
The X Window System

Version ��
�

James Gettysy� Philip L� Karltonz� and Scott McGregorx

Digital Equipment Corporation
Silicon Graphics Computer Systems

CRL ����� �� December ����

Abstract

The X Window System� has become widely accepted by many manufac�

turers� X provides network transparent access to display servers� allowing
local and remote client programs to access a user�s display� X is used on high

performance workstation displays as well as terminals� and client programs
run on everything from micro to super computers�

This paper describes the tradeo	s and basic design decisions made during

the design of X Version ��� We presume familiarity with the paper describing
X Version ���

Keywords
 X Window System� interactive human�computer interface sys�
tem� distributed systems�
c�Digital Equipment Corporation and Silicon Graphics Computer Systems
����� All rights reserved�

�The X Window System is a Massachusetts Institute of Technology trademark�
�This paper will appear in a special issue of Software Practice and Experience�
yDigital Equipment Corporation� Cambridge Research Lab� One Kendall

Square� Bldg� ���� Cambridge� MA ������ U�S�A� jg�crl�dec�com
zSilicon Graphics Computer Systems� Systems Software Division� ���� N� Shore	

line Boulevard� Mountain View� CA �
���	����� U�S�A� karlton�sgi�com
xFormerly at Digital Equipment Corporation� now at The Santa Cruz Op	

eration�
�� Encinal Street� P�O� Box ����� Santa Cruz� CA ����� U�S�A�

mcgregor�sco�com

The X Window System

Version 11

JAMES GETTYS
Digital Equipment Corporation, Cambridge Research Laboratory

One Kendall Square, Bld 700
Cambridge, MA 02139, U.S.A.

jg@crl.dec.com

PHILIP L. KARLTON
Silicon Graphics Computer Systems, Systems Software Division, 2011 N. Shoreline Boulevard

Mountain View, CA 94039-7311, U.S.A.
karlton@sgi.com

SCOTT MCGREGOR1

Digital Equipment Corporation
mcgregor@sco.com

SUMMARY
The X Window System2 has become widely accepted by many manufacturers. X pro-

vides network transparent access to display servers, allowing local and remote client pro-
grams to access a user’s display. X is used on high performance workstation displays as
well as terminals, and client programs run on everything from micro to super computers.

This paper describes the tradeoffs and basic design decisions made during the design of
X Version 11. We presume familiarity with the paper describing X Version 101.

KEY WORDS X Window System Interactive Human-computer interface system Distributed Systems

1Now at The Santa Cruz Operation, 400 Encinal Street, P.O. Box 1900, Santa Cruz, California 95061
2The X Window System is a trademark of the Massachusetts Institute of Technology.

© by Digital Equipment Corporation and Silicon Graphics Computer Systems, all rights reserved. This paper will
appear in a special issue of Software Practice and Experience.

November 21, 1990

2 J. GETTYS, P. L. KARLTON, S. MCGREGOR

Contents

Introduction .. 3

Goals of Version 11 Design .. 4

Lessons Learned from Previous X Versions .. 5

Display Support .. 7

Windows .. 9

Atoms, Property Lists and Selections ... 12

Atoms ... 13

Properties ... 13

Selections ... 14

Primary .. 15

Secondary... 16

Events ... 17

Window Management Functions ... 19

Graphics .. 23

Graphics Operations ... 25

Graphics Contexts ... 26

Text Painting and Font Support .. 29

Extensions... 31

Keyboards ... 31

Distributed Systems Architecture ... 33

Lessons Learned and Results ... 33

Future Topics .. 37

Acknowledgments ... 38

References ... 39

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 3

Introduction

The X Window System has become widely used over the last several years.

After the release of Version 10 of X (hereafter called X10) from MIT in the fall of 1985, and

its release as a product under Ultrix1 the following January, many people at several corporations

and universities requested extensions to X to support their favorite application or hardware.

X10 had been limited to what several people could implement, and these limitations were typi-

cally well known (and even documented). For example, X10 could only support displays with

no more than 16 bits/pixel, and this limitation was inherent in many areas of the wire protocol.

Design of Version 11 started late in the spring of 1986. A larger set of contributors added

expertise and experience in areas where it had been lacking in X10. The design was circulated

for public comment and review that summer. A sample implementation of the protocol design

started that fall, and became available in the fall of 1987. Feedback from reviewers and alpha

and beta testers resulted in significant design changes to the core protocol, and deletions of

some functions which were found to be poorly designed. (These functions were left to future

extensions to X11). A brief history of events is available in The X Window System2.

The X11 protocol was designed with little idea of how it would be implemented and was fully

specified before the implementation began. It is of course true, however, that if we did not un-

derstand how to implement something in a reasonable amount of time and effort (since timeli-

ness was critical) we did not add it to the design; for example, non-rectangular windows have

been added as an extension since the original release. We did not understand at the time how

easy they would be to implement, and therefore explicitly rejected them during the design meet-

ing. The specification was changed during alpha and beta test as we learned from the imple-

mentation; often errors in the specification or design flaws were uncovered as the implementa-

tion proceeded. We are very skeptical of systems that have never been implemented before

widespread adoption; similarly, systems that have not been carefully specified before imple-

mentation begins are also suspect.

Somewhat after the base window system work, other groups began design of a number of

toolkits and window managers for X.4,30 Feedback from these groups was particularly impor-

tant to the base window system design.

In this paper, X10 and X11 are used to refer to specific X versions, when we must distinguish

between them.

1 Ultrix is a trademark of Digital Equipment Corporation.

November 21, 1990

4 J. GETTYS, P. L. KARLTON, S. MCGREGOR

Goals of Version 11 Design

“The only thing worse than generalizing from a single example is generalizing from no exam-

ples at all.” - Phil Karlton

We realized at the first design meeting that it was impossible to design a protocol that was

both upward compatible with X10 and able to support the different kinds of display hardware

we could foresee. Additionally, we wished to support many window management policies that

X10 could not support, such as window “decoration” and tiling. This fact and the long “wish

list” required a complete redesign of X. The major goals for X11 included:

• Redesign of the basic protocol encoding to increase efficiency and reduce server round trips

• Support for deep frame buffers (more than 16 bits per pixel)

• Support for a wider variety of color maps

• Clean basic pixel-oriented graphics

• Text capabilities for WYSIWYG editors

• Clean up and generalization of facilities (a laundry list from X10)

• Extensible protocol

• Facilities for clients to exchange information (cut and paste of arbitrary information)

At the first design meeting, we decided that at initial release the X11 core protocol would

NOT support:

• Three dimensional graphics

• Sub-pixel graphics and anti-aliasing

• World coordinate systems

• Video, speech, high-fidelity audio and related topics

Some capabilities were originally included in the core protocol, but either during design or

implementation were put off for future work. These were:

• Alternate input devices, now a proposed extension

• Rotated text and graphics, now left to either a PostScript* extension in some vendor’s im-

plementations, or to a possible future extension to graphics contexts

3-D graphics, while important, would have delayed Version 11 by at least a year, and an in-

teresting set of current applications do not require it. Political controversy over the “correct”

3D graphics design has delayed 3D greatly, and might have prevented X11 altogether. Instead,

we decided that a general extension facility was a better strategy to allow addition of 3D and

other facilities at a later date. History (seen from four years later, with the 3D23 extension yet

to be standardized) shows that it was a correct decision.

*PostScript® is a trademark of Adobe Systems, Incorporated

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 5

The graphics model needed to be clean but minimal. At current and near-term future display

resolutions, we felt it was essential (from experience with some CAD applications) that applica-

tions be able to know precisely which pixels are modified by a graphics operation. We there-

fore deliberately rejected graphics that are independent of screen resolution.

The long list of potential uses of X we could foresee, as well as those we could not foresee,

meant that the system must be easily extended to support other imaging models (3D,

PostScript1), and other basic facilities (video, input devices).

Lessons Learned from Previous X Versions

Experience during X’s development drove home the cost of round trip messages between cli-

ents and the X server. With X11, steps were taken to avoid such interactions. These were:

• The initial connection to the server fetches commonly-used information about the server

and screens.

• Resource ID’s (for example, windows and pixmap ID’s) are allocated by the client.

• A client can use pixels for window borders and backgrounds, rather than being restricted to

pixmaps.

After establishing a connection, every X10 program immediately needed information about

the screen (commonly, the screen’s size), causing one or more round trip queries to the server,

and worse, these queries often were embedded in library functions and executed more than once

since Xlib did not remember the information. In X11 all information about the physical charac-

teristics of the screens of a display is sent immediately when a connection is established, and

maintained by the X11 library, and is thereafter available locally to applications.

Resource ID’s were allocated in the server when resources were created in X10, and returned

to the client as part of a synchronous request. The first toolkits built for X102,3 exposed how

expensive synchronous resource creation could be, as applications began to create many win-

dows and other resources. In X11, as part of the connection setup message, a client is allocated

a range of resource ID’s, allowing a client to allocate a resource ID directly and makes all re-

source creation requests non-blocking calls.

X10 also required pixmaps for all backgrounds and borders of windows, even when they

were solid colors, again resulting in more round trips for window creation and excessive con-

sumption of server resources.

Clients external to the base system provide much of the user interface to the window system

and is possibly the most unusual part of X. Previous versions of X had shown us how valuable

1PostScript is a trademark of Adobe Systems Incorporated

November 21, 1990

6 J. GETTYS, P. L. KARLTON, S. MCGREGOR

external window management was, though certain styles of window management (for example,

tiling or decorating window managers) could not be built. X11 provides the facilities to build

these styles of window management.

X11 introduces a new resource type: the GC (short for Graphics Context), which encapsulates

the state required for graphics operations. Previous versions of X had relied on state-free

graphics derived from the Digital VAXstation 100* graphics system: every graphics request

provided a complete list of parameters. Extending X10’s model to include the more sophisti-

cated graphics we needed would have required greatly expanding the number of arguments to

graphics requests, incurring transport overhead and interface complexity.

A state-based graphics model reduces the resource validation overhead of graphics requests,

as well as the transport overhead (by reducing the size of a graphics request) and complexity of

the interface. We considered making the window and graphics state part of the connection, or

the graphics context part of the window. These options would have reduced the overhead of

many painting calls still further, but would have complicated applications in multi-threaded en-

vironments or enlarged the window structure greatly. X11 therefore specifies both a window

and a GC in every painting request, which is quite compact and allows for easy multi-threaded

use of a single connection to the server.

All data transmitted by the protocol is kept naturally aligned for 32 bit architectures as in

X10, making it easier to port the server and X library. It also increases efficiency since even

architectures which allow access to unaligned data (like the VAX*) may exact substantial per-

formance penalties. X10 had a fixed size basic request which resulted in unused bytes being

transmitted from clients to the server for many requests. X11 uses variable length requests,

sending no more bytes than necessary for the request (given the 4 byte rounding requirement).

The minimum request size in X11 therefore is four bytes, in contrast to X10’s 24 bytes, result-

ing in substantial speedup in X11. Transport was seldom a performance bottleneck in X10, but

with faster servers and X11’s more complete graphics model the fixed overhead would have

become more significant.

The X10 wire protocol was also awkward to interpret. The server had to look inside of a

fixed length request to see if there was additional data for the request, making it difficult to

know when an entire request had be received. Request dispatching is the main loop of the X

server, performance here is critical. X11’s wire protocol encoding avoids the problem. Sixteen

bits of each request (in a fixed location) specifies the length (in 32 bit quantities) of the entire

request, so no knowledge of the protocol is required to know when a request is complete, and

*VAX and VAXstation are trademarks of Digital Equipment Corporation.

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 7

allows the protocol to be extended easily, as the dispatcher needs no knowledge of specific X

request formats.

Display Support

Supporting current and future display hardware was X11’s most important design goal. X10

expected at most one colormap on a single screen, in which the entire pixel of at most 16 bits

indexed into a table to get values to drive the CRT. X11 supports up to 32 bit pixels, multiple

interpretations of pixel data (called visuals, discussed in further detail below), multiple

colormaps and multiple screens, including hardware with true color support, which often has 24

bits/pixel. Many displays have more sophisticated colormap hardware as well. They may al-

low clients to regard them both as pseudo-color devices (writable colormap) and as true color

displays (8 bits each of red, green and blue), and sometimes include more than one lookup ta-

ble, which may or may not be available simultaneously. Multiple screens may be driven by a

single server, and different screens may have quite different capabilities.

While the core X11 protocol does not define 3D requests, we knew that a 3D extension would

be necessary and that X must be usable on very high-end 3D displays, some of which have as

many as 200 bits per pixel (though they do not use more than 32 bits/pixel for storage of color

information, using the additional bits for double buffering, Z and/or alpha channel information).

Some display hardware allows multiple interpretations of pixel data, often on a per-pixel ba-

sis. For example, a few bits of each pixel may determine which colormap is used when inter-

preting each pixel and the colormaps may be of completely different types. X11 carefully sepa-

rates the specification of how a pixel is interpreted from the pixel’s color data. These different

ways of dealing with pixel interpretation on a screen are called visuals. Some visual types may

only be usable at certain depths of the display. For example, a 24 bit true color display might

also support an 8 bit deep pseudo-color colormap. For each screen of the display, there is a list

of valid visual types supported at different depths of the screen; because default visual types are

defined for each screen, most simple applications need not deal with the complexity of many

visual types.

Visual types are StaticGray, GrayScale, StaticColor, TrueColor, PseudoColor and

DirectColor. The following concepts may serve to make the explanation of visual types clearer.

The screen can be color or gray scale and can have a colormap that is writable or read-only, and

November 21, 1990

8 J. GETTYS, P. L. KARLTON, S. MCGREGOR

the colormap can be a single table or 3 tables (one for red, green and blue), leading to the

following diagram:

Conceptually, as each pixel is read out of video memory for display on the screen, goes

through a look-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily

on some hardware, in limited ways on other hardware, and not at all on other hardware (A

colormap that provides the identity transform and is read-only may not actually exist in hard-

ware). The visual types affect the colormap and the RGB values in the following ways:

• For PseudoColor, a pixel value indexes a colormap to produce independent RGB values,

and the red, green and blue values can be individually changed.

• GrayScale is treated the same way as PseudoColor except that the primary color that drives

the screen is undefined. Thus, the client must always store the same value for red, green,

and blue in the colormaps.

• For DirectColor, a pixel value is decomposed into separate RGB subfields, and each sub-

field separately indexes the colormap for the corresponding value. The RGB values can be

changed dynamically.

• TrueColor is treated the same way as DirectColor except that the colormap has predefined,

read-only RGB values. These RGB values are server-dependent but provide linear or near-

linear ramps in each primary.

• StaticColor is treated the same way as PseudoColor except that the colormap has prede-

fined, read-only, server-dependent RGB values.

• StaticGray is treated the same way as StaticColor except that the RGB values are equal for

any single pixel value, thus resulting in shades of gray. A monochrome display can be

thought of as a StaticGray visual with a two-entry colormap.

A single X11 server (sometimes called a display in X terminology) may support several

screens that share a set of input devices. Screens can be of entirely different types: one screen

might be monochrome and a second screen color, for example. X11 allows off screen pixmaps

and backing store support, which may be limited by a given hardware implementation to finite

resources. However, the X11 core protocol does not allow moving windows from one screen to

Undecomposed
Colormap

Decomposed
Colormap

Static Color

True Color

Pseudo Color

Direct Color

Static Gray Gray Scale

R/O R/W R/O R/W
Color Gray Scale

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 9

another and operations between drawables on different screens; we judged the complexity too

great to require this ability. There is no way to guarantee that an operation could be performed

between screens, because the resources required can not be determined in advance. If two

physical screens are similar enough, a server implementors may provide a single double-width

(or double-height) screen rather than two separate screens, or an extension can be defined to

allow this operation between similar enough screens.

X supports two basic forms of color map entries. Read-only color map entries may be shared

between clients; read/write entries are typically allocated for exclusive use of a single client. X

encourages applications to share colors out of a default color map. X11 introduces multiple

color maps for applications that cannot live sharing color resources with other applications. If

an allocation in the default map fails, a client can copy the entries it allocated to a new color

map of the same visual type and free those entries out of the original color map. An additional

allocation primitive was added for allocation in a segmented color map.

Windows

X10 supported transparent and normal windows. X11 introduces window classes, in part to

support extensions, though this capability has not yet been used. The X11 core protocol sup-

ports two window classes: input-output and input-only windows. Input-only windows differ

from X10 transparent windows in that graphics output is explicitly disallowed. Input-only win-

dows can have cursors and behave as normal windows for input dispatch operations, but do not

clip the windows behind them which differs somewhat from X10 transparent windows. For ex-

ample, menus can be implemented as a set of input only windows with highlighting keyed off

of window enter/exit events; this approach worked very well in X10.

Borders and backgrounds of windows in X11 can be specified using either a pixel value or a

pixmap. In X10, all window backgrounds and borders had to be specified as pixmaps implying

that the pixmaps must exist. The most common case observed, however, was that backgrounds

or borders are solid colors, so the overhead of creating these pixmaps was a waste and slowed

application startup. In X11 windows need not have a background, and the border width can be

zero (allowing applications that do not want them to ignore borders) allowing applications

which know they will paint a window entirely on exposure to avoid the background fill opera-

tion, which is useless and may cause flicker. Backgrounds can also be inherited from the parent

window, and if their parent window’s background is a pixmap, the background will be correctly

painted with the same tile origin.

When windows are resized, two issues emerge: what to do with the contents of the window,

and what to do with any subwindows of the window. X10 always threw away the contents of

November 21, 1990

10 J. GETTYS, P. L. KARLTON, S. MCGREGOR

windows and left subwindows in their original location. As a result, subwindows were often in

the wrong location when their parents were resized causing applications to repaint twice, once

in the wrong location, followed by a repaint in the correct location after repositioning subwin-

dows. Applications had to page in the code to repaint all subwindows, causing more paging ac-

tivity, which exacerbated performance problems.

To solve this problem present in X10 and many other window system, X11 introduces the

concepts of bit gravity and window gravity hints. Bit gravity allows applications to indicate

where the existing contents of a window should be after resize, and was invented by Bob Ayers

and Phil Karlton as part of the Xerox Development Environment10. Window gravity, original

to X11, allows applications to indicate where subwindows should be moved to when their par-

ent is resized. Gravities can be any of center, north, south, east, west, northeast, northwest,

southeast, and southwest. An application can also ask that window contents always be thrown

away and the background repainted (ForgetGravity) or remain at the same location relative to

the root window (StaticGravity), which, for example, is useful for cropping images when drag-

ging a window border. An application can ask for subwindows to be unmapped (UnmapGrav-

ity) when their parent is resized.

X has always taken and continues to take the position that clients are responsible for the con-

tents of windows. X10 implementations never maintained backing store. Backing store is diffi-

cult to provide on some hardware and is usually slower than asking applications to regenerate

the contents of windows, even on displays as simple as frame buffers. To provide backing store

is impossible in the general case: even virtual memory will run out eventually, and X encour-

ages the use of many windows. It was also a requirement that the same protocol be useful to a

low-end (possibly non-paging) X server as well as high-end workstations, implying that back-

ing store and save unders could only be hints, and not required, due to the memory require-

ments backing store and save-unders impose.

X11 applications can now provide backing store or save-under hints to the window system

server (which may be ignored). The backing store hint informs the server that the window is

computationally difficult to regenerate, and that preserving the contents of the window when it

is obscured would be beneficial. The save-under hint informs the window system that saving

the pixels under the window may be beneficial (for example, for pop-up menus).

As the name implies, the server may or may not honor hints and may stop honoring the hints

at any time. Implementations which honor these requests may reduce the number of exposure

events sent to clients and may prevent inactive applications from having to be paged in when

windows are moved, but comes at a cost in memory itself.

Since backing store memory available for a window can be very precious, particularly on a

deep display, there are also window attributes that inform the server which planes of the screen

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 11

need to be saved in backing store, along with a pixel value base so that the window can be re-

generated when exposed. Most current implementations and clients do not yet take advantage

of this optimization, though we expect that some will in the future, particularly on deep displays

with applications performing plane oriented colormap allocations. Only the planes of the win-

dow actually in use by the application need be saved.

Windows also have a property list, where arbitrary data can be stored associated with a win-

dow, discussed in a later section.

Each window has a color map associated with it; clients can change the color map of a win-

dow as long as the visual type allows it.

At the time of the protocol design meetings, we only had the X10 server design to go by. As

the list of new functionality grew long, we decided to be conservative and only support rectan-

gular shape windows in the core X11 protocol. In the X10 server implementation, non-

rectangular windows would have been quite difficult to implement. We knew from experience

that rectangular windows were sufficient for essentially all applications. There are a significant

number of applications, however, which need to confine graphics output to non-rectangular re-

gions. As a result, the core X11 protocol supports clip regions in GC’s.

More recently, arbitrary shaped windows windows were added to the X11 sample server im-

plementation as an extension; initial implementation time was approximately four hours. Had

we realized the implementation would be that easy, we would have specified non-rectangular

windows in the core protocol. In retrospect, this is understandable: the requirement for region-

based graphics had forced the sample server’s clipping algorithms in the sample server to also

be region-based. We expect that non-rectangular windows are mostly useful for certain kinds

of input control, and for situations in which application writers want to ensure that arbitrary ar-

eas on the screen are at the same stacking order when manipulated; they have also been used to

implement rounded buttons.

X10 always raised a window to the top of the stack when the window was manipulated which

was quite irritating under some circumstances. X11 does not change the window’s stacking or-

der when a window is resized or moved but provides separate primitives for controlling the

relative stacking order of windows.

X windows include a border, which can be either a pixel or a pixmap. Borders are somewhat

contrary to the general philosophy of windows in X, where they are very light-weight objects

by comparison with windows in many other systems.

We seriously discussed removing window borders and backgrounds from X11. Given back-

grounds, one could synthesize borders by two nested windows. Backgrounds have indeed

proved themselves before and since, but borders are more contentious. Against borders are the

observation that borders increase window size, increase server complexity, and complicate co-

November 21, 1990

12 J. GETTYS, P. L. KARLTON, S. MCGREGOR

ordinate systems. But many windows need some visible edge and borders are therefore a sim-

ple treatment of a common case. This permits users to see windows enough to “mouse ahead”

even if the application is paged out or otherwise busy. Removing borders would have made the

conversion to X11 more difficult. Any memory savings in the size of window structures would

be outweighed by the additional window structures in the server presuming borders are imple-

mented as two windows (so windows would be visible for mouse-ahead). In the end, we de-

cided to retain window borders, and we continue arguing among ourselves (sometimes heat-

edly).

Atoms, Property Lists and Selections

X10 had protocol requests for associating a few specific pieces of data with a window. Ap-

plications and window managers used this data to communicate with each other. It was clear

that there was insufficient information to support all possible window managers.

X10 had a collection of requests which would attach some window management information

(name, desired geometry, etc.) to windows, or allow information to be stored on windows to

allow interchange of data between applications. Any finite number of requests would have

been inadequate as new window managers were written. Further, applications needed their own

information channels between one another.

The ad-hoc collection of facilities was ripe for replacement by the much more general facili-

ties found in X11. In addition, un-typed cut buffers are really inadequate for data exchange

between applications. Several of us were familiar with the selection mechanism first developed

at Xerox, which allows polymorphic exchange of type information; we very much wanted this

kind of facility for X11, in addition to cut buffers (for backward compatibility). No other

mechanisms were seriously considered. X11 has a single simple, general, mechanism called

Properties for associating data with windows; with the selection mechanisms much more pow-

erful general communication can take place.

Though is possible to define an arbitrary inter-client communication protocol on top of the

mechanisms that X11 provides, it is not an appropriate use of these facilities. The X protocol is

not an efficient RPC mechanism or a good way to transfer a 10 megabyte file. Much better,

general facilities such as NCS4 are becoming available and should be used. The intent of the

facilities X11 provides is to enable X applications to interchange relatively small volumes of

typed data conveniently. We suggest that applications exchanging large volumes of data ar-

range a rendezvous using X, but then use other mechanisms more suited and more efficient for

large data transport. It is a failing of the ICCCM that this point of view is not encouraged more.

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 13

Atoms

The inter-client communication facilities in X11 use Atoms. At the conceptual level, Atoms

are unique names. They can be thought of as a bundle of bytes, like strings, but shorter. We felt

that passing sequences of bytes across the wire would be too costly. Further, implementation is

easier if events as they appear “on the wire” have a fixed size (in fact, 32 bytes), and since some

events contain Atoms a fixed-size representation for them was needed. The X11 protocol re-

quest InternAtom registers a byte sequence with the server, which returns a unique 29-bit value1

(unique over the server’s lifetime) that maps to the byte sequence. The inverse operator is also

available (GetAtomName).

The protocol specifies a number of predefined Atoms. They are an implementation trick to

avoid the cost of Interning many atoms that are expected to be used during the startup phase of

all applications.

Toolkits or the X language libraries should cache atom-name mappings and call InternAtom

only when required; in addition, they may want to batch InternAtom calls in the library, to re-

duce server round trips.. This has proved to be a significant performance problem; such cach-

ing in Xlib is very likely to appear in release 5 of the MIT X distribution. The common lisp

(CLX5) interface, for instance, makes no distinction between predefined atoms and other atoms;

all atoms are viewed as symbols at the interface. However, a CLX implementation typically

keeps a symbol/atom cache, which it initializes with the predefined atoms.

Properties

Each window has an associated property list which may be empty. The server itself makes no

semantic use of the value of or the existence of properties. It does, of course, mediate their use.

Property lists are somewhat like those used in LISP. A property consists of a name, a type, a

data format, and some data. Each property is named by an atom, and its type is named by an

additional atom. At most one property of any given name, independent of type, can be associ-

ated with a window. Properties can be changed, read, and deleted after they are created. The

list of properties on a window can be listed. Data stored on window properties is reclaimed

when the window is destroyed, not when the creator/editor of the property goes away.

When the value of a property changes or is deleted, an event of type PropertyChange is sent

to any interested client, permitting clients to monitor changes to properties (for example, the

name of windows, or other window manager hints).

1All ID’s in X are 29 bits (the high order three bits must be zero) which eases their use in tagged language envi-
ronments such as lisp and CLU, where a few bits may be used for basic type information.

November 21, 1990

14 J. GETTYS, P. L. KARLTON, S. MCGREGOR

It would have been desirable to be able to describe an arbitrary data structure within a prop-

erty. Unfortunately, that would have necessitated inventing yet another mechanism, actually a

language, for record declaration. Coupled with the need for byte swapping when interchanging

data between some machine architectures, this seemed like too much complexity for us to un-

dertake. Instead all of the data within a single property is an array with elements of width 8 bits,

16 bits or 32 bits. Client routines must explicitly pack and unpack their data structures into and

out of properties. (There are several “built in” properties along with their associated types, and

Xlib does the packing and unpacking).

It was an explicit design goal of X11 to specify mechanism rather than policy. As a result, a

client that converses with the server may operate “correctly” in isolation but not coexist prop-

erly with others sharing the same server. The Inter-Client Communication Conventions Manual

(ICCCM2, 36), adopted as a standard after X11’s initial release, defines a set of conventions and

standard properties to allow clients to cooperate in areas of selections, cut buffers, window

management, session management and other resources. As the X community grows in size and

experience, we expect that additional “standard” property types will be defined.

Selections

X10 only supported cut and paste buffers. X11 provides a much more general mechanism,

called a selection, which was first implemented in window systems at Xerox. A selection can

be thought of as an indirectly addressed property value with dynamic type. That is the property

is not stored in the server, but is maintained by some client (the owner). A selection is global in

nature: it belongs to the user (though maintained by clients), rather than being private to a par-

ticular window subhierarchy or a particular set of clients. There can be an arbitrary number of

selections, each named by an atom.

When a client asks for the value of a selection, it specifies a selection target type. The target

type can be used to control the transmitted representation of the value. For example, if the se-

lection is an image, then the target type might specify whether the image should be sent in

XYFormat or ZFormat. The target type can also be used to control the class of values transmit-

ted; e.g., asking for the "looks" (fonts, line spacing, indentation, etc.) of a paragraph selection,

rather than the text of the paragraph.

The discussion below is only an outline; for full details, see the ICCCM.

Two clients exchange data using selections in a sequence which starts when a client asserts

ownership by setting the owner to a window that it created (typically because the user selected

some data he wants to use in some other client). The other client can then request the selection

be converted to some target (which may not be the same as the desired type) typically when the

user copies the selection into the application.

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 15

The selection owner converts its representation of the selected material to the type dictated

indirectly through the target specified by the requester, and stores it as a property on the win-

dow specified in the request. (Typically it is one of the requester’s windows.) The owner then

sends a SelectionNotify event to the requester letting it know that the conversion is completed.

If there is no owner of that selection the server sends SelectionNotify with property=None,

meaning that the requester can expect an answer in a reasonable time frame, since either the

server will respond or the conforming owner will respond. For values that are too large to be

stored in the server, handshaking is used to copy smaller fragments.

By using the time stamp from the last event from the user race conditions can be prevented,

since getting ownership of a selection or requesting conversion happens as the result of a user

action.

There can be an arbitrary number of selections, each named by an atom. To conform with the

inter-client conventions, however, clients need deal with only three selections: Primary, Secon-

dary and Clipboard. Other selections may be used freely for private communication among re-

lated groups of clients. Clipboards present a completely different style of user interface, using

the same primitives. We will illustrate the use of selections here by discussing Primary and

Secondary selections only; see the ICCCM for details of Clipboard.

The selection named by the atom Primary is used for all commands which take only a single

argument. It is the principal means of communication between clients which use the selection

mechanism.

The selection named by the atom Secondary is used:

• As the second argument to commands taking two arguments, for example “exchange pri-

mary and secondary selections”.

• As a means of obtaining data when there is a primary selection, and the user does not wish

to disturb it.

The selection named by the atom Clipboard is used to hold data being transferred between

clients, normally being “cut” or “copied” and then “pasted.”

Primary

Many commands take but a single argument; the user can merely make a selection and then

execute the command that applies to it. It is important that the command invoked in some appli-

cation not care the selection is in the same application, implying that the selection must be

global. Since the selection is usually highlighted in some manner, it is necessary for the old se-

lection to be un-highlighted whenever a new selection is made. X11 automatically sends events

to clients to inform them when they lose a selection.

November 21, 1990

16 J. GETTYS, P. L. KARLTON, S. MCGREGOR

Not all functions want to know the same thing about the selection. Some might want the text

(the copy command); some might be more interested in the font or face of the selection (the

look-like-that command); etc. To avoid the need to enumerate all the possible selection targets,

the X11 is built with an open ended set of target types. Clients have to be prepared for the

possibility that the owner will be unable to convert the selection to the target requested. At a

minimum, most owners can deliver the selection as text.

A simple example: you receive a mail message containing the name of a file and you decide

you would like to view it in some file display application. Selecting the file name and invoking

the "Load" function in the application should be sufficient, rather than requiring the user to

bring up a file selection dialog box and copy the file name into the text field of it and then in-

voke the open function. If there is no appropriate selection when a load function was invoked,

then a file selection dialog box would be opened.

A slightly more complicated example: you have a debugger window and a generic file dis-

play/editing window. Imagine are looking at some file in the displayer, hunting for the bug.

You select some word in the file, move the mouse into the debugger window and invoke the

"Set Breakpoint" command button. The debugger and the file displayer are not in the same ad-

dress space, (they might not even be on the same machine.), and don’t know much about each

other. They have agreed, however, on the semantics of some selection targets. The debugger

then asks the current selection “What is the value as a ’FileName’?” and gets back

“/udir/karlton/hacks/selection.c”; it asks for the value of the selection as a ‘LineNumber’; gets

back 93. The debugger can then set the break point at the correct point.

Similar kinds of cooperation would make using a mail system easier. If most objects had a

notion of an author/owner, then when a mail composition tool, for instance, were invoked, it

could get the author and initialize the form correctly. There is no need to build a mailer into a

bulletin board reader, when the mailer can ask the bulletin board reader for the information it

needs when it needs it. The information might include the author/owner of a message being

replied to, the name and position of the file containing the bulletin board information, the infor-

mation of the message itself, in whatever mutually agreeable form is convenient, and so on.

Secondary

A single global selection is insufficient in some user interface models, which may need the

notion of the “current” selection yet also need to be able to communicate other information be-

tween applications, using the same request-reply model of the primary selection.

For example the user may want to swap the value of two items on the screen. He can make

primary and secondary selections and then press a swap button.

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 17

Another case is when the user is entering new text (in some user interfaces, the current selec-

tion is reduced to merely be the location of the caret when the user is entering new text) and

sees some desirable text some place else just waiting to be grabbed and inserted. One user inter-

face for accomplishing this task is to make a secondary selection in some manner (for example,

holding down a shift key while using the mouse buttons) and then letting up on the shift key

when the proper secondary-selection has been made. Note that in this case that the primary se-

lection is unaffected by the manipulation.

Selections are fundamentally different from cut buffers, since cut buffers have no way for cli-

ents to negotiate the type of the interchanged information. On a limited operating system envi-

ronment such as MS-DOS* or MAC/OS, only a single application can run at a time, so it is not

possible for two applications to negotiate the “greatest common multiple” data representation in

common between applications. Instead, such systems must take a much more pessimistic view

of data interchange, which has sometimes been promoted as a good idea, when it is merely ex-

pediency caused by the limited execution environment.

Selections do increase the burden on application writers to some extent, but represent a major

improvement for users of the system. Much of the additional work required is generally encap-

sulated in the toolkit the application writer uses, so it is not usually a great burden on writers of

most applications.

Events

X events inform the client of external events, caused either directly by the user (mouse,

key/button, enter/leave events) or as a side effect of a request by a client (expose, resize, map,

etc.). X11 has many more event types that X10 did; most of these are for support of toolkits

and window managers, and typical programmers do not have to deal with them directly.

Device-related events propagate from the source window to ancestor windows until some cli-

ent application has selected that event type or until the event is explicitly discarded. The X

server generally sends an event to a client application only if a client has specifically asked to

be informed of that event type.

Event reporting is enabled (with a few exceptions) by the window’s event flag attribute,

which can be set when a window is created or changed by explicit requests. X10 allowed only

a single client to select for input. X11 allows more than one client to select most types of

events (in effect, the event flag attribute is per client, per window, rather than just per window),

solving various problems that the restriction caused in X10 (For example, X11 lets an applica-

*MS-DOS® is a registered trademark of Microsoft Corporation

November 21, 1990

18 J. GETTYS, P. L. KARLTON, S. MCGREGOR

tion capture all keystrokes to a display). Applications can suppress event propagation by use of

the Do Not Propagate event mask, to prevent the server from generating unneeded events from

child windows.

In contrast to X10, X11 allows multiple clients to select for the same events; the events will

be broadcast to all clients who have asked. Only a single client can select for redirected events,

however.

The table below summarizes X11’s event types:

Event type: Cause

MotionNotify Pointer moved

EnterNotify, LeaveNotify Pointer entered or left a window

KeyPress, KeyRelease

 ButtonPress, ButtonRelease Keyboard key or pointer button state changed

FocusIn, FocusOut Keyboard input focus state changed

KeymapNotify Keyboard state at EnterNotify, FocusIn events

ColormapNotify Colormap changed or (un)installed

Expose Window exposed

GraphicsExpose, NoExpose Exposure due to CopyArea

CirculateNotify Window circulated

ConfigureNotify Window reconfigured

GravityNotify Change due to window gravity

MapNotify, UnmapNotify Window (un)mapped

ReparentNotify Window reparented

VisibilityNotify Window visibility changed

CreateNotify, DestroyNotify Window created or destroyed

ResizeRequest, CirculateRequest,

 ConfigureRequest MapRequest Window state change requested

ClientMessage Message sent from a (possibly different) client

PropertyNotify, SelectionClear

 SelectionRequest, SelectionNotify Selection related events

MappingNotify Keyboard keysym mapping changed

A few events are always sent to all clients. MappingNotify events are always sent to clients,

and GraphicsExpose and NoExpose events are sent as a result of CopyPlane and CopyArea re-

quests unless the client suppresses them by setting the graphics exposures in the GC to False.

Most events contain a small number of fixed fields: the event type, the serial number of the

last request executed for this client, a bit which indicates whether the event is synthetic (i.e. was

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 19

sent by another client), and a window ID. The window ID in the fixed part of the event is cho-

sen to be that most useful for toolkit dispatching. The X11 library for C also adds a pointer to

the display from which the event was received. Additional data specific to the event type is

sent in each event.

Many events contain a timestamp indicating when the event occurred. There are several

more events which should have contained a timestamp; the oversight may be rectified in a fu-

ture (upward compatible) revision of the protocol. Timestamps are used to resolve race condi-

tions that occur when multiple clients interact with a single server.

Clients normally keep track of their windows in some detail, since it is very expensive to

query the server for information about windows. It is generally a mistake for a client to keep

detailed geometry information about its window tree based on server events. Such a local data-

base will often be out of date; many race conditions occur when windows are resized by exter-

nal window managers, and it effectively makes a client synchronous with the server, which kills

performance. In general, toolkits should assume that they have control of subwindows in their

application, and should use structure notification events to know when their top-level windows

have been resized. Of course, a toolkit must still ask the server for notification of focus

changes, window crossing, and other such events.

Window Management Functions

X has always separated window management policy from the base window system. Typi-

cally, a single client, external to the X server provides the user interface for manipulating exist-

ing windows, using the facilities the server provides. These clients are called “window manag-

ers.”

A number of different window managers were written for X10. These typically worked by

clicking on a window with one or more modifier keys, or by clicking on a window provided by

the window manager and then on the window to be manipulated. Some of these window man-

agers are great for expert users. They typically require two hands to use, however, and are rela-

tively unapproachable because there are no visible clues to help the user learn how to use the

system. Experience with X10, however, had convinced us that external window managers are

not only feasible, but highly desirable.

The X10 protocol precluded several important styles of user interface. On the Xerox Star14,

the Apple Macintosh*, and many other window systems, most operations to move, resize, raise,

*Macintosh is a trademark licensed to Apple Computer, Inc. Apple® and the Apple logo are registered trademarks
of Apple Computer, Inc.

November 21, 1990

20 J. GETTYS, P. L. KARLTON, S. MCGREGOR

or lower an application window are accessed by mouse operations on window “decoration,” i.e.

clicking on the title or other visible appendages at the edge of the window. Some other systems

like, the Andrew7 system provide a tiled user interface in which application windows can not

overlap. Some general mechanisms had to be found to allow these and other window manag-

ers.

In X10, the server immediately performed all requests that a window be mapped, resized,

moved or raised. X11 adds facilities for window managers (or toolkits) to override any opera-

tion that would affect the placement of a window. When any such request is received an event

is sent (the request is redirected) to the client that has requested such control. The controlling

client can then enforce whatever placement policy it wants. Since pop-ups must respond imme-

diately for good interactive feel, there is no time to involve a window manager. Each window

therefore has an additional attribute called override-redirect which if set overrides redirection.

Since there is no guarantee that a MapWindow request actually results in the window being

mapped, redirection requires clients to be event-driven for repainting other than pop-up win-

dows.

The redirect facilities in concert with the reparent operation allow a window manager to

decorate windows: it can create a frame for a window, which may include title bars, resize

boxes, and other visible cues to the user, and reparent the client’s window into the frame, before

the client’s window is ever mapped to the screen. Events inside the frame but not inside the

application’s window will be dispatched to the window manager.

By convention, clients store “hints” on their windows to inform the window manager of their

preference for size or location, as discussed above in the section on properties. Some window

managers may choose not to honor these hints (for example a window manager which imposes

a tiling user interface). Correct X clients are expected to do the best they can with whatever

screen real-estate the window manager has provided, rather than fight the window manager.

Child windows are normally destroyed when their parents are destroyed, which may occur

either directly via a DestroyWindow request or when a connection fails. A window manager

can arrange, however, that if it should exit (possibly due to a failure on its part), and its frame

windows are therefore destroyed, that other client’s windows will be properly reparented and

remapped, using the save-set facility in X11, providing for a more robust environment in the

face of inevitable window manager failures. By adding to the window manager’s save set the

managed windows, these windows will be reparented when the window manager’s connection

closes. Reparenting window managers should use this facility to avoid accidental destruction of

clients if the window manager dies.

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 21

The close down mode of a connection determines if resources outlive the connection that cre-

ated them. For example, a user could use this to examine the window of a dead application,

which would normally have been destroyed before the user could diagnose the problem.

Screen real-estate is not the only scarce resource that window managers need to be able to

control. By keeping track of the creation of colormaps and their assignment to windows, a win-

dow manager can set policy on which colormaps are active at a given moment, based on the

current input focus, pointer location, or other factors. In some user interface styles, keyboard

input is sent to the window under the pointer; in others it is set to a specific window. Each of

these has its advantages and disadvantages, and users often have very strong feelings on which

they prefer. X11 contains facilities that allow a window manager (and therefore ultimately the

user, through his choice of window manager) to control input focus.

X normally sends events to clients immediately, which is the correct default behavior, but it

does not provide sufficient control over input processing when an application lags behind an

experienced user. For example, some user interface styles may want the first click on a window

to set the keyboard input focus, and also still deliver the event to the application. “Mouse

ahead” on menus should work properly (even though the menu’s window may not have been

mapped yet). Many of these user interfaces depend upon synchronous delivery of events.

The basic mechanism controlling event delivery in X11 is called a “grab.” There are two

kinds of grabs: active and passive. When mouse buttons or keyboard keys are grabbed, events

will be sent to the grabbing client rather than the client who would normally have received

them. An active grab occurs when a single client grabs the keyboard and/or pointer explicitly.

A passive grab occurs when clients grab a particular keyboard key or pointer button in a win-

dow, and the grab will activate when the key or button is actually pressed (you might think of a

passive grab as a trap, waiting to be sprung). If the keyboard or pointer is in synchronous

mode, no further events are processed until the grabbing client allows them. The keyboard or

pointer is considered frozen during this interval, and the X11 server postpones processing of

subsequent events until told. The event that triggered the grab can also be replayed. Delivery of

pointer and keyboard events can be controlled independently. Note that the logical state of a

device (as seen by client applications) may lag the physical state if device event processing is

frozen. Grabs activate on an outside in sequence (the largest containing window with a grab

set), whereas normal event propagation is inside out (the event goes to the smallest enclosing

window).

Various events may be generated as a side effect of a grab. For example, a FocusOut event

will be sent to interested clients when a keyboard grab activates. The pointer cursor can also be

confined to a window during a grab; for example, you can implement scroll bars in which the

cursor will not leave the scroll area until the pointer button is released.

November 21, 1990

22 J. GETTYS, P. L. KARLTON, S. MCGREGOR

Passive grabs are convenient for implementing reliable pop-up menus. For example, you can

guarantee that the pop-up is mapped before the up pointer button event occurs by grabbing a

button requesting synchronous behavior. The down event will trigger the grab and freeze fur-

ther event processing until you have the chance to map the pop-up window (typically with

override-redirect set on the window). You can then allow further event processing, and in this

example the up event would then be correctly processed relative to the pop-up window. See

the companion paper by Gajewska et al.22 for more detail and mistakes in the design of grabs.

The X11 server maintains the time when the input focus was last changed, when the keyboard

was last grabbed, when the pointer was last grabbed, or when a selection was last changed.

Your application may be slow reacting to an event (it may have been paged out, or be at the

other end of a slow network link, for example). You often need some way to specify that your

request should not be performed if another application has in the meanwhile taken control of

the keyboard, pointer, or selection. By providing the timestamp from the event in the request

for one of these operations, you can arrange that grabs and other requests not take effect if

someone else has performed an operation in the meanwhile. This problem exists because multi-

ple clients send requests to the server, and these requests are issued (but may not arrive!) in the

logical sequence that user actions occur in. So much as possible, clients use timestamps from

user events to let the server know the time-ordering the requests are logically in.

In addition to the general facilities discussed above, there are a set of less basic, but still im-

portant facilities discussed below.

On occasion a client may need to make a sequence of requests atomic, (for example, when

editing a shared property) by grabbing the entire server. Server grabs should not span interac-

tions with a user. Keyboard keys can also be grabbed like pointer keys, allowing the implemen-

tation of various sorts of help facilities which may want to bind such help to a keyboard key.

Window managers may also want to stop execution of a client. The KillClient request kills a

client by naming one of their resources (typically a window); the server will then close the con-

nection to that client without warning. The closing of the server connection informs the client

that it should exit.

Window managers need to control which color maps are currently in use on the screen; for

example, they may want to install colormaps based on which window owns the input focus. At

any given time, some set of color maps may be installed simultaneously; the number of color

maps is hardware dependent. X11 provides calls to install or uninstall color maps. Clients (typi-

cally window managers) can also ask to be informed when the color map of a window is

changed, or when color maps are installed or uninstalled.

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 23

Clients may need to inform other clients of significant events. X11 events can be synthesized

and sent to a client. The server adds a bit to the event to indicate the event was synthetic (for

security reasons); the event is otherwise untouched.

Graphics

Previous X versions used a state free graphics interface derived from the VS100. A state free

graphics interface could not gracefully extend to the level of functionality we needed, which

included functionality from other window and graphics packages. We therefore completely

redesigned the graphics interface. The hardest decisions were what to leave out; our primary

goal was to create a design that fixed the more serious omissions of X10 and could be imple-

mented within a reasonable amount of time. We settled on three other general design goals:

simplicity, performance, and the definition of a precise drawing model. In general, we took But-

ler Lampson’s sage advice8: Interfaces should be simple, they should be complete, and they

should admit a sufficiently small and fast implementation. Do one thing well, don’t generalize,

get it right, don’t hide power, and leave it to the client.

Though it was tempting to provide grandiose functionality, our goal of simplicity lead us to

exclude 3D graphics, world coordinate systems (including sub-pixel positioning), and anything

more than just basic image and text manipulation functions. Some of these were hard choices;

for example, without sub-pixel positioning it’s not possible to produce the best rendition on

color or gray-scale displays.

We capitalized on experience from several rendering models in X11 including X101,

PostScript11, MS-Windows12, the MacIntosh13, Xerox workstations8,9,10,14, and 3D

CAD/CAM. From PostScript we took the line and font models. X10 and Xerox window sys-

tems gave us the rasterops and basic integer coordinates. The 3D graphics world gave us the

concept of adjacent objects not overlapping pixels. While it may seem like from these sen-

tences we combined everything, we carefully left out the PHIGS15/GKS16 imaging model of

display lists. With retrospect, some support for scaling of coordinate systems and 90, 180 and

270 degree rotations in the core protocol might have been a good idea and not too hard to im-

plement; the current design is awkward to implement world coordinate systems in client code.

This could be added by extending the GC in a clean fashion. 3D functionality was left to a later

date.

Performance is the most important aspect of any graphics system. Many operations are re-

quired to display an application’s graphic user interface, and the difference between fast and

slow rendering determines whether techniques such as dragging images or editing of complex

text and graphics are feasible. One performance technique that works quite well is to observe

November 21, 1990

24 J. GETTYS, P. L. KARLTON, S. MCGREGOR

that applications that draw a line or a rectangle tend to draw another with high probability. By

designing many of the common drawing primitives to operate on an array of objects instead of a

single object, saves both network protocol overhead and set-up costs in the low-level drawing

software and hardware. We call these "poly" routines and apply them to points, lines, rectan-

gles, arcs, and text. Another performance technique allows for machine-specific renderings that

might differ from the official semantics. Some graphics functions are so frequently used and

performance so critical that there are special interfaces that overlapped with others in function-

ality. With hindsight, we should have made all graphics requests poly requests, including poly-

gon, which is fertile ground for an X extension.

The X protocol is based on a bi-directional stream. Requests that generate a reply from the

server can also be batched or streamed, if the client is willing to do the necessary book keeping.

Therefore a library interface can generate multiple X requests and handle the resulting replies in

a single server round trip. This ability to batch requests was exploited more heavily in X10

Xlib, where many more basic requests (for example, CreateWindow) required replies. As new

facilities in X11 are now being more heavily exercised, we expect to add some additional li-

brary interfaces as needed for performance problems; at the time of this writing, for example,

performance measurement shows InternAtom is causing many unnecessary round trips to the

server on application startup which can be avoided both by caching in the Xlib and by such

batching interfaces.

Some of the X10 functions needed attention, such as XDraw. XDraw drew a connected set of

lines and curves, but didn’t specify the algorithm used for curves other than they had to pass

through the vertices! XDraw in particular prompted the religion around precise definition of

algorithms. X11 defines exactly what pixels each graphics operation affects, for two reasons: it

makes testing possible, and it makes applications more portable across different X implementa-

tions. Most graphic applications carefully craft their screen appearance -- lines just touch cir-

cles, menu outlines have exact pixel relationships with other screen areas, etc. When an applica-

tion is run on different systems, it would hurt our portability goals if the application developer

had to recode the user interface to restore the proper screen appearance. MS-Windows1 and

PostScript11 solve the portability problem by providing a standard implementation, thereby

achieving identical results across different vendors’ platforms. Alternatively, the goal of the

sample server in X11 was to provide a generic implementation with the expectation that ven-

dors would rewrite significant portions of the server to get better performance or added func-

tionality, requiring that the X11 protocol specification precisely define the rendering semantics

1MS-Windows12 is a Trademark of Microsoft Incorporated

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 25

for each screen operation. Recently a test suite is being created that helps verify server confor-

mance with the specification.

Graphics Operations

In addition to routines for displaying text and clearing and copying areas, X11 provides draw-

ing routines for points, lines, rectangles, arcs, and polygons (but unfortunately, no poly-polygon

call, which would have been very useful). Xlib provides two interfaces to these requests: for

single objects and for an array of objects. The protocol provides the array form only. Xlib, how-

ever, combines adjacent single calls (if possible) into a single call on the "poly" routines, doing

wonders for graphics benchmark performance for less than optimal programs, and helps real

programs as well.

We decided not to include any curve functions in X11 other than elliptical arcs. This decision

was hard because we all wanted splines, yet we could not reach consensus on which family of

splines to include. Clients who want curves are encouraged to decompose the curves on the cli-

ent side into connected line segments, or to lobby for a future spline extension.

The filled polygon algorithm we chose in X11 differs from systems such as the MacIntosh.

The Macintosh’s QuickDraw and most other PC graphics packages connect the polygon verti-

ces with Bresenham lines and fill all the pixels up to and including the edges. We wanted a

model that would support compositing functions and extend gracefully to 3D.

How abutting shapes paint present a very interesting issue, which can be summarized in two

questions:

• Are there any gaps?

• Are there any overlaps?

In X11, the answers are no and no.

We believe that drawing two adjacent polygons should touch every pixel exactly once. For

example, a pie chart using X11 would draw every pixel once where QuickDraw would draw a

number of the edge pixels multiple times. Drawing a pixel multiple times isn’t a serious issue

for business graphics (although some glitches show up when using XOR), but it is fatal for

color compositing, especially when a surface is divided into many small polygons (for example,

by many CAD applications). The X11 protocol specification defines a filled polygon to include

the pixels that are inside the mathematical bounds of line segments joining the vertices. A pixel

is considered in the interior if the edge passes through the center and the pixel is to the right or

below of the edge.

The X11 model for “wide” lines (i.e. with a width greater than a single pixel) is similar to the

model for polygons. The line is defined by a path with a center on the line segment between the

November 21, 1990

26 J. GETTYS, P. L. KARLTON, S. MCGREGOR

two endpoints, drawn with a line segment brush perpendicular to the line. This model general-

izes to arcs, where the brush is perpendicular to the slope of the arc.

The X11 design is bit awkward with respect to lines. Our mathematical design is slower than

the more popular Bresenham algorithm for single pixel lines, so we wanted to allow Bresenham

for single pixels and the more general algorithm for wider lines. Our compromise is to borrow a

trick from PostScript and create the notion of a zero-width line, but use it for performance

rather than to draw a minimum width as PostScript does. A zero width line is drawn as fast as

the server implementation can, and has loose guarantees about the exact pixels that will be af-

fected. A width-one line is drawn per the general algorithm and will correctly abut lines of

other widths. The client has the choice of performance or precision. While this compromise

lacks elegance, it seems to be effective.

Among mistakes, wide arcs stand out. The problem with the specification showed up during

the implementation of the test suite code, when it was already too late to amend the specifica-

tion. The original server implementation didn’t implement “wide" arcs to specification. The

correct implementation produces "lumpy" or varying width curves, as a side affect of the wide

line definition. The subsequently published polygonal pen algorithms described by John

Hobby17, suggest possible solutions to this problem. In addition, it is impossible to generate

symmetric arcs or circles, since it is not possible to specify the center of the arc to a half pixel

center, again showing the problems with our unwillingness to compromise on integer pixel rep-

resentations.

X11 provides relatively minimal (but sufficient) facilities for imaging. Basic primitives in-

clude transferring a pixmap to the server and retrieving data from a window or pixmap. The

core protocol does not attempt to support any compression or image processing algorithms.

These requests have one important difference from the rest of the X11 protocol, since the

server’s byte order, alignment and padding of image data is imposed on the client (elsewhere in

the protocol, the server is required to adjust to the client), so that data can move between clients

and servers without copying. Under most circumstances the X11 library hides byte and bit order

from a client and will adjusts the data appropriately when it is transferred to or from the server.

Given the volume of image data, matching screen characteristics is critical for performance of

some applications.

Graphics Contexts

In X10, each Xlib graphics routine took a list of parameters that completely determined the

output semantics, and the parameters were transmitted on each request to the server. In X11, we

introduced the notion of "state" or "context" by which graphics routines take some of their pa-

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 27

rameters from the protocol request and others from a graphics context or "GC" specified by the

request.

The use of GCs allows many infrequently changed parameters to be removed from the call,

reducing request size and therefore transport cost. GC’s also map well to hardware. For exam-

ple, hardware that has registers that must be loaded with color information for drawing opera-

tions only need to be loaded when the GC is explicitly changed. In X10, the registers either had

to be loaded on each output request, or each parameter had to be compared with the previous

request to determine if a change was needed. Some restraint is necessary though; if parameters

that typically change on every graphics call are included in the context, performance will suffer

because the client will have to make two requests -- one to change the context and another to

display the graphics primitive.

It was difficult to choose exactly which information should be part of the context and which

should be parameters, but we settled on twenty-three GC attributes described below:

function Also known as rasterop, function determines how bits from a source are

logically combined with the destination.

plane_mask Allows graphics operations to be restricted so that they affect a subset

of the display planes on a color or multi-bit-per-pixel display.

foreground The color values used to draw the foreground and background

background components of graphic objects. For example, a double-dashed line

alternates between the GC foreground and background colors.

line_width These attributes determine how lines are drawn,

line_style describing the width (in pixels), the style (e.g.

cap_style solid or dashed), and how the lines are terminated

join_style or joined. The cap and join styles are very similar to PostScript.

fill_style The first attribute affects all line, and text requests,

fill_rule determining whether the object is drawn with the solid colors

or with patterns selected from the stipple or tile attributes (see below).

The fill rule affects self-intersecting polygons, choosing winding

rule or even-odd computation of the polygon’s interior.

arc_mode Arcs can be filled as chords or pie-slices.

November 21, 1990

28 J. GETTYS, P. L. KARLTON, S. MCGREGOR

tile A tile is a pixmap that is replicated across

stipple any object drawn, whereas a stipple is used as a mask for the

foreground and background colors. For example, text could be

output normally with a solid color, tiled for a pattern of arbitrary colors,

or stippled to get a partial coloring (e.g. 50% gray).

ts_x_origin An origin can be set within a tile or stipple so that an application can

ts_y_origin control the alignment with other objects. For example, the origin might

be set so that the fill will align with a back ground pattern.

font The font used by text operations.

subwindow_mode Determines whether child windows are excluded from the region a

GC can draw into.

graphics_exposures Requests GraphicsExpose and NoExpose events when performing

a CopyPlane or CopyArea request

clip_mask Each GC may be further restricted by the client to draw in a subset re-

clip_x_origin gion of a window, defined by a list of rectangles or a pixmap. The clip

clip_y_origin origin may be set to align the clip mask relative to the destination

drawable.

dashes The dash list and offset are much like PostScript in allowing the client

dash_offset to define arbitrary line dash patterns and control the initial alignment.

Here is an example of what an X11 graphics call would have looked like had we not intro-

duced GC’s:

 XFillRectangle (display, drawable, x, y, width, height, function, planemask, foreground,

background, tile_or_stipple, ts_x_origin, ts_y_origin, clip_x_origin, clip_y_origin,

clipmask)

and then with the addition of GCs:

 XFillRectangle (display, drawable, gc, x, y, width, height);

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 29

The decisions to include certain attributes in the GC were difficult. For example, some appli-

cations change the font on nearly every text call or the color on every rectangle call. In the end,

we decided to take the conservative approach of including attributes in the GC on the grounds

that setting GC attributes is relatively inexpensive, and that programs would be able to cache a

number of GCs when switching between a small number of states. Applications can also keep

several lists of different colors, and send them all at once. At least one person is experimenting

with an extension to allow color changes on a per-line basis (which can be implemented so that

applications are both upward and downward compatible).

Early in the design process, we were concerned about clients that might want to read back the

contents of a GC. We envisioned that the server implementors would take advantage of being

explicitly notified on state changes and to convert these into machine specific forms (especially

for clip regions). The combination of requiring the server to keep the client-supplied form, the

complexity of some of the data structures (e.g. clip masks), the performance consideration of a

server round-trip to read the attributes, and the inclusion of requests to copy GC’s, allowing

them to be saved and restored, led us to exclude the ability to read the attributes back from a

GC (in the server). (Besides, the application just wrote that value; it can remember!) We have,

however, included a write-back cache as part of Xlib, which allows GC attributes to be queried

and solves the round-trip performance problems. The drawback to caching GC attributes in Xlib

is that multiple clients sharing a GC cannot reliably query values without explicit communica-

tion and synchronization. In practice, it seems very rare that applications want to share GC’s.

The number of attributes in a GC means that they are fairly large data structures (the original

server implementation used 408 bytes per GC). Our expectation was that the number of GCs an

application would use would be relatively small, averaging one or two per application. We

seem to have underestimated the laziness of application writers (or the utility of having lots of

GCs to toolkit implementors), since instrumented servers show as many as hundreds of GCs in

use. The R4 release reduced the GC size to 116 bytes.

Text Painting and Font Support

X10 has very primitive font support inherited from the Digital VAXstation 100. It is inade-

quate for WYSIWYG editors, and does not support fonts of more than 256 glyphs, essential for

internationalization. One of the major goals of X11 was therefore better font support. X has

always taken the view that a character in a client application is merely an index into a table of

glyphs; it has never implied any control or font shift semantics. Any scheme by which multi-

font text is encoded into a string by shift or escape schemes is left to a client program and not

legislated by the X server.

November 21, 1990

30 J. GETTYS, P. L. KARLTON, S. MCGREGOR

X11 supports fonts of one or two byte characters. The general character and font metrics are

similar to PostScript. We decided against including multi-plane (gray-scale) fonts since they

are best used with sub-pixel positioning. We also decided against arbitrary rotation and scaling

of characters; our belief was that outline font technology was unsatisfactory at today’s monitor

resolution (at that time); improvements in algorithms for outline to bitmap font conversion have

occurred since X11 was designed, so there is now hope for solutions in this area. After argu-

ment, we decided not to support four quadrant character rotation, believing a general rotation

extension or a PostScript extension to X was a better solution. We probably should have in-

cluded 90 degree rotation as it is very much easier than general rotation.

Each font has a set of metrics describing basic information of the font: its interline spacing,

what characters are defined, etc. Each glyph in the font has left and right bearing information,

character width, and ascent and descent information. Each font also has associated with it a set

of font properties, describing other information: how to superscript or subscript the font, spac-

ing information, underlining and strikeout information, weight, italic information, etc. The font

property list is extensible to define arbitrary other properties about a font that may be needed.

The most general form of text painting requests allows for changing font and adding space

between every pair of characters printed. A full line of text in a WYSIWYG editor can be dis-

played in a single request. Glyphs in a font are normally thought of as masks, where only bits

in the glyph that are a ‘1’ are painted. In addition to these text requests, there are requests

which render the background of a character, rather than just the foreground (called "image

text"), which is useful for terminal emulators to avoid flicker.

It is surprisingly difficult to devise a scheme for naming fonts in a systematic way. The core

X11 protocol is quite silent on font naming, since we did not have a systematic scheme at the

time the protocol was being defined. It does provide a wild-card facility to enable matching

font names with some more general pattern. The X font naming convention since has been de-

fined in an auxiliary document, in the X Logical Font Description Conventions2 (XLFD). The

XLFD defines systematic ways of naming fonts to take into account point size, font face, italic,

foundry and the many other characteristics associated with a font, and it is now part of the X11

standard.

Fonts are named independently of the host file system. X11 does however, acknowledge that

there may be more than one place (directory) to find new fonts. Fonts are found according to a

search path, which defines which order fonts will be found in. The search path is global to the

X11 server, which is arguably wrong; it should probably have been specific to each client.

Cursors are usually stored in a font in X11, rather than as bit maps in client applications

(though it is still possible to form a cursor from bitmaps). By storing cursors in fonts, cursors

can be named independently of their size, so that different cursor hardware can be supported

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 31

easily. The same glyphs in a cursor font might be different on a display with 64x64 cursor

hardware than a 16x16 cursor hardware.

Extensions

Extensions were planned for from the start of the X11 design process. An extension is a set

of related requests, events and errors. A client can query the server to find out what extensions

exist, and what their names are. For example, the X Shape extension defines additional event

types to inform clients when their non-rectangular windows change shape. It adds nine addi-

tional requests for operating on windows defined in terms of regions, and another event type.

A client queries an extension by name. Once an extension has been initialized, the server

returns a major operation code for the extension, which the library remembers, and the server

then dispatches requests with that major op-code to the extension. The extension will dispatch

off of the minor op code. By reasonable use of the extension name space, arbitrary numbers of

extensions are possible. 128 op-codes are reserved for extensions (restricting a client to using

no more than 128 extensions at one time, which seems safe!), and each extension can have an

unlimited number of requests, as the contents of a request are not interpreted by the server.

The C language X library is written in such a way that an extension need not require any ex-

plicit initialization, to ensure that extensions are first class citizens. Extensions can add infor-

mation to any of the data structures that the library maintains, and library extensions can regis-

ter call-backs so they will be called whenever these data structures are created and destroyed.

At this writing, extensions have been approved for non-rectangular windows. Specifications for

alternate input devices, multi-buffering and 3D extensions are out for public review. Some ven-

dors have implemented Display PostScript1 as an extension, and there are non-standard exten-

sions for shared memory transport. Work is also under way for live video, scaled outline fonts,

image processing and other extensions.

Keyboards

“Any problem in computer science can be solved by an extra level of indirection."

- Roger Needham

Keyboards vary immensely, even within the products of a single manufacturer, because of

history and the requirements of different languages. The great diversity of keyboards was not

1Display PostScript34 is a trademark of Adobe Systems Incorporated.

November 21, 1990

32 J. GETTYS, P. L. KARLTON, S. MCGREGOR

appreciated in previous versions of X, since we had only dealt with DEC and IBM keyboards,

which were both very similar and had not changed over several generations of hardware, and

we had not thought about internationalization problems. Other manufacturers exhibit much

more variation and even within a single manufacturer’s keyboards there are wide national vari-

ants in the placement of key symbols. X can accommodate all these variations. It does, how-

ever, take the position that all key transitions should be observable, to allow applications to take

advantage of chording user interfaces. Some older hardware does not meet this requirement,

and such applications may not run on such obsolete hardware. We highly recommend that

manufacturers of X workstations and terminals build correct keyboard hardware.

In previous versions of X, when a keyboard key changed state, a keycode was sent to the ap-

propriate client along with the state of the modifier keys (shift, lock, control, etc.). Keyboards

had to emulate the Digital LK201 as best they could. (The IBM RT/PC and Digital keyboards

were almost identical.) For a given keycode, the X library presumed that a given set of symbols

were on the key (for example, that the “[{” characters are paired on the same key). The original

X11 specification still reflected the X10 design, as we intended to introduce additional key-

codes for other combinations found on other keyboards. After complaints from manufacturers

and users, we realized the old design would not solve the problem (due to the multiplicative

combinations of keys and national character sets) and would have resulted in a large registration

problem of keycodes, which would have been an administrative nightmare.

X11 introduces the notion of keysyms, which are codes for symbols engraved on keys. The

server supplies clients with a list of keysyms for each keycode the keyboard generates. Key-

codes are now completely arbitrary quantities, and are most usually hardware scan codes of the

manufacturer. They are used to index into the keysym list to find which keysyms are on the

given key. It is left to a client (by using X library routines or its favorite toolkit) to choose how

to interpret the list in combination with modifier key information By using ISO standards for

printing characters and defining an additional character set for symbols only found on key-

boards, we were able generate a list of keysyms which includes almost any symbol found on

any keyboard in the world. We attempted to eliminate duplicates between ISO character sets to

encourage application portability. The server’s keysym lists can be changed, allowing general

keyboard reconfiguration. X11 allows eight modifier keys (modifier keys are keys like shift,

control, alt, meta, etc.), and there are requests which specify what keys should be modifiers as

well. X11 adds events which allow clients to track the entire state of the keyboard if needed,

and the server notifies all clients when keyboard mappings are changed.

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 33

Distributed Systems Architecture

A useful distributed system architecture consists of protocols for many services, of which X

is only one. Unfortunately, some of the other needed major protocols have not yet been stan-

dardized, for example authentication protocols. X11 contains provisions in the connection

setup handshake of the protocol for clients and servers to exchange arbitrary authorization in-

formation; we hope eventually to take advantage of authentication services to provide a more

graceful environment, when authentication systems like Kerberos18 are generally available. In

the meanwhile, the host based access control of previous versions of X11 remains as the fall-

back solution for the problem. As in previous versions of X, once connections are established,

a client can perform arbitrary operations on its own or other client’s resources.

We have resisted adding capabilities to X which are not related to screen management, de-

spite occasional pleas. For example, people have asked that X implement a general remote pro-

cedure call system; their (perfectly rational) contention is that X already provides (as one of the

first ubiquitous network protocols) an existing communications path between applications often

on quite different machine architectures, sometimes with different network protocols (for exam-

ple, DECnet and TCP/IP). While in the short run this might be expedient, it would only result

in long term chaos.

Similarly, many people have asked for an audio X extension; we believe this is better pro-

vided by a separate audio server, along the lines proposed by the VOX effort, both to keep com-

plexity isolated and particularly because of the real time requirements of audio.19

Lessons Learned and Results

X10, while useful and demonstrating good ideas, was limited by what a very small group (3

people working on device independent code) could implement in less than a year. It was not an

adequate long term base for applications. Its very success generated a severe problem; if X10

were not replaced quickly enough, the large number of existing applications would prevent in-

compatible change. As a result, we were under extreme time pressure. We were more conser-

vative in our goals than we would have been under other circumstances, and the initial sample

X11 server implementation was written with an eye to schedule and portability rather than ulti-

mate performance (though performance was always the most important consideration when

protocol design decisions were being made). For the design and initial implementation of X11

we had approximately 15 months, and six people worked on the X11 sample server and library

(see acknowledgments below).

November 21, 1990

34 J. GETTYS, P. L. KARLTON, S. MCGREGOR

The performance of X11 implementations is almost always limited by the graphics subsystem

(or the quality of the device dependent code). Except for GetImage and PutImage, transport

cost is usually a small fraction of the cost of the graphics operations themselves. A number of

changes were made between X10 and X11 which can greatly improve performance for some

combinations of applications, transport, and display hardware; these include:

• The wire protocol uses variable length requests, and is therefore much more compact, mini-

mizing transport costs for all requests

• The length field at the beginning of the request permits a simpler, faster protocol dispatcher

• GC’s allow implementations using graphics engines with graphics state to avoid unneeded

loads of the graphics engine. GC’s also shorten the size of graphics requests which helps

frame buffer implementations as well.

• By allowing many graphics operations to be sent in a single call, the poly form of graphics

requests reduces protocol transport and dispatch overhead for many applications. The X11

Xlib library exploits poly requests to merge many single library calls in “dusty deck” appli-

cations into a single poly graphics request.

• Client images which match screen format can be moved to the server without any computa-

tion required, and for implementations which use shared memory the data does not have to

be copied extra times on its way to a frame buffer.

The first two points above are best proved by an example. On a Digital VS2000 the simplest

request (essentially a no-op) in X10 took approximately 750 microseconds (including all client,

server, and transport overhead). The X11 No Operation request is approximately three times as

fast (240 microseconds) on the same hardware, though part of the speed increase is improve-

ments in compiler technology. The graphics performance for some applications has improved

by a much larger factor due to poly graphics calls, while permitting applications good if not

optimal performance when using a much simpler programming style A fair estimate of X11’s

speed advantage over X10 is about a factor of two for protocol processing, and much more for

graphics operations.

It is hard to quantify the savings due to GC’s. To encode all the information contained in a

GC affecting each graphics operation would have required a very large request size, or the num-

ber of basic graphics requests (and complexity of the programming interface) would have had

to have be very large. GC’s also allow the server to save many resource ID validations. It does

pay to draw using the same GC for as long as possible before changing the GC or the contents

of the GC, to reduce the overhead of state changes.

There is no doubt that X11 is a larger and more complex window system. There are two parts

to this: the complexity of the programming model and the size of the server implementation

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 35

We do not expect that all facilities in X11 are used by all applications; in fact, many facilities

are used by relatively few applications, (often only by window managers,) and are not of inter-

est to general application programmers. Toolkits hide most low level X11 facilities from most

application programmers, and we can expect window manager writers to be few and far be-

tween. Only this year, however, are appropriate introductory texts appearing that explain the

use of the common toolkits for applications programmers which has been a major problem in

the past because many people had trouble figuring out which X11 facilities were useful to them.

One major contributor to the code size is X11’s much richer graphics model; another is its

somewhat richer event facilities. The code size is not much of a problem since only the code for

the graphics operations that are actually used need be in memory on most implementations.

Dynamic memory usage has been a serious problem. Window data structures are referenced

very frequently when performing window operations and therefore cannot be paged out without

dire performance consequences. All running applications contribute to the size of window

structure data. The initial sample server was implemented under extreme time pressure, and

comparing its initial releases with the carefully tuned X10 server is unfair. However, much of

the same sort of tuning has now been done for the X11 sample server implementation, which

appeared in of X11 R4. The size of the R4 server’s window structure is 132 bytes, compared

to X10’s 130 bytes. This is nearly a factor of three improvement over the previous release of

the sample server, and again returns X’s windows to being “cheap,” though not (as some people

have thought) free. Window manipulation performance has also gone up by a large factor.

Window’s data are also much more likely to be in one data structure, improving locality.

GC’s, however, are new to X11 and represent some amount of additional memory usage.

They are not as heavily used as windows are (though more heavily than we had anticipated dur-

ing the design process). Recent work has reduced their size by nearly a factor of four. Of

course, servers which implement the optional features of backing store and save-unders may

use large amounts of additional memory, dwarfing the memory used by window and GC struc-

tures. The largest contributor to memory usage, however, has been the appearance of very seri-

ous applications for X11, a problem we are most happy to have; some of the existing toolkits,

however, have had memory usage problems similar to the server, and could use serious dieting

and in some cases redesign.

In order to achieve reasonable performance, the X protocol since its beginning has been a

streaming protocol, rather than using strict remote procedure call. The performance differential

is so large (some simple measurements put it at a factor of 30) that no other choice was possi-

ble. This makes precise error reporting more difficult. This is mitigated somewhat by two fac-

tors: 1) the protocol and library keep track of a request sequence number, which is reported

with errors, making it somewhat possible for a programmer to backtrack from the point at

November 21, 1990

36 J. GETTYS, P. L. KARLTON, S. MCGREGOR

which the error is reported to where it actually was generated, and 2) the X11 Xlib library sup-

ports a run time flag that can be set by a debugger (or from the application) to force the library

to run synchronously, causing errors to be reported at the point they occur in the application

(though at large performance loss).

Some people question the decision that backing store and save unders are hints in X11, wish-

ing that they would have been required. We see no reason to regret this decision. For example,

on deep displays (some of which have as many as 96 bits/pixel) backing store is very expensive

to provide, and generally much slower than the application regenerating the contents on de-

mand, which applications must be able to handle both for initial display and when resized by

the user. Even on one or 8 bit displays, this is usually true, since restoring from backing store

involves both a read and write memory cycle to copy from backing store to the screen, rather

than clearing the window and writing the contents (all writes, which are generally fastest in

frame buffer designs). It also allows for much smaller server implementations, on limited sys-

tems such as PC’s and X terminals. Hints permit servers to do as much as possible on behalf of

clients, given their (sometimes severe) resource limitations.

During design of X11, we tried to ensure that the core X11 specification was complete

enough for a large class of workstation applications. We have succeeded, and we believe that

this approach is much preferable to some systems in which applications writers must constantly

query whether a given feature is available or not. We occasionally find applications which pre-

sume that they can always get all the resources (principally memory) and fail as a result, but

this is generally quite rare. It is still a bit soon to tell if the extension mechanism will have its

intended effect of allowing graceful evolution of X, or whether the weight of out of date imple-

mentations not providing later standard extensions will result in many applications avoiding the

use of all extensions, even though they may ease certain applications greatly.

X11 does not permit the read back of all information that may have been stored in the server

(for example, the X11 protocol does not permit querying the GC state). This makes modularity

somewhat harder to accomplish. There are several reasons for this deliberate omission. Some

of this information (for example, tiles and stipples) may have been freed and there may very

well be no resource ID existing for the resource. There are potential solutions to this problem

but they are somewhat ugly. More importantly, X10 had taught us that library queries to the

server are so expensive that for best performance, an X application should never rely upon the

X server for information the application once had; applications should remember what all infor-

mation they need later, rather than expecting the server to remember it for them. None the less,

complaints about this have been loud.

As one might expect, there are design flaws exposed by experience. For example, some

events lack time stamps, which makes it impossible to avoid certain race conditions. One can

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 37

draw the moral that it may be better to err on the side of sending too much information, rather

than too little; we did not see why the timestamps would be needed at the time, and it was only

later we realized we needed timestamps in essentially all events. Passive grabs are not as gen-

eral as they should be. Most (but not all) of these problems could be fixed with an upward

compatible protocol revision or by using unused fields in event structures; it may be necessary

to add extensions as well.

In some areas, the protocol could be extended without requiring explicit extension or aware-

ness by the client or server of protocol versions. The fact that all requests have a known length

would allow additional arguments to be passed (in fact, this technique has been used to add in-

formation to window properties needed by the ICCCM, though this is not a protocol change)

and a server could ignore extra data it does not expect. The X11 Xlib library implementation

actually discards any unexpected data on replies, for example, though this is not required by the

specification and might be considered an error. Additional bits can be allocated in various

masks as well, for example. To date, we have been very reluctant to attempt such upward com-

patible changes, particularly as X goes through the standardization process. Further thought in

this area might have paid dividends.

We still argue among ourselves about having preserved window borders from X10. One can

argue that they treat a very common case with a simple solution and which saves memory; but

they complicate coordinate systems transformations and server internals, which have to com-

pensate for border width..

Most protocol library stubs in the X library are highly stylized, and a stub generator would

have reduced the work required and be especially helpful to extension writers. Schedule con-

straints made a stub generator impossible.

Future Topics

Early specifications of X11 included support for other input devices (for example, trackballs,

button-boxes, tablets, etc.). During the implementation and alpha testing of the sample X11 im-

plementation, we decided that the design was seriously flawed and we did not understand the

problem as well as we had thought. Rather than living with a bad design, we removed all sup-

port for devices except the mouse, pending support to an eventual protocol extension35. As of

this writing, the input extension is in technical review for possible adoption as a standard X ex-

tension.

The early X11 designs included support for rotated (in 90 degree increments) text painting.

During the implementation, we realized that the design was badly flawed and therefore re-

moved it. The best solution would be an extension to the GC allowing a client to rotate the co-

November 21, 1990

38 J. GETTYS, P. L. KARLTON, S. MCGREGOR

ordinate system, uniformly applied across all graphics operations. Pressure of time did not al-

low us to add rotated text to the design, particularly since we realized the problem relatively

late in the implementation of the sample server after much of the machine independent graphics

code had already been implemented. PostScript extensions, of course, support such text opera-

tions.

Some kinds of input event handling are difficult to do in X, as more elaborate decisions may

need to be made than can be done with the fully predefined X protocol. NeWS20 encourages

clients to load PostScript code into its server. We believe that loading code into the server is

not as useful as NeWS proponents claim (particularly for toolkit use, where our observation is

that toolkits are much more bound up in applications than with the screen) and that it ultimately

leads to a fragile system. Still, there is no doubt that it does have potential for input handling.

We strongly believe, however, that PostScript is a very poor choice for an extension language.

We believe Scheme21, for example, as the extension language would be a much better choice,

due to its much better semantics and generality. Further work should be done in this area.

It is not clear that wide-dashed-rounded lines and ellipses were worth the effort. We suffered

from a schizophrenia between the integer pixel model and the PostScript imaging model for

lines, which really only works well with sub-pixel coordinates. Subsequently, we discovered

that PostScript actually implemented something slightly different than a circular pen, in order to

avoid lumpy lines. A polygonal pen model for lines would have given us nicer-looking lines

and curves possibly at the cost of some additional programming complexity. Circular pens give

quite ugly results at screen resolution and are computationally very difficult for arcs. Even rea-

sonably decent implementations of the X11 specification took four releases of X11 and serious

implementation work, and wide arcs are still very slow.

We probably should have given more thought to memory requirements in the server (though

release 4 has cured many of the memory use problems, it is clear than X11 will never use less

memory than X10 did). Some more time and thought would have made forwarding the X11

protocol (very desirable for cooperative work applications) much easier.

Acknowledgments

It is impossible to thank here everyone who has contributed to X. The numbers of people and

organizations involved at this date are huge and very gratifying to the authors. Other papers in

this volume acknowledge contributors in other areas. We must, however, acknowledge specifi-

cally those who contributed to the core X11 design and sample server implementation, without

which there would be no X Version 11.

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 39

Robert W. Scheifler acted as X protocol architect. His duties as X Consortium director pre-

vented his contribution to this paper; without him, there would be no X window system. Other

contributors to the X11 protocol are: Dave Carver (Digital HPW, now at MIT / Project Athena);

Jim Gettys (Digital and MIT/Project Athena, now at Digital CRL), Branco Gerovac (Digital

HPW), Phil Karlton (then at Digital WSL, now at SGI), Scott McGregor (Digital WSL, now at

SCO), Ram Rao (Digital UEG), David Rosenthal (Sun Microsystems), and Dave Winchell

(Digital UEG).

Jim Gettys acted as X library architect, and implementation was done by Ron Newman

(MIT/Project Athena, now at Lotus), and Jim Gettys with assistance from Tom Benson (Digital

VMS) and Jackie Greenfield (Digital VMS).

The invited reviewers who provided useful input include: Andrew Cherenson (U.C.

Berkeley), Burns Fisher (Digital VMS), Dan Garfinkel (HP), Leo Hourvitz (NeXT), Brock

Krizan (HP), David Laidlaw (Stellar), Dave Mellinger (Interleaf), Ron Newman (MIT, now at

Lotus), John Ousterhout (U.C. Berkeley), Andrew Palay (ITC CMU), Ralph Swick

(MIT/Project Athena and Digital), Craig Taylor (Sun Microsystems), and Jeffery Vroom (Stel-

lar).

The sample server was implemented by Phil Karlton (Digital WSL, now at SGI), Susan An-

gebrannt (Digital WSL), Raymond Drewry (Digital WSE), and Todd Newman (Digital WSE),

who also provided good input into the protocol design.

Joel McCormack, Keith Packard, and Bob Scheifler finally proved that X11 really is more

efficient than X10.

Without electronic mail X’s development would have taken much longer and been poorer; so

our thanks must go to DARPA for its support of the Internet. Only three face to face meetings

of the designers were held during initial X11 development to resolve issues not closed by elec-

tronic mail.

Thanks to Ken Lee (Digital WSL) for his X bibliography.

X Version 11 is a result of contributors all over the world. We thank all those many people

who helped make X what it is.

References

1. Scheifler, Robert W, and James Gettys, ‘The X Window System,’ ACM Transactions on

Graphics, vol. 5, no. 2, pp. 79-109, April, 1986.

2. Scheifler, Robert W., and James Gettys, X Window System: The Complete Reference to

Xlib, X Protocol, ICCCM and XLFD, Digital Press, Bedford MA, 1990, 2nd Edition, ISBN

0-13-972050-2.

November 21, 1990

40 J. GETTYS, P. L. KARLTON, S. MCGREGOR

3. Rao, Ram and S. Wallace, ‘The X Toolkit,’ in Proceedings of the Summer 1987 USENIX

Conference, pp. 117-130, USENIX Association, Berkeley CA.

4. Linton, Mark A, John M. Vlissides, and Paul R. Calder, ‘Composing User Interfaces with

InterViews,’ IEEE Computer, vol. 22, no. 2, pp. 8-22, February, 1989. Early InterViews

implementations ran on X10.

5. Dineen, Terence, Paul J. Leach, Nathaniel W. Mishkin, Joseph N. Pato and Geoffrey L.

Wyant, ‘The Network Computing Architecture and System: and Environment for Develop-

ing Distributed Applications,’ in Proceedings of the Summer 1987 USENIX Conference, pp.

117-130, USENIX Association, Berkeley CA.

6. Cessna, Keith et al. CLX Common Lisp X Interface, MIT X Consortium, Cambridge, MA.,

1989.

7. Morris, James H. et al., ‘Andrew: A Distributed Personal Computing Environment’, Com-

munications of the ACM, vol. 29, no. 3, March 1986, pp. 185-201.

8. Lampson, Butler, Personal Distributed Computing, ‘The Alto and Ethernet Software’, in A

History of Personal Workstations, Ed. A. Goldberg, ACM Press 1988, pp. 293-335.

9. Thacker, Charles, Personal Distributed Computing, The Alto and Ethernet Hardware, in A

History of Personal Workstations, Ed. A. Goldberg, ACM Press 1988, pp. 265-289.

10. Xerox Corporation, The ViewPoint Programmers Manual, 1986, 1988. XDE is the

predecessor to ViewPoint, by approximately five years.

11. PostScript® Language Reference Manual, Adobe Systems, Incorporated, Addison-Wesley

Publishing Company, ISBN 0-201-10174-2, 1985.

12. Petzold, Charles, Programming Windows, 2nd ed., 1990, Microsoft Press, ISBN 1-55615-

264-7.

13. Chernicoff, Stephen, MacIntosh Revealed: Vol. 1 - Unlocking the Toolbox, 2nd Ed., Hayden

Books, Indianapolis IN. 1988, Chapt. 4-6 and 8.

14. Smith, D.C. et al., ‘The Star User Interface, An Overview,’ in Proc. AFIPS Conf., pp.515-

528, 1982.

15. Programmer’s Hierarchical Interactive Graphics System (PHIGS), International Proposed

Draft Standard ISO 9592-1:1988(E), International Standards Organization, Geneva, Oct.

1987.

16. Graphical Kernel System for Three Dimensions (GKS-3D), ISO/DIS 8805, International

Standards Organization, Geneva, Apr. 1987.

17. Hobby, John D., ‘Rasterizing Curves of Constant Width,’ Journal of the ACM, vol. 36, no.

2, April 1989, pp. 209-229.

18. Steiner, Jennifer G., Clifford Neuman and Jeffry I. Schiller, ‘Kerberos: An Authentication

Service for Open Network Systems,’ Proceedings of the Winter, 1988 USENIX Conference,

November 21, 1990

THE X WINDOW SYSTEM - VERSION 11 41

pp. 191-202, USENIX Association, Berkeley, CA. Kerberos is a trademark of Massachu-

setts Institute of Technology.

19. B. Arons, Carl Binding, Keith Lantz, and Chris Schmandt, ‘The VOX Audio Server.’ in 2nd

IEEE Computer Society International Multimedia Communications Workshop, IEEE Com-

munications Society, April 1989.

20. Gosling, James, David S.H. Rosenthal, and Michelle Arden, The NeWS Book, An Introduc-

tion to the Network/extensible Window System, Springer-Verlag, ISBN 0-387-96915-2.

21. Rees, Johnathan and William Clinger et. al., ‘Revised3 Report on the Algorithmic Language

Scheme’, ACM SIGPLAN Notices, vol. 21, no. 12, pp. 37-79, December 1986.

22. Gajewska, Hania, Mark Manasse, Joel McCormack, ‘Why X Is Not Our Ideal Window Sys-

tem,’ Software - Practice and Experience, this volume.

23. Rost, Randi J., Jeffery D. Friedberg, and Peter L. Nishimoto, ‘PEX: A Network-Transparent

3D Graphics System,’ IEEE Computer Graphics and applications, vol. 9, no. 4, pp. 14-25.

24. Young, Douglas A. X Window System: Programming and Applications with Xt, OSF/Motif

Edition, Prentice-hall, 1990. ISBN 0-13-497074-8.

25. Hopgood, F. R. A., Methodology of Window Management, Springer Verlag, New York,

1986.

26. Jones, Oliver, Introduction to the X Window System, Prentice-Hall, Englewood Cliffs, New

Jersey, 07632, 1989, ISBN 0-13-499997-5.

27. McCormack, Joel and Paul Asente, ‘An Overview of the X Toolkit," Proceedings of the

ACM SIGGRAPH Symposium on User Interface Software, pp. 46-55, October, 1988.

28. Rosenthal, David S., A Simple X11 Client program, or, How Hard Can It Really Be to

Write ‘Hello, World’?,’ Proceedings of the Winter, 1988 USENIX Conference, pp. 229-235,

USENIX Association, Berkeley, CA.

29. Johnson, Eric and Kevin Reichard, X Window Applications Programming, MIS: Press,

ISBN 1-55828-016-2.

30. Asente, Paul and Ralph Swick, X Window System Toolkit, The Complete Programmer’s

Guide and Specification, Digital Press, Bedford MA, 1990, ISBN 0-13-972191-6.

31. Open Software Foundation, OSF/Motif Series (5 volumes), Prentice Hall, 1990. ISBN 0-

13-640491-X, 13-640525-8, 13-640517-7, 13-640509-6, 13-640483-9.

32. Rosenthal, David S. H., ‘Window Exchange,’ UNIX Review, vol. 7 no 12, pp. 58-64.

33. Sun Microsystems, OPEN LOOK Graphical User Interface Series, Addison-Wesley, 1990,

ISBN 0-201-52365-5, ISBN 0-201-42364-7.

34. Holzgang, D.A., Display PostScript® Programming, Addison Wesley, Reading MA, 1990,

ISBN 0-201-51814-7.

November 21, 1990

42 J. GETTYS, P. L. KARLTON, S. MCGREGOR

35. Patrick, Mark, and George Sachs, X11 Input Extension Library Specification, MIT X Con-

sortium, December 1989.

36. Widner, Glenn, The X11 Inter-Client Communications Conventions Manual, this volume.

