
XVM UNICHANNEL
SOITWAREMANUAL

DEC-XV-XUSMA-A-O

XVM UNICHANNEL
SOFTWARE MANUAL

DEC-XV-XUSMA-A-D

digital equipment corporation · maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright ~ 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-ll

r

PREFACE

CHAPTER

CHAPTER

CP..APTER

1

1.1
1.1.1
1.1. 2
1.1. 3
1.1.4
1.1. 5
1.1.5.1
1.1.5.2
1.1.5.3
1.1.5.4
1.1.5.5
1.1. 6
1.2
1. 2.1
1. 2.2
1. 2.3

2

2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6
2.6.1
2.6.2
2.6.3

3

3.1
3.1.1
3.1. 2
3.1. 3
3.1. 4
3.1. 5
3.1. 6
3.1. 7

CONTENTS

INTRODUCTION

XVM UNICHANNEL SOFTWARE COMPONENTS
XVM/PIREX
SPOL11
MAC11
ABSLll
UNICHANNEL Support Programs
Spooler Disk Area Generation (SPLGEN)
Spooler Installation Program (SPLOAD)
XVM Spooler Control Program (SPOOL)
XVM MAC11 Control Program (MAC11)
MCLOAD
System Software Modification

UNICHANNEL HARDWARE SYSTEM
Common Memory
Interrupt Link
Peripheral Processor Hardware

LOADING AND EXECUTION

INTRODUCTION
LOADING THE SYSTEM

ABSLll
Loading ABSLll, XVM/PIREX, and XVM/DOS

PERIPHERAL OPERATION
Disk Cartridge
Plotter
Card Reader
Line Printer

ERROR HANDLING
Disk Cartridge Errors
Card Reader Errors
Spooler Errors

TASK CRASHES
UNICHANNEL RELATED SOFTWARE COMPONENT$

Uc15 Components
XVM/DOS Components
XVM/RSX Components

SYSTEM DESIGN AND THEORY OF OPERATION-
PIREX

PIREX--PERIPHERAL EXECUTIVE
PIREX-An Overview
PIREX Services
Device Drivers
Software Routines in Background Mode
Unsupported Tasks
Optional LV Support
Optional DL Support

iii

Page

xi

1-1

1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-3
1-5
1-5

2-1

2-1
2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-8

3-1

3-1
3-1
3-3
3-3
3-4
3-4
3-4
3-4

3.1. 8
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.5.1
3.2.5.2
3.2.5.3
3.2.5.4
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.5
4.5.1

CONTENTS (Cont)

Power Fail Routine
PIREX - SIMPLIFIED THEORY OF OPERATION

NUL Task
Clock Task
Request Processing
Task Structure
Task control Block - TCB
API Trap Address and Level
Function Code
Task Code Number
Request Event Variable

SYSTEM TABLES AND LISTS
Active Task List (ATL)
ATL Nodes
ATL Node Pointer (ATLNP)
Task Request List (TRL)
TRL Listheads (LISTHD)
Clock Request Table (CLTABL)
Device Error Status Table (DEVST)
LEVEL Table
Task Starting Address (TEVADD)
Transfer Vector Table (SEND11)
System Interrupt Vectors
Internal Tables Accessible to All Tasks

DETAILED THEORY OF OPERATION--PIREX
Request Procedure
Directive Handling
Logic Flow
Operating Sequence
Software Interrupt
Task Completion

STOP TASKS
SOFTWARE DIRECTIVE PROCESSING

Disconnect Task Directive
Connect Task Directive
Core Status Report Directive
Error Status Report Directive
Spooler Status Report Directive
PIREX MOVE Directive

TASK DEVELOPMENT

INTRODUCTION
PRIORITY LEVEL DETERMINATION

Device Priorities
Background Task Priorities

TCB FORMAT AND LOCATION
TASK CODE NUMBER DETERMINATION
UPDATING LISTS AND TABLES

Temporary Task Installation - Existing
Spare Entry

iv

Page

3-4
3-5
3-5
3-5
3-5
3-6
3-7
3-7
3-8
3-8
3-9
3-10
3-10
3-14
3-14
3-15
3-15
3-16
3-16
3-17
3-17
3-18
3-18
3-18
3-19
3-19
3-20
3-20
3-20
3-25
3-25
3-25
3-27
3-29
3-30
3-32
3-33
3-35
3-36

4-1

4-1
4-1
4-2
4-2
4-2
4-3
4-4
4-4

4.5.2

4.5.3
4.5.4
4.6
4.6.1

4.6.1.1
4.6.1.2
4.6.1.3
4.6.1.4

r 4.6.1.5
4.6.1.6
4.6.2
4.6.3
4.6.3.1
4.6.3.2
4.6.3.3
4.6.3.4
4.6.3.5
4.6.3.6
4.7
4.7.1
4.7.2
4.7.2.1
4.7.2.2
4.7.2.3
4.7.2.4
4.7.3
4.7.4
4.7.4.1
4.7.4.2

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.5
5.5.1
5.5.2

CONTENTS (Cont)

Permanent Task Installation - Existing
Spare Entry
Temporary Task - New Entry
Permanent Task Installation - New Entry

CONSTRUCTING DEVICE HANDLERS
Constructing a XVM/DOS UNICHANNEL
Device Handler
Initialization
.INIT Function
Request Transmission
Interrupt Section
.READ and .WRITE Requests
.CLOSE Function
PDP-11 Requesting Task
UNICHANNEL Device Handlers for XVM/RSX
Definition of Constants
Initialization
Requests
ABORT Requests
Interrupts
READ and WRITE Requests

BUILDING A XVM/PIREX DEVICE DRIVER
General Layout
Task Program Code
Code Sections
Task Entry - Initialization
Interrupt Processing
Exit Techniques
Timed Wakeup
Assembly and Testing
Assembly and Loading
Testing

SPOOLER DESIGN AND THEORY OF OPERATION

INTRODUCTION
OVERVIEW

SPOOLER
XVM UNICHANNEL Spooler

SPOOLER DESIGN
SPOOLER COMPONENTS

Request Dispatcher
Directive Processing Routines
Task Call Service Routines
Device Interrupt Dispatcher
Device Interrupt Service Routines
Utility Routines
Buffers, TABLE, BITMAP, TCBs

THEORY OF OPERATION
SPOOLER Startup
LP SPOOLING

v

Page

4-5

4-5
4-6
4-6
4-6

4-23
4-23
4-24
4-24
4-26
4-26
4-26
4-27
4-27
4-27
4-53
4-53
4-53
4-54
4-55
4-55
4-56
4-56
4-62
4-62
4-63
4-65
4-66
4-66
4-66

5-1

5-1
5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-6
5-31

5.5.3
5.5.4

CHAPTER 6

6.1
6.1.1
6.1. 2
6.1. 3

6.1.4
6.1. 5
6.1.6
6.1. 7
6.1.8
6.1. 9
6.1.10
6.1.11
6.1.12
6.1.13
6.2

APPENDIX A

APPENDIX B

B.1
B.2
B.3
B.4
B.5
B.6

APPENDIX C

GLOSSARY

INDEX

CONTENTS (Cent)

LP Despooling
SPOOLER Shutdown

SPOOLER TASK DEVELOPMENT

Page

5-32
5-36

6-1

INTRODUCTION 6-1
Call Service Routine 6-2
Interrupt Service Routine 6-3
Code to Handle the Disk Read/Write 6-3
Operations
Routine to Setup TCB and Issue Request 6-3
TCB 6-4
Initialization in the BEGIN Routine 6-4
Cleanup in the END Routine 6~4

Updating the Request Dispatcher 6-5
Updating the Device Interrupt Dispatcher 6-5
Updating TABLE 6-5
Updating the Central Address TABLE 6-5
Update DEVCNT and DEVSPP 6-6
Updating the FINDBK Routine 6-6

ASSEMBLING THE SPOOLER 6-6

ABBREVIATIONS

CURRENTLY IMPLEMENTED TCBs

STOP TASK (ST)
SOFTWARE DIRECTIVE TASK (SD)
DISK DRIVER TASK (RK)
LINE PRINTER DRIVER TASK (LP)
CARD READER DRIVER TASK (CD)
PLOTTER DRIVER TASK (XY)

UC15 RELATED ERROR MESSAGES

vi

A-1

B-1

B-2
B-3
B-3
B-5
B-7
B-9

C-1

GLOSSARY-1

INDEX-I

"

Figure

Table

1-1
1-2
1-3
3-1

3-2
3-3

3-4
3-5

3-6

3-7
4-1
4-2
4-3
5-1
5-2
5-3
6-1

1-1

FIGURES

UNICHANNEL Hardware System
Memory Map of a UNICHANNEL System
UNICHANNEL System
Basic Flow Chart of XVM/PDP-11 Request
Processing
Task Format
Detailed Flow Chart of XVM/PDP-11 Request
Processing
Scan of Active Task List (ATL)
Context Switch or Save General Purpose
Registers RO-R5
Send Hardware Interrupt to XVM/Software
Interrupt to PDP-11
Dequeue Node From Task's Deque
XVM LP11 DOS Handler
XVM CR11 XVM/RSX Handler
UNICHANNEL LP Driver
UNICHANNEL Spooler Components
Task Call Service Routine
Device Interrupt Servicing Logic (For LP)
SPOOLER Schematic

TABLE

Cornmon Memory Sizes

vii

Page

1-4
1-5
1-6
3-2

3-6
3-11

3-21
3-22

3-24

3-26
4-7
4-19
4-28
4-57
5-7
5-30
5-33
6-1

Page

1-4

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in

cluding the latest version available. Within this manual, other XVM

manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL

DDT XVM UTILITY MANUAL

EDIT/EDITVP/EDITVT XVM UTILITY MANUAL

8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL

MACII XVM ASSEMBLER LANGUAGE MANUAL

MACRO XVM ASSEMBLER LANGUAGE MANUAL

MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VPl5A XVM GRAPHICS SOFTWARE MANUAL

VTl5 XVM GRAPHICS SOFTWARE MANUAL

XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READERS GUIDE AND
MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS VIA SYSTEM INSTALLATION GUIDE

XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

ix

DEC-XV-OBUAA-A-D

DEC-XV-UCHNA-A-D

DEC-XV-UDDTA-A-D

DEC-XV-UETUA-A-D

DEC-XV-UTRNA-A-D

DEC-XV-LFLGA-A-D

DEC-XV-LF4MA-A-D

DEC-XV-LF4EA-A-D

DEC-XV-ULLUA-A-D

DEC-XV-LMLAA-A-D

DEC-XV-LMALA-A-D

DEC-XV-UMTUA-A-D

DEC-XV-UPUMA-A-D

DEC-XV-UPPUA-A-D

DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A-D

DEC-XV-GVTAA-A-D

DEC-XV-ODKBA-A-D

DEC-XV-ODGIA-A-D

DEC-~-ODSAA-A-D

DEC-XV-ODMAA-A-D

DEC-XV-ODSIA-A-D

DEC-XV-IRSMA-A-D

DEC-XV-XUSMA-A-D

PREFACE

This manual describes the XVM UNICHANNEL (UNICHANNEL) Software System

and its primary component PIREX, the peripheral processor executive.

No attempt is made in this document to describe the various UNICHANNEL

hardware instructions; those are explained in the UNICHANNEL-IS SyS

tem Maintenance Manual. However, examples of instruction sequences

will be used when necessary to clarify programming conventions or

illustrate important aspects of the UNICHANNEL Software System.

It is recommended that the reader have a thorough understanding of the

UNICHANNEL hardware components before attempting to proceed with this

manual. The user who plans to use the UN I CHANNEL Software System in

conjunction with some operating system on the XVM, and not modify

it, should gain a thorough understanding of Chapter I of this manual.

Users who wish to modify the UNICHANNEL XVM Software System should

read the UNICHANNEL XVM System Maintenance Manual. In addition, a

knowledge of PDP-II and its assembly language is necessary before at

tempting UNICHANNEL system modification.

A Glossary is included following the appendices, and should be used to

clarify terms not familiar to the reader. Program flow charts are

also included in this manual to aid the user in understanding the

logic flow.

The following documents also pertain to the UNICHANNEL System:

MACII XVM Assembler Language Manual

XVM/DOS Users Manual

XVM/DOS System Manual

XVM UNICHANNEL Software Manual

Instruction List for the PDP-IS

XVM Systems Reference Manual

XVM/DOS VIA System Installation Guide

RKII-E Controller Manual DEC-II-HRKA-B-D

xi

CHAPTER 1

INTRODUCTION

1.1 XVM UNICHANNEL SOFTWARE COMPONENTS

The XVM UNICHANNEL Software System consists of the following four

components:

1. XVM/PIREX

2. SPOLll

3. MACll

4. ABSLll

1.1.1 XVM/PIREX

XVM/PlREX (peripheral executive), a component of the XVM UNICHANNEL

(UC15) Software System, is described in Chapters 3 and 4 of this man

ual. XVM/PlREX (PlREX) is a multiprogramming peripheral processor

executive executed by the PDP-II. It is designed to accept any number

of requests from programs on the DIGITAL XVM (XVM) or PDP-II and pro

cess them on a priority basis while processing other tasks concurrently

(e.g., spooling other I/O requests). PlREX services all input/output

requests from the XVM in parallel on a controlled priority basis.

Requests to busy routines (tasks) are automatically entered (queued)

onto a waiting list and processed whenever the task in reference is

free. In a background environment, PlREX is also capable of sup

porting up to four priority-driven software tasks initiated by the

XVM or the PDP-II.

1. 1. 2 SPOLll

Spooling is a method by which data to and from slow peripherals is

buffered on an RK05 disk. Spooling allows the XVM to access and out

put data at high speed, freeing more of its time to do computation.

Programs that do a great deal of I/O, especially printing and plotting,

are not required to be core resident to complete the entire job. This

frees the computer to quickly advance to more jobs, dramatically in

creasing the throughput of the entire system. The SPOLll task per-

1-1

Introduction

mits simultaneous spooling of line printer and plotter output, and

card reader input. The capacity of the spooler is user-defined with

a possible maximum of over 1,800,000 characters allowed.

1.1.3 MAC 1 1

MACll is a special version of the standard MACRO-II assembler available

on the traditional PDP-II computer system. This program is executed as

a task under the PIREX Executive. It is used to conditionally-assemble

various components of the UN I CHANNEL Software System. Since this as

sembler is a subset of MACRO-II, programs assembled under MACRO-II, will

not necessarily assemble under MACll. In addition, programs written

and assembled under MACll will not necessarily operate correctly on

other PDP-II systems. MACll produces assembly listings and absolute

binary paper tapes as outputs. Detailed information concerning MACll

can be found in the MACll XVM Assembler Language Manual.

1.1.4 ABSLll

ABSLll is a XVM Hardware Read In Mode (HRM) paper tape program used

to bootstrap-load the UNICHANNEL peripheral processor with MACll

generated absolute binary paper tapes. While primarily designed to

load the PIREX executive into the PDP-II memory, ABSLll may be used

to load any absolute program into the PDP-II and optionally start it.

Additional information on ABSLll may be found in Chapter 2 of this

manual.

1.1.5 UN I CHANNEL Support Programs

1.1.5.1 Spooler Disk Area Generation (SPLGEN) - SPLGEN allows the user

to dynamically create or alter the RK disk area used by the UNICHANNEL

spooler on any RK disk unit (0 through 7).

1.1.5.2 Spooler Installation Program (SPLOAD) - SPLOAD allows the user

to install, on the system disk, the SPOLll paper tape produced by

MACII.

1.1.5.3 XVM Spooler Control Program (SPOOL) - SPOOL (SPOLlS) is used

to initiate or terminate UNICHANNEL spooling using any RK disk unit

which has been previously prepared for spooling by SPLGEN.

1-2

{

Introduction

1.1.5.4 XVM MACll Control Program (MACll) - MACll (MACINT) is used

to initiate, perform Input/Output for, and terminate the MACll assem
bler.

1.1.5.5 MCLOAD - MCLOAD allows the user to install on the system disk,

the MACll paper tape produced as a part of the XVM/DOS build process.

1.1.6 System Software Modification

The complete UNICHANNEL Software System may be modified or expanded by

the user when running under XVM/DOS or XVM/RSX programming systems. A

common editor, called EDIT, allows source changes to the XVM or

PDP-II software. MACRO XVM, the MACRO XVM Assembler, and MACll, a

PDP-II MACRO Assembler allow new object code to be generated. Both

the MACRO XVM and MACll assemblers are powerful MACRO assemblers that

facilitate easy code generation and source readability.

1.2 UNICHANNEL HARDWARE SYSTEM

The UN I CHANNEL hardware (see Figure 1-1) consists of a PDP-II mini

computer used as an intelligent peripheral controller for the larger

XVM main computer. The XVM functions as the master processor by

initiating and defining tasks while the PDP-II peripheral processor

functions as a slave in carrying out these tasks. In order to effec

tively operate, with a minimum of interference with the master pro

cessor, the peripheral processor uses its own local memory of between

8,192 and 12,288 16-bit words. Since peripheral control requires only

a fraction of the peripheral processor resources, the remainder of the

processor's resources can be used for parallel processing of back

ground tasks.

1.2.1 Common Memory

Common memory is that memory directly accessible to both the master

processor - the XVM, and the peripheral processor - the PDP-II. Thus

common memory occupies the upper portion of the PDP-II address space
and at the same time the lower portion of the XVM address space. The

UNICHANNEL System allows any Non-Processor Request device on the UNI

BUS to access XVM memory so that data can be transferred between I/O

devices and common memory.

1-3

CARTRIDGE
DISK

UNIBUS

PDP-II
CORE MEMORY

8K OR 12K

Introduction

UP TO 128K
CORE MEMORY

XVM XVM MEMORY BUS COMPUTER

'- INTERRUPT
LINK

• •

PDP-II
COMPUTER

Figure 1-1
UNICHANNEL Hardware System

XVM 1/0 BUS

The use of common memory allows ease of data transfer between XVM

memory and secondary storage (disk, magnetic tape, etc.). The PDP-11

peripheral processor can access a maximum of 28K of memory. Table 1-1

shows the amount of Common memory accessible to a PDP-11 processor

with a given amount of Local memory.

PDP-11
MEMORY

8K

12K

Table 1-1
Common Memory Sizes

LOCAL COMMON MEMORY
SIZE SIZE

20K

16K

The UNIBUS can address the combined XVM/PDP-11 memory, which can

extend to a maximum of 124K. For instance, the RK05 and its disk con

troller can transfer information to or from a location outside of the

common memory region. Figure 1-2 outlines a typical memory map of the

XVM and PDP-l1, illustrating the common shared memory address space

and the PDP-l1 local memory.

1-4

(

NOT ACCESSIBLE BY UNIBUS {

UNIBUS DEVICE_+" ____ {

ADDRESSES

ACCESSIBLE BY
UNIBUS NPR <
DEVICES

ACCESSIBLE BY_+-_.(

PDP-ll {
"LOCAL PDP-11_"-+ __ t-
MEMORY

'- '-

128K

124K

28K

8-12K

Introduction

18 BIT
MEMORY

16 BIT
MEMORY

Figure 1-2

128K

116-124K

112-12¢K

16-24K

MEMORY ACCESSIBLE BY
XVM AND XVM I/O

NOT ACCESSIBLE BY XVM
OR XVM I/O

Memory Map of a UNICHANNEL System

1.2.2 Interrupt Link

The XVM central processor and the peripheral processor communicate with

each other through device interfaces. When the XVM initiates a new

task, it interrupts the peripheral processo~ with a message. The mes

sage is designated as a Task Control Block Pointer (TCBP) and points

to a table (Task Control Block) in common me,nory where the task is

defined. The peripheral processor performs the task and can signify

its completion by sending an optional interrupt back to the XVM.

1.2.3 Peripheral Processor Hardware

The UNICHANNEL System in its standard configuration consists of the

following equipment (Figure 1-3):

1-5

•
•
•
•
•

Introduction

r---------------------
I UCI5

L ________________________ ~

Figure 1-3
UNICHANNEL System

PDP-II Peripheral Processor

DRlS-C Device Interface

Two DRll-C Device Interfaces

XMlS Memory Bus Multiplexer

8192 or 12288 Words of l6-Bit Local Memory

The PDP-II, which functions as the peripheral processor, can itself

only process l6-bit words but co~trols peripherals that can process

l8-bit words to provide compatibility with the XVM. The DRlS-C and

the two DRll-C Device Interfaces provide the communication facility

between the XVM and the PDP-II. The XVM can interrupt the PDP-II and

send a data word (TCBP) to the PDP-IIi this interrupts the PDP-II at

priority level 7 (the highest priority level) and causes a trap thru

location 3108. The PDP-II, serving as a peripheral processor, can

interrupt the XVM to indicate an error condition or job completion at

anyone of 128 API vector locations at anyone of four API priorities. l

The XMlS Memory Bus Multiplexer functions as a memory bus switch to

allow either the XVM or the PDP-II to communicate with the common

memory. The XMIS also provides the PDP-II with the capability of

performing byte instructions which reference XVM memory.

IThis applies to systems with the API option - systems without API can
use four skip instructions, corresponding to the four hardware priority
levels, to determine the nature of the interrupt.

1-6

2.1 INTRODUCTION

CHAPTER 2

LOADING AND EXECUTION

This chapter explains how to get the DEC-supplied XVM UNICHANNEL Soft

ware System up and running. In addition, a list of the UNICHANNEL

software components used in the various XVM monitor systems is included.

For information on how to tailor the system to a specific configuration,

see the XVM/DOS System Installation Guide.

2.2 LOADING THE SYSTEM

The UN I CHANNEL system is activated by using ABSLll to load the PIREX

executive into the PDP-II UNICHANNEL local memory. XVM/DOS is then

bootstrapped and the system is ready to:

1. Continue running under XVM/DOS

2. Begin execution of BOSS XVM

3. Begin execution of XVM/RSX

2.2.1 ABSLll

ABSLll is an XVM absolute binary paper tape program which is read into

the XVM at location 17700 8 via the Hardware Read In Mode (HRM) on the

XVM. It is used to load PDP-II absolute binary paper tape on to the

PDP-II. This self starting program is written in MACRO XVM and octal.

(The PDP-II code is written in octal and assembled with MACRO XVM.)

Load ABSLll from the XVM High Speed Reader. XVM will then halt. Start

the PDP-II from its console switches at 140000. Note that the previous

(DOS V3A) start addresses for ABSLll can also be used. Once the

PDP-II is running, load the PDP-II tape into the XVM High Speed Reader.

Depress the Continue Switch on the XVM, and the paper tape will read

in. Each data frame from the paper tape is transferred into the PDP-II

as soon as it is read. At the end of the tape, XVM will halt with the

AC register equal to zero. If the paper tape has a start address, the

2-1

Loading and Execution

PDP-II will begin execution at that address. If the paper tape does

not have a start address, the PDP-II will halt. To load another tape,

place it in the XVM High Speed Reader, and continue both machines.

Checksum errors are detected by the XVM and result in a halt with all

l's in the AC register. The checksum error may be ignored by depres

sing the CONTINUE switch on the XVM.

2.2.2 Loading ABSLll, XVM/PlREX, and XVM/DOS

The following is a step-by-step description of how ABSLll, XVM/PlREX,

and XVM/DOS are loaded.

1. Place the ABSLll paper tape into the XVM paper tape reader.
The paper tape reader ON/OFF switch must be in the ON position.

2. Verify that the RK05 Disk Cartridge is loaded into drive and:

a. The LOAD/RUN switch is in the RUN position.

b. The write ENABLE/PROTECT switch is in the ENABLE position.

3. Press the HALT switch on the PDP-II UNICHANNEL console.

4. On the XVM console, set the address register switches to
17700 (octal), then press STOP and RESET simultaneously.

5. On the XVM console, press READ IN. The ABSLll paper tape
should read in.

6. When the paper tape reader stops, observe the XVM accumulator
(AC) using the proper setting of the rotary register selector
and register select switch on the XVM console.

a. If the AC is 0, proceed to step 7.

b. If the AC is not 0, retry starting at step 1. (If this
fails consistently, there is either a bad ABSLll paper
tape or a hardware problem.)

7. On the PDP-II UNICHANNEL console, load the starting address
140000 for the PDP-II portion of ABSLll into the switch
registers:

Then press the PDP-II LOAD-ADR switch

8. On the PDP-II UNICHANNEL console, raise the HALT/ENABLE
switch to the ENABLE position and then press the START switch.
The PDP-II RUN light should now be on.

9. Remove the ABSLll paper tape from the reader and place the
PlREX paper tape into it.

10. On the XVM console, press the CONTINUE switch. PlREX paper
tape should read in.

2-2

Loading and Execution

11. Remove the PIREX paper tape and verify that the bit 0 and RUN
lights on the PDP-II UNICHANNEL console are lit. This is an
indication that PIREX is running.

12. Load the XVM/DOS Bootstrap tape (hardware read in mode tape)
into the Paper Tape Reader.

13. Set Address Switches on the XVM Console to

a. 77637 8 for a 32K or more XVM

b. 576378 for a 24K XVM

14. On the XVM Console, press simultaneously STOP and RESET.

15. On the XVM Console, press the READ IN switch. The XVM/DOS
Bootstrap tape should read in.

16. XVM/DOS should announce itself. If not, check that the con
sole terminal is powered up, is ONLINE and not out of paper.
Also check that the correct disk cartridge was loaded into
RK unit O.

2.3 PERIPHERAL OPERATION

2.3.1 Disk Cartridge

On the front of the disk cartridge unit there are two (optionally a

third, ON/OFF) toggle switches, RUN/LOAD, and WRITE/PROT. To load

the disk, press ON (if present) and LOAD. Pull the door open. Pick

up the cartridge by the molded hand-grip, metal side down, horizontal,

and slide gently into the path between the wire guides. Shut the door.

Put the LOAD/RUN switch into the RUN position. In about 10 seconds,

the two lights, ROY and ON CYL will come on, i~dicating that the cart

ridge is ready. To unload the disk, place the toggle switch on LOAD.

Wait for about 30 seconds until the LOAD light is on. At this time,

the drive will release the cartridge with a noticeable' click' , only

then open the door and pull the cartridge out.

WARNING

Do not turn off the drive while unloading
(if drive has an OFF-ON toggle).

2.3.2 Plotter

Unlike the XY3ll, the XYIl does not have an offline switch. In order

to be able to indicate the XYll plotter off-line condition, provision

is made in the software through the PDP-II console switches. By

2-3

Loading and Execution

setting bit '2' of the console data/address switches in the up/on posi

tion ('1' state) the plotter can be put in the off-line mode. This is

made possible by the plotter device driver task in PIREX, which moni

tors this bit before initiating each plotter I/O requests. Once the

plotter problem condition (e.g., out of paper) has been corrected,

plotting will continue automatically when bit '2' of the console

switches is reset to zero (down position) •

The user is provided with the capability of halting the output on the

plotter at the end of current file in the spooled mode. This is done

through bit '3' of the PDP-11 console switches. By setting bit '3' of

the console data/address switches in the up/on position ('1' state)

output on the plotter can be halted at the end of current file. The

plotter driver task in PIREX provides this facility by monitoring this

bit before initiating each plotter I/O requests. After performing the

necessary operations on the plotter, output can be resumed by setting

bit '3' of the console switch in the down/off position ('0' state).

2.3.3 Card Reader

For the purposes of spooling, a card with ALT MODE, ALT MODE in columns

1 and 2 is used as an end-of-deck card. The handler throws away such

cards, continuing on to the next card, so that the XVM program using

the handler never sees this card. This card is used to force data

from a partially filled internal spooler buffer onto the disk where

it can be despoo1ed to the XVM.

2.3.4 Line Printer

Output to the Line Printer can be halted at the end of current file in

the spooled mode. This is done through bit '1' of the PDP-11 console

switches. By setting bit '1' of the console data/address switches in

the up/on position ('1' state), outputs on the line printer can be

halted at the end of current file. The Line Printer driver task in

PIREX provides this facility by monitoring this bit before indicating

completion of .CLOSE I/O request processing. After performing the

necessary operations on the line printer, output can be resumed by

setting bit '1' of the console switch in the down/off position ('1'

state) .

2-4

Loading and Execution

2.4 ERROR HANDLING

Within the PIREX system, the device drivers on the PDP-II side handle

errors by placing error condition indicators in a table in PIREX. On

the XVM side, a "poller" (part of the resident monitor of the operating

system) periodically searches the table to see if any error messages

are to be printed. In almost all cases the recovery is automatic when

the error condition is rectified. See Appendix C for a list of UC15

related error messages.

2.4.1 Disk Cartridge Errors

Disk cartridges must be positioned properly during loading operations.

Improper positioning of the cartridge can result in a drive not ready

condition.

This condition can be eliminated in most instances by unloading the

cartridge, repositioning it properly and reloading the cartridge.

The above operations should be repeated a few times before reporting

the problem to your field service representative. Do not force the

cartridge into or from position during the loading or unloading

operation.

2.4.2 Card Reader Errors

The system divides card reader errors into two groups: hardware and

software. A hardware error is a hardware read error (pick check, card

jam, etc.) or an illegal punch combination. A software error is a

supply error (hopper empty, stacker full) or an off-line condition.

For all hardware errors, the card causing the error will be on the top

of the output stack. With most hardware errors, the card reader will

stop, and a requisite light (i.e., pick check) will light on the

reader. Remove the card, repair or replace it, and put it on the

front of the input stack. Press the RESET button. The driver receives

an interrupt when the device becomes ready again and will restart

automatically.

For software errors, the card in the output hopper has already been

read. It is merely necessary to fix the supply error and press the

RESET button. Note that the card reader can be stopped by pressing

the OFF-LINE button. To restart, press the RESET button.

2-5

Loading and Execution

Illegal punch combination (IOPSUC CDU 72) and card column lost (IOPSUC

CDU 74) are exceptions to all other errors because in these cases

alone, the card reader will stop, remain on line, and no diagnostic

light will be lit. The card causing the error will be in the top of

the output hopper. (Mangled cards may cause an illegal punch combina

tion error.) Press the OFF-LINE button, repair or replace the faulty

card, put it on the front of the input stack, and press the RESET

button to restart.

2.4.3 Spooler Errors

During spooling operations, any unrecoverable disk error will result

in the automatic termination of SPOOLing. Unrecoverable disk errors
I

include:

The attempt by the spooler to read/write a bad block on
the disk cartridge.

Setting the disk cartridge off line while SPOOLing,is
enabled. (This is detected even if no Input/Output to the
disk cartridge is underway.)

The spooler is disconnected from PIREX upon the occurence of either

of the above errors. The user may restart the spooler by issuing the

XVM/DOS "SPOOL" command.

2.5 TASK CRASHES

During program development under PIREX on the PDP-ll, the task under

development may crash. Such crashes may not be apparent unless the

PDP-ll halts, because PIREX keeps both the RUN light and bit 0 lit as

if no problem existed.

2-6

Loading and Execution

2.6 UNICHANNEL RELATED SOFTWARE COMPONENTS

2.6.1 UC15 Components

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME

PIREX Executive PIREX XXX PIREX paper tape

SPOOLER SPOLll XXX SPOOL ***

PDP-II Absolute Loader ABSLll XXX * ABSLll paper tape

MACll Assembler Special DOS-II Tape** MACll ***

2.6.2 XVM/DOS Components

*

**

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME

XVM SPOOLER Component SPOL15 XXX SPOOL ***

SPOOLER Disk Area SPLGEN XXX SPLGEN BIN
Allocation

SPOOLER Image Loader SPLIMG XXX SPLOAD BIN

MACll XVM Component MACINT XXX MACINT ABS

MACll Image Loader MACIMG XXX MCLOAD BIN

DOS Resident Monitor RESMON XXX RESMON ****

DOS Non-Resident Monitor DOSNRM XXX DOS15 ****

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME

XV..:1 LPll/LSll/LVll LPU. XXX LPA. BIN
Line Printer Handler

XVM XYll/XY3ll Plotter XYU. XXX XYA. BIN
Handler

XVM CRll Card Reader CD. DOS XXX COB. BIN ****
Handler

ABSLll requires a special assembler, that is not available as a
supported product. Assembly of ABSLll with the standard MACRO
XVM Assembler produces a paper tape with a load address of 17720.

The MACll source is a PDP-II DEC tape that must be assembled and
linked under DOS/BATCH-II. This tape is not available as a part of
the XVM/DOS kit.

SPOLll and MACll are combinations of XVM and PDP-II code segments.

**** . These routines are versions of standard DOS-IS source f11es - crea-
ted using special assembly parameters - see the XVM/DOS VIA
System Installation Guide.

2-7

Loading and Execution

2.6.3 XVM/RSX Components

NOMENCLATURE SOURCE FILE NAME TASK NAME

RK05 Cartridge Disk File RFRES XXX RK · ...
Handler

Disk File Handler Overlay RFOPEN XXX RK · ...
Disk File Handler Overlay RFCLOS XXX RK · ...
Disk File Handler Overlay RFREAD XXX RK · ...
Disk File Handler Overlay RFDLET XXX RK · ...
Disk File Handler Overlay RFCREA XXX RK · ...
Line Printer Handler LP.XX SRC LP · ...
Card Reader Handler CD •••• XXX CD · ...
UNICHANNEL Poller POLLER XXX .POLLER

Plotter Handler XY.XX SRC XY · ...
Executive RSX.Pl XXX NA

and
RSX.P2 XXX

2-8

CHAPTER 3

SYSTEM DESIGN AND THEORY OF OPERATION--PIREX

This chapter describes the design and theory of operation of the XVM

UNICHANNEL Peripheral Processor Executive. Knowledge of this infor

mation is necessary to successfully modify the XVM UNICHANNEL Software

System. Chapter 4 will discuss techniques for modification of the

PIREX system.

3.1 PIREX--PERIPHERAL EXECUTIVE

PIREX is a multiprogramming peripheral processor executive designed

to provide device driver support to operating systems on the DIGITAL

XVM main-processor. PIREX is designed to be as independent of the

particular XVM operating system as possible, executing in conjunction

with XVM/DOS, BOSS XVM, or XVM/RSX. The PIREX Software System is des

igned to maximize flexibility and expandability and to minimize system

overhead and complexity. To accomplish this, special software and

hardware features are designed into the system.

3.1.1 PIREX-An Overview

PIREX is loaded from the XVM high-speed reader into the PDP-II local

memory and automatically started. Once running, PIREX is capable of

accepting multiple requests and directives from the XVM or PDP-II and

processing them on a controlled-priority basis. Task requests are

automatically queued (see Figure 3-1) and processed whenever the task

in reference is free. When a particular device or routine completes

the processing of a request, status information (e.g., parity or check

sum errors, transfer OK, etc.) is passed back to the caller.

At the completion ofaXVM request, an optional hardware interrupt is

initiated in the XVM on anyone of 128 possible API trap locations and

at anyone of 4 hardware API levels if requested. Since the software

completely determines which interrupt vector and level to use when

completing XVM requests, the routines initiating the interrupts could

actually be software routines used to simulate hardware conditions or

3-1

MASREQ .•.

Y

System Design and Theory of Operation--PIREX

•.. SLAREQ

SAVE R~-R5 ON entry BUMP PC SAVED
CURRENT STACK; I----~ IN STACK TO
UPDATE ENTRIES RETURN ADDRESS
IN ATL NODE

MASREQ
entry

GET TCBP AND
RELOCATE IT.
GET TASK CODE

N

SWITCH TO
SYSTEM STACK

N
Y

TAKE REFERENCED
'----------.-tTASK AS SPOOLER

TELL XVM
ERROR TCB

Figure 3-1

QUEUE REQUEST
IN TASKS TRL

BUILD ATL NODE

ESTABLISH TASK
STACK WITH
START ADDRESS
& PRIORITY

Basic Flow Chart of XVM/PDP-11 Request Processing

3-2

System Design and Theory of Operation--PlREX

just software tasks. If the request is issued from the PDP-II, the

user may request an optional software interrupt after completion of the

current request.

3.1.2 PlREX Services

The PlREX executive consists of modules that provide support for multi

ple I/O oriented tasks operating asynchronously with each other. In

addition, support is provided for other background tasks such as MACll.

The services provided to tasks operating under PlREX include:

• Context switching - transferring control of the PDP-II
Central Processing unit (CPU) from one task to another.

• Interprocessor communication - receiving requests for
service from, and, sending results to the XVM main
processor.

• Intraprocessor communication - receiving requests for
service from, and, sending results to tasks operating on
the PDP-II peripheral processor.

• Scheduling - determining which task is to execute next.

• Request Queuing - stacking requests for a busy task until
it is able to process them.

• Timing - providing a timed wake-up service for requesting
tasks.

• Error Reporting - providing a list of current device and
task errors to the XVM executive, on demand.

• Directive Processing - providing the XVM monitor with
specific services such as: notification of available
memory space, connecting, disconnecting or stopping tasks
and returning the status of certain tasks.

These services are provided to both device driver tasks and background

tasks.

3.1.3 Device Drivers

Device Drivers are tasks that typically perform rudimentary device

functions such as read, write, search, process, interrupt, etc. They

can, however, be complete handlers, performing complex operations such

as character generation and directory searching. PlREX provides each

driver with requests for I/O actions and returns the results of the

actions to the caller. Associated drivers are provided for the RK05

Disk Cartridge, the LPll/LSll/LVll Line Pr~nter, the CRll Card Reader,

and the XYll Plotter.

3-3

System Design and Theory of Operation--PIREX

3.1.4 Software Routines in Background Mode

The following are run as background tasks--executing only when I/O

drive tasks are idle:

1. SPOLll -- an input/output spooling processor

2. MAC11 -- A MACRO assembler for the PDP-II

3.1.5 Unsupported Tasks

All tasks supplied with the PIREX software system are fully supported

by Digital Equipment Corp. except the DECtape Driver task (DT). The

DT task has not been completely tested, but is included in the system

for illustrative purposes and for anyone who may desire to develop

DECtape capability on the PDP-II.

3.1.6 Optional LV Support

For reasons of packaging optional LV support on a printer and a plotter

is present in the standard PIREX ($LV=O). This support, however, is

only at the device driver level. The PDP-IS side modules display-file

to-vector, vector-to-raster, and LV I/O handler may be purchased separa

tely. Information is available through PDP-IS Marketing.

3.1.7 Optional DL Support

The DL-ll is supported as a communications protocal device between a

DEC system-lO and a PDP-IS. The code for this support is purchased

separately and is available from the SDC. Information is available

through PDP-IS Marketing.

3.1.8 Power Fail Routine

A power fail section is present in PIREX. It is, however, not sup

ported by DEC and currently only saves the general registers and does

not attempt to handle I/O in progress. This routine could be expanded

by the user into a complete power fail handler.

3-4

System Design and Theory of Operation--PlREX

3.2 PlREX - SIMPLIFIED THEORY OF OPERATION

3.2.1 NUL Task

When the PlREX Software System is running, it is normally executing the

NUL Task (a PDP-II WAIT instruction). The NUL Task is executed when

ever there are no other runnable tasks or while all other tasks are in

the WAIT state waiting for previously initiated I/O. The NUL Task

entry is a permanent element in the Active Task List. The Active Task

List is a priority ordered list of tasks that is used to schedule the

next task to be executed. The NUL task occupies the last position in

the Active Task List (ATL).

3.2.2 Clock Task

One other permanent entry in the ATL is the Clock Task. The Clock Task

is entered once every 16.6 milliseconds for 60 Hz machines (20.0 milli

seconds for 50 Hz). Its primary function is to provide other tasks

with a wake up service. A typical use of the Clock Task would be to

wake up the Line Printer Task every two seconds to check the Line Printer

status for a change from OFF LINE to ON LINE. The Clock Task operates

at the highest priority on the ATL.

3.2.3 Request Processing

When the XVM issues a request to the PDP-II to be carried out by PlREX,

it does so by interrupting the PDP-II at level 7 (the highest PDP-II

priority level) and simultaneously passing it the address of a Task

Control Block (TCB) through the interrupt link. This address is called

the Task Control Block Pointer (TCBP). A PDP-II task can issue re

quests to other tasks via the lREQ macro. The lREQ macro simulates

the XVM request process and results in a TCBP being passed to PlREX.

The contents of the Task Control Block completely describe the request

(task addressed, function, optional interrupt return address and level,

status words, etc.). The TCB will reside in the 'Common' Memory if

the request is issued from the XVM or in the 'Common' or 'Local'

Memory if the request is issued from the PDP-II.

The flow chart in Figure 3-1 illustrates the basic processing of

requests to PlREX from the XVM or the PDP-II. Note that error condi

tions are passed back to either central processor in the TCB or via

an error table to the XVM monitor poller along with status information

3-5

System Design and Theory of Operation--PIREX

necessary for control and monitoring of a request. usually the request

is to a device on the PDP-ll but other types are allowed.

3.2.4 Task Structure

A task is a PDP-ll software routine capable of being requested by the

XVM or PDP-ll through the PIREX software system. The task may be a

device driver, a directive processor, or just a software routine used

to carry out a specified function. A task must have the format shown

in Figure 3-2, TASK FORMAT.

task stack area

control register

busy/idle switch

task program

code

* *

* *

* *

* *
* *

* *
* *

* *
* *

Figure 3-2
Task Format

LOWER CORE

HIGHER CORE

This structure consists of four sections7 two are variable in size and

two are fixed.

The "task program code" size is variable and contains the programming

code necessary to carry out the task function.

The "busy/idle switch" consists of two words and is used by PIREX to

determine if a task is busy or idle. The TCBP of the current request

is stored in this section when the task is busy. This also enables a

task to easily access the TCB.

The "control register" is either a dummy address (an address which

points to an unused software variable) or the address of a device

3-6

System Design and Theory of Operation--PlREX

control register if the task is an I/O driver. This word is used only

by the STOP TASKS (ST) task when shutting down I/O operations.

The "stack area" begins immediately below the control register and

builds dynam'::'cally downwards. The purpose of the stack is to allow

each task free use of a private space for temporary storage of data

while it is executing and all its active registers during times when

other higher priority tasks are being run. The stack area must be

large enough to store the maximum number of temporary var.iables used

at anyone time plus one context register save. A context save requires

8 words of stack area plus an additional 3 words if the PDP-II has an

Extended Arithmetic Element (EAE). The stack size is fixed and deter

mined at PlREX assembly time.

3.2.5 Task Control Block - TCB

Tasks, in PlREX, receive requests for action and return the results of

their action in blocks of information called Task Control Blocks (TCB).

The general format of a TCB consists of three words followed by task

specific optional words. The following information must be present

in all TCBs since PlREX will honor requests in this format only.

15

TCB: API TRAP

FUNCTION

REV:

8 7

ADDRESS J API LEVEL

CODE ITASK CODE NUMBER

REQUEST EVENT VARIABLE

OPTIONAL WORDS

o
WORD 0

WORD 1

WORD 2

WORD 3-N

3.2.5.1 API Trap Address and Level - The API trap address is a XVM

API trap vector and has a value between 0 and 1778 when a hardware

interrupt on the XVM is required. Location 0 corresponds to location

o in the XVM. The "API" level is the priority level at which the

interrupt will occur in the XVM and has a value between 0 and 3 when

a hardware interrupt on the XVM is required. A 0 signifies API level

0, a 1 for levell, etc. The API trap address and level are used by

tasks in the PDP-II when informing the XVM that the requested operation

is complete (e.g., a disk block transferred or line printed). If the

XVM master computer doesn't have API or if API is not enabled, the

PDP-II issues an interrupt that when received is polled by the XVM using

4 UCIS skips (one per level) on the traditional skip chain.
l

lAPI is optional on PDP-IS's, standard on XVM's.

3-7

System Design and Theory of Operation--PIREX

3.2.5.2 Function Code - The Function Code determines whether hardware

interrupts on the PDP-IS or software interrupts on the PDP-II are to be

used at the completion of the request. If the code has a value of 0,

a hardware interrupt is generated on the XVM at the completion of the

request; if a 1, an interrupt is not made. If the Function Code is a

3, a software interrupt is issued by PIREX. The task routine or pro

gram using this facility sets up the trap address in the SENDll table

in PIREX prior to issuing the request to the task. The task or route

should return to PIREX after interrupt processing through an "RTS PC"

instruction. All registers are available for use by tasks.

3.2.5.3 Task Code Number - The Task Code Number (TCN) is a positive

(1-177 8)1 or a negative (200-377 8) 7-bit number plus a sign bit that

informs PIREX which task is being referenced. The mnemonic TCN as

used in this manual refers to the 7-bit portion of the Task Code

Number. Tasks are addressed by a numeric value rather than by name.

Tasks with positive code numbers are spooled tasks and tasks with

negative code numbers are unspooled tasks. When the SPOOLER (see

Chapter 5) is enabled and running, requests to spooled tasks are

routed to the SPOOLER. When the SPOOLER is disabled, requests to

spooled tasks are routed directly to device drivers.

Task Code Numbers are currently assigned as follows:

CODE 2 TCN TASK
_1 3 -1 CL task (Clock) Driver task 3

200 0 ST task (stop Task) Software task

201 1 SD task (Software Directive) Directive task

202 2 RF task (Cartridge Disk) Driver task

203 3 DT task (DECTAPE) Driver task

4 4 LP task (Line Printer) Driver task

5 5 CD task (Card Reader) Driver task

6 6 PL task (Plotter) Driver task

207 7 SP task (Spooler) Background task

210 10 LV task (Printer/Plotter) Driver task

211 11 DL task (Hurley proto cal Driver task
communication task)

212 12 Currently not used

213 13 Currently not used

214 14 Temporary Task Entry Temporary task

lA task code of 0 indicates the STOP TASKS DIRECTIVE - See Section 3.5

2The code column corresponds to the typical task code in the TCB

3The minus 1 is represented internally as 377

3-8

System Design and Theory of Operation--PIREX

PIREX is currently capable of handling these 14 tasks. Tasks 11-14

are spare task codes available for customer use. l

3.2.5.4 Request Event Variable - The REQUEST EVENT VARIABLE, commonly

called REV, is initially cleared by PIREX (set to zero) when the TCB

request is first received and later set to a value "n" (by the asso

ciated task) at the completion of the request. The values of "n" are:

0 = request pending or not yet completed

1 = request successfully completed

-200 = (mod 216 _1) nonexistent task referenced

-300 (mod 216 _1) illegal API level given (illegal values

are changed to level 3 and processed)

-400 = (mod 216_1) illegal directive code given

-500 = (mod 216_1) no free core in the PDP-II local memory

-600 = (mod 216_1) ATL node for this TCN missing

-777 = (mod 216 _1) request node was not available from the

POOL (i.e. , the node POOL was empty, and the ref-

erenced task was currently busy or the task did not

have an ATL node in the Active Task List)

When an address is passed in a TCB as data, the receiver of the address

must relocate it to correspond to the addressing structure in its

memory space. For example, a PDP-IS address passed to the PDP-II

must first be multiplied by two to convert word to byte addressing

and then the local memory size (LMS) of the PDP-II must be added.

For example,

PDP-II address = (PDP-IS address *2) + LMS on PDP-II

The reverse is true for a PDP-II address received by the XVM. For

example,

XVM address = (PDP-II address - LMS)/2

lsee Section 4.4 for further information.

3-9

System Design and Theory of Operation--PIREX

3.3 SYSTEM TABLES AND LISTS

The PIREX system uses various tables, lists, and deques to control

events within the system.

3.3.1 Active Task List (ATL)

The selection of a task for execution by PIREX is accomplished by first

scanning a priority-ordered linked list of all active tasks in the

system called the Active Task List (ATL). An active task is one which

satisfies one or more of the following conditions:

1. is currently executing

2. has a new request pending in its deque

3. is in a wait state, or

4. has been interrupted by a higher priority task

A task is inactive if there is no ATL node for it. A task can be in

anyone of the following states:

CODE

o

2

4

STATE

run

wait

exit

ACTIVITY

active

active

inactive

When a runnable task is found, the stack area and general purpose reg

isters belonging to that task are restored and program control is trans

ferred to it through an RTI instruction. Program execution normally

begins at the first location of the task diagram code (see Figure 3-3)

or at the point where the task was previously interrupted by a ?igher

priority task, or in special cases at any desired location in the task

using the 'PC' setting on the stack as in the RK task's error retry

program logic. When a task is interrupted by other tasks, its general

purpose registers are saved on its own stack. Control is returned to

the interrupted task by restoring its stack pointer and then its active

registers.

3-10

System Design and Theory of Operation--PIREX

MASREQ .•.
XVM TO

PIREX REQUES

MASREQ
entry

READ TCBP FROM
INTERRUPT LINK ~~----~
& RELOCATE TCB

SLAREQ .•.

SAVE R,0-RS ON
CURRENT STACK;
UPDATE ENTRIES
IN ATL NODE

SWITCH TO
SYSTEM STACK

GET TCBP AND

~------~ RELOCATE IT.
GET TASK CODE

N

Y

PDP-l1+PIREX
REQUEST

SLAREQ
entry BUMP PC SAVED

ON STACK TO
RETRY ADDRESS

..• next page

L-________________ ~TAKE REFERENCED

TASK AS SPOOLER

Figure 3-3
Detailed Flow Chart of XVM/PDP-ll Request Processing

3-11

System Design and Theory of Operation--PlREX

CALLTK

LVL7~3 ••.

LVL7~4

A

SET EVENT VARIABLE
IN CALLERS TCB TO
'-2~~', INDICATING
THAT AN ILLEGAL
TASK (NON-EXISTENT
ONE) WAS SPECIFIED

SEND INTERRUPT BACK
(IF REQUESTED) IN

FORMING THAT THE
REQUEST COULD NOT
BE PROCESSED

Figure 3-3 (Cont.)

AA ••• next
page

AS.El

I ,
I

~
Rescan the ATL
from the top.
See Figure 3-4.

Detailed Flow Chart of XVM/PDP-ll Request Processing

3-12

•

System Design and Theory of Operation--PIREX

AA

USE TCBP TO SET
TASK'S IDLE/BUSY
REGISTER TO BUSY
AND CLEAR THE EV
IN CALLERS TCB.

Y

N

LVL7~5 ••••

SCAN THE ATL
FOR AN ENTRY
(PRIORITY WISE)
FOR THIS NODE

REMOVE NODE FROM
POOL AND PUT IN
ATL

FILL IN TASK
PRIORITY TASK
CODE NUMBER,
AND TASK STACK
POINTER IN ATL
NODE

SET TASK PRIORITY
AND TASK START
ADDRESS IN TASK'S
STACK AREA TO BE
USED WHEN TASK
IS EXECUTED

SET CALLERS EV
TO -777 (WORD
16) INDICATING
THAT THE 3YSTEM
IS TEMPORARILY
OUT OF NODES IN
THE POOL.

Figure 3-3 (Cont.)

GET A NODE FROM
POOL AND MOVE
IT TO THE REF
ERENCED TASKS
DEQUE SAVE THE
18 BIT TCBP IN
THE NODE SO TASK
WILL HAVE IT
WHEN NEEDED.

{

ReSCan the
ATL from

-~ top. See
Figure 3-4.

Detailed Flow Chart of XVM/PDP-ll Request Processing

3-13

System Design and Theory of Operation--PlREX

The ATL is rescanned when:

1. a new request is issued to a task

2. a previous request is completed

3. at the end of a clock interrupt

4. a task goes into a wait state

A task is said to be in a "wait" state when its ATL node exists and it

is not runnab1e.

3.3.1.1 ATL Nodes - The Active Task List is a linked list containing

4 word entries called nodes.

An ATL node has the following structure:

WORD 1 Forward pointer to next node

WORD 2 Backward pointer to previous node

WORD 3 Stack pointer of task

WORD 4 115114113112111110191817161514131211101
~

Task Priority -.J,.r I

Spooling Indicator~
o = spooled
1 = not spooled

~ _____ ~,, ______ JJ ~

Task Code Number (TCN)------------~

TASK STATUS (States defined in 3.3.1)--------~

The ATL is referenced by a 2-word 1isthead. The listhead contains

backward and forward links pointing to the first and last nodes in the

list. The ATL is a priority-ordered list.

3.3.1.2 ATL Node Pointer (ATLNP) - Each task has a pointer to its

Active Task List Node (see Section 3.3.1.1) stored in the ATLNP

table. This table is in TCN order. An entry is 0 if the task is

inactive.

3-14

System Design and Theory of Operation--PIREX

The format of an ATLNP entry is:

o NAME 1 task-code-number

These entries are filled dynamically by PIREX with actual pointers.

3.3.2 Task Request List (TRL)

The Task Reqtlest Lists are doubly-linked, deque-structured lists of

pending TCBs. If when a request arrives, the target task is busy,

PIREX places the TCB pointer (TCBP) onto the busy task's deque for

later processing. This deque is the Task Request List.

A TRL node has the following structure:

WORD 1

WORD 2

Forward pointer to next node.

Backward pointer to previous node.

Most significant bits of the TCBP (XVM bits 0 and 1)

WORD 4 16 least significant bits of TCBP (XVM bits 2-17)

Each TRL is referenced by a two-word listhead. The listhead contains

backward and forward links pointing to the last and first nodes of a

given task's TRL. The TRL is built on a first come first serve basis.

3.3.3 TRL Listheads (LISTHD)

Each task has its own Task Request List, (TRL). Each LISTHD entry is

a double-linked listhead used to point to a task's TRL. The LISTHD

is a TCN ordered list.

lThe "NAME task-code-number" is a conunent

3-15

System Design and Theory of Operation--PlREX

The format for an entry is:

LISTHEAD XX

where:

1. LISTHEAD is a system macro

2. XX is a two character task mnemonic (i.e., LP for Line
Printer Task).

3.3.4 Clock Request Table (CLTABL)

The Clock Table (CLTABL) contains entries for one timing (wake up) re

quest from each task. The format of a CLTABLE entry is:

=
.WORD 1 Time Word

.WORD 1 Address Word

Where the first word is remaining time before wakeup and the second

word is the address for a JSR PC, XXX instruction. The JSR occurs at

clock interrupt level (6). The user must do an RTS PC to return con

trol to the clock routine. Time is measured in line frequency ticks:

16.6 milliseconds/tick for 60 Hz Systems. A task may cancel a timing

request by clearing the time word. A request for a wakeup is made by:

1. Placing the address of the routine to be called into
word 2 - then

2. Placing the time delay (measured in 1/60 sec. increments)
into the time word.

The above sequence must be exactly followed. See Chapter 4 for further

details on the use of wakeup calls. CLTABL is a TCN ordered list.

3.3.5 Device Error Status Table (DEVST)

The DEVST table is used to store error status codes for delayed trans

fer to the XVM monitor. The XVM monitor contains a routine called the

IXX represents the task mnemonic (e.g., RK.CL)

3-16

System Design and Theory of Operation--PlREX

.
"Po11er" which periodically requests error status codes from PlREX using

a "get errors" software directive. This method of error transmission is

useful for delayed error messages--such as those recognized on spooled

devices. The specific XVM I/O handler may no longer be present in the

PDP-1S's memory--thus the Request Event Variable (REV) method of return

ing error status would be useless. The "Po11er" requests the entire

DEVST table and reports those events on the system console terminal.

A "Get Errors" directive clears the DEVST table upon completion. The

reporting task may, for instance, correct the error condition before

the "Get Error" directive is issued. When this happens, the task could

simply clear its message from the DEVST table and thus eliminate a

spurious message. DEVST is a TCN ordered table. The format of a DEVST

entry is as follows:

WORD 1

WORD 2

WORD 3

TASK (MNEMONIC IN SIXBIT/RADSO RIGHT JUSTIFIED)

SPARE (used to report bad block numbers, and, to
report disconnected spooler unit)

ERROR CODE: SPOOLER ERROR CODE (HIGH BYTE)

TASK ERROR CODE (LOW BYTE)

3.3.6 LEVEL Table

The LEVEL table (task priority level) is used by the R.SAVE context

switch routine to determine the priority level of the task about to

begin execution.

entry into their

should be called

All interrupt vectors must specify a priority 7

respective interrupt routines. Upon entry, R.SAVE

to save the interrupt task state and return control

to the interrupt processing routine at the proper priority--found in

the LEVEL table. The LEVEL table is a TCN ordered task.

The LEVEL table entry format is:

.BYTE task priority *40

3.3.7 Task Starting Address (TEVADD)

The TEVADD Table contains the starting address of all defined tasks.

The system currently has room for 138 tasks of which three are tempor

ary entries used for tasks CONNECTED to and DISCONNECTED from PlREX.

MAC11 is such a temporary task and uses the table entries of the cur

rently unused highest task code. All PlREX systems must have at least

3-17

System Design and Theory of Operation--PIREX

one highest unused task entry to allow use of MACll. The TEVADD table

is TCN ordered.

The format of a TEVADD table entry is:

.WORD START task name

where START is either:

1. The starting address of the task, or,

2. 0 indicating that this entry is currently unoccupied.

where "Task name" is a comment.

3.3.8 Transfer Vector Table (SENDll)

The SENDll table is used to store transfer vectors for use when issuing

IREQ macro calls. The entry is the address at which the requesting

routine receives control back from PIREX. This table is TCN ordered.

The format of a SENDll entry is:

o task-name task-code-number

where "task name task-code-number" is a comment.

3.3.9 System Interrupt Vectors

The device interrupt vector-pairs consist of interrupt routine address

and priority level. The priority level of "all" devices shoul.d be

Level-7 "only". This is to permit PIREX to do a context switch before

processing the interrupt.

3.3.10 Internal Tables Accessible to All Tasks

All tasks in the PIREX system can easily access internal routines and

tables through the use of the system registers. These registers begin

at absolute location 1002 8 in the PDP-II and contain either pointers

to internal tables and listheads or entry points to commonly used sub

routines. The following list summarizes these registers.

3-18

System Design and Theory of Operation--PlREX

LOCATION

01002

01004
01006
01010
01012
01014
01016
01020
01022
01024
01026
01030
01032
01034
01036
01040
01042
01044
01046
01050
01052

01054

01056

01060
01062
01064
01066
01067

MNEMONIC

SEND11

CURTSK:

NBRTEV:
PWRDWN:
PWRUP:
SPOLSW:

000000
POL.LH
LISTHD
R.SAVE
R.REST
AS.E1
MOVEN
DEQU
SEND15
EMPTY
ATLNP
RATLN
SPOLSW
RTURN
NTEV
RTURN
RTURN
000000
DEVST
CLTABL

DEQU1

CEXIT

TEVADD
DEVARE : • WORD
DEVSPL: .WORD
CTLCNT: .WORD
SPUNIT: • WORD

DEVTYP
o
o
o

DESCRIPTION

INT. RETURN ADD. (ON 11) ON END
OF I/O

CURRENT TASK RUNNING
ADDRESS OF POOL LISTHEAD
ADDRESS OF TASK LISTHEADS
ENTRY POINT TO REGISTER SAVE
ENTRY POINT TO REGISTER RESTORE
ENTRY POINT TO ATL RESCAN
ENTRY POINT TO NODE MOVER
ENTRY POINT TO DEQUEUE
ENTRY POINT TO SEND INTERRUPT
ENTRY POINT TO EMPTY A DEQUE
ATL NODE POINTER TABLE
ENTRY POINT TO RETURN ATL NODE
SPOOLER SWITCHES ADDRESS
REUTURN INST. ADD. FOR PIC CODE
CURRENT NBR OF TASKS
ENTRY POINT TO PWR FAIL DOWN
ENTRY POINT TO PWR FAIL UP
SPOOLER SWITCHES
DEVICE ERROR STATUS TABLE
TABLE, A TlME-ADDR PAIR FOR EACH

TASK
ENTRY TO -SET TASK IN WAIT

STATE-ROUTINE
ENTRY TO -SET TASK IN RUN STATE-

ROUTINE
TABLE OF TASK START ADDRESSES
PlREX DEVICES SWITCH
DEVICES SPOOLED SWITCH
XVM CTL C RUNNING COUNTER
UNIT CURRENTLY BEING SPOOLED TO

These registers are accessed as absolute memory locations by various

permanent and temporary tasks. NO CHANGE in the location or order of

this table is permitted. New system registers may be added to the

end of this table.

3.4 DETAILED THEORY OF OPERATION-PIREX

3.4.1 Request Procedure

The UC15 system allows the XVM to initiate requests to the PDP-II by

interrupting at the highest PDP-II hardware level and simultaneously

passing to it an l8-bit Task Control Block address. Only the first 16
. 1

bits are used because PlREX does not support a memory management opt1on

on the PDP-II. Requests from the XVM or PDP-II could be for:

1 Memory management hardware support is not a feature of PIREX.

3-19

System Design and Theory of Operation--PlREX

1. a directive-handing routine

2. a data transfer to or from a device driver task on the PDP-II

3. a background software routine (task)

3.4.2 Directive Handlingl

Directive handling consists of such functions as:

1. Connecting and disconnecting tasks from the PlREX system

2. Reporting core status on the PDP-II local memory to the
calling routine

3. Stopping I/O on a particular device or all devices

4. Reporting UNIBUS device status to the calling routine

5. Stopping any or all tasks currently running2

6. Reporting spooler status to the caller

3.4.3 Logic Flow

The flow charts in Figures 3-3, 3-4, and 3-5 illustrate in detail the

program logic flow when a request from the XVM or PDP-II is made to

PlREX. Note that PlREX is capable of servicing requests in parallel

on a priority basis.

3.4.4 Operating Sequence

PlREX is usually running the NUL task waiting for something to do. When

a request is issued from the XVM or PDP-II, PlREX immediately:

1. saves the general-purpose registers onto the stack belonging
to the current task running

2. saves the stack pointer in the ATL nodes

3. sets the task in a RUN state

4. switches to the system stack (refer to Figure 3-5)

All of the preceding is done at level 7 (protected). The system stack

is used when switching between tasks or rescanning the ATL.

lSee Section 3.6 for additional information.

2See Section 3.5 for additional information.

3-20

System Design and Theory of Operation--PIREX

AS.TE

A RUNNABLE TASK
HAS BEEN FOUND,
SAVE SYSTEM
STACK POINTER,
AND SWITCH TO
NEW TASK'S STACK

BEGIN SCAN OF
ATL STARTING AT

ADVANCE SEARCH
TO NEXT NODE

REMOVE THE TASK
STATUS (TS) FROM
NODE AND USE IT
TO DISPATCH TO
THE APPROPRIATE
PROCESSING
ROUTINE

TS=2

TASK IS IN A
WAIT STATE,
BY-PASS IT.

Figure 3-4

AS.STP

TASK MUST BE
STOPPED. RETURN
TO ATL NODE TO
POOL. (KEEP LINK
TO NEXT NODE.)

Scan of Active Task List (ATL)

3-21

System Design and Theory of Operation--PIREX

SAVE RI-R5 (R~

SAVED ON CALL)
AND AC,MQ,SC IF
EAE OPTION

GET TASK CODE
(TCN) AND BUMP
~ TO RETURN
ADDRESS

SAVE CURRENT
TASK'S 'SP' IN
ATL NODE

SET ' SP' FROM
INTERRUPTING
TASKS ATL NODE

SET TASK IN
RUN STATE

LOWER PRIORITY
LEVEL OF TASK

Y

Figure 3-5
Context Switch or Save General Purpose Registers RO-R5

3-22

(

System Design and Theory of Operation--PIREX

In the case ofaXVM request, the TCBP (Task Control Block Pointer)

register is now immediately read by the PDP-II allowing additional re

quests to be made. PIREX corrects the TCBP by an amount equal to the

PDP-II local memory when a request comes from the XVM. The TCBP is

present in R4 and RS when the IREQ macro is issued by a PDP-II routine

and the PDP-II is able to address the TCB directly and retrieve infor

mation from it. The task code number is then obtained from the caller

TCB and used to determine which task or directive that is being

referenced.

A check is made to determine if the called task is a spooled task or

not. If bit 7 = 0, it is a spooled task and if bit 7 = 1, it is an

unspooled task. If the called task is a spooled task and if the SPOOLER

is

is

is

is

enabled, the request

not enabled, a check

currently active and

queued to the task's

is processed by the SPOOLER. If the SPOOLER

is made to determine if the task in reference

busy with a previous request. If so, the request

deque (TRL) on a first corne, first serve basis.

If the task in reference is currently inactive, an ATL node is built

containing the appropriate entries, the address of the ATL node is set

in the ATLNP table and the task's priority in the LEVEL table. In

either case, the ATL is rescanned and the highest priority task is

selected for execution (see Figure 3-4).

UCIS peripherals, controlled by PIREX, use a minimal driver to carry

out requested functions and report the results back to the calling task

via the TCB. When a driver finishes a request (whether an error occur

red or not), it informs the requestor by placing the results (status

and error ~egister) in the TCB associated with that request and sends

an optional hardware or software interrupt back to the requestor.

The request event variable (REV) is set prior to sending an interrupt

to the XVM/PDP-ll and may be used by the XVM or PDP-II to determine

if a request has been processed. This method is used during times

when interrupts are not enabled or desired (as during the bootstrapping

operation on the XVM). The hardware interrupt to the XVM (see

Figure 3-6) is optional and can be made at any of the XVM API hardware

levels and trap addresses. The API level and trap address are specified

in the TCB associated with each request to allow complete flexibility

in interrupt control.

3-23

System Design and Theory of Operation--PIREX

SET REV TO
'-300' AND
ASSUME LEVEL
3

Y

GET API TRAP
ADDRESS FROM
TCB

ISSUE
INTERRUPT

N

Figure 3-6

LOWER TO TASK
PRIORITY LEVEL

CALL @SENDll
(TASK CODE *2)

Send Hardware Interrupt to XVM!Software Interrupt to PDP-II

3-24

(

System Design and Theory of Operation--PlREX

3.4.5 Software Interrupt

A software interrupt return for the PDP-II tasks is optional. This

feature is available only if a hardware interrupt return to the XVM

is not required. To generate a software interrupt, the task using the

request has to set the trap address before issuing the request. Each

task running under PlREX has an entry in the SENDll Transfer Vector

Table. PlREX traps to this location on completion of a request by

executing a JSR PC, SENDll (Task Code *2). The task issuing the re

quest specifies its task code in the TCB. All registers are free to

be used when the control is transferred. Control is returned to PlREX

through an RTS PC instruction.

3.4.6 Task Completion

When the XVM has been notified (via interrupt) that its request has

been completed, the task completing the request under PlREX becomes idle

and calls DEQU (see Figure 3-7) to determine if any additional requests

are pending. If no requests are pending, control is transferred to

the ATL scanner (after saving the stack pointer and setting the current

task in a wait state in its ATL node). If additional requests exist,

the next request in the task's TRL is processed as if it were just

received.

3.5 STOP TASKS

The STOP TASKS Task is used to stop tasks and/or I/O currently underway

for either all tasks or for a particular task. STOP TASKS can cancel

all requests or only XVM requests for the indicated task(s). There

are four possibilities:

1. Stop all tasks unconditionally and cancel all pending XVM
requests

2. Stop a given task unconditionally and cancel all pending XVM
requests to that task

3. Cancel all XVM requests to all tasks - this has no effect
on PDP-II requests

4. Cancel all XVM requests to a given task - this has no
effect on PDP-II requests

The process of stopping a task includes (lor 2 above):

3-25

system Design and Theory of Operation--PIREX

SET TASK'S
BUSY/IDLE SWITCH
WITH NEW TCBP

ZERO TCBP IN NODE
AND RETURN NODE

N Y

Figure 3-7

SAVE CURRENT
TASK'S 'SP' IN
ATL NODE

SET CURRENT TASK
IN WAIT STATE

SWITCH TO SYSTEM
STACK

Dequeue Node From Task's Deque

3-26

..• See Figure
3-4.

(

System Design and Theory of Operation--PIREX

1. Removal of all appropriate XVM request nodes in the task(s)
TRL(S)

2. Zero the Busy Idle Switch for the task(s)

3. Clear the I/O device register(s) for the task(s)

4. Set the tasks status in the ATL to EXIT (for a temporary
task) or WAIT (for a permanent task) .

5. Indicate completion by setting the REV of the STOP TASKS
requestor. (An interrupt return is not allowed.)

The stop Tasks TCB has the following format:

15 0

TCB:

I
0

I

Word 0

TCN 200 Word 1

REV: REV Word 2

Word 1 bit 15 1 cancel XVM requests and the current
pending request unconditionally.

bit 15 = 0 cancel XVM requests

TCN = 0 cancel all tasks

TCN to cancel Task TCN only

Word 2 REV = Return Event Variable

STOP TASKS is typically used by the XVM operating system to quiet all

interaction between the XVM and the PDP-II.

3.6 SOFTWARE DIRECTIVE PROCESSING

The software directive task provides two main capabilities. These are:

1. The capability to connect and disconnect temporary tasks to
PIREX (such as MAC11

2. The capability to obtain various PIREX status information.

These capabilities are provided via five software directives, which

are described later in this section.

The general format for software directive task control blocks is as

follows:

3-27

System Design and Theory of Operation--PIREX

,15 8,7 ~ , i , ATA , ALV word ~ , , , , , , I I I I I I I I

FCN ,
2~1 word 1 , , I I , I I I

REV word 2
I I I

OPR , word 3 ,
I I I ,
Contents Depend ,

Open
, , , , Directive , word , , n ,

1'1 I I I I I I I ,

ATA XVM API interrupt vector address

ALV XVM API interrupt priority level. Must be 0, 1, 2, or 3
(unless FCN = 3).

FCN Function to perform upon completion of this software directive
request. Valid values are:

000 Interrupt the XVM at address ATA, priority ALV.

001 Do nothing (except set REV) .

003 Cause a software interrupt to the PDP-11 task whose
task code number is in ALV.

REV Request Event Variable. Initially zero, set to a non-zero
value to indicate completion of the software directive request.
The meaning of the various return values is described below.

aPR Indicates the exact operation (directive) to be performed.
Must be one of the following values:

0

1

2

3

4

5

Returned REV

1

-300

-400

Other

Disconnect Task

Connect Task

Core Status Report

Error Status Report

Spooler Status Report

MOVE

values

Successful completion

Invalid ALV value. The request mayor may not have
been performed - see individual directive descriptions.
The XVM will be interrupted at level 3.

Invalid aPR (directive/operation code) value.

See individual directive descriptions.

3-28

(

System Design and Theory of Operation--PIREX

The following sections contain detailed descriptions of the individual

software directives, their task control block (TCB) formats, and the

REV values they may return.

3.6.1 Disconnect Task Directive

The disconnect task software directive instructs PIREX to delete a

task from the active task list. Request should not be issued to a

task after it has been disconnected. An attempt to issue a request

to a disconnected task will result in a returned REV value of -200,

implying that a non-existent task was referenced. The format of the

task control block for the disconnect task software directive is as

follows:

TCN

REL

First
Address

Length

15 8,7 " I
ATA I ALV I word % I I
I I I I , I I I I I I

I
FCN I 2%1 I word 1 I I

I I I I I I I I I
I

REV word 2
I I I I I I I

I

~~~ I TCN word 3 I 
I I I I I I I 

REL word 4 
I I I I I I I I I I I I I I I 

First Address word 5 
I I I I I ! I 

unused word 6 
I I I I I I 

Length word 7 

The task code number of the task to be disconnected. 

000000 if the task resides in XVM memory 
100000 if the task resides in PDP-II memory 

PDP-II byte address of the first location in memory 
occupied by this task (the lowest address of the task 
stack area). Only meaningful if the task resides in 
PDP-II memory - if the task resides in XVM memory this 
word is ignored. 

Total size (in bytes) of this task, including stack 
area, control register, busy/idle switch, and program 
code. Only meaningful if the task resides in PDP-II 
memory - if the task resides in XVM memory this word 
is ignored. 

The disconnect task software directive verifies that the task to be 

disconnected is on the active task list. If present on the list, the 

task is disconnected - the active task list node is returned to the 

3-29 



System Design and Theory of Operation--PIREX 

pool, the task's entry in the TEVADD table is cleared, and the task's 

task request list is cleared. If the task resides in PDP-l1 memory, 

an attempt is made to free the memory space occupied by the task - if 

the first free local memory address is the address immediately follow

ing the storage area occupied by the task (as determined from the first 

address and length arguments), the task's first address becomes the 

new first free local memory address. 

RESTRICTIONS: 

1. If a task does not have an active task list node, it cannot 
be disconnected. Therefore, once a task has been connected, 
it cannot be disconnected until after a request has been 
issued to it. 

2. All requests which are on the task request list of a task 
which is disconnected are forgotten. Such requests will never 
complete; their request event variables (REVs) will never be 
set to a non-zero value. 

3. PDP-11 local memory resident tasks should only be disconnected 
if they are the last (highest address) task in local memory. 
If PDP-11 local memory resident tasks other than the last are 
disconnected first, the memory space occupied by these tasks 
will not be released. This will result in holes (of unusuable 
memory) in the PDP-11's local memory. 

4. Tasks should be disconnected in a reverse sequential order by 
task code number. A task should not be disconnected if there 
are any connected tasks with higher task code numbers. 

5. The high order bit of the task code number (TCN) must be 
clear. 

Returned REV values: 

1 Task successfully disconnected 

2 Task successfully disconnected, but the (PDP-11 local) 
memory occupied by this task could not be released. 

-300 Invalid ALV value, the task mayor may not have been dis
connected, its memory mayor may not have been released. 

-600 Task to be disconnected is not on the active task list (i.e., 
node not present) 

3.6.2 Connect Task Directive 

The connect task software directive instructs PIREX to add a new task 

to the system. Once a task has been connected to PIREX, the XVM and/or 

other tasks may issue requests (task control blocks) to it. The format 

3-30 



System Design and Theory of Operation--PIREX 

of the task control block for the connect task software directive is 

as follows: 

TCN 

REL 

Entry 
Point 

Length 

Priority 

,15 8,7 ~, , , , ATA , ALV , word ~ , , , , , , I , , , , , , , I , , , , , 
~N 

, 
2~1 

, word 1 , , , , , , , I , , , , , I , , , , , , , , REV , word 2 , , I , I I , 
~~1 

, TeN word 3 , , I , , I , , I I , 
REL word 4 

I I ! , I , ! , , 
unused word 5 , , 

I I I I I , I , 
Entry Point word 6 , , I , I , I I , , ! , , , , 

Length word 7 , ! ! I , 
I ! , ! I , ! , 

unused , Priority word 1~ , 
I , ! I , I ! , ! , , I 

The new task's task code number (TCN) 

000000 if the new task resides in XVM memory. 
100000 if the new task resides in PDP-11 memory. 

Address of the new task's entry point - i.e., the 
first location of the task's program code. This 
address is a PDP-11 byte address if the new task 
resides in PDP-11 memory, a XVM word address if the 
new task resides in XVM memory. 

Total size (in bytes) of the memory space occupied by 
this task, including stack area, control register, 
busy/idle switch, and program code. Only meaningful 
if the task resides in PDP-11 memory - if the task re
sides in XVM memory this is ignored. 

The task's priority *408 • 

The connect task directive enters the new task start address (appro

priately relocated if the new task resides in XVM memory) into the 

TEVADD table. The directive does not actually create an active task 

list node for the new task; this occurs only when the first request 

is issued to the new task. The directive clears the new task's busy/ 

idle switch (sets the task in idle state) and empties the new task's 

task request list. The new task priority is placed in the LEVEL 

table. If the new task resides in PDP-11 memory, PIREX updates its 

memory usage information by adding the size of the new task to the 

first free local memory address. 

3-31 



System Design and Theory of Operation--PIREX 

RESTRICTIONS: 

1. The task code number must not be in use (correspond to any 
currently connected or permanently installed task) at the 
time this directive is issued. 

2. The task code number must have been provided for when PIREX 
was assembled. As distributed by DEC, PIREX provides for 
task code numbers 08 through 138 inclusive. 

3. The high order bit of the task code number must be clear. 

4. If the task resides in PDP-ll memory, the first address it 
occupies must be the first free local memory address, as 
returned by the core status report software directive. 

5. If the task resides in XVM memory, it must reside entirely 
within the area addressable by the PDP-ll's 28K addressing 
range. 

6. Tasks should be connected in sequential order by task code 
numbers. Temporary tasks (tasks which will subsequently be 
disconnected) should always be connected to a task code 
number one higher than that obtained via the core status 
report software directive. 

Returned REV values: 

1 Task successfully connected 

-300 Invalid ALV value. Task has been connected. 

3.6.3 Core Status Report Directive 

The core status report software directive returns information regarding 

PDP-ll local memory and task code number usage in PIREX. The format of 

the task control block for the core status report software directive is 

as follows: 

15 8,7 ~, 
I , 

ATA , ALV 
, word ~ , , , , , I , , , 

I 
, , , , , , , , , 

FCN 
, 

2~l 
, word 1 , , , , , , , , , , , 

REV 
, word 2 , , , , , , , 

I I , , , , , 
~~2 

, TCN , word 3 , , , I I , I , I , I I I I , , 
Local Memory Size word 4 , I , , ! I I I , , , , I 

First Free Address word 5 , , I I I ! , , , I , I 

unused word 6 , , ! I , I , ! , I , , I , , 
Number of Free Words word 7 , , I , , I , , , , , , , , , 

3-32 



System Design and Theory of Operation--PIREX 

TCN 

Local 
Memory 
Size 

First 
Free 
Address 

Set to the highest currently connected task code 
number in PIREX. 

The amount of local memory in the PDP-II UNICHANNEL. 

Set to the PDP-II byte address of the first free 
(unoccupied) address in local memory. 

Number of Set to the number of unused words in PDP-II local 
Free memory. Equal to «Local memory size in bytes) -
Words (First free address»/2. 

RESTRICTIONS: 

1. The core status report software directive has no restrictions. 
However, the restrictions (especially those regarding order 
of use of memory and task code numbers) on the connect and 
disconnect software directives must be adhered to in order to 
have valid information returned by the core status report. 

Returned REV values: 

1 Successful completion 

-300 Invalid ALV value. No information returned. 

-500 No free PDP-II memory. No information returned. 

3.6.4 Error Status Report Directive 

The error status report software directive returns information regard

ing device and/or spooler errors which have occurred since the last 

time this directive was issued. The format of the task control block 

for the error status software directive is as follows: 

,15 8,7 p, 
ATA , ALV word % , 

! ! I , , I I , I I , , 
FeN 

, 
2%1 word 1 , , ! I I , 

REV word 2 
I I , I I I 

, I 

%%3 
, unused word 3 , , , , I , I I , , I I I , I 

Returned word 4 

I 
Error I , Information ~lcrd n , , , , , , I , , , , , , , , ! 

3-33 



System Design and Theory of Operation--PIREX 

The error status report software directive copies error status infor

mation from the DEVST table onto the requestor's task control block, 

then clears the DEVST table to store new error information. The error 

information returned consists of a series of three word blocks, one 

per PIREX task. As distributed by DEC, eleven such blocks will be re

turned - one for each permanent task (excluding the clock task) plus 

two more for spare or temporary tasks. The nHmber of these blocks re

turned may change, however, if users alter the number of tasks (espec

ially permanent tasks) in PIREX. The format of each of these three 

word information blocks is as follows: 

,15 8,7 ~, , , , , , , , , , , , , 

Task Name 

DEVERR 

SPLERR 

, 
Task Name , word 16 , , , , , I I I , , 

unused--zero , word 1 , 
I I I I I I I , , 

SPLERR 
, DEVERR 

, word 2 , , , I I I I I I I I , 

A three character (.SIXBT) mnemonic for the task 
to which the error intormation applies. 

Device error code for device associated with this 
task. 

Spooler error code for this task. 

The mnemonics for the tasks and the order in which the blocks for the 

various tasks appear are as follows: 

MNEMONIC 

EST 

ESD 

DKU 

DTU 

LPU 

CDU 

GRU 

ESP 

LVU 

TASKS 

"Stop Task" task 

Software directive task 

RK (Cartridge) disk driver 

DECTAPE driver 

Line Printer driver 

Card reader driver 

XY (Plotter) driver 

Spooler 

LVII printer/plotter driver 

spare--no mnemonic 

spare--no mnemonic 

3-34 



r 

System Design and Theory of Operation--PIREX 

RESTRICTIONS: none 

Returned REV values: 

1 Successful completion. 

-300 Invalid ALV value. Information has been returned. 

3.6.5 Spooler Status Report Directive 

The spooler status report software directive returns information regard

ing spooler status and devices present in PIREX. The format of the 

task control block for the spooler status report software directive is 

as follows: 

15 8,7 f!, 
I 

ATA , ALV word f! , , , , , , , , , , , , , , , , 
I 

FCN , 2f!1 word 1 , , , , , , , , , , , , , , , , 
REV word 2 , , , , , , , , , , , 

I 
f!f!4 , unused word 3 , , , , , , , , , , , , , , , , 

, SPOLSW word 4 , , , I , , I I , , , I I , 
, DEVARE , word 5 , , , , , , , , , , , , , , , , , , , , , DEVSPL , word 6 , , , , , , , I , , I , , , , , , I , 
I I 
I SPUNIT I word 7 I I 
I , , , , , , , , I ) I 

SPOLSW, SPUNIT, DEVARE, and DEVSPL are four locations (within PIREX) 

in which information is kept concerning spooler status and which devices 

have been assembled into PIREX. The spooler status report software 

directive merely copies the contents of SPOLSW, SPUNIT, DEVARE, and 

DEVSPL into the task control block. Three of these words consist of 

a number of one-bit flags. If the bit is set (1) the corresponding 

condition is asserted: the device driver is present, spoolable, or 

busy; the activity is enabled. If the bit is clear (0) the opposite 

condition applies: the device driver is absent, non-spoolable, or 

idle, the activity is disabled. The exact format of these three words 

is as follows: 

SPCLSl'l: 

:~1~5 ____ ,-____ ~8~,~7 ______ -r __ ~%: 

:" unu,sed ,,\",'1": 

'- LP busy 
CD busy 

XY busy 
despooling enabled 

spooling enabled 
both spooling and despooling enabled 

spooler connected to PIREX 

3-35 



System Design and Theory of Operation--PIREX 

DEVARE: 

DEVSPL: 

:=1~5 ____ r-__ ~8~,~7 __________ ~'~:: 

: unused 
'~~~~~-L~~~~_L~~ 

driver present 
CD driver present 

LP driver present 
RK driver present 

,;_1_5 ____ r-___ 8;;..l,L.,;7 _______ -::.': 

unused : 
~~~~~-L~~~-L-L~~I 

XY spoolable
CD spoolable

LP spoolable
unused

SPUNIT is the RK unit onto which the spooler is currently (or was pre

viously) spooling data.

RESTRICTIONS:

1. DEVSPL and SPOLSW contain zero until after the first request
has been issued to the spooler.

Returned REV value:

1 Successful completion.

-300 Invalid ALV value. Information has been returned.

3.6.6 PIREX MOVE Directive

NOTE

This directive commonly is used to transfer
information between common and local memory

The PIREX MOVE directive moves information from one place in the

PDP-11's address space to another place in its address space. (The

addre~s space is composed of both Local-11 and Common Memory.) The

format of the task control block for the PIREX MOVE directive is as

follows:

3-36

System Design and Theory of Operation--PIREX

15

,
,

,

From Location

To Location

Words to Move

8 7 fJ , ,
ATA , ALV , word fJ , , , , , , , ,

I

FLN , 2fJl word 1 , , , , , ,
REV word 2 , , ,

i

fJfJ5 , word 3 , ,

,

,

, , , , , , ,
FROM LOCATION word 4 , I , I I , ,

TO LOCATION word 5

WORDS TO MOVE word 6 , , , , , , , ,

PDP-II byte address of beginning of information
to be moved.

PDP-II byte address of a new starting location
for information.

The number of words to move.

3-37

4.1 INTRODUCTION

CHAPTER 4

TASK DEVELOPMENT

This chapter discusses in detail the procedure for developing a task

and for installing it into the PIREX software system. The development

of tasks in the UC15 system normally begins by the determination of

the function to be performed by the task. Once the basic function of

the task has been determined and designed, the user can integrate it

into the UC15 system. The following summary describes the steps nec

essary to accomplish this:

1. Determine the priority level at which the task will execute.

2. Design one or more appropriate TCB formats.

3. Assign a Task Code Number to the task.

4. Enter appropriate information into the various PIREX lists
and tables.

5. Design and code the requesting program. This is the program
which issues requests to the task.

6. Design and code the task.

7. Assemble all programs and test.

The remaining sections describe these steps in detail.

4.2 PRIORITY LEVEL DETERMINATION

The selection of a priority level for a newly developed task must be

based upon its function. If the task is a device driver, a device

priority should be selected. If the task is a data manipulation rou

tine, a background priority should be chosen.

4.2.1 Device Priorities

The device priorities are 7 (highest) through 4 (lowest).

• Priority 7 must be reserved for certain PIREX routines and
should not be used as a task priority. (Certain short

4-1

Task Development

instructions sequences require priority level 7 protection
but a general use of priority 7 must be avoided.)

• Priority 6 should be used only if interaction with the CR11
Card Reader can be avoided. If the CR11 is in use, excessive
IOPSUC CDU 74 errors (card column lost) will occur if this
level is used by another task executing in parallel.

• Priorities 4 and 5 can be used in an unrestricted manner.

There are three types of priorities to consider when selecting the

priority of a device driver.

1. The actual device hardware priority N.

2. The priority stored in the trap vector for the device (its
new PS) must be priority 7 to allow an uninterrupted context
switch.

3. The priority at which the task will execute after the context
switch (R.SAVE). This should be N (the above constraints
must be considered before deciding that it will be N). This
priority is set in the LEVEL table (see sectIOn 3.3.6).

4.2.2 Background Task Priorities

The standard UC15 PDP-11 computer does not differentiate between the

software priorities a through 3. All software priorities are inter

ruptable by any device operating at any device priority. These soft

ware priorities, while treated by the hardware as the same, are not

treated by PIREX as identical. The background task's position in the

Active Task List (the list to schedule the next task to run) is based

upon its priority (as indicated in the LEVEL Table). Thus a priority

2 task is always selected for execution before a priority 1 task.

It should always be remembered that the ATL is built dynamically and

is composed of only active tasks. Thus a task's actual ability to

execute depends both on its priority and on what other tasks of equal

or greater priority are actually available to execute (active). Tasks

of the same priority are run on a first come-first serve basis.

4.3 TCB FORMAT AND LOCATION

The design of new Task Control Blocks (TCBs) must be governed by sev

eral constraints:

4-2

Task Development

1. Certain "fixed" items of information must be present.

2. There may be a size constraint depending upon source of the TCB.

3. TCBs issued by the XVM have a location constraint.

The first three TCB words have a fixed format (see Section 3.2.5).

The remainder of the TCB should be as follows:

1. Control words should be allocated to fixed pre-defined loca
tions.

2. Data words should be blocked into the location following the
control words.

3. The TCB size should be kept constant for ease of core allo
cation.

Location and size constraints are interrelated:

1. If the TCB is for a task executing under PIREX
Local Memory, there is no location constraint.
must be kept small enough so that the TCB does
into common memory.

in PDP-11
The TCB size

not overflow

2. If the TCB is for a PDP-11 task executing in Common Memory,
it must be positioned so that it is:

a. present entirely in Common memory (not XVM Local
Memory, and

b. not overlaying any of the XVM monitor resident code.

These constraints actually apply to any PDP-11 Code or data
located beyond PDP-11 Local Memory.

3. If the TCB is for an XVM/RSX routine, it must be located in
a task partition or common area that is within the Common
Memory.

4. Since the specification of absolute core location is difficult
in XVM/DOS, the TCB placement problem is somewhat more com
plex. The standard XVM/DOS system has seven TCBs assembled
into the resident monitor. These include TCBs for RK Disk,
XY11 Plotter, CR11 Card Reader and LP11/LV11/LS11 Printer.
In addition there are three spare TCBs of various sizes. The
user developing his own UNICHANNEL handler should take advant
age of these spare TCBs. .SCOM+100 (location 200 in XVM
memory) points to a table of pointers to each of ~hese TCBs.
The user should select the one closest to his size requirement.
(See the XVM/DOS Systems Manual.)

4.4 TASK CODE NUMBER DETERMINATION

Task code numbers are composed of two fields. Bits 6 through 0 are

used to contain the actual task code number. This is the number used

4-3

Task Development

when searching tables and lists ordered by TCN. In the DEC-supplied

system, these numbers range from a through 13
8

• Bit 7 is used in TCBs

to determine if the task is spooled. If bit 7 = 1, the task is not

spooled. If bit 7 = 0, the TCBs for the task are routed to the spooler

if the spooler is enabled. (There must then be a spooler module pre

pared to handle TCBs for that particular task (see Chapter 5).)

Task codes 11, 12, and 13 are spare task codes in the DEC-supplied

system. They are used in increasing order. The highest task code

position must not be used for a permanent task because MACII requires

this slot for its use as a temporary task (a task that is connected

and disconnected at run time).

4.5 UPDATING LISTS AND TABLES

The installation of a new task requires placing entries into the various

tables and lists. There are two cases:

1. the installation of a new task into a current spare task entry.

2. the installation of a new task into a new entry (by expanding
the tables).

For each of these two cases there are two types of task entries:

1. permanent tasks

2. temporary tasks

A permanent task is one that is assembled into the PIREX binary. Its

actual starting address and priority level are known.

A temporary task is one that is dynamically connected to and discon

nected from PIREX. Its starting address is dependent upon its place

ment in memory. (Temporary tasks must be written in Position Inde

pendent Code - see MACII Assembler Language Manual.)

Chapter 3 describes the format of each table entry.

4.5.1 Temporary Task Installation - Existing Spare Entry

To install a Temporary Task into an Existing unused Task Entry, TCN

11 8
, 128 , or 13 8 , simply use the CONNECT and DISCONNECT directives.

No new table space and no new table entries are required.

4-4

Task Development

4.5.2 Permanent Task Installation - Existing Spare Entry

To install a Permanent Task into an Existing unused Task Entry, TCN 11

or 12 perform the following:

1. Update the LEVEL table entry for that TCN with the task's
priority (see Section 3.3.6).

2. Update the-TEVADD Table entry for that TCN with the task's
starting address (see Section 3.3.7).

3. Optionally update the interrupt vector table if the task is a
device driver task (see Section 3.3.9).

4.5.3 Temporary Task - New Entry

To install a Temporary Task into a new Temporary Task Entry (i.e., to

expand the table to accommodate a new Temporary Task) perform the

following:

1

1. Add an entry to the ATLNP Table (see Section 3.3.1.2).

2. Add an entry to the LISTHD Table (see Section 3.3.3).

3. Add an entry to the LEVEL Table (use ".BYTE a" as the priority
value since this is a Temporary Task Entry and the actual
task priority will be filled in by the connect directive).

4. Add an entry to the DEVST Table (see Section 3.3.5).1

5. Add an entry to the CLTABL (see Section 3.3.4).

6. Add an entry to the TEVADD Table (use ".WORD Oil as the entry,
since this is a Temporary Task entry that will be filled in
by the CONNECT directive).

7. Add an entry in the SENDl1 Table (see Section 3.3.8).

PIREX transfers, upon request, the entire DEVST Table to the XVM/DOS
monitor. The XVM/DOS resident monitor can accommodate a maximum of
5 additional DEVST entries beyond the current 13. Expansion beyond
208 entries would require reassembly of the XVM/8os resident monitor.

4-5

Task Development

4.5.4 Permanent Task Installation - New Entry

For a new Permanent Task, repeat the procedure in paragraph 4.5.3, for

a new Temporary Task, with the following changes:

1. Step 3 is changed to: Place the task's priority in the new
LEVEL Table entry (see Section 3.3.6).

2. Step 6 is changed to: Place the task's starting address in
the new TEVADD entry (see Section 3.3.7).

3. Optionally update the interrupt vector table if the task is
a device driver task (see Section 3.3.9).

4.6 CONSTRUCTING DEVICE HANDLERS

This section describes how to construct device handlers for XVM/DOS and

XVM/RSX. Additional information on construction of a PDP-11 requesting

task is provided.

4.6.1 Constructing a XVM/DOS UNICHANNEL Device Handler

The following description of how to construct a handler for the XVM/DOS

monitor does not discuss those topics related to all XVM/DOS handlers

both traditional and UNICHANNEL. General issues pertaining to all

XVM/DOS device handlers can be found in the XVM/DOS Systems Manual. The

UNICHANNEL Line Printer handler is used as a descriptive example (see

Figure 4-1). Several constants should be defined in a UNICHANNEL hand

ler source file before the executable code (see Figure 4-1, lines

48-55, 71-73). These constants include:

4-6

Task Development

2 LPU. X,M VIA I~~

5 CAL ~NrRANCE
b INT~RRUPT S~kVICE
7 ERRON RuurlNE
8 .INII fUNCTIUN
9 .WRITE fUNCTION

15 .CLOSE fUNCTION
16 .~AIT fUNCTIUN
17 INITIALIZATIUN CUOE ANO I~MPURARIES

PAGE LPU.

.S~SIO < .rIT~E ~PU. >,< 122>
*G
*G F'R@XVM
*G

.OEfIN .SISIU,PR,HK
VIA~IlK

.~NOM

*G .S~SIO < .fITL~ ~PU. >,< 12~>

PAGE LPU. 122 LPU. XV« VIA 122

*G .rITL~ LPU. XVM VIA 12~
2 I
.l ICOP~RIGHT (e) 1915
4 IOIGlfAL ~UUIPM~Nr CURPURATIDN, MA~NARO, MASS.
, I
6 If HIS SOfT.ARE IS fURNISHED UNO~R A LICENSE fON USE JNL~

7 ION A SI"GL~ COMPUTER SYST~M A~O ~AI BE COPIED UNL~ ~lrH
8 IfH~ I~CLUSION O~ THE AHUVE COPYRIGHT NUTICE. THIS
9 Isur'.ARE, UR ANY OTHER CUPIES fHEREUF, MAY Nor BE PMO-

10 IVIOED UR UTH~R.IlE NAUE AVAILAllLE TO ANY OTHER PERIJN
II IEXCIPr fUR USK ON IUCH srSTEN AND 10 ONE WHO AGREES fO
12 IIH~SE LICENS~; TERMS. Tl'fLE 1'U A~D OWNERSHIP Uf I'HE
l.l ISUfTWAR~ SHALL AT ALL TIMES KENAIN IN D~C.
14 I
15 11HK IlfURMATION IN THIS UUCUM~"f IS SUBJECT TO CHANGE
Ib ,wlTHUUT NUIICE AND SHUULU NOT SE CUNSfRUED AS A COM-
17 IMITMENr SY DIGlfAL E~UIPME.r CURPORATION.
18 I
19 IDKC ASSUMKS NO RESPUNSlblLITY fOR THE USK UR RELIAbILITY
20 IUf Irs SUfTwARE UN KUUIPME~f wHICH IS NUT SUPPLIKD BY OIC.
21 .~JKC'f

PAGE

22
23
24
25
26
27
28
29

LPU. LPU. XVM VIA 122

I
I EUlf LEGE.NG.
I
I
I
I

120
121
122

05-JUN-75 (RCH,~)

OS-JUN-7, (HCHM)
~2-JUL-7, (RCHM)

.EJECT

Figure 4-1

~AK~ XVM CHANGES.
rAa~ OUT NUN-ESSENTIAL CONDlliONALS.
lEST srATE Of UCIS ENABLED Hlf.

XVM LPll DOS Handler

4-7

PAGE 4

30
31
J2
33
34
35
36
37
38
J9
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
~8

59
60
61
b2
63
64
65
66
67
71
77.
73
77

PAGE

78
79
80
81
82
83
84
8~
86
87
88
89
90
91
92
93
94
9~

9b
97
96
99

100
101
102
103
104
105
106
107
108
109
110

Task Development

LPU. 12< LPU. XVN VIA 122

0000u2 A
0000~6 A

7Ub141
7UbUUI
70000b

70b14. A

000100
00UI04 A
00UU02 A
000003 A
440UOO A
"OUOO A
000137 A

OOOU72 ~

000004 A

LPU. In CAL

UOOOO R 04U;40
00001 H U4U,41
000U2 R 44U~41

000U3 H 600541 R

UOu04 H nO~41 R
00005 K 44U541 ~

OOOUo ~ ~0Ub 33 R
00007 K 34U634 H

0001u H U40011 K
OV011 H '/4U040 A
OU012 H bOUIOJ H
00013 K "I.IUOO A
00014 K bOOO24 R
00015 N HO~41 R
OOOlb R bOO134 H
00011 R b004bO H
00020 K buU 134 H
00021 R bOUO .. I<
00022 H bOUI3b H
OOOlJ H bOU~06 R
OUU24 R "loUOUt,
00025 K 60UU7J H
OU02b H ·/bUUb I A
00027 H bouun R
OOOJO H 76UOl2
OUOJI K 000013

IJ.N •• OLfH~MG (5. HUUT)
ILPU.--IOPS LI~~ PNINT~H HAND~~N fOR LPII LINE PRINTER
ICALLING S~UU~.C£:
I CAL + .DAT SLur (9-17)
I ,'UNCTIUN
I ~ ARGS, ~rlER£ N IS A Fu~crlUN 0f "fUNCTION"
I NURMAL R~IURN
IHITS 12-13 UF .SCUM+4 l"UICAr~ PRINTER.

00= UNDEFINEU.
UI= 8U CULUMNS.
10= 120 CULUMNS.

I 11= 132 CULUNNS.
IASSEM8LY PARAMETERS:
I NUFf=1 INHIBIIS AurO~ATIC £~D OF PAGE ,URM FEED
I FF:NT CAN bE DEfiNEU AS NU~dER Uf LINES PER PAGE IF NOfF UNDEF.
I DEFINE fFCNl IN !!OCTAL!!
I If FfCNf ANU .urr bUTri U~DEF., 5B LINES PER PAGE IS DEfAULT,
I
APILVL=2
APISLT=~6

I
LSSf=AP1LVL>~0+7VoIUI

SIUA=706001
LIUR=7U600b

CAPl=APILVL>20+70hl04
I

15KIP ON OAT A ACCEP?ED ~r TH~ PUPil
ICLEAH "DONE" FLAG A~D LOAD REG rUR
I rH~ PUP II.
ICL~AH FLAG

.S:UM=100
SC.MUU=.SCUM+4
se.U:l,=2

I(RCHM-122) .SCUM MODE REGISTER.
I(HCHM-122) tilT olTHIN SC.MUD TO BE TESTED.

.MED=3
lDX=1SZ
SEr=ISZ
~XgRHS=.SCOM+37

IUS~D TO S~T SolTCHES TJ NON-ZEKO.

I
.I;-UNU HC~T

,'URMS=72
.1:!.1'lDC
.If UNO .OSPL

u~VCUU=4
.ENUC
.GLOBL LPA.

ENTHANCE:

ICUUE fUR LP DRIVEH IN PINEX

.1lTLE CAL EN'fKANC£
LPA. DAC LPCALP ISAVo :AI" PUI"EN.

UAC I"PARGP IA'U ARGU,~ENT POINrER.
lOX LPARGP IPUINI'S IU oUHU 2 - FUN:TIUN CODE.

NEil'
I
I

LTABL

LP~ROb

IUPShl

IlJPSI2

JMP

LAC>
lOX
ANU
TAU
UAC
XX
JfvlP
S~P

JMP
lOX
JMP
JMP
JMP
JMP
JMP
JMP
LAw
JMP
LAw
JMP
LA.
JMP

LPAKGP
LPAHGP
(l77n

IFIHST rl~E fHHU DO SErup CAL
IANU s~r-up rCB ANU ~UFfER. OVERwRITE
IJUMP ,;I l'H NU-UP

/PUINTS TU oURD 3 - BUFFER ADUHESS.
ISTMIP Off UNIf NUMBER.

(JMP LTArlL-I IDISPArCH I'll PHLlCESS FUNCTILl ••
• +1

LPIN 11 - .INIT
12 - ,fsrAI,.HENAM,.DLErE - IGNORE

LPEHOb 13 - .SE~K - EHHUH
LPAHGP 14 - .ENTER - IGNURE
L~N£X1' 15 - .:L£AR - Ic;NOHt;
LPCLlJS 16 - .:LOSE
[... tJl'lt.:XT n - .1"'ll'Al-"t::: - IGNOHE
LPoROb lID - .REAU - ERNUH.
LP.HlT I II - • wRl1 £
LPwAI'l 112 - .wAll UK .wAITR
b IILLE~AL HANULER ,'UN:I' ION.

SHEHM
bl 1(I<CH,,-120) ~"r;TCH ME~uR~ BOUNDS ~HRUR

S~T£HH I(RCHM-120) GU PRINT ERROR.
12 I(RCHM-I22) HfCH rER~INAL lID ENROR
SU~KK I(RCflM-I22) GO PHINT ERRUR,

Figure 4-1 (Cant.)
XVM LPll DOS Handler

4-8

MESSAGE.

MESSAGr;.

Task Development

PAGE LPU. 12:1 INTERRWr SERVIC"

III .1'1'1'L~ I_fERRUP! tiERVIC~
112 I
113 ILPU. INl~RRUPT SICHVICt,;
114 OU032 bOO04l R L~lNr Jf~~ LPPIC IPIC E''.1rR't , JUMP 'fu CuOE
115 00033 H 040obo R DAC LPAC ItiAVE I,HEHHUPIED AC
116 00034 H 200032 H LAC L~INT I~E'f INl't,;RRUPl'EU PC
117 00035 H U4Vob7 R LlAC LPUUT ISAVIC fUN CUMMON HII'
118 OU03b H 20u035 H LAC (JM? LPPIC IHES'I'UHE PIC ICNIHt
119 OU037 H 040032 R DAC LPIN'f
120 00040 H 2UOb30 l< LAC (I")? UE LlUN' T NHD ION IN CUMMUN EU'f
121 00041 I< 00004b I< J;;P LPICM I JO I I~ CUMMON COUE
122 I
123 00042 R U40500 R LPPIC UAC LPAC IPIC CclUE, SAY AC
124 00043 R 2.0631 R LAC> (0 IGEl' I,; l'ERI<UPl'EU PC
125 OU044 R 04U507 R LlAC "~UU'f ISAVE
12& U0045 R 200b40 R LAC (ION I_EEO I" fEHHUPT UN INS r. IN CJ~~ON CUDE
127 0004b R 040U50 R LPICM UAC LPISW
128 00047 R 7Vbl44 A CAP I ICLt::AR fLAG, ~uw IN CU'~MUN CJDE
129 00050 H 22U~53 R LAC< ~PEV I~V~N'r VARIABLE fROM PIREX
130 00051 H 742010 A RIL IPUP-Il (MINUS) ~lT ru OUR ACO
131 000,2 I< 743120 A SpAlHTR 1+ IS llK
132 00053 H ououol R JMP L~Ir:;RH I~HHOI{, ~U LUOK
133 00054 R l'jO~44 R LPIRT UZM LPuNU ICLEAR U_DERtlAi fLAG
134 00055 l< 20V5bb H LpI~ rJ LAC LI'AC IRES TOI<l:: AC
135 0005b R 740040 A LPISw liLT ILUN OR NUl'
136 00057 H 7UJ344 A DBH
137 00000 R b205b7 R JMP> LPUUT
IlB I
139 I
140 OOObl 51)0041 H LPIERH ANU (177777 IKE':P ,,':AL 16 HITS r'RU,~ PUP-II
141 000b2 R 500042 R SAlJ (171001 ICUUE ,'RU_ UUT 0,' NOO':S IN pIRE;X
142 OUOb3 R bOQUbb R JMP R~fRY IJUsr TlH AGAIN, Lt:AVI,'G LPUND SET
143 OOOb4 R HVb4J H fAU (000000 IMAKE - NUMBER fUR IO~S
144 00000 " bVUUIJ R JMP tiEl'EHH III{EAr AS REGULAR lOPS ERROR
145 INUTE friAi THIS SHUULUN'l' HAPPER.
146 I
147 I
148 UOOb6 R lUU550 R RETHi LAC LP'fCll ITC8 AOURESS
149 00067 70b l)0 1 A SlUA
150 00010 oOUOo/ R JMP • -I I
151 00071 " 706UOo A LIU" IfliIS MAGIC SHI~S TCB AODR. fa PDP-II
152 00072 H ouu050 R JM~ LP IIUI II::Xlf ,'RUM INfEHRUPT
153
154

PAGE LPU. 122 ERROR RUUIIN~

155 • T I fLE ~HHUH "UUT IN,:
156 I
157 00073 H U4VI02 R SUEHR UAC ~HHI'fIjA

15~ 00074 H 74UUOO A ERLUUP iHJP It Ji>1P LPTkY I If IUPS 4 ~HRUR.
159 00075 R lUOIV2 ~ LAC ERRNU'1
1&0 0007b I< 120044 R ERuur JMS< (EX£KHS
161 00077 R buUVI4 R JMP ERLUJP
162 00100 K 7'11'1 7 I A LAw -I
163 00101 H 142025 A .SlXBf II"l-1U'
164 00102 R 000000 E"Rf'U~ 0 l~llLOS ERRUI< I~UMBEH fJH REPEAT •

Figure 4-1 (Cant.)
XVM LPll DOS Handler

4-9

PAG~

165
1&&
1&7
1&8
1&9
170
171
172
173
174
175
17&
177
178
179
180
181
182
18J
184
1.85
18&
187
188
189
190
191
192
193
194
195
19&
197
198
199
200
201

LPU.

00103
00104
0010~

0010.
00107
00110
00111
00112
00113
00114
00115
00116
UOl17
0012U
00121
00122
00123

00124
00125
0012b
00127
00130
00131
00132

001 jj

001J4
UOl35

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

1\
R
H
R
I{
R
R

R

R
R

122

nOb4~ R
~00640 k
741200 A
bUOUJU R
440541 R
200~~~ R
060541 R
440541 R
200542 R
040543 R
22U~4U R
500b47 R
340546 I{
540546 I{
741000 A
.UOb36 I{
U4U545 R

lu0455 R
100524 R
140562 R
7~UOJU A
Ob0551 R
72301J A
Obu~52 R

10O~31 k

'/03344 A
b2U~41 R

Task Development

.INIT FUNCrrUN

.T1TL~ .lnIT fUNCTION
I
I.INI1'
I
LPIN LAC' (SC. '~LJO) ICRCH"'-!22) CH~CK MOD~ REGISr~H rROM SCOM,

AND (SC.UCI5) I(RCHM-122) ~'()R UC1S ENABL~D.
SNA I(RCHM-122) IS I1'1
JMI' lOPS12 I(RCHM-122) NU, GU PRINt ERRUR.
lOX LI'ARG~ I(RCHM-122)
LAC BUI'SlZ /36 (1 0) fOR dO COLSI 56(10) fUR 132 COLS.
DAC' LPARGP IR~'fURN 'l'u USER.
IUJ(LI'ARGP INUW pUINTS '£0 I{El'URN.
LAC PAGSIZ ILl' CLlUNl'ER
OAC PAGCNT
LAC' LPCALp IDllES L;1'1' INhIBIT AuTU FURMS FEED
AND (4000 I£HIS IS INHIHIr HI'r
tAil ~'I'H "'HI' ASSEMBLED AS NIJP fIJI{ NOFF, ISZ IF NUT
SAD fr'n' ISKIp If INlr INHIBITS I'f
SKI' IINIT DuI:;SN'£ INHIBIT, US~ ASS~MHL£D VALUE
LAC (NUl' IINlT I,;HISll'S n, USE NOP
OAC ffSw ITHIS S.HTCt! XCT'EO BX ,OI{MS CONTROL

I SEC l'l(JI~ I~ PUTCri SUBI{OUriNg
JMS KgS~TL IRESH rAH ANU LINE wID£H CUUNTERS
JMS LP lUCK ICri~CK Lp BUS~
DZM CiJP If>AY A ~'f' UCCURR~U
CLAliAC ICUUNT Llf UNe; HYtg ~'UR H~ADER
DAC. "PBU~' IHt;AOER
AAC 13 IFURM fEe;u
DAC' "PBUI'V IfUR dU~'ftR

.I'UNU Nufl' IUU UN"Y U' I~UfF NU'!' ll~nNED
JMf> L~S~T II'tUS St;NUS REQ. Tll pIlP-II
.ENDC

I
INORMA" CAL ;;Xlf
I
LPN~XT DBR

JMI'* "PAtlI.iP

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-10

PAGE

202
203
~04
205
206
207
20B
209
210
211
~12
213
214
215
216
211
218
219
220
221
222
223
224
225
226
227
228
229
230
231
• 32
233
234
235
23&
;131
238
239
240
241
242
243
244
245
246
241
248
249
250
251
252
253

9 LPU.

0013. K 10U514 R
00137 R <120540 H
00140 R 5001>50 R
00141 H '40b~1 R
00142 R 04U5.5 R
00143 R "10~41 R
00144 R HOti41 R
0014~ R U40~bl R
00140 R 72JUU2 A
OUI47 R 04U~7U R
UOI~O H 5uU65. H
00151 R 740<00 A
00152 R 60002b R

001~3 H 177000 A
001~4 R 52ubbl R
00155 R 742030 A

00156 K 4UU5b~ R
00157 K 751UOI A
UOI.O R 741031 A
00161 R 3b0541 H

0016. H 040554 H
00163 R 440ti41 R
001.4 R 200~52 R
00165 R U40~71 R
0016b R ,OU341 R
00167 R 040344 R
00170 ~ 200443 R
00171 R U40441 R
00112 R 7~OUOO A
00173 R 400565 R
00114 R 200653 R
0017~ H 0.U5~1 R
0017. R 750001 A

00117 R U605~2 R

00200 R IOU332 R
00201 R 741200 A
00202 R b00200 H

Task Development

•• RI1'E ruo: 1'10N

I
I.WRITI::
I
LI'.Rll'

I

.TITLE •• RITE fUNCTION

JMS LPIOCK
LAC' LPCALP
AND (1000
XOR (SKP
OAC ~IX
LAC' LI'ARGP
IIlX LPARGP
OAC fCrlAH
AAC J
OAC '<12
AND (700000)
5ZA
JMP IUPS.7

IPIU~rI::R Bosn
IGET fHE OAf A MOUE FROM IHE USER CAL.

IMAKE SKP-~UP 1~ MIX

IUSER ~urfER ADDH~SS.

INU~ p~l~rs TO riORU cuu~r
ISAVE P~I~T~R 10 ijUrr~R H~AOER
I~AKE 112 PUINr TO DATA lOT HEADER
IGET'fER POINTER

I(RCHM-120) EXTRANC EXfEND ADDRESSING BITS fROM BUff~R ADDR3ESS.
I(RCHM-120) ARE ANY SET?
I(RCHM-120) Y~S. ISSUE IUPS67 ERROR MESSAGE.

I SI::I UP LIMIT Uf INI'Ur ~Urrl::R SIZE TO PREVENT DAtA OVERRUN
I FUR ijUfH IUPS ASCII AND IMAG~ ASCII
I

I
I

I

LA. 11()00
AND< rCHAR
SWHA

XCI MIX
SKP!CLA!C~A

SKP1CMA!lAC
TAIl' ~PAHGP

DAC
ISZ
LAC
UAC
LAC
DAC
LAC
DAC
CLA
XCT
LAC
OAC'
CLA!CMA

OAC'

f~MPI

LPARGP
L.PBU,'U
PUTP
GE1'IN
Gt::TSW
l'u'UN
PUTSW

MIX
(400
LPBUf

LP~Ufll

IGI::T PAIR COUNT fROM LEfT HALf

IBRI~G fO RIGHf. PAIR COUNT IN:LUDES HEADER
IPAIR COUNT. wE ISZ BEfORE LOOP so THAT'S
IUK. lOPS NOw SEt XCPT CMA1IA:
ISKIP If ASCII. NUT If IMAGE
IIMAGE -I IN AC. SKIP. -I BE:AUSE wE ISZ fIRST
IIUPS :UMPLEMENTEO TO CURRECT VALUE
IIMAGE ADD IN TUTAL WURD COUNT. INCL
IfwU "aRDS fOR HEADER, wE ISZ BEfORE LOUP •
IINTU :UNTROLLER. BUfH MODES
IMUVE ARG POINTER TO I::XIT
IPUINfER ru UATA PURTIUN or BUFfER
IL.UAD fa CHARA:TER PUTtER POINTER
IINIT. CHAR GErTER

IINIT OUtPUT HUffl::R HEADER
IIO 0 IF IUPS, 400 FOR IMAGE

ICUUNf OF I BLANK AS DEFUALT
If OR ZERO L~NGTH IO~S LINE
liN FIRST DATA CHAR

I MAIN LOUP TU rRANSFER CHAR'S 10 HANDLER HUffl::H
I
MAI~ JMS

SNA
JMP

G~'fCH

~AIN

ICHARA:r~H GETTER. LEAVgS IT IN AC
ISKIP UNLESS NULL CHAR
I"ULL. IGNOR~

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-11

Task Development

PAGE 10 LPU. IU .';"In FUN:IlON

254 UD,OJ ~40b;4 R SAD (177 IIGNORE RUH-uur
,5; 00,U4 R bOO'OO R JMP MAIN II~AIN

256 0020; R 04U;61 H UAC TCHAf< ISAVE :HAH THRUUGH TESfLNG
257 OU20b H 723HO A AAC -~O ISEPARATE I TEXt I CHAR'S f'HOfl :ONTROL CHAR'S
25B 00207 H HI3UU A SNAlSPA ISKIP LlI~ REGULAR CHARS
259 00210 K 000247 R JMP I~SPt:C IGU UU SPECIALS
260 U0211 R 54 Ub 5 5 H SAD (13' IALT MUDt;
261 00212 H bOOJI4 k JMp rJCLp03 !.:No UF LINE ON ALl' MODE
262
263 SlJRHi AbOUT Nt: x'r nVE L NES.
264 THE LOGIC AI ,,\JrCH fU UU ~ORMS CUNTROL DUESN'T DO IMPLIED
265 LINE fEEllS, I.E. THOS'; LINES HAVING NO LEADING CONIRilL CHAR,
266 oE ~A VI;; TO n~E IT OUT BY LACING A LINE r'EED UN SU:H LINESI?!
267
2b8 00213 20U,bO R LAC flRST IUU UNLX 1'- f"lRST CHAR Of LINE IS REGULAR
269 00214 R '/4010U A SMA ISKlI' If flRST CHAR
270 0021 ; R bl)\.J~20 R JMP • +3 II'1IOT FIHST CHAR, JUsr CUI~ TlNUE
271 00210 R :tvOb5b LAC (12 1~t;Ht; IS LINE fEED
272 00217 H 1004UU JMS "UTeH lAND CALL]'0 DO • OHMS CONTROL
273
274 00220 H 7;U030 CLAliAC ISET rLAG SAXING A RLAL CHAR SINCE A ff
275 00221 H O<lO,b2 UAC eup
27b
277 00222 H 2005b3 R LAC dLANKC IOU wE rlAVL PENDING BLANKS/l'A~S TO SEND
278
279 I Nun BLANKe HAS "'lINuS CUUNT Llr CUNSEC'IIVE ~LANKS/rABS
280 I SIN:E 1'0"-11 CONTRULLER PRl~rs UNLl dLANKS
281 I
282 00<23 R 74_100 SMA!CLL ISKIP H' ANX CULL~crED, TO PUT 3UT HEfuRE
20J IREAL :HAH'S
284 OU224 H 6uuB, R JMP ,-I A INC /1~LlNE., PENDING, GO PUT OUT THE :HAR
285 00225 R HUb;7 R TAD (20U I fLlUGH. If "URE THAi~ 12'1 CULLE:TEo, MU5T
286 IPUT our IwU COUNTS
287 0022b R 75010U SMA lC LA ISKI" If iH.h:O 1'.0 COUNfS
288 U0217 H 60v233 H JMp ~AINU It~O , JUST pur OUT COLLECTED :OUNI
289 U0230 H 34Uo,7 R TAD (20U Irwu CJu"rs, H~RE 15 f'l R5 T
290 00231 ol lU04UO H JMS' PUTCH
291 00232 R 'uoo,7 H LAC (l00 ISET UP ru DO SECU,~lI

2n OU233 R HO,b3 R MAll'-4D TAD HLANKC ICUMimN CUDE, LAST CUUNI fOR EIrHLH CASE
293 OU234 R lUUiUO H Jf<S PJTCH
294 0023; K 14\1503 R MAIN~ Dlf, lil.JA.\lI\C ICLEAR wur bLANK COUNTER
29; 0023b H 200501 R LAC I'C~AR IG~l' tiA:K URIGINAL CHAR
296 u0237 K lvv'iuU K JMS POl'CH NO OU fPUI t!urr-~H

.97 UO<40 K 4405b4 R M,AhK lSZ rA~C II'CK~~ENI TAt! CUUNTt;H
298 00241 K ooul!44 R J~p l-tAll~E Iliur l.h·t:.:t{fLU~, GO CHECK LINt; :JUNIER
299 UO.l42 K 7 n77U A LA. -10 IK~s~r 1'A8 CUUNrEH
300 OU243 R O't0~bq K DAC l'~tlC

301 00244 H 440,,7 R MAaE ISZ '.AXC /I1A. Vt:.: .~ RUN our Uf LI,.E
302 OU24; K bUlllOO K JMP '~A1N II~U

303 OOHb R boOjJ4 K JMP UCLP03 1'it:S, GO FINISH OP, wITH END Or" LINE
304
305 SPE: lAL CHARACl't::KS

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-12

Task Develapmen1:

PAGE 11 ~pu. 12< ."RII~ rU"CflON

306 I
307 00247 R 750201 A MSP~C SZA ICLA ICI~A ISKIP a" 1T IS A ~LANK
]08 00250 R 600.54 H JMP ~SPEC2 /NUPC:, CH~CK ,"OR OfrlEH ft-l!I'-IGS
309 00,51 R 140563 R TAD ~LMKC lAUD O"~E ftJ ~LA"K CUUNf!!.R (15 ~INUS COU,n~R)
310 00252 R 040563 R DAC ~LANKC

311 U0253 R 600.240 R JMP "~AINK IJUIN LINE AND TA~ CUNfROL SEC flUN
Jl2 00254 R 20U561 R MSP~C2 LAC rCHAR IGET dACK URIGINAL CHAI{
313 00255 K 540660 H SAD (11 lIS rr A I"A~

314 00256 R 600300 K JMP 'HA~ ltV?, GO DO IT
315 00257 R 540661 R SAD (15 ICARRIAGI:: RnURN
31b 00260 R 600Ji4 R JI~P UCLP03 11::1'10 uf LINE ON CAHRIAG. R~TliR,~

317 002bl R 540662 I{ SAD UO IfURl'RA" ors UVJ::~PHllljr, OU AS CH
318 00262 R 600275 R JMP '~CH
319 00263 H 540b03 R SAD (14 IfUR"~ n .. o
320 00264 R 600.270 H JMP '~SPECJ IJusr i'ur IT ou r, fUR NO.
321 002b5 R 54\)6b4 K SAD 121 IfORTRA" OUUBLE SPACE
322 o02bb H boon. k JM~ '~SPE:C4 IOU AS 1""U 12'S
323 00267 H 'OUb'b K MSPE:5 LAC (12 IU~,"AULf UN UNR~CUG', 1 ZW CONI'R% CHAo<. IS LINE: fEED
324 00270 R 10U400 K "SPEC3 JMS ~UTCH IPLACE IN ~UHI::H

325 00271 R bUOlOO R JMP "~AI N IGU 00 NUT
326 00272 R 200656 R MSP~C4 LAC (12 IflHS"r Uf" rwu 12'S fUR 1"111:: 21
327 00273 H lU0400 K JMS pureH
328 00274 R 60U2b I R JMP 1SPI::C5 IGO UU rH~ St;CUt>4L> 112
329 00275 R 100455 H MCH JMS KESI::TL /114£W LINE., HESEl' VAKLUUS GUtS
330 00276 R 200661 H LAC (15 ICARHIAGE HEfURN
331 00277 H 60027\) K JMP .. SPEC3 IPUT CHAR ANU LOOP
332 00300 R 2005b4 H M1"A~ LAC l'A~C IGET REMAINING COUNI" ~"UH TAil
333 OOJOI H HOSb 3 I{ TAD dLANKC IANU AvU ru CUMULATl VI:: 8LANK :JUNT
334 00302 R 04056J R DAC BLAN~C

335 003u3 K :100564 K LAC rA~C lAND I"J L-IJ'It: CHE.:CKJ::~

33b 00304 H 740031 A CMA liAC
337 00305 R H0557 R TAD ,"IAXC
338 0030b R 040557 R DAC '~AXC
339 00307 ri 740100 A SMA ISKIP If SOi1E LINE LHf
340 00310 K 6uo314 R JMP UCLP03 INDNE LEf I, f"INISH UP LINE
341 00311 k "177170 A LA~ -10
342 00312 R 0405b4 R DAC rA~C IKESET 1'A~ CUUNl"ER
343 00313 H 600:100 R JMP "1AIN INEXT CHAR
344 I
345 00314 H 200b61 R UCLP03 LAC (15 ICARRUGE RHUHN
346 00315 R 4005b5 H XC] MIX I~LACE l~ bUn"ER Ol<Lt O'~ IMAGt::~ t t
347 00316 H 10040U R JMS ~UTCH

348 00317 H 10045~ R JMS H~SE1'L

349 00320 R 040562 H UCL~04 IS~ CUP IA ~LANK LINE IS STILL A H~AL ~HAH SINCE n"
350 00321 H 220551 I{ LAC* ~PbUf IZERO CHAR CUUNT??
351 003<2 H 500bb~ R A~D (377 ICOU.;T UNLY IN LOw " bl"fS
352 00323 R 740.00 A SZA ISKIP If Z~RO COUNT
353 003,4 R booHU H JMP UCLPOo INUN-Z~HU, JUsr GU 00 REGULAR
354 00325 R 4U056~ R XCT ,~ U(IIMAG~ OH lU~S
355 0032b R bUUIJ4 R JMP ~~NE.XT IlMAGE OU NUTHING
356 00327 R 460501 R ISZ* LP~U" ILUPS "~AKE: rAKE: 1 CUUNr
357 I.~ ARI:: DOING A BLANK LIN!:;, ANO 0

Figure 4-1 (Cant.)
XVM LPll DOS Handler

4-13

PAGg 12 LPU. In

358
359 00330 R I UO~>31 H
3bO 00331 R 6U01.!4 H
361
362
363
364
365
3bb
367
36~
369
370
371
372
373 00332 R UUOUUO A
374 00333 R 40U565 R
3"/5 00334 N 741uoO A
376 00335 R 620344 R
377
378
379
380
381 OIJH6 R 440554 R
382 00337 R "/4100u A
383 00340 R 6UUJ2U H
384 00141 K 220510 K
385 00342 R 4Qu57u R
386 00343 R bVOH5 R
387
388 00344 K UUl/UOO A
389
390 00H5 R SU0654 R
391 00346 II 620332 R
l'l2
393 OOH7 H OU0351
394
395
396
391 00350 II 1(00340 k
398
399 00351 0< H')'" N
400 00352 R bU03" R
401 00353 R IOU." H
402 0035. R b00320 R
403 003,5 R UU,7u R
404 003'6 R 4405'/0 H
405 00357){ b52000 A
40b 003bO R 6QU60'1 A
407 00361){ 10uH4 R
408 00362 R 64060'/ A
409 00363 N IOU344 N

Task Development

• wRI'I'~ rUNC,!'ION

I ICUUNT MAKES SPUOL~H V~Rr ILL
UCLP05 JMS LPSt:l' ISt:ND BUf,'gH TU PUP-II

JMP LPNEXT ICAL EUT
I
I CrlARACTt:R UNPACKI~G ROUflNE
I
I
I THIS ROUTlNE 'OWNS' i'HE Mil
I

CHARACTg~S AR~ U~'TAINt:U f'ROM XI2 POINTt:H. EACH CHAR
IS RE1URN[D RIGHT JUSTIfiED IN i'Ht: AC

I T~MPI HAS A MlrWS CUUNT Ur rHE WORDS 'fa ~E OBTAINED
I ,"RUM TH~ INPUT POINT~R XI2
I
Gt:TCH 0

XCI ,~lX ISKIP If 11' IS ASCl!
SKP
JMP* GETSW IGETS. IS POINTER TO CORRECT A: nON ON ON'fHE

ICORRt:: faNE 0;' THE rIVE POSS1ijLE CHAN'S

NO. DU IMAGI:: r~UO~

ISZ ft:MPI
SKP 18KP U" NOT I'HNU rET
JMP UCLP04 IUUNE
l.AC* XI2
ISZ XI2
JMP GI::TCM tr"INISM UP l.-J C()~MUN

I
GEl'S. 0 I~OlNTER TU CURN!::C! AC nUN. INIr'ED fROM
I 1F11.1.t:U ~x JMS Gf.'fSW AFrER I::AC~ CHAR
GETC~ AND ll77 ICO"MU,~ FINISH UP, STRlP XfHA B'lTS

J~iP' l;!::l'CH IUUT
I
GI::TlN G~'l'1 liN I 'f G!:l'S. 1'0 POl~T TO nRST CHAR ACTION
I
I INDlVIOULA CHARACT~R ACTIU.
I
GE:TY
I
GI:.Tl

GI::r2

Jl'iS GI::I'SW IAf'fER Sl'H CHAII, PUlNT SACK 'ro FIRST

lSZ fl::MPI luu'r Of PAIRS1
JMP • +3 ICUr<l'IoUE If' OK
JMS Kt:SETL I!:NIJ ur- LIN;; RESt:T SUNE HUff
JMP UCLP04
LAC* X12 InRs'r .ORD 0" PAIR
lS~ X12
LMQ IIN'fU ~.l f'UR SHlfTI~G

I.LS 7
JMS GETSW IOUNt:, L!::AV!: POIN1'I::N
LLS '1 ISECONO CHAR
JMS GI::TSW ILI::AVhG PU!NTI::R ,'UK

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-14

FuN SECOND

THIRD

CHAR

GETlN

PAGE

410
411
412
413
414
415
416
417
418
419
420
4H
422
423
424
425
426
427
428
429
430
431
432
433
434
435
4 J6
437
438
439
440
441
442
443
444
445
446
447
448
449
450
4~1
452
453
454
455
456
457
458
459
460
4b1

LPU. In

00364 H 640604
00305 i{ 04U 344
00366 R 220570
00367 R 440570
U0370 H 052UOU
00371 R lOO344
00372 H b40603
0037 3 H 100344
OU314 R 64vbU7
OU3'15 K IU034.
00376 I{ 04UoU'/
00371 H 60u3~u

00400 H oouooo
U0401 R 500665
00402 H b40b~6
00403 '" 00041l
110404 R ~4U"03
U0405 H 60U427
00406 H 44u560
00407 II 740000
00410 H 4b0551
00411 H b2U441

00412 H 200~62
00413 H 740200
u0414 H 600424
0041~ R 2<05~:I
00410 R ~40bo 1
00417 H 6:10400
00420 K :l00b61
00421 K 4UO:'b5
00422 K 6:1U400
00423 R 60U~U6
00424 K 200b:'0
00425 R 400~4~
00426 R 60U434
00427 R 20u5~2

A
H
H
H
A
R
A
K
A
R
A
R

A
R
R
K
H
R
H
A
R
H

R
A
R
R
H
R
R
K
R
K
K
K
R
R

Task Development

.wRllE fUN:T lUI'I

G~1'3

Gt:1'4

GI::f5

I
I
I

LLS
UAC
LAC*
IS:l
LMIi
LAC
LLS
JMS
LLS
JO'IS
LLS
JMP

4
G~ISw
XI2
Xl2

JI£TSw
J
~Ersw

7
Gr:I'SW
7
,,";TtI

1T1i~ HALF-AND-HALF CHAR
IVERY CEMPOkAHY
ICA'" l' .,;~o IN MIDDH Of PUR

IS~CON~ _01<0 TU SHH'T~R
I~RING HACK fiRST
ICUMPLEr~ CHAR
ILEAVI~G PUINTER TU ,'OUH'!H A:UON

ILt:AVl<_G fUR

IHACK rJ !'UP fUR POINTER TO I

I CHARACT~k PUTr~R fUK POP-II
I
I
I

TWU CrlAR'S P~H ~URO fORMAl. ~IRsr CHAR IS RIGHT JUSrlFIED, SECONO

I

IS PLACED IMMEOIAT~Lr A~UV~ FIRST, LEAVING rop T~J BiTS or ~ORD
UNUS~D. CHAR IS OEL~VEHD IU US IN AC. INIT purs~ Hr DAC'ING CONTENTS
U. PUTI~ INTO IT. RuurIN~ CUU~TS THE UUTPUT CHARS IN LSf

I
I THIS ROUTINE A~SU HAHDLES fORM f~EO PAGE CONTRUL
I
I

THE POP-II ASdUMES LI~ES HAV~ A Lf IN BEGINNING AND :R AT END
so I' HIS ROUTI_E R~MOV";S ANr LEADING Lt'.

I
I
PUI'CH

PUTZ

I
PUl'Lf

PUI'.

Purr'f

0
AND (377
SAO (12
JMP PUj'Lf
SAD <14
JMP ,>un',
1St fiRST
?lOP
lSZ' LPeUF
JMP' PUTSW

LAC COP
SZA
JMP PIII'W
LAC* LPBUflJ
SAO (14
JMP' purCH
LAC Cl5
XCT ;HX
JMP* ~Ul'CH
JMP pun
LAC (12
XCI ffSw
JMP PUTLfH
LAC l'AGSIZ

ISTRIP to ~IGrlr HITS
ISPECIA~ CASE II, LIN~ rEED
I(;U DU IT
ISPECIAL CASE 12, rORM f~ED
IGO ou If
I~UMP fIHS1 fIME rHRU s~rICH
lIN CASE SKIPS, wE DON'r NEED IT HER~
ICOU~I AN OUTPUT CHAR
IOISPAfCH 10 FIRST OH SEC UNO CHAH ACTIUN

IHAS A ~EAL CHAH UCCURR~D SIN:E Ff?
ISKIP IF NO H~AL CHAH
IGU DO R~GULAR
Ilr ~~ ~LREADY HAVE A Fr
lIN ijUff~R UUT, UUN'T N~ED A CR

IL~AD wlfH CR, 5U POP-II DOESN'r PUT UN AUTUMATIC Lf
I~UT Du NOTHING fON IMAG~ MODE

IGU HE~JOIN
IGET ijACK LINE fEED
IISZ OR ~OP FUR COUNT Of FF PER PAGE
INU fO~M f~~D NOW
IrURM fEED, RESET PAGE CUUNT~R

Figure 4-~ (Cant.)
XVM LPll DOS Handler

4-15

PAGE 14 LPu. In

462 00430 R 04U,43 ~

463 00431 H 14u,02 H
464 00432 H 200663 H
46, 00433 K bOultl0 ~

466 004H H 40()~p)~ K
467 00435 K 600400 R
468 U0436 44u~bO R
469 00437 60UoI0 R
470 vU44U i< bLU"I:UU R
471 004011 K I.JUVUUO A
472 00442 K b.lU40U H
473
474 00143 R vvv445
475
476 00444 R IVOHI R
477 00.4, H 0"0,11 R
478 OOHb H l()u .. 41 K

479
480 00447 H 74"030
481 004,0 HOU2U A
482 00451 lOu, 11 R
483 004,2 K 060, II R

484 00453 R ,*"u571 R
48, 00454 R oUUH4 R
48&
487
488
489 0045, K U()uuUO A
490 00456 R 71711'1 A
491 uu.57 K U40560 R
492 00460 R 777770 A
493 00461 R v40~o4 H
494 004&2 R 20U556 K

495 UU463 H U4U,,7 K

.90 U0464 H 14u!;IoJ R

497 OU405 R t>"'l'J<t5:' R
4,"

PAGE 15 LPU. 12<

499
500
501
502
503
504 004"" R lUU5,,4 R
505 004&'1 R 14U;,6" R
506 U0470 R 44U,02 R
507 004/1 R bOU5U3 R
508 00_7l ~ 75uU30
509 OU473 K ObU,51 K

51U 0047. H iOUobo K

511 00475 H ObO,S2 K
512
513 OU47" luO,31 H
514 Ou417 10U." R
515 00500 K 703304 A
516 00501 R b2U~40
517 (lo,n R 17 1'177
51d 00503 II 7177 7 'I
519 00,0' R 04U,0'
520 UO,05 k 6vOl H k

Task Development

.I,RITE ""uNCtION

DAC PAGCNT
DZM CllP If'LAG SAHNG r'f OCCUHRED.
LAC (14 If"OR,\ f~ED CODE
JI1P pun I~O COUI.r CHAR, AND PLACE IT

purLfH XCT ~lX ISKIP UN lOPS ASCll
JMP Pul'l I IMAGE, ACIUALL~ PLACE LF
lSZ nKST IASC 11, IS 11' f"lRS'f IHIIU?
JMP pun I.OT F!RST, 00 Lf
JMt'* purCH IflHS'f I'IME, JUST HE'fURN

PUTS. 0 IHdf't:;O AS pun. fILLED LA'fER 8~ JMS
J~P< purCH lOON!::, R~I'UHN

I
PUl'l~ PUIl ISTAHT AI fIRST CHAK
I
PO)'Y JMS PUISW ILEAn PUINTER f"OR fIRST AfTE:R SECUND
PuT 1 OAO purp IfIRST :HAKACI'ER ACllON, PLA:E RIGHT

J,~S Pul'Sw ILt;A~I"G PUIN)'t;R f'OR SI':CUNU
I
pun CLL!SwrlA IPU'I CH4H IN HIGHT PLACE

RAH
XUH< purl' IPU'! rlA",ES TOGETHER
DAe- Purp ItlOl'H I., ~UHER
IS< PUTI' I,~OVE POINTER
JMP pur", lliO ft;LL PUISw fHAT pun IS NEXT

UUT ii'll:: ro RES~T LIN~ ArllO rAa COUNrRS

RfSErL
LA. -I ISE'f fiRSI' CHAR Of" LINE REME~BEHER
CAC fiRST
LI\~ -10 ISET rAB COUNTR
DAe fABC
LAC ~INLII~ ISET UP ~AX pt;R Ll .. ~t: CUUNl'ER
UAC ,<UC
UZI>1 tHJ A 1'4 KC IRESEf SPAC<: AND TAB CUUNTER
JMP* Rt;S";TL

.CLOS" FU('v:::lIUf~

I
I
I.CLOSE
I
LP::LLJS

LP~ ALA

LPCl,SI"<
LlP::LD[Ij

• Tl'IL': .CI.Jd,st. FUI'lC'IILlN

JMS LP lLIC~ ICHt:CK 110 UNDEH.AY.
DZl"1 CIJ~ ISAY A ff" OCCUHRt;D
ISZ LPC LSw 1777777 IN AC jf HAVEN'! BEEN
JMP L~CLOI; luONe.
CL4llAC ISPlJOL~K ~<:~UIH<:S n·',CH AS CLJSE
OAC* "PdUf" IJUsr -.ilVI!: ff 1'0 DHIVI::R, HUwEVER
LAC (".14 /l"H1S Iti FF", Cf{ IN POP-II
DAC< LPdUfD O"IRST rJA I'A ~UHlJ PLlINl'i::R

If HIS '~EANS AL'A~S A f'f ON CLOSE:!! !
JMS LPSt;'f ISENO BLJfHH TO PDP-II
JMS Kr:ti<:l'L IKtSEf l'HE wLlRLU
L>~R

Jj\oJ~* LPCALP IHANG ON CAL.
177777 1-1 ; .CLUSE NUl' UON~.

LA. -1
D4C uPClJSW IlNIrIALI<E .CLI)S<: I~OI:ATOR

JMP LPNtX'f !l:.Xlf.

Figure 4-1 (Cant.)
XVM LPll DOS Handler

4-16

PUTS.

JUSTU"IED

fHRU CLOSE CODE.

PAGI:: 16

521
5<2
523
524
52,
526
527
5.8
529
530
531
532
533
534
535
53b
537
538
539
540
541
542
543
544
545
546
547
548
~49
550
551
552
553
554
555
556
557
558
559
560

LPU. 12<

0050b H l;!U540 rl
00507 R 50Ub50 H
00510 H I4I"uO A
00511 t< 600522 K
00512 K 2U0052 R
00513 K ~vU~4U R
OU514 K 04U540 K
U051~ K 220,41 H
00516 H ,OUbb7
UO~17 H lqv~ 'to
U0520 H 04054U H
Ou521 t< 4.U,41 H
00522 K IUI)524 K
00523 H 6UUI H H

00524 K uuuuuo
OU525 K 2uu544
005"6 K 741"Ou
OU5<7 R b,,0524 H
OU53U K bOOSVU K

00531 R 000000 A
00532 R 200550 ~

00533 K .,ObOOI A
00534 K blllJ~ 3 3 K

U053, K 70bODb A
0053b R 040544 R
00537 k b;'n1~31 K

Task Development

.wAll t"UNCIIlJN

I
l.wAIT
I
LP.AIT

LPwATI

I
ICHI::CK
I
/ LPUfliU
I

LPIUCK

I
I S~fUP

I
LI'SEf

• T ll'LE • NAlr ~'UNCl'IUN

QH .wAITH

LAC* L~CALP
ANU (1000
SNA
JMP "P.AT!
LAC l1000UO
AND "PC ALP
DAC LPCALI'
LAC* L~At<GP

ANU (17777
XOR LPCAL!'
DAC "PCAL!'
lOX ~~At<GP

JMS LPIUC"
JiW LPNEXT

fOR 1/0 U~UI::R'AY

0 Ntil:.:N (,HEi, f~lJl\lO ~l-tl:::l~

0
LAC 1.JtJUI'ILJ
SNA
Jr.p* LP lUCK
JMP LPCALX

AND UUTPOf TU PHilTER.

o
LAC
SlUA
JMP .-1

LIUR
OAC LPU~U

JMP* LPSEl'

IS~ND

18lT 8 = I ,UH .wAITH
I. wAlI - GO HANG ON CAL.
fLINK, ETC.

I IS-SIr ~USY ADUHI::SS.

ICHf.CK lIU UNDI::HwAY.
10K - RI::TURN.

~US¥

10 ; NO ACTIVl1'Y.

INU liD UNDI::HwA¥.
IHANG UJ~ CAL TIL NOT BUSY.

feB PUINfER TO PDP-II
I~AKE SUHI:: IfS ABLE fO GI::T IT
INUTE fHAT THIS IS PKJrECIED SINCE
I fHE LIUM ~ILL ~E lSSU~D UIRI::CTLY
I ArTER THE SlUA (,REE INSTRUCTION).

IS~I 110 BuSY fLAG.

Figure 4-1 (Cant.)
XVM LPll DOS Handler

4-17

Task Development

PAGE 17 LPU. 122 INIflALIZATIUN CODE AND TEMP~riARIES

561 .TITL~ INITIALIZAflUN :UDg AND TEMPURARIES
562 I
563 00540 000000 A LPCALP 0 IPOINI~R 10 CAL AODR
564 00541 R 000000 A LPARGP 0 IPOINT~R ARGUMENTS Uf CAL
565 00542 R 77n06 A PAGSIZ -fORMS IASSEM8LED LI~ES P~R PAGE
566 00543 R 777706 A PAGCNJ -fURMS ICUUNT fHE LIN~S HER~

567 00544 R 777772 A LPUND -6 Id=fME,,+=BUS~,-=EMRUR

568 ICUUNTS UP TU INITAL 0 BELO.
569
570 .U'UND Non'
511 00545 R 440543 R ffS. ISZ PAGeNT IACJIO~ fUR fURMS CONTRUL, NEMDRY
572 00546 R 44v~43 R fH~' ISZ PAGCNT IffSw LOADED INTO HERE
573 .E"DC
578 00547 R ~00636 R INlT LAC (iWP IriMITE UVER JUMP TO HERE
579 00550 R 040003 H LPTClI DAC "E,; IPREVENT RE-ENfR~
580 00551 II 22<1645 R LPSUf LAC- (. SCUM+4 IGT PHINTER LINE wlDfH
581 00552 R 74~O20 A LPBUfll RTM
582 00553 R '/400.0 A LPEV MAR IMOV~ 1'0 '6 ' PUSI TION
583 00554 R 500670 R TEMPI AND (6 ISTRIP GARBAGE, LITERAL
584 00555 R 741~OU A BUfSIZ SNA
585 00556 R 340670 H LI"LIM TAD (6 l'rR;:AT 0 (UNDE~'INED) AS 132 :OLUMN I 11 I
586 00557 K 340624 R MAXC TAD L~f'fP IPUINT~R TO CONSTANTS
587 00560 R 040624 R fiRST DAC LBffP
588 00~61 R nu624 R rCHAR LAC- LBF'fP ILINE ~lDrH
589 00562 R 0405~6 R COP DAC LINLIM
590 00563 R 440624 R BLANKe ISZ LBfTP
591 00~64 R 220624 R TASC LAC- Lrl~'rp IBUn"~R SIZE
592 00565 R 040055 R MIX DAC B<JFSIZ
593 I
594 I NO. SET UP POI~TERS TO BUFFER AND TCB LUC'S
595 I
59b 00566 R 220657 R LPAC LAC* (.SCUM+1UO IPUIN fER 'ro 'fABLE Of POINTERS
597 00567 R HOU30 A LPOUT lAC IUUR POINTER IN 'l'ABLt: +1
598 00570 R 040~54 K XI2 OAC rt:MPI
599 OO~7J R 220554 R PUTP LAC- 'r~MPI IPOlii'fER 'ro rCB
600 00572 R 040550 R DAC LPrCI!
601 00573 R 040554 R DAC T~MPI IPOINTER TU fiLL LUCATIONS
602 005 '14 R 723un A AAC 2 IMAKE POINTER TU EVENT VARIABL;:
603 00575 R 040553 R OAC LP!:V
604 00576 R 72J002 A AAC 2 IMAKE PUINTER TO TCB POINTt:R
605 00577 K 040564 R OAC fABC no I!U~'fER AODR
606 00600 R 723005 A AAC 5 IMAK~ POINTER TU FIRST DUA ,;ORD
607 00601 R 040552 R DAC LPBUflJ
608
609 MAKE I'CB
610
611 00602 R 2U0671 R LAC (APISLT*400+APILVL
0)12 00603 R 060554 R DAC* I!::MPI
613 00604 H 440554 R ISZ fgMPI
614 006U5 R 200672 R LAC (DEVCOU IPIREX CODE fOR LP DRIEVER
615 00606 R 06055. R DAC* TI::MPI
b16 00607 R 440554 R ISZ f~MPI IZERO IHRU fiRST I!UfFt:R LOC

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-18

Task Development

PAG~ 18 LPU. In INITIALIZATION CODE ~'~D T~MPORARI~S

617 00610 R 16U5~4 R OZM* rE:MPI
618 00611 R 44U544 R ISZ LPUNIJ
619 0061l R 600607 R JMP .-3
620 OOolJ ~ 2u0554 R LAC TEMPI ITHIS POINTS TO aUff~R
621 00614 ~ 0605b4 R OAC* 'I'AilC ITO LOCATION IN TCB THAT NEEDS
622 00615 ~ 040551 R DAC l,PBUf lAND A POINTER fOR US
623 0061& K 101)455 Il JMS RESETL tRESEr LINE AND TAil CUUNTRS
624 0061"/ R UOO056 A CAL APISLT IISSUE SETUP CAL TU ESTABLISH INTERRUPTS
625 00620 K 00U016 A 16
626 00621 R 706141 A LSSf
627 00622 R OOOuJ2 R LPINT
628 00623 R 600003 H JMP 1EW I.H!:., DON!:
629
630 .U!!:C
631 00624 R 000623 H LBHP .-1 IPOINTER TU SIZE TAIIL!!:
632 00625 R 777060 A -80
633 00626 K 000044 A 36
634 00627 R 777610 A -ll0
635 00630 R 000064 A 52
636 00631 H 777574 A -132
637 00632 R 000070 A 56
638 OOOUOO A .ENU

006B H 017777 A *L
00634 R ~OOO 11 ~ *L
00635 R 60U042 R *L
00636 R 740000 A *L
OOb37 K OOOUOO A *L
OU640 R 700042 A *L
00641 R 1717n A *L
00642 R 177001 A *L
OU643 R 6000UO A *L
00644 R 00UI37 A *L
0064~ R 00U104 A *L

{ 00b46 R 000U02 A *L
00b47 R 0040UO A *L
00650 R 001000 A *L
00051 ~ 741000 A *L
00652 R 700000 A *L
00653 R 0004UO ~ *~
000~4 R 000177 A *L
00655 R 000135 A *L
00050 R 000U12 A *L
00657 K 000200 A *L
00&60 R 000011 A *~
00661 R 000015 A *L
00062 R 00UU20 A *L
OU603 R 000014 A *L
00064 R OUOOll A *~
00065 K OuuJ77 A *L
OObbb R 00&414 A *L
00067 R 077777 A 'L
00&10 R 000006 A 'L

PAGE 19 LPU. 122 INIUAL1ZAI'IUN CODE AND T~MPORARIES

00671 R 027002 A *w
00072 R 000u04 A *L

SlZ~=O(Jb 73 NO ~RROR LIN~S

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-19

Task Development

PAGE 20 LPU. CROSS REfERENCt;

APILVL 000002 4~< 51 " 611
APISLT 000056 49* 011 624
BLANKC 00563 277 292 294 309 310 333 334 496

590<
BUfSIZ 00555 lH ,840 ,92
CAPI 706144 55< 128
COP 00562 189 '15 349 448 463 505 589*
DEVCOD 000004 72< 75< 614
ERLOOP 00074 158< 161
EROUT 00076 160'
ERRNUM 00102 157 159 164<
EXERRS 000137 6J< 160
ffff 00546 1 B 1 182 ,12' ,76*
fF'Sw 00545 1B5 459 571_ 575.
flRST 00560 26B 443 468 491 581*
~'ORMS 000072 60- 69- 565 566
GETCH 00332 251 373* 391
GI::TCM 00345 386 3YO*
GETIN 00347 237 ,1930
GETQ 00350 391* 421
GETS. 00344 23~ 376 388- 397 407 409 411 415

417 419
GI::r1 00351 393 399-
GgT2 00362 40~-
GEl'3 00364 410*
GI::T4 00374 418-
GETS 00376 420-
IDX 440000 bl_ 81 90 98 173 1"Ib 212 536
INIT 00547 B5 ~7t!*
IOPSI2 00030 lu9' 172
IOPS67 00026 101* 218
LBfTP 00624 586 5t17 5~8 59U 591 631*
LINLIM 00556 494 5il50 58Y
LIOR 70600b 53* 1,1 558
LPAC 00566 11, 123 134 ,9b*
LPARGP 00541 ~o ill ~9 90 9H 173 175 176

201 211 212 231 234 532 ,36 564*
LPA. 00000 77 79-
LPBlif 00551 191 244 350 350 445 509 580_ 622
LPBUfD 00552 193 23, 247 451 511 581- 607
LPCALP 00540 7Y 179 207 516 525 530 531 534

53, SoH
LPCALX 00500 515- 548
LPCLDN 00503 507 51.'
LPCI,OS 0046b 100 50._
LPCLSW 00502 5Ub ,11* 519
LPI::R06 U0024 97 102 105-
LPEV 00553 129 582' 603
LPICM 00046 121 121*
LPIERR 00061 13l 140-
LPIN 00103 95 169_
LPINT OU032 114- 116 119 627
LPIOCK 00524 188 206 504 537 544- 54'/

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-20

PAGE 21 LPU. CHOSS REfERENCE

LPIRT 00054 1330
LPIRT1 00055 134* I,.
LPIS. 00056 127 135>
LPN EXT 00134 99 101 200'
LPOUT 00567 117 125 137
LPPl~ 00042 114 118 123*
LPSET 00531 195 359 513
LPTCS 00550 148 553 579>
LPUNO 00544 133 545 559
LpwAIT 00506 104 525'
LPWATI 00522 528 5370
LPWRIT 00136 103 20b>
LSSF 706141 51' 620
LTA8L 00012 92 ~S'
MAIN 00200 251> 253 255
MAINe 00235 284 '.94*
MAINO 00233 288 292'
MAINE 00244 29d jUl'
MAlNK 00240 297' 311
MAXC 00557 301 337 338
MCR 00275 318 329_
MIX 00565 210 2;18 242

592'
MSPEC 00247 259 3070
MSPE~2 00254 30d H2'
MSPE~3 00270 320 324* 331
MSPEC4 00272 322 326'
MSPEC5 00267 3230 32H
MTAS 00300 314 332*
NEW 00003 8" 579 628
PAGCNT 00543 178 1j02 500'
PAGSIZ 00542 177 401 565'
PUTCH 00400 272 290 293

453 450 470
PUTFf 00427 442 <lbU
PUTlN 00443 239 474>
PUTLF 00412 44U '4B'
PUTLFR 00434 46~ 406'
PUTP 00571 230 477 482
PUTIl 00444 47.' 485
PUTSI'I 00441 <40 440 471'
PUTW 00424 450 '5H'
pun 00406 443> 457 467
PUTZ 00410 445' 465 469
PUT 1 0044~ 474 471*
PUT2 00447 480>
RESETL 00455 187 329 34B
RETRr 00066 14J 14B>
SC.MOO 000104 5H> 169
SC.IJCI 000002 59* 17U
SET 440000 olf
SETERR 00073 lOb lOB 110
SIOA 700001 5lf 149 554

Task Development

355 360 520 53H
591*

552> 560
600
561' 618

302 325 343

495 5H6>

Ho 354 374 4~5 466

571 572

290 324 327 347 437*
472

483 484 599'

476 478

401 489' 497 514 623

144 1570

Figure 4-1 (Cant.)
XVM LPll DOS Handler

4-21

Task Development

PAGE 22 LPU. CRObS RE~-e:AENCE

TABC 00~04 297 300 332 335 342 493 591* 605
621

TCHAR 00501 213 224 256 ~95 J12 588*
re:MPI 00554 213 J81 399 583* 598 ~99 601 612

013 015 616 617 620
UCLP03 00314 261 303 316 340 345*
UCLP04 00320 349* nJ 402
UCLPOS 00330 353 359*
X12 00570 21~ 384 38~ 403 404 412 413 598*
'DOS 000001
'RELES 000001
,Ve:RSN 000001
UVM 000001
.CLEAR MACHO
.CLOSE MACRO 499
.DLe:TE MACRO
.ENTe:R MACRO
.EXIT MACRO
.fSTAT MACRO
.Ge:T MACRO
.GTtlUf· MACRU
.GVBUf MACRO
.INlT MACRO lo~
.MEO 000003 60*
.MTAPE MACRO
.UVRLA MACRO
.PUT MACRU
.RAND MACRO
.READ MACRO
.RENAM MACRO
.RTRAN MACRO
.SCOM 000100 51* 5. 6j 580 596
.SEEK MACHO
.srSID MACHO
.THIER MACRO
.TRAN MACRO
.USER MACRO
.WAlT MACRO ~21
.riAlTR MACHO
.WRITE MACRO 20~

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-22

Task Development

APILVL The API level at which PIREX should interrupt the XVM1 this
is used in TCBs and in the definition of CAPI. APILVL should
indicate API level 0, I, 2, or 3. 1

APISLT The API slot to which PIREX should issue interrupts 1 used in
TCBs and in the CONNECT/DISCONNECT software directives.

DEVICE
SKIP

In this case LSSF, one of the four possible uc15 skips. This
skip is determined by which API level is chosen.

SIOA

LIOR

CAP I

SKIP = APILVL*20 + 706101

The skip is used in the standard setup interrupts CAL (Figure
4-1, lines 624-628).

Skip if PDP-II can accept a TCBP mnemonic1 (706001).

Issue TCBP mnemonic1 (706006).

Clear interrupt flag mnemonic1 set to APILVL*20 + 706104,
used in interrupt service routine.

DEVCOD The device code as defined in PIREX: used in TCBs.

NOTE

The conditional use of the spooled bit
(PDP-ll bit 7) (Figure 4-1, lines 71-76).

4.6.1.1 Initialization - The CAL entry of an XVM/DOS handler must

have a once only section of code that:

1. Sets up a pointer to one of the reserved TCB areas in the
XVM/DOS monitor. This is done by locating a pointer to the
TCB area in the table pointed to by .SCOM+I00 (Figure 4-1,
lines 596-600).

2. Computes pointers to the various locations within this TCB
area, such as the event variable (Figure 4-1, lines 601-607).

3. Constructs the constant fields within the TCB such as the
API RETURN and device code (Figure 4-1, lines 611-619).

4. Sets up a pointer to the data area in the TCB, which will be
used as a buffer (Figure 4-1, lines 620-622).

4.6.1.2 .INIT Function - The .INIT function of any XVM UNICHANNEL

handler should check to see if the UNICHANNEL is enabled by testing

bit 16 of .SCOM+4. If bit 16 is set, the UNICHANNEL is enabled, or

else if bit 16 is not set, lOPS 12 (device error) should be issued.

(Figure 4-1, lines 169-172.)

lLevel 0 may be used, but is not recommended because it could hang the
XVM system if the interrupt occurred at the wrong time.

4-23

Task Development

4.6.1.3 Request Transmission - When issuing requests to a task from a

XVM program, the requesting program (e.g., a XVM I/O handler) issues

the following sequence of instructions.

DZM EV

LAC (TCB)

SIOA

JMP .-1

LIOR

/CLEAR EV IN TCB

/ADDRESS OF TCB IN AC

/MAKE SURE PDP-11 CAN ACCEPT REQUEST

/WAIT FOR IT IF NOT

/ISSUE REQUEST TO THE PDP-11. THIS CAUSES A
LEVEL/? INTERRUPT TO THE PDP-11 AND CONTROL
TRANSFERRED/TO THE LEVEL ? HANDLER IN PIREX.

The instruction sequence which issues requests to tasks from the XVM

should have an identical format as shown above. These five instructions

are ordered in a way which:

1. Clears the event variable (EV) before issuing the request.

2. Allows an interruptible sequence while waiting for the PDP-11.

3. Allows a non-interruptible sequence once the SIOA instruction
skips and the LIOR is issued.

This occurs because the XVM always allows a non-in-cerruptible instruc

tion following an lOT (in this case the SIOA). The SIOA and JMP .-1

sequence is interruptible immediately following the execution of

JMP .-1.

The LPSET routine is used by the line printer handler to perform the

request transmission and thus send data to the line printer (or line

printer spooler) task (see Figure 4-1, lines 551-560).

4.6.1.4 Interrupt Section - Result Reception - After receipt of a

request to PIREX, the PDP-11 will use the contents of the TCB to

schedule the referenced task.

Meanwhile, the requesting program can either:

1. Give up control and wait for an interrupt from the PDP-11 as
in the XVM/DOS line printer handler case or

4-24

Task Development

2. Test the EV until it goes non-zero. i.e.,

LAC EV

SNA

JMP .-2

to determine completion of the request. The EV is automati
cally set to a non-zero valye by the referenced task when the
request has been completed.

Interrupts generated by the PDP-II for the XVM are serviced by the

XVM in a fashion identical to regular XVM interrupts. As in a non-

API environment, a SAPI N (N = 0, I, 2, or 3 depending on what API

level would have been used if the XVM had API) instruction tests for

the flag associated with the request. In an API environment, the

appropriate API trap address must be set up before the interrupt occurs.

When program control is transferred to the interrupt service routine,

a CAPI N instruction must be issued to clear the hardware flag assoc

iated with the request.

After clearing this flag, the event variable should be tested to detect

an error condition (negative event variable). See Figure 4-1, lines

129-132.

If an error has occurred, the event variable should be tested for a

possible PIREX out-of-node condition (PIREX ran out of space to store

the request). If the error was an out-of-node error (EV = 177001) a

retry of the request should be attempted (see Figure 4-1, lines 148-152).

If the error was not an out-of-node error, an error message should be

sent to the user. The error code should be composed of the event vari

able and a handler mnemonic such as LPU (Figure 4-1, lines 155-164).

l When interrupt returns are used, the EV is set to non-zero just
prior to the issuing of the interrupt.

4-25

Task Development

4.6.1.5 .READ and .WRITE Requests - Actual input and output is accom

plished by using typical XVM/DOS handler code with the following excep

tions:

1. The TCB is used as the data buffer1

2. The actual I/O is done by calls to the TCB transmission
routine. In the example this is a call to LPSET
(Figure 4-1, line 359)

4.6.1.6 .CLOSE Function - If PIREX provides spooling services for the

device, there is a need to inform the device's spooler module that the

current job has completed so that the spooler is forced to process any

existing partially-filled buffers. The writer must insure that both

the XVM/DOS handler and the PIREX spooler module agree upon a conven

tion to indicate this end-of-file. In the example, a form feed carriage

return (6414) acts as an end-of-file (Figure 4-1, lines 499-513).

4.6.2 PDP-11 Requesting Task

Tasks such as MAC11 may execute under control of the PIREX executive in

a background mode. Considerations such as TCB structure and event var

iable checking are similar to those of the XVM/DOS handler.

When the requesting program is a PDP-11 task, it must issue the initi

ate request macro (IREQ) in lieu of the 5 instruction sequence shown

for the XVM. (See section 4.6.2.) If the task being requested has

a higher priority than the current one issuing the request, it will

execute irnrnediatelY7 otherwise, control will return to the first instruc

tion following the IREQ macro. IREQ is defined as follows:

.MACRO IREQ TCBP

MOV TCBP,R~

MOV #100000,R4

lOT

.BYTE 2,0

.ENDM

The #100000 in R4 is used by PIREX to identify a PDP-11 request.

1Depending on Driver task design the TCB need not be used as a data
buffer for NPR devices.

4-26

Task Development

A TCBP is a TCB pointer. If the requesting task desires a software

interrupt it should place the interrupt return address in the proper

entry of the "SEND 11" Table (see Section 3.3.8).

4.6.3 UNICHANNEL Device Handlers for XVM/RSX

The following description of how to write a UNICHANNEL device handler

for XVM/RSX does not discuss those topics pertaining to all XVM/RSX

I/O handlers, see the chapter on Advanced Task Construction in the

XVM/ RSX System Manual.

4.6.3.1 Definition of Constants - Several constants are defined in a

UNICHANNEL handler's source file before any executable code (see

Figure 4-2, lines 67-80). These constants include:

APISLT

APILVL

DEVICE
SKIP

SIOA

LIOR

CAP I

DEVCOD

The API slot to which PIREX issues interrupts~ this is
used in TCBs and the CONNECT/DISCONNECT software
directives.

The API level at which PIREX interrupts the XVM~ this
is used in the TCB and in definition of CAPI.
APILVL should indicate API levell, 2, or 3.

UNICHANNEL device skip equated to APILVL*20+706101.

Mnemonic for "skip of PDP-II can accept a TCBP"~
706001.

Mnemonic for "Issue TCBP"~ 706006.

Clear interrupt flag mnemonic~ set this to APILVL
*20+706104. It is used in the interrupt service
routine.

The device code as defined in PIREX~ this is used in
TCBs.

4.6.3.2 Initialization - The handler initialization is located imme

diately following these definitions (see Figure 4-2, lines 263-321).

During handler initialization, the PIREX device driver status must be

cleared and the event variable checked to see if the driver is function

ing (see Figure 4-2, lines 288-305). Since it is not obvious to XVM/

RSX whether or not the driver is operational, a message should be

printed before the handler exits if the driver is not running under

PIREX.

4-27

PAGE

28
29
30
31
32
3l
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

CD 021

000055 A
000001 A
706121 A
706001 A
706006 A
706124 A

ooouo~ A

Task Development

Co •••• CHI5/UCI5 CARD HEAD~H EDlr .020

I
IEOlT '021
IEOIT ,020
IEOlT '019
IEOlT '018
IEOIT '017
n:OlT .016
lEon 10 IS
IEDIT 'Oil
IICOlT 114
ICOP~HIGHT
IC.W. KEMP
I

4/22/75 SCR UCIS Eor CARD riX
2/2174 SCR CLEANUP
SCR CRI5 ERROR HANDLING; RRN SWIICHI
SCR fIX COON HANDLING CRI~ VERSIJN
SCR CLEANUP, (BOTH! DEVICES
SCH MOR~ U:15 CODE
SCR START TO pur IN uel5 CODE
1·18·n
6·26·73

197], DIGITAL EQUIPMENT CORP., MA~NARD, MASS.
•••• •• A. UESIMUNE • •••• G. M. COLE

ICRI5 CARD READER CONTHOL HANOL~R TASK.
ISUPPORT SURBAN AND DUCUMATION READICRS.

THIS CONTRuL .ILL

I CRI5 CODE IS OBIAINICD wITH NO ASSEMBL~
I

TO OBTAIN UCI5 CODE DEfiNE UCI5=0.
ADDITIONAL UCl5 PAHAMETERS:

PPARAMETERS

I
I
I
I
I
I
I
I
I

DEFINE NOSPL=O TO DISABLE SPUOLING fOR CARD READER. fOR INSTANCE

I
I
I
I
I
I
I
I
I
I

I
I

IF SPOOLER PACKAGE DOESN'T HAVE CARU READER ASSEMBLED IN FOR SPACE REASONS.
AN EQUATE fUR APILVL IS NICCESSARY TO SET UP
lOT'S FOR CORRECT PRIURITY LEVEL TO CLEAR PIREX REJUEST.
PRESENTLY LEVEL I IS THE CARD READER ASSIGNMENT.

A G

IN ORDEH FOR THE UCI~ HA~DLER TO FUNCTIUN PRUPERLY, THE
PDPII MUST BE ABLE TO ACCESS OUR INT~RNAL BUfFER
AND TCB'S. THIS M~ANS THAT IHEIH ADDHESS MUST HE LESS THAN

28K TO THE PDPII. THUS, IF THE PDP-II LOCA~ MEMORY IS 8K,
THIS HANDLER MUST RESIDE BELO. 20K IN PUPI5 COREll IHIS
IS EQUIVALENT TO 50000 OCTAL. SIMILAHLY , IF THE LOCAL
PDp·II MEMORY IS 12K, fHE HANDLICR MUST RESIDE BELOri
40000 OCTAL.

.IFOEF UCl5

APISL'f=55
APILVL=1
CRSI=APILVL*20+706101
SIOA=706001
LIOR=70600b
CAPI=APILVL*20.706104
I

.1f'UNO NQSPL
DEVCOD=5

.ENDC

.IFDEF NOSPL
DEVCOO=205

.ENDC

Figure 4-2
XVM CRII XVM/RSX Handler

4-28

(

PAGE

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

PAGE

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

CO 021

4 CO 021

Task Development

CO •••• CRI5/UCIS CARD KEADEK ~DIT #020

.ENDC
I
lED IT
I

14 ADDS ASSEMBLY PARAMETER ERHLUN fa SPECIfY LOGICAL UNlf

I
FOR ALL ERROK M~SSAGES, [HE IS SET TO 3 IF USED INtERACliVELY
MOST OF THE TIM~ OR TO 100 WHEN USED wlfH PHASE

I III BATCH. LUN 100 IS O~fINED ro 8E THE 8AfCH JP~RA10R DEVICE.
I

.IFUND ERRLUN
ERRLUN=IOO

.ENDC
ITHIS IS AN lOPS ASCII UNLY HA~DLER TASK.
lIT CAN BE ASSEMBLED TO READ 029 OR 026 IBM KEYPUNCHED :ARDS.
IDEFINE DEC026 Tu READ 026 PUNCHED CARDS.
IDEC026 UNDEFINED TO READ 029 PUNCHED CARDS.
I
I
I
I THE FOLLOWING gUEUE I/U OIKECflViS ARE IMPLE~E~[ED
I
I
I
I
I

CPB 3600
EVA
LUN

HANDLER INFORMATION (HINF)

I FOR HINf THE FOLLOWlNG lNFORMATION IS R~TURNEO IN rHE EV
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(Il
(2)
(3)
(4)
(5)

Bli
BIT
BIT
BIT
BITS
BITS

CPB

CPB

CPS

LUN

o
I = I
2 = 0
3 = 0
4-11
12-11

2400
J::VA
LUN

2500
EVA
LUN

2000
EVA

MODE
Burr'
SIZE

UNUSED
INPUT DEVICE
NUT OUTPur DEVICE
NOT fILE-ORIENTED
UNIT NUMBER 'ZERU'
D~VICE CODE = 7 CARD READ~R

AnACH CARD READER

DETACH CARD READER

RI::AD CARD

IIF A REQUEST CANNOT BE QUEUED, THE fOLLUwING EVENT VARIA~LE
IVALUES ARE RETURNED:
I
I -101 -- INDlCATED LUN UUI::S Nor EXITS.

Co •••• CR1S/UCIS CARD READ~R EDIT .020

I
I
I
I
I

-102
-103
-777

INDICATED LUN IS NDT ASSIGNED TO PHISI:AL DEVICE.
HANDLJ::R TASK IS NOT CORE RESIDE~T.
NODE FOR REQUEST QUEUE ~OT AVAILAijLE.

IIF THE QUEUED 110 REQUEST CANNur BE SUCCI::SSfULLY DE.UEUED,
ITHE fOLLOWING EVENT VARIABLE VALUES AkE RETURNED:
I
I
I
I
I
I
I
I

-7 lLLEGAL DATA MOD~.
-& UNIMPL~MI::NrED fU.CfION.
-24 LUN RI::ASSIGNED ~riILE AITACH/DETACH R~JUESr
-30 OUT OF PARTITIO. rRANSFER (NURMAL MODE).
-203 -- CAL NUT TASK ISSUED.

.EJJ::CT

Figure 4-2 (Cant.)
XVM CRII XVM/RSX Handler

4-29

IN QuEUE.

PAGE

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

5 CO 021

000012 A
OOOOlJ A
000101 A
000102 A
000103 A
000104 A
000107 A
000123 A
000240 A
000252 A
000325 A
000332 A
000337. A
000342 A
000145 A
000361 A
000010 A

705522 A
705521 A

Task Development

Co •••• CRI5/UCIS CARD REAU~R ~OIT .020

I
I ••••• CONSTANTS •••••
I
X12=12 IAUTO-IND~XR~G. 12
X13=13 IAUTO-INDEXREG. IJ
RI=IOI IRE-ENTRA~T R~G. I
R2=102 IRE-ENTRANT REG. 2
Rl.I03 IRE-ENTRANT REG. 3
R4=104 IR~-~NTRANT REG. 4
NADO=107 INOD~ A~DITIU~ ROUTINE ENTRY POINT
SNAM-12l INAME SCA~ ROUTINE ENTRY ·PUINT
POOL=240 ILI5THEAO fUR PUOL Of EMPTY NODES
PUVL=2S2 IL15THEAU fOR PHrSICAL O~VIC~ LIST
ALAO=325 IATTACH LUN , OEVIC~ ENrRY POINT
OLAD=332 ID~TACH LUN & OEVICE ENTRY POINt
OQRQ=337 IDE-QUEUE RE~UEST ENfRY POINT
VAJX=342 IVERIfY AND ADJUST 110 PARAMS.
10CO=345 IDECR~MENT TRANSFERS PENDING COUNI.
DMTQ=361 IUE-QUEU~ 1/0 REQUEST (fOR ABORfING).
D.TG=IO IPOSITION OF TRIGER ~V~NT VARIA~L£ IN PDVL NODE
I

.IFUND UCIS
I
CWC=22
CCA=23
I

IwC DCH ADDRESS.
ICA DCH ADDMESS.

IPSUEDO-INSTR. FOR wr.sw SUBR.
I
WFOfF=SNA
WfON=SZA
I
I

IwAITfOR CRI5 NUT MEAOY.
IriAlTfOH CRI5 READY.

ICONDITIONS fOR LOAD READER CONOITIUN IUT (CRLC).
I
CCI=20
CC2=27
CC3=26
CC4=04
I

ICLEAR SIATUS,D!SA8L~ INTEMRUPf AND DArA CHANNEL.
ICLEAR StATUS,START READ,ENA~~E INT~RRUPT AND OATA CHANNEL.
ICLEAR SIAIUS,ENABLE INTERRUPI,~NA~LE DAtA CHANNEL.
lEN ABLE INTERRS. DISABLES DCH

I ••••• lOT INSTRUCTIUNS •••••
I
CRPC=706724
CRLC=706704
CRRS=706732
I

.ENDC
I
.INH=705522
.ENB=705S21
I

.EJEC'r

ICLEAR STATUS EXCEPT CAHD OONE.(ALSO DISABLES INTERR.)
ILOAD READER CONDitIONS.
IREAD STATUS INTO AC.

I!NHI~11 INTERRUPTS.
IENA~LE INTERR~PTS.

Figure 4-2 (Cont.)
XVM CRll XVM!RSX Handler

4-30

PAGE 6

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

PAGE

251
252
253
254

CO 021

CO •••• 021

Task Development

CO •••• CRI5/UCI5 CARD READER EDIT .020

/----CRI5 STATUS AND AC HIT ASSIGNMENTS.
/
/STATUS REGISTER BIT ASSIGNMENTS:
I
/
/
/
/
/
/
I
I
I
I
I
I
I
I
I
/
I
I

BIT

17
16
15
14
13
12
11
10
09
08
07
06
05
04
03-00

TRANSLAT ION

COLUMN REAOr
END Of' CARD
DATA CHANNEL OVERFLOw
DATA CHAN~EL ENABLED
REAIH' TO READ
ON LINE
END D~" nLE
Busr
TROUBLE (= lOR or HITS 4 - 8)
OATA MISSED
HOOPER EMPTrlSTACKER FULL
PICK ERROR
MUT ION ERROR
PHOTO ERROR
UNUSED

lAC BIT ASSIGNMENTS fOR LOAD CONDITION FUNCTION (CRL=)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BIT

17
16
15
14
13

fUNCTlUN

S'TART READ
DATA CHANNEL ENAHLE
INTERRUPT ENAHLE
UfrSET CARD
CLEAR STATUS REGISTER

STATUS REGISTER ~ITS CONNECTED TU FLAG AND INTERRUPT REwUESTI

17
16
15
09

DATA REAOr(ONLr IF DATA CHANNEL Nur ENABLED)
CARD DONE
DATA CHANNEL OVERFLOw
ERROR CONDIT lilN

IMACRD DEFINITIONSI
I
ICP MACRO FOR CAHU CULUMN TO ASCII TRANSLATIUN TA8LE 02&/029 CONDITIDNALIZATION
I

.IrDEr DEC026

.DEFIN CP,C26,C29
C26\7777+1
.ENIIM
.ENDC
• If'UND I)EC026
.DErIN CP,C26,C29
C29' 7777+1
.ENDM

CO •••• CRI5/UCI5 CARl) R~ADEH Elill .020

.i::NDC

.EJECT

Figure 4-2 (Cont.)
XVM CRII XVM/RSX Handler

4-31

PAGE co 021

255
256
257
258
259
260
261
262
263 00000 R 200046 R
264 00001 R 060647 R
265 00002 R 200b50 R
2b6 00003 R 060b51 R
261 00004 R 120652 R
268
269 00005 R 000b~3 R
270 00006 R 040~67 R
271 00007 R 723010 A
272 00010 R 040510 R
273 00011 R 000571 R
274 00012 R 200561 R
275 00013 R 7411 00 A
270 00014 R 000b53 R
277 00015 R 200654 R
218 00016 R 060510 R
219 00011 R 500655 R
280 00020 R 140031 A
281 00021 R 040563 R
282
283
284
285
286
281
288 00022 R 100025 R
289 00023 R 200b13 R
290 00024 R 142010 A
291 00025 R 140100 A
~92 00026 R 600057 R
293 00027 R 000034 R
294 00030 R 000032 R
295 00031 R 000b53 R
296
297 00032 R 00002U A
298 00033 R 000561 H
299 00034 R 002700 A
300 00035 R 000561 R
301 0003& R 000100 A
302 00031 R OOOOO~ A
303 00040 R 000041 R
304 00041 R 004002 A

00042 R 000000 A
00043 R 251245 A

Task Development

CD •••• :HI5/UCI5 CARU R~AU~K EDIT 1020

I
I
I f •• " HANDLER INITIALIZATION ••••• (ONC~ UNL{ COD~)
I
1ST ART ISTORAG~ fUR AC IN INT~RR. SERvICE.
Il~Uf Irop Of INTERNAL ~UffER.
I
I
START LAC (~DVL) ISCAN ~UVL fOR THIS DEvICE'S NJDE
IIlUf DAC' (RI)

LAC (HNAM)
DAC' (R2)
JMS* (SNAM) IR, R2, Rb, XR, & AC ARE AL'T~RED

INODE fOU"D1
CAL (10) INU -- EXIT
DAC PDVNA IY~S -- PUVL NODE ADDRESS IN A:.
AAC iJ.TG ISAVE NUDE ADDRESS AND
DAC PDVTA IrRIGG~R ~VENr VARIABLE AUDRESS
CAL CC~1l ICONNECT INT~RRUPT LINE
LAC Ev ICONNE:T OK1
SPA
CAL (10) INa -- EXIT
LAC (rG) liES -- SET TEv ADUR;:SS
DAC' PDVTA
AND (10000) IDETER~IN~ 'XR-ADJ'
TCA
DAC XADJ

.HUND UCI5
LAC (CCI) ICLEAR STArus, UISAllLE 1,-. ft,;R, AND DCH.
CRLC ILUAu fUNCTlUN.
.ENDC
.IfDEf UCI5
JMS CLEAR ICL~AR uur PIREX D~VICE, oAlr fJR CO~PLET~
LAC ~VlIK InND JU r If or<
RTL IPDPII ~IGN llIr co OURS
SMA ISKIP H" lROUBL~
JMP .rrGR II't0T, GO NAIf fOR .URr<
CAL MSINIT IPMINT ~Ik~X HAS NU CO ~~SSA~E

CAL .fMS I.Alf r~H M~SSAGE CUMPLErIO.
CAL (10 /I:;XlT

I
.fMS 20

~V

MSINIT 2100
EV
EHRLUN
2
INITMS

INITMS 0040021 000000, .ASCll 'I." NO CD IN PIK~X"<l~>

Figure 4-2 (Cant.)
XVH CRll XVH/RSX Handler

4-32

r

PAGE

305
306
307
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

9 CO 021

00044 R 220234 A
00045 R 475010 A
00046 R 342100 A
00047 R 446344 A
00050 R 050222 A
00051 R 512133 A
00052 R 006400 A

00053 R 600057 R

00054 R 030400 A
00055 R 000000 A

00056 R 777775 A

Task Development

CO •••• CRI5/UCI5 CARD REAO~R ~uIT .020

.ENDC
JMP .fTGR IwAIT fOR TRIGGEH

I
HNAM .SlXBT 'CO~~~~' IHANDL~R TASK NAM~

I
.11' UNO ~C15

• BLOCK 121.START-.
I

.ENOC

.H'DEF UCI5
I

.~LOCK 53+START-.

.ENDC
I ••••• END OF INiTIALIZAtION :UOE •••••
I
I •••••••• THE ABUV~ CUO~ IS OV~RLA¥ED ~I THE I~r~RNAL BurfER ••••••

1*·.··········.···.········· •• ········•···········•···•......•. I
UCI5 INTERRUPT-CAL INTERACTION .ILL bE DIffERENT

KEEP INITIAL PART S~PARATE

I
.fTGR
I

.IFUNO UCI5

CAL .FTCPB I.AIT fOR r~v rJ BE SET

I ••••• THE TASK HAS BE~N TRIGGERED -- PICK A REQUESr rRO~ QUEUE
I

PQ

I

DZM TG ICLEAR TRIGGER
LAC PDVNA IIlEYUE A REQUEST
DAC' (Rll
JMS' (DGRU) IRI, R2, R4, R5, R6, XR

IWAS A REGUt:ST fOUND?
JMP rifTGR INO -- WAIf fOR TRIGGER

.ENDC

.11' DEI' UCl5
UC15 CODE

THE GENERAL IDEA IS THAT ALL WAITS ARE DONE THRU
THE TRIGGER, ojE fiGURE OUT "EkE WHO SET TH~ rRIGGER.

Figure 4-2 (Cont.)
XVM CRll XVM/RSX Handler

4-33

& AC ARE ALTt:RED

rHIS

PAGE 10

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
305
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

PAGE 11

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
410
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CD 021

00057 R 000575 R
00060 R 200562 R
00061 R 140502 R
00002 R 742010 A
00003 R 751130 A
00064 R 600071 R

00065 R 540554 R
00066 R 600177 R
00067 R 540407 R
00070 R 600057 R

00071 R 200567 R
00072 R 060047 R
00073 R 120650 R
00074 R 600057 R

00075 R 040564 R
00076 R 340503 R
00077 R 721000 A

00100 R 210005 A
00101 R 500657 R
00102 R 540660 R
00103 R 600120 R
00104 R 540661 R
00105 R 600127 R
00106 R 540662 H
00107 R 600140 H
00110 R 540663 R

CD ••• , 021

00111 R 600136 R
00112 R 540657 R
00113 R 600464 R
00114 R 540664 R
00115 R 600502 R
00116 R 777772 A
00117 R 600424 R

00120 R 200567 R
00121 R 060647 R
00122 R 200564 R
00123 R 060651 R
00124 R 120665 R

00125 R 600424 R
00126 R 600423 R

00127 R 200567 R
00130 R 060647 R
00131 R 200564 R
00132 R 060651 R
00133 R 120666 R

00134 R 000424 R
00135 R 600423 R

Task Development

CD •••• CR15/UC15 CARD READER EDIT .020

I
I

ALLOwS US TO GET UUT UF HU~G DEVICE, SINCE wE WAIT HERE,
AND CAN SEE AN AHURT COMING THRU.

I
wfTGR
P(l

I
I
I
I
I
P(ll

CAL
LAC
DZM

wFTCPIl
TG
TG

RTL
SPAICLAIIAC
JMP P(ll

SAD
JMP
SAD
JMP

LAC
DAC'
JMS.
JMP

.ENDC

DAC
TAD
PAX

COON
GUTCRD
PllST
WFTGR

PDVNA
(RI
(LJQRll
wFIGR

IlN
XADJ

IwAIT FOR EVENT VARIABLE TG
IfIND OUT wHO IS CALLI.G
IRESEr
IAIlORr BIT TO SIGN BIT
ISKIP IF NOT ABORT, I IN AC.
IGO DO ABORT IN REGULAR WAX. THE HANGING
IREAD IS R~MEMB~RED IN RRN!
IHAS A CARD BEEN DECLAREU DONE BX INTERRUPT
IXEAH, GO TRANSLATE IT
IAR~ WE WAITING FOR INTERRUPT
IxES, AND IT HASN'T HAPPENED XET, SINCE
ICUUN 101 SET. wAlT ON THIS :AL REQ, TO 8E
IDONE AFT~R THE INrERRUPT HAPPENS. IF A80RT
ICDM~S IN THE MEANTIME, HE IS PUT AT HEAD
10F DE~UE OF WAITING REY.'S SO WE DO HIM.

ITRX TO DEQUE AFT~R UPERATION 8ErOR~ WAITING
liN CASE wAITING fOR INTERRuPT HAS HELD OFF
IA REQUgS'l'.
IDION'r "IND ONE, GO wAH

IXES -- SAVE ADDRESS OF REQUESr NODE
IS~TUP XR TU ACCESS NJD~

••••• 110 R~QUESI NUDE fORMAl •••••

(0) FORWARD LINK
I (I) 8ACKWARD LINK
I (2) STL PTR.
I (3) PART. 8LK PTR. (0 IF ~XM TSK).
I (4) TASK PRIORITY
I (5) 110 fCN CUD~ IN IlITS 9-17 AND LUN IN BITS o-~
I (6) -- EVENT VARIAIlLE AODRESS
I (7) CTa PTR.
I (10) EXTRA
I !II) EXTRA
I

LAC
AND
SAD
JMP
SAD
JMP
SAO
JMP
SAD

5,X
(777)
(024)
ATTACH
(025)
DETACH
(026)
READ
(036)

IFETCH l/U FCN CODE

IAT'fACH REQUEST?
IYES -- ATTACH fO TASK
INO -- OETACH REQUESr?
IXES -- DETACH fROM rASK
INO -- READ REQUST?
IYES -- READ CARD
INU -- HANDLER INFO.?

CO •••• CR15/UC15 CARD R~ADER EUlr .020

EVM6

I

JMP
SAD
JMP
SAO
JMP
LAW
JMP

HIN"
(777)
DAEX
(017)
CDABRT
-6
SEV

I ATTACH TO A TASK
I
ATl'ACH

I

LAC
DAC·
LAC
DAC'
JMS·

PDVNA
(Rl)
RN
(R2)
(ALAD)

JMP SEV
JMP REllCMP

I DETACH FROM TASK
I
DETACH LAC

DAC·
LAC
DAC·
JMS'

POVNA
(Ill)
RN
(1l2)
(DLAD)

JMP SEV
JMP HEllCMP

.EJECT

IY~S -- RETURN INFO IN ~V
INa -- EXIT (DEASSIGNED) REQUEsr.
IXES -- DEAT'l'ACrl & EXIT
I ABORT IlEQUEST"!
liES.
INO -- UNIMPLE~ENr~D fUNCIIUN -- SEf
IEVENT VARIABLE 1u -6

IAT'fACH LUN & DEVICE -

IR3, R4, R5, R6, XIO, Xli, Xri ,;. AC ARE ALTERED
IwAS LUN ATTACrlED?
INU -- S~I R~QUESrOR'S EV TO -24
IYES REQUEST COMPLETED

110, R4, RS, Rb, XIO, XII, XR & AC ARE ALTERED
IWAS LUN ATtACHED
INO -- SET RE~UESTOR'S EV TU -24
IXES -- REQU~sr COMPLET~D

Figure 4-2 (Cont.)
XVM CRll XVM/RSX Handler

4-34

"

PAGE 12 CD •••• 021

4)2
433
434
4)5 001)6 R 200667 R
4)6 001)7 R 600424 R
4)1
4)8
439
440 00140 R 111176 .A
441 00141 R)50007 A
442 00142 R 140200 A
44) 0014) R 600460 R
444 00144 R 210002 A
445 00145 R 040556 R
446 00146 R 210010 A
441 00141 R 060610 R
448 00150 R 210011 A
449 00151 R 060671 R
450 00152 R 740031 A
451 0015) R 12)002 A
452 00154 R 040566R
453 00155 R 040514 R
454 00156 tl 200564 R
455 00151 R 040511 R
456 00160 R 060651 R
451 00161 R 120612 R
458 00162 R 600462 R
459
460 0016) R 220670 R
461 00164 R 723117 A
462 00165 R 040512 R
46) 00166 R 12)002 A
464 00161 R 040513 R

r 465 00170 R 140565 R
466
461
468
469
470
471
412
473
414
415
416
411
418
419
480
481
482
483

Task Development

co •••• CRI5/UCI5 CARD R~ADER EDIT .020

I
I R~TURN HAND~ER INfORMATION
I
HINf LAC (200007)

JMP SEV
I
IREAD :ARD
I
READ LAW -2 ICHK. fOR lOPS ASCII DATA MODE.

TAO 7,X
SZA /lOPS ASCII?
JMP EVM1 INO, R~TURN -5 EV.
LAC 2,X ISAVE STL NODE prR. fOR fASK ID€NtIF.
DAC STLA ISAVE VALID STL PIR.
LAC IO,X nES. VAL/ADJ. HEADER ADDRESS
DAC' (R) IHEADER ADDRESS.
LAC II,X IwORD :OUN'f
DAC' (R4)
TCA ISETUP COUNTER SINCE
AAC +2 IOfFSEf fOR CR APPENDAGE.
DAC COWDCT IVAJX ALTt:RS THE XR.
DAC fCWC ISAVE IN CASE RETR¥.
LAC RN IRt:Q. NODE ADDRESS.
DAC RRN ISAVt: READ REY. NODE ADDR. fOR ABORT.
DAC' (R2)
JMS' (VAJX) IVAL/ADJ. (ALlERS XR,A:,RJ,R5)
JMP EVM)O IRETS. HERE H' ERIHJR (110 PARA,~. OUT

IOf PARTITION.
LAC' (R) IADJUSTED HEADER ADDRESS -I TU XI2 TEMP.
AAC -I
DAC TXI2
AAC +2 ITEX'f ADDRESS-I fU xu fEMP.
DAC TXI3 I
DZM CDR VAL IlNlT. VALID. ~lTS.
.lfUND UCI5
LAC CUON IHAS CARD DONE 'uAG :U~E UP SINCE
SNA ILASf CARD READ?
CAL wfCHCD INO. wAITrUR CARD DONE.
DZM CDON I¥t:S. :LEAR CARD OON~ fLAG.

RETRY LAC (UIUf-l) /SET INTt:RN. BUff ADDR-I TU DCH CA.
DAC. (CCA)
DZM. (CwC) IPREVENTS UUUBL~ INTERRUPTS ON ERRDRS!I!!
LAC 'fCwc IREsrOR~ REU. wC.
DAC CDwDCT
DZM En IREINIT EV. REfRY fRJM ERROR.
CRRS IR~AD STATUS IN URD~R TD CHECK fOR
AND (60) lAND ON-LINE.
SAD (60) IS1'Arus ~lrS 12, IJ SEl'?
SKP nES, ON-LINE AND READ¥ fOR READ.
JMP ERRI INO, NOT READ¥. l¥PE MSGI AND WAIf
LAC (CC2) ICONDITION CUDE 2 -- REAU CARD.
CRLC ILOAD :UNDIIIONS.

Figure 4-2 (Cont.)
XVM CRII XVM/RSX Handler

4-35

READ~R READ¥

fUR READY.

PAGE 13

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

CO 021

Task Development

Co •••• -CRI5/UCI5 CARD REA£5ER t::Dl'f .020

I
I
I

CAL _FCRCII IwAIT fOR INTERRupr.

IUPON RESUMPTION fULLOwING WAITFOR, EXAMIN~ EV AND TAKE rHE FOLLUwING
IACTION:
I
IIF EV BIT 9 = 0 (TRUUBLE BIT), NU ERRURS. TRA.SLArE :ARD PUN~H~S
ITO ASCII AND PASS TO USER AS 5/7 PACKED ASCII.
IIF BIT 9 = I (TROUBLE 1111), ERMOR llilS 08 fU 04 ARE :H~CKED 1M
IDESCENDING NUMERICAL URUER. THE fULLOwiNG ERROR MES5AG~S fUR THE
IGIVEN ERRUR CONDITIUNS ARE OUTPUT:
I
IOATA MISSED UR PHOTU ERROR - 'fff CD DATA MISSED/PHOTO EMROR'
IPICK OR MOTION ERROR - ' ••• CD PICK ERROR'
IHOPPER EMPTY OR STACKER FULL - IGNORED. CAUGHf UN SUBSEQ.
IREAD AS A READER NUT READY CO.DIIIUN.
lIN ALL CASES WHERE A MESSAGE IS TYPt::D, THIS HANDLER TASK MARKS TIME
IUNTIL THE ERROR IS REMEDIED. AI THIS PUINT, fHE CARD IS REREAD.
I

I
I
ERR4
ERR3
ERR2
ERR!

LAC
DAC
SWHA
SMAIRAR
JMP
SZL1RAR
JMP
SZL1RAR
JMP
SZL1RAR
JMP
SZLIRAR
JMP
JMP

ISZ
ISZ
ISZ
LAC'
JMS
JMS

LAC
DAC
JMP

• EJECT

EVI
1ST

TRANS

ERR4

TRANS

ERR3

ERR3
ERR4

ERRPT
ERRPT
ERRPT
ERRPT
nWUT
~F.SW

~FON
(ERRPT+!)
~RRPT

RETRY

lEV SET AT INTERR. LEVEL TU CONTENTS UF
ISTATUS. SAVE TEMP.
ISWAP HALVES rOR tROUBLE ~lr Crt~CK.

IIF NEG.,TROUBL£.
INO TROUBLE. GO TRANSLATE.
IDATA MISSEO-/
UES.
IND.
UES.
IPICK
IYES.

HOPPER EMPIY/SrA:K. FULL?
IGNORE. ~HEN NEXT CRD. READ CAUGHT AS Nor READY.
ERIWR?

IMOl'lON ERROR?
IYES.
INU. MUST BE PHOTO ERROR.

IERRMSG. Burf~R AOOR. IJ AC.
/TYPE MESSAAE.
I_AITfDR READER READY.

IREINIr. ERRPT.

IREAD ANOTHER CARD.

TRANS LAC fl12 ISET AUTO INDt::X REG.
DACf (X!2)
LAC TI13
DACf (XI3)

Figure 4-2 (Cont.)
XVM CRlI XVM/RSX Handler

4-36

\

PAGE 14

536
531
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

CD 021

Task Development

Co •••• eRI5/UCI5 CAHD H~AUEH ~UIT 1020

NOW BRING BACK HN FRUM RHN, IN CASE HN DESTROIED IN ~EANTIME

CDRM5

CDML2

CDML4

CDDPlR

COGALT

I
EOF

I

LAC
DAC
LAC
DAC
LAW
DAC
LAW
DAC
LAC.
SAD
JMP
SAD
JMP
LAC
DAC
LAC
DAC
ADO
DAC
LAC·
AND
SZAICLL
ADD
TAO.
SNAICLA
JMP
SAD

JMP
SNL
JMP
LAC
DAC
LAC
CLLIRAR
JMP
LA.
JMP

LAC
JMP

HRN
HN
(lBUf)
ICA
-20
ceCOLC
-5
COR5CT
ICA
CoRALT
CDGALT
<7777
EOF
Co'fABL
CoTPTH
COTLNI
CDTL~N
CoTPTR
COCPTH
CDCPTR
(7777

C07700
ICA

COCfND
CIHLEN

ILLCP

CDDPTR
COCPTH
COTPTR
CDTLEN

COML4
4000
CDCPu'r

(1005
HEQCHA

ICOME HERE ON MArCH FOUND
I
COCFND LAC.

CHAtCLL
TAD
CMA

COCPTH

CDTABL+l

IIUP OF INrEHNAL BUFFER
IPTR TO BUFfEH

ICARD COL COUNr

IGt:T
IALT MODE (12,I,d PUNCH)?
liES -- TERMINArE BUFFEH
INU -- IS IT AN ~OFI

lIES.
INO -- THANSLArE fO ASCII
IGET TOP OF TABLE AND SEl PTR
ISET TABLE LENGTH
ICURHENT' LENGTri/2
ICURRENT TABL~ rop + LENGTH/2

IGET CUHHEN! IrEM

IADD IN REST Of 2'5 CO~PLEMENr WORD
ICURRENT CULUMN
{MATCH ~'OUNDI

irES
{CUHRENT TABLE LENGtri =01
ITHIS MEANS AN UNKNOWN CARD PUNCH
IGU OUTPUT 'ILLEGAL CARD PUNCri'.
{L=O JUMP UP, L=I JU~P DOWN TABLE

15ET fABLE TOP fa LO.ER HALf

{UPDATE TABLE LENGTH

{ALT MODE

{S~T HDR WOI TO EOf
IREQU~ST COMPLETE

IGET CURRENT ENfRI
IGEN. LEfTMOST ~lT

IAIiD 4000000

Figure 4-2 (Cont.)
XVM CRll XVM/RSX Handler

4-37

PAGE 15

588
589
590
591
592
593
594
595
596
597
598
,599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

CLl 021

Task Development

co •••• CRI5/UCIS CARD R~AOER ~OIT 1020

XOR COTAIlLtl IR~STORE SIXTH ~II
RAR

COCPUT DAC CDRWIJ3 IPUT IN TOP Of' lORD S~IFT BLUCK
CIJCLAW LAW -1

DAC CIJR7CT
CDCI'Ll LAC CDRWOl ICDEwD3,CDRWD2 , CORIO I SHIFT AS A UNIT USING

ITH~ LINK TO PASS ~ITS FROM _ORIJ TO lORD

/
/
/
/
/
/
/
/
/
/
/
/
/

RAL
DAC CORWlJl
LAC CORWIJ2
RAL
OAC CIJRwIJ2
LAC CIJRWDI
RAL
OAC CORWOI
ISZ COR7CT
JMP CIJC!'LI
ISZ ICA
ISZ CORSCT
JMP COML2
LAC COWOCT
TAD (2
DAC CDWIJCT
SMA
JMP CIJVER2
LAC CIJRW02
CLLIRAL
OAC CIJRWIJ2
LAC CORWOI
RAL
DAC' XU
LAC CORW02
DAC' Xl3
ISZ CDCOLC
JMP CIJRMS

.ENDC

.IfOEf UCIS

IPOINT TO .~xr CARD CJL
IHAV~ wE PROC~SSEO 5 ~ORIJS?
INU GET ANOTHER ONE
IYES -- UPDAIE WORD COUNt ANIJ
ICHECK TO SE~ IF WE HAVE OVERFLUWEIJ T~E
IUSER'S BUFFER

IYES -- WE HAV~ OVERfLJ.ED
INa -- INSERT 5/7 WORDS IN US~K'S IlUFFER

ISTORE FIRST WORD

ISTURE SECOND WORD

IN THE CASE OF THE UNICHAN.EL, WE RECIEVE A 42(10) WORD
BUfFER. THE fIRST WURD IS A IlYTE COUNT (NOW ALWAYS 80(10».
NOTE THAT AN EOf CARD HAS A BYTE CUUNT IJF III
SPOOLER DOES CHECKSUM CALCULATION, NOT US.
THE SECOND IS A CHECKSUM SO ENTIRE BUfFER AOOS TO 0
III".MODULO 2"16 THAT 151"111. THEN ARE 40(10) NaRDS
Of 'COMPRESSED COLUMN'. (SEE CR-II DRIVER MANUAL). EACH
WORD HAS TWO EXTRANEOUS BITS AT LEfT, THE ISECIJNO CHARI
Of THE PAIR, AND FINALLY THE FIRST CHAR or PAIR AT RIGHTMOSr
Of wORD. THE PDP-II HAS ALREADY CHECKED FOR VALID PUNCH
COMBINATIONS (b4 VALlO CARO ASCII, PLUS 12-1-8 fOR ALTMOOE).

Figure 4-2 (Cant.)
XVM CRll XVM/RSX Handler

4-38

Task Development

PAGE 16 CO, ••• 021 co •••• CRI5/UCI5 CARD READEH EDIT 1020

640 00171 R 750030 A RETRr CLA !lAC ISET VARIABLE SArBING .E'RE 'Alrl~G FUR
641 00172 R 040407 R DAC POST IINTERRUPT
642 00173 R 140554 R DZM COON lAND SAr wt: HAVEN'T GUTTEN IT lET
643 00174 R 200614 R LAC TCBP IADOR OF TABLE TELLING POP-II TO REAO CARD
644 00175 R 100616 R JMS CDIU IROUTINE TO SEND REQUEST TO PDP-II
645 00176 R 600057 R JMP wFTGR IWAIT FOR CUMPLt:TIUN INTEHRUPT
646 I
647 I COME BACK HERE wHEN CARD IS READ
648 I
649 00177 R 200571 R GUTCRD LAC RRN IRESTOR!: RN NUDt:
650 00200 R 040~64 R DAC RN
651 00201 R 140407 R DZM PUST ICLEAR INrt:RRUPT FLAGS
652 00202 II 140554 R DZM COON 18EST TO CLEAR POST FIRST!
653 00203 R 200605 R LAC EVil IEVENT VARIABLE FROM PDP-II
654 00204 R 742010 A RTL IPOP-II SIGN BIT TO OUR SIGN air
655 00205 R 745120 A SPA!CLL!RAR ISKIP IF OK, START CLEARING rilGH BITS
656 00206 R &0063& R JMP COUCEC IGO CHECK WHICH KINO OF PIREX ERRUR
657 00207 R 200572 R LAC TX12 ISt:TUP X12,X13 FOR USER SUfFER
658 00210 R 060&73 R DAC· (X12 IMANIPULATIUNS, XI2 Ht:AOER POINTER
659 00211 R 200~73 R LAC "fX13 IXI3 DATA PUINTt:R
660 00212 R 060674 R DAC. (XIJ
661 00213 R 220&75 R LAC· (IBUF+2 IGET FIRST CHARAC1ER PAIR (2 .JRD HDR)
662 00214 R 540&76 R SAD (104611 ISPUOLER USES AN ALT-ALr CARD AS AN END
663 I IUF Ut:CK CAHD, wE SHOULD IGNORE IT!I
664 00215 R 600171 R JMP RETRY liT wAS ONt:, JUST READ TriE NExr CARD
665 00216 R 500&77 R AND (140 112,11,0 PUNCH~S IN rl~sr COL~.=EOF
6&6 00217 R 340700 R TAD (445 IIF IT IS UNE, MAK~ A 1005
667 00220 R 540701 R SAD (1005 IWELL, IF SO GU LACE 1005 AS HEADER
66B 00221 R 600420 R JMP REQCMA I~OF CARD, JUST SET HEADER,
669 I
&70 00222 R 200675 R LAC (lBUF+2 IOATA STARTS AT BUFf+2
671 00223 R 744010 A CLLIRAL ITOP 17 BITS ADDH~SS, LAST IS RIGHT-LUI FLOP
672 00224 R 040405 R DAC COIPTR ITU G~T INCOMING CHAR'S

(673 00225 R 77 7&60 A LAW -120 180 CHAR'S
674 00226 R 040560 R DAC COCULC INOTt: ~E USE COUNTt:RS OIFERENI ALSU
675 00227 R 200JJI R PKINI LAC PAKI IINIT 5/7 PACKEH TO EXPECT
676 00230 R 040327 R DAC PAKSW liST CriAR UF A BUNCH UF rIVE
677 00231 R 200566 R LAC COwDCT IWE USE AS COUNT Of PAIHS, NOT WURDS
678 00232 R 744020 A CLLIRAR ISU DIVIDE SI rou
679 00233 R 040566 R OAC COW aCT
b80 00234 R 200405 R CDRML2 LAC COIPTR IWATCH ITI TOP 17 BITS ADDR, LO~ BIT LEFT
681 00235 R 440405 R ISZ COIPTR IRIGHT FLIP-fLOP. ANDI! POINTER POINrs TO
682 IN En CHAR, NOT LAST ONE RETREIVEO.
683 00236 R 744020 A CLL!RAR IFLIP-FLUP TO LINK, AODH AC
684 00237 R 040406 R DAC CDTI IHULD POINTER IN TEMPOHARr
685 00240 R 220406 R LAC· CDTI IGET CHARACTER PAIR
686 00241 R 741410 A SZL!RAL ITHESE THREE Gt:T CORRECT CHAR
687 00242 R 74J030 A SWHA!SKP ITO Luo OROt:R H ~ITS OF WORD
688 00243 R 740020 A RAR
689 00244 R 500702 R AND (J77 ISTRIP OTHER CHARACT~R
690 I IAT THIS PUINT HAVE CLO~NS 12,11,0,9,8,1-7
&91 I IwHER~ 1-7 CODED IN THREE BITS

Figure 4-2 (Cont.)
XVr.1: CRll XVM/RSX Handler

4-39

PAGE 17

092
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727 -
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

CO 021

00245 R 040406 R
00240 R 540404 R
00247 R 600200 R
00250 R 500703 R
00251 R 740200 A
00252 R 777771 A
00253 R 340406 R
00254 R 040406 R
00255 R 500064 R
00256 R 340406 R

00257 R 745000 A

00260 R 200704 R
00261 R 742020 A
00262 R 340705 R
00263 R 040406 R
00264 R 220406 R
00265 R 740400 A
00266 R 742030 A
00267 R 100323 R
00270 R 440500 R
00271 R 000234 R
00272 R 600410 R

00273 R 040061 A
00274 R 062063 A
00275 R 064065 A
00276 R 006067 A
00277 R 070071 A
00300 R 072043 A
00301 R 100047 A
00302 R 075042 A
00303 R 060057 A
00304 R 123124 A
00305 R 125126 A
00306 R 127130 A
00307 R 131132 A
00310 R 135054 A
00311 R 045137 A
00312 R 076077 A
00313 R 055112 A
00314 R 113114 A
00315 R 115110 A
00316 R 117120 A
00317 R 121122 A
00320 R 041044 A

Task Development

co •••• CR1S/UC15 CARD R~AoER ~oIr .020

I
CDGALT

DAC
SAD
JMP
AND
SZA
LAW
TAD
OAC
AND
TAD

SKP!CLL

LAC
RTR
rAD
DAC
LAC.
SNL
SWHA
JMS
ISZ
JMP
JMP

CoTI
CDALT
CUGALT
(20

-7
COT 1
COT!
<17
COTI

(240

(COTAHL
CDTI
CDTI

PAKS7
COCOLC
CDRML2
CDCLOS

IHOLO
IALT MOD~ SPECIAL CAS~, NU R~~AP
IREJUIN AS SP~CIAL CASE
Ilf NIN~ PUNCH, PECIAL CASE, R~~AP TU ij, I PUNCH
ICOM~O fUR UUR TRANSLAfE. SKIP If ~Of "I~~
IADOEO fa '9' GIVES '8' AND '1'
IREMAPP~O,

ISAVE, NO. TO ~OV~ sur raM fUUR BITS LEfT UN~
IPUSIflON (9 POSITIU~ NO~ VACAfED!)
IIHIS ODES If. LEAVING LU~ URDER ~IT ZERO
INU~ COLUMNS 12,11,0,6,1-7,ZERJ 81T!
IHIOE ~OUR HEAD. CLL fOR CUMING R1R.S~IP

IUVER ALf-MUDE RE-E~TRr
IINDEX TO ALT MOOE
IRIGHT-L~rT TU LINK, IMDEI TD A:
!TABLE ADDR

IUET PAIR fROM TRANSLAr~ TABLE
IHERE 0 IS LEfT, IN NOHMAL SENSE

15/71 PACKER (IT srRIPS ITRA dITS)
1601
INO
tr~s

TRANSLATE TABLE 4 UROUPS or 16 CHAH'S, r~o PER .aRO. 8 ~ORD
SPACE BETWEEN LAST r.u GHOUPS, IN .HICH wE ~ur or~ER STUyr
CONOITlONALIZED fOH 0~0-029 or CUURSE. LEfT ~AND :~AR IS rIRST.

CDTABL
.lrUND
040061
062063
064065
066067
070071
072043
100047
075042
060057
123124
125126
127130
131132
135054
045137
076077
055112
113114
115116
117120
121122
041044

OEC020
IBLANK, I-PUNCH
12-PUNCH,3-PUNCH
14,5
16,7
18,9(URUERED AS 8-1)
18-2,6-3
18-4,ti-5
18-0,6-7
10,0-1
10-2,0-3
10-4,0-5
10-6,0-7
IO-B,0-9(URDERED AS 0-8-1)
10-B-2,O-ti-3
10-8-4,O-ti-5
10-6-6,0-B-7
111,11-1
111-2,11-3
111-4,11-5
111-6,11-7
111-ti,II-9(ORDEREO AS 11-8-1)
111-6-2,1l-8-J

Figure 4-2 (Cant.)
XVH CRll XVM/RSX Handler

4-40

PAGE 18

744
745
746
141
748
149
150
151
152
153
154
155
156
151
158
159
160
161
162
163
164
165
166
161
168
169
110
111
112
113
174
115
116
111
118
119
180
181
182
183
184
185
186
181
188
189
190
191
192
193
194
195

co •••• 021

00321 R 052051 A
00322 R 013134 A

00323 R 000000 A

00324 R 500706 R
00325 R 144000 A
00321> R 620321 R
00321 R 740040 A
00330 R 620323 R
00331 II 000345 R
00332 R 000000 A

Task Development

co •••• CH15/UC15 CARD REAUEH EDIT ,020

052051 111-8-4.11-8-5
013134 111-8-b.II-8-1
.ENDC
.lfDEf DEC02b

CDTABL 040061
062063
064065
066061
010011
131075
100136
041134
060057
123124
125126
121130
131132
013054
050042
043045
055112
113114
11511b
111120
121122
012044
052133
01b046
.E~OC

NOw THE ij LOC. BHEAK IN THE TABL~

I
I THE 511 PACKER. A LITTLE IHICKt PAKS. KEEPS A P~ oHI:H
I 'HEMEMBEHS' ~HICH CHARaCTER Qf 5 oE ARE AT. TO I_If PACKER.
I SEE TWO LINES Of CUUE AT PAKINT. NORMAL 'fLUSH' our .OULD
I BE TO SEND NUL CHAR'S UNTIL PAKS •• PAKI. l~ rHIS
I HANDLER. PAST HISTURt SAYS oE TRUNCATE ALoAtS AT A .JHD
I PAIR BOUNDARY. EVEN fOR SHORT BUffERS. I AM AfRAID rJ
I CHANGE THIS. E'EN THUUGH I DO.'T LIKE IT.
I
PAK51 0 ICALL oIrH CHAR IN AC. (DESTRJYEUJ
I IPUSHES CHAR'S THRU XU. EAkLY i::ND
I lIN COoOC r.

AND (117 ISTIP AfRA
CLL IfUR ALL ROTATES AND SoAPS!

CHE~K

JMP' PAKSw ITU wHATEVER A~flO;, THiS CHAR. ~EEOS.

PAKSw HLT IPUINnii fa ACTINS fuR CHARA:rER
JMPO PAK51 ITHAT'S ALL. uur

PAKI PAKST IINI'r PAKS. ~'UR fiRST CHAR.
PAKT 0 ITt.MPORARY fOR PARTIAL wORDS

REST Of TRANSLATE TAbLE

Figure 4-2 (Cant.)
XVM CRII XVM/RSX Handler

4-41

PAGE 19

796
797
798
799
800
801
802
803
804
805
806
807
908
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

CO 021

00333 R 046101 A
00334 R 102103 A
00335 H 104105 A
00336 R 106107 A
00337 R 110111 A
00340 R 133056 A
00341 R 074050 A
00342 R 053136 A

00343 H 175000 A

00344 R 100327 R

00345 R 742010 A
00346 R 742030 A
00347 R 040332 R
00350 R 100327 R

00351 R 742010 A
00352 R 742010 A
00353 R 240332 R
00354 R 040332 R
00355 R 100327 R

00356 R 742020 A
00357 R 740020 A
00360 R 040327 R
00361 R 500664 R
00362 R 240332 R
00363 R 060013 A
00364 R 200321 R
00365 R 740020 A
00366 R 500707 R
00367 R 040332 R
00370 R 100327 R

00371 R 742030 A
00372 R 740020 A

Task Development

Co •••• CR15/UC15 CAHD READER EDIT .020

I

.IFUNO
046101
102103
104105
106107
110111
133056
074050
053136
.ENDC
.IFDEF
053101
102103
104105
106107
110111
077056
051135
074041
.ENDC
175000

DEC026
112,12-1
112-2,12-3
112-4,! 2-5
112-6,12-7
112-8,12-9(ORDERED AS 12-8-1)
112-8-2,12-8-3
112-8-4,12-8-5
112-8-6,12-8-7

DEC026

IALI MODE, fUR BOTH PUNCH SETS.

I NO. REST OF 5/7 PACKEH
I
PAKQ
I
PAKST

I

JMS

RTL
SWHA
DAC
JMS

RTL
RTL
XOR
DAC
JMS

RTR
RAR
DAC
AND
XOR
DAC.
LAC
RAR
AND
DAC
JMS

SWHA
RAil

PAKSW

PAKT
PAKSW

PAKT
PAKT
PAKSW

PAKSW
(17
PAKT
XI3
PAKSW

(700000
PAKT
PAKSW

15TH CHAR WRAP SACK TO 1ST. JMS TO PAKS~
ILEAVES AQDR OF ACtiUN FOR IST.l.
liST CHARACTER ACTION, MOVE TO LEFT or ~ORD

IHOLD AS PARTIALLr ASSEMBLED ~ORO
ILEAVE POINTEH TO 2ND CHAR

12NO CHAR ACTION

IMAHGE ~ITH FIRST
IWAIT FOR PART or 3RD ro FILL WORD
ILEAVE POINTER TO THIRD

13RD, TWO PARTS, FIRST 15 TOP 4 BITS
IRIGHT JUSTIFIED 1ST WURD OF PAIR
IVERr-TEMPORARY IN HERE
IZAP OTHER BITS
ICOMPLETE 1ST .ORO OF PAIR
IPLACE IN USER BUFFER
IGET BACK THIRD CHAR (LINK STILL OKlll)
12ND JOB, LOW THREE 81TS UF :HAR TOP OF
12ND wuRD OF PAIR
INHEril, HOLD THAT IN PARTIAL ~JRD

I~EAVg POINTER FOK FOURTH

14TH, SNUG UP TO 3 ~ITS ON lOP

Figure 4-2 (Cont.)
XVM CRII XVM/RSX Handler

4-42

PAGE 20

848
849
850
851
852
853
854
855
85&
857
858
859
860
8&1
8&2
863
8&4
865
86&
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
a90
891
892
893
894
895
896
897
898
899

co •••• 021

00373 R 240332 R
00374 R 040J32 R
00375 R 100327 R

00376 R 440566 R
00377 R 741010 A
00400 R 600452 R
00401 R 240332 R
00402 R 060013 A
00403 R &00344 R

00404 R 000211 A
00405 R 000000 A

00406 R 000000 A
00407 R 000000 A

00410 R 200710 R
00411 R 060013 A
00412 R 2005&0 R
00413 R 723022 A
00414 R 744000 A
00415 R &40711 A
0041& R 340565 R
00417 R 723002 A
00420 R 060012 A
00421 R 777777 A
00422 R 040571 R
00423 R 750030 A
00424 R 100426 R
00425 R 600060 R

00426 R 000000 A
00427 R 722000 A
00430 R 2005&4 R
00431 R 060&51 R
00432 R 3405&3 R
00433 R 721000 A
00434 R 21000& A

Task Development

co •••• CRI5/UCI5 CARD R~ADER EDIT .020

I
COALT
CDIPTR
I
I
CDT1
POST

XOR
OAC
JMS

ISZ
SKPIRAL
JMP
XOR
DAC·
JMP

211
o

o
o
.ENDC

PAKT
PAKT
PAKSW

CDWDCT

CDV~R2
PAKT
Xll
PAKQ

I THE ijUFF~R HAS SEEN
I WORD AND SET UP THE
I
CDCLUS

REQCMA
REOCOM

REQCMP
SEV

LAC
DAC·
LAC
AAC
CLL
ALS
TAD
AAC
DAC·
LAW
OAC
CLAIIAC
JMS
JMP

SEVRN

(&4000
X13
CDCOLC
22

11
CDRVAL
2
XI2
-1
RRN

SEVRN
PQ

l'tUGETHER

ILEAVe: POINTER FOR 5TH

IOVERFLOw SHORT BUFFER?
INU, RAL LEAVE XTRA BIT UF PAIR ON RIGHT
IUH-UH, GO CORRECT
ICOMPLEtE 2ND WORD OF PAIR
IPLACE
IGU PLACE PAKSw FOR FIRST CHAR OF FIVE

IPOINTER TU INPUT DArA IN INPur 8u~rER
IFRMAT. LOw BIT RIGHT-LEFT FLIPFLOP
ITUP 17 BITS ADDRESS
ITEMPORARV FOR TRANSLAtIUN
10 WHEN NOT WAITING FU~ INTERRUPT, I WHEN rES.

REMAPPED -- STORE A 'CR' IN THE TRAILER
HEADER "ORO

ISET 'CR' IN USER SUFFER
ICOCDLC IS NEGATIVE

IROTATE INTU PLACE
ISHIPI INTO PUSITION
IAOO IN BUFFER UVERFLO. IF ANY (BITS 12 , 13 -I)

ISET HEADER wO~O ONE
ISET RRN, SAVING NO MORE READ OUTSTANDlNG

ISUB. TU SET EV, RETURN NUDE
IGO LOOK FOR MORE WURK

I
ROUTINE IS CALLED WITH VALE FOR EV IN AC
THE NODE ADOR. IS IN RN

I
I EV IS SET, SIGNIfICANT EVENE DECLARED, lOCO UOOE, NODE RETURNED.
I
SEVRN o

PAL
LAC
DAC·
TAD
PAX
LAC

RN
(R2
XADJ

&,X

ISAVE AC VALUE
INODE AUDR
IS~STE~ ARGUMENr riULDER
IADJUST FOR PREESENT PAGE
IFOR XR ADDRESSING
IEVENT VARIABLE ADDRESS

Figure 4-2 (Cont.)
XVM CRII XVM!RSX Handler

4-43

PAGE

900
901
902
903
904
905
906
907
908
909
910
911
912
91l
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

21 co ••••

00435 R
00436 R
00437 R
00440 R
00441 R
00442 R
00443 R
00444 R
00445 R
00446 R
00447 R
00450 R
00451 R

00452 R
00453 R
00454 R
00455 R
00456 R
00457 R

00460 R
00461 R
00462 R
00463 R

021

741200 A
600443 R
340563 R
721000 A
730000 A
050000 A
200711 R
705504 A
200704 R
060647 R
120712 R
120713 R
620426 R

777776 A
360674 R
060674 R
200714 R
040565 R
600410 R

777771 A
600424 R
777750 A
600424 R

Task Development

co CRI5/UCI5 CARD READER EDII .020

NOSET

I
I
I
I *
I
CDVER2

I
EVM7

EVM30

I
AEVM6

I

SNA
JMP
TAD
PAX
PLA
DAC
LAC
ISA
LAC
DAC*
JMS*
JMS*
JMP*

BUffER

LAW
TAO*
DAC*
LAC
DAC
JMF

LAW
JMP
LAW
JMP

.IFUNO

LAW
JMP

;;uSET
XADJ

O,X
(401000

(POOL
(RI
(lOCO
(NADU
SEVRN

OVERFLOw

-2
(XIJ)
(XI))
(60)
CDRVAL
CDCLOS

-7
SEV
-jO
SEV

UCI5

-6
SAEV

ISKIP IF REALL¥ ONE
INOPE, so DON'T SEj'
IMODIFY If fOR ADDRtSSI~G

ISRING BACK SETTING VALUE
ITHERE 11' GOES I
IDECLARE A SIGNIFICANT EVE~T

IGIVE NODE TO POOL
ISYSTEM ARGUMENT REG
IDECRE~ENT 10 COUNT
IGIVE SAC~ NODE
l'rHA'fIS IT

IBACKUP USER BUFFER prR

ISET UVERFLUw BITS FOR USE S¥ CLlCLUS

IILLEGAL DATA MODE.

11/0 PARAM. OUT Of PARrITION.

IILLEGAL fUNCTI~N.
ISET ABORT EV.

ION ILLEGAL CARD PUNCH, wAIT FUR READER NOT READ¥ fOLLO.ED S¥
IREADER READ¥ SE~UENCE BEFORE READING ANOTHER CARD.
I
ILLCP

I

LAC
JMS
JMS

JMS

JMP

(ERRMG2)
TTWUT
~F.SW

~FOFF

wF.SW
wFON
RETRY

ITYPE 'ILLEGAL CARD PUN:H'.

INAIr FOR READER NOT READY.
IPSUEOD INSTR. FOR of.S ••
IWAIT FOR READER REAO¥.
IPSUEDO INSTR. FOR WF.S ••
IREAD ANOTri~H CARD.

I SUBR. TO wALT FOR HEAOgR NOT READY OR ~EADY FOR READ
I PER PSUEOO INSTR. IN CALLING SEGUEMCE. AFT~R MAR~ lIME REQS.,
I THE TRIG. EV. 15 CHECKED FOR AN ABORT REQ. IN rHE QUEUE.
I IF TASK REG. HEAD IS TO BE ABORTED, THE SU~R. DOESN'T
I RETURN NORMALLY, BUT EVENTUALLY JUMPS TO CDABRT.
I CALLING SEQUENCE:

Figure 4-2 (Cont.)
XVM CRll XVM/RSX Handler

4-44

PAGE 22

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003

PAGE 23

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

CO •••• 021

CO •••• 021

Task Development

CO •••• CRISIUCIS CARD READER EDIT .020

I
I
I
I
I
Wf.SfI

flF.SWA

PVI

SAEV

JMS ~f.SW
PSUED. INSTR. (~fOrf UR ~FON)

SUBR. RETURN .If NU INTERVENING ABORT FOH THIS TASK.

o
LAC'
DAC
ISZ
CRRS
AND
XX
JMP'
CAL
CAL
DZM
LAC
RTL
SMA
JMP
DZM
LAC
OAC'
JMS'
NOP
DAC
TAD
PAX
LAC
DAC
LAC
AND
SZA
JMP
LAC
SAO
JMP
LAC
DACo
LAC
OAC'
JMS'

LAC
PAL
LAC
TAD
PAX
PLA
DAC
LAC

<IF.SW
PVI
"F.5W

(20)

flf.SW
MTCPB
~fECB

EV
TG

"f.SWA
XG
PDVNA
(RI)
(OQRY)

RN
XAOJ

6.X
ARE
S.X
(177000)

AEVM&
2.X
STLA
COARU
PDVNA
(RI)
RN
(R2)
(UMTU)

(I)

ARE
XADJ

O,X
(401000)

IGET PSU~DU INSTR.

IBUMP EXIT.
IREAD CARD READER STATUS.
ICHECK fOR READER READr fUR READ.
ISNA UR SZA. (READER READr IF NON-ZERO AC).
IExrr •
IMARK TIME fOR ~AIX.

IWAIr FUR MARK TIME INTERVAL.

ICHECK FOR ABORT REY. IN QUEU~.

IABORT REQ.?
ICHECK AGAIN.
IrES. DEQUEUE ABORT REQ.

IPDVL _UDE ADDR.

IDEQUEUE ABRT. REQ. RI.R2.R4.R5.R6.XR.AC
IALTERED. ASSUME ABRr. REQ. IN QUEUE.
ISAVE ABURT RE~. NODE ADOR.
ISET XR.

IGET ABRT. REQ. EV.

ICHECK FUR ZERO LUN.
IBITS o-e

I~RROR. NON-ZERO LUN.
IGET STL. NOUE PTR. AND CHECK AGAINST
IREAD HEU. STL NODE PTR. SAMEl
IrES. ABURT READ RE~. AND CLEAN UP.

IND. ~LEAN UP QUEUE UF TASK TO BE ABRfEO.
IALSO RETR. ABRT. REQ. NODE TO POOL AND
10ECR. TRANSf. PEND. :Nr. ABRf. RE~. NODE
IADDR. TO R2.
IEMPTr R~O. YUEUE Of ALL 110
IREY.'S MADE Br TASK BEING ABORrED.
IRI.R2.H3.RS.R&.XIO.XII.XI2.XR.AC ALTERED.
ISET ABRT. REQ. IV TJ +1.

IABORT RI::U. EV.

co •••• CRIS/UCIS CARD REAUI::H EDIT .020

ISA
LAC
DACO
LAC
DAC'
JMS'
JMSO
JMP

CDARD CLA I lAC
DAC
JMP

.ENDC

.EJECT

RN
(R2)
(POUL)
(RI)
(lOCO)
(NADD)
flLSWA

COON
CDABRT

10ECLARE SIGNIf. EVENT.
IRETRN. ABRT. REY. NJDE fO PUOL.

IDECR. TRANSf. PEND. C N r.
IRLTRN, NODE TO POOL.
ICHECK AGAIN.
ISET CARD uUN~ fLAG.

IPROCEEO .ITH ABORT.

Figure 4-2 (Cant.)
XVM CRII XVM/RSX Handler

4-45

PAGE 24 CD ... ; 021

1018
1019
1020
1021 00464 R 200704 R
1022 00465 R 060647 R
1023 00466 R 200564 R
1024 00467 R 060651 R
1025 00470 R 120712 R
1026 00471 H 120713 R
1027
1028
1029
1030
1031
1032
1033 00472 R 100625 R
1034 00473 R 440577 R
1035 00474 R 000577 R
1036
1037 00475 R 440570 R
1038 00476 R 705522 A
1039 00477 R 160570 R
1040 00500 R 705521 A
1041 00501 R 000653 R
1042
1043
1044
1045
1046 00502 R 777000 A
1047 00503 R 510005 A
1048 00504 R 740200 A
1049 00505 R 600116 R
1050 00506 R 200~67 R
1051 00507 R 060647 R
1052 00510 R 200564 R
1053 00511 R 060651 R
1054 00512 R 120715 R
1055
1056
1057
1058 00513 R 200564 R
1059 00514 R 340563 R
1060 00515 R 721000 A
1061 00516 R 210002 A
1062 00517 R 540556 R
1063 00520 R 7~1001 A
1064 00521 R 600423 R
1065 00522 R 240571 R
1066 00523 R 741201 A
1067 00524 R 600423 R
1068 00525 R 060651 R
1069 00526 R 200704 R

PAGE 25 Co •••• 021

1070 00527 R 060647 R
1071 00530 R 120712 R
1072 00531 R 120713 R
1073 00532 R 750001 A
1074 00533 R 040571 R
1075
1076
1077
1078
1079
1080 00534 R 100625 R
1081
1082 00535 R 600423 R
1083
1084
1085
1086
1087

Task Development

CD •••• CRI5/UCI5 CARO READER EDI'E .020

I
I EXIT REQUEST (FROM TASK . ••• • REA")
I
DAEX LAC (POOL) IRETUR~ REYUESI NODE TO POOL

DAC. (HI)
LAC RN
DAC. (R2)
JMS. (lOCO) IDECREMENT TRANS~·. PENDING COUNT
JMS. CNADD)
.IFUND UCI5
LAC (CCI) ICONDITIUN CODe: I -- :LEAR CONTROL.
CRLC
CAL DCPB IDISCONNECT
.ENOC
.IFDEF UCI5
JMS CLEAR ICL~AR UEVICE , wAlT FOR COMPLEEION
ISZ CCPB IMAKE CONN~CT A DISCONNECT (BURP)
CAL CCPS IDISCONNECT
.ENOC
ISZ PDVTA IPOINT TU ASSIGN INHIBIT FLAG
.INH IINHIBIT I~TERHUPTS.
DZM* PDVTA IIIZERO IT
.ENB IIIENABLE INIERRUPTS.
CAL (10) IIIEXIT

I
I
IABORT REQUEST.
I
CDABRT LAW 17000 IMASK EU KEEP HALf .UR~ EU CHE:K ABaRE VALIOITK

I
I
I

co •...

I
I
I
I

AND S,X IHAS TO ~E ZERU EO B~ OK
SZA ISO SKIP IF OK
.IMP EVM6 IERRUR REIURN~D IF NOI
LAC POV~A IMT THE DEQUE FUR THE ABORTED TASK
DAC. (RI
LAC RN IABORT NODE
DAC' (112
JMS' (OMTCl ITHIS HOUTINE DUES ALL wORK

NOW wAS THIS ABORT rUR AN OUTSEA~DING READ?

LAC IlN 12+RN IS STL NOO~ ADOH
TAD XADJ IUSg AS IDENTIFIER
PAX
LAC 2,X
SAO STLA ISAM~ A~DR FOR LAST R~AO DONE
SKP!CLAICMA ISKIP IF SAME, SET UP -1
JMP HEQCMI' INOPE, ~~IRE DUNE, GU GIVE BA:K NODE ETC •.
XOR RRN INASTK, MAKES 0 IF NU READ NO_I IN PROGRESS
SNAICMA ISKII' IF READ IN PRUGR~SS, HE:REATE ITS NOD~
JMP REQCMP INOI'~, JUSI COMPL~T~
DAC' (R2 IGIVE BACK NUDE ANO lOCO FOR SUSPEND~D READ
LAC (POOL

CR15/UC15 CARD READER EDI'£ .020

DAC· (Rl
JMS' (lOCO
JMS. (NADD
CLAICMA ISET READ IWT H.RE So! rCH
DAC RRN
.IFUND UClS
LAC (CCI ICLEAR DEVICE
CRLC
.ENDC
.IFDEf UCI5
JMS CLEAR lAND CL~AR fOR UN lCHAN.~;;L
.ENDC
JMP REQCMP IDUNE

.gJECT

Figure 4-2 (Cont.)
XVM CRII XVM/RSX Handler

4-46

ADDRI

PAGE 26

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
IllS
1116
1117
1118
1119
1120
1121

PAGE 27

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

CD •••• 021

00536 R 000000 A
00537 R 707762 A
00540 R 040UOO R

00541 R 706124 A
00542 R 200407 R
00543 R 741200 A
00544 R 600551 R
00545 R 040554 R
00546 R 040562 R

00547 R 200711 R
00550 R 705504 A
00551 R 200000 R
00552 R 703J44 A
00553 R 620536 R

CO •••• 021

Task Development

CO •••• CRI5/UCIS CARD READER EDIT 1020

I
I INTERRUPT SERVICE ROUTINE
I
INT 0

DBA
DAC START ISAVE AC
.IFUND UCI5
CRRS IREAD STATUS INTO AC.
DAC EVI ISAVE rOR TASK LEVEL PROCESSING.
AND (2) ICARD DUNE? BIT 16.
S~A
JMP INTI IND. DUN'T CLEAR CARD DONE.
DAC COON IPLACE 2 INTO COON TO SA~ DONE
LAC (CCl) nES. CLEAR CARD DONE. LEAVE
CRLC IINTERR. AND DCH ENABLED.

INTI CRPC ICLEAR ALL BUT CARD DONE.
LAC (CC4) lEN ABLE INTERRS. DISABLE DCH
CRLC INEEDED SINCE CRPC DISAdLES INTERRS.
.ENDC

.IFDEF UCI5
CAPI ICLEAR FLAG FROM POP-II
LAC POST IARE wE .ANTING AN INTERRUPT
SNA ISKIP IF YES/USE VALUE TU SEr
JMP lrlTAC INO DO NOTHING
DAC COON lAS FLAG TO DISTINGUISH CARD DONE FROM CAL
DAC rG lAND SET TG TO wAKE UP CAL LEVEL
.ENDC
LAC (401000) IDECLARE SIGNIF. EVENT.
ISA

INTAC LAC START /HESTORE AC.
DBR
JMP. INT
.EJECT

CO •••• CRI5/UCI5 CARD READER EDIT 1020

.IFUND UC IS
ISUBR. TO OUTPUT ERRUR MESSAGES VIA
IADDRESS OF ERROR MESSAGE BUFFER.

ERRLUN.' AC SHO~LD :ON'fAIN

I
TrYOUT

I

o
DAC
CAL
CAL
JMP.

TECPB4
U
wFECB
nWUT

ISET CPB BUFFER ADDRESS.
ITYPE ERROR MESSAGE.
I.AITFOR EV.

IERROR MESSAGE BUFFERS ANU TABLE or PTHS.:
I
ERRPT • +1

ERRMGI
ERRMG2
ERRMG3
ERRMG4
ERRMG5

I
I
I
ERRMGI ERRMG2-ERRMGI*IOOO/2+2

o
.ASCII ,**. CD READER Nor READY'<15>

ERRMG2 ERRMG3-ERRMG2*IUOO/2+2
o
.ASCII ' ••• CD ILLEGAL PUNCH'<I~>

ERRMG3 ERRMG4-ERRMG3.IOOO/2+2
o
.ASCII '.** CD PICK ERRUR'<IS>

ERRMG4 ERRMG5-ERRMG4*IOOO/2+2
o
.ASCII '.*. CD DATA MISSED/PHoro ERROR'<IS>

ERRMG5=.
.EJECT

I .* •• * CARD COL TO ASCII TRANSLATION TA8LE .* •••
I
lEACH rABL~ ENTRY REPRESENTS VALID ASCII CARD PUNCHES wiTH
ITHE FOLLOWING FORMAT:
I
IBlTS 0 - 5
IBITS 6 - 17
I
181T 6 = ZONE 12
181T 7 = ZONE 11

SIXBIT ASCII CHARACTER.
CARD PUNCHES WITH THE rOLL0WING MAPPING:

IBITS H - 17 = ZONES U - 9.
ITHE ASSEMBLER BUILDS THE TWOS COMPLEMENT or 81rs 6-17 VIA TriE
17777\+1 OPERATIU~. THE TABLE IS ORDERED ACCORDING TO INCHEASING
IMAGNITUDE OF CARD PUNCHES(CONSIDERED AS 12 Blr RIGHr JUStIFIED
IINTEGER VALUES).
IEXAMPLE: ASCII '9' HAS fOLLOWING TABLE REPRESENTATlvNI

Figure 4-2 (Cant.)
XVM CRll XVM/RSX Handler

4-47

PAGE 28

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

PAGE

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

29

Co 021

co 021

Task Development

co •••• CRI5/UC15 CARD READER EDIt .020

I 710001 \7777+1
I
IWHERE 0001 INDICATES ZUNE 9 PUNCHED AND 71 IS SIX~Ir ASCII '9'.
I
IGRAPHIC CHARACTERS FOR 026 PUNCHES ARE IN PARE.rHESES BELU~I
I
COTABL CDTABL+1

400000
710001\7777+1
700002\7777+1
670004\ 7777+1
CP 340006,420006
660010\7777+1
CP 470012,750012
650020\ 7777+1
CP 360022,470022
640040\7777+1
000042\7777+1
630100\7777+1
CP 750102,430102
620200\ 7777+1
CP 370202,720202
610400\7777+1
601000\7777+1
321001\7777+1
311002\7777+1
301004\ 7777+1
CP 451006,771006
271010\7777+1
CP 431012,761012
261020\ 7777+1
CP 421022,3710<2
251040\7777+1
CP 501042,451042
241100\7777+1
541102\7777+1
231200\7777+1
CP 731202,351202
571400\ 7777+1
552000\7777+1
222001 \ 7777+1
212002\7777+1
202004\ 7777+1
CP 462006,342000
172010\7777+1
CP 762012,732012
162020\77"/1+1
CP 332022,512022
152040\7777+1
522042\ 7777+1
142100\7777+1

CD CR15/UC15 CARD READER

442102\7777+1
132200\ 7777+1
CP 722202,412202
122400\7777+1
CP 534000,464000
114001\7777+1
104002\7777+1
074004\ 7777+1
CP 414006,364000
064010\7777+1
CP 744012,534012
054020\ 7777+1
CP 354022,504022
044D40\ 7777>1
CP 514042,74404.
034100\7777+1
564102\7777+1
024200\7777+1
CP 774202,334202
014400\7777+1

COTLNI .-I-CO'£A~L/2
CDRALT 4402

.ENDC

.EJECT

WIT

IBLANK
19
18
17
I" (\)
16
1= e')
15
I, e"J
14
I~

13
/I e=)
12
II
II
10
IZ
I~

IX
11 (%)

I.
I> e.)
IV
IRIGHr
IU
1% e e)
If
I'
IS
Ilell
/I
I-
Ii!
IQ
IP
1\ (&)

IU
I: (»
IN
Il e e)
1M
10
IL

.020

IS
IK
I! el)
IJ
1& e+)
11
IH
IG
I" (!)
IF
1+ e<)
IE
I ((J)

ID
1< (ll
IC
I.
I~

I((1)

12

ARROw (II)

Figure 4-2 (Cant.)
XVH CRll XVH!RSX Handler

4-48

PAGE 30

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

CO 021

00554 R 000001 A
00555 R 000000 A
00556 R 000000 A
00557 R 000000 A
00560 R 000000 A
00561 R 000000 A
00562 R 000000 A
00563 R 000000 A
00564 R 000000 A
00565 R 000000 A
06566 R 000000 A

00567 R 000000 A
00570 R 000000 A
00571 R 777777 A

00572 R 000000 A
00573 R 000000 A
00574 R 000000 A

Task Development

co •••• CR15/UCI5 CARD READER EDIT _020

I
I
COON
TST
STLA
ARE
COCOLC
EV
TG
XADJ
RN
CORVAL
COWDCT
I

I

INTERNAL VARIA~LES •••••

I
o
o
o
o
o
o
o

o
o
o
.IfUND UC15

ICARD D()~E HAG.
ITEMP STORAGE fOR STATUS.
Isn NuOE. ADDR.
IABORT REQ. EV.
ICARD COL CUUNT USED IN TRANSLATING CARDS
IINTERNAL t:VENT VARIABLE
ITRIGGER EVENT VARIABLE
IXR ADJUSr CONSTANT TU SU~TRACT PAGE BITS
IADDRESS Of rHE REUUEST NODE PICKED fROM AUEUE
IBUfFER OVERfLOW FLAG NORD
IOORD COUNT CHECK WORD SET FROM 1/0 REQUEST

I SAVE SOME ROOM fOR UC1~. THESE ARE NOT NEEDED
I
ICA
CDR7CT
COR5CT
COTPTR
CDTLEN
C07700
COCPTR
CDRW03
CORWD2
CORWOl
e:Vl
I

I
PDVNA
PDVTA
RRN

TXI2
TXl3
'fCWC
I

o
o
o
o
o
770000
o
o
o
o
o

.ENDC

o
o
777777

o
o
o

.EJECT

IINTERNAL BUfFER CURRt:Nr ADDRESS POINTER
ISEVt:N COUNTER USED BY THE 5/J ASCII PACKING ROUTINE
ICOUNtER FOR 5/7 ASCII PACKING
I~OINTER TU TRANSLATION TABLE
ITRANSLATION TABLE LE~GTH
IUSED I~ CARD TRANSLATION
IPOINTER TO CURRENT INTEM IN TRANSLATION TABLE
1/
II THREE NORD SHIfT REG. FOR 5/7 ASCII PACKING
/I
ICARD READER EV.

IPHYSICAL DEVICE NODE AODHESS
IADDRESS Of ADDRESS Of rEV IN PHY D~V NODE
IREAD B~ING PRUC. fLAG. -1 IF Nor BEING
IPHOCESSED. READ R~Q. NOD~ ADDRESS IF B~ING
IPROCESSED.
1'f~MP. FOR X12 STOR.
1'f~MP. fUR X13 STOR.
IfEMP. fOR REQ. WC.

Figure 4-2 (Cant.)
XVM CRII XVM/RSX Handler

4-49

PAGE 11

1293
1294
1295
1291>
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
lHI>
1337
1338
1339
1340
1341
1342
1343
1344

CO 021

00575 R 000020 A
00571> R 000562 R

00517 R 000011 A
00600 R 00051>1 R
00601 R 000015 A
00602 R 000536 R

Task Development

CO •••• CR15/UCI5 CARD R~AD~M EDIT .020

I
I n*** CAL PARAMET~R BLOCKS *****
I
I
WrTCPB 20 IOAIT fOR TRIGGER cva

TG
I
CCPB 11 ICONNECT CP8

EV
IS ILINENUMB~M
INT IENTR! ADDRESS or INTERRUPT SER'ICE ROUTINE

I
.IrUND UC15

I
I UC15 SAVE SPACE 81 LEAVING OUT SOME CAL'S
I
I
I
WFECB

I
DCPB

I
TE

20
EV

12
o
IS
INT

2700
EV
ERRLUN

2
TECPB4 XX
I
MTCPB 13

I

EV
12
1

wrCRCB 20
EVI

I
wrCRCD 20

COON

I
I

I

.ENDC

.IrDEr UC15

IWAIT fOR EV CPij

IDISCONNt:CT CP8
lEV ADDRESS
IINTERRUPT LINE NUMBER
ICURRENT INTERRUPT TRANSFER ADDRESS

IwRITE TU ERRLUN.

IwRITE our THE ERROR MESSAG TO THE DESIRED
ITELETrPE

IMARK TIME REQ.

112 UNITS.
IUNIT (TICK).

IwAIRrOR CM INTERRS.

IwAIT rOR CARD DONE rLAG TO 8E SET.

I lID INFORMATION. ROUTINES. ETC. rOR UC15
I
I TCB (TASK CONtROL ijLUCK) TELLING PDP-II TO SEND US A CARD

Figure 4-2 (Cont.)
XVM CRII XVM/RSX Handler

4-50

PAGE: 32

1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1310
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

CO 021

00603 R 026401 A
00604 R 000005 A

00605 R 000000 A
00606 R 000000 A

00601 R 000001 R
00610 R 000000 A

00611 R 000000 A
00612 R 002600 A
00613 R 000000 A

00614 R 000603 R
00615 R 000611 R

00616 R 000000 A
00617 R 140605 R
00620 R 140613 R
00621 R 106001 A
00622 R 600621 R
00623 R 706006 A
00624 R 620616 R

00625 R 000000 A
00626 R 140407 R
00621 R 140554 R
00630 R 200615 R
00631 R 100616 R
00632 R 000634 R
00633 R 620625 R

00634 R 000020 A
00635 R 000613 R

00636 R 744020 A
00637 R 340716 R
00640 R 540117 R

Task Development

Co •••• CR15/UCI5 CARD READ~R EDIT .020

I
TCB

I
EVil

I

APISLT'400+APILVL
DEveUD

o
o

IBUF
o

ITELL PDP-II WHERE TO :OME: BACK
IPIREX CODE: fOR CD/THE 200 BIT SAYS
10E ARE NOT TO BE SPOOLED.
IEVENT VARIA~LE FROM PDPll TO US
10UMMY, HIGH PORTION OF 18 BIT
IADRESS. NOT PRESENTLY USED
IPOINTER TO BUFFER TO PUT CARD IN
IUNIT ./ FOR FUTURE GENERATIONS,

I TCB TO TELL PDPII TU CLEAR OUT CARD READER DEVICE
I
TCBK

E:VIIK
I

o ITHIS wORKS, SEE PIREX FOR INFO.
OEVCOD&111'400+200
o IEVENT VARIABLE fOR CLEAR OPERTAION

I POINTERS TO TC~, TUBK
I
TCBP
TCBKP
I

TCB
TCBK

I
I
I
I

COIU IS THE SUBROUTINE TO SEND A rCB TO TH~ PDP-II

CAL .ITH THE AORESS OF THE rCB IN THE AC
I
CDru

I
I
I CLEAR
I
CLE:AR

I

o
OZM
OZM
SIOA
JMP
LIUR
JMP'

EVil
EH1K

.-1

CDIU

ICLEAR ONE CUMING FRUM POP-II
lAND THE OTHER ONE, IN CASE If USED
ISKIP If PDP-II CAN TAKE REQUEST

ITELL If TO OU TCB wHOSE ADDRESS IN AC
ITHAT'S ALL THERE IS TO IT.

CLEARS SWITCHES, AND CD Ih PIREX, wAITS FOR :OMPLETE

o
DZM POST
DZM CUUN
LAC TCBKP ITCB FOR CLEAR
JMS COIU
CAL WFCLER I.AIT FUR CLEARUU!
JMF' CLEAR

WFCLER 20
EVI1K

I CDUC~C EXAMINES NEGATIVE EV~NT VARIABLES fROM PIREX
I
CDUCEC CLLIRAR

TAD
ICLEAR OTHER TUP 81T

(600000 ISIGN EXTEND TU PUP-IS .ORD
SAD (177001 ITHIS uNLY 'LEGAL' VALU~ At PRESENT

Figure 4-2 (Cont.)
XVM CRll XVM/RSX Handler

4-51

Task Development

PAGE 33 co •••• 021 CD •••• CR15/UC15 CARD READ~R EDIT .020

1397 00641 R 600171 R JMP RETR~ ITHAT SAYS PIR~X IS uur OF NJDES.
1398 I loE SHOULD TR~ A~AIN TO GET ONE
1399 00642 R 100420 R JMS SEVRN 10THE:RS. RETURN N~G VARIABLE AS ~V.
1400 I ITHIS IS SLIGHTLY FLA~EI. ~ur "0
1401 I IREALLI SHOULD NEVER GET HERE!I!?
1402 00643 R 777777 A LAW -1 ISAr NU MORE READ UUTSTANDING
1403 00644 R 040571 R DAC RRN
1404 00045 R 000060 R JMP PII I~ACK TO LOOK FOR MUR~ .ORK
1405
1406
1407 .ENDC
1408 000000 R .END START

00646 R 000252 A *L
00647 R 000101 A *L
00650 R 000054 R *L
00651 R 000102 A *L
00652 R 000123 A *L
00653 R 000010 A *L
00654 R 000562 R *L
00655 R 070000 A *L
00656 R 000337 A *L
00657 R 000777 A *L
00660 R 000024 A *L
00661 R 000025 A *L
00662 R 000026 A *L
00663 R 000036 A *L
00664 R 000017 A *L
00665 R 000325 A *L
00666 R 000332 A *L
00667 R 200007 A *L
00670 R 000103 A *L
00671 R 000104 A *L
00672 R 000342 A *L
00673 R 000012 A *L
00674 R 000013 A *L
00675 R 000003 R *L
00676 R 104611 A *L
00677 R 000340 A *L
00700 R 000445 A *L
00701 R 001005 A *L
00702 R 000377 A *L
00703 R 000020 A *L
00704 R 000240 A *L
00705 R 000273 R *L
00706 R 000177 A *L
00707 R 700000 A *L
00710 R 064000 A *L
00711 R 401000 A *L
00712 R 000H5 A *L
00713 R 000107 A *L
00714 R 000060 A *L
00715 R 000361 A *L

PAGE 34 Co 021 Co CR1S/UC15 CARD READER EDIT '020

00716 R 600000 A *L
00717 R 777001 A *L

SIZE=00720 NO ERROR LINES

Figure 4-2 (Cant.)
XW1 CRll XVH/RSX Handler

4-52

Task Development

4.6.3.3 Requests - Following handler initialization, requests can be

processed. Note that the request dequeuing algorithm (see Figure 4-2

lines 352-407) is executed whenever Q-I/O places a request node in the

list associated with the handler's PDVL node or whenever an interrupt

for the device has occurred on the XVM. The latter condition implies

that the handler's interrupt service routine (Figure 4-2, lines

1091-1120) will set the trigger event variable on each interrupt.

4.6.3.4 ABORT Requests - Because of the nature of the UNICHANNEL

configuration, ABORT requests should be handled on a high priority

basis. Hence, whenever the trigger event variable is set, the handler

should first check to see if an ABORT request has been issued. (Figure

4-2, lines 353-357). This condition can be tested using the following

algorithm:

LAC

RTL

SPA

JMP

TG

PICK

/GET THE TRIGGER EVENT VARIABLE INTO THE AC

/MOVE THE ABORT BIT INTO BIT ZERO OF THE AC

/SKIP IF ABORT BIT IS NOT SET

/ABORT REQUEST-DEQUEUE AND PROCESS IT

/NOT AN ABORT REQUEST-CHECK OTHER

/REASONS FOR HAVING TRIGGER EVENT VARIABLE SET.

4.6.3.5 Interrupts - If the trigger event variable was not set due to

an ABORT request, either PIREX has issued an interrupt or a new

request for I/O is pending. Before checking for new requests, the

handler should see if an interrupt occurred (see Figure 4-2, lines

359-362). If it did, the handler should check to see if an interrupt

was requested. Unrequested interrupts should be ignored but the

handler should finish processing the outstanding I/O request if the

interrupt indicates that I/O is now complete.

If the trigger event variable was not set due to an interrupt and no

I/O is being processed by PIREX, the handler can pick off the new I/O

request and begin processing it (see Figure 4-2, lines 368-407).

On ABORT requests, the handler should determine if I/O is in progress

on the PDP-II for the task being aborted (see Figure 4-2, lines

1058-1067). If so, the handler should issue a "clear device directive"

to PIREX to stop the I/O in progress (see Figure 4-2, lines 1073-1080).

4-53

Task Development

The "clear device directive" must also be issued whenever a DISCONNECT

and EXIT request from the MCR function REASSIGN is processed (see

Figure 4-2, line 1033).

4.6.3.6 READ and WRITE Requests - READ and WRITE request processing

usually involves the following procedures:

1. Checking the range of the issuing task's TCB and buffer.

2. Making data conform to PDP-11 standards for WRITE requests
and XVM standards for READ requests.

3. Sending a TCB directive to PIREX.

4. Waiting for PIREX to complete the operation initiated by
sending the TCB directive.

5. Checking the event variable sent back to the handler by
PIREX.

6. Setting data into the issuing task's request buffer for READ.

7. Sending an event variable to the task which initiated the
request for I/O.

The following is a brief outline of the procedure used by the UNI

CHANNEL Card Reader handler when it processes a read request. (Refer

to Figure 4-2).

1. Dequeue the I/O request node (lines 352-407)

2. Check the range of the task TCB and buffer (lines 440-465).

3. Clear the TCB event variable (line 1372).

4. Clear the "I/O Done" flage (line 642).

5. Set the "Interrupt Expected" flage (lines 640-641).

6. Issue the READ TCB to the Card Reader Driver in PIREX
(lines 1374-1376).

7. Wait for the Trigger Event Variable (line 352).

8. When the Card Reader Driver has completed the request, the
Card Reader handler interrupt service routine sets the
Trigger Event Variable and the "I/O Done" flage (lines
113-114) •

9. The handler then checks the Event Variable sent back by
PIREX (lines 653-656).

10. Convert the data to XVM card format and transfer it to the
task's buffer (lines 670-879).

4-54

Task Development

11. Set the task's Event Variable (lines 880-881).

12. Wait for the next request (line 352).

Note that in order for a UNICHANNEL handler to function properly, the

PDP-11 must be able to access the handler's internal buffers and TCBs.

Hence, all locations within these TCBs and buffers must be within the

common memory accessible to the PDP_1I. 1 Also, note that the xVM/RSX

paLLER task should be modified to interrogate PIREX concerning the

status of the new device.

4.7 BUILDING A XVM/PIREX DEVICE DRIVER

A device driver is a software routine that performs rudimentary I/O

functions. PIREX device drivers typically operate in conjunction with

more complex XVM handlers. While a rudimentary device driver is typical,

a PIREX task can be as complex as a full handler. The PIREX XY driver

is a good example of a very complex driver. The PIREX line printer

driver, a typical rudimentary driver, will be used to examine the

construction of a device driver.

4.7.1 General Layout

The general layout of a driver task (see Figure 4-3 and Section 4.5)

consists of:

1. Entries on PIREX internal lists.

2. A stack area which will be used when the task is executing.

3. The address of a device control register. This is used to
stop the device during STOP I/O requests. Dummy addresses
are used for tasks which are not device drivers.

4. A 2-word busy/idle switch used to store the caller's 18-bit
TCBP. When the busy/idle switch is zero, the routine is
not busy.

5. The task request setup/processing section.

6. The task interrupt processing section, if the task is a
device driver.

1Depending on Driver task design the buffers for an NPR device may
not have to be in common memory.

4-55

Task Development

The task request setup/processing section obtains the parameters from

the TCB and uses them to set up the referenced device or process the

request. Entry into this section is made from the ATL scanner or

DEQU with the current task stack area active at the priority level

associated with that task. All general purpose registers are avail

able for use by the current task at this time. The TCBP is stored in

the busy/idle switch preceding the request section and signifying that

the task is busy. Once some operation is underway or completed, the

task returns to the ATL scanner by issuing the "SEXIT" macro instruc

tion (refer to Section 4.7.2.4).

If the task is a device driver, the interrupt section is called at. the

completion of an I/O request. All device interrupt priority vectors

specify priority 7. This is done to allow the interrupt routine to

save the general-purpose registers on the current task stack pointer

and lower the system to the priority level of this task. (The interrupt

section accomplishes this by calling R.SAVE.)

Control is transferred to the driver, which then checks for errors,

stores status information into the TCB, clears the device busy switch

(the driver becomes idle when the busy switch is cleared) and sends

an optional interrupt (via SEND15, see Figure 3-6) to the system in

forming it that the request has been processed. The driver then trans

fers control to the routine DEQU (see Figure 3-7) to determine if more

requests are in its TRL. If not, control is transferred to the ATL

scanner, after saving the task stack pointer and setting the task

status to the wait state in the ATL node.

4.7.2 Task Program Code

The task program code is necessary to carry out the task's function.

4.7.2.1 Code Sections - The program code section of a device driver

is composed of three or four of the following subsections (refer to

Figure 4_3).1

1 Page number refers to the page number at the top of the PIREX
listing.

4-56

Task Development

F'JRf)(,1"2
LINE F'Rl~TER ..
15

MAell XVM VIA000
DRIVE~ FOR LPIII15

,S81TL
.EVE~

PAGE 28

Ll~E F'RI~TER DRIV!R FOR LP11/15

8
7
8
;
U
II
U
13
U
15
18
17
U
lSI
2IJ
U
22
23
2 ..
215
28
27
2IJ
U
;sa
U
312
33 118715 ..

177!!U
177!!18
UIllil1/l8
111001/11~
IIIIlfIIIIIU
II1I/I128.
elI12U
o IlfIIIII 1/1 4
01'18.U

3 .. 1171l15 .. 177151.
35
U
37 11711118 0l1li1110111
38 fl71118f1 111111111110111
U
"0
"1
.. 12 07082
"3 1171152

... 0711188

"15 ,,7072

.8 0"""8

"7 "" 1112 .. , 07U8
.; 0"1I1l
IIIl 117112

51 07115
152 07121l

153 "712"

15. 117132

515 1117138

58 1l71·2

117
15' 071.8

II; 1l7U.

o I!ISIII 8"
172:50111
0187111f1
17778~
01/l5"8111
elIllllll.
1!1 811J1/l 1
0I80f1ll11
1/l1IJ1I78111
IIl11!11111/l8
lPllI·0:5
011831111
1l85"lIIl
17117U
lUlU
1142"1Il,
1"".0111
ll2"1I"
0""1II1!!
"""IIU
11 11 2""1
1/l1llll1IJ1l2
112"21
III111l"U
111 5 IIJ II"

""","''
1132711"
1411f111111
1718",-
0fJ 1427

,
LPeS"17751.
LP!!UF·I77!!15
LF'shll
Lp,0"12
LPSTU-14
LP!'ST.LP,EST ••
LPllNN_LP.EST+2
LPTCoD.4
LPFO"-"414

,AOUR IN PIRtX ERROR TA8LE FOR NOT REAOY
,AODR FOR UNiT. (FOR NOW 0)
'LINE PRINTER TASK CODE

,EOF COOECOATA) FOR SPOOLING , , , , , , , , , , , , , , ,

MAKE THE POP-l~ DO ALI. THt WORK, THE PDP-II SIMPLY GET S A COUNT
OF eHARACTERS TO PRINT OUT, W! TREAT TH! CONTROL CHARACTERS
1,-,tl5, AND 14 O~LY, A MINUS CHARACTER IS CONVERTED INTO MI~US
THAT NUM8!R OF SPACES. NOTE ALL REAL ASCII CHAR'S HAVE A ZERO LEADING 8ITI
EACH LINE HAS AN IMPLIED CARRIAGE RETURN THAT IS ADOEO BY THE DRIVER
RATHER THAN SENT 8Y THE pOP_lIS

NnTE, IF HEADER WORD OF' BUFFER HAS 400 BIT SET, IT IS
IMAGE MODE, AND WE NIETHER BUT ON LF DR CRII

, eALL TO ROUTINE HAS ADDRESS OF TC8 IN HANULER BUSY (IDLE) ~EGISTER ,

,
LPI

111

.8LOCK
,WORD

,WORD
.WORO

CLR

MOV

CLR

MOV

TST

8MI
ASL
ADO

MOV8
BIC

MOYB

ADD

MOVB

CLRB

e,.EAESTI(*4
LPCSR

III
II

LPSTAT (R0'

LPSh2CR0),Rl

LPSA eR0)

11
Rl
Me.MSIZ,NI

CR1)+,R2
.11741111!1,R2

.115, LPEDL

.12, (RI).

LPERWT

'ADDR!SS OF LPCSR CONTROL STATUS
, REGISTER USED TO RESET UEVICE
, ON STOP 110 OPERATIONS,
,TCB POINTER CEXTENDED BITS)
,TCB POINTER CLOWER 15 BITS), THIS
, WORD IS USED A8 TM! IOLt/BUSY
, SWITCH FOR THE DEVICE DKIVER,

,CLEAR OUT ANY PENOI~G TIMER REQUESTS FUR US,

'SETUP R0 TO POINT TO TCB

'CLEAR STATUS FLAG IN TCB

,GET 8U~FER START ADDRESS

,OONIT RELOCATE ADDNESS I~ BIT 15

, IS ON,
,RELOCATE ADDRESS (WORD TO ByTE POINTER) 'c. 11'15 OWN LOCAL MEMORY)

'CLEAR OUT TOP OF REGISTER

'DEFAULT, A8CII. HERE IS cCR~

,DEFAULT, PREeEED LINt WITH Ll~E FEtD

,RESET ERROR WAIT SWITCH

.IFNDF SN08w , •• 124 •• 1F SNOSW, DISABLE ALL SWITCH INTERACT
SIT .140000,SPOLSW 'SPOOLER ENA8LED & RUNNNG

BEQ 51 ,GO TO DISABLE HALT AT EOF (~R-135l

Figure 4-3
UNICHANNEL LP Driver

4-57

Task Development

'XR!X,142 MACII XVM V1A000 PAIiE 28.
LINt 'R!NT!R DRIVER FOR 1.'11/15
80 071!8 022711 CMP

00841'
81 07182 001421 BEQ
82 07184 185787 TSTB

1II/l0554
83 07170 881.23 BEQ
84 07172 188887 CL~B

8ef1J!W'l
85 17178 032787 BIT

880811 I!
170SS4

88 17214 88141~ BEQ
87 07208 012787 MOV

887828
1721IU

8a 17214 812787 MOV

811 17222
"7222
17224
17225

70 07228

71 17232
72 17234

73
74 17UI

78 07U8
78 17281

77 172154
715 072158

711 ,,7282
8Il 1728.

lit 17270
152 17272
83 07274
154 07278

e! ,,7302

1515 "7308

a7 17U2

sa 17318

88017'"
172U4

III III lUll 4

III "I!! L1182
tQl52117 15$ i
1(l0!112
RIII/"482
1III5ee7 es i
1Il0!1IU

132781 UI
811 "I!! (I 1
1"17!1
"II US
U5P187
18a.88
IU4U
1227U :5Ii
1Il1ll0111t4
1Il1l14""
122711
011l01!1l!!!
"U4"1!
1lI!I5S0t
,,"'52111'
0U287 4Si
11l1!!04S4
fll0t87
0R"428
tQl51!187
11l0a.U
lR5787
17020111
"!l2787
01'10 tI/l 1'1
17017''''

SEX IT
lOT
.B'l'TE

INCB

BR
CLRB

,ENDe
IHT8

BEQ
CLRB

BR
CMPB

BEQ
CMP8

BEQ
DEC
INC
MOV

MOV

CLRB

TSTB

8IS

III.PEOF, (R 1)

5.
LPEFWT

21
LPEI'WT

,!OF RECORD"

,CURRENT TCB CONTAINS EOF CBH-135)
'WAS LAST RtCORD AN EOF 'l CBH-135)

,NO • BRANCH TO NORMAL CODE (SR-135)
,YES - CLEAR SwITCH FOR NEXT USE (BR-135)

'IS SWITCH 2 UP ON 11 CONSOL~ 'l C8R-135)

2. 'NO • RESUME NORMAL CODE (BR-135)
NI.PECHK,LP.CI..2 ,YES· SET UP CLOCK CSR-135)

wAnSf

0,WAUST

LPEI'WT

2.
LPE~WT

3.
_ LPEOL

4.
N14, (Rl)

4.
1115, (Rl)

4S
Rl
R2
R2,I.PBTCT

Rl,LPBUFF

LPUS

LPBUF

'TWO S!COND RETRY CBR-135)

,EXIT TO SYSTEM

,SET EOI' ~LAIi FOR NEXT TC8 C~R-135)

,RESUME NORMAL CODE CSR-135)
'CLEAR FLAG. IN CASE SPOOLEH JUST TURNED OFF CBR-135)

,4"0 BIT SET IN HEADER IF I~AIiE

'NOT IMAIiE, CHECK FOR~S CONTHOL
,IMAGE, DON'T FORCE CR AFTER MESSAGi

'ALLOW ALL FORMS CONTROL
,FIRST CHAR FORM FEED!

'YES, DON'T ADD LINE FEED TO ~INE
'FIRST CHAR CARRIAIiE RETURN

,YES, DON'T ADD LINt F!ED TO LINE
'MOVE POINTER BACK TO LINE '~ED
'COUNT ADDITION OF LF TO BUF~ER
,SAVE COUNT

'SAVE POINTt:R

'HISTORY SAYS THIS HENE

,ENABLE INTERRUPTS TO LP GOINIi

811 137324
137324 13Il0CIJI!I4

SElIIT WAnST
lOT

'EXIT IN A WAIT STATE AND RE8CAN

1373128 l'JI!I0
07327 1!102

.BYTE e,WAITST

Figure 4-3 (cant)
UNICHANNEL LP Driver

4-58

Task Development

MACti XVM V1A000 PAGt 29 PIRElC.1A2
LINE PRINTER
1

DR IV!' FOR LP11/15

2
:5 007n0
4 007330

II 007331!1

I!I 007:"12
7 10734 ..

8 0073150
II
10 07:51512

11 073158
12 07380

13 0731!14

042787
1!11110 t 0111
1701511
0UIII87
17244 ..
00011104
01870111
li'7"tIIl
UtSl t

2105787
170138
100415 ..
001511187
1721!11111'

14 0731!14 tIIl15787
170U ..

II! 07370 11110""'3
16 073712 Hl5787

011J0~42
17 07371!1 U0421
18 07400 21015387

01!J!/J~3I!
111 07404 U0412"
20 07408 105777

01'10322
U 074112 100"08
U 1117414 117787

080314
1711l11J74

23 1117422 001526,.
000308

24 07428 011107!!1I
2!5
U 07430 1l771!17

00030111
0111030l!

27 07 .. 38 0011121!17
000l!711!

28 07442 Hl151287
0011112712

U 07441!1 11271!17
0111004111
1701.'1<112

30 0745 .. 000743
:H 1117451!1 Hl571!1"

1III!J028f1
32 0741!12 001 .. Pl!
33 0741!1 .. 111!171!17

00012512
17002 ..

34 07472 0Pl521!1111
0011J1!I14

311 07471!1 1110042t
:Sl!l
:57 0715210 0"2787

1!1(I)010Pl
17011108

38 07501!1 000"1!
3;
.0 2175111 1051287

00012127
"1 07151. 11271!17

00000 ..
17le4'

, LP INTERRUPT ENTRANCE ,
L,PrNTI

,

8IC

JSR

..
MOV

8EQ

TST

8MI
CLR

TST8

BPL
TST8

8MI
DEC

8MI
TST8

8MI
MOVS

INC

BR

8$' MOV8

INC

4$, INC8

MOVS

8R
!I$' TST8

BEQ
Move

7$ i INC

BR ,
I.P~TtLI BIS

8R ,
L,P!'''PI INC8

MOVS

LPlCT

LPCIiR

LPERR
Lp.CL

LpCSR

LPSTIL
LpTAB

.. S
LpBTCT

51
'LPIIUFF

8S
'LPIWFF, L.PSU~

L.PSUFI'

LPLOP

'LP8UH,LpTAS

LpBUff

LPTAII

1140,LPBUF

L.PLOP
LPEUL.

71
LPEOL,LpBUF

LPSTAT (R0)

LPXIT

LPlCITl

L.PERWT

,DISABLE L.P INTERRUPT

'SAVE REGISTERS

IT ASK CODE
IGET TCB POINTER

'IGNORE IF ITS ALREADY BEEN sTOPPED BY
I A STOP 110 REQUEST.
ICHECK FOR ERROR

IYES
ICLEAR OUT ANY PENDING TIMER REQUEST FOR U8.

lIS PRINTER CURRENTL.Y GOlNG?

IYESI FORGET CHAR FOR NOW
,IN TAB ElCPANSION TO SPACES?

IVE8
'DECR CHAR COUNT

IwENT TO -1, MAKE CR TO F'lNllIH L.INE
IMINUS BYTE IS TAli EXPANSION COUNT

lIS ONE, GO SET UP
ISTICK CHAR INTO L.INE PRINTEW BUFFEH

IMOVE POINTER TO NEXT CHAR

,GO DO NEXT

18ET UP TAB COUNT (MINUS, A L.A 1"

'COUNT A SPACE FOR THIS TAB

ISPACE TO L.INE PRINTER

,GO 00 NEXT
IIMAGE OR ASCII

'IMAGE, OON'T FORCE eCR.
IASCII, HERE IS eCARRIAGE RETURN.

ISET REV TO GOOD COMPL.ETION

'ENABL.E INTtRRUPT ON ~P

IRESTORE Rm-R' AND RETURN

ISET ERROR WAIT Sw.

IERROR COOE 1,NOT READV TO TABLE

Figure 4-3 (cont)
UNICHANNEL LP Driver

4-59

PIREX.l.2 MAt:l1 XVM VlA000
L.INE PRINTER DRIVE~ 'DR ~Pll/1~
42 11171522 012757 Lp"RRII MOV

111"'7845
1715.",

4:5 0715:51/1 11112'57 MDV
000171/1
1715:501

•• 0715:515 011101157 LPl(lTll JMP
173511'1

415 ,
415 071542 II!I15M7 LPl(lTl CL.RB

171511'1
47 0715.5 052787 BU

01110~4'"
170222

4e 0715154 ° 9HI 1/1 87 CI.R
IS77~4

49 071560 0U'1Il1 MOV
011J1il1ll0!

15O 0715154 III 1 1571'1l'1 MOV
1772701

III 071170 C:AL.L
07:17o 0047157 JSR

173825
152 07157. I.Pl(TI
153 071574 052757 8IS

0Pl0:5.PI
170174

114 071502 01!115P11'17 el.R
1772112

1515 07150t1 00150t17 CL.R
17724,

1515 07612 01270:5 MOV
011J71115,

157 0711115 012701 MOV
01'!14!5~

l5e 071522 0010157 JMP
173.15'"

159 ,
e0 ,
111 ,
e2 ,
53 ,
!14 ,
515 071525 001571'17 LP",CIoIIO TST

177225
e5 076~2 0014:57 BEQ
e7 07634 03271'17 8IT

0010"'1IJ~
II5172e

Task Development

PAIit. 29+

lf~PCHK,L.P.CL.+2 /ADDR. FOR TIMER REQ.

lfI70,L.P.CL. /2 SECS. IN TICKSCOCTAL.)

DEQUI ,SCMEDUL.E NEXT TASK

I.~EST 'INDICATE SUCCESSFUl-I. OPERATION

If;)40, PS ,INHISIT INTERRUPTS

L.PCSR ,SI1UT DOWN DEVICE

U,Rl ,TEL.1. CAL.L.E~ DONE

L.P .. 2,R0 ,GET TCBP

SEND15 'TE~I. CAL.I.ER DONE
PC,st;ND1:1

lfJ40.PS 'INHIBIT INTtRRUPTS

I.P .. 2 ,CI.EAR BUSYtIDLE) FLAG

LP .. 4

"LP,R;' 'DEQUEUE ANOTHER REQUEST IF ~NY

"I.P.L.H,Rl IN THIS DRIVERS OEQUE.

DEQU

SUBHOUTI Nf TO FIEL.D CL.OCK COUNT"DOWN

I.P-2 ,HAVE WE BEEN DISABI.ED 1 (6W"1315)

L.PCX ,YES" RETURN TO CLOCK· NO KETRY (BR-13:1)
"2,SW ,NO .. IS SWITCH 2 STIL.I. UP 1 (BR-1315)

Figure 4-3 (cont)
UNICHANNEL LP Driver

4-60

PIREX.l.2 MAr.ll XVM V1Ae00
LINE PRINTeR DRIVED FOR LPll/1~

8. 070.2 00103. SNE
15g 0715.. 000.0~ SR
70 0715.15 00157157 LPeH~1 TST

117208
71 0715152 001'27
72 11171515. 00157157

1157"3.

BEQ
TST

~~ 1117880 100.2, 8MI
7_ 0715152 012702 LP~L~I MOV

0P.IIH! 1 PI
75 11171588 1!Jt8Ut

00il ••
78 07872 QU2787

0071.'!U
17711'111 n 07700 042781
000017
IIJ0111ee8

78 077015 Q!12781
I!! 1117 \IJ3.
0"01111/1'

79 077101 ",, 152°'
Be 077iS 118287

00112'"
171128

MOV

MOV

BIC

MOV

ASR
MOVB

~f 111772. 000207 RTS
152 07728 01271111 LPeX!TI MOV

000t7111
S3 1111732 000207
8.
815
815 8,
88
• iii
iii 0
gl
92

0,73.
077315
077.",
077·2
077·3
0774.

01/J1/J00~

000000
0C1J0"'01!l

0~"
00111
I!lPUI

LPeXI ,
LPFlUFFI
LP~TeTI
LPTA!"
LP!'OLI
LPFRWTI
LP~FwTI

RTS

.WORO
,WORD
.WORD
.BYTE
.BYTE
.BYTE
.fVE"4

Task Development

LPCXlT
LPCLJ(
LP-2

LPCX
LPCSR

LPCX IT
IfLPTCOD*2,R2

ATLNP(H2),Rl

'YES - SET UP CLOCK RETRY CBW-135)
,NO. SET UP RETRY OF TCB (BW-135)
,HAVE WE BEEN OIS~BLEO

,IF YES, EXIT, LE~VING CLOCK DISABLED (BR-135)
,ODES ERROR STILL EXIST ? (B~-135)

,YES - SET UP CLOCK RETRY (BH-135)
'SCAN ATL FOR OUR NODE (BR-1J5)

'RESTART AT BEGINNING OF REQ.

,Rl POINTS TO OUR NODf, MAKE RUNNABLE

IfLP.28,~.SP(Rll 'SET UP STACK POINTER

R2 ,MAKE BYTE ADDRESSING
LEVEL(R2),LP-10 'SET UP PS

PC
If170, (R0)

PC

IZI
o
I/J
o
I/J
o

,RETURN TO CLOCK (BR-135)
,Re POINTS TO TIMER ENTRY

'RETURNS TO CLOCK

,BUtrFER POINTER
,BYTE COUNT
HAB I.OCHION
'0 IF IMAGE, 15 I~ ASCII
PiAK E EV EN
,EOF wAS LAST RECORD FLAG (BH-135)
,MAKE EVEN (BR-135l

Figure 4-3 (cont)
UNICHANNEL LP Driver

4-61

Task Development

1. Equates, device locations, etc. (Page 28, lines 7-15).

2. Initialization and I/O request section (page 28, lines 1-90)~
used to set up and initiate a device operation.

3. Interrupt section, used to respond to the completion of a
device operation and to check for errors (Page 30, lines 1-59).

4. An optional clock wake-up section~ used to check the correc
tion on an error condition on the clearing of a wait-at-end
of file condition and either retry the offending operation
or set another wake-up call (Page 29, lines 61-91).

4.7.2.2 Task Entry - Initialization - When the task is initially

called, the user stack area is reset. Execution normally begins at

the first location of the program code. At this point, all general

purpose registers are available for use by the task. If the task is

interrupted by a higher priority task before completing the request,

execution will resume at the point of interruption when program control

is returned. Various steps in device driver (Figure 4-3) initiali

zation include: l

1. Clearing out any pending timer requests (if the task uses
wakeup services). (Page 28, line 43).

2. Setting up a pOinter to the data buffer and relocating the
pointer value if it comes from the XVM (Page 28, lines
44-50, 74-87).

3. Various device dependent operations (page 28, lines 51-56).

4. Detect and initiate halt at end of file procedure (Page 28,
line 57-73).

5. Start up the device (Page 28, line 88).

6. Exit in a WAIT state (Page 28, line 89) until reawakened by
an interrupt (see Section 4.7.2.4).

4.7.2.3 Interrupt Processing - An interrupt transfers control to the

device driver interrupt section at priority 7. Interrupt processing

(Figure 4-3) is composed of the following steps:

1

1. Disable the device interrupt (Page 29, line 4).

2. Save the interrupted task registers switch stacks and drop
down to the task's actual priority as specified in the LEVEL
table. This is all accomplished by a JSR RO, R.SAVE (Page 29,
lines 5 and 6). R.SAVE is called the task's "TCN" as a
parameter and passed.

Page number refers to the page number at the top of the PIREX
listing.

4-62

Task Development

3. Test the task busy idle switch to see if the request has been
cancelled (Page 27, lines 7 and 8). If it was cancelled,
use the normal DEQU exit without sending a completion message
to the caller (see Section 4.7.2.4).

4. Perform task interrupt processing and error checking (Page 29,
lines 10-36).

5. If a correctable error is detected, set the error code in the
DEVST table. This error code should indicate a correctable
error. The DEQUI return should be used in conjunction with
a clock wake-up call to allow automatic retry of the operation
(Page 29, lines 40-44). See Section 4.7.2.4 for information
on DEQUI and Section 4.7.3 for information on the timed
wake-up.

6. If a fatal error occurs, the event variable should be set to
indicate this error.

7. If the operation was successfully completed, use the normal
exit procedure described in Section 4.7.2.4 (Page 29, lines
46-58) •

4.7.2.4 Exit Techniques - When a task has finished execution, it can

exit by issuing the SEXIT macro (exit and change state of task to "s") •

• MACRO SEXIT s

IOT

.BYTE a,s

.ENDM

The SEX IT macro allows a task to change status to state "s" after

exiting. A task state of "a" indicates the task is runnable, a state

of "2" indicates a wait state, and a state of "4" indicates a stop

state with removal of the ATL node. Task states must always be an

even number since they are used to compute a word index in the PDP-II.

A SEXIT in state "0" causes the system to rescan the ATL list for the

highest priority task.

There are actually three modes in which a task may exit. In the first

mode, is used on coml'letion of a request. Before a task exits, it

must:

1. Zero the busy/idle switch.

2. Set the caller's Event Variable to indicate the nature of
task completion and send an optional interrupt to the XVM
or the PDP-II.

4-63

Task Development

3. Dequeue a request from its deque and process it if found;
otherwise exit.

Before a task can begin the three previously mentioned steps, it must

be executing at level 7 (the highest priority level in the PDP-ll).

As an example, assuming a task name is "XR" (the first executable

instruction of every task has the task name as its label), then the

following program code would accomplish the three necessary steps:

BIS #340, @#PS;INHIBIT INTERRUPTS

MOV #?,Rl ;SET CALLER'S EV TO ? (APPROPRIATE VALUE)

CALL SEND15 AND SEND CALLER

AN OPTIONAL INTERRUPT

TELLING THE REQUESTOR THAT THE

REQUEST HAS BEEN PROCESSED

(A COMPLETE LIST OF EVENT)

VARIABLE SETTINGS MAY BE

FOUND IN SECTION 3.2.5.4

BIS #340, @#PS;INHIBIT INTERRUPTS,

CLR XR-2

CLR XR-4

MOV #XR,R3

MOV #XR,LH,Rl

JMP DEQU

;CLEAR THE BUSY/IDLE SWITCH ("XR" is the tag
associated with the first executable
instruction in the task program code)

;DEQUEUE ANOTHER REQUEST IF ANY

EXISTS IN THIS TASK'S DEQUE

IF A REQUEST EXISTS, NO RETURN

IS MADE FROM ROUTINE DEQUE

AND THE REQUEST IS AUTOMATICALLY

REMOVED AND PROCESSED AS IF IT

WERE JUST RECEIVED WHEN THE

TASK WAS IDLE

This first method is used in the task interrupt section upon successful

completion of a request.

4-64

Task Development

The second method is one where the task exits from the initialization

section (Figure 4-3, Page 29, lines 46-58) in a wait state using the

SEXIT macro, and an interrupt routine or other task will complete the

previously mentioned three steps at a later time. A device driver is

typically exited in this way (Figure 4-3, Page 29, line 57). The

initial section of the device driver is used to set up the device con

troller and begin the I/O operation. The task will then exit in a

wait state until the I/O is complete, the interrupt section is called,

the device is shut down, and the previously mentioned three steps are

done informing the requestor that the I/O operation has been completed.

The third method of exiting is one used either when a recoverable error

is detected in the interrupt section of a driver and the intention is

to exit and wait for an error recovery or when another I/O request is

issued in the interrupt section and another interrupt is expected.

This exit through DEQUl does not cause the dequeuing of pending re

quests but simply places the task in a WAIT state. This method assumes

that an R.SAVE has been performed upon entry to the interrupt process

routine. The required code to use this exit is:

JMP DEQUl

No registers are preserved by this exit. Control is returned to the

interrupt section upon occurrence of an interrupt or via the clock

routine wake-up, to a location chosen by the clock set up section.

(Figure 4-3, Page 29, line 44).

4.7.3 Timed Wakeup

In the design of a device driver it is useful to include features that

eliminate operator intervention whenever possible.

For instance, in the example of the PIREX Line Printer Task, an OFF

Line condition is handled by retrying the printing every two seconds

until successful. This is accomplished by using the wakeup feature

of the Clock Task. This is done by simply placing the return address

and the time dealy into the Clock Table "CLTABL" (See Section 3.3.4)

Figure 4-3, Page 29, lines 42-43) and the exits using the DEQUl type

exit.

4-65

Task Development

When the wakeup call occurs, the clock wakeup sUbsection specified by

the return address will be invoked. In this subsection:

1. Test the task IDLE/BUSY switch to see if the task has been
shut down. If shut down, a RTS PC return to the Clock Task
is in order. (Page 29, lines 65, 70-71, 83.)

2. Determine if the error has been corrected. If not, reset
the timer and RTS PC to the Clock Task. (page 29, lines
72,73,82,83.)

3. If the error has been corrected, reprocess the original TCB
request and return to the Clock Task. (Page 29, lines 74-81.)
This will cause PIREX to retry the TCB.

4.7.4 Assembly and Testing

4.7.4.1 Assembly and Loading - New PIREX device driver should be

assembled as a part of the PIREX monitor. Background tasks may be

assembled separately.

In the background task case, the user should construct an XVM program

to load the background task binary into XVM memory. (See SPOL15 for

an example of the required technique.) The XVM program must then issue

a CONNECT Directive. To start the task, if the task is to execute in

PDP-11 local memory, two additional steps are required:

1. Issue a local memory size directive to determine if there
is enough local memory to accommodate the new task.

2. Issue a CONNECT directive (assuming there was enough room
in local memory for the task).

3. After issuing the CONNECT directive, use the initial portion
of the PDP-11 code to move the remainder of the task into
the local memory starting at the first free location.

4.7.4.2 Testing - Since the typical UNICHANNEL system does not have

a terminal device attached to the PDP-11 processor, the only debugging

facility present is the console indicators on the PDP-11. An addi

tional aid is the UDMP11 paper tape provided with all UC15 XVM/DOS

systems. This program provides a destructive dumping facility that

recovers the entire state of the PDP-11 LOCAL memory and dumps it into

the LP11/LS11/LV11 Printer.

4-66

Task Development

NOTE

The UDMPII program is an unsupported package
that can only be used on systems with a pr~nter
device on the PDP-II UNICHANNEL Processor.
For tasks executing in the common memory, the
traditional t Q-DUMP feature of the XVM/DOS
monitor should be used.

4-67

CHAPTER 5

SPOOLER DESIGN AND THEORY OF OPERATION

5.1 INTRODUCTION

This chapter discusses the design concepts of the XVM UNICHANNEL SPO

OLER software and its theory of operation. This information is pro

vided to enable the user to understand the SPOOLER software in order

to add new SPOOLED tasks or to modify existing software. The actual

modification process is described in Chapter 6. Flowcharts are pro

vided whenever it is necessary.

5.2 OVERVIEW

5.2.1 SPOOLER

The word 'spool' and 'spooling' originated in the textile industry.

During thread manufacture, the threads are wound on small spools by

first storing them on large spindles and then transferring them onto

small spools. This entire process is called spooling. In the com

puting industry, the term spooling is used to describe the process of

collecting and storing data on a large high-speed medium and control

ling the flow of this data to slow speed devices. The "SPOOLER" is a

distinct piece of software that controls the entire spooling operations.

Spooling permits data flow between a data source and a data sink to

proceed at independent rates. This feature gives the user greater

computing power and faster turn-around time because of better system

resource utilization under an integrated operating system.

5.2.2 XVM UNICHANNEL Spooler

In the XVM UNICHANNEL system, spooling is achieved by using the dual

processing capability of the system. The two processors, XVM and

PDP-II, operate in the Master and Slave mode respectively. The Slave

processor (PDP-II) controls the entire spooling operation. Data to

be spooled is supplied by either the master processor (XVM) , or by

tasks running under PIREX. Spooled data is stored on a disk cartridge.

5-1

Spooler Design and Theory of Operation

The Line Printer, Card Reader, and the Incremental Plotter, all being

UNIBUS devices, are supported by the XVM UNICHANNEL spooler.

5.3 SPOOLER DESIGN

The XVM UNICHANNEL SPOOLER is based on a simple design. Spooling of

data is done through the RK05 disk. A contiguous portion of disk is

allocated via SPLGEN for this purpose by the operating system on the

XVM. The starting block number and the size in terms of number of

blocks is conveyed to the SPOOLER when it is issued the 'BEGIN' dir

ective. The SPOOLER allocates and deal locates this space on the disk

through a BITMAP it maintains. The spooling and despooling operations

of every task are performed through a central "TABLE", in which every

spooled task has a slot. Against each slot there are several entries

used to keep track of the data during spooling and despooling. Pro

visions are made in the SPOOLER to permit spooling of data regardless

of the number of blocks occupied in the spool space and the number

of buffers in the SPOOLER provided despooling operations are going on.

This prevents system lockout. All the data blocks on the disk belong

ing to a spooled task are linked together by forward pOinters stored

in the last word (377 8) of each data block. The end of data in a

block is indicated by a zero word. Records are assumed to be less

than 3748 words in size. The last block in a spooled file has a pointer

to the previous file's last block in word '18' or a -1 if there is no

active previous file, if the last spooled file has not yet been de

spooled. Also the last block in a spooled file contains an end of file

indicator in word '376 8 ' of the data block. Sections 5.3 and 5.4 des

cribe the static layout of the spooler. The dynamic layout is des

cribed in Section 5.5.

5.4 SPOOLER COMPONENTS

The following are the major components of the SPOOLER software:

1. request dispatcher

2. directive processing routine

3. task call service routine

4. device interrupt dispatcher

5. device interrupt service routine

5-2

Spooler Design and Theory of Operation

6. utility routines

7. buffers, TABLE, BITMAP, TCBs

A brief description of each of the above components follows.

5.4.1 Request Dispatcher

This routine dispatches (routes) all requests made by the SPOOLER and

requests to the spooled tasks. This is done by using the TCN in word

'I' of the TCB. The dispatcher transfers control to the appropriate

directive processing routines, in the case of spooler requests and

to the task call service routine, in the case of requests to spooled

tasks.

5.4.2 Directive Processing Routines

These routines process directives issued to the SPOOLER to control

spooling operations. The basic operations are "BEGIN" spooling and

"END" spooling. These routines may initialize switches, TABLE, BIT

MAP, pointers, buffers, set up TCB, start tasks, stop tasks, ••• etc.

5.4.3 Task Call Service Routines

A task call service routine processes requests addressed to tasks

running under PIREX. It spools data onto disk in case of output tasks,

and for input tasks it despools the data from disk. Output tasks buf

fer data from several requests into blocks and transfer the blocks to

disk when full. Input tasks read into core, data blocks stored on

disk, and unpack the data into the requestor's buffer. Task Call

Service Routines update the TABLE, pointers, and switches, and use the

utility routines present in the SPOOLER to write or read a block onto

or from the disk, get or give a buffer, get or give a TCB, etc. (Refer

to Figure 5-2.)

5.4.4 Device Interrupt Dispatcher

All interrupts from devices interacting with the SPOOLER are dispatched

by this routine to the appropriate service routines. This is done by

using the TCN of the requestor for that task request present in word

'13 ' of the TCB.
8

5-3

Spooler Design and Theory of Operation

5.4.5 Device Interrupt Service Routines

These routines handle completion of I/O requests from devices. They

supplement the driver routines present in PIREX as in the device hand

lers. Besides the disk interrupt service routine, each spooled task

has its own interrupt service routine. The disk interrupt service

routine is made up of the "read interrupt processor" and the "write

interrupt processor". These are in turn made up of routines handling

read/write operation for each specific spooled task. The interrupt

service routine of a spooled task controls the despooling operation

for output tasks and the spooling operation for input tasks. These

operations are driven by the table entries which determine the end of

the operation. Device interrupt service routines update the TABLE,

pointers, switches and use the utility routines to write or read a

block onto or from the disk, get or give a buffer, get or give a

TeB, etc.

5.4.6 Utility Routines

Each SPOL11 utility routine performs a specific function. They are:

FINDBK

FREEBK

GETBUF

GIVBUF

GETRKT

GIVRKT

GETBLK

PUTBLK

GETPUT

RESTRQ

DEQREQ

Find a free block on disk
1
and set its bit in the

BITMAP Table (protected).

Free the block indicated and reset its bit in the
BITMAP Table.

Get an unused buffer from the buffer pool
(protected) .1

Give the used buffer back to the buffer pool.

Get a disk TeB from the Disk TeB pool.

Give back the TeB to the Disk TeB pool.

Read a block from disk.

Put a block on disk.

Get or put a block on disk.

Reissue a delayed request.

Tell requestor that a request is done and dequeue
the next request, if any.

1protected routines are those run at priority level 7.

5-4

Spooler Design and Theory of Operation

5.4.7 Buffers, TABLE, BITMAP, TCBs

Buffers

TABLE

BITMAP

TCBs

The SPOOLER maintains a pool of buffers in a
doubly linked list for general use. Buffers
are used to pack data into blocks to be
written onto disk (by output task call ser
vice routines) and to unpack data from data
blocks read from disk into requestor buffers
(by input task call service routines).

The entire spooling and despooling operation
of all tasks is controlled by entries in this
table. Every spooled task has the following
entries:

WORD 0:

WORD 1:

WORD 2:

WORD 3:

WORD 4:

WORD 5:

DEV device mnemonic (set by the BEGIN
routine)

CBN current despooling block number
(set by the despooler).

CRP current record pointer (set by the
despooler) •

NBN next despooling block number (set
by the despooler) •

LSB last spooled block number (set by
the spooler).

LFB last spooled file block number (set
by the spooler).

A record of availability of disk spooling space
is maintained in the BITMAP. corresponding to
each disk block reserved for spooling is a bit
which is 'ON' if the block is in use and 'OFF'
if free.

Buffered blocks of data are read from disk and
written onto disk using TCBs. Output spooled
tasks despool data to devices using TCBs and
input spooled task spool data from devices using
TCBs.

5.5 THEORY OF OPERATION

This section will describe in detail the flow of control in the SPOOLER

among the above components. To illustrate this process, the spooling

and despooling operations of the Line Printer will be discussed. The

routines in the SPOOLER listing (Figure 5-1) are broken up into logic

boxes and referenced by line numbers.

5-5

Spooler Design and Theory of Operation

5.5.1 SPOOLER Startup

Spooling under an operating system on the XVM is accomplished as

follows. The SPOOLER task should be added to PIREX, by reading it

into local memory and connecting it at run time via SPOOL (SPOL15).

As supplied by DEC, the SPOOLER is a separate binary program from

PIREX. A special XVM program referred to as the system/SPOOLER inter

face (SPOL15) is responsible for loading the SPOOLER into PDP-11 local

memory and then issuing requests to PIREX to connect the SPOOLER and

then begin its operation.

SPOL15 (SPOOL) determines if the spooler is running. If so, SPOL15

asks "END?". If the reply is yes, a terminate spooling directive is

sent to PIREX and the SPOOLER is disabled. If the SPOOLER is not run

ning, SPOL15 asks on which RK drive the user wishes to begin spooling.

Spooling may be done on any RK unit that has a cartridge that has been

initialized with a SPOOLER area by the SPLGEN program. If the cartridge

has a SPOOLER area and if there is room in the PDP-11 local memory,

the SPOOLER is read from the system disk (DPO, DK, or RKO) and trans

ferred to local PDP-11 memory and started. Note that the questions

"RK UNIT#" and "BEGIN?" must be answered in this process.

All questions have default replies displayed. These replies may be

selected by entering a carriage return. The options on YES/NO questions

are "Y" or "N". The default valve for the RK unit is the unit upon

which spooling was done previously (or unit 0 if PIREX was just loaded).

Example: XVM/DOS Vnxnnn
$SPOOL

SPOOL XVM Vnxnnn

RK UNIT # [1] 1

BEGIN? (Y) Y

SPOOLING ENABLED

XVM/DOS Vnxnnn
$SPOOL

SPOOL XVM Vnxnnn

END? (Y) Y
SPOOLING DISABLED

XVM/DOS Vnxnnn
$

Subsequently when PIREX schedules the SPOOLER task to run, the "BEGIN"

request is processed. On gaining control, the 'request dispatcher'

5-6

Spooler Design and Theory of Operation

transfers control to the 'BEGIN' routine. The first time the SPOOLER

processes a directive it also executes a once only section of code,

which builds a central address table. This table contains addresses

of frequently addressed locations in the SPOOLER and is necessary since

the SPOOLER is coded in Position Independent Code (PIC) and thus can

be loaded anywhere in the PDP-11 memory. SPOOLER is coded in PIC to

permit additional tasks to be added to PIREX without necessitating

SPOOLER changes. The BEGIN routine performs the following; general

startup operations and the specific line printer startup operations

(refer to Figure 5-1):

GENERAL OPERATIONS - BEGIN DIRECTIVE:

Set up the SOFTWARE
INTERRUPT trap address in
the PIREX SEND11 table

Save the SPOOLER start address
in the "disconnect SPOOLER"
TCB

Initialize the FINDBK routine
switches and pointers.

page 7, lines 9-12

line 13

lines 15-18, 40

SPO~II.141 MAel' XV" V1A0011l PAGE 3
.SSE~BLY PARAM~T~R~
1
2
:5
4
~
II
7
8
II
10
11
12
1:5
14
Ie
III
17
18
III
20
21
22
23
2'
215
26
27
28
2D

,SBTTL ASSeMBLY PARAMETERS

cnNnITIONAL ASSEMBLY, SLP, SCO, SPL, FOR LINEPRINT~R
FOR LP USE 4LlJ00111
"O~ PL USE 1001/10

, "O~ CO USE 2LlJIIl00
,LI"d0 1lO 00
,SpL81 1lO PlI!l0 ,
, CARD READER, AND xy PLOTTER, RESPECTIVELY
I'lEvSPP8P
nEvC"IT80

SLP ,IFOF
nEvC"IT80EVCNT+l
nEvSPP80EVSPPjSLP
·.E~O(';

~I"O" !lCO
I'lEvC:"IT80EVCNT+I
nEvSPP.OEVSPPISCD
.E"IOr.
.11'01' 'PL
"EvCIIJT~OEVCNT+1
nEvSPP80EVSpPISPL
,E~Or. , , , ,

,Sf.lTTL SYM~DLIC ~QUATES

Figure 5-1
UNICHANNEL Spooler Components

5-7

Spooler Design and Theory of Operation

SPOlII.14! MAr.I' XVM VIA000 PAG~ 6
SPOOlER OISPATCHER

I
2
3 "'011/101/11/1
4 000002
15 0000""
6 00014"
7 0P0142
8 000144
9 000146

I'" 1/10115"

11
12
13 0016",

14 00166

I! 01'J172
16 00174

17 0021/12

0" ° 1/1 1/1 I'! ~PI"Er. ••
OIA576~
0A014!'!

OIOI0t4'
0A01/1011l1 I'IUMI
0A0"10rJ1
0U1701'" 8P~TI
17777,
111121157
1 010 rJI 1/11/1
177715'

013767
001D11'111
00174111
011/15167
00501411
00111/121'1
0127:57
0I401/1011l1
0011 Ae.

00202 010701
0021/141 0827011

17711'174
18 01/12101

00211/1 A!07A'
II'Pl212 08270'

11111147411
19 00216 0!2701~

0001/131
20 00222 011012, 101,.
21 00224 005~0~
22 002215 001137'"
23 00230 011571/1'

00417!!'
24 00234 080122 !II'I~I
2!! 01/12315 M011'
215 00240 014,o,
27 1/10242 020'157

0111 47!!1/I
28 00246 1/101137,
29 0102150 '''''I
30 00215", 122781/1

1/11/10207
01/101/1111'

31 00256 001143'
32 011l2151/1 A107A\
33 002152 015271/1\

(11"'0124

NOTE

The A assembly errors contained
in this figure are warning
messages, and, do not indicate
actual errors in this example.

.SBTTL

.WORD

.wORD

.BLOCK
• WORD
• WORD
.WORD
MOV

t-10V

MOV

TST

liNE
MOV

AOR
MOV
ADO

ADR
/oIOV
ADD

MOV

ADD
OEC
BNE
MOV

ADD
ADD
MDV
CMP

BNE

CMPB

BEQ
/oIOV
ADO

SPOOLER DISPATCHER

SPEIoID.SPBEG/2
SPST
8.+EAESTI<*6 .. 2
DUM
o
o
SPST-2,R0

UCTLCT,SDCTISV

ONCHl.

,SIZE OF SPOOLER (BR-127)
,STARTING BYTE OFFSET (BR-128)

IC6R-128)

'GET TCP ADDRESS IN H0

'FAKE II'S REQ. TO PREVENT GtTTING KILLtO

'THIS IS TO PREVEloiT STACK BLuW UP T~RO'
,eTL 'C'S rROM POP.I~
'SAVE CURRENT CTL IC' COUNT ~OR LATtR CLEANUP

IMAS THIS COO~ Al.READY SEEN uONE?

2~$,yES DON'T 00 IT AGAIN
IfOEV spp, '''DE v SPL

SPBEG,Rl
PC,RI
IISPBEG-.,Rl

AORTBL,R2
PC,R2
IIAORTBL ... ,R2

"-ADTCNT,R3

RI, (R2) +
R3
US
BUFL.AO,R2

Rl,(R2)+
RI,fR2
.. (R2l , R2
R2,BUFI.AD

I:lS

,SET UP DEVICE SPOOl.~O wORD

'INITALIIE ADDRESSES (PIC COUE)

,CAl.CUL.ATE ADDRESSES

'LOOP UNTIL ALL FINISMEO
'SET uP BuFFERS

ISET UP POI loiTERS GOING BACKW~ROS THRU Q

'HEAD OF BUFFER?

'NO .- TRY AGAlloi

IISPCOO+200,TCOOE(R0) ,SPOOLER REQUEST?

lIS
PC,RI
IIDISP1 RI , GET DEVICE DISPATCH TABI.E IN Rl

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-8

(

Spooler Design and Theory of Operation

SPOL.l1,1"1 HAe 11 XVH V1A000 PAGE 5+
SPOOL.ER DISPATCHF.R
34 00258 01111 51!! 0'
35
35 00270 12276'"

000111"'41
000"'0'

37 00278 011114131
38
liD 00300 PlPl572'
40 0111302 12278'"

","'0"'015
01110"'''''

41 0"'31", 1'11'11424
42
43 0r11312 01'1572,
44 00314 12278'"

000i:11M
0111001""

45 00322 001 H,.
48
4'1
48
411 00324
50 00324 I'll 371'1 1

11111110115",
51 0033111 0827"',

01'101111511
52 0P0334 112711

00011177
!l3 0034'"

0034111 004787
1'1001'1"4

154
155 0ll'l344 01070!
156 0034" \lI627PJ\

0001'122
57 01/13152 115"'111,

PlPJ0PlPJI!
58 00356 11427 111 ,

17774'"
159 00352 0150\0'
60 00354 Ml'0,
51 O0386 011101 t,
82
83
e4 00370 1!!00"'2A
lI5 111111372 177734
8e 00374 0111111434
e7 003711 1771'34
58 00401/1 17773.
89 0041112 11'7734
70 0041114 17773.
'11
72
73 01114111e 0"'372'
74 111041111 01'14415'
715 1110412 1111'1443'"
76

eL.R R2

CMPB .~PCOO.TCODECR0) '~P REQUEST?

SEQ Z2S

TST (R2) +
CMPB .COCOO,TCODE~RPI) ,NO. CO RtQUEST?

BEQ Z2S

TST (R2) +
CHPB .PL.COD,TCODE(R0) ,NO. PL REQUEST?

BEQ Z2S ,
, U"'RI':COGNISEO TASK REQUEST REPORT. ,
ERpOl'l1

MOV IIIItDt'.V5T,Rl

ADD .SPCOD*3*2+4,RI

HOVB UOPS77, (RU

CAL.L OI:QREQ
JSR PC,DI:QRI:Q

,
71U MOV PC,Rl 'SPOOLER RELlUEST ,GET SPOOLEM OISPTACH

ADO .OISPI/J-. ,Rl /TABLE IN .3

Hova FCODE(R0),R2 'GET FUN. CUDE

BIC 1t177740,R2

Z2~1 ADD Rl,R2 IADO FUN. CODE TO Rl
ADD (R2) ,R 1 'BUIL.O DISPATCH JUMP x
JMP (R 1) 'BRANCH TO APPROPRIATE ROUTINE ,

,SponL.fR DIRECTIVE DISPATCH TABL.E
IH!'!P'" ,

,
rO"VTCE
nl!llP, :

BEGIN .. 01SP0 ,BEGIN' COOt.a0
ERROR .. OISP0 'ERRORI COOf-2
END .. OI5P0 'ENOl CODE.4
ERROR -OI5P0 ,ERRORI COOt:05
ERROR .OISP0 , ERROR I COOt.aU
ERROR .OISP0 ,ERROR: COOEa12
F.RROR .. 01SP0 ,ERRORI COOE"14

REQUEST -DISPATCH TAt;L.E
LPCAL.1. ~OISPI 'LPI L.INE PRINTER
CDCAL.L -OI5Pl reo, CARD REAOER
PL.CA(.L. .. OISPI 'PL.I ICY PLOTTER

Figure 5-1 (Cont.)
UNICHM~NEL Spooler Components

5-9

SPOL.ll.141
BEGIN DIRECTlV!'
I
2
3

• 5
II
7
e
SI 1'101'1.14 11110701
10 00416 08271",

002341.!
11 00422 01370,"

01'11\11o,
12 004116 01015,

01'101'1111
13 01110432 011101157

01'100114
01111127<1

14
15 00441'1 111127157

1111'1001011
00114<101

115 00446 11111570.
QlIII 4 !l4o:!

17 00452 0Ul157
00143\?

18 004515 010H17
01'l14301

Spooler Design and Theory of Operation

MAel1 XV~ VIAe00 PAGE 7

,SBTTL. BEGIN DIRECTIVE ,
'THI~ ROUTINE STARTS AL.~ SPDOL.ING OPERATIONS, SWITCHES, CONTROL. REGISTERS
'ETC~ ARE SET , THE BUFf~R pUOL., TCB POINTERS, BITMAP, TABL.E ETC. ARE
,SFT up,eITMAP & TABL.E ARE SAVED ON DISK(FOR BACKUP OPERATIONS). EACM
,1~DTVIDUAL SPOOLED TASK IS TMEN INITIALIZED & STARTED UP IF NECESSARY , ,
eEr.INI "tOV

ADD

MOV

PC,Io!I
IfOEVINT-.,Rl

'GET ADDRESS OF DEVINT IN RI

ISET SENDII ADDRESS IN PIREX

MOV 14(R0),TCBDSA+TCBDIS

TNJTIALIZE AL.L. SWITCHES
MOV .I,CBTPTR

MOV ASPL.FU,RI

MOV Rl,TCDINI

~OV Rl,TCDPNT

;START BIT MAP SEARCH

'.1I13S1 •• SETUP TASK CODE STACK FOR FINDBK

11I1I139 •• w~EN MORE THAN ONE GuY FINDS OUT

' •• 139 •• T~EHE ARE NO ~LOCKS

lSI ,SFT CONTROL. REGS,
20 11104152 0111.1701
21 004154 P1!127111,

P74!1"
22 0047111

00470 0111.11411
23 0!!!4"2

24
25

0I!!472 1'1 t 2(11<1 ,

26 0"474 11111571'1.
0Il4415111

27 0050111 1'1107""
28 00502 111627111\?

1II1l1!l001:J
2S1 01/1505 "'t271'i~

00000!1
30 00512 11110221
31 210514 0527"',

000111301
32 0052111 1II111!13111~
33 00522 IIIIII1~7~
34
3!1 00524

1/10!124 11116111411

SPOL.ll,l"1
BEGIN DIRe:cTIVf:

Allle"'t::!
35 010530 01115U5
37 00532 PJPJl'I::! I"
38 1!l1/l534 0I1HI21/1
3S1 01!1531!l 1'14271/1

011100101
40 01!l5<12 1111878"

lUI 442'"
1!l1l1~~.

oil 0I!l55f11 01871/1'
1II1!J44UJ

42 01!l !I t5;t 0521101
43 1!I1!J5!1e PI lI1l' 57

1!l11l5"81'1

MOV PC,Rl
ADD .OUM-"RI

PUSH Rl
MOV Rt,-tSP)
pop -(Rl)
MDV CSP)+,-tRl)

,$I"TIIP BUFFER POOL.
,INITIALIZE RK TCB POINTERS

'11

MOV RKCAD,rn

MOV PC,Io!2
ADD .TC~ST •• ,R2

MOV .TC~CT,R3

to<OV
ADD

R2, (Rl)+
1130,R2

DEC R3
BNE 21

II~ITIAL.IZE BITMAP
PUSH NBKtR0)
MOV NBK(RI1J),-CSP)

MAr.I' XVM V1A000 PAGE 7+

ASR (SP)
ASR CSP)
ASR esP)
BIC .1'(SP)

MOV BTMPAD,CWDPTR

P-10V BTMPAD,Rl

ADD CSP)+,Rl
MOV Rl,lHMPED

'GET ADD. OF DUM IN RI

'SAVE ON STACK

, SET SPOOL.ER CONTROL. REG,II

,GEl RKTCBP ADD, IN HI

'GET TCBR01 ADD. IN R2

'SETUP TCBCT TCB'S

'SET TCBRKI POINTER
'BUMP R2 TO TCBRK2

'GET SIZE OF SPOOL.ER AREA NU~BER

'COMPUTE SIZE OF B IT MAP
IS IZE-NUMI!K/8+2

'GET EVEN NUMBER

'RESET CWDPTR

,(BROI12. TEMP FIX)

'ADD OFFSET TO ENO
ISET UP BTMPEO

Figure 5-1 (Cont,)
UNICHANNEL Spooler Components

5-10

\

(

Spooler Design and Theory of Operation

SPOLll.141 MACll XYM V1A000 PAGE 7.
BEGIN DIRECTIVE

44 0'562

45 0015e6

46 00572

47 00576

48 0082'A

49 0'1512

150 0015115

lit 00622
52 00624
5~ ,fI62e
15.. 1!108~0
55
515 001532

57 0015315
58 0M40

59 00644

6o 00155111
61 00652
62 0061541

t!~ 2'01562'

IlI5

018101
0044C'"
0115021
011101111111
011511121
o III ° III 1:1
0115031
QI(iJl!JI'IU!
0111111171'1
IIllt!1'I61
1Il0011111!
1Il1ll1!!!5!li
000;''',
1/10 HI",
0127111,
0003t!,
1111010,
00151'12~

011115~H"
1110137!!1

01ti7111t
00433.
01010~
PJ121PJ'
00004.
012723
177777
1I1111153111'
0U374
1I112111
14211181
111127151
030481
0001111d
11112115.
142461
1110003111

1515 001574 0111150137
0UIU,",

157 0070111 0152737
1701110111
01111"'4"

158
611
70
71
72
73
74
75
7e
77
78
79
80
81
e2
83
8A
e15
815
87
88
ell
110
III
92
93
114 011170e 1111511167

1'1021541;,

MOV STBI<NA,Rl

MOV StlN (Rl'll ,cRl).

MOV NSt((HI'I) , (Rl).

MOV

MOY UNIT (Rill), UN%TSP

SWAB UNITSP

MOV

'GET AODR~SS OF STBKNM-4 IS Rl

1SET STARTING LOCI< "

'SET NUMBER OF BLOCI<S

'TELL PIREX SPOOLING UNIT (tlR-126)

,COpy INTO LOCAL MEM. (SR-126)

'SET UP FOR TCB USE (tlR-126)

'GET BIT MAP SIZE IN R2

/olaV
'Ii CLF!

IIBTMP5Z,R2

Rl,R3
CR3) +

DEC
BNE

, hITIALIZE
MOV

R2
45

TABLE
HBLAO,R1 ,GET ADDReSS OF TABLt IN Rl,R3,RI

/olOV
/olOV

Rl,R3
ItTAtlLSZ, R2 ,GET TABLE SIZE IN R2

'Ii MOV 11-1, (R3).

R2 DEC
BNE
/olaV

MOV

MOV

3$
ItLP1,(Rn 'SET LPI(DED) IN TAtlLE

IICDI,COTEOF(~n 'SET COl (OED) IN UtiLE

IILTl,PLTEOF(Rl) 'SET PLI (OED) IN TAtlLE

,SFT SPOOLER SWITCHeS
.11 C~R '.SPU~S~ ,RESET SPOOLER SWITCHES

BIS "6EGSw,'"SPOLSw ,SET SPOO~E~ ENABLED AND RUNNING

,
,ALL SPOOLED TASKS HAVE TO BE INITIA~ISEo. OPERATIONS LIKE StTTING ,& R~SETTING SWITCHES, SETTING UP POINTERS, tlUFFERS, STARTIN~ UP
'TAS~ FTC. HAVE TO 6E DONE AS INOICATEO F~R EACH TAS~ ,

.1FDF seD
8115 "2,'"SPOLSW 'SET CD ON UNLY If PRESENT

'I~rTIALrZE CD SPOOLEF!/PESPOO~ER TASK
CLRB COONCE
MOY 111000,COONCE+l
~OY '''LISTHO,~2 'GET AODRESS OF LISTHU IN H2
ADO IICDCOD*4,R2 ICLEAR CD DEQUE TASK COOE-5
CA~L EMPTP
MaY '~I,NBN+TABL~+CDTEoF
MOVB _1,CoCNTI IINITIALIZE CDCNTI
CLRB CoBMS ,RESET CDBMS
CLRB COBFS
MOV Rl,COCBIP
CMP (R1,., (RIl.
MOV R1,CDWoIP
ADO ItCDSIZE,CoWDIP ,BUMP TO NEXT CARD
MOV Rl,RO
CALL STUPCT
.ENDC
.IFDF ILP

'SAVE BUFFER ADDReSS ON OTA H
,SET UP TCB TO READ A CARD

'I~rTrALIZE LP SPOOLER/oESPOOLER TASK
CLF!B LPONCE

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-11

Spooler Design and Theory of Operation

SPOLll.I'1 MACII XVM VIA00I'J PAGE 7.
BEGIN DIRECTIVF
g~ e0112 012167 MOV HI000,LPONCf,+1

01!J10101111
002113111

96 1'11'11201 0137OJ~ MOV '#LISTHO,R2 IGET ADDRESS OF LISTHO IN R2
0U"'!",

97 01'172. 01!210~ ADO HLPCOP*4,R2 ICLEAR loP OEQUEI TAS~ COOE-'
(11010012111

98 ee730
0~73", 0101'1151

I'I1'1e0l215
g9
10111 11173. 1'111161

"''''1532'
Ii'll 074, A101157

003315"1
102 07'4 022121
11'13 0146 010UI7

003315,
104 e752 1'~M7

003343
10~
108
le7
11'18
11'19
110
111
112
113
II'
1115
1115
111
1111
1111
120 e1!56

121
122

0;r!515 "'04767
001'1,,,,

In 1'1762
12' 0162

0162
07152 013741'1

171176
e766 0152737

000H!l!
11117tl

1215 11171. 0127!l!!
001!l!21'1

1215 10021 004731
121 le02

le02
101'12 111121!37

11117~
128 1006

le015 0047157
000'2/1

129 1012 0,01./1
130 11114

101' 111047157
l1l"i13"

13i 11'120
1021'1 0121!1'

132 11'122 !l!00207
133

CALI.
JSR

tolD V

MOV

CMP
MOV

CLRB

EMPTD
PC,EMPTO

.RI,NBN+TABLt

RI,LPCSCP

(RIl+, (RI).
RI,~P"'OCP

LPBMS

.ENoe

.IFOF SPI.

ISET NBN-CBN FOR START UP

'INITIA~IZE PI. SPOOLER/OESPOOLF.R TAS~
CI.RB PI.ONCE
MOV Hle00,PLONCE+1
MOV '#1.1STHD,R2
AOD HPLCOO*4,R2
CALI. EMPTP

IGET AOORESS OF LISTHD IN R2
ICLEAR PI. OEQUEI TASK COOE.6

MOV 'RI,NBN+TABLt+PLTEOF
MOV RI,PI.CBCP
eMP (RU+,(RI)+
MOV Hl,PLWOCP
CI.RB PLBMS
.ENOC

,ALL PONE OEtlUE
CALI.
JSR

NEXT REQUEST
DEQREQ
PC,OEQREQ

,
,EMPTY TASK DEQUE
EMpTl'I1

.INH
PUSH UPS
MOV 'HPS,~(SP)

toIOV NtMPTY,RI

JSR PC,'(RI)+
.EN.
POP .IIPS
MOV (SP)+,'''PS

CA~1.
JSR

MOV
I': A 1.1.
JSR

POP
MOV
RETURN
.SBTTI.

FINDSK
PC,FINOSt(

R1,-eSp)
G~T!!UF

PC, riETBUF

(R 1)
(SP)+, (R1)

END

ISET PI.CSCP

ISET PLWOCP
IRESET Pl.tlMS

,INHISIT INTERRUPTS

,EMPTY TASKS OEClUE

,ENABI.E INTERRUPTS

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-12

\

(

SPOL11.141
END
1
2
3
4
!!I
fj
, tlHIl1024 0!l2737

1/11'1034'"
1177711

e 001032 01371l1i
QlU I'I~~

9 0010315 QlQt!501e7
177101'1

10 01042 QlQl~1'I3'
01111M.s

11 01ue 0111~1'I6t
011101'134

12 010152 QlQl!5037
1'101101411

13 010116 042737
000:'1401
1777711

14 01084 012'1II!I
0010'''~,,,

15 0107Q1 0101001111,
HI 010'2 "'CII!I~Pl!I
l' 01074 Ql1'J137'"
111 01076 0!1273'

1'11/103401
1,777"

19 01104 013'01
01'111'16",

20
21 01110 01fjlrl"

000111101
22 01114

23
24
25
26
2'
28
29
30
31

1'11114 00147/l7
1111'101'1 !I A

32 01111111 1111270'
1/11'111'1311

33 01124 0113'0'
0011011'1,

34 01130 01116'
11101"''''111

Spooler Design and Theory of Operation

MAelt XVM VIA000 PAGE 9

,
,THIS ROUTINE SHUTS DOWN ALL SPOOLING OPERATIONS. THE TIMER KEQUEST
,r~ ~ANCELLEO, SO'TWARE INTERRUPTS ARE IGNORED AND THE SPOL11 TASK
'I~ nlSCONNECTEO 'ROM ~IREX , ,
"NllI

lSi

BIS

MOV

CLR

CL.R

IIlICL TABL, R 1

'PROTECT ROUTINE (BR-138)

,NUL.L SPOOL~R TIH~R R~QUEST

,ENA8LE STOP ALL 110

,CLEAR DEVICEO SPOOLtO SWITCH

CLR SPCOD*4(Rl)

eLR

BIC

MOV

wAIT
DEC
BNE
aIS

MOV

,IFOF
HOV

CALL
JSFI

,ENoe
.IFOF
MOV
CAl-l.,
.ENoe
.IFDF
flDV
CALL
.ENOC
MOV

MOV

MOV

IIlISPDLSI'i

Rb
15
"LVL7,'IIPS

IIlITEVAOO,Rl

SLf'

IRESET SPOOLER SWITCH

'UNPROTECT TO ALLOW INTS. TO RUN DOWN (8R-138)

'ALLOW 2'" INTERRUPTS (CLOCK DR DEVICE) (aR-138)

,WAIT FOR THEM (BR-138)
ICOUNT 20 INTS. (8R-138)
,BRANCH IF NOT 20 (BR-138l
, INHIBIT INT.

'FINO THE ENTRY ADDRESS

LPCDD*2(Rl),~2 IfIND TASK ADDRESS

STPTSK ISTOP THE TASK
PC,STPTSK

SCO
CDCOD*2(Rl),R2 'STOP THE CARD READER TASK
STPTSK 'STOP TH~ TASK

Sf'L
PLCDO*2CRll,R2 ISTOP THE PLOTTER TASK
STPTSII

HRTURN,Rl 'GET RETURN INST. ADO IN Rl

IIItSEN011,R2

CRI) ,SPC;OD*2(R2l ISHUT OFF SENOll

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-13

SPOL.ll.1'1
fND
:55 1Il11:5. 1'121511127

IlII'1I11111M
f1UIlI",.

:511 11111'2 f11l1l"'~5
:57 11111 ... I1IU7f1t

01l11l11101
:58 0l11i1!l 11J1271'1'

11I1lIl1ll2.
3D 0115 .. I'lfl'7:5'
.111 111111511

IIIll!l1l 1'l1l1l7f15
11I11!l11l 11111271l1!5

IIlGl~5'2
'1 1111111.

0lllS. I1IU7G1A
111l11l!l!!!I'"
1l1'l11l1ll1!14

'2

0"70
1111172
13117:5

"'!!It
111111111

':5 0117. 1l0i57f1,
•• 11111711 0I!J14U
.5 111 121!11l 1l1/l5711,

17777.
.11 U204 UI ° III 1 III
.,. 01211111 f1I1'2f1~
'8 1II12lf1 122713

Ullllllfl7
'D 1Il1214 I1IUIlII'I"
15111 I1IUIII 1IIf15!1!l'
151 1IJ1220 1II!1!51114;
52 11l12U Ql05~7'-

177771'1
15:5 0122!1 p)1!I01!1117
5.
155

Spooler Design and Theory of Operation

MAe 11 XVM VI A000

BNE
MOV

MOY

JaR
'-Ii ADR

,

MOY
ADD

%REQ
MOV

lOT
.BYTE

n"T~1(1 TST
BEQ
TST

BPL.
MOV
CMPB

BNE
CL.R
CL.R
CL.R

ui RETURN

F'COOE(RIIl),1f4

2$
"l,Rl

UEN015,R2

PC,'(R2).
TCBOlS,RS
PC,R5
"TCBOIS-. ,R5

R2
1$

'SEE IF THIS WAS "END" OR IUPSUC 20 (BH-138)

'BRANCH IF IOPSUC 20 (BR-l~8)
'TEL.L. SPDL.lb DONE

'SET FA

'SEND REQUEST

,(GAR-l'l) IS TASK IN EXISTENCE?
,(GAR-l.1) 8RANCH If NOT.

"II (R2) , PDP"l1 REQUEST?

1$
-CR2),R:5
":lPCOD,IR3

15
'R2

,NO .- IGNORE
,yES •• TEST FOR SPOL.L.ER REQUEST?

-CR2) ,STOP TASK (CL.EAR TC8 ADR
1-2(R2) 'STOP DEVICE FROM INTERRUPTING

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-14

\

(

Spooler Design and Theory of Operation

SPO~II.141 HArl! XVH 1I1A01110 PAtiE 11
UTI~ITY ~OUTrN!S
1
2
3
4
II
15
7
8
D
10
11
12
13
14
III
16
17
18
111

0132111 lill 11170 ,
01322 Pl1527P1\

01111138,
U 1Il13215 Pl1II1'l41'1~
21
22
23
24
211
215
27
28
2D
30
31

I1I1;U15
1Il135111
013151

PlU!!15.
1111110~1'"
1111111 UIIII
111111 15M ,
001111111114

111127111 ..
1111111111111111
Ql1II1II1!!0"

35 01382
315

OIIII!
OIIIJI!!

01110'1111

37
38
3D
40
41
42
43
44
415

01311 .. 0U'-III!I
013118 022'-2'
01315\11 011151112'

.SBTT~ UTII.ITY ROUTINES

.IFDF SCD ,
,8FT UP TCB TO READ A
'CALLING SEQUENCE I , ,

CA~O FMOM eo
HOV BUFAD,R5
CALL STupeT

I
sTupeT' MOV

ADD
BR
.ENDe
.IFDF

pe,Ml
IITCBeD ... , R 1
SlUeOH

'GET ADDRESS OF TeBeo IN Rl

,ENTER COMMON ROUTNINE

SI.P ,
's~, UP TCB TO WRITt
,CALLING SEQUENCE I , ,

A L.INE ON I.P
HOV BUFAO,R5
CALL STUP~T

STIJn T. HOV
ADD

PC,R1
IITCBLP-.,Rl

'GET ADDRESS OF TCHL.P IN Rl I R5

BR STueOM

,
.ENDC
.IFDF SPI.

'8~T UP TCB TO WRIT~
,CALLING SEQUENCE I , ,

A_I.XIIIE ON PL
HOV BUFAO,R5
CAl.I. STUPPT

sTuPI'IT' HOV
ADD
.ENDC

PC,Hl
IITCBPI.-or Rl

'GET ADDRESS OF TCBPI. IN R1 I R5

STIJCnM. MOV

,

Mall
CLR

lREQ
MOV

lOT
.BVTE

RETURN

R 1 ,H5
4 (R1)

,8FT UP DISK TCB TO READ A
, CAI.I.ING StQUENCEI , ,
I
I
ST'IP"T I MOV

CMP
CI.R

R2,R!)
(R2)+, (R2)+
(M2) +

,RESET REv

'SEIliD

BI.OCK wITIi
ADR
AOR
ADR
CALL.

1110 INTERRUPTS
BUFf,R4
... CBN,R3
TeBOK-,R2
STUf'DT

'SAVE TCBP IN R5
,BUMP TO HEV
,RESET REV

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-15

& RETURN ADDM~SS

Spooler Design and Theory of Operation

SPO~tt.t41 MArl' XVM VtA0Q10 PAGE 12.
FINO A FREE A~~CK nN DISK
42 01556 ~20t0~ CMP
43 01560 101~6A 8HI
44 ,
45 01562 1'11 4 11'1' 7S1 MOV

RI,H3
!5bS

-(Hl) ,R2
45 , c ~ C ~ C ~ C ~ C ~ C ~ c ~ c
47 01554 1'110'6, MOV Rt,CWDPTR

48 015701
49 01572
50 01574
!II 1111578

001!131d
1'11'1520'
04110' Asi
050'11
o 1I1I,A7
00030d

52 1111602 166'1'11

53 1111606
54 0l6Ul
ee 01612
56 I1l1 6 1 4
57 01616

58 01622 '9 01624
60 01625
51 01630

62 01634
63 01636
64 01640
65 1111642

66 01646
67 011550
68 1111652

1'11'1336'"
10570,
0PJI~OI'
1'1015'111'
1'101530 t 8S,
03270'
1'Q1~I'!'"
1'11'11411"
005'(lI,
I'HHl301 9S:
111327111'
14631d
00140\
PJPJ5,Qlt
01116 3D" I 0!1 :
1113270'
1252!52
00141!"
011152111,
111867111' 11"
111111341.

INC
BIC
BIS
MOV

SUB

TSTB
BNE
INC
ASL.
BIT

BEQ
INC
ASL
BIT

BEQ
INC
UL
BIT

BEQ
INC
ADD

R2
(Rl),R2
R2, (Rll
R2,CBTPTR

BTMPAD,Hl

R2
85
Rt
Rt
11\ 70360, R2

95
Rt
Rt
IH453t4,R2

US
Rt
Rt
111252152, R2

tll
Rt
STBKNM,Rl

,DID wE GET TO BEGIN~ING wDRU
'YES, NO BITS, SET UP FOR 'EHROR'

'BACK UP TO GET COpy OF ~AP ~ORO
~ c ~ C > ENO Of EDIT Nt3~

'SAVE FIND POSITION fOR NEXT TIME CALLED

'SETS FIRST ZERO 8IT IN WORDII
'CLEAR ALL REST,LEAVING BIT ~OR OUR BLDK
'SET BIT IN MAP
'REMEMBER BIT FOR NEXT TIME

,BYTE INDEX FOR FOUND BLOCK ~

lIS BIT IN LOW HAL.F Of WORD
rvuP, NO CHANGE
'IN HIGH HALf, INC BVTE COUNT
'NIBBL.E (4 BIT) INDEX FOR FIND
115 BIT IN HIGH NIBBL.E OF BYTE

'NO, NOCHANGE
,VES, SO INCH NIBBLE COUNT
'CRUMB (2 BIT) INDEX POR fOUND BL.OCK
, IS BIT IN HIGH CRUMB Of MI~BLE

'NO, NO CHANGE
'YES, SO INCR CRUMB COUNT
INOw HAVE BIT COUNT FOR BLOCK
'IS 8IT IN HIGH BIT OF CRUMP

INO, NO CHANGE
'YES, SO ADO ONE
'AND FINALLY ADO ~Of FIRST MAPPED BL.OCK

/l9
70
71
72
73
74
715
76
7'1
78
79
80
81

I c ~ c • c ~ C > C • C • C • C ~ C ~ C • END Of EOIT H133
I

82 11111556 11600'
11111101111'1'

83 01662 12270,
111 00 III DI 4

84 011556 0111141 t
85 01ti7~ 1227o,

0"'0:?1'!~
86 0167. 11101411
87 01676 1227DH!

01110 1'lO115
88 01702 I'IDJUI!!
89 0171'14 0167"',

DlIIIJ2(511
90 01710 0111040~

,T~E F~LLOWING PIECE OF CODE CHECKS TO SEE IF THE CURRENT BLOCK TO BE
'ALLnCAT~D TO THE CURRENT SPOOLING TASK EQUAL.S THE CBN OF THIS
,DF.SPOOL.ING TASK'IF THIS IS TRUE, THEN THE 'SPOOLER IS OECLA~ED FLOODED'
ITHI~ HAPPENS ONL.V ON A WRAP AROUNO(ENTIRE SPOOL.ER AREA IS TREATED AS A
IRTNr. BUFFER)WHEN SPODL.ING OPERATIONS ARE WAY AHEAD Of DESPOOLING OPERATIONS ,
I
' ••••• NDTEI AS NEW TASKS ARE ADDED NEW CODE HAS TO bE ADDED •••••
, •••••••••• SIMIL.AR TO THE CODE fOR EXISTING TASKS •••••••••••••• ,

MOVB

eMF'B

BEQ
CMF'B

BEQ
C:MPB

BNE
MOV

2(RfIl),R2

HL.pCOD,R2

21$
~CDCOD.200,R2

225
HPl.COD,R2

265
TABPLC,R2

'GET CURRENT TASK COOE

,~P?

'NO. CD?

INO. PL?

nES

91 01712 01670' '\.,
BR
Jo10V

305
TABPCB, H2 .

11JDI3'51!
92 1111716 111"'04111'
93 ,
94 01720 01(57o, ,2"

01113'15"
95 01724 ~0'1
96 01724 1112011'
'in 01726 01111041111
ge 01730 ,6"
99 1111730

01131'1 11I12A3'
17777A

BH

MOV

eMP
BEQ

POP
MOV

3f1lS

UBCDC, R2

Rl,(R2)
55

UPS
CSP).,'HPS

'OEBUG,UNPROTECT

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-16

(

Spooler Design and Theory of Operation

SPOLII.141 MACII XVM VIA000 PAGE 12+
FINO A FREE BLOCK "N DISK
100
101 17:54 II)ClJ0l!1II7
102
10:5
104

'RETURN WIT~ BLOC~ H ON STAC~
RETURN ,

,S"RRY NO BLOCK FREE?? SETUP TO HALT CURR~NT OPtRATION
, c • < • c • < ~ c ~ < ~ c ~ < • c >c • START Of EDIT HI35

1015 11:56 1II1B70~ 55.1 MOV A~ND~K,R3 ,ADoR 'FINU~K" E~TER WHEN NO BLOCK
111013215111

105 17"2
17112 01261112

101 1144
1744 010341"

108 1146
1746 010248

1011 , c
11~ 1750 1111160' ~$I
III 17152 I'1l6f!tI'!

000010'
112 17!51!! '" U,66

00001111'
113 17 15 2

1762 01!iltUII
II" 17604

11604 010I04f1!
1115 1155

1766 0 U,04"
1115 1710

1770 010:'41"
117 1772

1112 010.046
118 17104

17711 11110"10411
1111 1776 013767

POP
MDV
PUSH
MOV
PUSH
MOV

R2
(SP)+,R2
R3
R3,-CSP)
R2
ROl,-CSP)

• < • < > < • c • < • c • c
MOV CSP),R2
MDV 2(SP),(SP)

MOV R2,2CSP)

R0
R0,-CSP)
Rl
R1,"CSP)
R2
R2,-CSP)
R3
R3,-(SP)
R4
RA,-eSP)
R~
RIi, .. CSP)

'STACK NOW IENTER PS/CALL ~CI

,MAKE IT IfNTER PS/ADoH FINuMK/CALL PC

'AND HOPE IT FALLS THRU 5 OK

> c • c • END Of EDIT HI35
,oEBUG,GET OLD PS,BR HERE 1 ~LK LEFT
'DE8UG,SET UP PC

,OEBUG,SET PS

PUSH
I"OV
PUSH
MDV
PUSH
MOV
PUSH
MOV
PUSH
MOV
PUSH
MOV
MOV 'HCTLCT,SoCTSV 'SAVE CURRENT COUNT OF PDP-II CTL 'CIS

SPOLll.141
TASK SOFTWARE
1

MArl1 XVM V1A000 PAGt 17

2
3
04
15
e
7
8 IHl27604

11 002772
10 ~277 04

II ~:511l02
12 0:5011104

13 03012
104 0:50104

115 03022
16 030204

tNTEIIRllPT DISPATCHER

02271501
111"-'0.,,01
.,,00"-'04
111011"12'
12271501
0C1J0,OI,
0000111'
0ClJI0417
12276111
01110204
1111/101/10,
0t11104015
12276111
0&:1102015
000011112
11)010411104
00111161
1II"'1"~

,
'S~NnI5 IN PIREX
,IF REQUESTED IN
,OF TI:B. SPOOLER , , ,
nEvIIIIT' CMP

BNE
CMPB

BEQ
CMPB

sEQ
CMPB

flEQ
JMP

TRANSF~RS CONTROL TO DEVINT BY A "CALL 'SfN011C-COo*2)"
TC~. THIS Is DONE BY A CODE Of '3' IN BYTE-3
SETS THE ADDRESS OF DEVINT IN SENDII WHEN START~D

Hl,4(R0) ,GOOD COMPLtTION??

55 ,BRANCH IF NO
HHKCOD+200,TCOOE(R0) JRK REQ.?

RKINT
HLPCOD+200,TCDOE(R0) 'LP REQ?

25
HCDCOD+Ol0111,TCDDE(R0) 'CO REQ?

35
PUNT

17 ,
18 J
19 03030 11)00,67 "I

20
21

22
2:5
204
25
26
27
28

030304

11)3041/1
1/1:50.40

1110053'

0"'0115"
1111'12"'14

11101111::>017

,
"liB I

JMP LPINT

JMP tDINT

RETURN

.SBTTL RK INTERRUPT SERVICE

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-17

Spooler Design and Theory of Operation

MAe!1 SPOLl1.141
RK INTERRUPT
I

SERvICE

2
3
4 11103312

15 1110331 II
II 1!le34f11!1
7 111Q134fl2
8 0034f114

1!le340<4

$I 1/lI!I34U

12 03<4211
13
14
Ie
18
17
18
U
2eI 03<43111

21 03434
122 034311

23 03<4"2

2" 0:5415,

215 03415"
211 03"1511
21 034110
128 03'112
211 03<4114

03.84

30 03470

1!IlIIIIIIH
1!J(lJl/J1II1'
1!Il0t1!13
00511121
111M",!!

0047117
lHOIell
1'-278111
11101001011
11111100128
IIII11U51l1
122'1801
1111110 PI!!!!J
1!100UII
I!IU43('1

0187111!
1IlI1I15811
1015111 l'
11118'11115
1lI1111!13n1
I!IIIIPl8!'1
tllPlI/JIIIg,.
1111110111U1
I1It 1i7111~
tIIGll "11111
1I!I5'1!3
11101341
1'15'-23
1t/I5U3

03471!J flJl274i1!
1lI1!101111!14

31

I
lOTlIl(
I
WRTT!,:I

32 03414 4411
03414 11112""/1

IIII!J0U4
33 031500

03500 0101411
3" 031502

XVM V!A000 PAGE 19

WRITE REQUEST WAS MADE FOR A SPOOLED DEVICE

MOV

MOV
CLR
CLR
CALL
JSR

12(R0),Rl

RI, H3
(R I).
(N I)
GIVflUF
PC,IOIVBUF

/ GET BUFFER ADDRESS IN R I I

'RESET HWOS

eMPB NPLCOD,DTCDOE(R0) 'REQ MADE FOR PL DEV?

SEQ
CMPB

431
NCOCOO,DTCODE(R0) ,REQ MADE FOR CD DEVI

42S
SLP

BEQ
.IFNDF
MDV
MOVB
RETURN
.ENDt

UOEV8T,RI
IIIOPS77,lPSPER(RI) 'REPORT TASK NOT SUPPORTED

.IFDF SLP
REQUEST MADE FOR lP

MDV LPBMSA,Rl

CLRB (RI)
MOV TABLAD,R5

MOV

MOV

TSTB
BNE
INca
INCB
CALL
JSR

PUSH
MOV

.ENDt

II (Rill) , LSB (R5)

LPO~AD,R3

(fill)
DONE
(f/lI).
(R3)
GETIlUF
PC,GETBUF

IIL.PCOD
IIL.PCOD, .. (SP)

PUSH IIf/UDF
MOV IIHEAD',"CSP)

PUSH
MOV
PUSH

RI
RI,"(SP)
NtlN(RI5)

'RESET LPIlMSA

'SET LSB IN TABLE

,GET ADD OF LPBMS IN R3

'FIRST TIME THROUGH??

'VESt SET SW.
ISET L.PBMD
'GET A BUFfER

'SETUP FOR GETPUT SAVE DEV CoDE

/SAVE DISK FUN.

ISAVE BUFFER ADO

ISAVE BL.OCK /I

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-18

Spooler Design and Theory of Operation

8POLll.141 ~Arl1 XVM V1AI01 PAGE 19+
R~ INTERRUPT S~RvIef

83502 018548 MOV NHN(R!),~(Spl
0111001411

35 03508
U51/115 1",'47157

1770511
38 03512

03512 0144787
17857.

37 035115 08270111
00011l1f1

38 83522 1Il"071'
311
48 83524 01370\ '2~1

001I/!!'lfl
'1 1113530 112'151

I/! 00 111 77
0011l1ll43

'2 035315 011l021!17'
43

•• '5 'W~ITE
'15 A2,1
''1
'8
411
5 III
!51
52
53
!I,
55
!lIS
57
58
511
11111
151
112 035'(11 1Il1371!11 ,3,1

o til 1 (Il!'llll
153 0354. 112781

IIl00l11n
14 III III III !I \

64 83552 00111207
85
156
15'1 ,w~ITE
158 .3~1
51)
'1 III
'11
'12
73
7.

CALL
JSR

CALL
JSR

ADD

GET~I<T
Pc:,GI!TRKT

GfTPIJT
PC:,GETPUT

IH0,SP

BR DON~

.IFNDF SCo
MOV ,.otVST,Rl

IGET A RK TCH

IGET BLOCK

'CL.EAN STACK

'CHECK REV & EXIT

MOVB NIOPS'7,COSPtRr~ll ,HEPORT TASK NOT SUP~ORTEO

RETURN
.ENoC
.IFDF SCD

REQUEST MADE FOR CD
MOV COBMSA,~l
CLRB (Hll
MOV TASCOT,R5
MOV B(R0),LSB(R5J
MOV CoONAO,R4
TSTB (R4)
BNE DONI:
INCB (H.)
INCB 1 (R4)
CALL GETHUF
MoV Rl,'(R4)
CALL GETBUF
PUSH NCoCOO
BR 44S
.ENDC
.IFNOF SPL
MOV ,.oI:VST,Rl

'SET CoBMO

'SET LSB IN TABLE
IVES. COONCE-0?

ISET COONCE
'SET COHMS
'GET A BUFFER
'SET CoOBCP

'SAVE DEV.COOE FOR GETPUT
'ISSUE REAO REQUEST

MOVB NI0PS17,PLSPERCR1) ,REPORT TASK NOT SUPpORTED

RETURN
.ENoC
.IFDF SPI.

REQUEST MADE FOR PI.
MOV PLBMSA,Rl
CLRB C~ll
MOV TABPLA,H5
MOV B(R0),LSB(R!)
MOV PLONAD,~3
TSTB (R3)
SNE DONI:

,RESET PL.BMSA

ISET LSB IN TABLE
,GET ADD OF PLBMS IN R3

,FIRST TIME THROUGH??

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-19

Spooler Design and Theory of Operation

MAel' XVM V1A000 PAGE 21 SPOL.ll.141
L.P INTERRUPT
1

S!RvII".E ,
2
;,
4
II
8 111035154
7 0035155
8 11I1!1355e
; 1Il035157
10 0;'5150
11 111;'5152
12 03564
13
14
HI
UI
17
U
19
2111
21
22
23 035156

25 03/500

215 03/5~4
27 03606

28 03612
2; 03614
~0 036115
;'1 111;'62,
:52 03622

03522

;'3 03626

34 03634
;,e 03636
36 03641/1
37 0;'6'2

;'8 031546
;'9 0315151'1

"'Ill'"
"'1111'1

1'1 III III

"'Ill'"
III III 0 1'101'1

o III 01110 III

o III ° 1110 III

IU 117'" 1
00143.
052737
00024'"
1777715
022711
177777
001111\ 4
01810;'
III1'l135fl1
1015023
11'1151'12'
1111!5"2~
1/I11~1'I~

IIIIIl4767
\76114!!'
042737
0111011101
01')\111415
",IIIIl:!07
111015711
0U '" 4'
0te70'
1Il013152
01140~

0315151'1 IHI4787
176(H"

40 03654 105244
41 1'J361515 101576.

'THI~ ROUTINE HANDL.ES COMPL.ETION OF I/O SOFTWARE INTERRUPT ~ROM THE
'DRIVER TASK IN PIREX. IT DESPOOL.S THE SPOOLED DATA ONTO THE L.p. ,
lPnUMII
L.p"NeEI
lPRMn:
lPI'IUFSI
lPrBTPI
LPwDTPI
I.PIIB yp I

LPTNTI

,
LPfNTI

t1~ :

.IFOF

.BYTE

.BYTE

.BVTe:

.BYTE

'" PI

'" .ENDC

.IFNDF
MOV
MOVS
RETURN
.ENOC
.IFOF

MOV

BIS

CMP

RNE
MOV

CL.RB
CL.RB
INCB
MOV
CAl-I.
JSR

RIC

RETURN
TST
BNE
MOV

foIO"
CAL.L.
JSR

INCB
TSTB

SL.P
III
o
III

"

SL.P

'UNUSED
lONCE ONL.Y SW
,BI.OCK IN MOTION SW
,EMPTV BU~F~R COUNT
,CURRENT BUFFER POINTER
'CURRENT WORD POINTER
,NEXT BUFFER POINTER

''fDEVST,Rl
.lOPS77,L.PSPtR(Rl) ,REPORT TAS~ NOT SUPPDRT~O

SL.P

TABCRT,Rl

."l,(Rt)

15
L.PDNAD,R3

(1'(3) •
(1'(3) •
(R3) •
(R3) ,"3
GIVBUF
PC,GIVBUF'

III ,nSPOLSW

(lH)
35
I.PCPAD,R4

(R4) , R3
GIVBUI"
PC,GIVBUF

.. (R4)
-I (R4)

'INMIBIT DISK INTERRUPTS

IANY MORE TO DO?

,GET C(LPCBIP) IN R3

'RESET SW.IS
'BUM!> TO L.PBUFS
'REL.EASE BUI'!'",

'GIVE BACK BU~FER

'NO, SET L.P IDI.E SW

'YES. BL.OCK IN MOTION?

ISK-124 VES. GET ADD OF L.l-PCPADBIP IN R2

IREI.EASE BU~FER

'BI.OCK READ IN?

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-20

Spooler Design and Theory of Operation

SPO~II.141 HArl! ~VH VI6000 PAG~ 21+
~P INTERRUPT SERVlr.E

42 0311112
43 031115 ..

177117
00140!'1

nllll .. 00"7157

044 03157111
<IS 031572
415 031172

A9 21371:2
S0 03714

!II 03120
S2 03122

S3 2137321

e<l 03134
!IS 037311
ell 2137"0

S7 03744
S8 037'"

1551 037!12

61 03752

82 11I371l6
63 03770
64 03772

8S 040111111
ell 04002

17!1~3111
000172

01670\
I'Il'In3".
131671l.,
013238",
00123S,
0127e1
013011104
002H"I
11I107111~
0!!I27".!'I
1"IlI5".
0113134
016461
111007' I'!
002332
01117111'
13012114
01132'
131131'
05271'
13130001 ..
00041'
1'11670'
011111'34
01"4(11
11100(11(11'"
111/127111
U00101'1
04271/1
117 401
01l11l11
1382111'
032737
0401l10'"
U11II4"1
0"'171'
032737
0011'1"'1'1\
I/I0U4i11
001701"1
032737
011111'113".
0011'14"1
0U7111"
130517,
"'".0111111",

11 1/J<il/J215 0010124
72 1114030 012111/5\

17777/1
0011101114

73 041/13/1 0010103
74 04040

1114041'1 131347117
01110241'1

7S 0413 01001111'"

.. Si

"JS.

711 0'0"11 011l713' , .. "
01111 til)!

77 11140152 01127111'
01301'10'

78 11141111511 12271'
1300"'0\

7g 111411152 0012117
81'1 0'06 .. 1I'IS711,

11777'1
81 041117o 0012154

BEQ
CA~~
JSR

BR

HOV

MOV

HOV

MOV
ADO

HOV
HOV

MOV

HOV
MOV
ADD

BR
MOV

MOV

ADD

BIC

ADO
ADD
BIT

BEQ
BIT

AEQ
BIT

BEQ
TST

liNE
eMP

BNE
CA~L
JSR

BF!
MOV

ADD

CMPB

BNE
TSTS

BNE

41
WAlTBK
PC,IoAITSK

105

'DEBUG

TABLE.NBN,TA~LE+CBN

114,TAB~I:+CRP

PC,R3
IILPOBIP ... ,R3

'SET CRP

'GET LPOBIP ADD. IN R3

(H3),R4 'GET C(LPOBIP) IN R3 & BUMP TO TWOl
TWD1CR4),TAB~E+NBN ,SET ~P.NBN

LPCf'AD,R2

(H3) , (R2) +
(N3) • (R2)
.. , CR2)

55
I.PCWAD,R2

IItR2) , .. CSP)

III),CSP)

11177401, (SP)

,GET ADO. Of LLPCPAD~IP IN H2

'SET LPCBlp
'SET LPWOIP

'SEND WRITE REQ IF NOT SMUT UOWN
,GET ADO OF LPWOIP IN R2

'EVEN BYTt COUNT

(8P),(Rl) 'BUMP CRP
(SP).,(R2) 'BUMP LPWOIP
1140000,'IISPOLSW ISHUT DOWN?

2$
II!,'IISPOLSW

2$

ISHUT I.P?

1110000"IISPO~S~ ISMUT OESPOOl.ER

25
'CR2,

13S
-2(Rl),4(RI)

145
125
PC,125

lIS
LPONAD,R2

III, ,R2)

I~S
-I (foI2)

1~5

'FIRST RECORD 4 .CLOSE?

IANY HORE DATA?

,NO. SET TASl.E ENTRIES

'RESET SWITCHES & EXIT
lOEBUG'SK-124 GET LPBUFS AORHESS

,OEBUG'SK .. 124

,DEBUG,SK"124 ONE FRE~ BUfF~H?

,SK-t24
,OEBUGISK-124 YES, ~LOCK IN MOTION?

'SK"124

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-21

Spooler Design and Theory of Operation

8PO~ll.l'1 ~AClt xv", V1A000
~p INTERRUPT S!RVlr.E
12 1411172

111.11172 111847S7
IIIA014ft

I! 0'078 fllllfleS, , , 54
815
811
17

1411111 1II11~~~ t!t'
IU1Il2
"'11112

18 fl'lIle

eg "'1112
D" 0'11'

Dl U1U

D2 fI'1I2.

D! 041!1II
g. 04U2
D15 1II'1!.

gil 041'0
g7 0'1'2
De fI'14.

DD 04U"
10fl '1152

101 '1158
102 'Ue
103 '1112
1001 4ItIl.

U15 4172
1es 417"

efl'781
1715~1~
01871111
0181114
011204
0t7I?ft
U011!fll'l
01127UI
111001'1"!!!
0.27111
1 77 o1(IJ \

08281'1,
111107111
011270'
177 '2~
1IIPJ5714
001'17
02271A

1"""" 0IIl101t4
1221111
111001'11111
tlllllUI!
1057.,
IU?2A
0215181
177.,7t1
00011H11.
00182'"

'17. 111047S7

107 '2U
Us
10D

00"111,,,
IUSU

,

CAL.L.
JSR

8R

MOV
CAL.I.
JSR

MOV

~OV

MOV

AOO

8IC

ADO
MOV
ADO

TST
8EQ
CMP

BEQ
CI'IP8

8NE
TST8
8NE
CMP

8EQ
CALL
J5R

BR

IIR2,R!!
5TUPI.T
pC,STUP~T

fABCRT,Rl

(H2) ,R.
"CR2),-C5P)

II!!,CSP)

'1177Ul, CSP)

C8p).,R4
PC,R2
IIl.p8UF S ... , R2

(R4)
51
"-l,CR4)

6s
Ill, CR2)

!!Ies
- (R2)
!!Iras
-2(Rl) ,4(R1)

!!Iras
gS
PC,IIS

15K-124 NO. GET NEXT ~I.OCK

18K-124 REI.EASE BUFfER & WAlT FOR BI.OCK TO COME lIN

IND. SAVE BUfF ADD ON STAC~
18ET UP TCB TO UNTI ~ I.INE

ICMECK FOR ~UFFER EMPTY
IGET 8YTE COUNT

IEVEN 8YTE COUNT

18UMp R4 TO POINT TO PT WORD OF NEXT
IND. GET ADO O~ I.P8UFS IN R2

ILAST RECORD?

Il.P8UFhl

IYES. BI.OCK IN NEXT?

INO. MORE TO ODE (C~N.1.88,

15K-124 GET NEXT BI.OCK

'SK-124 EXIT

110 IBuFFER EMPTY I TE8T IF MORE ~I.OCK TO DO?

111 .212 0261t11 tiS.
171771'1
0000111.

112 .210 001'1'
11! '212 01/l!!~11
11' .21. 1227"

o III 0111 " 1
H!l .22111 III11l111!fl4
118 '222 10157.,
117 '22' 1'I1'll1l!"'I
1111 .22S

'228 1110'''S1
11111101'11'1

CMp

BEQ
CLR
CMP8

BNE
TST8
BNE
CAI.~
JSR

7S
(R 1)
Ill, (H2)

as
-(R2)
81
liS
pC,ilS

IMORE TO DO? (C8N-I.SB)

18K-12" SET CRP."
Il.p8UFSal1

181.0CK IN TRANSIT?
,SK-124
'SK-124 GET NEXT BI.OCK

Figure 5-1 (Cant.)
UNICHM~NEL Spooler Components

5-22

Spooler Design and Theory of Operation

8POLll,141 MAe I')tVM VIA011J1IJ PAGE 21+
LP INTERRUPT A~Rvlr.E

1111 4U2 1!lfI01tS1 81, JMP ~ilS ,SK-125
l".n8

120 ,Nn MORE BLOCKS TO 00

121 '2311 1S, CAL.L. US 'SET TABL.E tNTRIES
42311 0041151 JSR PC, US

011101114,"
122 '242 00071:'\ 8R 81
123 ,
U. ,
1215 ,GFT NEXT BLOCK

128 'U' lIS , PUS~ Rl
.U4 1I10U(II MOV Rl,- (5P)

121 .2411 PUS~ R2
'12411 01024(11 MOV R2,-CSP)

128 '2D0 CALL GET8UF "'ES. GET BUFFER & READ NEXT BL.OCK
.2DfI 0047111 JSR PC:,IiETBUF

111511111
1211 4215. 010104 MOV Rl,R4 'SAVE BUFAD IN R4
130 '21511 POP R2

421111 012802 MDV (8P)+,R2
1:51 '2150 POP Rl

42110 012801 MOV (5P)+,Rl
1:52 42112 010.151 MOV R4,LPOBIP 'SET LPOBJP

11721(11
133 421111 1I!I5U, INCB (~2J 'SET LPBMS 5W
134 .210 1I1210:'\ MOV "L.PCOO,R3 ,GET DEV,COOE IN 1'3, FOR GETBLK

00011104
1311 4274 01010' MOV Rl,R2 'GET LP,CRP ADD. IN R2
138 4218 CALL GETBL.I< ,GET BLOCI< 1'1'0101 DISK

'2111 0041151 JSR PC,GfTBL.K
011!0 1!10 (I

131 '31112 000201 RETURN ,SK-124
138

1311 .30. 12Sl
14e 4304 012111 MOV "-l,'Rl 'SET CRP·-l

11"""
141 '310 0121151 MOV ""l,I5(Rl) , SET L.FB"l

1,.,,.11
'UI0U/!

1.2 4315 011102'" RETURN
143
14. .ENOC
145 ,SBTTL LP CALL ~ERvlCE

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-23

5POL.11.141
L.P CAL.L. SERVICE
1
2
3
<I
15
e 00<13~0
7 00<1321
II 00<1322
" 00<1324
10 043211
11
12
13
14
115
16
17
Ie
19
20 01133",
21 043:5~

22 04340
2:5 04342

04342
24 043.4
215 0113411
211 04315",

27 04315.
ti!8 0.31511

29 04362
30 043511

31 0<1370

32 043741
33 043711
:54 04400

0.400
315 04402
35 04404
37 04406

:58 04412
:5SI 04414

00f11
"'0'" 11100",,,,,,,

0010010'"
1I!I!II1IDlrilCil

0HUI
0:52737
11I2001M
A"'I01A!'!
11I014:5~

A 101411
0U\"',
010104
015010~
01!10A1'"
0",6301:5
011:570:01
01110'114'"
11130'
01127~1:'
0011101015
0<12701,
1" 41111
0110201
IIIlll1A'1

014!'lM!
001112""
11121101
02270\
00111177"1
0024111'

1/144111 0047117
111111031511

40 0442111
04420 0121104

41 04422

SPOL.11.141
LP CAL.L. SERVrr:"

0.422 00<17e7
0Q10~"QI

42 044211 OltIJ0UI!
43
44 0.43Q1 012711Q1

1772lII0I
011J0Q1IJ4

415 04436
0.436 IJ 101411

46 044.1/1 0Q10U!7
174!'17"

4,
48 04<14. 005741

Spooler Design and Theory of Operation

MAr,ll XVM V1A000 PAGE 22

,
IT~IS ROUTINE SERVI~ES CALL.S TO OUTPUT OATA ONTO TME LP. IT ~POOLS THE
lOATA SENT BY THE CALL.ER ONTO TME DIS~.
I

LPnUMCI
LPFIMSI
LPrBCPI
LPwOI".PI
LP"Br.PI

LPOI LI

LPeALLI

.IFOF
,BYTE
,BVTE
o
QI

'" .ENOC

,IFNDF
MOV
MOVB
CALL
,ENDC
,IFOF
CMP
BIT

BEQ
PUSM
MOV
MOV
MOV
MOV

ASL
ADD

MOVB
ADO

SLP
o
o

SL.P
fIIIDEVST,R1
11477, LPSPER (H 1)
DEQREQ

SLP

'UNUSED
,BLOCK IN MOTION SW
'CURRENT BUfFER POINTER
,CURRENT WORD POINTER
'NEXT BuFF POINTER(OUMMY)

-(Rl),-(Rl) 'POINT R1 TO LPWDCP
1120000,'.SPOLSW 'SHUT SPOOLER?

US
IH
Rl,"(SP)
ClUJ ,Rl
R 1, R.
10(R0),R3

R3
'"MEMSIZ,R3

(R3) , R2
"!S,R2

'SAVE Rl. NO

'GET CONTENTS OF LPwOCP IN Rl,R4

IGET CALL.ER BUF. AOD. IN R3

,REL.OCATE ADD.

,GET BYTE COUNT FRO~ BUFFER IN R2
IADD HWO BYTE COUNT. EVEN BYTE COUNT

BIC 11177401,R2

ADO
MOV
PUSH
MOV
ASR
SUB
CMP

BLT
CALI.
JSR

POP
MOV
CAL.L.

R2,FU
(SP) ,RS
.. (R5)
• (Rll) ,. esP)
R2
(SP)+,Rl
"HIII,RI

4S
COPBUF
PC,COPBUF

'BUMP LPWDCP BY THE SIZE OF NEXT RECD.
'GET LPWOCP ADD. IN R4
'POINT TO LPCBCP & SAVE CONT. OF LPCBCP ON STACK

ICONVERT TO WORD COUNT
ICOMPUTE SP~CE REM.

'SPACE L.EFT1

,COPY CALL.ER BUFFER

ITEMP SAVE HI IN R2

'CHECK FOR .CLOSE

MAC 11 XVM V1o\000 PAGE 22+

,
1 QI!!II

lLAST
I'ISI

JSR PC,bS

BR 8S INO

MOV ,,-51110,4(R0) 'SPOOL.ER SHUT DOWN.

PUSH Rt ,DUMMY
t'OV Rl,-CSP)
JMP DEQI'lQ

RECORD WAS NOT A .CL.DSE
TST -(Rl) ,POINT R1 LPCBCP

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-24

REPORT

(

Spooler Design and Theory of Operation

SPO~11.141 MAell XVM V14000 PAGE 22+
~P CAU 9E"VIC~
411 044415 I'IUII!"
!l0 0"4151'1 005121
!II 044152 I1It1UJI
51! 04454 1111"",
5;, 044!5e 1'12211'11

00011",
54 044112 003"'!4
515 044114 0101~, Qsi
!III ",441515 111 fIl 21 111 I

177'/5!1I
57 04472 011151'1"

1111'101'1 111 !II
!l8 044711·

0447/1 0041f1l,.
114731'1

159 04!H!2
041502 010141'1

110 0451114 1'111511'1,
177f1l1'

151 041511'1 111111115,
IIUl01711

112 0.51. 1'I121111~
0001'11114

153 04!120 018101
1'11'11'147'"

114 1'14524 11'1521 1
1115 04!126

045215 0047117
1111'11'1371'1

ell 04532 1'111170'
"'111044/5

157 04!1315 ~Sl
0.536 1'104761

175",,-,
158 1'145A2 010124
ell 1'1.5"''''

1'1.544 1'112151'
71'1 Pl4!1"'15 0e1210.

0001'11""
71 1'14tH52 1'111'1114
72 1'145!14 'SI

PI'5!!4 0041157
17 "'4!!I'I

73 0.5151'1 .Sl
1'I"'!1150 012!!1'I1

7'" 045152
0.562 011'1;'41'1

75 0415e14
,"5114 0\0'-41'1

711 045ee 01'1507\
01'101'10(11

77 1'14072
1'1"'572 01!147e11

17'41542
78 1'1"'5715

045715 0101411
711 mAe",,,,

1'141500 1Il041f1l7
175515'"

81'1 1'1480. 1Il11ell
81 0481'1e IHel10.

1'I1'II'I~7'
82 0"'1512

l'I'ell2 01144!!
83 0"'61",

"''''1'J14 11I1104AfI!
84 0"'8115 011211/5

0"'1/1,,"
B5 0"'1522 IIll6f1!31'!

1'11'11'1"'04
86 0.t'J26 11110124
87 0"'153", l'Ie210 I

1111'10",1'1'

MOV
TST
MOV
SUB
eMp

BGT
MOV
ADO

c~"

CALI.
JSR

PUSH
tolD V
MOV

MOV

MOV

MOV

INCB
CAI.L.
JSR

MOV

CAlL.
JSR

MOV
POP
MOV
ADO

MOV
CAL.L
JSR

POP
MOV
PUSH
MOV
PUSH
MOV
CI.R

CALL
JSR

PUSH
MOV
CAL.L.
JSR

MOV
MOV

PUSH
MOV
PUSH
MOV
ADD

MOV

MOV
ADO

R 1, R2
(R ll+
(Rl) ,"1
(R2) ,Rl
N770,Rl

25
PC,Rl
NLP~DCP-.,Rl

fI (R 1)

FINDt!K
Pc:,~I~OBK

Rl
Rl,-(SP)
I.PCBCP,R2

(51'), TWDI (R2)

#LPCDO,RJ

LPBMSA,Rl

(R 1)
PUTBL.K
PC,PUTBlK

L.PC!lAD,R4

GI::TBUF
PC,GETBUF

RldR4)+
(Rll
(51')+, (Rll
#4,Rl

Rl,(RA)
DEQREQ
PC,OI::QREQ

Rl
(SP)+,Rl
R~
R3, .. (SP)
R2
R2, .. (Sp)
fI tR 1)

F1N08K
PC, I'l~OB!(

Rl
Rl, .. (SP)
G!:.TBUF
PC:,GETBUF

(5P), (Rl)
LPCBAD,R4

(R4)
(R4), .. (SP)
(~4)

(RA) '''(51''
NTW01,(SP)

4(8P),'(SP)+

R 1, (R4) +
N4,tH

'SAVE IN R2
,BUMP Rl LpWDCP
'GET CURRENT WORD ADD. IN Rl
'GET REMAINNING N OF ~ORDS
'SPACE ~EFT?

,GET AOO. OF ~P~DCP IN "1

,NO. PUT BUfFER ON DISK

,GET OISK BLOCK N

'SAVE BLOCK N ON STACK

'GET C (L.PCBIP) IN R2

'SAVE BL.OCK # I~ TWOl

,GET LP,OEV CODE IN w3

,SET LpBMSA

,PUT BUFF, ON DISK

'GET AOD, Of LL.PCBAOIlCP IN RJ&R4

'GET A NEW BUF

;SET L.pCBCP-BUFAD
,SET BL.OCK N IN HWD0 OF NEW IlUFF,

'BUMP R2 TO WORO 2 of BUF

ISET I.PWOCP
,u~QUE REQUEST & EXIT IN wAIT STATE

,RESTORE ADD. OF CURRENT I"O"U IN HI

'SAVE R3dl2

'SET BUFF, !:.NO SW

,GET DISK BL.OCK #

,SAVE BLOCK N

IGET A BUI'F,

,SET BI.OCK N IN Hit/Om OF NEW !lUI'F.
'GET ADD, 01' LL.PCBADIlCP IN R4

'SAVE CONT, OF ~PCBCP

IBUMp TO Tlo/lll

ISET L.INK IN OLO t!UFF.

,SET L.PC8CP & BUMP TO L.P~DCP
,POINT TO WDRll 2 IN t!UFf,

Figure 5-1 (Cant.)
UNICHANNEL Spooler Components

5-25

Spooler Design and Theory of Operation

Sl'OLll.141 HACII XVH V1A01110
LP CALL. S!RVtC!
88 111411301

00183. I!IU,''''
U 0411315 IUIIIU'
III 0'8010 f1tllltU
111 00111'2 01811'"

I!IUllll!I8
112 ... 8018 1!11IIelll3

"1!I1!IIIl 1 III
11:5 041i152

048112 1Il"47117
""0IU

U 0'"1515
0481511

115 ... eelll
111'11811

118 11)48112

lie "'"7!!

U21111l.

1!11280'
1!I127113
1!II!IlII!IU
1!11I27"1'I
III III 01!! "1'1

184872 I!IUo101,,.
1111 0018701 1IJl871111

""'132'-
10111 01700 1I!I15~t1
11'11 47182

471112 1!IIIl'711,
lIl"I!I2U

1IIJ2 .7188
0171!111 1IJl2fH'l'

In .7118
.7111 00.711,

lIliUlII'"
1001 '7101 ""18717
1188 .718 "10'''' 1'111
108 .721!1 1Il111114
107 '722 1'122711.

1Il"8'14
17777"

US .73", IIlUIII2i
UII 47:52 "11'110.
lU 0173.

0173. 0U7IHI
47311 1Il1l2711l'

11101;'3111
111 47'2 1Il1871!1\

III "Ill 23 1'1
1 12 '7'"

017018 1!I1U'8
113 '71!~ 1!I1711'

1IlIIII!IlllBIII
11' .78. 1Il1111111
118 47811

47158 III 121'111 I
III III 0 111M

1111 4782 "'1278,
177777
"1Il1!l77.

117 477111 1IJ(II15721'1
11 e 01772 ""1113'

PUSH
HOV
HOV
HOV
HOV

HOV

CALL
JaR

POP
HOV
POP
HOV
HOV

ADD

PUSH
HOV
HOV

INCB
CALL
JaR

FlOP
MOV
CALL
JSR

SR
HOV
HOV
CM!'

SIIIE
HOV
ADR
HOV
ADD

HOV

PUSH
HOV
HOV

HOV
1101'
HOV

HOV

TST
SR

1111 017701 "1IJ0~'" 71i RETURIII
11218
121 .ENOC
1122 '7711 eOFlBIiFI
123 017711 028737 CHI'

17812'
""uel'l

124 '1114 1IJ1IJ1111"~ BillE
128 8110S "'12~2' MOV
1211 801" 0111'31'1' DEC
127 '1812 1!I1111~71 BillE
128 151'11, 1'111.78 HOV

IIllllI!IIll"',

PAGE 22+

fU
Ro1, .. (SP)
Rl,CR')
Rl,R'
IICSP),R2

utap),R3

COPIIUr:
PC,COPBUP

R4
eSP)+,R4
R2
(81')+,R2
"L.PtOO,R3

R.
R4, .. CSP)
LPBMSA,Rl

(R 1)
PUTBLK
Pt,PUTBL.K

R4
(8P)+,R'
SS
PC,bS

2S
R4,Hl
(R1) ,R4
"LPtLOS,.2(1I4)

71
Rl,H'
TAIILE.L~B,1I2
PC,H2
1I1ABLE+LFII-.,R2

LPCBAD,Rl

(R2)
(R2) , .. (SP)
'CR1), (R2)

CRt) ,Rl
2 CR 1)
(SP)+,2(R1)

'SAVE LPWDCP ADD. ON STAtK

'SET LPWOtP
'GET tONTo OF LPWDCP
'RESTORE R3,R2

'COPV CALLER BUFFER

'SAVE LPWOCP ADD. IN R.

,CONTI OF LPCBCP ON STACK TO~777

'GET OEV.CODE IN R3. r:OR PUTIILK

, CLEAN Sf ACK

'SAv! R5

,SET LP8HSA

'PUT BUFF. ON DISK

'TEHP SAvE Rl

,CHECK FOR .CLOSE

'SAVE R4
,GET C(LPWOCP) IN R4
, FF+CR7'1

,RESTORt(H.
'GET Lp.LF8 ADD. IN R2

'SAVE OLD LFB

'SET LFB IN TABLE

,SET OLD L.FB IN BUFFER

'SET EOF CODE IN BUFFER

(SP) •
9$

,RETURN TO II (NOT SUB RETURN)

SOCTSV,'"CTLCT

11
(HJ)., (R4)+
R2
COPIIUF
R4,'2(SP)

'DEBUG

,eopv CALLEH BUFFER

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-26

Spooler Design and Theory of Operation

HAel! XVM V1A1II0111 PAGE 23 SI'OLI1.141
PL INTERRUPT
1

SI'RVIeE ,
2
3 ..
S
6
7
8
9
U
11
12
13
U
US
!II
17 01111122

!II 011025

111 0111113 ..
20
21
22
23
2A
25
2S
27
2B
U
3fII
31
32
33
3 ..
35
35
37
38
!II
"0
"1
.. 2
"3
.. 5
.. 5
.. 7
.. 8

"" 50

0131111\
IIIUCIl5C11
1 t2751
IIJ(IIIICIIl1
","'!/J1Il5!
(lJPlIIl2P17

'THt~ ROllTINE HANDLES COHPLETION OF 110 SOFTWARE INTERRUPT FROH THE
'D~IvER TASK IN PIREX, IT OESPOOLS THE SPOOLED DATA ONTO THE XY PLOTTER, ,
PLnUHI'
PLI'INr.EI
PL"'I'4" 1
PLI'UII'S'
pLeerp,
PLIIIO!p,
pL"BTP,

PLtNT'

,
PLTNTI

U,
!l1U1
UI

"'1

,11'01' IPL
,BYTE 0
• 1:1 ¥TI! III
,1:1 ¥T!: III
,BHE II
1/1
PI
I!I
.ENOC

.IFNOF IPL
HOV UOEVST,Rl

HOV8

RETURN
.ENOC
,IFOF IPL.

HOV
8IS
CHP
BNE
HOV
CLR8
CL.RB
tNCB
HOV
CALL
BIC
RETURN
TST
BNE
HOV
HOV
CALL
INCB
TST8
SEQ
CALI.
8R
HOV
HOV
HOV
f'lOV
HOV
HOV

TABPDT, R 1
"I.VI.I5,""PS
"-I,(Rl)
11
PLONAD,R3
CR3) •
(RJ) •
(1'3).
CRJ),RJ
GIVBUF
1f4,'/fSPDI.SW

(Ri)
3$
PLCUO,R4
CR4),R3
GIVSUF
-(R4)
·lCR<I)
41
IoIAIT8K
101
HBPDT ,R2
2(R2),.2(R2)
U, (N2)
pL0140,R3
(R3),R<I
TW01CR4),2(R2)

'UNUSED
,ONCE ONLV Sill
,BLOCK IN HOTION sw
,EHPTY BUFFER COUNT
,CURRENT SUFFER POINTER
,CURRENT WORO POINT~R
,NEXT BUFFER POINTER

'REPORT TASK NOT SUPPORTED

,INHIBIT DISK INT,
'ANY HORE TO DO?

'GET C(PLCBIP) IN R3
'RESET SIoI.'S
'SUHP TO PL.BUFS
'RELEASE SU~F,

'GIVE SACK BUFFER
'NO, SET PL IDLE SW

'VESt BLOCK IN f'lOTION7

'SK-124 VESt GET ADO OF PLCB1P IN R2
'RELEASE SUFFER

'BLOCK READ IN?

'NO

, SET. CBNaNBN
'SET eNP

'GET PL.OBIP ~DD, IN H3
,GET C(PLOBIP) IN R3 & BUMP TO TWOl
,sn PL.NSN

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-27

8POI.11.141
PI. INTERRUPT
51
52
5~
54
55
55
57
55
511
50
51
62
5~
64
55
5e
67
68
511
70
71
72
7~
74
75
76
77
70
79
80
81
82
8~
8.
815
86
87
68
89
90
111
92
II;,
II.
95
116
117
118
g9
100
101
102
10J

Spooler Design and Theory of Operation

MAtll XVM V1A000
5ERvIrE

MOV
MOV
1010'1
MOV
ADO
BR

~S, MOV
1010'1
ADO
IHC
ADO
ADD

!lSI eIT
BEQ
BIT
BEQ
BIT
BEQ
TST
BNE
CMP
BNE
CALL
BR

1.,1 1010'1
ADO
CMPB
BNE
TSTB
BNE
CALL
BR

lJ,. MOV
CALI.
MOV
ADO
"'0'1
1010'1
ADO
BIC
ADO
MOV
ADO
TST
BEQ
eMP
BEQ
CMPB
SNE
TSTB
BNE
CMP

PIIGE 23+

R2,Rl
PI.ClAD,fl2
(R3),(R2l+
(R~) , (R2)
",(R2)
55
PLIIIOAD,R2
'(R2) , .. (SP)
1I~,tSP)
11177'01, (SP)
(SP), (Rt)
(SP)+, (R2)
11401210121,'IISPOLS\II
25
"4,'"SPOI.S\<j
2.
1110000,'/lSPOI.S\II
25
'(R2)
135
.. 2(kll,4(R1)
145
12S
l1S
PLONAO,R2
112,R2
111, tR2)
lOS
.. 1 (R2)
HiS
95
l~S

'SAVE PI..CRP ADD. IN Rl
,GET ADO. O~ PLCBIP lN R2

'SET PI.CBlP
'SET Pl.wDIP

'SEND wRITE REQ IF NOT SHUT UOwN
,GET ADD OF PLwOIP IN R2

,EvEN BYTE COUNT

'BU"'P CRP
,BUMP LPwOIP
,SHUT DOWN?

'SHUT Pl.?

'SHUT OESPOOLER

II.AST RECORS?

,YES. ANY MORE DATA?

'NO. SET TII~I.E ENTRIES

'SK-124 GET PLBUFS ADDRESS
'SK-124
'SK-12. ONE FREE SUFFER?
,SK"124
'SK-12. YES. BI.OCK IN "'OTION
ISK-124
,SK-124 NO. GET NEXT BI.OCK
,SK-124 IIIIIIT FOR BI.OCK TO COME IN

'R2,R5 'NO. SAVE BUFF ADO ON STACK
STUPPT ,SET UP TCB TO UNfI A I.INE
PC,Wl 'GET PL.CRP ADO. IN Rl
IITABI.E+PLTEOF".+4,Rl
(R2),R4 ,CHECK FOR BUFFER EMPTY
'(R2),-(SP) ,GET BYTE COUNT
115, (SP) 'EVEN BYTE COUNT
11177'1211, (SP)
(SP)+,R4 'BUMP R4 TO POINT TO PT WORD OF NEXT
PC,R2 'NO. GET ADD OF PLBUFS IN R2
IIPI.BUFS-.,R2
(R4) 'LAST RECORD?
65
11-1, (Roll)
65
IIl,(R2) ,PI.BUFS.l
!HlS
-tR2) 'YES. BLOCK IN NEXT?
50S
-2(Rl),4(Rl) INO. MORE TO DOE (CBN-LSB)

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-28

SPOL11.141
ADDRESS TABLE
1
2
~ 0015160
4 001516\'1 11I11l21515/11
!!
IS 0015162 00315!!!5
7
IS 00!!164 01111l311l.4
II
10
11
112 0!HIlIl 0015278
1~ QlIl170 011l151'7,
14 015172 011l6,154
1!! 015174 0"11S25'"
11l 015176 0t!163M
17 015200 \'1M",
111 0152'2 1II1Il1l:56A
19
20
21
22
2~

24 015204 111111432'
2!! 015206 0l1l3151Sl!
26
127

(28
211
30
31 015210 IIIlIl641 ,
32 111!!212 I1101UIII
33 Ql15214 lIllll2,24
34 0152115 IIIM'4'
3!!
3!1 0!220
37 0!5220 (HI 3, IS '"
38 0'222 Pl04:5l!t
311
40 015224 001Sl!7DJ
41 015228 0Pl!iI:!8"1
42 015230 0111811 III
43
44
415
41S
47
48
411
150
!!1
152 1!l52~2 eM:!1.
l'J3 0l'J2~4 0015"11111

Spooler Design and Theory of Operation

MAe 11 XVM V1A000 PAGE 28

,
ADueL'
RKeAI'I'

LPI'INAO'

TA~PLAI

PLI'INAO'

ehPAD'
STI\K~A'

UI'L1D'
TA~Pr:B'
TAFlPlC,
TAIICI'IC'
TCAK,A.
~IFD"
COePAD'
eOeB1O.

LPeBAO.
LPeWAO'

pLe8AO'
pLwOAD'

TCAK:'!A.
AfNDf.lK'
AS"LFU'
aUFLAl"

LPePAD.
LPeZAO.
LPeMSA.

TAlIcnT I
TAACIIT I
TAIIIPnT'

PLr:IADI
"LI'\UO'
"LI'!MSAI

CDF!M~A'
eDrNTAI

TAIIDeT.
CDr.AAO'

• SBTTL AOOIiESS TABLE

.WORD RKTC"P

.11'01' SLP

.WORO LPONCE

.fNDC
• WORD TA8Lt:+PLTEOF
.11'01' SPL
• WORD PLONCE
.ENOC
.WORD 8TMPST
.WORD STUN,.
.WORO TABLE
.WORD TA8L.E+CBN
.WORO TABLE+PLT!Of+CBN
.WORD TABLE+COT!OF+CBN
.WORD TCBDK1
SCO
.WORD COCSIP
.WORD COCIICP
.ENOC
.11'01' SLP
.WORD LPCI!CP
.1oI0RO LPWOIP
.ENDC
.11'01' SPL
.WORO PI.C6CP
.WORO PLWOIP
.ENOC
.WORO TCBOll3
.wnRO FINOSK
.WORD SPL'UL 'U13SlU
.WORO BUFLHD
.11"01' SLP

.WORD L.PCIIIP

.WORD LPBM!

.ENDC
• WORD TABLhCO TEOI'
• WORD TABLE+CRp
.WORO TA8L.E+PLTEOf+CRP
.11'01' SPL.
• WORD PLCSIP
.WORO "LOSIP
.WORD PLBMS
.fNDC
.lFDI" SCO
.WORD COBMS
.WORD COlNT
.ENOC
.WORO TABLf+CO HOf+eRP
.WORD COCAL.L

Figure 5-1 (Cont.)
UNICHANNEL Spooler components

5-29

Spooler Design and Theory of Operation

I OUTPUT TASK I
SPACE LEFT IN BUFFER
FOR CALLER'S DATA?

N

COPY CALLER'S DATA INTO BUFFER

EOF?

SET EOB SWITCH
SET EOF SWITCH

SET LFB IN TABLE

BUFFER POINTERS

N

SUFFER FULL?

N

Figure 5-2

CALL FINDBK FOR AN
UNUSED DISK BLOCK

SAVE DISK BLOCK #

CALL GETBUF FOR AN
UNUSED CORE BUFFER

SET NEXT BLOCK # IN OLD
BUFFER. SET BLOCK # IN

NEW BUFFER

UPDATE POINTER TO BEGINNING
OF NEW BUFFER

CALL PUTBLK TO WRITE OLD
BUFFER TO THE DISK

Task Call Service Routine

5-30

Spooler Design and Theory of Operation

Set the SPOOLER task control
registers

Setup the disk TCB pointer
table

Setup and initialize BITMAP

Initialize and setup TABLE

Set the SPOOLER switches

LINE PRINTER OPERATIONS:

Initialize the LP call service
routine switches and pointers

Clear all pending LP task re
quests in PIREX get a free
block on disk, get a buffer.

Set the NBN entry in TABLE.

Process the next SPOOLER
request

5.5.2 LP SPOOLING

lines 19-23

lines 25-33

lines 35-54

lines 55-64

lines 65-67

lines 94-95, 101-104

lines 96-98

line 100

line 120

All requests issued to spooled tasks (TCN = 0-177) after a 'BEGIN'

directive to the SPOOLER, are processed by the SPOOLER. This is effected

by PIREX. When the LP handler in the XVM issues a request to the LP

driver task in PIREX, the SPOOLER processes this request. The 'request

dispatcher' transfers control to the 'LP call service routine' and the

following operations are performed (refer to Figure 5-1):

Get the current word pointer
address

Check if spooling operations are
disabled and, if disabled, exit

Point to the current word

Get the caller's buffer address
and relocate that address

Get the byte count of the
current record, add the header
word byte count, and make the
byte count even

Move ahead the current word
pOinter by the size of the
current record

Compute the space remaining in
the current buffer

Is the buffer full?

5-31

page- 22, line 20

lines 26, 22

lines 26, 25

lines 26-28

lines 29-31

line 32

line 33-36

lines 37-38

Spooler Design and Theory of Operation

Copy the caller's buffer

Check for a .CLOSE record

The record is not a .CLOSE; one
more record can fit. Process
the next request

The record is a .CLOSE record;
save the old Last File Block
(LFB) in TABLE

Set the new LFB in TABLE

Set the old LFB in Header word 2
of the buffer

Set an end of file indicator in
the buffer

Go to line 55

The buffer is full. Set an indi
cator to this effect in the
buffer

Get a free block on disk (FINDBK)

Set a pointer to the next block
in trailer word 1

Set the "write block in motion"
switch

Put the buffer on disk (PUTBLK)

Get another buffer (GETBUF)

Set the "current buffer" pointer
for the new buffer

Set the block number in the
current buffer

Set the current word pOinter to
word 2 in the buffer

Process the next request

lines 39, 123-127

lines 41, 105-108

lines 42, 48-54

lines 109, 110, 112

Line 113

lines 114, 115

line 116

lines 55-57

line 58

lines 59-61

lines 63, 64

lines 62, 65

line 67

lines 66, 68

line 69

lines 70, 71

line 72

As disk blocks are written on the disk the Last Spooled Block (LSB)

entries in TABLE are updated when the completion of I/O interrupt is

processed by the 'disk interrupt service routine' in the SPOOLER

(RKINT) •

5.5.3 LP Despooling

When the LP device is idle and the first spooled data block is written

onto the disk the despooling operations are started in the RKINT routine

as follows (refer to Figures 5-1 and 5-3).

5-32

Spooler Design and Theory of Operation

READ

LP

Figure 5-3

Device Interrupt Servicing Logic (For LP)

5-33

Spooler Design and Theory of Operation

WRITE PROCESSOR:

Reset the "write block in
motion" switch

Set the LSB in TABLE

LPONCE = 0, first time
through set LPONCE = 1

Set the "read block in
motion" switch

Get a buffer (GETBUF)

Get a disk TCB (GETRKT)

Read a block from disk
(GETPUT)

Return the disk TCB and
then EXIT

READ PROCESSOR:

Is the block read = LFB?

Yes, set LFB = 1

Reset the "read block in
motion" switch

Decrement the LP free buffer
count

LPONCE = 1, first time
through, start up LP

Set Current Block Number
(CBN) in TABLE

Set the current despooling
buffer pointer

Set the current despooling
word pointer

Set the Next Block Number
(NBN) in TABLE

Set Current Record Pointer
(CRP) in TABLE

Set LPONCE = 2

LP despooling is not shut
down~ send the LP write
request

Set the LP busy switch

Return the disk TCB and then
EXIT

".;,

page 19, lines 20, 21

lines 22, 23

lines 24-27

line 28

line 29

line 35

lines 32-34, 36, 37

lin~ 38

page 23, lines 43-45

line 46

line 48

line 49

lines 50-53

line 66

lines 67-68

lines 69-70

lines 71-72

line 73

line 54

lines 55-58

line 60

Once despooling operations are started the 'LP interrupt service

routine' continues the despooling operations until there is no more

data to be despooled.

5-34

Spooler Design and Theory of Operation

The following operations are performed here (refer to Figure 5-1):

Protect against a disk
interrupt

There's nothing more to d01
reset LPONCE

Reset LPBMD and increment the
free buffer count

Return the buffer (GIVBUF)

Set the LP idle switch and
return

There's more to d01 a block is
in motion

Release the buffer (GIVBUF)

Increment the free buffer count

Wait for a block to be read in

Set CBN - NBN in TABLE

Set CRP in TABLE

Set NBN in TABLE

set the current despooling buffer
and word pointer

Shut down? Shut LP? Shut
despooler?

Current record in buffer is a
.CLOSE record, check if more
blocks to do

There are no more blocks reset
TABLE entries, switches and
then exit

One free buffer and no block
in motion

Get next block

Release buffer and wait to
come in

The first record is not a .CLOSE,
send an LP write request

Point to the first word of the
next record

There are more records left and
one free buffer

There is no read block in motion
and more blocks to do

Get next block

Return from interrupt call

5-35

page 21, line 24

lines 25-28

lines 29, 30

lines 31, 32

lines 33, 34

lines 35, 36

lines 37-39

line 40

lines 41-44

line 47

line 48

lines 49-52

lines 53-56

lines 64-69

lines 70-72

lines 74, 77, 121-123

lines 76-81

line 82

lines 83, 37-44

lines 86-87

lines 89-93

lines 96-101

lines 102-105

lines 106, 126-137

Spooler Design and Theory of Operation

5.5.4 SPOOLER Shutdown

All spooling operations can be terminated by issuing the 'END' directive

to the SPOOLER. The following operations are performed (refer to

Figure 5-1):

Protect shutdown routine

Clear any pending SPOOLER wakeup
requests

Allow devices to run down

Shut down LP task

Turn off SENDll

Test if shut down due to disk
error

If "END" shutdown, tell "SPOL15"
that it has occurred

Disconnect SPOOLER

5-36

page 9, line 7

line 8

lines 13-18

lines 20-23

lines 32-34

lines 35-36

lines 37-39

lines 40-41

6.1 INTRODUCTION

CHAPTER 6

SPOOLER TASK DEVELOPMENT

This chapter discusses in detail the procedure for developing a spooled

task, and, for integrating it into the SPOOLER software. The develop-
1 ment of a spooled task in the UC15 system begins with the development

and installation of the task under the PIREX system, if not already

present (see Chapters 4 and 5).

Once this has been done, the following summary describes the steps

necessary to integrate it into the SPOOLER software:

1. Design and code the call service routine.
6-1.)

(Refer to Figure

2. Design and code the interrupt service routine. (Refer to
Figure 6-1.)

DEVICE HANDLER SPOOLER TASK/DEVICE DRIVER
ON XVM

t t
CALL side INTERRUPT side

Figure 6-1
SPOOLER Schematic

NOTE

ON PDP-II

The logical structure of the 'task call
service routine' and the 'task interrupt
service routine' depends upon whether the
task is an input or an output task. The
'task call service routine' is the de
spooler for an input task and it is the
spooler for an output task. The 'task
interrupt service routine' is the spooler
for input tasks and it is the despooler
for output tasks.

IThere is no program logic or coding connections between the device
driver tasks under PIREX and the spooler task. All co~nunication to
the device driver is through the TCB only.

6-1

Spooler Task Development

3. Add code in the RKINT routine to handle the disk read or
write operations for this task.

4. Code a routine to setup TCB and issue request.

5. Add a TCB for this task.

6. Add code to the BEGIN directive processing routine to initia
lize, and, (if necessary) startup this task.

7. Add code to the END directive processing routine to clear up
this task.

8. Add code to the 'request dispatcher' to dispatch calls to
this routine.

9. Add code to the 'device interrupt dispatcher' to dispatch
interrupts from this device.

10. Increase the size of TABLE by 6 words if not sufficient.

11. Add entries of frequently addressed tags to the central
address table.

12. Update DEVCNT and DEVSPP to ensure sufficient buffers and
TCBs.

13. Update FINDBK routine.

The remaining sections describe the above steps in more detail. The

Line Printer spooler task is used as a descriptive example.

6.1.1 Call Service Routine

This is the routine that normally processes calls from the handler

on the XVM. For an output task this routine spools data onto the

disk as indicated in Section 5.3.3. The operations performed by this

routine are discussed in detail in Section 5.4.2.

Normally, data from records are copied into a buffer until it is full.

As soon as a buffer is full, it is written onto the disk with a

pointer to the next block; and then a new buffer is obtained. This

process is continued until a special record that indicates the end of

the file is received. For the Line Printer, this is a record with

form feed and carriage return characters only. On receipt of this

record, the call service routine copies this record into the current

buffer and writes it out; regardless of whether the buffer is full or

not. This is done to ensure complete processing of a distinct logical

entity, a file. The call service routine sets only the LFB entry in

the TABLE. It uses the utility routines GETBUF, FINDBK, PUTBLK, and

DEQREQ.

6-2

Spooler Task Development

6.1.2 Interrupt Service Routine

Completion of I/O interrupts from the device driver in PIREX is pro

cessed by this routine. For an output task, this routine despools the

data onto the device as indication in Section 5.3.5. The operations

performed by this routine are discussed in detail in Section 5.4.3.

The interrupt service routine for the Line Printer despools data from

the buffer onto the device by issuing requests to the task running

u1der PIREX. This routine, like other despooling routines in the SPO

OLER, is double buffered to increase throughput. Provision is made

in the routine to wait for a block to be read into core during heavy

disk utilization. This is done using the "block in motion" switch.

6.1.3 Code to Handle the Disk Read/Write Operations

All spooled tasks must perform certain functions on completion of a

read/write block disk operation, as, Section 5.5.3 describes in detail.

On completion of a read disk block request the TABLE entries must be

updated and the Line Printer started up if idle. If the Line Printer

is busy, control is transferred to the "DONE" section of code where

the disk TCB is returned to the pool and control is relinquished.

On completion of a "write block on disk" request, the buffer is returned

and the LSB entry in TABLE is updated. If the Line Printer is idle,

a request is issued for the Line Printer task to read in the next de

spooling block. This is done by supplying the NBN1 entry in TABLE for

the Line Printer. If the Line Printer is not busy or after issuing

the read request as in read, control is transferred to the 'DONE'

section of code.

6.1.4 Routine to Setup TCB and Issue Request

These operations are performed at several places in the SPOOLER. To

optimize code this subroutine performs the TCB setup and request

issuing functions.

1See Section 5.4.7.

6-3

Spooler Task Development

The Line Printer routine performs the following operations (Figure

5-1) at tag STUPLT:

Get the address of the LP TCB

Go to setup common

Set the buffer address specified
in the TCB

Reset the REV in the TCB

Issue the request

Return control

6.1.5 TCB

page 11, lines 18-19

line 20

line 31

lines 32-33

line 34

line 35

The format of the TCB used by spooler tasks is almost identical to the

format of TCBs for tasks running under PIREX, except for the disk

TCB which has an extra word. The extra word is used to store the TCN

of the task for which the I/O transfer was requested. Another dif

ference is that the TCN present in word '1' of all TCBs in the SPOOLER

has the unspooled bit set, i.e., TCN' = 200 8 + TCN (0-177 8). This is

to prevent the request from being queued to the SPOOLER. Also, word

'0' of all TCBs contains the SPOOLER task code instead of the API

information. This is to permit PIREX to transfer control to the 'device

interrupt dispatcher' in the SPOOLER on receipt of an I/O completion

interrupt from a SPOOLER request.

6.1.6 Initialization in the BEGIN Routine

All SPOOLER tasks have to be initialized before starting of spooling

operations. The initialization normally consists of setting the

pointers, switches and variables to the right value, obtaining buffers,

block number on disk, etc. Section 5.5.1 explains these operations

for the Line Printer in more detail.

6.1.7 Cleanup in the END Routine

All SPOOLER tasks have to be cleaned up before termination of spooling

operations. The cleanup for the Line Printer consists of stopping the

LP driver task in PIREX and clearing all pending requests in the

task's TRL.

6-4

Spooler Task Development

6.1.8 Updating the Request Dispatcher

The request dispatcher in the SPOOLER contains code to check the TCN

of the current request being processed and to transfer control to the

appropriate routine. For the Line Printer (Figure 5-1) this is done at:

page 6, lines 36-38, 73

6.1.9 Updating the Device Interrupt Dispatcher

The SPOOLER is informed of completion of I/O requests through the

PIREX Software Interrupt facility. PIREX calls the device interrupt

dispatcher, which determines the task that issued the request and

transfers control to the tasks interrupt service routine.

For the Line Printer this is done at:

page 17, lines 12-13, 19

6.1.10 Updating TABLE

The TABLE contains the complete record of the data being spooled and

despooled. Each task has a 6 word entry in this TABLE. TABLE size

must be increased (change the 'BLOCK XXX' statement at page 33, line 73)

based upon the number of tasks in the SPOOLER. Currently there is

sufficient space in the TABLE for 3 additional tasks.

6.1.11 Updating the Central Address TABLE

Code optimization in a PIC program is done by maintaining a table of

addresses for frequently used tags. This table contains the unre

located addresses of tags at assembly time. These are converted to

absolute addresses (by adding the SPOOLER first address) by the once

only section of code in the SPOOLER (Figure 5-1, page 6, lines 12-26).

For the Line Printer (Figure 5-1) the following tags are present in

this table:

LPONCE page 28, line 6

TAB PCB line 15

LPCBCP line 24

LPWDIP line 25

LPCBIP line 37

LPBMS line 38

6-5

Spooler Task Development

6.1.12 Update DEVCNT and DEVSPP

To facilitate automatic updating (increase or decrease) of buffers and

disk TCBs in the SPOOLER based upon the number of tasks in it, a condi

tional parameter exists for each task.

DEVCNT and DEVSPP are modified for the Line Printer (Figure 5-1) at:

page 3, line 13-16

Tasks are assembled into the SPOOLER by defining the conditional

parameters of the form:

where

$XX = ZZZZOO

xx = mnemonic of the task (LP for Line Printer)

ZZZZ = a bit configuration (0400 for LP - there is a
bit for each task)

6.1.13 Updating the FINDBK Routine

Code is present in this routine to prevent allocation of the disk

block that is currently being despooled. This is necessary to insure

proper operation of the spooler because despooling operations are

halted when CBN = LSB. For the line printer task (Figure 5-1) this

is done at:

page 12, lines 83-84, 91-92

6.2 ASSEMBLING THE SPOOLER

To assemble the SPOOLER with the required task in it, it may be nec

essary to edit the SPOL11 XXX source file to supply the appropriate

assembly parameter. To assemble the SPOOLER with the Card Reader

task also insert the line:

$CD = 20000 after the sub-title conditional assembly
parameters.

(For Plotter insert: $PL = 10000)

An assembly of the above source (Figure 5-1) will produce a SPOOLER

with Line Printer and Card Reader tasks.

6-6

API

ATL

CAF

CAPln

CBN

CIaO

CRP

XVM/DOS

EV

LFB

LIaR

LSB

PC

PIC

RDRS

REV

XVM/RSX

SAPln

SIOA

TCB

TCBP

TRL

UC15

APPENDIX A

ABBREVIATIONS

Automatic Priority Interrupt

Active Task List

Clear All Flags

Clear APIn flag in DR15-C (CAPIO = 706104,
CAPII 706124, CAPI2 = 706144, CAPI3 = 706164)

Current Block Numbers

Clear Input/Output done (706002)

Current Record Pointer

XVM Disk Operating System

Event Variable

Last File Block

Load Input/Output Register (706006)

Last Spooled Block

Program Counter

Position Independent Code (can be loaded any
where in memory)

Read Status Register (706112)

Request Event Variable

XVM Real Time System Executive

Skip on APIn flag in DRII-C (SAPIO = 706101,
SAPII = 706121, SAPI2 = 706141, SAPI3 = 706161)

Skip on Input/Output data Accepted (706001)

Task Control Block

Task Control Block Pointer

Task Request List

PDP-11 Front End Processor and Interlace to XVH

A-1

The general format

APPENDIX B

CURRENTLY IMPLEMENTED TCBs

for all task control blocks is

15 8,7 , ~
ATA ,

ALV , , , , , ,
I

, , , , , , , ,
FCN :S: TCN , , , , I , , , , , , , , , ,

REV , , , , , , I , , , , , , , ,
Other data

)'
particular)' , ,

to this task , , , , , , , I , , , , , ,

as follows:

word ~

word 1

word 2

word 3

word n

ATA XVM API interrupt vector address

ALV XVM API interrupt priority level. Must be 0, 1, 2,
or 3 (unless FCN = 3).

FCN Function to perform upon completion of this request.
Valid values are:

000 Interrupt XVM at location ATA, priority ALV.

001 Do nothing (except set REV)

003 Cause software interrupt to the PDP-ll task whose
task code number is in ALV.

S a if this request may be spooled.

1 if this request may not be spooled.

TCN Task code number of the task which is to process this
request

REV Request Event Variable. Initially zero, set to a non
zero value to indicate completion of the request.
The meaning of the various return values is described
below.

B-1

Currently Implemented TCBs

Returned REV value:

1 Successful (normal) completion.

-200

-300

-777

Other

Non-existent task. The task code number (TCN) does not
correspond to any task currently in the PIREX system.

Illegal ALV value. The request mayor may not have been
performed - see individual request descriptions. The
XVM is interrupted at API level 3.

Node Pool empty. PIREX is temporarily out of nodes, and
therefore is unable to insert this request into the appro
priate list. Reissue the request after a brief delay.

The meanings of other returned REV values are given with
the descriptions of the task control blocks to which they
apply.

In the sections that follow, many of the task control block diagrams

show Sand TCN combined into a single 8-bit quantity. This is done

to indicate that the particular task may never be spooled, and thus

S is always 1.

B.1 STOP TASK (ST)

This task provides the capability to stop one or all tasks in PIREX.

Stopping a task may immediately abort processing of the request the

task is currently processing, and also any XVM originated requests

on the task request list. The format of the task control block for

the stop task is as follows (note that this is a non-standard task

control block):

15 8 7 I

unused

AI TCN I
REV

o

200

word 0

word 1

word 2

TCN If zero, this is a stop all tasks directive.

A If set unconditionally, abort the current request for this
(or all) task(s). If clear, allow the request currently
being processed by this (or each) task to complete if and
only if the request originated from the PDP-I1. Only XVM
requests on the task request list will be aborted regard
less of the setting of this bit.

~2

currently Implemented TCBs

All requests which are aborted via this request will never complete;

the request event variables (REVs) of such requests will never be set

to a non-zero value. A permanent task which is stopped via this re

quest will be placed in the wait state; a temporary task will be placed

in the stopped state.

Returned REV values:

1

-600

Successful completion

Task to be stopped is not connected to PIREX.
Only applicable when TCN, O.

B.2 SOFTWARE DIRECTIVE TASK (SD)

Descriptions of the software directives, including details of their

task control block formats, are given in Section 3.6, Software Direc

tive Processing. The general task control block format for all soft

ware directives is as follows:

15 8 7

ATA ALV

FCN 201

REV

aPR

Contents depend

,~ upon

o

,~

word 0

word 1

word 2

word 3

word 4

1IL ___________ d_i_r_e_c_t_~_·v __ e ________ ~Jr word n

aPR Indicate the exact operation (directive) to be performed.
For details see Section 3.6.

Returned REV values:

1

-400

Other

Successful completion

Invalid aPR (directive/operation code) values.

See individual directive description in Section 3.6.

B.3 DISK DRIVER TASK (RK)

The disk driver task provides the capability of using the RK05 cart

ridge disk system. Task control blocks directed to this task have

the following format:

B-3

Currently Implemented TCBs

15 8 7 o
ATA ALV word 0

FCN 202 word 1

REV word 2

Block Number word 3

R 6 M
E 4 S
L K M word 4

A

LSMA word 5

Word Count word 6

unused I Unit I Function word 7

RKCS word 10

RKER word 11

RKDS word 12

ATA Usually 0478

ALV Usually 000

REV Set to 1 upon completion regardless of errors.

Block Number Disk block number to transfer.

REL 0 if request comes from XVM
1 if request comes from PDP-II

64K1 When 1 causes an additional 64K words to be
transferred.

MSMA Core address at which to begin transfer - most
significant bits.

LSMA Core address at which to begin transfer - least
significant bits.

Word Count Two's complement of the number of words to
transfer.

Unit Disk drive (unit) number on which to perform
the operation.

Function Operation to be performed.

lA zero in the word count field (word 6) causes a 64K word transfer.
The 164K" field (word 4) is used in conjunction with the word count
to specify transfers greater than 64K words. Thus to transfer 65K
words, the user would set the 164K" bit and place a minus -1024 10 in
the word count field.

B-4

Currently Implemented TCBs

Valid values are:

002 Write

004 Read

006 Write check

012 Read check

016 Write lock

For detailed descriptions of the functions, see the RK11-E Disk

Drive Controller Manual (DEC-11-HRKDA-B-D).

RKCS
RKER
RKDS

Upon completion of the operation, these three
words are loaded from the corresponding disk
controller registers. See the RK11-E Disk
Drive Controller Manual (DEC-ll-HRKD-B-D) for
a description of their meaning.

If the request originates from the PDP-11, LSMA is the 16-bit PDP-11

byte address at which the transfer is to begin. If the request origi

nates from the XVM, MSMA and LSMA together are the 17-bit XVM word

address at which the transfer is to begin. Upon completion of the

transfer, REV is always set to 1, regardless of whether or not the

transfer succeeded. RKCS, RKER, and RKDS must be examined to deter

mine whether the transfer succeeded or an error occurred.

Returned REV Values:

1

-300

Request complete. Request mayor may not have succeeded.

Illegal ALV value. Request complete.

B.4 LINE PRINTER DRIVER TASK (LP)

The task control block format is as follows:

15 8 7 o
ATA ALV word 0

FCN sl 004 word 1

REV word 2

REL word 3

Buffer Address word 4

unused word 5

Status Flag word 6

B-5

ATA

ALV

S

REL

Buffer
Address

Status Flag

Currently Implemented TCBs

Usually 056
8

Usually 002

usually a (indicating spooled operation)

a if request originates from XVM
1 if request originates from PDP-11

PDP-11 byte address, if request is from PDP-11
XVM word address, if request is from XVM

Unused if request is spooled.
Cleared to zero at beginning of request proces
sing and set to 000001 at completion if request
is not spooled.

The buffer address argument refers to a line buffer of the following

format:

Count

Mode

LF

Data

15 8 7

Mode

LF

-~

Count

unused

o

-~

word 0

word 1

word 2

Data

lrL ____________________________ ~~ word n

The number of bytes of data in the buffer.
Excludes the four byte header.

Indicates transfer mode. Legal values are:

o lOPS ASCII

1 Image

May be altered by the driver.

One line of output for the line printer.

The data sent to the lineprinter driver is a series of independent

bytes. If a byte is positive, it represents a 7-bit ASCII character.

If a byte is negative, it represents some number of spaces, the

number of spaces being equal to the absolute value of the byte. If

a line is in image mode, only the characters represented by the data

bytes are output. If a line is in lOPS ASCII mode, a line feed is

output before the beginning of the line unless the first character of

the line is a carriage return or form feed. A carriage return is

always output at the end of lines in lOPS ASCII mode. A line contain

ing just the characters carriage return followed by form feed causes

no output in either mode, but rather represents a .CLOSE (end of file)

operation.

B-6

currently Implemented TCBs

Line printer errors are not reported via returned REV values. The only

line printer error which can occur is for the printer to go off line

(become not ready). The line printer driver reports this by placing

the value 4 in the device error byte of its entry in the DEVST table

(see Section 3.6.4 on the Error Status Report Directive). When the

printer comes back on line the driver clears the device error byte and

outputs the line. Upon completion the REV is set to 1.

Returned REV Values:

1

-300

-600

Successful completion

Illegal ALV value. Action mayor may not have
been taken •. - -.

Spooler shut down. No action has been taken.

B.5 CARD READER DRIVER TASK (CD)

The task control block format is as follows:

ATA

ALV

S

Buffer
Address

15

ALA

FCN

Usually 055
8

Usually 001

8,7

ALV

sl 005

REV

unused

Buffer Address

o
word 0

word 1

word 2

word 3

word 4

Usually 0 (Indicating spooled operation)

PDP-II byte address, if request is from PDP-II
XVM word address, if request is from XVM

The buffer address argument refers to a card buffer of the following

format:

15 8,7 0

Byte Count word 0

Checksum word 1

word 2

Data --
T word n

-""
1

B-7

Byte Count

Checksum

Data

Currently Implemented TCBs

Always 80 10
Word checksum of the buffer (including the byte
count)

80
10

bytes (4010 words) of data

The card data is not in ASCII. Each card column occupies one byte

in the following format:

7 o

1*1*1*1*1*1 If I 1
Lb

b
b
b
b
b

its 0-2 Contents of rows 1-7 encoded as follows:

it 3
it 4
it 5
it 6
it 7

000 no punches in rows 1-7
001 row 1 punched
010 row 2 punched
011 row 3 punched
100 row 4 punched
101 row 5 punched
110 row 6 punched
111 row 7 punched

Indicates row 8 punched
Indicates row 9 punched
Indicates zone 0 punched
Indicates zone 11 punched
Indicates zone 12 punched

NOTE

All combinations of punches which cannot
be spec1tied in this manner are illegal.

Any errors that occur are not reported by returned REV values. Instead

the IOPSUC numeric error code is placed in the device error byte of the

card reader's entry in the DEVST table (see Section 3.6.4, Error Status

Report Directive). When the error condition is remedied, the driver

clears the device error byte and the read operation continues. Ultimately

the read completes and REV is set to 1.

Returned REV Values:

1 Successful completion

-300

-700

Illegal ALV values. Action mayor may
not have been taken.

Spooler shut down. (Despooling not enabled)
No action taken.

B-8

Currently Implemented TCBs

B.6 PLOTTER DRIVER TASK (XY)

The task control block format is as follows:

ATA

ALV

S

REL

15

Buffer Address

8 7

ATA ALV

FCN S I 006

REV

REL

Buffer Address

Usually 065
8

Usually 003

o
word a
word 1

word 2

word 3

word 4

Usually a (indicating spooled operation)

000000 If request is from XVM
If request is from PDP-II

PDP-II byte address, if request is from PDP-II.
XVM word address, if request is from XVM.

The buffer address argument refers to a data buffer of the following

format:

Count

Mode

15

Mode

8 1 7 0

I Count

unused

word 0

word 1

word 2

Data ..,

f~ ______________ ~(word n

The number of bytes of data in the buffer.
Excludes the four byte header.

Indicates the function to perform and/or the
mode in which the data should be interpre~ed.
Valid modes are:

B-9

Currently Implemented TCBs

1 Line mode

2 Character mode

3 Initialize

4 Pen select1

377 End of file

Line mode data takes the following form. Each line is represented by

a pair of data words. The first word is the incremental change in the

X coordinate from the beginning to the end of the line, the second word

the change in the Y coordinate. If this is to be an invisible line -

i.e., it is to be drawn with the pen raised - 1000008 should be added

to the first word (change in X) •

Character mode data is a series of ASCII characters to be drawn, one

character per byte. Initialize requires 8 words of data which specify

the character size and orientation for character mode plotting. The

pen select operation1 takes two words of data. The first is the pen

number for the XY311 plotter (1, 2, or 3). The contents of this word

are destroyed by the pen select operation. The second word ~ be

zero. An end of file merely raises the pen. (It also forces the XY

data through the spooler buffers if spooling is enabled.)

Returned REV Values:

1 Successful completion

-300

-600

Illegal ALV value. Action mayor may not have
been taken.

Spooler shut down. No action taken.

lThis is used only by the XY311 plotter.

B-I0

APPENDIX C

UClS RELATED ERROR MESSAGES

IOPSUC YYY XXXX

Where YYY denotes one of the following:

EST Stop all I/O Task

ESD Software Driver "

RKU Disk Cartridge "
DTU DECTAPE "

LPU Line Printer "

CDU Card Reader "

PLU Plotter "

ESP Spooler "

EMA MACH "

XXXX denotes one of the following:

3 - ILLEGAL INTERRUPT TO DRIVER

4 - DEVICE NOT READY

12 - DEVICE FAILURE

15 - SPOOLER FULL WARNING MESSAGE

20 - SPOOLER DISK FAILURE - SPOOLING DISABLED

45 - GREATER THAN 80 COLUMNS IN
CARD

55 - NO SPOOLER BUFFERS AVAILABLE

72 - ILLEGAL PUNCH COMBINATION

C-l

UCl5 Related Error Messages

74 - TIMING ERROR - CARD COLUMN
LOST - RETRY CARD

75 - HARDWARE BUSY - DRIVER NOT

76 - HARDWARE ERROR BETWEEN
CARDS

77 - UNRECOGNIZED TASK REQUEST -
DEVICE NOT PRESENT

400 - SPOOLER EMPTY - PDR-15 INPUT
REQUEST PENDING

Standard format lOPS error messages:

Error Code

25

27

200

300

400

500

600

777

601

602

XY plotter - value too large for plotting.

XY plotter - mode incorrect.

Non-existent task referenced.

Illegal API level given (illegal values
are changed to level 3 and processed) .

Illegal directive code given.

No free core in the PDP-II local
memory.

ATL node for this TCN missing.

Request node was not available from the
POOLi i.e., the POOL was empty and the
referenced task was currently busy or the
task did not have an ATL node in the
Active Task List.

System Memory Map Invalid
This indicates that the memory map
used by CONNECT/DISCONNECT is in
valid. PIREX should be rebooted
before any CONNECT/DISCONNECT attempt.

TCB Out of Range
This indicates that the TCB address is
not within the 28K word addressing range
of the UNICHANNEL.

C-2

GLOSSARY

Active Task

An Active Task is one which:

1. is currently executing

2. has a new request pending in its queue

3. is in a wait state

4. has been interrupted by a higher priority task.

Active Task List

A priority-ordered linked list of Active Tasks used for scheduling

tables. The ATL is a queue consisting of one node for each Active

Task in the system.

Busy/Idle Switch

A two-word storage area used to save TCBP's when processing a request.

Every task has a two-word Busy/Idle Switch. If the two words are zero,

the task is currently not busy and is able to accept and process a

new request. Bit 15 of the first word is used by the system to deter

mine if the TCB came from an XVM or PDP-11 request. If zero, the re

quest came from the XVM, otherwise it came from the PDP-11.

Call Side

All spoolers have a 'call side' where a set of data is passed by the

caller to the spooler (for output spooled devices/tasks) or data is

passed by the spooler to the caller (for input spooled devices/tasks).

This is done only when a request is made to the spooler.

Context Save

The storing of all active registers, including the program counter

(PC) and program status (PS), on the current task's stack. These saves

GLOSSARY-1

are done when higher priority tasks interrupt lower priority ones and

by device driver interrupt routines to allow them free use of the

general purpose registers.

Context Switching

The process of saving the active registers belonging to the current

task executing (a context save), determining a new task to execute,

and finally restoring the registers belonging to it.

Deque

Deque, pronounced deck, is a double-ended queue consisting of a .list

head and list elements, circularly linked by both forward and backward

pointers. Deques (linked lists) are used, instead of tables, to store

TCB pOinters and ATL information. The list elements (commonly called

nodes) are initially obtained from a pool of empty nodes called the

POOL. Nodes consist of listhead and 2 words of data used to store the

caller's TCB pointer or ATL information. When a node is needed, it is

removed from the POOL and queued to the referenced task deque of the

ATL. When a node is no longer needed, it is'zeroed and returned to

the POOL.

Dequeue

Remove a node from a queue.

Directive

A task which performs some specific operation under PIREX, e.g., con

necting and disconnecting tasks.

Driver

A task which controls a hardware device. Drivers usually consist of

necessary program only rudimentary operations (e.g., read, write or

search). The more complex operations such as file manipulations and

syntax checking are usually performed by handlers.

GLOSSARY-2

Event Variable

A word or variable used to determine the status of a request. The

Event variable is set to indicate successful completion, rejection,

status, or a request still pending condition.

Interrupt Side

All spoolers have an 'Interrupt Side' where data is passed by the

spooler to the device/tasks (for output spooled device/tasks) or data

is passed from the device/tasks to the spooler (for input spooler

devices/tasks). This occurs whenever output of data is complete or

input data is ready.

Linked List

A deque consisting of nodes and listhead used to store system infor

mation. An empty list consists of only a listhead.

Listhead

A two-word core block with forward and backward pointers pointing to

the next and previous list node or to itself if empty. The listhead

is a reference point in a circularly-linked list.

Local Memory

Core memory only addressable by the PDP-II. This is ordinary 16-bit

PDP-II core memory.

Node Manipulation

The process of transferring nodes from one deque structure to another.

Nodes

The list elements of a deque. All nodes consist of listhead, followed

by 2 words of data (list elements).

GLOSSARY-3

Nul Task

The Nul Task is a task which runs when no other task can. It consists

of only PDP-ll WAIT and BR Instruction to increase UNIBUS operations.

Permanent Task

A task in PIREX is said to be a permanent task if it is assembled into

PIREX, has space in all PIREX system tables and has a fixed task code

number.

POOL

A linked list of empty four-word nodes for use in any deque in the

system. The POOL is generated at assembly time and currently has 20

decimal nodes available.

Pop

To remove an Item (word) from the current task's stack.

Push

To put an item (word) onto the current task stack.

Queue

To enter into a waiting list. Queues in PIREX consist only of deque

structures.

Scheduling

The process of determing which task will be executed next. The opera

tion is based on a priority ordered list of active tasks in the system

(ATL) •

Shared Memory

Core memory addressable by both the XVM and PDP-ll. The shared mem

ory is ordinary l8-bit XVM memory.

GLOSSARY-4

Spare Task

A task that runs under PIREX is said to be a temporary task if it is

not assembled into PIREX, has space in all PIREX system tables, does

not have a fixed task code number and its start address is not fixed.

The core occupied by the temporary tasks is not freed unless the tasks

are disconnected in the order in which they were connected.

SPOLSW

This is a register in PIREX which contains the spooler control and

status switches as indicated below.

BITS 0-7

BITS 8-15

Task

Device busy Idle switch
'0' is idle and '1' busy

BIT 0
1
2

3-7

LP
CD
PL
UNUSED

Spooler State/Function switches
'0' if disabled and '1' if enabled

BIT 12
13
14

15=1
=0

DESPOOLER
SPOOLER
SPOOLING
SPOL11 PROGRAM CONNECTED TO PIREX
SPOL11 PROGRAM NOT CONNECTED TO PIREX

A PDP-11 software routine capable of being requested by the XVM or

PDP-11 through the PIREX software system. The task may be a device

driver, a Directive, or just a software routine used to carry out a

specified function. A task must have the format shown in Figure 2-1.

Task Code Number

All tasks in the PIREX system are differentiated by a numbering system

rather than by name. Task Code Numbers are used in TCBs and are cur

rently assigned as follows:

GLOSSARY-5

CODE

-1

200

201

202

203

4

5

6

7

11

12

13

TCB - Task Control Block

CL task

ST task

SD task

RK Driver task

DT Driver task

LP Driver task

CD Driver task

PL Driver task

SPOOLER task

currently not used

currently not used

currently not used

A set of continguous memory locations (minimum of three) which contain

all necessary information for a task to complete its request. The con

tents of the TCB must be defined prior to the request by the requesting

program (e.g., a XVM program).

A pointer to the TCB (called a TCBP) is then passed to the PDP-11 via

the LIOR instruction in the XVM or the IREQ macro in the PDP-11 to

actually initiate the request.

TCBP - Task Control Block Pointer

A pointer to a TCB. This pointer is passed to the PDP-11 either via

the LIOR instruction in the XVM or the IREQ macro in the PDP-11 when

initiating a request to PIREX.

GLOSSARY-6

Abbreviations, list of, A-l
ABORT request, 4-53
ABSLll, 1-2, 2-1
Acronyms, list of, A-l
Active Task List (ATL) , 3-5

(figure), 3-21
nodes, 3-14

Add a new task, 3-30
API trap locations, 3-1, 3-7
Assembler (ABSLll), 1-2
Assembling spooler, 6-6

BEGIN routine, spooler, 6-4
Bitmap, spooler, 5-5
Block order for tasks, 3-34
Bootstrap load, 1-2
Buffers, spooler, 5-5, 6-2,

6-6
Byte instructions, 1-6

Call Service routine, spooler,
6-2

Card Reader Driver task, B-7
Card reader operation, 2-4

errors, 2-5
Character mode data, B-10
Checksum errors, 2-2
Clock Request Table (CLTABL),

3-16, 4-65
Clock task, 3-5
Code numbers of tasks, 4-3
Common memory, 1-3, 1-4, 3-5
Connect Task directive, 3-30
Core Status Report directive,

3-32
Crashes of tasks, 2-6
CRll XVM/RSX handler (figure),

4-28

Delete a task, 3-29
Dequeue node (figure), 3-26
Despooling, 5-5, 5-32
Device Error Status Table

(DEVST), 3-16
Device driver,

assembling and loading, 4-66
testing, 4-66

Device drivers, PIREX, 3-3,
4-55

Device handler construction,
4-6

INDEX

Device handlers,
XVM/DOS, 4-6
XVM/RSX, 4-27

Device interfaces, 1-5
Device Interrupt Dispatcher,

spooler, 5-3, 6-5
Device Interrupt Service routines,

spooler, 5-4
Device Interrupt Servicing (LP)

(figure), 5-33
Device priorities, 4-2
Directive handling, 3-20
Directive processing routines,

spooler, 5-3
Disconnect Task directive, 3-29
Disk cartridge operation, 2-3

errors, 2-5
Disk Driver task, B-3
Disk errors during spooling, 2-6
DL support, optional, 3-4
Drivers,

see Device drivers
Dump programs, 4-66, 4-67

Editor program (EDIT), 1-3
End-of-deck card, 2-4
END routine, spooler, 6-4
Error handling, 2-5, 2-6
Error messages, UC15, C-l
Error status codes, 3-16
Error Status Report directive,

3-33
Exit techniques, 4-63

FINDBK routine, spooler, 6-6
Function code, 3-8

Hardware errors, card reader, 2-5
Hardware interrupt, 3-1, 3-23

(figure), 3-24
Hardware system, 1-3, 1-4, 1-5

.INIT function, XVM/DOS device
handler, 4-23

Initialization,
task, 4-62
XVM/DOS handler, 4-23
XVM/RSX device handlers, 4-27

Internal tables, PIREX, 3-18, 3-19

Index-l

INDEX (CONT.)

Interrupt link, 1-5
Interrupt processing, 4-62
Interrupt requests, 3-23
Interrupt Service routine,

spooler, 6-3
Interrupts from PDP-ll to XVM,

4-25
Interrupts, XVM/RSX device

handler::>, 4-53
Interrupt vectors, 3-18

LEVEL table, 3-17
Line mode data, B-10
Line Printer driver task, B-5
Line printer operation, 2-4
Listhead (LISTHD), 3-15
Lists and tables, updating, 4-4
Loading,

ABSL11, 2-2
spooler, 5-6
system, 2-1
XVM/DOS, 2-2
XVM PIREX, 2-2, 3-1

Logic flow, PIREX, 3-11, 3-12,
3-13, 3-21, 3-22

LP driver (figure), 4-57
LPll DOS handler (figure), 4-7
LP spooling/despooling, 5-31,

5-32
LV support, optional, 3-4

MACll, 1-2
MACll Control program, 1-3
MCLOAD program, 1-3
Memory, common, 1-3, 1-4, 3-5
Memory map (figure), 1-5
Mnemonics for tasks, 3-34
fmemonics, lis t of, A-l
Modifying programs, 1-3

NUL task, 3-5, 3-20

Operation of PIREX,
detailed, 3-19
flow chart, 3-2
simplified, 3-5

Operation of spooler, 5-5

PDP-ll Requesting Task, 4-26
Peripheral control, 1-3

Peripheral processor (PDP-ll),
1-3, 1-6

Peripherals,
operation of, 2-3
UC15, 3-23

Permanent task, 4-4, 4-5, 4-6
PIREX, 1-1

active task list (figure), 3-21
background tasks, 3-4
Dequeue node (figure), 3-26
detailed operation, 3-19
device drivers, 3-3
hardware interrupts (figure),

3-24
loading, 3-1
operation (figure), 3-2
overview, 3-1
request processing (figure),

3-11
save registers (figure), 3-22
services, 3-3
simplified operation, 3-5
software directive processing,

3-27
STOP TASKS Task, 3-25
system tables and lists, 3-10
task block order, 3-34
task mnemonics, 3-34

PIREX MOVE directive, 3-36
Plotter Driver task, B-9
Plotter operation, 2-3
Poller routine, 3-17
Power Fail routine, PIREX, 3-4
Priority level,

of background tasks, 4-2
of devices, 4-2
of tasks, 4-1

Processor, PDP-ll, 1-3, 1-6
Program modification, 1-3
Programs, support, 1-2

Queueing, 1-1

.READ requests, XVM/DOS handler,
4-26

READ requests, XVM/RSX handler,
4-54

Read/Write Operations (disk),
spooler, 6-3

Registers (figure), 3-22
Request Dispatcher, spooler, 5-3,

6-5
Request Event Variable (REV), 3-9
Request procedure, 3-19
Request processing, PIREX, 3-5

flow chart, 3-11

Index-2

INDEX (CONT.)

Request servicing (figure), 3-2
Request transmission, 4-24
Requests, XVM/RSX device

handler, 4-53

Set up TCB and Issue Request
routine, 6-3

Software,
card reader errors, 2-5
components, 2-6, 2-7, 2-8
directive processing, 3-27
interrupt, 3-25
modification, 1-3
routines in background mode,

3-4
Software Directive task, B-3
Spooled task, 3-23
SPOLII utility routines, I-I,

5-4
Spooler, 5-1

assembly, 6-6
components, 5-2
components (figure), 5-7
design, 5-2
errors, 2-6
LP despooling, 5-32
LP spooling, 5-31
operation, 5-5, 5-36
overview, 5-1
task development, 6-1

Spooler Control program (SPOOL),
1-2

Spooler Disk Area Generation
(SPLGEN), 1-2

Spooler Installation program
(SPLOAD), 1-2

Spooler Status Report directive,
3-35

Spooling, 1-1
Stack area, 3-7
Status information, 3-1
Status report directives,

core, 3-32
errors, 3-33
spooler, 3-35

STOP TASKS task, 3-25, B-2
Support programs, 1-2
Switches,

on disk cartridge unit, 2-3
on plotter, 2-4

System tables and lists, 3-10

Table, spooler, 5-5
update, 6-5

Task,
code number, 3-8, 4-3
completion, 3-25
czrashes, 2-6
development, 4-1
directives, 3-29 through 3-37
entry, 4-62
format (figure), 3-6
installation, 4-4
mnemonics, 3-34
priority level, 4-1
program code, 4-56
structure, 3-5

Task Call Service routines,
spooler, 5-3

(figure), 5-30
Task Control Block Pointer (TCBP),

3-5
Task Control Blocks (TCB) , B-1

format and location for new
blocks, 4-2

format for PIREX, 3-7
format for spooler, 6-4
spooler operation, 5-5

Task Request List (TRL) , 3-15
Tasks,

PDP-II, 4-26
spooled or unspooled, 3-23
unsupported, 3-4

Task Starting Address (TEVADD),
3-17

Temporary task, 4-4, 4-5
Timed wakeup, 4-65
Transfer vector Table (SENDll),

3-18

UC15 peripherals, 3-23
UC15 software components, 2~7
UNICHANNEL system (figures), 1-4,

1-6
Unspooled tasks, 3-23
utility routines, spooler

(SPOLll), 5-4

Wakeup feature, 4-65
.WRITE requests, XV!I1/DOS handler,

4-26
WRITE requests, XVM/RSX handler,

4-54

XVM/DOS software components, 2-7
XVM/RSX software components, 2-8

Index-3

· GI
c::

1=
I.::!
r:E
Ig>
1.2
1°

18
IS!
Ig
10::
I
I
I
I
I
I
I
I
I
I
I
I

READER'S COMHENTS

XVM UNICHANNEL
Software I>1anual
DEC-XV-XUSMA-A-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name ___ Date ________________________ __

Organization __ _

Street __ _

City ___________________________ State _____________ Zip Code ____________ __
or

Country

If you require a written reply, please check here. o

---Fold lIere--

.--- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

