

For example, if a square root is required, it would be called by

JSR, SQRTJ I
Elsewhere in the program would be the statement:

EXTERN SQRT;

In the square root subroutine would be the statement:

INTERN SQRT;

Some subroutines will have fairly common usage, and it will become

convenient to place them in a library. To load these subroutines, the code

LIBRARY is used. If the SQRT routine mentioned above were a library program,

the statement:

LIB RARY SQRT;

would also appear in the program. The code LIBRARY is followed by a list of

programs {expressed as 6 character identifying codes} required from the library.

LIBRARY KS 401, SQRT, ANFSQ2; I
would cause the programs numbered KS401, SQRT and ANFSQ2 to be loaded from

the library. library routines each have their own internal symbols, and EXTERN

statements are also necessary.

29

SECTION 5

MACRO INSTRUCTION

When writing a program, it is often desirable to abbreviate certain

commonly used coding sequences. Consider the following example of coding which

computes the length of a vector with components stored in 3 sequential locations:

~-------Example:--~

MOVE 0,V;
FMP 0;
MOVE 1,V&1
FMP 1,1
FAD 1;
MOVE 1, V&2
FMP 1,1
FAD 1;
JSR FSQRT;
MOVEM LENGTH;

GET THE FIRST COMPONENT
SQUARE IT

ADD IN THE SQUARE OF THE SECOND

ADD IN THE SQUARE OF THE THIRD
USE THE FLOATING SQUARE ROOT ROUTINE
STORE THE LENGTH

A simpler method of coding would be to use a

subroutine call:

JSP SJ,VLENGTH
EXP V,LENGTH

A macro instruction may be defined which will generate either of the

above coding sequences with one statement:

VMAG VECT,LENGTH

30

This statement consists of a macro-name, followed by the arguments,

in this case the location of the first component and the location of the memory cell In

which to store the result. To be able to generate the above subroutine call with one

statement, the programmer must define the macro VMAG. This is done by use of the

DEFINE code.

DEFINE VMAG (A,B)
<JS? SJ, VLENGTH
EX? A,B>

This macro definition statement consists of the code DEFINE, followed

by the name of the macro, a pair of parentheses containing a dummy string of arguments,

and a pair of angle-brackets containing the coding to be generated each time the

macro is called. A comment may appear between the parentheses and angle-brackets.

The string of dummy arguments is merely used as a model, and these may

be any symbols that are convenient - usually single letters will do. The angle-brackets

may contain any proper string of coding, norma Ily, but are not restricted to a group of

compl ete statements.

When the macro is called, real arguments are substituted for the dummy

arguments in the definition. The coding in the angle-brackets is reproduced, except

that each appearance of a dummy argument is replaced by the corresponding actual

argument in the calling statement. In the example cited above, A and B are the dummy

arguments in the definition. The calling statement has the real arguments VEeT and

LENGTH. The coding actually generated by the call is:

JS? SJ,VLENGTH
EX? VECT,LENGTH

The real arguments may be enc losed with parentheses or the parentheses

may be omitted. If parentheses are used, the argument string is ended by a closed

31

parenthesis; if they are omitted, the argument string ends when all the arguments

of the definition are filled, or when a carriage return, closed bracket, or semi­

colon del im its an argument. When parentheses are used (th is is impl ied by an

open parenthesis following the macro name), all superfl uous arguments are

ignored. The above call for the vector length subroutine may have been written

with equal validity as:

VMAG (VECT, LENGTH)

Arguments must be separated by commas. If an argument contains

a comma, it must be enclosed by a pair of angle-brackets. These angle-brackets

act only as argument delimiters and are stripped off in the actual argument. An

exampl e of th is is:

DEFINE JEQ (A,B,C)
<MOVE (A)
CAMN B
JRST C>

If the data in Location B is equal to A, then the program jumps to C.

If the contents of B must be compared to the instruction ADD 2,X; then the macro

call would be written:

IJEQ <ADD 2,X>, B, INSTX

Angle-brackets surrounding the ADD 2,X are removed and the

proper coding will be generated.

A macro need not have arguments. The instruction:

DATAO PTP,PUNBUF(4)

wh i ch causes the contents of PUN BUF, indexed by reg ister 4 to be output to the

paper tape punch, may be generated by the macro PUNCH, defined by:

DEFINE PUNCH
<DATAO PTP, PUNBUF(4»

32

This macro would be coded as:

PUNCH THE ANSWER

"THE ANSWER" becomes a comment when the macro is replaced by

the defined pseudo code.

A macro need not be used in the statement code field. The string

within the angle-brackets of the definition exactly replaces the macro name and

its argument string. The macro:
.... I-D-E-F-r-N-E-L-(-A-,-B-)--<-3-*-B---3-*-A-+-3->-

gives an expression for the number of items in a table where 3 cells are used to

store each item. A is the address of the first item and B is the address of the last

item. To load a., index register with the table length, one might write:

MOVE X,L(FIRST,LAST)

CREATED SYMBOLS

When a macro is called, it is often convenient to generate symbols,

without explicitly stating them in the call. Created symbols accomplish this.

Each time a macro that requires a created symbol is called, a symbol is generated

and inserted in the macro. These generated symbols are of the form .. nnnni that

is, two decimal points followed by four digits. The first created symbol that is

generated is .. ~~~l, the next .. ~~~2, etc.

If a symbol in a definition statement is preceded by a %, it is con­

sidered to be a created symbol. When a macro is called, all missing arguments that

are of the form %X are replaced by created symbols, if they are so spec ified.

The following macro wi II cause the textual information "A" to be written

out on the console, followed by a halt and a jump to B. The additional label is

necessary since the text statement generates an indefinite number of data words. A

created symbol is appropriate here since the programmer is probably not interested

in the label.

DEFINE TYPE (A, 7.B)
<JSR TYPE
HALT 7.B
S r XB I T I' A • I
7.8: >

33

This macro is called by:

TYPE HELLO

The call:

TYPE HELLO, BX

will not generate a created symbol. Instead, the explicit symbol overrides the

created symbol.

CONCATENATION

The above example also illustrates the use of the concatenation

operator, the apostrophe. An argument may not necessarily refer to a complete

symbol but refers to a string of characters. The apostrophe may not be used other­

wise within a macro definition, and 'further it is not a meaningful operator outside

of a macro-definition. Another example is the macro:

DEFINE J(A,B,C)
<JUI'lP 'A B, C>

The generated code when the macro is called by:

J LE,E,X&l

is:

JUMPLE 3,X&1

34

INDEFINITE REPEAT

Often in the definition of a macro, it is not known in advance how

many arguments there will be. An example is a macro used to set up a symbol table.

This table consists of a word of code corresponding to a 6 character symbol,

followed by a word of temporary storage. There may be an indefinite number of

symbols in the table. This is easily implemented by an indefinite repeat:

DEFINE STABLE(A)
<IRP (A)
<5IXBIT I'A'I
Z»

The IRP A <EXP) indicates that A is composed of a string of sub­

arguments separated by commas, and that the expression enclosed by angle­

brackets is to be repeated with each sub-argument inserted in turn.

The above macro when called by:

generates:

[STABLE<ALPHA, BETA, GAMMA;

51 XBI T IALPHA I
Z
SIXBIT IBETAI
Z
5IXBIT IGAMMAI
Z

NESTING AND REDEFINITION

Macro definitions may appear within other definitions to any reasonable

depth. A macro within another macro is not defined until the outer macro

is calfed. The macro-processor simply substitutes the arguments into the defined

string of characters, and nesting is wholly consistent with this type of operation.

35

If a macro name which has been previously defined appears within

another definition statement, the macro is redefined, and the original definition

is exorc ised •

The first example, calculation of the length of a vector, may be used

to illustrate this:

DEFINE VMAG (A,B, %C)
<JSP SJ,VL
EXP A,B
JRST %C

VL: MOVE 2, (SJ)
MOVE (2)
FMP 0
MOVE 1,1(2)
FMP 1,1
FAD 1
MOVE 1,2(2)
FMP 1,1
FAD 1
JSR FSQRT
MOVEM @1 (SJ)
JRST 2(SJ)

7.C:
DEFINE VMAG (A,B)
<JSP SJ, VL
EXP A,B>.>

36

This macro YMAG is defined as an entry to a closed subroutine followed

by the closed subroutine. The nested redefinition redefines the macro as only the

entry. The first time the macro is called, the subroutine is generated. Subsequent

calls generate only the call ing sequence - there is no need for another subroutine

Another use of redefinition is a subroutine handler. On entering a

subroutine, k accumulators are stored, and the prevailing radix is altered to one

local to the subroutine. On exiting, the accumulators and radix are restored.

[J EF IN E E X IT < >
DEFINE ENTER (R,K,%A,%B,%C,%U,%E)
< ~~B:

REPEAT

DEFINE
< %E:
l~ EPEAT

%C:

L
'Iof::"=l((j,
i~ADIX H

SA~E THE OLD RADIX

K <MOVEM .-%B+1, %C+.-%B+l> SAVE ACS
SYN EXIT, %0; SAVE DEFINITION

EXIT NEW DEFINITION
RADIX %A, RESTOKE OLD RADIX

K <MOVE .-%E, C+.-%E> RESTORt ACS
SYN %0, EXIT; RESTORE DEFINITION
PURGE %A,%DJ REMOVE JUNK FROM TABLE
JRST@%B, RETURN fKOM SUBROUTINE
BLOCK K, AC STORAGE> >

Each time ENTER is called, EXIT is redefined. To use this macro to store

4 accumulators on entering a subroutine and setting the local radix to 10, the following

would be written:

S UBR:

37

CRSYM -

ADDITIONAL CODES

This code is analogous to VAR and LIT. It is a processor

control code and indicates that previously undefined

created symbols are to be given values according to the

present contents of the location counter. Each undefined

created symbol increments the location counter by 1 •

38

SECTION 6

ERRORS

Occasionally, even the best of us commit small errors in writing

programs. There are two classes of errors -- errors in language usage and program

errors. MACR06 will examine the statements for this first c lass of error, and

print appropriate messages. These errors are caused by meaningless or inconsistent

constructs in the source language. When a I isting is prepared during the assembly,

each MACR06 statement that contains errors wi II be flagged by one or several

letters in the margin. At the end of the listing will be a summary of the errors;

this summary wi II be printed even if a listing is not prepared. Program errors

which properly use the MACR06 language will be correctly translated into errors

in the binary program.

THE ERROR FLAGS

M Multiply defined symbol - a symbol is defined more

than once, either as a label or variable.

The symbol retains its original definition.

S Symbol Error - There is a meaningless character string

that resembles a symbol or macro. It is assembled as

though the value were zero.

P Phase Error - A symbo I is ass i gned a va I ue as a I abe I

during pass 2 different from that which it was assigned

in pass 1. An error of this type will term inate an

assembly; it would probably indicate an error in

39

o

N

A

L

F

U

v

R

conditional assembly or in macro redefinition and

therefore propagate throughout the entire program.

(Symbols re-assigned by n=IJ will not cause phase

errors) •

Undefined Code - The code indicating'the state­

ment type is not defined in the code table. It is

assembled as a numeric code of zero.

Number Error - There is a meaningless string of

characters that resembles a number. It is assembled

as zero.

Argument Error - An argument of a control code ha s

a peculiar value.

Literal - There is an error within a literal.

Macro Definition Error - A format error exists in a

DE FINE statement.

Undefined Symbol - A symbol or macro is undefined.

It is given a value of zero.

Value Previously Undefined - A symbol used to control

the processor is undefined prior to the point at which

it is first used.

Relocation Error - An expression has a relocation constant

other than 1 or ~, contains division by a relocatable

number I contains the product of two relocatable numbers I

or involves relocatable numbers in Boolean operations.

The relocation co<nstant is set to zero.

40

D Multiply Defined Symbol Reference - The statement

contains a reference to a multiply defined symbol.

It is assembled with the first value defined.

An error message in the summary will have the following format:

laC

(location
Counter)

A+N

(Symbolic
Address)

41

MACRO (n)

(Macro called
depth)

E

(Error
flags)

SECTION 7

ASSEMBLY OUTPUT

ASSEMBLY LISTING

There are two types of assembly output, the assembly I isting and the

binary program. The assembly listing consists of a printout of the source program.

On the same line with each source statement are 3 numeric fields: the location of

the assembled code, the left half word, and the right half word. Above each line

containing an error is an appropriate message. This I isting is controlled by the

List Control Codes except that error messages are always printed. All assemblies

begin with an implicit LIST.

BINARY PROGRAM

The binary program may assume two forms: RIM and LINK. The RIM

{Read-in Mode} format is always punched into paper tape and is used for such things

as loaders and computer hardware ma i ntenance programs. R 1M programs may be

completely loaded by the loader resident in the shadow memory located "behind"

the accumulator memory.

Rim Format

Programs in RIM mode consist of two word pairs. The first word is an

instruct ion:

DATAl PTR, A,

The second word of the pair is the word of instruction or data to be

loaded into memory location II A" .

The last word of a RIM tape is a single instruction:

HALT, START;

where START is the first location of the program.

42

Link Format

LIN K format is the normal binary output mode. Programs in this format

are acceptable to the Linking Loader, and are generally relocatable. The Linking

Loader wi II load sub-programs into memory, properly re locating each one and ad­

lusting addresses to compensate for the relocation. It will also I ink External and

Internal symbols to provide communication between independently assembled sub­

programs. Fina Ily, the Linking Loader will call and load I ibrary sub-routines.

LIN K format data is in blocks. All blocks have an identical format.

The first word of a LIN K block consists of two halves. The left half is a code for

the block type, and the right half is a count of the number of data words in the

block. The data words are grouped in sub-blocks of 18 items. Each 18 word sub-block

is preceded by a relocation word. This relocation word consists of 18 two bit bytes.

Each byte corresponds to one word in the sub-block, and contains relocation information

regarding that word.

If the byte value is: o - no relocate occurs

1 - the right half is relocated

2 - the I eft ha I f is re located

3 - both halves are relocated

These relocation words are not included in the count; they always appear

before each sub-block of 18 words or less to insure proper relocation.

This block format is universal. All programs (except those in paper tape

RIM format) are stored in this format, including programs on paper tape, Microtape,

standard magnetic tape, punched cards, drums and discs. This format is totally

independent of logica I divisions in the input medium (40 word check summed paper tape

blocks, 128 word blocks on Microtape and drums, 23 word check summed punched

cards, etc). It is also independent of the block type.

43

The Formats for the Bloc k Types

Code 1 - Program and Data (assembler and compiler output)

Data word 1 - The location of the first word in the block

Data words 2-N - Up to N -1 words of program or data

to be loaded.

Code 2 - Program symbol table (local symbols)

The data words are in pairs, the first is the symbol (in

6 bit ASCII) and the second is the value. This block is

necessary for debugging routines.

Code 3 - Internal/external symbol table

The data words are in pairs.

Data word 1 -

Data word 2 (LH) -

(RH) -

symbol (6 bit ASCII)

1 for a right hand external
2 for a I eft hand external
4 for an internal
symbol value for internal

I ink for external

These symbols are used to I ink independently assembled

subroutines. The second and subsequent occurrence of

an internal symbol is ign ored •

Code 4 - Library requests.

Each data word is the name (6 bit ASCII) of a library

routine to be loaded.

Code 5 - Highest relocatable point.

This is the last block in a subroutine. It contains 1 word,

wh ich is the locat ion of the highest memory address used by the

relocatable program. Upon loading, the relocation constant

(initially set to zero) is replaced by this number to properly

relocate the next subprogram.

44

Code 6 - Name

There is 1 data word with the subroutine name. This usually

is the first block.

Code 7 - Starting address

There is 1 data word with the starting address of the program.

This block should only occur in conjunction with the main pro­

gram. The second and subsequent occurrences of this block are

ignored.

Code 10 - Combined internal-external

The data words are split into a right half and a left half. The

right half is the link, and the left half the value. These items

are used to control forward references in one pass compilers.

45

SECTION 8

PROCESSOR INITIALIZATION

At the beginning of each assembly the assembler is initialized to certain

states, generally affected by control codes. The initial states are:

1. Radix' is set to 8.

2. The location counter is set to zero and relocatable assembly

will occur.

3. There will be a normal listing.

4. There will be LINK binary output with a symbol table.

5. Phase mode is off.

6. The title and subtitle are blanked.

7. Only device mnemonics are placed in the symbol table. They are:

APR
PI
PTP
PTR
CP
CR
TTY
LP
DIS
DC
UTC
UTS
MTC
MTS
MTM
DCSA
DCSB

=)11515
=)1154
= 11515
= 1154
= 1115
= 114
= 12,0
= 124
= 1315
= 2,0)1
= 2115
= 214
= 2215
= 224
= 23)1
= 31515
= 3154

8 . No Macros or Opdefs ex ist .

46

Arithmetic Processor
Priority Interrupt System
Paper Tape Punch
Paper Tape Reader
Card Punch
Card Reader
Console Teleprinter
Line Printer
Display
Data Control
Micro Tape Control
Micro Tape Status
Mag Tape Contro I
Mag Tape Status
Mag Tape Status
Data Communication System
Data Communication System

APPENDIX I

CODES

Data Generating Codes

DEC - Decimal Numbers

OCT - Octal Numbers

EXP - Express ions

XWD - Block Transfer Word

IOWD - Input/Output Transfer Word

POINT - Pointer Word

SIXBIT - ASCII (6 bit) character strings

BYTE - Variable length bytes

BLOCK - Block of storage reserved
ASCII - ASCII (7 bit) character strings

Processor Control Codes

REPEAT - Repeat character string

IFn - Conditional Assembly

n Condition

E zero

G positive

GE zero or positive

L negative

LE zero or negative

N non zero

B blank

pass 1

2 pass 2

OPDEF - Define an op mnemon ic

SYM - Define a synonym

PHASE - Enter Phase mode

DEPHASE - Leave Phase mode

47

RIM - Assemble RIM tapes

IFIDN - Conditional Assembly on character strings

IFDIF - Conditional Assembly on character strings

RADIX - Radix control

LOC - Set Location Counter

PASS2 - Term inate Pass 1

NOSYM - Suppress Symbol T obi e Output

LIT - Assemble Literals

VAR - Assemble Variables

CRSYM - Assemble Created Symbols

EXTERN - List of External Symbols

INTERN - List of Internal Symbols

L1BRAR - List of Library Subroutines

IRP - Indefin ite Repeat

PURGE - Purge Symbols

END - Last Line

List Control

LIST - List

XLIST - Stop Listing

LMAC - List Macro Expansions

XMAC - Stop Listing Macro Expansions

TITLE - Title

SUBTTL - Subtitle

PAGE - Skipto top of next page

ERRORS - Suppress Output except for error messages

48

A-

D -

F -

L -

M-

N -

0-

P -

R -

S -

U -

V -

APPENDIX II

SUMMARY OF ERROR FLAG S

Argument of Control Op

Reference to multiply defined symbol

Macro Definition

Useage of literal

Multiply defined symbol

Number

Undefined Operation Code

Phase Discrepancy

Relocation

Symbol

Undefined Symbol

Value previously undefined

49

TITLE BUG6

,
,
,
,
, ,
,
, ,

BEGI N:

APPENDIX III

PROGRAMMING EXAMPLE

THIS IS A GAME IN WHICH A SMALL CIRCLE RUNS AROUND THE
FACE OF THE SCOPE. IT STARTS RUNNING AT A HIGH SPEED
AND EVENTUALLY SLOWS DOWN, STOPPING ON ONE OF THE 12
CLOCK POSITIONS. MOMENTARILY FLIPPING DATA SWITCH 35
UP WILL RESTART THE BUG AND IT WILL REPEAT THE CYCLE,
STOPPING ON A NEW POSITION. RANDOM NUMBER GENERATOR
IS USED TO DETERMINE THE AMOUNT OF TIME THE BUG WILL
DWELL AT ANY POSITION. THIS RANDOM NUMBER IS INITIA­
LIZED FROM THE SWITCHES.

HALT .+1;

RSW R2
CLEARB Rl,R3

STOP TO SET THE DATA SWITCHES
,INITIALIZE THE FOUR CELLS OF THE
,RANDOM NUMBER GENERATOR TO 0, A
,NUMBER READ FROM THE SWITCHES, ANOTHER
,0, AND A CONSTANT.

MOVE R4,[123456701231
MOVEI CLOCK,0; START AT TWELVE OCLOCK
JSR SCOPE; START THE SCOPE RUNNING

, RUN THE SPOT AROBND THE SCOPE

GO:

RUN:

DELMAX=7777,

CLEARM TIMER;

JSR RAND;
ANDI DELTAT,DELMAX;
ADD TIMER,DELTAT;
MOVE WAIT,TIMER;

SOJN WAI T, .;

MOVE POSITION(CLOCK)
MOVEM TABLE+l
SOJGE CLOCK, .+2;
MOVEI CLOCK,fDll;

TDNN TIMER, TMAX;
JRST RUN;
RSW TIMER;
TRNN TIMER, 1;
JRST .-2;
JRST GO;

TMAX: 777700000000,

50

FIRST ZERO THE ACCUMULATING

TIMER, GET A RANDOM NUMBER
LIMIT THE RANDOM NUMBER
ADD IT TO THE ACCUMULATING
TIMER, MOVE THE TOTAL TO A
,COUNTER

COUNT DOWN TO KILL TIME

ADVANCE CLOCK TO NEXT POSIT.

HAVE WE PASSED TWELVE OCLOCK
RESET CLOCK BACK TO ONE

ARE WE READY TO STOP IT
NO
YES, BUT INSTEAD OF ACTUALLY
HALTING, IT LOOPS UNTIL DS35
IS SET. THIS ALLOWS THE
DISPLAY TO CONTINUE
MAXIMUM TIME INCREMENT
MAXIMUM TOTAL TIME

,RA NDOM NUMB ER GENERATOR

,
,
, , ,
,
RAND:

THIS RANDOM NUMBER GENERATOR ADDS FOUR RANDOM NUMBERS
MODULO 2t35 TO GET A FIFTH RANDOM NUMBER. THEN IT
REPLACES THE FIRST BY THE SECOND, THE SECOND BY THE
THIRD, THE THIRD BY THE FOURTH, AND THE FOURTH BY THE
FIFTH TO RESET THE GENERATOR. THE FOURTH IS THE GENE­
RATED RANDOM NUMBER.

Z
MOVE DELTAT,RI;
ADD DELTAT ,R2
ADD DELTAT,R3
ADD DELTAT ,R4

MOVE RI,R2;
MOVE R2,R3
MOVE R3,R4
MOVE R4,DELTAT

JRST @RAND

ADD FOUR RANDOM NUMBERS

REPLACE VALUES

51

,DISPLAY ROUTINE
SCOPE: Z

,DISPLAY MACROS

CO NO PI, 10400;
EXCH TBLPT1;
MOVEM TBLPTR';
EXCH TBLPTl;
CO NO DIS,112;

DATAO DIS, TABLE;

CO NO PI,2340;

JRST @SCOPE;

DEFINE INCREMENT (A,B,C,D,E,F,G,H,I)
A WORD OF SCOPE INCREMENTS
<BYTE (2)A(4)B,C,D,E(2)A(4)F,G,H,I>

SHUT DOWN THE PI SYSTEM
INITALIZE THE TABLE POINTER
WITHOUT DISTURBING AC0

START THE DISPLAY ASSIGNING
,SPECIAL CHANNEL 1 AND DATA
,CHANNEL 2
GIVE THE SCOPE ITS FIRST
,WORD
TURN ON THE PI SYSTEM, ACT­
,IVATING CHANNELS 1 AND 2.

,SOME DEFINITIONS TO USE IN THE INCREMENT MACRO

RADIX2
1=1,
ESCAPE= 10,
PX=1000,
PXPY=1010,
PY=0010,
r1XPY = 1 11 0 ,
MX = 1100,
MXMY = 1111 ,
MY=0011,
PXMY=1011,

RADIX8

DISPLAY THE
EXCAPE FROM
INCREMENT:

POINTS (INTENSIFY
THE MODE

PLUS X
PLUS X AND PLUS Y
PLUS Y
MINUS X AND PLUS Y
MINUS X
MINUS X AND MINUS Y
MINUS Y
PLUS X AND MINUS Y

DEFINE XYPOS (A,B) A WORD TO POSITION THE DISPLAY
AND THEN START THE INCREMENT MODE

<BYTE (2)0(3)1,1(10)A(2)1(3)6,1(10)B;>

52

,DISPLAY TABLE

TBLPT1: IOWD 0,TABLE; INITIAL 10 WORD FOR SCOPE
,TABLE

TABLE: BYTE (18)(5)1(4)(3)1(2)2(1)1(3)5; START IN XY
,TRACE A CIRCLE IN THE INCREMENT MODE

XYPOS 1000,1600; MODE
INCREMENT I,PX,PX,pXpy,pX,pXpy,pX,pXpy,pXpy
INCREMENT I,PY,PXPY,PY,PXPY,PY,PY,PY,PY
INCREMENT I,MXPY,PY,MXPY,PY,MXPY,MXPY,MX,MXPY
INCREMENT I,MX,MXPY,MX,MX,MX,MX,MXMY,MX
INCREMENT I,MXMY,MX,MXMY,MXMY,MY,MXMY,MY,MXMY
INCREMENT I,MY,MY,MY,MY,PXMY,MY,PXMY,MY
INCREMENT I,PXMy,PXMY,PX,PXMy,PX,PXMY,PX,PX

BYTE (1)1(11)(1)(1)1(1)1;

,CLOCK POSITIONS
POSITION: XYPOS 1000,1600;

XYPOS 500,1520;
XYPOS 260,1300;
XYPOS 200,1000;
XYPOS 260,500;
XYPOS 500,260;
XYPOS 1000,200;
XYPOS 1300,260;
XYPOS 1520,500;
XYPOS 1600,1000;
XYPOS 1520,1300;
XYPOS 1300,1520;

,INTERRUPT TRAPS

LOC 42

EXCAPE FROM INCREMENT MODE
,AND STOP

TWELVE OCLOCK
ELEVEN
TEN
NINE
EIGHT
SEVEN
SIX
FIVE
FOUR
THREE
TWO
ONE

JSR SCOPE; CHANNEL ONE FOR SCOPE STOP
Z
BLKO DIS,TBLPTR; CHANNEL TWO FOR DATA INTEl

,ACCUMULATOR ASSIGNMENTS
Rl=1
R2=6
R3=5
R4=4
DELTAT=3
TI MER =2
CLOCK=I·

END BEGIN

53

APPENDIX IV

CHARACTER SETS

6 bit Punched 6 bit Punched
ASCII ASCII Card ASCII ASCII Card

(space) 240 00 b @ 300 40 4-8
I 241 01 12-7-8 A 301 41 12-1 .
II 242 02 0-5-8 B 302 42 12-2
243 03 0-6-8 C 303 43 12-3
$ 244 04 11-3-8 D 304 44 12-4
% 245 05 0-7-8 E 305 45 12-5
& 246 06 11-7-8 F 306 46 12-6

247 07 6-8 G 307 47 12-7

(250 10 0-4-8 H 310 50 12-8
) 251 11 12-4-8 I 311 51 12-9
* 252 12 11-4-8 J 312 52 11- 1
+ 253 13 12 K 313 53 11-2
I 254 14 0-3-8 L 314 54 11-3

255 15 11 M 315 55 11-4 . 256 16 12-3-8 N 316 56 11-5
/ 257 17 0-1 0 317 57 11-6

¢ 260 20 ¢ P 320 60 11-7
1 261 21 1 Q 321 61 11-8
2 262 22 2 R 322 62 11-9
3 263 23 3 S 323 63 0-2
4 264 24 4 T 324 64 0-3
5 265 25 5 U 325 65 0-4
6 266 26 6 V 326 66 0-5
7 267 27 7 W 327 67 0-6

8 270 30 8 X 330 70 0-7
9 271 31 9 Y 331 71 0-8

272 32 11-0 Z 332 72 0-9
; 273 33 0-2-8 [333 73 11-5-8
< 274 34 12-6-8 "- 334 74 7-8
= 275 35 3-8] 335 75 12-5-8
> 276 36 11-6-8 t 336 76 5-8
? 277 37 12-0 4- 337 77 7-9

54

..

6064 PRINTED IN U.S.A. 10-5/64

