

(3) AUXIO, processes auxiliary input-output statements;

(4) RBCDIO and RBINIO, processes formatted and unformatted direct-access READ and
WRITE statements;

(5) 0010, manages data-directed input-output;

(6) ENCODE, processes ENCODE and DECODE statements.

Also described in this chapter is a set oflORTRAN-caliable subprograms which support OTS input

output functions.

2.1 GENERAL INFORMATION

The three major I/o functions:

a.

b.

c.

To associate logical devices with physical devices,

To associate user data structures with device data structures, and

To perform actual transfer of data

are described in the following paragraphs.

2-1

2.1. 1 Device Assignment

In all systems except RSX, device assignment is managed through the monitor Device Assignment

Table (.DAT) which associates logical device units to physical ones •• DAT has "slot" numbers which

correspond to the logical device numbers. Each slot, at run time, contains the physical device

number and a pointer to the appropriate device handler. Sixteen* entries in • DAT may be used for

user-program device assignment performed via monitor ASSIGN commands at run time. Default

assignments are defined during system generation.

2.1.2 Data Structures

Each peripheral device has an associated data structure which governs the manner in which data ore

stored. There are basically two modes in which data may be stored externally - serially ordirectoried.

For a sequential file, either structure may be used. If it is serial, the physical sequence of records is

identical to the logical sequence. If it is directoried, the logical sequence is established by pointers

which link one record to another although their physical locations need not be in sequence. For a

direct-access file, only directoried devices may be used.

Serial devices used for FORTRAN Input-Output include magnetic tape and DECtape. Records are

transmitted directly from the user buffer to the device and an end-of-file is written after the last

record by a CALL CLOSE or ENDFILE n. A file is accessed simply by virtue of device assignment.

DECtape may also be used in a directoried mode. In this case, a directory containing file information

is maintained. Each entry contains a filename and extension and a pointer to the first block of the

file. Files stored in this way may be referenced in the OTS directoried subroutine calls.

Directoried FORTRAN input-output to a disk, using DOS-15 file structure, is a special case. This

structure is based on a hierarchy of directories with a Master File Directory (MFD) pointing to user

file directories (UFDs). User files are created sequentially but may be accessed either sequentially

or directly. Data blocks (4008 words per block) which comprise a file are chained via a forward

link word (377
8

) and backward link word (3768), Forward links are also stored in a retrieval

information block (RIB) for direct access. Files stored in this mode are accessed by name. This name

may be assigned by the user via directoried subroutines (e.g., SEEK and ENTER). If this is not done,

default names are used. A default name has the form .TMOmn OTS where mn is the logical device

number.

*This number is the standard size for DOS-15 but may be changed by system generation and assembly
parameters.

2-2

2.1.3 Data Transmission

Data is transmitted to and from the FORTRAN-IV I/o buffer via the OTS FlOPS package. A single

I/o buffer of 4008 words is used. The size of the buffer which is to be transmitted for a particular

device is set in accordance with information provided in an .INIT to the device used.

2.2 OTS lOPS COMMUNICATION (FlOPS)

The FlOPS package provides the necessary communication between OTS and Input-Output Processor.

Its two main functions are device assignment and the transfer of data to and from the FORTRAN

i nterna I I/o bu Her.

FlOPS maintains a status table with one-word entries for each file that is opened. A table entry is

as shown below.

I/o Flag For dir.
O=READ O=SEQU. acc. only not Buffer size
l=WRlTE 1 = DIR. ACC. l=DELETE used (from • I NIT)

O=NO
o 2 3 89 17

The routines of the FlOPS package and their functions are given below.

FlOPS Package

External Calls: OTSER

Errors: OTS ERROR 10 - illegal device number

Routine Function

.FC
(initialize I/O Device)

Call:

LAC DEVICE (address of slot number)

JMS* .FC

To set I/o flag:

DZM* .FH (input)
LAC (1) (output)
DAC* .FH

.DAT slot numbers are initialized by .FC. The
first call to .FC for any device generates a
monitor .INIT call which opens the file for I/o
and enters the buffer size and I/o flag in the
device status table. Subsequent calls to .FC
ca II .INIT only if the I/o flag has been changed
or the file has been closed.

(continued next page)

2-3

FlOPS Package (Cont)

.FQ

Call:

Routine

LAC (address of • DA T slot number (bits 9-17)
lOPS mode (bits 6-8)

JMS* .FQ

• FP

Call:

JMS* .FP

.ZR

Call:

JMS* .ZR
• DSA END addr
• DSA ERR addr

JMS* .FF (.FG)(.RF)(.RG)

Function

Data are transferred between the I/O buffer and
an I/O device. .FQ checks the monitor I/O flag.
If it is zero, a • READ call is made; if it is one, a
• WRITE coli is mode. A call to • WAIT is made in
either case.

Sets a" words in the device status table to zero •
Called at the beginning of a" FORTRAN main
programs to indicate that all devices are
initial ized.

Initializes END or ERR exits. The AC is saved
and restored to accomodate direct access. If one
of the two exit addresses is not to be specified, an
address of 0 should be passed •

Direct and sequential access BCD and BINIO
terminate routines reinitialize OTSER.

An integer function - 10ERR (N) is available to the user and may be invoked at an ERR exit to

determine the I/O error which has occured. The value of IOERR will be one of the following:

Value

-1

-2

-3

-5

-6

OTS error number

2.3 SEQUENTIAL INPUT-OUTPUT

Error

Parity error

Checksum

Shortline

End-of-file

End-of-medium

Other errors (up to 77)

Sequential input-output operations access consecutive records of a file, beginning with the first

record and then record-by-record until the end of the file. A file which is accessed sequentially may

2-4

-'- , ,

be stored serially (on magnetic tape or DECtape) or in directoried mode (on disk and DECtape). That

is, the physical sequence of records mayor may not conform to the logical sequence.

2.3.1 OTS Binary Coded Input/Output (BCDIO)

The formatted READ and WRITE statements generate calls to routines in the BCDIO package. Input

and output operations are performed on a characte~to-character basis under the control of a FORMAT

statement. All BCDIO routines use FlOPS to perform transfer of data. BCDIO routines may also be

called directly by MACRO programs.

Each formatted record is an lOPS ASCII line with a two-word header pair. The first character after

the header is always a forms-control character. Record length, given in the header, is always in

terms of word-pairs. The last character in the last word-pair is always a carriage return.

BCDIO routines are described below.

BCDIO Package

External Calls: FlOPS, OTSER, REAL, RELNON or RELEAE

Errors: OTS 10 - illegal I/O device number
OTS 11 - bad input data (lOPS mode incorrect)
OTS 12 - illegal format

Routine Function

• FR (. Fyv) Inputs (outputs) a data item.

Call:

JMS*
.DSA
.DSA

.FE

Call:

• FR (. Fyv)
(address of • DAT slot number)
(address of first word of FORMAT
statement or array)*

JMS* .FE
• DSA {address of data item (first word))

.FA

Call:

JMS* .FA

• DSA (address of last word in array descriptor
block)

*This word is 0 for data-directed I/O

Inputs or outputs a data item using format decoder
(.FD).

Inputs or outputs an entire array using format
decoder (.FD).

(continued next page)

2-5

BCDIO Package (Cont)

Routine Function

.FD Decodes format into four parameters:

Call: .D - decimal places

JMS* .FD
• W - field width
• SF - sco Ie factor
.S - mode

.FF Terminates the current logical record.

Call:

JMS* .FF

As described in the language manual * , FORMAT statements may be entered or changed at run time,

at which point they are interpreted by BCDIO. In addition to providing the FORTRAN programmer

with greater flexibility, this feature permits the MACRO programmer to use the formatted I/o

capabilities of BCDIO. (See Appendix C for examples.)

2.3.2 OTS Binary Input/Output (BINIO)

The BINIO package processes unformatted READ and WRiTE statements. Data transfer is on a word

to -word basis. A logical record, the amount of data associated with a single READ or WRITE

statement, may consist of several physical records whose size (except for the last) is always the

standard lOPS I/O buffer size. Thus, when a WRITE statement is processed, each physical record

generated contains an ID word (word 3) in addition to the two required header words. This word

contains a record identification number. For the first record, this is zero. The last record is

indicated by setting bit 0 of the ID word to 1. Up to 3777778 physical records may be generated

for a single logical record.

For example, if four physical records are generated, the four ID words would be:

000000
000001
000002
400003

If only one record is generated, its ID word will be 400000 signifying the first and last of a set.

An unformatted READ statement accepts logical records of the form described above until its I/O list

has been satisfied. If this occurs in the middle of a logical record, the remainder of the record is

ignored. That is, the next READ will access the beginning of the next logical record.

*DEC-1S-GFWA-D

2-6

The routines of BINIO are described below.

BINIO

External Calls: FlOPS, OTSER

Errors: OTS 10 - illegal I/O device number
OTS 11 - illegal input data (lOP mode)

Routine Function

.FS Initializes a device for binary input and reads

Call:
first record.

JMS* .FS
.DSA (address of .DAT slot)

.FX Initializes a device for binary output; initializes

Call:
I ine buffer.

JMS* .FX
.DSA DEVICE

.FJ Transfers a data item to or from the line buffer

Call:
(a II modes). Mode of item indicated by bits
1 - 2 of argument are:

JMS* .FJ 00 = INTEGER
.DSA (address of item (first) word)

01 = REAL
10= DOUBLE PRECISION
11 = DOUBLE INTEGER

.FB Transfers an array.

Call:

JMS* .FB
• DSA (address of last word in array descriptor

block)

.FG Terminates current logical record. For WRITE,

Call:
packs the line buffer with zeroes as required and
sets bit 0 of the ID word.

JMS* .FG

2.3.3 OTS Auxiliary Input/Output (AUXIO)

The AUXIO package processes the commands BACKSPACE t REWIND, and ENDFILE which have

different meanings for magnetic tape and disk. AUXIO routines issue .MTAPE monitor calls giving

• DAT slot and a code specifying the magnetic tape function desired:

2-7

Code Magnetic Tape Disk

00

02

04

Rewind to load point

Backspace record

Write end-of-file

Close file associated with .DAT slot.

Pointers resumed for previous ASCII or binary line.

N.A.

For magnetic tape, these operations require only calls to system macros. In order to simulate magnetic

tape functions on disk, a file active table (.FLTB) must be referenced. This contains four-word

entries for every positive .DAT slot indicating whether the file is active (open for input or output)

or inactive. The routines of AUXIO and their serial and file-oriented functions are given below.

AUXIO

External Calls:

Errors:

Routine

.FT
(BACKSPACE)

Call:

JMS* .FT
• DSA (address of

.DAT slot)

FlOPS, .FLTB

OTS 10 - illegal I/o device
OTS 11 - illegal input data (lOPS mode incorrect)

Magnetic Tape

Repositions device at a point just prior to the
first physical record associated with the current
logical record.

.FU Repositions device at load point.
(REWIND)

Call:

JMS* .FU
• DSA (address of

.DAT slot)

.FV Closes file. Writes an end-of-file mark on tape.
(ENDFILE)

Call :

JMS* .FV
.DSA DEVICE

Disk

Resumes pointer to
previous ASCII or
binary line.

Closes file. Ifno
file is open,
nothing is done.

Closes file, zeroes
words 0-3 of the
associated • FLTB
entry •

On a REWIND to disk, the filename is saved; thus, subsequent sequential input-output operations will

open that file. On an ENDFILE, the filename is lost and subsequent operations will open a default file.

2-8

- .

- .

2.4 DIRECT ACCESS I/O

Direct access input-output files are referenced by name; records are retrieved or Clccessed by number.

The OTS routines which perform direct-access transmission of data are similar to their sequential

counterparts. Before they are invoked, however, the user must provide a detailed description of

his file.

2.4.1 The DEFINE Routine

The FORTRAN user establishes a direct-access file by calling the DEFINE routine which was described

in Part I, Chapter 6. The meanings of its arguments are iterated below for the call:

CALL DEFINE (D, S, N, F, V, M, A, L)

The parameters provided to OTS for performing direct-access functions are:

D - .DAT slot

S - record size
number of ASCII characters

or
number of binary words

N - number of records (S3m77 S)

F - array reference to file name and extension - if 0, default name

V - associated variable - set to number of the last accessed record plus one

M - mode -0 = lOPS binary
non-O = lOPS ASCII

A - file size adjustment indicator ° = no adjustment
non-O = adjust

L - deletion indicator
o = no deletion

non-O = delete temporary file

The DEFINE routine initializes a file for direct-access in one of four ways, depending on the

combination of parameters suppl ied.

a. Simple Initialization - If F specifies a file which already exists and no adjustment has
been indicated, DEFINE opens the file for direct access. The mode and record length
parameters must conform to the file's characteristics. The associated variable is set to 1.
The number of records N must be less than or equal to the actual number of records.

b. Named File Creation - If F specifies a file which does not exist on .DAT slot D, a file
is created according to the characteristics given in the calling arguments. If the mode
is ASCII, the data portion is filled with spaces (040S). If the mode is binary, all data
words are set to 0 and the ID word for each record to 400000

8
•

2-9

c. Default-Named File Creation - If F=O in the DEFINE call, a file is created as above but
given a default name of the form. TMOab OTS (unless a file of that name already exists
on • OAT slot D) where ab specifies. OAT slot. If L=l , a bit is set in the FlOPS status
table signifying that the file is to be deleted after an ENDFILE or CALL CLOSE to the
• OAT slot.

d. File Size Adjustment - If a file F exists and A is not zero, N is used to adjust the number
of records in the file. This is done by creating a temporary file (•• TEMP OTS) on .OAT
slot 0 via .DAT slot -1 which is temporarily loaded with the • OAT slot 0 handler address
and UIC. The file is copied into it one record at a time up to the number N. If the file
is to be lengthened, null records are added. The adjusted file is then assigned a name
according to F. V is set to 1 if the file is reduced. If it is lengthened, it is set to the
old length plus one.

The algorithm used for determining the function of DEFINE from its ar~ments is illustrated in the

following flowchart.

YES, OEFAULT NAME IS
INDICATED

BUILD DEFAULT NAME
FROM .DAT SLOT
(.TMOab OTS)

INITIALIZE FILE FOR
RANDOM ACCESS
V IA .RAND

NO

AOJUST SIZE
OF FILE

2-10

NO

From user-supplied arguments, the DEFINE routine establishes a parameter table (PRMTB) which is

available to direct-access input-output routines.

Each device which has a file open for direct-access will have an active four-word entry composed as

follows:

Word Bits Information

1 0 File active bit (l if active - always set for ASCII files)

2-11 Number of blocks per record

12-17 .DAT slot number

2 0 mode - 0 if binary; 1 if ASCII

5-11 Word pairs per record

12-17 Records per block (0 for binary records larger than one physical block)

3 1-17 Records/fi Ie

4 3-17 Address of associated variable

• PRMTB will generally have four such entries but this number may be varied with an assembly

parameter.

DEFINE also initializes the file in FlOPS, setting the appropriate bits in the FlOPS status table.

2.4.2 Formatted Input/Output (RBCDIO)

Direct-access operations may be performed on any formatted data file conforming to DOS-15 file

structure and with a fixed record length. A direct-access WRITE will output formatted records which

have the same form as with sequential operations. The distinction is that the direct-access records are

transmitted into a series of records which already exist on the selected file. A single READ or WRITE

will access records on the I/o device only as specified in the associated FORMAT statement. This

means that a long I/O list will not cause a new record to be accessed, regardless of the length of

the list, unless this access is indicated by the FORMAT statement. A carriage return is, as with

sequential I/O, appended to each ASCII line. Any information from a previous WRITE mode to a record

which remains after the carriage return, is inaccessible. The FlOPS buffer and tables are used as

with sequential I/O. Data transfer, however, is performed using the. RTRAN system MACRO.

The RBCDIO routines described below correspond to the sequential I/O routines of BCDIO. Control

is transferred to BCDIO for data transmission via the global entry points given.

2-11

RBCDIO

External Calls: FlOPS, BCDIO (.FE, .FA), OTSER, RANCOM

Errors: None

Routine

• RW (.RR)

Call:

JMS* .RW (RF)
.DSA (address of • DAT slot)
.DSA (address FORMAT)
(AC holds integer record number)

• RF

Call:

JMS* .RF

Entry points to BCDIO are:

RBCDIO Entry

.RE

.RA

2.4.3 Unformatted Input/Output (RBINIO)

Purpose

BCD direct-access WRITE (READ) sets the direct-
access flag; sets mode switch to ASCll; initial izes
direct-access READ/WRITE (.INRRW in RANCOM);
checks mode of existing record; initializes - .STEOR
and BFLOC in BCDIO for direct-access line buffer , ,
and form at decoder; sets. HI LIM in BCOIO • • RW
loads record number into .RCDNM and sets I/o
flag in FlOPS to write. • RR loads record number
into .RCDNM, sets I/o flag to read •

Terminates current logical record. Sets last record
flag, reinitializes .ER in OTSER and, for WRITE,
• RTRAN out last record.

BCOIO Routines

.FE
.FA

Unformatted direct-access I/O differs from formatted in two respects. If a binary record does not

totally fill the record into which it is written, the previous contents are still accessible. If a direct

access WRITE requires more words than exist in each record, successive records are accessed and

written until the I/O list is exhausted. Records are linked by ID words as for sequential files.

The routines of RBINIO are described below. Direct-access entry points to BINIO follow.

RBINIO

External Calls: FlOPS, RANCOM, BINIO

Errors: None

Routine Function

• RS (. RX) Binary direct -access WRITE (READ) sets direct-

Call:
access flag; sets mode switch to binary; initializes
direct READ/WRITE (.INRRW in RANCOM); checks

JMS* • RS (. RX) mode of existing record; initializes. BUFLC, • RDTV,

.DSA (address of .DAT slot)
and. WRTV in BINIO for direct access; initializes
I/o buffer; loads record number into .RCDNM.

(AC holds integer record number) • RX sets I/o flag to WRITE; • RS sets it to READ.

(continued next page)

2-12

RBINIO (Cont)

Routine Function

.RG Terminates current logical record. Increments

Call: associated variable, reinitializes .ER in OTSER; if
WRITE, sets lost record flog and outputs final records.

JMS* .FG

2.4.4 Initialization and Actual Data Transfer (RANCOM)

RANCOM contains two major routines which are used by both RBCDIO and RBINIO. These routines

perform initialization and data transfer functions which are identical to those performed for ASCII and

Binary I/O.

RANCOM

External Calls: FlOPS, OTSER, DEFINE

Errors: OTS 10 - illegal I/o device
ors 24 - illegal record number
ors 25 - mode discrepancy
ors 11 - illegal input data (lOPS mode incorrect)
OTS 21 - undefined file
OTS 23 - size discrepancy

Routine Function

.INRRW Initializes a direct access READ or WRITE

Call:

JMS* .INRRW
(AC holds address of slot number.)

.RIO For I/o cleanup:

Call:
Set up header pair and. RTRAN out block of data.

JMS* .RIO
F or end -of - record rout i nes:

Output (if WRITE) and set pointers to new record.

2.5 Data-Directed Input-Output (0010)

The Data-Directed Input-Output package permits input or output of ASCII data without reference to a

FORMAT statement. On input, 0010 extracts individual data fields by scanning the line buffer for

terminators. It then determines the mode of the variable to which the item is to be transferred and

converts the item to that mode if necessary. Unlike the format decoder, 0010 does not reject an item

which is too large but simply assigns the maximum value which the variable can accomodate. On out

put, 0010 has a set of default format parameters for each type of variable.

2-13

The same buffer is used for both data-directed and formatted I/o, and the I/o action for both takes

place between device and I/O list variables or vice versa in both cases. Thus, 0010 uses the same I/o

initialization and termination routines as regular formatted I/o (found within BCDIO for sequential

access and within RBCDIO for direct access). 0010 control routines are, however, unique due to the

special features described above.

The routines of 0010 are given below.

0010

External Calls: BCDIO, .55, OTSER, FlOPS, REAL, DBLINT

Errors:

• GA

Call:

OTS 42 - bad input data*

Routine

JMS* • GA / radix 50

name l} first 3 characters
name 2 lost 3 characters

• DSA address item

.GC

Call:

JMS* • GC / radix 50
name 1
name 2
.DSA item

• GB

Call:

JMS* • GB / radix 50
name 1
name 2
.DSA array description block

(word #4 address)

• GD

Call:

JMS* .GD
.DSA item

• GE

Call:
JMS* .GE
• DSA addr. of array discriptor block word 4

Function

Outputs a data item in the 'NAME' = value form •
Mode is obtained from bits 1-2 of the pointer word;
if the mode is 0 (integer-logical), bit 0 of the name
word indicates which (0 for integer, 1 for logical).

Outputs an array element in 'NAME (I)' = value
form. Also uses bits 1-2 for mode •• GC should
only be used when. SS has been used to calculate
the subscript address.

Outputs an entire array in 'NAME(J)' = value form •

Inputs an item. Mode is in bits 1-2 of argument •

Inputs an array. Mode is in bits 1-2 of argument •

*For Teletype input - 'BAD INPUT DATA - RETYPE FROM INPUT WITH ERROR' is typed.

2-14

-"

2.6 ENCODE/DECODE (EDCODE)

Encode and Decode perform memory-to-memory transfers and conversions using the apparatus established

for formatted input-output. That is, data is transferred from memory to the I/O buffer to memory. Since

no peripheral device is involved, the initial ization and termination mechanisms of EDCODE are unique

while the data transfer is the same as for BCDIO.

The routines of EDCODE are given below.

EDCODE

External Calls: OTSER, BCDIO

Errors: OTS 40 - illegal number of characters
OTS 41 - array exceeded

Routine Function

• GF Encode •

Call:

JMS* .GF
• DSA number of characters
.DSA array
.DSA format

• GG Decode •

Call:

JMS* .GG
• DSA number of characters
.DSA array
.DSA format

2.7 USER SUBROUTINES

The subroutines given below are FORTRAN-callable subroutines which support input-output operations.

· 2.7.1 Magnetic Tape Input-Output Routines*

Routine Call Function

EOF CALL EOF{d,@n
1

, @n2) Control is passed to n
1

if

Where: EOF was encountered on last

d = • DAT slot (must be
input operation; otherwise to n

2

assigned to tape)

n
1

,n
2

= statement numbers

*Not supported with RSX. END, ERR exits can be used in place of EOF. (continued next page)

2-15

Routine Call Function

rOCHECK CALL IOCHECK (d,@n1 ,@n
2

) Same

UNIT CALL UNIT (d,@n
1

,@n
2

,@n
3

, Control is passed to:
@n

4
)

n
1

- device not ready

n2 - devi~e ready, no
prevIous error

n3 - EOF sense.d

n
4

- parity or lost data
error

2.7.2 Directoried Subroutines

The directoried subroutines described below comprise a package named FILE. These routines interact

with the DOS-J5 file-oriented data structure and with DECtape file structure.

FILE

External Cal Is: FlOPS, .DA

Errors: OTS 10 - illegal device number
OTS 13 - file not found (SEEK)
OTS 14 - directory full (ENTER)

Routine Call Purpose

SEEK CALL SEEK (n,A) Finds and opens a named input file.

Where:

n = device number

A = name of array containing the
9-character 5/7 AS CII file
name and extension

ENTER CALL ENTER (n,A) Creates and opens a named output file.

CLOSE CALL CLOSE (n) Terminates an input or output file
(reqJired when SEEK or ENTER are
used).

FSTAT CALL FSTAT (n,A,I) Searches for named fi Ie.

Where:

I = 0 if the file not found;
= 1 if found and action complete

(continued next page)

2-16

Routine Call Purpose

RENAM CALL RENAM (n,A,B,I) Searches for named file and renames it.

Where:

A is on array containing exist-
ing name

B is an array containg a new
file nome

I = 0 if file not found; 1 if
found and action complete

DLETE CALL DLETE (n,A,I) Searches for named file and deletes it.

Where:

A is an array containing exist-
i ng fil e name

I = 0 if file not found; 1 if
found and action complete

2-17

CHAPTER 3

THE SCIENCE LIBRARY

The FORTRAN Science Library is a set of pre-defined subprograms which may be invoked by a

FORTRAN-IV subprogram reference. These include intrinsic functions, external functions, the

arithmetic-pockage functions, and external subroutines. Each of these may also be referenced by a

MACRO program as may the sub-functions and OTS routines which are also part of the FORTRAN

library •

Descriptions of each type of subprogram are given in the following subsections. Information given for

these include errors, accuracy, size, and external calls (to other library subprograms). Each function

description also includes the MACRO calling sequence. Where there are two arguments, it is assumed

that the appropriate accumulator has been loaded (accumulators are described in Section 3.4). For

calling sequences which use the .DSA pseudo-operation to define the symbolic address of arguments,

400000 must be added to the address field for indirect addressing.

FORTRAN library subprograms are called by FORTRAN programs in the manner described in the

Language Manual (DEC-1S-GFWA-D). Subprograms called by MACRO programs must be declared

with a .GLOBL pseudo-operation as in:

Examples:

Standard System

• TITLE
.GLOBL SIN, .AH

JMS* SIN
JMP .+2
.DSA A
JMS* .AH
.DSA X

X .DSA 0
.DSA 0

/JUMP beyond argument
/+400000 if indirect
/store in real format at
/X

Floating Point (FPP) System

• TITLE
.GLOBL SIN

FST = 713640

X

JMS SIN
JMP .+2
.DSA A
FST
.DSA X
.DSA 0
.DSA 0

The number and type of arguments in the MACRO program must agree with those defined for the sub-

program.
3 -1

3.1 INTRINSIC FU NCTIONS

Table 3-1 contains a description of each of the intrinsic functions in the FORTRAN library.

An intrinsic function's type and arguments cannot be changed. It is referenced via an Arithmetic

statement, as in:

x = ABS (A)

(Table 3-1 appears on the following page.)

3-2

W
I

W

Function Definition

Absolute IARGI
Value

Truncation Sign of ARG times largest
integer ~ I ARG I

*15 if base =Oand exp ~ O.

Symbclic
Nome

.BB

.BC

. BC

.BL

.BD

.BD

.BM

.BE

.BF

.BG

.BH

.BI

.BI

.BJ

.BK

ABS
lABS
JABS
DABS

AINT
INT
!DINT
JINT
JDINT

--- ~

Table 3-1
Intrinsic Functions

Mode Calling Sequence

1=1**1 ARG1 IN FLT .ACC
JMS* .BB
· DSA ADDR of ARG2

R**I(or J) ARG 1 IN FL T. ACC
R=R**I {JMS* SUBR
R=R**J • DSA ADDR of ARG2

D**I(or J) ARG1 IN FLT. ACC
D-D**I (JMS* SUBR
D=D**J • DSA ADDR of ARG2

ARG1 IN FLT. ACC
R=R**R
D=R* *D CMS* SUBR
D=D**R • DSA ADDR of ARG2
D=D**D

1** J l J** J(or I) ARG1 IN AC (and MQ)
1- 1** J CMS* SUBR
J=J**J • DSA ADDR of ARG2
J=J**I

R=ABS(R)
I=IABS (I) JMS* SUBR
DI=JABS(DI) JMP .+2
DP=DABS(DP) • DSA ADDR of ARG

R=AINT(R)
I=INT(R) ~MS' SURR
I=!DINT(DP) JMP .+2
DI=JINT(R) .DSA ADDR of ARG
DI=JDINT(DP)

Errors Accuracy
External Calls (Bits)

N.A. INTEGER
15 if base = 0
and expo .s 0

N.A. REAL
None

None N.A. REAL

13 if base < 0 26 .EE,.DF, REAL
13 if base ~ 0 26 .EE,.DF, DOUBLE
14 if base < 0 32 .DE,.DF, DOUBLE
14 if base ~O 32 .DE,.DF, DOUBLE

None N.A. DBL!NT

None N.A. .DA,REAL
.DA
.DA, DBL!NT
.DA, DOUBLE

None N.A. .DA, REAL
.DA, REAL
.DA, REAL, DOUBLE
.DA, DOUBLE, DBL!NT
• DA, DO UBL E fDBL! NT

W
I

.j>.

Function

Transfer of
Sign

Positive
Difference

Conversion

Remaindering

)

Definition

Sign of ARG2

t
Sign of ARGI

ARG1-MIN(ARG1,ARG2)

VMODE -ARG

ARG1-[ARG1/ARG2]ARG2
Where: [A 1/ A2] is an in-
teger whose magnitude does
not exceed the mag ni tude
of A 1/ A2 and whose sign is
the same

~- -----~-

)

Symbolic
Name

SIGN
ISIGN
DSIGN
JSIGN

DIM
!DIM
JDIM

FLOAT
IFIX
SNGL
DBlE
JFIX

ISNGl
!DBlE
JDFIX
FlOATJ
DBlEJ

AMOD
MOD
DMOD
JMOD

)

Table 3-1 (Cont)
Intrinsic Functions

Mlde Calling Sequence

R=SIGN(R,R) ('MS> SU",
I=ISIGN(I,I) JMP .+3
DP=DSIG N(DP, DP) • DSA ADDR of ARG 1
DI=JSIGN(DI,DI) • DSA AD DR of ARG2

R=DIM(R,R) ('MS>SU",
I=!DIM(I,I) JMP .+3
DI=JDIM(DI,DI) • DSA ADDR of ARG 1

.DSA ADDR of ARG2

R=FLOAT(I)
I=IFIX(R)
R=SNGl(D)
D=DBlE(R)
DI=JFIX(R) JMS* SUBR
or JFIX(DP) JMP .+2
I=ISNGl(DI) .DSA ADDR of ARG
DI= JDBlE(I)
DI=JDFIX(DP)
R=FlOAT J(DI)
DP=DBlEJ(Di)

R=AMOD(R, R) fMS> SUB' I=MOD(I,I) JMP .+3
DP=DMOD(DP, DP) .DSA ADDR of ARGI
DI=JMOD(DI,DI) .DSA ADDR of ARG2

))

Errors
Accuracy

External Calls (Bits)

None N.A. .DA, REAL
.DA
.DA, DOUBLE
.DA,DBUNT

None N.A. .DA, REAL
.DA, INTEGER
.DA,DBUNT

None N.A. .DA, REAL
.DA, REAL
.DA, DOUBLE
.DA, REAL
.DA, DOUBLE, DBUNT
.DA,
.DA, DBUNT
.DA
.DA, DOUBLE, DBUNT
.DA, DBUNT
.DA,DBLINT

None N.A. .DA, REAL
.DA, INTEGER
.DA, DOUBLE
.DA,DBUNT

--

))

W
I

01

Function

Maximum/
minimum value

Definition

VAR = max or min value of
arglist

Symbolic
Name

Integer
min/ max

(IMNMX)
MAXO
MINO
AMAXO
AMINO

Real
min/max

(RMNMX)
AMAXI
AMINI
MAXI
MINI

Double-
precision

(DMNMX)
DMAXI

Double
integer

(JMNMX)
JMAXO
JMINO

Table 3-1 (Cont)
Intrinsi c Functions

Mode

I=MAXO(Il'·· .In)
I=MINO(Il'·· .In)
R=AMAXO(I I, ... In)
R=AMINO(Il'·· .In)

R=AMAXI (Rl, ••• Rn)
R=AMINI (Rl,··· Rn)
I=MAXl(Rl,·· . Rn)
I=MINl(R1,·· • Rn)

DP:DMAXI (DP1,·· . DP '5
DP-DMINl(DP1'·· .DP n

DI=JMAXO(D1 l'·· .Dln)
DI=JMINO(DI1,·· .Dln)

Calling Sequence

JMS*SUBR
JMP .+n+l
.DSA ADDR of ARGI

.DSA ADDR of ARGn

Errors Accuracy
External Calls (Bits)

None N.A. INTEGER, REAL

INTEGER, REAL

DOUBLE

DBUNT

I

3.2 EXTERNAL FUNCTIONS

Table 3-2 describes the external functions of the FORTRAN library. An external function is a sub

program which is executed whenever a reference to it appears within a FORTRAN expression and which

returns a single value.

A description of the algorithm applied in implementing each of these functions is given below.

3.2.1 Square Root (SQRT, DSQRT)

A first-guess approximation of the square root of the argument is obtained as follows:

If the exponent (EXP) of the argument is odd:

(EXP-1) (EXP-1)
Po = .5 2 +ARG 2

If EXP is even:

EXP EXP
Po = .5 (-2-) +ARG (2-1)

Newton's iterative approximation, below, is then applied four times.

Pi+1 = ~ (Pi + A~~)
I

3.2.2 Exponential (EXP, DEXP)

The following description also applies to the sub-functions. EF and. DF.

The function eX is calculated as 2xl092E (xlog
2

E will have an integer portion (1) and fractional portion

(F».

Then:

Where:

n = 6 for EXP and .EF

n = 8 for DEXP and .DF

(continued page 3-7)

3-6

- ,

-,

W
I

'..I

Function

Square
root

Exponen-
tial

Natural
logarithm

Common
logarithm

Sine

Cosine

Arc
tangent

Arc
tangent
(X/y)

Hyper-
bolic
tangent

Definition

ARGl/2

ARG
e

Log ARG
e

Log
10

ARG

Sin(ARG)

cos(ARG)

-1 tan (ARG)

tan
-1

(ARGl/
ARG2)

tanh(ARG)

---- --

Symbolic Mode
Name

SQRT R=SQRT(R)
DSQRT OP=DSQRT(DP)

EXP R=EXP(R)
OEXP DP=DEXP(DP)

ALOG R=ALOG(R)
OLOG OP=DlOG(OP)

ALOGlO R=ALOG 10(R)
OLOGI0 OP=OlOG lO(OP)

SIN R=SIN(R)
OSIN OP=OSIN(OP)

COS R=COS(R)
OCOS OP=OCOS(OP}

ATAN R=ATAN(R)
DATAN DP=DATAN(DP)

ATAN2 R=ATAN2(R, R)
DATAN2 OP=DATAN2

(DP ,DP)

TANH R=TANH(R)

Table 3-2
External Functions

Calling Sequence

JMS*SUBR
JMP .+2
• DSA ADDR of ARG

Same

Same

Same

Same

Same

Same

JMS*SUBR
JMP .+3
.OSA ADDR of ARG 1
• DSA ADDR of ARG2

JMS*TANH
JMP .+2
• DSA ADDR of ARG

Errors

5 if ARG < 0
6 if ARG <0

13ifARG<0
14 if ARG <0

Same

Same

None

None

None

None

None

Accuracy
External Calls (Bits)

26 • OA,. ER,REAL
• DA, .ER,DOUBLE

26 .DA, .EF, .ER,REAL
34 • OA, .OF,. ER,DOUBLE

26 .OA, .EE,.ER,REAL
32 • OA, • DE,. ER, DOUBLE

Same Same

I

26 • OA,. EB ,REAL I
34 • OA, • DB, OCXJBLE

26 • OA,. EB ,REAL
34 • DA, .OB,OOUBLE

26 • DA, • ED I REAL
34 • DA, • DD, DOUBLE

26 Same
34

26 .OA, .EF ,REAL

----------- -

The values of C. are given below.
I

Value of i Value of C.
I

0 1.0

1 0.34657359

2 0.06005663

3 0.00693801

4 0.00060113

5 0.00004167

6 0.00000241

7 0.00000119

8 0.00000518

3.2.3 Natural and Common Logarithms (ALOG, ALOG10, DLOG, DLOG10)

The exponent of the argument is saved as ,the integral portion of the result plus one. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows:

Then:

'vVhere:

Z = x- fi
X+v'2

n = 2 (ALOG)

n = 3 (DLOG)

The values of C are given below:

ALOG and ALOG 10

C
1

= 2.8853913

C
3

= 0.96147063

C
5

= 0.59897865

3-8

DLOG and DLOG 10

C1 = 2.8853900

C3 = 0.96180076

C
5

= 0.57658434

C
7

= 0.43425975

(continued next page)

~,

~,

The final computation is:

log X = (log
2

X) (log 2)
e e

ALOG and DLOG:

ALOG10 and DLOG10: 10910X = (log2X) (log 102)

3.2.4 Sine and Cosine (SIN, COS, DSIN, DCOS)

This description also applies to the sub-functions. EB and. DB.

The argument is multiplied by 2/1£ for conversion to quarter-circles. The two low-order bits of the

integral portion determine the quadrant of the argument and produce a modified value of the fractional

portion (Z) as follows.

Low-Order Bits

00

01

10

11

Quadrant

II

III

IV

Modified Value (Z)

F

1-F

-F
-(1-F)

The value of Z is then applied to the polynomial expression:

" n 2~1
s,"X=(~ C2"+1Z)

i=O I

n = 4 for SIN, COS, .EB

n = 6 for DSIN, DCOS, .DB

The values of C are as follows:

SIN, COS, .EB

C
1

= 1.570796318

C
3

= -0.645963711

C
5

= 0.079689677928

C
7

= -0.00467376557

C
9

= 0.00015148419

3-9

DSIN, DCOS, .DB

C
1

= 1.5707932680

C
3

= -0.6459640975

C
5

= 0.06969262601

C
7

= -0.004681752998

C
9

= 0.00016043839964

C
11

= -0.000003595184353

C
13

= 0.000000054465285

(continued next page)

The argument for COS and DCOS is adjusted by adding 1T/2. The sin subfunction is then used to

compute the cosine according to the following relationship:

COs X =sin ~+X)

3.2.5 Arctangent (ATAN, DATAN, ATAN2, DATAN2)

The following description also applies to the sub-functions. ED and. DD.

For arguments less than or equal to 1, Z = arg and:

n 2i+1
arctangent arg = (i~O C2i+ 1 Z)

n = 7 for ATAN and ATAN2

n = 3 for DATAN and DATAN2

For arguments greater than 1, Z = l/arg and:

1T (~ 2i+l
arctangent arg ="'2 - i=O C2i +

1
Z)

n = 8 for ATAN and ATAN2

n = 3 for DATAN and DATAN2

The values of C are given below.

ATAN and ATAN2

C 1 = 0.9992150

C
3

= -0.3211819

C
5

= 0.1462766

C
7

= -0.0389929

3.2.6 Hyperbolic Tangent

The hyperbolic tangent function is defined as:

2
tanh I X I = (1- 2 I X I)

l+e

DATAN and DATAN2

C 1 = 0.9999993329

C
3

= -0.3332985605

C
5

= 0.1994653599

C
7

= -0.1390853351

C
9

= 0.0964200441

Cll = -0.0559098861

C
13

= 0.0218612288

C
15

= -0.0040540580

eX is calculated as j<log2e (x1092e will have an integral portion (I) and a fractional portion (F)).

(continued next page)
3-10

Then:

Where:

n=6

The values of C. are:
I

3.3 SUB-FUNCTIONS

Value of i

o
1

2

3

4

5

6

Value of C.
I

1.0

0.34657359

0.06005663

0.00693801

0.00060113

0.00004167

0.00000241

Table 3-3 describes the sub-functions which are included in the FORTRAN library. These functions

are referenced by intrinsic and external functions but are not directly accessible to the user via

FORTRAN. The sub-function. EB, for example, performs the computation of sine and is invoked by

the external function SIN. MACRO programs may reference sub-functions directly. Algorithms for

all sub-functions which have counterparts among external functions were given in the previous sub

section. This leaves the two general sub-functions Logarithm, base 2 and polynomial evaluator. Their

algorithms are given below.

3.3.1 Logarithm, Base 2 (. EE, • DE)

The exponent of the argument is saved as the integer portion of the result plus one. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows:

x-1"2 Z
X+f2

(continued page 3-14)

3-11

W
I -I'-.>

Function

Sine
Computation

Arc tangent
Computation

Logarithm
(base 2)
Computation

Exponential
Computation

Polynomial
Evaluation

)

Definition
Symbolic

Name

Sin (ARG) .EB
.DB

tan -1 (ARG) .ED
.DD

lo92ARG .EE
.DE

ARG • EF
e .DF

VAR=

i C Z2i+l
1 =0 2i+l

.EC

.DC

VAR=

~ C Z2i+l
i=O 2i+l

Mode

R=. EB(R)
DP=.DB(DP)

R=. ED(R)
DP=.DB(DP)

R=.EE(R)
DP=.DE(DP)

R=. EF(R)
DP=DF(DP)

Table 3-3
Sub-Functions

Calling Sequence

JMS*SUBR
At entry floating
accumulator contains ARG;
at return contains result

Same

Same

Same

JMS*SUBR
CAL PLIST

·
R=.EC(R

2
,R

1
,···R

n
) · · DP=.DC(DP

2
,DP

1
, PLIST-N/ - number of terms

+1
••• DP)

C / last term n
n

C -l/next to last
n

· · · C
1

/2nd term

C /1st term
g

--

))

Errors Accuracy External
(Bits) Calls

None 19 .EC,REAL
28 .DC,DOUBLE

None 26 Same
34

13, ARG <0 26 .ER,REAL
14,ARG<0 32 .ER,DOUBLE

None 26 REAL
34 DOUBLE

None N.A. REAL
DOUBLE

I
I

-

(continued next page)

j)

W
I

W

-

Function

General Get
Argument

Definition Symbolic Mode
Name

N.A .DA N.A

Table 3-3 (Cont)

Sub-Functions

Calling Sequence

Calling Routine

SUBR CAL 0
JMS* .DA
JMP .+n+l
(address of ARG 1)
(address of ARG2)

· · · (address of ARGn)

Is Called By

JMS*SUBR
JMP .+n+l
.DSA ARGl
.DSA ARG2

Errors Accuracy External
(B its) i

None N.A None

----_.-

Then:

1 n 2i+1
log2X =2+\~ C2i+1Z)

n = 2 (.EE)

n=3(.DE)

The values of Care:

.EE

C
1

= 2.8853913

C
3

= 0.96147063

C 5 = 0.59897865

3.3.2 Polynominal Evaluator (.EC, .DC)

A polynomial is evaluated as:

3.4 THE ARITHMETIC PACKAGE

.DE

C
1

= 2.8853900

C
3

= 0.96180076

C
5

= 0.57658434

C
7

= 0.43425975

The arithmetic package contains the OTS arithmetic routines which are invoked by FORTRAN arith

metic expressions. These routines may also be called directly by MACRO progrcms. Versions of

FORTRAN-IV designed for use with the Floating Point Processor (FPP) require only single integer

arithmetic routines. Double (extended) integer arithmetic will be handled by the hardware.

The three major routines of the arithmetic package are INTEAE, RElEAE, and DOUBLE. INTEAE

contains integer arithmetic routines; RELEAE, real and floating arithmetic; and DOUBLE, double

precision arithmetic.

A description of these routines is given in Table 3-4. In the "calling sequence" column, reference

is made to three accumulators - the A-register, the floating accumulator, and the held accumulator.

The A-register is the standard PDP-15 hardware accumulator. The floating and held accumulators are

software accumulators which are part of the RELEAE package. The held accumulator is used as tempo

rary storcge by some routines. Both consist of three consecutive PDP-15 words and have the format

shown below. (Negative mantissae are indicated by a change of sign.)

3-14

Held AC Labels Floating AC Labels

CE01 .AA

CE02 .AB

CE03 .AC

I Exponent (2's complement)
o

o

o

Sign of
mantissa

High-order
mantissa

Low order mantissa

17

17

17

The format shown above is that used for double-precision numbers. Single-precision numbers must be

converted before and after use in the floating accumulator to the single-precision format:

0

0

Low-order Exponent
mantissa

Sign of
mantissa

89

(2's complement)

High-order
mantissa

17

17

RELEAE routines check for underflow and overflow and set a flag (.OVUDF) in the REAL store routine

. AH as follows:

Flag

non-O positive value

negative value

zero

Meaning

overflow - an attempt to store
a REAL constant whose binary
exponent is greater than 3778

underflow - an attempt to store
a REAL constant whose binary
exponent is less than -400

8

default value

Action

± largest representable real
value stored (DOS-15);

zero is stored

va lue is stored

The user may test this flag under program control using the logical function IFLOW. Recoverable OTS

messages are also given (see Appendix B, Section B.2).

Division by zero is also checked and a flag .DZERO set to zero (default value is 777777) in the

general floating divide routine (.CI). The result of the division is ± the largest representable value.

An OTS error message is also given for this condition. The user may test. DZERO under program

control using the logical function IDZERO.

3-15

The flags .OVUDF and. DZERO can only be initialized by reloading the program, by a separate

user program, or by IFlOW or IDZERO. These functions are described below.

Routine IFLOW

Purpose Checks underflow and overflow

Call IORlV = IFlOW(I)

External Calls .DA

Errors None

The argument 1 indicates the check to be performed and values are returned as follows:

o
<0

>0

Routine

Purpose

Call

Action

no check

underflow check

overflow check

Externa I Co II s

Errors

Value

O(.FAlSE) flag unchanged

-l(.TRUE) if underflow - flag set to 0;
else 0 (.FAlSE) and flag unchanged

-1 (. TRU E) if overflow - flag set to zero;
else 0 (.FAlSE)

IDZERO

Checks for division by zero

IORl V = IDZERO (I)

.DA

None

If I=O, no check is made, IORlV = O(.FAlSE) and the flag is unchanged. If I/O, a check is made.

If an attempt at division by zero was made, IORlV = -1 (. TRUE) and the flag is reinitialized. Other

wise the flag is unchanged and IORlV = O(.FALSE).

3-16

W
I

.......

))
' / ')

Function Definition Symbolic
Name

Integer
Arithmetic

*Multipli ARG1*ARG2 .AD
cation

INTEAE *Division ARGl/ARG2 .AE
* Reverse ARG2/ARGl .AF
division

*Subtraction ARG1-ARG2 .AY
* Reverse ARG2-ARGl .AZ

):
subtraction

Double-
Precision
Arithmetic

Load N.A .AO
Store N.A .AP

DOUBLE
Add ARG1+ARG2 .AQ
Subtract ARG1-ARG2 .AR
Reverse ARG2-ARGl .AU
subtract

Multiply ARG1*ARG2 .AS
Divide ARGl/ARG2 .AT
Reverse ARG2/ARGl .AV
divide

.......

*FPP versions require only Integer Arithmetic (INTEGE).

I,

Table 3-4
Arithmetic Package*

I

Mode Ca II ing Sequence External
Ca lis

ARGl
None

A-Register ARG2 I
I -- ,

1=1*1 mu Itipl icand multiplier
JMS*SUBR

1=1/1 dividend divisor LAC ARG2
1=1/1 divisor dividend

1=1-1 minuend subtrahend
1=1-1 subtrahend minuend

REAL

ARGl
FL.AC ARG2

"'I

--
DP=.AO(DP) address
DP=.AP(DP) value address
DP=DP+DP augend addend
DP=DP-DP minuend subtrahend > JMS*SUBR
DP=DP-DP subtrahend minuend .DSA ARG2

DP=DP*DP mu Itipl icand multiplier
DP=DP/DP dividend divisor
DP=DP/DP divisor dividend

(continued next page)

):

W
I

.......
00

RElEAE

)

Function

Real Arith-
metic (in-
eludes float-
ing)
load
Store
Add
Subtract
Reverse
subtract

Multiply
Divide
Reverse
divide

Floating
Arithmetic

Float
Fix
Negate

Multiply
Add
Normalize
Hold
Sign Control

Short get
argument

Definition

N.A
N.A
ARG1+ARG2
ARGI-ARG2
ARG2-ARGl

ARG1*ARG2
ARG1/ARG2
ARG2/ARGI

R IARG
I RARG
R RARG

ARG1*ARG2
ARG1+ARG2
N.A
N.A
(Note 1)

N.A

)

Table 3-4 (Cont)
Arithmetic Package

Symbolic Mode
Name

.AG R=.AG{R)

.AH R=. AH{R)

.AI R=R+R

.AJ R=R-R

.AM R=R-R

.AK R=R*R

.AL R=R/R

.AN R=R/R

.AW R=.AW{I)

.AX I=.AX{R)

.BA R=. BA{R)

.CA R=R*R

.CC R=R+R

.CD R=.CD{R)

.CF R=.CF{R)

.CG R=.CG{R)

.CB R=.CB(R)

)

Calling Sequence External
Calls

ARGl
Fl.AC ARG2

address
value address
augend addend
minuend subtrahend JMS*SUBR
subtrahend minuend .DSA ARG2

multiplicand multiplier
dividend divisor
divisor dividend

~

I

A-Register Fl.AC } --
integer F. P num JMS*SUBR

F.P num

Fl.AC HELD AC

multiplicand
mulHpHe, 1 augend addend

value JMS*SUBR
value
value value

CAlO SUBR ENTRY-EXIT
JMS* .CB
CAlO STORAGE FOR ARG ADDR
_ .. _-- -- ---- ---

(continued next page)

j))

W
I

-0

Function Definition
Symbolic

Name

Floating
Arithmetic
(Cont)
Divide ARG1/ARG2 .CI
*Round and N.A .CH
sign

Load N.A .JG
Store N.A .JH
Add ARG1+ARG2 .JJ
Subtract ARGI-ARG2 .JJ
Reverse ARG2-ARGI .JM
subtract

INT Multiply ARG1*ARG2 .JK
Divide ARG1/ARG2 .JL
Reverse ARG2/ARGI .IN
divide

Float R JARG .JW
Fix J+-RARG .JX
Negate J JARG .JA

----_ ... _-

Table 3-4 (Cont)
Arithmetic Package

Mode

FL.AC

R=R/R { d;y;""
R=.CHR value

ARGl
AC,MQ

J=.JG(J)
J=.JH(J) value
J=J+J augend
J=J-J minuend
J=J-J subtrahend

J=J*J multiplicand
J=J/J dividend
J=J/J divisor

AC,MQ

R=.JW(J) Doub. Int.
J=.JX(R)
J=.JA(J)

Calling Sequence

HELD .AC

d;y;dend } JMS*SUBR **
CONSTl
CONST2

ARG2 --
address
address
addend
subtrahend JMS*SUBR
minuend .DSA ARG2

multiplier
divisor
dividend

FL.AC

F.P. Numb ... }
F. P. Number JMS*SUBR

*The sign of the result (exclusive OR of the sign bits of .AB and CE02) is stored in .CE. The sign of .AB is saved in CEOS.

External
Calls

.CD ,REAL
REAL

**CONSTl and CONST2 are required for both EAE and NON-EAE operations, however, they are used only by the NON-EAE version of .CI.
CONSTl indicates the number of bits to be generated (-34 for single precision, -44 for double precision). CONST2 is the least significant
quotient bit (400 for single precision, 1 for double precision).

-...

--

CHAPTER 4

UTILITY ROUTINES

Two types of subprogram are described in this chapter - OTS routines, automatically invoked by

FORTRAN statements; and external subprograms which may be invoked via a FORTRAN CALL statement.

Both types are accessible to MACRO programs.

4.1 OTS ROUTINES

OTS utility routines perform a number of functions specified by FORTRAN statements. These functions

of FORTRAN, like the input-output functions discussed previously, use OTS as an interface between

the user program and the monitor environment in which it will operate.

Each of these routines is described below.

Routine • S5

Purpose Calculates the address of an array element

Calling .GLOBl .55
Sequence JM5* .55

.D5A ARRAY / addr wd. 4 - array descriptor block

.55
LAC (K.)

• I

/ subscr i pt i

·
· LAC (K

k
) / subscript k

DAC ALOC / return with element address in AC

External Calls None

Errors None

.55 references the array-descriptor block associated with the array whose element is to be located.

An array descriptor block is a four-word table with the contents depicted below.

4-1

Word 1

Word 2

Word 3

Word 4

a

0-2

Data
mode

3-4

a - for one-dimensional array
Size of first dimension

Size (in words)

a - for one- and two-dimensional arrays
Size of the first two dimensions

Address of first word of array with mode in bits 1-2.

17

Size is determined by multiplying the dimensions of the array by the number of words (N) used for a

data item of the specified mode (M). Thus, an INTEGER array defined by DIMENSION (2,2,2) has

the size 8 in word 1, the size 2 in word 2, and the size 4 in word 3. A REAL array of the seme

dimensions will have 16, 4, and 8 in these locations.

The values of M and N for the various data modes are:

Array Mode

INTEGER, LOGICAL

DOUBLE INTEGER

REAL

DOUBLE PRECISION

M

00

11

01

10

N

2

2

3

The address of an array element A(K
1

,K
2

,K
3
) is calculated by .SS using the following formula:

addr = WD4 + (K1-l) * N + (K
2

-1) * WD2 + (K3-1) * WD3

Routine .GO

Purpose Computes index of computed GO TO

Call ing LAC V / index value in A-register

GOTO

Sequence JMS* .GO
-N / number of statement address
STMT(l)
STMT(2)
STMT(N)

External Calls OTSER

Errors OTS 7 - illegal index « 0)

4-2

- ,

Routine .ST

Purpose Processes STOP statement {returns to monitor}

STOP
Calling LAC loctal number to be printed
Sequence JMS* .ST

External Calls • SP

Errors None

Routine .PA

Purpose Processes PAUSE. Waits for fP and returns control
to user program

Calling LAC loctal number
Sequence JMS* .PA

PAUSE

External Calls • SP

Errors None

Routine .SP

Purpose Prints octal number for PAUSE and STOP.
Zero assumed if none supplied.

Calling LAC loctal integer
Sequence JMS* .SP

SPMSG
.DSA {control return for PAU SE}
LAC {first character}
·
·
·

LAC {sixth character}

External Calls None

Errors None

Routine .ER

Purpose To print error messages on Teletype and take
action according to class of error

OTSER
Calling JMS* .ER
Sequence .DSA {error number}

External Calls None

Errors None

Recoverable errors are indicated when bit 0 of the error number is a 1. In this case, the AC and link

are restored to their original contents and control is returned to the calling program at the first loca

tion following the error.

4-3

Unrecoverable errors are indicated when bit 0 of the error number is O. Control is returned to the

monitor by means 'of an • EXIT function. In the case of an unrecoverable error in a FORMAT statement,

the current 5/7 ASCII word pair of the erroneous FORMAT is also printed. The calling sequence for

• ER for a FORMAT statement di ffers from other calls and is:

PARTWD

PARTWD

JMS* .ER
.DSA 12

LAC chars
LAC chars

Routine

Purpose

Calling
Sequence

External Calls

Errors

Routine

Purpose

Calling
Sequence

External Calls

Errors

/ error number

/ current 5 characters

.PB

Part word fetch result in AC or ACMQ

JMS* .PB
• DSA address

None

None

.PC

Stores contents of AC or ACMQ

JMS* .PC
• DSA address

None

None

4.2 FLOATING POINT PROCESSOR ROUTINES

General
Inter
face
Routine
.FPP

Routine

Purpose

Routine

Purpose

Routine

Purpose

Routine

Purpose

Routine

Purpose

.AX

FPP version of software .AX

.AW

FPP version of software .AW

.ZA

Loads high order mantissa of FPP AC into the
regular AC

.ZB

Initializes FPP error handling

Error handling

4-4

Routine .ZC
Extended
Integer
(Double
Integer)
Interface
Routines

Purpose Converts integer in CPU AC to extended integer in
FPP AC

Routine .ZD

Purpose Converts extended integer in FPP AC to single
integer in CPU AC

4.3 FORTRAN - CALLABLE UTILITY ROUTINES

These routines are described in Table 4-1.

4.4 RSX LIBRARY (.LIBRX BIN) ROUTINES

A special set of routines is provided for use with the RSX-15 real-time monitor system. This library

includes, in addition to the subprograms described pre,:,iously, the FORTRAN-callable external sub

routines given in Table 4-2. The even variable values have the following meaning:

a. Positive values signal successfu I compl etion.

b. Zero indicates a request is still pending.

c. Negative values indicate rejection or unsuccessful completion.

-5 Illegal header word from device (data mode incorrect or data validity bits improperly
set) (DVH)

-6 Unimplemented or illegal function (DVH)

-7 Illegal data mode (DVH)

-10 File still open (DVH)

-11 File not open (DVH)

-12 D ECtape error (DVH)

-13 File not found (DVH)

-14 Directory full (DVH)

-15 Medium full (DVH)

-16 Output word-pair-count or input-bufFer-size error (DVH)

-23 Input word-pair-count error (DVH)

-24 LUN has been REASSIGNed while an ATTACH or DETACH request was in an I/O
request queue (DVH)

-101 Out of range Logical Unit Number (10.)

-102 Unassigned Logical Unit Number (IO.)

-103 Non-resident Device Handler (10.)

-104 Control Table argument error (DVH)

-201 Task not in system (RQ., SC,. RN., SY., DA., EA., FX,. UF., CN.)

(continued page 4-15)

4-5

.j:>. ,
0-

Routine
ENTRY

Purpose
Name

Clock TIME * Records elapsed
Handling - time in minutes
only one and seconds on
call may be 60-cycle
active at machine
any point
in a user's
program

TIME10* Records elapsed
time in minutes,
seconds, and
tenths of seconds

Error ERRSET Controls the
Handling number of run-

time arithmetic
errors output by
OTSER

Table 4-1
FORTRAN-Callable Utility Routines

Call ing Sequence Examples

CALL TIME{IMIN,ISEC,IOFF) CALL TIME(IM,IS,IOF)
'Nhere: IMIN == minutes ·

ISEC == seconds
A ·

IOFF = non-zero ·
IOF == 1

to stop clock
WRITE{4, lOO)IM, IS
[outputs time to execute A]

CALL TIME10{IMIN,ISEC, See TIME
ISEC10,IOFF)

'Nhere: IMIN == minutes
ISEC == seconds
ISEC10 = tenths of

seconds
IOFF == non-zero

stops clock

CALL ERRSET{N)
'Nhere: N = integer giving

number of ti mes
message to be
output before
suppressi on. If
ERRSET is not
given, OTSER
assumes N = 2.
IfN~O,no
messages output.

*Not supported with RSX. Other RSX supplied routines can be used for this purpose.

)
)

)

External
Errors

Calls

.DA None
• TIMER

.DA
• TIMER None !

-- --L-----________

(continued next page)

)

.....
I

'-J

Routine

Adjustable
Dimensioning

Adjustable
Dimensioning
(Cont)

--

ENTRY Purpose
Name

ADJ1 To adjust one-
dimensional
array

ADJ2 To adjust a two-
dimensional
array

Table 4-1 (Cont)
FORTRAN-Callable Utility Routines

Ca" i ng Sequence Examples External
Errors Calls

DIMENSION B(1) DIMENSION A(300),B(1),C(l) .DA None
CALL ADJ 1(B ,A) ·
Where: B = array name ·

A= beginning · CALL ADJ1 (B,A(101»
storage location CALL ADJ1 (C,A{20l)
of B array el ement ·
(e.g., C(200) · which is the ·
beginning storage Band C may be referenced as
location of B) if they had been dimensioned

Note: The dimensions of A as (100) each
must be sufficient to
hold all entries of
array B. A may be
a dummy argument in
a subroutjne

DIMENSION B(1, 1) DIMENSION A(300) ,B(1, 1), .DA None
CALL ADJ2(B ,A, NR) C(1,l) .AD
'lYhere: A and B are as for ·

ADJ1 ·
NR = the number of ·

rows to appear
CALL ADJ2(B,A(1),10)
CALL ADJ2(C,A(10l),20)

in B ·
· · Band C may be referenced as

if they had been dimensioned
(10,10) and (20,10), respec-
tively

-_._-- -_.-
(continued next page)

i

Routine
ENTRY

Purpose
Name

Adjustable ADJ3 To adjust a three-
Dimensioning dimensional array
(Cont)

---- -

t-oo

))

Table 4-1 (Cont)
FORTRAN-Callable Utility Routines

Calling Sequence Examples

DIMENSION B(1, , ,1) DIMENSION A(300) ,B{1, 1),
CALL ADJ3(B ,A, NR, NC) C(1 , 1)
INhere: A,B, and NR are CAll ADJ3(B,A{1), 10,5)

as for ADJ2 CAll ADJ3(C,A(101),10, 10)
NC = number of Band C may be referenced as

columns to if they had been dimensioned
appear in (2,10,5) and (2.10,10),
array B respectively

J
)

External
Errors I Calls

I

.DA None
.AD

I

I

I
I

I

)

.j>...

-b

Routine Purpose

REQUEST Requests task execution

SCHEDULE Schedules task execu-
tion

RUN Run task in delta time

Table 4-2
FORTRAN-Callable RSX Routines*

Calling Sequence

CALL REQST(nHTSKNAM,IP[,IEVJ)

Where:

n = no. of characters in task name
TSKNAM = name of task (l to 5 characters)
IP = task priority (1-512)

may be variable or constant
lEV = event variable

CALL SCHED(nHTSKNAM,lT ,IP[,IEVJ)

Where:

IT = name of 5-word integer array describing
schedule

IT(l) = schedule of hour (0-23)
IT(2) = schedule of minute (0-59)
IT(3) = schedule of second (0-59)
IT(4) = reschedule interval (up to one day)
IT(5) = reschedule units (l = ticks,

2 = seconds, 3 = minutes, 4 = hours)

CALL RUN(nHTSKNAM,IT ,IP[,IEV])

Where:

IT = name of 4-word integer array
IT(l) = schedule delta time from now

(up to one day)
IT(2) = delta schedule units (l = ticks,

2 = seconds, 3 = minutes, 4 = hours)
IT(3) = reschedule interval (up to one day)
IT(4) = reschedule units

--- --- ----

*Square brackets indicate that the event variable is an optional argument.

Event Variables Returned

+1, -201, -202, -204, -777

+ 1, -201, -203, and -777

+ 1, -201, -203, and -777

(continued next page)

.j>o.
I
o

Routine Purpose

SYNC Execute task at a
specified interval

CANCEL Cancel task execution
(no effect for an active
task)

SUSPEND Suspend execution of
tosk issuing this call.
Execution not permitted
until a RESUME call

RESUME Resume task execution

MARK Set an event variable
in delta time

WAIT FOR Suspend task if
event variable = 0;
resume when non-zero

Table 4-2 (Cont)
FORTRAN-Callable RSX Routines*

Calling Sequence

CALL SYNC(nHTSK NAM, IT, IP[, lEV])

Where:

IT = name of 5-word integer array
IT(l) = synchronization units (1 = ticks,

...)
IT(2) = schedule interval from synchroniza-

tion time (up to one day)
IT(4) = reschedule interval (up to one day)
IT(5) = reschedule units (1 = ticks, •••)

CALL CANCEL(nHTSKNAM[,lEV])

CALL SUSPEND

CALL RESU ME(nHTSK NAM [, lEV)

CALL MARK(IT, lEV)

Where:

IT = name of 2-word integer array
IT(l) = delta interval (up to one day)
IT(2) = delta units (l = ticks, •••)

CALL WAITER(IEV)

*Square brackets indicate that the event variable is an optional argument.

)
))

Event Variables Returned I
I

+1, -201, -203, and -777 I

I

I

+1, -201, and -777

+1, -202, and -205

+ 1, -203, and -777

(continued next page)

)))

""'" I

Routine Purpose

WAIT Suspend execution of
.

task unti I occurrence
i

of next significant event

EXIT Terminate task execution

DSKAL Allocate disk storage

DSKDAL Deallocate disk storage

DSKPUT Put data on disk

--_._-_._ .. _-

Table 4-2 (Cont)
FORTRAN-Callable RSX Routines*

Ca II i ng Seque nce

CALL WAIT

CALL EXIT

CALL DSKAL(ICTS,NW[,IEVJ)

Where:

ICTS = control table (integer array
returned at end of operation)

ICTS(1) = amount actually allocated
ICTS(2) = physical disk unit number
ICTS(3) = absolute starting address of

the space allocation relative
to physical disk unit number

NW = desired storage (in words)

CALL DSKDAL(ICTS[, IEVJ)

Where:

ICTS = control table (same address as
used in the corresponding DSKAL)

CALL DSKPUT(ICTA,IOA, NW,ARRAY[,lEV])

Where:

ICTA = device control table (same as
for corresponding DSKAL)

lOA = disk offset address
NW = number of words (decimal) to transfer
ARRAY = name of array containing data to

be tra nsferred

"'Square brackets indicate that the event variable is an optional argument.

Event Variables Returned
-~-

+1, -6, -15, -101, -104, and -777

I

+1, -6, -15, -101, -104, and -777

+1 and -N

Where:

N = the contents of the disk status
reg i ster on error

(continued next page)

~
I

I-..>

Routine Purpose

DSKGET Get data from disk

ATTACH Attach I/o Handler task

DETACH Detach I/O Handler task

SEEK Seek open file for input

ENTER Open fil e for output

CLOSE Closes file

HINF Provides information
about the physical
device and the I/O
Handler associated
with a particular
Logical Unit Number
(LUN)

~~--

Table 4-2 (Cont)
FORTRAN-Callable RSX Routines*

Calling Sequence

CALL DSKGET{ICTA,IOA, NW,ARRAY[,lEV])

CALL ATTACH{LUN[,lEV])

Where:

LU N = logical unit number

CALL DETACH{LUN[,IEV]

CALL SEEK{LU N,nHFLNAM,nHEXT[,IEV])

Where:

LU N = logical unit number
n = number of characters in file name or

extension
FLNAM = 1-5 character file name
EXT = 1-3 character extension

CALL ENTER{LUN,nHFLNAM ,nHEXT[,lEV])

CALL CLOSE{LU N,nHFLNAM,nHEXH ,lEV])

CALL HINF{LUN,IEV)

-- ~-

*Square brackets indicate that the event variable is an optional argument.

)
))

Event Variables Returned

+land-N

+1, -6, -24, -1OJ, -103, and -777

+1, -6, -101, -103, and -777

+ 1, -6, - 1 0, - 12, - 13, - 101, - 102 ,
-103, and -777

I

+1. -6, -11, -12, -14, -101, -102,
-103, and -777

I

+ I, -6, - 11, - 12, - 13, - 14, - 1 0 I, I

-102, -103

Single word containing the following
Handler information:

Bit 0 - unused
Bit 2 - input - set to 1 if data can be

input
Bit 2 - output - set to 1 if data can be

output
Bit 3 - file-oriented - set to 1 if file-

oriented (SEEK and ENTER have
been used)

--

(continued next page)

)))

.j>..
I
~

W

Routine Purpose

HINF(Cont)

DISABLE Disable task

ENABLE Enable task

FIX Fix task in core

UNFIX Unfix task in core

DECLAR Declares a signifi-
cant event

TIME Obtain time from
Executive

Table 4-2 (Cont)
FORTRAN-Callable RSX Routines*

Calling Sequence

CALL DISABL(nHTSKNAM[,lEV])

CALL ENABLE(nHTSKNAM[,1M)

CALL FIX(nHTSKNAM[,IEVJ)

CALL U NFIX(nHTSKNAM[,IEVJ)

CALL DECLAR

CALL TIME(ITIME)

Where:

ITIME == 3-word integer array
ITIME(1) == hours (0-23)
ITIME(2) == minutes (0-59)
ITIME(3) == seconds (0-59)

*Square brackets indicate that the event variable is an optical argument.

Event Variables Returned

Bits 4-11 - unit number
Bits 12-17 - device code (1 to 63

decimal devices). Codes
below are fixed for stan-
dard devices

1 - TTY (console, LT15, LT19)
2 - DK - RF 15 fixed-head DECdisk
3 - DP - RP02 disk pack
4 - DT - TC02D DECtape
5 - MT - TC59 MAGtape
6 - PR - PC15 paper-tape reader
7 - CD - CR03B card reader

10 - PP - PC15 paper-tape punch
11 - LP - LP15 line printer
12 - VP - VP15 storage scope
13 - VT - VT15 display

Users should assign codes to their own
devices starting at 63 and working back

+1, -201, -210
i

+1, -201, -210

+1, -201, -207

+1, -201, -207

----- -

(continued next page)

""" I ...
"""

Routine Purpose

DATE Obtain time and date
from Executive

- -- --- -----------

Table 4-2 (Cont)
FORTRAN-Callable RSX Routine*

Calling Sequence

CALL DATE(IDATE)

Where:

IDATE:= 6-word integer array
IDATE(1) = month (1-12)
IDATE(2) = day (1-31)
IDATE(3) := year (0-99)
IDATE(4) = hours (0-23)
IDA TE(5) = mi nutes (0-59)
IDATE(6) = seconds (0-59)

-- .. _- ------ - ------ ----

""Square brackets indicate that the event variable is an optical argument.

))
)

Event Variables Returned

- ---- --

))

-202 Task is active (RQ., FX.) or not active (RS.)

-203 CAL not Task issued (SC., RN., SY., MT.)

-204 Task is DISABLED (RQ., SC., RN., SY., FX.)

-205 Task not suspended (RS.)

-207 Task already FIXed (FX.) or not FIXed (UP.)

-210 Partition occupied (FX.)

-301 Line number rejected (CI., DI.)

-302 Line is CONNECTed (CI.) or DI CONNECTed (DI.)

-777 Pool is empty

DVH - Device Handler

10. - 'QUEUE I/o' Directive

RQ. - 'REQUEST' Directive

SC. - 'SCHEDULE'Directive

RN. - 'RUN'Directive

SY. - 'SYNC' Directive

CN. - 'CANCEL'Directive

RS. - 'RESUME' Directive

CI. - 'CONNECT'Directive

DI. - 'DISCONNECT' Directive

FX. - 'FIX IN CORE' Directive

UFo - 'UNFIX'Directive

DA. - 'DISABLE' Directive

EA. - 'ENABLE' Directive

MT. - 'MARK' Directive

OTS routines which have been modified for RSX are:

FlOPS - modified to use the RSX I/o CAL'S •• FP, which initializes the I/O status table
has been converted to a dummy subroutine.

If a Negative Event Variable occurs as a result of a FlOPS issued I/O request, an
error message (OTS 20) is issued and the task is EXITed.

SPMSG - rewritten to include the task name. The message is output to LU N 4 in the follow
ing format:

STOP - 000000 - TSKNAM

STOP - uses RSXEXIT CAL

PAUSE - SUSPENDs the issuing task. To continue, the RESUME MCR function is used.

OTSER passes its name and an octal OTS error message number to SPMSG.

Additional routine used by RSX for bank/page mode determination is • BP.

4-15

Two additional OTS routines are given below:

Routine .FTSB

Purpose To convert two words from • ASCII to • SIXBT

• ASCII
to
• SIXBT
Conver
sion

Calling Sequence: SUBA

FROM

ARGEND

TO

0
JMS* .DAA / get call args
JMP ARGEND

0 / PTR to ASCII word-pair

JMS* .FTSB
.DSA FROM
.DSA TO

· · ·
BLOCK 2 / two 6-bit words

.DAA is a routine which performs the argument I ist transfer function formerly performed by • DA. The

calling sequence has not been changed, but the transfer stops with the end of the shortest argument.

4-16

- .

~.

CHAPTER 5

FORTRAN-IV AND MACRO

In previous chapters, MACRO calling sequences have been given for OTS and Science Library Sub

programs. This general form is used in a MACRO program to call any FORTRAN external subroutine

or function. A FORTRAN program may also invoke MACRO subprograms. The method for each type

of linkage is given below.

5.1 INVOKING MACRO SUBPROGRAMS FROM FORTRAN

A FORTRAN program may invoke any MACRO program whose name is declared in a MACRO .GLOBL

statement. The MACRO subprogram must also include the same number of open registers as there are

arguments. These will serve as transfer vectors for arguments supplied in the FORTRAN CAll statement

or function reference. A FORTRAN-IV program and the MACRO subprogram it invokes are shown

below. More extensive examples are given in Appendix C.

FORTRAN MACRO

• TITLE MIN
C TEST MACRO SU BR .GLOBL MIN, .DA

MIN 0 / entry/exit
C READ A NUMBER(A) JMS* .DA / general get

/ argument
1 READ(1 , lOO)A / (OTS)

JMP .+2+1 / jump around
100 FORMAT(E12.4) argument

registers
C NEGATE THE NU MBER
C AND PUT IT IN B MINl .DSA 0 / ARGl

MIN2 .DSA 0 / ARG2
CALL MIN(A,B) lAC* MIN1 / first word of A

DAC* MIN2 / store at B

C WRITE OUT NUMBER(B) ISZ MINl / poi nt to second word
ISZ MIN2 / of A and B

WRITE(2,100)B lAC* MINl / second word of A
TAD (400000) / sign bit = 1

STOP DAC* MIN2 / store in second
/ word of B

END JMP* MIN / exit
.END

5-1

The FORTRAN statement CALL MIN(A,B) is expanded by the compiler to:

00013 JMS* MIN
00014 JMP$ 00014
00015 .DSA A
00016 .DSA B

$00014 = 00017

I to MACRO subprog

When the FORTRAN-IV program is loaded, the addresses (plus relocation factor) of A and B are stored

in registers 15 and 16, respectively. When the MACRO program invokes .DA, these addresses are

stored in MINI and MIN2 and the values themselves are accessed by indirect reference.

Arguments are, as described above, transmitted by • DA using a single word. Bits 3-17 contain the

IS-bit address of the first word. Bits 0-2 serve as flag. FORTRAN uses bit 0 to indicate that the word

specifying the argument contains the address of a word containing the address of the first word of the

argument. The MACRO argument word always contains the address of the first word of the argument.

For array name arguments (unsubscripted), the address of the fourth word of the array descriptor block

is given. .55 must be invoked to locate the element.

For external functions, the MACRO subprogram must return with a value in the AC (LOGICAL,

INTEGER), AC-MQ (DOUBLE INTEGER) or in the floating accumulator (REAL or DOUBLE PRECISION).

5.2 INVOKING FORTRAN SUBPROGRAMS FROM MACRO

The MACRO calling conventions for FORTRAN subprograms are: the name of the subprogram must be

declared as global; there must be a jump around the argument address; and the rumber and mode of

arguments in the call must agree with those of the subprogram. This form is shown below.

TITLE
.GLOBL
JMS*
JMP
.DSA
.DSA

SUBR
SUBR
.+N+l
ARGI
ARG2

.DSA ARGN

I jump around arguments ignored by • DA
I address of first argument - bit 0 set to 1
I indicates indirect reference

When the subprogram is compiled, a call is generated to .DA which performs the transmission of

arguments from MACRO. The beginning of a subroutine might be expanded as follows.

5-2

-\

-...

000000
000001
000002
000003
000004

C

$ 000002 = 000005

TITLE SUBR
SUBROUTINE SUBR(A,B)
CALO
JMS* .DA
JMP $000002
.DSA A
.DSA B

If a value is to be returned by the subroutine, it is most convenient to have this be one of the calling

arguments. An external function is called in the same manner as a subroutine but returns a value in

the AC (single integers), AC-MQ (double integers), or floating accumulator (real and double-precision).

To store the AC, the MACRO program uses a DAC instruction. Values from the floating accumulator

may be stored via the OTS routines .AH (real) and .AP (double-precision). For FPP systems, values

are returned in a hardware accumulator and stored with an FST instruction.

A number of examples of MACRO-FORTRAN linkage are given in Appendix C.

5.3 COMMON BLOCKS

FORTRAN COMMON blocks (and block-data subprograms) may be linked to MACRO programs. When

the MACRO program is loaded, global symbols are first sought in the user and system libraries. Any

remaining are matched, where possible, to COMMON block names. For example:

FORTRAN MACRO

INTEGER A,B,C .GLOBL NAME, .XX / .XX is name given to blank COMMON
COMMON/NAME/C / by the F4 Compiler
COMMON A,B DZM* .XX / CLEAR A - NOTE INDIRECT REFERENCE

· ISZ .XX / BUMP COUNTER
· DZM* .XX / CLEAR B

· DZM* NAME / CLEAR C

Note that if the values are REAL (two words) or DOUBLE PRECISION (three words), the MACRO program

must account for the number of words when accessing specific variables. This cannot be done if programs

are loaded via CHAIN and EXECUTE,.

5-3

-

Statement Model

Arithmetic var = value
array (i) = value

ASSIGN ASSIGN n TO label

BLOCK DATA BLOCK DATA

CALL CALL subr(a
1

,a
2
,· •• a

n
)

CALL subr

COMMON COMMON/ b
1

/vlist
1

/b
2

/
vlist2 /·· •

CONTINUE CONTINUE

DATA DATA vlist
1

/clist}/,vlist2 /
clist

2
/, . .. vlist clist

n n
DECODE DECODE(c, v, f, ERR=n) list

DIMENSION DIMENSION a 1 (11) ,a2(12)'···
a (I)

n n

DO DO n ~=m1,m2,m3
DO n ~=m1,m2
DO n ,=m

1
,m

2
,-m

3

A-I

APPENDIX A

LANGUAGE SUMMARY

Effect
Text

Reference

value is assigned to 2.1
~ or array (i)

Statement.!!. is assigned 2.2
the symbol name label

Identifies subprogram 4.4
which enters data into
COMMON block at run time

Control is transferred to the 5.2.2
subroutine; a

1
,a

2
, ••• a are - - -n

substituted for dummy variables

vlist items are allocated to b 4.2.2
blocks where they are shared
by other programs

Dummy statement used to 3.2.3
prevent illegal termination
of DO loops

clist is assigned to its corre- 4.3
sponding vlist

Converts character data stored 6.3.4
in the array (v) into binary and
assigns them to variables in list

Storage is allocated for array 4.2.1
(a) to the dimensions specified
by the subscript I ist (I)

Statements following the DO 3.2
are executed repeatedly for
values!!! 1 through !!l2 in incre-
ments or aecrements of .!!!3

..

Statement Model Effect
Text

Reference

ENCODE E NCODE(c, v, f, ERR=n)1 ist Converts binary data repre- 6.3.4
sented by variables in list
into characters accordi ng
to FORMAT specification
(f) or data-directed I/O
rules and stores them in the
array (v)

EQUIVALENCE EQUIVALENCEO 1) ,(12)'··· Elements of each I ist (I) 4.2.3
(I) are assigned to the sa~

n
storage location

EXTERNAL EXTERNAL a
1
,a

2
, ••• a

n
Defi nes subprograms 4.1.3
named ~ for use as argu-
ments of other subpro-
grams

FORMAT n FORMAT(sl ,s2'·· .sn) FORMA T statement .!l estab- 6.1
lished as field-specification
reference

FUNCTION m FUNCTION f(a
1
,a

2
, ••• a

n
) Defines FU NCTION named 5.1.2

.!. with dummy arguments ~
and optional mode speci-
fication m

GOTO GO TO n Control is unconditionally 3.1.1
transferred to statement n

GO TO(n
1
,n

2
, ••• n

k
),i Control is transferred

to the Ith statement in
3.1.2

the list of n's

GO TO label Control is transferred to the 3.1.3
GO TO label,{n

1
,n

2
, ••• n

k
) location specified by label; the

list of ~ may specify legally
ASSIGNable statement numbers

IF IF{expr)n
1
,n

2
,n

3
Control is transferred to 3.3.1
statement number or ASSIGNed
label !}1' !}2' or !}3 if evaluated
expr is :(0, = 0, or > 0 respec-
tive�y

IF (expr)s Statement ~ is executed if expr 3.3.2
is • TRUE. (non-zero), ignored
if .FALSE. (zero)

IMPLICIT IMPLICIT m
1

(11),m
2

(1
2
), ••• Declares mode (m) for variables 4.1.2

m (I) beginning with alphabetic char-
n n acters in list (I)

PAUSE PAUSE Interrupts program execution; 3.4.1
PAUSE n if present, integer.!l is printed

on the console to distinguish
one PAUSE from another

A-2

Statement Model Effect Text
Reference

PRINT PRJ NT(d, f)1 ist The values of variables in 6.3.2
list are converted to ASCII
according to FORMAT
reference (f) and transferred
to external-device (d)

PRJNT(d)list The values of variables in 6.3.2
J.lg are written in binary on
external device ~)

PRINT(d,)list The variable names in list 6.3.2
are written on external
device (d), each followed
by its value in the form
IAI = value

PRINT(d,f) FORMAT reference (f) is 6.3.2
written on external device
(~)

READ READ(d, f)list The values represented by 6.3.2
variables in list are read
from externaldevice (d)
and converted accordi;:;-g
to FORMAT reference (f)

READ(d)1 ist The binary values repre- 6.3.2
sented by variables in list
are read from external
device (d)

READ(d,)list The values represented by 6.3.2
variables in list are read
from external device (d)

READ(d,f) Values are read into FORMAT 6.3.2
reference <D

READ(d) A binary record is read from 6.3.2
external device (d) and
ignored

STOP STOP Signifies the logical end of 3.4.2
STOP n a program and returns control

to the MONITOR after.!l is
printed; if present, .!l distin-
guishes one STOP from
another

SUBROUTINE SUBROUTINE nome Defines an external subroutine 5.2.1
(a

1
,a2,· .. an) named ~i a IS are dummy

arguments representing values
SUBROUTINE name supplied by the calling program

or returned by the subroutine

A-3

Statement Model Effect Text
Reference

TYPE TYPE(d, f)1 ist The values of variables 6.3.2
in list are converted to
ASCII according to FORMAT
reference (f) and transferred
to externaldevice (d)

TYPE(d)list The values of variables in 6.3.2
list are written in binary on
external device (d)

TYPE(d ,)list The variable names in list are 6.3.2
written on external device (d),
each followed by its value f;:;
the form 'A' = value

TYPE(d,f) FORMA T reference (f) is
written on external device (~)

6.3.2

WRITE WRITE(d, f)list The values of variables in 6.3.2
list are converted to ASCII
according to F ORMAT refer-
ence (f) and transferred to
extern~1 device (d)

WRITE(d)1 ist The values of variables in 6.3.2
list are written in binary on
external device (~

WRITE(d,)list The variable names in list qre 6.3.2
written on external device (d),
each followed by its value in
the form 'A' = va lue

WRITE(d,f) FORMAT reference (f) is
written on external device @

6.3.2

A-4

APPENDIX B

ERROR MESSAGES

S.l COMPILER ERROR MESSAGES

In the F4X version of FORTRAN, compiler error messages are printed in the form:

>mnA<

where:

mn is the error number
A is the alphabetic mnemonic

characterizing the error class.

In F4I and F4A versions, only the alphabetic character is printed, in the form:

>A<

All error messages and the version(s} of FORTRAN to which they are applicable are given below.

"!umber Letter Meaning

Common, equivalence, data errors:

01 C No open parenthesis after variable name in DIMENSION
statement

02 C No slash after common block name

03 C Common block name previously defined

04 C Variable appears twice in COMMON

05 C EQUIVALENCE list does nat begin with open parenthesis

06 C Only one variable in EQUIVALENCE class

07 C EQUIVALENCE distorts COMMON

08 C EQUIVALENCE extends COMMON down

09 C Inconsistent EQUIVALENCing

10 C EQUIVALENCE extends COMMON down

11 C Illegal delimiter in EQUIVALENCE list

{continued on next page}

B-1

Number Letter Meaning -.
Common, equivalence, data errors: (cont)

12 C Non-COMMON variables in BLOCK DATA

15 C III egal repeat factor in DATA statement

16 C DATA statement stores in COMMON in non-BLOCK DATA
statement or in non-COMMON in BLOCK DATA statement

DO errors:

01 D Statement with unparenthesized = sign and comma not a DO
statement

04 D DO variable not followed by = sign

05 D DO variable not integer

06 D Initial value of DO variable not followed by comma

07 D Improper delimiter in DO statement "-,
09 D I11egal terminating statement for DO loop

External symbol and entry-point errors:

01 E Variable in EXTERNAL statement not simple non-COMMON
variable

02 E ENTRY name non-unique -.
03 E ENTRY statement in main program

04 E No = sign following argument list in arithmetic statement
function

05 E No argument list in FUNCTION subprogram

06 E Subroutine list in CALL statement already defined as variable

08 E Function or array name used in expression without open
parenthesis

09 E Function or array name used in expression without open
parenthesis

Format errors:

Bad delimiter after FORMAT number in I/o statement
~

01 F

02 F Missing field width, illegal character or unwanted repeat
factor

03 F Field width is 0

04 F Period expected, not found

05 F Period found, not expected

06 F Decimal length missing (no "d" in "Fw .d")

07 F Unparenthesized comma

(continued on next page)

B-2

Number Letter Meaning

Format errors: (cont)

08 F Minus without number

09 F No P after negative number

10 F No number before P

12 F No number or 0 before H

13 F No number or 0 before X

15 F Too many left parentheses

Hollerith errors:

03 H Number preceding H not between 1 and 5

04 H Carriage return inside Hollerith field

05 H Number preceding H not an integer

06 H JIiore than five characters inside quotes

07 H Carriage return inside quotes

Various illegal errors:

01 I Unidentifiable statement

02 I Misspelled statement

03 I Statement out of order

04 I Executable statement in BLOCK DATA subroutine

05 I Illegal character in I/o statement, following unit number

06 I Illegal delimiter in ASSIGN statement

07 I Illegal delimiter in ASSIGN statement

08 I Illegal type in IMPLICIT statement

09 I Logical IF as target of logical IF

10 I RETURN statement in main program

11 I Semi colon in COMMO N statement outside of BLOCK DATA

12 I Illegal delimiter in IMPLICIT statement

13 I Misspell ed REAL or READ statement

14 I Misspelled END or ENDFlLE statement

15 I Misspelled ENDFILE statement

16 I Statement function out of order or undimensioned array

17 I Typed FUNCTION statement out of order

18 I III egal character in context

19 I Illegal logical or relational operator

(continued on next page)

B-3

Number Letter Meaning

Various illegal errors: (cont)

20 I Illegal lener in IMPLICIT statement

21 I Illegal letter range in IMPLICIT statement

22 I Illegal delimiter in letter section of IMPUCIT statement

23 I III egal character in context

24 I Illegal comma in GOTO statement

26 I Illegal variable used in multiple RETURN statement

Pushdown list errors:

01 L DO nesting too deep

02 L Illegal DO nesting

03 L Subscript/function nesting too deep

04 L Backwards DO loop (also caused by some illegal I/o lists).
Appears after END statement.

Overflow errors:

01 M EQUIVALENCE class list full

02 M Program size exceeds 8K '-03 M Array length larger than 8K

04 M Element position in array larger than 8K (EQUIVALENCE,
DATA)

06 M Integer negative or larger than 131071

07 M Exponent of floating point number larger than 76

08 M Overflow accumulating constant - too many digits

09 M Overflow accumulating constant - too many digits

10 M Overflow accumulating constant - too many digits

Statement number errors:

01 N Multiply defined statement number or compiler error

02 N Statement erroneously labeled

03 N Undefined statement number

04 N FORMA T statement without statement number

05 N Statement number expected, not found

07 N Statement number more than five digits

08 N Illegal statement number

(continued on next page)

B-4

Number Letter Meaning

Partword errors:

01 P Expected co Ion, found none

Q.2 P Expected close bracket, found none

03 P Last bit number larger than 35

04 P First bit number larger than last bit number

05 P First and last bit numbers not simple integer constants

Subscripting errors:

01 S Illegal subscript delimiter in specification statements

02 S IVore than three subscripts specified

03 S Illegal delimiter in subroutine argument list

04 S Non-integer subscript

05 S Non-scalar subscript

06 S Integer scalar expected, not found

10 S Two operators in a row

11 S Close parenthesis following an operator

12 S Non-integer subscript

13 S Non-scal ar subscri pt

14 S Two arguments ina row

15 S Digit or letter encountered after argument conversion

16 S Number of subscripts stated not equal to number declared

Table overflow errors :

01 T Arithmetic statement, computed GOTO list, or DATA state-
ment list too large

02 T Too many dummy variables in arithmetic statement function

03 T Symbol and constant tables overlap

Variable errors:

01 V Two modes specified for some variable name

02 V Variable expected, not found

03 V Constant expected, not found

03 V Array defined twice

05 V Error : variable is EXTERNAL or argument (EQUIVALENCE,
DATA)

07 V IVore than one dimension indicated for scalar variable

(continued on next page)

B-5

Number Letter

08 V

09 V

11 V

12 V

14 V

16 V

17 V

19 V

21 V

22 V

25 V

27 V

28 V

29 V

30 V

32 V

35 V

36 V

37 V

38 V

39 V

40 V

41 V

42 V

01 X

02 X

03 X

04 X

05 X

07 X

Meaning

Variable errors: (cant)

First character after READ or WRITE not open parenthesis in
I/O statement

III egal constant in DATA statement

Variables outnumber constants in DATA statement

Constants outnumber variables in DATA statement

Illegal dummy variable (previously used as non-dummy variable)

Logical operator has non-integer, non-logical arguments

Illegal mixed mode expression

Logical operator has non-integer, non-logical arguments

Signed variable left of equal sign

Illegal combination for exponentiation

• NOT. operator has non-integer, non-logical argument

Function in specification statement

Two exponents in one constant

Illegal redefinition of a scalar as a function

No number after E or D in a constant

Non-integer record number in random access I/O

Illegal delimiter in I/O statement

Illegal syntax in READ, WRITE, ENCODE, or DECODE
statement

END and ERR exists out of order in I/O statement

Constant and variable modes don't match in DATA statement

ENCODE or DECODE not followed by open parenthesis

Illegal delimiter in ENCODE/DECODE statement

Array expected as first argument of ENCODE/DECODE
statement

Illegal delimiter in ENCODE/DECODE statement

Expression errors:

Carriage return expected, not found

Binary WRITE statement with no I/o list

Illegal element in I/O list

Illegal statement number list in computed or assigned GOTO

Illegal delimiter in computed GOTO

Illegal computed GOTO statement

(continued on next page)

B-6

--)

-,

Number Letter Meaning

Expression errors: (cont)

10 X Illegal delimiter in DATA statement

11 X No close parenthesis in IF statement

12 X Illegal delimiter in arithmetic IF statement

13 X Illegal delimiter in arithmetic IF statement

14 X Expression on left CJf equals sign in arithmetic statement

15 X Too many right parentheses

16 X III egal open parenthesi s (i n speci fi cation statements)

17 X III egal open parenthesis

19 X Too many right parentheses

20 X Illegal alphabetic in numeric constant

21 X Symbol contains more than six characters

22 X • TRUE., • FALSE. , or • NOT. preceded by an argument

23 X Unparenthesized comma in arithmetic expression

24 X Unary minus in I/o list

26 X Illegal delimiter in I/o list

27 X Unterminated implied - DO loop in I/O list

28 X Illegal equals sign in I/o list

29 X Illegal partword operator

30 X III egal arithmetic expression

B.2 OTS ERROR MESSAGES

Following is a list of OTS error messages. (R) indicates a recoverable error; (T) a terminal error.

Error Number Error Description Possible Source

05 (R) Negative REAL square root argument SQRT

06 (R) Negative DOUBLE PRECISION square root DSQRT
argument

07 (R) Illegal index in computed GO TO .GO

10 (T) Illegal I/O device number .FR, .FW, .FS, .FX,
DEFINE, RAN COM

11 (T) Bad input data - lOPS mode incorrect .FR, .FA, .FE, .FF, .FS,
RANCOM, RBINIO,
RBCDIO

(continued on next page)

8-7

Error Number Error Description

12 (T) Bad FORMAT

13 (T) Negative or zero REAL logarithmic argument
(terminal)

14 (R) Negative or zero DOUBLE PRECISION loga-
rithmic argument

15 (R) Zero raised to a zero or negative power (zero
result is passed)

20 (T) Fatal I/O error (RSX only)

,... 21 (T) Undefined file

22 (T) Illegal record size
direct

23 (T) Size discrepancy
access <
errors 24 (T) Illegal record number

25 (T) Mode discrepancy

,-26 (T) Too many open fil es

30 (R) Single integer overflow*

31 (R) Extended (double) integer overflow**

**32 (R) Single fit. overflow

**33 (R) Double fit. overflowt

**34 (R) Single fit. underflow

**35 (R) Double fit. underflow t

**36 (R) Fit. divide check

***37 (R) Integer divide check

40 (T) Illegal number of characters specified [legal:
o<c<625l -

41 (R) Array exceeded

42 (T) Bad input data

**50 (T) FPP memory protect/non-existent memory

51 (T) (READ to WRITE Illegal I/O Direction Change
to Disk) without intervening CLOSE or REWIND

*Only detected when fixing a floating point number.
**Also prints out PC with FPP system
***If extended integer divide check, prints out PC with FPP system.

Possible Source

.FA, .FE, .FF

.BC, .BE, ALOG

.BD, .BF, .BG, .BH,
DLOG, DLOG10

.BB, .BC, • BO, . BE, . BF,

.BG, .BH

FlOPS

RANCOM

DEFINE

RANCOM

DEFINE, RAN COM

RANCOM

DEFINE

RELEAE, .FPP

DBUNT, JFIX, JDFIX,
lSNGL

RELEAE

RELEAE

RELEAE

INTEAE

ENCODE

ENCODE

DD10

BCOlO, BINIO

****With software F4 system only detected when fixing a floating point number.
tNot detected by software system (only by FPP system).

B-8

B.3 OTS ERROR MESSAGES IN FPP SYSTEMS

In software systems, arithmetic errors resulting in the OTS error messages summarized above are de

tected in the arithmetic package (RELEAE and INTEAE). In the hardware FPP systems, these errors

are detected by the hardware (with the exception of single integer divide check) and serviced by a

trap routine in the FPP routine. FPP.

Where applicable, on such error conditions, the result is patched for both software and hardware sys

tems as summarized in the following table.

Error
PATCHED VALUE***

FPP Hardware System Software System

Single Floating Overflow ± largest single floating value same
(.OTS 32)

Double Floating Overflow ± largest single floating value not detected
(.OTS33)

Single Floating Underflow zero same
(.OTS34)

Double F looting Underflow zero not detected
(.OTS 35)

Floating Divide Check ± largest single floating value same
(.OTS36)

Integer Overflow limited detection* same
(.OTS 30)

Double Integer Overflow none** limited detection*
(.OTS 31)

Integer Divide Check none same
(.OTS 37)

*When fixing a floating point number, integer and extended integer overflow is detected. In these
instances, plus or minus the largest integer for the data mode is patched as result.

**With the FPP system all extended integer overflow conditions are detected, but the results are
meaningless.

***Where "none" is specified, the result is meaningless unless otherwise indicated.

Further, when converting an extended integer, the magnitude of which is >2
17

_1, to a single
integer, no error is indicated and the high order digits are lost.

B-9

---.

APPENDIX C

PROGRAMMING EXAMPLES

C.1 MACRO-FORTRAN Linkages

Example 1. A New Dimension Adjustment Routine

The present versions of the OTS routines ADJ1, ADJ2, and ADJ3 do not alter the size of the array

being adjusted. If only the array name of an adjusted array is given in a READ or WRITE argument list,

FORTRAN uses this size information; therefore, undesired results can occur. A new routine (ADJ) can

be loaded with a user program which completely handles all cases of dimension adjustment, although it

occupies 72 octal locations. (ADJ3 occupies 41 octal locations.) Consider the following programs:

C PROGRAt-')
DI~ENSION A(4,3,2)

C ~AKE ARRAY A ACT LIKE IT
C WAS DIMENSIONED A (2,3,4)

CALL ADJ(A,A(I,1,1),2,3 1 4)

C PROGRAM 2
DI~ENSION A(3,2)

C ADJUST ARRAY A TO BE A C2,3)
CALL ADJ (AIA<l,1),2,3,0)

C THE LAST ARGUMENT MUST BE 0

C PROGRAM 3
DIIVoENSION A(2)

C ADJUST ARRAY A TO BE ACt)
CAL L AD J C A I A C 1) I) .. 0 , 0)

C THE LAST 2 ARGUMENTS MUST BE ZEKO
C THE NO. OF SU8SCRIPTS IS NOT ADJUSTABLE

(continued on next page)

C-l

.TITLE ADJ
I
ISUBROUTINE TO PERFORM DIMENSION ADJUSTMENT
I
IMACRO-lS CALLING SEQUENCE

.GLOBL ADJ
I JMS* ADJ
I JMP .+6
I .DSA ARRAY IADDRESS OF WD4
I .DSA 8 INEW WD4
I .DSA Kl IADDRE:SS OF NEW MAXIMUM 1ST
I .DSA K2 IADDRESS OF NEW MAXIMUM 2ND
I .DSA K3 IADDRESS OF NEW MAXIMUM 3RD
I

.GLORL ADJ,.DA,.AD
ADJ '"

JMS* .DA IGET ARGUMENTS
JMP .+5+1 IN OF ARGUMENTS = 5

ARRAY (I)

B (I)

KI '"
K2 0

K3 '"

SUBSCRIPT
SUI:lSCRIPT
SUBSCklPT

LAC (LAC* B IINITIALIZE SUBSCRIPT POINTER
DAC C
LAC B ISET NEW STARTING ADDRESS
DAC* ARRAY
LAW -3
DAC CTRI IMAXIMUM OF 3 SUBSCRIPTS
TAD ARRAY
DAC ARRAY IPOINT TO FIRST WORD
DAC ARRAYP, 10F ARRAY DESCRIPTOR BLOCK
LAC. ARRAY IARRAY TYPE IN BITS 3-4
AND (60000 IZERa OUT ARRAY SIZE
DAC* ARRAY ISAVE CLEAN ARRAY TYPE
RTL
RTL
RTL
TAD (I IADD 1 FOR' OF WORDS
~ND (3 lAND TREAT DOUBLE INTEGER
SNA lAS 2 WORD PER ARRAY ELEMENT
LAC (2

LOOP ISZ C IPOINT TO NEXT SUBSCRIPT
JMS* .AD IMULTIPLY INTEGERS

C LAC* Kl IPROGkAM MODIFIED

o

SNA lIS SUBSCRIPT PRESENT
JMP D IRAN OUT OF SUBSCRIPTS
DAC SIZF.# IUPDATE SIZE
I5Z CTR IARE WE FINISHED?
SKP
JMP E IYES

ISZ ARRAYP
DAe * ARRAYP
JMP LOOP IOFFSET
DZM* ARRAYP

ISTORE INTO ARRAY
IDESCRIPTOR BLOCK

~JORDS (2~3)

IZEIW THE REST
ISZ ARRAYP IOF THE OFFSET WORDS

(continued on next page)

C-2

ISZ CTR IARE ';lE FINISHED
JMP LOOP INO

E LAC SIZE IFINISHED
AND (17777 IPACK SIZE
XOR* ARRAY IARRAY DESCklPTOk BLOCK
DAC* ARRAY
JMP* ADJ IRETURN
.END

Example 2. A Function to Read the AC Switches

It is very often desirable to use the AC switches to alter the sequence of instructions executed in a

FORTRAN program. The following program can be used as a function in an arithmetic IF statement to

conditionally branch •

• TITLE ITOG
I
ISUBROUT I NE TO READ AC SW ITCHES
I
IMACRO-15 CALLING SEQUENCE
I .GLOBL ITOG
I JMS* ITOG
I JMP .+2 IJUMP OVER AkGU~ENT
I .DSA (MASK IADDRESS OF t'-iASK
I IRETUkN WITH ~ASKED ACS IN AC

.GLOSL ITOG ... DA
ITOG 0 II NTEGEk FUNCTI ON

MASK

JMS* .DA
JMP • +1 +1
'j
LAS
AND* MASK
J~1P* ITOG
.END

IGET ARGUt.t'ENTS
I 1 AHGU~ENT
IMASK ADDRESS
ILOAD AC FROM SWITCHES
1i"1ASK AC
IRETURN WITH MASKED AC

Example 3. A Routine to Read an Array in Octal

A MACRO subroutine which reads octal information (REDAR) is as follows:

• T ITl.E REDAR
I
ISUBROllTINE TO READ Af< f<AY IN OCTAL
I
IMACRO-15 CALLING SEQUENCE
I .GLOBL kEDAR
I JMS* REDAR
I J~P .+5
I .DSA SLOT IADDRESS OF SLOT #

SW ITCHES

I .DSA FORMAT
I .DSA DIGITS

IADDRESS OF FORMAT STATEMENT ADDRESS
IADDRESS # OF DIGITS

I .DSA ARRAY
I
I

C-3

IADDRESS OF ARRAY DESCRIPTOR
/BLOCK ,·IORD 4

(continued on next page)

REDAR

SLOT
FORMAT
DIG ITS
ARRAY

A
8

.GLOBL REDARI.DAI.FHI.FEI.FF
o
JMS* .DA IGET ARGUMENTS
JMP .+4+1 I#ARGUMENTS = 4

" €I
o
o
LAC SLOT
DAC A
LAC* FORI'1AT
DAC 8
JMS* .FR
XX
xx
LAlv -3
TAD ARRAY

IFORt-~ATTED WR ITE
IADDRESS DAT SLOT #
IADDKESS OF FORMAT STATEMENT

DAC SLCT IADDkESS OF ARRAY DESCklPTOk BLOCK WORD 1
LAC* SLOT IPICK UP PACkED SIZE OF AkRAY
AND (17777 ICLEAN OFF MODE #
SNA
JMP E INO ELEMENTS IN ARRAY
Ct-'~A

DAC SLOT
ISZ SLOT ICOUNTER FOR # WORDS IN ARRAY
LAC* DIGITS I#DIGIT5 IN EACH WORD
AND (7 ICLEAN ARGUMENT
SZA
SAD (7
JMP E 10 OR 7 DIGITS ILLEGAL
CMA
TAD (1
DAC C IINITIALIZE LAW INSTRUCTION
LAC* ARRAY
DAC ARRAY IPOINTER TO FIRST WORD OF ARRAY
XX ILAW -DIGITS
DAC DIGITS
CLA IINITIALIZE DIGIT PACk
DAC TEMP' 1ST ORE DIGIT PACK
JMS* .FE IREAD DIGIT
.DSA FORMAT IDIGIT READ INTO FORMAT
LAC TE~P ILOAD DIGIT PACK
CLL
CTL IMULTIPLY BY B
RAL
TAD FORMAT IADD DI GIT
ISZ DIGITS ICOUNT DIGITS
JMP D IGO BACK FOR MORE
DAC* ARRAY ISTORE VALUE IN ARRAY ELE MENT
ISZ ARRAY IPOINT TO NEXT ARRAY WORD
ISZ SLOT ICOUNT ARRAY WORDS
JMP C IREAD ANOTHER WORD
JMS* .FF /END OF READ
JtvlP* REDAl"< IEXIT
.END

C-4

-..

Example 4. A FORTRAN Program Using the Foregoing Programs

This FORTRAN program uses the preceding three MACRO programs to read in an array from the

Teletype in octal and type it in decimal. The Teletype should be assigned to .DAT slot 4. Note

how the arguments ore specified. Notice that EQUIVALENCE performs the array element calcu

lation at compile time.

C FORTRAN PROGRAM TO READ AN ARBITRARY INTEGER ARRAY IN OCTAL
C AND WRITE IT IN DECIMAL

DIMENSION J(2000)
C USE EQUIVALENCE TO GET J(I) WITHOUT USING .55

EQUIVALENCE (J(J) .. K)

C I CONTAINS ADDRESS OF FORMAT
C STATEMENT + 1 TO ~OVE OVER JMP INSTRUCTION

ASSIGN 1 TO 1
1=1+1
FOR MA T (6 1 1 .. 1 X .. 6 I 1 .. 1 X .. 6 1 1 .. 1 X .. 6 I 1 • 1 X .. 6 I 1 .. 1 X. 6 I 1 .. 1 X .. 6 I 1 .. 1 X ..
1611)

C TO SIMULATE FORMAT(06 .. IX .. 06 .. IX .. 06 .. 1X,06 .. IX .. 06.1X.06 .. IX ..
C 06 .. 1X.06)
C WRITE SOMETHING TO SHOW INFORMATION NEEDED
2 WRITE(4 .. 3)
3 FORMAT(/19H READ Kl K2 K3(314»
C READ IN DIMENSION INFORMATION

READ(4 .. 4) Kl .. K2 .. K3
4 fORMAT<3I4)
C ADJUST ARRAY J TO THE PROPER SIZE

CALL ADJ<J .. K.KI.K2.K3)
C READ IN ARRAY IN OCTAL
5 CALL REDAR(4 .. I .. 6 .. J)
C WRITE OUT ARRAY

WRITE(4.6) J
6 FORMAT(SI7)
C WAIT FOR tP

PAUSE
C IF A0S17-0 READ IN IDENTICAL ARRAY TYPE

IF (ITOG<l» 2 .. 5 .. 2
END

C.2 IFLOW AND IDZERO EXAMPLES

The following is a programming example of both the IFLOW and IDZERO functions.

C ~AIN PROGRAM TO SHOW USE OF IFLOW AND IDZERO
A=10.**70
8=10.**10

1 C=A*B
C CALL SUBROUTINE TO CHECK FOR UNDERFLOW, OVERFLOW
C AND DIVISION BY ZERO.

CALL CHECK <I)
PAUSE 1

2 C=(10.**(-70»*10 .. **(-20)
CALL CHECK (I)

C-5

(continued on next page)

PAUSE 2
3 C=A/0.

CALL CHECK (})
PAUSE 3
STOP
END

C SUBROUTINE TO CHECK FOR UNDERFLOW, OVERFLOW OR
C DIVISION BY ZERO IN FLOATING POINT ARITHMETIC.
C PASSING A NON-ZERO POSITIVE ARGUMENT WILL CHECK
C FOR ALL. A ZERO ARGUMENT RESULTS IN NO
C CHECKING.

SUBROUTINE CHECK (N)
LOGICAL IFLOW,IDZERO
If (IFLOW(N» WRITE (1,10)
IF (IFLOW(-N» WRITE (1,11)
IF (IDZERO(N» WRITE (1,12)

10 FORMAT C/9H OVERFLOW)
11 FORMAT Cl10H IJNDERFLOt-l)
12 FORMAT (/13H DIV. BY ZERO)

RETURN
END

The result of running those programs is (with . DAT slot 1 assigned to the ny):

OVERFLOW

PAUSE 000001
tP
UNDERFLOW

PAUSE 000002
tP
DIV. BY ZERO

PAUSE 0V'1V'1003
,p
STOP 000000

C.3 INPUT -OUTPUT EXAMPLES

The following is a program composed mainly of I/O statements with no connected purpose. The pro

gram is presented to illustrate the possible combinations of the different types of I/O (sequential access,

direct access, data-directed, ENCODE/DECODE).

C-6

001
002
003
004
005
006
007

c
c
c
c
c

PROGRAM EXAMP~E TO SHOW OBJECT CODE OUTPUT FOR
VARIOUS TYPES OF 1/0 STATE~ENTS

006
00603 472031
00605 406472
00613 4720;'1
0061~ AI1I6472

0Q'9 C

IMP~ICIT REAL eN)
DIMENSION R~1(2),
DATA NMl/5HNAME1,

542542
24150~
542~.d4
24150~

01~ 100 FORMAT
00000 JMP !~00~0
00001 .OSA 242226
00002 ,DSA 526216
00003 .DSA 3~5405
00004 .OSA ~31530
00005 .DSA 31121e.
0000~ .OSA 530544
00007 .OSA 271445
0001~ .OSA 12450~
$000e0' = 0'0011

R~2C3), ARR(20), NM1(2), NM~(2)
4HASRC/,NM2/5HNAME2, 4HASRCI

011 200 FORMAT (lX,15,G10.3,2CE12.2))
00~11 JMP S~~011
00012 ,DSA 24 1433
00013 .DSA e26222
00~14 .DSA 32531e
00015 ,DSA 73~540
~0016 .OSA 271465
00017 .DSA A3112~
0002~ .DSA A25426
00021 .OSA 227144
00022 .DSA '-45224
00023 .DSA ~~~1~0
500011 = 0V'!024

012
00024
00025
00026
00027
0003t?1
00031
00032
00033
00034
00035

013
00036
00037
01/le4~
00041
00042
00043
00044
00045
00046
00047

014

JMS*
JMP
.DSA
.DSA
.DSA
.OSA
.DSA
.OSA
.OSA
.OSA

JMS*
JMP
.OSA
.DSA
.DSA
.OSA
.DSA
.OSA
.DSA
.DSA

0005~ JMS*

CA~L
DEfINE
etP.!036
(0Cl0002
(0~0144
(NH'I1'l05
(QI~000~
JVB
(00fiJCI!00
cr00Q1Ql~
Ce.000rl!CiI

CAL.L
DEF INE.
~005l"
(~00004
(~0113~
(0Q10U2
(e.?lI1IQlI'1'"
JVA
((~~(1IQl0~

(000000
(C?i00'-'0f!'

CA~L
SEEK

SEEK (S,NH1)

C-7

00051 JMP ~0~!54
00052 .DSA ce00~05
~0053 .05A lV!~0"'0 +NMl

015 CAL.L ENTER C6,N M2)
016 C
017 C 1) pINARY
018 C A) DIRECT ACCESS
019 C

00054 JNS'" P !TER
00055 JMP 0'HHiCJ
00056 .05A (~00r015
00057 .DSA 10V'l0N! +NM2

020 READ (2jfJVB) INT, RL.2(3), RLl
0006e LAC JV8
00061 JMSt .RS
00Ql52 .DSA (0(110"'02 - "
00063 JMS* .RJ
ee064 .DSA INT
00065 .05A 777776
00066 TAD (e~00~3
0"'067 TAD (Vqil0CJ1~3

U070 TAO RL2 -..,

Ci'l0071 DAe $0e.!1!71
00"'72 JMS* ."J
$00071 II 00073
00073 .DSA $P.o0073
0!1l07~ JMSt .RB
00075 .05A 1~00~0 +RL.1
0~076 JMS* .RG

021 WRITE (2 I 3) INT, RL,2(3), RLl
00077 L.AC (000003

- ,
e IiIJ1 et" JMS* .FX
NH~l .OSA (~e0(1102

00102 JMS* .RJ
00103 .OSA INT
001~A .OSA 777775
00105 TAO (000003
00106 TAD (0111011'03
00107 TAD RL2
00110 OAe $001110
00111 JMS* .RJ
$00110 • ~Qll1~

00112 • DSA $r.0112
022 c
023 C El) SEQUENTIAL ACCESS
024 C

0121113 JMS* .Ra
00114 .OSA 1\~0000 +RL1
0011~ JM5* .RG

025 REAO (ll INT, RL.2(3), RI..1
00116 JMS* .FS
e!0117 .D5A (~~Ql~01

r0120 JMS* • ~ J
0111121 .1)5A tNT
00122 .05A 771776-
00123 TAO (~' 00~~3
12'0124 TAO (~~1!I"'03
00125 TAO RL2
00126 OAe $IilIH26
00127 JMS* .FJ --.."

$00126 • 00130
00130 • DSA $'101 30

C-8

00131 JMS • • fB
00132 .DSA 10Q100~ +RL1
1210133 JMS* .FG

025 wRITE (3) INT, RL,2(3), RL,1
00134 JMS* .FX
00135 .liSA (~~0ti103

00136 JMS • • FJ
00137 .DS4 INT
00140 .DSA 777776
00141 TAO (N'I~H?l03

00142 TAO CQH"I0Q!03
1210143 TAO RL2
ft'I014.4 04C Hi0144
1210145 JMS. • F J
500144 ;: 00146
~0146 ,DSA $~014e

12127 C
028 C II) ASCII
029 C A) DIREq ACCESS
030 C 1) FORMATTED
031 C

121"147 JMS • • F6
121015li1 .DSA 1{,'0000 +RL,1
00151 JMS • • fG

032 READ (4#JVA,1P10) INT, RL.2(J), RL.1
£10152 L.AC JVA
00153 JMS • • RR
1210154 .DSA (~~0004
00155 .DSA .111'0
00156 JMS • • ~E
00157 .DSA INT
0016121 .OSA 77777~
1/10151 TAO ce~0!(l1il3
1210162 TAO (000(111213
00163 TAO RL2
1210164 OAC selHIS4
12101155 JMS • • RE
$00164 • "0166
00166 • DSA $0~166
00167 JMS • • RA
0017(' .DSA H~0000 +RL.l
00171 JM$* .RF

033 wRITE (4'5,200) INT, RL2(3), RL.1
00172 LAC C000f'05
001n JMS. .RW
~017A .DSA (000"'''A
00175 .DSA .200
e0176 Jfo1S • • RE
fi'l0177 .OSA INT
00200 .DSA 777776
~1lI201 TAD (000e03
r0202 TAD (~00f11fr33
N!l203 TAO RL..2
0021114 OAC !(I!~204

1/1020~ JMS. .RE
S002V04 I: 0~:e06
~0206 .DSA $~02~tl

034 C
035 C 2) DATA .. DIRECTED
036 C

00207 J t1 $ '* .RA
00210 .DSA 1~1?00e +RL.1

C-9

1'.10211 Jr-iS* .RF
~37 RE,4D (4'7,) INT, RL.~(3), Rl.,l

00212 LAC (h!l0Q\07
01'.1213 JMS* .RR
0021.4 .OSA (0000rt4
002\:5 .DSA e\00"'!?1[1
~I'J216 JI1S. .GO
00217 .DS,4 I~T
00220 .05,4 777776
~0221 TAD (0(;'011.103
00222 TAD (r ~ 011103
~0223 TAD RL2
00224 OAC Het22A
00225 JMS • • GD
$00224 :II e~226
00226 .DSA $~0226 .~

00227 JMS. .GE
00230 .OSA 1 ('I0 0Q!0 +RL1
1'.10231 JMS* .RF

038 loI~nE (4NS,) INT, RI..2 (3) , RL.l
00232 LAC (~) 00010
~0233 JMS • • Rill .--
0023A .OSA (e ~ 0004

'-'10235 .OSA M'I ~ 0C!!0

021236 JMS • • GA
00237 .OSA e35204
~0240 .05,4 NHII0Q''''
C1!0241 .OSA PT
e.0242 JMS· .55
Q.\0243 .OSA R~. 2 .-
00244 LAC (Q'. ~17JC'-03

1111'.1245 OAC $k' 1il245
00246 JMS* .GC
00247 .DSA ~71177
Ql02!5~ .OSA M 0000
$0et245 III 00251
00251 .OSA $"0251

2139 C
04~ C ~) SEQUENTIAL. ACCESS
041 C 1) FORM,4TTED
042 C '~"';"""

00252 JMS. .(;8
~0253 ,DSA e71176
00254 ,DSA 0~000 0
00255 .DSA 1001l1e.0 +RLl
0f1l256 JMS* .RF

043 REAO (5,100) INT, Rl2(3), RL.l . ~

00257 JMS. .fR
0026\?! .OSA (0 00~05

00261 .DSA • 1'11£11
00262 JMS • .FE
00253 • OSA INT
00264 .DSA 777776
00265 TAO (~~ti'l0f!J3

00266 TAO (0 t11 0et03
00267 TAD ~L2
00270 OAC $00270
00271 JMS· .FE
S00270 11 0121272
{1!02n .DSA $r0272
00273 JMS. .FA
00274 .OSA 1~00"'0 +RLl

C-10

00275 JHs* .Ff
0044 WRITE CfS, 200) INT, RL.2(3), ~\"1

00276 JMS* .fiol
00277 .DsA (1Z00006
00300 .DSA .21210
003",1 JMS • • FE
00302 .DSA I lilT
1110303 .USA 77777e
00304 TAD C~00003
00305 TAD (0001:"03
00306 HD RL2
003~7 oAC $0i!l3~7
00310 JMS· .fE
$003~7 • 00311
00311 .DSA 5"0311
00312 JMS. .FA
00313 .DSA 10\11000 +R\"1
00314 JMS* .FF

045 ENCODE (U,ARR,100) INT, RL2(3), RLl
021315 JHS* .Gf
00316 .DSA (0~0012
00317 .DSA 10f.i1l.l0k1, +ARR
00320 .OSA .11210
00321 ,JMS. .fE
00322 .OSA INT
00323 .OSA 777776
00324 TAD C0\210Q103
00325 TAO (000U3
00326 TAD RL2
00327 OAC $00327
00330 JMS* .FE
$00327 • "'0331
00331 .DSA $1210331
00332 JMS* • F .A
0033~ .DSA le~000 +RL,l
00334 JM5* .FF

04tl DECODE C10,ARR,1III0) INT, RL2(3), FILl
00335 JMS* .GG
00336 .DSA (017.!0012
~0337 .DSA li2'00Q'0 +ARR
00340 .DS4 .1f1l0
00341 JMS. .FE
00342 .OSA INT
00343 .O$A '177776
00344 TAD C~00003
0121345 TAO C~\ ~0N"3
0121346 TAO RL2
~0347 OAe $1(10347
~035'" JMS. .FE
500347 • 0~351
00351 .OSA U;?J3!51

12147 C
12148 C 2) DATA-OIRECTEO
04g C

00352 JMS* .FA
00353 .05A 10V'I0rlll +f?L.l
0121354 JMS* .FF

050 READ C 5,) INT,RI.,2(3), RLl
00355 JM5* .fR
00356 .OSA (000"'05
00357 .DSA QlVil?O!e'e.
1210361(0 JMS* .GO

C-ll

00361 .D5A INT
0~362 .OSA 777775
1110363 TAD (e,iiJ0f"03
L'l03~4 TAD (V'flI0003
00365 TAD R1.2
Ql0366 OAt $'~ ""36f5
00367 JMS* .GO
$0.,366 II ~~37e.
~037~ .DSA H0370
0(1.1371 JMS* .c;E
00372 ,05A le~M0 +RLl
Ql0373 JMS* .fF

051 WRITE C6,) tNT, RL2(3), RL.l
00374 JMS* .Fw
00375 ,OSA (0"'0006
003H .DSA Qle.e00PJ '-00377 JMS* .GA
0040~) .OSA 035204
00401 .D5A Ql0~000
0041112 ,DSA IfIlT
00403 JMS· .55
00404 .OSA RL.2
004~~ LAC C000ti'~3
004~6 OAe $~04f!16
00407 JMS. ,Ge
0041E1 ,05A 0'1177
00411 ,DSA 0e000~
S0(114~6 • Ql0412
00412 • 05A 3i~;flI412
00413 JMS. ,GB
00414 .DSA e.71176 --.
00415 • DSA 000011'0
00416 ,DSA 1000~0 +RLI
00417 JMS· .FF

0!S2 DECODE (15,ARR,) INT, RL2(3), RLl
00420 JMS • • GG
00421 .OSA ((1100017
00422 .OSA lV,0011'0 +ARR
00423 .OSA 0ftl0000
00424 JMS* .GA
00425 ,OS. ~3S204
00426 .DSA 11\(!I00~0 -
00427 .OSA I/IIT
0043e. JMS. ,55
00431 .OSA PL.2
00432 I.AC (0V1P1C'!03
00433 OAe U~433 ,'"
00434 JMS· .Ge
~0435 .05A 071171
00436 ,DSA 0(1100021
S004~3 • 004;51
00437 ,OSA $00437
00440 JMS • • GB
00441 .OSA Gi!71176
00442 .DSA 1'1 0 "Jr. 00
00443 .DSA 1~0~~0 +RLl
00444 JMS· • F f

053 ENCODE (2~,ARR,) INT, RI.2(3), Rlol
00445 JMS* .GF
00446 .DSA C000~31
00447 ,DSA 1 t?lCIII1lCl' ° +ARR - "

00450 .DSA 0r.00e.0

C-12

00451 JMS* .GO
00452 .OSA INT
00453 .OSA 777775
00454 TAP (v.'e!0Q\03
00455 TAD (000003
00456 TAD RL2
00457 DAe $\'10457
004tH'l JMS* .GO
$00457 II ~ft!461
00461 .DSA $00461

054 C
1210462 JMS* .GE
00463 ,DSA 1~0000 +RL.1
00464 JMS* .Ff

055 E~DFILE 1
00465 JMS* .rv
0121465 ,OSA C01,H3001

056 ENOFIL.E 2
00467 JMS* .FV
00470 ,DSA (f)~0Vi02

057 ENDFII..E 3
00471 JMS* .FV
1210472 ,OSA C0~~~03

058 ENDFIL.E 4
00473 JI"IS* .FV
00474 .OSA (000!H'!4

059 ENDFII.E 5
00475 JMS* .fV
00476 .OSA (000005

060 ENOFILE 6
00477 JMS* .fV
00500 .DSA (000006

061 END
00501 CLA
00502 JMP* .5T
011211503 JMS* .FP
005"'.4 J~lP 00~00
00505 .6LK 1/!000Q14
1210511 .I)SA 0200~4
"'0512 .DSA 0000",0
0121513 ,DSA ~0tl1!IJCil~
00~14 .DSA 100011!0 +RL.l
00515 ,BLK 'H:J00~6
0121523 .OSA V\2~0~6
00!524 .OSA ~-'IiI~Qle0

00!525 .OSA 1i1000V,e.
00526 ,DSA 11i1Q101i10 +R1.2
00!527 .eLK "'QI~050
00577 .DSA 02~050

00600 .OSA o l/HlIQIf210

00601 .DSA ~000fl10

1210602 .DSA H'0000 +A~R
012161213 .eL.K "H"00~4
00607 ,DSA 02 iii",,,, 4
0061(11 .OSA Pl0iiHilQlQ!
00611 .DSA 00001110
00612 .DSA 1121001210 +NMl
00613 .BLK PJ000P1,d
1210617 .0511 020i1l04
006211' .D5A 000000
1210621 .DSA ~~HII0"H~

00622 .DSA 10i'!01i1fil +NM2

C-13

00623 .OSA DEFINE
0121~24 .6LK 012!~'H~' 1
0062~ .BLoK ~f!l1!I0f!11
00626 .OSA SEEK
00627 .OSA ENTER
e063~ .DSA .~S
0121531 .BLK 1lIQ1~001
Pl0632 .OSA .RJ
1210633 .05A .RB
00634 .OSA .RG
00153!S .OSA .RX
~063(:i .DSA • F'S
0121637 .OSA .F"J
00640 .DSA .FB
1210641 .DSA .Fe;
1210642 .OSA .FX
0121643 .DSA .RR
00644 .DSA .RE
00645 .05.A • R A
00646 .DSA .~F
001547 .DSA • Rill
00651':'1 .OSA .GO - .

00651 • OSA .GE
~0652 .05A .GA
1210653 .DSA .SS
00654 .OSA .Ge
00655 .OSA .G8
0065el .DSA .FR
00657 .OSA .f E
006tH' .DSA .FA
1210661 .DSA .FF
00662 .DSA .n~
00663 .OSA .GF
00664 .DSA .GG
006155 .DSA .FY
00666 .OSA .ST
00667 .DSA .FP
Q!0670 .OSA 0000Vo2
~0671 .DSA 011J1i'144
0IiHS72 .OSA 00~005
00673 .DSA 0e0l'100 -. 00574 • os" ~("~'H'IA

Pl0675 .DSA 0e1130
00676 .DSA PI~0012
~0677 .OSA (1I000M
007l'10 .DSA Ql0011l~3
00701 .DSA 0IiH'I0~1

00702 .DSA MH'!0G!7
00703 .DSA Vle0U0
00704 .DSA 00~017
0070~ .DSA ~00031

RLI 005~5
RL2 00515
ARR 00527
NMl 0061?3
NM2 0~613
.1~0 000~~
.200 ~0011

w DEFINE ~0fi23

JVB 00tJ2A
JVA 00625 --"'"

w SEEK 006215

C-14

• ENTER 00627

* .RS 00630
INT 00631

* .RJ 00632

* .RS 00e33
• .RG 006341

• .R)(00635

* .FS 00636
• .FJ 00637

* • FE) 0fi.H5~~'

• .FG 006.11
• .F)(00642
• .RR 00643

* .RE 00644

* .RA 00645

* .RF 00646
• .Rw 00647

• .GO ~06!50

* .GE 00651
• .GA 00t;i!'52

• .SS 00653
• ,Ge 006!54
• .GB 00655
• .FR IH'I656

• ,FE 0vH5~7

• .FA 00660
... .fF 00661

• .FW 00662

* .GF 00663
• .GG 006604
• .FV 00665
• .ST 11J0666

* .FP 00667

C-15

D.1 .LIBR - Page Mode Non-FPP

LIBRARV FIlE LISTING FOR .l.IBR

PROGRAM SOURCE PROGRAI-1
NA"IE EXTf.~.SI(lN SIZE

RBCPIO ~06 136
R8It-:IO (~?5 113
RANCOI-1 0~19 504
DEFINE ('11 1130
001(1 r112 2037
EDCODE ~t2 255
EOF 0~'0 30
UNIT t:Wl 56
JABS Cle.1 15
JDFIX 0~1 13
JFIX ~Hq 13
Fl.OATJ ~n 13
JOSLE et01 10
ISNGl. I7W2 30
JSIGN "f' 3 23
JDIM 0~1 21
JMOO ~~1 23
JMN"'X (!lIP 1~3
ERR SET " ~:0 25
IOERR ~W2 40
FILE epa 376
TIME r.H~9 45
TIME. 10 ~f8 72
AOJl "'V1(l 17
ADJ2 .WV'; 36
AOJ3 tH:'~ 41
ASS ~lVj 2 16
lABS N'0 14
DARS M'l 16
AINT ~1 r. 2 15
INT (,[,q 13
1DINT 005 lJ
AMOD ~~ ~\ ,3 27
MOD li'tl. 24
OMOC' N:4 30
FLOAT QlV12 11
IFIX e.V:2 ~3
SIGN n4 31
DSIGN ~C'4 31
ISIGN ~Hl't(\ 20
DIM !H'l 22
JD1I-1 \N'~ 15
SNC~L 0~4 27
DSLE ~¥' 1 11
IMN~lX ~5P 1 ;l7
~M'IIMX ~ep 120

ACTION

D-1

APPENDIX D

SYSTEM LIBRARIES

PAGE 1

.~,

LIBRARY FILE lISTING FOR .LlBR PAGE tl

PROGRAM SOURCE PROGRAM ACTION
NAME EXTEl-iSION SIZE

OMNMX (HIP 1V16
.88 V,'1;'4 6'2'
.BC ~Q19 132
.60 ~e9 132
.BE ~~6 33
.BF ~05 34
.BG 008 35
.BH '2'~5 34
.BI 0~3 120
SQRT 0Q'S 73
SI'" ~V.3 13 .-
COS ~03 20
ATAN 0~2 13
ATA.N2 0~7 44
EXP 0~' 2 13
AL.OG "'~2 20
AL.OG10 0~2 20
TANH 2104 47
.E8 ~04 1~2
.ED ~~5 67
.Ef r.e,2 71
.EF Qlb4 116
.Et 0el 44
DSQRT M'7 71
DSIN 0el 13
DtOS (1101 21
OAHN IHl1 13
OATAN2 QlI1'7 46
OEXP 0~1 13
DL.OG ee.3 21
OL.OG10 I? ~11 21
IOZERO ('Ie! 16
ISENSI'I M :l 30
IFLOW QH'l 22
.00 0~5 146
.DB ~Ql4 120 -.
.DE \ll03 U1
.OF Qle1 137
.DC eo~, 1 47
.DA pre 56
eCOIO 033 3724
BINIO 015 363

,.-...,

AUXIO ru' 133
.55 e05 50
GOTD 11'03 26
STOP €e3 13

D-2

LIBRARV FILE LISTING FOR .LIBR PAGE :5

PROGRAM SOURCE PRQGRAM ACTION
NAME E)(TEt-SION SIZE

PAUSE ee5 14
SPMSG 0e,4 73
.FLTB 0~4 266
FlOPS e17 735
PARTIIID ~3P 140
DBLlNT e.lF 377
INTEAE e.71=> nl
DOUBLE 0r-4 203
RELfAE 1l'P 1077
OrSER C'l~; 9 210
.CB ~e,4 22 CI.OSE

0-3

D.2 .LIBRF - Page Iv'ode FPP

\.IBRARY FII.E LISTING FOR .LIBRF PAGE 1

PROGR4M SOU~CE PROGRAM ACTION
NAME EXTENSION SIZE

RBCOIO ~e· 5 136
RBINIO r.05 113
RANCOM rli'9 5;114
DEFINE 011 113Q1
0010 F12 2012
ED CODE 0P12 2~5
fOF 0~~ 30
UNIT 0~1 66 .-~

JABS n)l 14
JDF"IX F01 12
JFIX Fe1 12
FL.OATJ F'~1 1121
JD8LE F01 10
ISNGL Fe2 13
JSIGN F~i3 16
JDIM Fe· I 17
JMOv F~l 17
JMNM)/ F1P 100
fRRSET 00QJ 25
IOEPR 0~2 40
FIL.E ~e:8 376
TIME 009 45
TIME10 !!!08 72

-~,

AOJ! ~~0 17
AOJ2 ~~0 3(5
ADJ3 QI!l:l1! 41
AaS F(iJ2 13
UBS '!.!rl?- 14
DABS F~l 13
AINT FC2 14
INT Fe2 12
lOINT FfIl5 12
AMOD F03 23 - " MOO "'00 2.
OHOD Fe-A 23
FL.OAT IH1'2 11
IFl)(Frtl2 12
SIGN F04 24
OSIGN FeA 24
ISIGN e0f6 20
DIM Filii 17
101M ~e~~ 15
SNGI. Ff'4 16
DaL.E FI11 10
IMNMX e5P 1l'i1
RMNMX F8P 115

D-4

I.IBRARY FII..E I..ISTING FOR .I.I6RF PAGE 2

PROGRAM SOURCE PROGRAM ACTION
NAME EXTENSIOt-; SIZE

DMNt-,X r8P 1:114
,68 ;.\~) .4 60
,BC n ' q 126
.60 Hl9 126
.BE F06 30
.SF Fes 31
.BG F~8 31
.8101 n"5 31
.BI r:e3 113
SQRT Fe,R 73
SIN Fe3 12
cos F03 16
ATAN F'P2 t2
ATAN2 Fe.7 35
EXP F~'2 12
AL.OG F~2 16
ALOG10 Ht2 16
UNH Fe·4 ~6

.EB F~' 4 77
,ED Ff?l5 6~

.E~ Ffi.I~ 72
, E~' F04 111
,Ee n: 1 40
DSQRT F~7 70
OSH~ FU 12
Dens Fe' 1 17
I)ATAN F ~1 1 12
OAT/lN2 F07 42
OEXP FV'1 1:2
OLOG F03 17
DLOG1~ F~; 1 17
IDZERO iAe 1 16
ISENSW NIl 3~

IFLOW VIe 1 22
,DO F c.~ 5 137
.OB Fe:4 115
.OE. F~'3 \1,14

,OF FO 1 :~0
.DC F0\ 43
.DA PP5 ~5

BCOID F33 3634
eINIO e15 363
AUXIO eli/! 133
ISS 0Ul 60
GOTO f?I~'3 26
STOP '103 13

D-5

'-L.IBRARY fILE LISTING FOR .L.IBRF PAGE ~

PROG~AM SCI"iRCE pROGRAM ACTION
NAME EXTHSION SIZE

PAUSE ",U5 14
SP~\SG l&'4 13
.FL.TB ,;, e,d 266
flOPS "' 17 715
PARTWC F3P 145
INTFAE (.li7P 131
.FPP F12 41i'17
OTSFR o ~; 9 2U
.ca N ' 4 22 CLOSE

--

D-6

APPENDIX E

PDP-15 FORTRAN FACILITIES

The extended FORTRAN language described in this manual and in the companion manual (Operating

Environmental Manual DEC-15-GFZA-D) is available only on the systems described below. The

FORTRAN existing on otherPDP-15 systems is described in a manual entitled "PDP-15 FORTRAN IV

Programmer's Reference Manual" (DEC-15-KFZB-D).

The following tables describe the existing versions of the extended compiler, the extended Object

Time System Libraries, and the compiler-library pairs available for different systems. All versions of

the compiler are written in PDP-9 code, however, 'PDP-9 mode' versions produce only PDP-9 code as

output while 'PDP-15 mode' versions may produce PDP-15 instructions where suitable. Page and Bank

Node libraries differ not only in the use of the PDP-15 versus PDP-9 code, but also in the values of

address masking constants used in a few of the routines. Note that the Floating Point Processor (FPP)

is supported only on the PDP-15, thus there is no PDP-9 mode version.

The library names used in the following tables are given for designational purposes within this appendix

only and do not necessarily reflect the names under which the libraries are distributed.

Table E-l
Versions of the Extended Campi I er

Main
Features Version System Approx.

Version Size (8)

F4X All e4X Non-FPP, PDP-15 mode D05-15 15406
F4X9 Non-FPP, PDP-9 mode DOS-15 15363
FPF4X FPP, PDP-15 mode D05-15 15661

F4B All except r F4B Non-FPP, PDP-15 mode, ADSS (V5B) 15251
direct-access I/O < F4B9 Non-FPP, PDP-9 mode ADSS (V5B) 15226

\...FPF4B FPP, PDP-15 mode ADSS (V5B) 15522

F4RX All except {F4RX Non-FPP, PDP-15 mode RSX
direct-access I/O FPF4RX FPP, PDP-15 mode RSX

E-l

System

005-15 (BOSS-15)

ADSS

RSX

System

DOS-15

(BOSS-15

ADSS V5B

RSX

Table E-2
Versions of the OTS Libraries for the Extended Compiler

Contents Libraries

Contains all routines, assembled for DOS-15 rBXP
operation. .LBXB

.LBXPF

.LBXBF

Contains all routines except direct-access rBRP
(DEFINE, RANCOM, RBINIO I RBCDIO) .LBRB
assembled for ADSS operation. .LBRPF

.LBRBF

Contains 011 routines except direct-access
(DEANE, RANCOM, RBINIO I RBCDIO) {LIB~ ond magtape subroutines (UNIT, EO F) ,as-

.LIBFX
sembled for RSX operation and includes
added routines applicable to RSX only.

Table E-3
Compilers and Libraries for Extended FORTRAN

Distributed with PDP-9/15 Systems

Non-FPP
Page Bank Page

Compiler F4X F4X or F4X9 FPF4X

Library .LBXP .LBXB .LBXPF

Compiler F4B F4B or F4B9 FPF4B

Library .LBRP .LBRB .LBRPF

Compiler F4RX F4RX FPF4RX

Library .LIBRX .LIBRX .LIBFX

E-2

Subsystem

Non- FPP, Page
Non- FPP, Bank
FPP, Page
FPP, Bank

Non- FPP, Page
Non- FPP, Bank - " FPP, Page
FPP I Bank

Non- FPP I Pagel
Bank

FPP I Page/Bank

FPP
Bank

FPF4X

.LBXBF

FPF4B

.LBRBF

FPF4RX

.LIBFX

A-register, 3-13

Accumulators, 3-13

A

Address calculation for array elements, 4-1

Adjustment of array dimension, C-1

ADVANCED Nonitor Software
System (ADSS), 1-6

ALT MODE, 1-2

Arctangent (ATAN, DATAN, ATAN2,
DAT AN2), 3-9

Arithmetic package functions, 3-1, 3-13

Arrays

data mode values, 4-2
dimension adjustment, C-1
element address, 4-1
size, 4-2
unsubscripted, 5-2

.ASCII to .SIXBT conversion, 4-16

ASSIG N command, 2-2

AUXIL (OTS Auxiliary Input/Output, 2-7

B

Background/Foreground Nonitor System, 1-6

BACKSPACE command, 2-7, 2-8

Backward links, 2-2

Batch processing monitor (BO$$-15), 1-7

BCDIO (OTS Binary coded I/O), 2-5, -6

global entry points, 2-12
routines, 2-5

BINIO (OTS binary input/output), 2-6, 2-7

BOS5-15 batch processing monitor, 1-7

Buffer size, OTS FlOPS package, 2-3

C

Carri age return, 1-2

CHAIN (overlay linker) 1-1, 1-3

CHAIN and EXECUTE loading, 5-3

Comma (,) usage, 1-2

Command error messages, 1-3

INDEX

C (cont)

Command string format, 1-2

Command string options, 1-2

Command (BACKSPACE, ENDFILE, REWIND),
2-7, 2-8

COMMON blocks, 5-3

storage area, 1-3

Compiler, 1-1

Control P(tP), 1-2

Conversion, .ASCII to .SIXBT, 4-16

Cosine - see Sine and cosine

D

• DAT see Device assignment

Data-directed Input/Output (DDIO), 2-13, 2-14

Data storage, external, 2-2

Data structures of peripheral devi ces, 2-2

Data transfer

EDCODE (memory to memory) 2-15
FlOPS, 2-3
RANCOM, 2-13

Data transmission, 2-1, 2-3

DDIO data-directed input/output routines, 2-13,
2-14

DECODE routine, 2-15

D ECtape, 2-2

DEFINE routine, 2-9, 2-11

parameter table, 2-11

Device assignment, 2-2

FlOPS, 2-3

Device data structure 2-2

Di rect access to formatted fil e, 2-11

READ,2-11
WRITE, 2-11

Direct access input/output, 2-9

Directoried storage, 2-2

Directoried subroutines, 2-16

1-1

INDEX (Cont)

Division by zero in RELEAE routine, 3-14

Dollar sign ($) usage, 1-2

DOS-15

FORTRAN directoried I/O, 2-2
operating system, 1-6
sample session, 1-4, 1-5

DOUBLE function, 3-16

Double integers, 1-7

Double precision floating-point arithmetic, 1-7

Double precision number format, 3-14

DOUBLE PRECISION values, 5-3

E

EDCODE routines, 2-15

ENCODE routine, 2-15

END FILE command, 2-7, 2-8

Error messages

command, 1-3
FORTRAN Appendix B
OTS Appendix B

Errors, unrecoverable, 4-4

Examples

IFLOW and IDZERO, C-5
input/output, C-6
programming, C-1

• EXIT function, 4-4

Exponential (EXP, DEXP), 3-5

Extended integer arithmetic, 1-7

External functions, 3-1, 3-5, 3-6

External storage, 2-2

External subroutines, 3-1

F

File access on serial devices, 2-2

FILE package, 2-16

Filename, 1-2

FlOPS (OTS lOPS communication, 2-1, 2-3

routines, 2-3
status tab I e, 2-3

Floating accumulator, 3-13

Floating-point processor (FPP), 1-7, 1-8

routines, 4-4

Format for single (double) precision numbers, 3-14

FORMA T statements, 2-5, 2-6

errors, 4-4
READ,2-5
record length, 2-5
WRITE, 2-5

Formatted input/output (RBCDIO) ~ 2-11

FORTRAN callable utility routines, 4-5 through
4-8

FORTRAN sequences called by MACRO, 5-2

Forward links, 2-2

FPP see Floating-point processor

FPP F4X system, 1-7

Functions, 3-16, 3-17, 3-18

G

Global entry points BCDIO, 2-12

.GLOBl pseudo operation, 3-1

Hardware, 1-7, 1-8

Header pair, 2-5

H

Held accumulator, 3-13

ID word (BINIO), 2-6

IDZERO, logical function, 3-14

IFlOW and IDZERO, programming
examples, C-5

Initialization and actual data transfer
(RANCOM), 2-13

1-2

--

INDEX (Cant)

Input/output

direct access, 2-9
examples, C-6
formatted (RBCDIO), 2-11
sequential, 2-4
unformatted (RBINIO), 2-12, 2-13

Input/output processing

data directed I/O (DDIO), 2-13
direct access, 2-9
ENCODE/DECODE (EDCODE), 2-15
general, 2-1
OTS lOPS communication (FlOPS), 2-3
sequential, 2-4
user subroutines, 2-15

Input/output routines, fv\agtape, 2-15

INSTALL MCR (RSX function), 1-5

INT function, 3-18

INTEAE function, 3-16

INTEGER array size, 4-2

Intrinsi c functions, 3-1, 3-2

IOERR(N} integer function (FlOPS), 2-4

L

Language summary, Appendix A

Left arrow (-) usage, 1-2

Li brari es, System, D-1

.LIBR, D-1

.LIBRF, D-4

Linkage

MACRO-FORTRAN, C-1
program, 1-1

Linking loader, 1-1, 1-3

LINKS, 1-3

Links, backward/forward, 2-2

Loading FORTRAN IV, 1-2

Logarithm, Base 2 (. EE, • DE) subfunction, 3-10

Logarithms, natural and common
(ALOG, ALOGlO, DLOG, DLOG10), 3-7

Logical function IDZERO, 3-14

Logical record size unformatted statements, 2-6

M

MACRO-15, 1-1

MACRO-FORTRAN linkages, C-1

MACRO sequences called by FORTRAN, 5-1

fv\agneti c tape, 2-2

input/output routines, 2-15

fv\agtape tape functions simulated on disk, 2-8

Master File Directory (MFD), 2-2

Memory to memory transfers, 2-15

MFD see Master File Directory

Nbdes, array, 4-2

Nbnitor control, 1-2

Multiprogramming environment, 1-7

N

Natural and common logarithms
(ALOG, ALOG10, DLOG, DLOG10), 3-7

Number formats, single/double precision, 3-14

o
Operati ng procedures, 1-1

OTS arithmetic routines, 3-13

OTS Auxiliary input/output (AUXIO), 2-7

OTS binary coded input/output (BCDIO), 2-5,
2-6

OTS binary input/output (BINIO), 2-6, 2-7

OTS error messages, Appendix B

OTS lOPS communication (FlOPS)

Buffer size, 2-3
routines, 2-3
status table, 2-3

OTS routines, 4-1 through 4-4, 4-15, 4-16

di rect access, 2-9
floating point processor, 4-4, 4-5
FORTRAN callable utility, 4-5 through 4-8
RSX library, 4-9 through 4-14

Output listing, 1-2

Overflow, 3-14

Overlay linkage editors, 1-1

Overlaying of LINKS, 1-3

1-3

INDEX (Cont)

P

Paper-tape source file, 1-2

PDP-15/30 Background/Foreground tv'onitor
System, 1-6

Polynomial evaluator (. EC, .DC)
subfunction, 3-13

Program linkage, 1-1

examples, C-1

Pseudo-operation, .GLOBL, 3-1

R

RANCOM (initialization and actual data
transfer), 2-13

RBCDIO, formatted input/output, 2-11

RBI NI 0, unformatted i nput/o utput, 2-12, 2-13

READ statement

formatted, 2-5
formatted direct access, 2-11
unformatted, 2-6

REAL array size, 4-2

REAL values, 5-3

Real-time execution, see RSX-15

Record identification number, 2-6

Record length, formatted records, 2-5

RELEAE, REAL arithmetic package, 1-7, 3-14,
3-17, 3-18

Relocation of program, 1-3

Restart FORTRAN IV, 1-2

Retrieval information block (RIB), 2-2

REWIND command, 2-7, 2-8

RIB see Retrieval information block

Right angle bracket (» usage, 1-2

Routines, MACRO-15, 1-1

Routines, OTS, 1-1,4-1 through 4-4, 4-14,
4-16

floating point processor, 4-4, 4-5
FORTRAN callable utility, 4-5 through 4-8
RSX library (.LlBRX BIN), 4-5,4-9

through 4-15

R (cont)

RSX-15 real-time execution, 1-7

RSX library (.LIBRX BIN) routines, 4-5,
4-9 through 4-15

5

Sample DOS-15 session, 1-4, 1-5

Science library, 3-1

Sequential file storage, 2-2

Sequential I/o, 2-4

Serial file storage, 2-2

Sine and cosine (SIN, COS, DSIN, DCOS), 3-8

Single integer arithmetic, 1-7

Single precision number format, 3-14

Single precision floating point arithmetic, 1-7

Software environments

ADVANCED tv'onitor (ADSS), 1-6
BOSS-15, 1-7
DOS-15, 1-6
PDP-15/30 B/F tv'onitor, 1-6
RSX-15, 1-7

Square root (SQRT, DSQRT), 3-5

Statements

READ, 2-5, 2-6
WRITE, 2-5, 2-6

Storage, external, 2-2

directoried mode, 2-2
sequential files, 2-2
serial mode, 2-2

Subfunctions in FORTRAN library ,

logarithm, base '2 (.EE, .DE), 3-10
polynomial evaluator (.EC, .DC), 3-13

Subprograms, science library, 3-1

System generation, 2-2

System Ii brari es, D-l

T

TKB (task builder), 1-1, 1-5

fil ename, 1-5

Time sharing, 1-6

1-4

-

INDEX (Cont)

U

UFO see User File Directory

Underflow, 3-14

Unformatted input/output (RBINIO), 2-12, 2-13

Unformatted statements, 2-6

READ, 2-6
WRITE, 2-6

Unsubscri pted array nome arguments, 5-2

User file directory (UFO), 2-2

User subroutines, input/output

directoried subroutines, 2-16
magtape I/o, 2-15
operations, 2-15

Utility routines, 4-1 through 4-16

FORTRAN callable utility, 4-5, 4-9 through
4-14

FPP,4-4
OTS, 4-1
RSX library (.LIBRX BIN), 4-5, 4-15

W

Word pairs, 2-5

WRITE statement

formatted, 2-5

1-5

'formatted direct access, 2-11
unformatted, 2-6

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
DigitalIs Program library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning DigitalIs Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Program library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATI-S

Postage will be paid by:

mamaoma
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy. organization, usability and read
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position . ___________________ Date: ______ _

Name: Organization: ----------------------- ------------------
Street: _________________ Department: _____________ _

City: ___________ State: __________ Zip or Country _______ _

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAil
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATl'S

Postage will be paid by:

mamaama
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. 33

MA YNARD, MASS.

-.

-.

•

