
COMMERCIAL OPERATING SYSTEM

SYSTEM
REFERENCE
MANUAL

DEC-08-0COSA-E-D

c 0 s 3 0 0 S Y S T E M

R E F E R E N C E M A N U A L

SOFTWARE SUPPORT CATEGORY

The software described in
this document is supported
by Digital Equipment Corp
oration under Category I ,
as defined on page iii of
this document.

For additional copies, order No. DEC-08-0COSA-E-D from Software
Distribution Center, Digital Equipment Corporation, Maynard,
Massachusetts 01754

First Printing,
Second Printing,
Third Printing,

Fourth Printing,
Revised,

Your attention is invited to the last two pages of
this document. The "How to Obtain Software Informa
tion" page tells you how to keep up-to-date with
DEC's software. The "Reader's Comments" page, when
filled in and mailed, is beneficial to both you and
DEC; all comments received are acknowledged and are
considered when documenting subsequent manuals.

Feb.
Mar.
Apr.
Jun.
Mar.

Copyright @ 1972, 1973 by Digital Equipment Corporation

The material in this document is for informa
tion purposes and is subject to change without
notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

CDP
Computer Lab
Comtex
DEC
DECtape
Dibol

Digital
DNC
Flip Chip
IDAC
Indac
KAlO

LAB-8/e
OMNIBUS
OS/8
PDP
PHA
PS/8
Quickpoint

RAD-8
RSTS
RSX
RTM
SABR
Typeset 8
Unibus

1972
1972
1972
1972
1973

SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes avai I able four categories of software. These
categories refiect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product at any time.
The four categories are as fol iows:

CATEGORY
Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC wi 11 provide ins ta I lat ion (when applicable), advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category I to
Category II for a particular customer if the software product has been modified by the customer
or a third party.

CATEGORY II
Software Products that Receive Support for a Fee

This category includes prior versions of Category I programs and all other programs avail
able from DEC for which support is given. Programming assistance (additional support), as
available, wi II be provided on these DEC programs and non-DEC programs when used in con
junction with these DEC programs and equipment supplied by DEC.

CATEGORY Ill
Pre-Release Software

DEC may elect to release certain software products to customers in order to facilitate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive applications. Category Ill software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY IV
Non-Supported Software

This category includes all programs for which no support is given

iii

PREFACE

This manual provides a
writing and operating
300 environment.

reference source for users interested in
DIBOL language and system programs in the COS

Chapter l summarizes the use of the DIBOL language in program
preparation. Chapters 2, 3, 4 and 5 cover the main system programs
which handle the loading and editing of programs, software system
configuration and logical unit assignment, and movement 0£ files and
programs between devices. Chapters 6, 7 and 8 contain the utility
programs which are useful in building, sorting and maintaining data
files. Chapters 9-14 contain additional utility programs.

Appendices A through L provide additional reference material and
summaries.

A glossary is provided at the end of this manual for those users who
are unfamiliar with the terms used.

The system analysts, planners and user programmers who
manual are expected to have a basic knowledge of DIBOL.
background in DIBOL and the COS 300 system can be obtained
COS 300 Self-Teaching Manual (DEC-08-0CSTA-A-D).

v

read this
Additional

from the

PREFACE

INTRODUCTION

CHAPTER 1
1.1
1.2
1.3
1. 4
l. 4.1
1. 4. 2
1. 4. 3
1. 4. 4
1.4.4.l
1.4.4.2
1 A A ~
.L.e-Z•~•....,

1.4.4.4
1.4.4.5
1. 4. 5
1. 4. 6
1. 4. 7
1. 4. 8
1. 4. 9
1.4.9.l
1.4.9.2
1. 4 .10
1.4.11
1. 4 .12
1. 4 .13
1. 4 .14
1. 4 .15
1. 4 .16
1.4.17
1. 4 .18
1. 4 .19
1. 4. 20
1.4.21
l.4.22
1. 4. 23

CHAPTER 2

CONTENTS

PART I DIBOL LANGUAGE

DIBOL LANGUAGE
STATEMENT NUMBERS
STATEMENT LABELS
COMMENTS
STATEMENTS

ACCEPT
CALL
CHAIN
Data Manipulation Statements
Clearing Fields
Moving Alphanumeric Data
Moving DecL~al Data
Moving Records
Coftverting and Formatting Data
DISPLAY
END
FINI
FORMS
GO TO
Unconditional GO TO
Computed GO TO
IF
INCR
INIT
ON ERROR
PROC
READ
RECORD
RETURN
START
STOP
TRACE/NO TRACE
TRAP
WlUTE
XMIT

PART II SYSTEM AND UTILITY PROGRAMS

MONITOR
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2 .. 2. 6
2.2.7

OPERATING PROCEDURES
MONITOR COMMANDS

BATCH
DATE
DELETE
DIRECTORY
PLEASE
RUN
SAVE

Vii

Page

INTR0-1

1-1
1-2
1-2
1-3
1-4
1-5
1-7
1-9
1-11
1-14
1-15
1-15
1-16
1-16
1-19
1-23
1-25
1-27
1-29
1-29
1-29
1-31
1-33
1-35
1-39
1-41
1-43
1-45
1-59
1-61
1-63
1-65
1-67
1-.71
1-73

2-1
2-1
2-3
2-5
2-7
2-9
2-11
2-13
2-15
2-19

2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.4
2.5
2.6

CHAPTER 3
3.1
3.2
3.3
3.3.1
3.3.2
3.4

CHAPTER 4
4.1
4.2
·4. 3

CHAPTER 5
5.1
5 .1.1
5 .1. 2
5.1. 3
5 .1. 4
5.1. 5
5 .1. 6
5 .1. 7
5.2

CHAPTER 6
6.1
6 .1.1
6 .1. 2
6 .1. 3
6 .1. 4
6.2
6.2.1
6.2.2

6.3
6.4

CHAPTER 7
7.1
7 .1.1
7 .1. 2
7.2

EDITING COMMANDS
ERASE
FETCH
LIST
Line Number
Number Conunands
RESEQUENCE
WRITE

EDITING EXAMPLE
BATCH EDITING
ERROR MESSAGES

SYSGEN
OPERATING PROCEDURES
SYSTEM SOFTWARE CONFIGURATION
LOGICAL UNIT ASSIGNMENT

DECtape Users
Disk Users

ERROR MESSAGES

COMP
OPERATING PROCEDURES
CONDITIONAL COMPILATION PROCEDURE
ERROR MESSAGES

PIP
OPERATING PROCEDURES

Transfer Binary File
Copy Device
Transfer Data Files
Eliminate Spaces in Directory
Transfer Source Files
Transfer System Program
Return to Monitor

ERROR MESSAGES

BUILD
BUILD CONTROL PROGRAM

Field Descriptor Section
INPUT Section
OUTPUT Section
Storing the BUILD Control Program

OPERATING PROCEDURES
KBD - Data Input from Keyboard
SYS, CDR or RDR - Data Input from
System Device, Card, or Papertape

BUILD INPUT LINE
ERROR MESSAGES

SORT
SORT CONTROL PROGRAM

File Descriptor Section
INPUT/OUTPUT Section

SORT OPERATING PROCEDURES

viii

2-20
2-21
2-23
2-25
2-27
2-31
2-33
2-35
2-36
2-38
2-40

3-1
3-1
3-1
3-4
3-6
3-6
3-8

4-1
4-1
4-7
4-8

5-1
5-1
5-3
5-5
5-7
5-9
5-11
5-13
5-15
5-16

6-1
6-1
6-3
6-4
6-8
6-10
6-11
6-12

6-13
6-13

7-1
7-1
7-1
7-2
7-4

7.3 RUNNING SORT AS PART OF AN UPDATE PROCEDURE 7-6
7.4 MERGE OPERATING PROCEDURE 7-6
7.5 RULES FOR USING DEFAULT UNITS 7-8
7.6 ERROR MESSAGES 7-9

CHAPTER 8 UPDATE 8-1
8.1 UPDATE CONTROL PROGRAM 8-1
8.1. l File Descriptor Section 8-1
8.1. 2 UPDATE Statement 8-2
8.1. 3 INPUT Statement 8-2
8.1. 4 SORT Statement 8-3
8.1. 5 KEY Statement 8-3
8.1. 6 OUTPUT Statement 8-4
8.1. 7 END Statement 8-5
8.2 UPDATE COM..1\1ANDS 8-5
8.3 UPDATE EXAMPLE 8-6
8.4 OPERATING PROCEDURES 8-7
8.5 ERROR MESSAGES 8-8

CHAPTER 9 BOOT 9-1
9.1 OPERATING PROCEDURES 9-1

CHAPTER 10 PATCH 10-1
10.1 OPERATING PROCEDURES 10-1
10.2 ERROR MESSAGES 10-4

CHAPTER 11 DAFT 11-1
11.1 OPERATING PROCEDURES 11-1
11. 2 COMMANDS 11-1
11.3 DAFT ERROR MESSAGES 11-4
11. 4 DAFT OUTPUT 11-6

CHAPTER 12 COS-OS/8 CONVERTER 12-1
12.1 OPERATING PROCEDURES 12-1
12.2 ERROR MESSAGES 12-3

CHAPTER 13 FORMAT PROGRAMS 13-1
13.1 RK8MRK 13-3
13.1.1 Operating Procedt:~re 13'-3
13 .1. 2 Error Messages 13-3
13.2 RKEMRK 13-7
13.2.l Operating Procedure 13-7
13.2.2 Error Messages 13-7
13.3 TDMARK 13-9
13.3.l Operating Procedures 13-9
13.3.2 Error Messages 13-10
13.4 DTMARK 13-13
13.4.1 Operating Procedures 13-13
13.4.2 Error Messages 13-14

CHAPTER 14 CREF 14-1
14.l OPERATING PROCEDURES 14-1
14. 2 ERROR MESSAGES 14-8

ix

APPENDIX A

APPENDIX B
1.0
2.0
2.1
3.0
3.1
4.0
5.0

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F
1. 0
1.1
2.0

3.0
4.0
5.0
5.1
5.2
6.0
6.1

6 .1.1
6 .1. 2
6.2

6.2.1
6.2.2

APPENDIX G
1. 0
2.0
3.0
4.0
5.0

APPENDIX H
1. 0
2.0

APPENDIX I

COS CODES

LOADING COS
AUTOMATIC LOAD
TC08 DECTAPE AS THE SYSTEM DEVICE
SYSTEM RESTART ON DECTAPE
DISK AS THE SYSTEM DEVICE
SYSTEM RESTART ON DISK
TD8E BOOTSTRAP
PDP-12 USERS

SIZE OF CODE PRODUCED BY DIBOL COMPILER

DESIGNING A RECORD

BUILD CHECKDIGIT FORMULA

HARDWARE DESCRIPTIONS
VT05 TERMINAL
VT05 Start Up Procedures
HIGH-SPEED PAPER TAPE READER
AND PUNCH UNIT
DECTAPE TRANSPORT UNIT
CARD READER
LINE PRINTERS
LP08 Line Printer
LS8-E Line Printer
RK08 DISK
Mounting and Dismounting the
RK08 Disk Cartridge

Mounting
Dismounting

Mounting and Dismounting the
RK8E Disk Cartridge

Mounting
Dismounting

COS FILES
COS SOURCE FILES
COS DATA FILES
COS DIBOL COMPILER BINARY
COS SYSTEM PROGRAMS
SYSTEM AND DATA TAPE FORM.ATS

DIBOL DEBUGGING TECHNIQUE (DDT)
ENTERING DDT MODE
DDT COMMANDS

DIBOL STATEMENT SUMMARY

x

A-1

B-1
B-1
B-1
B-2
B-3
B-4
B-4
B-6

C-1

D-1

E-1

F-1
F-3
F-7

F-8
F-10
F-13
F-15
F-15
F-17
F-20

F-22
F-22
F-23

F-23
F-23
F-24

G-l
G-1
G-1
G-2
G-2
G-2

H-1
H-1
H-1

I-1

APPENDIX J

APPENDIX K
1.0
2.0

APPENDIX L
1. 0

GLOSSARY

l.l
1.2

1.3
1. 4
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.1
2.8
3.0
3.1
3 .1.1
3.1.2
3 .1. 3
4.0
5.0
5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4
6.0
6.1
6.2
6.3

1-1
1-2
1-3
2-1

11-1

ERROR MESSAGE SUMMARY

COMMAND SUMMARY
COMMANDS FOR MONITOR FUNCTIONS
COMMANDS FOR EDITING FUNCTIONS

ADVANCED PROGRAMMING TECHNIQUES
ACCEPT AND DISPLAY
Background
Interaction of ACCEPT and DISPLAY
Statements
Simple Example Using ACCEPT and DISPLAY
Generalized ACCEPT Subroutine
DIRECT ACCESS TECHNIQUES
Background
The Reason for Direct Access
How It Works In DIBOL
Unsorted File
Sorted File
Rough Table, No Index File
Rough Table Plus Index File
Summary
DIRECT ACCESS.NOTES
XMIT Statements Used With Direct Access

Truncating a File
Appending to a File
Rewriting a File

NUMERIC FIELD VERIFICATION
CHAIN STATEMENT NOTES
Interaction of CHAIN and INIT (n,SYS)
Conununication Between CHAINs

File Status
Clearing CHAINed Records
Transferring Variable Values

Multiple CHAIN Entry Points
Miscellaneous-CHAIN Facts
DIBOL PROGRAMMING OF SYS FILES
Operating Procedures
Data Section
PROCedure Section

TABLES

Source Program Limitations
Terminator Codes
Special Characters
Monitor Key Commands
DAFT Command Summary

xi

J-1

K-1
K-1
K-2

L-1
L-1
L-1

L-1
L-1
L-2
L-8
L-8
L-8
L-9
L-9
L-10
L-10
L-12
L-12
L-13
L-13
L-13
L-14
L-14
L-14
L-15
L-15
L-16
L-16
L-16
L-16
L-17
L-17
L-18
L-18
L-18
L-18

1-4
1-6
1-18
2-2

11-2

INTR0-1
INTR0-2
INTR0-3

1-1
3-1
4-1
4-2
6-1

11-1
14-1
14-2
14-3

FIGURES

Business Application System
Typical Disk Operation Direct Processing
Programmer's System
Sample Program
SYSGEN Flow Chart
Compiler Listing
Storage Map Listing
Sample BUILD Control Program
DAFT Sample
Square Root Subroutine
CREF of Square Root Subroutine
Output of Square Root Subroutine

xii

INTR0-3
INTR0-4
INTR0-5

1-2
3-2
4-3
4-5
6-2

11-7
14-2
14-5
14-6

INTRODUCTION

THE LANGUAGE

DIBOL (Digital Equipment Corporation Business Oriented Language) is a
COBOL-like language used to write business application programs. The
DIBOL language consists of data definition and procedures specified in
easy to learn statements. Figures INTR0-1 and INTR0-2 illustrate a
possible application work flow using DIBOL and system programs.

THE COS SYSTEM

Basic hardware requirements are:

PDP-8, 8/E, 8/I, 8/L or PDP-12 computer with BK of core
4 DECtapes, or LINCtapes
User terminal
Line printer

For a detailed description of the basic hardware and additional
supported equipment, refer to Appendix F of this manual.

Also provided as part of COS are the following system programs:

MONITOR/EDITOR

SYS GEN

COMP

PIP

BUILD

SORT

UPDATE

controls the calling and executing of all
other programs in the COS system; provides
the I/O control for the peripheral devices
and an editing capability for correcting user
programs. This program is referred to
throughout the manual as Monitor.

specifies the
assigns logical
startup.

system
device

configuration and
numbers for system

translates DIBOL language source statements
into a binary object program which can be run
on the COS 300 computer.

transfers data, source or
between two devices.

binary files

creates data files based on the contents of
data fields typed by the user.

sequences records according to key characters
or fields specified by the user. Records may
be sorted into ascending {0-9 or A-Z) or
descending (Z-A or 9-0) sequence.

performs maintenance on data files. UPDATE
makes the specified changes, creates a new
file and prints a report showing all changes,
deletions and insertions.

INTR0-1

Figure INTR0-3 suggests possible usage of these system programs in
DIBOL program development.

COS FILE STRUCTURE

There are four types of files used in the COS system: source, data,
compiler binary, and system program.

Data files are completely devoted to the storage of data to be
processed by DIBOL or system programs.

Source files contain control programs (for BUILD, SORT, etc.) or user
DIBOL programs.

Binary files are the output of the compiler and contain user DIBOL
programs translated into a code which can be executed by cos.

System program files include those programs (MONITOR, SYSGEN, PIP,
BUILD, COMP, SORT and UPDATE) supplied as part of the COS package.

DIBOL source programs, control programs and compiled binary programs
can also be saved on system devices. (Data files cannot be saved as
system files.)

INTR0-2

INVOICE
MAILING

1--....;....;..;..;.,....;........;....---1 LIST

------i--- BUILD
UPDATE,DIBOL .__ ____ ___, PROGRAM

This figure illustrates
the possible flow of
work from a source
document (such as an
invoice or mailing
list) through the
creation of a data file
to the eventual output
of a report or listing.

Figure INTR0-1. Business Application System

INTR0-3

TRANSACTION
ENTERED VIA

Figure INTR0-2.

OR
CARDS

PROCESS
INPUT

PROGRAM i------1 D~~~WR ~~~~~T

DIBOL

SAVE TRANS
ACTIONS FOR
RETENTION

CYCLE ON DISK

I
I

e
This figure illustrates
the input of data
(transaction file) from
terminal, card reader
of DECtape; the
processing against the
master file by a user
created DIBOL program
and the output
(depending on the DIBOL
program being run) of
reports and files.

SUPDATE FILE.

DIBOL

PROCESS MASTER
FILE TO PRODUCE

REPORTS

DIBOL

Typical Disk Operation Direct Processing

INTR0-4

DIBOL
program
creation (also
SYSGEN tables
and control
programs) and
editing

Transfers files,
Enlarges binary
scratch area

8-
Dump a:nd
Fix da-c.a
files

This figure illustra-c.es the COS
system programs of particular
interest to the programmer.

Figure INTR0-3. Programmer's System

INTR0-5

Compiles
source
programs
into object
(binary) program

Cross
reference
of DIBOL
program

MANUAL AND SYSTEM CONVENTIONS

The symbols and terms used throughout this manual are described below.

SYMBOLS USED

Lower-case
characters

Upper-case
characters

• • • (_Ellipsis}_

Underscored
characters

L-1

{}
[]

) (carriage
return key)

TERMS

Expressions

EXAMPLE

PROC n

NO TRACE

RU prog(, ••• ,progn)

COS MONITOR 2.1108

RUL-IPIP

START00

START[0~]

• R COMP, PROG)

EXPLANATION

Represent information that must
be supplied by the user, such as
values, names and other
parameters.

Words or characters that must be
used exactly as shown •

Indicates optional continuation
of arguments.

Indicates
system.

output from

Indicates a space or blank.

the

Braces indicate a choice of one
of the items enclosed.

Brackets indicate an optional
feature.

Line and command terminator •

Are variables, constants or arithmetic expressions (made up
of variables, constants and the operators#,+,-,*,/).

Filnam,pronam,label and keyword

Are used to identify names assigned to files, programs
statements, and input lines, these names may be of any
length but only the first 6 characters are recognized.

Pronam can contain any characters except space, slash,
comma, plus, period and minus.

INTR0-6

PART I

DIBOL LANGUAGE

CHAPTER 1

DIBOL LANGUAGE

This chapter provides a reference source on the DIBOL language. If
more basic information is desired, refer to the COS 300 Self-Teaching
Manual (DEC-08-0CSTA-A-D).

A DIBOL program consists of a series of statements arranged in two
sections, Data and PFDCedure.

The Data section contains the RECORD statements which specify the type
and size of the information to be used in the program and w;1ere it is
to be stored.

The PROCedure section consists of:

ACCEPT
CALL
CHAIN
DISPLAY
END
FINI
FORMS
GO TO
IF
INCR
INIT
ON ERROR
PROC
READ
RETURN
STOP
TRACE/NO TRACE
TRAP
WRITE
XMIT

and data manipulation statements. These statements are arranged in a
logical order for program execution. Refer to the sample program
shown in Figure 1-1. Use the editing conunands (refer to Chapter 2) to
enter newly created DIBOL programs into the COS system. Spaces and
tabs may be inserted in the program for clarity and are ignored by the
Compiler except when enclosed in single quotation marks (').

Statement length is limited to 120 characters and spaces. When the
!21st character is typed, an error message LINE TOO LONG is displayed
and that line is lost. CTRL/U deletes the entire line. If the
terminal line is filled before the 120 characters are entered, the
Editor executes a carriage return/line feed to the terminal and the
line can be continued.

1-1

START
RECORD INBUF

STOCKN, 04
DESC, A25
UCOST, DS
QORDER, 04

'
09

RECORD OUTBUF,X
04
A25
DS

'
04

ECOST, 09
RECORD LABEL, A6,P
PROC 2

INIT(l,IN,LABEL)
INIT(2,0UT,'OUTPUT')

LOOP, XMIT(l,INBUF,EOF)
IF(STOCKN.LT.lOOO)GO TO LOOP
ECOST=UCOST*QORDER
XMIT(2,0UTBUF)
GO TO LOOP

EOF, FINI (2)
FINI(l)
STOP

END

Figure 1-1. Sample Program

1.1 STATEMENT NUMBERS

Statement numbers are assigned manually by the user when typing in the
program or automatically by the Monitor when the program is entered
for editing (Refer to Chapter 2). These numbers control the order of
the statements in the file. The DIBOL language makes no use of these
numbers, but error messages and the DIBOL debugging refer to them.

1.2 STATEMENT LABELS

Labels are the symbolic names assigned to identify the location of a
statement in the procedure section of a program.

TEST, A=B

Gk

1-2

Labels consist of a sequence of letters or digits the first of which
must be a letter and only the first six characters are significant.
Labels are separated from the statement by a comma. Statements with
labels are the transfer point for other statements such as GO TO, IF
and CALL.

Examples:

GO TO BEGIN

t
(label)

BEGIN, A=B+4

~ ~
GO TO (PRT,SEC,TO) ,K

PRT, XMIT(lS,RPT,EOF)

(label 1
st READ (10, CUST 1 8_8)

(label

TOT, SUB=COST+TAX

c label 5
l. 3 COMMENTS

Comments and notes to explain the source program may be added
following a semicolon (;) on any statement line. A program line that
begins with a semicolon contains only comments.

Examples:

RECORD CUST ; THIS IS THE CUSTOMER RECORD
; THIS PROGRAM PRINTS THE ACCOUNTS
;PAST DUE REPORT

Table 1-1 summarizes DIBOL source program limitations.

1-3

TABLE 1-1. SOURCE PROGRAM LIMITATIONS

Maximum characters about 8,000 per file

maximum number of
source files per
program 7

Maximum number of
symbols in 8K
systems 365

in 12K and
larger: 511

Line numbers
available 0-4095

Maximum characters
per line 120

1.4 STATEMENTS

There are six types of statements in DIBOL:

1. Compiler statements (START, END and PROC) which label the
beginning, end and procedure section of the program. These
statements are non-executable and START and END are optional.

2. Data specification statements (RECORD) which describe the type and
size of data to be stored and the location in which it is to be
stored.

3. Data manipulation statements and !NCR, which control the movement
of data within memory.

4. Control statements, (GO TO, IF, CALL, ON ERROR, RETURN, TRAP,
CHAIN, STOP) which govern the sequence of execution of statements
within a program. Without these statements, the program would be
executed in the order written.

S. Input/Output statements (ACCEPT, DISPLAY, !NIT, XMIT, READ, WRITE
and FINI) which control data movement within memory or between
memory and peripheral devices, and to open and close the files
used by the program. Line spacing to the line printer is
controlled by the FORMS statement.

6. Debugging statements, (TRACE, NO TRACE) which permit tracing of
program execution.

1-4

1. 4. 1 ACCEPT

The ACCEPT statement takes input from the keyboard, stores it in the
specified alphanumeric field and causes the decimal equivalent of the
last key typed to be stored in the specified decimal field. ACCEPT is
primarily used with the DISPLAY statement (Section 1.4.5) and has the
form:

where

ACCEPT (dfield, afield)

df ield

afield

is a decimal
equivalent of
stored.

variable
the last

where the decimal
key typed is to be

is an alpha variable indicating where the
keyboard input is to be stored.

The code stored in the decimal field depends on the last key typed
(special terminator character). The keys and equivalent codes for the
allowable terminator characters are shown in Table 1-2. For example,
when all characters are entered, filling up afield, the code 00 is
stored in the specified decimal field, which should be defined as two
or more characters.

This code can be tested later in the DIBOL program.

When an ACCEPT statement is encountered during program execution, the
system waits for keyboard input. Execution continues when the
characters typed fill the afield or when a special character such as
carriage return, line feed, altmode, rubout, CTRL/U, etc. is typed.
Any non-COS character terminates the ACCEPT and sets df ield to the
decimal equivalent of the last character typed. When the ACCEPT is
terminated before afield is full, the remaining character positions in
the afield are unchanged.

Examples:

Legal

ACCEPT (A, B)
ACCEPT(A(3),B{4,5))

See Appendix L for more examples.

1-5

Illegal

ACCEPT (5 , CHAR)
ACCEPT(TCHAR,CHAR+3)

Decimal
Equivalent

00
01
02
04
05
06
07
08
09
10
11
12
13

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
61
62
63
94
95

TABLE 1-2. TERMINATOR CODES

Teletype Console
Character

NULL OR END OF FIELD
CTRL/A
CTRL/B
CTRL/D
CTRL/E
CTRL/F
CTRL/G
CTRL/H
CTRL/I OR TAB
CTRL/J OR LINE FEED
CTRL/K
CTRL/L
CTRL/M OR CARRIAGE RETURN

CTRL/P
CTRL/Q
CTRL/R
CTRL/S
CTRL/T
CTRL/U
CTRL/V
CTRL/W
CTRL/X
CTRL/Y
CTRL/Z
ALT MODE
CTRL/\
CTRL/]
CTRL/t
CTRL/+
RUBOUT
ALT MODE
ALT MODE
t
ESCAPE
PREFIX

NOTE

VT05 Console
Character

~ or CTRL/H

tor CTRL/K

CTRL/M, CARRIAGE
RETURN, OR CTRL/=

CTRL/X or ~

1'
ALTMODE or CTRL/[

HOME or CTRL/]
CTRL//\

not used
not used
/\
not used
not used

Unless otherwise indicated, VT05 characters and
codes same as for Teletype.

1-6

ICl\LL

1. 4.2 CALL

The CALL statement causes control to branch to a subroutine and has
the form:

CALL label

where label is the label of the first state~ent
PROCedure section of the program~

a subroutine in the

The CALL statement saves the return location in a (pushdown) list.
Additional subroutine CALL and RETURN statements may be nested within
a subroutine to a depth of SO.

Examples:

Legal Illegal

CALL SET CALL
CALL (SUBR+3)

SET, PROFIT=PRICE-COST

RETURN

1-7

fcHAIN'
I I

1.4. 3 CHAIN

The CHAIN statement allows a DIBOL program which will not fit in
available memory to be split up into two or more programs.

The form of the CHAIN statement is:

CHAIN decimal expression

where decimal expression refers to the position of the CHAIN program
in the Monitor RUN command and is in the range 0-7.

When the CHAIN .statement is encountered in a DIBOL program, execution
of the current program is halted and the CHAIN program referred to by
the decimal expression in the CHAIN statement is loaded. Execution of
the CHAINed program begins with the statement immediately following
the PROC statement. All CHAIN programs must be properly declared in a
.RUN command. The program initially run is chain O, the next program
chain 1, etc. For exanlple, a CHAIN 2 statement refers to program TRY2
in the .RUN command •

• RUN START+HELPl+TRY2+STOP3

Refer to section 2.2.6 for a description of the RUN command,
1.4.16 for the RECORD ,c statement and to Appendix L
information about the CHAIN statement.

section
for more

I data manipulation statements f

1.4.4 Data Manipulation Statements

Data manipulation statements clear data fields, move data between
fields, calculate decimal expressions, convert data from decimal to
alphanumeric and vice versa and format data. The form of this
statement is

destination field = source field

where source field is a field name, variable, constant or expression,
and destination field is the field where the data is to be stored.
The contents of the source field are moved to the destination field.
The destination field must have been defined in the data definition
section as either an alphanumeric or decimal field. If the
destination or source field is decimal, the data from the source field
is right-justified; if both fields are alphanumeric, left-justified.
The source data is always converted to the type defined for the
destination field. Record names can be used in data manipulation
statements.

Arithmetic Expressions:

Arithmetic expressions are allowed on the right side of the equals
sign. The expression can contain decimal elements, subscripted data
elements, constants, variables and arithmetic operators. There are
five binary arithmetic operators:

(rounding)
I (division)
* (multiplication)
+ (addition)
- (subtraction)

Order of priority:
1. rounding
2. multiplication and division
3. addition and subtraction

These operators require decimal operands.

Operators with the same priority are executed left to right.

The result of a division operation is truncated toward zero. For
example, 5/3 is 1 and -14/5 is -2.

An error occurs when a divide by zero is attempted or when the result
of an addition, subtraction or multiplication is too large or too
small.

There are three unary operators (-,+,#). The (+) has no effect; the
unary - negates the decimal value to which it is specified. More than
one unary minus can be specified for a number, e.g., A= - -3 is
equivalent to A= +3 and A= --+-4 is equivalent to A= -(-(+(-4))) or
A = -4.

The number sign (#) operator is also used to convert an alphanumeric
character to its equivalent internal code and make that decimal number
(0-63) available to the program.

1-11

The # operator takes that value from the alphanumeric or decimal field
on the right side of the expression, checks the first character
(left-most) , determines the equivalent internal code and returns the
code as a decimal number. The result is a decimal value. In this
application, the number sign (#) appears before the character.

Examples:

A = #B

A 3 + #B

A = 10

Fl = lOO*A/2+3-1

A is a decimal field and B is an
alphanumeric field. If B contains the
characters XYZ, X is converted to its
internal code, 71, and the decimal
equivalent, 57, is stored in A.

A is a decimal field and B is an
alphanumeric field. After conversion,
the decimal equivalent of the first
character of B, 57, is added to 3 and
stored in A.

The order of priority can be altered by the use of parentheses, since
expressions in parentheses are executed first. The above expression
equals 502.

Fl=lOO*(A/2+3-1)

The result of this example is 700.

Rounding:

Illegal

A+(B*C
C*3)-F
INTRST*((4*AMT+2)-PAYMNT/2
LENGTH+WIDTH+
6/3-
0054-
34+'ABCDE 1

Variables may be truncated and rounded. The resulting variable is
rounded upward if the digit which followed the remaining variable
before truncation is 5 or more. The variable is rounded in terms of
magnitude; sign is unchanged.

The format for rounding is:

A#B

where A is truncated by B places and rounded in magnitude. B cannot
be greater than 7 and should be a positive integer. If B is negative,
it is treated as positive. When used for rounding, the number sign
(#) appears after a character. For example:

1-12

MONEY, D6

TEMP=MONEYf 2

If MONEY equals 123456, TEMP equals 1235.

If MONEY equals 123446, TEMP equals 1234.

If MONEY equals -1473, TEMP equals -15.

Typically, this feature would be used for rounding to the dollar.

Variables:

Variables may take on one of the following three formats:

a. narne
b. name {subscript)
c. name (position 1, position 2)

a. name - consists of a sequence of letters and digits beginning with
a letter, only the first 6 characters are significant. Used in
record name, field name, etc.

b. name{subscript) ~name should be a subscripted array and the value
of the subscript must be between 1 and the dimension specified in
the array. The subscript must be decimal and can be an
expression. If either name is not an array or the value of the
subscript exceeds the dimension other locations in core outside
the limits of name are referenced. No error message is generated
unless the user tries to reference data so far away from his data
area that he is referencing his program or the system.

c. name (position!, position2) -position! must be less than or equal
to position2; Position2 should be less than or equal to the
maximum size of the array associated with name. Positions 1 and 2
must be both positive and decimal. This form of subscripting
references those characters from position! to position2 inclusive.
If the variable name is .sub.scripted, yo.u may c.onsider the
successive array elements strung out left to right. For example,
in referencing A(3,9) in the array A declared as 4D4, the 7 digits
are referenced as follows: the last 2 digits of A(l), the entire
A(2), and the first digit of A(3).

Decimal Literals:

These consist of a sequence of from 1 to 15 decimal digits.

Alpha literals:

These consist of a sequence of any legal COS characters (except single
quotes) enclosed in single quotes.

1-13

Example:

'ABCD'

RECORD Literals:

A RECORD literal is a constant that can be used anywhere in the
PROCedure section of a DIBOL program where a record is required. It
is similar to an alpha literal except it begins with a double quote
(") and ends with a single quote ('). For example:

REC="THERE I

!NIT (8, TTY)
XMIT (8, "HELLO I)
XMIT (8 , REC)

1.4.4.1 Clearing Fields

Data manipulation statements clear fields when used in the form:

field name =

The destination can be a single field or an array. If alphanumeric,
it is cleared to all spaces; if decimal to all zeros. Fields, parts
of fields or fields in an array, can also be cleared by the use of
subscripts (expressions in parentheses). Any part of an array can be
accessed in a program statement by listing the position of the field
of character(s) in paren~heses. Specifying an array name without any
subscripts, clears the first array element only.

Examples:

Field Name

Fl(S,7)

Fl(S)

Fl (A)

Fl(l,l)

=

=

=

=

Meaning

clears character positions 5, 6, and 7 in
field Fl

clears the fifth element in an array

clears the Ath element in array Fl

clears the first character.

To clear a RECORD area to all spaces use the form:

RECNAM=

Record names can be subscripted to allow reference to RECORD areas as
though they were in an array. All records to be so referenced must
follow one another and be of the same length. For example:

1-.·14

RECORD Z
,A3

RECORD Z2
,A3

Z(2)=

Clears the next record defined after record Z in the data section of
the program.

1. 4. 4. 2 Moving Alphanumeric Data

To move the contents of one alphanumeric field to another alphanumeric
field, use the following form:

Alpha destination = Alpha source

If the source is shorter than the destination, the data is
left~justified with the right=most characters of the destination field
undisturbed. If the source is longer than the destination, the
right-most characters of the source field are not moved into the
destination field. The source field retains the original data.

For example:

RECORD
A,A5, I ABCDE I

B,A3,'FGH'
PROC

A=B

A now contains

RECORD A

FGHDE

NAME ,A4 I I FRED I
NAME1,A7,'JOHNSON'

PROC
NAME=NAMEl

The name in RECORD A is now JOHNJOHNSON.

1.4.4.3 Moving Decimal Data

Use a statement of the following form to move the contents of one
decimal field to another decimal field.

decimal destination = decimal source

If the value in the source field is shorter than the
destination field, zeros are inserted on the left.
most significant digits are not moved.

1-15

length of the
If longer, the

1.4.4.4 Moving Records

An assignment statement may be of the form

RECl=REC2

where RECl and REC2 are record names or subscripted record names or
REC2 may be a record literal. Its effect is to move the contents of
REC2 into the space reserved by RECl. If REC2 is smaller than RECl,
the right-most characters of RECl are undisturbed. If REC2 is larger,
the right-most characters of REC2 are not moved. Extreme caution must
be used if the destination record is subscripted.

1.4.4.5 Converting and Formatting Data

Decimal values can be converted to alphanumeric and vice versa for the
purposes of I/O and calculations. Any data field may be reformatted
to contain spaces and punctuation marks which are not stored with the
records on DECtape or disk and cannot be present during calculations.

Alphanumeric to Decimal Conversion - The form used for this conversion
is:

Decimal variable = Alpha expression

Alphanumeric values to be converted to decimal must be 16 or less
characters in length. The source is an alphanumeric expression which
contains an optionally signed representation of a number. The
destination is a simple or subscripted decimal variable.

Example:

DEC= ALPHA

The numeric alphanumeric field (ALPHA) is converted to decimal and
stored in the decimal field (DEC). If the decimal field is larger,
the data is right-justified and zero-filled. If the decimal field is
smaller, the excess characters to the left are not moved. If the
alpha field contains characters other than digits, spaces and signs (+
or-), the message BAD DIGIT results at run time. The statement should
be preceded by an ON ERROR statement if · the contents of ALPHA may
contain BAD DIGIT's (refer to the ON ERROR statement for more
information). Spaces and signs are not counted as characters that are
moved. Spaces in the alpha field are ignored. Signs may be irnbedded
anywhere in the alpha field. Two minus signs are equivalent to a
plus; three minus signs are equivalent to a minus; etc.

Decimal to Alphanumeric Conversion - The form of this conversion is

Alpha variable = decimal expression

The source is a decimal expression and the destination is a simple
alphanumeric variable. Example:

ALPHA = DEC

1-16

The contents of the decimal field (DEC) are placed in an alphanumeric
field (ALPHA). If the alphanumeric field is larger, the data is
right-justified and space-filled on the left. If the alphanurt$ric
field is smaller, the excess characters on the left are not moved.
Leading zeroes in the decimal field are converted to spaces. However,
if the decimal field equals zero, the alpha field is set to spaces
except for the right-most character, which is a zero.

Data Formatting - Decimal fields can be reformatted and stored in
alphanumeric fields using the form:

Alpha variable = decimal expression, format

The source is a decimal
alphanumeric variable.
inserted with numbers.

expression and the destination a simple
Format specifies special characters to be

Example:

A= D, '-XXX,XXX.ZZ'

The eight-digit decimal number at D is converted to alphanumeric code,
reformatted with specified punctuation and stored in alphanumeric
field A. The format string must be an alpha expression.

The formatted value is placed in the destination field,
right-justified and padded with spaces if necessary. If the formatted
value is larger than the destination field, the left-mo~t characters
are not moved.

Most printing characters on the line printer or terminal can be used
in a format string but the following characters must be used with
care: X,Z,*,-,.,', and comma. Table 1-3 shows the special characters
to be used in format strings.

Examples:

TOTL=TEMP,'XXX,XXX.XX-'

If TEMP contains 12345678, TOTL will contain 123,456.78

AMT=PAY,'*XXX,XXX.XX'
CDATE=DATE,'XX/XX/XX'
GTOT=TOTl+TOT2,'-XXX,XXX.ZZ'
W'AGES=RATE'9t'HOURS,~XXXX.XX'
RATIO=(TOT1/TOT2)#2,'XXX.XX'

TOTl is divided by TOT2; the result is rounded two places; that result
is formatted and stored in RATIO.

Al=NUM, I xxxo I

If NUM contains 987, Al will contain 9870.

A2=DATE,'.XX/XX/XX 1

A=Q, 'Q=XX'

1-17

Also:

TOTFMT, All, •-xxx,xxx.zz•
GTOT=TOTl+TOT2, TOTFMT

TOTFMT is specified in data section and is used to specify format in
the PROC section.

When using a comma, period, slash, minus sign or any other notation,
each must be counted as a character position. In the first example
above, for instance, TOTL must be defined in a RECORD statement as an
eleven-character alphanumeric field.

In the example A=B,C! B contains a decimal value being converted to
alpha and stored in A (an alpha field). The C represents an alpha
field which contains the format strings to be used in the command.

TABLE 1-3. SPECIAL CHARACTERS

Character Explanation

X Used in a format to arrange a decimal field for
printout. Each X represents a digit and leading zeros
are automatically suppressed.

z

*

Special character used to suppress a digit
formatting output.

when

Used in a format string to replace leading zeros and
eliminate trailing spaces on printout. If the * is not
the first character in the string. digits may also be
replaced.

Inserts an arithmetic sign in a number to be printed.
The sign may be placed before or after the number. If
the number is positive, a space is inserted where the

is placed. If the hyphen is placed in a position
following the first significant digit, but previous to
the last position of a format string, it is printed
lik-e any other inserti-on· character.

Inserts a decimal point in a format string and
zeros to the right of the decimal point
significant.

forces
to be

Used to insert a comma in a format string if there are
significant digits to the left.

All other characters
characters.

1-18

are treated as insertion

I DISPLAY

1.4.5 DISPLAY

The DISPLAY statement is used primarily with the VTOS terminal to
display a message on the scope and to move the scope cursor to the
specified line and character position. DISPLAY is used in conjunction
with ACCEPT to display questions on the scope and store the replies.

The form of the DISPLAY statement is:

where

{

'literal;')
DISPLAY (y ,x, afield))

df ield

y is a decimal expression representing the scope
line number (1-20). If the line number specified
is not within 1-20, the results are unpredictable
when used wi t..11

NOTE

If y is zero, no positioning is done and
x is ignored. The statement with Y
equal to 0 is used to output a message
without a carriage return/line feed i.e.
DISPLAY{O,O,'NAME').

x is a decimal expression representing the character
position (1-72). If the character is not within
1-72 the results are unpredictable.

'literal' is an alphanumeric or decimal character string.

afield

An alphanumeric string must be enclosed in single
quotes (') and is displayed at the character
position specified. There is no carriage
return/line feed after the message and the cursor
remains in the character position at the end of
the message.

A decimal literal must be one of the following
codes:

O=position cursor.
!=clear to end of scope.
2=clear to end of line.

25=emit a bell or beep sound.

These are the only codes recognized by COS and use
of any other codes causes unpredictable results.

is a field defined as alphanumeric which contains
a message to be displayed.

1-19

df ield is a field defined as decimal which contains a
code that causes a particular operation.

O=position cursor.
l=clear to end of scope.
2=clear to end of line.

25=emit a bell or beep sound.

These are the only codes recognized by COS and use
of any·other codes causes unpredictable results.

Examples:

DISPLAY{0,0,25)

DISPLAY(l,1,1)

DISPLAY(l0,1,1)

DISPLAY(2,20,DAY)

DISPLAY(l,10,0)

DISPLAY(ll,1,2)

DISPLAY(ll,37,2)

DISPLAY(ll,12,25)

DISPLAY(Y,X,BEEP)

;ring terminal bell.

;clear entire scope.

;clear from character position 1
;line 10 to end of scope.

;display the contents of
;alpha field DAY on line
;2 starting at character
;position 20.

;position cursor at first
;line, 10th character position.

;clear line 11 starting at
;character position 1.

;clear second half of line
; 11.

;position cursor at line 11,
;character position 12 and
;emit beep.

;position cursor at coordinates
;defined in X and Y and
;execute code defined in
;BEEt>. If the programs
;data division contains

RECORD
Y,02,20
X,D2,36

BEEP,D2,25
;the cursor is set at line 20,
;character positon 36 and an
;audible beep is sounded.

1-20

DISPLAY(20,36,FIRST)

DISPLAY(l,l,'HELLO')

DISPLAY(l0,10,BEEP)

;if the data division contains
RECORD

FIRST, A4 , 'NAP'..E 1

;NAME is displayed at line
; 20 character
;position 36. The cursor is
;left in the 40th position of
;line 20.

;display HELLO in the
;upper left hand corner
;of the screen ..

;If the data division contains
RECORD DISP
POST,D2,00
CSCOPE,D2,0l
CLINE,D2,02
BEEP,D2,25

;the cursor is placed at
;character position 10 on line
;10 and an audible beep
;is emitted.

See Appendix L for more examples.

1-21

1.4.6 END

This is an optional statement and is used to indicate the termination
of a program. The form of the statement is

END [/x]

where

/x is an optional switch to the compiler

/N no compiler listing of source program storage
map

/L List source program storage map on
printer

line

/T List source program storage map on terminal.

If no options are specified,
produced as usual. The END
of it can be overridden with
the compiler RUN command.
printed, the symbol count
locations are not printed.

1-23

a compiler listing is
option switch or lack
an option switch in
If no symbol table is
and number of free

I FINI

1. 4. 7 FINI

The FINI statement writes an end-of-file mark, closes the file,
rewinds the tape (if DECtape) and writes the file length in the file
label (write only). (In multi-reel files the file length is written
only on the last reel.) The form is:

FINI (n)

where n is a decimal expression whose value is 1-15 specifying a
channel number which was previously specified in an INIT statement.
FINI disassociates the channel number from the device specified in the
INIT statement. (See Section 1.4.12.) Assignments of channel numbers
and devices can then be changed with another INIT statement. FINI is
necessary for mass storage output files only but it is considered good
programming practice to FINI each data file INITed. If specified for
an input file (other than from SYS), reading of that file stops. The
file may again be read {from the beginning), if another INIT statement
is executed~

Examples:

Legal
FINI(!)
FINI(OOS)
FINI (A+B)

Illegal
FINI
FINI(
FINI (4
FINI,3
FINI(O)
FINI(l6)

If an output file is not INITed, the end-of-file mark is not written
and records may be lost. If an update file is not FINied, the last
few records written may be lost.

1-25

I FORMS I
1.4.8 FORMS

The FORMS statement is used to format line printer (only) output and
has the form:

FORMS (channel, skip-code)

where
channel

skip-code

Example:

!NIT { l ,L)

FORMS (1,3)

is a decimal expression (value 1-15) associated
with the line printer in a previous !NIT statement
(refer to Section 1.4.12). If the channel
specified is not associated with a line printer,
the statement is ignored.

is a decimal expression with a value of 0 to 4095
which causes the line printer to go to the top of
the page or skip the number of lines specified.
The codes are:

n
v

1-4095
-1

-2

-85

go to top of next page
skip this number of lines
skip to channel 2 (LSBE printer only)
and move paper forward n lines as
specified on vertical forms control
tape.
print enlarged characters (LSBE printer
only) for next XMIT statement. Allows
only half as many characters per line as
normal size printing.
sound alarm bell (LSBE printer only).

Other negative numbers cause unpredictable
results. The skip-code is compiled modulo 4096.
For example, FORMS(6,4096) causes a top of form to
be executed.

1 is the channel number specified in a previous !NIT statement and 3
is the nwilber of lines to be left blank.

1-27

INIT(S,L)

.
FORMS(S,O)

5 is the channel number and 0 specifies top of line printer page.

INIT(S,L}

FORMS (5 ,-1)

5 is the channel number and -1 causes the page to move up the number
of lines specified on the vertical forms control tape of the LS8E
printer.

1-28

I GO TO

1.4.9 GO TO

The GO TO statement has two forms: (1) unconditional and (2)
computed. It transfers control to the statement whose label is
specified in the GO TO statement.

1.4.9.l Unconditional GO TO

The form of the unconditional GO TO is:

GO TO label

where
label is a statement label assigned to the statement in

the PROCedure section where control is to be
transferred.

Example:

Legal Illegal

GO TO
GO TO,TARGET

GO TO SET

SET, TOT=TOT+SUB

1.4.9.2 Computed GO TO

The computed GO TO has the form:

where

GO TO (labell,label2, ••• ,labeln) ,variable

labell,label2, ••• ,labeln are statement labels. (There can be any
number of labels.)

variable is a decimal variable or expression
representing a value.

Control is transferred to the statement labeled label!,
label2, ••• labeln if variable has the value 1,2, ••• n respectively. If
variable is negative, zero or greater than the number of labels,
control passes to the next statement in sequence.

1-29

Example:

GO TO (LOOP,LIST,TOT) ,KEY

KEY acts as a switch transferring control to LOOP if KEY=l, LIST if
KEY=2, or TOT if KEY=3.

Other examples:

Legal

GO TO{LAB1,LAB2,LAB3) ,VAR
GO TO{TRY,LOOP2,TRY,TRY,TOP) ,Q+l
GO TO(TEST) ,IN
GO TO(Ll,L2,L3,Ll,L2,L3,0VER,L2,L3,LA83,W,Ll) ,NOW
GO TO(EI,EI,C) ,(TEST+2)*1-FLAG

Illegal

GO TO(
GO TO(LAB1,LAB2
GO TO{Ll,L2)
GO TO{Dl,D3),
GO TO{Dl,D4)KEY
GO TO{) ,COUNT
GO TO(SO,LO,) ,PEAR
GO TO(Ll,,L3) ,KIT

1-30

1. 4.10 IF

An IF statement conditionally executes certain statements on the basis
of the result of a comparison of expressions. The form of the
statement is

IF {expressionl.rel.expression2)stmnt

where
expressionl,expression2 are a combination of constants,

.rel.

stmnt

variables or arithmetic expressions of
the same type.

is one of the following relational
operators

.EQ. Equal

.NE. Not equal

.LT. Less than

.LE. Less than or equal

.GT. Greater than

.GE. Greater than or equal

is a control statement which is executed
if the relation is TRUE. "stmnt" must
be one of the following

GO TO label STOP
CALL label TRACE
RETURN NO TRACE
ON ERROR label

The two variables must be of the same type: both decimal or both
alphanumeric. Numeric data may be in decimal or alphanumeric form.
In a decimal comparison the shorter field is internally filled to the
length of the longer field, then the comparison is made between the
longer field and the zero-filled field. In an alphanumeric comparison
the compare is made on the number of characters in the shorter field,
i.e. in comparing a 3 character field and a 5 character field, only
the 3 left-most characters of each field are used.

If the result of comparison is false, the next statement in sequence
is executed.

Examples:
Legal

IF (A .EQ. B) GO TO LABEL3
IF (SLOT.NE. 2) CALL BAD
IF{SALES.LT.PROFIT+TAX-RENT) NO TRACE
IF(A+B+C .GT. D+E*F) RETURN
IF(NUMBER.LT.D+3) CALL FIXUP

1-31

Illegal

IF (C.LE.76)
IF (D2.EQ.'ABC') THEN GO TO RAL
IF {3.NE.5) D='FALSE'
IF {Q.LE.' l, GO TO TRADE
IF {DIST.GT.RATE*TIME) GO TO (Ll,L2) ,KEY

IF
IF)E.GT.8) GO TO LAND
IF (ABC ,GT. DEF) GO TO CHI
IF (TIME.GT:lO) GO TO BED
IF {P-1 .LT. O, GO TO UPDATE
IF (D.LT.l .AND. D.GT.-3) GO TO NOW

IF (COST .GR. EXPNSE) GO TO WR
IF (TAX .LTE. 100) GO TO BUY

1~32

I INCR I
I I

1.4 .11 INCR

The INCR (increment) statement adds 1 to the specified variable and
has the form:

INCR variable

where

variable is a decimal variable to be incremented by 1.

INCR can be used with positive numbers only and cannot be the object
of an IF statement. !NCR is typically used to add one to a counter
and is faster than a data manipulation statement. For example:

or
A2=A2+1

INCR A2

Legal

INCR A2 (3)
INCR B(S)
INCR C (H,6)

Illegal

IF (A.LT.16)INCR B
!NCR A+B
INCR 3

1-33

!NIT

1.4.12 !NIT

The !NIT statement associates a channel number with a mass storage or
character oriented device for input or output and initializes the
device. The form of the !NIT statement is:

!NIT {channel, dev[,data file name][, unit])

where
channel

dev

Desig
nation

IN

OUT

UPDATE

KBD

TTY

is a decimal expression which evaluates to a
number 1-15 specifying a channel to be associated
with a logical or physical device. (Refer to
section 3.3 for logical unit assignments.) This
number is then used in other statements such as
XMIT to refer to the same device.

If the number specified exceeds 15, it is taken
modulo 16.

If not specified, the following channels are
initially associated with devices at program
startup. (The user may change these assignments
with an !NIT statement.)

5 = Paper Tape Reader
6 = Line Printer
7 Keyboard
8 = Terminal scope or printer

A channel that is associated with a logical unit
must be FINied prior to another !NIT.

is the designation for the COS device to be
associated with the channel number. These
designations can be abbreviated, since only the
first character is checked. The designations are:

Abbrevi
ation

I

0

u

K

T

Meaning

Mass storage device to be used
input.

Mass storage device to be used
output

Mass storage device to be used for
input and output {direct access)
READ and WRITE)

Input from terminal keyboard

for

for

both
{See

Output to terminal printer or display

1-35

Desig- Abbrevi-
nation a ti on

LPT L

CDR c

PTP p

RDR R

SYS s

Meaning

Line printer

Card reader

Paper tape punch

Paper tape reader

Input from a file located on the system
device. This file name must have been
specified in a RUN statement. (Refer to
Appendix L, Section 6.0.)

data file name is an alpha constant or variable that identifies
the data file on the logical COS unit. A data
file name is necessary with the I, o, and U
devices and illegal with other devices. If the
name is more than six characters only the first
six are used. If less than six, the name is
left-justified and padded with spaces on the
right. It can also be the name of a field defined
in the data section with the P option which allows
flexibility in the files specified to the program.

unit is an optional decimal expression used with I,O
and U device codes which specifies the logical
unit (1-15) where the data file name is stored or
to be stored. {If the number specified exceeds
15, it is taken modulo 16) On input this unit is
checked for the data file name if it is not
present, a MOUNT message is displayed; on output
this unit is checked for the data file name or a
temporary (scratch file) name, if another file is
present, a REPLACE? message is displayed.

The Monitor uses the name specified in the !NIT statement in the run
time MOUNT message (refer to Chapter 2). The reply to the MOUNT
message is the logical COS unit where the file is stored (INPUT) or to
be stored (OUTPUT). The logical unit is then checked by the MONITOR
to be sure the named file is indeed stored there. In the case where a
logical unit is specified in the !NIT statement, the Monitor checks
the logical unit for the named file and if found bypasses the MOUNT
message. If not found on that logical unit the Monitor displays the
usual MOUNT message.

Examples:

!NIT (15,I,'RENEW')

initializes channel number 15 for input, (I). "RENEW " is the name of
the input file.

1-36

RECORD D
TAPEID,A6,P

PROC

INIT (3,IN,TAPEID}

The previous code causes the message ENTER TAPEID to be displayed.
The user responds with the name of the file; a MOUNT message is then
displayed and must be answered with the proper logical unit number.
This allows different file names to be specified each tiMe the program
is run.

INIT(l+l,IN,FILEl)

initializes channel 2 for input (I). Other examples:

Legal

INIT(l,IN,'FILEOl')
INIT(2,INPUT,'FILE02')
INIT(3,I,'FILEOS')
INIT(4,IXYDREQW,'LABEL 1

)

INIT(S,OUT,'TAPEl')
INIT(6,0UTCH,'TAPE2')
INIT (7 ,O,RCRD)
INIT(l,UPDATE,'LABEL')
INIT(3,UPD, 'L')
INIT { 6 , u, ' L3 I)

INIT(6,UP,'T453')
INIT (5, KBD)
INIT (5 , TTY)
INIT(4,K)
INIT(l,TELETYPE,NAME)
INIT(9,LPT)
INIT (10 ,CDR)
INIT (11,RDR)
INIT (12 , PTR)
INIT(N,SYS)
INTT (15, IN I. MASTER I ,A+B)

1-37

Illegal

!NIT
INIT(
INIT(4
INIT<4>
INIT,3

ioN ERROR I
1.4.13 ON ERROR

This statement can be inserted in the source program to cause a branch
to the statement with the specified label when a non-fatal executed
error occurs in the next program statement. The form of this
statement is:

where

label

label is a statement label assigned to the statement in the
PROC section where control is to be transferred.

The ON ERROR statement can be the object of an IF statement.

Examples:

ON ERROR ERRTRP
TEMP=lOO*ORIG/NEW

ERRTRP,

ON ERROR TRAP
DEC = ALPHA

TRAP,

The ON ERROR statement eliminates a return to the Monitor for the
following run time errors.

zero divisor

bad digit in an alpha to decimal conversion

more than 15 digits in decimal field used in calculation

an end of file label was not specified in an XMIT statement

input line overflowed block it was read into

no file specified in RUN command to satisfy INIT (SYS)
statement

in a random-access operation (see READ and WRITE) the file
contains variable length records, record number is too large
or O, or length specified in the record header word does not
match the length of the XMIT block.

1-39

IPROC

1. 4.14 PROC

The PROC statement separates the two sections of a DIBOL program, the
data definition section and the procedure section. It is of the form:

where

PROC [n] [/x] [;comment]

n

/x

comment

is a single digit, 0-7, (not an expression)
indicating the maximum number of mass storage
logical units which the program will have open
simultaneously. If no number is specified, the
compiler assumes 7. The available core is divided
into buffers to handle the number of logical units
specified. The more buffers necessary, the
smaller they must be and the slower the I/O
process.

is an optional listing switch to the compiler

/N temporarily halts compiler listing of source
program

/L resume listing source program and errors on
line printer

/T resume listing source program and errors on
terminal

The PROC option switch is active until disabled by
a START or END statement with an option switch.
There can be only one PROC statement. If no
option switch is specified, a compiler listing is
produced as usual. The PROC option switch can be
overridden with an option switch at compile time.
(Refer to Chapter 4.)

is an optional string of text preceded by a
semicolon which is stored for output as a heading
for the procedure section 0-f the compiler listing.
When the compiler encounters the PROC statement
the line printer moves to the top of the next
sheet of paper and outputs the comment, if any, as
a header line.

If /N is specified in the RUN COMP command, it overrides any /L's or
/T's in the source program. However, /L and /T determine on what
device errors are listed. If the program simultaneously opens more
mass storage logical units than were specified in the PROC statement,
a run time error occurs.

1-41

Examples:

Legal

PROC
PROC 3;BILLING V3
PROC 3/N
PROC;
PROC 4/L; TEST PROG.

Illegal

PROC 32
PROC, 4
PROC 5+2
PROC BILLING V3
PROC A

1-.,42

1. 4.15 READ

The direct access READ statement allows a specified data record to be
moved from a named file to a specified area in core and has the form:

where

READ (channel, record,rec#)

channel

record

rec#

is a decimal expression with a value of 1-15
specifying a channel number which links the READ
statement to the related INIT statement. (The
INIT statement must specify INPUT or UPDATE as the
COS device.)

is the record into which data is to be read.

is a decimal arithmetic expression specifying the
sequence ntL~ber of the record to be read.

If the program READS past the end-of-file mark, the results are
undefined. See Section 1.4.22 for restrictions on usage.

Examples:

READ (5,REX,88)

reads the 88th record of the device linked to the channel which was
INITed with the INIT (S, •••) statement and places it in the core area
labeled REX.

READ (6 ,BLT ,EXPR)

reads the record specified by the expression EXPR and stores it in the
core area labeled BLT.

Refer to Appendix L for more examples and a discussion of direct
access techniques.

1-43

I RECORD I

1. 4 .16 RECORD

The RECORD statement reserves areas of core where records are stored
during processing. Block can be used interchangeably with RECORD.

The RECORD statement is of the form:

RECORD [name]

and is followed by statements of the form

fldnam,xn

where name labels the record area; fldnam names a field within the
record and xn specifies whether the field contains alphanumeric or
decimal data, and the number of characters in the field. Storage is
allocated in the order that the data appears. The RECORD name can be
any number of alphanumeric characters in length (only the first 6
characters are siqnificant) and the first character must be
alphabetic. The name-is optional unless the program is to transfer
(XMIT,READ or WRITE) the data. If no name is specified, the data is
assigned to contiguous locations but is not available for input or
output. Therefore, RECORD statements with no names are used for
temporary storage.

Examples:

Legal

RECORD
RECORD ALPHA
RECORD Tl376
RECORD R

Illegal

RECORD $
RECORD, ABC
RECORD 564
RECORD,

Each RECORD statement should be followed by one or more data field
definitions. The data field name (fldnam) is optional and may be any
number of alphanumeric characters in length (only the first 6
characters are significant). The first character must be alphabetic.
A corrana may be used without a field name if the program does not
reference the individual field. This specification is used when
formatting an output line for the printer, for example, so that
intercolumn spaces do not require a data name, only a comma followed
by the type and size.

Data field type (x) is alphanumeric (A) or decimal (D). All
input/output data to the line printer, terminal or high-speed paper
tape reader should be in alphanumeric form (A). Decimal (D) is
specified for data to be used internally by the program. However, the
alpha representation of a positive decimal number is the same as its
decimal representation. This is not true of negative numbers (refer
to Appendix A). Data stored in alpha fields is generally
left-justified and if necessary padded with blanks on the right. Data
stored in decimal fields is always right-justified and padded with
zeros on the left if necessary. The data field size (n) is a decimal

1-45

number 1-510 specifying the number of characters in the field.
Decimal fields to be used in arithmetic operations have a maximum
length of 15 digits. If data size is omitted, 1 is assumed. The
total size of all data fields in a record must not exceed 510, if the
record has a name (i.e. can be input or output}, otherwise the total
size must not exceed 4094.

Examples:

Legal

RECORD MASTER
A, D3
Ml, D4
M2, AG

AG

RECORD TRANS
COST, Al6
ADD, A30
KEY, D

D03

Illegal

RECORD NUMBER
SETNO Dll
ORDERS, D632

RECORD NUMBER
B, A-6

1-46

Inserting Initial Values

Initial values can be assigned to data fields as part of the field
statements following a RECORD statement. The initial value may be set
as part of the data field definition or marked for insertion via the
terminal when the program is ready for execution. The maximum size
(limited by the Monitor) of an initial value is approximately 110
characters. If no initial value is assigned to a field it is
initially set to all blanks (if alphanumeric) or zeroes (if decimal).

If entered as part of the program, the alphanumeric or decimal
constant is placed after the type and size specification. A comma
must separate the constant from the type and size specification. The
initial value to be entered must agree with the size and type
specified for the field. The alphanumeric constant must be enclosed
in single quotation marks (' ') and may contain any printable
characters except\,' ,or+. Tabs inside the single quotation marks
are treated as spaces, 1 space per tab. A decimal constant is a
string of decimal digits optionally preceded by a sign (+ or -) and
optionally followed by a minus sign. The signs (+ or -) and quotes do
not count as part of the size of the initial value. The compiler does
not insert leading zeros or trailing spaces in initial values.

Examples:

,A4, 'TEXT'
M,06,000400
PA,A2,'ll'
AA,03,123
AC,A3,'123'
A,03,-146
B,03,146-
C,03,+123

Illegal

,A4: 'NOTE'
,A4, '3Q'
,A3,345
,04, I WEED'
,D4, 12
,04,12345
A3 '2'
A3, 'HELLO'
AlT
AD,A3,

If the initial value is to be entered when the program is executed,
put a comma and the character P after the type and size specification.

1-47

Example:

fldnam,A8,P

The character P is used in the data field specification to allow the
user to enter data at run time. Before execution, the message

ENTER fldnam

is displayed on the terminal. The specification

QZB135,A6,P

causes the message

ENTER QZB135

to be printed at the terminal at run time.
characters

999999

The reply may use six

The terminal entry is stored in the field named. If the value entered
at run time in response to the ENTER message is shorter than the
field, the value is padded with blanks, if longer, an error will
occur. The P should only be used with named fields and is executed
once each time the program is run.

NOTE

When using the P option
from the terminals is
e.g.,

LABEL,A6,P

all information entered
treated as alphanumeric

in the data section causes the message

ENTER LABEL

If the user replies

ABCD)

LABEL will equal 'ABCD

LABEL,07,P
ENTER LABEL
AB123)

The sequence

causes LABEL to equal AB12300.

A variable to be initialized with the P option can also be given an
initial default value.

1-48

Example:

NAME ,A3, 'DOE' ,P

The default value must agree in type and size with that specified for
the field. The program uses the default value if CTRL/Z is typed in
answer to the run time ENTER message.

Examples:

Legal

ENT,A6,P
DUP,D8,P
z IP, AS , I 0 0 0 0 0 I , p

Illegal

,D2P

1-49

The character D is used in the data field specification to insert the
current date (as specified to the Monitor at start up) in a field to
be used in a report heading. The date is stored in the form mmddyy,
e.g., June 25, 1972 would be stored as 062572. The field must be
exactly six characters long or the date stored in it will be
incorrect. This eliminates the necessity of specifying the P option
and entering the current date each time the program is run. The P and
D options cannot be used on the same field.

Example:

Arrays

RECORD A
DATE,D6,D

A number of values can be represented with a single field name by
placing a repetition count before the type and size specification.
All elements of the array must be the sa..~e size and type. For
example:

TAG, 402

defines TAG to be 4 decimal fields, each 2 digits long. Data can be
initially entered in an array as a continuous string separated by
commas. For example,

TAG, 4D2,88,44,22,55

It is not necessary to initialize all fields of an array. However,
those fields to be initialized must be the first field and any
continuous number of fields after the first field, for example:

TAG, 402, 88 ,44

initializes the first two fields. The P option can be used to
initialize the first array element only.

Examples:

Legal

C,4D3
D,5A2
,2A4, I BLUE I

,1D7
,16Al

GOAL,302,22,23,33
UP,4A2,'AB','CD','EF','GH'
INPUT ,3D5 ,P

Illegal

,2D3, 34
,203,4545
, 2A2, I AMERICA'
LABEL,103,Al
,3E4
,OD6
,-3A4
,6D-3
GOAL, 302,222333
UP,4A2,'ABCDEFGH'

1-51

The character S is used in the data field to assign the value of a
variable (A2) equal to the value of the options used at run time.

Example:

will set

VAR,A2,S

't7'1\'0 .i-
V.M."'- 1..V

lvvl
A.I.

'OTT
• A.'\.\.I prona..Ttt/XY 1S run.

1--53

RECORD Overlay Option

The X option in a RECORD statement allows multiple definition
fields within a RECORD. Specify the overlay option as follows:

of

RECORD,X
er

RECORD name ,x

The X option must be preceded by a comma. There can be one or more
overlays defining the same record but there must be a preceding RECORD
statement without an x.

The overlay (X) record must be equal to or less than the size of the
record being overlayed.

Examples:

RECORD ONE
RECORD X,X
RECORD, X

Illegal

RECORD TIME,X,
RECORD X (X IS A LEGAL RECORD

NAME BUT IN THIS FORM DOES NOT
INDICATE AN OVERLAY)

The X overlay option is useful in reformatting a previously defined
record area. For example,

RECORD COLOR
Fl,A4,'BLUE'

,Al
F2 , A3 , ' RED'

has three alphanumeric fields with a total of eight characters.
Fields Fl and F2 can be referenced individually.

RECORD RAINBO,X
ALL,A8

overlays the previously described record and permits treatment as one
field. The variable ALL contains BLUE RED and setting ALL to blanks
in the PROC section sets Fl and F2 to blanks. The X option also
allows access to a particular portion of the record by specifying

RECORD .o,x
,A4

Q6,A4

which skips the first four characters and uses the last four. Q6 will
contain the quantity ' RED'.

The most common use for record overlaying is with print records. Each
unique format for a report is kept in a separate record overlay. For
example:

1-55

RECORD HEAD!
Hl, AlO, 'HEADING il'
RECORD HEAD2
H2, A23, 'THE SECOND HEADING LINE'
RECORD PRINT
PR132, Al32
RECORD ,X
CUSTNO, AlO ;CUSTOMER NUMBER
, A20
CUSTNM, A30 ;CUSTOMER NAME
RECORD, X
, A35
CUSADD, A20 ;CUSTOMER ADDRESS
, AS
CUSZIP, DS

.
PR132=Hl
XMIT(6,PRINT)
PR132=H2
XMIT(6,PRINT)
PRINT=
CUSTNO=NO
CUSTNM=NAME
XMIT(6,PRINT}
PRINT=
CUSADD=ADDRl
XMIT(6,PRINT)
CUSADD=ADDR2
CUSZIP=ZIP
XMIT(6,PRINT)

1-56

Records in programs which are loaded directly by the .RUN command are
automatically cleared. That is, all decimal fields are set to zero
and all alpha fields are filled with blanks, unless an initial value
is specified.

However, if the record is loaded as the result of a CHAIN statement,
the record will retain whatever contents it may have had on the
previous CHAIN unless the clear option (,C) is specified in the
record.

See Appendix L and Section 1.4.3 for more detail on CHAINing records.

1-57

I RETURN I

1.4.17 RETURN

The RETURN statement is placed at the logical end of a subroutine and
has the form:

RETURN

The RETURN statement causes control to return to the next statement
after the last CALL (or call implied by a TRAP statement).

It is illegal to attempt a RETURN if no CALL has been executed
previously and the message RETURN WITHOUT CALL resultse

Example:

(~L
1 .

LIST

LIST,

1-59

I START

1. 4 .18 START

This is an optional statement and can be inserted anywhere in the
program. It is of the form:

where

START[/x] [;comment]

/x

comment

is an optional listing switch to the compiler

/N temporarily suspends listing of source program

/L resumes listing of the source program and
errors on the line printer

/T resumes listing of the source program and
errors on the terminal

The START option switch is active until disabled
by another option switch. The START/x statement
may be inserted in a source program as of ten as
necessary. If no option switch is specified a
compiler listing is produced on the line printer.
The switches can be overridden with an option
switch at compile time. (Refer to Chapter 4.)

is an optional method to store a line of text to
be output as a heading on the compiler listing.

Each time a START statement is encountered during compilation, a page
eject occurs and a new page heading is printed.

Examples:

START
START;KR3766-CUST UPDATE
START/L
START/T;TEST PROG. LISTING
START;

Illegal

ST
STARTKl 76-REPORT
START/

If /N is specified in the RUN COMP command, it overrides any /L's or
/T's in the source program. However, /L and /Twill then determine on
what device errors are listed.

1-61

1.4.19 STOP

STOP terminates program execution and returns control to the Monitor.
The form of the statement is:

STOP

and it may be inserted anywhere in the PROCedure section. There may
oe moL"~ than um::: STOP statement in a program. STOP does not close
files; a FINI statement must be inserted before the STOP to close
files previously INITed.

The END statement has the same effect as STOP but an END can only be
used as the last statement in a program.

1-63

1.4.20 TRACE/NO TRACE

These statements are helpful
anywhere in the PROCedure
statement is:

TRACE

NO TRACE

debugging tools and
section of a program.

I TRACE/NO TRACE

can be inserted
The form of the

Execution of the TRACE statement enables program tracing.

Execution of the NO TRACE statement discontinues the TRACE function
and is optional. The initial mode is NO TRACE.

The appearance of TRACE statements in a program does not cause any
TRACE output to be generated unless the /T option is specified when
running the program.

When program tracing is enabled and the /T switch is on, each DIBOL
statement executed causes the line

AT LINE xxxx

where xxxx is the source line number of the statement to be output on
the line printer. This tracing continues until execution of a NO
TRACE. If the statement is a data manipulation statement, the value
which is produced and stored by the statement is printed on the
following line.

For example:

AT LINE 0200
000006

NOTE

Indiscriminate placement of TRACE statements may
cause excessive output to be printed on the line
printer - this is often as bad as no output at
all. To use the TRACE statement to best advantage
an attempt should be made to "pin down" the
problem to a certain part of the program flow and
then, using conditional (IF) statements, trace
only that part of the program.

1--65

Example:

If a certain DIBOL program works correctly on records 1-53 of a file,
but produces incorrect results on the 54th record and an inspection of
the program fails to reveal the reason, the following statements can
be added:

In the data definition section:

at the beginning of the procedure
section:

after reading an input record:

RECNO,D6

RECNO=O

!NCR RECNO
NO TRACE

IF (RECNO.EQ.54)TRACE

This will provide a complete trace of the operations performed when
processing record 54, and only that record.

1-66

l TRAP

1. 4 .21 TFAP

The TRAP statement allows a DIBOL program to spool output to the line
printer while executing the program. The format of the statement is:

TRAP label

where

label is the label of a line printer routine.

Whenever the line printer becomes free, DIBOL statement execution
temporarily terminates and a call is made to the label specified in
the last TRAP statement executed. {If no TRAP statement was executed,
no call is made.) When a RETURN is made from this call, normal program
execution resumes. The TRAP statement normally precedes a FORMS or
XMIT statement.

The following example prints numbers
some other task is being performed:

1~500

RECORD A
N, D3

LOOP,

SUB,

PROC
TRAP SUB
FORMS(6,0) ;START LPT

;PERFORM TASK

IF (N.LT.500) GOTO LOOP
STOP
N=N+l
IF (N.GT.500) RETURN
XMIT (6 ,A)
RETURN

1-67

the line printer while

Typically, the TRAP statement would be used in a program as follows:

LINCT,
LPFLAG,

DONE,

RECORD
ABO
RECORD
D2
Dl
RECORD

LP REC

HDG
A60, I ••••• I

PROC n

INIT (l,IN,'INFILE')
INIT (6 ,LPT)
CALL PGTOP

;PERFORM TASK

IF(LPFLAG.EQ.O) GO TO DONE

STOP

LPTRTN, IF(LPFLAG.NE.O) RETURN
LINCT=LINCT-1
IF(LINCT.EQ.O) GO TO PGTOP
XMIT (l,LPREC,LPEOF)
TRAP LPTRTN
XMIT (6 ,LPREC)
RETURN

;LPFLAG=O IF TASK IS
;COMPLETED BEFORE
;PRINTING

PGTOP, LINCT=SO ; INITIALIZE FOR NEXTPG
TRAP PGTOPl ;WHERE TO GO NEXT
FORMS(6,0) ;SKIP TO NEW PAGE
RETURN ; GO BACK

PGTOPl, TRAP PGTOP2 ;WHERE TO GO NEXT
XMIT(6,HOG)
RETURN

PGTOP2, TRAP LPTRTN
FORMS(6,3)
RETURN

LPEOF, LPFLAG=l
FORMS(6,0)
RETURN

1-68

NOTES

1. If the line printer buffer becomes empty during execution of
an INIT, XMIT, READ, WRITE, DISPLAY or FINI statement while
I/O is in progress the trap will be delayed until execution
of the statement is complete.

2. If the line printer buffer becomes empty during execution of
an ACCEPT statement the ACCEPT statement will be interrupted
and resumed. The user typing in response to the ACCEPT
statement will not be aware that the statement was
interrupted and the ACCEPTed data will be correct provided
the TP~..P subroutine takes no longer than approximately 150
milliseconds to execute. In the example above the execution
time of the TRAP routine is much shorter than 150
milliseconds if INFILE is on disk. If INFILE were on DECtape
the TRAP routine might take up to one-half second to execute
and the ACCEPT statement might lose some input.

3. Always construct a TRAP subroutine so that output to the line
printer is immediately followed by a RETURN statement (as in
the example).

4. Due to a lack of line printer buffer space in the Monitor,
users with TD8/E DECtape and Centronix line printer are
limited to output lines of 76 characters in length when using
the TRAP statement. Outputting longer lines will result in
the program spending all of its time servicing line printer
TRAPs, thus cancelling the advantage of the TRAP statement.

S. The TRAP statement will not work on Analex line printers.

6. In the above example, the main DIBOL program will be slowed
down by approximately 5 to 10% by the TRAP processor
providing that INFILE is on disk.

1-69

jwRITE I

1. 4. 22 WRITE

A direct access WRITE statement allows a specified data record to be
moved from an area in core to a specified file and has the form:

where

WRITE {channel,record,rec#)

channel

record

rec#

is a decimal expression with the value of 1-15
specifying a channel which links the WRITE
statement to the related INIT statement .. (The
INIT statement must specify UPDATE as the cos
device.)

is the record from which data is output.

is a decimal expression specifying the sequence
nu~~er of the record to be written.

Example:

WRITE (5 , REX, 8 8)

returns the 88th record from the core area REX to the device
associated with the channel specified with the INIT (S, •• ~) statement.

NOTE

Because of the harm which the READ and WRITE
statements could cause if improperly used, several
restrictions have been placed upon their use:

1. The channel involved must refer to a mass
storage device.

2. The file to be accessed with READ or WRITE
operations must contain records of a uniform
size.

3. Only one reel of a multi-reel file (the one
currently mounted) may be accessed by a
READ/WRITE statement.

4. The record which is specified must be exactly
the same size as the records of the file being
accessed.

5. Attempting to READ or WRITE over the
end-of-file mark results in an error message
and termination.

6. In general, READing or WRITing a record which
comes after the end-of-file results in an
error message; however, a fortuitous
configuration of words on the unit being
accessed may cause the operation to succeed
and results in garbled data (on a READ) or the
loss of the output record (on a WRITE) but
does not crash the COS system.

1-71

7. Unless the user provides a FINI statement
before terminating his DIBOL programs which
have UPDATE files, the data from the last few
WRITE statements may not be output properly.

Ref er to Appendix L for more examples and a discussion on direct
access techniques.

1-72

XMIT

1. 4 .23 XMIT

The XMIT statement transfers a data record and is of the form:

where

XMIT {channel, record[, eof label])

channel

record

eof label

is a decimal expression whose value is 1-15
specifying a channel number which associates the
XMIT statement with the related INIT statement.

is a name previously used in a RECORD statement
which identifies the area in core to which or from
which data is to be transmitted. It may be a
simple or subscripted variable or a record
literal.

One must be very careful when using subscripted
record names.

A single subscript, such as REC(3) should only be
used if there are consecutive records, beginning
with REC and all of the same length as REC, i.e.,

RECORD REC
,D6
,AlO

RECORD
,D6
,AlO

RECORD
,06
,AlO

;REC(l)

; REC (2)

; REC (3)

If a double subscript form is used, i.e., REC
{n,m), then n must be less than m-1, n must be odd
and m must be even (or the last character in the
record). This double subscript form refers to
characters n-2 through m-2 inclusive in record
REC. {If n=l, it refers t.o characters 1 through
m-2.) Whenever an XMIT occurs referring to the
record, two characters before character n in the
record are destroyed. This is the COS 300 word
count (see Appendix G) • The user need not be
concerned about this if n=l.

is the label of a statement to which the program
branches if an end-of-file is read. Used with
input files only. (Refer to Statement Labels at
the beginning of this chapter.) Label is optional
but if not specified, an error message is output
when an end of file occurs.

1-73

Examples:

XMIT (3 , INV, EOF)

transfers a record from the input file associated with the statement
INIT (3,IN, •••), to the RECORD area in core labeled INV. If
end-of-file is reached, control branches to PROCedure section
statement labeled EOF. If the length of the record being read is
greater than the defined size, an error message is output at run time.
If the length is less than the defined size, the record is
left-justified and padded with spaces on the right.

XMIT (l,CUST,NEXT)

transfers a record from the input file associated with the
INIT(l,I, •••) statement to the RECORD area CUST. At end of file, it
branches to the statement labeled NEXT.

The statement

XMIT (2,BUFF)

takes a record from RECORD area
associated with the INIT(2, •••)
initialized for output, LPT etc'.) •

BUFF and
statement

puts it
(assuming

in the file
channel 2 is

XMIT (8, "HI THERE')

would output the message HI THERE on the operator's terminal if
channel 8 was INITed to the TTY.

XMIT (8,CUST(l,7) ,EOF)

accesses the first five characters of the record area CUST.

Other examples:

Legal

XMIT{N,B2)
XMIT{FUNCT(I)+2,FOO)
XMIT(7,ROD,LAB3)
XMIT(9,BLKNUM,L)
XMIT (3 ,Bl)
XMIT (M,B23A, I)
XMIT(l,HHAA,FFPP)
XMIT (8, "MOUNT INVOICE FORMS')
XMIT(lS,REC(l,33))
XMIT(CHAN,REQ(l,INVOC+6))

The XMIT statement may be used with
statements for operations on files.

direct access READ and
See Appendix L for details.

1-74

WRITE

PART II

SYSTEM AND UTILITY

PROGRAMS

CHAPTER 2

MONITOR

The Monitor is the master control program for the COS system. It
contains all the system I/O handlers (TTY, DECtape, RF08, RKOB, RKSE,
Line Printer, Card Reader, High-speed Reader and High-speed Punch) and
enables the user to edit, compile, save and execute user programs.
The Monitor maintains a directory of all programs stored on the system
device, labels files and opens and closes files as needed.

During program execution the Monitor produces the messages which
instruct the user to mount files. It also provides the means for
BATCHing several programs for sequential execution.

Table 2-1 lists the special key commands that are available in on-line
operations.

The editing feature of the Monitor can be used to create SYSGEN tables
and source files on the system device for later use.

2.1 OPERATING PROCEDURES

The Monitor must be loaded via a bootstrap routine each time the
system is restarted. (Refer to Appendix B.) Monitor signals that is
is loaded into memory by displaying the message

COS MONITOR 2.1108 (or current version number)

type the DAte command, a space, the current date, and the CR key in
the form .DA rnm/dd/yy. For example, .DA 1/25/72. The date must be
entered before proceeding. This date is used during program execution
to date reports, files, and new programs created. The Monitor
responds to the date with a dot to indicate it is ready to accept any
of the commands shown in Section 2.2.

2-1

TABLE 2-1. MONITOR KEY COMMANDS

Key Function

CTRL/C

CTRL/N

CTRL/O

CTRL/U

CTRL/V

CTRL/Z

RUBOUT

Returns control to the Monitor. Monitor displays a dot and
awaits a command. If already in the Monitor, CTRL/C has the
same effect as a CTRL/U.

Turns on imbedded numeric keypad at terminal and can be used
in a BUILD or DIBOL program for numeric input. Type CTRL/N
a second time or return to Monitor and the feature is turned
off. When the feature is turned on certain keys are
interpreted as numbers as indicated below:

Key Value

J 1
K 2
L 3
u 4
I 5
0 6
M 0

NOTE

Keys 7, 8, and 9 have values 7, 8, and 9.
These ten keys form a numeric keypad.

Suppresses terminal echo of typed output. If echo is
already suppressed, CTRL/O restores the terminal echo.
CTRL/O is also used to halt and resume output from an LI
command or the compiler. The echo always resumes the next
time the dot is printed.

Deletes the current input line.

Suppresses terminal echo of Monitor message, COS MONITOR
2.1108. The Monitor displays a dot (.) when CTRL/V is
typed. If message is suppressed, type CTRL/V to enable
message. CTRL/V has the same effect as CTRL/U.

Signals the end of input and returns control to the Monitor.
Halts output of line numbers from LN command.

Erases the last character typed and echoes the deleted
character. RUBOUT cannot be used in all instances: if the
character to be deleted does not echo when RUBOUT is typed,
type CTRL/U and retype the line.

2-2

2.2 MONITOR COMMANDS:

The commands

BATCH
DATE
DELETE
DIRECTORY
PLEASE
RUN
SAVE

apply to Monitor functions. Only the first two characters of the
command need be typed. {R is sufficient for the RUN command.) Any
additional characters up to the first blank are ignored. All commands
must be terminated by typing the CR key. With the exception of RUN,
the Monitor commands have no effect on system programs (COMP, SORT,
etc.). Refer to Section 2.3 for editing commands.

2-3

BA

2.2.1 BATCH

With the BATCH command a string of Monitor commands can be executed
sequentially. As soon as the execution of one program ends, another
is automatically started. The form of the BATCH command is:

.BATCH pronam

where

pron am

For example:

.0090

.0100

.0110

.0120

.0130

.0140

.0150

.0160

is the name assigned to a list of Monitor commands
previously created via editing commands and saved
with a WRITE command.

RUN COMP 1 JOBl

SAVE JOB!

RUN SYSGEN, SY STAB

RUN JOB!

RUN JOB2

RUN SORT, SRCL

RUN SYSGEN,OLDTAB

DE JOBl/B

All programs batched must be on the system device. The Batch program
can contain another BATCH command only as its last line.

When a Monitor command is read from the BATCH file, it is displayed on
the terminal and executed. Type CTRL/C to terminate a BATCH program.
The BATCH must then be restarted at the beginning.

All of the necessary programs and data files must be available; if an
error occurs, BATCH Monitor mode terminates, control returns to
interactive mode, and a dot is displayed on the terminal.

Correct the error in the program being executed and restart the BATCH
program at the beginning or individually type each corranand left to be
executed.

When the BATCH program is finished, control returns to the Monitor and
a dot is displayed on the terminal.

2-5

DA

2.2.2 DATE

The DATE command stores a date to be assigned to any program created
or reports printed until a new DATE command is issued or the system is
restarted. The DATE command is of the form:

where

.DA mm/dd/yy

mm is a number 1 - 12
dd is a number 1 - 31
yy is a number 72 - 79

If the date entered does not conform to the above restrictions, an
error message is displayed.

This command must be entered whenever the Monitor is restarted. It
may also be used whenever it is necessary to change the system date.

Examples

.DA 1/25/72

.DATE 12/5/73

2-1

2.2.3 DELETE

The DELETE command removes the named source, binary, or system program
from the specified device directory.

The DELETE command is of the form:

.DE pronam[,dev]/X

where

pron am

dev

/X

Examples:

.DE

.DE

.DE

.DE

• Legal

JOBl,

is the name of the file to be removed from the
directory.

is the 3-character designation for the physical
device where the file is stored

DECtape = DTO-DT7
disk = DKO-DK3

If no device is specified, the system device is
assumed.

Is a 1- or 2-character code indicating whether the
file to be deleted is a source (S), binary (B) or
system (SV) file. This code is necessary to
differentiate between three files with the same
name but of different types. The code SV is used
rather than V to make it more difficult to
inadvertently delete a system file.

Illegal

DTl/B .DE JOBl

PROGA,DK3/S .DE CONVEX/V

INV/S

CONVEX/SV

See Chapter 3-for a description of device designations.

2--9

2.2.4 DIRECTORY

The DIRECTORY command prints a list of programs stored on
device or the label of the file stored on a logical unit.
the command is:

a physical
The form of

where

• DI ([physical device] [/T] ~ l /logical unit# j

physical device

logical unit#

/T

is one of DTO-DT7 or DKO-DK3 and must be
preceded by a comma or space. If not
specified the system device is assumed.

is the number (0-15) of the logical unit
assigned with SYSGEN. A logical unit # must
be preceded by a /. Specifying a logical
u..~it causes a data file label to be printed=
If the unit is a physical device which has
more than one logical unit, the DI command
must be repeated for each logical unit to be
labeled.

is an optional switch which causes
directory to be output to the terminal.

the

A directory contains the current date, names of programs, types of
programs, length in 256-word blocks (LN) and the date the program was
stored. Be sure the line printer is on-line before issuing the DI
command.

A file label contains the file name, sequence number (if a multi-reel
file), the date the file was created, file length in segments, and
logical unit number where the file was stored when the label was
requested. Segments are 16 256-word blocks long.

See Chapter 3 for a description of device designations and logical
unit numbers.

2-11

Examples:

.DI DKO

causes a directory similar to the following to be printed on the line
printer:

DIRECTORY 15-FEB-72

NAME TYPE LN DATE

COMP v 14 19-JAN-72
MORE s 10 15-FEB-72
<0006 FREE BLOCK8>

TST2 s 07 12-FEB-72
<0007 FREE BLOCKS>

TST4 s 07 15-FEB-72
GLOP s 10 15-FEB-72
<0579 FREE BLOCKS>

The command

..!.DI/3

outputs a file label similar to one below.

* *
* NAME SEQ. DATE *
* *
* DEP #01 18-NOV-75 *
* *
* LENGTH: 0046 UNIT: 3 *
* *

2-12

2.2.5 PLEASE

The PLEASE command outputs a message to the terminal during a BATCH
program execution.

The form of the PLEASE is:

PLEASE text string

The message is displayed exactly as entered and the terminal alarm is
sounded. After taking the action requested in the PLEASE message,
type any one key to continue the BATCH program. To make a two-line
PLEASE conunand, the first line can be terminated with an AND and the
second line begun with another PLEASE. This lets the operator know
more message is to follow.

For example:

0020
0030
0040
0050
0060

RUN JOBl
PLEASE PUT INVOICES IN LINE PRINTER AND
PLEASE TYPE 3 TO THE NEXT MOUNT MESSAGE.
RUN JOB3
PLEASE PUT REGULAR PAPER IN LINE PRINTER

When this BATCH program is executed, JOBl will be run, the first
PLEASE message will be displayed and the terminal alarm sounded. The
system waits for a key to be typed in reply to the PLEASE message then
displays the next PLEASE message. When a key is typed in reply to the
message, JOB3 is executed and the last PLEASE message displayed.
Control returns to the Monitor when a key is typed in reply to the
last PLEASE message.

If a PLEASE command is given when in a non-BATCH mode, following the
CR, the bell rings and the system waits for a key to be typed.

2-13

2.2.6 RUN

The RUN command loads and executes the named system or binary program
using the named file. This is the command which provides access to
all other system programs such as:

SYS GEN

BUILD

SORT

UPDATE

PIP

COMP

To change or check system configuration

To build data files

To sort data files

To update data files

To move information between physical devices.

To compile a user source.program into the binary
program.

The RUN cornmand has the form:

where

.RU [pronam] [+chain!+ ••• +chainn] [,filnaml, ••• ,filnamn] [/xx]

pron am is the name of the system program to be run or
pronam+chainl... are binary files which are part
of a program and constitute one large program
broken up into several chains. For example:

.RUN P~OG+CHAINl+CHAIN2+CHAIN3

would execute program PROG. PROG would then
determine whether programs CHAINl, CHAIN2 or
CHAIN3 would next be run. See section 1.4.4 for a
description of the CHAIN statement. If the
program name is omitted, Monitor loads and
executes the last compiled DIBOL program from the
compiler• s scratch -ar~rn.

filnaml, ••• ,filnarnn
must be on the system

system programs is executed
and no source files are
the file in the editing

are source files which
device. If one of the
via the RUN command
specified as input,
scratch area is used
only).

as input (system programs

The maximum number of binary and source files per
program is eight. Multiple files are concatenated
and passed to system programs as one large file.

2-15

/xx is one or a combination of the option switches
including /T which enables the TRACE feature and
/D which enables the DDT mode.

Other options are described with the programs to which they apply.
Refer to the appropriate chapter for more detailed information on
these programs.

If the program specified is not found, an error message is produced.

The RUN command is the only Monitor command which can be abbreviated
to one character, R.

Examples:

Command

.RU

• RU JOBl

.RUN COMP, CHECK

Explanation

executes previously compiled DIBOL program from
the Compiler's scratch area •

runs program called JOBl

this command compiles the source program CHECK,
prints a compiler listing and temporarily saves
the binary on the system device •

• R BUILD, FD, IO,FILE1,FILE2
this command builds a data file in the format
specified in the Field Descriptor (FD) and I/O
section {IO) of the BUILD control program with the
data in FILEl and FILE2.

MOUNT Messages

The Monitor outputs MOUNT messages to the terminal whenever an input
or output unit must be specified. These messages have the form:

where

MOUNT xxxxxx #nn FOR INPUT:

MOUNT xxxxxx #nn FOR OUTPUT:

xxxxxx is the name of the data file desired by the
program currently executing.

#nn is a sequence number from 1 to 63.

Answer the MOUNT message with the appropriate logical COS unit (1-15).
If an error is made in the reply, type CTRL/U and the correct reply.

The MOUNT message is displayed (and the sequence number incremented)
whenever the program reaches the end of the device and more
information remains to be read or written.

When default units specified in control programs are not available, a
question mark precedes the MOUNT message, i.e.,

2-16

?MOUNT xxxxxx #01 FOR INPUT:

The message

REPLACE xxxxxx #nn ?

is displayed when a file is already stored on the logical unit
specified to a MOUNT message. Answer REPLACE with a Y and the CR key
to replace the old file or any other key to keep the old file. File
labels beginning with any character other than A-Z, r. It, or J are
considered to be temporary files, and no REPLACE message is displayed
when such files are about to be written over. The following error
messages can occur:

IN USE
ILLEGAL UNIT

NOTE

Occasionally, if output is to a scratch unit, a
garbled filnarn or sequence number in the "REPLACE"
message may be typed. This is because the area on
the unit where the label should be is simply
random characters. Just answer "YES" to the
REPLACE message as usual.

2-17

2.2.7 SAVE

This command stores the binary program from the compiler scratch area
on the named device. The form of the SAVE command is:

where

.SAVE pronam[,dev] [/Y]

pron am

dev

/Y

is the name to be assigned to the compiler's
binary output.

is any mass storage device DTO-DT7 or DKO-DK3
which has a directory. If no device is given, the
system device is assumed.

is used to bypass the REPLACE?
response when a duplicate
encountered. Normally used in
bypass operator response.

message and YES
name would be

a BATCH mode to

The SAVEd program must be moved to the system device before it can be
executed.

2-19

2.3 EDITING COMMANDS

The COS Monitor contains a line editor; that is,
changes, and deletions are done with line numbers.
the Monitor is assigned a sequence of line numbers.

The

0100 START
0110 RECORD A
0120 Al, A64
0130 PROC 2
0140 INIT { 2 , IN , I MINT I)

0150 LOOP, XMIT (2 ,A,EOF)
0160 XMIT (8 ,A}
0170 GO TO LOOP
0180
0190
0200

conunands:

ERASE
FETCH
LIST

EOF, FINI (2)
STOP
END

Line Number
Number Commands
RESEQUENCE
WRITE

all insertions,
All text input to
For example:

apply to the editing functions. These commands can be entered at any
time in response to the dot displayed by the Monitor. Only the first
two characters of the command need be typed and all commands must be
terminated by typing the CR key.

2-20

2.3.1 ERASE

This conunand erases text from the edit buffer (that portion of core
where the Monitor stores text being edited). The form of the command
is:

where

nl

n2

.ER [nl] [,n2]

is the line nUIPber of the line to be erased or the
first line number of two which delimit the lines
to be erased. If omitted, erasing starts at the
beginning of the text buffer.

is the second of two line numbers indicating where
erasing ends. If n2 omitted, but the comma is
included, erasing continues to the end of the edit
buffer.

If no line numbers are entered, the ERASE command
edit buffer. Use this command to erase the
entering material to be edited.

clears the entire
edit buffer before

Examples:

.ER clears the entire edit buffer •

• ER 5 clears line 5 •

• ER ,5 clears from the start of the buffer to line 5 •

• ER 5,10 clears from line 5 to line 10, inclusive.

2-21

2.3.2 FETCH

The FETCH command loads the named source file into core from the
specified device. The form of the FETCH command is:

where

• FE pronam [,dev]

pron am

dev

is a previously created program which is to be
brought into core.

is the 3-character designation of the physical
device, DTO-DT7 or DKO-DK3 where the program is
stored. dev may be separated from pronam by a
space or comma.

If device is omitted, the system device is
assumed.

Monitor searches for the named program. If the program is not found,
Monitor displays the message

FILE NOT FOUND

Retype the command with the correct program name er device.

If another program is run while this program is in the active work
area, Monitor temporarily stores this file in the editing scratch area
on systems device, then returns it to core when program execution is
complete.

Examples:

.FE RICH Moves program RICH from the system device to the
edit buffer •

• FE PAYROL,DT2 Moves program PAYROL from DECtape unit 2 to the
edit buffer.

.RUN XYZ Runs a program called XYZ. On completion of this
program, the PAYROL source file is in the edit
scratch area.

The FETCH command erases the edit buffer before inserting the FETCHed
program.

2-23

2.3.3 LIST

The LIST command outputs the specified lines or the entire edit buffer
to the high-speed punch, line printer, or terminal.

The LIST command has the form:

.LI [nl] [,n2] [/x]

where

nl

n2

/x

is the line number of the line to be listed or the
first line number of two which delimit the lines
to be listed. If omitted, listing starts at the
beginning of the text buffer.

is the second of two line numbers indicating where
listing ends. If omitted, but the comma is
included, listing continues to the end of the edit
buffer.

is the one letter code which indicates the output
device

/L line printer
/P high speed punch (line

omitted)
numbers are

If no device is indicated, the list is output to
the terminal.

If no line numbers are specified, the entire edit buffer is output to
the specified device. Type CTRL/O to stop output from an LI command.

Examples

.LI /L

• LI 5

.LI , 5

• LI 5,/P

• LI 5,10

List entire edit buffer on line printer.

List line 5 on the terminal •

List from start of buffer to line 5 on the
terminal •

List from line 5 to the end of the buffer on
the high-speed punch.

List lines 5-10, inclusive, on the terminal •

2-25

2.3.4 Line Number

The Line Number command automatically outputs line numbers at
specified increments so new lines can be entered without typing each
line number.

The Line Number command has the form:

where

n

inc

/x

• LN [nj [, incj [ixj

is the starting line number. If no starting line
number is specified, 100 is assumed.

If the corrana after the starting number is omitted,
the starting number and increment number are the
sa~e; i.e.; TN 100 causes a starting nu..~ber and a~
increment of 100.

If the command is LN 100, the start line number is
100 and the increment remains unchanged unless the
Monitor is read back into core; at which time the
increment returns to 10.

is the increment between line nu.~hers.
increment is specified, 10 is assumed.

is the input device.

If no

/R high-speed reader (All rubouts are ignored so
that paper tapes with TABS followed by RUBOUTs
will be read correctly.)

/C card reader
/T low-speed paper tape reader.

If no device is specified, the terminal is
assumed. Line numbers are specified by the LN
command and cannot be part of the text read from
the. inpu.t device.

If Line Number mode is terminated and some editing has been done, type
the line number command, LN, with no arguments to display the next
number in sequence. When inputting from t-hP card reader, all 80
columns are stored (40 columns with mark-sense cards).

This command does not clear the edit buffer. Line Numbers 0 to 4095
are available. Under the default conditions (start at 100, increment
by 10) , the program can be approximately 400 lines long.

The maximum number of characters on a line, including the line number
and space, is 120. In automatic line number mode the line number and
space are counted as two characters. When the terminal line is full,

2-27

Monitor executes carriage return/line feed and since this is a
continued line does not display the next line number.

If the 120 characters limit is exceeded, the Monitor gives the error
message LINE TOO LONG and the line is lost.

If a CR is the first character typed, no line is entered and line
number increments. To obtain a blank line, type space and CR.

Tabs can be used to increase the readability of a program. The tab
key on most terminals is set to produce up to 8 spaces. The first tab
goes to column 13 because the line number and space take the first
five positions.

Type CTRL/Z to indicate the end of input and halt the automatic line
numbers. When input is coming into the Editor from the card reader, a
beep sounds to indicate no more cards. Load more cards into the
reader and type any character to continue the input or type CTRL/Z to
indicate the end of input.

Examples:

.LN

.!.LN 10,5/R

.!.LN ,100

..!..LN 10/C

Requests line numbers starting at 100 with
increments of 10. The terminal is assumed to be
an input device.

The terminal display would be

.0100

Type the first line of the program and the CR key.
Editor displays the next line number each time the
CR key is typed •

• 0100 START
.0110

Requests line numbers starting at 10 with
increments of 5 to be assigned to input from the
high-speed reader.

Request line number starting at 100 (default) with
increment of 100. Input is from the terminal.

Requests line number starting at 10 with increment
of 10 (default). Input is from card reader.

If an error is made when using automatic line numbers, type RUBOUT or
CTRL/U, RUBOUT erases the last character typed and echoes the erased
character. CTRL/U erases the entire line. Monitor redisplays the
line number. CTRL/C acts the same as CTRL/U.

If the edit buffer is full, the error message TEXT AREA FULL appears,
and the last line entered is lost. The edit buffer must be separated
into two or more source files. This is done by:

1. WRiting the edit buffer as file B.

2-28

2. ERasing the last half of the edit buffer.

3. WRiting the edit buff er as file A.

4. FEtching file B.

s. ERasing the first half of the edit buffer.

6. WRiting the edit buffer as file B.

2-29

2.3.5 Number Commands

!number commands
l

Any line beginning with a number inserts the line number and text' in
the edit buffer.

The form is:

or

where

nnnn

text

nnnn

nnnn text

is a line number.

is the data to be inserted in the buffer. The
data must be separated from the line number by a
space or tab. (If tab is used, it becomes the
first character of text.)

If text is already at that line number, the new text replaces it.
Files are stored in increasing line number order and a new line number
is inserted in numerical order. If a CR is typed right after the line
number, data at that line number is cleared from the buffer.

The input line is limited to 120 characters including the line number
which counts up to four characters.

Examples:

.40
:;:_45 RECORD

erases text and number at line 40
inserts RECORD at line 45

Text before editing:

0035
0040

0047

0060

PROC
IN IT (I , V, IN)

XMIT(6,B)

END

Editing commands:

.35 PROC 1
~40 INIT(l,IN,'LABEL' ,2)
..!.47

Text after editing:

0035
0040

0060

PROC 1
INIT(l,IN,'LABEL' ,2)

END

2-31

2.3.6 RESEQUENCE

The RESEQUENCE command renumbers the program lines to adjust for
additions and deletions.

The form of the command is:

where

• RE [n 1 [, inc]

n is the starting line number. If no starting line
number is specified, 100 is assumed.

If the comma after the starting number is omitted, the
starting number and increment number are the same,
i.e., RE 100 causes a starting number and increment
of 100. If the command is RE 100, the starting line
number is 100 and the increment remains unchanged
unless the Monitor is read back into core; at which
time the increment returns to 10.

inc is the increment between line numbers. If no increment
is specified, 10 is assumed.

If line number exceeds 4095. on a resequence, the error message, LINE #
TOO LARGE, results. Enter another RESEQUENCE command with smaller
increments. If this is not done, the text will be only partially
RESEQUENCEd and duplicate line numbers may result.

Examples:

.RE Resequences line numbers of program in the edit
buffer using 100 as starting line number and 10 as
increment •

• RE 10,5 Resequences line numbers of program in edit buffer
using 10 as starting line number and 5 as the
increment •

• RE ,100 Resequences line numbers of program in edit buffer
using 100 or the last specified line number as the
starting line and 100 as the increment.

• RE 50, Resequences line numbers of program in edit buffer
using 50 as the starting number and the increment
remains unchanged.

2-33

~
I I

2.3.7 WRITE

The WRITE command stores a new or modified source program on the
specified device so it can later be compiled or FEtched for editing.

The form of the command is:

where

.WR pronarn[,dev] [/Y]

pron am is the six character name assigned to the program
to be stored.

dev is the three character designation of the physical
device (DTO - DT7, DKO - DK3) where the program is
to be stored. If no device is specified, the
system device is assumed.

/Y is used to bypass the REPLACE?
response when a duplicate
encountered. Normally used in
bypass operator response.

message
name

a BATCH

and
would

mode

YES
be
to

If the name specified is a duplicate name, Monitor asks

REPLACE?

Type Y or YES and the CR key to replace the old file with the new
file. Type N or any other character and the CR key to leave the old
file and return to the Monitor.

2-35

2.4 EDITING EXAMPLE

.FE ACC08S

.LI ;LIST PROGRAM TO BE EDITED

0010 START ;ACC08S -
0020 ;THIS PROGRAM UPDATES A MASTER FILE OF STOCK RECORDS, WITH A
0030 ;TRANSACTION FILE OF RECEIVALS AND WITHDRAWALS.
0040 ;A NEW MASTER FILE AND A REPORT ARE PRODUCED.
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290

0500

!.150
~230
.290
:0090
.0110
:0228
:0229

MIPART,
MICOST,
MIQTY,
MIDATE,

MIWHOL,

MOPART,
MOCOST,
MOQTY,
MODATE,

TYPE,
TPART,
TQTY,
TDATE,

END

MIPART,
MIQTY,

MOWHOL,

RECORD
D9
DlO
DlO
D6
BLOCK,X
A35

RECORD
D9
DlO
DlO
D6

RECORD
Al
D9
D7
D6

D9
DlO
BLOCK,X
A35

MAST I ;MASTER INPUT RECORD

;UNIT COST

;DATE OF LAST TRANSACTION (MMDDYY)

MAS TO ;MASTER OUTPUT RECORD

TRAN ;TRANSACTION FILE
;TYPE (R=RECEIVAL, W=WITHDRAWAL)

;PART NUMBER
;QUANTITY
;DATE (MMDDYY)

;Editing

;PART NUMBER
;QUANTITY ON HAND
; REDEFINITION

2-36

~LI ;LIST EDITED PROGRAM

0010 START ;ACC08S
0020 ;THIS PROGRAM UPDATES A MASTER FILE OF STOCK RECORDS, WITH A
0030 ;TRANSACTION FILE OF RECEIVALS AND WITHDRAWALS.
0040 ;A NEW MASTER FILE AND A REPORT ARE PRODUCED.
0050
0060
0070
0080
0090
0100
I'\, , I'\
VJ..J.V

0120
0130
0140
0160
0170
0200
0210
0220
0228
0229
0240
02.SO
0260
0270
0280

MIPART,
MICOST,
'9.•Tl""\m,7
J.Yl.J.\,!J. l. I

MIDATE,

MIWHOL,

MOPART,
MOCOST,
MOQTY,
MODATE,

MOWHOL~

TYPE,
TPART,
TQTY,
TDATE,

0500 END

RECORD
D9
DlO
ni f\
UJ.V

D6
BLOCK,X
A35
RECORD
D9
DlO
DlO
D6
BLOCK,X
A35
RECORD
Al
D9
D7
D6

MAST I ;MASTER INPUT RECORD
;PART NUMBER
;UNIT COST
• l"'ITT7\ll.TFT1TfT1V 1"111.T t.17\11.Tn
j~U.CU"l4.J..J.....L..L VJ..' .l..1..rl,l.'41L.J

;DATE OF LAST TRANSACTION {MMDDYY)

MAS TO ;MASTER OUTPUT RECORD

; REDEFINITION

TRAN ;TRANSACTION FILE
;TYPE (R=RECEIVAL, W=WITHDRAWAL)
;PART NUMBER
;QUANTITY
;DATE (MMDDYY)

2-37

2.5 BATCH EDITING

As the following example illustrates, editing can be done via a BATCH
program •

• ERASE

.LN 5,5/R

• LIST

0005 FETCH TEMP
0010 LIST
0015 ERASE 4
0020 ERASE 30,34
0025 35 PROC 1
0030 40 INIT(l,IN,'LABEL',2)
0035 47 FORMS (6,0)
0040 RE 5,5
0045 LIST
0050 WRITE TEMPA
0055 DELETE FILE/S

• WRITE FILE

.BATCH FILE

FETCH TEMP

LIST
0000 RECORD A
0004 ,Dl
0005 ,AS
0010 ,A6
0015 ,D6
0020 ,DlO
0025 ,A25
0030 ,D2
0031 RECORD B
0032 ,02
00-33 ,Al
0034 ,D2,
0035 PROC

70

0040 !NIT (l , V, IN)
0045 XMIT (l ,A,EOF)
0046 XMIT (6 ,A)
0047 XMIT (6 ,B)
0050 EOF, FINI (1)
0055 STOP
0060 END

;AUTOMATIC LINE NUMBERS START AT
;5 AND INCREMENT BY 5. INPUT FROM
; PAPER TAPE READER •
;LIST THE FILE READ IN.

;BATCH Program

;WRITE BATCH PROGRAM CALLED "FILE" •

;RUN BATCH PROGRAM "FILE"

;FIRST COMMAND OF BATCH PROGRAM LOADS
;TEMP FOR EDITING
; SECOND COMMAND LISTS TEMP

; TEMP PROGRAM

2-38

ERASE 4
EP..ASE 30,34
35 PROC 1

40 INIT(l,IN,'LABEL',2)

47 FORMS (6,0)

RE 5,5

LIST
0005 RECORD A
0010 ,AS
0015 ,A6
0020 ,D6
0025 ,DlO
0030 ,A25
0035 PROC 1
0040 INIT(l,IN, 'LABEL' ,2)
0045 XMIT (l,A,EOF)
0050 XMIT (6,A)
0055 FORMS (6,0)
0060 EOF, FINI (1)
0065 STOP
0070 END

WRITE TEMPA
DELETE FILE/S

;THIRD COMM&~D ERASES LINE 4.
;FOURTH COMMAND ERASES LINES 30-34.
;FIFTH COMMAND INSERTS NEW TEXT
;AT LINE 35.
;SIXTH COMMAND INSERTS NEW TEXT
;AT LINE 40.
;SEVENTH COMMAND INSERTS NEW TEXT
;AT LINE 4 7.
;EIGHTH COMMAND RESEQUENCES LINE
;NUMBERS STARTING AT 5 AND
;INCREMENTING BY 5.
;NINTH COMMAND LISTS EDITED TEMP.

;STORE TEMPA ON SYSTEM DEVICE
;DELETE SOURCE FILE OF BATCH
;PROGRAM

2-·39

2. 6 ERROR MESSAGES

Monitor Errors

Message

BAD COMPILATION

BAD DIRECTORY

BAD LABEL

DT n?

ENTER "DATE MM/DD/YY"

ERROR IN COMMAND

FILE NOT FOUND

LINE TOO LONG

LINE # TOO LARGE

REPLACE?

TEXT AREA FULL

?ILLEGAL UNIT

!*!MEMORY FAIL!*!

Explanation

User tried to SAVE a compiled binary
that had errors.

Directory does not
example, requesting
data tape).

look right
a directory

(for
of a

Tape has no label, or its form is
incorrect.

The expected tape is not available on a
DECtape drive.

For example, if following a MOUNT
message the operator has specified that
a file should be written on unit 3, and
unit 3 is not selected, or is WRITE
LOCKed, this message is output.

CTRL commands are not operative at this
point, i.e., CTRL/C does not work. To
recover, set switch to ENABLE the unit
or set the dial selector to the proper
number. Then type any key to continue.
On LINCtapes there is no message.

Typed an unrecognizable date.

Miscellaneous.

After, for example, FETCH FILEX.

Greater than 120 characters.

Greater than 4095.

Duplicate file names.
replace.

Type

Greater than 8,150 characters.

y to

The unit specified is not DK0-DK3 or
DTO-DT7; for example,

WRITE FILE,XY3
WRITE FILE, RK9

A hardware error has occurred.
the program.

2-40

Restart

Message

?NO FILE TO SAVE

*NO INIT DONE

Run-Time Error Messages

BAD DIGIT

*BAD PROGRAM

*DIBOL FILE NUMBER IN USE

*DIBOL FILE NUMBER NOT INITED

END OF FILE

* I/O ERROR ON xx, RETRY?

*ILLEGAL DEVICE

*ILLEGAL SUBSTRING

ILLEGAL RECORD #

Explanation

Nothing in the edit work area when WR~TE
command is issued.

Program attempted to read or write on a
device that was not opened by the system
program.

A character other than +, -, space, or
the digits 0-9 was encountered in an
alpha to decimal conversion;

Attempting to run a binary program which
contains a compilation error. Check
compilation listing for error flags.
Correct flagged errors, and recompile.

In INIT, the channel n~~ber is already
associated with a device.

An attempt was made to XMIT, READ, or
WRITE with a channel numbeL that was not
associated with a device.

The last record of an input file has
been read and the end of file mark
encountered, but no EOF label was
specified in the XMIT statement.

System failed in three attempts to read
from or write to a device. xx = DT or
DK. Type Y if retry is desired; any
other character if no retry and return
to Monitor is desired. In either case,
type only one character.

Attempt to WRITE on a file that was not
INITialized for UPDATE or attempt to
READ from a fil.e that was no.t
INITialized for INPUT or UPDATE.

A DIBOL PROCedure section statement has
attempted to access a data field, Fl
(m ,n) , but m=O or m>n.

Record number is O, past the end of the
physical unit or the length specified in
the record header word does not match
the length of the XMIT block (records in
data file are all not the same length).

2-41

Message

LINE TOO LONG

*NO BUFFERS LEFT

NO FILE

NUMBER TOO LONG

*PROGRAM TOO BIG

*PUSHDOWN OVERFLOW

*RETURN WITHOUT CALL

*SUBSCRIPT TOO BIG

ZERO DIVISOR

Meaning

An input line (record) overflowed the
block it was read into.

Not enough core available for I/O
buffers. An I/O buffer of some multiple
of 512 characters is set up for each
active mass storage file. Another
possibility: too few files were
specified in the PROC statement.

No file specified in RUN statement to
satisfy !NIT (SYS) command.

A decimal field longer than 15 digits
was used in a calculation.

Binary program does not fit in available
core. Reduce program size.

Either (1) a statement is too complex or
(2) subroutines are nested to a depth
greater than 50, or a combination of the
two.

The program tried to execute a RETURN,
but there was no place to go: there was
no corresponding CALL statement.

Program attempted to destroy the
run-time system or itself by using a
subscript larger than that defined in
the Data Definition section. Note that
the run-time system does not detect all
illegal subscripts; only those which
would cause the user's program or the
system to be destroyed.

The program attempted to divide by zero.

NOTES

1. The messages marked with an asterisk (*) cannot be
checked with an ON ERROR statement.

2. AT LINE nnnn is displayed under all run-time error
messages. nnnn is a DIBOL source program line
number in which the error occurred. If COMP/O
were specified for this program, nnnn is
meaningless.

2-42

CHAPTER 3

SYS GEN

SYSGEN is a conversational program used to reconfigure the software
system to handle the hardware available, change the logical unit
assignments and print a table of those assignments for reference.

3.1 OPERATING PROCEDURES

To load SYSGEN type:

.RU SYSGEN[, filnam]

or
.RU SYSGEN/x

where
filnam is optional and is a file previously created and

stored with the Editor which contains the table of
logical unit assignments to be made.

/x is one of three options used with SYSGEN.

/C change the hardware handlers in the system.

/T take new logical unit assignments from
terminal.

/L print table of current logical unit
assignments.

If no file or options are specified SYSGEN takes the information
stored in the edit buffer as the new logical unit assignments.

Refer to the appropriate section for further
reconfiguration and logical unit assignments.

3. 2 SYSTEM SOFTWARE CONFIGURP.TION

explanation of

As shipped, the COS software system is set up to handle the following
hardware configuration on the PDP-8:

TC08 with 8 DECtapes (or TDSE for the 8/E)
RK8E, RKOB or RFOB disks
Terminal
LPOB BO-column Line Printer
Card Reader
High-speed Paper Tape Reader and Punch

3-1

or

LINCtape (PDP-12)
RKBE, RK08 or RF08 disks
LP08 80-column Line Printer
Terminal
Card Reader
High-speed Paper Tape Reader and Punch

on the PDP-12.

NOTE

No change is necessary if your COS hardware
configuration matches the one described here.

If, however, the system has either a 132 column line printer or an
Analex line printer or the system device is to be changed, type the
command

.RU SYSGEN/C

and the CR key. (Refer to Figure 3-1 for a flow chart of the question
and answer sequence.)

: RU SYSGEN/C

WHAT IS NEW
SYSTEM DEVICE

ASSUME 80
COLUMN PRINTER

SYSTEM IS
RECONFIGURED
AND CONTROL
RETURNS TO

MONITOR

Figure 3-1. SYSGEN Flow Chart

3-2

SYSGEN displays the following questions on the terminal:

DO YOU WANT TO CHANGE THE SYSTEM DEVICE?

Type NO and the CR key to keep the current system device.
skips to the questions on the line printer.

SYS GEN

Type YES and the CR key to change the system device from DECtape to
Disk or Disk to DECtape. This is the only way to move the Monitor and
DIBOL run time system (RSYS) • If the system device is changed, the
system must be restarted with the bootstrap appropriate to that device
(see Appendix B or Chapter 9, BOOT). SYSGEN then asks:

WHAT IS THE NEW SYSTEM DEVICE?

Type the three character designation of the new system device, DK0-DK3
or DTO-DT7.

NOTE

Since only an RK08, or RK8E, or RF08 disk may be
resident on the system, disks are commonly
addressed as DKO-DK3. An RF08 disk must always be
addressed as DKO.

DO YOU WAi.~T TO TRANSFER YOUR FILES?

Answer YES and the CR key to move the rest of the system programs
(PIP, COMP, etc.) to the new system device. Transfer of the system
programs destroys anything stored on the new system device. Answering
NO and the CR key will zero the directory of the new device.

DO YOU HAVE AN ANELEX PRINTER?

NOTE

The Anelex printer must be configured into the
system with SYSGEN before it is turned on or it
will not function properly.

Answer YES and the CR key and the next question is

IS EVERYTHING CORRECT?

Answer NO and the CR key and SYSGEN assumes an LP08 or LS8E printer
and the question

132 COLUMN PRINTER?

is displayed. Answer YES and &he CR key if there is a 132 column line
printer. Answer NO and the CR key and SYSGEN assumes an 80 column
line printer. The next question is:

IS hVERYTHING CORRECT?

Check all answers made to the above questions. Type YES and the CR
key if the answers are correct. Type NO and the CR key to correct any
errors. SYSGEN repeats the questions starting at the beginning.

3-3

SYSGEN/C does not reset the logical unit assignments to reflect the
new area occupied by the system on a disk. Run SYSGEN/T to reassign
logical units if the system is moved to a disk or the system may be
destroyed by a data file.

3.3 LOGICAL UNIT ASSIGNMENT

The assignment of logical units to physical mass storage devices
provides greater utilization of the storage area and a certain device
independence. The device independence is available at run time; any
mass storage device can be specified for I/O and the program executes
using the specified devices.

The COS system handles storage using the following hierarchy

2 characters = 1 word
= 1 block 256 words

16 blocks = 1 segment

Refer to sections 3.3.l and 3.3.2 for background on logical unit
assignment before proceeding. Devi~es not currently part of the
system configuration can not be assigned a logical unit.

To make logical unit assignments from the terminal, type

• RU SYS GEN /T

and the CR key. Type the 3 character device code, a comma and length
in segments in the order they are to be assigned to the logical units.
The comma and length in segments can be omitted and SYSGEN assigns all
the space left on the specified device to the next logical unit
(DECtape = 46 segments; RK08 Disk, 202 segments; RK8E, 404 segments;
RF08 disk, 64 segments times the number of platters). The first
device entered is automatically assigned to logical unit 1, the second
to unit 2, etc. For example,

.RU SYSGEN/T
ful,46
DT2,46
OT3~46
DT4,46
DT5,46
DTG,46
DT7,46
DK0,46
DK0,46
DKO ;logical unit 10 is 110 segments (assuming DK is

;the RK08 disk and DECtape is the systems device)

assigns DTl to logical unit 1 with a length of 46 segments, DT2 to
logical unit 2, etc. Logical units 11-15 are left unassigned. Be
sure to follow the format shown in the example. If an error is made
when typing the table, type CTRL/C then retype the RUN SYSGEN/T
command and start the table over again.

3-4

Logical assignment can also be accomplished by typing the table into
the Monitor. This method all~ws error correction with the Monitor
commands. If the following logical unit assignments are typed to the
Monitor,

0010 DTl
0015 DT2
0020 DT3
0025 DT4
0030 DT5
0040 DT6
0050 DT7
0060 DK0,46
0070 DK0,46

and the command

• RUN SYSGEN

and the CR key is typed, SYSGEN makes the logical unit assignments
according to the table in the edit buffer. Logical units 1-7 are
DECtape units 1-7 with a length of 46 segments and logical units 8 and
9 are portions of RK08 disk (DKO} ~ each 46 segments long. A listing
of the SYSGEN assignments is always printed on the line printer upon
successful completion of the SYSGEN program.

The table created with the Monitor can also be stored with the WRITE
command for future use. Use the command

,.RU SYSGEN, file

to assign the logical units with a previously created file. For
example

.RU SYSGEN,TABLl

where TABLl contains

0010 DTl
0020 DT2
0030 DT3
0040 DT4
0050 DTS
0060 DT6
00.70 .DT7
0080 DKl,202
0090 DK2,101
0100 DK2,101

Occasionally, it is desirable to check the logical device assignment
table. To obtain a printout of the table, type

.RUN SYSGEN/L

and the SYSGEN table of the
printed on the line printer.

current logical
For example:

3-5

device assignments is

LOGICAL
UNIT #

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

DEVICE
NAME

DTl
DT2
DT3
DT4
DTS
DT6
-UNDEFINED-
-UNDEFINED-
-UNDEFINED-
-UNDEFINED-
-UNDEFINED-
-UNDEFINED-
-UNDEFINED-
-UNDEF INED-
-UNDEFINED-

LENGTH
(SEGMENTS)

0046
0046
0046
0046
0046
0046

This table should be made available for reference by all persons using
the COS system.

Physical mass storage devices are limited by the hardware; but can be
subdivided into logical units. Logical units are composed of
segments'; the number of segments per unit is up to the user. COS
allows one file per logical unit.

The COS system is shipped with logical units 1-7 assigned to DECtape
units 1-7 and each unit is originally assigned 46 segments. Logical
units 8-15 are left unassigned. The user may assign and reassign any
of the 1-15 logical units as desired. Logical unit 0 is always the
system device and cannot be reassigned.

It is advisable to create logical units of varied sizes since file
lengths vary and a short file in a long logical unit wastes storage.

3.3.1 DECtape Users

Although more than one logical unit can be assigned to a physical
DECtape unit, it is ac,lvisable to assign one logical unit per DECtape.
The use of two or more units per DECtape may cause excessive tape
spinning; for example, if reading from one unit and writing to another
located on the same physical device. In the same example, if the
output unit filled and had to be replaced, it might be necessary to
dismount the tape, thereby also removing the needed input unit.

A DECtape is 46 segments long so the logical unit assigned to the
physical DECtape unit should be assigned 46 segments.

3.3.2 Disk Users

The easiest method of assigning logical units to a disk is to think in
terms of a sequence of DECtapes.

3-6

A DECtape is 46 segments long.

1 46
DECtape

A RF08 platter is 64 segments; and a second platter adds another 64
segments.

1 64 65 128

T'\T".'11"\t'\ I I
J:U.'VO platter I RF08 platter I

The second platter is treated as a continuation of the first.

The RK08 disk cartridges are each 202 segments and there can be up to
four drives {0-3).

1 202

DKO

1 202

DKl

1 202

DK2

1 202

DK3

The RKBE disk cartridges are each 404 segments and there can be up to
four drives {0-3). If the disk is the system device, approximately
200 blocks (or 12 segments) must be left unassigned to hold the
operating system and system programs. In addition, space should be
left on the system device to store source programs, control programs
and binary programs. The remainder of drive 0 may be used for this
purpose. However, fifty segments are suggested which leaves
approximately 140 segments (342 for RK8E) for logical unit
assignments. Logical units on the system device are automatically
assigned at the end of that device (the opposite is true of all other
devices). For example:

3-7

DKO (assuming RK08)

1 12 62 202

SYSTEM Space for user
PROGRAMS source and

!binary files

Logical Unit 0

which leaves approximately 140 segments for logical unit assignments.

A sample assignment might be

DKO (assuming RK08)

1

SYSTEM

~

"""' Logical unit
0

User source
& Binary

Files
46
SEGMENTS

~

Logical
unit 8

46
SEGMENTS
~

Logical
unit 9

202

46
SEGMENTS
~

Logical unit
10

The area between logical unit 8 and the system can be left unassigned
for system program overflow, if desired. On devices other than the
system device SYSGEN starts assigning logical units at the beginning
of the device.

3.4 ERROR MESSAGES

Message

TOO LARGE

ALL UNITS ASSIGNED

BAD SWITCH

ILLEGAL DEVlCE

INSUFFICIENT SPACE ON DEVICE

Explanation

Number entered was greater than 4095.

Attempt to assign more than 15 units.

Not /T, /C, or /L.

Device other than DTO-DT7 or DKO-DK3.

Attempt to allocate more segments than
there are available on a device.

NOT ENOUGH ROOM FOR SYSTEM AND FILES
Device specified too small to
accommodate system programs and files.

SYNTAX ERROR Missing corn.ma., extra characters, etc.

3-8

CHAPTER 4

COMP

The Compiler takes a DIBOL language program and converts it to a
binary language program which can be executed by the run time system
(RSYS). In the process of creating the executable program, the
Compiler outputs a listing of the source program and a storage map of
the records and fields which are used by the program.

Th2 Comniler sets aside storaae soace for the constants, variables and
stat~~~~t~-- ~s~d by the program. Refer to Appendix c for an
explanation of the amount of code generated by the Compiler.

Be sure to document any new programs completely and accurately and to
prepare a set of instructions for execution including any necessary
changes to logical device assignments, names of files, and where each
is to be mounted, the format of any entries to be made to the program,
restart procedures and any other essential information.

4.1 OPERATING PROCEDURES

The command to run the Compiler has the form:

• RU COMP [, filel, ••• , file?] [/xx]

and the CR key. (Be sure the line printer is turned on.)

Where

filel, ••• , file?

/xx

are files on the system device to be compiled into
one binary. These files contain segments of one
program, not several programs. If no files are
specified, the program in the edit scratch area is
compiled.

is one or a combination of the following options:

/N suppresses the output of
listing and storage maps.

the Compiler

/G compiles the source program and if no errors
are detected, executes the binary program
with no user intervention. /N is implied.
The message LOADING is displayed when
compiling is successfully completed. The
program must have an END statement to be
compiled and executed with the /G option, if
!NIT SYS is used in the program.

/1-7 specifies a physical unit (DECtape only) for
temporary storage during compilation. The
unit specified should contain a scratch
tape. File is recopied on the system device

4-1

when compilation is complete. Use of
temporary storage units minimize tape motion
during compilation.

/T enables the TRACE function and implies the
/G option. For example,

/D

RUN COMP/T2

performs an
chains to
Technique)
Appendix H.

implied /G
the DDT

mode which

option and then
(DIBOL Debugging

is explained in

/0 compiles the source program in less than the
amount of memory space required by the other
options, at the expense of eliminating the
TRACE feature (if stated in the source
program) and accurate error reporting.
Execution speed of the compiled program is
increased by as much as 20%. This option
can be combined with either the /N, /G, /D,
/T, or /1-7 option.

Use the SAVE command to store the binary program prepared by the
Compiler.

To calculate how much memory space is saved by using the /0 option,
the following rules apply:

1. Saves 1 location for each executable statement.

2. Saves 1 additional location for each label.

3. Costs 1 location for each ON ERROR statement. (However, ON
ERROR statements are executable.)

Since the TRACE statement in a program compiled with the /0 option has
no useful effect, and since any run-time error reported in such a
program will be reported to have occurred in the PROC statement, it is
suggested that the /0 option only be used on those programs which have
been thoroughly debugged.

Unless the /N or /G option is specified in the RUN command, the
Compiler produces a listing of the source program (Figure 4-lj and a
storage map (Figure 4-2} on the line printer or the device specified
in the START, PROC or END statements. Most errors detected by the
Compiler are indicated by underscoring the number of the line where
the error exists and inserting a caret () pointing in most cases to
the error. Other errors are listed in the symbol map. These errors
must be corrected before an attempt is made to execute the program.

The number of errors detected by the compiler is displayed on the
terminal as

nn ERRORS

CQ~ 01801.. 0l•MARw7~ THU~ COMPILATION LISTING VlZJ28 PAGE 01

HU
00i0
'5i13il
HUI
0IU
00u

""'" HU
H90
0~~2'

0u'
"UZ

DATA Df VISlQN s Q U ~ R £ R 0 0 T S U B R 0 U ! t N £

A1
s,

x,
SQRTX,
TE;MPX1
Na

ST4RT I s Q u A ~ t R 0 0 T s u a R 0 u T I N e

Rf;eORD PRIN!
A15
AU

RECORO
Ol.5
0:1.5
015
03 1 Hi

FIGURE 4-1. COMPILER LISTING
(sheet 1 of 2)

4-3

QQS OIBOL ~!•MAR•73 TMUR COMPILATION ~!S,tNG VUt28 PAfil l!2

9J~H
"~421
e~H
0u0
rop0
0~U
e;90
0?00
0~U
022il
0~;se
02421
"2,2'
0260
0~10
0~BrD
~290

0 ~""

PROCEOURE OIV!SIQN

PROC 1

L,OOP1
INtTC11~PTt
X:!!N•1HHH
CAL:L. SQRT
AIN
s ~ SQRTx,1xxx;xxx!
INCR N
XHlTCl1PRlNP
If cN;L~~99) GOTO ~OOP
STOP

SQRT, TEMPX!K/2 JTRlAL VA~UE
SQ~OOP 1 SQRTX~CTEMPX+(X/T~MPX))/Z JNEWTON'S METMOO

ENO

If CSQRTX•TEMPX 1 EQ 1 Z) RETURN
TEMPXeSQRTX
GO'l'O SQl.,OOP

FIGURE 4-1. COMPILER LISTING
(sheet 2 of 2)

4-4

cos DI 801,,. ~1,,."1AR""73 THUR STORAGE MAP L.ISTING V1Zl28 PAG£; 03
NAME TYPE DIM SilE OR lG IN

0003. PRINT REcORo 0l 32 2H0~
00'!!~ A Al,P~A 01 15 2000~
0003 s Al..PMA 01 15 2"2121
0004 x DECHAL. 01 15 20042
0005 SQRTX DECMA~ 01 15 2H61
0006 TEMPX OECMAI.. 01 15 20u0
0007 N DE CM Al,. 211 03 ~0117
00UJ t ·,1 OE CM AL, 01 u 20122

'"' 1l.
~OOP L..ABEL, 00 u 1H71

00~~ ~ t 1000 OECMAL. £11 07 20123
021!3 SQRT L.ABEL. 00 "~ Ut.3~
0014 •• xxx t AL.P~A 01 0'1 20132
001; , , 99 OECMAl,. 01 02 2"'14:1
0016 • ·, 2 OE CM A~ "1 n ~U43
0017 SQL.OOP L.ABEL 00 0~ 10141
02120 .• ·, 0 OECMM'! 01 01 20144

H2,6 SVM90~S

NO ERRORS DETEC re:o~, 08 K eoRE REQUIRED C3940 F'REE: ~ocs • 14 BVH'E~SJ

FIGURE 4-2. STORAGE MAP LISTING

4-5

The storage map lists the names of all the records, fields, and labels
as they were processed by the Compiler. The information is arranged
in six columns as follows:

NAME

TYPE

DIM

SIZE

ORIGIN

this column contains the internal number of the symbol named
in column 2 and may be ignored.

Column 2 gives the name of any symbol (field name, record
name, program label) or constant used in the compiled
program. Constants are decimal constants or alpha
characters which appear in the PROC section of the source
program. Only the first six characters of a symbol name are
used; any characters after the sixth are ignored. Only the
first four characters of a constant are used and each
constant is preceded by two periods (••) to distinguish it
from a symbol. Constants with four characters or less
appear only once on the symbol map even though they may
occur more than once in the program. Constants with more
than four characters are listed each time they occur in the
program. Record literals begin with a" •• ".

Column 3 states the symbol type. The types are:

ALPHA

DECMAL

Symbol is an alpha field name or an alpha constant
(character .string).

Symbol is a decimal field name
constant.

or decimal

RECORD Symbol is a record name or record literal.

LABEL Symbol is a program label.

REDEF Symbol is multiply defined (redefined). All
attempts at definition after the first are flagged
as errors in the source listing.

UNDEF*** Symbol is a label referenced by the program but
not defined. For example, GO TO TAG! in a program
where TAGl does not appear as a label.

This error is output to the line printer even
though the /N option is in effect. The line
number displayed is the line where the symbol is
first used.

Column 4 contains the array dimension (number of fields) of
the alpha or decimal symbols. The column is meaningless for
other types of symbols.

Column 5 lists the size of the symbol in characters. The
size of a RECORD symbol is the number of the characters of
all its symbols plus 2.

Column 6 gives the 15-bit (octal) byte address where the
symbol appears in core and for most users should be ignored.
Octal addresses are shown for labels.

The number of symbols used, number of errors detected, core required
and free locations are listed at the bottom of the symbol map.

4--6

Maximum number of symbols allowed in an BK system is 365; in 12K or
larger systems, 511.

4.2 CONDITIONAL COMPILATION PROCEDURE

The Conditional Compilation Procedure (CCP) is a feature which permits
the DIBOL programmer to include statements in a source program which
will be compiled by the compiler only if the programmer elects for
those statements to be compiled.

Statements included in a program for conditional compilation are
enclosed with angle brackets as in the following example.

RECORD A
Bl, DS
Cl, A4
PROMPT, Dl

RECORD N
NAME, AG

PROC
<PROMPT

XMIT(8,"ENTER NAME:")
>

XMIT (7 ,N)
STOP
END

Notice that the left angle bracket is followed by a control variable,
in this case PROMPT. Until the control variable is turned "on"
somewhere in the program before the left angled bracket is encountered
by the compiler, those statements between the angled brackets will be
ignored. Notice too, that the right angled brackets appears on a line
by itself. The command to turn on a control variable is as follows:

=control variable

The example above shows a program that requires the operator to type
in a name on the keyboard. If the program is recompiled with the
control variable PROMPT on, it produces a DIBOL program which first
displays a message to the operator.

RECORD A
Bl, 05
Cl, A4
PROMPT, Dl

RECORD N
NAME, A6

PROC
=PROMPT ;TURN ON PROMPT
<PROMPT

XMIT(B,"ENTER NAME:")
>

XMIT (7 ,N)
STOP
END

4-7

Conditional compilation can also be used, for example, to
conditionalize debugging statements into a source file. Once the
program has been tested, the control variable can be shut off by
deleting the command to turn it on,· effectively removing the debugging
routines from the source.

CCP can also allow you to combine several similar (but not identical)
source programs into one source.

If the control variable used in a CCP statement is undefined, the
compiler will automatically set aside space for it. This, however, is
wasteful of space and it is to the programmer's advantage to use, for
CCP symbols, symbols that are already being used for some other
purpose.

The CCP value of a symbol (on or off} is independent of the symbol's
ordinary DIBOL value.

If a CCP variable is used in the middle of a record definition (in the
record section of a DIBOL program} it must be a variable that has
previously been defined, because if not, the compiler will allocate
space for the variable in the middle of your record (where not
desired}.

CCP sections may be nested to any depth. Any sections inside a CCP
section that is off will be completely ignored by the compiler. This
includes other CCP statements. To indicate that certain statements
are being ignored (conditionalized out), the compiler listing will not
print the line number for that statement. There must be a matching >
for each <used. If this condition is not met, the compiler generates
a CCP ERROR message. This error is fatal if angled brackets do not
match by the end of the program.

4.3 ERROR MESSAGES

Most Compiler error messages are printed on the source listing
directly after the line in which the error occurs. A caret CA> in the
error message points to the approximate location of the error. Other
errors are listed in the symbol map.

The Compiler error messages are:

Message

BAD ALPHA VALUE

BAD DECIMAL VALUE

BAD PROC #

BAD RELATIONAL

Explanation

Initial value in an alpha data
specification statement did not begin or
end with a single quotation mark.

The initial value for a decimal data
specification was incorrectly formed.

The number in a PROC statement was not a
digit from 0 to 7.

An illegal relational occurs in
statement. For example, a .GX.
of a .GT.

4-8

an IF
instead

Message

CCP ERROR

COMMA MISSING

DATA INITIALIZATION MISSING

EXPECTED LABEL IS MISSING

EXPRESSION NOT ALLOWED

EXTRA CHARS AT ST.MNT END

FIELD TOO LARGE OR 0

ILLEGAL OPERATOR

ILLEGAL STMNT

INITIAL VALUE WRONG SIZE

LABEL NOT ALLOWED

MISSING CLOSE PAREN

MISSING OPEN FAREN

MISSING OPERAND

MISSING OR BAD DEVICE

Explanation

Matching angled bracket
missing.

No comma
expected.

appeared where one was

No data initialization followed a comma
in a data specification statement.

A required label is missing.

A complex expression or bad character
occurs to the left of an = or where only
a variable is allowed.

Extra characters occur at the end of a
legal statement.

In a data description statement, the
dimension was 0 or more than 3 digits
long, or the field size was 0 or larger
than 511.

A bad character was
expression where
expected.

encountered in an
an operator would be

The statement was not a data
manipulation statement (it had no =) nor
did it start with a recognizable
keyword.

The initial value in a data
specification statement had a length
different from the field size specified.

A symbol in an expression was not of
type alpha or decimal, or a record or a
symbol which had been redefined was
used.

No close parenthesis occurred where one
was expected.

No open parenthesis occurred where one
was expected.

A bin~ry operator occurs in an
expression with no operand following it;
or no expression at all occurs where one
is expected.

The device
missing or
character.

4-9

in an INIT statement was
started with an illegal

Message

MISSING QUOTE

MISSING RELATIONAL

NAME PREVIOUSLY DEFINED

NOT A OR D

NOT LABEL

PROGRAM TOO BIG

RECORD TOO BIG

STMNT TOO COMPLEX

SUBSCRIPT ERROR

SUBSCRIPT NOT DECIMAL

TOO MANY SYMBOLS!

TOO MUCH DATA

UNDEFINED NAME

WRONG DATA TYPE

Meaning

The statement contained an odd number of
quotes (').

No relational
statement.

appeared in an IF

The name used was previously defined and
this statement tries to redefine it.

A character other than A or D occurred
in a data specification statement where
A or D was expected.

A symbol which was not a 'label'
occurred where a label was required.

Binary output too big for the binary
scratch area. Remedy: Run PIP with /n
option, (refer to Chapter 5).

A named record exceeded 510 characters
in size.

The statement generated too much code
and overflowed the Compiler's code
buffer, or it had too much nesting and
overflowed the Compiler's push-down
stack. Remedy: break up the statement
into smaller parts.

No conuna or close parenthesis occurs
after a subscript.

The type of a subscript was not decimal.

A fatal error message. Only 365 symbols
allowed in symbol table in 8K system,
and only 511 symbols allowed in larger
systems. The compiler stops compiling;
no storage map can be produced.

Program's Data division exceeds
bytes.

32K

A name is used which was never defined
in the data section.

Mixed modes occurred in an expression;
or an argument which was supposed to be
decimal was not or one of the three
arguments in a data manipulation
statement was of the wrong type.

4-10

CHAPTER 5

PIP

PIP (Peripheral Interchange Program) handles file tranfers between two
logical devices, i.e., moves data, source and binary files, and system
programs between two file-oriented devices; copies the contents of one
device to another, and consolidates files to remove free blocks. PIP
can also be used to allocate more space to the binary scratch area.

5.1 OPERATING PROCEDURES

Type the Monitor command:

.:. RU PIP [/n]

and the CR key to load PIP. /n is optional and is a number 0-9 which
indicates the number of segments to allocate to the binary scratch
area. The /n switch is used in conjunction with the E option. Refer
to section 5.1.4 for further information.

PIP responds to the RUN command with:

PIP 2.1108 {or current version number)
QE1.::..

requesting the type of transfer and I/O devices. Answer with one of
the options, B, c, D, E, s, V, X, described on the following pages.
After the option is specified, PIP displays the IN and OUT questions
requesting the input and output files. If an incorrect character is
entered when responding to the OPT, IN or OUT questions, type CTRL/U
and the correct response. Type CTRL/C to return to the Monitor.

5-1

OPT- B

5.1.1 Transfer Binary File

Type B to move a binary program between two file-oriented devices.

Answer IN with the name of the binary program to be transferred
optionally, a comma, and the input device, DTO-DT7, DKO-DK3.
device is specified, the system device is assumed.

Answer OUT with the name to be assigned to the output file,
optionally, a comma, and the output device, DTO-DT7, DKO-DK3.
device is specified, the sys~em device is assumed.

and,
If no

and,
If no

If an attempt is made to transfer to or from a non-file-oriented
device, the IN or OUT message is repeated.

Example:

OPT
IN
OUT
OP T-

B
TEST,DTl
TEST,DKl

(CTRL/C typed here)

5-3

I OPT- c

5.1.2 Copy Device

Type C in reply to OPT- to copy the contents of an entire device onto
another similar device, i.e., disk to disk or DECtape to DECtape.

Answer IN with the three-character physical device, DTO-DT7, or
DKO-DK3.

Answer OUT with one of the physical as explained for

Example:

c
OTO
DT7

(X or CTRL/C typed here)

5-5

IN.

OPT- D

5.1.3 Transfer Data Files

Type D to move data files between the devices specified after IN and
OUT. Answer IN with a label (up to six characters, first character
must be alphanumeric), an optional logical unit number (1-15) preceded
by a slash or comma, or a device switch:

/R for paper tape reader ,,., ,.._ for
for keyboard /K

/F BCD paper tape in high speed reader

If /R is specified as the input device, records stored are variable
length. If /C, the record produced is the same size as the card even
if a smaller number of columns are punched.

If a label is specified without a logical unit number or if both are
specified and a data file of another name is found, PIP asks

MOUNT xxxxxx #01 FOR INPUT:

answer with the appropriate logical unit number (1-15). Answer OUT
with a label, number or device as described for IN. Output devices
are:

/L line printer
/P paper tape punch
/T terminal

If a label is specified without a default unit specification, the
message

MOUNT xxxxxx #01 FOR OUTPUT:

is displayed. Answer with the appropriate logical unit number (1-15).

If a file with a different name already exists, Monitor asks

REPLACE xxxxxx#nn?

Type Y and the CR key to destroy old file and replace with new. Type
N and the CR key to return to ~'le OPT- quest:!. on. If output device
specified is a logical unit (1-15) and the unit is filled, an error
message is produced.

When at the end of the input file or card deck, PIP asks

MORE?

Answer with the CR key if there is no more input, or specify another
label, logical unit or device.

5-7

Examples:

OPT
IN
MOUNT
1
OUT
MORE?
OPT-

OPT
IN
OUT
MORE?
IN
_MORE?
OPT-

OPT-
IN-
OUT-
MOUNT
10
MORE?
IN-
MOUNT
11
MORE?
OPT-.

NOTE

PIP transfers data in alphanumeric mode only. A
negative number is treated as the letter which has
the equivalent code. (Refer to Appendix A, COS
Character Codes.)

D
EMPNAM
EMPNAM #01 FOR INPUT:

/L
N

D
HRPAY,2
PAYFIL/l
y
SALPAY,3
N

D
/C
LIS Tl
LIS Tl #01 FOR OUTPUT:

y

/C
LISTl #02 FOR OUTPUT:

N

5-8

Explanation

Dump EMPNAM
file on logical
unit 1 on the
line printer.
CTRL/C is typed to
return to the
Monitor.

Combines 2
data files into
one output
file.
CTRL/C is typed
to return to the
Monitor.

Input from
card reader which
creates a
multi-unit
file.

Logical unit 10
is full.

CTRL/C is typed
to return to the
Monitor.

5.1.4 Eliminate Spaces in Directory

loPT- El
I I

Type E to consolidate the free blocks of the file on the input device,
and store the consolidated files on the output device. In addition,
it is possible.to eliminate one or two of the types of files (source,
binary, and system) during the consolidation. These free blocks are
shown in the file directory and occur when a file is deleted f rorn the
directory. The Monitor is not copied.

Answer IN with DTO-DT7, or DK0-DK3 and the CR key.

Answer OUT with DTO-DT7, or DK0-DK3 and the CR key.

When consolidating the system device onto itself, PIP eliminates the
free space as shown below:

SYS

f f logical logical logical
before files r files r files unit unit unit

e e 8 9 10
e e

SYS

logical logical logical
after files free unit unit unit

8 9 10

However when consolidating a device {other than the system device)
onto another device PIP eliminates the free space as follows

before

after

Example:

f
files r

e
e

files

OPT- E
IN- DTO
OUT- OTO

The message

files

DKO

f
r logical logical
e unit unit
e 8 9

DKl

free

TYPES OF FILES TO BE SKIPPED (S,V,B):

5-9

logical
unit

10

is displayed. Answer with the CR key if all files are to be
transferred, or answer by typing one or a combination of two of the
characters s, V, B separated by a comma and followed by the CR key if
one or two of the types of files are to be eliminated.

For example:

~R PIP)
PIP 2.1108
OPT- E)
IN- OTO)
OUT- DKO)
TYPES OF FILES TO BE SKIPPED (S,V,B): S)

This would consolidate free space and eliminate source files located
on OTO and store the consolidated files on DKO assuming there was a
directory on DKO.

NOTE

All control keys are ignored until the option E
operation is completed.

Binary Scratch Area Modification:

As mentioned in section 5.1, the E option can be used in conjunction
with /n to change the size of the binary scratch area. The binary
scratch area, normally two segments (32 blocks) long, is adequate for
most applications but extremely large DIBOL programs (containing many
statements) may need more space.

A typical sequence for expanding the binary scratch area is:

.R PIP/2)
PIP 2.1108
~ E)
IN- DTO)
OUT- DKO)
TYPES OF FILES TO BE SKIPPED (S,V,B):)

This would allocate 64 blocks to the binary scratch area on DKO,
doubling its original size.

In genera.1, _

1. If the output device is not the input device, the binary
scratch area on the output device equals 2+n segments.

2. If the output device is the input device, the binary scratch
area is set either to the size of the current area or to 2+n,
whichever is less. That is, compressing a device onto itself
can shrink the binary scratch area, if 2+n is less than the
size of the original area. The binary scratch area cannot be
expanded if a device is being compressed onto itself since
that would require writing over existing files.

3. If no /n is specified, the size of the binary scratch area on
the input device is assumed.

5-lQ

OPT- S

5.1.5 Transfer Source Files

Type S to transfer source files between two file-oriented devices.
Answer IN with the name of the source file to be transferred and,
optionally, a comma, and the output device DTO-DT7, or DKO-DK3. If no
device is specified the system device is assumed.

Answer OUT with the name to be assigned to the output file and,
optionally, a comma, and the output device, DTO-DT7, or DKO-DK3. If
no device is specified, the system device is assumed.

If an attempt is made to transfer to or from a non-file-oriented
device, the IN or OUT message is repeated.

Example:

OPT- S)
IN- TEST, DTl)
OU'T'- 'T'PC:l'J"I mn) --- ~,~ t~~·-

OPT- (X or CTRL/C typed here)

5-11

OPT- V

5.1.6 Transfer System Program

Type V to move a system program between two file-oriented devices.
Answer IN with the name of the system program to be transferred and,
optionally, a comma, and the input device, DTO-DT7 or DKO-DK3. If no
device is specified, the system device is assumed.

Answer OUT with the name to be assigned to the output file, and,
optionally, a comma, and the output device, DT0-DT7 or DK0-DK3. If no
device is specified, the system device is assumed. If an attempt is
made to transfer to or from a non-file-oriented device the IN or OUT
message is repeated.

Example:

OPT- V)
IN- SORT, DTl)
OUT- SORT, DT4)
OPT- (X or CTRL/C typed here}

5-13

OPT- X

5.1.7 Return to Monitor

Type X in response to OPT- and the system will terminate PIP and
return to the Monitor.

This feature is particularly useful when PIP is included in a string
of Monitor commands in a BATCH program. The X option signals the end
of the PIP program and the next Monitor command in the BATCH program
is executed.

5-15

5.2 ERROR MESSAGES

Message

BAD DIRECTORY

ILLEGAL DEVICE SWITCH

NO ROOM

Explanation

Attempt to reference or store a file on a
device with no directory (or a directory
that has been destroyed).

A switch was specified that was not /R, /C
or /K for input or /P, /L or /T for output.

Attempt to store a file on a full device.

5-16

CHAPTER 6

BUILD

BUILD is a utility program used to create data files containing fixed
length records. Creating data files requires careful consideration of
their proposed usage. (Designing BUILD records is discussed in
Appendix D.) BUILD allows input from the keyboard, card reader,
high-speed paper tape reader, or system device.

A BUILD control program must be written before BUILD can be run. This
control program provides the field description and order for input and
output of the data to be used to create the file. Be sure to prepare
a set of instructions on input preparation so data input will be
according to specifications in the control program.

During execution, BUILD checks each data input line to be sure the
data entered conforms exactly to specifications in the control
program. If no errors are found, the input line is written on the new
data file and maybe printed on the line printer. If an error is
detected, the record is not written to the data file.

BUILD outputs a listing of the control file and data records created
on the line printer, if desired. A summary of the number of records
written, number of records not written and any hash totals kept is
printed on the line printer for each file created.

6.1 BUILD CONTROL PROGRAM

The BUILD control program is created and written on a mass storage
device with editing commands.

This program conveniently falls into three sections, Field Descriptor,
INPUT, and OUTPUT. Briefly, the Field Descriptor section defines all
the fields to be used, the type and size and any initial values to be
assigned.

The INPUT section describes the order in which the data will be
received. The input format specified in this section must be followed
when preparing data for input. The OUTPUT section describes the order
of the output of data. There may be up to seven output formats for
one set of input so several different output files can be created with
one input file.

Figure 6-1 is an example of a simple BUILD control program which is
explained in detail in the following sections.

Errors in the BUILD control program cause a return to
Spaces and tabs may be inserted anywhere in the
readability. As with any COS program, corranents inserted
must be preceded by a semicolon.

6-1

the Monitor.
program for

on a line

The control program may be stored as two separate source programs: the
Field Descriptor section as one and the INPUT and OUTPUT sections as
the other •

.!.LN 10,10 ;AUTOMATIC LINE NUMBER COMMAND,
;START AT 10, INCREMENT OF 10

.0010 DEFINE
:-0020 Fl,D6 ;PART NUMBER
:0030 F2 ,A30 ;PART NAME
:-0040 F3,D7 ; VENDOR NUMBER
~0050 F4,D6 ;DATE
.£0060 F5,D6 ;WHOLESALE PRICE
.0070 Tl,DlO ; TEMPORARY STORAGE
.0080 Cl,D2,25 ;CONSTANT FIELD
:0090 C2,D6,500000 ;CONSTANT FIELD
~0100 INPUT CDR ;INPUT FROM CARD READER
.0110 PART ;KEYWORD
:0120 Fl ; PART NUMBER
:-0130 F2 ;PART NAME
:0140 F5 ;WHOLESALE PRICE
:-01so DATE ;KEYWORD
~0160 F4 ;DATE
.0170 VENDOR 1 ;KEYWORD
:0100 F3 ;VENDOR NUMBER
70190 OUTPUT 1 PRTFIL ;OUTPUT TO PRTFIL FILE
~0200 F3 C ;VENDOR NUMBER
• 0210 Fl C ; PART NUMBER
:0220 F2 ;PART NAME
:0230 F5 ;WHOLESALE PRICE
~0240 F4 ;DATE
..!.0250 END

Sample input lines for above control program

:PART 126789 'HEX BOLT' 200
:DATE 30772
'i"VENDOR 14 76116
lPART 176117 WASHER 100
,;.VENDOR 7346177
:PART 176118
:VENDOR 3177615
IPART 12678·8- I #6 MACHINE SCREW' 300
:VENDOR 2061311

Figure 6-1. Sample BUILD Control Program

6-2

Records created according to control program in Figure 6-1 would look
like:

1476116126789HEX BOLT
7346177176117WASHER

22 spaces
24 spaces

000200030772
000100030772

6.1.l Field Descriptor Section

The Field Descriptor section specifies all fields to be referenced in
later sections of the Control program. It gives their type (alpha or
decimal), size (1-510) and initial values, if any.

The format for this section is

where

DEFINE

f ieldx

typesize

DEFINE
fieldx, typesize, initial value

is the section heading and must be the first
statement in the program.

is an F, T, or C and a number. The F, T or C
indicates data fields (F) , temporary fields (T) ,
and constant fields {C). These names are for the
convenience of the user and are treated equally by
BUILD. All F fields must be listed first, all T
fields second, and all C fields last. The number
(x) must be a positive, non-zero decimal number
not greater than 511 and may begin at any number.
Numbers may be skipped but within a field group
(F, T or C) must be in ascending order. Temporary
fields are used to accumulate hash totals.
Constant fields are used to enter a default value
or range check.

Remember, however, that Fl is assigned to the
first field, F2 to the second, etc. If the field
names assigned are, for example,

Fl
FS
F6

Blank fields will be left in core. References to
F2 would cause an error.

is A for alphanumeric fields or D for decimal
fields. Use A to describe fields which contain
other than numbers. Size is an unsigned decimal
number in the range 1-510.

6-3

initial value Initial values can be assigned to any field.
Alphanumeric values consist of any sequence of
legal COS characters (excluding single quotation
marks) and are enclosed in single quotation marks.
Initial decimal values consist of a sequence of
digits optionally preceded by a + or - sign or
followed by a - sign. These initial values must
be of the same size and type as the field for
which they are specified. The sign and quotation
marks do not count in the size of the initial
value. If an initial value is not specified, the
field is initially set to 0 if decimal or blank if
alpha.

Remember, there is a difference between decimal
and alpha constants consisting of the same digits
and if a constant is to be referenced as alpha and
decimal, it must be defined both ways. For
example,

Cl,D3,234
C2,A3,'234'

Field description statements must be entered on consecutive lines and
each line is terminated with the CR key. Use the editing commands to
create this file.

Example:

.0010
:0020
-:0030
-:0040
:oo5o
-:-006 0
:0010
:ooao
:0090

DEFINE
Fl,D6
F2 ,A30
F3,D7
F4,D6
F5,D6
Tl,DlO
Cl,D2,25
C2,D6,500000

;STARTS BUILD CONTROL PROGRAM
;PART # FIELD, DECIMAL, 6 DIGITS
;PART NAME FIELD, ALPHANUMERIC, 30 CHARS
;VENDOR # FIELD, DECIMAL, 7 DIGITS
;DATE FIELD, DECIMAL, 6 DIGITS
;WHOLESALE PRICE
; TEMPORARY FIELD
;CONSTANT FIELD CONTAINING VALUE OF 25
;CONSTANT FIELD CONTAINING VALUE OF 500000

6.1.2 INPUT Section

The INPUT section specifies the device {i.e., card
etc.) and arrangements of the data to be input.
INPUT section is

where

INPUT dev
keyword, output format#
f ieldx

reader, keyboard,
The format of th-e

INPUT is the section header and must be the first
statement of the INPUT section.

6-4

dev

keyword

(conuna)

output format#

fieldx

is the 3 character designation for the input
device:

KBD - terminal keyboard
CDR - card reader
RDR - high-speed paper tape reader
SYS - a file on the system device

In the case of CDR, RDR and SYS, the input data is
prepared in advance and stored on cards, paper
tape, or the system device.

is the name assigned to a group of fields which
will make up one input line to the BUILD program.
Keyword is an alphanuneric character string of any
length but only the first six characters are
significant. Field names cannot be keywords.
Keywords provide the connection between the data
entered at BUILD run time and the data format
specified in the control program.

is optional and specifies comma as the field
delimiter on input lines. This allows the
alphanumeric data input for that keyword to
contain embedded spaces and tabs. In most cases,
however, spaces are suggested as delimiters.

For example,

if control program specifies

PART,

then the input line is

PART,126789,HEX BOLT,200

However, if the control program specifies

PART

then the input line is

PART 126788 '#6 MACHINE SCREW' 300

is a number (1-4 for 8K systems or 1-7 for 12K
systems) which specifies the output format to be
used for this input line. This number corresponds
to an OUTPUT section nu.~ber (described in section
6.1.3). If an output format number is not
specified, there is no output for fields under
this keyword. If an output # is specified, no
output takes place until input for the
corresponding keyword fields is completed.

is one of the previously described fields (F, T,
or C) and a number. These fields must be listed
in the order in which they will be input.

6-5

To enter the BUILD input line without keywords, specify an asterisk
(*) in place of a keyword. For example,

INPUT CDR
*l
Fl
F2

All field descriptions beginning with the * must be listed before
those beginning with keywords.

NOTE

BUILD input lines without keywords must be entered
in the exact order specified in the INPUT section
of the control program because there are no
keywords to relate an input line to the fields
described in the control program.

Data is inserted in * fields in order of input.

The INPUT section is terminated by the OUTPUT heading for the next
section of the control program.

Example:

.0010
~0020
~0030
.0040
:-ooso
:0060
:-0010
:-ooso
70090
:0100
:-0110
:-0120
70130
:0140
:-01so
:0160
·:-0110

.0180

OPTIONS

DEFINE
Fl,D6
F2,A30
F3,D7
F4,D6
F3,D6
Tl,DlO
Cl,D2,25
C2,D6,500000
INPUT CDR
PART
Fl
F2
FS
DATE
F.4
VENDOR 1

F3

;INPUT IS FROM CARD READER
;!ST INPUT LINE HAS KEYWORD PART
;!ST FIELD OF PART LINE IS PART NUMBER
;2ND FIELD OF PART LINE IS PART NAME
;3RD FIELD OF PART LINE IS WHOLESALE PRICE
; 2ND INPUT LINE HAS KEYWORD DATE
; lST FIELD OF DATE LINE . IS DA~.E ..
; 3RD INPUT LINE HAS KEYWORD VENDOR
;AN,D ALL INPUT IS.TO BE OUTPUT
;ACCORDING TO FO.RMAT 1
;IF VENDOR IS MISSING; NO OUTPUT OCCURS
;!ST FIELD IS VENDOR NUMBER

The INPUT section of the control program also allows assignment of
default fields, skips, or errors for missing fields, flag fields,
range checks, hash total fields, and checkdigits.

6-6

These options may be specified for any field and have the order and
format shown:

~SKIP ~ fieldx =dfldx [flag] [RANGE ([lfldx], [ufldx])] [HASH (hfldx)] [CHECK]
ERROR

Spaces may be used to separate the options for readability. Any
combination of options can be used but they must appear in the order
shown above.

Use one of the SKIP, default {dfldx) or ERROR options to
alternative for a missing field in a BUILD input line.
the value previously stored in fieldx to be used again,
was not cleared.

specify an
SKIP causes

assuming it

=dfldx assigns the current value of the default field (dfldx) to
fieldx. The default field (usually a C field) must have the same type
and size as fieldx. ERROR causes an error message on the terminal at
BUILD run time. If none of these is specified, SKIP is assumed when
fieldx is missing from the BUILD input line. A constant field (C)
cannot be used as fieldx.

Use the flag option to set the flag field to 1 when f ieldx is present
and zero when not present. The flag field can be checked later in the
user's DIBOL program. The flag field must be a decimal field.

Use the RANGE option to specify a high and low limit for the data in
the destination field. The destination field and the fields specified
as the limits must be decimal fields. The low limit field is
specified first and must be less than or equal to the size of the
destination field. If the low limit field is omitted, there is no
lower limit. The high limit field is specified second and must be
larger than or equal to the size of the destination field. If the
high limit field is omitted, there is no high limit check. The value
of the data entered at run time must be within the range specified.

Use the HASH option to request a hash total on the data in the
destination field. The destination field and the hash total field
(hfldx) must be decimal. Since the hash total field (usually a T
field) is used to store an accumulating sum of the destination field
data, it cannot be smaller than the destination field and should be
larger. If the hash total exceeds the storage field , the high order
(leftmost) digits are lost. The field used to store the hash total
should not be used for any other purpose within the BUILD conl:rol
program.

Use the CHECK option to request a checkdigit calculation on the data
entered in the destination field. The destination field must be
decimal. The checkdigit is the rightmost digit and is not stored.
For example, if the field is a D6 and the number 1234561 is eritered,
the rightmost digit (1) is the checkdigit and is not stored. Using
the same field size, D6, if the number 12345 is entered, 5 becomes the
checkdigit. The checkdigit formula is calculated on 001234 and 5 is
not stored. If the checkdigit is not valid, an error results. The
formula for calculating the checkdigit is described in Appendix E.

6-7

Example:

0010
0020
0030
0040
0050
0060
0065
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180

DEFINE
Fl,D6
F2,A30
F3,D7
F4,D6
F5,D6
F6,Dl
Tl,DlS
Cl,D2,25
C2,D6,500000
INPUT CDR
PART,
Fl ERROR
F2 F6
F5 RANGE (Cl,C2)
DATE
F4
VENDOR 1
F3 CHECK

; PART INPUT LINE HAS COMMA AS DELIMITER
; ERROR MESSAGE IF PART NO. NOT ENTERED
;F6=0 IF F2 NOT PRESENT

HASH Tl ;WHOLESALE PRICE MUST BE
;WITHIN RANGE SHOWN IN Cl AND C2. STORE
;HASH TOTAL IN Tl

;DO CHECKDIGIT ON VENDOR NUMBER

EXPLANATION

RANGE check on amount $.25 to $5,000.00 HASH total
on amount.

If there is not a part number, output an error.
Do a checkdigit on vendor number. Data input for
keyword PART must be separated by commas.

6.1.3 OUTPUT Section

The OUTPUT section specifies the name and sequence of the data to be
stored on a mass storage device. The OUTPUT section is composed of
OUTPUT blocks, each of the following form

where

OUTPUT

OUTPUT output format# label/default unit
fieldx

is the heading of the last section of the control
program and must appear even if no output is
desired. Be sure that OUTPUT is not used as a
keyword in the control program.

output format# is the number (1-4 for 8K systems,
systems) which links a keyword
section to a particular OUTPUT
number must be in ascending order
l} and must appear after OUTPUT.

1-7 for 12K
in the INPUT
format. This

(beginning with

6.-S

label is the name to be assigned to the newly created
data file~ The name can be anv unique sequence of
characters (only the first six-are significant).

default unit is an optional entry specifying the logical unit
(1-15) where the output file is located. (rf the
number specified exceeds 15, it is taken modulo
16.) If the file is not found on the default unit
when the control program is executed, a MOUNT
message is displayed.

f ieldx The F, T or C fields in the order in which they
are to be output.

The OUTPUT section ends with the specification of another OUTPUT
section (up to 4 for 8K, 7 for 12K) or an END statement.

If another OUTPUT section is specified, its format number must be the
next number in sequence. Different OUTPUT format sections can contain
the same fields so that several data files can be created from one
input. All fields between OUTPUT and END or OUTPUT and another OUTPUT
form one record; record length must not exceed 510 characters.

OPTIONS

The OUTPUT section of the control program has two options, C or +,
which are specified as follows:

OUTPUT 1 datal
FlO C
TSO +
T75 +cs

Use C to clear a field after output of the record. Decimal fields are
cleared to zeros, alpha fields to blanks. During input the contents
of fields not cleared with C options can be repeated in following
records by skipping fields in subsequent input lines.

Use + as a counter or sequence check. The field to be incremented is
usually a temporary field (T) and must be decimal. This field is
output as part of the record being created. + increments the field by
one; to increment by any other number specify an increment field
(+fieldxx). The increment field (usually a C field) must be decimal
and must not be larger than the destination field. If the increment
sum exceeds the destination field, the high order digit is lost. The
c and + o'ptions cannot be used on the same field.

6~-9

Example:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250

DEFINE
Fl,D6
F2 ,A30
F3,D7
F4,D6
F5,D6
Tl,DlO
Cl,D2,25
C2,D6,500000
INPUT CDR
PART,
Fl ERROR
F2
F5 RANGE
DATE

(Cl,C2) HASH Tl

F4
VENDOR 1
F3 CHECK
OUTPUT 1
F3 C
Fl C
F2 C
F5 C
F4
END

PRTFIL ;OUTPUT FORMAT l; FILE NAME, PRTFIL
;VENDOR NUMBER
;PART NUMBER
;PART NAME
;WHOLESALE PRICE
;DATE

EXPLANATION

Clears fields with "C" each time record is
written.

6.1.4 Storing the BUILD Control Program

When the BUILD control file is complete, it should be stored on a mass
storage device for future use. Use the command

.WRITE BLDSPC

for example, to store the control program.

6-10

6.2 OPERATING PROCEDURES

To load the BUILD program, type

• RUN BUILD [, filel, ••• , f ile7] [/xx]

in reply to the dot displayed by the Monitor

where

filel, ••• ,file7 are the BUILD control programs. If the BUILD
control file specified the INPUT device as SYS,
then the rest of the files are names of data files
on the system device to be input. If no files are
specified, the file in the edit buffer is used to
create a master file.

/xx

Multiple files are concatenated and passed to the
program as one large file.

are optional switches which affect the listing
printed by BUILD. The first switch is:

/L list the BUILD control program, or

/N do not list the control program.

The second switch is:

/L list the data records created

/N do not list the data records

If a second switch is not specified, a data
records list is not produced. (/N is assumed.) If
the no list condition is specified, errors
encountered in the control program or data records
are listed on the line printer as is the summary
of hash totals, records created, etc.

Examples:

• RU BUILD,BLDSPC/NL

lists the data records and summary of totals but not the control
program •

• RU BUILD,BLDSPC/L

lists the control program and summary of totals, while

• RU BUILD,BLDSPC/LL

outputs both listings and the summary.

6-11

When BUILD is loaded, the message

MOUNT xxxxxx #01 FOR OUTPUT:

is displayed. xxxxxx is the output file name specified in the control
program and #01 is the sequence number.

Continuing the example, the message is

MOUNT PRTFIL #01 FOR OUTPUT:

Answer with the number (1-15) of the logical device where the output
file is to be stored. When BUILD is complete, the Monitor DIRECTORY
command can be used to obtain a label of the data file. The next
steps depend on the device (KBD, CDR, RDR, SYS) specified in the INPUT
statement of the control program. If the data output exceeds the
storage capacity of the logical unit, the following message is
displayed if default messages were not specified:

MOUNT xxxxxx #02 FOR OUTPUT:

where xxxxxx is the label of the output file. Mount the new output
device if necessary. Type the number of the logical unit where the
rest of the output is to be stored.

BUILD can be aborted at any time by typing CTRL/C, to return to the
Monitor. All output is lost. The BUILD program must not be run if
the line printer is inoperative.

6.2.1 KBD - Data Input from Keyboard

If the INPUT statement specifies KBD, BUILD responds to the RUN
command with

DO YOU PREFER PROMPTING?

Answer YES and a CR key to
automatically by BUILD. To
of successive input lines
exactly the order in which
the control program with no

have the input line keywords printed
use prompting, the data input must consist
whose keywords (if present) appear in
they are presented in the INPUT section of
omissions. Monitor displays

after each keyword to indicate it is ready for input.

Answer NO and a CR key to allow each input line keyword to be typed.
BUILD displays a colon (:) when it is ready to accept input. Input
lines can then be typed in any order and BUILD will match the input
line keyword to the keyword in the INPUT section of the control
program.

If the reply is YES or NO, the dialogue is over and data input can
begin. BUILD assumes errors will be edited on line.

6-12

When all the input lines have been entered, type CTRL/Z to indicate
the end of data input. BUILD closes the output files and prints
number of records written, records not written and any hash totals
requested and returns control to the Monitor.

6.2.2 SYS, CDR or RDR - Data Input from System Device,
Card, or Papertape

If the INPUT statement specifies SYS, CDR or RDR,

The question

DO YOU WISH TO EDIT ON-LINE?

is displayed. Answer NO and the CR key and future errors are printed
on the line printer and all fields in the bad input line will become
undefined. Records with undefined fields are not written to the
output file. They remain undefined unless cleared in the output
section or redefined with subsequent input.

Answer YES and the CR key to have an error message displayed on the
terminal whenever an error is encountered. BUILD displays the
incorrect input line, the error message and the message

RETYPE:

Type the correct input line. For details on data input refer to
Section 6.3. If just the CR key is typed, the field in error becomes
undefined.

When BUILD reaches the end of the paper tape in the reader, it asks

Answer NO and the CR key if there is no more input. Otherwise, put
additional paper tape in the reader and type Y and the CR key to
continue reading data.

When input is complete, BUILD closes the output data files and prints
the number of records written and records not written and any hash
totals requested and returns control to the Monitor.

When BUILD reaches the end of cards in the reader, the terminal alarm
sountls. If ttrere are more cards put them in card reader and type any
key to resume operation. Otherwise type CTRL/Z to terminate input.

6.3 BUILD INPUT LINE

The data input line is free form, i.e., specific data fields need not
be in prespecified column positions. However, the fields must be
input in the same order within a keyword line as specified in the
INPUT section. Data input lines entered at the keyboard may or may
not contain keywords depending on the answer to the prompting
question. Data input lines prepared on paper tape or cards must
contain keywords, unless an asterisk was specified in the control
program.

6-13

The following conventions must be observed when entering input lines.

1. The first field in an input line may be preceded by spaces or
tabs if desired.

2. Each input line must be terminated with the CR key.

3. The fields, if more than one is entered per· line, must be
separated from each other by spaces, tabs, or commas. For
example, an input line described in the control program as

DEFINE
Fl,D6
F2,A30
F5,D6

INPUT KBD
PART,
Fl
F2
FS

can be entered as

PART,126789, HEX BOLT, 500

or if described as:

PART
Fl
F2
FS

can be entered as

4. A field can be omitted by actually omitting it if there are
no flel.ds to the right or by typing two consecutive commas if
there are fields to the right. For example

PART,126789,HEX BOLT
PART,, HEX BOLT,100

Omitting a field may cause an error depending on the options
(SKIP, default field or ERROR) specified for the field in the
control program.

5. Decimal data must be entered in one of the following forms:

digits
+digits
-digits
digits-

6-14

The plus sign is optional and minus can be placed at the
beginning or end of the data. Decimal data cannot have
embedded blanks, i.e., 12 34 is illegal. The number of
digits must be less than or equal to the field size specified
in the control program in the corresponding field.

If the number entered is smaller than the field size,
right justified and zeros are inserted on the left.
number is too long, an error results.

it is
If the

6. Alphanumeric data must be entered in one of the following
forms:

'data' or data

In the first form ('data') any legal COS character (including
spaces and tabs) is permitted except a single quotation mark
(apostrophe). BUILD treats tabs inside quotes as single
spaces, but echoes them as backslashes on the terminals.

In the second form any legal COS character except spaces,
tabs, and commas is permitted. The first character, however,
must not be a single quotation mark. If the keyword PART did
not have a comma, then input would be

PARTL-1175L-1WASHER....,lOO

The number of alphanumeric characters must be less than or
equal to the size of the corresponding field specified in the
control program. If the data is smaller than the field, it
is left justified and padded with blanks. If the data is too
large, an error results.

7. If comma was specified as the field delimiter in the INPUT
section of the control program, then alphanumeric data not
enclosed in single quotation marks may have embedded spaces
and tabs but no commas and must be separated from the next
field by a comma. For example, if the control program
specified:

DEFINE
Fl,A30
F2,A30
F3 ,A30
INPUT KBD
NAME ,1

Fl
F2
F3

the input line would be typed as

NAME, JOHANSEN' s MARKET, 2 MAIN s·r. , I MAYNARD, MASS. '

Extra text at the end of a data record is illegal except for
comments which must be preceded by a semicolon.

6-15

8. The arrangement of * and keyword records is immaterial at run
time. BUILD inserts records in the asterisk fields by the
order of input and in keyword records by matching keywords.
For example,

Descriptor Input Lines

*

eyword2 •••
* •.•

* etc.

There is a current asterisk record pointer in BUILD
keeps track of the next asterisk record to be filled.
inputting the last * record, BUILD goes back to the
one.

6.4 ERROR MESSAGES

which
After
first

BUILD error messages are output to the line printer as the errors are
encountered.

BUILD checks each section of the control program and the input data
for errors.

If editing is being done on line, the line in error, error message,
and RETYPE messa<Je are displayed on the terminal. The keyword is
displayed if prompting is in effect. Otherwise, the keyword must be
retyped. If no input editing is being done, data input errors are
logged on the line printer in the form

input line

error message

Failure to correct a field in error causes the field to become
undefined. The record containing an undefined field is not written on
a storage device.

Error messages followed by an explanation point (!) indicate fatal
errors. The error messages for the Field Description section of the
control program are:

Ei-16

Message Meaning

BAD DIGIT IN DECIMAL INITIAL VALUE

DATA TABLE OVERFLOW!

DESCRIPTOR TABLE OVERFLOW!

EXTRA CHARS AT STMNT END

FIELD NUMBER MISSING OR 0

Alpha character in a decimal initial
value.

Too much
characters.

data. Maximum = 960

Too many F, T and C fields defined=
Maximum = 160.

Characters not relating to statement
appear with statement.

Field number or default unit number is
missing, is 0 or greater than or equal
to 512.

INITIAL ALPHA VALUE DOESN'T BEGIN WITH QUOTE

INITIAL VALUE TOO BIG

INITIAL VALUE TOO SMALL

Beginning quotation mark missing for
initial alpha value.

The initial value specified is larger
than the field size.

The initial value specified is smaller
than the field size.

MISSING CLOSE QUOTE ON ALPHA INITIAL VALUE
Quotation mark not
necessary.

specified where

MISSING INITIAL VALUE

NO COMMA AFTER FIELD NAME

NOT A OR D

NOT BUILD FILE!

NOTHING AFTER FIELD NAME

Comma was inserted after type and size
but initial value was not specified.

No comma or a character other than comma
was specified after the field name.

A character other than A or D occurred
in a data specification statement where
A or D was expected.

File did not start with DEFINE
statement.

Field type and size are not specified
after field name and conuna.

NUMBER REPEATED OR OUT OF ORDER
A field sequence number is used more
than once or is out of ascending order
sequence.

6-17

Error messages for the INPUT/OUTPUT sections of the control program
are:

Message

BAD END STATEMENT

BAD DEFAULT FIELD

BAD DEPICTOR

BAD DEVICE

BAD FIELD NUMBER

BAD INPUT STATEMENT

BAD OPTION

BAD OUTPUT FORMAT i

BAD RANGE CONSTRUCTION

C-FIELD NOT PERMITTED

DESTINATION FIELD NOT DECIMAL

FIELD NOT DECIMAL

HASH FIELD MISSING

INCREMENT TOO BIG

MISSING FIELD NAME

OUT OF ROOM!

OUTPUT RECORD TOO BIG

Meaning

Missing or misspelled END statement.

Default field does not agree with size
or type of object field.

OUTPUT format in error.

Not KBD, SYS, RDR or CDR.

Field number specified is greater than
2047.

Statement missing or misspelled.

Something other than C or + is specified
in OUTPUT section.

Format number is wrong or out-of-range
.(1 or 7) •

In RANGE portion of statement an open or
close parenthesis or comma is missing.

c-type fields cannot be specified in the
INPUT section.

The destination field specified is not
defined as decimal.

Field not defined as decimal.

No field specified for storage of hash
total.

Length of increment field bigger than
length of output field.

Field name is missing.

Too many descriptors in INPUT section.
Maximum keywords, approximately 121.
Approximate maximum fields for all
keywords = 192. Too many fields in
OUTPUT section. Approximate maximum =
128.

Record exceeds 510 characters.

6-18

Message

UNDEFINED FIELD

UNDEFINED FORMAT

UNEXPECTED END OF FILE

Meaning

Field referenced was not defined in
Field Descriptor section of control
program or a decimal field was being
equated to an alpha field, or an alpha
field was specified for a flag.

Format number referenced but not defined
(error given on END statement).

Missing END statement.

Error messages for data input are:

Message

BAD ALPHA FIELD

BAD CHECKDIGIT

BAD DECIMAL FIELD

BAD DELIM

BAD KEYWORD

EXTRA CHARS AT END OF DATA

FIELD OUT OF RANGE

NECESSARY FIELD MISSING

TOO BIG

Meaning

Illegal entry in alpha field.

Checkdigit calculated by BUILD does not
match the one entered.

Illegal entry in decimal field.

Fields are separated by an
delimiter, i.e., by a or!.

illegal

Keyword entered not described in the
control program.

More data was entered than was defined
in the control program, i.e., 4 fields
entered when only 3 were defined.

Data entered is not within the range
specified in the control program.

Field specified as necessary in control
program was not entered.

Data entered is greater than the size of
the field as defined in the control
program.

6-19

CHAPTER 7

SORT

SORT arranges COS data files in order according to a key specified in
the SORT control program. The key consists of certain fields or parts
of fields which appear in each record of the file being sorted. The
data records can be sorted in ascending or descending order based on
the key.

Before SORT can be run, a SORT control program must be written. The
control program defines the fields of the records to be sorted,
specifies labels for input and output files, and the key to be used in
the sort.

SORT handles one file per run and there must be a separate SORT
control program for each file sorted. Files to be sorted must contain
fixed length records.

If a multi-reel file is to be sorted, the SORT program sorts
separately. A separate merge pass of the same SORT program
be done to combine the file. To sort a multi-reel DECtape
disk without going through a merge phase, PIP the data file
before sorting. (See PIP option D.)

7.1 SORT CONTROL PROGRAM

each reel
must then
file on

onto disk

The SORT control program is created and written on
device with editing commands. It consists of
section and an INPUT/OUTPUT section.

a mass storage
a file Descriptor

7.1.1 File Descriptor Section

The File Descriptor section has the form:

where:

DEFINE

DEFINE
Fxyt.ypesize

is the section heading and should be the first
statement in the program.

7-1

Fx

typesize

is the first field in the record to be sorted.
All fields in the record to be sorted must be
defined in the File Descriptor section in the
order they appear in the record. The number (x)
must be a positive, non-zero decimal number not
greater than · 511 and should begin at 1 with no
numbers skipped.

is an A for alphanumeric fields or a D for decimal
fields and an unsigned decimal number in the range
1 - 510.

File Descriptor statements must be entered on consecutive lines and
each line is terminated with the CR key. Use the editing commands to
create the control program.

Example:

0010
0020
0030
0040
0050
0060

NOTE

The BUILD Field Descriptor written previously to
create the data file can be used as the SORT File
Descriptor if the input and output fields are
exactly the same and if it was stored as a
separate program. T and C fields and initial
values are ignored by SORT.

DEFINE
Fl,D6
F2,A30
F3,D7
F4,D6
F5,D6

;PART NUMBER
;PART NAME
;VENDOR NmmER
;DATE
;WHOLESALE PRICE

This example is based on the file created with the BUILD control
program. (See Chapter 6.)

7.1.2 INPUT/OUTPUT Section

This section specifies the input and output file labels and the number
of work units available for the SORT.

These work units become part of the MOUNT message displayed during
SORT run time.

7-2

Format of the INPUT/OUTPUT section of the control program is:

where

INPUT filnam/d,filnam/d
SORT n/wl,w2 ,w3
KEY fieldx(n,m)-,fieldx(n,m) •••
OUTPUT f ilnam/d
END

INPUT filnam/d,filnam/d is the name of the file containing the
records to be sorted. If no name is
specified, SORTIN is assumed. /d is
optional and is the unit (1-15) to check
for the named file. If the control
program is used for a separate merge
operation, the additional filnams are
the files to be merged.

SORT n/wl,w2 ,w3

KEY fieldx(n,m)-, •••

is the number (n) of logical units to be
used as scratch areas during the sort.
n is any number from 3 to 7. There must
be at least three units to execute a
sort. If the SORT statement is not
present 4 units are assumed. It is
recommended that the size of the scratch
units be as large as one "reel" of the
input file. /wl,w2,w3 are optional
default work units to be used if
available. Using default units bypasses
the mount work unit message.

f ieldx is the field name and number of
the field to be used as the SORT key.
(n,m) are optional and specify the nth
through mth characters of the field. If
no characters are specified, the entire
field is used as a SORT key. - requests
a SORT on that field in descending
order. If - is not specified, ascending
order is assumed (+ may also be used to
indicate ascending order). Up to eight
fields or parts of fields can be
specified for the sor-t key. There is no
restriction on the size of the sort
field as long as the total size of the
fields which comprise the key is not
larger than 510 characters. The sort is
done left to right on the key using the
COS codes shown in Appendix A. The
leftmost key is most significant, and
the leftmost character in each key field
is most significant for sorting
purposes. n and m are unsigned integers
with n less than or equal to m. Each rn
must be less than or equal to the length
of the record.

1-3

OUTPUT f ilnam/d

END

Example:

0010
0020
0030
0040
0050
0060
0070
0080
0090

0100
0110

DEFINE
Fl,D6
F2 ,A30
F3,D7
F4,D6
FS,D6
INPUT PRTFIL
SORT 4
KEY Fl-,F4

OUTPUT PRTFIL
END

is the data file name to be given to the
sorted records. If this statement is
missing SORT assigns the name SRTOUT to
the output. For multi-reel files the
names $TMPOO - $TMPnn are used. /d is
the default unit to check for the output
file. If the file is not there, the
mount message is displayed.

NOTE

For a multi-reel input file,
SORT sorts the first reel onto
the output file and then asks
for the second reel of input.
For example, when sorting a
3-reel input file, the output
files (which are to be input
to MERGE) are called $TMPOO,
$TMP01, and $TMP02.

Terminates control program.

;DATA FILE NAME
;WORK UNITS
;SORT KEYS = PART
;NUMBER IN DESCENDING ORDER
;DATE IN ASCENDING
;ORDER
;SORTED DATA FILE NAME

7. 2_ SORT OPERATING PROCEDURES

SORT is called via the Monitor command:

where

.RU SORT[, filel, ••• ,file7]

filel, •• ,file7 are the SORT control program which can be stored
as more than one file. If none are specified, the
file in the edit scratch area is used.

7-4

Mount the input file and n-1 (where n is the number of logical units
to be used for SORT) of the scratch units. The Monitor outputs the
message:

MOUNT filnam iOl FOR INPUT:

where f ilnam is the input file name specified in the SORT control
program. Type the number of the logical unit (1-15) where the data
file is stored. Monitor outputs the messages

MOUNT $WORK2 #01 FOR OUTPUT:

MOUNT $WORKn #01 FOR OUTPUT:

Type the number (1-15) of the logical unit where all but the last of
the SORT scratch units are located. The Monitor checks the labels of
the files currently on these units. If a label exists, Monitor asks:

REPLACE xxxxxx #nn?

Type YES and the CR key to use the unit as a scratch area and destroy
what is currently stored there. Type NO and the CR key to save the
present label and specify another unit for a work area.

When the first sort phase is complete, the input is no longer needed.
Monitor displays the message:

MOUNT $WORK1 #01 FOR OUTPUT:

In a tape SORT the input tape can be dismounted and the last work unit
mounted or the input file can become the last scratch area. (Monitor
will ask REPLACE? if this is done; type YES and the CR key).

Type the number (1-15) and the CR key of the logical unit where the
last work area is located.

When the main part of the SORT is complete, Monitor displays:

UNIT xx IS FREE
MOUNT filnam #01 FOR OUTPUT:

xx is one of the units previously assigned as a work unit. SORT no
longer needs the unit and it May be used for the output unit if
desired.

Mount the output file.. Type the logical unit number (1-15) where the
output is to be stored. SORT reads the sorted records from the work
units and stores them on the specified output unit.

If a default output unit is specified in the OUTPUT line of the SORT
control, the MOUNT ••• FOR OUTPUT message may not appear.

NOTE

Sometimes the SORT program does not request that
the last work unit be mounted - it types UNIT xx

7-5

IS FREE where xx is the unit where the input file
is mounted, and asks that the output file be
mounted. Do not be alarmed SORT has decided
that the file is sufficiently small and
well-ordered that the main part of the sort is
unnecessary.

7.3 RUNNING SORT AS PART OF AN UPDATE PROCEDURE

If the SORT control program has a line the first six non-blank
characters of which are UPDATE, then the contents of the INPUT and
OUTPUT parameter lines are ignored and the SORT program uses the label
$UPDOO for both its input and its output file. {See Chapter 8 for
UPDATE.)

7.4 MERGE OPERATING PROCEDURE

To run SORT as a merge only operation, type:

.RU SORT[, filel,file2, ••• ,file7]/x

where

filel, ••• ,file7

/x

/A

/M

/n

/L

are the control program (possibly stored in two or
more segments).

is one of the following switches:

specifies that names of files to be merged are to
be entered from the terminal in answer to the
INPUT FILE LABELS: message. The output data file
and default unit name are specified in the OUTPUT
clause of the control program.

specifies that names of files to
listed in the INPUT line of
program. This option bypasses
LABELS: message.

be merged are
the SORT control
the INPUT FILE

specifies that the name of the files to be merged
is listed in the INPUT line of the SORT control
program. Checks for n files of the same name on
n(l-6) default units as specified. If the number
of units specified is more than the number of
units shown on the SORT control INPUT line, a
MOUNT message is displayed for those files not on
the INPUT line.

can be used with any of the
lists the SORT control
printer.

7-6

above
program

switches
on the

and
line

wnen called with the /A option, SORT requests the names of the data
files to be merged with the message:

INPUT FILE LABELS:

Enter the 1-6 character data file names separated by commas up to a
maximum of six and default units if desired. At least two names must
be entered or the error message NO INPUT is displayed.

For example:

PRTFIL/10,FILEl/3

If default units are not specified, Monitor outputs the message:

MOUNT filnam #01 FOR INPUT:

(where filnam is the data file name) for each data file specified.

For example:

MOUNT PRTFIL #01 FOR INPUT:

Type the logical unit number (1-15) where the data file is located.

Example:

Sample Control Program called PAYKEY

0100 DEFINE
0110 Fl ,A6
0120 F2 ,D5
0130 F3,Dll
0140 INPUT PAYROL/4, PAYl/2
0150 SORT 3/1,2,3
0160 KEY F2
0170 OUTPUT PAYROL/6
0180 END

To SORT the data file described in the control program PAYKEY,

.!. RUN SORT , PAYKEY

The input data file. is PAYROL located on logical unit 4. There are
three sort work units, logical units 1, 2 and 3. The output data file
is PAYROL and the sorted file is to be put back on unit 6.

The /A option in SORT is used as follows:

..!.. RUN SORT, PAYKEY /A)
INPUT FILE LABELS:
PAYROL/4, PAYl/2, PAYO)
MOUNT PAYO #01 FOR INPUT:
10)

7-7

The input data file names to be merged are:

PAYROL on logical unit 4
PAYl on logical unit 2
PAYO on logical unit 10

The output data file, PAYROL, is put on logical unit 6.

The /M option in SORT is used as follows:

.RUN SORT, PAYKEY/M)

The input data file names to be merged are found in the INPUT line of
the control program:

PAYROL on logical unit 4
PAYl on logical unit 2

The output data file, PAYROL, is put on logical unit 6.

The /n option in SORT is used as follows:

..!.. RUN SORT, PAYKEY/2)

The input data files to be merged are:

PAYROL on logical unit 4
PAYROL on logical unit 2

7.5 RULES FOR USING DEFAULT UNITS

If you are using default units in your control programs for SORT,
BUILD, etc., the data files should be mounted on those units. If the
Monitor cannot find the input file on the default unit the message

? MOUNT xxxxxx #xx FOR INPUT:

is displayed. In the above MOUNT message the ? indicates that the
input data file "xxxxxx" was not on the default unit specified.

MOUNT PAYROL #01 FOR OUTPUT:
6)

If output of a data file using a default unit is attempted and another
file already exists, the REPLACE message is displayed:

REPLACE LIST #02 ?
Y)

If output of a data file onto a logical unit
used for input or output is attempted,
displayed.

IN USE
MOUNT PAYROL #01 FOR OUTPUT:
10)

that is already
the message IN

being
USE is

7.6 ERROR MESSAGES

Message Explanation

File descriptor errors:

BAD DIGIT IN DECIMAL INITIAL VALUE

BAD WORK UNIT COUNT

EXTRA CHARS AT STMNT END

FIELD NUMBER MISSING OR 0

ILLEGAL SORT KEY

ILLEGAL UNIT

Alpha character in a decimal initial
value.

Number of work units not in range 3-7.

Characters not relating to statement
appear on statement line.

Field number is missing or is 0 or
greater than or equal to 512.

Bad syntax on KEY statement, KEY too
complex, or KEY statement missing.

Default unit is 0 or greater than 15.

INITIAL ALPHA VALUE DOESN'T BEGIN WITH QUOTE

INITIAL VALUE TOO BIG

INITIAL VALUE TOO SMALL

Beginning quotation mark missing for
initial alpha value.

The initial value specified is larger
than the field size.

The initial value specified is smaller
than the field size.

MISSING CLOSE QUOTE ON ALPHA INITIAL VALUE
Quotation mark not
necessary.

specified where

MISSING INITIAL VALUE

NO COMMA AFTER FIELD NAME

NOT A OR D

NOTHING AFTER FIELD N~~~

Comma was inserted after type and size
but initial value was not specified.

No comma or a character other than comma
was specified after the field name.

A character other than A or D occurred
in a data specification statement where
A or D was expected.

Field type and size are not specified
after field name and comma.

NUMBER REPEATED OR OUT OF ORDER

TOO MANY FILES

A field sequence number is used more
than once or is out of ascending order
sequence.

Merge only, more than 6 input files
specified.

7-9

Message

UNRECOGNIZABLE LINE

SORT Errors:

BAD RECORD SIZE

NO INPUT

OUTPUT ERROR

UNIT xx IS FREE

Explanation

Parameter line did not start with a qood
keyword.

File contains
length.

records of variable

Input file is null or not enough input
files specified for a merge.

Indicates a system malfunction.

NOT AN ERROR - merely an informative
message to aid the operator. xx is a
COS logical unit number.

7-10

CHAPTER 8

UPDATE

COS UPDATE is a file maintenance program which makes changes,
insertions and deletions to data files.

UPDATE must also have a control program before it can be executed.

UPDATE operates in two passes, -passl reads the control program and
UPDATE commands and checks for errors. It then outputs a modified
version of these commands to a scratch file for the user to sort.
Pass2 uses the UPDATE commands read from the scratch file to modify
the input file, and creates a new output file.

The UPDATE commands are listed on the line printer as they are
executed. A summary of the number of records read, changed, inserted
and deleted is printed when the UPDATE is complete.

8.1 UPDATE CONTROL PROGRAM

The control program consists of a file dscriptor section followed by
UPDATE, INPUT, SORT, KEY, OUTPUT and END statements in that order.

8.1.1 File Descriptor Section

This section defines the fields as they appear in the file to be
updated. The restrictions are the same as for the SORT program. T
and C field names are accepted but are ignored by UPDATE. Initial
values are retained unless specifically changed by an UPDATE command
(see section 8.2). Be sure not to skip any numbers when assigning
field names. The file descriptor section must start with a DEFINE
statement.

Example:

O<HO
0020
0030
0040
0050
0060

DEFINE
Fl,06
F2,A30
F3,D7
F4 ,D6
FS,D6

;PART NUMBER
;PART NAME
;VENDOR NUMBER
;DATE
;WHOLESALE PRICE

This file descriptor section is based on the file created with BUILD
in Chapter 6.

8-1

8.1.2 UPDATE Statement

The form of this statement is:

UPDATE filnam[/unit]

where

filnam

/unit

Example:

DEFINE
Fl,D6
F2 ,A30
F3,D7
F4 ,D6
F5,D6

is the 1-6 character name of the data file to be
updated. This name may not contain spaces, tabs,
or commas.

is optional and specifies the logical unit {1-15)
which contains the file. If the number specified
exceeds 15, it is taken modulo 16. If the unit is
omitted or if the file is not on the unit
specified, Monitor outputs the usual MOUNT
message.

0010
0020
0030
0040
0050
0060
0070 UPDATE PRTFIL/3 ;DATA FILE TO BE UPDATED IS

;PRTFIL LOCATED ON LOGICAL
;UNIT 3.

8.1.3 INPUT Statement

The form of this statement is:

INPUT dev

where

dev is the physical device {KBD, RDR, CDR, SYS) to be
used to input the UPDATE commands

KBD - terminal keyboard
RDR - paper tape reader
CDR - card reader
SYS - system device file

8-2

Exa."nple:

0010
0020
0030
0040
0050
0060
0070
0080

DEFINE
Fl,D6
F2 ,A30
F3,D7
F4,D6
F5,D6
UPDATE PRTFIL/3
INPUT SYS :UPDATE COMMANDS

;ARE STORED
;IN A FILE ON THE
;SYSTEM DEVICE.

8.1.4 SORT Statement

The form of this statement is:

where n

Example:

0010
0020
0030
0040
0050
0060
0070
0080
0090

SORT n

DEFINE
Fl,D6
F2 ,A30
F3,D7
F4,D6
FS,D6

is the number (3-7) of logical scratch units which
are to be used if the updated records must be
SORTed. This is an optional statement. If the
UPDATE commands are sorted, no SORT statement is
needed. There must be at least three units to
execute a SORT. If no scratch units are
specified, 4 is assumed. If no SORT statement is
specified, UPDATE executes a combined passl and
pass2, reading one UPDATE command at a time and
performing the update on the input file directly.
No scratch unit is needed in this case.

UPDATE PRTFIL/3
INPUT SYS
SORT 4 ; THERE ARE FOUR SCRATCH

;UNITS FOR THE SORT

8.1.5 KEY Statement

The form of this statement is:

KEY fieldx(n,m)-[, ••• ,fieldx(n,m)-]

where

8-3

fieldx(n,m)-, ••• is the SORT key used to sort the data file. (See
SORT control program.) There can be up to eight
fields or parts of fields in the SORT key.

Example:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100

DEFINE
Fl,D6
F2 ,A30
F3,D7
F4,D6
F5,D6
UPDATE PRTFIL/3
INPUT SYS
SORT 4
KEY Fl-,F4 ; THE KEY FIELDS

;ARE PART NUMBER IN
;DESCENDING ORDER
;AND DATE
;IN ASCENDING ORDER.

8.1.6 OUTPUT Statement

The form of the statement is:

OUTPUT filnam[/unit]

where

filnam is the 1-6 character name to be assigned to the
updated file. If the statement is omitted the
output file has the same name as the input file.

/unit

Example:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110

is the logical unit (1-15) where the output will
be stored. If no unit is specified, a MOUNT
message is displayed.

DEFINE
Fl,D6
F2 ,AJO
F3,D7
F4,D6
FS,D6
UPDATE PRTFIL/3
INPUT SYS
SORT 4
KEY Fl-,F4
OUTPUT PRTFIL/3 ;CALL UPDATED

;FILE PRTFIL AND
;STORE ON UNIT 3

8.1.7 END Statement

The form of the statement is:

END

END is the terminating statement of the UPDATE control program and
must be present.

Example:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120

DEFINE
Fl,D6
F2,A30
F3,D7
F4,D6
F5,D6
UPDATE PRTFIL/3
INPUT SYS
SORT 4
KEY Fl-,F4
OUTPUT PRrFILi3
END ;TERMINATING STATEMENT OF

; CONTROL PROGRAM

8.2 UPDATE COMMANDS

The UPDATE conunands can be input from tne keyboard at UPDATE run time
or can be prepared previously on paper tape, cards or the system
device.

UPDATE commands have the general form:

where

{~).....,key [Fn=value], •••

I,D,C

key

Fn

denote Insert, Delete, and Change

represents the data in the fields ttsed to sort the
record. The character string typed must be
exactly the same length as specified for the SORT
fields. The string is continuous; no spaces, etc.
can separate fields if more than one is in the
sort key. If the data file is sorted on an alpha
key (Al2) all trailing spaces must be typed on an
UPDATE conunand line, for example,

CL-IJONES JOHNL-IL...1L...1F6= •••

is a field name and sequence number as specified
in the UPDATE File Descriptor. Fields are
processed from left to right and Field numbers may
appear in any order.

8-5

=value is the data to be inserted in the field named
(Fn). This data must agree in type with the type
specified for Fn and must be less than or equal in
size. If the value specified is smaller than the
field size, the alpha field data is left justified
and padded with blanks; decimal field data is
right-justified and padded with zeros.

On an insert, missing fields are set to their
initial value if one was specified, otherwise the
field is set to blanks (alpha) or zeroes
(decimal).

Decimal values have the format

[~]digits H

Alpha values have the format

'characters'

No single quotation marks may appear within the
alpha value. If no character is a space, tab or
comma then the surrounding quotation marks need
not be present.

A command which is too long for one UPDATE command line can be
continued on the next line. Type a comma at the end of each line to
be continued. There can be any number of continue lines.

Example:

IL-19988773771761 Fl=001122,)
F2='SCREW,#ll',F3=100,F4=7771777,F5=32072

An error in an UPDATE command line causes the line to be ignored and
an error message is output to the line printer. Execution continues.

8. 3 UPDATE EXAMPLE

A-file called ACCT has a mistake in the zip code of an employee whose
employee number is 63411. The following control file is prepared:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110

DEFINE
Fl ,A40
F2,DS
F3,A30
F4,A5
F5,D8
UPDATE ACCT
INPUT KBD
KEY F2
OUTPUT ACCT
END

;NAME
;EMPLOYEE NUMBER
;STREET ADDRESS
;ZIP CODE
;SALARY

8-6

·1·n1s file describes tne fields or "Cne ri.Le Acc·i·, specifies "Cnat 1"C is
sorted on field2 (employee number) and says that input commands are
from the keyboard. No SORT statement is included because only one
update command is needed and so no sorting is necessary. If more than
one change is to be made in the file and if the changes are typed with
their keys not in order then a SORT statement would be necessary.

The user then types:

• RUN UPDATE/lL

to run passl and get a listing of the control file.

If no SORT is required, UPDATE asks that the input and output files
{both named ACCT) be mounted. If a SORT statement had appeared, the
mount message would have requested the scratch tape $UPDOO. (ACCT
would not be mounted until pass2). The single UPDATE command can then
be typed at the keyboard:

CL-163411L...IF4=11691

specifying the new zip code of 11691 for the record whose key is
63411. All other fields remain the same. The user then types CTRL/Z
to specify the end of the input from the keyboard.

8.4 OPERATING PROCEDURES

UPDATE is called with the Monitor co~.mand:

..!...RUN UPDATE [, filel, ••• , file7] [/s (1) s (2)]

where

filel, ••• file7

/s(l)s(2.)

are the names of the files which contain the
UPDATE control program (possibly stored in two
segments, FDR and I/O) and the UPDATE conunands {if
previously stored on the system device).

If no files are specified, UPDATE uses the file in
the edit buffer.

are switches

The first switch is
phase. 1 read
commands and check
area. 2 read
perform UPDATE. If
passl is assumed.

The second switch is

1 or 2 specifying
control program

for errors, put
scratch area after
neither 1 nor 2 is

/N for no listing (default)

the UPDATE
and UPDATE
in scratch
sorting and
spec.if ied,

/L for a listing of UPDATE conunands, {pass2) or
control program (passl).

8-7

If no errors are found in the control program and the UPDATE commands
are sorted, UPDATE continues automatically to pass2. Otherwise, SORT
must be used to sort the UPDATE commands into the same order as the
file. Type RU SORT,UPCON,UPCOM (control program). SORT asks that
$UPDOO be mounted. When the SORT is complete, call the second phase
of UPDATE. For example,

.RU UPDATE,UPCON,UPCOM/2

NOTE

If the input device specified was KBD, there is no
indication from UPDATE that it is ready to accept
input from the keyboard.

8. 5 ERROR MESSAGES

indicates a fatal error.

Message

BAD DEVICE

Explanation

Illegal device
statement

specified on input

BAD DIGIT IN DECIMAL INITIAL VALUE

BAD INPUT STMNT

BAD KEY STMNT

BAD UPDATE COMMAND

BAD UPDATE STMNT

BAD VALUE

DATA TABLE OVERFLOW!

DESCRIPTOR TABLE OVERFLOW!

EXTRA CHARS AT STMNT END

FIELD NUMBER MISSING OR 0

I RECORD ALREADY EXISTS

Alpha character in a decimal initial
value.

Input statement is missing or out of
order.

Key in KEY statement has bad syntax.

Bad syntax, probably missing F, =, or
comma.

Update statement is incorrect.

Value in update command too long or
incorrect.

Too much data, maximum = 960 characters.

Too many F, T and C fields defined,
maximum = 160.

Characters other than A or D occurred in
a data specification statement where A
or D was expected.

Field number or default unit number is
missing or is 0 or > = 512.

Tried to insert
present.

8-8

a record already

Message Explanation

INITIAL ALPHA VALUE DOESN'T BEGIN WITH QUOTE

INITIAL VALUE TOO BIG

INITIAL VALUE TOO SMALL

Beginning quotation mark missing for
initial alpha value.

The initial value specified is larger
than the field size.

The initial value specified is smaller
than the field size~

MISSING CLOSE QUOTE ON ALPHA INITIAL VALUE
Quotation mark not
necessary.

specified where

MISSING INITIAL VALUE

MISSING OR OUT OF ORDER

MISSING UNIT

NO COMMA AFTER FIELD NAME

NO DEFINE!

NO END STATEMENT

NONEXISTENT FIELD

NOT A OR D

NOT I,D, OR C

NOTHING AFTER FIELD NAME

Comma was inserted after type and size
but initial value was not specified.

On C or
Probably
sorted.

D, record was
because scratch

not there.
file was not

Unit number specified is a multiple of
16.

No comma or a character other than comma
was specified after the field name.

Control
DEFINE.

file did not start with a
Returns to Monitor immediately.

END statement missing
specification.

after OUTPUT

Tried to update Fn where no Fn appeared
in file description section.

A character other than A or D occurred
in a data specification statement where
A or D was expected.

Bad first character on update conunand.

Field type and size are not specified
after field name and comma.

NUMBER REPEATED OR OUT OF ORDER

OUT OF ORDER

UNEXPECTED END OF FILE

A f ieid sequence number is used more
than once or is out of ascending order
sequence.

SORT statement missing and
commands are not in order.

Missing END statement.

8-9

update

CHAPTER 9

BOOT

BOOT is used to bootstrap the system from one device to another, i.e.,
if the system has been moved from DECtape to disk, BOOT may be run to
start the system on disk.

9.1 OPERATING PROCEDURES

The command to run the BOOT program has the form:

~RUN BOOT/xx

and the CR key:

where

/xx is the
system

/RK is the

/RF is the

/DT is the

/TD is the

/LT is the

switch which indicates the device
to be bootstrapped resides.

RKOB or RKBE disk unit O.

RF08 disk.

TC08 DECtape unit o.
TD8E DECtape unit o.
LINCtape unit O.

where the

If no switch or an illegal switch is specified, BOOT displays the
error message NO and control returns to the Monitor.

Do not try to bootstrap onto a device which is not ready or does not
exist.

Other options are available for experienced programmers:

/PT

/ZE

loads ~11.e high-speed RIM loader and BIN paper tape
loader into field O.

zeroes all of core in

BOOT may also be used to bootstrap OS/8.

9-1

CHAPTER 10

PATCH

PATCH is used to fix (or patch) system programs or the Monitor on a
COS system tape. The data to make the changes is provided by Digital
Equipment Corporation as patches in the form of dialogue with the
~a~~tl progr~n with the user input underlined. It would be necessary,
therefore, to type only the underlined data exactly as shown and to be
sure that the computer output corresponds with what is illustrated.
If everything matches, the patch is correctly made. To better
understand the workings of PATCH, it is important to note that both
system programs {files) and the Monitor consist of blocks of numerical
information (program code; machine language instructions) on the
system device. Each block consists of words of 4-digit numbers.
These words are numbered from 0 to 377 (base 8). PATCH reads one of
these blocks, allows user examination and/or change (patch) of
individual words in this block and writes the new block back out to
the system device.

10.1 OPERATING PROCEDURES

Be sure the system tape has the current version of the progr~m to be
patched. The command to run the PATCH program is of the form:

.RU PATCH

and the CR key.

PATCH replies:

COS PATCH SYSTEM VERSION 11.08 (or current version
number)

FILE NAME:

Respond with one of the following:

(a)

{b)

(c)

The name of the file to be patched.

/N and/or a carriage return, to indicate a patch for
the Monitor not for a program. The system responds
PATCHING MONITOR.

CTRL/Z or /X. To indicate end of PATCH operation. The
message EXIT is printed and control returns to the
Monitor (just as if CTRL/C had been typed.)

When typing in letters or digits, a typing mistake can be corrected
(before typing the CR key) by typing CTRL/U and retyping the entire
line correctly.

10-1

The next PATCH question is:

BLOCK:

Type the block number specified on the patch information sheet as sent
out by DEC. This specifies which BLOCK is to be patched. Typing END
or CTRL/Z at this point causes a return to the FILE NAME question. If
at any time before typing END or CTRL/Z it is discovered that the
wrong BLOCK number was typed, type R (for RESTART) and PATCH returns
to the FILE NAME question. Reenter the file name, then type the
correct BLOCK number and continue from there.

PATCH displays:

LOCATION:

Type in the number provided by DEC. This specifies which word in the
block is to be patched. PATCH responds with:

OLD VALUE: nnnn

where nnnn is the four-digit old (current) value of this location.

It is very important to verify that this value is the one that DEC
said it should be. If it is not, do not proceed; something is wrong.

a. Check that everything previously typed was letter perfect.
If the wrong BLOCK number was typed, type R and restart at
FILE NAME. If the wrong LOCATION was typed, type the CR key
in answer to the NEW VALUE: question. This makes no change
to the location specified. Then type the correct location
number in answer to the LOCATION question:

b. If everything typed was correct, perhaps an old version of
the Monitor or the system program in question is being used.
Before starting PATCH, the version of the program in question
should be verified.

c. If everything seems correct but the dialogue doesn't agree
with what DEC predicted, save all output and consult your
software specialist.

When the program asks:

NEW VALUE:

enter the new value as supplied by DEC. This new value replaces the
old value in core. The block is not changed on the system device
until all patches are made to this block.

If the wrong new value is typed, retype the location, verify that its
current (old) value is the one typed in by mistake, and then enter its
new corrected value.

10-2

If a new value is entered for the wrong location, reenter that
location and as the new value, type its original value (determined by
looking back on the listing for the OLD VALUE at the time this
location was first referenced). If a scope display is used and the
original value cannot be determined, type R and redo the entire block.

Answer NEW VALUE: with the CR key or CTRL/Z if the location was just
examined and no new value is to be entered.

When all patches to a block are complete, type CTRL/Z or END to the
LOCATION: question. At this point, PATCH asks for the RELATIVE
CHECKSUM (similar to a hash total). Type the relative checksum, as
supplied to you by DEC, and the CR key. If every thing is correct,
the new corrected block is written on the system device, and the
message:

NEW BLOCK PATCHED OK

is displayed. The question BLOCK: is displayed again to allow
patching of another block. Type in the next block number in this file
to be patched or type END or CTRL/Z to terminate patches for the file.
In the latter case, PATCH displays the message:

nn BLOCK(S) PATCHED IN THIS FILE
FILE NAME:

If an error is detected, the message:

BAD CHECKSUM
LOCATION:

is displayed and the faulty block is not written to the system device.
The new block as changed is still in core. Review the numbers typed
in and possibly examine the locations changed to see if they are
correct. If the error is found, fix it and then type END or CTRL/Z to
the LOCATION: message. If an error is not found, type R to restart
the program and try patching the entire block again.

10-3

10.2 ERROR MESSAGES

Message

BAD CHECKSUM

BAD DIRECTORY

BAD NUMBER

BLOCK TOO BIG

FILE NOT FOUND

LOCATION TOO BIG

NO CHANGE IN BLOCK

Explanation

An attempt was made to write a block
which was incorrectly patched.

Logical unit 0 was not a system device.

A number with more than 4 digits, a
non-digit or containing the digits 8 or
9 (these are never used) was typed.

An incorrect block number was typed. It
cannot be larger than the length of the
file being patched.

The program with the name specified was
not found on the system device. It must
be there. If it is on another tape, it
may be mounted on logical unit 0 when
PATCH first starts up; but thereafter DO
NOT CHANGE UNITS.

A location greater than 377 was typed.

An attempt was made to write a block but
no changes were made in it. If this was
on purpose, fine, otherwise make the
changes to the block again.

10-4

CHAPTER 11

DAFT

The DAFT (Dump and Fix Technique) program is similar in function to an
editor but is used for data records. DAFT provides the capability to
search for, examine and change records and to list records or parts of
records on the line printer or terminal. DAFT may be used to make
minor changes to a data file.

DAFT allows one input and one output file to be open at the same time.
These two files may be the same file when in update mode. At any
given time, there is a record from the input file in core known as the
current record. This record may be modified by the CHANGE command
before it is written on the output file. An output file need not be
open if records from the input file are only being examined.

11.l OPER~TING PROCEDURE

The command to run DAFT has the form:

~RU DAFT[, filel, ••• ,filenJ

and the CR key.

Where

filel, ••• ,filen

11. 2 COMMANDS

are previously created files which contain a
string of DAFT commands to be used to dump or fix
the data file. These files are optional and if
not specified, commands are entered via the
terminal. After the last command in the last file
is executed, additional commands may be entered
from the keyboard.

DAF.X .. c .. ommands.. begin with a keyword (consisting. o£ any number of
non-blank characters, of which only the first one is significant).
Some commands take arguments, in which case the keyword is followed by
one or more spaces and the arguments. These arguments may be
separated from one or more spaces.

In Table 11-l, an expression in brackets [] indicates that it is
optional.

The following symbols are used in Table 11-1 to show the form of DAFT
commands:

n represents an unsigned non-zero positive integer.
If it is optional in a command and is omitted, n=l
is assumed.

11-l

< a,b >

label

unit

+

data

represents a key field consisting of character
positions a through b inclusive. a and b must
each be unsigned non-zero positive integers and b
must not be smaller than a. If this is optional
in a command, and is omitted, the key specified in
the KEY command is used.

is a data file name.

represents an integer in the range 1-15. If this
is specified, the system looks for the specified
file on this logical unit before issuing a MOUNT
message. If given, /unit must immediately follow
the file name.

indicates that before a record is read from the
input file, the current record in core (if there
is one) is written on the output file. The + sign
need not have a space before it unless it is the
only argument.

represents a piece of data. Alpha data has the
form:

' characters ••• '

and decimal data has the form:

[-]digits •••

Before data is used in executing the command, it
is adjusted to the same length as the key field.
If the data is smaller and alpha, it is left
justified in the field and padded with spaces on
the right. If it is smaller and decimal, it is
right justified and padded with zeroes on the
left. If data is larger and alpha, excess
characters on the right are ignored. If it is
larger and decimal, excess characters on the left
are ignored.

TABLE 11-1. DAFT COMMAND SUMMARY

Command Function

Advance [n] [+]

Backspace [n]

Change [<a,b>] data

Advances the input file n records. If n
is omitted, 1 is assumed.

Backspaces n records if the input file
was opened with the UPDATE command. If
n is omitted, 1 is assumed.

Replaces the data in the current key
field of the record currently in core
with the data specified. If the key,
<a,b>, is used in this command, it
temporarily overrides the key specified
by the KEY statement.

11-2

T~..BLE 11-1. DAFT COMMAND SUMMARY (Cont'd)

Command

Display [n]

'R ; +-..... x ... -

Fini [+]

Goto n [+]

Help

Input label [/unit]

Key a,b

List [n] [<a,b>] [+]

Output label [/unit]

Put [n]

Query

Rewind

Function

Sets the width of the print line of the
listing device (terminal or line
printer) ton characters (maximum 130).
If n is omitted, this conunand turns on
the grid if it was off and turns it off
if it was on.

Returns control to the cos Monitor
providing no output file is open.

Closes the output file. If + is
specified, the current record and the
remainder of the input file are first
copied to the output file.

Makes record n the current record.

Displays a summary of DAFT commands
the terminal.

Opens the specified file
input. The first record
becomes the current record.

(label) for
is read and

Sets the current key to character
positions a through b inclusive.

Lists on the line printer, n consecutive
records beginning with the current
record. The key, <a,b>, if specified,
represents those consecutive characters
in the record that are to be considered.

Opens the specified file (label) for
output.

Writes n copies of the record currently
in core on the output file.

Lists information about the current
status of the program on the terminal.
This includes the names of the input and
output files, the units where the files
are located, the record in core and the
version number of the DAFT program.

Rewinds the input file.
becomes the current record.

11-3

Record 1

TABLE 11-1. DAFT COMMAND SUMMARY (Cont'd)

Command Function

Search [<a,b>] data [+] Searches the current record and then
succeeding records for an occurrence of
the specified data appearing in the
current key field.

Type [n] [<a,b>] [+]

Update label [/unit]

Version

Write [n]

x

11.3 DAFT ERROR MESSAGES

Message

0 NOT ALLOWED

BAD DIGIT IN DATA

Same as list except output is to the
terminal.

Opens the specified file {label} for
updating. This command can only be
specified for a file with fixed length
records since direct access I/O is used
to move records.

Displays the version number of
program on the terminal.

the

Performs same function as ADVANCE [n] +,
i.e., n-1 consecutive records, beginning
with the current record are written on
the output file. The nth record (after
the original one) becomes the current
record.

Lists the record number and size of the
current record on the listing device
(either terminal or line printer
depending on whether the last record was
listed via a TYPE or LIST command). The
line printer is the initial listing
device.

Explanation

In some commands, 0 is not a perrnissable
argument.

In a CHANGE or SEARCH command, a
character other than digits or a minus
sign is contained in a numeric data
field (a field without quotes).

CANT BACKSPACE PAST BEGIN OF FILE
Attempted to backspace past beginning of
file. The first record becomes the
current record.

CANT BACKSPACE WITH SEQUENTIAL INPUT
Attempted to backspace with sequential
input.

11-4

Message Explanation

END OF INPUT FILE AT RECORD nnnn

EXCESSIVE GRID SIZE

EXTRA CHARS

An attempt was made to read past the end
of file mark on the input file. This is
not necessarily an error. nnnn was the
last record read. The input file is
closed.

The grid {printer width) may not be
greater than 130 characters.

Extra characters were found after the
logical end of a command.

ILLEGAL RECORD - CLOSING FILE The file being updated contains a bad
record (one not the same size as record
1). Only fixed length records are
permitted on such files. The file is
closed.

KEY ENTIRELY PAST END OF RECORD

KEY EXTENDS PAST RECORD END

KEY TOO BIG

NO DATA

NO INPUT FILE

NO LABEL NAME

NO OUTPUT FILE

OUTPUT FILE ALREADY OPEN

The key specified in a LIST or TYPE
command began with a character greater
than the record size.

A change or search was attempted with a
key that extends past the end of a
record. However, a list with such a key
is possible. In such a case the list is
terminated at end of record.

The range of the key cannot exceed 100
characters.

Data must be specified in a CHANGE or
SEARCH command.

The command requires an input file but
one is not open.

The filnam was omitted in an INPUT,
OUTPUT or UPDATE command.

The command requires an output file but
one is not open. The command is
terminated at the point just prior to
writing the current record on the output
file.

A request was made to open an output
file while one was already open. Only
one output file may be open at a time.
The request is ignored.

11-5

Message

OUTPUT FILE STILL OPEN

PUSH DOWN OVERFLOW

11.4 DAFT OUTPUT

Explanation

An EXIT cannot be made when the output
file is still open. The output file can
be closed with the FINI command or
CTRL/C may be typed.

The program will abort with this message
when too many errors are made.

Records may be listed with a grid above them. This grid consists of
two lines of numbers showing the character positions. The lower of
the two lines represents the units digits of the column counts. The
upper line represents the tens digits. The tens digits are printed
for the first and last character in the record (or part of the record)
listed or whenever it changes. If there is a hundreds digit, it is
printed in colunm 1 or whenever it changes.

Refer to Figure 11-1 for a sample of a DAFT operation.

11-6

COS MO~ITOR 2.0606

= R DAFT
*HELP
ADVA;-.JCE N+
BAC?<SPACE N
CHA~GE <A, B> DATA
DI SPLAY N
EX:! T
FINI +
GOTO V+
HELP
I ~PUT LABEl../tNI T

LI ST N '{E'f+
0 UTPUT LABEL/lNI T
PUT \J
QUERY
RE\'I~D

SEARCH <A, B> DATA +
TYPE 'J <A, P>+
UPDATE LABEl./lNI T
VERSI O'l
WRITE "J
x
* VERSI O"J
DAFT VERSIO\J 6·06
*V
DAFT VERSIO~ 6·06
*VERY
DAFT VERSIO~ 6·06
*I)JPUT MAI LNG
M Qt.NT MAIL'.\JG #01 FOR I 'JPUT:
1
*TYPE 1

RECORD 000001 OF FILE ~AIL~G, RECORD 1..E\JG1d=204 CHARACTE&S

DIGITAL EQUI PME'JT CORP· D· F· PAv'LOC:{

12-3 146 "!AI 1\1 ST·

"1AY\JARD MA017540Sl~-1 0012345Alllll 06217

2003SUPFRVISOR

Figure 11-1. DAFT Sample

11-7

*DI SPLAY 70'\
* T 1

RECORD 000001 OF FILE MAIL\JG1 RECORD L E\JG11-i=204 CHARACTERS

DIGITAL EQUI P'.'lf E"J T CORP• D· F• PPVLOCK 12-3

146 '.'tfAI \1 st.

111 062172003SUPERVISOR
*D
* T 2

RECORD 000001 OF FILE '.'t1AIL~G1

MAY\JARD MA017540S/3-1 0012345All

RECORD LE~Gl"1=204 cqAf.ACTEfiS

0 1 2 3 4 5 6 7
1234567g9Q123456789012345678901234567g9Q1234567~9012345673901234567~~0

DIGITAL EQUIPMENT CORP· D· F• PAVLOCK 12-3

7 g 9 10 1 2 3 4
1234567890123456739012345678901234567d9012345673J012345679901234567890

146 ~AI~ ST· MAY'lARD ~A017540S/3-1 0012345A11

1 4 5 6 7 8 9 20 0
1234567g90l234567q901234567g90l2345673901234567~901234567890123

111 062172003SUPERVISOR

RECORD 000002 0 F FILE MAI L\JG1 RECORD LE~GTq=204 c~rnRACTEHS

0 1 2 3 4 5 6 7
1234567690123456789012345673901234567890123456789012345678901234567d90
DIGITAL EQUI PME'lT CORP· K • RI c:.r ER 12- 3

7 8 9 10 1 2 3 4
12345678901234567890123456789012345678901234567~9012345678901234567890

146 MAI~ ST• MAYNARD MA01754COS 300 0001972! 3

1 4 5 6 7 8 9 20 0
123456789012345678901234567~90123456789012345678901234567890123

00 053172002WRITER
* T 2<251 50>

RECORD 000002 OF FILE MAIL~G1

2 3 4 5
5678901234567~901234567890

K· RI C>-IER

Figure 11-1.

RECORD LE'.'JGH=204 CiiARACTERS

DAFT Sample (Cont'd)

11-8

RECORD 000005 OF FILE MAIL'JG, RECORD LENGTi=204 CiARACTEES

DEC
*Q

S· G• WEl.LCOME

I \lPUT FILE: MAIL\JG OPE\l
U!\JI T: 00
0 UTPUT FILE: 1"11 O\J El
UNIT: 00
:< EY=< 001, 050>

RECORD 000005 OF FILE ~AIL'JG,

DAFT VERSIO\l 6·06

*Q
INPUT FILE: ~Ail.'JG OPE'J
U\JI T: 00
0 UTPUT FILE: /\JO\JE/
U\ll T: 00
KE'f=<OOl,510>

RECORD 000005 OF FILE MAivrn,

DAFT VERSION 6·06

RECORD LE'\JGT-1=203 C-IARACTERS

RECORD LE:-JGTi=2C4 CiARACTERS

* B ; SHOULD CAUSE A\l ERIWR MESSAGE
CA~T BACKSPACE WITH SEQUE"JTIAL I'JPUT

.Figure 11-1. DAFT Sample CCont' d)

11-9

RECORD 000003 OF FILE MAILl\JG,

2 3 4 5
56789012345678901234567890

S• RABP.JOWI TZ
*D
* T 2

RECORD 000003 OF FILE MAIL:\JG,

RECORD LENGTH=204 CHARACTERS

RECORD LE!'lGT~=204 C~ARACTERS

DIGITAL EQUIPMENT CORP· S· RABI NOWI Tl 12-3

146 MAIN ST· MAYNARD MA01754COS 300 0099999C12

345 062172009COMPILER

RECORD 000004 OF FILE MAILNG, RECORD LENGTri=204 CHARACTERS

DIGITAL R•' LAR'f 12-3

146 MAIN ST MA'f\JARD MA01754

061272999 SORT

*D
*KEY 1, 50 ; SET PERMA'.°'JFNT :<E'f

* T2

RECORD 000004 OF FILE "'!AI L'JG, RECORD LEVGT'-1=204 CiARACTERS

0 1 2 3 4 5
123T5678901234567~901R3456789012345678901234567390

DIGITAL R· LARl'

* T 2

RECORD 000004 OF FILE MAIL\JG, RECORD LE\JGT'1=204 C:.tARACTERS

0 1 2 3 4 5
i-23456789012345678901234567~901234567139012345678-JO

DI GI TAL R· LAR'f

RECORD 000005 OF FILE MAIL\JG, RECORD LEr>JGTfi=204 C~ARACTERS

0 1 2 3 4 5
12345679901234567890123456739012345673901234567890
DEC S· G· WELLCOME

*D
*T

Figure 11-L DAFT Sample (Cont'd)

11-10

0000000

CHAPTER 12

COS-OS/8 CONVERTER

The COS-OS/8 Converter program, CONVEX, provides the capability to
convert source or data ASCII files created with OS/8 to COS source or
data files. COS data files can be converted to OS/8 ASCII files.

12.1 OPERATING PROCEDURES

The command to run CONVEX has the form:

.RUN CONVEX

and the CR key:

CONVEX replies with the progra~ version nti'!lber:

VERSION 12.28 (or current version number)

And the message:

INPUT MODE-

Answer with the letter code:

A (OS/8 ASCII file mode)
D (COS Data file mode)

and the CR key.

It then displays the message:

FILE NAME-

The answer has two forms depending on the mode.

1. For mode A (OS/8 ASCII) type the OS/8 file name (one to six
characters optionally followed by a period and up to a two
character extension) followed by a comma and then the de~1ice
name which is one of:

DTn
DKn

where n is a single digit referring to the physical unit #
(DTO-DT7 or DKO-DK3). If no device is specified, CONVEX uses
the system device.

12-1

Examples:

ABC,DTS
RICH.TM,DKO

2. For mode D (COS data) type the COS data file name (one to six
characters) optionally followed by a slash and the logical
unit number (1-15). If a logical unit is specified, the
system first checks that logical unit for the specified file
before issuing a MOUNT message.

Examples:

CUST/5
LIST/l
PROS PT

Illegal:

CLIENT ,DTl

If everything is ok, the program displays the message:

OUTPUT MODE -

Type one of the following one character codes:

A (OS/8 ASCII file)
D (COS Data file)
S (COS Source files)

The next question is:

FILE NAME -

If the option
explained in
CONVEX asks:

specified was
steps l and 2.

A or D, reply following the rules
If an existing file is to be destroyed,

REPLACE?

Type Y for YES, N or any other character for NO and the CR key.

If the option specified was s, type the filename, optional comma and
COS device e.g. GROUPA,DT3.

This device must be physically the same as the system device, i.e.,
tape to tape or disk to disk.

When the conversion is complete the message:

INPUT MODE -

is displayed again and another conversion can be specified.
CTRL/C to return to Monitor.

12-2

Type

NOTE

If instead the message:

OUTPUT MODE -

is displayed again after successful output has
occurred (MODE A) , CONVEX needs more space to
continue. Specify an additional output file.

NOTE

OS/8 files are always generated so as to be
multiples of 16 blocks long. For this and other
reasons, the resulting OS/8 files may be longer
than necessary. To recapture the wasted space,
use OS/8 PIP to copy the file back to itself using
the /A option.

12.2 Error Messages

In some cases, illegal or bad syntax on input causes the question to
be reasked.

Other errors generate one of the following:

Message

BAD CHAR

BAD DEV

BAD DIRECTORY

FULL

NO END

Explanation

Warning message logged for each attempt
to convert an OS/8 character you tried
to convert to COS which is not in COS
character set. Characters such as t,
CTRL/Q, etc. Note: + is trans lated to
<, tabs are converted to proper number
of spaces. Vertical tabs, line feeds,
form feeds, rubouts etc. are ignored.
Lower case characters are converted to
upper case.

Specified an output device with -s
option and output device was not same
type physical device as system device.
e.g. FILE,DKl when system device is
OTO.

Attempted to reference or store a file
on a device with no directory or a
directory that has been destroyed.

Specified an output device with -s
option and source file being created was
filled.

Entire OS/8 ASCII input file has been
read but no end of file (CTRL/Z) was
found.

12-3

Message

NO ROOM

NONCE ERROR

NOT FOUND

Explanation

Directory of output device was full; no
room for specified output file.

User tried to use a feature not
currently S'Upported or documented {but
might be implemented in some future
release).

File with specified name was not found.

12-4

CHAPTER 13

FORMAT PROGRAMS

There are four format programs provided with the COS package which
mark disk or DECtape for use with cos.

These programs are:

RK8MRK Formats an RK08 disk.

RKEMRK Formats an RK8E disk.

TDMARK Formats a DECtape on a TD8E drive.

DTMARK Formats a DECtape on a TC08 drive.

These programs are described in detail in diagnostic documents (RK08
Disk Formatter, DEC-08-DSKB; RK8E Disk Formatter, DEC-08-DHRKD-A-D;
TD8-E DECtape Formatter, DEC-8E-EUZC-D; TCOl - TUSS DECtape Formatter,
DEC-08-EUFB-D) provided with the system. The procedures in the
following paragraphs cover the use of these programs with the COS
system.

13-1

IRKBMRK

13.1 RK8MRK

Mount the system tape or disk and the disk to be formatted.

13.1.1 Operating Procedure

The command to run RK8MRK is :

~RUN RK8MRK

and the CR key.

RK8MRK replies with the question:

DRIVE NO.?

Type the unit number of the RK08 disk to be formatted. Be sure that
the unit specified is not a good system device since formatting
destroys the contents of a disk.

DRIVE NO.? 0

RKBMRK displays the question:

WRITE STANDARD FORMAT? (TYPE "Y" FOR YES)

Type Y to format the disk for use with cos. Any other reply provides
a non-standard format which can not be used with cos.

When formatting is complete RK8MRK displays the messages:

DISK FORMATTED

and

DRIVE NO?

At this point specify another drive to be formatted or type CTRL/C to
return to the COS Monitor.

13.1.2 Error Messages

All error messages displayed contain the track number and sector
number where the error occurred. For example:

TRACK 0104 SECTOR 02
PARITY ERROR

13-3

Message

CONTROL BUSY ERROR

DATA RATE ERROR

EXEC WORD ERROR

FORMAT ERROR

FORMAT PARITY ERROR

PARITY ERROR

SECTOR NO GOOD

TIME OUT ERROR

TRACK ADDRESS ERROR

TRACK CAPACITY EXCEEDED ERROR

WRITE LOCK ERROR

Error Recovery

Explanation

Disk IOT issued when control was busy
which would effect operation.

The processor was busy and did not
respond to a data break request within
the 13 micro seconds required. The
transfer is terminated immediately.

An error occurred while reading the
EXEC. word of the sector.

An error occurred while reading the
header word.

A parity error occurred in either the
Header word or Exec word while reading
the sector.

A bit in data, parity or timing has been
picked up or dropped on read. Transfer
continues to the end of the sector where
the error occurred. Word count, current
address information can be used to
identify the error.

The program attempted to read or write
data on a sector whose header words
indicated a bad sector. The transfer is
terminated immediately.

The control did not complete
operation after 32 revolutions.

an

Track, surface or sector address read
from the disk did not agree with the
address count registers or the disk
drive electronics indicated track
position 000 and the track counter did
not agree. The transfer is terminated
immediately.

The program attempted to read or write
beyond sector 17.

The program attempted to write a section
that was write protected. The write
operation is terminated immediately.

If the program halts with the program counter = 1337 indicating
non-existent drive or device not adjusted correctly. If CTRL/C does
not work, restart the COS system. (Refer to Appendix B.) If an error
reoccurs, the disk may be bad.

13-4

At the end of each track in which an error occurred on the write and
read operation the message:

RE-WRITE TRACK (Y FOR YES)?

is displayed. Type Y to rewrite the track.

13-5

13.2 RKEMRK

Mount the system tape and the disk to be formatted.

13.2.l Operating Procedure

The command to run RKEMRK is:

.R RKEMRK

and the CR key.

RKEMRK replies with the following:

RK8E DISK FORMATTER PROGRAM
FOR ALL QUESTIONS, ANSWER Y FOR YES OR N FOR NO.

The following questions are asked:

FORMAT DISK 0?
FORMAT DISK l?
FORMAT DISK 2?
FORMAT DISK 3?
ARE YOU SURE?

I RKEMRK

After answering Y or N to each of the above questions the disk(s) is
formatted and the following message is printed:

RK8E DISK FORMATTER PASS COMPLETE
FORMAT SAME DISK(S) AGAIN?

Answer Y or N. At this point each of the FORMAT DISK n? questions are
printed again. Exit to Monitor by typing CTRL/C or continue procedure
for formatting disks.

13.2.2 Error Messages

The following error messages may be displayed when marking an RK8E
disk for COS:

DISK DATA ERROR
READ STATUS ERROR
WRITE STATUS ERROR
RECALIBRATE STATUS ERROR

After the error header mentioned above is displayed, the terminal will
print some of the following error information pertaining to the
failure.

13-7

PC: PROGRAM LOCATION OF FAILURE

CD: EXPECTED INFORMATION

ST: CONTENTS OF THE STATUS REGISTER

CM: SOFTWARE COMMAND REGISTER

DA: SOFTWARE CYLINDER, SURFACE, AND SECTOR REGISTER

AD: ADDRESS OF DATA BREAK

DT: DATA FOUND DURING DATA BREAK

After the error information is displayed, the terminal will display
one of the following questions asking the error recovery desired.

1. If the error was a recalibrate error, the following question
will be displayed:

TRY TO RECALIBRATE SAME DISK AGAIN?

Typing a Y for yes will result in a repeat of the recalibrate
sequence on the disk in error. Typing N for no will result
in progressing to the next available disk.

2. If the error was a write error, the following question will
be displayed:

TRY TO FORMAT SAME CYLINDER AGAIN?

Typing Y for yes will result in a repeat of the write
sequence on the current cylinder. Typing N for no will
result in progressing to the next sequential cylinder.

3. If the error was a READ or check error, the following
question will be displayed:

TRY TO CHECK SAME CYLINDER AGAIN?

Typing a Y for yes will result in a repeat in the READ and
check sequence on the current cylinder. Typing a N for no
will result in progressing to the next sequential cylinder.

13-8

I TDMAR..T{

13.3 TDMARK

TDMARK records the timing and mark tracks on a DECtape mounted on the
TD8E transport.

13.3.l Operating Procedures

The command to run TDMARK is:

.RUN TDMARK

and the CR key. TD.MARK replies with the question:

UNIT?

Before replying to this question, mount the DECtapes to be marked with
just enough turns on the right hand reel to provide a grip. Make sure
that no two tape units are set to the same unit number; set the WRITE
ENABLE/WRITE LOCK switch to WRITE ENABLE and the REMOTE/OFF/LOCAL
switch to REMOTE. Set the WTM (Write Timing Mark) switch to on (in
down position). This red switch is located on the upper right hand
side of Module 868 (printed circuit card with wires) within the
processor (the black box behind the lights and switches).

Answer the UNIT question with one or two unit numbers, corresponding
to the units of the tapes to be marked. For instance, if tapes are
mounted on units 0 and 1, type:

0 1)

Spaces are ignored, so it makes no difference if spaces are typed
between the unit numbers. Only one specification of a unit is
significant, i.e., typing 000111 has the same effect as typing 01.
Only tapes on units 0 and 1 may be formatted. If an error is detected
in the response to this question, the question is repeated. TDMARK
replies with:

FORMAT?

Type MARK and the CR key and the program assumes 201 words 2702 blocks
{standard PDP-8 format). Any other reply produces a format which is
not compatible with cos.

TDMARK displays the message:

0201 WORDS,2702 BLOCKS.OK?(YES OR NO)

If NO is typed, the program reverts to the FORMAT? question. If YES
the program displays:

SET SWITCH TO WTM

Type the CR key and if the switch is set, the tape on the first unit
specified begins to move.

Once all of the tapes specified have been marked, the message:

SET SWITCH TO OFF

is displayed. Reset the WTM switch to normal (up position) and type
the CR key to start the second pass. Note that during the second pass
with multiple DECtape units, as soon as one tape stops, the next tape
starts; the first tape is completed and may be replaced with a fresh
tape in preparation for formatting additional tapes. When formatting
is completed, the message:

FORMAT

is displayed. Typing SAME and the CR key repeats the entire process
with the same format. The new DECtapes must be mounted and ready
before the CR key is typed in response to the SET SWITCH TO WTM
message. When all tapes are formatted, type CTRL/C to return to the
COS monitor.

13.3.2 Error Messages

The following error messages may be displayed when marking a tape for
cos.

Error messages for response to SET SWITCH TO WTM:

Message

SETUP

Explanation

Indicates an error in the DECtape setup.
One of the units specified is in WRITE
LOCK position, not selected, or the
write flip-flop is unable to be set, or
there may be a timing error. (After
UNIT message is displayed.)

SWITCH NOT SET TO WTM OR SINGLE LINE FLAG FAILED TO SET. SET
SWITCH TO WTM.

Indicates the switch
is not set to the
timing generator for
and timing tracks
single line flag.

on the M868 module
WTM position or the
writing the mark

is not setting the

If the switch was not set to WTM
position, set the switch and type the CR
key.

If the switch was set to WTM position
and this error occurred, try again or
examine the timing generator circuit.

13-10

Error messages for marking and verifying a tape:

PC xx xx BLOCK NUMBER ERROR PHASE n
PC xx xx CHECKSUM ERROR PHASE n
PC xxxx DATA ERROR PHASE n
PC xx xx MARK TRACK ERROR PHASE n
PC xx xx TIMING ERROR PHASE n
PC xxxx WRITE ERROR PHASE n

where xxxx equals the program counter {PC) at the time of the failure.
n equals the pass in which the error occurred. (See Recovery=)

Recovery:

Although an error should cause doubt concerning the entire process. a
restart may be made (except in phase 0) by typing RETRY. RETRY
causes the program to go back to phase 1. Type RESTART to return to
the UNIT? question.

Phase 0:
Phase 1:
Phase 2:

Phase 3:

Phase 4:

Phase 5:

Write timing and mark track forward.
Reads mark track reverse.
Write data, forward block and reverse block
numbers forward and writes the checksums.
Displays block numbers in AC (accumulator)
reverse.
Reads data, forward block and reverse block
numbers forward and calculates the checksum.
Reads reverse block numbers in reverse.

The entire program may be restarted at 0200 any time.

13-11

jDTMARK

13. 4 DTMARK

DTMARK records the required timing and mark tracks on a DECtape
mounted on the TC01-TU55 DECtape unit. Up to eight DECtapes may be
formatted at a time, assuming the system has eight tape transports.

13.4.1 Operating Procedures

The command to run OT.MARK is:

..!..RUN DTMARK

and the CR key. DTMARK replies with:

OTA?

Mount the DECtapes to be marked on the tape transports, with just
enough turns of tape on the right hand reel of each transport to
provide a grip. Make sure that no two tape units are set to the same
unit number. Set the WRTM (WRite Timing Mark} switch located on the
hardware frame to the down position {on). Set the WRITE ENABLE/WRITE
LOCK switch to WRITE ENABLE and the REMOTE/OFF/LOCAL switch to REMOTE.

Reply to the DTA? question with a unit number or series of unit
numbers, corresponding to the DECtape units where the tapes are
mounted. For instance, if tapes are mounted on units 2 and 3, type
2 3 and the CR key. Spaces are ignored, so it makes no difference if
spaces are typed between the unit numbers.

O~ly one specification of a unit is significant, i.e., typing 2 2 3 3)
has the same effect as typing 2 3) •

The program displays:

DIRECT?

Type MARK and the CR key to format the DECtape for use with cos. Any
other reply causes a format which is incompatible with cos. (Refer to
TC01-TU55 DECtape Formatter Writeup.) The program assumes 201(8)
words, 2702(8) blocks (standard PDP-8 format) and displays the
message:

0201 WORDS,2702 BLOCKS.OK? (YES OR NO)

If a NO) is typed, the program reverts to the DIRECT? question. If
YES), the tape on the first unit specified begins to move.

Once all of the tapes specified have been marked, the message:

SET SWITCH TO NORMAL

13-13

is displayed. Return the WRTM switch to normal (up position) and type
the CR key to start the second pass. Note that during the second pass
with multiple DECtape units, as soon as one tape stops, the next tape
starts. The first tape is completed and may be replaced with a fresh
tape in preparation for rerunning the program to format additional
tapes.

When DTMARK has formatted the tapes specified, the message:

DIRECT?

is displayed again. Type SAME and the CR key to repeat the entire
process with the same format. The new DECtapes must be mounted and
ready before SAME) is typed. (0 means DECtape unit 8).

When all tapes are formatted, type CTRL/C to return to the COS
Monitor.

13.4.2 Error Messages

Errors typed in response to the DTA? and DIRECT? questions cause a
return to DTA? or DIRECT? respectively.

Error messages for response to OK? (YES OR NO) :

Message Explanation

SETUP? Indicates an error in the DECtape setup, unit in
WRITE LOCK position, nonselectable unit or switch
not in WRTM position. After display of this
message, the DTA? question is displayed.

Error messages which may occur during marking and verifying a tape:

xxxx SHOULD BE yyyy BLK ERROR PHASE n
xxxx SHOULD BE yyyy DATA ERROR PHASE n
END TAPE ERROR PHASE n
LAST INT NOT END ZONE
MARK TRACK ERROR PHASE n
PARITY ERROR PHASE n
SB!iE€T- -E-ROOR PHASE- n
TIMING ERROR PHASE n

Recovery from error messages:

Although an error should cause doubt concerning the entire process,
restarts may be made (except when in phase 0), by typing RETRY and the
CR key. RETRY causes the program to return to PHASE 1. Type RESTART
and the CR key to return to the DTA? question.

PHASE 0: Mark track write.
PHASE 1: Writing last reverse block number forward.
PHASE 2: Writing block numbers and data in reverse.
PHASE 3. Reading and checking block numbers and data.

If it is necessary to restart the DTMARK program, type CTRL/C to
return to the COS Monitor then type RUN DTMAPJ<.

If CTRL/C does not work, rebootstrap the cos system (refer to Appendix
B) and then call DTMARK.

13-14

CHAPTER 14

CREF

CREF (Cross REFerence) is a utility program. Primarily an aid to
program development, it provides an alphabetical listing of all
symbols used in a DIBOL program, along with the line number where each
symbol is defined and all the line numbers where each symbol is used.

CREF requires BK of core and can handle any reasonable BK program. If
12K of core is available CREF expands its tables to make use of the
extra space. CREF expects the source program to be free from errors.
Only a very minimal amount of error checking is preformed by CREF and
no attempt should be made to CREF programs with compilation errors.
If CREF finds a line it cannot handle it will print:

xxxx IS BEING IGNORED

where xxxx is a line number.

For an example of CREF operation, consider the listing in Figure 14-1.
It is a short program that computes the square roots of numbers from 1
to 99. (Output of program is shown in Figure 14-3.} Its CREF table,
Figure 14-2, illustrates the basic functions of CREF.

The columns of the CREF Table are:

NAME Name of the symbol.

DEF Line number of program where symbol is
defined.

REFERENCES Line numbers of program where symbol is
referenced.

14.1 OPERATING PROCEDURES

Type:

~RUN CREF[,filel,file2, •••]

and the CR key.

Where

filel,file2, ••• are the parts of a DIBOL program, just as
in running COMP (maximum 7). If no files
are specified, the Editor scratch area is
used.

CREF reads the DIBOL program, produces its table on the line printer
and returns control to the COS Monitor.

14-·l

cos 01Bo~ 01•MAR-73 THUR COMPI~ATION ~1ST1NG v1212e PAGE ~1
DATA DtyIS!ON S Q U A R E R 0 0 T S U B R 0 U ! I N t.

0010
0020
0030
0040 A. ,
0050 s,
0060
21070
e~s0 x,.
H90 SGIRTX,
"~00 TEMPX,
0U0 N•
0~20

START J s Q U A R E R 0 0 T s u e
RECORD PRINT
A15
Ali5

RECORD
015
D15
015
03,001

Figure 14-1. Square Root Subroutine
(Sheet 1 of 3)

14-2

R 0 u T I N E

COS DlSO~ ~1•MAR•7~ THUR coMelL.A!lON LISTING
PROCEDURE OIV!SlON

PROC l.

tNtTC~4L,PT)
~OOP1 X!N•1~0~001

CAL.L SQRT
ARN -
S • SQRTX 1 fXXX~XXX~
INeR N
XM!TC~ 1 PRlNT>
IP (N~~t~99) GOTO ~OOP
STOP

SQRT, TtMPXeX/2 ITR1A~ VA~UE
SQ~OOP 1 SQRTX,CT£MPX+(X/TtMPX))/2 1N£WTON1S ME!HOO

ENO

Ir(SQRTX•TtMPX ,EQ 1 0) RETURN
TE:MPX1SQRTX
CO'O SQ~OOP

Figure 14-1. Square Root Subroutine
(Sheet 2 of 3)

14-3

co~ 01fiOL. 01 111 MAR11t7~ THUR STORAGE MAP L.ISTtNG
NAME: TYPE DIM SUE ORIGIN

H11 PRINT RECORD 01 32 200021
HH A AL.PMA u 15 200212
0H~ s Al..PMA u 15 20021
H0~ x OECMAL. 01 15 2"042
HJS5 SQRTX OECMAI.. 01 15 202161
H5'6 TEMPX OECMAf. 01 1' 201.00
H217 N DE:CMAL., llJ1 "~ 20117
H10 '• ', l OECMAI.. "1 u 2"'122
HU L,OOP L.Aen. 00 01 10871
0012 • '• 1000 OE:CMAL, 01 e1 20U3
002,3 SQRT L.ABF:l. 00 n 1013~
011, ·, ·• xxx·. AL.PMA 01 0? 20132
00~' .• 99 OECMAI,. "1 2'2 2~141 I rt HU ·• '2 OE'.CMAL. u "1 20143
HV SQL,OOP L.ABEL. "" 01 UH,41
HZI ·, ·. " OE:CMAI. 01 01 20144

H16 SYMBOl.S

NO tRRORS o£T£cT£o. me K oORE REQYlREP C3042l f'RE:E L.OcS

Figure 14-1. Square Root Subroutine
(Sheet 3 of 3)

14-4

v1212e PA C.Jf: 03

Cl 14 slJrfERSj

Co$3H Ci:lEF' V1l 108 THUR 0hMAR•73 pAGE 1

STMSOii. OEF' REP'ERENCES

A 421 1U
LiOC>P 160 220
N 110 160 180 200 22e
PRINT 30 21~-
s 50 19'11
§9~00P 260 29"
SQRT 25i1 170
SQRTX 9(ll 19~ 2~0 270 26~
i'tMPX 10" 25Z 260 260 27~ 280
x~ 80 1(>21 250 260

Figure 14-2. CREF of Square Root Subroutine

14--5

1
2
3
4
5
6
7
8
9

10
u
12
13
14
15
16
17
18
l,9
12'.~

?.1
?.2
23
~4

25
26
27
28
29
30
31
32
33
34
35
36
37
3A
39
40
41
42
43
44
45
46
47
48
49
~0
51
52
53
54
55

1,00"
1~414
l,'132
2~000
2·. 236
2·, 449
2J645
2·1 a2e
3,~00
3~1,62
3,316
3,464
3,605
3,741
3,872
4.000
4~1,23
4·. 242
4,358
4,472
4;ss2
4ft690
4,795
4,898
5·, 000
5'~2l99
5', l 96
5,291
5,385
5·, 477
5,567
5R656
5,744
5,830
5,916
61el00
6,082
6·,16 4
6 -. 244
6 ·, 324
e.403
6,480
6 •• 557
6", 633
6,108
6!182
6', 855
6,928
7,2100
, .• 071
1·, 141
7' ~11
7·, 280
7, 348
1·, 416

Figure 14-3. Output of Square Root Subroutine
(Sheet 1 of 2)

14-6

s:;;6, ,,,...,
57
58
59
60
61
62
6:5
64
65
66
6;
68
69
70
71
72
73
74
75
76
77
78
79
30
81
82
83
84
85
86
87
ae
89
90
9 j,
92
93
94
95
96
97
98
99

7.463
7.549
'7, 615
7', 681
7, 745
1,810
7,974
7,937
8,000
R•el62
er.124
a,J.65
8', 246
a,306
8,366
8 1 426
8,485
8,544
s,~02
A1 660
a1 111
a·ft 774
~,SH
e,aes
~r, 944
9,000
9,a55
9·, 110
9', 165
9,219
9~273
9,327
9,380
9,433
9.486
9,539
9,~91
98643
9~, 695
9,146
9,197
9,848
9 '• 899
9,949

Figure 14-3. Output of Square Root Subroutine
(Sheet 2 of 2)

14 J

14.2 ERROR MESSAGES

Although CREF expects the source to be error free, certain types of
errors are detected.

xxxx IS BEING IGNORED CREF has encountered a line it cannot
interpret.

In addition to the above message, CREF prints an informative message:

SYMBOLS DEFINED BUT NOT REFERENCED; xx

Symbols were found that were defined but
not referenced by the program.

14-8

APPENDIX A

COS CODES

Numbers are stored 2 characters per word in 6-bit binary form
{combinations of 1 and 0). Negative numbers are stored with the high
order bit of the low-order digit set to 1. For example, the number
1234- is stored as two words in the form

WORD 1
1 2

WORD 2
3 4 {with high order bit on)

and would be recognized as 123T. This means that any program where
the decimal to alpha conversion is neglected might produce negative
numbers with letters. Refer to Table A-1 for a list of equivalent
characters for negative nu.~hers.

The sequence of the COS codes is the same as the output from the SORT
utility.

A-1

TABLE A-1 COS CODES

EQUIVALENT
NEGATIVE

CHARACTER NUMBERS COS CODE CHARACTER COS CODE

0 21 ! 02
1 22 " 03
2 23 # 04
3 24 $ 05
4 25 % 06
5 26 & 07
6 27 10
7 30 (11
8 31) 12
9 32 * 13
A 42 + 14
B 43 15
c 44 16
D 45 . 17
E 46 I 20
F 47 33
G 50 34
H 51 ~ 35
I 52 = 36
J 53 ~ 37
K 54
L 55 ? 40
M 5-6 @ 41
N 57 [74
0 60 \
p -o 61] 76
Q -1 62 t 77
R -2 63 +

s -3 64 Leader/Trailer
T -4 65 LINE FEED
u -5 66 Carriage Return
v -6 67 Space 01
w -7 70 RUB OUT
x -8 71 Blank
y -9 72 Bell
z 73 TAB 75
null 00 FORM

A-2

APPENDIX B

LOADING COS

The COS system is supplied on DECtape (LINCtape for PDP-12 users). It
is suggested that the user copy the COS tape on a certified DECtape
(or LINCtape) before using the system (Refer to Chapter 5.} The copy
can be used and the original stored in a safe place in case part of
the system should be inadvertently destroyed during snhsequent usee

The Monitor can be put into core memory in one of three ways. If the
computer is equipped with the automatic load feature, the Monitor is
loaded by pressing the INITIALIZE switch under the table or by raising
the SW switch on the computer console.

Otherwise the Monitor must be loaded into memory using the appropriate
Bootstrap routine.

The editing scratch area is not automatically erased during system
start-up.

If the system is equipped with an Analex printer, the printer must be
turned off until the system is bootstrapped and re-configured.

1.0 AUTOMATIC LOAD

If one of the optional automatic bootstraps

MI8-EC
MI8-ED
MI8-EH
MI8-E

for the
for the
for the
for the

TC08
RK8
TD8E
RF08

was purchased, push the SW switch from down position to up position.
Then return it to the down position.

2.0 TC08 DECTAPE AS THE SYSTEM DEVICE

If your system uses DECtape as the system device, use the following
procedures:

1. Mount the COS DECtape (DEC-08-0COSA-D-UO) on DECtape unit O.

2. Set the LOCAL/OFF/REMOTE switch to REMOTE and the WRITE
ENABLE/WRITE LOCK switch to WRITE LOCK. Set SWITCH REGISTER
to zero {all switches down} and press EXTD ADDR LOAD.

3. Enter the binary equivalent of the following locations and
instructions (refer to Chapter 1 of Introduction to
Programming for information on binary numbers). To bootstrap
a TC08 system:

B-1

LOCATION INSTRUCTION

7613 6774
7614 1222
7615 6766
7616 6771
7617 5216
7620 1223
7621 5215
7622 0600
7623 0220

7754 7577
7755 7577

Set the SWITCH REGISTER (SR) to enter the first location
(7613) and press ADDR LOAD. Set the switches to enter the
first instruction and push up on DEPosit switch. Continue
entering instructions as described up to and including
instruction 0220. Then set 7754 in SR and press ADDR LOAD.
Set SR to 7577 and push up on DEP switch twice.

4. Set terminal REM/LOC switch to REM.

5. Set SR to binary equivalent of 7613; press ADDR LOAD, CLEAR
and CONT keys in that order. The Monitor should respond with
the message

COS MONITOR 2.1108

DATE?

(or current version
number)

Enter the DATE command as described in Chapter 2. At this
point the SYSGEN program can be used to change the system
unit number assignment (refer to SYSGEN, Chapter 3).

Set the switch to WRITE ENABLE.

6. If the Monitor does not respond correctly, start at step 1
and reload the bootstrap routine.

2.1 SYSTEM RESTART ON DECTAPE

If the system halts or CTRL/C is inoperative, use the automatic
bootstrap switch to restart the system. Each time the Monitor is
reloaded, the old date is erased and the Monitor requests a new date.
Use the DATE command to enter the new date.

For users without a bootstrap switch, set SR to 7600 and press LOAD
ADDR, CLEAR and CONT, assuming the core resident monitor has not been
destroyed.

B-2

3.0 DISK AS THE SYSTEM DEVICE

If your system uses an RK08, RK8E, or RF08 disk as the system device,
the programs must be loaded on the disk from the DECtape supplied.

1. Follow steps 1-6 described in section 2.0 on DECtape as a
sys tern device.

2. Enter the DATE command in response to the Monitor's DATE?
message. Then enter the command:

.RU SYSGEN/C

in response to the Monitor's period.
following questions:

SYSGEN asks the

DO YOU DESIRE TO CHANGE THE SYSTEM DEVICE?

Type YES and a CR key.

WHAT IS THE NEW SYSTEM DEVICE

Type the 3 character designation for the disk system device
(DKn) and the CR key.

DO YOU WANT TO TRANSFER YOUR FILES?

Type YES and the CR key.

DO YOU HAVE AN ANELEX PRINTER?

Type YES and the CR key and SYSGEN skips to the last
question. Type NO and the CR key and SYSGEN assumes an LP08
or LS8E printer and asks:

132 COLUMN PRINTER ?

Answer YES and the CR key if there is a 132-colurnn line
printer. If NO is the answer, SYSGEN assumes an 80-colurnn
printer.

IS EVERYTHING CORRECT?

Type YES or NO and the CR key.
questions are reasked.

If NO is entered the

The files are transferred to the disk specified. To operate from the
disk as ~ne system device, refer to BOOT, Chapter 9, or restart the
system with one of the following bootstraps.

RK08 AND RK8E BOOTSTRAP ROUTINE

Location RK08 Instruction

0030
0031

6733
5031

B-3

RK8E Instruction

6743
5031

Set the SWITCH REGISTER to 0030, press the ADDR LOAD, CLEAR, and CONT
keys in that order.

If a PDP-12
PRESET in
30.

NOTE

is being used, execute an I/O
8-mode before starting at location

The Monitor should respond with the version number and the DATE?
message. Enter the DATE command as described in Chapter 2.

RF08 BOOTSTRAP ROUTINE

Location

7750
7751
7752
7753
7754

Instruction

7600
6603
6622
5352
5752

Set SR to 7750; press ADDR LOAD, CLEAR, and CONT in that order. The
Monitor should respond with the version number and the DATE? message.
Enter the DATE corranand as described in Chapter 2.

3.1 SYSTEM RESTART ON DISK

If the system halts and CTRL/C is inoperative, use one of the
bootstrap routines to restart the system. Each time the Monitor is
restarted the Monitor requests a new date. Use the DATE command to
enter the new date.

For users without the bootstrap switch if the core resident portion of
the Monitor is intact, set SR to 7600 and press LOAD ADDR, CLEAR and
CONT.

4.0 TDBE BOoTSTRAP

If your system uses TDBE's use the following bootstrap routine to load
the COS software.

1. Location Instruction

7300 1312
7301 4312
7302 4312
7303 6773
7304 5303
7305 6777
7306 3726
7307 2326

B-4

7310 5303
7311 5731
7312 2000
7313 1300
7314 6774
7315 6771
7316 5315
7317 6776
7320 0332
7321 1327
..,~..,.., "'7C An
f,J'' /O'tV

7323 5315
7324 2321
7325 5712
7326 7354
7327 7756
7330 7747
7331 7400
7332 0077

Mount the COS 300 DECtape (DEC-8E-OCOSA-D-UO) on DECtape unit
o. Set the LOCK/OFF/REMOTE switch to REMOTE and the WRITE
ENABLE/WRITE LOCK switch to WRITE LOCK. Set the switch
register (SR) to zero (all switches down) and press EXTD ADDR
LOAD.

Set the SR to the binary equivalent of the first location and
press ADDR LOAD. Set the switches to the binary equivalent
of the first instruction and push up on the DEP switch.
Continue entering the instructions as described, the location
is incremented automatically and need not be entered again.

2. Set terminal REM/LOC switch to REM.

3. Set SR to binary equivalent of the first location; press ADDR
LOAD, CLEAR and CONT keys in that order. The Monitor should
respond with the message

COS MONITOR 2.1108

DATE?

(or current
version}

WRITE ENABLE unit 0 and enter the DATE command as described
in Chapter 2.

4. If Monitor does not respond correctly start at step 1 and
reload the bootstrap.

B-5

5.0 PDP-12 USERS

For a PDP-12 with LINCtape,

1. Set left switches to 0700.

2. Set right switches to 0000.

3. Press I/O PRESET with mode switch set to LINCmode.

4. Mount system tape (DEC-12-0COSA-D-UO) on drive O, WRITE
LOCKED, REMOTE.

s. Press DO.

6. When LINCtape stops moving, press the START 20 switch.

Monitor displays

COS MONITOR 2.1108
DATE?

(or current version)

7. WRITE ENABLE unit 0 and enter the DATE command as described
in Chapter 2.

8. If Monitor does not respond correctly, start at step 1 and
reload the system.

Any LINCtapes to be used with the COS system must be marked with
MARK12 {DEC-12-SE2E-UO) (P option, 129 words).

B-6

APPENDIX C

SIZE OF CODE PRODUCED
BY DIBOL COMPILER

DIBOL source statements are compiled by the DIBOL compiler and produce
code which can later be executed by the run time system (RSYS) •
Memory is also set aside for the constants and variables that are used
by the program.

Each variable (field name) takes up as much memory (in bytes) as
specified in its data specification statement. For example, a
variable defined by a 6D3 specification requires 18 (decimal) bytes of
storage. This is 9 words since a computer word consists of 2 bytes.

Variables defined in an overlay record share memory with the variables
in the record being overlaid.

Each RECORD statement requires one additional word of storage. This
word is reserved at the beginning of the record for storing the COS
word count during I/O operations.

Each record begins on a word boundary (even byte address). If a
record has an odd length (in bytes), one byte of storage is wasted.

Each constant used in the procedure section of a DIBOL program
requires storage (in bytes) equal to the length of the constant. The
length of a decimal constant is equal to the number of digits in the
number, including leading zeros. There are no negative constants.
The length of a character string is the number of characters in it.

Each distinct constant with a length of four or less characters or
digits appears only once in the space reserved for constants. Thus,
if the constant 32 appears three times in the program it will appear
only once in the reserved data area. However, constants larger than
four characters or digits require space each time they appear in the
program.

The code produced by statements in the procedure section must start on
a word boundary. Each statement requires an overhead of one word.
Each statement Tabel used require's on:e word. Unlabeled stateniehts
with line numbers 1000 more than the previous line number require one
additional word each.

The number of words of code generated by an expression can be
determined by the following rule:

1. Add together the number of variables and constants used.

2. Add in the number of operators which appear (do not count
unary + signs) • The operators include +, - /, * #. , ,

3. Add one for each subscript reference (be it of the form V(A)
or V(A,B)).

C-1

The following table shows how much code is used by various DIBOL
statements. E denotes the number of words required by the expression
E.

Statement

ACCEPT (y,x)
CALL label
CHAIN chnum
DISPLAY {line,column,expr)
END [/list control]
FINI {channel)
FORMS (channel,skipcode)
GOTO label
GOTO (labell, ••• ,labeln) ,key
IF {exprl.rel.expr2)stmnt
INCR var
INIT (channel, dev)
INIT (channel, dev,filnam[,unit])
ON ERROR label
PROC [n] [/list control]
READ (channel,record,number)
RETURN
START [/list control]
STOP
[NO] TRACE

TRAP
var=
var=expr
var=exprl,expr2
WRITE (channel,record,number)
XMIT {channel,record[,label])

No. of Words of
Code Generated

.x+~+l
1
chnum+l
line+column+expr+l
1
channel+l
channel+skipcode+l
1
key+n+2
exprl+expr2+3
var+l
Channel+2
channel+3+filnam+unit
1
0
channel+number+record+l
1
0
1
1
2
var+l
var+expr+l*
var+exprl+expr2+1
channel+number+record+l
channel+record+2

For the statement marked with an asterisk (*) in the previous table,
subtract 1 if the principal operator of expr is binary + or - and if
both types are decimal. For example,

D = 3+5 takes 4 words of storage, while
D = 3*5 takes 5 words. Similarly,
D=3+4+5 takes 6 words while
D=3*(4+5) takes 7 words.

Additional space is also required by the symbol table. This consists
of two words for each distinct variable, statement label, or constant
used.

c 2

APPENDIX D

DESIGNING A RECORD

The file design begins with the set of related information shown in
blank form. It is a simplified form which could be processed to print
out customer invoices.

DATE
PART# PART NAME
WHOLESALE PRICE
VENDOR#

This information is used in a BUILD control program such as described
in Chapter 6. First, the file designer notes the type and size of
each field in this record. Numerical fields on which calculations
will be performed later by a program are defined as decimal fields;
other fields are defined as alphanumeric fields.

0010 DEFINE
0020 Fl, D6 ;PART #
0030 F2, A30 ;PART NAME
0040 F3, D7 ;VENDOR #
0050 F4, D6 ;DATE
0060 F5, D6 ;WHOLESALE PRICE

The designer now assigns BUILD input line keywords. Here, he should
group related items such as part #, name and wholesale price.

0100 INPUT
0110 PART
0120 Fl
0130 F2
0140 F5
0150 DATE
0160 F4
0170 VENDOR 1
0180 F3

A sample data entry form is now completed, showing the line names and
the size and type of each field. Th·±s can be used for reference when
data is entered. When this record design has been proven, it will be
more efficient to print these line names on the forms which are used
to collect the original data.

DATE (D6)~----
PART# (D6) NAME(A30) _____ WHOLESALE PRICE (D6) ____ _
VENDOR# (D7)~-------

D-1

APPENDIX E

BUILD
CHECKDIGIT
FORMULA

In most applications involving identification nurrbers, each number may
be verified for accuracy by a checkdigit; which is essentially a
redundant digit added to the normal number. The checkdigit is
determined by performing an arithmetic operation on the number in such
a way that the usual errors encountered in transcribing a number are
detected. The checkdigit is determined as follows:

1. Start with a number without the checkdigit ••• 5764.

2. Multiply the first digit and every other digit by 2 (left to
right). 10 12

3. Sum the digits in the resulting numbers and the digits not
multiplied. 1+0+7+1+2+4 =15

4. Subtract sum from next higher number ending in zero. 20-15=5

5. Add checkdigit to the end of the number. 57645
(This is the correct checkdigit if the number is entered in a

D4 field.)

Note that a checkdigit procedure is not completely error proof. In
the example given above, 5764 or 5673 give the same checkdigit. It is
unlikely, however, that transpositions of this sort will occur. The
checkdigit does not guard against the possible assignment of an
incorrect but valid code, such as the assignment of a wrong valid
identification code to a customer.

If the number entered for a checkdigit calculation is shorter than the
field, the rightmost digit is used as the checkdigit and the remainder
of the number is right-justified and padded with zeroes on the left.
The zeroes are considered when the checkdigit formula is calculated.

E-1

APPENDIX F

HARDWARE
DESCRIPTIONS

The hardware components for COS are:

PDP-8/E

TD8E

VTOS

PC8-E

CR8-E
CM8-E

LP08

LS8-E

Computer with at least 8K of core

DECtape drives, (or TC08 drives, or RK08, RK8E, or
RF08/RS08 disk}

Terminal

Paper tape Reader/Punch (optional}

Card reader (optional) or
Card reader (optional}

Line printer or

Centronics line printer

The above hardware components are described in
paragraphs.

the following

Figure F-1 shows one of the possible system configurations.

The central processor unit {CPU) of the COS system is located under
the desk area of the system. There are two switches necessary for the
operation of the COS system.

OFF/POWER Switch

INITIALIZE Switch

In the OFF position the switch disconnects
all primary power to the machine. In the ON
position all manual controls are enabled and
primary computer power is applied.

Push this switch to initialize the system
Bootstrap Loader.

Additional information on the CPU can be obtained from Introduction to
Programming.

F-1

Figure F-1. Possible COS Hardware Configuration

F-2

1.0 VT05 TERMINAL

Basically, the VTOS terminal (Figure F-2) consists of a keyboard and
CRT display.

The basic function of the keyboard is to provide a convenient, on-line
means of transmitting ASCII characters to the computer to be processed
and displayed. An ASCII code is transmitted to the computer each time
a key is depressed.

The VTOS display allows direct viewing of all displayable characters
contained in the VT05 character set that are transmitted from and/or
received by the VTOS.

The VTOS displays up to 20 lines, 72 characters per line, or a maximum
of 1440 characters full screen. A blinking cursor indicates the
position of the next character to be generated and moves to the right
automatically as each character is displayed. The VTOS can be
operated in LOCal or REMote mode. In LOCal mode the terminal is off
line and there is no conununication with the computer. In REMote mode
(the normal operating mode) data is transmitted between the terminal
and the computer.

VTOS controls and keys and their respective functions are listed in
Tables F-1 and F-2. Keys which are operative off-line only are not
covered here; refer to the hardware manual for the VTOS for a
description of their function.

F-3

TABLE F-1. "i.lT05 CONTROLS

Control Function

Power ON/OFF Switch

REM/LOC Switch

CONTRAST Control

BRIGHTNESS Control

This switch is located on the right front of
the VTOS. When the ON/OFF switch is turned
ON, power is applied to the complete system
and the VTOS display refresh memory is
cleared. After approximately one minute has
elapsed, the cursor (bright dash should
appear in the upper left-hand corner (HO.ME
position) of the screen.

This switch is located on the right front of
the VTOS. In LOCal mode, the terminal is
off-line and data can be typed at the
keyboard but not entered into memory. In
REMote mode, keyboard data is transmitted
from the VTOS to the processor.

NOTE

The CONTRAST, BRIGHTNESS, VERTICAL
and HORIZONTAL controls are
adjusted in the same way as those
of a commercial television
receiver.

The CONTRAST control is located on the
right-hand side of the VTOS and is used to
adjust for display contrast (clarity).

The BRIGHTNESS control is located on the
right-hand side of the VT05 and is used to
adjust for CRT display brightness or
intensity.

NOTE

To correctly adjust the VTOS
character presentation, turn the
CONTRAST control counterclockwise
to minimum, then adjust the
BRI.GHTNESS control decreasing the
intensity until the raster.
brightness is barely intensified
(just above the CRT cutoff point).
As a final step, adjust the
CONTRAST control to the desired
level, according to ambient
lighting conditions.

VERTICAL Sync Control The VERTICAL sync control is located on the
right-hand side of the VT05 and is used to
properly synchronize the screen in the
vertical direction.

HORIZONTAL Sync Control The HORIZONTAL sync control is located on the
right-hand side of the VTOS and is used to
adjust the screen picture for proper
synchronization in the horizontal direction.

F-5

TABLE F-2. VTOS KEYS

Key Function

CR

LF

RUBOUT

TAB

ALT

CTRL

CTRL/C

CTRL/N

CTRL/O

CTRL/U

CTRL/V

CTRL/Z

Returns cursor to the left margin of screen.

Moves cursor down one line in same location.
If pressed when cursor is on the bottom line
(line 20), the display scrolls (top line
disappears and rest of lines move up one line
position).

Works in REMote mode in conjunction with the
Monitor to erase characters. Erases the
character above the cursor from memory and
echoes the deleted character on the screen,
i.e.,

Moves the cursor to the right to the next TAB
stop each time TAB is pressed.

Has no effect on the display and is ignored
by the terminal. It is included to provide
an alternate escape character (replaces
Carriage Return or Line Feed) for use in the
user program.

Used simultaneously with character keys to
perform special functions as follows:

Causes an immediate return to the Monitor.

Enables and disables imbedded numeric keypad.
See Table 2-1 in Chapter 2 for details.

Suppresses terminal output. If output is
already suppressed, enables terminal output.

Erases the current input line.

Suppresses Monitor version number message.
If output is already suppressed, enables
output of message.

Indicates no more input. When used in answer
to an ENTER message it forces the program to
use a default value. When specified while
editing, it signifies end of paper tape or
card deck.

F-6

TABLE

Key

SHIFT

'[;I_')
..... -'-. VTOS KEYS (Con' t)

Function

Produces the character in upper case portion
of the key pressed simultaneously with SHIFT,
e.g., ! rather than 1. Control characters
are "SHIFT inhibited" and alpha characters
are permanently set to upper case.

SHIFT LOCK Enables and holds the shift function or

Space

releases it if already set. When enabled the
SHIFT LOCK key is lit.

Produces a blank character position (wherever
the cursor is located) each time it is
pressed. Cursor moves one position to the
right.

Additional features:

The VT05 sou__nds a warning beeo when the line reaches character
position 65. This alerts the user that there are 8 positions before
the end of the line. The cursor moves to the right automatically as
each character is displayed until it reaches position 72.

1.1 VTOS Start Up Procedures

1. Press the OFF portion of the ON/OFF power switch.

2. For local
alignment
switch.

operation
purposes)

(used for training, maintenance and
press the LOCal portion of the REM/LOC

For on-line operation, press the REMote portion of the
REM/LOC switch.

3. Press the ON portion of the ON/OFF power switch. The
blinking cursor (bright dash) appears in the HOME position
(the first character position of the top line), and a beep is
emitted.

4. Allow approximately one minute for the CRT filament warmup.

S. If the cursor does not appear as specified, press the HOME
key.

If the cursor still does not appear, check the BRIGHTNESS
control to be sure it is not set too low. Contact the local
DEC Field Service Office if these steps do not make the
cursor appear.

6. In REMote mode all keyboard and control functions are
operational and the VTOS is ready for on-line operation. To
verify correct system operation, press the various controls
and displayable character keys individually and observe the
display. In LOCal mode all keyboard functions are
operational. To verify this, press the keys individually and
observe the screen.

F-7

2.0 HIGH-SPEED PAPER TAPE READER AND PUNCH UNIT

The high-speed paper tape reader and punch unit shown in Figure F-3
performs paper tape input and output. The high-speed paper tape
reader is used to input data into core memory from eight-channel,
fan-folded (non-oiled), perforated paper tape. The reader inputs
information photoelectrically at a rate of 300 characters per second.

Figure F-3. High-Speed Paper Tape Unit

F-8

The reader controls are shown in Figure F-3 and described in Table
F-3.

TABLE F-3. HIGH-SPEED READER CONTROLS

Control Function

ON/OFF

FEED

Control knob

Press down on the ON portion of this switch
to supply power to the reader unit. The OFF
position setting disconnects the reader power
supply,,

Press the right side of this switch to
advance tape through the reader without
recording by the photoelectric sensors.

Turn this knob to the left to raise the tape
retainer lever so paper tape can be inserted
or removed. Turn the knob to the right to
lower the lever to hold the paper tape over
the sprocket wheel.

The reader is controlled by the computer, although the operator may
indirectly control the reader from the keyboard through the computer.

Paper tapes are manually positioned in the high-speed reader with the
following steps.

l. Turn the control knob to raise the tape retainer lever.

2. Place the paper tape in the right-hand bin so the beginning
of the tape passes over the sensors first.

3. Place several folds of leader tape in the left-hand bin with
the tape passing over the sprocket wheel.

4. Turn the control knob to lower the retainer lever over the
tape so the feed holes are engaged in the teeth of the
sprocket wheel.

5. Press the tape FEED button until leader tape is over the
reader head.

6"'. Tape·" ·±g m:t~"'a:nced am! read by progra.r:nned COihpUter
instructions.

Once the paper tape has been properly placed in the reader and the
leader/trailer has been positioned as outlined in the preceding steps,
the tape is normally read under control of system software.

The high-speed paper tape punch is used to record computer output on
eight-channel, fan-folded paper tape at 50 characters per second. All
characters are punched under program control from the computer.

The punch controls are shown in Figure F-3 and are described in Table
F-4.

F-9

TABLE F-4. HIGH-SPEED PUNCH CONTROLS

Control Function

ON/OFF

FEED

Press down on the ON portion of this switch
to supply power to the punch unit. The OFF
position setting disconnects the punch power
supply.

Press the right side
advance feed-hole-only
leader/trailer purposes.

of this
punched

switch
tape

to
for

3. 0 DECTAPE TRANSPORT UNIT

The DECtape transport unit shown in Figure F-4 is a bidirectional
magnetic tape transport which reads and writes the 10-channel magnetic
tape. Tape movement can be controlled by programmed instructions from
the computer or by the manual operation of switches located on the
front panel of the transport. Data is transferred only under program
control.

The transport controls are described in Table F-5.

TABLE F-5. DECTAPE CONTROLS

Control Function

REMOTE

OFF

LOCAL

WRITE ENABLE

WRITE LOCK

This switch position energizes the DECtape
transport and places it under program
control. The REMOTE SELECT light comes on
whenever the unit is selected for use.

This switch position disables the DECtape
transport.

This switch position energizes the DECtape
transport and places it under operator
control from external transport switches.

This switch position enables the DECtape
search, read, and write activities.
WRITE light comes on when the switch is
in the WRITE ENABLE position.

for
The
put

This switch position limits the DECtape
transport to search and read activities only.
(This prevents accidental destruction of
permanent data.)

F-10

TABLE F-5. DECTAPE CONTROLS (Con't)

Control Function

Unit Selector

r

The value specified by
dial (0-7} identifies
control unit.

On TDSE devices, the
hardwired to accept

this eight-position
the transport to the

first
only O

controller is
or 1 and the

second controller only 2 or 3.

With the transport in LOCAL mode, depressing
this switch causes tape to feed onto the
right-hand spool.

With the transport in LOCAL mode, depressing
this switch causes tape to feed onto the
left-hand spool.

DECtapes are mounted on the transport unit as follows:

1. Set REMOTE/OFF/LOCAL switch to OFF.

2. Place DECtape on left spindle with DECtape label out.

3. Wind four turns on empty DECtape reel on right spindle.

4. Set switch to LOCAL.

S. Depress the a switch for a few seconds to make sure tape
is properly mounted.

6. Dial correct unit number on unit selector.

7. Set switch to REMOTE. Select either WRITE ENABLE or WRITE
LOCK setting.

F-11

Figure F-4. DECtape Transport Unit

F-12

4 • 0 CARD READER

There are two types of card readers, the CR8-E which reads 12 - row,
80 column punched cards and the CM8-E which reads 12 - row, 40 column
mark sense cards or 12 - row, 40 column punched data cards with timing
marks.

The CRB-E card reader switches and indicators are described in Table
F-6.

TABLE F-6. CARD READER SWITCHES lu~D INDICATORS

Switch/Indicator Function

POWER (toggle circuit breaker and indicator)
All power to the card
controlled by this switch.

reader is

STOP (momentary-action pushbutton/indicator switch)
Actuation of the STOP switch immediately
overrides the PICK COMMAND and negates
the READY status. The card reader will
stop operation after the card currently
in the track is read completely. Power
is not removed from the reader by this
action. The red STOP indicator is
illuminated as soon as the switch is
depressed.

RESET (momentary=action pushbutton/indicator switch)

Read Check (indicator)

Stack Check (indicator)

Hopper Check (indicator)

Actuation of the RESET switch clears all
error logic and initializes all
counters.

The READ CHECK alarm indicator denotes
that the card just read may be torn on
the leading or trailing edges or have
punches in the 0 o.r 8 ls t col urnns • A
READ CHECK error will cause the reader
to stop.

The STACK CHECK alarm indicator signals
that a card has failed to reach the read
station af±er .a PICK COMMAND has been
received.

The HOPPER CHECK alarm indicator denotes
that either the input hopper is empty or
the stacker is full.

F-13

Figure F-5. Card Reader

F-14

5.0 LINE PRINTERS

5.1 LPOB Line Printer

The switches and lights described in Table F-7 are part of the LP08
line printer, Figure F-6.

T~.BLE F-7. LP08 SWITCHES ~.ND INDICATOR LIGHTS

Switch/Indicator

ON LINE/OFF LINE (switch)

PAPER STEP (switch)

TOP OF FORM (switch)

ON LINE (indicator)

READY {indicator)

Functions

Push up to put printer on line with the
computer.

Push up to advance paper one line;
disabled in on-line mode.

Push up to advance paper to top-of-form:
disabled in on-line mode.

Lights when ON LINE/OFF LINE switch is
set to ON LINE.

Lights when printer is ready to receive
computer output.

The ON/OFF switch controls the power to the printer.

There are two LP08 line printers: 80- and 132-column versions.

F-15

Figure F-6. LP08 80-Column Line Printer

F-16

5.2 LS8-E Line Printer

The basic character set for the LS8-E (Figure F-7) contains the 10
numeric digits, 0 through 9; 26 upper case letters, A through Z; and
the 28 special characters shown below:

"

$

' #

*
%
@
(
)

(space)

+

=
[
j
?
&

I
>
\
A

The LS8-E controls and their functions are shown in Table F-8.

TABLE F-8. LS8-E CONTROLS

Control Function

ON/OFF (switch)

SELECT (switch)

TOP OF FORM (switch)

FORMS OVERRIDE (switch)

HARDWARE ALARM {light)

PAPER OUT (light)

Manual Controls

Paper Advance Knob

Provides power to the printer and lights
when in t..~e ON position.

Enables and halts printer and lights in
the on position.

Moves line printer paper to top of sheet
or proper location of the vertical forms
control tape {Refer to Centronics
Manual} when installing forms.

Allows completion of form being printed
even though paper out switch was
activated.

Signals whe.n head carrier has exceeded
the right margin stop. An audio alarm
also sounds. If this should happen,
reset the printer and restart the job.

Indicates printer is out of paper or
paper handling malfunction. Correct the
problem and restart the job.

Located on left
provides manual
paper positioning.

F-17

side of carriage;
forward and reverse

TABLE F-8. LS8-E CONTROLS (Con't)

Control Function

Paper Feed Level Located on rear, right top of printer~
provides initial paper feed around
platen to allow positioning of paper in
the tractor feed mechanism.

Forms Thickness Control Located on inside of printer, this dial
with graduated markings provides
adjustment of clearance between platen
and face of print head. Adjustment must
be made according to the thickness of
the forms being used.

F-18

Figure F-7. LS8E Printer

F-19

6.0 RK08 DISK

Figure F-8. RK08 Disk

The switches, buttons and lights described in Table F-9 control the
operation of the RK08 Disk. (See Figure F-8.) An RK8E disk is also
available.

F-20

TABLE F-9.. RKO 8 CONTROLS AND INDICATORS

Control Function

ON (pushbutton and indicator)

OFF {pushbutton and indicator)

Push ON button to supply power to the
disk. ON button lights when power is
on.

Push OFF button to halt the power supply
to the disk. OFF button lights when
power is off.

ATTN (pushbutton and indicator)
Indicates that the disk power supply has
a malfunction. Push the STOP switch to
reset the power supply.

NOTE

This button also lights when
system power is turned off
with the computer ON/OFF
switch. Push this button to
reset the power supply. This
inter-locking action protects
the data on the disk from
spurious write signais while
computer and disk controls are
powered down.

DISK LOCKOUT 0-3 {pushbutton and indicator)
Press the appropriate button{s) (0-3) to
lock out the corresponding disk so data
cannot be written onto the disk platter.
The button lights when pressed. The
panel controls up to four disks.

SECT PROT Prevents writing on protected sectors,
as specified by bit 0 of the second
header word of the disk sectors. Press
to protect sectors of the disk
previously coded for sector protect. by
settihg· bit u of the sectors 2nd header
word to 1. (not implemented in COS}

START/STOP (switch) Place in the START or up position to
initiate the disk starting cycle (only
if the disk cartridge is in place and
the disk cartridge receiver handle is in
the raised position). Place in the STOP
or down position, to initiate the disk
STOP sequence. Switch must be in the
STOP position to mount or dismount the
disk cartridge.

TABLE F-9. RK08 CONTROLS AND INDICATORS (Con't)

Control

SAFE (light)

0,1,2 or 3

Function

The SAFE light comes on approximately 35
seconds after a STOP sequence has been
initiated. When SAFE is lit, the disk
cartridge access door interlock is off,
and it is safe to lower the disk
cartridge receiver handle for the
removal or insertion of the disk
cartridge.

{unit #} (light)
The READY light (left-hand light) comes
on approximately 90 seconds after the
START sequence has been initiated. When
READY is lit the disk is ready to begin
communicating with the computer.

6.1 Mounting and Dismounting the RK08 Disk Cartridge

6.1.1 Mounting

Follow the steps below to initiate operation of the RK08 disk.

The DC power must always be ON before inserting a disk cartridge into
the disk. If the disk cartridge is inserted without first turning the
DC power on, the read/write head carriage assembly may be in the way.

1. Press the disk power supply DC ON switch. The ON light comes
on.

2. When the SAFE lamp, on the front control panel of the disk,
comes on and the handle lock unlatches, the disk is ready to
receive the disk cartridge.

3. Pull open the. disk cartridge access door panel. The
cartridge receiver is now raised into position for insertion
of the disk cartridge. The handle interlock will keep the
cartridge receiver handle locked in its closed position
whenever the SAFE lamp is turned off.

4. Slowly slide the disk cartridge into the receiver assembly
and make certain there is no internal resistance to its
insertion.

NOTE

If there is the slightest resistance
insertion of the disk cartridge into
receiver, the cartridge should be removed
interior of the disk receiver examined to
the cause of resistance.

F-22

to the
the disk
and the

determine

Raise the disk cartridge handle to the up or loaded position.
Do not force the handle.

6. Close the disk cartridge access door.

NOTE

An interlock switch is activated when the disk
cartridge is properly inserted. However, if the
switch is not activated, the drive is not put in
the ready condition. If the switch should transfer
to its inoperative position during an otherwise
normal operation, the disk will immediately stop
and the SAFE light will light.

7. Set the START/STOP switch to the START or up position to put
the disk drive system into operation. A disk handle
interlock activates to ensure that the handle cannot be
raised during normal operation.

B. After a 90 second delay the READY lamp comes on, indicating
that it is ready for actual operation.

6.1.2 Dismounting

Follow these steps to remove the disk cartridge.

1. Make certain the DC power is ON.

2. Set the START/STOP switch to the STOP or down position. The
disk decelerates and the SAFE light comes on.

3. Open the disk cartridge access door and pull the cartridge
receiver handle down.

4. Remove the disk cartridge from the cartridge
assembly.

5. Close the disk cartridge access door.

6.2 Mounting and Dismounting the RK8E Disk Cartridge

6.2.1 Mounting

receiver

The following is the correct cartridge mounting procedure for the RK05
disk drive. Any deviation encountered during this procedure will be
considered an error condition.

1. Set switch labeled RUN/LOAD to the LOAD position.

2. Verify that light labeled PWR is on.

F-23

3. Wait for light labeled LOAD to come on.

4. Verify that lights labeled ROY, ON CYL, FAULT, WT, and RD are
off.

s. Open access door.

6. Insert cartridge.

7. Close access door.

8. Set switch labeled RUN/LOAD to the RUN position.

9. Wait for lights labeled ROY and ON CYL to come on.

10. Press switch labeled WR PROT and verify that the light
labeled WT PROT goes on and off.

11. Press switch labeled WT PROT until light labeled WT PROT goes
off.

12. Verify that lights labeled FAULT, WT, and LOAD are off.

6.2.2 Dismounting

1. Press switch labeled WT PROT and wait until light labelled WT
PROT goes on.

2. Set switch labeled RUN/LOAD to the LOAD position.

3. Wait for light labeled LOAD to come on.

4. Open access door and remove cartridge.

5. Close access door.

F-24

APPENDIX G

COS FILES

There are four types of files in the
binary, system program, and data.
files have similar structure. The
standard OS/8 SAVE format.

COS system: source, compiler
Source, compiler binary and data
fourth, system programs, uses

1.0 COS SOURCE FILES

All source files, whether control programs (e.g., for BUILD) or DIBOL
program sources must be input with the LN command or number commands.
This makes all source files look the same and makes them compatible
with cos. The source file format is:

word line n-1 words, two -237 ASCII
count n number characters per word

The first word contains the word count for that line. It is computed
as

n = (# of characters on line+l)
+l

2

The second word is the text line number, 0000-7777, base 8 (0000-4095,
decimal}.

The third and successive words contain stripped -237 ASCII characters
packed two per word (e.g., AB is 4243).

2.0 COS DATA FILES

'l'he format of data files is exactly the same as source files except
there are no line numbers.

A data file looks like:

word
count n

n words, two characters
per word

Word 1 of a data record contains its length in words. The next and
successive words contain the text of the record, two stripped ASCII
characters per word.

3.0 COS DIBOL COMPILER BINARY

Although the interpretation of the contents is entirely different,
externally a file of compiler binary is structured exactly like a data
file. That is, for each line of DIBOL source program, the
interpretive code for that line is stored as a word count followed by
the interpretive code to be used by RSYS.

4.0 COS SYSTEM PROGRAMS

All system programs {e.g., PIP, COMP, BUILD, etc.) are stored in OS/8
SAVE format. The first block of the file is a core control block
indicating where the rest of the blocks of the file are to be loaded.
Each successive block is a 256 word core image. See the OS/8 Software
Support Manual for details.

5.0 SYSTEM AND DATA TAPE FORMATS

COS puts a label on all tapes and disks. This label occupies the
first 256 words of each device, of which four are the actual label,
one is the date, and the rest may be a bootstrap. Files on DECtape do
not use the last two blocks of storage.

Data files are completely devoted to the storage of data, beginning at
block 1. Each logical unit holds one data file only. Labels on data
files are put on by the Monitor in conjunction with DIBOL programs or
by system programs such as SORT and BUILD.

System files have the COS Monitor, the system programs such as COMP,
and a directory in OS/8 format. (There is a discrepancy of two years
between directories printed by OS/8 and those printed by COS.) System
files can also be used to save the sources of DIBOL programs, BUILD or
SORT control specifications, or compiled DIBOL programs, but no data
files. Their bootstrap starts up the COS Monitor.

Figure G-1 illustrates the layout of the Monitor portion of the system
device. As noted in the figure, COMP should be the first file in the
file area. The location of COMP is particularly relevant when the
binary scratch area is to be expanded.

G-2

Figure G-1.

BOOTSTRAP

DIRECTORY

6000-7777
RESIDENT MONITOR

EDITOR OVERLAY

0-5777
EDITOR

RSYS LOADER

SOURCE SCRATCH

RSYS

COMPILER
OVERLAYS

BINARY SCRATCH
AREA

FILES
(COMP SHOULD

BE FIRST)

BLOCK #
(OCTAL)

0

t

J_
10

13
14

17
20

33
"34"""

"Sr
40

57
60

67
70

77

1

100

'

Monitor Organization

G-3

The label on a system tape is unique and identifies it as a system
tape. It is put on all system tapes automatically, and looks like
[SYS]. The index of a system file looks like

11

Word

0

1

2

3

4

5

6

7

8

9

10

through 255

Contents

(-) the number of dire~tory entries in this block.

The starting block number for file storage.

Link word to next directory block, or 0 if end.
There are seven directory blocks on all multi-file
devices.

0 (unused).

{-) the number of auxiliary words per entry
(always equals -1).

First two characters of name.

Next two characters of name.

Last two characters of name.

Two character extension.

Date.

Length of file {negative).

Repeat of 5-10 for each file.

Pseudo-DECtapes are reserved areas of disk, set aside by the SYSGEN
program. They are allocated beginning at the first free block
following any COS system on the disk and going to the end. The system
index, however, knows nothing about these pseudo-DECtapes inhabiting
the upper area of the disk. All it knows is that the available space
for file storage only extends to block n, where n is something less
than a full disk.

Access

Data tapes and pseudo-DECtapes (which may only be used as data tapes)
will be referenced by their logical unit numbers as assigned by
SYSGEN. What SYSGEN will actually do is set up a table like the
following:

Handler address
starting segment
length

handler address
starting segment
length

/physical device #

/device #

/parameters

G-4

The handler address is a pointer to the device handler to use for this
logical unit (either Disk or DECtape). The physical device number is
which disk or DECtape drive to reference. The starting segment gives
a 16-bit starting block number, which is where on the physical device
the space allocated for this logical unit begins. This allows for
possible future expansion to larger disks. The length is the number
of segments reserved for this logical unit.

For example, if logical unit 14 is assigned to 32-block area on DKl,
the fourteenth series of entries in the table might look like:

RKOB handler address + l

212
-40

/start at segment 212(8)
/go for 40(8) segments

So, any references to logical unit 14 would refer to blocks
5240(8)-6237(8) of DKl. Note that block 5240 would have a label for
that logical unit, just as any other data tape.

For DECtapes, one of these table entries would be essentially the
o:>GUm:o, except that the starting block would be 0 a..11d probably extend
for 46 segments (one complete tape). Two logical units should not be
assigned to the same DECtape, as it causes an egregious number of
problems when two logical units occupy a dismountable device and a
file extends to multiple units.

G-5

APPENDIX H

DIBOL
DEBUGGING
TECHNIQUE
(DDT)

In addition to the TRACE feature described in Chapter l, more complex
program debugging techniques may be implemented by specifying the /D
option when executing a source program (see Chapter 4) or when running
a binary program (see RUN command, Chapter 2). The features of the /D
option include: breakpoint, variable examination, subroutine call
traceback, and iteration.

1.0 ENTERING DDT MODE

The command to run a binary program in DDT mode has the form

~RU [pronam+chainl+ ••• +chainn,filnaml, ••• ,filnarnn]/D

There is an additional amount of space required because of the /D
option. It is 768 words plus 3 words for each label in the program
that appears before the PROC statement.

When the program is loaded with /D by either of the above commands,
initial control is passed to DDT which prints an appropriate DDT
version number followed by a "-" to indicate DDT command mode. DDT is
now ready to accept commands.

Whenever a CHAIN is entered, control is passed to DDT.

2. 0 DDT COMMANDS

Command

varnam=

varnam=v

=v

Explanation

The current contents of
printed. Varnarn may
subs"°ripts •

variable varnarn is
have single or double

Set varnam equal to the value v, where v is
any legal alphanumeric string.

If v has more characters than defined for
varnam, the error message ERROR IN COMMAND is
printed.

Prints the contents of the last variable
examined.

Sets the contents of the last
examined to v.

H-1

variable

Command Explanation

$nnnn

>n

Sets a breakpoint at line number nnnn. Only
one breakpoint may be active at a given time.
Do not set a breakpoint at line o. The
breakpoint occurs prior to executing line
nnnn.

The breakpoint is executed at
occurrence of line nnnn.

For example:

. -$300
->4

the nth

When the program starts to execute line 300
for the fourth time, the breakpoint is
executed and control is transferred to DDT.

CTRL/Z Starts execution of DIBOL program. If a
breakpoint was set in a $nnnn command,
control reverts to DDT when nnnn is reached
and the following message is printed:

t

BREAK!

The user may now type additional commands in
response to the "-".

The lines from which CALLs were made
(push-down list) during execution of the
DIBOL program is printed. This command is
generally used after a breakpoint or system
error has occurred to trace the execution of
the program. This command is a caret (A) on
the VTOS keyboard.

NOTES

1. If a DIBOL program running under DDT causes an
error message such as ILLEGAL SUBSCRIPT or NUMBER
TOO LONG, while a breakpoint was pending, control
will be transferred to DDT and the DDT commands may
then be used for program examination. If the error
was fatal, the DIBOL program cannot be restarted by
the CTRL/Z command.

2. Once a DIBOL program is running under DDT, DDT
cannot be restarted unless a breakpoint occurs, or
an error occurs with a brakpoint pending.
Therefore, if the user has no requirement for a
breakpoint but wishes to return to DDT for program
examination if an error occurs, it is necessary to
set a breakpoint to a non-existent line number.

H-2

Statement

ACCEPT (terminator,receiverj

BLOCK

CALL label

CHAIN decimal expression

DISPLAY (line,colurnn,expr)

END [/list-control]

FINI (channel)

FORMS (channel,skip-code)

GO TO label

Explanation

Accepts input from KBD
receiver and stores
character as terminal
terminator.

See RECORD.

APPENDIX I

DIBOL
STATEMENT
SUMMARY

stores it in
terminating

code in

Causes control to branch to statement
whose label is specified.

Causes the specified CHAIN to be loaded.
Execution resumes with the first PROC
statement in the specified CHAIN. See
Sections 1. 4. 3 and 2. 2. 6 for more
detail.

Display expression on screen at line and
column specified, (0,0 current
location) er perform one of following
operations. 0 = position cursor, 1 =
clear to end of scope, 2 = clear to end
of line, 25 = emit a bell or beep sound.

No carriage return,
generated.

line feed

An optional statement inserted
physical end of DIBOL program.

is

at

Closes file associated with channel (if
output file, writes end of file, file
length). Frees channel.

Line printer control statement. If code
is 0 go to top of next form: if 1-4095
skip number of lines specified. -1 =
skip to channel 2 and advance paper n
lines as specified on vertical forms
control tape (LS8E). -2 = print
enlarged characters for next XMIT
statement (LS8E).

Unconditional branch to label.

I-1

Statement

GO TO (labell, ••• ,labeln),key

Explanation

If value of key is
than 0 and less
branch to labelK.
next instruction.

K, with K greater
than or equal to n,

Otherwise execute

IF (expressionl.rel.expression2)stmnt
Execute stmnt if relationship is true
• rel. is one of the f cl lowing:

.GT. greater than

.LT. less than

.LE. less than or

.GE. = greater than

.EQ. equal

.NE. = not equal

stmnt may be one of:

GO TO label
CALL label
STOP
RETURN
ON ERROR label
[NO] TRACE

equal
or equal

!NCR variable Increments value of variable by 1.

!NIT (channel, device [,filnam] [,unit])

[NO] TRACE

ON ERROR label

Associate channel with specified device
and initialize device. For mass storage
devices only, specify file name. If
unit is specified, system looks for file
on this logical unit before issuing
MOUNT message.

The device is one of the following:

INPUT
OUT
UPDATE

KBD
TTY
LPT
CDR
PTP
RDR
SYS

mass storage input data file
mass storage output data file
mass storage data file (fixed
length records) for update
keyboard input
terminal output
line printer output
card reader input
paper tape punch (high speed)
paper tape reader (high speed)
input source file (on system
device)

Stops/starts trace facility.

Branch to label if next statement incurs
a non-fatal error.

I-2

Statement Explanation

PROC[n] [/list control] [;comments]

READ (channel,record,rec#)

Begins PROCcedure section and n= maximum
number of mass storage logical units to
be opened at one time. If omitted, n=7
is assumed. Causes top of form on
compiler listing. The comments are
printed on each page as headings.

Does a direct access read of data record
into an area in core.

RECORD [rname] [,X]

(A) {'alpha initial value' ""\ {'P}
[fldnam),[x)

0
[n)t[decimal initial value~ :~

RETURN

Reserves areas of core where records are
stored during processing and defines the
fields

rname
,x

fldnarn

x

n

,P

,D

,s

,c

•• 1..1. the record •

labels record area.
overlay of another record
area. record must be less
than or equal to the record
being overlayed.
names a field within the
record
repetition count (1-512) for
an array
size of field (1-510
characters) default = 1
insert initial value at
execution
insert system date at
execution
assigns fldnam to the value of
the run time options (see
Section 1. 4 .16).
clears record loaded as a
result of a CHAIN statement
(see Section, 1 .. 4.16).

Returns control to next statement after
last CALL.

START [/list control] [;comments]

STOP

An optional statement which may appear
anywhere. Causes top of form on
compiler listing.

Terminates program execution and returns
control to Monitor.

Statement

TRAP label

WRITE {channel,record,rec#)

Explanation

Allows a DIBOL program to spool output
to the line printer while executing the
program.

label is the name of the line printer
routine (see Section 1.4.21).

Does a direct access write of a data
record to a specified file.

XMIT {channel,record[,eof label])

Data manipulation statements:

variable=

variable=expression

Transfers data between record area and
device attached to channel. If end of
file occurs for an input file, branch to
label if specified.

clears variable to zeroes or blanks

assignment, conversion
types.

depends upon

variable=expressionl, alpha literal
alpha variable

variable expression

where:

D

D
A

A
R

D

A
A

D
R

D = decimal variable
A = alpha variable
R = record

formatting. Types must be: A=D,A.

action

Assign. If variable is too small, drops
high order digits. If variable is too
big, right justified.
Alpha converted to decimal then stored.
Assign. If variable is too small, drops
characters on right. If too big only
left-most characters are changed.
Decimal converted to alpha.
Treated as A to A.

I-4

Message

BAD ALPHA FIELD

BAD ALPHA VALUE

BAD CHAR

BAD CHECKDIGIT

BAD CHECKSUM

BAD COMPILATION

BAD DECIMAL FIELD

BAD DECIMAL VALUE

BAD DEFAULT FIELD

BAD DELIM

BAD DEPICTOR

BAD DEV

BAD DEVICE

Program

BUILD

BUILD
COMP

CONVEX

BUILD

PATCH

Monitor

BUILD

COMP

BUILD

BUILD

BUILD

CONVEX

BUILD

UPDATE

Explanation

APPENDIX J

ERROR
MESSAGE
SUMMARY

Attempt to assign more than 15
units.

Illegal entry in alpha field.

Initial value in an alpha data
specification did not begin or end
with a single quotation.

Attempted to convert an OS/8
character for which there is no COS
code.

Checkdigit calculated by BUILD does
not match the one entered.

An attempt was made
block which was
patched.

to write a
incorrectly

User tried to SAVE a
binary that had errors.

compiled

Illegal entry in decimal field.

The initial value for a decimal
data specification was incorrectly
formed.

Default field does not agree with
size or type of object field.

Fields are separated by an illegal
delimiter.

OUTPUT format in error.

Output device not same type
physical device as system device.

Not KBD, SYS, RDR or CDR.

Illegal device specified on INPUT
statement.

J-1

Message

BAD DIGIT AT LINE nnnn

Program Explanation

Run Time A character other than +, -, space,
or the digits 0-9 was encountered
in an alpha to decimal conversion:
nnnn is the line number in which
the error occurred.

BAD DIGIT IN DECIMAL INITIAL VALUE
BUI~D
SORT
UPDATE

Alpha character in a decimal
initial value.

BAD DIRECTORY

BAD END STATEMENT

BAD FIELD NUMBER

BAD INPUT STATEMENT

BAD KEY STMNT

BAD KEYWORD

BAD LABEL

BAD NUMBER

BAD OPTI_ON

BAD-- OUTPUT FORMAT :ft

BAD PROC #

BAD PROGRAM AT LINE nnnn

PIP
Monitor
PATCH
CONVEX

BUILD

BUILD

BUILD
UPDATE

UPDATE

BUILD

Monitor

PATCH

BUILD

BUILD

COMP

Attempt to reference or store a
file on a device with no directory
(or a directory that has been
destroyed). Also an attempt to get
a directory of a data file.

Missing or misspelled END
statement.

Field number specified is greater
than 2047.

Statement missing, misspelled, or
out of order.

Key in KEY statement
syntax.

has bad

Keyword entered was not described
in the control program.

Tape has no label, or its form is
incorrect.

A number with more than 4 digits, a
non-digit, or 8 or 9 was typed.

Something otl'l_er :than _ C or + is
specified in OUTPUT section.

Format number is wrong or out of
range (< O or 7).

The number in a PROC statement was
not a digit from 0 to 7.

Run Time Attempting to run a binary program
which contains a compilation error.
Check compilation listing for error
flags. Correct flagged errors, and
recompile.

J-2

Message Program

BAD RA..~GE CONSTRUCTION BUILD

BAD RECORD SIZE SORT

BAD RELATIONAL CO.MP

BAD SWITCH SYS GEN

BAD UPDATE COMMAND UPDATE

BAD UPDATE STMNT UPDATE

BAD VALUE UPDATE

BAD WORK UNIT COUNT SORT

BLOCK TOO BIG PATCH

Explanation

In Rlil~GE portion of statement an
open or close parenthesis or comma
is missing.

File contains records of variable
length.

An illegal relational occurs in an
IF statement. For example, a .GX.
instead

Not /T, /C, or /L.

Bad syntax, probably missing F, =,
or comma.

UPDATE statement is incorrect.

Value in update command too long or
incorrect.

of work units not in range 3-7.

An incorrect block
typed. It cannot
the length of the
patched.

number was
be longer than

file being

BLOCK NUMBER ERROR PHASE n
TDMARK Refer to DEC-8E-EUZC-D.

C-FIELD NOT PERMITTED BUILD C-type fields cannot be specified
in the INPUT section.

CANT BACKSPACE PAST BEGIN OF FILE
DAFT Attempt was made to backspace past

beginning of file.

CANT BACKSPACE WITH SEQUENTIAL INPUT

CCP ERROR

CHECKSUM ERROR PHASE n

COMMA MISSING

CONTROL BUSY ERROR

DAFT Attempted to backspace
sequential input.

with

COMP Matching angled bracket (< or >)
missing.

TDMARK Refer to DEC-8E-EUZC-D.

COMP No comma appeared where one was
expected.

RKSMRK Disk IOT issued when control was
busy.

J-3

Message Program Explanation

DATA INITIALIZATION MISSING
COMP No data initialization followed a

comma in a data specification
statement.

DATA ERROR PHASE n

DATA RATE ERROR

DATA TABLE OVERFLOW!

TD MARK

RK8MRK

BUILD
UPDATE
SORT

Refer to DEC-8E-EUZC-D.

The processor was busy and did not
respond to a data break request
within the 13 us required. The
transfer is terminated immediately.

Too much data. Maximum = 960
characters.

DESCRIPTOR TABLE OVERFLOW!
BUILD
UPDATE
SORT

Too many F, T and C fields defined.
Maximum= 160.

DESTINATION FIELD NOT DECIMAL
BUILD The destination field specified is

not defined as decimal.

DIBOL FILE NUMBER IN USE AT LINE nnnn
Run Time In !NIT, the

already INITed
device.

channel number is
to a mass storage

DIBOL FILE NUMBER NOT INITED AT LINE nnnn

DISK DATA ERROR

DT n?

Run Time An attempt was made to XMIT, READ,
or WRITE with a channel number that
was not INITed.

RKEMRK

Monitor

Refer to DEC-08-DHRKD-A-D.

The expected tape is not available
on a DECtape drive.

For example, if following a MOUNT
message the operator has specified
that a file should be written on
unit 3, and unit 3 is not selected,
or is WRITE LOCKed, this message is
output.

On LINCtapes there is no message.

To recover, set switch to ENABLE
the unit or set the dial selector
to the proper number. Then type
any key to continue.

J-4

Message Program ~xplanation

END OF FILE Run Time The last record of an input file
has been read and the end of file
mark encountered but no EOF label
was specified in the XMIT
statement.

END OF INPUT FILE AT RECORD nnnn
DAFT

END TAPE ERROR PHASE n DTMARK

ENTER "DATE MM/DD/YY" Monitor

ERROR IN COMMAND Monitor

EXEC WORD ERROR RK8MRK

EXCESSIVE GRID SIZE DAFT

EXPECTED LABEL IS MISSING
COMP

EXPRESSION NOT ALLOWED COMP

EXTRA CHARS AT END OF DATA
BUILD

EXTRA CHARS AT STMNT END BUILD
SORT
UPDATE
COMP

FIELD NOT DECIMAL BUILD

FIELD NUMBER MISSING OR 0

FIELD OUT OF RANGE

FIELD TOO LARGE OR 0

BUILD
SORT
UPDATE
UPDATE

BUILD

COMP

Attempted to read past end of file
mark on input. Not necessarily an
error.

Refer to DEC-08-EUFB-D.

Typed an unrecognizable date.

Miscellaneous.

An error occurred while reading the
EXEC. word of the sector.

The grid printer width may not be
greater than 130 characters.

A required label is missing.

An expression or bad character
occurs to the left of an =.

More data was entered than was
defined in the control programo

Characters not relating to
statement appear on line.

Field not defined as decimal.

Field number or default unit. nmnhsr
is missing or is 0 or greater than
511.

Data entered is
range specified
program.

not within the
in the control

In a data description statement,
the dimension was 0 or more than 3
digits long, or the field size was
0 or larger than 511.

J-5

Message

FILE NOT FOUND

FORMAT ERROR

FORMAT PARITY ERROR

FULL

HASH FIELD MISSING

Program

Monitor
PATCH

RK8MRK

RK8MRK

CONVEX

BUILD

I/O ERROR ON xx, RETRY? Monitor

I RECORD ALREADY EXISTS UPDATE

ILLEGAL CHAIN AT LINE 0000

ILLEGAL DEVICE SYS GEN

ILLEGAL DEVICE AT LINE nnnn
Run Time

ILLEGAL DEVICE SWITCH PIP

ILLEGAL OPERATOR COMP

ILLEGAL RECORD # AT LINE nnnn
Run Time

ILLEGAL SORT KEY SORT

Explanation

The program with the name specified
was not found. After, for example,
FETCH FILEX.

An error occurred while reading the
header word.

A parity error occurred in either
the Header word or Exec word while
reading the sector.

Specified an output device with -s
option and source file being
created was filled.

No field specified for storage of
hash total.

System failed in three attempts to
read from or write to a device.

Tried to insert a record already
present.

CHAIN argument does not match .RUN
command.

Device other
DK0-DK3.

than DTO-DT7 or

Attempt to WRITE on a file that was
not INITialized for UPDATE or
attempt to READ from a file that
was not INITialized or INITialized
for INPUT or UPDATE.

A switch was specified that was not
/R, /C or /K for input or /P, /L or
/T for output.

A bad character was encountered in
an expression where an operator
would be expected.

Record number is O, past the end of
the physical unit or the length
specified in the record header word
does not match the length of the
XMIT block (records in data file
are all not the same length).

Bad syntax on KEY statement, KEY
too complex or KEY statement
missing.

J-6

Message Program

ILLEGAL STMNT COMP

ILLEGAL SUBSTRING AT LINE nnnn
Run Time

?ILLEGAL UNIT Monitor

ILLEGAL UNIT SORT

IN USE Monitor

INCREMENT TOO BIG BUILD

INSUFFICIENT SPACE ON DEVICE
SYS GEN

Explanation

The statement was not
manipulation statement
=) nor did it start
recognizable keyword.

a data
(it had no

with a

A DIBOL PROCedure section statement
has attempted to access a data
field, FI(m,n), but m=O or m n.

The unit specified is not DKO-DK3
or DTO-DT7; for example,

WRITE FILE,XY3
WRITE FILE, RK9

Default unit is 0 or 15.

The unit specified in answer to the
MOUNT message is already being
used.

Length of increment field larger
than length of output field.

Attempt to allocate more segments
than are available on a device.

INITIAL ALPHA VALUE DOESN'T BEGIN WITH QUOTE
BUILD Beginning quotation mark missing
SORT for initial alpha value.

INITIAL VALUE TOO BIG

UPDATE

BUILD
SORT
UPDATE

INITIAL VALUE WRONG SIZE COMP

INITIAL VALUE TOO SMALL BUILD
SORT

KEYWORD MISSING OR TOO BIG
BUILD

LABEL NOT ALLOWED COMP

The initial value specified is
larger than the field size.

The initial value in a data
specification statement had a
length different from the field
size specified.

The initial value specified is
smaller than the field size.

A symbol in an arithnetic
expression was not of type alpha or
decimal, or a symbol which had been
redefined was used.

J-7

Message Program Explanation

LAST INT NOT END ZONE DTMARK Refer to DEC-08-EUFB-D.

LINE # TOO LARGE Monitor Greater than 4095.

LINE TOO LONG Monitor Greater than 120 characters.

LINE TOO LONG AT LINE nnnn

LOCATION TOO BIG

Run Time An input line (record) overflowed
the block into which it was read.

PATCH A location > = 400 was typed.

MARK TRACK ERROR PHASE n TDMARK
DTMARK

The DECtape being used is bad.
Try reformatting the tape.

!*!MEMORY FAIL!*! Monitor

MISSING CLOSE PAREN COMP

A hardware error has
Restart the program.

occurred.

No close parenthesis occurred where
one was expected.

MISSING CLOSE QUOTE ON ALPHA INITIAL VALUE

MISSING FIELD NAME

MISSING INITIAL VALUE

MISSING OPEN PAREN

MISSING OPERAND

MISSING OR BAD DEVICE

MISSING OR BAD OPTION

MISSING OR OUT OF ORDER

MISSING QUOTE

SORT Quotation mark misplaced or
UPDATE missing.
BUILD

BUILD

BUILD
SORT
UPDATE

COMP

COMP

COMP

COMP

UPDATE

COMP

Field name is missing.

Comma was inserted after type and
size but initial value was not
specified.

No open parenthesis occurred where
one was expected.

A binary operator occurs in an
expression with no operand
following it; or no expression at
all occurs where one is expected.

The devic.e i.n an INIT statement was
missing or started with an illegal
character.

In a record statement, no option
appeared after a comma or the
option which appeared was not X or
c.

On C or D, record
Probably because
not sorted.

was not there.
scratch file was

The statement contained an
number of quotes (').

odd

J-8

Message Program

MISSING RELATIONAL COMP

MISSING UNIT UPDATE

NAME PREVIOUSLY DEFINED COMP

NECESSARY FIELD MISSING BUILD

NO BOOT

NO BUFFERS LEFT AT LINE nnnn

NO CHANGE IN BLOCK

NO COMMA AFTER FIELD NAME

NO DEFINE!

NO END

NO END STATEMENT

Run Time

PATCH

BUILD
SORT
UPDATE

UPDATE

CONVEX

UPDATE

Explanation

No relational appeared in an IF
statement.

Unit number specified is a multiple
of 16.

The name used was previously
defined and this statement tries to
redefine it ..

Field specified as necessary in
control program was not entered.

Device switch illegal or missing.

Not enough core available for I/O
buffers. An I/O buffer of some
multiple of 512 characters is set
up for each active mass storage
file. Another possibility: too few
files were specified in the PROC
statement.

An attempt was made to write a
block but no changes were made to
it. If this was on purpose fine
otherwise make the changes to the
block again.

No comma or a character other than
comma was specified after the
field name.

Control file did not start
DEFINE. Returns to
immediately.

with a
Monitor

Entire OS/8 ASCII input file was
read but no end of file {CTRL/Z)
was found.

END statement missing after OUTPUT
specification.

NO FILE AT LINE nnnn Run Time No file specified in RUN statement
to satisfy INIT (SYS) command.

?NO FILE TO SAVE Monitor

NO INIT DONE Monitor

Nothing in the edit work area when
WRITE command is issued.

Program attempted a read
on a device not opened
system program.

J-9

or write
by the

Message

NO INPUT

NO ROOM

NONCE ERROR

NONEXISTENT FIELD

NOT A OR D

NOT BUILD FILE!

Program

SORT
MERGE

PIP
CONVEX

DAFT

UPDATE

BUILD
COMP
SORT
UPDATE

BUILD

Explanation

Input file is null or not enough
input files specified for a MERGE.

Attempt to store a file on a full
device.

Tried to use a feature not
currently supported or documented.

Tried to
appeared
section.

update Fn where no Fn
in file description

A character other than A or D
occurred in a data specification
statement where A or D was
expected.

File did not start with DEFINE
statements.

NOT ENOUGH ROOM FOR SYSTEM AND FILES
SYSGEN Device specified was too small to

accommodate system program and
files.

NOT FOUND CONVEX

NOT I,D, OR C UPDATE

NOT LABEL COMP

NOTHING AFTER FIELD NAME BUILD
SORT
UPDATE

NUMBER REPEATED OR OUT OF ORDER
BUILD
SORT
UPDATE

TOO LARGE SYS GEN

File with specified name not found.

Bad first character
command.

on update

A symbol which was
occurred where

not a 'label'
a label was

required.

Field type and size are not
specified after field name and
comma.

A field sequence number is used
more than once or is out of
ascending order sequence.

Number entered was greater than
4095.

NUMBER TOO LONG Run Time A decimal field longer than 15
digits was used in a calculation.

OUT OF ORDER UPDATE SORT statement missing and update
commands are not in order.

J-10

Message Program

OUT OF ROOM! BUILD

OUTPUT ERROR SORT

OUTPUT RECORD TOO BIG BUILD

PARITY ERROR RK8MRK

PARITY ERROR PHASE n DTl-'.iARK

PROGRAM TOO BIG COMP

PROGRAM TOO BIG AT LINE nnnn
Run Time

PUSHDOWN OVERFLOW AT LINE nnnn
Run Time

READ STATUS ERROR RKEMRK

RECALIBRATE STATUS ERROR RKEMRK

RECORD TOO BIG COMP

REPLACE? Monitor

RETURN WITHOUT CALL AT LINE nnnn

Explanation

Too many descriptors in INPUT
section. Maximum keywords =
approx. 121. Approx. maximum
fields for all keywords = 192. Too
many fields in OUTPUT section.
Approx. maximum = 128.

Indicates a system malfunction.

Record is
characters.

larger than 510

A bit in data, parity or timing has
been picked up or dropped on read.
Transfer will continue to the end
of the sector where the error
occurred. Word count, current
address information can be used to
identify the error.

Refer to DEC-08-EUFB-D.

Binary output too big for the
binary scratch area. Remedy: Run
PIP/n with Option E to enlarge
scratch area.

Binary program
available core.
size.

does not
Reduce

fit in
program

Either (1) a statement is
complex or (2) subroutines
nested to a depth greater than
or a combination of the two.

Refer to DEC-08-DHRKD-A-D.

Refer to DEC-08-DHRKD-A-D.

too
are
50,

A named record exceeded 510 words
in size.

Duplicate file names.
replace.

Type Y to

Run Time The program tried to execute a
RETURN, but there was no place to
go; there was no corresponding CALL
statement.

J-11

Message

SECTOR NO GOOD

SELECT ERROR PHASE n

SETUP?

STMNT TOO COMPLEX

SUBSCRIPT ERROR

SUBSCRIPT NOT DECIMAL

Program

RK8MRK

DTMARK

TDMARK
DTMARK

COMP

COMP

COMP

Explanation

The program attempted to read or
write data on a sector whose header
words indicated a bad sector. The
transfer is terminated inunediately.

Indicates an error in the DECtape
setup. One of the units specified
is in WRITE LOCK position, not
selected, or the write flip-flop is
unable to be set, or there may be a
timing error.

The statement generated too much
code and overflowed the Compiler's
code buffer, or it had too much
nesting and overflowed the
Compiler's pushdown stack. Remedy:
break up the statement into smaller
parts.

No cormna or close parenthesis
occurs after a subscript.

The type of a subscript was not
decimal.

SUBSCRIPT TOO BIG AT LINE nnnn
Run Time Program attempted to destroy the

run-time system or itself by using
a large subscript; larger than that
defined in the Data Definition
section. Note that the run-time
system does not detect all illegal
subscripts; only those which would
cause the user's program or the
system to be destroyed.

SWITCH NOT SET TO WTM OR SINGLE LINE FLAG FAILED TO SET
SET SWITCH TO WI'M. TDMARK Switch on the M868 module is not

set to the WTM position_ or the
timing generator for writing the
mark and timing tracks is not
setting the single line flag.

SYMBOLS DEFINED BUT NOT REFERENCED; xx
CREF Symbols were

referenced.
error.

J-·12

defined but not
Not necessarily an

Message

SYNTAX ERROR

TEXT AREA FULL

TIME OUT ERROR

TIMING ERROR PHASE n

TOO BIG

TOO MANY FILES

TOO MANY ITEMS

TOO MANY SYMBOLS!

TOO MUCH DATA

TRACK ADDRESS ERROR

Program

SYS GEN

Monitor

RK8MRK

TDMARK
DTMARK

BUILD

MERGE

COMP

COMP

C01"..P

RK8MRK

TRACK CAPACITY EXCEEDED ERROR
RK8MRK

UNDEFINED FIELD BUILD

UNDEFINED FORMAT BUILD

Explanation

Missing comma, extra characters,
etc.

Greater than 8,150 characters.

The control did not complete an
operation after 32 revolutions.

Refer to DEC-8E-EUZC-D.
Refer to DEC-08-EUFB-D.

Data entered is greater than the
size of the field as defined in the
control program.

More than 6 input files specified.

More items appeared in a data
initialization than were specified
by the dimension.

A fatal error message 365 symbols
allowed in symbol table in 8K
system, and 511 symbols allowed in
larger systems. The compiler stops
compiling; no storage map can be
produced.

Program's data division exceeds 32K
bytes.

Track, surface or sector address
read from the disk did not agree
with the address count registers or
the disk drive electronics
indicated track position 000 and
the track counter did not agree.
The transfer is terminated
immediately.

The program attempted to read or
write beyond sector 17.

Field referenced was not defined in
field descriptor section of control
program or a decimal field was
being equated to an alpha field, or
an alpha field was specified for a
flag.

Format number referenced but not
defined (errors given on END
statement).

J-13

Message

SYNTAX ERROR

TEXT AREA FULL

TIME OUT ERROR

TIMING ERROR PHASE n

TOO BIG

TOO MANY FILES

TOO MANY ITEMS

TOO MANY SYMBOLS!

TOO MUCH DATA

TRACK ADDRESS ERROR

Program

SYS GEN

Monitor

RK8MRK

TOM.ARK
DTMARK

BUILD

MERGE

COMP

COMP

COMP

RK8MRK

TRACK CAPACITY EXCEEDED ERROR
RKSMRK

UNDEFINED FIELD BUILD

UNDEFINED FORMAT BUILD

Explanation

Missing comma, extra characters,
etc.

Greater than 8,150 characters.

The control did not complete an
operation after 32 revolutions.

Refer to DEC-8E-EUZC-D.
Refer to DEC-08-EUFB-D.

Data entered is greater than the
size of the field as defined in the
control program.

More than 6 input files specified.

More items appeared in a data
initialization than were specified
by the dimension.

A fatal error message 365 symbols
allowed in symbol table in 8K
system, and 511 symbols allowed in
larger systems. The compiler stops
compiling; no storage map can be
produced.

Program's data division exceeds 32K
bytes.

Track, surface or sector address
read from the disk did not agree
with the address count registers or
the disk drive electronics
indicated track position 000 and
the track counter did not agree.
The transfer is terminated
immediately.

The program attempted t-o read or
write beyond sector 17.

Field referenced was not defined in
field descriptor section of control
program or a decimal field was
being equated to an alpha field, or
an alpha field was specified for a
flag.

Format number referenced but not
defined (errors given on END
statement).

J.-14

Message

UNDEFINED NAME

UNEXPECTED END OF FILE

UNIT xx IS FREE

L~~RECOGNIZABLE LINE

WRITE ERROR PHASE n

WRITE LOCK ERROR

WRITE STATUS ERROR

WRONG DATA TYPE

ZERO DIVISOR AT LINE nnnn

xxxx IS BEING IGNORED

Program

COMP

BUILD
UPDATE

SORT

SORT

TDMARK

RK8MRK

RKEMRK

COMP

Explanation

A name is used which was never
defined in the data section.

Missing END statement.

NOT AN ERROR merely an
informative message to aid the
operator. xx is a COS unit number.

Parameter line did not start with a
good keyword.

Refer to DEC-8E-EUZC-D=

The program attempted to write a
section that was write protected.
The write operation is terminated
immediately.

Refer to DEC-08-DHRKD-A-D.

Mixed modes occurred in an
expression; or an argument which
was supposed to be decimal was not
or one of the three arguments in a
data manipulation statement was of
the wrong type.

Run Time The program attempted to divide by
zero.

CREF The line specified
interpreted.

cannot be

xxxx SHOULD BE yyyy BLK ERROR PHASE n
DTMARK Refer to DEC-08-EUFB-D.

xxxx SHOULD BE yyyy DATA ERROR PHASE n
DTMARK Refer to DEC-08-EUFB-D.

J-15

APPENDIX K

COMMAND SUMMARY

The commands summarized below are described in detail in Chapter 2 of
this manual.

1.0 COMMANDS FOR MONITOR FUNCTIONS

Command

BAtch pronarn

CTRL/C

CTRL/N

CTRL/O

CTRL/U

CTRL/V

CTRL/Z

DAte mm/dd/yy

DElete pronam[,dev]/x

Function

Executes a string of previously stored
Monitor commands.

Returns control to the Monitor.

Turns on/off imbeddded numeric keypad at
terminal (see Table 2-1).

Stops/starts terminal echo of typed
input. Also halts output from a LIST
command and the printing of the compiler
listing.

Deletes the current input line.

Stops/starts terminal echo of Monitor
version message COS MONITOR V2.1108.

Signals end of input and returns control
to the Monitor. Halts display of line
numbers from an LN command.

Stores the specified date for assignment
to new programs created and reports
printed.

Removes the named
system program
directory.

source, binary or
from the device

Directory plc~~~~~~:i ~~r!~e] [/Tbrints a list of programs stored on a
physical device or a label of a file
stored on a logical unit.

PLease text string

RUBOUT

Displays the specified text string when
used in a BATCH program.

Erases the last character typed and
echoes the deleted character.

K-1

Command Function

Run [pronam] [+chainl+ ••• +chainn],[filnaml, ••• ,filnamn] [/xx]

SAve pronam[,dev] [/Y]

Loads and executes the named system or
binary program using the named file.

Stores the binary
Compiler scratch
device.

program
area on

from
the

the
named

2.0 COMMANDS FOR EDITING FUNCTIONS

Command

ERase [nl] [,n2]

FEtch pronam[,dev]

List [nl] [,n2] [/x]

LN [n] [,inc] [/x]

nnnn text
(number command)

REsequence [n] [,inc]

WRite pronam[,dev] [/Y]

Function

Erases specified lines of text from the
edit buffer.

Loads the named source file into core
from the specified device.

Outputs the
high-speed
terminal.

specified lines to the
punch, line printer or

Automatically displays line numbers on
the terminal for program creation.

Inserts the specified line number and
text into the edit buffer. If this line
number already exists, the new text
replaces the old.

Renumbers the lines of the program in
the edit buffer.

Stores the source program located in the
edit buffer on the specified device.

K-2

1.0 ACCEPT AND DISPLAY

1 .. 1 Background

APPENDIX L

ADVANCED
PROGRAMMING
TECHNIQUES

XMIT statements were originally used when the terminal was a Teletype.
The arrival of the VTOS display terminal introduced new concepts
--programmable cursor control and hardware display clear. ACCEPT and
DISPLAY statments were added to the DIBOL language to use these
features. The terminal may now be used in two ways:

1. As a Teletype by using XMIT statements.

2. As a powerful data entry tool using ACCEPT and DISPLAY
statements.

(Refer to the ACCEPT and DISPLAY statements in Chapter 1 before
proceeding further.)

1.2 Interaction of ACCEPT and DISPLAY Statements

ACCEPT and DISPLAY statements are used extensively in data entry
programs. These programs typically work one of two ways. The first
asks {DISPLAYs) questions and interprets (ACCEPTS} answers. This mode
of operation could be easily simulated by using a Teletype. The
second method displays a f orrnat or heading on the screen and moves the
cursor to the right or just below the question to be answered.

The format is never cleared, but data is being entered and cleared
continuously from the screen. This mode is used in repetitive data
entry and updating. Quite often the four keys; up arrow, down arrow,
left arrow, and right arrow have special meanings. For example,
assume ten headings are displayed on the screen, indicating ten fields
are to be entered or updated. Up arrow might be used to re-enter
informat1.on in th~ flrs·t ·neld, no matter which field is currently
being entered; down arrow might mean no more information for any of
these fields; left arrow might mean restart entering the current
field; right arrow might mean go on to the next field without changing
the current field.

1.3 Simple Example Using ACCEPT and DISPLAY

In order to enter a six digit customer number and a 15-character
customer name, the program might be as follows:

L-1

RECORD
TCHAR,D2
ALPHA,Al5
CNO,D6
CNAME,AlS

LOOP,

PROC 1

DISPLAY(l,1,1) ;CLEAR SCREEN AND POSITION CURSOR
DISPLAY(O ,O, 'CUSTOMER NO. CUSTOMER NAME')
DISPLAY(2,l,2) ;CLEAR LINE 2 AND POSITION CURSOR
ALPHA= ;CLEAR THIS FIELD
ACCEPT(TCHAR,ALPHA)
ON ERROR LOOP ; RE-ENTER IF NOT NUMERIC
CNO=ALPHA
ALPHA= ;CLEAR THIS FIELD AGAIN
DISPLAY(2,16,0) ;POSITION CURSOR
ACCEPT(TCHAR,ALPHA)
CNAME=ALPHA

;SAVE DATA

GO TO LOOP

1.4 Generalized ACCEPT Subroutines

1.4.1

Although the previous example works properly, it lacks several
features which would be quite practical to have:

1. Type RUBOUT to clear the previous character that was entered
in the current field from both the program and the display.

2. Type CTRL/U (a DEC convention) or left arrow to clear the
entire current field from both the program and the display.

Since our data acceptance is getting more sophisticated, it can best
be performed by calls to a subroutine. The following two subroutines
and test programs will accept data from the terminal and use the
RUBOUT key and the CTRL/U (or left arrow) key as previously specified.
The first program uses the hardware clearing features built into the
VTOS. Unfortunately, this destroys data if it is on the same line and
to the right of what is being ACCEPT'ed.

L-2

START

RECORD

;SUBROUTINE VTOS---CORRECTS REMAINDER OF LINE
;FOR ERRORS

KBDBUF, A72 ;STORAGE FOR KEYBOARD INPUT
RECORD ,X

KBDIN, 72Al

RECORD ;WORK AREA
ROW, 02 ;CURSOR Y-COORDINATE ON ENTRY TO SUBROUTINE VTOS

;(NEEDED FOR CORRECTION ONLY)
COL, D2 ;CURSOR X-COORDINATE ON ENTRY TO SUBROUTINE VTOS

;(NEEDED FOR CORRECTION ONLY)
TCHAR, D2 ;TERMINATING CHARACTER IN AN ACCEPT STATEMENT
CHAR, Al ;INPUT CHARACTER FROM AN ACCEPT STATEMENT
VTOSIN, D2 ;NUMBER OF CHARACTERS ACCEPTED BY SUBROUTINE VTOS
VTLIM, D2 ;NUMBER OF CHARACTERS TO BE ACCEPTED BY

;SUBROUTINE VTOS
PROC

BEGIN, DISPLAY(l,1,1) ;CLEAR SCREEN
DISPLAY(l,40,'ERASED IN CORRECTION')
DISPLAY(l,l,'NAME:')

·*********** I

·* * ' . * * I

ROW=l
COL=6
VTLIM=20 ;20 CHARS MAX.
CALL VTOS
IF (KBDBUF.EQ.'END') STOP
GO TO BEGIN

;* SAMPLE *
;* TEST *
; * PROGRAM *
. * * ' . * * ' ·*********** I

CALLING SEQUENCE
ROW=
COL=
VTLIM=

;SET Y-COORDINATE
;SET X-COORDINATE
;SPECIFY MAXIMUM NUMBER OF CHARS
;TO ACCEPT

CALL VTOS

;ACCEPT A MAXIMUM OF VTLIM CHARACTERS AT LOCATION SPECIFIED BY
;ROW AND COL. RETURN WHEN VTLIM CHARACTERS, A TERMINATION CHARACTER,
;OR A SPACE IS ENTERED. RUBOUT DELETES LAST CHARACTER ENTERED AND
;CTRL/U ELIMINATES THE ENTIRE ENTRY RUBOUT AND CTRL/U CLEAR THE
;REMAINDER OF THE LINE (FASTER THAN DISPLAYING SPACES)

VTOS, VTOSIN=
KBDBU.P=

VTOS2, ACCEPT(TCHAR,CHAR)
IF (TCHAR.EQ.0} GO TO VT053
IF (TCHAR.EQ.21} GO TO VT054

IF (TCHAR.EQ.32) GO TO VTOSS
RETURN

VT053, IF(CHAR.EQ.' ') RETURN

INCR VTOSIN

L-3

;NON-TERMINATING CHARACTER
;CTRL/U (TO USE LEFT ARROW ON
;VTOS KEYBOARD, CHANGE 21 TO
; 8)
; RUBOUT
;TERMINATING CHARACTER OTHER
;THAN RUBOUT OR CTRL/U
;SPACE IS A TERMINATING CHAR
;(TO ELIMINATE THIS FEATURE,
;REMOVE THIS STATEMENT AND PUT
;LABEL ON NEXT STATEMENT.)
; VTO SIN=# OF INPUT CHARACTERS

KBDIN(VTOSIN)=CHAR
IF (VTOSIN.EQ.VTLIM) RETURN

GO TO VT052

;THE SPECIFIED NUMBER OF
;CHARACTERS WERE INPUT

VT054, IF(VTOSIN.EQ.O) GO TO VTOS
DISPLAY{ROW,COL,2) ;CLEAR CHARACTERS ENTERED

;TO END OF LINE
GO TO VTOS

VTOSS, IF(VTOSIN.EQ.O) GO TO VT052
KBDIN(VTOSIN)=

1.4.2

VTO 5 IN=VTO 5 IN-1
DISPLAY{ROW,COL+VTOSIN,2)

GO TO VT052

;RUBOUT PREVIOUS CHARACTER
;TO END OF LINE

The next program clears incorrectly entered data by displaying spaces.
This is obviously much slower than using the hardware display clear
feature, but data on the same line and to the right is not cleared.

START
RECORD

KBDBUF, A72
RECORD

KBDIN, 72Al

;SUBROUTINE VTOS---CORRECTS ONLY CHARACTERS IN ERROR

;STORAGE FOR KEYBOARD INPUT
,x

BLNK72,
ROW,

COL,

TCHAR,
CHAR,
VTOSIN,
VTLIM,

VTOSXX,

BEGIN,

RECORD
A72
D2

D2

D2
Al
D2
D2

D2
PROC

;WORK AREA
;72 BLANK'CHARACTERS
;CURSOR Y-COORDINATE ON ENTRY TO SUBROUTINE VTOS
;{NEEDED FOR CORRECTION ONLY)
;CURSOR X-COORDINATE ON ENTRY TO SUBROUTINE VTOS
;{NEEDED FOR CORRECTION ONLY)
;TERMINATING CHARACTER IN AN ACCEPT STATEMENT
;INPUT CHARACTER FROM AN ACCEPT STATEMENT
;NUMBER OF CHARACTERS ACCEPTED BY SUBROUTINE VTOS
;NUMBER OF CHARACTERS TO BE ACCEPTED BY
;SUBROUTINE VTOS
;TEMPORARY STORAGE FOR SUBROUTINE VTOS

DISPLAY(l,1,1) ;CLEAR SCREEN
DISPLAY (l ;40, 1 NEVER ERASED')
DISPLAY (1, l, I NAME: ')

·*********** I

r* *
·* ' *

ROW=l
COL=6
VTLIM=20
CALL VTOS

;20 CHARS MAX.

;* SAMPLE *
;* TEST *
;* PROGRAM *
·* ' *

IF (KBDBUF.EQ.'END') STOP . * * ' ·*********** ' GO TO BEGIN

CALLING SEQUENCE
ROW=
COL=
VT LIM=

;SET Y-COORDINATE
;SET X-COORDINATE
;SPECIFY MAXIMUM NUMBER OF CHARS

L-4

;TO ACCEPT
CALL VTOS

;ACCEPT A MAXIMUM OF VTLIM CHARACTERS AT LOCATION SPECIFIED BY
;ROW AND COL. RETURN WHEN VTLIM CHARACTERS, A TERMINATION CHARACTER,
;OR A SPACE IS ENTERED. RUBOUT DELETES LAST CHARACTER ENTERED AND
;CTRL/U ELIMINATES THE ENTIRE ENTRY RUBOUT AND CTRL/U DISPLAY
;SPACE(S) TO DELETE ONLY THE NECESSARY CHARACTERS(NOT THE
;REMAINDER OF THE LINE)

VT05, VTOSIN=
KBDBUF=

VT052, ACCEPT(TCHAR,CHAR)
IF (TCHAR.EQ.O) GO TO VT053
IF (TCHAR.EQ.21) GO TO VT054

IF (TCHAR.EQ.32) GO TO VTOSS
RETURN

;NON-TERMINATING CHARACTER
;CTRL/U {TO USE LEFT ARROW
;ON VTOS KEYBOARD,
;CHANGE 21 TO 8)
;RUBOUT
;TERMINATING CHARACTER OTHER
;THAN RUBOUT OR CTRL/U

VT053, IF{CHAR.EQ.' ') RETURN ;SPACE IS A TERMINATING CHAR
; (TO ELIMINATE THIS FEATURE ,
;REMOVE THIS STATE.MENTj
;VT05IN=# OF INPUT CHARACTERS INCR VTOSIN

KBDIN(VTOSIN)=CHAR
IF (VTOSIN.EQ.VTLIM) RETURN

GO TO VT052

;THE SPECIFIED NUMBER OF
;CHARACTERS WERE INPUT

VT054, IF(VTOSIN.EQ.O) GO TO VTOS
DISPLAY(ROW,COL,BLNK72(1,VTOSIN)) ;CLEAR CHARACTERS ENTERED
DISPLAY(ROW,COL,O) ;REPOSITION CURSOR
GO TO VTOS

VT055, IF(VTOSIN.EQ.O) GO TO VT052
KBDIN(VTOSIN)=

1. 4. 3

VTO 5 IN=VTO 5 IN-1
VTOSXX=VTOSIN+COL
DISPLAY(ROW,VTOSXX,' ') ;RUBOUT PREVIOUS CHARACTER
DISPLAY(ROW,VTOSXX,O) ;REPOSITION CURSOR
GO TO VT052

In addition to the " feature~ found in the previous program, the
following features might also be desired:

1. Programmable numeric keypad {not to be confused with the
CTRL/N feature of COS 300 which is described in Chaper 2 and
is not prograrranable).

2. Right justification of numeric fields.

3. Automatic cursor positioning.

These features can be found in the following subroutine and test
program:

L-...5

START ;SUBROUTINE VT05A AND VT05N
RECORD

KBDBUF, A72 ;STORAGE FOR KEYBOARD INPUT
RECORD ,X

KBDIN, 72Al

BLNK72 I

ROW,
COL,
TCHAR,
CHAR,
VT05IN,
VTLIM,
VT05I,
VT05TA,
VT05SW,
VT0515,

VTOSXX,

BEGIN,

RECORD ;WORK AREA
A72 ;72 BLANK CHARACTERS
D2 ;CURSOR Y-COORDINATE
D2 ;CURSOR X-COORDINATE
D2 ;TERMINATING CHARACTER IN AN ACCEPT STATEMENT
Al ;INPUT CHARACTER FROM AN ACCEPT STATEMENT
D2 ;NUMBER OF CHARACTERS ACCEPTED
D2 ;NUMBER OF CHARACTERS TO BE ACCEPTED
Dl ;INDEX FOR VTOSTA
7Al,'M' ,'J','K','L','U' ,'I','O' ;NUMERIC KEYPAD OVERLAY KEYS
Dl ;CLEARED FOR ALPHA INPUT, SET TO 1 FOR NUMERIC INPUT
D15 ;CONTAINS NUMERIC INPUT FOR VT05N ENTRY {NOT CHANGED

;OR USED IN VTOSA ENTRY)
Al6
PROC 0

;TEMPORARY STORAGE FOR REDISPLAY OF NUMERIC INPUT

DISPLAY(l,1,1) ;CLEAR SCREEN
INCR ROW
IF (ROW .GT. 20) STOP
DISPLAY (ROW,53,'NOT ERASED')
DISPLAY (ROW, 1, 'NAME: ')
COL=7
VTLIM=20
CALL VT05A

;20 CHARS. MAX

IF (KBDBUF.EQ.'END') STOP
DISPLAY(ROW,30,'NO:')
COL=34
VTLIM=l5
CALL VT05N
GO TO BEGIN

·*********** I

·* * I

·* I

·* I

*
* ;* SAMPLE *

·* I

·* I

·* I

TEST
*
*
* ;* PROGRAM *

·* I

·* I

·* ,
·* I

*
*
*
*

·*********** ,

CALLING SEQUENCE
ROW=
COL=
VTLIM=

;SET Y-COORDINATE
;SET X-COORDINATE

CALL VTOSA

;SPECIFY MAXIMUM NUMBER OF CHARACTERS
;TO ACCEPT

(OR VTOSN) ;VTOSA IS FOR ALPHANUMERIC
;INPUT; VTOSN IS FOR NUMERIC INPUT

;ACCEPT A MAXIMUM OF VTLIM CHARACTERS AT LOCATION SPECIFIED BY ROW
;AND COL. RETURN WHEN VTLIM CHARACTERS OR A TERMINATION CHARACTER
;IS ENTERED. FOR NUMERIC INPUT, A SPACE IS A TERMINATOR.
;RUBOUT DELETES LAST CHARACTER ENTERED AND CTRL/U ELIMINATES THE
;ENTIRE ENTRY. RUBOUT AND CTRL/U DISPLAY SPACE(S) TO DELETE ONLY
;THE NECESSARY CHARACTERS (NOT THE REMAINDER OF THE LINE).
;FOR NUMERIC INPUT, THE ENTIRE ENTRY IS REDISPLAYED RIGHT-JUSTIFIED,
;WITH LEADING ZEROS SUPPRESSED. (VT0515 CONTAINS THE NUMBER
;ON RETURN TO THE CALLING PROGRAM).

VTOSA, VTOSSW= ;ENTRY FOR ALPHANUMERIC INPUT
GO TO VTOS

L-6

VTOSN,
VTOS,

VT052,

V'T052X,

VTOSSW=l
VTOSIN=
KBDBUF=

;ENTRY FOR NUMERIC INPUT

;POSITION CURSOR DISPLAY(ROW,COL,O)
ACCEPT(TCHAR,CHAR)
IF(TCHAR.EQ.O) GO TO VT053
IF(TCHAR.EQ.21) GO TO VT054

IF (TCHAR.EQ.32) GO TO VTOSS
IF (VTOSIN.EQ.O) RETUR.i.~

;NON-TERMINATING CHARACTER
;CTRL/U (TO USE LEFT ARROW
;ON VTOS KEYBOARD,
;CHANGE 21 TO 8)
;RUBOUT
;NO INPUT EXCEPT TERMINATING
; ClL?\.Rl\CTER

IF {VTOSSW.EQ.O) RETURN
VT052Y, VT0515=KBDBUF(l,VTOSIN)

;ALPHANUMERIC INPUT
;NUMERIC INPUT (CAN'T EXCEED
;15 DIGITS)

VTOSXX(l,VTLIM+l)=VT0515,'XXXXXXXXXXXXXXX-' ;ALLOWS NEGATIVE
;NUMBERS

DISPLAY(ROW,COL,VTOSXX(l,VTLIM+l)) ;DISPLAY NUMERIC INPUT

RETURN

;RIGHT-JUSTIFIED AND ZERO
;SUPPRESSED

VT053, IF {VTOSSW.NE.l) GO TO VT053X ;SAVE ALPHANUMERIC INPUT
IF (CHAR.EQ.' ')GO TO VT052X ;SPACE AS A TERMINATING

;CHARACTER FOR NUMERIC INPUT
IF (CHAR.EQ.'-'} GO TO VT053X ;MINUS SIGN IS OK
VTOSI=
IF (CHAR.LT.'O') GO TO VT053B ;CHECK FOR NUMERIC KEYPAD
IF (CHAR.LE.'9') GO TO VT053X ;0-9 INPUT

VT053B, INCR VTOSI
IF (CHAR.EQ.VTOSTA{VTOSI)) GO TO VT053C ;MATCH
IF (VTOSI.NE.7) GO TO VT053B ;NO MATCH, TRY AGAIN
DISPLAY (0,0,25} ;SOUND BELL--NOT NUMERIC INPUT
GO TO VTOS ;START OVER (DON'T CLEAR

;THE ERROR)
VT053C, CHAR=VTOSI-1 ;SAVE PROPER VALUE

DISPLAY(ROW,COL+VTOSIN,CHAR) ;REDISPLAY NUMERIC VALUE
VT053X, !NCR VTOSIN ;VTOSIN=# OF INPUT CHARACTERS

KBDIN(VTOSIN)=CHAR
IF (VTOSIN.EQ.VTLIM) GO TO VT056 ;THE SPECIFIED NUMBER OF

;CHARACTERS WERE INPUT
GO TO VT052

VT054, IF (VTOSIN.EQ.0) GO TO VTOS
DISPLAY{ROW,COL,BLNK72(1,VT05IN)) ;CLEAR CHARACTERS ENTERED
GO TO VTOS

VTOSS, IF (VTOSIN.EQ.O) GO TO VT052
KBDIN (VTOSIN) =
VTO 5 IN=VTO 5 IN-1
VTOSXX=VTOSIN+COL
DISPLAY(ROW,COL+VTOSIN,' 1

) ;RUBOUT PREVIOUS CHARACTER
DISPLAY{ROW,COL+VTOSIN,O) ;REPOSITION CURSOR
GO TO VT052

VT056, IF(VTOSSW.EQ.l) GO TO VT052Y
RETURN

L-7

1.4.4

For those who would like to have a subroutine that uses special
function keys, such as up arrow and down arrow, or a new feature, such
as alpha override on a numeric field, there is a simple solution-
understand the previous subroutine and modify it to your needs.

2.0 DIRECT ACCESS TECHNIQUES

2.1 Background

A file may contain records of fixed or variable length. With cos 300
direct access cannot be performed on a file containing variable length
records.

Records are written in 512 character blocks. Regardless of the record
size, the operating system automatically blocks the records into 512
character blocks. The size of a record {in characters) is two plus
the size of all the fields in the record. (The first two characters
are the record size in characters divided by two.) If the resulting
size is odd, add one character since only an even number of characters
may be written. For example, if there are two fields in a record
which are defined as a 09 field and an A88 field, the record size is
100 {2+9+88+1). The operating system will pack five records and
twelve characters into the first block, 88 characters, four records
and 24 characters into the second block, etc.

When this file is later processed, either sequentially {defined as
input in an INIT statement) or thru direct access {defined as UPDATE
in an INIT statement) , the operating system will completely restore
the record even if it overlaps two blocks, before passing it to the
DIBOL program.

2.2 The Reason for Direct Access

Many applications involve the processing of data sequentially. For
example, a transaction file is entered in random order, sorted and
then used to update a master file sorted in the. same sequence.. Errors
in the transaction file cannot be found until the UPDATE program is
run. The errors are corrected and a new transaction file is made for
the corrected items, which is then sorted and run against the master
file. This process continues until no more errors exist. This type
of processing evolved 20 years ago with the age of electronic data
processing. Systems specialists have desired a better method of
operation. The best way is to verify when data is entered that it is
correct. The operator keying the data file should be able to interact
with the master file. This is now possible with COS 300. For
example, a program can be written in which an operator entering
payroll information could type an employee number and know within
l/lOth of a second whether this employee exists on the master file.
This would be impossible with sequential processing of the master
file, since the operator would spend 90% of her time waiting for the

L-·8

employee record to be found. Direct access permits retrieval of any
desired record without processing any other records.

2.3 How It Works In DIBOL

DIBOL permits a program to access any record in a file by specifying
the desired record nwnber. Since the operator is specifying some code
(which is usually not a record number) the program will have to
convert this code to the record nu~ber containing this code. The
remainder of this section on direct access will explain several
methods to do this.

2.4 Unsorted File

Assume that you have an unsorted file containing 1 to 99 records.
Each record contains a "key" field as well as other fields. This key
will be used for direct access. Look at the following program.
Notice that the first thing done is to fill up a table. There is a
one to one correspondence between each element in the table and each
record in the file. Also note that no I/O is necessary to determine
if a specified code is in the master file since this code would not
have a match in the table lookup.

KEY,

TABLE,
I,
LOOKUP,

LOAD,

EOF,

RECORD MASTER
DS
A90
RECORD
lOODS
D3
DS

;COULD BE ANY SIZE DECIMAL OR ALPHA FIELD
;REMAINDER OF FILE
;WORKING STORAGE
;TABLE CONTAINING KEYS
; INDEX

PROC 1
INIT(l,INPUT,'FILNAM')
XMIT(l,MASTER,EOF)
!NCR I
TABLE(I)=KEY
GOTO LOAD
FINI (l}
!NCR I
TABLE(I)=99999 ;INDICATES
INIT(l,UPDATE,'FILNAM')

END OF TABLE

;LOOKUP CONTAINS CODE FOR MASTER FILE LOOKUP

I=
FINDIT, INCR I

IF(TABLE(I) .EQ.LOOKUP) GO TO FOUND ;MATCH
IF(TABLE(I).EQ.99999) GO TO NONE ;NO MATCH
GOTO FINDIT

FOUND, READ{l,MASTER,I) ;READ THE ITH RECORD

L-9

2.5 Sorted File

Take the same circumstances as in section 2.4 except that the file is
sorted by key. Filling the table is the same, but table lookup is
faster since the code is not compared to every element in the table
(as in example in section 2.4). Thus, a "no match" condition is known
as soon as the table element exceeds the code.

It would also be possible to cut down the number of comparisons in the
table lookup by comparing the middle of the table to the code,
determine which half of the table might contain the code, check the
middle of that half of the table, and so on until the element were
found. This techique would be faster, but obviously, the programming
would be much more complicated.

KEY,
RECORD MASTER
DS
A90
RECORD ;WORKING STORAGE

TABLE,
I,
LOOKUP,

LOAD,

EOF,

lOODS
D3
DS
PROC 1
INIT(l,INPUT,'FILNAM')
XMIT{l,MASTER,EOF)
!NCR I
TABLE(I)=KEY
GOTO LOAD
FINI (1)
!NCR I
TABLE(I)=99999 ;INDICATES END OF TABLE
INIT(l,UPDATE,'FILNAM')

I=
FINDIT, !NCR I

IF(TABLE(I) .EQ.LOOKUP)
IF(TABLE(I) .GT.LOOKUP)
GOTO FINDIT

FOUND, READ(l,MASTER,I)

;LOOKUP CONTAINS CODE FOR MASTER FILE

GO TO FOUND
GO TO NONE

;MATCH
;NO MATCH

;READ THE ITH RECORD

It is impractical to do direct access with DIBOL on an unsorted file
containing many records, since an exceedingly large tab le would be
needed. This will become apparent in Section 2.6.

2.6 Rough Table, No Index File

At some point a file will contain too many records for each key to be
saved in a table. When this point is reached, two solutions are
available. The first is to create a "rough" index table containing
every 10th or 20th key. For lookup, the rough index will specify
within 10 or 20 records on the master file which one is desired.
These 10 or 20 records are then sequentially examined to find the
desired record (see the following program example). The second
solution is to create a "rough" index table and a "fine" index file.

L-10

In this method, the rough index table specifies within 10 or 20
records on the index file. The index file is then sequentially
examined to find the desired key. If a match occurs, the master file
is then ,read.

Why go through the extra step of an index file instead of searching
through 10 or 20 records on the master file? To cut down on the
number of I/O reads. For example, a master file of 98 characters per
record would take up to four I/O reads to find the desired record if
the rough index could narrow within 20 records (refer to Section
2.1--record size and records per block}. An index file technique
would only take one I/O read to find the master record. This
technique becomes faster as the size of the master file record
increases. Refer to Section 2.7 for an example using index file
method.

KEY,

TABLE,
I,
J,
LOOKUP,

LOAD,

EOF,

RECORD MASTER
DS
A90
RECORD
100D5
D4
D4
DS
PROC 1

; WORKING STORAGE
;1ST,21ST,41ST KEY,ETC.

INIT (l,INPUT,'FILNAM'}
XMIT(l,MASTER,EOF)
INCR I
IF (I.NE.I/20*20+1) GO TO LOAD
INCR J
TABLE(J)=KEY
GO TO LOAD
FINI (1)
INCR J
TABLE(J)=99999
INIT(l,UPDATE,'FILNAM')

;SAVE ONLY 1ST,21ST,41ST KEYS ETC.

;INDICATES END OF TABLE

;LOOKUP CONTAINS CODE FOR MASTER FILE .
I=l

ROUGH, INCR I
IF(TABLE(I}.LE.LOOKUP) GO TO ROUGH ;NO ROUGH MATCH YET
I= (I-2) * 2 0 ; SET I TO BEGINNING OF ROUGH INDEX MINUS 1

FINE, !NCR I
READ{l,MASTER,I)
IF (KE'Y. LT. LOOKUP) GO TO FINE ; NO MATCH YET
IF(KEY.GT.LOOKUP) GO TO NONE ;NO MATCH

;MATCH

L-11

2.7 Rough Table Plus Index File

KEY,

TABLE,
I,
J,
LOOKUP,

XKEY,

LOAD,

EOF,

RECORD MASTER
DS
A90
RECORD
lOODS
D4
D4
DS
RECORD INDEX
DS
PROC 2

; WORKING STORAGE
;1ST,21ST,41ST KEY ETC.

;INDEX FILE

INIT(l,INPUT,'FILNAM')
INIT(2,0UTPUT,'XFILE 1

)

XMIT(l,MASTER,EOF)
INCR I
XKEY=KEY
XMIT(2,INDEX) ;CREATE FINE INDEX FILE
IF(I.NE.I/20*20+1) GO TO LOAD
INCR J
TABLE(J)=KEY
GO TO LOAD
FINI (1)
FINI(2)
INCR J
TABLE(J)=99999
INIT(l,UPDATE,'FILNAM')
INIT(2,UPDATE,'XFILE 1

)

;SAVE ONLY 1ST,21ST,41ST KEYS ETC.

;INDICATES END OF TABLE

;LOOKUP CONTAINS CODE FOR MASTER FILE

I=l
ROUGH, INCR I

IF (TABLE (I) .LE.LOOKUP) GO TO ROUGH ;NO ROUGH MATCH YET
I=(I-2)*20 ;SET TO BEGINNING OF ROUGH INDEX MINUS 1

FINE 1 INCR I
READ(2,INDEX,I) ;READ INDEX RECORD
IF(XKEY.LT.LOOKUP) GO TO FINE ;NO MATCH YET
IF(XKEY.GT.LOOKUP) GO TO NONE ;NO MATCH
READ(l,MASTER,I) ;MATCH

2.8 Summary

This discussion on direct access has not described all situations. In
cases where the master file is between 2,000 and 40,000 records, the
approach might be to have a very rough table, a rough index file, a
fine index file and a master file. Several other techniques have been
developed for direct access, but since they are more difficult to use,
a discussion of them will be omitted at the present time.

It would also be possible to work with a large unsorted master file.
An index file is created containing two fields: the key field and the
record number of the master file. The index file is then sorted by
key. When a match is found on the key field of the index file, the
program would use the record number field to read the proper record of
the unsorted master file.

L-12

Creation of an index table or an index file may be done in a separate
program. This could save from several seconds to several minutes each
time the program is run. Thus when a master file is updated (perhaps
on a weekly or monthly basis), the index file would then be created
only once during this time period.

3.0 DIRECT ACCESS NOTES

3.1 XMIT Statements Used With Direct Access

XMIT statements may be interspersed with direct access operations on a
file. An XMIT fo+lowing a READ with record number N is equivalent to
a READ of record number N+l. Successive XMIT's read records N+2, N+3,
etc.

An XMIT following a WRITE of record number N transmits data to record
number N+l.

CAUTION

Records N+2 to the end of the file may be changed
by successive XMIT's after a WRITE. Therefore if
the user wants to change a series of records in
the middle of the file, he should not use a WRITE
followed by several XMIT's.

The XMIT statement used after a WRITE statement has the following
useful applications.

3.1.1 Truncating a File

To truncate a file after record N use the following sequence:

READ(channel,record,N)
WRITE(channel,record,N)
XMIT(channel,NULL,DUMEOF)

DUMEOF, FINI(channel)

where NULL is a record with no contents defined by:

RECORD NULL
RECORD

L-13

3.1.2 Appending to a File

To append records to the end of a file with N records, use the
following sequence:

READ(channel,record,N)
WRITE(channel,record,N)
XMIT(channel,record)
XMIT(channel,record)

XMIT(channel,NULL,DUMEOF)

DUMEOF, FINI(channel)

3.1.3 Rewriting A File

;APPEND RECORDS TO FILE

To rewrite a file from record N to the end of the file, use the
following sequence:

WRITE(channel,record,N)
XMIT(channel,record)
XMIT(channel,record)

XMIT(channel,NULL,DUMEOF)

DUMEOF, FINI(channel)

4.0 NUMERIC FIELD VERIFICATION

Any pumeric field that is first entered in a OIBOL program should be
checked to determine if it contains only decimal data. The numeric
field should be read as an alpha field through an XMIT or ACCEPT
statement. Then it is moved to a decimal field. This move is
preceded by an ON ERROR statement to check for non-numeric data. For
example:

RECORD
TCHAR, 02
OECMAL, OS
ALPHA, AS
PROC

ALPHA=
ACCEPT(TCHAR,ALPHA)
ON ERROR FIX
OECMAL=ALPHA

L-14

RECORD A
ALPHA, AS
DECMAL, OS

PROC 1

XMIT(n,A)
ON ERROR FIX
OECMAL=ALPHA

With an alpha-to-decimal move, many checks are done. Some of them
include right justification, + and - sign conversion and ignoring
spaces. The following examples should cover all cases:

ALPHA
I 123 1

1 123
1 00123 1

' -123'
' 123-'
'-123-'
9 12-3 I
'l-2-3'
'1+2+3'
'1+2-3'
'l 23 '
•0012s 1

DECIMAL
00123
00123
00123
00128
0012S
00123
00125
00123
00123
00128
00123
ILLEGAL

The only legal characters in an alpha-to-decimal move are 0 to 9,
space, +, and -.

If a data file is written which contains numeric fields, these fields
must be read as numeric. If they contain a negative number, the least
significant character contains a minus sign. For example, -37 would
look like 3W. If this field we~e read as alpha, and then converted to
numeric, a run time error would occur since any letter of the alphabet
is illegal in a alpha-to-decimal conversion.

5.0 CHAIN STATEMENT NOTES

5.1 Interaction of CHAIN and INIT (n,SYS)

SYS input files may be specified in a RUN statement which also
specifies CHAIN programs. However, the method of accessing such files
must adhere to the following rules.

1. All CHAIN files must be listed in the RUN command before the
SYS FILES. FOR EXAMPLE:

..!.RUN PROG+CHAINl+CHAIN2,INPl,INP2

2. Any CHAIN which is to open the first SYS input file must
first "skip over" the remaining CHAIN files by issuing dummy
INIT(n,SYS) statements. In the above RUN command, for
example, in order to read file INPl, the program PROG would
have to issue two dummy INIT{n,SYS) statements. CHAIN2 would
not have to issue any dummy statements since it is the last
CHAIN program.

If the RUN command were:

• RUN PROG, sourcel, ••• ,source7

the source files could be processed more than once by executing a
CHAINO statement in PROG.

5.2 Communication Between CHAINs

5.2.1 File Status

All file status information is destroyed between CHAINed programs.
Therefore, all OUTPUT and UPDATE files should be FINI'd before
executing a CHAIN to prevent the loss of information.

5.2.2 Clearing CHAINed Records

Any DIBOL record in a program loaded into core directly by the .RUN
command is automatically cleared. If the record is loaded in a
program by the CHAIN statement in the PROC section of another program,
it will retain whatever contents it may have had in the previous
program unless the clear option (,C) is specified for the record.

5.2.3 Tranferring Variable Values

For the value of a variable to be successfully transmitted from one
CHAIN'ed program to another, the variable in which the value appears
must occupy the same location in both CHAIN programs. This may be
accomplished by either of two methods:

1. Define all records which are to be passed between CHAIN
programs before other records, and make the declarations
identical (except for variable names which may be different).

Example:

CHAINl

RECORD
CUST, A30
PROD, D2
RECORD INVENT
STOCK, D4

CHAIN2

RECORD CPINFO
CUST, A30
PCODE, D2
RECORD INVENT
QUANTY, D4

2. Use the Storage Maps, produced by the compiler, for the two
CHAIN programs to verify that the desired variables occupy
the same storage location.

L-16

5.3 Multiple CHAIN Entry Points

Sometimes it is desirable to have several entry points into a CHAIN
program. However, the CHAIN statement always starts execution of the
CHAINed program at the first statement following the PROC statement.
Using the technique of transferring variable values between CHAINed
programs (discussed in Section 5.2.3), multiple entry points can be
programmed as indicated in the following example.

CHAIN!

RECORD
WHEF.E;D2 ,Ol
RETURN,D2

PROC
GO TO(Ll,L2,L3,L4) ,WHERE
Ll,RETURN=2

CHAIN 2
L2, •••

5.4 Miscellaneous CHAIN Facts

CHAIN2

RECORD
vIBERE,D2
RETURN,D2

PROC
GO TO(El,E2,E3) ,WHERE

El, •••

WHERE=RETU&T\1
CHAIN 1

1. Both the TRACE and TRAP features are turned off when a CHAIN
statement is executed. They may be turned on again in the
CHAINed program via an appropriate TRACE or TRAP instruction.
Control returns to DDT when a CHAIN statement is executed.

2. The size of the data area in a program may be larger than,
smaller than, or equal to the size of the data area in any
program that it chains to.

3. Issuing a CHAIN statement with an argument greater than 7
(e.g., CHAIN 8) results in the error message

ILLEGAL CHAIN

4. Issuing a CHAIN statement which does not correspond to a
valid DIBOL binary file in the .RUN statement results in the
error message:

ILLEGAL CHAIN
AT LINE 0000

L-17

6.0 DIBOL PROGRAMMING OF SYS FILES

6.1 Operating Procedures

Up to seven source files are available to a DIBOL program.
specified at run time by:

They are

• RUN PROG, sourcel, ••• ,source7

The Editor scratch area is not available to a DIBOL program.

6.2 Data Section

The RECORD description would be as follows:

RECORD recnam
LINENO, A2
CHAR, Al20

LINENO contains a two character line number in binary. Most programs
would ignore the line number. However, it can be converted to decimal
by the statement:

varnam = #LINEN0*64+#LINEN0(2,2)

Varnam must be a four digit field.

CHAR contains the characters of one line created by the Editor. The
DIBOL program may want to examine CHAR for trailing spaces to
determine the last character in CHAR.

There is no tabbing within CHAR. The tabbing seen by output from
Monitor command LIST or LIST/L is done by the operating system.
are internally stored as characters with a decimal equivalent of
Any character may be checked for a tab by the statement:

IF(#CHAR(n,n).EQ.61) GO TO LABEL

6.3 PROCedure Section

the
Tabs

61.

The first source file specified in the RUN command is opened by the
statement:

INIT(n,SYS)

Each record is accessed by the statement:

XMIT(n, recnam, EOF label)

L-18

When an end-of-line condition occurs, the program transfers to the EOF
label of the XMIT statement. At that EOF label, a FINI n statement
must be executed prior to an INIT(n,SYS) to open a second source file.
To handle a variable number of source files, precede the INIT(n,SYS)
statement by an ON ERROR label statement. The program would transfer
to the ON ERROR label statement when an INIT(n,SYS) statement was
executed and there were no more source files.

The only way of processing a source file more than once is to execute
a CHAIN n statement which resets the operating system pointers to the
source file(s). Refer to Section 5.1 of this appendix for an
explanation of CHAINing and source files.

L-19

alphanumeric

array

ASCII

batch processing

binary operator

binary program

bit

blank

block

GLOSSARY

A character set that contains letters,
digits, and other characters such as
punctuation marks. The COS alphanumeric
character set includes the upper case
letters A-Z, the digits 0-9, and most of
the special characters on the terminal
keyboard. Two of these characters, back
slash (\) and back arrow (+) , (shown on
some terminals as an underscore) are
illegal.

A DIBOL technique for specifying more
than one field of the same length and
type. 503 reserves space for five
decimal fields, each to be three digits
long. 2Al0 describes two alphanumeric
fields, each to be ten characters long.

American National Standard
Information Interchange.

Code for
This is one
alphanumeric method of coding

characters.

The technique of automatically executing
a group of monitor commands such that
each is completed before the next is
started. In COS the BATCH command
executes a group of previously stored
commands, allowing "unattended" system
operation.

An operator such as +,
acts upon two or more
variables (e.g., A=B-C).

etc., which
constants or

The form of user's program which is
output by the compiler and runs with
RSYS on the computer.

A binary digit (O or 1).

A part of a medium in
characters are recorded.

which no

The basic COS unit of
transfer used primarily
storage capacity. A block
up to 510 characters.

physical data
to determine
consists of

A DECtape reel contains 737 blocks; an
RK08 disk cartridge contains 3248; an
RK8E disk cartridge contains 6496; an
RF08 disk platter contains 1024 blocks.

Glossary-!

bootstrap

branch

buff er

bug

character

character string

clear

collating sequence

command

command string

COMP

comments

code

data

A short routine loaded at system startup
time to be able to read in system
software.

A change in the sequence of execution of
COS program statements.

A temporary storage area usually used
for input or output data transfers.

A program error,
malfunction.

or a hardware

A letter, digit, or other symbol used to
control or to represent data. See
switch character.

A linear sequence of characters.

Setting an alphanumeric field to space
characters, or a decimal field to zeros.
In the Data Definition section of a
DIBOL program C initially clears a
RECORD storage area.

An ordering assigned
records based on a
within the records.
ascending sequence is
the descending sequence

to a group of
key item or field

One possible
0-9, A-Z •. Then

is Z-A, 9-0.

An operator request
services; usually to
immediately.

for
be

Monitor
executed

The characters that make up a complete
command.

The DIBOL compiler program which
translates from source programs written
in DIBOL language to binary programs
which run on the computer.

Notes for people to read; ignored by the
compiler. Optional, following a
semicolon on any statement line.

(1) the representation of information,
as in ASCII code. (2) A set of
instructions or statements called "a
piece of code". (3) "To code" means to
write a program.

A representation of information in a
manner suitable for communication,
interpretation, or processing by either
people or machines. In COS systems,
data is represented by characters.

Glossary-2

data base

data definition

data entry

debug

DEC

DECtape reel

data management

detail file

device independence

device names

The entire set of data files available
for processing by a COS data management
system.

The specification of record formats in
both format programs and source
programs. Gives the length of each
field, states whether it is alphanumeric
or decimal, and may give a field name
and initial entry. Data definitions are
stored on the systems device, and may be
referenced by any other COS program.

The process of collecting and inputting
data into the computer data files. Data
entry is either key-to-tape or
key-to-disk. The systems utility
program, BUILD, checks the incoming data
for type and length, and writes the
records on DECtape or disk.

To detect, locate, and remove errors or
malfunctions from a program or machine.

Acronym for Digital Equipment
Corporation.

Each 4-inch reel contains 260 feet of
3/4-inch wide magnetic tape. Each reel
is a logical file of up to 737 blocks of
512 characters each. A large file may
consist of up to 63 reels.

The planning, development, and operation
of a system like COS by an organization
to mechanize its information flows and
make available the data needed by the
organization.

Same as transaction file.

COS system design permits
programs to be stored on
or disk. At run-time,
chooses the most suitable,
introt and output devices.

data files and
either DECtape
the operator
or available,

3-character abbreviations are used to
name the COS I/O devices.

DT0-DT7
TTY
KBD
RDR
PTP
CDR
LPT
DK0-DK3

Glossary-3

DECtapes 0-7
Terminal printer
Terminal keyboard
Paper tape reader
Paper tape punch
Card reader
Line printer
Disk drives

DIBOL

direct access

directory

disk

dump

end of tape mark

end of file mark

error message

field

file

fixed-length records

flowchart

Digital's Business Oriented Language.
The source language of the COS system.

The process of obtaining data from, or
placing data into, a storage device
where the availability of the data
requested is independent of the location
of the data most recently obtained or
placed in storage. Direct access is
available to users of DECtapes and disks
in COS systems by writing the position
number of any record in a data file.
For example, you can request the 5th,
35th, and 7llth records in a file.

See Systems Directory.

A standard mass storage device in COS
systems giving very fast access to data
files and programs.

To copy the contents of all or part of
storage, usually from core memory to
external storage.

Control characters which mark the
physical end of a multi-reel
(multi-disk) file. For both input and
output files, Monitor will detect this
EQT mark and type a message for the
operator asking that the next reel in
this file be mounted.

Identifies the end of the logical file.

An indication that an error has been
detected.

A specified area in a data record used
for one item of alphanumeric or decimal
data, which cannot exceed the specified
character length.

A collection of records, treated as a
logical unit.

When each record in a data file is the
same length. Fixed-length records are
the only type handled by COS utility
programs, and the only type on which
direct access to data files is allowed.
See also variable-length records.

A pictorial technique for analysis and
solution of data flow and data
processing problems. Symbols represent
operations, and connecting flowlines
show the direction of data flows.

Glossary-4

illegal character

input

input/output

instruction

jump

justify

key

label

leader

library

library routine

line printer

A character that is not valid according
to the COS design rules= DIBOL will not
accept back slash (\) and back arrow (+)
(backarrow is replaced on some terminals
with underscore) in alphanumeric
strings.

Data flowing into the computer to be
processed by a binary program is input
data. When the processed data flows out
of the computer, it is output data.

Either input or output, or both. !/O

A program statement that specifies an
executable computer operation.

A departure from the normal sequence of
executing instructions in a computer.

The process of positioning data in a
field whose size is larger than the
data. In alphanumeric fields, the data
is left-justified and any remaining
positions are space-filled: in decimal
fields the digits are right-justified
and any remaining positions to the left
are zero-filled.

One or more fields within a record used
to match or sort a file. If a file is
to be arranged by customer name, then
the field that contains the customers'
names is the key field. In a sort
operation, the key fields of two records
are compared, and the records are
resequenced when necessary.

One or more characters used to identify
a statement in a COS source program up
to a maximum of 6 characters.

The blank section of tape at the
beginning of a DECtape or papertape.

A collection of related files. For
example, the collection of inventory
control files may form a library, and
the libraries used by an organization
are known as its data bank.

A proven routine that is maintained in a
program library.

A high-speed output device that prints
all the characters of a line as a unit.
Speed of the LP08 Line Printer ranges
from 245 to 1110 lines per minute. LS8E

Glossary-5

linkage

load

load-and-go

location

logical file

logical units

loop

magnetic core

main memory

mass storage device

master file

merge

has a speed of 165 characters per
second.

Coding that connects two
coded routines.

separately

To enter data or programs into main core
storage.

An operating technique in which there
are no stops between the loading and
execution phases of a program.

Any place where data may be stored.

A collection of logical
independent of their
environment. Portions of
logical record may be
different physical blocks.

records
physical

the same
located in

A section of mass storage. Up to 15
logical units may be assigned at system
startup by the SYSGEN program. These
areas and their assigned sizes are
listed in the logical units table
printed by SYSGEN.

A sequence of instructions that is
executed repeatedly until a terminal
condition prevails. A commonly used
programming technique in processing data
records.

The very fast, direct access, storage
media used in the PDP-SE's main internal
memory. Contains 2 COS characters per
12-bit word. An SK core stores over
16,000 characters.

Or main storage. The computer's primary
internal storage.

A device having large storage capacity,
such as DECtapes- and disks.

A data file that is either relatively
permanent, or that is treated as an
authority in a particular job.

To combine records f rorn two or more
similarly ordered strings into another
string that is arranged in the same
order. The latter phases of a sort
operation.

Glossary-6

mnemonic

Monitor

name

nest

object program

off line

on line

overlay

parameter

parametric programming

pass

patch

peripheral equipment

position

program

Brief identifiers
remember.
DT4.

Examples
which

are
are
TTY,

easy to
RDR and

COS's top system program that loads and
runs other programs and performs many
other useful tasks.

A name identifies the place where a
file, a field, or a statement is stored.
Names must start with a letter and may
contain up to 6 characters, not
including embedded spaces.

To embed subroutines or loops or data in
other subroutines or programs.

A compiled program in binary form ready
to be loaded and executed.

Equipment or devices that are not under
control by the computer.

Equipment or services under control of
the computer.

The technique of specifying several
different record formats for the same
data. Special rules apply.

A variable that is given a constant
value for a specific purpose or process.

COS control programs are parametric
programs. The applications progranuner
lists the description of his data files
as parameters in the Data Definition,
and the processing needed is listed in
another section as another parameter
list. Each parameter list is written by
answering a series of questions. The
DIBOL data language is used for writing
procedural programs.

One cycle of processing a body of data.

To modify a routine or program in a
rough or expedient way.

Data processing equipment which is
distinct from the computer. DECtapes,
disks and card readers are examples.

In a string, any location that may be
occupied by a character.

See source program, binary program,
object program, format program.

Glossary-7

program library

programmers

pseudo-random numbers

push-down list

random access

range

real time

record

segment

sequential operation

An organized collection of computer
programs, off line storage media, and
related documentation.

People who design, write, and
computer programs.

test

A sequence of numbers, computed by an
arithmetic process, that is
satisfactorily random for a given
purpose. Such a sequence may
approximate a statistical distribution
such as uniform, normal, or Gaussian.

A list of items where the last item
entered is the first item in the list,
and the relative position of the other
items is pushed back one.

Similar to direct access.

The difference between the highest
lowest values that a quantity
function may assume. For example,
range of decimal numbers that
systems can process is:
-999,999,999,999,999 to
+999,999,999,999,999.

and
or

the
cos

Use of a computer to guide, control, or
acquire data from a related physical
process, during the actual time that the
physical process transpires.

A collection of related data fields, and
the basic logical unit in COS data
files. A RECORD statement reserves core
storage areas for DIBOL data language
programs. See also fixed-length and
variable-length records. Maximum record
size is 510 characters.

To divide a program or file into parts
such that the program can be executed
without the entire program being in
internal storage at any one time.

Performance of operations, such as
record processing, one after the other.

Glossary-8

serial access

sign

significant digit

simulate

source program

space fill

special character

spool

statement

string

switch character

syntax

system device

The process of getting data from or
putting data into storage where the
access time is dependent upon the
location of the data most recently
obtained or placed in storage. Most
magnetic tapes are serially accessed,
but DECtapes have fixed addresses and
COS programs have fast, direct access to
their DECtape records.

Indicates whether a number is negative
or positive. Po~itive numbers do not
require a sign, but negative nu..mbers are
prefixed with the minus sign (-}.

A digit that is needed for a specified
purpose, especially a digit that must be
kept to preserve a certain accuracy or
precision. Leading zeros are not
significant.

A computer program that represents the
behavior of another system. An example
would be a program which simulates the
behavior of a market when a new product
is introduced.

A program written in COS data language,
DIBOL.

To fill the remaining character
positions in an alphanumeric field with
space characters.

A graphic character that
letter, nor a digit,
character.

is neither a
nor a space

To provide for continuous operation of a
peripheral device.

An instruction in a source program.

A linear sequence of characters.

A single letter specified in a command
following a slash (/).

The rules governing the structure of a
language.

A mass
Monitor,
programs.
o.

storage device reserved for
RSYS and other system and user
This is always logical unit

Glossary-9

systems directory

tape drive

terminal

transaction file

unary operator

utility program

variable

variable-length record

verify

word

zero fill

A list of programs on the systems device
with lengths, dates of creation and
other useful information.

A device that moves tape past a head.
Synonymous with tape transport.

A point in the system at which data can
either enter or leave.

A file containing relatively transient
data to be processed in combination with
a master file. For example, in a
payroll application, a transaction file
indicating hours worked might be
processed with a master file containing
employee name and rate of pay.
Synonymous with detail file.

An operator such as+, , etc., which
acts upon only one variable or constant
(e.g., A=-C).

A group of system programs which perform
common services and require format
programs. Examples are BUILD, SORT and
UPDATE.

A quantity that can assume any of a
given set of values.

A file in which the data records are not
uniform in length. Specified by V in an
INIT statement. Variable length records
may be created by DIBOL source programs
only, but cannot be processed by utility
programs, and direct access to such
records by system programs is
impossible.

To determine whether a transcription of
data has been accomplished accurately.

A string of 12 binary bits, representing
two COS characters.

To fill the remaining character
positions in a decimal field with zeros.

Glossary-10

INDEX

ACCEPT statement, 1-5, L-1
Advanced Programming Techniques, L-1

ACCEPT and DISPLAY statements,L-1
CHAIN statement, L-15
DIBOL programming of SYS files,L-18
Direct access techniques, L-8
Numeric field verification, L-14

Alpha literals, 1-13
Alphanumeric data:

in BUILD program, 6-15
moving of, 1-15

Alphanumeric to decimal con~ersion,
1-16

Arithmetic expressions, 1-11
Arithmetic operators, 1-11
Arrays, 1-51
ASCII to COS file conversion, 12-1
Assignment of logical units,

SYSGEN, 3-4
Automatic loading, COS system, B-1

BATCH command, 2-5
Batch

editing, 2-38
execution, 2-5

Binary file transfer, PIP option,
5-2

Binary scratch area modification,
PIP, 5-10

BLOCK, see RECORD
Boot,

operating procedures, 9-1
switches, 9-1

Braces (symbol convention),
INTR0-6

Brackets (symbol convention) ,
INTR0-7

Branching, 1-7
via ON ERROR statement, 1-38

Buffer clearing, 2-21
BUILD,

checkdigit formula, E-1
control program, 6-1
error messages, 6-16, 6-19
field descriptor, 6-3
input, 6-4
input line, o-L.,,
input options, 6-6
operating procedures, 6-11
output, 6-8
output options, 6-9
sample program, 6-2

,C option {clear record}, 1-57
CALL statement, 1-7
Card Reader, F-15
Card Reader input, BUILD program,

6-13
CHAIN statement, 1-9, L-15
Channel, 1-27

X-1

Characters, special in format
strings, 1-17, 1-18

Checkdigit formula, BUILD program,
E-1

Comma as field delimiter, BUILD
program, 6-5, 6-15

Commands,
DAFT, 11-1
Monitor, 2-3
UPDATE program, 8-5

Comments in programs, 1-3
.Compiler,

error messages, 4-8
operating procedures, 4-1
storage map, 4-5

Compiler statement (DIBOL) , 1-4
Computed GO TO, 1-29
Consolidating files, PIP option,

5-9
Continue lines, UPDATE program, 8-6
Control program, BUILD, 6-1

sample program, 6-2
storage, 6-1

Control program,
SORT, 7-1
UPDATE, 8-1

Control statements, (DIBOL), 1-4
Control transfer through IF

statement, L-..)J.

Conventions (symbols) used in
manual, INTR0-6

Converting and formatting data,
1-16

Copy device, PIP option, 5-5
Core size, DIBOL compiler, C-1
COS codes storage, A-1

tables, A-2
CONVEX (COS-OS/8 Converter program)

error messages, 12-3
operating procedures, 12-1
output file, 12-3

CREF (Cross Reference) program,
error messages, 14-8
example, 14-2
operating procedures, 14-1

CTRL/n commands, Monitor/Editor,
2-2

Current data specification {.Q),
1-51

,D option (data specification),
1-51

DAFT (Dump and Fix) •
commands, 11-1, 11-3, 11-4
error messages, 11-4, 11-5, 11-6
operating procedure, 11-1
output, 11-6

Data files, G-1
DATE command, (Monitor), 2-7
Data field indicators, BUILD

program, 6-3

Data file transfer, PIP option,
5-7

Data formatting, 1-16, 1-17
Data input, BUILD program, 6-12
Data manipulation statement, 1-4,

1-11
Data record transfer, 1-73
Data specification statements

(DIBOL} , 1-4
Debugging, 1-65
Debugging statements (DIBOL), 1-5
Decimal data,

BUILD program, 6-14
moving, 1-15

Decimal literals, 1-13
Decimal to alphanumeric conversion,

1-16
DECtape system device for loading

COS, B-1
DECtape transport unit, F-10
DECtape users, logical devices

for, 3-6
DECtapes, pseudo, G-4
Default units, SORT, 7-8
DEFINE statement, BUILD program,

6-3
DELETE command (Monitor), 2-9
Device assignment, 3-4, 3-5

DECtape users, 3-6
disk users, 3-6
error messages, 3-8
table printout, 3-6

Device initialization, 1-35
DIBOL debugging technique

(DDT), H-1
DIBOL compiler bina~y, G-2
DIBOL compiler, core size

requirements, C-1
DIBOL statement summary, I-1
DIBOL programming of SYS files, L-18
Direct access, READ statement,

1-43, L-8
Direct access, WRITE statement,

1-73
DIRECTORY command, Monitor, 2-11
Disk cartridge, F-22

dismounting, F-23
mounting, F-22

Disk system device for loading
COS, B-3

Disk users, logical devices
for, 3-6

Display statement, 1-19, L-1
DTMARK format program, 13-13

Editing, BATCH, 2-38
Editing commands, 2-20
Editing example, MONITOR, 2-36
Ellipsis (symbol convention,

INTR0-6
End of file, 1-71
End of file mark, 1-25

End of subroutine, 1-59
END statement, 1-23

UPDATE program, 8-5
eof label, 1-73
ERASE command, Monitor, 2-21
Error corrections via editing

commands, 2-20
Error messages,

BUILD, 6-16 through 6-19
compiler, 4-8 through 4-10
CONVEX, 12-3
cos summary, J-1
CREF, 14-8
DAFT, 11-4 through 11-6
DTMARK format, 13-14

recovery, 13-14
logical device assignments, 3-10
Monitor, 2-40, 2-41
PATCH, 10-4
PIP, 5-16
RKEMRK, 13-7

recovery, 13-8
RK8MRK, 13-3

recovery, 13-4
Run-time, 2-41, 2-42
SORT, 7-9, 7-10
TDMARK, 13-10

recovery, 13-11
UPDATE, 8-8, 8-9

Executing programs via RUN
command , 2-15

Expressions, arithmetic, 1-9

FETCH command, Editor, 2-23
Field descriptor section,

BUILD, 6-3
SORT, 7-1

Fields,
BUILD program data, 6-13
clearing of, 1-14
UPDATE program, 8-1

File access, G-4
File consolidation, PIP option,

__ s_-_9
File conversion, ASCII to COS, 12-1
File descriptor section, UPDATE,

8-1
File design, D-1
File maintenance program, UPDATE,

8-1
File replacement, PIP, 5-7
File structure, (COS), INTR0-2
FINI statement, 1-25
Format programs, 13-1

DTMARK, 13-13
RKEMRK, 13-7
RK8MRK, 13-3
TDMARK, 13-9

Format string, special characters
in r 1-1 7 I 1-18

formatting data, 1-16
FORMS statement, 1-27

X-2

GOTO statement, 1-29

Handler address, G-5
Hardware requirements, INTR0-1,

3-2, F-1
High-speed paper tape reader and

punch, F-8 through F-10

IF statement, 1-31
INCR (increment) statement, 1-33
INIT statement, 1-35
Initialization, SYSGEN, 3-2
Input line, BUILD, 6-13
Input/output section, SORT, 7-2
Input/output statements (DIBOL) ,

1-4
Input section, BUILD program, 6-4

termination, 6-6
INPUT statement, UPDATE program,

8-2
Inserting initial values, 1-47
Insert line and number in edit

buffer, 2-31

Key commands, Monitor, 2-2
KEY statement, UPDATE program, 8-3
Keyboard data input (KBD), BUILD

program, 6-12
Keyword, BUILD program, 6-5

Labels of statements, 1-2
Length of statement, 1-1
Line printer, F-15, F-17

output format, 1-27
LIST command, Editor, 2-25
Literals,

alpha, 1-13
decimal, 1-13
record, 1-14

LN (Line Number) command, Monitor,
2-27

error recovery, 2-28
Loading COS,

automatic, B-1
DECtape, B-l
Disk, B-3
PDP-12 users, B-6
RF~8 Bootstrap, B-4
RK~S Bootstrap, B-3
RK8E Bootstrap, B-3
TD8-E Bootstrap, B-4

Loading programs via RUN command,
2-15

Loading source file, 2-23
Logical unit assignment, SYSGEN,

3-4 through 3-8
DECtape, 3-6
disk, 3-6

LP~8 Line Printer, F-15
LS8-E Line Printer, F-17

Monitor,
commands, , _ _,
key commands, 2-2
operating procedures, 2-1

Monitor layout, G-3
MOUNT messages, Monitor, 2-16
Moving alphanumeric data. 1-15
Moving decimal data, 1-15
Moving records, 1-16
Multiple definition of fie}ds

(,x option), 1-55
Multi-reel input file, SORT

program, 7-4

Number conunands, Editor, 2-31
(number sign) operator, 1-12
Numbers of statements, 1-2
Numeric field verification, L-14

ON ERROR statement, 1-38
Operating procedure,

BOOT program, 9-1
BUILD progra.~, 6-11
Compiler, 4-1
CONVEX (COS-OS/8 Converter

program), 12-1
CREF, 14-1
DAFT program, 11-1
DTMARK format program, 13-13
Monitor, 2-1
PATCH, 10-1
PIP, 5-1
RKEMRK format program, 13-7
RK8MRK format program, 13-13
SORT, 7-4 I 7-6
SYSGEN, 3-1
TDMARK format program, 13-9
UPDATE program, 8-7

Operators,
arithmetic, 1-11
unary, 1-11

Options,
BUILD program input, 6-6
BUILD program output, 6-9
PIP, 5'""'.1

Output, DAFT program, 11-6
Output format number, BUILD

program, 6-5
Output section, BUILD program,

6-8
OUTPUT statement,

BUILD, 6-8
UPDATE, 8-4

Overlay record, 1-55

,P option (initialization), 1-47
Paper tape reader input, BUILD,6-13
Parentheses in arithmetic expressions

1-12
PATCH,

X-3

correcting typographical errors,
10-2

error messages, 10-4
operating procedures, 10-1

PDP-12 with LINCtape loading for
COS, B-6

PIP (Peripheral Interchange
Program),

error messages, 5-16
operating procedures, 5-1
options, 5-1

PLEASE command, Monitor, 2-13
Priority of arithmetic operators,

1-11, 1-12
PROC statement, 1-41
Program tracing, 1-65
Pseudo-DECtapes, G-4

READ statement, 1-43
Record design, D-1
Record literals, 1-14
RECORD statement, 1-45
Records, moving, 1-16
Renumbering program lines, 2-33
RESEQUENCE command, Editor, 2-33
Reserving core, 1-45
RETURN statement, 1-59
RF~8 Bootstrap loading for COS, B-4
RKEMRK format program, COS, 13-7
RK8 Bootstrap loading for COS, B-4
RK8MRK format program, 13-3
Rounding of numbers, 1-12
RUBOUT, Monitor key command, 2-2
RUN command, Monitor, 2-15

,S option (assign value of variable),
1-53

SAVE command,
Compiler, 4-2
Monitor, 2-19

Scope cursor, 1-19
positioning of, 1-20

Scratch area (binary) modification,
PIP, 5-10

Skip-code, 1-27
Software configuration, COS, 3-1
SORT

control program, 7-1
default units, 7-8
error messages, 7-9
operating procedures, 7-4, 7-6
running as part of UPDATE

procedure, 7-6
SORT statement, UPDATE program, 8-3
Source files, G-1
Source files tranfer, PIP option,

5-11
Source program limitation, 1-4
Square root subroutine, 14-2
START statement, 1-61
Statement,

labels, 1-2
length, 1-1
numbers, 1-2
types, DIBOL, 1-4

X-4

STOP statement, 1-63
Storage,

COS system, 3-4
CREF, 14-9
DIBOL Compiler, C-1

Storage map, Compiler, 4-2
Storing,

binary program, Compiler, 4-2
BUILD control program, 6-10

Switches,
BOOT program, 9-1
SORT/MERGE; 7-6

Symbol conventions used in
manual, INTR0-6

SYSGEN,
error messages, 3-8
initialization, 3-2
logical unit assignment, 3-4
operating procedures, 3-1
software, 3-1

System and data tape formats,
COS, G-2

System device input, BUILD program,
6-13

System program, INTR0-1
COS, G-2
changing via PATCH, 10-1
transfer, PIP option, 5-13

System restart,
on DECtape, B-2
on Disk, B-4

TD8-E Bootstrap loading for COS
B-4

TDMARK format program, 13-9
Terminator codes, 1-6
Terms used in manual, INTR0-6
TRACE/NO TRACE statements, 1-65
Transfer binary file, PIP option,

5-2
Transfer data files, PIP option, 5-4
Transfer data records, 1-73
Transfer source files, PIP

option, 5-11
Transfer system program, PIP

option, 5-13
Transferring control through IF

statement, 1-31
TRAP statement, 1-67
Typographical errors, correcting

in PATCH, 10-2

Unary operators, 1-11
Unconditional GOTO, 1-29
Underscored characters, INTR0-6
UPDATE,

commands, 8-5
control program, 8-1
error messages, 8-8,8-9
example, 8-6
operating procedures, 8-7

Update procedure using SORT program,
7-6

UPDATE statement, 8-2

Variables, 1-13
VT~5 Terminal, 1-19, F-3

controls, F-5
keys, F-6
startup procedure, F-7

WRITE command, Editor, 2-35
WRITE statement, {direct access),

1-71

,X option (multiple definition of
fields), 1-55

XMIT statement, 1-73, L-13

X-5

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as wel I as programming notes, software problems,

and documentation corrections are published by Software Information Service in the following

newsletters.

Digital Software News for the PDP-8 and PDP-12
Digital Software News for the PDP-11
Digital Software News for 18-bit Computers

These newsletters contain information applicable to software available from Digital's Software

Distribution Center. Articles in Digital Software News update the cumulative Software Per

formance Summary which is contained in each basic kit of system software for new computers. To

assure that the monthly Digital Software News is sent to the appi0piiate software contract at your

installation, please check with the Software Specialist or Sales Engineer at your nearest Digital

office.

Questions or problems concerning Digital's software shou Id be reported to the Software Specialist.

In cases where no Software Specialist is available, please send a Software Performance Report

form with details of the problems to:

Digital Equipment Corporation
Software Information Service
Programming Department
Maynard, Massachusetts 017 54

These forms, which are provided in the software kit, should be fully filled out and accompanied

by Teletype output as well as listings or tapes of the user program to facilitate a complete inves

tigation. An answer wi 11 be sent to the individual and appropriate topics of general in

terest will be printed in the newsletter.

Orders for new and revised software manuais, additional Software Performance Report forms, and

software price lists should be directed to the nearest Digital Field office or representative,. USA

customers may order directly from the Software Distribution Center in Maynard. When ordering,

include the code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a cata

log of programs as wel I as the DECUSCOPE magazine for its members and non-members who request

it. F~r further information, please write to:

Digital Equipment Corporation
DEC US
Programming Department
Maynard, Massachusetts 01754

READERiS COMMENTS

COS 300 System
Reference Manual
DEC-08-0COSA-E-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy, organization, usability. and read
ability.

Did you find errors in this manual? If so, specify by page.

How can th is manua I be improved?

Other comments?

Please state your position. Date: ----------------------------- ----------
Name: ------------------------- Organization: -----------------

Street: ------------------------ Department: ------------------

City: State: Zip or Country ----------------- -------------------- ----------

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaoma
Digital Equipment Corporation
Software Information Services
Programming Department
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

READER 1 S COMMENTS

COS 300 System
Reference Manual
DEC-08-0COSA-E-D

Digital Equipment Corporation maintains a continuous effort to improve the quaiity and usefuiness
of its publications. To do this effectively we need user feedback -- your critica I evaluation of
th is manua I.

Please comment on this manual's completeness, accuracy, organization, usabi I ity. and read
ability.

Did you find errors in this manual? If so, specify by page.

How can th is manua I be improved?

Other comments?

Please state your position. Date:
---------------------------------~~ ------------

Name: Organization: -------------------------------- -------------------------
Street: ------------------------- Department: -------------------

City: _________________ State: __________ Zip or Country ______ _

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaomn
Digital Equipment Corporation
Software Information Services
Programming Deportment
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

READER'S COMMENTS

COS 300 System
Reference Manual
DEC-08-0COSA-E-D

Digital Equipment Corporation maintains a continuous effort to improve the quaiity and usefuiness
of its publications. To do this effectively we need user feedback -- your critical evaluation of

th is manua I .

Please comment on this manual's completeness, accuracy, organization, usability. and read
ability.

Did you find errors in this manual? If so, specify by page.

How con this manual be improved?

0 ther comments?

Please state your position. Date:
-------------------~ --------

Street: ----------------- Department: --------------

City: ___________ State: __________ Zip or Country _____ _

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaama
Digital Equipment Corporation
Software Information Services
Programming Department
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

