
F-64PX
8/ 64

PROGRAMMING EXAMPLES

PDP-6 PROGRAMMING EXAMPLES

F64-PX
8/64

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

/

Copyright 1964 by Digital Equipment Corporation

II

INTRODUCTION

This manual contains examples of programming for the PDP-6 Type 166 Processor. They have

been chosen to illustrate both the arithmetic and logical capabilities of the processor. For an

explanation of the instructions shown see the PDP-6 Handbook (F-65). The examples use the

same instruction mnemonics as the MACRO-6 assembler. The language is described in the

MACRO-6 Manual (F-64MAS).

Times based on design estimates are shown in some of the examples. All of the instruction times

have been conservatively calculated. For example, no attempt has been made to take advan

tage of speed gains due to memory overlapping. Two of the examples show how time ma), be

saved by moving to fast memory a short program which executes a large number of iterations.

One of these, Character Manipu lation, is programmed in both a straightforward manner and by

being moved to fast memory in order to show the break-even point between the time gained

and the increased overhead time. The second, Two-bit Testing, was programmed for 500 itera

tions. In this case there is a considerable gain in time by moving the program to fast memory.

The last example, Any Radix Print, demonstrates the use of recursion to shorten programs.

Sixteen examples are contained in this booklet:

l. Single Precision Integer Arithmetic

2. Double Prec is ion I nteger Arithmetic

3. Floating Point Arithmetic

4. Fix a Floating Point Number

5. Float a Fixed Point Integer

6. Repetitive Calculation

7. Subscripts

8. Exponentiation

9. Character Manipulation

10. Character Translation

1l. Character Addition

12. Fifteenth Degree Polynom ia I

13. Evaluation of Complex Polynomial

14. Matrix Inversion

15. Two-Bit Testing and Depositing of Data

16. Any Radix Print

2

SINGLE PRECISION INTEGER ARITHMETIC

Assume: 1) A, B, C, D, E, F, G, H, J, K, L, M, N, and P are arbitrary memory locations.

2) Arguments and instructions are in the same memory module.

3) No scaling is required.

4) Y indicates 1 of the 16 accumulators

MOVE Y, B
ADD Y, C
MOVEM Y, A

MOVE Y, E
ADD Y, F
ADD Y, G
MOVEM Y, D

MOVE Y, J
IMUL Y, K
MOVEM Y, H

MOVE Y, M
IMUL Y, N
ADD Y, P
MOVEM Y, L

A=B+C

D=E+F+G

H=JxK

L=MxN+P

3

Total

Total

Total

Total

Time in microseconds

4
4
4

12

4
4
4
4

16

4
13.6
4

21.6

4
13.6
4
4

25.6

DOUBLE PRECISION INTEGER ARITHMETIC

Assume: 1) A, B, C, 0, E, F, G, H, J, K, L, M, N, and P are arbitrary memory locations,
each denoting a block of two consecutive memory registers.

2) Each integer is stored in two consecutive memory locations with the high order in
teger in the first location and the low order integer in the second.

3) Instructions and arguments are in same memory module.

J FC L 1 6, . + I,
MOVE 0, B
MOVE 1, B + 1
ADD I, C+l,
JFCL2, 01,

02: ADD 0, C,
MOVEM 0, A,
MOVEM I, A+l

01: AOJA 0, 02

JFCL16, .+1,
MOVE 0, E
MOVE I, E + 1
ADD I, F + 1,
JFCL 2, DOl,

DOl A: ADD I, G + I,
JFC L 2, 002,

DD2A: ADD 0, F
ADD 0, G
MOVEM 0, 0,
MOVEM I, 0+1

001: AOJA 0, 001 A,
002: AOJA 0, DD2A,

A=B+C

D=E+F+G

CLEAR STRAY FLAGS

ADD LOW ORDER PARTS
DID LOW ORDER PARTS OFLO
ADD HIGH ORDER PARTS
STORE RE SU L TS

Time in dcroseconds

2.1
4.0
4.0
4.0
2.1
4.0
4.0
4.0

COMPENSATE FOR OVERFLOW 3.3
Total 28.2-31.5

CLEAR STRAY FLAGS

ADD lOW ORDER PARTS
DID LOW ORDER PARTS OFLO
ADD lOW ORDER PARTS
OVERFLOW?
ADD HIGH ORDER PARTS

STORE ANSWERS

2.1
4.0
4.0
4.0
2.1
4.0
2.1
4.0
4.0
4.0
4.0

COMPENSATE FOR OVERFLOW 3.3
COMPENSATE FOR OVERFLOW 3.3

Total 38.3-44.5

4

DOUBLE PRECISION INTEGER ARITHMETIC (continued)

MOVE 0, J
MUL 0, K,
MOVE 2, J + 1
MUL 2, K,
JFCL16, .+1,
ADD 1,2,
JFCL 2, M1

M1 A: MOVE 2, J,
MUL 2, K + 1
ADD 1, 2,
JFCL 2, M2

M2A: MOVEM 1, H + 1,
MOVEM, H

M1: AOJA 0, M1A
M2: AOJA 0, M2A

K=JxK

MULTIPLY HIGH ORDER PARTS

MULTIPLY LOW {J)i HIGH (K)
CLEAR STRAY FLAGS
SUM PRODUCTS
OVERFLOW?
MULTIPLY HIGH (J), LOW (K)

SUM PRODUCTS
OVERFLOW?
STORE RESU L TS

Time in microseconds

4.0
14.0
4.0

14.0
2.1
4.0
2.1
4.0

14.0
4.0
2.1
4.0
4.0

COMPENSATE OVERFLOW
COMPENSATE OVERFLOW

3.3
3.3

Total 76.3-82.9

5

FLOATING POINT ARITHMETIC

Assume: 1) A, B, C, D, E, F, G, H, J, K, L, M, N, and P are arbitrary memory locations.

2) Arguments and instructions are in the same memory module.

3) Y indicates 1 of the 16 accumulators.

MOVE Y, B
FAD Y, C
MOVEM Y, A

MOVE Y , E
FAD Y, F
FAD Y, G
MOVEM Y, D

MOVE Y, J
FMP Y, K
MOVEM Y, H

MOVE Y , M
FMP Y, N
FAD Y, P
MOVEM Y, L

A=B+C

D=E+F+G

H=JxK

L=MxN+P

4.0
5.8
4.0

Total 13.8

4.0
5.8
5.8
4.0

Total 19.6

4.0
12.6
4.0

Total 20.6

4.0
12.6
5.8
4.0

Total 26.4

PROBLEM: Consider an eight block table with 100 entries in each block. Let A, B, C, D,
E, F, G, and Hdenote the first location of each block. For each entry find:

G = {A_B)2 + (C_D)2

H = (G/E) x F

Assume: 1) All entries in normalized floating point.

2) Argument and instructions are in the same memory module.

6

FLOATING POINT ARITHMETIC (continued)

Program

BEGIN: MOVSI1,+D100
MOVE 2, A(l)
FSB 2, B(l)
FMP 2, 2
MOVE 3, C(l)
FSB 3, D(l)
FMP 3, 3
FAD 2, 3
MOVEM 2, G(l)
FDV 2, E(l)
FMP 2, F(l)
MOVEM 2, H(l)
AOBJN 1, BEGIN+1

Time in microseconds

The total time for 100 repetitions:
92.6 x 100 + 2 = 9.26 mill iseconds

7

2
4
6.2

12.3
4
6.2

12.3
5.5
4

18.0
12.8
4.0
3.3

FIX A FLOATING POINT NUMBER

Assume: 1) A floating point number in any accumulator from 1-15 designated by F. The

MUll F, 400,
TSC F, F,

resu I t is returned in F+ 1 modu Ie 16.

ASH F+ 1, -243(F),

EXPONENT IN F, FRACTION IN F+1
COMPLEMENT EXPONENT IF NEGATIVE
TRUNCATE TO GREATEST INTEGER

FLOAT A FIXED POINT NUMBER

Assume: 1) A fixed point integer less than 227 in magnitude in accumulator C.

TLC C,233000, XOR INTO WORD
FAD C, 0, FLOATING ADD ZERO TO NORMALIZE

2) A fixed point integer I, _235:s. I < 235, in accumulator F.

Note: Accumulator F+1 is used in the calculation.

IDIVI
SKIPE
TLC
TLC
FAD

F ,400,
F-,
F,243000,
F+1,233000,
F, F+1,

DIVIDE WORD INTO TWO PIECES
SKIP IF NORMALIZED ZERO
XOR EXPONENT INTO F
XOR EXPONENT INTO F+l
COMBINE AND NORMALIZE

8

REPETITIVE CALCULATION

The following are repeated 10000 times:
A=B+C, D=E+F+G, H=Jx K

Assume: 1) A, B, C, D, E, F, G, H, J, K, L, M, N, and P are arbitrary memory locations.

B1 :

2) Arguments are in floating point.

3) Arguments and instructions are in the same memory module.

Time in microseconds

MOVE I 2," D1 0000,
MOVE 0, B
FAD 0, C
MOVEM 0, A
MOVE 0, E
FAD 0, F
FAD 0, G
MOVEM 0, D
MOVE 0, J
FMP 0, K
MOVEM 0, H
SOJN 2, B1,

IN ITIALIZE COUNTER

COUNT

The total time for 10000
repetitions:
55.2 x 1 0000 + 2 = 0.552 sec.

9

2
4
5.2
4
4
5.2
5.2
4
4

12.6
4
3

55.2

Compute for 1=1, 100
A(I)=B(I)+C(I)
D(I)=E (I)+F (I)+G(I)
H(I)=A(I)xD(I)

SUBSCRIPTS

Assume: 1) The data is arranged in memory as follows:

Bl, B2, ---Bl00, Cl, C2, ---Cl00, El, Fl, Gl,
E2, F2, G2 ---El 00, Fl00, Gl00, A1, D1, A2,
D2 ---A100, Dl00, Hl, H2, ---H100

CLEARB 3, 2,
HRLZI 1, -+D100,

C1: MOVE 4, E(3)
FAD 4, F(3)
FAD 4, G(3)
MOVEM 4, D(2),
MOVE 0, B(1)
FAD 0, C(1)
MOVEM 0, A(2)
FMP 0, 4
MOVEM 0, H(1)
ADDI 2, 2,
ADDI 3, 3,
AOBJN 1, C1,

IN ITIALIZE INDEX REGISTERS
IN ITIAUZE INDEX COUNTER

D=E+F+G

INCREMENT 2 STEP INDEX
INCREMENT 3 STEP INDEX
INCREMENT 1 STEP INDEX
AND COUNT

Time in microseconds

4.0
2.0
4.0
6.0
6.0
4.2
4.0
6.0
4.2

12.3
4.2
3.0
3.0

3.3

Total Time required is 0.062 seconds

10

EXPONENTIATION

,FLOATING POINT NUMBER TO A FIXED POINT POWER
,COMPUTE X+-I USING ACCUMULATORS Al, A2, AND T.
,STORE THE RESULT IN Y. IF X IS ZERO, RETURN ZERO

FEXP: MOVE Al, X
MOVSI T, 201400
SKIPGE A2, I
FDVM T, Al
MOVMS A2
JUMPN A1, FEXP2
CLEARB T, A2

FEXP1: FMP A1, A1
LSH A2, -1

FEXP2: TRZE A2, 1
FMP T, A1
JUMPN A2, FEXP1
MOVEM T, Y

iMOVE X TO A1
ill = 1.0
iMOVE I TO A2, SKIP IF NON-NEGATIVE
iTAKE RECIPROCAL OF X (NEGATIVE POWER)
iTAKE ABSOLUTE VALUE OF I
iGO TO MAIN LOOP (IF NON ZERO BASE)
iZERO EXPONENT AND RESULT FOR QUICK EXIT
iSQUARE BASE TERM
iSHIFT RIGHT FOR NEXT BIT OF EXPONENT
ilS POWER A FACTOR? TURN OFF BIT
i YES
iMORE FACTORS?
iNO, STORE RESULT

11

CHARACTER MANIPULATION

PROBLEM: There is a string of 7 bit ASC II characters beginning at memory location A and
ending with a slash. Transfer the characters, excluding the slash to a block
beginning at location B. Count the number of characters and leave the result
in an index register.

Assume: 1) The code for a slash is 748 ,

Program Time in microseconds

C:

MOVE 3, [POINT 7, BJ
MOVE 2, [POINT 7, AJ
MOVEI 1, 0
LOBI 0, 2
CAIN 0, "/11
JRST EXIT
DPBI 0, 3
AOJA 1, C

MOVSI AI, CMOVP
BLT Al, Al-I,
JRST CMOV

CMOVP: PHASE 0
B1 0
PTA: POINT7,A
PTB: POINT 7, B
CMOV: LOBI A1, PTB

CAIN A1, 74
JRST EXIT
DPBI A1, PTB

CM: AOJA B1, CMOV
DEPHASE

Al = CM + 1

Total time is 18 + 16 x N where
N is the number of charac ters.

MOVE TO FAST MEMORY

4
4
2.0
5
2.6
2.1

.5
3.4

2.0
17.6
3.0

5.0
2.0
2.0
5.0
2.0

The time for this case is 31 + 14 x N.

12

CHARACTER TRANSLATION

Assume: 1) That the number in accumulator A is a 6-bit code read from the card reader.
The program must translate the card code into the equivalent 7-bit ASC II code.
A translation table begins at location TAB consisting of 7-bit ASCII characters
packed five to a word.

2) The characters in th is table are in order of the ir appearance in the card code.
Because characters are packed five to a word, the quotient of the card code
divided by 5 gives the word in wh ich the ASC II character is found. The re
mainder gives the character position. An auxilliary table of five byte pointers,
one pointing to each character position, allows retrieval of the proper ASCII
with a single LOB instruction.

TRANSL: IDIVI A,5

BTAB:

TAB:

LOB
JRST

POINT
POINT
POINT
POINT
POINT

ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII

A, BT AB (A+ 1)
EXIT

7, TAB (A), 6
7, TAB (A),13
7, TAB (A), 20
7, TAB (A),27
7, TAB (A), 34

.+-1234.

.56789.

.0=@t'.

.\ 1ST.

.UVWXy.

.Z;,(".

.#7.-JK.

.LMNOP.

.QR:$*.

.[>&+A.

.B CDEF.
IGHI?/
.))<1.

13

CHARACTER ADDITION

PROBLEM: Add two 5 digit numbers expressed at 7-bit ASCII characters.

Calling Sequence: JSP AC3, ASCIAD

,ASCIAD:

,
,

,
,

,
ASCIAD:

M1 :
M2:
M3:
M4:

A ROUTINE TO ADD OR SUBTRACT FIVE DIGIT ASCII NUMBERS (7 BIT
CHARACTERS) .

1. CHARACTERS MUST BE RIGHT JUSTIFIED
2. TO ENTER ROUTINE:

A. MOVE ACO, (ADDEND)
B. MOVE AC1, (AUGEND)/ MOVN AC1, (SUBTRAHEND)
C. JSP AC3, ASCIAD

3. ON RETURN THE SUM OR DIFFERENCE IS IN AC2 AND THE CONTENTS
OF ACO AND AC1 ARE UNCHANGED

4. THE ROUTINE IS A RING COUNTER; FOR EXAMPLE
99999+2=00001 and 3-6=99997

5. NOTE THAT TWO NEGATIVE NUMBERS CANNOT BE COMBINED AND
THAT IF ONE IS NEGATIVE IT MUST APPEAR IN AC1 ON ENTRY.

AND ACO,M2
lOR AC1,M4
TLZN AC1,400000
ADD AC1,M1
ADD ACO,AC1
AND ACO,M3
MOVE AC2, M4
AND AC2,ACO
ASH AC2,-3
SUBM ACO,AC2
lOR AC2,M4
JRST (AC3)

BYTE (l) (7) 6, 6, 6, 6, 6
BYTE (1) (7) 1 7, 1 7, 1 7, 1 7, 1 7
BYTE (1) (7) 77, 77, 77, 77, 77
BYTE (1) (7) 60, 60, 60, 60, 60
ACO=O
AC1=1
AC2=2
AC3=3
END

14

FIFTEENTH DEGREE POLYNOMIAL

Assume: 1) P denotes a block of memory conta ining the 16 coeffic ients; X is a memory lo-
cation containing the argument; the answer is stored in location Z.

RADIX 10,
MOVE 3, X,
MOVE 12, 15
MOVE 0, P + 15,
IMUL 0, 3,
ADD 0, P-1 (2)
SOJ GE 2, . -2,
MOVEM 0, Z,

Time in microseconds

SET ASSEMBLER RADIX TO 10
MOVE ARG TO FAST MEMORY
INITIALIZE INDEX COUNTER
INITIALIZE VALUE
MULTIPLY BY ARGUMENT
ADD NEXT LOWER COEFFICIENT
INCREMENT AND COUNT
STORE ANSWER

4.0
2.0
4.0

13.2
4.0
2.8
4.0

Total time required is 314 microseconds

15

EVALUATION OF COMPLEX POLYNOMIAL

1 2 n
Y=Po +P1 X +P2 X + PnX

WHERE Y, X, and P are complex numbers.

The real parts of the coefficients, P, are stored in an array, the first location labeled P. The
imaginary parts are stored in another array, PI. The argument is X (real part) and XI (imaginary
part), the answer is placed in Yand YI, and the order is in N.

DATA STRUCTURE

P: BLOCK 14,
PI: BLOCK 14,
X: a
XI: a
Y: a
YI:O
N: a

MOVEI4, N,
MOVE a, P (4),
MOVE 1, PI(4),
MOVE 2, X,
MOVE 3, XI,

P13: MOVE 5, 1
FMP 5, 3,
MOVE 6, a
FMP 6, 3,
FMP a, 2,
FSB a, 5,
FMP 1, 2,
FAD 1, 6,

FAD a, P-1 (4),
FAD 1, PI-1 (4)
SOJGE 4, P13

MOVEM a, Y,
MOVEM 1, YI

TIME = 28 + 80.8N flsec.

REAL COEFFICIENT PARTS
IMAGINARY COEFFICIENT PART
REAL PART OF ARGUMEN T
IMAG. PART OF ARGUMENT
REAL PART OF ANSWER
IMAG. PART OF ANSWER
ORDER OF POLYNOMIAL

Time in microseconds

IN ITIALIZE INDEX COUNTER
INITIALIZE ANSWER

MOVE ARGUMENT TO
FAST MEMORY

PI * XI

P * XI
P*X
P * X - PI * X I = REAL PART
PI * X
P * XI + PI * X = IMAGINARY PART

ADD NEXT LOWER COEFFICIENT

STORE ANSWER

2.0
4.0
4.0
4.0
4.0

2.4
12.2
2.4

12.2
12.2
5.6

12.2
5.4

6.0
6.2
4.0

4.0
4.0

Example: A 13th Degree Polynomial Requires 1.04 milliseconds.

16

MATRIX INVERSION

PROBLEI\~: To invert an NxM matrix, stored row-wise in sequential locations beginning
with A.

,CALLING SEQUENCE:
,CALL: JSP 17, INVER

EXP A
, JRST ERROR
, THE ORDER OF THE MATRIX IS IN A, WITH THE NUMBER OF ROWS IN THE LEFT HALF,
,AND THE NUMBER OF COLUMNS IN THE RIGHT HALF. THE ELEMENTS ARE STORED
,ROW-WISE BEGINNING IN A+l
,
,IF THE INVERSION WAS SUCCESSFUL IT WILL RETURN TO CALL +3, AND IF A ZERO
,PIVOT ELEMENT OR OVERFLOW OCCURRED, IT WILL RETURN TO CALL +2
,
,ACCUMULATOR ASSIGNMENTS

T=15
J=14
K=13
P=12
PT=11
LC=10
LCS=7

INVERT:

,PIVOT ELEMENT
,COLUMN SUBSCRIPT
,ROW SUBSCRI PT
,INDEX POINTING TO PIVOT ELEMENT
,MULTIPLIER
,STOP COUNTER
,ROW COUNTER

HRRZ @ (17)
MOVEM, ROWS#
HLRZ @ (17)
MOVEM, COLS#
MOVE [XWD ROWPRG, ROW)
BLT ROWLi

HRR ROW, (17)
ADDI ROW,1
HRR ROW+2, (17)
HRR ROW+3, ROW
ADDI ROW+2, 2
HRRM ROW, INZl+1
HRRM ROW, DIV+2
HRRM ROW, DIV+6
HRRM ROW, INZROW+1
HRRM ROW+2, DI V

MOVE I P, 0
MOVN T, COLS
MOVE T, 1 (T)
HRRM T, INZ1

;GET COLUMN COUNT

iGET ROW COUNT
iMOVE ROW SUBROUTINE
INTO FAST MEMORY

iSET UP PROGRAM ADDRESSES

17

INZSTP: MOVEI K, 0
MOVE LCS, ROWS
MOVE J, P

INZ1: HRLI J, 0
SKIPN T, A(P)
JRST 1 (17)

DIV: MOVE A+1 (J)
FDV T
MOVEM A(J)
AOBJN J, DIV
MOVSI 1.0B53
FDV T
MOVEM A(J)

INZROW: MOVE J, P
MOVE PT, A(K)
CAMN K, P
JRST ROWSKP
JRST ROW

ROWOUT: MOVN@ ROW
FMP PT
MOVEM@ROW+2

CTX: SOJN LCS, INZROW
ADD P, COLS
SOJN LC, INZSTP

JRST 2(17)

;INITIALIZE INVERSION STEP

;GET PIVOT ELEMENT
;IF IT IS ZERO, EXIT AS ERROR

;DIVIDE PIVOT ROW THROUGH BY
;PIVOT ELEMENT

i LAST ELEMENT OF PIVOT ROW

;INITlALlZE TO PROCESS A ROW

;IF THE ROW IS THE PIVOT ROW,
iSKIP IT
;GO TO PROGRAM IN FAST MEMORY
;HANDLE FINAL ELEMENT OF THE ROW

;IS STEP FINISHED?

;IS JOB FINISHED?

;RETURN

ROWSKP: ADD K, COLS ;SKIP PIVOT ROW DURING
JRST CTX ilNVERSION STEP

, THIS PROGRAM FOR PROCESSING THE ELEMENTS IN A ROW IS MOVED INTO FAST MEMORY

ROWPRG:
PHASE 1
ROW:

ROWL:
DEPHASE
END

MOVN A(J)
FMP PT
FAD A+1 (K)
MOVEM A(K)
ADDI J, 1
AOBJN K, ROW
JRST ROWOUT

18

lWO-BIT TESTING AND DEPOSITING OF DATA

PROBLEM: Consider four tables with 500 registers a table. The entries of the first table
contain a 2-bit item, ITEM zeros, in bits 13 and 14. The entries of the second
table contain ITEM ones in bits 1-6; the third table contains ITEM twos in bits
1-9; and the fourth table contains ITEM threes in bits 1-10.

For' n = 1, 500

If ITEM a = a
n

If ITEM a = 1
n

If ITEM a = 2
n

If ITEM 0 = 3
n

Set:

Set:

Set:

Set:

ITEM 1n = 108

ITEM 2n = 1008

ITEM 3n = 3008

ITEM 1n = 208

ITEM 2n = 2008

ITEM 3n = 4008

ITEM 1n = 308

ITEM 2n = 3008

ITEM 3n = 5008

ITEM 1n = 408

ITEM 2n = 4008

ITEM 3n = 6008

Program: For 500 cases, moving the program to fast memory results in a time saving of
approximately 5000 microseconds.

HRLZIO, A
BLT 0, 17
JRST 2

A: a
XWD+D-500, a
LDB 0, 14
ROT 0, 3
ADDIO, 10
DPB 0, 15
ROT 0, 3

19

lWO-BIT TESTING AND DEPOSITING OF DATA {continued}

DPB 0, 16
ADDIO, 200
DPB 0, 17
AOBJN1,2
JRST EXIT
POINT 2, TABO (1), 14
POINT 6, TABI (1), 6
POINT 9, TAB2 (1), 9
POINT 10, TAB3 (1), 10

20

ANY RADIX PR INT

PROBLEM: To Print out a signed number in an arbitrary radix.

Assume: 1) TOUT is the first location of an I/O Routine which exits by POPJ P,O. The argu
ment to tout is in accumulator B.

2) The output radix is stored in the address part of RADIX. The output radix in
this example is R.

3) Place the number to be converted in accumulator A and call RADPTwith PUSHJ P,
RADPT. Th is routine suppresses lead ing zeros.

RADPT: JUMPGE B, RADIX
MOVEI B, "_"
PUSHJ P, TOUT
MOVNSA

RADIX: IDIVI A, R
HRLM A+1, (P)

SKIPE A
PUSHJ P, RADIX

RADPTl: HLRZB, (P)
ADDI B, 260
JRST TOUT

;IS NUMBER NEGATIVE?
;YES, GET ASCII MINUS SIGN
;OUTPUT THE MINUS SIGN
;TAKE ABSOLUTE VALUE OF ARGUMENT
;QUOTIENT GOES TO A, REMAINDER TO A+1
;SAVE REMAINDER IN LEFT SIDE OF LAST
; ITEM ON PUSH DOWN LIST
;IS QUOTIENT = a?
;NO, GO BACK FOR ANOTHER DIGIT
;GET THE DIGIT OFF THE PUSHDOWN LIST
;CONVERT THE DIGIT TO ASCII
;GO TO THE I/O ROUTINE. TOUT EXECUTES
;A POPJ P, BACK TO RADPTl OR (FINALLY)
;TO THE PLACE WHERE RADPT WAS CALLED.

21

15106 PRINTED IN U.S.A. 20-8164

