
Digital Equipment Corporation
Maynard, Massachusetts

PDP-15 Systems
Programmer's Reference Manual

mamaoma

FP15
Floatin Point Processor

DEC-15-HQEA-D

PDP-15 SYSTEMS
FP15 FLOATING POINT PROCESSOR
PROGRAMMER'S REFERENCE MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright © 1971 by Digital Equipment Corporation

The material in this manual is for informa
tion purposes and is subject to change with
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

1st Edition April 1971

CONTENTS

CHAPTER 1 INTRODUCTIO N

1.1

1.2

1 ~2. 1

1.2.2

General

Floating-Point Arithmetic

F loati ng-Point Addition and Subtracti.on

Floating-Point Multiplication and Division

CHAPTER 2 FP15 FUNCTIONAL DESCRIPTION

2. 1 Introduction

2.2 FP15 Simplified Block Diagram Discussion

2.3 Instruction and Address Formats

2.4 Data Formats

2.5 Data Transfer to FP15 from Memory - Integer Format

2.6 Data Transfer to FP15 from Memory - Floating-Point Format

CHAPTER 3 FP15 ARITHMETIC

3. 1

3.2

3.3

3.3. 1

Introduction

Guard Bit and Rounding

Interrupt Handl ing

Memory Protect Trap

CHAPTER 4 INSTRUCTION SET

4. 1 Introduction

4.2 FPU Instruction Set

4.2. 1 Integer Subtract

4.2.2 F loati ng-Poi nt Subtract

4.2.3 Integer Reverse Subtract

4.2.4 Floating Poi nt Reverse Subtract

4.2.5 Integer Mu Itiply

4.2.6 Floating Point Multiply

4.2.7 Integer Divide

4.2.8 Floating Point Divide

4.2.9 Integer Reverse Divide

4.2.10 Floating Point Reverse Divide

iii

Page

1-1

1-1

1-2

1-2

2-1

2-1

2-3

2-5

2-5

2-5

3-1

3-1

3-2

3-3

4-1

4-6

4-6

4-7

4-8

4-8

4-9

4-10

4-11

4-11

4-12

4-12

CONTENTS (Cont)

4.2.11 Integer Load

4.2.12 Floating Point Load

4.2.13 Integer Store

4.2.14 F loati ng Point Store

4.2.15 Load and Float

4.2.16 Float (FMA)

4.2.17 Load and Fix

4.2.18 Fix EPA (FMA)

4.2.19 Load FMQ (Integer)

4.2.20 Load FMQ (Floating Point)

4.2.21 Swap FMA and FMQ

4.2.22 Load JEA (Jump Exit Address)

4.2.23 Store JEA (Jump Exit Address)

4.2.24 Integer Add

4.2.25 Floating Point Add

4.2.26 Branch

4.2.27 Modify FMA

4.2.28 Floating Point Test

4.3 Worst-Case Timing

CHAPTER 5 DIAGNOSTIC INSTRUCTIONS

5. 1

5.2

5.3

5.4

5.4. 1

5.4.2

Introduction

Debreak

Diagnostic Mode On, Diagnostic Mode Off

Diagnostic Read, Step and Read

Diagnostic Read

Diagnostic Step and Read

CHAPTER 6 FP15 PROGRAMMING EXAMPLES

6. 1

6.2

6.3

6.4

6.5

Introduction

Single-Precision Integer

Double-Precision Integer Programming Example

Single-Precision Floating Point

Double-Precision Floating Point

iv

Page

4-13

4-13

4-14

4-14

4-16

4-16

4-17

4-17

4-18

4-18

4-19

4-19

4-20

4-20

4-20

4-21

4-22

4-23

4-23

5-1

5-1

5-1

5-2

5-2

5-3

6-1

6-1

6-2

6-3

6-4

ILLUSTRATIONS

Figure No. Title Art No. Page

1-1 Floattng-Point Representation 15-0560 1-1

2-1 FP15 Simplified Diagram 15-0550 2-2

2-2 Floating-Point Instruction Format 15-0562 2-4

2-3 Floating-Point Address Format 15-0551 2-4

2-4 Single-Precision Integer Format 15-0555 2-5

2-5 Extended Integer Format 15-0556 2-5

2-6 Single-Precision Floating-Point Format 15-0557 2-6

2-7 Loading of Single-Precision Floating 15-0552 2-6
Point

2-8 Double-Precision Floating-Point Format 15-0554 2-7

3-1 Handling of Negative Integers 15-0559 3-1

3-2 Handling of Guard Bit During Round Re- 15-0561 3-2
quest·

TABLES

Table No. Title Page

4-1 FP15 Instruction Summary 4-2

v

CHAPTER 1

INTRODUCTION

1.1 GENERAL

The FP15 Floating-Point Processor (FPU) is a hardware option used with the PDP-15/20, /30, and /40

Central Processors; the FP15 enables the PDP-15 to perform arithmetic and logic operations using

floating-point arithmetic. The prime advantage is increased speed without the necessity of writing

complex floating-point software routines. The FP15 has single-precision and extended-integer capa

bility, as well as single- and double-precision floating point. Prior to describing the FP15 Floating

Point Processor, several fundamentals of floating-point arithmetic are reviewed in this chapter.

1.2 FLOATING-POINT ARITHMETIC

Floating-point representation of a binary number consists of two parts, an exponent and a mantissa. The

mantissa is a fracti on with the binary point positi oned between the sign bit and the most significant bit.

If the mantissa is normalized, all leading Os are eliminated from the binary representation; the most

significant bit is thus a logical 1. Leading Os are removed by shifting the mantissa left; however,

each left shift of the mantissa must be followed by a decrement of the exponent value to maintain the

true value of the number. The exponent value represents the power of 2, by which the mantissa is

multiplied to obtain the value to be used. Figure 1-1 shows an unnormalized number in floating-point

notation, and then the same number after it has been normalized. Note in the example that the man

tissa is shifted eight places to the left, and the exponent has been decreased by eight to maintain the

equivalent value.

EXPONENT

1 000 000 000 000 100 011 I
SIGN

UNNORMALIZED

1000 000 000 000 011 011 I
SIGN

NORMALIZED

MANTI SSA

000 111 111 001

111 100 100 000 000

15- 0560

Figure 1-1 Floating-Point Representation

1-1

1.2.1 Floating-Point Addition and Subtraction

For floating-point addition and subtraction operations, the exponents must be aligned or equal; if they

are not al igned, the mantissa with the smaller exponent is shifted right unti I they are. Each shift to

the right is accompanied by an increment of the exponent value. When the exponents are aligned or

equal, the mantissa can be added or subtracted, whichever the case may be. The exponent value

indicates the number of places the binary point is to be moved to obtain the actual representation of

the number.

The example below shows the number 7
10

added to the number 40
10

, as is done in floating-point re

presentation. Note that the exponents are first aligned and then the mantissas are added; the exponent

value dictates the final location of the binary point.

Example:

5 0
O. 10"--"100"--"000

7-..
0.11 100 000

000 000 000

000 000 000

a. To align exponents, shift mantissa with smaller exponent three places to
the right, and increment exponent by 3.

5 0

0.10 100 000 000 000 000
6

x 2 = 50
8

= 40
10 7 6 0.00 011 100 000 000 000 x2 = 78= 710

0.10 111 100 000 000 000
6

x 2 = 578 = 4710

b. Move binary point six places to the right.

A 7
O. 1 0 111 "'-'-'1. 00 000 000 000

I t
1 .2.2 Floating-Point Multiplication and Division

For floating-point multiplication, the mantissas are multiplied and t'he exponents are added. For

floating-point division, one mantissa' is divided by the other and the exponents are subtracted. There

is no requirement to align the binary point in multiplication or division.

The following example shows the number 710 multiplied by the number 510 • A 9-bit register is assumed

for simplicity.

1-2

0.11 100 000
3

710
x 2 = 7 =

8

0.10 100 000
3

5 = 510 x 2 =
8

110 000 000 000
0

111 000 00

• 1 000 11.0 000 000 000 = 43
8

= 35
10 I t

Move binary point six places to the right = 35
10

= 43
8

,

1-3

CHAPTER 2

FP15 FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

This chapter describes the simplified block diagram of the FP15, and its associated addresses and word

formats.

2.2 FP15 SIMPLIFIED BLOCK DIAGRAM DISCUSSION

Figure 2-1 shows a simplified block diagram of the FP15 Floating-Point Processor. The FP15 is in para

llel with the CPU on the memory bus, and monitors each instruction fetched by the CPU from core. If bits

00 through 05 of the instruction are equal to 71
8

, it is recognized as a floating-point instruction; the

CPU treats the instruction as an NOP. The FP15 takes control of memory, inhibits the CPU, and then

simulates the CPU by completirig the normal interface between CPU and memory. After the floating

point instruction has been executed, the CPU is enabled and both the CPU and FP15 are free to monitor

the next i nstructi on •

Functionally, the FP15 contains a memory buffer register and two operand registers. The memory

buffer register provides tempordry storage for all words transferred to the FP 15. One operand register

consists of an 18-bit exponent register (EPA), a 35-bit mantissa register (FMA), and a l-bit sign

register (A SIGN). This operand register is referred to as the floating-point accumulator. An addition

al 35-bit register designated the FMQ serves as an extension to the floating-point accumulator.

A second operand register consists of an 18-bit exponent register (EPB), a 35-bit mantissa register

(FMB), and a l-bit sign register (B SIGN). This second operand register I EPB/B SIGN/FMB I serves

as a temporary accumulator to hold the argument fetched from core.

The exponent registers store the exponents associated with floating-point numbers and are not used

during integer operations. Basically, if two numbers (integer or floating-point) are to be manipulated,

one number is loaded in the floating-point accumulator by a Load type instruction. The second number

is usually loaded in the temporary accumulator [EPB (B SIGN) FMB] by an instruction specifying an

arithmetic operation. Both numbers are gated into a 36-bit adder, where the arithmetic operation is

2-1

~_M_E_C~_~_~_Y __ ~~----------------------~~-------------------------~~I~ __ p_D_CP_p~_1 __ 5 __ 1

FP15 FLOATING
POINT PROCESSOR r----,

I I
I CONTROL I
I I L ____ ...l

JEA
~ (JUMP EXIT

ADDRESS)

~------'SIGNr-------L..-------'SIGN'--------'
BIT BIT

A SIGN I+-- 36-B~TUF~i~ORY ~ B SIGN

o
a:

L..----I<l:
:::>
l!)

EPA

FMA

FMQ

36-BIT ADDER

L

ADDER
BUS

EPB

FMB

Figure 2-1 FP 15 Simplified Diagram

15-0550

performed. The result is then transferred to the floating-point accumulator. The major registers are

described below:

Memory Buffer Register - A 36-bit register which provides the FP15/memory interface.
All data transferred into the FP pass through this register.

Adder - A 36-bit arithmetic logic unit (ALU) which serves as the central point in the FP15
and performs all arithmetic and logic operations. The output of the adder is connected to
all major registers via an adder bus.

A SIGN - A 1-bit register used to store the polarity of the associated operand (A mantissa).

2-2

EPA - An lS-bit register used to store the 2's complement of the exponent associated
with the mantissa loaded in the FMA. The most significant bit of the EPA represents
the sign of the exponent; in single-precision floating arithmetic, the most significant
bit of the exponent is bit 09. It is, therefore, necessary to extend the value of this
bit from bits 00 through os. If bit 09 is a 1, bits 00 through os in the EPA are forced
to ls, and if bit 09 is a 0, bits 00 through os in the EPA are forced to Os. The EPA
and FMA serve as the flOating-point accumulator.

FMA - A 35-bit register used to store the integer in integer arithmetic, or the mantissa
in floating-point arithm$tic. The binary point is located between bit 00 and bit 01 of
the FMA.

FMQ - A 35-bit extension of the FMA register used during multiplication and division
operations.

B SIGN - A l-bit register used to store the polarity of the associated operand (B mantissa).

EPB - An lS-bit register used to store the exponent associated with the mantissa in the
FMB. The most significant bit of the EPB represents the sign of the exponent. In single
precision arithmetic, where the most significant bit in the EPB is bit 09, the value of
this bit is extended to bjits 00 through os (refer to EPA register). The EPB and FMB serve
as a temporary accumulator to store the argument fetched from core. The EPB is a dynamic
register, and is therefore not directly accessible by software.

FMB - A 35-bit register used to store the integer in integer arithmetic or the mantissa
argument in floating-poi:nt arithmetic. The binary point is located between the most
significant bit (bit 00) and bit 01 of the FMB. The FMB is a dynamic register and is
therefore not directly accessible by software.

JEA (JMS Exit Address) .. A 17-bit register used to store two status bits and a 15-bit
base exit address for floating-point interrupts. When an interrupt condition (overflow,
underflow, abnormal division, or memory protect violation) occurs in the FP15, the
base exit address (a unique address for each type of interrupt) is returned. This indicates
a service routine associated with the interrupt. The guard bit is used in rounding oper
ations; for a more detailed description, refer to Paragraph 3.3 (Interrupt Handling).

I I I I JMS EXIT ADDRESS (JEA) ~
L-O~~~1-L~2-L,~3--- 17

LJt t NOT USED 15-0558

~
A SIGN

2.3 INSTRUCTION AND ADDRESS FORMATS

Floating-point instructions consist of two lS-bit words: an instruction word with a 71 code (see Figure

2-2), followed by an address word (see Figure 2-3). The instruction word specifies type of operation,

type of precision, and data format. The address word specifies direct or indirect addressing and contains

the address of the memory operand, if direct, or the address of a word containing the address of the

memory operand, if indirect. Each instruction received from memory is monitored by both the FP 15 and

2-3

CPU. An instruction with an octal code of 71 in bits 00 through 05 is recognized as a floating-point

instruction.

INSTRUCTION WORD
71 8

r-------------A~----------~

\.. 0 2 3 4 5 J\. 6 7 8 9) 10
~----------~yr----------~ ~------~yr--------

11 12 13 14 15~

~::T:::: '-O-N-T-y-p-E...JI I
BIT 10=0 GET OPERAND } BI T 10= 1 DO NOT GET OPER AN 0 _________________________ ---J

BIT 11 = 0 SINGLE PRECI S ION } __________________________ ---1

BIT 11=1 DOUBLE PRECISION

BIT 12=0 I NTEGER FORMAT } ________________________ --I
BIT 12=1 FLOATING FORMAT

BIT 13=0 NORMALIZE }
BIT 13= 1 DO NOT NORMALI ZE ---------------------------------1

BIT 14=0 ROUND }
BIT 14=1 DO NOT ROUND ---------------------------------~

NOT USED--~

BIT 16 BIT 17

o
o

o
1
o

NO EFFECT }
MAKE A SIGN POSITIVE MAKE A SIGN NEGATI VE ___J

COMPLEMENT A SIGN

15-0562

Figure 2-2 Floating-Point Instruction Format

ADDRESS WORD

I
o

I
\..

_'--____________________________ {BIT 00=0 DO N.OT PERFORM INDIRECTION
BIT 00=1 PERFORM INDIRECTION (MAXIMUM-ONE LEVEL)

2 10 11 3 4 5 6 7 8 9 12 13 14 15 16 17)

y

~ BIT 01-17 ADDRESS OF FIRST WORD OF ARGUMENT

15-0551

Figure 2-3 Floating-Point Address Format

2-4

2.4 DATA FORMATS

The single- and double-precisibn floating point and single-precision integer data formats are identical

to those in the existing PDP-15 floating-point software. Extended (double-precision) integer format is

not presently supported by the PDP-15 software. The above formats are shown in Figures 2-4, 2-5, 2-6,

and 2-7.

2.5 DATA TRANSFER TO FP15 FROM MEMORY - INTEGER FORMAT

For single-precision integer wards, the 18-bit 2 1s complement operand is loaded from memory into bits

18 through 35 of the FMA. The value of bit 18 (sign bit) is loaded into the remaining bit positions

(bits 17 through 00) to extend the sign bit.

ONE WORD

OPERAND (2 's COMPLEMENT) ~ ~O------------------~--- 17
15-0555

Figure 2-4 Single-Precision Integer Format

For extended integer words, the high-order operand from memory is loaded into bits 00 through 17 of

the FMA, and the low-order operand is loaded into bits 18 through 35.

All integers loaded into the floating-point processor are converted to 36-bit sign and magnitude numbers.

FIRST WORD

HIGH -ORDER OPERAND (2 's COMPLEMENT) ~ L-o--- 17

SECOND WORD

LOW-ORDER OPERAND (2 's COMPLEMENT)

o

Figure 2-5 Extended Integer Format

2.6 DATA TRANSFER TO FP1$ FROM MEMORY - FLOATING-POINT FORMAT

17
15-0556

For single-precision floating-point words, the first word from memory consists of nine bits of low-order

mantissa and nine bits of exponent. The nine bits of mantissa are loaded into bits 18 through 26 of the

FMA, and bits 27 through 35 are zeroed. The nine bits of exponent in 2 1s complement form are loaded

2-5

into bits 09 through 17 of the EPA, with bit 09 representing the sign bit. The unloaded portion of the

EPA register (bits 00 through 08) is loaded with the value of bit 09. If this bit is a 1, 1s are placed in

bit positions 00 through 08, and if the bit is a 0, Os are placed in bit positions 00 through 08. This

extends the sign bit to bit positions 00 (the bit normally reserved for sign of the exponent value). The

second word from memory is loaded into bits 00 through 17 of the FMA and. represents the 18 bits of

high-order mantissa. Figure 2-7 shows the loading of single-precision floating-point words from

memory. The first word is 044022, and the second is 212346.

Note that the EPA and bits 18 through 26 of the FMA are loaded by the first word, and bits 00 through

17 of the FMA are loaded with the second word.

FIRST WORD

LOW-ORDER MANTISSA EXPONENT (2'S COMPLEMENT)

o 8 9

SECOND WORD

I I HIGH-ORDER MANTISSA

o 1
~

Figure 2-6 Single-Precision Floating-Point Format

MEMORY

9 BITS
MANTISSA EXPONENT

, I

I!!: WORD 10 4 4 0 2 2 I
o 89 17

NO T E : '-----v---' '--r--'
If bit 9 of 1!t word L..-_+-_____ --.
Is 01, bits 0 through
8 become 1. If bit 9
of III word is O,bits
o through 8 become
O.

10 0 010 2 21

o 89 17

FP15

ITA SIGN FMA

10 2 1 2 3 4 6 i 0 4 41 0 0 0 I ~~T~l;o~~ROUGH
o 1 17 18 26 27 35

I

2M WORD 1L-2_'_2_3_4_6 1
o

BITO-SIGN BIT

17

Figure 2-7 Loading of Single-Precision
Floating Point

2-6

15-0552

17

17
15-0557

For double-precision floating-point words, the 18-bit 2 1s complement exponent is first loaded into the

EPA, the 18-bit high-order mantissa is loaded into A SIGN and bits 01 through 17 of the FMA, and

the low-order mantissa is loaded into bits 18 through 35 of the FMA. All 36 bits of the FMA are loaded

at one time.

FIRST WORD

I I
EXPONENT (2 's COMPLEMENT)

o 1 17
L§lllli

SECOND WORD

I I
HIGH -ORDER MANTISSA

o 1 17
~

THIRD WORD

LOW- ORDER MANTISSA

"0 17
15 -0554

Figure" 2-8 Double-Precision Floating-Point Format

2-7

CHAPTER 3

FP15 ARITHMETIC

3.1 INTRODUCTION

Negative integers are stored in imemory as 2 1s complement numbers. Such operands are converted to

sign and magnitude format when transferred to the FMA or FMB in the FP15. Load and reverse arithme

tic instructions transfer operands to the FMA, while arithmetic instructions transfer operands to the

FMB. Positive integers and floating-point numbers stored in memory require no conversion, as they

are already in sign and magnitude format.

As an example of how negative integers are handled, consider the integer designated as negative 2.

This number is stored in memory as 777776
8

• When transferred to t~e FMA, for example, the number

is converted to 0000028 with a negative sign (1), as shown in Figure 3-1 •.

MEMORY I 7 1

t
7 I 7 I 7 I 7 I 6 I TWO'S COMPLEMENT

~

FMA (OR FMB I f,'"rl 1 0:-,,1_o 1&....-0_1&....-0 __ 1,--0 __ ,--0 __ 1,--2---,1 S I G NAN 0 MAG NIT U 0 E

ASIGN~ (BSIGN)

MSB
15-0559

Figure 3-1 Handling of Negative Integers

Negative integers in sign and magnitude format in the FP15 are converted to two's complement format

prior to being stored in memory by a STORE instruction.

3.2 GUARD BIT AND ROUNDING

The FP15 has an internal guard bit that is used under certain conditions to determine whether the

FMA is to be rounded. The gua:rd bit is set independent of any request for rounding. When set, and

rounding is requested, it adds +1 to the least significant bit of the FMA. The guard bit is cleared at

the beginning of all instructions except Floating-Point Test, Load JEA, Store JEA, and Branch.

3-1

During alignment of the mantissas in floating-point addition and subtraction, bits shifted out of the

FMA or FMB are shifted into the FMQ. If rounding is requested, and FMQ 01 is a 1, the mantissa that

is being aligned is rounded. Further, if the addition or subtraction produced a carry out of the most

significant stage of the adder, the adder is right-shifted and the exponent is incremented. This returns

the true number to the FMA (see Figure 3-2). The least signifi cant bit shifted out of th~ FMA is not

shifted into the FMQ, but is shifted into a guard bit. If rounding is requested, and the guard bit is

set, +1 is added to the least significant bit of the FMA.

For floating-point multiplication and division operations, the guard bit is set if FMQ 01 is on a 1. If

rounding is requested, and the guard bit is set, +1 is added to the least significant bit of the FMA.

For a Fix instruction, the bits in the FMA and FMQ are right-shifted. If, upon completion of the shift

ing process, FMQ 01 is on a 1, the guard bit is set. If rounding is requested, and the guard bit is set,

+ 1 is added to the least significant bit of the FMA.

111
+ 1

~------------~1000

FMA RENORMALIZED 15-0561

Figure 3-2 Handling of Guard Bit During Round Request

In single precision floating-point arithmetic, after numbers are loaded into the FP15 they are handled

as double-precision numbers - 18-bits of exponent and 35-bits of mantissa. Due to this, +1 is added

to bit 35 of the floating-point accumulator during arithmetic operations when rounding is performed.

When rounding takes place in the single-precision floating STORE instruction, however, +1 is added

to bit 26 of the FMA if bit 27 is a one. Bits 27-35 are then cleared.

3.3 INTERRUPT HANDLING

The FP 15 can cause an interrupt under the following conditions:

Overflow - Occurs when the final magnitude of an arithmetic operation exceeds the
maximum number that can be represented by the FP15. Overflow can occur with both
integer and floating-point numbers.

3-2

Underflow - Occurs when the final magnitude of an arithmetic operation is less than
the minimum number which can be represented by the FP15. Underflow applies to
floating-point numbers only.

Abnormal Divide - Occurs when division by an unnormalized operand is attempted on
either integer or floating-point numbers (0 represents a special case of the unnormalized
operand) •

Memory Protect Trap - Occurs when the system is in user mode and a memory protect
violation or non-existent memory reference has been made by the FPU.

Prior to starting FP15 floating-point operation, the 15-bit JEA register is loaded with an address re

presenting a core location to which the FP15 can exit when a particular error condition (overflow,

underflow, abnormal divide, or memory protect trap) is detected. When one of these conditions is

detected, the FP15 forces the CPU to execute a JMS to a location specified by the JEA plus a fixed

constant, N. This locati on is the entry point to a specific routine associated with the error conditi on.

If the interrupt exception is overflow, the CPU will execute a JMS to the JEA address; if the exception

is underflow, the CPU will execute a JMS to the JEA address +2; if abnormal divide, the CPU will

execute a JMS to the JEA +4; and if memory protect trap, the CPU will execute a JMS to the JEA

address +6. The JEA is a 15-bit register which holds the exit address as follows:

EXIT ADDRESS 0
+1
+2
+3
+4
+5
+6
+7

JMP OVR /GO TO OVERFLOW
0
JMP UNO /GO TO UNDERFLOW
0
JMP DIV /GO TO DIVIDE
0
JMP TRAP /GO TO MEMORY VIOLATION

NOTE

To determine the data mode on an interrupt exception,
it is necessary to examine the instruction that was being
executed. The address which was stored, due to the
JMS instruction, is equal to the location of the origin
al instruction +3.

3 .3. 1 Memory Protect Trap

When a memory protect violation occurs during a floating-point instruction, the FP15 forces the CPU

to execute a JMS to the location specified by JEA +6 (as previously described), no trap will occur,

user mode will remain on, and n;o modification of core above or below the boundary will occur.

An example of this is shown below, where, upon occurrence of a memory protect violation, a JMS

to location JEA +6 occurs and the PC points to A+3.

3-3

Example:

A
A+1
A+2
A+3

1000 DAC
1001 DAD
1002400
1003
1004

LOC (JEA+6)
+7

1004
JMP MP Service

An exception to the above occurs if the JEA points to an address above or below the protect boundaries

and a floating-point memory violation occurs. Iri this case, the CPU will trap and service the attempted

boundary violation, and the PC will point to A+3.

3-4

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

Table 4-1 is a summary of all FP15 Floating-Point instructions by categories. Following this table is a

description of the FP15 instruction set. The mnemonic, instruction type, execution time, and octal

code are provided for each instruction, followed by a general description of its operation. The instruc

tions which can cause interrupt exceptions (underflow, overflow, abnormal division, or memory trap)

are specified. Section 4.3 discusses worst-case timing.

The XCT of any FP15 instruction is permissible, and the address associated with the FP15 instruction is

contained in the location following the XCT. The EXEC switch will not execute a FP15 instruction; an

NOP will occur. SING TIME, SING STEP, or SING INST switches will not stop the execution of a

FP15 instruction.

The instruction modifiers, formats, and operations of the FP15 instruction set are designated by the

following characters:

MODIFIERS

UR - unrounded
UN - unnormalized
UU - unrounded and unnorma I ized

FORMATS

I - single precision integer
E - extended (double-precision) integer
F - single-precision floating point
D - double-precision floating point

OPERATIONS

AD - Add
SB .- Subtract
RS - Reverse Subtract
MP - Multiply
DV - Divide
RD - Reverse Divide
ST - Store
LF - Load and Float
LD - Load

4-1

OPERATIONS (Cont)

FL - Float
LX - Load and Fix
FX - Fix
LQ - Load FMQ
SWQ - Swap

Generally, the FP 15 instructions are in the following format:

8 ~ ~
MODIFIER FORMAT OPERATION

For example, if an unrounded, unnormalized, double-precision floating point Add instruction is speci

fied, the mnemonic is specified as UUDAD; where the UU is the modifier, D is the format, and AD is

the operation. Modify FMA instructions, branch instructions, and diagnostic instructions do not follow

this general pattern.

All the FP 15 instructions (except Floating-Point Test, Branch, Load or Store JEA, and diagnostic

instructions) can be microprogrammed with bits 16 and 17 of the instruction word as described below:

Bit 16

o
o
1
1

Bit 17

o
1
o
1

No effect
Make A SIGN positive {Not used in FP test, Load or
Make A SIGN negative Store JEA, Branch on condition,
Complement A SIGN and diagnostic instructions.

For example, f'he instruction 710540 specifies double-precision floating-point subtraction. If desired

to make A SIGN negative, the instruction would be specified as 710542.

Table 4-1
FP 15 Instructi on Summary

Mnemonic Instruction Type Octal Code

FPT Floating-Point Test 710314

ISB Single Integer Subtract 710400

ESB Extended Integer Subtract 710500

FSB Single-Precision Float Subtract 710440

URFSB Unrounded, Single-Precision Float Subtract 710450

UNFSB Unnormalized, Single-Precision Float Subtract 710460

UUFSB Unrounded, Unnormalized, Single-Precision Float Subtract 710470

4-2

Table 4-1 (Cont)
FP 15 Instructi on Summary

Mnemonic Instructi on Type Octal Code

DSB Double-Precision Float Subtract. 710540

URDSB Unrounded, Double-Precision, Float Subtract 710550

UNDSB Unnormalized, Double-Precision Float Subtract 710560

UUDSB Unrounded, Unnormalized, Double-Precision Float Subtract 710570

IRS Single Integer Reverse Subtract 711000

ERS Extended Integer Reverse Subtract 711100

FRS Single-Precision Float Reverse Subtract 711040

URFRS Unrounded, Single-Precision Float Reverse Subtract 711050

UNFRS Unnormalized, Single-Precision Float Reverse Subtract 711060

UUFRS Unrounded, Unnormalized, Single-Precision Float Reverse 711070
Subtract

DRS Double-Precision Float Reverse Subtract 711140

URDRS Unrounded, Double-Precision Float Reverse Subtract 711150

UNDRS Unnormal ized, Double-Precision Float Reverse Subtract 711160

UUDRS Unrounded, Unnormalized, Double-Precision Float Reverse 711170
Subtracit

IMP Single Integer Multiply 711400

EMP Extended Integer Multiply 711500

FMP Single.JPrecision Float Multiply 711440

URFMP Unrounded, Single-Precision Float Multiply 711450

UNFMP Unnormalized, Single-Precision Float Multiply 711460

UUFMP Unrounded, Unnormalized, Single-Precision Float Multiply 711470

DMP Double~Precision Float Multiply 711540

URDMP Unrounded, Double-Precision Float Multiply 711550

UNDMP Unnormalized, Double-Precision Float Multiply 711560

UUDMP Unrounded, Unnormalized, Double-Precision Float Multiply 711570

IDV Single"'Precision Integer Divide 712000

EDV Extended Integer Divide 712100

FDV Single-Precision Float Divide 712040

URFDV Unrounded, Single-Precision Float Divide 712050

DDV Double-Precision Float Divide 712140

URDDV Unrounded, Double-Precision Float Divide 712150

IRD Single ... Precision Integer Reverse Divide 712400

4-3

Mnemonic

ERD

FRD

URFRD

DRD

URDRD

ILD

ELD

FLD

UNFLD

DLD

UNDLD

1ST

EST

FST

URFST

UNFST

UUFST

DST

UNDST

ILF

UNILF

ELF

UNELF

FLA

UNFLA

FLX

URFLX

DLX

URDLX

FXA

URFXA

ILQ

Table 4-1 (Cont)
FP15 Instruction Summary

Instruction Type

Extended Integer Reverse Divide

Single-Precision Float Reverse Divide

Unrounded, Single-Precision Float Reverse Divide

Double-Precision Float Reverse Divide

Unrounded, Double-Precision Float Reverse Divide

Single-Precision Integer Load

Extended Integer Load

Single-Precision Float Load

Unnormal ized, Single-Precision Float Load

Double-Precision Float Load

Unnormalized, Double-Precision Float Load

Single-Precision Integer Store

Extended Integer Store

Single-Precision Float Store

Unrounded, Single-Precision Float Store

Unnormalized, Single-Precision Float Store

Unrounded, Unnormalized, Single-Precision Float Store

Double-Precision Float Store

Unnormalized, Double-Precision Float Store

Single-Precision Integer Load and Float

Unnormalized, Single-Precision Integer Load and Float

Extended Integer Load and Float

Unnormal ized, Extended Integer Load and Float

Float FMA

Unnormalized Float FMA

Single-Precision Float Load and Fix

Unrounded, Single-Precision Float Load and Fix

Double-Precision Float Load and Fix

Unrounded, Double-Precision Float Load and Fix

Fix EPA, FMA

Unrounded, Fix EPA, FMA

Single-Precision Integer Load FMQ

4-4

Octal Code

712500

712440

712450

712540

712550

713000

713100

713050

713070

713150

713170

713600

713700

713640

713650

713660

713670

713750

713770

714010

714030

714110

714130

714210

714230

714460

714470

714560

714570

714660

714670

715000

Mnemonic

ELQ

FLQ

UNFLQ

DLQ

UNDLQ

SWQ

UNSWQ

LJE

SJE

lAD

EAD

FAD

URFAD

UNFAD

UUFAD

DAD

URDAD

UNDAD

UUDAD

BZA

BMA

BLE

BPA

BRU

BNA

BAC

FZR

FAB

FNG

FCM

FNM

DMF

Table 4-1 (Cont)
FP15 Instruction Summary

Instruction Type

Extended Integer Load FMQ

Single-Precision Float Load FMQ

Unnormalized, Single-Precision Float FMQ

Double-Precision Float Load FMQ

Unnormalized, Double-Precision Float Load FMQ

Swap FMA and FMQ

Unnormalized, Swap FMA and FMQ

Load JEA Register

Store JEA Register

Single~Precision Integer Add

Extended I nteger Add

Single-Precision Float Add

Unrounded, Single-Precision Float Add

Unnormalized, Single-Precision Float Add

Unrounded, Unnormalized, Single-Precision Float Add

Double-Precision Float Add

Unrounded, Double-Precision Float Add

Unnormalized, Double-Precision Float Add

Unrounded, Unnormal ized, Double-Precision Float Add

Branch on 0 FMA

Branch on Minus FMA

Branch if FMA <0 -
Branch on positive FMA

Branch Unconditional

Branch on non-zero FMA

Branch if GUARD bit is Set

Zero EPA (A SIGN) FMA

Make A SIGN positive (Absolute Value)

Make A SIGN negative

Complement A SIGN

Normalize EPA (A SIGN) FMA

Diagnostic Mode Off

4-5

Octal Code

715100

715050

715070

715150

715170

715250

715270

715400

715600

716000

716100

716040

716050

716060

716070

716140

716150

716160

716170

716601

716602

716603

716604

716606

716610

716620

711200

713271

713272

713273

713250

717200

Table 4-1 (Cont)
FP 15 Instructi on Summary

Mnemonic Instructi on Type Octal Code

DMN Diagno.stic Mode On 717300

DRR Diagnostic Read Registers 710000

DSR Diagnostic Step and Read Registers 710100+n

DBK Debreak 703304

4.2 FPU INSTRUCTION SET

4.2. 1 Integer Subtract

Mnemonic Instruction Type Time (~s) Octal Code

ISB Single Integer Subtract 6.2 710400

ESB Extended Integer Subtract 7.3 710500

The argument is transferred from memory to the (B SIGN) FMB. The content of (B SIGN) FMB is sub

tracted from the content of (A SIGN) FMA, and the difference is placed in (A SIGN) FMA. If the

difference is 0, EPA and A SIGN are zeroed. The FMQ is zeroed at the beginning of the instruction.

Interrupt Exception: Overflow - An overflow interrupt will occur if the subtraction generates a magni

tude greater than 235 -1. The result left in the FMA is modulo 2
35

. The A SIGN is the sign of the

result, as if no overflow occurred.

Example (DBL Precision):

RESULT

RESULT LEFT IN FMA

A SI GN (1) F MA = 3 7 7 7 7 7 7 7 7 7 7 7

B SIGN (0) FMB = 0 0 0 0 0 0 0 0 000 7

A SIGN (1) 400 0 0 0 0 0 0 0 0 6

000000000006

4-6

followed by
overflow interrupt

4.2.2 Floating-Point Subtract

Mnemonic Instruction Type Time (I-'s) Octal Code

FSB Sng. F I oat Subtract 8.4 710440

URFSB Unround, Sng. Float Subtract 8.4 710450

UNFSB Unnorm., Sng. Float Subtract 8.3 710460

UUFSB Unround, Unnorm., Sng. Float Subtract 8.3 710470

DSB Obi. Float Subtract 11.2 710540

URDSB Unround, Obi. Float Subtract 11.2 710550

UNDSB Unnorm., Obi. Float Subtract 11.2 710560

UUDSB Unround, Unnorm., Obi. Float Subtract 11.2 710570

The argument is transferred to EPB (B SIGN) FMB [exponent to EPB and mantissa to (B SIGN) FMB] •

The mantissas in the FMA and FMB are aligned by finding the difference between the EPA and EPB,

and right-shifting the mantissa with the smaller exponent until the number of shifts equals the exponent

difference. Bits shifted out of the mantissa with the smaller exponent are shifted into the FMQ, which

is cleared at the beginning of the instruction. The bits shifted into the FMQ are retained there. When

the mantissas are aligned, the FMB mantissa (fraction) is subtracted from the FMA mantissa and the

difference placed in (A SIGN)FMA. If a carry occurs out of the most significant bit of the FMA, the

difference is shifted right one place and the exponent incremented by 1. The least significant bit (LSB)

of the FMA is not shifted into the FMQ but into a guard bit to be saved for rounding (see Paragraph 3.2).

Rounding - Rounding can occur at two times: once after the al ign, and then after the subtract. After

the align, if rounding is requested and FMQ 01 is a 1, +1 is added to the least significant bit of the

FMA (bit 35). After the subtract, if rounding is requested and the guard bit is set, +1 is added to the

least significant bit of the FMA (bit 35).

Normalizing - If the most significant bit of the FMA is not a 1 after the subtract and normalize is re

quested, the FMA is shifted left until the most significant bit (MSB) contains a 1 (up to a maximum of

35 shifts). The FMA is a 35-bit register and, if a number contained therein is shifted more than 35 times

and is still not normalized, that number was equal to 0 and cannot be normalized (Os are shifted into

the least significant positions of the FMA). For each left shift, the exponent is decremented by 1.

Interrupt Exception: Underflow - If the exponent of the result is less than 400000
8

(_2
17

), it cannot

be correctly represented in the EPA, and an underflow interrupt exception occurs. The contents of the

(A SIGN) FMA are correct. The correct exponent is _2
18

+EPA.

4-7

Interrupt Exception: Overflow - If the exponent of the result is greater than 3777778 (2
17

-1), it

cannot be represented correctly in the EPA and an overflow interrupt exception occurs. The contents

of A SIGN (FMA) are correct; the correct exponent is 2
18

+EPA.

4.2.3 Integer Reverse Subtract

Mnemonic

IRS

ERS

Instructi on Type

Sng. Integer Reverse Subtract

Ext. Integer Reverse Subtract

Time (tJS)

6.2

7.3

Octal Code

711000

711100

The argument is transferred from memory to the FMB. The contents of the FMA are subtracted from

the argument in the FMB and the difference is placed in the FMA. If the difference is 0, EPA and

A SIGN are zeroed. The contents of the FMQ are zeroed at the beginning of the instruction.

Interrupt Exception: Overflow - An overflow interrupt will occur if the subtraction generates a magni

tude greater than 2
35

-1. The result left in the FMA is modulo 2
35

• The A SIGN is the sign of the

result, as if no overflow occurred.

4.2.4 Floating Point Reverse Subtract

Mnemonic

FRS

URFRS

UNFRS

UUFRS

DRS

URDRS

UNDRS

UUDRS

Instruction Type

Sng. F I oat Reverse Subtract

Unround, Sng. Float. Reverse Subtract

Unnorm., Sng. Float Reverse Subtract

Unround, Unnorm., Sng. Float Reverse Subtract

Db I. F I oat Reverse Subtract

Unround, Db I. F I oat Reverse Subtract

Unnorm., Dbl. Float Reverse Subtract

Unround, Unnorm., Dbl. Float Reverse Subtract

Time (I-'s) Octal Code

8.6 711040

8.6 711050

8.5 711060

8.5 711070

11.6 711140

11.6 711150

11.2 711160

11.2 711170

The argument is transferred to EPB (B SIGN) FMB [exponent to EPB and mantissa to (B SIGN) FMB] •

The mantissas in the FMA and FMB are aligned by finding the difference between the EPA and EPB

and right-shifting the mantissa with the smaller exponent until the number of shifts equal the exponent

difference. Bits shifted out of the mantissa with the smaller exponent are shifted into the FMQ, which

is cleared at the beginning of the instruction. The bits shifted into the FMQ are retained. When the

4-8

mantissas are aligned, the FMAmantissa (fraction) is subtracted from the FMB mantissa and the differ

ence placed in (A SIGN) FMA. If a carry occurs out of the most significant bit of the FMA, the differ

ence is shifted right one place and the exponent incremented by 1. The LSB of the FMA is not shifted

into the FMQ, but into the guard bit to be saved for rounding (see Paragraph 3.2).

Rounding - Rounding can occur ,at two times: once after the align, and then after the subtract. After

the align, if rounding is requested and FMQ 01 is a 1, +1 is added to the least significant bit of the

FMA (bit 35). After the subtra~t, if rounding is requested and the guard bit is set, + 1 is added to the

least significant bit of the FMA (bit 35).

Normalizing - If the most signi~icant bit of the FMA is not a 1 after the subtract and normalize is re

quested, the FMA is shifted left' (up to a maximum of 35 shifts) until the MSB contains a 1. Zeros are

shifted into the least significant positions of the FMA. For each left shift, the exponent is decremented

by 1.

Interrupt Exception: Underflow- If the exponent of the result is less than 400000
8

(_2
17

), it cannot

be correctly represented in the EPA and an underflow interrupt exception occurs. The contents of the

A SIGN (FMA) are correct; the correct exponent is _2
18

+EPA.

Interrupt Exception: Overflow - If the exponent of the result is greater than 3777778 (2
17

-1), it

cannot be correctly represented: in the EPA, and an overflow interrupt exception occurs. The contents
• 18

of A SIGN (FMA) are correct; the correct exponent is 2 +EPA.

4.2.5 Integer Multiply

Mnemonic

IMP

EMP

Instructi on Type

Sng. Integer Multiply

Ext. Integer Multiply

Time (I-'s)

14. 1

17.0

Octal Code

711400

711500

The multiplicand argument is transferred to the (B SIGN) FMB. The multiplier is contained in the

(A SIGN) FMA. The product is retained in the (A SIGN) FMA and FMQ with the low-order bits in

the FMA (the former contents of the FMQ are lost). The FMQ can be accessed through the Load FMQ

instruction.

Interrupt Exception: Overflow - An overflow interrupt exception occurs if the magnitude of the

product is greater than 2
35

-1; that is, if any of the high-order 35-bits of the product are in 1s. The

A SIGN is the sign of the result, as if no overflow occurred.

4-9

4.2.6 Floating Point Multiply

Mnemonic Instruction Type Time (fJS) Octal Code

FMP Sng. Float Multiply 16.6 711440

URFMP Unround, Sng. Float Multiply 16.6 711450

UNFMP Un norm ., Sng. Float Multiply 16.2 711460

UUFMP Unround, Unnorm., Sng. Float Multiply 16.2 711470

DMP Obi. Float Multiply 18.6 711540

URDMP Unround, Obi. Float Multiply 18.6 711550

UNDMP Unnorm., Obi. Float Multiply 18.2 711560

UUDMP Unround, Unnorm., Obi. Float Multiply 18.2 711570

The multiplicand is transferred to the EPB (B SIGN) FMB, and the multiplier is contained in the EPA

(A SIGN) FMA. The product is retained in the EPA (A SIGN) FMA and FMQ; the former contents of

the FMQ are lost. The FMA retains the high-order bits, and the FMQ retains the low-order bits. For

multiplication, the EPA and EPB are added together, with the sum retained in the EPA.

Rounding - If rounding is requested and the most significant bit of the FMQ is a 1, the guard bit is set

(see Paragraph 3.2) and +1 is added to the least significant bit of the FMA. If this addition produces

a carry out of the most significant bit of the FMA, the FMA is right-shifted by 1 and the EPA is incre

mented by 1.

Normalizing - If the most significant bit of the FMA is not a 1 and normalize is requested, the FMA

and FMQ are shifted left as one 70-bit register until the most significant bit of the FMA is a 1, not

to exceed a maximum of 35 shifts. For each left shift, the EPA is decremented.

Interrupt Exception: Underflow - If the exponent of the result is less than 400000
8

(_2
17

), it cannot

be correctly represented in the EPA and an underflow interrupt excepti on occurs. The contents of the

A SIGN (FMA) are correct; the correct exponent is _2
18

+EPA.

Interrupt Exception: Overflow - If the exponent of the result is greater than 3777778 (2
17

-1), it

cannot be correctly represented in the EPA, and an overflow interrupt exception occurs. The contents

of A SIGN (FMA) are correct; the correct exponent is 2
18

+ EPA.

4-10

4.2.7 Integer Divide

Mnemonic

IDV

EDV

Instruction Type

Sng. Integer Divide

Ext. Integer Divide

Time (I-'s)

11.8

14.4

Octal Code

712000

712100

The divisor argument is transferred to the (B SIGN) FMB, and the dividend is contained in the (A SIGN)

FMA. The quotient is retained in the (A SIGN) FMA and the remainder is left in the FMQ, replacing

the previous contents of the FMQ. Integer division is whole number division; if the dividend is less

than the divisor, indicating a fractional number, the quotient is o.

Interrupt Exception: Abnormal Divide - If the divisor is 0, an abnormal interrupt exception occurs

because division by 0 is not possible. Execution of the Divide instruction is aborted immediately; the

programmer cannot rely on the contents of the registers after the instruction is aborted.

4.2.8 Floating Point Divide

Mnemonic Instruction Type Time (1-'5) Octal Code

FDV Sng. Float Divide 15.6 712040

URFDV Unround, Sng. Float Divide 15.6 712050

DDV Dbl. Float Divide 18.3 712140

URDDV Unround, Dbl. Float Divide 18.3 712150

The divisor argument is transferred to the EPB (B SIGN) FMB and is divided into the dividend in the

EPA (A SIGN) FMA. The dividend is normalized prior to the actual divide. The 35-bit quotient is

normalized and is retained in the FMA. The previous contents of the FMQ is lost and the remainder

is retained in this register.

Normalize - For floating-point division, the dividend is normalized. The quotient is left in normal

ized form.

Rounding - If rounding is requested, and the most significant bit of the FMQ is aI, the guard bit is

set and + 1 is added to FMA bit 35. If this addition produces a cany into the MSB of the FMA, the

FMA is right-shifted one place qnd the EPA incremented by 1.

4-11

Interrupt Exception: Underflow - If the exponent of the result is less than 400000
8

(_2
17

), it cannot

be correctly represented in the EPA and an underflow interrupt exception occurs. The contents of the

A SIGN (FMA) are correct. The FMQ retains the remainder, and the correct exponent is _2
18

+ EPA.

Interrupt Exception: Abnormal Divide - If the divisor is unnormalized (or 0) an abnormal divide inter

rupt exception occurs. Execution of the Divide instruction is aborted immediately. The programmer

cannot rely on the contents of the registers after the instruction is aborted.

Interrupt Exception: Overflow - If the exponent of the result is greater than 3777778 (2
17

_1), it

cannot be correctly represented in the EPA and an overflow interrupt exception occurs. The contents

of A SIGN (FMA) are correct. The FMQ retains the remainder; the correct exponent is 2
18

+EPA.

4.2.9 Integer Reverse Divide

Mnemonic

IRD

ERD

Instruction Type

Sng. Integer Reverse Divide

Ext. Integer Reverse Divide

Time (IlS)

11.8

14.4

Octal Code

712400

712500

The dividend argument is transferred to the (B SIGN) FMB and is divided by the contents of (A SIGN)

FMA. The quotient is retained in the (A SIGN) FMA. The previous contents of the FMQ is lost and

the remainder is left in this register. Integer division is whole number division; if the dividend is less

than the divisor, indicating a fractional number, the quotient is O.

Interrupt Exception: Abnormal Divide - If the divisor is 0, an abnormal divide interrupt exception

occurs because division by 0 is not possible. Execution of the Divide instruction is aborted immedi

ately; the programmer cannot rely on the contents of the registers after the instruction is aborted.

4.2.10 Floating Point Reverse Divide

Mnemonic

FRD

URFRD

DRD

URDRD

Instruction Type

Sng. Float Reverse Divide

Unround, Sng. Float Reverse Divide

Dbl. Float Reverse Divide

Unround, Obi. Float Reverse Divide

4-12

15.6

15.6

18.3

18.3

Octal Code

712440

712450

712540

712550

The dividend argument is transferred to the EPB (B SIGN) FMB and is divided by the divisor contained

in EPA (A SIGN) FMA. The dividend is normalized prior to the actual divide. The 35-bit quotient

is automatically normalized and is retained in the FMA. The previous contents of the FMQ are lost and

the remainder is retained in this register. For floating-point reverse division, the dividend and divisor

are normal ized. If rounding is requested, and the most signifi cant bit of the FMQ is a 1, the guard bit

is set (see Paragraph 3.2) and + 1 is added to FMA bit 35. If this addition produces a carry into the

MSB of the FMA, the FMA is risht-shifted one place and the EPA incremented by 1.

Interrupt Exception: Underflow - If the exponent of the result is less than 400000
8

(_2
17

), it cannot

be correctly represented in the EPA and an underflow interrupt exception occurs. The contents of the

A SIGN (FMA) are correct; the correct exponent is _2
18

+EPA.

Interrupt Exception: Abnormal Divide - If the divisor is unnormalized (or 0), an abnormal divide inter

rupt exception occurs. Execution of the Divide instruction is aborted immediately. The programmer

cannot rely on the contents of the registers after the instruction is aborted.

Interrupt Exception: Overflow" If the exponent of the result is greater than 3777778 (2
17

-1), it

cannot be correctly represented lin the EPA and an overflow interrupt exception occurs. The contents

of A SI G N (F MA) are correct; the correct exponent is 2
18

+ EPA.

4.2.11 Integer load

Mnemonic

IlD

ElD

Instruction Type

Sng. Integer Load

Ext. Integer Load

Time (IJS)

6.6

7.8

Octal Code

713000

713100

The argument is transferred from memory to the (A SIGN) FMA. The contents of the FMQ remain un

changed.

4.2.12 Floating Point load

Mnemonic

FLO

UNFlD

OLD

UNDlD

Instructi on Type

Sng. Float load

Unnorm., Sng. Float load

Obi. Float load

Unnorm., Obi. Float load

4-13

Time (I-'s)

8.3

7.9

9.5

9.3

Octal Code

713050

713070

713150

713170

The argument is transferred from memory to the EPA (A SIGN) FMA. The contents of the FMQ remain

unchanged.

Normalize - If the most significant bit of the FMA is not a 1 and normalize is requested, the FMA is

shifted left (up to a maximum of 35 shifts) until the most significant bit is a 1. Os are shifted into the

least significant positions of the FMA. For each left shift, the EPA is decremented.

Interrupt Exception: Underflow - If the exponent of the result due to normalizing is 1ess than 400000
8

(_2
17

), it cannot be correctly represented in the EPA and an underflow interrupt exception occurs.

The contents of the A SIGN (FMA) are correct; the correct exponent is _2
18

+EPA.

4.2. 13 Integer Store

Mnemonic

1ST

EST

Instruction Type

Sng. Integer Store

Ext. Integer Store

Time (~s)

6.6

7.8

Octal Code

713600

713700

The FMA is stored in the location specified by the argument address. For single-precision integer

format, the A SIGN and bits 19 through 35 of the FMA are stored in 2 1s complement format at the

argument address.

For extended-precision integer format, the first word consists of A SIGN and bits 01 through 17 of the

FMA; the second word consists of bits 18 through 35 of the FMA. Both words are stored in 2 1s comple

ment format, starting at the argument address. No interrupt exceptions occur during extended integer

store; the contents of the FMQ remain unchanged.

Interrupt Exception: Overflow (Single Precision) - If the magnitude of the number in the FMA is

greater than 3777778 (2
17

-1), an overflow interrupt exception occurs. The STORE instruction is

aborted prior to the write into memory. The (A SIGN) FMA and contents of the FMQ remain un

changed.

4.2. 14 Floating Point Store

Mnemonic

FST

URFST

UNFST

Instructi on Type

Sng. Float Store

Unround, Sng. Float Store

Unnorm., Sng. Float Store

4-14

Time (~)

7.9

7.9

7.7

Octal Code

713640

713650

713660

(Continued on next page)

Mnemonic ' Instructi on Type Time (IJS) Octal Code

UUFST Unround, Unnorm., Sng. Float Store 7.7 713670

DST Obi. F I oat Store 9. 1 713750

UNDST Unnorm., Obi. Float Store 8.9 713770

For single-precision floating-point format, the first word is stored in 2 1s complement format at the

argument address, and consists of bits 9 through 17 in the EPA register, and bits 18 through 26 in the

FMA. The second word consists of A SIGN and bits 01 through 17 of the FMA, and is stored in the

argument address plus one.

For double-precision floating-point format, the first word is stored in 2 1s complement format at the

argument address, and consists of EPA bits 0 through 17. A SIGN and FMA bits 1 through 17 comprise

the second word, which is stored in sign and magnitude format at the argument address plus one. FMA

bits 18 through 35 comprise the third word, which is stored at the argument address plus two.

Normalize - If normalize is requested and the most significant bit of the FMA is not a 1, the FMA is

shifted left (up to a maximum of 35 shifts) until the most significant bit is a 1 (Os are shifted into the

least significant bits). For each left shift, the EPA is decremented by 1.

Rounding - If rounding is requested in single-precision store, and bit 27 is a 1, +1 is added to FMA

bit 26. If bit 27 is a 0, rounding has no effect. Bits 27 through 35 are then zeroed. If a carry occurs

out of the most significant bit of the FMA as a result of rounding, the FMA is shifted right one place

and the EPA is incremented. RQunding is not done on double-precision floating-point store instructions

since it occurs during the arithmeti c operation.

Interrupt Exception: Overflow- If the EPA in a single-precision store is greater than 2
8

-1, an over

flow wi II occur. The store instruction is aborted prior to the write into memory; the contents of the

EPA/A SIGN/FMA are not changed.

Interrupt Exception: Underflow- If the exponent of the result due to normalization is less than 400000
8

(_2
17

), it cannot be correctly represented in the EPA, and an underflow interrupt exception occurs.

The contents of the A SIG N (FMA) are correct; the correct exponent is _2
18 + EPA.

Also, if the number in the EPA is less than _2
8

on a single'-precision store, an underflow interrupt will

occur. The store instruction is ~borted prior to the write into memory; the contents of EPA (A SIGN)

FMA are unchanged.

4-15

4.2.15 Load and Float

Mnemonic

ILF

UNILF

ELF

UNELF

Instruction Type

Sng. Integer, Load and Float

Unnorm., Sng. Integer Load and Float

Ext. Integer, Load and Float

Unnorm., Ext. Integer Load and Float

Time (~s) Octal Code

11.2 714010

6.6 714030

11.0 714110

7.9 714130

The Load and Float instruction converts integer format to floating-point format. The integer argument

is first transferred from memory to the (A SIGN) FMA. The EPA is loaded with 35
10

, which effectively

relocates the binary point from the right of the integer to a point between the sign bit and most signi

ficant bit of the FMA. The integer is consequently converted to a floating-point number; the contents

of the FMQ remain unchanged.

Normalize - If the most significant bit of the FMA is not a 1 and normalize is requested, the FMA is

shifted left (up to a maximum of 35 shifts) until the most significant bit is a 1 (Os are shifted into the

least significant bits of the FMA). For every left-shift of the FMA, the EPA is decremented.

Interrupt Excepti on: None

4.2.16 Float (FMA)

Mnemonic

FLA

UNFLA

Instructi on Type

Float FMA

Unnorm., Float FMA

Time (~s)

8.2

5.3

Octal Code

714210

714230

The Float FMA instruction converts integer format to floating-point format. The integer argument is

already contained in (A SIGN) FMA; the second word (address) of this instruction is not used and can

have any value.

The EPA is loaded with 35
10

, which effectively relocates the binary point to the left of the number.

The integer number is consequently converted to a floating-point number; the contents of the FMQ

remain unchanged.

Normalize - If the most significant bit of the FMA is not a 1, and normalize is requested, the FMA is

shifted left (up to a maximum of 35 shifts) unti I the most significant bit is a 1; Os are shifted into the

least significant bits of the FMA. For every left shift of the FMA, the EPA is decremented.

4-16

Interrupt Excepti on: None

4.2. 17 Load and Fix

Mnemonic

FLX

URFLX

DLX

URDLX

Instructi on Type

Sng. Prec. Load and Fix

Unround, Sng. Prec. Load and Fix

Obi. Prec. Load and Fix

Unround, Obi. Prec. Load and Fix

Time (~s) Octal Code

11.0 714460

11.0 714470

12.4 714560

12.4 714570

The Fix instruction converts floating-point format to integer format. The argument is transferred from

memory to the EPA (A SIGN) FMA in floating-point format. The FMA and FMQ are shifted right 35

minus EPA places. For example, if the EPA is 10, the FMA is shifted right 25 places. The least signi

ficant bits shifted out of the FMA are shifted into the most significant bit of the FMQ. The EPA retains

its original contents; if the EPA is negative, the number in the FMA is fractional and cannot be con

verted to an integer. As a result, the A SIGN and FMA are zeroed. The original contents of the

FMQ are lost and the FMQ retains the bits shifted in during the Fix instruction.

Rounding - If rounding is requested and the most significant bit of the FMQ is a 1, the guard bit is set

(see Paragraph 3.2) and + 1 is qdded to the least significant bit of the FMA (bit 35).

Interrupt Exception: Overflow - If the EPA is greater than 35
10

, an overflow interrupt will occur,

because the FMA does not have enough bits to represent an integer magnitude greater than 35 bits.

The EPA (A SIGN) FMA remains unchanged.

4.2. 18 Fix EPA (FMA)

Mnemonic

FXA

URFXA

Instruction Type

Fix EPA, FMA

Unround, Fix EPA, FMA

Time (~)

8.3

8.3

Octal Code

714660

714670

The Fix EPA (FMA) instruction converts the EPA (FMA) from floating-point format to integer format.

The second word (address) of this instruction is not used, and can have any value.

The FMA and FMQ are shifted right 35 minus EPA places. The least significant bits shifted out of the

FMA are shifted into the most significant bit of the FMQ. The EPA retains its original contents. If

the EPA is negative, the number in the FMA is fractional and cannot be converted to integer; as a

4-17

result, the A SIGN and FMA are zeroed. The original contents of the FMQ are lost, and the FMQ

retains the bits shifted in during the Fix instruction.

Roundi'ng - If rounding is requested and the most significant bit of the FMQ is a 1, the guard bit is set

(see Paragraph 3 .2), and + 1 is added to the least significant bit of the FMA (bit 35).

Interrupt Exception: Overflow - If the EPA is greater than 3510, an overflow interrupt will occur,

because the FMA does not have enough bits to represent an integer magnitude greater than 35 bits. The

EPA (A SIGN) FMA remain unchanged.

4.2.19 Load FMQ (Integer)

Mnemonic

ILQ

ELQ

Instructi on Type

Sng. Integer Load F MQ

Ext. Integer Load F MQ

Time (~)

6.6

7.9

Octal Code

715000

715100

The integer argument is transferred from memory to the (A SIGN) FMA. The contents of the FMA and

FMQ are swapped; A SIGN remains unchanged.

Interrupt Excepti on: None

4.2.20 Load FMQ (Floating Point)

Mnemonic

FLQ

UNFLQ

DLQ

UNDLQ

Instruction Type

Sng. Float Load FMQ

Unnorm., Sng. Float Load FMQ

Obi. Float Load FMQ

Unnorm., Obi. Float Load FMQ

Time (~)

14.0

7.9

9.5

9.3

The floating-point argument is transferred from memory to the EPA (A SIGN) FMA.

Octal Code

715050

715070

715150

715170

The contents of the FMA and FMQ are swapped; normalize, if specified, occurs after the swap.

Normalize - If normalize is requested and the most significant bit of the FMA is not a 1, the FMA and

FMQ are shifted left (up to a maximum of 35 shifts) until the most significant bit is a 1. Zeros are

shifted into the least significant positions of the FMQ; FMQ 01 is shifted into FMA 35. For every

left shift of the FMA, the EPA is decremented.

4-18

Interrupt Exception: Underflow - If the exponent of the result is less than 400000
8

(_2
17

), it cannot

be correctly represented in the EPA, and an underflow interrupt exception occurs. The contents of the

A SIGN (FMA) are correct; the correct exponent is _2
18

+EPA.

4.2.21 Swap FMA and FMQ

Mnemonic

SWQ

UNSWQ

Instruction Type

Swap FMA and FMQ

Unnorm., Swap F MA and F MQ

Time (~)

5.5

5.3

Octal Code

715250

715270

No argument is transferred to the floating-point processor for a Swap instruction; the contents of the

FMA are swapped with the con,tents of the FMQ. Normalize, if specified, occurs after the swap.

The second word (address) of this instruction is not used and can have any value.

Normalize - If normalize is requested and the most significant bit of the FMA is not a 1, the FMA is

shifted left (up to a maximum of 35 shifts) until the most signifi cant bit is a 1. Zeros are shifted into

the least significant positions of the FMQ; FMQ 01 is shifted into FMA 01. For every left shift of the

FMA, the EPA is decremented.

Interrupt Exception: Underflow - If the exponent of the result is less than 4000008 (_2
17

), it cannot

be correctly represented in the EPA and an underflow interrupt exception occurs. The contents of the

A SIGN (FMA) are correct. The correct exponent is _2
18

+ EPA.

4.2.22 Load ,JEA (Jump Exit Address)

Mnemonic Instruction Type Time (1-'5) Octal Code

LJE Load JEA Register 6.6 715400

The Load JEA instruction causes the 15-bit JEA register to be loaded from bits 3 through 17 of the

argument in memory. The instruction is not protected, and any user can issue it (in user mode) without

causing a memory protect trap. The guard bit is loaded from bit 1 of the argument, and the A SIGN

wi II remain unchanged regardless of the contents of bit 0 of the argument.

Interrupt Exception: None

4-19

4.2.23 Store JEA (Jump Exit Address)

Mnemonic Instruction Type Time (~s) Octal Code

SJE Store JEA Reg i ster 6.6 715600

The contents of the 15-bit JEA register are stored as bits 03 through 17 in memory at the argument

address; the contents of the FMQ remain unchanged. The A SIGN is stored as bit 00 and the guard bit

as bit 01 in memory at the argument address.

Interrupt Exception: None

4.2.24 Integer Add

Mnemonic

lAD

EAD

Instruction Type

Sng. Integer Add

Ext. Integer Add

Time (~) Octal Code

6.6 716000

7.9 716100

The argument is transferred from memory to the (B SIGN) FMB. The contents of (B SIGN) FMB is added

to the contents of (A SIGN) FMA, and the sum retained in (A SIGN) FMA. The contents of the FMQ

are zeroed at the beginning of the instruction.

Interrupt Exception: Overflow - An overflow interrupt wi" occur if the addition generates a magnitude

greater than 2
35

-1. The result left in the FMA is modulo 2
35

• The A SIGN is the sign of the result

as if no overflow occurred.

4.2.25 Floating Point Add

Mnemonic

FAD

URFAD

UNFAD

UUFAD

DAD

URDAD

UNDAD

UUDAD

Instructi on Type

Sng. F I oat. Add

Unround, Sng. Float. Add

Unnorm., Sng. Float. Add

Unround, Unnorm., Sng. Float. Add

Obi. Float. Add

Unround, Obi. Float. Add

Unnorm., Obi. Float. Add

Unround, Unnorm., Obi. Float. Add

4-20

Time (~s) Octal Code

8.2 716040

8.2 716050

8.3 716060

8.3 716070

9.3 716140

9.3 716150

9.3 716160

9.3 716170

The argument is transferred to EPB (B SIGN) FMB [exponent to EPB and mantissa to (B SIGN) FMB] •

The mantissa in FMA and FMB are aligned by finding the difference between EPA and EPB, and right

shifting the mantissa with the smaller exponent unti I the number of shifts equals the exponent difference.

Bits shifted out of the register containing the mantissa with the smaller exponent are shifted into the

FMQ, which is cleared at the beginning of the instruction. These bits are retained in the FMQ. When

the mantissas are aligned, the FMB mantissa is added to the FMA mantissa, and the sum placed in (A

SIGN) FMA. If a carry occurs out of the most significant bit of the FMA, the difference is shifted

right one place and the exponent incremented by 1. The lSB of the FMA is not shifted into the FMQ,

but is shifted into a guard bit to be saved for rounding (see Paragraph 3.2).

Rounding - Rounding can occur at two times, once after the align, and again after the addition takes

place. After the align, if rounding is requested and FMQ 01 isa 1, +1 is added to the least significant

bit of the FMA (bit 35). After th? addition, if rounding is requested and the guard bit is set, +1 is

added to the least significant bit of the FMA (bit 35).

Normalize - If the most significant bit of the FMA is not a 1 after the addition, and normalize is re

quested, the FMA is shifted left unti I the MSB contains a 1 (up to a maximum of 35 shifts). Zeros

are shifted into the least signiflcant positions of the FMA. For each left shift, the exponent is decre

mented.

Interrupt Exception: Underflow - If the exponent of the result is less than 400000
8

(_2
17

), it cannot

be correctly represented in the EPA and an underflow interrupt exception occurs. The contents of the

A SIGN (FMA) are correct; the correct exponent is _2
18

+EPA.

Interrupt Exception: Overflow - If the exponent of the result is greater than 3777778 (2
17

-1), it

cannot be correctly represented in the EPA and an overflow interrupt exception occurs. The contents

of A SI G N (F MA) are correct; the correct exponent is 2
18

+ EP A •

4.2.26 Branch

Mnemonic

BZA

BMA

BlE

BPA

BRU

BNA

BAC

Instruction Type

Branch if FMA zero

Branch if FMA negative

Branch if FMA~ <0

Branch if FMA positive

Branch unconditional

Branch if FMA non-zero

Branch if guard bit is set
(see Paragraph 3.2)

4-21

Time (tJS) Octal Code

5.2 716601

5.2 716602

5.2 716603

5.2 716604

5.2 716606

5.2 716610

5.2 716620

The Branch instruction provides conditional alteration of the sequence of program execution, and does

not affect the FMQ. The instruction includes a Test Mask to test the status of the FP15. The Test

Mask is contained in bits 13 through 17 of the first word of the FP15 instruction. These bits may be

microprogrammed to test for more than one condition. Microprogramming produces an ORed condition

of the bits that are set.

If anyone of the tests is made and is successful, a program branch is made. For example, if the pro

grammer sets bit 17 to a 1, and the FMA is 0, a branch is made. If bit 17 is not set, and the FMA is

0, no branch is made. The second word of the two-word FP instruction is the branching address (if

direct) or is a pointer to the branching address (if indirect). However, the branching address for both

indirect and direct addressing allows transfer within the current memory block of 32K only, because

bits 01 and 02 of that branching address are ignored.

Example:

A mask of 048 (bit 15 = 1) tests for the FMA ,2:0. If the test is successful, bits 03 through 17 of the

branching address are placed in bits 03 through 17 of the program counter in the CPU. If the test is

unsuccessful, the program continues sequentially.

Bits 16 and 17 of the Branch on Condition instruction do not modify A SIGN.

Program Interruption: If the branch address causes a memory trap, the CPU (not the FPU) is flagged.

As in a memory trap on a CPU JMP instruction, the user cannot immediately determine the branching

address.

4.2.27 Modify FMA

All FP15 floating-point instructions except Load or Store JEA, Branch, FT Test and diagnostic instruc

tions can be microprogrammed to modify the FMA. The second word (address) of this class instructions

is not used and can have any value. The contents of the FMQ remain unchanged.

Mnemonic Instruction Type Time (~) Octal Code

FZR Zero EPA (A SIGN) FMA 5.2 711200

FAB Make A SIGN positive (absolute value) 5.2 713271

FNG Make A SIGN negative 5.2 713272

FCM Complement A SIGN 5.2 713273

FNM Normalize EPA (A SIGN) FMA 8.4 713250

4-22

Interrupt Exception: Underflow - The only possible interrupt exception for this class of instructions is

an underflow interrupt as a result of normalize EPA (A SIGN) FMA. If the exponent of the result is

less than 400000
8

(_2
17

), an underflow interrupt occurs. The resultant exponent cannot be correctly

represented in the EPA; the correct exponent is _2
18

+ EPA. The contents of (A SIGN) FMA are correct.

4.2.28 Floating Point Test

Mnemonic Instruction Type Time (tJS) Octal Code

FPT Floating Point Test 5 710314

This instruction tests the presence of the FP15 Floating-Point Processor in the system. If the FP15 is

installed, 710314 is an Nap for the FP15 and the PDP-15; the PDP-15 continues from PC +2. If the

FP15 is not installed, a normal laRS is executed in the PDP-15 and the PDP-15 continues from PC + 1.

Interrupt Exception: None

4.3 WORST-CASE TIMING

The floating point execution times used throughout this manual are considered typical times, i.e.,

they are measured times using normal ized numbers. They should be considered the average time to

perform the instruction. The user should not encounter times greater than the worst case times listed

below. These worst case times inc lude indirection, normal ized arithmetic on unnormal ized numbers

and memory relocate. Worst case times are: 24 tJS for add and subtract; 26 tJS for multiply; 27 I-'s for

divide; 18 tJS for load; and 17 jJS for store.

4-23

CHAPTER 5

DIAGNOSTIC INSTRUCTIONS

5.1 INTRODUCTION

The FP15 instruction repertoire includes additional instructions used for diagnostic purposes in simulating

actual floating-point' instructiol1ls; these instructions are described below.

NOTE

Diagnostic instructions cannot be executed in User Mode.

5.2 DEBREAK

Mnemonic Instructi on Type Time (~s) Octal Code

DBK Debreak 703304

The Debreak instruction in the PDP-15 is normally used in an active API routine to return the routine

to its preassigned priority level, after the need for its temporary raising (by ISA or CAL) has been

satisfied. The Debreak is used os a clear instruction in the FP15.

If an FP15 is connected to the memory bus and is in maintenance mode, when the DBK is issued, the

FP15 will be forced out of this mode and all major cycle states will be zeroed. The contents of the

FMQ remain unchanged.

Interrupt Exception: None

5.3 DIAGNOSTIC MODE ON, DIAGNOSTIC MODE OFF

Mnemonic

DMN

DMF

Instructi on Type

Diagnostic Mode On

Diagnostic Mode Off

5-1

Time (~)

5.3

16. 1

Octal Code

717300

717200

On execution of an Diagnostic Mode On instruction (during non-user mode), the FP15 leaves the

normal mode and enters a special maintenance mode. In this mode, the next floating-point instruction

executed stops in Phase 3, Time State 3 of the FETCH cycle. Control is returned to the Central Pro

cessor; any non-floating point instruction may now be fetched and executed. The contents of the

FMQ remain unchanged.

In the FP15, the only two modes of operation are the Normal Mode and the Diagnostic Mode. If the

Central Processor is in User Mode, the FP15 is prevented from entering Diagnostic Mode because the

Diagnostic Mode On instruction is handled as a no-operation. If it is desired to check out instructions

in User Mode, this can be accomplished by first putting the FP15 in Diagnostic Mode during Non-user

Mode, and then changing the CPU from Non-user Mode to User Mode.

The Diagnostic Mode Off instruction returns the FP15 from Diagnostic Mode to the Normal Mode (see

Diagnostic) •

Interrupt Excepti on: None

5.4 DIAGNOSTIC READ, STEP AND READ

Mnemonic

ORR

DSR

5.4.1 Diagnostic Read

Instructi on Type

Diagnostic Read Registers

Diagnostic Step and Read Registers

Time (~)

16. 1

17.6

Octal Code

710000

710100 + N
where 0 <N <778

After entering Diagnostic Mode, the next FP15 instruction executed stops in Phase 3, Time State 3 of

the FETCH cycle. Control is returned to the Central Processor, leaving the FP15 instruction only

partially completed. The next FP15 instruction is normally Diagnostic Read or Diagnostic Step and Read.

If it is desired to abort the partially completed instruction and return the FP15 to Normal Mode, a De

break Clear (DBK) (703304) instruction should be issued.

The diagnostic Read instruction causes sixteen l8-bit words to be transferred from the FP15 to memory,

starting at the argument address. The words are transferred in the following order:

5-2

1. BMB 00-17 {Buffered Memory Buffer}
2. BMB 1B-35
3. SC 0-5 and IR 06-17 {Shift Counter and Instruction Register}
4. EPA 00-17
5. A SIGN and FMA 01-17
6. FMA lB-35
7. EPB 00-17
B. B SIGN and FMB 01-17
9. FMB lB-35

10. B SIGN and FMQ 01-17
11. FMQ lB-35
12. ADD 00-17 {Adder}
13. ADD lB-35
14. JEA 00-17 00 ASIGN }

01 GUARD
02 Blank

15. STA 00-17
16. AR 00-17

{Jump Exit Address}

{See Note below}
{Address Register}

NOTE

The STA 00-17 is a status word comprised of the following
i nformati on:

STA 00
STA 01
STA 02
STA 03
STA 04
STA 05
STA 06
STA 07

. STA OB
STA 09
STA 10
STA 11
STA 12-17

FP15 BUSY
FETCH CYCLE
OPAND CYCLE
EXP CYCLE
FUN CYCLE
NOR CYCLE
WRITE CYCLE
INTl
INT2
TIME STATE 1
TIME STATE 2
TIME STATE 3
DIR 12-17
{Diagnostic Instruction Register}

The Diagnostic Read instruction leaves the partially completed instruction unchanged; control is re

turned to the CPU after the sixteen lB-bit words have been transferred. The Diagnostic Read instruc

tion may be executed indefinitely without affecting the partially completed instruction. Any non

floating point instruction or in$tructions may be fetched and executed when control is returned to the

Centra I Processor.

5.4.2 Diagnostic Step and Read

The Diagnostic Step and Read instruction restarts the partially completed instruction and allows exe

cution of the instruction to continue until N + 1 steps are completed. At this point, execution ceases,

the sixteen lB-bit words are trQnsferred from the FP15 to memory, and control is then returned to the

5-3

Central Processor. The original instruction mayor may not be completed, depending on the instruction

and operand values, which will determine the number of steps to be executed. One step is counted at

each of the following times:

FETCH * T3 * P3
FETCH * T3 * P3
OPAND * T3 * P3
OPAND * T3 * P3
OPAND * T3 * P3
EXP * T1 * P3
EXP * T2 * P3
EXP * T3 * P3
FUN * T1 * P3
FUN * T2 * P3

FUN * T3 * P3
NOR * T1 * P3
NOR * T2 * P3
NOR * T3 * P3
WRITE * T3 * P3
WRITE * T3 * P3
WRITE * T3 * P3
INT2 * T3 * P3

(if indirection)
(if operand fetch) }

Depends on data format (1, 2, or 3 words)

(FMA and FMB aligned - 1 step count for every align shift)

(FMA and FMB are multiplied or divided here - 1 step count
per shift. FMA also fixed here - 1 step count per every fix shift)

(FMA normalized here - 1 step count per every normalize shift)

(i f a store type) }
(if a store type) Depends on data format (1,2, or 3 words)
(i f a store type)
(if BRANCH or INTERRUPT EXCEPTION)

The Diagnostic Step and Read instruction may be utilized to finish the partially completed instruction.

The .last step to be counted in the partially completed instruction is NOR * T3 * P3. Exceptions to

this are the Store, Store JEA and Branch instructions.

The last step to be counted in the Store and Store JEA instruction is WRITE * T3 * P3, and the last

step to be counted in the Branch instruction is INT2.

When the last step is counted (regardless of whether the diagnostic has sequenced through N + 1 steps

or not), the FP15 instruction stops, the sixteen la-bit words are transferred from the FP15 to memory,

and then control is returned to the CPU. The original instruction, however, is sti II not complete at

this point; one more step is required to clear FP BUSY. The cycle ,and time states in the FP15 stop

and the sixteen la-bit words are transferred to memory. Control is then returned to the CPU. When

FP BUSY is no longer true, the next FP15 instruction causes FP BUSY to be true and also causes the

floating-point processor to stop in Phase 3, Time State 3 of the FETC H cycle. Control is again re

turned to the CPU. A new FP15 non-diagnostic instruction is recognized only if FP BUSY is not true.

Thus, in order for Diagnostic Mode Off to be effective, FP BUSY must not be true. When Diagnostic

Mode Off is recognized, the FP15 returns to Normal Mode. For both Diagnostic Read and Diagnostic

Step and Read, the contents of the FMQ remain unchanged.

5-4

CHAPTER 6

FP15 PROGRAMMING EXAMPLES

6.1 INTRODUCTION

The following four examples provide an illustration of how the FP15 can be programmed to accomplish

various integer and floating-point operations. An example for each data format is presented (single

precision integer, extended integer, single-precision floating-point, and double-precision floating

point). Each example also contains all arithmetic operations (add, subtract, multiply I and divide).

6.2 SINGLE-PRECISION INTEGER

This program performs the following arithmetic operation.

(A + B) C - D h
E I were

A = 000212
B = 000121
C = 000222
D = 700000
E = 000005
ILD = 713000
lAD = 716000
IMP = 711400
ISB = 710400
IDV = 712000
1ST = 713600

000200
000200
000201
000202
000203
000204

NOTE

In the example shown, NUMD (700000) is a negative num
ber al1ld is loaded into the FP 15 in 2 1s complement format,
and is added to the quantity (A + B) C.

340217
040220
713000
000221
716000

.LOC 200
TAD ARGA

DAC TEMP
ILD
NUMA
lAD

6-1

/CPU INSTRUCTION
/CPU INSTRUCTION
/LOAD NUMA
/ ADDRESS OF NUMA
/ADD NUMB TO NUMA

000205 000222 NUMB / ADDRESS OF NUMB
000206 711400 IMP /MULTIPLY BY NUMC
000207 000223 NUMC / ADDRESS OF NUMC
000210 710400 ISB /SUBTRACT NUMD
000211 000224 NUMD / ADDRESS OF NUMD
000212 712000 IDV /DIVIDE BY NUME
000213 000225 NUME / ADDRESS OF NUME
000214 713600 1ST /STORE RESULT IN
000215 000226 PERM /000226
000216 740040 HLT
000217 222222 ARGA 222222 /STORAGE
000220 000000 TEMP 000000 /STORAGE
000221 000212 NUMA 000212 /NUMA
000222 000121 NUMB 000121 /NUMB
000223 000222 NUMC 000222 /NUMC
000224 700000 NUMD 700000 /NUMD
000225 000005 NUME 5 /NUME
000226 031224 PERM 031224 /STORAGE

6.3 DOUBLE-PRECISION INTEGER PROGRAMMING EXAMPLE

This program performs the following arithmetic operation:

(A + B) C - D h
E I were

A = 004444444444
B = 002222222222
C = 000000000011
D = 055555555554
E = 000002222222
ELD = 713100
EAD =716100
EMP = 711500
ESB = 710500
EDV = 712100
EST = 713700

000600
000600
000601
000602
000603
000604
000605
000606
000607
000610
000611
000612
000613
000614

340617
040620
713100
000621
716100
000623
711500
000625
710500
000627
712100
000631
713700

.LOC 600
TAD DECI
DAC PERM
ELD
NUMA
EAD
NUMB
EMP
NUMC
ESB
NUMD
EDV
NUME
EST

6-2

/CPU I NSTRUCTIO N
/CPU INSTRUCTION
/LOAD NUMA IN F.P. AC
/ ADDRESS OF NUMA
/ADD NUMB
/ADDRESS OF NUMB
/MULTIPLY NUMC
/ ADDRESS OF NUMC
/SUBTRACT NUMD
/ ADDRESS OF NUMD
/DIVIDE BY NUME
/ADDRESS OF NUME
/STORE RESULT IN

000615 000633 ANSW /000633
000616 740040 HlT
000617 333333 DECI /STORAGE
000620 000000 PERM 000000 /STORAGE
000621 004444 NUMA 004444 /HIGH ORDER OPERAND
000622 444444 444444 flOW ORDER OPERAND
000623 002222 NUMB 002222 /HIGH ORDER OPERAND
000624 222222 222222 flOW ORDER OPERAND
000625 000000 NUMC 000000 /HIGH ORDER OPERAND
000626 000011 000011 flOW ORDER OPERAND
000627 055555. NUMD 055555 /HIGH ORDER OPERAND
000630 555554 555554 flOW ORDER OPERAND
000631 000002 NUME 000002 /HIGH ORDER OPERAND
000632 222222 222222 flOW ORDER OPERAND
000633 000000 ANSW 000000 /HIGH ORDER OPERAND
000634 007000 007000 flOW ORDER OPERAND

6.4 SINGLE-PRECISION FLOATING POINT

This program performs the following arithmetic operations.

(A + B) C - 0
where E

A
5 =2 xOO0111a

B 5 = 2 x 111000a
C

2 = 2 x 333000a
D = 27 x 000222a

E = 22 x 222000
a

FLO = 713050
FAD = 716040
FMP = 711440
FSB = 710440
FDV = 712040
FST = 713640

000101 .lOC 101
000101 340120 TAD ARGA /CPU INSTRUCTION
000102 040121 DAC TEMP /CPU INSTRUCTION
000103 713050 FlD /lOAD NUMA IN F.P. AC
000104 000122 NUMA / ADDRESS OF NUMA
000105 716040 FAD /ADD NUMB
000106 000124 NUMB / ADDRESS OF NUMB
000107 711440 FMP /MUl TIPlY BY NUMC
000110 000126 NUMC / ADDRESS OF NUMC
000111 710440 FSB /SUBTRACT NUMD
000112 000130 NUMD / ADDRESS OF NUMD
000113 712040 FDV /DIVIDE BY NUME
000114 000132 NUME / ADDRESS OF NUME
000115 713640 FST /STORE RESULT

6-3

000116 000134 PERM
000117 740040 HLT
000120 000000 ARGA 0
000121 000000 TEMP 0
000122 000005 } NUMA 5
000123 000111 000111
000124 000005 } NUMB 5
000125 111000 111000
000126 000002 } NUMC 2
000127 333000 333000
000130 000007 } NUMD 7
000131 000222 000222
000132 000002 } NUME 2
000133 222000 222000
000134 000004 PERM 4
000135 332333 332333

4 Answer = 2 x. 332333000 = 15.51554
8

6.5 DOUBLE-PRECISION FLOATING POINT

This program performs the following arithmetic operations.

(A + B) C - D h
E ' were

A = 20 x 373737111111

B = 20
x 000000303030

C = 22 x '222222010101

D = 23
x 020202101010

E = 22 x 313131212121

UUDLD = 713170
UUDAD = 716170
UUDMP = 711570
URDSB = 710550
URDDV = 712150
UUDST = 713770

000076
000076
000077
000100
000101
000102
000103
000104
000105

020700
040701
713170
000117
716170
000122
711570
000125

.LOC 76
LAC TEMP1
DAC TEMP2
UUDLD
NUMA
UUDAD
NUMB
UUDMP
NUMC

6-4

/ADDRESS OF RESULT
/CPU INSTRUCTION
/STORAGE
/STORAGE
/EXPONENT OF NUMA
/MANTISSA OF NUMA
/EXPONENT OF NUMB
/MANTISSA OF NUMB
/EXPONDENT OF NUMC
/MANTISSA OF NUMC
/EXPONENT OF NUMD
/MANTISSA OF NUMD
/EXPONENT OF NUME
/MANTISSA OF NUME
/RESUL T - EXPO NE NT = 4
/MA NTI SSA = .332333

/CPU INSTRUCTION
/CPU INSTRUCTION
/LOAD NUMA IN F.P. AC
/ ADDRESS OF NUMA
/ADD NUMB
/ ADDRESS OF NUMB
/MULTIPLY NUMC
/ ADDRESS OF NUMC

000106 710550 URDSB /SUBTRACT NUMD
000107 000130 NUMD / ADDRESS OF NUMD
000110 712150 URDDV /DIVIDE BY NUME
000111 000133 NUME / ADDRESS OF NUME
000112 713770 UUDST /STORE RESULT
000113 000136 PERM /IN ADDRESS 136
000114 740040 HLT /PRO GRAM HL T
000115 777777 TEMP1 777777 /STORAGE
000116 000000 TEMP2 000000 /STORAGE
000117 OOOOOO} NUMA 0 /EXPONENT A
000120 373737 373737 /HIGH MANTISSA
000121 111111 111111 /LOW MANTISSA
000122 000000} NUMB 0 /EXPONENT B
000123 303030 303030 /HIGH MANTISSA
000124 101010 101010 /LOW MANTISSA
000125 0OO002} NUMC 2 /EXPONENT C
000126 222222 222222 /HIGH MANTISSA
000127 010101 010101 /LOW MANTISSA
000130 000003} NUMD 3 /EXPONENT D
000131 020202 020202 /HIGH MANTISSA
000132 101010 101010 /LOW MANTISSA
000133 000002} NUME 2 /EXPONENT E
000134 313131 313131 /HIGH MANTISSA
000135 212121 212121 /LOW MANTISSA
000136 000001 PERM 1 /STORE EXP. RESULT
000137 214335 214335 /STORE MANTISSA
000140 635572 635572 /HIGH AND LOW

4
Answer = 2 x .214335635572 = 10.61567166758

6-5

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	xBack

