

FORMA T Statements

The general form of a FORMAT statement is:

123---m 123--p
label FORMAT(///---/f s f s ----f 5 ///--/)

1122 nn

where m, n, or p, but not all three, may be

zero, the f's are field descriptors or a group of

field descriptors enclosed in parentheses, and

the s's are ei ther commas or slashes.

Basic Field Descriptors

The basic field descriptors have the following

forms: Fw.d, Ew.d, Gw.d, Iw, Ow, Lw/ Aw,

wHh, h2---h3 , andwX. The lettersF, E, G,

0, I, L, Al H, and X indicate the method of

conversion. 'w I is a non-zero integer constant

denoting the width of the field in the external

character stri ng. 'd' is an integer constant speci­

fying the number of digits in the fractional part.

F, E, G, I, and 0 are all considered to be nu­

merical fields. The remaining four are alpha­

numeric fields.

The fields designated by FIE/ and G descriptors

all contain real data which is to be converted

internally to a real datum. For all three, the

input fields are identical. However, the output

fields may be quite different.

F,E, G Input Fields - The general form of the

input field is:

b b ---b ±X-----X • Y ----V E±Z Z r n :

6-3

To allow ease of preparing input data several

variations are allowed on this basic form:

1. The decimal point may be omitted.
If so, and if the field descriptor is Fw.d,
Ew.d, or Gw.d, d digits are assumed to
follow the implicit point. If the decimal
point is present, it overrides the 'd' speci­
fication.

2. The initial plus sign may be omitted.

3. The exponent may have the following
forms:

a. A si gned integer.

b. E followed by an integer (if
positive).

c. E followed by a signed integer.

4. The exponent may be omitted.

Thus, suppose the field descriptor was E10.4,

F10.4, or G 1 0.4. The following numbers would

all be equal:

bbbb427.67 bbb4276700 (decimal impl ied
by descriptor)

42.7670E+1
b+42.767+1

b+42.767El
+427670E01 (decimal implied

by descriptor)

Note that E+1, E1, E01, E+01, +1 and +01 are

all equivalent.

F Conversion Output - For F conversion, the form

of the output field is:

b b ---b ±X X ---X •
1 2 n 12m

Y ----V
1 d

1 w 1
The field consists of as many blanks as necessary

to fill out its width, followed by a decimal num­

ber without exponent. Plus signs are omitted.

The following table illustrates the correspond­

ence between i nterna I and externa I numbers for

an F10A field descriptor:

Internal

+4270.
-437.
+4.37
+.437
-.00437
+.0000437

External

b4370.0000
b-437.0000
bbbb4.3700
bbbbOA370
bbb-O.0044
bbbbb.OOOO

E Conversion Output - The external field for

conversion output is of the form:

x -----X E±Z Z
1 d 1 2

w I
For this conversion, all numbers are normalized

so that the decimal point appears to the left of

the first significant digit. The number is round­

ed to d significant digits.

The following table illustrates the correspondence

between internal and external numbers for an

E12A field descriptor:

Internal

+4370
-4.37
+.00437
+.0000437
-437.19
+437.23

External

bbO A370E +04
b-O A370E +0 1
bbO.4370E-02
bbO.4370E-04
b-O • 4372E +03
bbO • 4372E +03

G Output Conversion - G conversion depends

on the magnitude of the internal number. For

the field descriptor Gw.d, the following table

shows the correspondence between the magni­

tude of the internal number and the conversion

that takes place.

6-4

Magnitude

O.l~N<l

1 < N < 10

10d- 2< N < 10d-l

10d-l< N < 10d

Otherwise

External

E VV •

F (VV-4). d I bbbb I

F(VV-4).(d-l) I bbbb I

F(VV-4). 1

F(VV-4). 0

Ew.d

I bbbb I

I bbbb I

The following table illustrates G output conver­

sion for the field descriptor Gl1A.

Internal Number Conversion External Field

43700.0 E11.4 bO.4370E+05
-4370.0 F7.0bbbb b-4370.bbbb
437.0 F7.1bbbb bb437.0bbbb
43.7 F7.2bbbb bb43.70bbbb
-4.37 F7.3bbbb b-4.370bbbb
.437 F7Abbbb bO.4370bbbb
.0437 Ell A bO A370E -01

I Conversion - Fields specified by the field de­

scriptor Iw contain decimal integers. The form

of the external field is the same for both input

and output:

b b ---b ±X X ---X
12m 1 2 n

t w r
On output the plus sign is omitted.

Examples of external fields corresponding to the

descriptor 16:

bbbbb2 bbbb-2 b+2763 (if output bb2763)

-57296 647198

o Conversion - Fields specified by the field

descriptor Ow contain octal integers. The form

of the external field is:

b b ---b ±X X ---X

(mW I 2 I
For input the sign is optional. All O-type out­

put conversi ons are unsi gned.

Examples of conversion for 04 specification:

External (input) Internal External (output)

bb27 000000000027 0027

bb-1 777777777777 7777

L Conversion - L conversions are used to read

or write logical data. The form of the field

descriptor is Lw.

For input, the external field contains a string of

up to w nonblank characters beginning with

either Tor F. For example,

Descriptor Input Field

L1
L3
L15

T
bbT or bTb or Fbb
bb TRUEbHONESTbb

For output, a Tor F is written in the last char­

acter position of the field. The rest of the field

is fi lied in with blanks.

Scale Factors - A scale factor may be used for

E,F, and G conversions. A scale factor has

the form:
nP

where n, the sca Ie factor, is an integer constant

or a minus sign followed by an integer constant.

The scale factor precedes the three basic field

descriptors. When execution of a format state­

ment is begun, a sca Ie fac tor of zero is assumed.

Once a scale factor is encountered in a FORMAT

statement, it holds for all remaining E, F, and G

fields, in that FORMAT statement or until a new

scale factor is encountered.

The effects of the scale factor are:

1. For F, E, and G input the scale factor
has no effect if there is an exponent in the
external field. Otherwise; for a scale of
n:

externa I number = i nterna I number x 10n

2. For F output wi th a scale factor of n

externa I number = i nterna I number x 10n

3. For E output, the scale factor controls
the decimal normalization between the
number and the exponent so that:

a. If n~O, there will be Inl leading
zeros followed by d significant digits
to the right of the point.

b. If n~O, there wi II be exactly n
significant digits to the left of the
decimal point and d-n+1 to the right
of the decimal point.

4. For G output, the scale factor is sus­
pended un less E conversion is used.

The following chart provides some examples of

scale factor effects.

Internal Format External-No Scale External with Scale

+4370
4370
4370

2PF12.4
2PE 12.4

-2PE12.4

4370.0
bb0.4370E+04
bbO .4370E+04

6-5

b438000.0000
bb43.700E+02
b.004370E+06

The Blank Field Descriptor

A blank field descriptor has the form:

wX

On input, w characters of the external record

are skipped. On output, w blanks are written

in the external record.

The ASCII Field Descriptors

There are three forms of ASCII field descripl'ors,

wH,. •••• ',and Aw. The wH descriptor has the

following effects:

1. On input, the next w characters are
read as ASCII text into the w character
positions following the H in the FORMAT
statement.

2. On output, the w characters following
the H in the FORMAT statement are writ­
ten into the record.

For example, if we should wish to insert text in

a record, the following field descriptor might

appear in a FORMAT statement.

32HbTHISbiSbAbSAMPLEbOFbOUTPUTbTEXT

Note that w, the character count, must include

::dl characters, including blanks. The following

~xample illustrates the means for altering text­

)al information in a FORMAT statement.

READ 100

100 FORMAT (5Hbbbbb)

he field read by the READ statement would

:tve to include exactly five characters of text

icluding blanks. This text would replace the

6-6

blanks in the format statement.

The' ••• ' descriptor has the same effect as wH

except that the text is embedded between the

single quotes. When used as part of the text,

the quote character appears twice in succession:

DON'T is represented as 'DON liT' •

The Aw field descriptor causes ASCII characters

to be read into, or written from, a specified list

element. Since up to five ASCII characters can

be stored in one memory word, the following

rules apply to the Aw specification.

1. If on input w>5, only the rightmost five
characters, including blanks, are read from
the external field.

2. If on input w~5, all w characters wi II
be read and stored in memory left justified
with 5-w trailing blanks to fill out the
memory words.

3. If on output w>5, the five characters
from the internal representation wi II be
written in the last five characters positions
of the external field. The leading char­
acter positions will be filled in by w-5
blanks.

4. If on output w~5, the leftmost w char­
acters of the internal representation wi II
be written in the external field.

Variable Field Input

The PDP-6 FORTRAN allows certain relaxation

of the input formats for use in preparing input

data. Namely, the E, F, G, I, and 0 field

descriptors can appear without wand d. If so,

nl!Jmbersmust be separated by an explicit delimiter.

Such a delimiter may be any character which is

illegal as the next character in the number rep­

resentation.

Examples:

FORMAT

(I)
(I,E,F ,O)

External Field

-5+4/3,6-7/
9/.5E12/6.501/776/

Variable Field Output

If the E, F, G, I, and 0 descri ptors appear

without wand d in a FORMAT specification for

output, the field width w is set to 15. For the

E, F, and G descriptors, d is set to 7. Thus

the output FORMAT specification

110 FORMAT (E,F ,G,I,O)

would automatically become

10 FORMA T (E 15 .7, F 15 .7,

X G 15.7, 115, 015)

Repeat Count

The repeat count is an integer constant that

specifies how many times a given field descrip­

tor, or group of field descriptors enclosed in

parentheses, is to be repeated. For example,

consider the following equivalent FORMAT

specifications:

(l2,12,E10.4,E10.4,E10.4):= (212,3E10.4)

(12,12, lHQ,F5.2, 12,1 HQ,F5.2,12, 1HQ,F5.2) ==
(12,3(12, lHQ, F5. 2)}

When a repeat count and scale factor are both

used, the general form is

n P rf

where f is the basic field descriptor. All basic

field descriptors, except for wH and wX, may

have a prefixed repeat count.

6-7

Carriage Control

The first character of each printed line is inter­

preted as a control character for the line printer.

The following table contains the special control

characters which may be used as the first char­

acter in an Aw or wH field. Up to 120 charac­

ters may be printed on a line.

Character

space
o
1
+

2
3
/
*

Slash

Effect

skip to next line
skip a line
form feed - go to top of next page
suppress skipping - will repeat line
skip 2 lines
skip to next 1/2 page
skip to next 1/3 of page
skip to next 1/6 of page
skip to next 1/10 of page
skip to next 1/20 of page
skip to next 1/30 of page

Besides being a field separator, the character /

closes a record and starts a new one.

On output, a series of n+ 1 slashes wi \I produce

n blank records.

Example: Output according to the FORMAT

statement.

FORMAT (9HbMATRIXbA/ /5H+SINE)

wi \I produce

MATRIXbA
(blank line)

SINE

Terminating FORMAT Statements

When the entire format has been used and the

final right parenthesis is reached, the current

record is closed and the input or output list is

examined for further entries. If no further en­

tries are found, the data transfer is complete.

If items remain, a new record is started and the

FORMAT statement is repeated according to the

following conditions:

6-8

1. If the FORMAT specification contains
one or more repeat groups, beg i n with
that group with the rightmost closing
parenth eses.

2. If the FORMAT specification has no
repeat groups, return to the beginning
of the specification.

APPENDIX 1

DIAGNOSTICS

The compilation process proceeds in two parts.

First, the compiler translates the source lan­

guage into an intermediate assembler language.

Second, an assembler translates the intermediate

language into an object language, the binary

machine language. Therefore, there are two sets

of diagnostics: those printed out by the compi ler

and those printed out by the assembler.

Error Message

Parse Table Overflow

Pushdown Depth
Excessive

Rule Storage Overflow

COMPILER DIAGNOSTICS

Meaning

Statement too long

Same as above

The program can not
be compiled since it
generated too many
rules.

Steps for Correction

Break up the statement into one
or more smaller statements.

Same as above

Try reduc ing the number of
variables in DIMENSION state­
ments and/or don't nest the DOs
so deeply.

If the compi ler cannot completely parse a state­

ment, it will parse as much of the statement as

it can and generate the corresponding code. It

will indicate its failure to parse the statement

completely by printing an up-arrow f under the

last character correctly parsed.

ment, it wi II pri nt three up-arrows f t f under the

offending statement.

ASSEMBLY DIAGNOSTICS

Assembly error flags consist of single characters

printed in the left margin of the assembly listing

of the compi ler output. If the compiler cannot parse any of a given state-

Error Flag

C

D

Explanation

Common Error - A variable has appeared more than

once in a set of COMMON statements or is also a

subroutine argument.

Dimension Error - A variable has appeared more than

once in a set of DIMENSION statements.

A 1-1

Error Flag

E

S

M

U

o

x

R

=

N

L

T

Explanation

Equivalence Error - A subroutine argument has appeared

in an EQUIVALENCE statement.

Equivalence Inconsistency - More than one variable in an

equivalence group has appeared in another equivalence

group.

Storage Assignment Error in EQU IVALENCE Statement -

A variable in an equivalence group which has appeared

in a previous equivalence group does not account for all

the storage in the current group.

Multiple Symbols - A statement label has been used more

than once.

Undefined Symbol - A statement label which has been refer­

enced is missing, or an op-code which is incorrect.

Table Overflow - Symbol table; COMMON, DIMENSION,

EQUIVALENCE table; or literals table has overflowed.

External Symbol Definition - A variable or array name is the

same as a library function name.

Relocation Error - Illegal arithmetic involving relocatable

symbols. *

Assignment Error - illegal use of = *.

Null Symbol - Use of illegal symbol structure such as

label in assembly which does not begin with alphabetic

character or % or. *

A constant is too large to fit in a PDP-6 machine word.

A statement is too long to be assembled correctly.

The statement labe I for the terminating statement of the current

DO loop has already been processed.

*Errors likely to occur in use of ASSEMBLE - COMPILE feature.

Al-2

APPENDIX 2

SPECIAL PDP-6 FORTRAN II STATEMENTS

DECTAPE INPUT-OUTPUT

The statements INFILE N, FILE and OUTFILE N,

FILE provide a means for referencing DECtape in

FORTRAN input-output statements. On output,

files are created by issuing the OUTF\LE state­

ment. For example, the statement

OUTFILE 10, FILEl

causes the file name (in 7-bit ASCII) in FILEl

to be entered in the file directory on the DEC­

tape referenced by device assignment 10. Sub­

sequent to the OUTFILE statement, all output

statements wh i ch reference devi ce 10 wi II cause

data to be written in file FILE1. The statement

END FILE 10

is necessary for closing the output, i.e. f emp­

tying buffers and completing the entry in the

directory for fi Ie FILE 1 •

For input, the INFILE statement causes subse­

quent input statements to reference data in a

particular file. The special tape statements,

except for END FILE, are ignored in DECtape

operations.

If INFILE or OUTFILE statements are not used,

the file name F ORTR. DA T wi 1\ be assumed.

Thus one fi Ie can be created automati ca lIy on

any DECtape.

A2-1

C

C

c

WRITE FILE1
ANAME==5HFI LE 1
OUTFI LE 3, ANAME
WRITE TAPE 3, (A(I), 1=1,100)
END FILE 3

WRITE FI LE2
BNAME=5HFI LE2
OUTFI LE 3, BNAME
WRITE TAPE 3, (B(I), 1=100)
END FILE 3

READ FILE1
INFILE 3, ANAME
READ TAPE 3, (A(I),1=1,100)

TITLE

A program name may consist of up to six characters

and is declared in a TITLE statement which has the

form

TITLE NAME

The use of the TITLE statement is optional. If not

used, the title .MAIN. is generated for main pro­

grams and subprogram names for subprograms. The

title is essential for initiating use of a program's

symbols in DDT. When used, the TITLE statement

must be the first statement in the program.

ASSEMBLE -COMPILE

The PDP-6 FORTRAN II compiler will accept

MACRO-6 code directly when inserted between

the statements ASSEMBLE and COMPI LE.

The followi ng components of MACR 0-6 code

are permissible:

1. Ail basic PDP-6 operation code mne­
monics.

2. The pseudo-operations ASCII, ASCIZ,
EXP, XWD, and BLOCK.

3. Literals containing

a) digits 0-9

b) the characters ., +1 - I E

c) the symbol t 0 for changing the
radix to 8

d) the pseudo-operations ASCII and
SIXBIT.

4. The use of • to represent the value of the
current location counter.

5. Storage ma; be allocated by the use of
the character •

NOTE: The radix for all instructions is
'10 unless changed temporarily byt O.

The following restrictions apply to the above:

1. Terms in expressions may be combined
only with +, -, and *.

2. Only non-relocatable terms may be
combined by * •

3. Relocatable symbols may not be used
in the left half of the XWD pseudo-operation.

4. Statement labels must begin with an al­
phabeti c character or "%", "$" or " ." •
I f a labe I starts wi th " .", the second char­
acter must be alphabetic. FORTRAN state­
ment labels of the form XXX may be re­
ferred to by %XXX.

A2-2

ASSEMBLE-COMPILE Examples

1. C IF N IS NEGATIVE, GET RANDOM
NUMBER IN M

2.

IF (N) 10, 20, 20
ASSEMBLE

%10 MOVE 3, [t 0142536475076]
ADD 3, RAN
ROT 3, -1
EQVB 3, RAN
MOVEM 3, M#
JRST %11

RAN t 0123456707654
COMPILE

11 DO 12 1=1, 100

C REPLACE THE STATEMENTS:
C DO 10 l=l,M
C D010J=I,N
C 10 A(I,J) = B(l,J)*A(J,J)
C AND EXECUTE IN ACCUMULATORS

DIMENSION A(10,20), B(10,20L
C(1O,20)
ASSEMBLE
MOVEM 2, TWOSAV#; SAVE AC 2
HRLI 2, BEGN; Set up block transfer

; in AC 2
HRRI 2, 6
BLT2,17 ; Move code to AC

; 6-AC 17
JRST 6

; The following block is
; executed in accumu-
; lators 6-17

BEGN MOVE 2,M ; OUTER LOOP
MLUP MOVE 3,N ; INNER LOOP

MOVE 4,J
IMULI 4,10
ADD 4,1
MOVE 5, B-l1 (4) ;B(I, J)
FMPRM 5, A-I! (4) ;AO,J)=a:I,J)*A(I,J)
SOJG 4, NLUP
SOJG 3, MLUP
JRST %20 ; RETURN FROM AC 17

%20 MOVE 2, TWOSAV
COMPILE

ASSEMBLE- CaMPI LE Format

Cards

On cards, statement labels for assembly code

are limited to four characters and must be punched

in columns 1-5. The instruction and comments

follow in columns 7-72 with the format

OPCODE AC, ADDR (lR) iCOMMENT

The fields for the operation, accumulator, ad­

dress, index register, and comments are not

fixed and may fall anywhere in columns 7-72.

A2-3

The ASSEMBLE and COMPILE statements must

appear wi thout labe Is.

Punched Tape

1. Card simulated format

Tabs may be used to skip to column 7
and also to delimit fields within an
instruction.

2. Column free format

Labels must be followed by a colon.

APPENDIX 4

SUMMARY OF STATEMENTS

CONTROL STATEMENTS

ASSIGN n TO iname
CONTINUE
DO label i = k, I, m
GO TO n
GO TO iname
GO TO iname, (labell, labeI2, ••• labeln)
GO TO (label 1 , labeI2, ••• labeln), iname
IF (exp) labell, label2, label3

B IF (exp) labell, label2
IF ACCUMULATOR OVERF LOW labell
label2
IF QUOTIENT OVERFLOW labell, label2
IF (SENSE LIGHT i) labell, label2
IF (SENSE SWITCH i) labell, label2
PAUSE i
PAUSE "MESSAGE"
SENSE LIGHT i
STOP

I NPUT -OUTPUT STATEMENTS

Input

ACCEPT label, list
READ label, list
REREAD label, list
READ INPUT TAPE n, label, list
REREAD INPUT TAPE n, label, list
READ TAPE n, list
RIT n, label, list

A4-1

Output

PRINT label, list
PUNCH label, list
TYPE label, list
WRITE OUTPUT TAPE n, label, list
WOTn, label, list
WRITE TAPE n, list

Tape Commands

BACKSPACE n
END FILE n
REWIND n
SKIP RECORD n
UNLOAD n

SPECIFICATION STATEMENTS

COMMON v l' v 2' ••• v m

DIMENSION a l , a2, ••• an

EQUIVALENCE (listl), (list2), ••• (\istn)

SUBPROGRAM STATEMENTS

CALL name (a l , a2, .•• an)

FUNCTION name (d" d2, ••• dn)

RETURN

SUBROUTINE name (d l , d2, ••• dn)

APPENDIX 5

FORTRAN II OPERATING SYSTEM

1. Device Assignments

Logical device assignments for run-time
I/O are made with the use of a table called
DEVTB. in the FORTRAN library. Each en­
try in the table consists of a 6-bit ASCII
device name, and the numerical position
of each en try corresponds to the logi ca I
number used in FORTRAN I/O statements.
The first location of DEVTB. contains the
number of entries in the table. The last
five entries in the table are special and
correspond to the FORTRAN statements
READ, ACCEPT, PRINT, PUNCH, and
TYPE. Any entry in DEVTB. may be
changed by reassembling the table.

Example:

DEVTB.: t D13
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
END

.DTAO.

• TTY.
.CDR.
.LPT.
.MTAO.
.MTA1.
.DTA1.
.DTA2.
.CDR.

• TTY.
.LPT.
.PTP.

• TTY.

;READ
;ACCEPT
;PRINT
iPUNCH
iTYPE

With this tablet the statement WRITE OUT­
PUT TAPE 6 would refer to magnetic tape
unit 1. The PRINT statement would refer
directly to the line printer.

2. Special Library Programs

a. EXIT

A call EXIT statement causes a run to be
terminated. All I/o devices are re­
leased from the job.

b. PDUMP, DUMP

AS-l

CALL PDUMP (Al, B1, F1, A2, B2,
F2,"') and CALL DUMP (A1, B1, F1,
A2, B2, F2,"') are statements which
cause portions of core to be dumped on
the device corresponding to the PRINT
statement. If no arguments are present,
the entire user core area is dumped in
octal. The argument list (A1, B1,
F1, ...) displays the arguments for the
dump and the mode in which the dump is
to take place. Core is dumped between
the I imits Ai and Bi in the mode Fi.
Either Ai or Bi may be upper or lower
limits.

The modes are

O. Octal
1. Floating Point
2. Integer
3. ASCII

If the final mode is missing, the core
area between A and B is dumped in
octal. n n

If the last two arguments Bn and F n are
missing, an octal dump is made from An
to the end of the user's area.

DUMP calls EXIT while PDUMP returns
control to the calling program when the
dump has been compl eted.

c. CHANG

The statement A = CHANGF (X) causes
X to be changed from a sign-magnitude
negative number to a 2's complement
negative number (or vice versa). If X is
positive, CHANG has no effect on X.

3. Error Messages

All errors which are detected by the Oper­
ating System result in terminating the run
with a CALL EXIT. The errors detected are:

a. Illegal character in FORMAT
statement

b. End of file on input

c. Illegal character in input string

d. Device not available

e. "'egal FORTRAN device number

f. Too many devices referenced
(15 a \lowed)

g. File name not found in a DECtape
directory

A5-2

h. DECtape directory full

i. Tape record too short for list
spec i fi cati on

i . Dev i ce error or tape pari ty error

k. End of file while reading binary
file

I • End of tape

For more detailed information about FORTRAN
1/0, see DEC-06-0-0S-FII-GM-FP-ACTOO­
FORTRAN \I Format and I/O Processor.

APPENDIX 6

PDP-6 FORTRAN II COMPILER OPERATING INSTRUCTIONS

The PDP-6 FORTRAN II Compiler contains two

basic sections: a compiler which generates as­

sembly code from the FORTRAN source state­

ments and an assembler which generates relo­

catable binary programs. The 22K compiler

contains both parts in one program. The 9K

compiler, however, prepares an intermediate

file for input to the assembler which is a sepa­

rate program (F o LA) •

COMMAND STRING FOR 22K COMPILER

The command string is used to specify the input

and output file designations for the compiler.

The 22K compiler expects up to two output fi les

and one input file. The genera I form of the

command string is

FILEl, FILE2+- FILE3

FILEl will contain the relocatable binary output;

FILE2 will contain the listing of the compiled

output (source, assembly, bi nary, errors), and

FILE3 is the source or input file. Each file may

have one of the following forms:

DEVICE:
DEVICE: FILENAME
DEVICE: FILENAME.EXTENSION

where DEVICE may be any device mnemonic

acceptable to the PDP-6 executive system,

FILENAME may be up to six letters and/or digits,

and EXTENSION may be up to three letters and/

or digits.

A6-1

The fi Ie name extensions RE Land LST are assumed

for FILEl and FILE2 unless specified otherwise.

Example:

PTP: ,DTA3:LIST....-DTA1:S0RC.TXT

If FILEl is not desired, the command string should

be of the form:

,FILE2.-- FILE3

If FILE2 is not desired, either of the following

command strings is valid:

FILE 1.-- FILE3
FILE1, +- FILE3

If neither output file is desired, the valid com­

mand strings are:

.-- FILE3
, ...--FILE3

SWITCHES FOR THE 22K COMPILER

Switches are letters specifying optional and extra

functions to be performed by the com pi ler. These

letters may appear within parentheses or after a

forward slash. Only a single letter may follow a

slash, whi Ie more than one letter may appear

within parentheses. The switches are as follows:

K Skip one file on the device (magnetic
tape only).

M Do not print storage map.

N Do not l.ist errors on Teletype console
if there is a listing file.

R The source contai ns ru les for the com­
piler {for building a new compiler}.

5 List only source and errors (no assem­
bly code).

T The source is in column-free punched
tape format.

W Rewind the device (magnetic tape
only) •

Z Clear the directory on the device be­
fore inserting the new file.

Any switches not recognized are ignored.

The switches M, N, R, 5, T may appear any­

where in the command string. K, Wand Z must

appear before the termination character of the

applicable file.

For example, the command string

(W)MTAO:, (Z)DTA2: LIST +- CDR: 1M

calls for binary output on magnetic tape 0 (re­

wind first), listing on DECtape 2 (clear direc­

tory) and source from the card reader. The

storage map is to be deleted from the listing.

Command String for the 9K Compiler: The com­

mand string for the 9K Compiler is similar to

that for the 22K Compiler except that there is

no binary file. However, two identical output

files are permitted (for example a listing of in­

put to the assembler F OLA). The genera I forms

of the command string are

FILE1, FILE2+-FILE3
FILE 1 +-FILE3

The fi Ie name extension for the output fi les are

assumed to be FOL unless otherwise specified.

A6-2

Switches for the 9K Compi ler: The swi tches K,

R, T I W, and Z (as described for the 22K com­

piler) are recognized by the 9K Compiler.

Example:

[DTA1:FOLAIN, LPT:...- PTR: IT

This command string calls for identical output

files (input to FOLA) to be written on DECtape 1

and the line printer. The input (punched in col­

umn-free format) is coming from the paper tape

reader.

Command String for FOLA: The form of the FOLA

command string is identical to that of the 22K

compiler with the exception that more than one

input file may be specified:

FILE 1, FILE2 +- FILE3, FILE4, •••

Switches for FOLA: The switches K, M, N, S,

and Ware recognized by FOLA. M, N, 5, and

T must appear before the termination character

for the applicable file and must appear for each

file for wh i ch they are intended.

Example:

I PTP:,(K)MTA1: +- CDR:, (M)TTY:

In this example, the binary is to be punched on

paper tape, the listing is to go on magnetic tape

1 (after skipping one file), and the input is to

come from the card reader and the teletype.

The storage map is not to appear on the listing

for the input file from the teletype.

APPENDIX 7

LIMITATIONS ON 9K FORTRAN II COMPILER

1. Boolean statements are not allowed.

2. Use of * in IF statements is not allowed.

A7-1

8101

~DmDDmD
EQUIPMENT
CORPORATION
MAYNARD,MASSACHUSETTS

Cambridge, Mass .• Washington, D. C .• Parsip­
pany, N.J .• Rochester, N.Y .• Los Angeles
Palo Alto • Chicago • Ann Arbor • Pittsburgh
Denver' Huntsville' Orlando • Carleton Place

• and Toronto, Ont. • Reading, England • Paris,
France • Munich, Germany • Sydney, Australia

PRINTED IN U.S.A. 20-9/65

