
1 • 1 

1 .2 

1 .3 

IDENTIFICATION 

Dig ita 1-7 - 31- F-S ym 

Signed Multiply Subroutine - Single Precision 

February 15, 1965 



Digital-7-31-F-Sym 
Page 2 

2. ABSTRACT 

This subroutine forms a 34-bit signed product from 17-bit signed multiplier 
and multipl icand. 

3. REQUIREMENTS 

3. 1 Storage 

This subroutine uses 47 (decimal) memory locations. 

4. USAGE 

4.2 Call ing Sequence 

The subroutine is called by the JMS instruction. When the JMS is executed 
to enter the subroutine the multiplier must be in the accumulator (AC). The location following 
the JMS must contain a LAC with the address of the multipl icand. 

The subroutine will return the instruction immediately following the latter 
location with the least significant part of the product in the AC. The most significant part of 
the product will be stored in location MP5. 

6. DESCRIPTION 

Reference to the flowchart (10. 1) will illustrate the following discussion. 

6. 1 • 1 On entry, the sign of the multiplier is tested, and if negative, the multiplier 
is made positive. 

6. 1 .2 The mul tipl icand is obtained and tested for O. If it is found equal to 0, a 
;ump to the exit is executed. Next the sign of the multiplicand is tested; and if it is found 
negative, the multiplicand is made positive. . 

6. 1 .3 At this point, the contents of the I ink are as follows: 

Sign of Multipl ier Sign of Multipl icand 
o 0 
o 1 
1 0 
1 1 

and represent, therefore, the sign of the product. 

Links 
o 
1 
1 
o 

6.1.4 The multiply loop proper (tagged MP4) is entered. During this loop, the 
least significant half of the product shifts into the most significant end of MP5 while the 
multiplier shifts out the least significant end of MP5 and is lost. Note that the sign of the 
product is retained in MP5. 

'7 



Digital-7-31-F-Sym 
Page 3 

6. 1.5 The sign of the product is tested. If positive, the subroutine exits. If 
negative, complementation of the product is performed before the exit. 

6.3 Scal ing 

Upon entry the binary point is assumed to be located between bit positions 
o and 1 in both multiplier and multiplicand. Since there are 17 magnitude bits in each of the 
two factors, the product will contain 34 magnitude bits. 

The product is double signed, i.e., bit positions 0 and 1 of the most sig
nificant word of the product both contain the sign. The remaining 16 bits of the most sig
nificant word of the product ~magnitude bits. 

The least significant word of the product is devoted entirely to magnitude. 

If the binary point of the factors are as stated above, the binary point of 
the product will be located between bit positions 1 and 2 in the most significant portion of 
the product. 

On entry, multiplier and multiplicand must be 2 1s complement binary. 
After return, the product is contained in two words in 2 1s complement form. 

For more information on binary scal ing for fixed-point computers, see 
Appl ication Note 501 • 

7. METHOD 

7.2 Algorithm 

The conventional algorithm is used. The least significant bit of the multipl ier 
is tested. If it is equal to 1, the multiplicand is added to the developing product and this 
quantity is shifted right. If the least significant bit of the multipLier is 0, no addition is made 
before the shift. The process is repeated until all the bits of the multipl ier in order from least 
significant to most significant have been processed. 

9. EXECUTION TIME 

9. 1 Minimum 

When the subroutine discovers that the multipl icand is 0, the mu Itipl ication 
loop is bypassed. In this case, execution time will be 14 microseconds. 

9.2 Maximum 

Maximum execution time occurs when the sign of the product is negative 
and the multipl ier consists (in binary) of all ones. The time is approximately 570 jJsec. 

PDF 

7 
LIBRARY 



10. 

10. 1 

CLEAR LI NK 

PROGRAM 

Flowchart 

COMPLEMENT MULTIPLIER 
SET LINK 

COMPLEMENT MULTIPLICAND 
COMPLEMENT LINK 

ROTATE RIGHT 

g~~)p~~~7~r 

ADD MULTI PLICAND 
C(MP5l +C(MP2l- C(ACl 

STORE LEAST HALF OF PRODUCT 
AND MULTIPLIER 

C(ACl- C(MPll 

COMPLEMENT BOTH HALVES 
OF PRODUCT 

Digital-7-31-F-Sym 
Page 4 

SIGN STATUS IS IN LINK. THE LAC (360000. 
RAL MAKES EITHER A NOP OR CMA WHICH 
IS SAVED AND EXECUTED ON EXIT FROM LOOP. 

SAVE MOST SIGNIFICANT HALF OF PRODUCT 

C (ACl -C(MP5l 



Digital-7-31-F-Sym 
Page 5 

10.2 Example 

The C (Y) are tested. If C (Y) = 0, C (MP1) = C (MP5) = O. If C (Y) is not 
0, then C(Y) - C(MP2), C(MP5) are cleared and multiplication is carried out as follows: 

If C (MP1 )ll contains a 1, C(MP2) are added to C (MP5). The contents of 
MP5 and the MPl are then snlfted right one bit. If C(MPl)17 = 0, the contents of MP5 and 
those of the MPl are shifted right one bit. 

For this example, assume that the registers MP1, MP5 and MP2 are five bits 
in length instead of 17. The following sequential steps will occur in a multiply operation. 
The multiplicand is 9 and the multiplier is 4. 

MP5 MP1 Y Comments 

00000 01001 00100 Initial contents of the register MP1, ready to be tested. 

00100 01001 C(MP2) + C(MP5) -C(MP5) since C(MPl)17 is a 1. 

00010 00100 C(MP5, MP1) rotated right one place. C(MPl)17 is 
tested. 

00001 00010 No addition, because C(MP1)lZ is O. C(MP5, MP2) 
rotated right one bit and AC 17 is tested. 

00000 10001 No addition C(MPl)]7 = 0, C(MP5, MPl) rotated right 
one bit. C(MPl)17 IS tested. 

00100 10001 C (MP2) + C (MP5) C(MP5) since C(MPl )17 is a 1 • 

00010 01000 C (MP5, MPl) rotated right. 

00001 00100 No addition C(MP1)17 = 0, C(MP5, MPl) rotated right 
one bit. Rotation counter indicates that the mul tipl ication 
is complete, since it has been reduced to o. 

10.3 Program Listing 

A I isting of the subroutine with MULl located at address 0200 is as follows: 

/CALLING SEQUENCE: 
/LAC MULTIPLIER 
/JMS MULT 
/LAC MULTIPLICAND 
/RETURN iLOW ORDER PRODUCT IN AC 

/HIGH ORDER PRODUCT IN LOCATION MP5 
0200 0000 MULT, 0 
0201 7100 DZM MP5 /ZERO OUT PRODUCT AREA 

PDP 

7 
LIBRARY 



Digital-7-31-F-Sym 
Page 6 

0202 7510 SNA /IS MULTIPLIER ZERO? 
0203 7061 JMP MPZ /IF ZERO, RETURN 
0204 3250 SPA! CLL /TAKE ABSOLUTE VALUE OF MULTIPLIER 
0205 3251 CMA : CML /SET LINK = 1 IF MULTIPLIER IS NEGATIVE 
0206 1600 DAC #MP1 
0207 7450 XCT I MULT /PICK UP MULTIPLICAND 
0207 7450 SNA /IS MULTIPLICAND ZERO 
0210 5234 JMP MPZ /IF ZERO, RETURN 
0211 7510 SPA /IF NON ZERO, TAKE ABSOLUTE VALUE 
0212 7061 CMA ! CML /IF NEGATIVE, COMPLEMENT LINK 
0213 3252 DAC #MP2 /L1NK HAS SIGN OF PRODUCT 
0214 1247 LAC (360000) /COMPlEMENT ACCUMULATOR IF PRO-

/DUCT IS NEGATIVE 
0215 3253 RAL 
0216 1250 DAC MPSIGN 
0217 7010 LAM -21 /INITIALIZE COUNT TO -17 
0220 3250 DAC #MP3 
0221 1251 MP4, LAC MPl 
0222 7430 RAR /ROTATE MULTIPLIER RIGHT ONE BIT 
0223 1252 DAC MPl flOW ORDER INTO LINK 
0224 7110 LAC MP5 /FETCH PRODUCT 
0225 3251 SZl : Cll 
0226 2253 TAD MP2 /ADD MULTIPLICAND IF LINK IS 1 
0227 5216 RAR /ROTATE PRODUCT RIGHT ONE BIT 
0230 1250 DAC MP5 
0231 7010 ISZ MP3 /IS COUNT + 1 = O? 
0232 7430 JMP MP4 /IF NOT, GO TO MP4 
0233 5240 MPSIGN, 0 /IF YES COMPLEMENT HIGH ORDER PORTION 
0234 3250 DAC MP5 /OF PRODUCT, IF IT IS NEGATIVE 
0235 1251 LAC MPl /RETRIEVE lOW ORDER BIT OF PRODUCT 
0236 2200 RAR /FROM THE LINK 
0237 5600 XCT MPSIGN /PLACE IT INTO THE LOW ORDER PORTION 

/OF WORD COMPLEMENT AS ABOVE 
0240 7141 MPZ, ISZ MUlT 
0241 3250 JMP I MULT /RETURN 

STORAGE MAP: (Locations available to the user) 
MP5 (C(MP5) = high order product} 


	01
	02
	03
	04
	05
	06

