
Private Lock Management

David Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� November ��� ����

�

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is applica-
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor-
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

�

Private Lock Management

David Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� November ��� ����

Abstract

For a data sharing database system� substantial coordination cost is in�
curred to cope with the global �distributed� locking needed by these systems	
Lock covering is a way to permit component systems to perform private
�local� locking	 Two forms of covering locks are discussed� together with
intention locks� needed to prevent covering violations	 Intention locks give
permission for lower level locking to be used� but require that this locking
be global	 The protocol between local lock manager and its principals is
de
ned to permit information needed for local locking to be conveyed	 Prin�
cipals are noti
ed when lock demotion may change local locks to global ones	
New lock modes are de
ned that provide exclusion without being covering
locks	 These locks facilitate database cache management and private logical
locking� permitting exclusion with high concurrency� and providing improved
concurrency vs overhead trade�o�s	

Keywords� concurrency control� locking� covering� private locking� multi�
granularity locks� multi�level transactions� database cache management
c�Digital Equipment Corporation ����	 All rights reserved	

�

� Introduction

��� Data Sharing and Server Independence

There are two primary avors of distributed database systems� each with its
set of pros and cons	

Shared Nothing� Each subset �partition� of the data is accessed by only
a single server �at a time� ����	 When accessing data from several
partitions� messages are needed to orchestrate the execution of each
transaction	 Further� the two phase commit protocol is usually used
to provide coordinated commit ��� ��	 With partitioned systems all
updates are done by the single server for a partition� lock management
for resources of the partition is done at this server� and locks are held
by transactions running at the server	 Other servers can acquire only
copies of the data and cannot update the data directly	

Data Sharing� Multiple servers can access data of shared resources simulta�
neously ���� ���	 A user may exploit a single server to access all shared
resources� with di�erent users exploiting di�erent servers	 These servers
need not exchange messages with other servers for request execution
or for commit coordination when accessing shared data	 However� si�
multaneous access requires low level coordination� including distributed
locking ����	 Multiple servers may hold locks on a common set of re�
sources� either when the resources are used in active transactions or
when the resources are cached at servers	 Server locks for resources
that are only cached can be relinquished on request	

Server independence� by which we mean the ability of servers to execute
with minimal coordination� is clearly desirable� but represents a problem for
data sharing systems	 With these systems� one is faced with the need for
coordination protocols to control the management of the database cache� re�
covery and locking	 Recently� advances have been made that permit increased
server independence� and hence reduce the overhead for data sharing systems
��� �� ��� ��� ��� ���	 In this paper� we focus on lock management� and on
the principles involved in enabling lock management to be done with more
independence	 In particular� we explore how each server� by holding appro�
priate global locks on resources� can perform lock management privately on

� � INTRODUCTION

these resources for transactions that it executes	 This permits a systematic
reduction in the costs associated with distributed lock management	

��� Some Locking Fundamentals

Locks must CONFLICT whenever principals must be prevented from oper�
ating on a resource simultaneously	 Lock managers detect conicts between
locks requested by separate principals	 The principal that has acquired a lock
is permitted to perform certain accesses that are denied to principals that
do not hold the lock	 The lock manager does not grant a lock to a principal
when that lock conicts with a lock that is held by another principal	

Accesses need not be all or nothing	 Lock MODES exist that enable
or prevent certain kinds of access to resources	 A lock manager detects lock
conicts when the locks are on the same resource and in conicting modes	
Classically� there have been two lock modes� exclusive �X� which permits
both reading and updating by ensuring that only a single principal can access
a resource guarded by an X lock� and share �S� which permits only reading
but allows multiple readers to access a resource guarded by an S lock	

DEFINITION�Lock L� CONFLICTS with lock L� if it is not possible for
two principals to hold the locks on the same resource simultaneously� We say
that lock mode m� CONFLICTS with lock mode m� if locks of those modes
con�ict when held on the same resource by di�erent principals� Further� the
set of lock modes that CONFLICT with a given lock mode is

CONFLICTS�m�� � fm� j m� CONFLICTS m�g ���

For the lock modes above� CONFLICTS�X� � fX�Sg whileCONFLICTS�S� �
fXg	 Two lock modes� m� and m�� are compatible if they do not conict	
COMPAT �m� is the set of lock modes compatible withm	 COMPAT �m� �
ALL� CONFLICT �m�	 Lock modes can be ordered based on the sizes of
their conict sets	

DEFINITION�Lock mode m� is STRONGER than lock mode m� if

CONFLICTS�m�� � CONFLICTS�m��� ���

��� Lock Covering �

Hence� X is STRONGER than S	 A lock on a resource in a strong
mode is said to be STRONGER than a lock in a weaker mode on the same
resource	 STRONGER is transitive and forms a partial ordering among lock
modes	 When a principal changes a lock on a resource from one lock mode
to another� this is called lock conversion	 We call conversion from a strong
mode to a weaker one lock demotion and conversion from a weak mode to
a stronger one lock promotion	

��� Lock Covering

Locking is usually conservative� preventing more accesses than are strictly
required for correct serializable execution	 This is sometimes done to prevent
deadlocks� to facilitate recovery� etc	 Conservative locking results in the
resources being locked with larger granularities and the locking modes being
more restrictive than needed	 This is acceptable so long as the concurrency
permitted by the locks is su�cient	 Only concurrency is sacri
ced	 What is
required is that a lock be su�ciently strong to prevent accesses that would
compromise serializability	 Any stronger lock that �covers� a su�cient lock
is also acceptable	

DEFINITION� Lock L� COV ERS lock L� if every lock that con�icts
with L� also con�icts with L�� Further� a set of locks fL�g COV ERS a set
of locks fL�g if every lock that con�icts with some lock in fL�g also con�icts
with some lock in fL�g�

The simple form of lock covering is direct covering	

DEFINITION�Lock L� directly COV ERS lock L� if the mode of L� is
STRONGER than the mode of L� and both locks are on the same resource�
We then say that m� �the lock mode of L�� DCOV ERS m� �the lock mode
of L��� Further� the set of lock modes DCOV ER�d by a lock mode is

DCOV ERS�m�� � fm� j m� DCOV ERS m�g ���

It is the set of lock modes that are weaker than m�� The relation DCOV ERS
is transitive�

Hence� a lock on a resource in mode X directly COV ERS locks on the
same resource of modes S orX	 Further� a lock in mode S directlyCOV ERS
only other S mode locks on the same resource	

� � INTRODUCTION

It is important to note that conventional lock managers only detect con�
icts among locks on a single resource	 Hence� direct covering is the only
covering of which a lock manager is usually aware	

��� Distributed Lock Management

A transaction executing at a server makes requests for data to that server	
That server then needs to grant a lock on that data to the transaction	 To do
that when the data accessed is shared data requires that the server coordinate
the request with other servers	 The reason is that other servers may be using
the data� either in transactions or by having the data cached	 Conicting
use of the data must be prevented	 Thus� a server must be prepared to
make its lock requests visible to other servers	 This is called distributed lock
management and it is the traditional problem for data sharing systems	

Preventing conicting accesses among servers does not require that all
locks be visible globally	 Covering can be exploited to partition locking re�
sponsibility between multiple lock managers on di�erent servers	 A server
can acquire a strong covering lock on a resource and can then mediate and
grant lock requests that it receives for this resource so long as its lock covers
the locks being requested	

Direct covering provides some leverage for private lock management	
However� larger possibilities arise with multi�granularity locking ���� which
can be used to permit a lock on a large granule� e	g	
le� to be exposed while
the locks on pages of the
le are managed privately ����	

We explore the principles involved with private versus global management
of locks in data sharing DBMSs in the remainder of the paper	 Section �
de
nes covering for multi�granularity locks and how covering locks interact
with intention locks	 How multiple local lock managers function so as to
support private locking is the subject of section �	 In section �� we generalize
covering to work with logical locking and cache management	 Section �
provides a discussion of our approach and its e�ectiveness	

�

� Covering for Multi�granularity Locks

��� Resource Covering

It is possible for a lock or locks to cover another lock even when the locks are
not on the same resource	 The classic example of this is multi�granularity
locking ���	

EXAMPLE� The purpose of a lock�X or S� on a large granule� e�g� a
�le� that contains other smaller granularity resources� e�g� pages� is for the
�le lock to also lock the pages of the �le in the same mode� Thus� a �le lock
of X or S should cover X or S locks on the pages� This is an instance of a
tree locking granularity hierarchy�

More generally� a set of resources R� can jointly guard resource r� such
that when resources in R� are locked� locks on resource r� are �covered��
where r� is not a member of R�	 A
le may have multiple secondary indexes�
where it is desired to cover locks on the records of the
le through the use
of locks on entries in the indexes	 Thus� resources can have more than one
�ancestor� and the multi�granularity hierarchy is a directed acyclic graph
or DAG	 We denote the multi�granularity locking hierarchy� whether tree or
DAG as the MGH	 Then� we have

DEFINITION� A set of locks fL�g on resources in set R� resource
COV ERS a lock L� on resource r� where R� guards r� in a multi	granularity
lock hierarchy if fL�g COV ERS L�� If all locks in fL�g have the same lock
mode m�� then we say that m� RCOV ERS�R�� r�� m�� We also de�ne

RCOV ERS�R�� r���m�� � fm� j m� RCOV ERS�R�� r��m�g ���

If m� RCOV ERS�R�� r�� m� for all r� in R� and m� RCOV ERS�R�� r�� m�

then m� RCOV ERS�R�� r�� m�� This is the transitivity form for RCOV ERS�

By the transitivity of DCOV ERS� if m� DCOV ERS m� then

RCOV ERS�R�� r���m�� � RCOV ERS�R�� r���m��� ���

Note that the lock modes for R� may be di�erent from the lock modes for r�	
And there is not necessarily a DCOV ER relation between the lock modes
for R� and those for r�	

� � COVERING FOR MULTI�GRANULARITY LOCKS

��� Intention Locks

Usually� a lock manager will not be aware of resource covering because it
will not detect conicts arising from locks on di�erent resources	 In order
for a principal P� to lock a resource r� for concurrency control without
rst
acquiring the covering locks on R�� requires some care	 No other principal
P� can be permitted to acquire resource COV ERing locks on R� because
P� would then believe he was entitled to access r� without any locking at
r�	 Hence� P��s accessing of r� would not be prevented by P��s locks and
conicting accesses would not be detected	

Enforcing resource covering is thus a function of the locking protocol	
What one has to ensure is that no conicting locks� including the implicit
locks ��� will be concurrently held	 Implicit locks are those that are covered
by currently held locks� and hence are not materialized in the lock manager
as locks whose conicts can be detected	 Thus� there must be at least one
resource at which conicts are materialized as explicit locks	

Since the purpose of covering is to avoid exposing the covered locks� and
indeed any locks at the guarded resource whose locks are to be covered� we
require that those taking out explicit locks on r�
rst take out one or more
locks on resources in R�	 Applying this pervasively requires that resources
in the multi�granularity hierarchy be locked in descending order	

The locks acquired higher in the multi�granularity hierarchy are called
intention locks	 Intention locks in R� PERMIT locking to occur at r�
without violating resource covering by conicting at at least one resource in
R� with a lock needed in order to resource cover r�	 Intention locks themselves
need not cover any locks	 They must merely conict with locks that do and
hence prevent others from acquiring resource covering locks	

We again simplify by requiring that all locks on resources in R� have the
same lock mode	 We then have�

DEFINITION� Lock mode m� PERMITS�R�� r�� m� if a lock in mode
m� on a resource in R� serves as an intention lock on resources in R� for a
lock in mode m� on r�� Further� as before�

PERMITS�R�� r���m�� � fm� j m� PERMITS�R�� r��m�g ���

As with covering� if a lock mode m� is in PERMITS�R�� r���m��� and if

��� Determining Lock Mode Con�icts �

Lock Modes IS IX S SIX X

IS x x x x
IX x x
S x x
SIX x
X

Table �� Lock Mode Compatibility for Multi�granularity Locking

m� DCOV ERS m�� then m� is in PERMITS�R�� r���m��	 Further�

RCOV ERS�R�� r���m�� � PERMITS�R�� r���m��� ���

This says that if a lock mode on R� is strong enough to cover locks on r��
then it is strong enough to permit them as well	

For the classical multi�granularity locking� there are two pure intention
locks� IX which permitsX and S locking of guarded resources� and IS which
only permits S locking	 In addition� the lock mode SIX is also de
ned� which
is a lock which provides shared access to the resource on which it is held�
and permits X locking on
ner grained resources within	 Table � de
nes the
lock compatibilities of multi�granularity lock modes	

Because a lock DCOV ERS another does not mean that it RCOV ERS
that lock for any arguments to RCOV ERS	 Thus� IS DCOV ERS IS for
the same resource� but IS does not RCOV ER IS	 An IS lock at each
resource must be acquired explicitly if only preceded by other IS locking at
guarding resources and hence must be exposed	 There is no resource covering
provided by an IS lock	

��� Determining Lock Mode Con�icts

At the heart of de
ning lock modes is the need to understand the constraints
imposed by covering and intention locking	 It is clearly not su�cient to
simply assert that some locks are covering locks and others are intention
locks	 It is necessary to de
ne lock modes such that the conicts between
locks with these lock modes provide the desired protection	

� � COVERING FOR MULTI�GRANULARITY LOCKS

Thus� when de
ning locks on resources in R�� one needs to de
ne lock
mode conicts that satisfy the following�

CONFLICT CONSTRAINT� Lock mode m� must CONFLICT with
lock mode m� on resources in R� if any of the following are true�

�	 RCOV ERS�R�� r���m�� CONFLICTS RCOV ERS�R�� r���m��

�	 RCOV ERS�R�� r���m�� CONFLICTS PERMITS�R�� r���m��

�	 PERMITS�R�� r���m�� CONFLICTS RCOV ERS�R�� r���m��

Note that if PERMITS�R�� r���m��CONFLICTSPERMITS�R�� r���m���
that this has no impact on whether m� and m� conict	

Thus� holding a lock L� at R� covers a lock L� at r� by preventing locks
on R� that either permit or cover locks on r� that conict with L�	 Holding
L� ensures that no locking is needed at r� because all conicting locks are
stopped by it at R�	 Holding an intention lock L� at R� permits a lock L�

at r� by preventing locks at R� that cover locks at r� that conict with L�	
Intention locks� and covering locks for locks at r� that do not conict with
L� are not prevented	 L� ensures that conicts will be detected at r� rather
than being subsumed by conicts at R�	

EXAMPLE� The compatability matrix for multi	granularity locking was
given in Table
� Recall that the same lock modes are de�ned at each level
of the resource hierarchy� Thus� we can drop the resource parameters of
RCOV ERS and PERMITS below� Then we have the following�

� RCOV ERS�X� � fX�SIX� S� IX� ISg � PERMITS�X�

� RCOV ERS�SIX� � fS� ISg

� PERMITS�SIX� � fX�S� SIX� IX� ISg

� RCOV ERS�S� � fS� ISg � PERMITS�S�

� PERMITS�IX� � fX�S� SIX� IX� ISg

� PERMITS�IS� � fS� ISg

� RCOV ERS�IX� � RCOV ERS�IS� � �

��� Protocols for Multi�Granularity DAGs �

Thus� RCOV ERS and PERMITS constrain lock conicts	 IS and IX
can be compatible as neither covers any locks	 On the other hand� IX
must conict with S because IX PERMITS X� S RCOV ERS S� and S

CONFLICTS X	 Since IX PERMITS X� IX CONFLICTS with modes
that RCOV ER any lock	 Similarly� SIX CONFLICTS with S since SIX
PERMITS X� and S RCOV ERS S	

We can also use lock mode conicts on R�� and what lock modes are
covered on r�� to derive PERMITS�R�� r���m�� for any lock mode m� on
resource set R�	 Mode m� PERMITS any lock on r� not RCOV ER�d by
any other lock in a conicting mode when m� is held	 Since IX is compatible
only with IS and IX� which RCOV ERS nothing� it permits everything	 IS
is compatible with fIX� IS� S� SIXg� which RCOV ERS fS� ISg	 Hence� ev�
erything in PERMITS�R�� r���IS� must be compatible with fIS� Sg� which
is this set itself	

��� Protocols for Multi�Granularity DAGs

Multi�granularity locking need not be restricted only to tree hierarchies	 The
MGH can also be a directed acyclic graph or DAG	 There is only one protocol
when the MGH is a tree	 The resources are locked in tree order from the
root of the tree down� and unlocked in the reverse order	 An explicit lock is
never held on a resource without a lock also being held on its parent	

The same �style� of protocol is needed for an MGH DAG� but the mul�
tiple parents of DAGs adds a complication	 Conicts required by covering
and intention locking must be explicit at at least one ancestor in the MGH

in the form of locks with conicting modes	 So locks on multiple parents
may be required	 Quorum algorithms attack this problem very generally ���	
They guarantee that sets constituting quorums for conicting activities have
non�null intersections	

In our case� locks on parents in the intersections will expose the conicts	
Each lock on a parent resource is assigned a weight	 Quorums are de
ned so
that each activity requires some weighted vote	 The sum of the weights of
the quorums for conicting activities exceeds the sum of the weights of the
parent locks	 This forces conicting operations to need conicting locks at
at least one parent	 These locks on parents need not be explicit locks	 A
parent can be locked with an implicit lock resulting from its being covered
by locks on its ancestors	

�� � LOCAL LOCK MANAGERS

Shared
Data

Shared
Data

Local LM

DS Server DS Server

Local LM Global LM

. . . DS Server DS Server. . .

Figure �� Data sharing system in which local LMs cooperate with a global
LM to e�ciently handle concurrency control	 Data sharing database servers
�DS Servers� use the Local LMs as their owning LMs	

� Local Lock Managers

��� Private Locking

A local lock manager �LM� services lock requests from some subset of the
principals� e	g	 the clients of one server	 It coordinates its access to shared
resources �among other local LMs� by making lock requests to the global
LM�s�	 An architectural picture of such a system is given in Figure �	

Private locking is where requests for locks that are received by a local
LM are handled by the local LM itself� without the need for communication
with a global LM	 Private locking local LMs can yield a dramatic reduction
in lock overhead while preserving concurrency	

Usually� LMs are simple conict detectors where the conict is based on
the detection of locks with conicting lock modes for a given resource	 The
interdependencies between resources that occurs in multi�granularity locking�
are typically handled by principals	 Here� we describe how to realize private
locking local LMs that do not know the speci
cs of the MGH	 This requires

��� Owners and Holders ��

that principals must know the MGH� observe its protocol� and �advise� the
LM about it	

A local LM must hold locks at global LMs that cover the local locks
acquired by any of its principals	 Only then can an LM be sure that implicit
and hence undetected lock conicts do not occur due to the distributed nature
of the locking	 There are a number of ways that an LM can hold global
covering locks on the resources that it manages�

�	 for a system with only one LM� this LM implicitly has a permanent
exclusive lock on ALL resources	

�	 for a partitioned distributed system� each LM manages the locks of a
partition and implicitly has a permanent exclusive lock on the partition	

�	 for a data sharing system with multiple LMs� the locks held by each LM
can change over time and are not necessarily exclusive locks	 Hence�
we need to be quite explicit about how locks are managed	 This is
discussed below	

��� Owners and Holders

For each resource� a principal needs to direct lock requests to a system com�
ponent that can play the role of an LM	 We call this LM the owning LM or
simply the owner	 The owner may grant the lock to any of several princi�
pals	 A principal that holds a lock is called the current holder of the lock	
An owner is responsible for keeping track of who currently holds locks on
its owned resources and for detecting lock conicts	 The owner must also
prevent deadlock in some manner� e	g	 detection or time�out	

In a data sharing system with multiple LMs� ownership is context de�
pendent	 A local LM on a node acts as owner for all locks in so far as its
principals �processes or transactions executing on that node� are concerned	
A local LM does not permanently hold resources	 Before it grants a request
for one of its �owned� resources� it must acquire a covering lock on the re�
source at the global level of the system� i	e	 from the global owning LM�
hence becoming the lock holder at that level	 Thus� it is the local LM� not
its principals� that holds locks at the global system level and then owns them
for its local principals	 This kind of hold�own con
guration can occur at
multiple levels of a system	

�� � LOCAL LOCK MANAGERS

While who holds a lock can change rather rapidly� which LM is the owning
LM for any given principal is usually relatively static	 This permits principals
to readily know the LM to which a lock request should be made for some
resource	 There are a number of ways that ownership might be handled at
the global level in a distributed system	 Two examples are�

� A single global LM owns all locks in the system	 Then� any local LM
would ask the global LM for the lock	

� Each local LM owns some known subset of all the locks in the system
and plays the role of a global LM for those locks	 This subset may
change with time� but it does so slowly� e	g	 when an owner LM crashes	
Other LMs can then learn to which LM requests should be directed	

��� Local and Global Locks

Locks requested by principals of a local LM that are covered by global locks
already held by the LM can be granted locally	 If the local LM does not have
a covering lock for the locally requested lock� then it must acquire it	 Once
the local LM holds the covering lock�s�� it can grant the requested lock to
its principal� as a local lock	

Direct covering is the easiest covering to deal with	 For direct covering� an
LM needs to hold a lock on the same resource as is requested by its principal�
in a mode that is at least as strong as the requested mode	 Thus� a local
LM needs to record� for each resource� the mode of the lock that it holds for
the resource at the owning global LM	 In addition� it must keep track of the
local locks on a resource and the local principals that hold them	

For resource covered locks� the local LM need not have any lock directly
on the requested resource itself	 This is important as it permits such locks to
be managed entirely locally� without any locks on the resource being visible
at a global LM	 The result� however� is that the local LM does not know
whether locks being requested are resource covered without the requesting
principal informing it	

Thus� one required extension to the functionality of LMs is that informa�
tion be conveyed across the LM interface that permits a principal to know
about covering locks	 Then� the principal� using its knowledge of the MGH�
can instruct the LM in its task of managing resource covered locks	

��� Acquiring Locks ��

��� Acquiring Locks

����� Global Locks

The local LM� in its request to the global LM for a covering lock� asks for
a lock mode that is� at a minimum� equal to the lock mode desired by its
principal	 To maximize private locking� the global LM grants the strongest
lock mode that it can consistent with the current disposition of the lock that
is at least as strong as the mode requested	 For example� if the request is for
an S lock� the local LM indicates to the global LM that this is the minimum
acceptable lock mode	 If the resource is currently not locked� the global LM
grants an X lock to the local LM	 If the resource is currently held in some
mode compatible with S� but not X� then the global LM grants an S lock	
If an S lock cannot be granted� then the request blocks	

When the global LM blocks the request� it then noti
es the local LMs that
are holding the lock in conicting modes� asking them to release or demote
the lock	 The global LM supplies these LMs with the resource name and lock
mode requested� so that they can respond appropriately �See section �	�	�

����� Local Locks

When a principal requests a lock from its local LM� in addition to lock mode
and resource identi
er arguments� a requester indicates whether the lock
request can be purely local� i	e	 whether a lock on another resource �in the
MGH� resource covers the requested lock	 This tells the local LM that it
need not hold globally a lock that directly covers the requested lock	

To treat resource covering and hence to enable purely local locking� when�
ever the local LM grants a lock� it returns to the principal the mode of the
lock that the LM holds globally for that resource	 This permits the principal
to decide whether subsequent lock requests for
ner grained resources need to
have global covering locks or not	 That is� the local principal knows whether
the local LM holds a global covering lock on a resource higher in the MGH	

EXAMPLE� A local principal is told� when it requests an IX lock on
a �le� that the local LM holds a global X lock on the �le� Hence� when the
principal requests X locks on records of the �le� it tells the local LM that the
requested locks can be purely local�

�� � LOCAL LOCK MANAGERS

��� Demoting Locks

Whenever a covering lock is demoted or released� all uncovered locks need to
be posted to the owning LM prior to �or simultaneously with� this demotion	
For example� if one demotes a
le lock from S �a covering lock� to IS� then
all S locks on pages of the
le need to be posted to the owner of the page
�and
le� locks	 This is the standard lock de�escalation already practiced by
systems like Rdb�VMS ����	

Lock demotion can be very simple� e	g	 when no lower level locks in
the MGH are uncovered	 The mode of the lock as held by the requesting
principal is simply reduced	 In this case the demotion is always possible	
The need is to make sure that resource covering requirements are satis
ed	
And local locking introduces some complication	 We describe two demotion
situations	

����� Local Demotion

When a principal releases a local lock� the LM can choose to retain the
lock itself	 By retaining such locks� the LM can privately grant requests
for the locked resources	 This exploits high�water mark locking� where the
LM retains a lock with the highest lock mode that any of its principals has
recently requested	 Subsequent requests for lesser lock modes on the same
resource can be managed locally	

Lock retention of this sort may violate the multi�granularity locking pro�
tocol in so far as how local LMs hold locks at global LMs	 A local LM may
retain a lock on a resource lower in the MGH without necessarily having
retained the intention lock needed to hold that lock	 This is acceptable so
long as local principals observe the multi�granularity locking protocol and
local LMs demote their global locks on request when local principals are not
holding locks that require these retained stronger locks	 This is discussed in
section �	�	�	

When the local LM receives a conicting request for a lock from a local
principal� it informs the local principals currently holding the lock of this
request� indicating that the demotion request is a local request	 In this case�
the local holders must post local locks for the resources they are accessing
lower in the MGH that have been uncovered	 The global locks held by the
local LM need not change	

��� Demoting Locks ��

When a local lock is relinquished or demoted� it permits increased concur�
rency among the local principals	 There is no impact on global concurrency
because the local LM continues to hold the same global locks	 Only changes
in global locks� held by the local LM� can impact global concurrency	

����� Global Demotion

A local LM can unilaterally release global locks on resources without local
locks	 These locks cannot resource cover other locks	 To release or demote
a global lock on a resource that is currently locked by one of its principals�
even if in a weaker mode� requires that we determine whether
ner grained
locks are uncovered by this	

A local LM has no need to demote global locks on resources being used
by local principals unless these locks cause conicts at the global LM	 When
the global LM receives a conicting request for a global lock from some
local LM� it noti
es local LMs holding the lock	 The global lock cannot be
demoted without the local LM acquiring global locks on the uncovered locally
locked lower level resources of the MGH	 But local LMs do not have direct
information about resource covering and the MGH	

A local LM hence may need to notify its principals holding locks on the
resource for which demotion is requested� so that its principals can inform it
as to resource covered locks that are uncovered by the demotion	 Depend�
ing on the demotion requested� some local principals need noti
cation while
others do not	 The noti
cation requirements are indicated in Figure � for
multi�granularity locking	 To deal with an LM that supports arbitrary lock
modes� it may be necessary to notify all holders of local locks on a resource
whose global lock is to be demoted� so as to conservatively deal with the
unknown change in covering	

Local principals� when they are noti
ed concerning a demotion of a global
covering lock must� before they accede to the demotion� ensure that uncov�
ered locks are posted appropriately	 These principal must then tell the local
LM which additional locks need global posting	 Once each of these locks is
directly covered by a global lock� the principal noti
es the local LM that the
requested global lock demotion is acceptable	

If the principal itself holds a covering lock that lock demotion turns into
an intention lock� it needs to acquire uncovered locks locally and cause the
local LM to acquire covering global locks by indicating that these resources

�� � LOCAL LOCK MANAGERS

X

SIX

IS

NIL

S1X

notify X, IX*

notify SIX, IX

notify IS*, S

notify IS

notify IX

notify IS*, S, SIX

Figure �� Holders of local locks on a resource need to be noti
ed by a local LM
when global lock demotion is requested	 Both holders of locks that would no
longer be directly covered and holders of intention locks� indicating resource
covered locks are being held� need to be noti
ed	 The later are asterisk�d	

are not to be purely locally locked	 If local locks are already held� then the
principal instructs the local LM as to which locks are uncovered and directs
the local LM to acquire global locks that directly cover them	

The impact of global lock demotion on local and global locks is illustrated
in Figure �	

����� Honoring the Multi�granularity Lock Protocol

A local LM �LMA� may not always hold an intention lock on a resource
on which it chooses to retain a lock that is stronger than any of the locks
held by or needed by its local principals	 This potentially violates the multi�
granularity protocol	 It is possible� for example� for LMB to obtain a lock
on a resource higher in theMGH that covers LMA�s retained lock	 We need
to understand why our locking protocol remains correct	

The essential observation is that no local principal of LMA can exploit the
retained lock without itself observing the multi�granularity locking protocol	
This will cause the principal to request an intention lock higher in theMGH�
and eventually on the resource that is locked by LMB	 That lock request

��

R1

R2

R3

R1

R2

R3

- LM holds IX

on R1 at GLM

- LM holds X on

R2 at GLM

- T holds X on

R3 at LM

- LM holds X

- LM holds IX

on R2 at GLM

- LM holds IX

on R1 at GLM

- T holds IX on

R2 at LM

- T holds IX on

R2 at LM

on R3 at GLM

- T holds X on

R3 at LM

Before Lock Demotion After Lock Demotion

MGH MGH

Figure �� When a local LM is asked to demote its X lock on R� to IX� the
LM noti
es transaction T since the LM holds a covering lock and T has an
intention lock	 T tells the LM that its X lock on R� has been uncovered and
needs a global covering lock	

will block	
The second potential danger is that a principal of LMB will request the

lock retained by LMA� and will block� causing needless deadlocks	 This is
avoided by LMA demoting �or releasing� its retained lock when it is noti
ed
of conicting global requests	 This it can always do as none of its local
principals can be holding the lock in a way that precludes this demotion	

Finally� a principal of LMB can hold a covering lock� which is permitted
by LMB�s covering lock� and can exploit it by not locking resources lower in
the MGH	 Such a principal may access resources �locked� by the retained
lock of LMA	 This is acceptable as no local principal of LMA can acquire
the retained lock without waiting for LMB�s covering lock to be demoted	

� Generalizing Covering

We would like to extend the notions of covering and private locking to arbi�
trary lock modes	 In this section� we show how to apply covering to logical
locking and to data sharing cache management	 In both these cases� we need

�� � GENERALIZING COVERING

to reconcile mutual exclusion with covering	

��� Logical Locks

����� What are Logical Locks�

We would like to extend the notion of lock covering to what have been called
�logical� locks	 For our purposes� a logical lock is one that applies to a
�logical� resource that does not necessarily directly map to a physical unit�
e	g	 some particular disk block� disk area� etc	 Logical resources� and their
�logical� locks� are usually at a higher level of abstraction than physical
resources and their locks	

A distinguishing feature of physical locks is that they are frequently NOT
held for transaction duration	 Rather� physical locks are acquired� some lo�
calized action is performed� logical locks are acquired� and then physical locks
are released ���	 The notions of logical vs physical locks is captured more gen�
erally in the notion of multi�level transactions ��� ���� where subtransactions
use low level locks during their execution� acquire high level locks before they
commit�to their parent transaction� and then release the low level locks	

One would like for low level physical locks to be higher in the locking
granularity hierarchy than logical locks	 �Thus� �higher level� in the level
of abstraction sense is opposite to the ordering in the MGH	� Then the
physical locks can be made to cover the logical locks� permitting private
logical locking	 However� the early release of physical locks� while retaining
the logical locks� precludes physical locks from covering logical locks	 One
transaction�s new logical locks can conict with another�s retained logical
locks� even though the
rst holds the physical locks with a covering lock
mode	

EXAMPLE� A lock�latch perhaps� is acquired on a page� a record lock is
then acquired and the record updated� The page lock is released but the record
lock still protects the record� Another transaction� when it acquires the page
lock cannot assume that the page lock covers record locks for records on the
page� It does not� There has been no intention lock left on the page by the
earlier transaction� Hence� the new transaction must perform explicit record
locking� even when it holds the page lock�

��� Logical Locks ��

����� Logical Lock Covering

A di�erent lock protocol permits the covering of logical locks	 Physical locks
can be retained for as long as the outermost transaction whose subtransaction
acquired them remains active	 This is� in fact� the protocol required for
nested transactions	 Retained X and S locks on physical resources would
thus become covering locks for the logical locks	 The problem here is the
obviously reduced concurrency	

The usual way to increase concurrency when covering impedes it too much
is to replace covering locks by intention locks� and then to explicitly acquire
locks at the next lower level in the MGH	 However� X and S are frequently
needed to provide exclusion on the physical resource itself� enabling the re�
source to be correctly read or updated� not simply to act as covering locks	
Used in this way� a principal would acquire an X �or S� locks� update �or
read� a page� and then demote the lock to IX � or IS� when exclusion was
no longer required	 These intention locks indicate that records of the page
were being locked individually	

Unfortunately� the above protocol does not improve concurrency	 An IX
intention lock prevents the acquisition of the X �S� lock needed for exclusion	
Indeed� IX must conict with X �S� because X �S� is a covering lock	 The
di�culty here is that X and S lock modes are being used both for covering
and for exclusion	

A solution is to introduce new lock modes that provide the exclusion
needed on the physical resource without covering the logical locks	 These
new lock modes can then be compatible with the intention lock modes IX
and IS	 We name these new lock modes M �for modify� and R �for read�	
The lock compatibility matrix for our expanded set of lock modes is given in
Table �	 Note that M DCOV ERS IX� and hence is an intention lock for
X� and similarly�R is an intention lock for S	 M locks conict with otherM
locks to provide the required exclusion	 An R lock is similar to an IS lock
but conicts with M for exclusion	

Our protocol then becomes the following�

�	 Request a covering �X or S� lock on a resource � e	g	 page	 If successful�
keep locks lower in the MGH� e	g	 logical locks� private� reducing lock
overhead	 Should there be a conicting request after the subtransaction
needing these locks has committed� demote these locks to IX or IS and
simultaneous post all locks lower in theMGH that they were covering	

�� � GENERALIZING COVERING

Lock Modes IS R IX M S SIX X

IS x x x x x x
R x x x x x
IX x x x x
M x x
S x x x
SIX x x
X

Table �� Compatibility Matrix Including M and R	

�	 If the covering lock request fails� request exclusion via a non�covering
M or R lock on the resource	 M and R lock modes require locks lower
in theMGH to be posted publicly� exactly as with IX and IS intention
locks	 At subtransaction commit� demoteM and R lock modes to IX
and IS respectively� permitting other principals to acquire M and R

locks and hence to access the resource	

��� Cache Management

There is an interaction between locking and cache management in data shar�
ing systems	 Locking strategies can either enable or disable certain forms
of cache management	 In this section� cache management strategies are de�
scribed� with particular attention to their locking interaction	 It should be
clear that cache management
ts into a multi�level transaction system� with
the records of a page being the logical resources covered by the physical
page locks	 The cache management strategies di�er as to the states of pages
that are made available between stays at local systems� where a local system
includes a local cache� a cache manager� and a local LM	

����� Transaction Consistent Pages	TCP

With TCP� a page is transferred among systems only between transactions	
The page made available is always the most recent version� and it reects all
and only updates of committed transactions	

��� Cache Management ��

TCP is realized by holding covering locks on the pages for transaction
duration� X locks for updating and S locks for reading	 Larger granule
MGH locking� both covering and intention can also be exploited	 Only
these �physical� locks need be posted globally	 Between local systems� the
smallest resource granule is the page	 Within a local system� locking with
arbitrary granularity can be used� hence providing high concurrency� when
the local system has its own LM	 But the record�operation �i	e	 logical�
locking at local systems is private	

����� Updating of Current Pages	UCP

UCP guarantees that whenever a local system updates a page� that the ver�
sion of the page updated reects all prior updates	 Thus� updates are seri�
alized� not concurrent� and the updating local system sees all the preceding
updates	 Pages transferred between systems are always current pages� but
can contain uncommitted updates	

UCP is realized by holding a non�covering exclusion lock� eitherM or R�
on the page while it is is being acquired or transformed and record locks are
acquired	 But this does not preclude other systems from holding record locks	
Pages are only transferred or written to disk by the current holder of an M
or R lock� hence ensuring that only the current page is transferred	 M and
R locks can be demoted to IX or IS when exclusion is no longer needed	
Record locks need to be posted globally� as M and R are only intention
locks	 So� the penalty for the increased concurrency of UCP is additional
global locking	

Systems that continue to hold IX or IS locks on a page must also continue
to hold their record locks globally	 However� even though they no longer may
hold the current version of a page� they can continue to access records on
the out�of�date page in their cache� con
dent that the records that they are
protecting have not been altered elsewhere	

The UCP strategy does not preclude attempting to acquire covering locks
on pages	 As with logical locking� one can request a covering lock �X or S�
and be satis
ed with an exclusion lock �M or R� if a covering lock cannot
be granted	 This strategy avoids the need to choose on a system wide basis
between low lock overhead and concurrency	 Thus� it provides increased
capability compared to the techniques described in ���� ���	

�� � GENERALIZING COVERING

����� Concurrent Updating of Pages	CUP

It may be desirable to permit multiple systems to update the same page
without the UCP serializing of updates	 Thus� the CUP strategy does not
require that a current copy of the page be updated	 Rather� this strategy
can be accomplished by having a page manager �PM� merge the updates for
all records on a page� and read and write the page to disk	 An updater�s
requirement is to ship its record update to PM prior to releasing its X lock
on it	 A way to think about this is that� instead of reading and writing pages
to disk� �reading� and �writing� records is directed to the appropriate PM�
as if the granularity of the data were the record� not the page	 This is like
TCP applied to records� not pages	

CUP needs the locks held by concurrent updaters on a page to be compat�
ible� while preventing the page from being locked with a conicting covering
lock	 This is the role of intention locks �IX and IS�	 Hence� updaters ac�
quire IX locks on the page� while X locking the records updated	 Locks on
records must be posted globally	

A PM may sometimes need to read the prior version of a page from disk
to merge an update into it� but this is transparent to the updaters except for
its performance impact	 A smart PM will try and keep in its cache copies
of pages for which there are outstanding locks that permit updates so as to
avoid the need for the read from disk	

��� Local Locking

The existence of local LMs and local locking permits us to provide very high
e�ciency concurrency control	 Distributed cache management and logical
locking are examples where improvements can be made	 Prior solutions either
did not exploit local LMs and private locking or required that the smallest
locking granule globally locked be the page	 Our solution permits several
alternative locking scenarios� depending on the pattern of requests	 Pages
can be locked�

�	 globally by the local LM and locally by a principal with a covering
lock� either X or S	 No record locks need be posted	 This is a low lock
overhead option	 In fact� a covering
le lock can make individual page
locks unnecessary	

��

�	 globally by the local LM with a covering lock� and locally by a principal
with an intention lock	 No record locks need be posted globally	 Sev�
eral local principals can acquire record locks on the same page� hence
improving local concurrency but increasing local lock overhead	

�	 globally by the local LM with an intention lock� one of IX� IS� M � or
R	 Now record locks must be posted globally	 Exclusion access to the
page can be realized using M and R intention locks� demoted to IX or
IS when exclusion is no longer required	 This alternative permits serial
access to data on a page by even remote principals without necessarily
waiting to end of transaction	 Lock overhead is highest because of the
global locking but global concurrency is improved	

� Summary

Lock managers that perform private locking can improve dramatically the
trade�o� between concurrency and lock overhead	 A local LM can adjust its
locking strategy between using covering and intention locks	 For example� if
too much global lock conict occurs� covering global locks can be de�escalated
to intention locks	 This does require that the uncovered local locks be posted
globally	 If system lock overhead is too high� it can be reduced by making
formerly global locks private via the acquisition of covering locks	 Usually�
global intention locks should be used for hot data� improving concurrency�
while global covering locks are used for cold data� reducing lock overhead�
with minimal impact on concurrency	

Rdb�VMS ��� supports this kind of boundary changing currently� but does
not perform local locking	 Instead� it uses the VMS cluster wide distributed
lock manager�DLM�� where all locks are global	 Thus� all users experience
the same level of concurrency	 Resource covering is employed by principals
to entirely avoid the posting of locks	 When a conicting request occurs�
the DLM noti
es principals holding the lock� who must then decide whether
demotion is possible	 In the Rdb�VMS case� the principals are processes
executing the database system for a user	

Being able to manage locks locally is crucial for reducing lock overhead	
The overhead of obtaining a global lock in a distributed system� e	g	� via
the DLM is at least an order of magnitude larger than when the locks are

�� REFERENCES

managed locally and privately	 So local lock management can both reduce
lock overhead and improve concurrency for principals of the local LM	

Physical locking� e	g	 for cache management� or more generally� multi�
level transaction locking� permits locks to be relinquished early	 This is
important for high concurrency	 Concurrency is increased as principals can
acquire and release locks on subtransaction boundaries	 Our M and R lock
modes facilitate this by allowing exclusion without covering	

References

��� Bernstein� P	� Hadzilacos� V	 and Goodman� N	 Concurrency Control and
Recovery in Database Systems Addison Wesley� Reading MA ������

��� Gray� J	N	 Notes on data base operating systems	 Lecture Notes in Com	
puter Science ��� Springer�Verlag ������� ������� also in IBM Research
Report RC���� �Feb	 ������ Almaden Research Center� San Jose� CA		

��� Gray� J	N	� Lorie� R	 A	� Putzulo� G	 R	� and Traiger� I	 L	 Granularity
of locks and degrees of consistency in a shared data base	 IFIP Working
Conf on Modeling of Data Base Management Systems ������ ����	

��� Gray� J	� McJones� P	� Blasgen� M	� Lindsay� B	� Lorie� R	� Price� T	�
Putzulo� F	� Traiger� I	 The recovery manager of the System R database
manager	 ACM Computing Surveys ���� �June ����� �������	

��� Gray� J	 and Reuter� A	Transaction Processing� Concepts and Techniques
Morgan Kaufmann ������ �
nal draft�

��� Joshi� A	 Adaptive locking strategies in a multi�node data sharing model
environment	 Proc� Very Large Databases Conf��Sept	 ����� Barcelona�
Spain� �������	

��� Lampson� B	 and Sturgis� H	 Crash recovery in a distributed system	
Xerox PARC Research Report ������

��� Lomet� D	 Recovery for shared disk systems using multiple redo logs	
Digital Equipment Corp	 Tech Report CRL ���� �Sept	 ����� Cambridge
Research Lab� Cambridge� MA	

REFERENCES ��

��� Lomet� D	 MLR� a recovery method for multi�level systems	 Proc� ACM
SIGMOD Conf��June ����� San Diego� CA� �������	

���� Mohan� C	 and Narang� I	 Recovery and coherency�control protocols for
fast intersystem page transfer and
ne�granularity locking in a shared
disks transaction environment	 Proc� Very Large Databases Conf��Sept	
����� Barcelona� Spain� �������	

���� Mohan� C	 and Narang� I	 E�cient locking and caching of data in the
multisystem shared disks transaction environment	 IBM Research Report
RJ ���� �Aug ����� Almaden Research Center� San Jose� CA	

���� Mohan� C	� Narang� I	� and Silen� S	 Solutions to hot spot problems in
a shared disks transaction environment	Workshop on High Performance
Transaction Systems �Sept	 ����� Asilomar� CA	

���� Rahm� E	 Concurrency and coherency control in database sharing sys�
tems	 U	 Kaiserslautern Tech Report �Nov ����� ���� Kaiserslautern�
Germany	

���� Rengarajan� T	� Spiro� P	� and Wright� W	 High availability mechanisms
of VAX DBMS software	 Digital Technical Journal �� �Feb	 ������ �����	

���� Snaman� W	 et al The VAX�VMS distributed lock manager	 Digital
Technical Journal � �Sept	 ����� �����	

���� Stonebraker� M	 The case for shared nothing	 IEEE Database Engineer	
ing Bulletin ��� ������	

���� Weikum� G	 and Schek� H	�J	 Architectural issues of transaction manage�
ment in multi�layered systems	 Proc� Very Large Databases Conf��August�
����� Singapore� �������	

�� CONTENTS

Contents

� Introduction �
�	� Data Sharing and Server Independence � � � � � � � � � � � � � �
�	� Some Locking Fundamentals �
�	� Lock Covering �
�	� Distributed Lock Management � � � � � � � � � � � � � � � � � � �

� Covering for Multi�granularity Locks �
�	� Resource Covering �
�	� Intention Locks �
�	� Determining Lock Mode Conicts � � � � � � � � � � � � � � � � �
�	� Protocols for Multi�Granularity DAGs � � � � � � � � � � � � � �

� Local Lock Managers ��
�	� Private Locking ��
�	� Owners and Holders ��
�	� Local and Global Locks ��
�	� Acquiring Locks ��

�	�	� Global Locks ��
�	�	� Local Locks ��

�	� Demoting Locks ��
�	�	� Local Demotion ��
�	�	� Global Demotion ��
�	�	� Honoring the Multi�granularity Lock Protocol � � � � � ��

� Generalizing Covering ��
�	� Logical Locks ��

�	�	� What are Logical Locks� � � � � � � � � � � � � � � � � � ��
�	�	� Logical Lock Covering � � � � � � � � � � � � � � � � � � ��

�	� Cache Management ��
�	�	� Transaction Consistent Pages�TCP� � � � � � � � � � � � ��
�	�	� Updating of Current Pages�UCP� � � � � � � � � � � � � ��
�	�	� Concurrent Updating of Pages�CUP� � � � � � � � � � � ��

�	� Local Locking ��

� Summary ��

