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Abstract

The construction of a three-dimensional object model from a set of images taken from

different viewpoints is an important problem in computer vision. One of the simplest ways

to do this is to use the silhouettes of the object (the binary classification of images into

object and background) to can construct a bounding volume for the object. To efficiently

represent this volume, we use an octree, which represents the object as a tree of recursively

subdivided cubes. We develop a new algorithm for computing the octree bounding volume

from multiple silhouettes, and apply it to an object rotating on a turntable in front of

a stationary camera. The algorithm performs a limited amount of processing for each

viewpoint, and incrementally builds the volumetric model. The resulting algorithm requires

less total computation than previous algorithms, runs in real-time, and builds a model whose

resolution improves over time.

Keywords: Computer vision, 3-D model construction, image sequence (motion) anal-

ysis, volumetric models, octrees, silhouettes, computer aided design, computer graphics

animation.
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1 Introduction 1

1 Introduction

This paper describes a new approach to creating 3D models of objects from multiple views.

In our scenario, an object rotates on a turntable in front of a static camera. We use only

the silhouettes—the binary classification of each image into object and background—to

compute a bounding volume for the object. This algorithm enables us to obtain a quick and

rough model of the object in real-time. This model can be used in conjunction with a more

sophisticated shape-from-motion algorithm that relies on the detailed analysis of optic flow,

which is presented in a companion report [Szeliski, 1990]. In this context, it serves both as

an initial model for shape refinement, and as a non-linear (bounding volume) constraint on

the final shape.

The automatic acquisition of 3-D object models is important in many applications. These

include robotics manipulation, where the object must first be described and/or recognized

before it can be manipulated; Computer Aided Design (CAD), where automatic model

building can be used as an input stage to the CAD system; and computer graphics animation,

where it can facilitate the task of an animator by giving him easy access to a large catalog of

real-world objects. All of these applications become much more interesting if the acquisition

can be performed quickly and without the need for special equipment or environments.

The problem of building octree models from multiple views has a long history in

the computer vision field. Octrees were first introduced as an efficient representation for

geometric models by Jackins and Tanimoto [1980] and Meagher [1982] (see also [Carlbom

et al., 1985]). A good survey of octree representations can be found in [Samet, 1989], and

a survey of construction and manipulation techniques in [Chen and Huang, 1988].

The construction of volumetric description from multiple views was first described

by Martin and Aggarwal [1983] (the representation used was a collection of “volume

segments”). Chien and Aggarwal [1986b] constructed an octree from three orthographic

projections. This approach was extended to 13 standard orthographic views by Veenstra and
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Ahuja [1986]. Hong and Shneier [1985] and Potmesil [1987] both used arbitrary views and

perspective projection. In both of these papers, an octree of the conic volume formed by the

silhouette and the center of projection is computed for each viewpoint, and the octrees from

all of the viewpoints are then intersected. Both approaches project the octree cubes into

the image plane to perform the object/silhouette intersection. In contrast to this, Noborio

et al. [1988] and Srivastava and Ahuja [1990] perform the intersections in 3-space, which

eliminates the need for perspective projection. Both of these approaches use a polygonal

approximation to the silhouette. Additional research has also been done on building octrees

from range data [Chienet al., 1988] and the recognition of object models from octrees

[Chien and Aggarwal, 1986a].

The new approach described in this paper was designed with two goals in mind: to

process each image as it arrives (real-time), and to produce a coarse model quickly and

refine it as more images are seen (incremental). A secondary goal of this research is to

find highly parallelizable algorithms. Our approach is similar to Potmesil’s [1987], but

instead of building a separate octree for each view, we intersect each new silhouette with

the existing model. More importantly, we do not build a full-resolution octree after each

view. Instead, we build a coarse octree description first, and then refine it as the object

continues to rotate in front of the camera. This makes our approach similar to other recent

incremental algorithms [Matthieset al., 1989]. As we will see, this approach significantly

reduces both the individual computation per image and the total computation performed,

since less cubes are generated and tested.

Our approach also uses a very efficient 2-D image plane intersection test based on bound-

ing squares and the chess-board distance transform [Rosenfeld and Kak, 1976] (Potmesil

uses a quadtree or non-overlapping rectangle description). The 3-D projection operations,

computation of the distance transform, and bounding box intersection test are easily par-

allelizable, and can thus take advantage of modern massively parallel architectures. The

3-D perspective projection is also well suited to graphics accelerators [Clark, 1982] or fast
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floating-point microprocessors.

We begin the paper in Section 2 with a brief review of the octree representation. In

Section 3, we describe how our algorithm hierarchically constructs an octree. In Section 4,

we describe our fast image plane intersection test. In Section 5, we show some results of

our algorithm operating on synthetically generated images. We analyze the complexity of

our algorithm in Section 6. In Section 7, we switch gears and discuss a number of practical

image processing issues: silhouette computation (adaptive thresholding), the automatic

determination of turntable position, and the calibration of the camera position. This leads

up to some results obtained from real images (Section 8). In Section 9, we discuss a number

of extensions, including moving the camera and repositioning the object on the turntable.

We close in Section 10 with a comparison between our new algorithm and other approaches.

2 Octree models of shape

An octree is a tree-structured representation that can be used to describe a set of binary valued

volumetric data enclosed by a bounding cube. The octree is constructed by recursively

subdividing each cube into eight sub-cubes, starting at the root node (a single large cube).

Each cube in an octree can be one of threecolors. A blacknode indicates that the cube is

totally occupied (all of its data = 1), and awhitenode indicates that it is totally empty (all

of its data = 0). Both black cubes and white cubes are leaf nodes in the tree. Agray cube

lies on the boundary of the object and is only partially filled. It is an interior node of the

tree and has eight equally sized children of different colors. Figure 1a shows a graphical

view of a small octree, and Figure 1b shows its associated colored tree representation.

Octrees are an efficient representation for most volumetric objects since there is a large

degree of coherence between adjacentvoxels(volume elements) in a typical object. A

number of schemes have been developed to efficiently represent and encode octrees [Chen

and Huang, 1988]. For our application, we use a very simple representation where all of the
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Figure 1: A simple two-level octree and its tree representation

cubes at a given resolution level are kept in the same array. Each cube explicitly represents

its x, y, andz coordinates, as well as its color and a pointer to the first of its children (for a

gray cube). This representation is well suited to the commonly occurring operations in our

algorithm. In particular, it enables the fast projection into the image of all the cubes at a

given resolution level.

3 Hierarchical octree construction from multiple views

Our basic algorithm constructs the octree in a hierarchical coarse-to-fine fashion. For a given

octree resolution, the inner loop of the algorithm carves out a 3D volume incrementally

from a sequence of silhouettes. After one complete revolution of the object, those cubes

whose color is still uncertain are subdivided. Because the octree is completely constructed

at one resolution before refining the next one, a minimum of extra cubes that eventually get

trimmed off are created.

In more detail, we start each new revolution of the object on the turntable with a

collection of black cubes all at the given (finest) resolution level; to initialize the algorithm,

we start either with a single black cube, or with a small collection (e.g., 8� 8� 8) of black

cubes. Cubes that are black are believed to lie completely within the object, white cubes
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are known to lie outside of the object, and gray cubes are ambiguous (this is different from

the usual octree coloring scheme, where gray cubes are known to have children of differing

colors). For each new image that is acquired, we project all of the current cubes into the

image and test whether they lie totally within or outside of the silhouette (Section 4). We

then update the color of each cube according to the following table:

old color�
test result� black gray white

inside black gray white

ambiguous gray gray white

outside white white white

Note that cube colors can only change from black to gray or white, or from gray to white

(i.e., the volume is “carved away”).

For our hierarchical approach to work, the tests of projected cubes against the silhouettes

can be crude, but they must not classify a cube as wholly inside or outside unless this is

certain. Projected cubes that are erroneously classified as “ambiguous” will be colored gray

(unless they are already white), and the decision as to their true color will be deferred to

the next finer resolution level. This allows our intersection tests to be more sloppy and also

makes our algorithm more robust against noise.

After one resolution level has been processed completely, i.e., the object has been seen

from all of its views (which usually corresponds to a complete revolution), we refine the

gray cubes by splitting them into eight pieces. The new cubes are initially colored black

and are then processed as were the cubes at the previous resolution level. Note that since

all of the possible views are used before proceeding to the next level, there is no need to

update nodes that belong to levels coarser than the one currently being analyzed. If we

wish to save storage space, we can go back later and compact the octree by converting gray

nodes into black or white nodes if all of their children are the same color.
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4 Image silhouette intersection tests

To make the above approach practical, we must have an efficient way to project the octree

cubes into image-space coordinates and to test for intersection with the object silhouette.

The perspective projection step is not a critical computational bottleneck, since it is trivially

parallelizable, and specialized hardware exists to perform it [Clark, 1982]. In our current

implementation, we simply project all eight corners of each cube using floating point

arithmetic.

An opaque cube projected into the image plane will in general form a six-sided polygon.

Performing an accurate test of this hexagon against the silhouette (which we represent as

a binary image) can be quite time consuming. Instead, we use a coarser test based on the

hexagon’s bounding box, which may sometimes fail to detect a true inclusion or exclusion.

This is acceptable in our overall framework, since this kind of “mistake” simply colors a

cube gray, thus deferring the decision to the next finer resolution level.

More precisely, each projected cube is converted into abounding square. This allows

us to do the inclusion and exclusion tests using a single lookup into two distance maps

constructed from the silhouette and its complement. These distance maps are one-sided

versions of the chess-board distance transform [Rosenfeld and Kak, 1976]. Each point in the

distance map contains the size of the largest square starting at that pixel that fits completely

within the silhouette (Figure 2). Thesehalf-distance transformsfor the silhouette and its

complement can be computed using a single raster-scan pass over the image, or using

anO�logd� step parallel algorithm, whered is the diameter of the largest region in the

silhouette (Appendix A).

One final minor detail which must be resolved is how to compute the bounding square

from the bounding box of the projected cube (which is defined by the minimum and

maximum projectedx and y values). We could center the bounding square over the

bounding box, or push it flush left or right (top or bottom) against the bounding box. We
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Figure 2: The half-distance transform and its use in inclusion testing. A sample binary

image is shown on the left, and its half-distance transform on the right. The circled 5 in the

distance map indicates that a 5� 5 square is the largest square inside the silhouette whose

lower left corner is at that pixel.
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have chosen the latter approach, testing both bounding squares for possible inclusion or

exclusion, since this will more often result in a successful test.

5 Synthetic model results

To determine the viability of our new algorithm and to quantify its performance, we decided

to first test it on a series of synthetically generated images. Our test models were constructed

by combining superquadric parts [Pentland, 1986; Solina and Bajcsy, 1990]. The models

were rendered from a variety of viewpoints using a 3-D graphics modeling system. The

rendered images, along with the simulated turntable orientation and camera position, were

then given to the octree building program. The complete simulation system was run on-line,

which enabled the observation of the simulated input images and resulting octree models

simultaneously.

Figure 3 shows four of the superquadric models that we used. Figure 4 shows the

corresponding octree models constructed from 32 evenly spaced views (11� increments).

For these simulations, the camera was at 4.0 (times the cube size) from the object center,

the inclination (from horizontal) was 20�, and the field of view was 30�. The octrees shown

are rendered at 323 resolution, even though they were computed to 643 resolution. As we

can see from these examples, the shape of these objects is recovered fairly well, although

there are occasional “bulges” on some flats sides of the objects (due to a limited number of

viewpoints) or at the top (unavoidable from this camera position).

To obtain a more quantitative measure of the algorithm’s performance, we counted the

number of cubes of each color created at each resolution level. As we can see from Table

1, at the finer levels, roughly 25% of the cubes are black, 25% are white, and 50% are gray.

Since each gray cube gets split into eight children, the number of cubes roughly quadruples

at each level. This is consistent with Meagher’s [1982] finding that the number of cubes is

proportional to the object surface area (measured in units of the finest resolution).
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a b

c d

Figure 3: Superquadric test models: (a) blocks (b) cone (c) cup (d) sphere.
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a b

c d

Figure 4: Derived octree models: (a) blocks (b) cone (c) cup (d) sphere.
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We can verify if this is true by computing the surface area of each of the test objects

(Table 2). Note that the flat areas at the bottom of the objects do not contribute significantly

to the octree cube count, but do add significantly to the surface area. To verify the “accuracy”

of our octree construction, we can compare the total volume of the octree with that of the

original synthetic model (Table 2), as was done in [Veenstra and Ahuja, 1986; Potmesil,

1987; Srivastava and Ahuja, 1990]. For most of the volumes, these figures compare

favorably, despite the restricted range of viewpoints.

6 Complexity analysis

The hierarchical octree construction algorithm developed in this paper is designed to operate

in close to real-time. It should therefore perform less computation for each image acquired

than previous approaches such as Potmesil’s, and hopefully perform less computation in

total. In practice, this is what occurs, because instead of building a complete octree from

each image, only those cubes already on the surface of the model are refined.

As we saw previously, the expected number of cubes for an octree is proportional to

its surface area (for a sufficiently smooth object). For most objects, this should be smaller

than the surface area of the viewing cone formed by the camera and the object silhouette.

To see if this occurs in practice, we can count the number of cubes in the octrees formed

from a single silhouette (Table 3), which tells us the number of cubes in a viewing cone.

Compared to the octree cube count from our hierarchical octree algorithm (Table 1), we see

that the single-view count generally exceeds the 32-view count. The exception is for large

simple objects that fill most of the octree volume.

This comparison only gives us a rough idea of the computation performed by both the

hierarchical approach and the previous single resolution methods. For our hierarchical

algorithm, the amount of processing required is proportional to the number of cubes at the

current finest level, since only these cubes need to be projected and to have their color
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model number of cubes (%black/%gray)

level 2 level 3 level 4 level 5 level 6

blocks 64 ( 0/61) 312 ( 7/64) 1600 (13/56) 7152 (15/46) 26520 (18/48)

cone 64 ( 0/75) 384 (16/50) 1536 (16/50) 6176 (21/52) 25696 (23/50)

cup 64 ( 0/97) 496 (16/45) 1792 (19/56) 8040 (20/54) 34560 (22/50)

sphere 64 (13/88) 448 (16/61) 2176 (21/57) 9888 (24/52) 41248 (25/51)

Table 1: Cube counts for octrees computed from synthetic models (32 views)

model cube count analytic area octree volume analytic volume

blocks 35648 2.3844 0.1685 0.1552

cone 33856 2.5321 0.2643 0.2601

cup 44952 2.9734 0.3445 0.3102

sphere 53824 3.1278 0.5267 0.5190

Table 2: Total cube counts, surface area, and volumes for octrees
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model number of cubes (%black/%gray)

level 2 level 3 level 4 level 5 level 6

blocks 64 ( 0/83) 424 (21/63) 2120 (23/55) 9376 (25/52) 39232 (26/51)

cone 64 (11/78) 400 (25/56) 1800 (25/53) 7568 (26/51) 30672 (26/50)

cup 64 (22/78) 400 (33/53) 1680 (26/53) 7088 (26/50) 28376 (26/50)

sphere 64 (28/72) 368 (35/56) 1656 (29/53) 6984 (29/49) 27376 (26/50)

Table 3: Cube counts for octrees computed from synthetic models (single view)

updated. For the older octree algorithms, we must first construct an octree corresponding to

the new view (in time proportional to the total number of cubes in all of the levels of Table

3), and then intersect this tree with the previously estimated object tree. The intersection

algorithm ends up creating and deleting cubes all over the octree hierarchy, which makes

its implementation on a parallel machine much more difficult.

Compared to the older octree intersection algorithms, our new hierarchical approach

results in a much simpler and more parallelizable algorithm. For scenes of moderate to high

complexity, it can result in dramatically lower computation (both per frame and overall)

because the complete viewing cones arising from the silhouettes are not constructed. To

better compare the performance of our new technique with the old approach, we will have

to implement the intersection of viewing cones algorithm, which we have not yet done.

7 Image Preprocessing

Before we can apply our shape from silhouette algorithm to real image sequences, we must

first address a number of low-level processing and calibration issues. These include the
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silhouette computation (object/background segmentation), the determination of turntable

rotation, and the calibration of camera position.

7.1 Adaptation and thresholding

To compute the silhouette, we first adapt the imaging system to the background scene without

the object by acquiring a few dozen images and computing the minimum, maximum, mean,

and variance values at each pixel. With our current setup, we can perform this computation

in near real-time (0.6 frames/second). These measurements are then used to precompute a

range of normal values for each background pixel. When thresholding the image, any pixel

falling outside of this range is assumed to be part of the object.

This adaptation stage is also used for a second purpose. To facilitate the automatic

estimation of turntable rotation, we attach a black-and-white binary-coded strip onto the

edge of the turntable (Figure 5 and Appendix B). During the adaptation stage, we allow

the turntable to turn at its natural speed. For each pixel that is part of this position coding

ring, we see both the black and white values. Because of the larger than usual variance,

we can classify these pixels as part of the position encoding system and select a good

threshold for each binary code pixel. The thresholding stage that computes the object

silhouette thus classifies each image into four categories: black binary code, white binary

code, background, and object (Figure 6).

7.2 Orientation estimation

To estimate the current orientation (rotation angle) of the turntable, we look at the binary

code pixels in the classified image. We choose a small number of columns (currently 32)

horizontally centered around the middle of the image, and in each column find the widest

strip of adjacent binary code pixels. We then find the 8-bit binary code corresponding to the

pixels in this strip (for now, by simply choosing 8 equally spaced samples within the strip),
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Figure 5: Input image of object (cup), turntable, and position coding ring
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Figure 6: Thresholded image: black binary code = dark gray, white binary code = light

gray, background = white, object = black.
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and convert it into a value between 0 and 255. The sequence of binary patterns follows a

Gray code, since only one bit changes at a time. This prevents an inconsistent code from

arising from several bits changing asynchronously (which may occur due to camera noise

or if the binary code is not perfectly vertical in the image). The binary values from all of

the columns are averaged to obtain a position estimate that has better than 8-bit resolution

(about 0�1� accuracy). This number, normalized to a 0� to 360� range, is the output of our

turntable position estimator.

7.3 Camera parameter calibration

Before the object acquisition system can be run, we must determine the camera parameters,

i.e., the camera position, orientation, and focal length. We do this using a known reference

model placed on the turntable (Figure 7a) [Caprile and Torre, 1990]. First, we extract the

edges by finding the zero crossings in the band-pass filtered image and using the gradient of

the filtered image to compute the edge orientations and to throw away weak edges (Figure

7b). Next, we use the Hough transform with gradient directions [Ballard and Brown, 1982]

to find the straight lines in the image (Figure 7c). Finally, these lines are used to compute

the camera parameters relative to the reference cube [Caprile and Torre, 1990].

To compute the camera parameters relative to the center of rotation of the turntable

(which is our desired object-centered coordinate frame), we must look at the reference cube

from a number of viewpoints (i.e., while the cube is rotating on the turntable). We could

at this stage also use Sawhney’s [1990] method for simultaneously computing the cube

structure and the cube rotation to do our calibration. Since we have not yet implemented

this portion of our calibration procedure, we use a simpler method. We measure the camera

distance to the object by hand and then compute the other camera parameters from the major

and minor axes of an ellipse fitted to the image of the turntable top. This simplified method

does not require a known reference model, only the knowledge of the turntable diameter.
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a b

c d

Figure 7: Camera parameter computation: (a) calibration cube (b) edges extracted (c) lines

fitted (d) internal cube model.
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The overall sequence of steps involved in pre-calibrating the system is thus fairly

simple. With the turntable rotating, a sequence of images without any objects is taken. This

memorizes the default background and the location of the binary code. A reference model

is then placed on the turntable and the camera position automatically determined (currently

we use the shape and position of the turntable top). This last stage could conceivably be

replaced by a set of calibration points permanently fixed to the turntable. The result is a

system that can be operated by a na¨ıve user such as a CAD designer or graphics artist.

8 Real image results

We have tested our algorithm on a number of real image sequences. Figure 5 shows a

sample image of a cup sitting on the turntable. Applying the adaptation and classification

techniques described previously, we obtain the thresholded image shown in Figure 6. For

this image sequence, it was necessary to lower the thresholds in the bright white areas

of the adaptation image, because the shadows cast by the cup were causing an incorrect

classification (most of the turntable top would be classified as part of the object). As we can

see from the thresholded image, the algorithm still misclassifies isolated background pixels

as foreground. Conversely, some of the specularities on the cup have been misclassified

as background. Using a small amount of propagation and shrinking [Rosenfeld and Kak,

1976] should help remove these problems. A better long-term solution would be to use

color images, since there is less chance of confusion, and since shaded regions (going from

dark to light) are not forced to cross the background color.

Figure 8 shows the final model constructed from the cup image sequence. The final

reconstruction captures the overall shape of the cup quite well. The major source of errors

in the reconstruction is due to the specularities that cause erroneous gray nodes in the middle

of the model (these are not visible in Figure 8, which renders gray nodes at the lowest level

as opaque).
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Figure 8: Octree model derived from real cup images
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9 Extensions

There are a number of efficiency optimizations that could be added to our algorithm. To

reduce the cost of the cube corner projections, there are several techniques that we could

use:

1. cache the projections, since each corner is usually used more than once;

2. project only one corner, and used fixed vectors to define the other seven corners;

3. use recursive subdivision of the projected octree cubes to obtain the image coordinates

of the points at the desired resolution.

Note that these last two approaches do not generate the exact corner positions, but this is

perfectly acceptable, so long as a larger bounding box results.

We could further reduce the number of cubes projected by examining only visible cubes.

This would remove from consideration both the cubes on the back side of the object and

also those interior to the object (cubes that are not on the surface). It would then only be

possible to remove a single layer of cubes at a time, and a hole in the object would require

several views to “eat its way through” the object.

Adding gray level or color mapping onto the cubes in the octree would enhance the

realism of the reconstruction. However, this is not an easy task, since many different

intensities could map to a single cube, both within a single frame and between frames

[Potmesil, 1987]. We could also use this stage to check for inconsistencies, such as white

cubes that become visible later on.

Our octree construction algorithm would be more powerful if we could change the

position of the camera and/or the object. The former case is easier to handle. We simply

re-calibrate the system, and continue processing with the new camera parameters (we

could also use more than one camera simultaneously). An interesting empirical question

is whether we should still use the same hierarchical strategy as before (coarse to fine
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refinement), or whether we should process just the finest level—or maybe even the whole

tree—for each new silhouette. The pure hierarchical algorithm described in this paper

could then be replaced with a more flexible control strategy, which would decide how many

whole or part levels to process depending on the real-time constraints imposed by the rate

of incoming images.

The change in object orientation caused by repositioning it on the turntable is also simple

to handle if the object motion is known. In this case, we can transform the octree to its

new orientation [Ahuja and Nash, 1984; Weng and Ahuja, 1987] and continue processing

as before. An example of such a known transformation would be if the object had only a

few stable poses. Determining the object motion from the volumetric data itself is more

difficult [Chien and Aggarwal, 1986a], especially when both the old and new object models

contain areas that are extraneous. This remains an interesting area of future research.

One final interesting area of research is the interaction between the bounding volume

generated by this algorithm and the deformable surface model computed from optic flow

[Szeliski, 1990]. In this complementary approach to shape from rotation, knowledge of the

optic flow and object motion provides a sparse and somewhat noisy estimate of points on the

object’s surface which are integrated using an elastic surface model. The bounding volume

described by the octree can certainly provide inequality constraints on the deformable

model, but can it also provide unambiguous surface positions in certain cases? Each ray

from the camera passing through a pixel inside the silhouette must hit something opaque

inside at least one of the black cubes in its path. In the general case, thisoccupancy

constraintis complicated to represent and use. A more practical approach is to track the

silhouette over three or more frames to estimate the location and curvature of points on the

surface of the object [Giblin and Weiss, 1987; Vaillant, 1990].
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Given the current performance of our algorithm, is it fair to call it a “real-time” method?

The microwave turntable that we use to rotate our object turns at 0.5 revolutions per minute.

The time to acquire, process, and display a 512�480 image on our workstation is about 1.7

seconds per frame for adaptation and thresholding, and 3.0 seconds for an incremental octree

construction step of moderate complexity (including the display of the current model). This

means that we can process about 40 views per rotation, which is perfectly adequate for

obtaining a bounding volume.

Ideally, we would like to speed up the turntable rotation (and the processing) by a

factor of 10. This should be achievable with the next generation of faster RISC processors.

Because our algorithm is essentially data parallel (both at the pixel and cube levels), it

would be easy to obtain true real-time performance with a SIMD parallel machine.

A more important question might be: is our system useful and easy to use? Compared

to previous octree construction algorithms, our new hierarchical approach requires less

computation because it only examines those cubes close to the surface of the object. It

provides a coarse model of the octree rapidly, which improves as the object continues to

rotate in front of the camera. Compared to the alternatives of manually entering a model

using a 3-D pointer or using structured light, our system is easier to use and requires

less equipment. However, it still has the same limitation as previous silhouette-based

algorithms, such as a limited precision and the inability to detect concavities in the object.

To be truly useful, our method will have to be combined with more sophisticated shape

from motion algorithms that track surface markings on the object. As part of such a shape

from rotation system, it can quickly and automatically provide 3-D shape descriptions of

real object for geometric modeling applications.
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A Serial and parallel half-distance transforms

Our octree construction algorithm uses the half-distance transform to test the bounding

boxes of projected cubes against the silhouette images. The half-distance transform is a

one-sided version of the chessboard distance transform [Rosenfeld and Kak, 1976]. Given

a binary image, it computes for each pixel the size of the largest all ones square starting at

that pixel.

The serial version of the algorithm computes

f �1��i� j� � min�f �0��i� j��1� min
�u�v��N3

f �1��i� u� j � v��

in reverse raster order, wheref �0��i� j� is the input binary image, andN3 � f�0�1�� �1�0�� �1�1�g.

A simple parallel version of the algorithm can be drived from the PD algorithm described

in [Rosenfeld and Kak, 1976, p. 356]

f �m�1��i� j� � f �0��i� j� � min
�u�v��N4

f �m��i� u� j � v��

whereN4 � f�0�0�� �0�1�� �1�0�� �1�1�g. This algorithm takesd steps to converge, where

d is the diameter of the largest region (the maximum value in the distance map). A variant

on this algorithm is

f �m�1��i� j� � min�f �m��i� j��1� min
�u�v��N3

f �m��i� u� j � v���

where initiallyf �0��i� j� are set to 0 or� for pixels outside/inside the silhouette.

A quicker version of the preceding parallel algorithm uses 2 logd steps

f �2m�1��i� j� � min�f �2m��i� j�� s� min
�u�v��N2

f �2m��i� su� j � sv��

f �2m�2��i� j� � min�f �2m�1��i� j�� s� f �2m�1��i� s� j � s���
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wheres � 2m andN2 � f�0�1�� �1�0�g. This algorithm doubles the distance to the

neighbors every two iterations.

If the number of parallel processor available is less than the number of pixels—for

example when using a MIMD machine or a smaller SIMD array—it pays to reduce the total

amount of computation performed. In this case, we can use a hierarchical version of the

parallel half-distance algorithm. We use the following pyramidal algorithm

f �2m�1��sxi� syj� � min�f �2m��sxi� syj�� s� min
�u�v��N2

f �2m��sxi� su� syj � sv��

f �2m�2��sxi� syj� � min�f �2m�1��sxi� syj�� s� f �2m�1��sxi� s� syj � s��

in two fine-to-coarse-to-fine sweeps. In the first sweep,sy � 1, andsx � s � 2m going

up the pyramid andsx � s � 2�2M�m� going down, whereM � log2 d is the height of

the pyramid. In the second sweep, the roles ofsx andsy are reversed. This algorithm

first propagates the distances horizontally and diagonally, subsampling the points by 2

horizontally. The algorithm then repeats the procedure subsampling vertically. Because the

number of points being updated is reduced by 2 every 2 steps, the total number of operations

is O�n�.

B Templates for Gray coded positioning ring and calibra-

tion cube

Figures 9 and 10 show the patterns used for the 8-bit turntable position encoding ring (suit-

able for the 9”mini MICRO-GO-ROUNDR�turntable) and the 4�� � 4�� calibration cube.

Both figures show the patterns at half scale. Full scale versions of these figures can be ex-

tracted from the PostScript version of this report. For information on how to obtain an elec-

tronic copy of this document, please send a message totechreports@crl.dec.com

with the wordhelp in the Subject line.
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Figure 9: Turntable orientation ring with binary Gray code (1�2 scale).
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Figure 10: Pattern for calibration cube (1�2 scale).


