A source handbook for Digital Equipment Corporation LSI-11-compatible products

WILLIAM L. PALYA
St. Joseph's College, Rensselaer, Indiana 47978

Abstract

Digital Equipment Corporation's LSI-11-compatible products are listed according to general type. Prices, delivery dates, and descriptive data are included. Sources and costs of generalpurpose systems that will run RT-11 are also provided.

The LSI-11 is the least expensive of the very popular PDP-11 family of computers from Digital Equipment Corporation (DEC). In addition to having the powerful architecture of the PDP-11, the LSI-11 will execute much of the enormous quantity of software available for the PDP-11. An excellent operating system, RT-11 also runs on the LSI-11; RT-11 is designed for a small laboratory environment and does virtually everything that is needed to conveniently coordinate a computer system with relatively simple commands.

The primary purpose of this paper is to indicate availability, summarize features, and provide comparative prices of LSI-11-compatible items. These offerings, specifications, and prices, however, change frequently and sources should be consulted. Additional considerations are also important. Frequently overlooked factors are delivery dates, whether or not additional power supplies or cables are required, software compatibility and support, and the degree and source of hardware support. General engineering support for DEC's LSI-11 products can be obtained through their hotline ($800-225-9220$). Every attempt has been made to assure an accurate description and price. However, no responsibility is assumed by the author or publisher for accuracy or completeness. Readers should consult sources concerning all information.

Prices are typically given as the list unit price. However, several system houses have negotiable prices. It is possible for educational institutions to obtain discounts of as much as 25% from some vendors. When you decide on a system and receive a quote, by all means, let the competition have a chance to negotiate.

The DEC prices are listed as: (1) list price, the price charged by the regional sales offices; (2) catalogue price, the price charged by the DEC Direct Sales Division, if they bill you; and (3) cash price, the price charged by the DEC Direct Sales Division if you send cash. When two prices are given for other suppliers, the second price is a cash or COD cost.

[^0]
SYSTEMS

The typical laboratory system includes a central processing unit (CPU), 28 K of memory, one parallel input-output ($1 / 0$) interface, one serial $1 / O$ interface, one terminator, one bootstrap, one floppy-disk controller, two floppy-disk drives, an 8 -slot backplane, an enclosure, power supply, RT-11, and FORTRAN. A terminal costs an additional $\$ 300$ to $\$ 3,000$. Table 1 presents systems configured as a "typical" system for comparison purposes. These systems are guaranteed to be complete, configured, and to run RT-11 as shipped by the supplier (less only the terminal). This comparison configuration does not take advantage of the special pricing available for the "standard" system of each supplier, however, nor does it list systems not normally configurable in this way.

CENTRAL PROCESSING UNITS

It is within reason for someone with only moderate technical skill to configure his own system and thereby save a considerable amount of money. The initial requirement is an LSI-11 CPU. Two versions are presently available. The original LSI-11 is on a $23 \times 27 \mathrm{~cm}$ board. It has four edge connectors and is referred to as a "quad" height board. The LSI-11/2 CPU is contained on a $23 \times 13 \mathrm{~cm}$ board. It has two edge connectors and is referred to as a "dual" height board.

There are several differences between the boards in addition to size. The original board contained 4 K of memory and simple refresh circuitry for the memory. Both have now been removed and put on a separate memory board. The CPU clock logic has been changed to a crystal for improved accuracy. The required external "wake-up" circuitry has also been eliminated. This is the external logic (normally contained in the DEC power supply) that sequences the CPU into the run state. This modification allows purchasers to build a system from bare boards with no additional logic. The KD11-R and the KD11-J are special-purpose 2-quad board configurations. The KD11-R contains 16 K of semiconductor and the KD11-J contains 4 K of core
memory. Table 2 indicates various sources for LSI-11 CPU boards, their prices, and delivery dates.

EXTENDED ARITHMETIC ELEMENT

The CPU boards contain an additional empty socket into which a special chip can be plugged to increase the speed of multiplication, division, and floatingpoint calculations. This extended arithmetic element chip is especially useful when arithmetic operations are needed in real-time. Table 3 presents sources for the extended arithmetic chip.

BACKPLANES

The CPU and other cards plug into and are thereby interconnected through a backplane. Backplanes may not be jumpered together indefinitely nor indiscriminately, however. The LSI-11 is limited to driving a signal through between 9 and 12 quad slots. The exact figure is determined by the backplane configuration. Considering the signal reflection problems and the cost of expanding a backplane through jumpers, it is advisable to purchase a large backplane initially if expansion is contemplated. The LSI-11 is also limited to driving 15 "unit loads." Each board in the backplane that uses the DEC recommended interface chips, whether dual or quad height, generally represents somewhere between .5 and 1 unit load to the bus. (See the discussion with Table 20 if more than 15-20 boards are needed.) Table 4 presents suppliers of backplanes.

POWER SUPPLIES

Logic in most computer circuits requires +5 V , $\pm 5 \%$ with $.15-\mathrm{V}$ ripple. This supply provides most of the current in any system. In addition, DEC boards also require $+12 \mathrm{~V}, \pm 3 \%$ with $.35-\mathrm{V}$ ripple. Analog circuitry usually requires $\pm 15 \mathrm{~V}, \pm 1 \%$ with $10-\mathrm{mV}$ ripple. The accuracy of this power supply determines to a large extent the accuracy of the analog circuitry. Two other voltages that are occasionally required for boards without onboard converters and for lab-built boards are $-12 \mathrm{~V}, \pm 3 \%$ with $.15-\mathrm{V}$ ripple, and -5 V , $\pm 5 \%$ with $.05-\mathrm{V}$ ripple. The easiest way to determine the required capacity of each supply while providing sufficient current for expansion is to calculate the current required by each board to be used from its specification sheet then double that amount. If a shopmade or surplus power supply is used, an overvoltage protector (OVP) should be included. Table 5 lists power supplies available through system houses or LSI-11 vendors. DEC and several other suppliers include in the power supply the necessary "wake-up circuitry" (WU) to initialize the LSI-11. Other suppliers provide the power-up sequencer as a separate unit. Separate power-up sequencers are presented in Table 21; with them, any power supply may be used.

ENCLOSURES WITH BACKPLANES

The system is most easily and safely assembled into a rack-mounting enclosure, which can be easily shopbuilt or purchased from various sources. Table 6 lists enclosures with backplanes offered by system houses. These enclosures do not necessarily accommodate an internally mounted power supply from a different supplier.

MEMORY

The LSI-11 is capable of addressing 32 K of memory with the upper 4 K generally reserved for peripheral devices. Memory chips can now be manufactured in 16 K increments, resulting in 32 K boards rather than the conventional 28 K , which is typically considered a complete memory. Some of the upper 4 K memory space can be used, however, as unsupported memory when it is available. Semiconductor memory manufacturing technology is quickly developing, with a resultant rapid decrease in cost and size. Memory prices, therefore, should be checked within a month of purchase, and purchase of memory should be delayed whenever possible. Suppliers of semiconductor memories (RAMs) are listed in Table 7. These are typically dynamic memories, which are compact and inexpensive but must be frequently "refreshed" to retain information. (See discussion with Table 14 for discussion of methods.) Dynamic memory boards with onboard refresh do not require the use of the bus for refresh and save the purchase of an additional "refresher" board. Semiconductor memories that do not require refresh are static memories and are indicated as such.

Table 8 lists special-purpose memories. Core memory retains information when the machine is powered down. Several types of semiconductor memories also retain information when the power is removed. Read-only memory (ROM) is permanently programmed during manufacture. Programmable read-only memory (PROM) allows the user to write the information into the chips with the use of a special programmer. Simple or fusible link PROM is permanently programmed once written, whereas UVPROM allows the user to erase the memory with ultraviolet light.

INPUT-OUTPUT

These boards take the bits that are set in the computer word and set output lines, or sense signals on input lines and set bits in the computer word. I/O is accomplished in either a serial or parallel fashion. Serial I/O is for low-speed applications, such as terminals and phone lines, in which data is transmitted 1 bit at a time. Table 9 lists suppliers of serial boards.

Parallel I/O is when information is transferred 16 bits at a time, as in digital on-line control of experiments. Additional circuitry is required to drive relays, unless the board is specifically designed to drive high-current
devices. The extra circuitry for the additional drivers is straightforward, however, and can be easily constructed. Suppliers of parallel boards are listed in Table 10.

OPERATING SYSTEMS AND SOFTWARE

Software is supplied on various media, with and without source listings, and with different levels of support and updating service. The RT-11, mini UNIX, mini FORTH, and PASCAL operating systems and various software packages such as FORTRAN, FOCAL, APL, TSX, BASIC, and others are available as indicated in Table 11.

FLOPPY DISKS

In order to run the RT-11 operating system, a mass storage device such as a floppy disk is required. A disk subsystem contains a disk drive and a controller. Some vendors sell only the controller, some supply both the controller and the drive. Table 12 lists only those controllers or disk subsystems that plug into an LSI-11 backplane, are compatible with unmodified RT-11 disk handlers, and conform to the single-density singlesided DEC media format. Table 13 is a list of floppydisk controllers and disk systems that plug into the LSI-11 but do not run under an unmodified RT-11, or are not the single-density single-sided DEC format. DEC format is limited to 235 K bytes/diskette, whereas double-density double-sided diskettes can contain 1.2 megabytes. Some of the controllers listed in Table 13 require only minimal software changes and/or have conversion software available from the vendor.

HARD DISKS

In addition to the relatively inexpensive flexible or floppy disks, hard-surface disks are available. Their capacity is from 20 to 100 times that of a single DECformat floppy, and they have a much faster data rate. Table 14 presents suppliers of hard-disk controllers and/or disk subsystems that plug into the LSI-11 backplane.

TERMINATORS

A terminator that suppresses signal reflection in multibackplane configurations and increases noise immunity is frequently used at the end of the bus when it has been extended through flat cable. It is not as crucial in single large backplanes. It is usually implemented as a board, but the ADAC, Andromeda, and DEC LSI-11/2 backplanes incorporate built-in sockets for terminator chips. It takes little to terminate the bus, so other functions are frequently available on the same
board. Table 15 presents suppliers of terminator boards. Major boards such as disk controllers that include a terminator are listed with those boards.

A typical function that is added to a terminator board is memory refresh. When at least one memory board does not have onboard refresh, this function must be provided by some other board. This can be accomplished in either of two ways. The LSI-11 (KD11-F) CPU board has a refresh circuit that stops the processor and refreshes the entire memory at one time. This takes 160 microsec every 2 msec regardless of the amount of memory implemented. A different "interleaved" memory-refresh circuitry is available in the REV series terminators. The refresh is interleaved between CPU operations such that only 1.2 microsec every 30 microsec are used. In this way important highspeed events such as direct memory access (DMA) (see discussion with Table 21 for explanation) or fast interrupt servicing are not precluded. However, the memory-refresh card must be physically closer to the CPU than any other DMA device. If a DMA device is required and the memory-refresh circuitry is with the terminator, the DMA device frequently may be positioned after the terminator-refresh board, but it should be avoided when possible.

OTHER STORAGE MEDIA

Magnetic tape, cartridge tape, LINCtape or DECtape, and paper tape are other types of storage media. These tapes are less expensive and have a greater capacity than disks, but they are slower. LINCtape or DECtape is file structured in the same way as a disk and can therefore be used as a random-access device just as a disk.

The other storage media listed in this table are sequential access and may not be randomly accessed. Magnetic tape provides a great deal of relatively inexpensive storage. Tape cartridges are more convenient, but they provide only about as much storage as a small hard-surface disk. Paper tape is the least expensive and the slowest. It has traditionally been the universal media, in that at one time virtually every system had an ASR33 Teletype. Table 16 lists suppliers for each type of storage device.

ANALOG CONVERTERS

Frequently, analog information such as voltage levels must be sensed or produced by the computer. This is done by means of analog-to-digital (A/D) and digital-toanalog (D/A) converters, respectively. These boards plug into the LSI-11 and are used very much like parallel and serial I/O boards (Table 17). In this case, however, digital bit patterns represent voltages. Some analog
boards do not have onboard voltage converters and require either additional system power supplies or the purchase of voltage converters as an option.

CLOCKS

Programmable real-time clocks allow the user to set and read a "memory location" as a time that automatically increments or decrements at a specified rate. These clocks can also be configured to provide an interrupt at given intervals or to measure time intervals of external events. This is a great asset when timekeeping functions are important and great accuracy or many timing-related operations are necessary. Table 18 presents suppliers of real-time clocks.

GRAPHICS

Graphic display systems create figures and images on a cathode-ray tube (CRT). The two major classes of graphic display systems are the raster scan and the XY display. A home television is a raster-scan CRT. In raster-scan displays, the electron beam scans the screen automatically and the computer turns the beam off and on as it passes the appropriate points. An XY display works on the same principle as an "Etch-a-Sketch." XY displays move the beam only where it is needed in the image. There are two types of XY displays, point plot and vector. In XY point-plot displays, the image is created as a series of independently specified points. In vector graphics a line is drawn between a start position and a stop position. Raster-scan CRT displays are less expensive than comparable XY CRT displays.

In general, a great deal of memory and/or computer power is required for graphics when the display must be continually maintained or refreshed by the graphics controller. For example, a raster-scan image with a resolution of 512 by 512 points similar to a highcontrast television picture requires 16 K of 16 -bit words. With a storage CRT, once the image is drawn, little further overhead is necessary. Table 19 lists the graphics controllers that plug into the LSI-11.

BUS REPEATERS AND CONVERTERS

When the drive capability of the CPU is exceeded, a "bus repeater" is required. The bus repeater simply amplifies or redrives the signals to and from the CPU. The unassisted CPU can drive 15 unit loads. A bus repeater as the 15 th unit load allows the use of additional unit loads on the bus.

Boards are available to plug into the LSI-11 and translate the Qbus (LSI-11) into Unibus (PDP-11) protocol. The Qbus-to-Unibus converter enables the LSI-11 to take advantage of the enormous number of peripheral controllers that have been developed or are currently in use for the more established PDP-11s.

A bus protocol that is increasing in popularity is the general-purpose interface bus (GPIB) or IEEE-488 bus: A growing variety of instruments and controllers are available that plug into the IEEE- 488 bus.

MISCELLANEOUS INTERFACES

Table 21 lists some miscellaneous interfaces that plug into the LSI-11. These include DMA interface controllers for various peripherals. A DMA controller is an intelligent I/O card that works independently of the CPU, thus freeing the CPU from the overhead of performing certain types of I/O operations. DMA is typically used for high-speed data transfers. Once loaded with the addresses of a block of memory, the device transfers the entire block before requiring service by the CPU again. DMA transfers can interfere with any bus memory-refresh operation and therefore must be carefully considered when configuring the refresh hardware and when writing the DMA software.

For custom-circuit applications, there are many classes of blank boards or boards that provide only the bus interface logic. These range from small undrilled boards to large wire-wrappable boards already containing DMA logic. Table 22 lists suppliers of these boards.

CABLES

Premade cables can be expensive; however, 40 conductor flat cables can be easily and economically made by the user. Lab-built cables cost about $\$ 1 / \mathrm{ft}$, plus $\$ 10$ for the connectors. The flat cable can be cut with an ordinary scissors and the connector can be installed by inserting the flat cables in the provided slot and then squeezing the connector shut in a vise. Reels of cable and "insulation displacement" connectors are available from many sources. Twisted-pair cable is also available with flat spots every few feet so that common insulation displacement connectors can be used. Some representative premade cables are presented in Table 23.

Table 24 lists the addresses and telephone numbers of the vendors cited in the previous tables. Known information concerning the warranty period and educational discounts are also noted.

Table 1 Systems	
ANDROMEDA 11B System	
KD1 1-HA (dual)	
32K memory (dual)	
Parallel I/O board (dual)	650
Serial I/O board (dual)	1650
Terminator/bootstrap (NA)	180
8-slot backplane	195
Dual floppy-disk subsystem plus bootstrap (dual)	NA
5-V, 15-A power supply	350
l2-V, 3.4-A power supply	135
Power distribution unit	80

Table 1 Continued

Control panel	120
Chassis	350
Serial cables	70
Parallel cables	60
10\% integration	6380
	7018
RT-11 V3 (Category C)	1200
FORTRAN V2 (Category C)	500
	\$8718
CRDS MF11 System	
KD11-HA (dual)	
32 K memory (dual)	*
Parallel I/O board (dual)	
Serial I/O board (dual)	
Bootstrap (NA)	*
8 -slot backplane	*
Dual floppy-disk subsystem (dual)	*
5-V, 18-A power supply	*
12-V, 3.5-A power supply	*
Enclosure with switches	*
RT-11 V3 (Category C)	*
FORTRAN V2 (Category C)	*
	\$8790

COMPUTER MARKETING

QB11 System	\$8700
KD11-F (4K memory) (quad)	*
24K memory (dual)	*
Parallel I/O board (dual)	210
Serial I/O board (dual)	250
Terminal/bootstrap (NA)	NA
9 quad-slot backplane	
Dual floppy-disk subsystem (quad controller)	
5-V, 30-A, OVP power supply	
12-V, 4-A power supply	
-12-V, 1.7-A power supply	
Enclosure	
RT-11 V3 (Category C)	${ }^{*}$
FORTRAN V2 (Category C)	610
9 -in., 64 characters by 16 lines CRT monitor, keyboard, quad controller	*
	\$9770
DEC	
11/03-LC	\$3995
KD11-R (+16 K memory) 2 quad)	*
16 K memory (dual)	1375
Parallel I/O board (dual)	210
Serial I/O board (dual)	250
Bootstrap/diagnostics/PROM module (quad)	*
9 quad-slot backplane	- ${ }^{*}$
Dual floppy-disk subsystem (dual)	4300
5-V, 18-A power supply	*
12-V, 3.5-A power supply	*
Chassis	*
RT-11 V3 (Category C)	1380
FORTRAN (Category C)	610
	\$12120

Table 1 Continued

KD11-H (quad)	$*$
16K memory (quad)	$*$
16K memory (quad)	$*$
Parallel I/O board (dual)	185
Terminator/bootstrap/diagnostics (quad)	$*$
9-slot backplane	$*$
Dual floppy-disk subsystem (dual)	$*$
5-V, 18-A power supply	$*$
12-V, 3.5-A power supply	$*$
RT-11 V3 (Category A)	519
FORTRAN (Category C)	$*$
H984 roll-around cabinet	$\$ 9998$

GENERAL ROBOTICS
Executioner III-FDX3 system $\$ 10000$
KD11-HA (dual)
31 K memory, refresh (quad) *
Parallel I/O board (dual)
Serial I/O board (dual)
Terminator/bootstrap/real-time clock (dual)
8 -slot backplane
Dual, floppy, double-density, double-sided
disk subsystem (quad)
5-V, 15-A power supply
12-V, 3-A power supply
Control panel
Chassis
RT-11 (supported)
FORTRAN (supported) 490
Extended arithmetic chip

Less 10\% educational discount
10690
1069
\$ 9621
HEATH \dagger
Kit H11 (kit)
KD11-F (4K memory) (quad)
32K memory (dual) (DEC MSV11-DD)
2100
Parallel I/O board (dual) (kit) 100
Serial I/O board (dual) (kit) 115
WH27 floppy disk
2495
$5-\mathrm{V}, 15-\mathrm{A}$ power supply
12-V, 3-A power supply *
HT-11 operating system 250
HT-11 FORTRAN
$\$ 6560$
MDB
KD1 1-HD (32 K memory) (2 dual)
$\$ 2100$
Parallel I/O board (dual) 195
Serial I/O board (dual) 225
8 -slot backplane 350
Dual floppy-disk subsystem (dual) 3245
$5-\mathrm{V}, 12-\mathrm{A} ; 12-\mathrm{V}, 8$-A power supply 350
System monitoring unit (dual) 350
Chassis
325
RT-11 V3 (Category C) (from DEC) 1380
FORTRAN V2 (Category C) (from DEC) 610
$\$ 9130$
PLESSEY
PM-SYST-1A
$\$ 8990$

Table 1 Continued

28K memory (dual)	$*$
Parallel I/O board (dual)	210
Serial I/O board (dual)	$*$
Terminator/bootstrap	$*$
4-hex slot Qbus backplane	$*$
5-hex slot Unibus backplane	$*$
Dual floppy-disk subsystem (1-hex Unibus)	$*$
5-V, 25-A power supply	$*$
12 V (from +15 V)	$*$
-15-V, 3.5-A power supply	$*$
15-V, 3.5-A power supply	$*$
Chassis	$*$
Unibus converter (quad)	1104
RT-11 V3 (Category C)	488
FORTRAN V2 (Category C)	$\$ 10792$

RD1 1-28NR system
KD11-HA (dual)
32K memory (dual)
Parallel I/O board (dual)
Serial I/O board (dual)
Terminator/bootstrap
9-slot backplane
Dual floppy-disk subsystem, double density
5-V, 18-A power supply
12-V, 6.5-A power supply
Control panel
Chassis
RT-11 V3 (Category C)
FORTRAN V2 (Category C)

TERAK

8510/a system
KD1 1-F (+4 K memory) (quad)
24 K memory (quad)
Parallel I/O board (dual)
Serial I/O board (dual)
Terminator/bootstrap
4-slot backplane
4-slot backplane
$\$ 4895$
KD11-HA (dual)
32K memory (dual)
Serial I/O board (dual)
Terminator/bootstrap

$*$
$*$
210
$*$
NA
$*$
4595
$*$
$*$
$*$
$*$
1380
610

$\$ 11690$

Jumper cables (2 dual)
Expansion enclosure
Single-disk drive with controller (quad)
Additional floppy drive
$5-\mathrm{V}, 6$-A power supply
12-V, 3.5-A power supply
Enclosure
RT-11 V2 (Category C)
FORTRAN V1 (Category C)
12-in. CRT, keyboard and raster graphics
320×240

Model	Price	Delivery	Description
KD11-HF	850	Stock-30	DEC KDII-HF
DEC			
KD11.F	990, 941, 901		CPU with 4K RAM, quad board.
KD11-FA	1240, 1178, 1128		CPU with 8 K RAM, 1 quad and 1 dual board.
KD11-FB	1490, 1416, 1356		CPU with 12K RAM, I quad and 2 dual boards.
KDII-FC	1990, 1891, 1811		CPU with 20 K RAM, 2 quad boards.
KDII-R	2490, 2366, 2266		CPU with 16 K RAM, 2 quad
KDII-U	990		CPU with 4 K UVPROM, $1 / 4 \mathrm{~K}$
KDII.WA	3490		RAM, 1 quad and 1 dual board.
			writable control store RAM, 3 quad boards.
KDII-HA	22,950/50 (459)		CPU, dual board Minimum order for CPU is 50 .
KDII-HB	1290		KD11-HA with 8K RAM, onboard refresh, 2 dual boards.
KDII-HC	1690		KD11-HA with 16K RAM, onboard reficsh, 2 dual boards.
KD11-HD	2490		KDII-HA with 32 K RAM, onboard refresh, 2 dual boards.
KDII-HF	990		KDII-HA with 4K RAM, onboard refresh, 2 dual boards.
KD11-J	1536		CPU with 4 K core. 2 quad boards.
KDII-HU	990		KDI1-HA with sockets for up to 4 K UVPROM chips, $1 / 4 \mathrm{~K}$ RAM, unboard refresh, 2 dual boards.
KUV11-UH	2195		Writable control store field upgrade kit.
FIRST			
KD11-1	743	Stock-30	DEC KDII-F
KD11-J	1229	Stock-30	DEC KDI 1-J
KD11-R	1868	Stock-30	DEC KDII-R
KDII-HA	612	Stock-30	DEC KDII-HA
KDII-HB	1135	Stock-30	DEC KDII-HB
KDII-HC	1487	Stock-30	DEC KDII-HC
KDll-HD	2191	Stock-30	DEC KDII-HD
KDII-HI	871	Stock-30	DEC KDII-HF
KDII-HU	871	Stock-30	DEC KDI 1-HU
MDB			
MLSI-KDI IF	900	Stock-14	DEC KDII-F
MLSI-KDIIHA	450	Stock-14	DEC KDII-HA
MLSI-KDIIHB	1050	Stock-14	DEC KDII-HB
MLSI-KDIIHC	1425	Stock-14	DECKDII-HC
MLSI-KDIIHD	2100	Stock-14	! EC KDIl-HD
MLSI-KDIIHF	900	Stock-14	DECKDII-HF
NETCOM			
KDI1-1:	900	Stock-30	DEC KDII-R
KDII-HA	660	Stock-30	DEC KDII-HA
NEWMAN			
KD11-1:	891, 801	Stock	DEC KDII-1
KDI 1-3	1460	Stock	DEC KDII-J
KDII-R	2366	Stock	DEC KD11-R
KDl1-HB	1226	Stock	DEC KD11-HB
KDII-HC	1606	Stock	DEC KDII-HC
KDII-HD	2360	Stock	DEC KDI 1-HD
KDI1-HF	941	Stack	DEC KD11-HF
RDA			
KDIIF	990, 891	Stock	DEC KDII-Y
KD1 1 J	1536, 1383	Stock	DEC KD11.J
KDIIR	2490, 2241	Stock	DEC KD11-R
KDII-HA	675. 610	Stock	DEC KDII-HA
KDII-HB	1290, 1160	Stock	DEC KD11-HB
KD11-HC	1690, 1520	Stock	DEC KD11-HC
KDII-HD	2490. 2240	Stock	DEC KDI1-HD
KDII-HF	990, 890	Stock	DEC KDII.HF
KDII-HU	990, 890	Stock	DEC KDII-HU
SEC			
SEC-KDII	895	Stock	DEC KDII-F

\dagger Consult Heath for statements concerning expandability beyond 6 unit loads and compatibility with RT-11.

Table 2 Suppliers of LSI-11 CPUs			
Model	Price	Delivery	Description
ADAC			
1804-CPU	990	Stock-30	DEC KDIIf:
1816 -CPU	2490	Stock-30	DEC KD11-R
ANDROMEDA			
KD11-F	850	Stock-30	DEC KDII-F
KDII-IIA	650	Stack-30	Deckolina
KDII-HB	1107	Stock-30	D) (KD)II-HB
KDII-IIC	1451	Stock-30	DEC KDII.13
KDIT-H1)	2136	Suck-30	D) (Kıll-hi)

Company	Model	Price	Delivery	Description
ADAC	1800/KEV11	190	Stock-30	DEC KEVII
Andromeda	KEV11	170	Stock-30	DEC KEVI1
DEC	KEV11	190, 181, 173		Extended arithmetic chip
First	KEV11	167	Stock-14	DEC KEVI1
Heath	H11-6	159	Stock	DEC KEV 11
MDB	KEV-11	155	Stock-14	DEC KEVII
Netcom	KEV11	175	Stock-30	DEC KEV11
Newiman	KEVI 1	181	Stock	DFC KEV11
Plesscy	PMKEVII	190	45	DEC KEV11
R DA	KEV-11	190,171	Stock	DEC KEVII
SEC	SEC KEV! 1	190	Stock-30	DİC KFVII
Xylogics	KFV11		30	DFCKFVII

Table 4 Backplanes			
Model	Price	Delivery	Description
ADAC			
1000-BP	400	Stock-30	11 quad slot, card cage, terminator, $\pm 15-\mathrm{V}$ bus.
ANDROMEDA			
8LCC	350	Stock-30	8 quad slot, card cage, terminator, power cable.
4LCC	170	Stock-30	DEC H9270 and power cable.
DEC			
H9270	190, 181, 173		4 quad slot and card cage.
H9271	94		Unwired version of H9270.
DDV11-B	400, 380, 364		9 quad wired slots and 9 dual unwired slots (9×6). Card cage $\$ 39$ extra.
H9281-AA	75		4 dual slot and power connections.
H9281-AB	110		8 dual slot and power connections.
H9281-AC	145		12 dual slot and power connections.
H9281-BA	105		Housing assembly including card guides and H9281-AA backplane.
H9281-BB	155		Housing assembly including card guides and H9281-AB backplane.
H9281-BC	205		Housing assembly including card guides and H9281-AC backplane.
FIRST			
H9270	167	Stock-30	DEC H9270
H9271	85	Stock-30	DEC H9271
H9281-BA	92	Stock-30	DEC H9281-BA
H9281-BB	136	Stock-30	DEC H9281-BB
H9281-BC	180	Stock-30	DEC H9281-BC
DDV11-B	360	Stock-30	DEC DDV11-B
MDB			
MLSI-BPA84	350	Stock-14	8 quad slot and card cage.
NETCOM			
HV-1148	350	Stock-90	8 quad slot and card cage.
NEWMAN			
H9270	181	Stock	DEC H9270
H9271	89	Stock	DEC H9271
DDV11-B	380	Stock	DEC DDV11-B
H9281-BA	100	Stock	DEC H9281-BA
H9281-BB	147	Stock	DEC H9281-BB
H9281-BC	195	Stock	DEC H9281-BC
MLSI-BPA84	350	Stock	MDB MLSI-BPA84
PLESSEY			
PM F11/LS4	265	45	4 slot hex backplane, 4 quad and 2 dual Qbus slots, +12-V, 3.5-A regulator, power cables, control plug.
PM F11/LS9	350	45	9 quad slot Qbus, 7 dual unwired slots available, $+12-\mathrm{V}, 3.5-\mathrm{A}$ regulator.
PM F11/QU	370	45	4 slot hex Qbus, 4 quad, 2 dual, 5 standard hex wide Unibus SPC slots, $+12 \cdot \mathrm{~V}, 3.5-\mathrm{A}$ regulator, power cables, control plug.
R DA			
H9270	190,171	Stock	DEC H9270
DDV11-B	400, 360	Stock	DEC DDV11-B
MLSI-BPA84	350	30	MDB MLSI-BPA84
SEC			
SEC-BCG8	350	Stock	8 quad slot, card cage, and power cables.
STANFORD APPLIED ENGINEERING			
4×6	85	21	4×6 module (100 price).

Model	Price	Delivery	Description
DEC			
H780-H	700, 665,637		Power supply with controls $5 \mathrm{~V}, 18 \mathrm{~A}$; $+12 \mathrm{~V}, 3.5 \mathrm{~A}, \mathrm{OVP}, \mathrm{OCP}, \mathrm{PU}$, line time clock, fans, cable, and controls.
H780-C	650		Same as H780H, without controls.
H780-K	675		Same as H 780 H . exeep with slave console.
IIRST			
H780-H	630	Stock-30	DEC H780-H
H780-C	585	Stock-30	DEC H780-C
H780-K	608	Stock-30	DE: H780-K
NEWMAN			
H780-H	665	Stock	DES H780-H
H780-C	618	Stock	DIC H780-C
H780-K	642	Stock	DIC H780-K
MDB			
			Other confgurations available on request.
MLSI-120-5	200	Stock-14	+5V, 12 A, OVP \$ 25 extra, with cable.
MLSI-250-5	375	Stock-14	+5 V, 25 A, OVP \$ 25 extra. with cable.
MLSI-250-D.5/12	350	Stock-14	+5 V. 12 A: +12 V. 8 A. cach OVP $\$ 25$ extra, with cable.
MLSI-250-T-5/12	300	Stock-14	$+5 \mathrm{~V}, 12 \mathrm{~A} ;+12 \mathrm{~V}, 3.5 \mathrm{~A}$, Lach BVP $\$ 25$ evira, with cable.
RDA			
PSS-12	145	Stock	$5 \mathrm{~V}, 12 \mathrm{~A}, \mathrm{OVP}$.
PSS-18	175	Stock	$5 \mathrm{~V}, 18 \mathrm{~A}, \mathrm{OVP}$.
PS 1 2-6.5	145	Stock	$12 \mathrm{~V} .6 .5 \mathrm{~A}, \mathrm{OVP}$
PS12-10	175	Stock	$12 \mathrm{~V}, 10 \mathrm{~A}, \mathrm{OVP}$.
PSLSI	425	Stock	$5 \mathrm{~V}, 15 \mathrm{~A} ; \pm 12 \mathrm{~V} .4 \mathrm{~A}-250 \mathrm{~V}, .25 \mathrm{~A} .$ switching type.
PSDS/12	275	Siock	$5 \mathrm{~V}, 18 \mathrm{~A} ; 12 \mathrm{~V} .6 \mathrm{~A}$, OVP.
H780-C	650	30	DEC H780-C
H 780 H	700	30	DEC H780-H
SEC			
SEC-H8	399	Stock	$5 \mathrm{~V}, 24 \mathrm{~A} ;+12 \mathrm{~V}, 3 \mathrm{~A}, \mathrm{OVP}$

	Table 6 Enclosures with Backplanes		
Model	Price	Delivery	Description

ANDROMEDA			
5VPS	135	Stock-30	$+5 \mathrm{~V}, 15 \mathrm{~A}, \mathrm{OVP}$, OCP, with cable to power distribution unit.
12 VPS	80	Stock-30	$+12 \mathrm{~V}, 3.4 \mathrm{~A}, \mathrm{OVP}$, OCP with cable to power distribution unit
PDU	200	Stock-30	Power distribution unit with lans (prefer to sell with system).
COMPLTT:R			
QB-PS	450	60-90	$+5 \mathrm{~V}, 30 \mathrm{~A}:+12 \mathrm{~V}, 4 \mathrm{~A} ; \quad 12 \mathrm{~V}$, $1.7 \mathrm{~A}:-5 \mathrm{~V}, 1 \mathrm{~A}$. Ieruresonant, WL/ line clock, fans, relay power switel.

Model	Price	Deilivery	Description	Model	Price	Delivery	Description
MSVII-EC	1475	Stock-30	DEC MSVII-EC	MSVII-ID	2525		32 K RAM. byte parity, onboard
MSV11-ED	2525	Stock-30	DEC MSVIJ-ED				refresh, dual board
ADVANCED COMPUTER				7711-16		Stock-30	
EQUIPMENT					775		16 K static RAM, no refresh needed, quad board.
MMS 1110	850	Stock	Motorola MMS 1110	7711-12			
ANDROMEDA M4-11D	850				665	Stock-30	12 K static RAM, no refresh needed, quad board. 8 K static RAM, no refresh needed, quad board.
	545	Stock-30	4 K RAM, in sockets, onboard refresh, 16 address lines, quad board.	7711-8	554	Stock-30	
M8-11D	645	Stock-30	8 K RAM, in sockets, onboard refresh, 16 address lines, quad board.	$\begin{aligned} & \text { I.ABRI-TH:K } \\ & 960-1043-01 \end{aligned}$	819	10	8 K RAM, sockets, dual board. 16K RAM, sockets, dual board.
				960-1043-010	1071	10	
M12-11D	745	Stock-30	12K RAM, in sockets, onboard refresh, 16 address lines, quad board.	960.1043-02	1570	10	24 K RAM, sockets, dual board.
				$\begin{aligned} & 960 \cdot 1043-03 \\ & 960 \cdot 1043-04 \end{aligned}$	819	Stock-60	8 K RAM, sockets, byte parity
M16-11D	845	Stock-30	16 K RAM, in sockets, onboard refresh, 16 address lines, quad				optional, onboard reffesh, 18 address lines, dual board.
M16-11D/2	1050	Stock-30	board. 16 K RAM, in sockets, onboard refresh. 18 address lines. dual	960.-1043-05	1071	Stock-60	16 K RAM, sockets, byte parity optional, onboard refresh, 18 address lines, dual board.
			board.	960-1043-06	1570	Stock-60	24 K RAM. sockets, byte parity optional, onboard refresh. 18
M32-11D/2	1650	Stock-30	32K RAM, in sockets, onboard refresh, 18 address lines, dual board.	960-1043-(17	2000	Stock-60	optional, onboard ref 32 K RAM, sockets. byte parity optional, onboard refresh, 18
MEMORIES							address lines, dual board, upper 1 K limit.
STOR LSI-11.8	850	Stock	8 K RAM, sockets, dual board.	FIRST			
STOR LSI-11-16	1155	Stock	16 K RAM, sockets, dual board.	MSV11-B	456	Stock-30	DEC MSVII-B
STOR LSI-11-24	1595	Stock	24 K RAM, sockets, dual board.	MSV11-CD	1004	Stock-30	DEC MSVII-CD
STOR LSI-11-32	1895	Stock	32 K RAM, sockets, dual board.	MSV11-DB	748	Stock-30	DEC MSV11-DB
STOR LSI-11/2-16	1245	30	16 K RAM, sockets. parity, on-	MSV11-DC	1210	Stock-30	DEC MSVII-DC
			board refresh, 18 address lines,	MSVII-DD	2112	Stock-30	DEC MSVII-DD
STOR LSI-11/2-24	1685	30	24 K RAM, sockets, parity, on-	IN1611-08	717	Stock-30	Intel in1611-08
STOR LSI 1 /2.24			board refresh, 18 address lines, dual board.	IN1611-16 IN1611-24	$\begin{array}{r} 977 \\ 1415 \end{array}$	Stock-30 Stock-30	Intel in 161 1-16 Intel in 1611-24
STOR LSI-11/2-32	2020	30	32K RAM, sockets, parity, onboard refresh. 18 address lines.	GENERAL ROBOTICS			
			dual board.	Ram24	1350	30	24K RAM, onboard refresh, quad
$\begin{aligned} & \text { CHRISLIN } \\ & \text { Ci.1103-8 } \end{aligned}$	390	Stock	8 K RAM, onboard tefresh, IS address lines, dual board.	RAM32	1560	30	32K RAM, onboard refresh, quad board.
C1-1103-16	650	Stock	16 K RAM, onboard refresh, 18 address lines, dual board.	HEATH Kit Hil-1	275	Stock	4K RAM, dual board in kit form. *tri-state bus logic. Consult DEC Qbus specifications for applicability to DEC systems.
C1.1103-24	825	Stock	24K RAM. onboard refresh, 18 address lines, dual board.				
$\mathrm{Cl}-1103-32$	995	Stock	32 K RAM, onboard refresh, 18 address lines, dual board.				
COMPUTER				$\begin{aligned} & \text { INTEL } \\ & \text { in1 } 611-8 \end{aligned}$	650		
MARKETING				in1611-16	925		16 K RAM, dual board.
8K	815	Stock	Intel in1611-8	in1611-24	1200		24K RAM dual board.
16K	1110	Stock	Intel in 1611-16	in1611-32	1475		32 K RAM, dual board.
24K	1665	Stock	Intel in 1611-24	in5004-616	925		16 K RAM, onboard refresh, dual
32K	2080	Stock	Intel in1611-32				board.
CYBERCHRON 925 Stock 14.16 K RAM in				in5004-816	975		16K RAM, byte parity, onboard refresh, dual board.
CDM-77/03-16	925	Stock-14	16K RAM, in sockets, dual board.	in5004-624	1200		
CDM-77/03R-16	995	Stock-14	16 K RAM, in sockets. onboard refresh, parity $\$ 60$ extra, dual board.	in5004-824	1275		board. 24 K RAM, byte parity, onboard
CDM-77/03-32	1420	Stock-14	32K RAM, in sockers, dual board.	in5004-632	1475		sefresh, dual board.
CDM-77/03R-32	1495	Stock-14	32K RAM, in sockets, onboard refresh, parity $\$ 100$ extra, dual board.	in5004-832	1575		board. 32K RAM, byte parity, onboard refresh, dual board.
DATARAM				MDB			
DR-115S-8K	590	30	8 K RAM, dual board.	MLSI-MSV11-DB	720	Stock-14	DEC MSV11-DB
DR-115S-8KP	620	30	8K RAM, byte parity, onboard refresh, dual board.	MLSI-MSV11-DC MLSI-MSVII-DD	$\begin{aligned} & 1150 \\ & 2000 \end{aligned}$	Stock-14 Stock-14	DEC MSV11-DC DEC MSVII-DD
DR-115S-16K	840	30	16 K RAM, dual board. 16K RAM, byte parity, onboard refresh, dual board.				
DR-JISS-16KP	885	30		MEMORY SYSTEMS			
$\begin{aligned} & \text { DR-115S-32K } \\ & \text { DR-115S-32KP } \end{aligned}$	$\begin{aligned} & 1400 \\ & 1475 \end{aligned}$	3030		2000-8	8751450		8K RAM board. 16K RAM board.
			32 K RAM, byte parity, onboard refresh, dual board.	2000-16			
DEC				MICROMEMORY MM1 132-1	900		16K RAM, onboard refresh, dual board. 32K RAM, onboard refresh, dual board.
MSV11-B	625, 594. 569		4K RAM, dual board. 16K RAM, onboard refresh, quad board.	MM1 $132-2$			
MSVII-CD	1375, 1306, 1251				1675		
MSVII-DB	850		8 K RAM, onboard refresh, dual board.	MONOLITHIC SYSTEMS			
MSVIt-EB	925		8K RAM, byte parity, onboard refresh, dual board.	MSC4601-16	1125	14	16K RAM. onboard refresh. dual board.
MSVII-DC	1375		16K RAM, onboard refresh, dual board.	MSC4601-24	1575	14	24 K RAM, onboard refresi, dual board.
MSVII-EC	1475		16K RAM, byte parity, onboard refresh, dual board.	MSC4601-28	1868	14	28K RAM. onboard refresh. dual board.
MSV11-DD	2400		32K RAM, onboard refresh, dual board.	MSC4601.32	2156	14	32K RAM, onboard refresh, dual board.

		Table
Model	Price	De
Q1945-CY	484	Sto
Q9945-D	387	Sto
Q9960-AY	315	Sto
Q9960-CY	157	Sto
Q1960-DZ	132	Sto
QJ813-AY	748	Sto
Q813-CY	519	Sto
Q8813-DZ	431	Sto
QI980-AY	774	Sto
Q1980-CY	374	Sto
Q9880-DZ	312	Sto
FORTH		
Mini-FORTH	10500	90

GENERAL

RENERAL		
ROBOTICS		
BASIC	450	30
F4	500	30
MUBASIC	450	30
APL	700	30
TSX	1250	30

SOFTW
PASCA
RDA

OJV10-CB	110	Stock
QJV11-CB	30	Stock
QJ945-AY	1100, 990	Stock
QJ642-AY	3300, 2970	Stock
QJ642-CY	1650, 1485	Stock
QJ920-AY	830, 747	Stock
Q1920-CY	550, 495	Stock
QJ921-AY	830, 747	Stock
QJ921-CY	550, 495	Stock
QJ922-AY	370, 333	Stock
QJ922-CY	185. 167	30
QJ925-AY	880, 792	Stock
Q1925-CY	610, 549	Stock
QJ960-AY	370, 333	Stock
QJ960-CY	185, 167	Stock
QJ907-AY	1650, 1485	30
QJ907-CY	825, 743	30
2JV01	120	Stock
ZJ215-RY	330	30
ASR	500, 450	Stock
SORT	300, 270	Stock
FORMAT	300, 270	Stock
BASEDIT	300, 270	Stock
1600SE	290, 250	Stock
SALI 1	700	Stock
MINBOL	1000, 900	Stock
SEC		
QJV10-CB	85	30
QJV11-CB	25	30
Q1013-CY	1035	30
QJ913-CY	415	30
QJ921-CY	415	30
QJ922-CY	140	30
QJ813-CY	460	30
QJ960-CY	140	30
ZJ215-RY	250	30
ZJV01-RE	90	30
CAMAC	450	Stock
UCSD		
PASCAL	200	Stock

Table II Continued

Dock-30 DEC OJ960 (FORTRAN subroutines)
tock-30 DEC QJ960 (FORTRAN subroutines)
Stock-30 DEC QJ960 (FORTRAN subroutines)
Stock-30 DEC QJ813 (FORTRAN).
DEC QJ813 (FORTRAN).
Stock-30 DEC QJ980 (FORTRAN extensions) Stock-30 DEC Q1980 (FORTRAN extensions) tock-30 DEC QJ980 (FORTRAN extensions).

Mini-FORTH, multitask, virtual memory operating system, optimized for proces control and data acquisition; includes FORTH language, disk utility, editor, documentor, file handler; requires 6 K bytes, RS-232 CRT terminal and one disk; includes documentation, sources, on-site installation and training.

Fully supported by General Robotics. BASIC language processor.
FORTRAN IV compiler.
Multiuser BASIC.
APL interpreter.
Timesharing executive software

PASCAL package including compiler, demo library and debugger.

DEC QJV10-CB (paper-tape operating system).
DEC QJV11-CB (PROM formatter).
DEC QJ945 (Remote)
DEC QJ642 (RSX-11S).
DEC QJ642 (RSX-11S).
DEC BASIC VIB.
DEC BASIC VIB
DEC QJ921 (MUBASIC).
DEC QJ921 (MUBASIC).
DEC QJ922 (FOCAL).
DEC QJ922 (FOCAL)
DEC FORTRAN VIC.
DEC FORTRAN VIC
DEC QJ960 (FORTRAN subroutines).
DEC QJ960 (FORTRAN subroutines).
DEC QJ907 (APL).
DEC QJ907 (APL).
DEC 2JV01 (LSI-11 paper-tape diagnostics).
DEC ZJ215-RY (diagnostics on floppy). ASCII TTY communications emulator. 10-key replacement selective sort utility. Text processor/output formatter.
BASIC/MUBAS editor.
Diabio 1620 and 1610 format and control software.
Structured programming language.
Business programming language.

DEC QJV10-CB (paper-tape operating system).
DEC QJV11-CB (PROM formatter).
DEC Q1013 (RT-II operating system V2C).
DEC QJ913 (BASIC).
DEC Q1921 (MUBASIC)
DEC QJ922 (FOCAL).
DEC QJ813 (FORTRAN V2).
DEC QJ960 (FORTRAN subroutines).
DEC ZJ215-RY (diagnostics on floppy). DEC ZJV01-RB (paper-tape diagnostics). CAMAC FORTRAN, callable, singleaction statements.

PASCAL operating system includes PASCAL compiler, 2 editors, filer, debug package, BASIC compiler, utility pro grams. Includes users manual, sources, documentation, and support.
Same as above, except no detailed system documentation or continued support.

Table 12
Floppy-Disk Drives and/or Controllers
(DEC Single-Side, Single-Density, Media, and RT-11 Handler Compatible)

Model	Price	Delivery	Description
ANDROMEDA			
FDC11	850	Stock-30	Controller for up to 4 single-sided,
			single-density, Pertec FD400 or FD500
			drives (I personality card, PC400,
			required per drive, $\$ 80$ each), hard-
			formatter, dual board with cable.
FDCII-A	885	Stock-30	Same as FDC1 1 but for Shugart SA-800-2
			or equivalent drives, no personality card required,
FDC11-B	895	Stock-30	Same as FDC11-A except for Shugart
			SA-850 double-sided drives or equivalent, compatible in single-side mode only.
PC400	80	Stock-30	Personality card for use with FDC11
			and Pertec FD400/500.
FD400	525	Stock-30	Disk drive, Pertec (DC motor).
FDS00	525	Stock-30	Disk drive, Pertec (AC motor).
SA-800-2	560	Stock-30	Disk drive, Shugart.
SA-850	640	TBA	Disk drive, Shugart, double sided.
DFDS	3095	30	Subsystem with 2 single-sided, single-
			density Pertec drives, full controls and indicator lights, formatter, write protect,
			dual board.
DFDS-A	3095	30	
			and only write protect and boot switches, formatter, dual board.
DFDS-B	3295	30	Subsystem with 2 double-sided, single-
			density Shugart 850 drives, DEC media
			and handler compatible in single-sided
			mode only, double-sided handler in-
			cluded, formatter, write protect, dual board.
CRDS			
FD-11	2875	30	Subsystem with 2 single-sided, single-
			density Shugart SA800 drives, bootstrap
			in PROM, write-protect switch, unit-
			select switches, microprocessor controller on quad board, formatter.
FD-11-X	3425	TBA	Same as above but with double-sided
			Shugart 850 drives, media and handler
			compatible in single-side mode only.

COMPUTER
MARKETING

Subsystem with 2 single-sided, singledensity Shugart SA800 drives, bootstrap in PROM, write-protect switch, unitselect switches, microprocessor controller on quad board, formatter.
Same as above but with double-sided Shugart 850 drives, compatible in singleside mode only.

Subsystems with single-sided, singledensity Shugart SA800-2 drives, writeprotect switches, hardware bootstrap, bus terminators, memory refresher, formatter, dual board.
Single drive system.
Dual drive system.
Triple drive system.
Subsystem with 2 single-sided, singledensity Shugart SA800-2 drives, for-

Table 12 Continued

Model	Price	Delivery	Description
DSD 110-2DS	3800	TBA	matter and bootstrap, dual board, disk notch write protect. Same as above except with doublesided drives, software compatible in single-sided mode only.
DSD 440-L11-2	4400	TBA	System with 2 dual-sided double-density Shugart 850-2 drives, formatter, DEC media and handler compatible in singledensity single-side mode only, dual board.
DEC			
RXV11-AA	3350		System with I single-sided single-density drive, dual board interface with cable.
RXV11-BA	4300		Same as above with 2 drives.
FIRST			
RXV11-AA	2948	Stock-30	DEC RXV11-AA
RXV11-BA	3225	Stock-30	DEC RXV11-BA
MDB			
NEWMAN RXV11-BA	4085	Stock	DEC RXV11-BA
PLESSEY			
PM-XF11/A101	3650	45	System with 2 single-sided single-density GRI drives, formatter, write protect, hex Unibus.
PM-XF11/A100	2740	45	Same as above except single drive.
RDA			
RXV11-AA	3350, 3193	30	DEC RXVI1-AA
RXV11-BA	4300, 4085	Stock	DEC RXVI1-BA
FT-0122	4650, 4495	30	Subsystem with 2 single-sided Shugart $800-2$ drives, programmable single or double density, media and handler compatible in single density only, formatter, write protect, handler included, up to 4 drives maximum, quad board.
FT-0112	4000, 3850	30	Same as above but with one drive.
FT-0012	1850, 1815	30	Single-drive expansion with chassis, power supply and cables.
FT-0022	2500	30	Dual drive expansion with chassis, power supply and cables.
FR-0127	5150,4995	30	Same as FT-0122 but with 2 doublesided drives, cannot be expanded, media and handler compatible in single side single density only.
Xebec			
2501N	2200	30	Subsystem with 1 single-sided, singledensity PerSci drive, high-speed seek, low power, formatter, quad board.
2502N	2700	30	Same as above with 2 drives.
1252N	4950	30	Subsystem with 2 single-sided, doubledensity Shugart 800 drives, uses RK handler, switch selectable to DEC media format, formatter, wite protect $\$ 50$ extra, quad board.
1262N	5450	30	Same as above except double-sided drives.

Table 13
Floppy-Disk Drives and/or Controllers (Compatible to LSI-11)

Model	Price	Delivery	Description
AED All prices include educational discount (25\%). 3100LP;FD410;2002 3335 $30-60$	Subsy stem with 2 single-sided, single- density Pertec FD400 drives, disk 0		
write protect, programmable formater,			

Model	Price	Delivery	Description
HEATH			
WH27	ca. 1700	TBA	
			system with one single-sided, single-
			density drive, space for additional
			drive, possibly media and handler
			compatible with DEC RT-11, may
			include Heath operating system. May
			have tri-state bus logic, consult DEC
			specifications for applicability to DEC
WH27-1	ca. 500	TBA	systems. Additional drive for WH27
RDA			
3100LP	4395, 3995	Stock	Subsystem with 2 single-sided, single density AED drives, DMA interface, programmable formatter, write protect. handier included, quad board.
3100P	4555,4265	Stock	Same as 3100LP except expandable to 4 drives.
FD400	730	30	AED floppy-disk drive for Units 3 and 4 of 3100 P .
$\begin{aligned} & 6200 \mathrm{LP} \\ & 6200 \mathrm{P} \end{aligned}$	$\begin{array}{r} 4595,4265 \\ 4595,4325 \end{array}$	Stock	Same as 3100 LP except double density Same as 6200LP except expandable to 4 drives.
		Stock	
FDS 10	730	30	AED floppy-disk drives for Units 3 and 4 of 6200 P .
220MF	2695,2595	30	Subsystem with 2 mini single-sided, single- or double-density Wangco drives RT-11 handler, write protect, dual board.
REmex			
RFS7524	3200	30-60	Enclosure with 2 single-sided, singledensity Remex drives, power supply formatter and electronics, selectable sector/track.
RFS7514	2550	30-60	Same as above but with single drive Controller for up to 4 RFS7524 drives ROM boot and 128 -byte buffer $\$ 200$ extra, ROM boot and 256 -byte buffer $\$ 250$ extra, handlers for RT-11 \$150 extra, diagnostics included.
Controller	600	30-60	
Qbus to Controller	100	30-60	Dual board and cable to connect
			Qbus to controller.
RFS7510	1550	30-60	Expander chassis for 2 drives, includes 1 drive and power supply.
RFS7520	2200	30-60	Expander chassis with 2 drives.
RFD	650	30-60	Drive only.
RMF0025	100	Stock	LSI-11 RT-11 to IBM 3740 EBCDIC
			key to diskette format or vice versa on diskette.
SMS			
FD010x	1400	30	Controller for up to 4 popular drives,
			formatter, quad board.
FD010xD	1600	30	Same as above but for dual density.
FT0102	2600	TBA	Systern with no drive, software select able density, single or dual sided, auto bootstrap, write protect, formatter, quad board.
FT0112	3250	TBA	FT0102 with 1 single-sided drive.
FT0122	3900	TBA	FT0102 with 2 single-sided drives.
FT0117	3500	TBA	FT0102 with 1 dual-sided drive.
FT0127	4400	TBA	FT0102 with 2 dual-sided drives.

Table 14

Model	Price	Delivery	Description
AED			
All prices include educational discount (25%).			
2200B "Kit"	1166	30-60	Controller for RK05 drives or up to 4 Pertec 3000 drives, up to 20 megabytes, 1500 rpm, RK handler compatible, dual interface card.
2200B "System"	2081	30-60	Same as above except with power supply, enclosure and status indicators.
ANDROMEDA			
RKX11	7500	Stack-60	Disk subsystem with 1 -megabyte
			Caelus drive, 1 fixed and 1 removable,
			front load, $2400 \mathrm{rpm}, 100 \mathrm{tpi}$, quad board, RK handler compatible.
RKX11-A	7750	Stock-60	Same as above except with a 10 -megaby te drive.
AVIV			
DFS903	8100	45	Disk subsystem with 10-megabyte drive.

Model	Price	Delivery	Description
COMPUTER MARKETING			
5.0 MB	7400	30-60	Disk subsystem with 15 -megabyte drive, 1 fixed and 1 removable, front load, 100 tpi. RK handler, R K05 media read compatible only, 2 dual boards.
10.0 MB	8545	30-60	Disk subsystem with 110 -megabyte drive. 5540 top load, $2400 \mathrm{rpm}, 200 \mathrm{tpi}$, RK handier compatible.
DATARAM			Bulk Core Disk Emulator:
	2800	30	Power supplies, cabinet, etc., for up to 2 core modules, controller is RF-11 handler compatible, 700 -nsec access time, 5 -microsec word rate.
BC-203-15 3/4	2800	30	Same as above except up to 8 modules.
Core Mod	4500	30	Core module containing 256 K bytes.
DEC			
RKV11-AA	9900		Disk subsystem with 12.5 -megabyte removable disk, front load, 1500 rpm . 100 tpi, dual board interface, RK media and handler compatible.
RKV11-DE	11050		Same as above but with cabinet.
RKV11-XX	16150		Same as above but also with one fixed drive.
RL01	5100		Subsystem with 5.2-megabyte removable disk with controller.
DILOG			
DQ100	1995		Disk controiler for up to 80 megabytes, front or top load, 1500 or 2400 rpm . 100 or 200 tpi, microprocessor based, cmulates DEC RKV11, RT-11 and RSX-1 1 compatible, quad board.
DYNUS			
DI-C03	2000	30-45	Disk controller for up to 20 megabytes, front or top load, 1500 and 2400 rpm , 100 and 200 tpi, microcoded microprocessor, emulates DEC RK-11 disk subsystem, quad board.

EQUIPMENT
RESOURCES
ER1010 $6900 \quad$ Disk subsystem, 10 megabytes, transparent to RT-11.

FIRST

RKV11-AA 9220 Stock-30 DEC RKV11-AA
RKV11-DE 10198 Stock-30 DECRKV11-AA

RKV11-XX	14695	Stock-30	DECRKV11-XX

GENERAL
ROBOTICS
CDV11 $13000 \quad 60 \quad$ Disk subsystem with 20-megabyte disk, 3 fixed, 1 removable, front load, 1500 rpm , 200 tpi, RK-11 handler compatible, quad board.

Disk controller, up to 20 megabytes, front or top load, $1500 \mathrm{rpm}, 100-200 \mathrm{tpi}$, RK-1 1 handler compatible, quad board.

Disk subsystem with 5 -megabyte drive, 1 fixed, 1 removable, front load, 2400 rpm , 100 tpi, RK handler compatible, RK05 media compatible, quad Qbus board. Disk subsystem with 10 -megabyte drive, 1 fixed, 1 removable, top load, 1500 or $2400 \eta \mathrm{~m}, 200 \mathrm{tpi}$, RK handler compatible.
Disk subsystem with 2.5 -megabyte frontload disk with Unibus 4 card controller, backplane and interface cable, RK05 media and RK handler compatible, uses PM VL--11 bus converter.
RDA
RDDi0 $\quad 9500,899060$

RDD10-1 $\quad 5790,527060$
WESTERN
PERIPHERALS
DC230-LSI
5050 Stock-30

Disk subsystem with 10 -megabyte drive, 1 fixed, I removable, front or top load, $2400 \mathrm{rpm}, 200$ tpi, RK hander compatible, read compatible with RK05 if front load. quad board.
Second 10-megabyte drive and cable.

Controller for up to 20 megabytes, front or top load. 1500 or 2400 rpm, RK handler compatible, RK05 media handler compatible with correct drive, includes

Table 14 Continued

Model	Price	Delivery	Description
			cables to Qbus and first drive, quad board. External chassis which provides 2 additional hex Unibus SPC slots. Can be configured with drive of choice and supplied as computer disk system.
XEBEC			
5500	3250	30	Disk controller for up to 410 -megabyte drives, top or front load, 1500 and $2400 \mathrm{rpm}, 100$ and 200 tpi , controller in rack-mount enclosure, interfaces with all commercially available disk drives, handler $\$ 300$ extra, not RK05 format.
5800	2800	30	Disk controller for up to 20 megabytes, top or front load, 1500 or 2400 rpm , 100 or 200 tpi, RK handler compatible, media compatible if correct drives used, quad board.
7690	7950	30	"CDC storage module" protocol controller, up to 1200 megabytes, up to 4 drives, $31 / 2$-in. rack mount, RT-11 handler $\$ 300$ extra.
XYLOGICS			
C45L	3575		Disk controller boards (2 hex and 1 quad) and backplane (4 hex slots) with Qbus dual board interface and cable.
C45L-1	4375	30	C45L disk controller in enclosure with power supply, for up to 20 megabytes, front or top load, 1500 or 2400 rpm , Diablo 31 protocol drives, RK handler compatible.
S45 L-1/5.0	8200	30	Subsystem with C45L controller and 1 5 -megabyte drive, front load, 1500 or $2400 \mathrm{rpm}, 100 \mathrm{tpi}$, RK05 media and hander compatible if front load.
S45L-1/10	9345	30	Same as above except 10 -megabyte drive.

Model	Price	De!jvery	Description
ADAC.			
1800 REVII-A	320	Stock-30	DEC RIEVI1-A
1800 REV11-C	320	Stock-30	DEC RFV11-C
ANDROMEDA			
DEC			
TEV1!	110, 105, 100		Bus terminator, dual board.
REV11-A	320, 304, 291		Bus terminator, refresh, bootstrap, diaynostics, dual board.
REV1I-C	320, 304, 291		Refresh/bootsirap, diagnostics.
BDVII-AA	750		Bootstrap/diagnostics/PROM, sockets for 16 K ROM and 2 K IPROM, quad board.
JIRST			
TEVII	97	Stock-30	DEC TEVIt
REVII-A	282	Stock-30	DEC REVII-A
REVII-C	282	Stock-30	DEC RIVIJ-C
MDB			
MLSI-TEV	100	14	1)EC TIVV11
MLSI-REV1I-A	275	14	DEC RLVII-A
MLSI-REVII-C	275	14	DEC RIEVIIC
NLWMAN			
TEV11	105	Stock	DEC TEVII
REV1I-C	304	Stock	DIEC REVIJ-A
REV11-C	304	Stuck	DFC REV11-C
PLESSEY			
PM RI:V11	300	45	Terminator/refresh/bootstrap, and controller for 16 -switch repister, dual board, different versions available.
RDA			
TEVII	110. 99	Stock	DEC TlVII
RIV 11. A	320, 288	Stock	DEC RIEVII-A
REVII-C	320. 288	Stuck	DIEC RIVVII.C
RIV!I-H	550	30	Remote If bootstas.
SIT			
SEC.TEVII	135	30	DHC TJVII
SFC-RIVII-A	325	30	DEC RI:VII-A
SFC-RIVII-C	325	30	DIEC REVII-C
XYLOCICS	--....	-- .- --	Bootstrap. 512, 16 ROM, can have Obus jumper function.

Table 16

COMPUTER
OPERATIONS
CO-3000LSI 2495

CO-3005D	1450	30	system device. Rack-mount expansion slave drive for CO-3000LSI.
CO-3300LSI	2800	30	Same as CO-3000LS except portable version in aluminum suitcase.

DEC version in aluminum suitcase.

Portable papertape reader, 300 or 2400 baud, $20-\mathrm{mA}$ current loop uses DLV11.

Magnetic-tape controller, NRZI, 7 track at 200,556 , or $800 \mathrm{bpi}, 9$ track at $800 \mathrm{bpi}, 12.5$ to $125 \mathrm{ips}, u p$ to 8 drives, RT-11 and RSX-11 compatible, completely emulates DEC TM1 1 controller.

Magnetic-tape controller, NRZI, 7 track at 200,556 , and $800 \mathrm{bpi}, 9$ track at $800 \mathrm{bpi}, 12.5$ to 75 ips , up to 4 drives, microcoded microprocessor, RT-11 and RSX-11S compatible, emulates DEC TM-11/TU10.

Paper-tape reader and punch controlles (for EECO products), RT handler compatible, diagnostics and cable included, negative TTL logic ouiput, dual card. Periphetals for above controller: Paper-tape reader and punch, rack mount, fan fold, $60-\mathrm{cps}$ punch and $300-\mathrm{cps}$ reader, with power supply.
Paper-tape reader, rack mount. 300 cps , with power supply.

Model	Price	Delivery	Description
RDA			
600-11D	750	30	ADAC 12-bit D/A converter, 4 channel.
600-16	695	30	ADAC 12 -bit A/D converter, 16 channel.
600-32	795	30	ADAC 12-bit A/D converter, 32 channel.
600-64	1095	30	ADAC 12-bit A/D converter, 64 channel.
1012	695	30	ADAC 1012
ADVII-A	1000, 975	Stock	DEC ADV11-A
AAVII-A	900, 875	Stock	DEC AAVII-A
DT1762	695	30	Data Translation DT1762
DT1761	995	30	Data Translation DT1761
DT1765	1095	30	Data Translation DT1765
DT2762	695	30	Data Translation DT2762
DT2764	795	30	Data Translation DT2764
DT2766	695	30	Data Translation DT2766
DT2767	495	30	Data Translation DT2767

Tabie 18

Table 18 Clock Boards			
Modet	Price	Delivery	Description
ADAC KWVII-A	600	Stock-30	DEC KWV11-A
ANDROMEDA PRTCll	600	Stock-30	Programmable real-time clock, 13 inter nally generated timing rates, software selectable, dual board, frequency count mode, superset of DEC KWVII-A.
DATA			
DT2769	575	5	Programmable real-time clock, KMV11 software compatible, equivalent to DEC KWV11-A, dual board.
DEC KWV11-A	600,570, 546		Programmable real-time clock, 4 software modes and 5 crystal frequencies, quad board.
digital PATHWAYS TCU-50	295	Stock-14	Time/date unit, date and time, battery powered, over 3 months without recharging, charges when computer is on, dual board.
FIRST KWV11-A	528	Stock-30	DEC KWV11-A
$\begin{aligned} & \text { MDB } \\ & \text { MLSI-KW11-P } \end{aligned}$	550	Stock-14	Programmable real-time clock, 4 softwareselectable rates, quad board.
NEWMAN MLSI-KWI 1-P	428	Stock	MDB MLSI-KW11-P
PLESSEY PM KWII-P	630	45	Programmable real-time clock, similar to DEC, quad board, must be used with PM VUll converter.
RDA			
KWV11-A	600, 575	30	DEC KWV11-A
MLSI-KWII-P	550	15	MDB MLSI-KW1 1-P
DT2769	575	30	Data Translation DT2769
TCU-50	390	30	Digital Pathways TCU-50

Table 19

Model	Price	Delivery	Description
COMPUTER MARKETING			
QB11-DC	750	60-90	64-character x 16 -line alphanumeric display controller with composite video output for raster monitor, quad board, Qbus terminator sockets, terminators included, $16 \mathrm{~K} \times 16$ ROM keyboard input.
COMPUTER TECHNOLOGY			
	475	30	64 -character $\times 16$-line alphanumeric display controller with composite video output for raster monitor, dual board, software $\$ 20$ extra.
data			
TRANSLATION DT1761-0	795	5	2-channel, 12-bit D/A converter with Z control.

Model	Price	Delivery	Description
DT1761-0	795	5	2-channel, 12-bit D / A converter with 2 control.
DEANZA			
ID1000	3500		$256 \times 256 \times 6$-bit pixels, system includes menory. interface, 6 -bit D/A converter, video generator, power supply and chassis, 16 line $\times 16$ character annotation area, RS170 protocol.
	4100		Same as above for a color system.
MATROX 495 (40 charaters 24 lines of 5×7 or 7×9 atphe			
MLSI-2480	495		80 characters $\times 24$ lines of 5×7 or 7×9 alphanumeric display controller for MLSI graphic VRAMs, composite video output for raster monitor, quad board.
MLSI-256	895		Graphic VRAM, display field $256 \times 256,73 \times 101 / 2 \mathrm{in}$. board.
MLSI-256-512	1095		Graphic VRAM, display field $256 \times 512,73 / 4 \times 101 / 2 \mathrm{in}$. board.
MLSI-512	1395		Graphic VRAM, display field $512 \times 512,7 \% \times 101 / 2 \mathrm{in}$. board.
MLSI-256-1024	1395		Graphic VRAM, display field $256 \times 1024,73 / 4 \times$ $101 / 2$ in. board.
NEWMAN			
MLSI-2480	495	Stock	Matrox MLSI-2480
MLSI-256	895	Stock	Matrox MLSI-256
MLSI-256-512	1095	Stock	Matrox MLSI-256-512
MLSI-512	1395	Stock	Matrox MLSI-512
MLSI-256-1024	1395	Stock	Matrox MLSI-256-1024
RDA			
VURAM	575	Stock	64 -character $\times 16$-line alphanumeric display controller with composite video output for raster monitor, dual board, software $\$ 20$ extra.

	Table 20 Bus Translators and Bus Redrivers			
Model	Price		Delivery	

Model	Price	Delivery	Description
IBV1 1-A	750,715	Stock	DEC IBV11-A
DT2770	750	30	Data Translation DT2770
SEC			
SEC-DPV-11	2495	30-45	Dual-port 8 K static RAM memory, Qbus and Unibus, 2 quad boards.
CC-LSIl 1	1545	Stock-30	Qbus to CAMAC bus, 25 CAMAC stations, dual board, bus buffer option $\$ 175$ extra.
SEC-BB	195	Stock-30	Buffers or redrives Qbus lines, drives 4 m of flat cable. dual board
XYLOGICS			
Univerter			ACT 10001

Table 21

TECHNOLOGY
DMA-L11 495

DEC

DRVII-B	$580,551.528$
KPVI1-A	290,

KPVII-B 315, 299, 287
edUCATIONAL DATA
SYSTEMS

500	1680
501	540
FIRST	
DRV11-B	520
KPV11-A	247
KPV11-B	277
MDB	
MLSI-SMU	350

MLSI-LPII 450

MLSI-CR1I 650
MLSI-XYV11 550

NETCOM
KPV11-1180 295
P100 85
MA multiplexer 4-port module, ex 128 ports.
4 -port expansion board for Model 500

Stock-30 DEC•DRV11-B
Stock-30 DEC KPV11-A
Stock-30 DEC KPV11-B

Stock-14 System-monitoring unit, switches and indicators on panel, bus terminator, power on/off, failure sequencing, equivalent to DEC KPV11, dual board.
Stock-14 Line-printer controller for popular line printers, dual board
Stock-14 Card-reader interface, for popular card readers, dual board.
Stock-14 Incremental plotter interface, parallel interface for Houston or Calcomp XY plotters or equivalent, dual board.

Stock-14 Line-printer controller for popular printers and LA180.
Stock-14 Power fail, restart module, single board. General-purpose DMA interface, 16 -bit
bidirectional tri-state data bus allows direct programmed $1 / 0$ with the external device, $8 \mathrm{l} / \mathrm{O}$ registers, onboard PROM for bootstrap, dual board.

General-purpose DMA interface, quad board.
Power sequencer, line clock, crystal clock, dual board
Power sequencer, line clock, crystal clock, bootstrap module, with terminator, dual board.

	DMA multiplexer 4-port module, expansion in 4 -port increments, up to 128 ports. 4-port expansion board for Model 500.
Stock-30	DEC•DRV11-B
Stock-30	DEC KPV11-A
Stock-30	DEC KPV11-B
Stock-14	System-monitoring unit, switches and indicators on panel, bus terminator, power on/off, failure sequencing, equivalent to DEC KPV11, dual board.
Stock-14	Line-printer controller for popular line printers, dual board.
Stock-14	Card-reader interface, for popular card readers, dual board.
Stock-14	Incremental plotter interface, parallel interface for Houston or Calcomp XY plotters or equivalent, dual board.
Stock-14	Line-printer controller for popular printers and LA180.
Stock-14	Power fail, restart module, single board. monitors $A C$ and DC interrupts on low. Restarts to ODT in semiconductor memory.

Table 22

Model	Price	Delivery	Description	
ANDROMEDA				
DRV11-P	225	$45-60$	DEC DRV11-P	
MLSI-1710	210		Stock-30	MDB MLSI-1710

ARTEC		
WW11.5	35	Stock \quad Dual wire-wrap board, designed for

Quad wire-wrap board, designed for insertion of wire-wrap sockets, up to 13014 - or 16 -pin dips.
COMPUTER
MARKETING monitors $A C$ and $D C$ interrupts on low. Restarts to ODT in semiconductor memory.

Table 24

Company Addresses

ACC

Associated Computer Consultants
228 East Cota Street
Santa Barbara, CA 93101
805-963-8801

ACT
Able Computer Technology, Inc.
1715 Langley Avenue
Irvine, CA 92714
714-547-6236

ADAC Corporation

15 Cummings Park

 Woburn, MA 01801
617-935-6668

(90-day warranty. Resells DEC components. Configures systems to specification. Vendor of prepackaged LSI-11 systems.)
Advanced Computer Equipment
1 Esquire Road
Billerica, MA 01821
617-667-2190

AED

Advanced Electronics Design, Inc.
440 Potrero Avenue
Sunnyvale CA 94086
408-733-3555
(90-day warranty. 25% educational discount.)

AIS
Advanced Interactive Systems
8216 Pickering Street
Philadelphia, PA 19150

Andromeda Systems, Inc.
14701 Arminta Street No. J
Panorama City, CA 91402
213-781-6000
(90-day warranty on moving parts. 1 -year warranty on nonmoving parts, out of warranty, replace at 25% list. Resell DEC components at 15% discount. Configures systems to specification. Vendor of prepackaged LSI-11 systems.)
Artec Electronics Inc.
605 Old County Road
San Carlos, CA 94070
415-592-2740
Automated Logic
2675 Cumberland Parkway
Atlanta, GA 30339
404-433-0505

AVIV

300 Sweetwater Avenue
Bedford, MA 01730
617-275-AVIV
(1-year warranty.)
Bell Labs
Murray Hill, NJ 07974
201-582-4373
Boston Systems Office, Inc.
400 Totten Pond Road
Waltham, MA 02154
617-894-7800
(90-day warranty.)
CalComp
California Computer Products, Inc.
Small Disk Operation
1270 North Kraemer Blvd.
Anaheim, CA 92806
714-632-5461
(120-day warranty. $\$ 125$ repair and refurbish.)

Cambridge Memories, Inc.
12 Crosby Drive
Bedford, MA 01730
617-271-6463
Chrislin Industries, Inc.
Computer Products Division
31312 Via Colinas
Westlake Village, CA 91361
213-991-2254
(1-year warranty.)
Computer Marketing
257 Crescent Street
Waltham, MA 02154
617-894-7000
(Vendor of prepackaged LSI-11 systems.)

Computer Operations, Inc.
9700-B Palmer Hwy.
Lanham, MD 20801
301-459-2100
(1-year warranty.)

Computer Solutions
17922 Sky Park Circle, Suite L
Irvine, CA 92714
714-751-5040
Computer Technology
6043 Lawton Avenue
Oakland, CA 94618
415-451-7145
(6-month warranty.)
Controlex
16005 Sherman Way
Van Nuys, CA 91406
213-780-8877
CRDS
Charles River Data Systems, Inc. 4 Tech Circle
Natick, MA 01760
617-655-1800
(90-day warranty. Resells DEC components. Vendor of prepackaged LSI-11 systems.)
Cyberchron Corporation
5768 Mosholu Avenue
Riverdale, NY 10471
212-548-0503
(1-year warranty. Resells DEC components and systems, at least 10% discount.
Datanet, Inc.
P.O. Box 30008

Eugene, Oregon 97403
503-687-2520
Dataram Corporation
Princeton-Hightstown Road
Cranbury, NJ 08512
609-799-0071
(1-year warranty.)
Data Systems Design, Inc. 3130 Coronado Drive
Santa Clara, CA 95051
408-249-9353
(90-day warranty. $\$ 150$ for fix, module swap out.)

Data Translation
4 Strathmore Road
Natick, MA 01760
617-655-5300
(90-day warranty.)
DeAnza Systems
3444 De La Cruz
Santa Clara, CA 95050
408-988-2656
DEC
Digital Equipment Corporation
Components Group
One Iron Way
Malborough, MA 01752
617-897-5111
Engineering Hotline 800-225-9220
(90-day warranty. Repair service after warranty.)
Direct Sales Catalog
Merrimack, NH 03054
800-258-1710

DECUS
126 Main Street
Maynard, MA 01754
617-897-5111
Digital Pathways Inc.
4151 Middlefield Road
Palo Alto, CA 94306
415-493-5544
(90-day warranty.)
Dilog
Distributed Logic Corporation
12800 Garden Grove Blvd, Suite G
Garden Grove, CA 92643
714-534-8950
D/L Logic, Inc.
141-A Central Avenue
Farmingdale, NY 11735
(Vendor of various breadboarding supplies).

Douglas Electronics Inc.
718 Marina Blvd.
San Leandro, CA 94577
415-483-8770
(30-day warranty.)
Dynus Inc.
3190 K Airport Loop Drive
Costa Mesa, CA 92626
714-979-6811
Educational Data Systems
1682 Langley Avenue
Irvine, CA 92714
714-556-4242
EECO
1441 E. Chestnut Avenue
Santa Ana, CA 92701
714-835-6000
(5\% educational discount. 1-year warranty.)
Electronic Service Specialists
W164 N8460 Hiawatha Avenue
Menomonee Falls, WI 53051
414-255-4634
(Repair service for LSI-11s, interfaces, memories, etc. \$30/h flat rate, 5-day
turn around maximum.)
EM\&M
12621 Chadron Avenue
Hawthorne, CA 90250
213-644-9881
Equipment Resources, Inc.
1175-4 Fleming Street
Smyrna, GA 30080
404-434-1382
800-241-9960
(1-year warranty.)
Fabri-Tek, Inc.
5901 S. County Road 18
Minneapolis, MN 55436
612-935-8811
(1-year warranty.)
First Computer Corporation
764 Burr Oak Drive
Westmont, IL 60559

312-920-1050

(All prices are listed as educational discount. 90 -day warranty. Vendor of prepackaged LSI-11 systems.)
Forth, Inc.
815 Manhattan Avenue
Manhattan Beach, CA 90266
213-372-8493
(20% educational discount. 180-day maintenance.)

Garry Manufacturing Co.
1010 Jersey Avenue
New Brunswick, NJ 08902
201-545-2424
Gen/Comp
6 Algonquin Road
Canton, MA 02021
617-828-2008
(1-year warranty.)
General Robotics Corporation
55-57 North Main Street
Hartford, WI 53027
414-673-6800
(10% educational discount. 120-day warranty. Out of warranty service. Vendor of prepackaged LSI-11 systems.)

Hamilton-Avnet
118 Westpark Road
Dayton, Ohio 45459
800-762-4717
(Stocking distributor of LSI-11 components.)

Heath Company
Benton Harbor, MI 49022
616-982-3206
(Vendor of prepackaged LSI-11 systems.)
Intel Memory Systems
1302 N. Mathilda Avenue
Sunnyvale, CA 94086
408-734-8102
(1-year warranty.)
Interconn
Interconnection Technology Inc. 225 Lowell Road
Hudson, NH 03051
617-871-1228
Matrox Electronic Systems
P.O. Box 56

Ahuntsic Station
Montreal, Quebec, Canada H3L 3N5
514-481-6838
(3-month warranty).
MDB Systems, Inc.
1995 North Batavia Street
Orange, CA 92665
714-998-6900
(1-year unconditional warranty on MDB swap out. Repair service after warranty. Configures systems to specification. Vendor of prepackaged LSI-11 systems.)

Memory Systems, Inc.
3341 W. E1 Segundo Blvd.
Hawthorne, CA 90250
No phone listed.
MicroMemory Inc.
9438 Irondale Avenue
Chatsworth, CA 91311
213-998-0070
(1-year warranty.)
Monolithic Systems Corporation
14 Inverness Drive
Englewood CO 80110
303-770-7400
(10% educational discount. 1-year warranty.)

Mostek Memory Systems
1215 West Crosby Road
Carrollton, TX 75006
214-242-0444
(1-year warranty.)
Motorola Integrated Circuits Division
3501 Ed Bluestein Blvd.
Austin, TX 78721
512-928-2600
National Instruments
9513 Burnet Road
Austin, TX 78758
512-837-9546
(1-year warranty.)
Netcom
3687 Enochs Street
Santa Clara, CA 95051
408-737-1 191
(Educational discount when applicable. 1-year warranty. DEC components OEM. Configures systems to specification. Depot repair.)

Newman Computer Exchange, Inc. 1250 North Main Street
P.O. Box 8610

Ann Arbor, MI 48107
313-994-3200
(90-day warranty on most items. 10% off LSI-11 equipment on cash orders.)
Norden Division
United Technologies Corporation
Norwalk, CT 06856
800-243-5840
(Manufacturer of high-reliability LSI-
11 family emulators for military use.)
Oregon Minicomputer Software, Inc. 2340 Southwest Canyon Road Portland, Oregon 97201
503-266-7760

Pfystar Microcomputer Products
1681 West Broadway
Anaheim, CA 92802
714-635-7282
(5\% educational discount. 1-year warranty. $\$ 125$ out of warranty on controller.)

Plessey Peripheral Systems
17466 Daimler Avenue
Irvine, CA 92714
714-540-9945
(Vendor of prepackaged LSI-11
systems.)
Quantex Division
North Atlantic Industries
200 Terminal Drive
Plainview, NY 11803
516-681-8350
Radgo
3988 McMann
Cincinnati, OH 45245
800-543-1986
(90-day warranty. Stocking distributor of DEC LSI-11 components.)
RDA, Inc.
5012 Herzel Place
Beltsville, MD 20705
301-937-2215
(3\%-4\% educational discount. 60 to 90-day warranty. Resells DEC components. Configures systems to specification. Vendor of prepackaged
LSI-11 systems.)
Remex Division
Ex-Cell-O Corporation
1733 East Alton Street
P.O. Box C19533

Irvine, CA 92713
714-557-6860
(90-day warranty.)
SEC
Standard Engineering Corporation
44800 Industrial Drive
Fremont, CA 94538
415-657-7555
(1-year warranty. Configures systems to specification. Vendor of prepackaged LSI-11 systems.)

SMS

Scientific Micro Systems
777 East Middlefield Road
Mountain View, CA 94043
415-964-5700
(90-day warranty on floppy drives. 1 -year warranty on circuit cards.)
Southwest Systems
P.O. Box 2808

Laguna Hills, CA 92653
714-586-3233

Table 24 Continued

Stanford Applied Engineering	Unicomp, Inc.		Xebec Systems Incorporated	
340 Martin Avenue	8950 Westpart, Suite 312		2985 Kifer Road	
Santa Clara, CA 95050	Houston, TX 77063		Santa Clara, CA 95051	
408-243-9200	$713-782-1750$ (Vendor of prepackaged	LSI-11	408-988-2550 (90-day warranty.)	
Tennecomp Systems, Inc.	systems.)			
785 Oak Ridge Turnpike			Xylogics	
Oak Ridge, TN 37830	Vector Electronic		42 Third Avenue	
615-482-3491	12460 Gladstone Avenue		Burlington, MA 01803	
$\begin{aligned} & \text { (Vendor } \\ & \text { systems.) }\end{aligned}$ of prepackaged LSI-11	$\begin{aligned} & \text { Sylmar, CA } 91342 \\ & 213-365-9661 \end{aligned}$		$617-272-8140$ (Vendor of prepackaged	LSI-11
Terak Corporation			systems.)	
P.O.Box 3078				
Scottsdale, AZ 85257	Virtual Systems Inc.		Yourdan Inc.	
602-991-1580	1500 Newell Avenue No. 406		1133 Avenue of the Americas	
(Vendor of prepackaged LSI-11 systems.)	Walnut Creek, CA 94596 415-935-4944		New York, NY 10036 $212-730-2670$	
UCSD				
University of California at San Diego	Western Peripherals			
PASCAL Group	1100 Claudina Place			
Institute for Information Systems	Anaheim, CA 92805			
UCSD Mail Code C-021	714-991-8700			
La Jolla, CA 92093	(5% educational discount.	1-year		
714-452-4723	warranty.)			

[^0]: A modified version of this paper will appear in the October issue of Mini-Micro (Mini-Micro Systems, 221 Columbus Avenue, Boston, Massachusetts 02116).

