
A New Presumed Commit

Optimization for Two Phase

Commit
Butler Lampson David Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� February ��� ����

�

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is applica-
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor-
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

�

A New Presumed Commit

Optimization for Two Phase

Commit
Butler Lampson David Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� February ��� ����

Abstract

Two phase commit ��PC� is used for coordinating the commitment of
transactions in distributed systems	 The preferred �PC optimization is the
presumed abort variant� which reduces the number of messages when transac

tions are aborted� and eliminates the coordinator�s need to retain information
about aborted transactions	 The presumed commit �PC variant provides a
larger message reduction� but its coordinator must do additional logging	
We describe a new form of presumed commit that reduces the number of log
writes while preserving the reduction in messages� bringing both these costs
below those of presumed abort	 The penalty for this is the need to retain a
small amount of crash related information forever	

Keywords� commit protocol� two phase commit� protocol optimization� pre

sumed commit
c�Digital Equipment Corporation ����	 All rights reserved	

�

� Introduction

��� Coordinating Distributed Commit

Distributed systems rely on the two phase commit ��PC� protocol to coor

dinate the commit of transactions �� ��	 �PC guarantees the atomicity of
distributed transactions� i	e	 that all cohorts of a transaction either commit
or the transaction is aborted	 The cost of the �PC is an important factor in
the performance of distributed transactions	

� It requires multiple messages in multiple phases	 These messages have
both substantial computational cost� which a�ects system throughput�
and substantial delay� which a�ects response time	

� It requires that information about transactions be stably recorded to
ensure that the system can continue to guarantee transaction atomicity
even if one or more elements of the system should fail during the commit
protocol itself	 This is usually accomplished by writing information to
a log	 When information must be at some point in the protocol� the log
must be �forced�� i	e	 the write must be completed before proceeding
to the next step	 Forced writes are are more costly than simple writes
because they translate into actual I�O� whether a block of the log is
�lled or not	

��� This Paper

In this paper� we describe a new variant of �PC whose message cost is as
low as its best alternative and whose coordinator logging cost is substantially
less	 The paper is organized as follows	 In section � we describe the basic
form of �PC� with particular emphasis on message cost and the coordinator�s
need to be able to recover its �database� of protocol related information	 In
section � we present the traditional ways of optimizing �PC� by presuming
the outcome of transactions that do not have entries in the coordinator�s
database	 Section � explains what information is essential to recover the
protocol database should the coordinator crash� and how it can be provided
using fewer log writes	 The protocol that results from exploiting this new ap

proach to recovery of the protocol database is described in section �	 Finally�

� � TWO PHASE COMMIT

we discuss the virtues and limitations of this approach to �PC optimization
in section �	

� Two Phase Commit

Commit coordination and its optimizations are discussed thoroughly in �� ��
��	 We recap this discussion here	 We begin by describing the basic version
of two phase commit� before applying most optimizations	 The coordinator
in this version requires very explicit information� and this version has some

times been referred to as the �presumed nothing� protocol or PrN	 This is
in contrast to subsequent optimizations that do make presumptions regard

ing missing information	 �Note� however� that in fact� PrN does make some
presumptions ��	�

��� The Protocol Messages

To commit a distributed transaction� PrN requires two messages from coordi

nator to cohort� and two messages from cohort to coordinator �four messages
in all�	 The protocol involves the following steps�

�	 A coordinator noti�es all cohorts that the transaction is to be termi

nated� via the PREPARE message	

�	 Each cohort then sends a vote message �either a COMMIT
VOTE or
an ABORT
VOTE� on the outcome of the transaction	 A cohort re

sponding with a COMMIT
VOTE is now prepared	

�	 The coordinator commits the transaction if all cohorts send COMMIT

VOTEs	 If any cohort sends an ABORT
VOTE� or the coordina

tor times out waiting for a vote� the coordinator aborts the transac

tion	 The coordinator sends the outcome message �i	e	 COMMIT or
ABORT� to all cohorts	

�	 The cohort terminates the transaction according to its outcome� either
committed or aborted	 The cohort then ACKs the outcome message	

��� Cohort Activity �

��� Cohort Activity

Cohorts must ensure that they log enough information stably so that they
can tolerate failures in the midst of the commit protocol	 Before the vote
message� no logging is required	 Transactions failing then are aborted	 Before
responding with a COMMIT
VOTE� however� a cohort needs to stably record
that it is prepared	 This makes it possible for it to commit the transaction�
even if it is interrupted by a crash	

If a prepared cohort does not receive the transaction outcome message
promptly or crashes without remembering the outcome� the cohort asks the
coordinator for the transaction outcome	 It keeps on asking the coordinator
until it receives an answer	 �This is the blocking aspect of �PC	�

Before ACKing a COMMIT or ABORT outcome message� a cohort forces
the transaction outcome record to its log	 The ACK message tells the coor

dinator that the cohort will not ask again about this transaction�s outcome	
Recovery at the cohort ensures that the cohort knows transaction outcome
after a crash without asking the coordinator	 Therefore� the coordinator can
discard the outcome for this transaction once all the cohorts have ACKed	
This �nal log write must be completed prior to sending the ACK message	
However� there is no urgency about the sending of the ACK as the ACK�s
function is only a bookkeeping one� i	e	 to permit the garbage collection of
the protocol database� which is described in the next subsection	 Hence one
can group both the log writes and the ACK messages� amortizing their costs
over several transactions	

��� The Protocol Database

The coordinator maintains a main memory protocol database that contains�
at a minimum� the states of all transactions currently involved in �PC	 The
protocol database enables the coordinator both to execute the �PC protocol
and also to answer queries from cohorts about transaction outcome	 As we
saw in the previous subsection� cohorts make such queries when they recover
from a crash or when messages are lost� these failures can occur at any time	
Because the coordinator can also fail� it keeps a log of protocol related activity
to make the protocol database recoverable	

The protocol database for PrN contains entries for all transactions� com

mitted� aborted� or still active� that have registered with the coordinator but

� � TWO PHASE COMMIT

Trans	 ID Stable State fCohort Vote ACK g

Yes Initiated None Yes
No Prepared ABORT�VOTE No

Aborted READ�ONLY�VOTE

Committed COMMIT�VOTE

Figure �� The format of a transaction entry in the protocol database	 Each
transaction is identi�ed by a �Trans	 ID�	 �Stable� indicates whether the
transaction existence is stably recorded on the log	 The �States� of a trans

action are �i� �Initiated� indicating that the it is known to the system�
�ii��Prepared� indicating that a PREPARE message has been sent� etc	 A
transaction may have several cohorts	 The �Vote� indicates how the cohort
voted in response to the PREPARE message� �ACK� whether the outcome
message has been ACKed	

have not completed the protocol	 A PrN coordinator enters a transaction
into its protocol database when that transaction is initiated	 A transaction�s
entry includes its set of cohorts and the coordinator�s knowledge of their
protocol state� i	e	 has a cohort responded to the PREPARE message with
a vote� was it a COMMIT
VOTE or an ABORT
VOTE� has it ACKed the
transaction outcome message� etc	 The format for a transaction entry in the
protocol database is given in Figure �	

The ACK message helps the coordinator manage the protocol database	
As each cohort ACKs� the coordinator can drop the cohort from the trans

action�s entry	 When all cohorts have so responded� the coordinator deletes
the transaction entry from its database	

��� Coordinator Recovery

����� Logging for Recovery

We assume that a transaction manager �TM� serves as the coordinator	
The TM logs protocol activity to ensure that it can recover the protocol
database	 It does not log for transaction durability �directly�	 For example�
fully ACKed transactions are not present in the protocol database and do

��� Coordinator Recovery �

not require recovery	 How much is logged a�ects how precisely the protocol
database can be reconstructed after a coordinator crash	 The PrN logging
usually involves two log records	

Before sending the outcome message� the PrN coordinator forces the
transaction outcome on its log	 This act either commits or aborts the trans

action and permits recovery of the transaction�s entry from this point on	
Thus� transactions that have a outcome have a stable log record document

ing it	

After receiving ACKs of the transaction outcome message from all co

horts� the PrN coordinator writes a non
forced END record to make this
information durable	 The coordinator need not then recover the transac

tion�s entry in the protocol database after a crash� and hence keeps it from
again asking the cohorts for ACKs	

����� Less Than Full Recovery

If we take the PrN �presumed nothing� characterization literally� we need to
write many additional log records� usually forced	 We need to reconstruct the
protocol database precisely� including information about all aborted transac

tions	 This requires that we force to the log� before sending the PREPARE
message� the contents of a transaction�s protocol database entry	 If the coor

dinator crashes before transaction outcome is decided� we then have a stable
record which allows us to explicitly abort the transaction	

As PrN is usually described� however� the ability to recover informa

tion about active �hence not yet decided� transactions is sacri�ced to reduce
logging cost	 Traditionally� the transaction�s entry is not logged until its
outcome is logged �but see �presumed commit� below�� and the transaction
entry is lost if the coordinator crashes earlier than this	 Cohorts that inquire
about a transaction not in the protocol database are directed to abort the
transaction	 That is� these transactions are �presumed� to have aborted	

There are several ways to save log writes and cope with the less than com

plete information that exists after recovery	 For example� how many cohorts
of which transactions need to be contacted to re
ACK outcome messages
depends on whether each ACK is logged� only completion of all ACKing is
logged� or there is no logging related to ACKs	 These strategies do not a�ect
the correctness of �PC but do impact the cost of recovering from coordinator
crashes	

� � PRESUMED OUTCOMES AND OPTIMIZATION

Type of Coordinator Cohort
�PC Protocol Update Trans	 Read
Only Trans	 Update Read
Only

m�n�o�p m�n�o m�n�q m�n�q

PrN ����
��
 �����

PrA ������� ����� ����� �����
PrC ������� ����� ����� �����
NPrC ������� ����� ����� �����

Table �� The message and log write costs for �PC and its optimizations	
�m� log records� �n� forced log records� �o� messages to read only cohort� �p�
messages to update cohorts� �q� messages from the cohort	

��� Summary for the PrN Protocol

To commit a transaction� a PrN coordinator does two log writes� the commit
record �forced� and the transaction end record �non
forced�	 In addition�
it sends two messages to each of its cohorts� PREPARE and COMMIT	 In
response� each cohort performs two log writes� a prepare record and a commit
record �both forced�� and sends two messages� a COMMIT
VOTE and a �nal
ACK	 These are tabulated in Table �	 This is similar to the table in ��	

� Presumed Outcomes and Optimization

In some failure cases� a PrN coordinator presumes that transactions are
aborted when it gets inquiries about transactions that are not in its pro

tocol database	 This presumption is possible because there are only two
outcomes of a transaction� and PrN always remembers which transactions
have committed	 Thus� it is safe to presume that all other transactions�
whether the coordinator is aware of them or not� have aborted	

We can exploit the two outcome characteristic of transaction termination
more extensively than PrN does	 We systematically purge either the aborted
or the committed transactions from our protocol database	 We then simply
presume the alternative outcome for these transactions from the outcome of
the retained entries	 Because our protocol database no longer contains these

��� Presumed Abort �

purged entries� we do not have to recover them	 Hence we need not log their
protocol activity	 Some messages as well as some log writes now become
unnecessary	 Below� we brie�y describe two published �PC optimizations	
Each optimization presumes a di�erent outcome for transactions missing from
the protocol database	

��� Presumed Abort

In the absence of information about a transaction in its protocol database�
a presumed abort �PrA� coordinator presumes the transaction has aborted	
This abort presumption was already occasionally made by PrN	 PrA makes
it systematically to further reduce the costs of messages and logging	 Once
a transaction has aborted� its entry is deleted since its absence denotes the
same outcome	 No information need be logged about such transactions� as
their protocol database entries need not be recovered	

We must guarantee that the protocol database always contains entries
for committed transactions which have not yet completed all phases of �PC	
These entries must be recoverable across coordinator crashes	 This requires
the coordinator to make transaction commit stable before sending the COM

MIT message by forcing this outcome to its log	 The protocol database
entries for committed transactions should be deleted when �PC completes
to limit database size� just like with PrN	 And the same garbage collection
strategies are also possible	

A coordinator need not make a transaction�s entry stable before its com

mit because an earlier crash results in transaction abort� the presumed out

come in the absence of information	 Only a COMMIT outcome needs to be
logged �with a forced write�	 Since there is no entry in our protocol database
for an aborted transaction� there is no entry in need of deletion� and hence
no need for an ACK of the ABORT outcome message	

In summary� as with PrN� to commit a transaction� a PrA coordinator
does two log writes� the commit record �forced� and the transaction end
record �which isn�t forced�	 In addition� it sends two messages to each cohort�
PREPARE and COMMIT	 In response� each cohort performs two log writes�
a prepare record and a commit record �both forced�� and sends two messages�
a COMMIT
VOTE and a �nal ACK	 These are tabulated in Table �	

� � PRESUMED OUTCOMES AND OPTIMIZATION

��� Presumed Commit

For presumed commit �PrC�� the coordinator explicitly documents which
transactions have aborted	 While this has some apparent symmetry with
PrA� which needs to know explicitly about committed transactions� in fact
there is a fundamental di�erence	 With PrA� we can be very lazy about
making stable in the log the existence of a transaction	 If it fails before
our acquiring knowledge of it� we presume it has aborted	 But PrC needs to
know about and have a stable record of initiated transactions because missing
transactions are presumed to have committed	 A commit presumption is not
correct for early failing transactions	 Traditionally this has meant that at the
time �PC is initiated and a transaction is entered into the protocol database�
the coordinator forces a transaction initiation record to the log� making its
entry stable	 This entry can then be recovered after a coordinator crash	
Uncommitted transactions are then aborted rather than presumed to have
committed	

With PrC� a transaction�s entry is removed from the protocol database
when it commits	 Missing entries are presumed to have committed	 If cohorts
subsequently inquire� they are told the transaction committed �by presump

tion�	 Thus� PrC avoids ACK messages for committed transactions� which is
the common case and hence a signi�cant saving �much more important than
avoiding ACKs for aborted transactions�	

We must ensure that a committed transaction�s entry is not re
inserted
into the protocol database during coordinator crash recovery	 If this hap

pened� we might think this transaction should be aborted	 Hence� we force
commit information to the log before sending the COMMIT message	 Logi

cally� this log write erases the transaction initiation log record� since lack of
information implies commit	 However� given the nature of logs� it is easier
to simply document the commit by forcing a commit record to the log tail	
The commit log record tells us not to include the transaction in our protocol
database of aborted transactions	

With PrC� both protocol database entry and transaction initiation log
record list all cohorts from which ACKs are expected if the transaction
aborts	 When all ACKs have arrived� the entry can be garbage collected
from the protocol database	 We write a non
forced end record to the log to
keep this transaction from being re
entered into the protocol database� just
as is done with PrN	 No separate abort record is needed	

��� Read�Only Cohorts and Transactions �

In summary� to commit a transaction� a PrC coordinator does two forced
log writes� the transaction initiation record and the commit record	 In ad

dition� it sends two messages to each cohort� PREPARE and COMMIT	 In
response� each cohort forces two log records� prepare and commit	 The com

mit record need not be forced because a prepare record without a commit
record causes the cohort to inquire about transaction outcome	 The coordi

nator� not �nding the transaction in its protocol database� will respond with
a COMMIT message	 The cohort sends one message� its COMMIT
VOTE	
No �nal ACK is required	 These are tabulated in Table �	

��� Read�Only Cohorts and Transactions

When a cohort is read
only� it has done no logging and does not care about
the transaction outcome� merely that the transaction is completed and that
locks can be released	 Such a cohort does not need to receive the transaction
outcome message	 To avoid receiving this second message� it sends a READ

ONLY
VOTE� then releases its locks and forgets the transaction	 Thus� a
read
only cohort writes no log records and sends one message	

The coordinator removes read
only cohorts from the list of cohorts to re

ceive the transaction outcome message	 If all cohorts sends a READ
ONLY

VOTE� then the coordinator sends no outcome message	 In addition� it no
longer matters whether the transaction is considered committed or aborted	
Hence the coordinator can choose whichever outcome permits the least log

ging	

PrA� Abort the transaction by deleting its entry from the protocol database	

PrC� Abort the transaction by writing �non
forced� an abort�end record
and deleting its entry from the protocol database	

Regardless of whether a transaction commits or aborts� whether it is an
update transaction or a read
only transaction� and what variant of �PC is
used� the activity of read
only cohorts is the same	 These cohorts respond to a
PREPARE message with a READ
ONLY
VOTE message� do no log writes�
and forget the transaction	 These cohorts expect no transaction outcome
message from the coordinator	 This is the read
only optimization	 It only
guarantees serializability if it is known before the commencement of the �PC
protocol that cohorts have completed all their normal activity	 �Section �

�� � REDUCING PRC COORDINATOR LOG WRITES

discusses the impact if normal transaction activity can continue after �PC
begins	�

��� Advantage of Presumed Abort

It is the coordinator logging that makes PrA preferable to PrC	 To commit
a transaction� a PrC coordinator forces two log records� while with PrA only
one force is required while the other log write is not forced	 The extra forced
write is for PrC�s transaction initiation record and it is needed for every
transaction	 Hence� it shows up in both update and read
only transactions	
Furthermore� for committed transactions it is necessary to force the commit
record documenting that a previously initiated transaction has not aborted	

� Reducing PrC Coordinator Log Writes

Considering message cost only� the PrC protocol has a decided advantage	
Hence� we focus on reducing its coordinator logging costs	 In particular�
we want to avoid forcing the transaction initiation record	 This forced log
write documents that the transaction has initiated the commit protocol	 It
permits us to explicitly notify cohorts when a transaction aborts because the
coordinator crashes� and to garbage collect its entry in the protocol database
once all the cohorts have ACKed the abort	 To avoid this log write� we need
to know how a coordinator identi�es transactions that were in the active
protocol phase at the time of a crash� and how it manages the protocol
database when it cannot garbage collect transactions that are aborted by
a crash	 Our fundamental idea is to give up on �i� having full knowledge
after coordinator recovery as to the speci�c transactions active when the
coordinator failed and �ii� garbage collecting the information that we do
have about transactions active when the coordinator failed	

��� Potentially �Initiated� Transactions

Instead of full knowledge about active transactions� we reconstruct informa

tion about all the transactions that may have been active at the time of a
crash	 We denote this set of potentially initiated transactions as IN 	 IN

must include all transactions actually active� but it may also include never

��� Potentially �Initiated� Transactions ��

Term De�nition

AB Set of explicitly aborted transactions �stable�
COM Set of explicitly committed transactions �stable�
IN Set of potentially initiated transactions

that includes all undocumented active transactions
REC Set of recent transactions near a crash
tidh last transaction that may have executed

will be higher than tidsta
tidl a transaction lower than all active transactions

that are undocumented
tidsta highest tid with stable log record
� max number of active transactions with tid � tidsta

Table �� The terms used in describing the NPrC �PC optimization	

initiated transactions as well	 Since we do not know cohorts for transactions
in this set� we cannot garbage collect entries for these transactions from the
protocol database	

We can reasonably bound IN without forcing transaction initiation log
records� hence eliminating the need for these forced writes	 We assume that
transaction identi�ers �tids� are assigned in monotonically increasing order	
Then� we �nd a high tidh and a low tidl such that the tids of all such undoc

umented transactions must lie between them	 �Table � de�nes the notation
that we use in this paper	�

Let us denote the set of tids of committed and stably documented trans

actions as COM 	 Let REC denote the set of �recent� tids� de�ned as

REC � ftid j tidl � tid � tidhg ���

Then we de�ne IN as�

IN � REC � COM � REC � �COM � REC� ���

�COM �REC� is simply the set of tids in REC which have committed	
No undocumented transaction that has begun �PC has a tid less than

tidl	 No transaction with a tid higher than tidh has begun �PC	 Neither tidh

�� � REDUCING PRC COORDINATOR LOG WRITES

nor tidl need be a tid of an actual transaction	 They are simply bounds on
transaction identi�ers associated with this set	

To sum up the preceding discussion� we represent the set of initiated
transactions IN for each system crash with the following data structure�

� tidl� tidh� COM �REC � ���

All tids in IN have abort outcomes by presumption� whether they initi

ated the �PC protocol or not	 IN contains the set active at the time of a
crash and hence aborted	 Thus� responding to inquiries about these trans

actions with an abort is appropriate	 The set IN may include non
existent
transactions and those that never begun the �PC protocol	 It does not matter
whether these are deemed to have committed or aborted because no cohorts
will ever inquire as to their status	 We must� however� ensure that these tids
are not re
used for this to remain true	

Two problems persist�

�	 How do we determine IN for a crash at recovery time and make sure
that its tids are not re
used�

�	 How do we represent the information contained in IN in a compact
fashion� given that garbage collection is not feasible� and hence that
IN must be retained permanently�

��� Recovering IN After a Crash

����� Determining tidh

We describe two straightforward approaches to determining tidh	 Both pre

vent transactions with tids greater than tidh from beginning	

� Method� We refer to the transaction with the highest tid present on the
log as tidsta	 After a crash� we determine tidsta by reading the log	 We
choose a �xed �� e	g	 of ��� tids	 Then tidh � tidsta � �	 Having a
�xed � means that no extra logging activity is needed to recover tidh	

Logging tidh� We determine tidh during recovery by reading its value ex

plicitly from the log	 This requires us to periodically write candidate
tidhs to the log	 The last candidate tidh logged before a crash becomes

��� Recovering IN After a Crash ��

the tidh for the crash	 To avoid having to force a log record when a
transaction begins the �PC protocol� we set tidh to be several tids be

yond the currently used highest tid	 This approach permits us to adapt
tidh to system load	

On recovery from a crash� regardless of how tidh is determined� we require
the coordinator to use tids that are greater than tidh	 This ensures that no
tid of IN is re
used	 This is important as it enforces that tids of IN have a
single outcome� i	e	 abort	

����� Determining tidl

We denote by tidl the lower bound for the tids of active and undocumented
transactions	 All transactions with tids less than tidl that have begun since
the last crash have either a commit or an abort record in the log	 �With the
variation described in section �� they might also have an explicit transaction
initiation log record	� Having a tight bound for tidl permits us to minimize
the number of transactions in IN 	 This is important because IN must be
stored permanently	

We ensure that tidl is known after a crash by writing it to the log	 When

ever tidl can be advanced� we write to the log the new value for tidl along
with the commit or abort record for the transaction whose termination per

mits us to advance tidl	 Thus tidl is recorded without extra log writes or
forces	 The log is marked with a series of monotonically increasing tidls	
The last tidl written before a crash is the tidl used in representing IN 	

While the system is executing normally� we know which transaction is
this oldest active undocumented one	 �Here� an active transaction means
any transaction known to the coordinator to have begun� whether or not
it has initiated the commit protocol	� The termination of this transaction
permits tidl to be advanced	 Thus� we log transaction termination as follows�

Not oldest active transaction� If it is committing� we force a commit
record for it	 If it is aborting� then when all ACKs have been received�
we simply delete it from the protocol database	

Oldest active undocumented transaction� If it is committing� we write
to the log� along with its commit record� the new tidl	 tidl might not
be the tid of the completing transaction	 Rather� it will sometimes be a

�� � REDUCING PRC COORDINATOR LOG WRITES

higher tid� indicating that subsequent transactions has also completed	
If it is aborting� then when all ACKs are received we write �non
forced�
a new tidl to the log	

If the coordinator fails before tidl is advanced past the tid of a committed
transaction� the log contains the transaction�s commit record which keeps it
out of IN 	 If the coordinator fails after tidl advances past the committed
transaction�s tid� then the transaction is committed by presumption	

If the coordinator fails before tidl is advanced past the tid of an aborted
transaction� then the transaction becomes part of IN and hence is remem

bered as an aborted transaction	 If the coordinator fails after tidl is advanced
past the aborted transaction�s tid� ACKs from all cohorts must have been
received	 Hence there will be no inquiries about this transaction	

����� Determining and Representing COM �REC

Because IN needs to be permanently recorded� it is important that the
representation for IN be small	 The quantities tidh and tidl consume a trivial
amount of storage	 The only question is how compactly one can represent
COM �REC	 All transactions that commit have commit records stored on
the log	 So determining which transactions have committed requires simply
searching the log for commit records	

There are two standard ways to represent sets which can be e�ective in
representing COM �REC� depending on set size and sparseness	

Consecutive tids When tids are allocated consecutively� a compact rep

resentation for a set is a bit vector	 Our tidl becomes the origin for
the bit vector �BV �	 BV need only have a size of tidsta � tidl where
COM �REC � ftid j BV tid� tidl� � �g This is because there are no
committed transactions with tids greater than tidsta	

Non�Consecutive tidsWhen tids are sparsely allocated� a bit vector is not
a compact representation	 Sparse allocation might arise if timestamps
are used within tids	 Here we represent COM �REC as an explicit list
of tids� i	e	 of transactions with tids between tidl and tidh that have
committed	 If each tid is �� bytes� and the cardinality of COM �REC
is around ��� and assuming that ��� compression is possible on this set
of tids� then the amount of information stored for each crash is not
more than ��� bytes	

��� Persistent IN and Its Use ��

��� Persistent IN and Its Use

No transactions in IN have committed	 But we do not know whether they
were aborted or whether they never ran	 And if aborted� we do not know
whether they began the �PC protocol or not	 Hence� we do not know whether
we will receive inquiries about this set or not	 Nor do we know how many
inquiries we might receive or by which cohort	 It is thus impossible to garbage
collect the information concerning transactions in IN 	 The set IN thus has
to be recorded permanently	 Fortunately� the cardinality of COM � REC

will typically be small	 Also� the stably recorded information will be linear
in the number of system crashes	

Given the representations for IN described above� persistently storing
IN is quite manageable	 Even assuming that the system crashes once a day
�which is high for a well managed system�� and the system is in operation
seven days a week� it would take ���� days or six years to accumulate one
megabyte of crash related IN information	 The current purchase price of a
megabyte of disk space is two dollars	

So that the transaction manager can respond quickly to requests for trans

action outcomes� information from IN should be maintained in main mem

ory	 While IN may be too large to be stored entirely in main memory� we
can easily cache information about the last several crashes	 Almost all in

quiries will be for transactions involved in these crashes� and maintaining
this information in main memory has a trivial cost	 This should easily su�ce
for e�cient system operation	

� A New Presumed Commit Protocol

Building on the preceding ideas� we now describe a new presumed commit
protocol �NPrC� that does not require a log force at protocol start	 NPrC has
a message protocol that is identical to the PrC protocol� and it manages its
volatile protocol database in much the same way	 NPrC di�ers from PrC in
what its coordinators write to the log� and hence in the information that the
coordinators recover after a crash	 We assume that a transaction manager
coordinates commit and has its own log ��	 We write the description for a
�at transaction cohort structure	 An extension to the tree model is discussed
in section �	

�� � A NEW PRESUMED COMMIT PROTOCOL

��� Coordinator Begins NPrC Protocol

The �PC protocol begins when the coordinator receives a commit directive
from some a cohort of the transaction or the application	 The coordinator
sends out PREPARE messages to cohorts asking them whether to commit
the transaction	 No log record is forced� or even written	 The coordinator
then waits to receive responses from all cohorts	

We distinguish the cases where a transaction is aborted� where the trans

action has done updating� and where the transaction is read
only	 In partic

ular� a transaction cohort sends an ABORT
VOTE message if it wishes to
abort the transaction� a COMMIT
VOTEmessage if the cohort has updated�
and a READ
ONLY
VOTE message if the cohort has only read data	

��� Aborting a Transaction

If any of the cohorts sends an ABORT
VOTE� or if the responses do not arrive
in a timely fashion� then the coordinator sends an ABORT outcome message
to cohorts that have not sent an ABORT
VOTE	 When all such cohorts have
ACKed the ABORT message� the coordinator deletes the transaction from
its protocol database	 Now tidl can be advanced past its tid	

Should the system fail before all ACKs for an aborted transaction are
received or after ACKs are received but before tidl is advanced past its tid�
the transaction will be part of IN � and on a cohort inquiry the coordinator
will respond that the transaction has aborted	 If the system fails after tidl is
advanced past its tid� then the transaction is presumed to have committed	
However� that cannot happen until after all ACKs are received� and hence
no inquiries will ever be made	

Thus for transaction abort we require four messages per update cohort
that sent COMMIT
VOTEs� two from coordinator to cohort �PREPARE
and ABORT�� and two from cohort to coordinator �COMMIT
VOTE and
ACK� and a log write only if the aborting transaction was the oldest ac

tive transaction	 This records the new value of tidl	 It needn�t be forced	
Aborting cohorts send only the one ABORT
VOTE message	

��� Committing an Update Transaction ��

��� Committing an Update Transaction

If all cohorts have voted� no cohort has sent an ABORT
VOTE� and at least
one cohort has sent a COMMIT
VOTE� then this is an update transaction	
The coordinator forces a commit log record	 The commit record need not
contain the names of cohorts� and no END record is needed since there
are no ACK messages expected	 The transaction�s entry is deleted from the
protocol database and the transaction is presumed to have committed	 When
the committing transaction is the oldest active transaction� a new tidl record
is forced to the log along with the commit record	

Should the system fail before the commit record is forced� the transaction
is in IN and will be aborted	 If it fails after the commit record is forced� but
before tidl advances past its tid� its tid is part of REC� but it is in COM

and hence not in IN 	 If the system fails after tidl is advanced past its tid�
the transaction is correctly presumed to have committed	

Thus� for transaction commit� the message�log cost of this coordinator
activity is one log record written and forced� the commit record with or
without the tidl record� and three messages per update cohort� PREPARE�
COMMIT
VOTE� and COMMIT	 The ACK message is avoided	

��� Committing a Read�Only Transaction

No log record is written in the protocols above until after the votes for all
cohorts have been received	 If all cohorts send READ
ONLY
VOTEs� the
transaction is a read
only transaction	 All cohorts have terminated without
writing to their log� and have �forgotten� this transaction	 There is no
need for the coordinator to write any log record� nor to send any additional
messages	

If the system crashes� the information that is derived to document the
NPrC requirements will suggest di�erent outcomes� depending on how close
to the crash the read
only transaction �nished	 If the tid for this transaction
is greater than tidl� then it will be in IN � and the transaction will appear
to be aborted	 If less than tidl� then it will appear to have been committed	
However� no cohort will make an inquiry and the apparent result of the
transaction is irrelevant	

The protocol cost in this case is no log records written at the coordinator�
and one message�PREPARE� to and one�READ
ONLY
VOTE� from each

�� 	 DISCUSSION

�read
only� cohort	 A cohort need not write a log record for the usual �PC
protocol	

��� Summary and Comparison

The message and log write costs of NPrC are included in Table �	 Its costs
are never worse� and are usually better than the costs of either the standard
PrN �PC protocol or the two common optimized forms of �PC� presumed
abort �PrA� and presumed commit �PrC�	 Note in particular that to commit
an update transaction� an NPrC coordinator needs fewer log writes than
either PrA or PrC� and an NPrC cohort sends fewer messages than PrA	
Further� to abort a transaction usually entails no log write	 Occasionally� a
tidl record might to be written� but it needn�t be forced	

The NPrC protocol achieves logging cost lower than that of PrA by focus

ing on the main memory protocol database	 In particular� it is only necessary
to correctly identify commit or abort outcomes for those transactions that are
engaged in the protocol and whose cohorts may ask for the outcomes	 Pre

suming an incorrect outcome for other transactions in no way compromises
correctness of the protocol 	 Further� we sacri�ce the recovery of information
used to garbage collect protocol database entries	 This requires that some
information about transaction outcome be retained forever	 However� the
information preserved for each crash is small	 So long as the coordinator
does not crash often� retaining this information is only a minor burden	 The
reduction in coordinator logging is substantial	

A cohort need not know whether the coordinator is executing the PrC
or the NPrC protocols because the message protocol is the same	 It is only
within the coordinator that behavior is di�erent	 We have traded the ongoing
logging necessary to permit us to always garbage collect our protocol database
entries after a coordinator crash for the cost of storing forever a small amount
of information about each crash	 This appears to be a good trade	

� Discussion

There are times when the model for distributed commit that we have assumed
is too simple	 Below� we explore some more complex scenarios	

	�� Recalcitrant Transactions ��

	�� Recalcitrant Transactions

There are a number of situations in which tidl may be prevented from ad

vancing or in which we may want to violate its requirements	

� A transaction has been aborted because a cohort has failed� it will be
a long time before the failed cohort ACKs the abort	 Given our prior
approach� tidl cannot be advanced past this transaction�s tid	

� A transaction is very long
lived	 While it is active� it prevents tidl from
being advanced past its tid	

� In the tree of processes model of transactions ��� a coordinator at one
level of the transaction tree can be a cohort at the next higher level	
Such a coordinator as cohort does not control the issuing of tids	 Hence�
this coordinator may receive a tid that is earlier than its current tidl	

There is a common solution for each of these recalcitrant transactions	
Write to the log an explicit initiation record for it	 We logically delete an
initiation log record via an end record �unforced� for aborted transactions�
and a commit record �forced� for committed transactions	 For these cases�
we have resorted to the original PrC protocol	 We permit tidl to be greater
than the tids of these explicitly initiated transactions	 At recovery time� we
restore to our protocol database all transactions with initiation records on
the log that have not been terminated explicitly	

We can frequently piggyback the transaction initiation record for these
transactions on a commit or abort already in progress	 Advancing tidl can
also be done at this time	 So long as the log record advancing tidl is written
after the transaction initiation record� there are no additional log forces	

When a coordinator in the tree of processes transaction model receives a
tid that is below its tidl it acts like a PrC coordinator �see ���	 The coordi

nator forces a transaction initiation record to its log before proceeding with
transaction activity� and particularly before forwarding this tid to further
cohorts�

The important thing here is that the vast majority of transactions will
not require such initiation records� hence will save the log writes	 All our
optimizations occur within the coordinator	 Externally� the message and
cohort protocols are those usually associated with PrC in any event	 Hence�

�� 	 DISCUSSION

externally� one cannot distinguish the coordinator behavior used for logging
any given transaction	

	�� Transaction Timestamping

In ��� timestamped voting was used both to optimize �PC and to provide
each committed transaction with a timestamp that agrees with transaction
serialization	 It guaranteed transaction serializability in the case that trans

action termination is not guaranteed� while permitting the read
only and
other optimization	 Given the performance of the read
only optimization�
and the fact that commercial commit protocols usually do not require trans

action termination� this is important	 There are two cases that we need to
consider	

����� Timestamps for Versioned Data

Supporting timestamped versioned databases violates the assumptions upon
which presumed commit protocols are based	 It is no longer su�cient to know
only that a transaction has committed	 We must know its commit timestamp
as well	 This means that we cannot presume commit since we cannot presume
the timestamps	 Obviously� we want the coordinator to garbage collect these
entries once they are no longer needed	 The consequence of this is that
presumed abort �PrA�� which remembers the committed transactions� is more
desirable in this case as it can simply keep the timestamps with its committed
transaction entries	 Forms of presumed commit cannot be used	

����� Timestamps Only for the Commit Protocol

So long as databases are not using transaction timestamps to timestamp
data� but are using them solely as part of the commit protocol ��� it is
not necessary to remember the timestamp of a committed transaction	 The
coordinator will have sent its COMMIT message with a timestamp that is
within the bounds set by the timestamp ranges of all cohorts	 If asked� the
coordinator responds that the transaction was committed� and the cohort
then knows that the commit time was within the timestamp range of its
COMMIT
VOTE message	

REFERENCES ��

The cohort uses the knowledge of whether the transaction committed or
aborted to permit it to install the appropriate state� before state in the case
of abort� after state in the case of commit	 It can safely release all locks�
both read and write locks� at the time denoted by the upper bound in its
COMMIT
VOTE timestamp range	

Because the coordinator need not remember a committed transaction�s
timestamp� the information about transactions that have completed the com

mit protocol is again binary� i	e	 commit or abort	 Presumed commit pro

tocols can be used in these instances� and our NPrC protocol is not only
applicable but desirable	

References

�� Gray� J	 Notes on Database Systems IBM Research Report� ����	

�� Gray� J	 and Reuter� A	Transaction Processing� Concepts and Techniques

Morgan
Kaufman� Redwood� CA	 ����

�� Lampson� B	 and Sturgis� H	 Crash Recovery in a Distributed System
Xerox PARC Research Report� ����	

�� Lomet� D	 Using Timestamps to Optimize Two Phase Commit	 Proceed

ings of the PDIS Conference� San Diego� CA �Jan ����� �to appear�

�� Mohan� C	 and Lindsay� B	 E�cient Commit Protocols for the Tree of
Processes Model of Distributed Transactions Proceedings of the �nd ACM
SIGACT�SIGOPS Symposium on PODC� Montreal� CA �Aug	 �����	

�� Mohan� C	� Lindsay� B	 and Obermark� R	 Transaction Management in
the R� Distributed Database Management System	ACM Trans� Database

Systems���� �Dec	 ��� ���
���	

�� Samaras� G	� Britton� K	� Citron� A	� and Mohan� C	 Two
Phase Commit
Optimizations and Tradeo�s in the Commercial Environment	Proc� Data
Engineering Conf�� Vienna� Austria �Feb	 �����	

�� CONTENTS

Contents

� Introduction �

�	� Coordinating Distributed Commit � � � � � � � � � � � � � � � � �

�	� This Paper �

� Two Phase Commit �

�	� The Protocol Messages �

�	� Cohort Activity �

�	� The Protocol Database �

�	� Coordinator Recovery �

�	�	� Logging for Recovery �

�	�	� Less Than Full Recovery � � � � � � � � � � � � � � � � � �

�	� Summary for the PrN Protocol � � � � � � � � � � � � � � � � � �

� Presumed Outcomes and Optimization �

�	� Presumed Abort �

�	� Presumed Commit �

�	� Read
Only Cohorts and Transactions � � � � � � � � � � � � � � �

�	� Advantage of Presumed Abort � � � � � � � � � � � � � � � � � � ��

� Reducing PrC Coordinator Log Writes ��

�	� Potentially �Initiated� Transactions � � � � � � � � � � � � � � � ��

�	� Recovering IN After a Crash � � � � � � � � � � � � � � � � � � ��

�	�	� Determining tidh ��

�	�	� Determining tidl ��

�	�	� Determining and Representing COM �REC � � � � � ��

�	� Persistent IN and Its Use ��

	 A New Presumed Commit Protocol �	

�	� Coordinator Begins NPrC Protocol � � � � � � � � � � � � � � � ��

�	� Aborting a Transaction ��

�	� Committing an Update Transaction � � � � � � � � � � � � � � � ��

�	� Committing a Read
Only Transaction � � � � � � � � � � � � � � ��

�	� Summary and Comparison ��

CONTENTS ��

� Discussion �

�	� Recalcitrant Transactions ��
�	� Transaction Timestamping ��

�	�	� Timestamps for Versioned Data � � � � � � � � � � � � � ��
�	�	� Timestamps Only for the Commit Protocol � � � � � � � ��

