
Key Range Locking Strategies for

Improved Concurrency

David Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� February ��� ����

�

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is applica-
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor-
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

�

Key Range Locking Strategies for

Improved Concurrency

David Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� February ��� ����

Abstract

�Phantoms� are records inserted into a concurrently selected set of records
speci	ed by a predicate such that the selection does not see a transaction
consistent result
 The usual locking strategy is to lock only existing records

However� records that satisfy the selection predicate must be locked even
when they are not present in the database to prevent their insertion
 One way
to cope with phantoms is through range locking� a limited form of predicate
locking
 We investigate lock modes for ranges and describe new lock modes
that greatly increase concurrency
 We explore locking strategies involving
range� key� and record resources that permit trade�o�s between concurrency
and lock overhead

Keywords concurrency� range locking� locking granularity� phantoms
c�Digital Equipment Corporation ����
 All rights reserved

�

� Introduction

��� The Phantom Problem

Relational databases permit their users to select sets of tuples of relations
based on a predicate
 Transaction serializability requires that such a selected
set not change until transaction completion
 The implementation of a select
normally relies on locking to preclude concurrent updates from changing the
value of the set during the transaction

Most lock manages are simple con�ict detectors� blocking accesses to
speci	c resources by detecting con�icting lock requests from di�erent prin�
cipals
 So� the locking of speci	c records to protect them from change is
straightforward
 But� to keep a predicate�selected set from changing with�
out materializing the set requires that insertions into a relation not satisfy
outstanding selection predicates
 Such inserted records are called phantoms

Preventing phantoms requires locks on records that do not exist at the time
of the selection

There are many solutions to the phantom problem
 The simple ones
involve locking a superset of the selected set
 For example� one can lock a
table whenever a subset of the table is selected
 The goal has been to 	nd a
solution that has high concurrency and low lock overhead
 Locking an entire
table has low overhead but bad concurrency

Predicate locking ��� is a complete solution to the phantom problem�
but conventional lock managers �LMs� do not handle predicate locks
 LMs
need to have excellent performance and predicate locking is expensive and
di�cult
 Index locking� with or without the index� has been suggested in
���
 The locking described there coped with phantoms when the predicates
involved were equality predicates
 Predicates that specify ranges of values
were not handled

��� Ranges as Lockable Granules

SystemR performed range locking within its B�tree indexing
 This is credited
to Eswaran and Blasgen in ���
 Recent papers ��� �� have described this
earlier work and have introduced improvements in both concurrency and
lock overhead by showing how multigranularity lock modes can be exploited

Our work builds on these papers

� � INTRODUCTION

Because LMs are organized so as to detect con�icts only on speci	c named
resources� key ranges must be uniquely named so that whenever we wish to
operate on a record within the range� we �run into� the lock on the range
that contains the record
 This can be done by regarding index terms within
indexes as de	ning ranges
 The index terms then become the means to
identify the ranges

��� Forms of Resource Mapping

We deal with three resources� range� key and record
 How these are iden�
ti	ed� i
e
� whether these are mapped to common or separate resource ids�
can signi	cantly a�ect the locking protocol� changing the trade�o� between
concurrency and locking overhead
 We treat several alternatives for resource
mapping

�
 range as a separate resource�

�
 range and key identi	ed as a common resource�

�
 range� key and record identi	ed as a common resource

Locking overhead declines as the number of resources in the protocol
declines
 Interestingly� this can be done without loss of concurrency when
ranges and keys are treated as common resources
 Only when records are also
�commoned� with ranges and keys is concurrency lost� but with a further
reduction in locking overhead

��� This Paper

We begin in section � by describing the locking when ranges are treated as
separate from other resources and independent of key values
 In section �� we
introduce key valued ranges� and show how to lock such ranges� 	rst with the
lock modes of multigranularity locking� and then via new lock modes
 Section
� describes� in two steps� how lock overhead is reduced by reducing the
number of resources� and hence the number of locks
 This section represents
the heart of the paper and its main contribution
 Starting with the new
lock modes of the prior section� we show how to compose them to create
additional lock modes such that no concurrency is lost when resources are

�

merged
 In this presentation� we consider the case where the records involved
have unique keys
 We conclude with a discussion in section �� which includes
a description of how non�unique keys might be handled

� Fundamentals

��� Multi�granularity Locking

Range locking is a restricted form of predicate locking
 Multi�granularity
locking�MGL� is a technique invented to cope with such preplanned pred�
icates by regarding the predicates as resource �granules� that include or
partially overlap with other resource granules ���
 MGL locking can be used
for range locking

MGL locking exploits lock modes in addition to the exclusion oriented
S�share� and X�eXclusive� modes
 These additional modes are known as
�intention� modes
 The purpose of an intention lock is to indicate� at a
resource that contains other resources� that 	ner grained locking is permitted
at the contained resources
 An intention lock prevents another principal
from acquiring a lock which permits it to access these other resources in a
con�icting way without further locking

Lock modes for MGL are given in Table �
 For example� IX �Intention
eXclusive� con�icts with S
 S enables access to contained resources in share
mode without the need for additional locking� i
e
� it implicitly locks �or
covers� the contained resources
 IX indicates that locking in X mode is
occurring on contained resources
 IX con�icts with S to block an S lock on
the larger resource from implicitly S locking resources which are locked with
explicit X locks
 Similarly� IS indicates that locking in S mode is occurring
on 	ner�grained resources

��� Independent Ranges

Ranges of attribute values can be speci	ed independently of the actual values
of the attribute that are present
 Such a speci	cation is normally static� i
e
�
it does not vary with changes in the distribution of attribute values
 With
independent ranges� there is no need for an index on the 	le
 For example�
independent ranges can be de	ned via a 	xed partitioning of the key space

� � FUNDAMENTALS

Lock Mode IS IX S SIX X

IS x x x x
IX x x
S x x
SIX x
X

Table � The lock mode compatibility matrix for multi�granularity locking

We brie�y treat independent ranges� but our primary purpose is to deal
with key ranges
 For 	xed independent ranges� MGL solves the concurrency
control problem
 We can use either intention locks or covering locks �i
e
 X
or S locks� at the range level
 We assume here that keys are unique

����� Scans

For scans� one needs to lock ranges to prevent phantoms
 The locks needed
must be covering locks ���� i
e
� locks that make it unnecessary to lock con�
tained records since we have no way of explicitly locking each potential record
of the range
 Hence� scans need S locks on the ranges that they touch
 An
S range lock implicitly locks all records in the range
 Explicit S record locks
are not needed

For a scan that will update some records� a range needs an SIX lock�
with the updated records X locked
 This implicitly locks all records of the
range in S mode� but permits individual records of the range to be X locked

An update scan can avoid all record locking by X locking the range� at the
cost of lost concurrency

����� Singleton Record Operations

When modifying individual records� we can lock in one of two ways
 Max�
imum concurrency is achieved by IX locking the range that contains the
record being modi	ed �updated� inserted or deleted�� followed by X lock�
ing the record
 Locking overhead is reduced if we X lock the range� hence
�covering� contained records and avoiding the need to explicitly lock the

��� Independent Ranges �

Operation Range Lock Key Lock

Read Single none S
implicit IS

Update Single IX X
Read Scan S none required
Update Scan SIX none for read

X for update
Insert IX X
Delete IX X

Table � Locking and lock modes required when ranges are resources inde�
pendent of key values
 In all cases� if prior operations of the transaction have
locked a resource� the resulting lock must have a mode that covers both the
new lock given in the table and the prior lock

record itself
 Concurrency is reduced when this is done� however� as only one
modi	er is now permitted within a range

Single record reads can likewise be treated in two ways Maximumconcur�
rency is achieved by IS locking the range� followed by S locking the record

If one knows that X locks will not be set on a range� then one needn�t post
an IS lock on the range since it only serves to preventX range locks
 Hence�
there need be no extra locking overhead for this approach to single record
reads
 The alternative is to always S lock the range that includes the record
being read� avoiding the need for record locks

����� Intention Locking Summary

The above is a direct application of multi�granularity locking
 The summary
table when intention locks are used for ranges when an individual record is
read or written is given in Table �
 Using intention locks for ranges permits
more potential concurrency� but also has more lock overhead� than does using
covering locks
 As noted� however� the extra cost need only arise when
modifying data

� � SEPARATE KEY VALUE RANGES

� Separate Key Value Ranges

��� Key Valued Ranges

Consider an list of attribute values �k�� k�� ���ki�� ordered such that ki �

ki��
 This list de	nes disjoint semi�open ranges �ki� ki���
 Each range can be
identi	ed by the value of its upper attribute
 To lock the range �ki� ki���� we
map ki�� to a resource id and lock it
 ���
 �Note that we could also de	ne
our ranges as �ki� ki��� and identify them by ki
 To keep the ranges disjoint�
one end must be open
�

Key ranges normally require the existence of an index so that the list
of attribute values can be maintained in sort order
 The indexed attribute
name and the attribute value may be jointly used to name the ranges so as
to distinguish like values of di�erent attributes

When distinguishing ranges from keys and records� we need two resource
ids� one for the key ki and one for the range �ki��� ki�
 Sometimes the resource
id for the key value can be record identi	er �rid� of the record containing the
attribute value and hence whose rid is in the index term
 The key value itself
can then denote the range
 In other cases� one might attach value and range
tags to the key value
 Other techniques are also possible

Key value ranges di�er from 	xed ranges in that new attribute values can
be inserted or old attribute values deleted� so the lockable ranges change over
time
 This keeps concurrency high because the ranges are small and adapt
to the key distribution
 The negative is the added complexity of splitting or
consolidating ranges

��� Permissible Concurrency

Permissible concurrency when ranges are distinct from records and keys
is indicated in Table �
 The concurrency shown assumes the use of a conven�
tional LM� and unique keys
 Records are locked via their key values
 Ranges
are speci	ed by the adjacent key values present in� e
g
� an index
 The result
is that there is a single key value and hence record within each range
 It is di�
rect that two reads can be concurrent� but that updates should con�ict with
reads and other updates
 The interesting part of Table � is the concurrency
of deletes and inserts� and how they interact with reads and updates

Insert and delete introduces new complexity because these operations

��� Permissible Concurrency �

Locked Items

Operation Read Updated Read Updated Insert Delete
Record Record Range Range Range Range

Read Record Y N Y N N Y�

Update Record N N N N N Y���

Read Scan Y N Y N N N

Update Scan
�no record update� Y N Y N N N
�record updated� N N N N N N

Insert Y�ifo�� Y�ifo�� N N Y N

Delete Y�ifo�� Y�ifo�� N N N N

Table � The maximum concurrency for operations when confronted with
locks of other transactions� when range and key locks are distinguished
 A
�Y� denotes concurrent execution� a �N� means exclusion is required
 The
��ifo�� means �in front of� a read or updated record

� Not achieved by with MGL modes and separate range and key resources

� Not achieved with ARIES�KVL locking

change the ranges identi	ed by other key values as well as needing lock
protection as operations
 The interesting cases are

Insert� Inserts can be permitted into a range formed by an uncommitted
insert
 The record that is inserted is itself locked� hence preventing
its access while the inserter is active
 However� inserts into a range
�ki��� ki��� with a delete cannot be permitted
 If ki� were inserted� the
lock on ki�� to protect a deleted key ki would cover only �ki�� ki���� and
is ine�ective if ki� � ki
 Key range locks cannot conveniently handle
this except by preventing all inserts into delete ranges

Delete� Deletes into a range �ki� ki��� with an insert cannot be permitted

The delete needs to lock this range
 But the inserted key ki�� may be
removed by a transaction abort� making locks on ki�� invisible to sub�
sequent operations� and hence leaving the range unguarded
 Further�
deletes in a delete range cannot be permitted
 Were this to occur� and
one of the deleting transactions subsequently aborted� an insert would
occur into the delete range� dividing it
 Above� we discussed why this

� � SEPARATE KEY VALUE RANGES

Operation Current Key Range Key Next Key Range

Read Single IS S
Update Single IX X
Read Scan S none
Update Scan S �on read� none

SIX �on modify� X
Insert IX X IX �instant�

SIX if next range
locked with S or SIX

Delete SIX �instant� X SIX

Table � Locking required when key valued locks are used to lock ranges that
are separate from keys
 Each range has one record and range boundaries can
change by insertion or deletion of key values
 This locking exploits existing
MGL lock modes
 When resources are already held by the transaction� the
resulting lock needs to cover both previous and new locks

cannot be permitted

Read and Update� Operations on records whose keys denote delete ranges
can continue when the records are not involved in prior operations
 This
is not possible for insert ranges where the key that denotes a range is
the inserted key
 Inserts and deletes in front of read or updated records
are permissible

��� Inserts and Deletes Using MGL Lock Modes

The locking for key valued ranges when MGL lock modes are used is indicated
in Table �
 The locking of Table � is little changed
 The ranges are now
named by key values
 A range only contains a single record
 Thus Read
Single� Update Single� and Read Scan are essentially unchanged
 For Update
Scan� only one record appears in each range� and it is either updated or read

If only read� then our range lock can be S� not SIX

��� Inserts and Deletes Using MGL Lock Modes �

����� Insert

The insert of ki divides range �ki��� ki��� into two ranges� �ki��� ki� and
�ki� ki���
 The following steps are needed

�
 An instant IX lock �the �Next Range Lock� in Table �� checks whether
range �ki��� ki��� has a con�icting lock� e
g
� S or SIX
 If not then key
ki is inserted
 The lock on �ki��� ki��� can be instant because �i� it tests
that the range is not locked� �ii� this range is then divided� and �iii�
after division� the range protected by a lock involving ki�� is ki� ki����
which does not guard any activity and does not need protection

�
 �ki��� ki� is then locked in IX �for commit duration�� and

�
 the ki� key value is X locked �for commit duration��

�
 if the �ki��� ki��� range had been previously locked by this transaction�
in general� one does not know which of the resulting ranges still needs
the protecting
 Thus� if the current transaction held an S or SIX lock
on this next range� we propagate the e�ect of this lock to the new range
�ki��� ki�
 This requires an SIX lock regardless of which of S or SIX
were held previously on the original range� as SIX is the least upper
bound for �SIX�S� and IX

����� Delete

The delete of ki merges ranges �ki��� ki� and �ki� ki���
 We use SIX to guard
the merged range �called a delete range� �ki��� ki��� that results
 The follow�
ing steps are needed

�
 Delete checks whether the ki record can be deleted with an X lock on
the ki record� of commit duration to prevent insertion of another ki

record

�
 The �ki��� ki� range is locked with SIX to ensure that a scan does not
prevent the delete
 This is an instant lock since ki is being removed
and hence will not show up for subsequent locking

�
 The merged range �ki��� ki��� is SIX locked for commit duration to
guard the delete� preventing insertions and scans

�� � SEPARATE KEY VALUE RANGES

Using existing locks prevents some activity that is permissible
 We guard
a delete range �ki��� ki��� using SIX
 Unfortunately� since SIX con�icts
with IX� it prevents record ki�� from being updated� even when the key is
not locked

����� ARIES�KVL and ARIES�IM

By distinguishing range from keys� we gain extra concurrency compared with
ARIES�KVL ��� or ARIES�IM ���� which also use existing lock modes but do
not distinguish ranges from keys
 In particular� we can use an SIX lock for
delete ranges instead of an X lock
 Our cost is extra overhead� sometimes
needing key locks as well as range locks

Below� we further improve concurrency by introducing new lock modes

However� the lock overhead still remains high
 In section �� we merge range
and key resources and� using new lock modes� gain maximal key range
concurrency with lock overhead comparable with ARIES�KVL
 Further re�
source commoning reduces concurrency but still gives better concurrency
than ARIES�IM and with comparable lock overhead

��� New Lock Modes for Changing Ranges

The problem with using existing lock modes for range locking is that they
do not distinguish with su�cient re	nement the nature of the operations
that are being performed� particularly those that involve changes which are
indicated by an IX mode lock
 Here we introduce three lock modes to replace
IX� one mode for each form of modi	cation operation

We guard a range with the form of intention lock that re�ects the oper�
ation that has occurred within the range
 It is held until commit to prevent
subsequent con�icting operations in the range
 While we 	nd it necessary
for intention modes to re�ect a speci	c modify operation� it is su�cient for
the key lock to simply indicate that exclusion is needed via an X mode lock

We lose no concurrency by doing this
 Thus we have the following

Intention Update�IU�� an IU lock indicates that the record forming the
upper bound of a range is being updated

Intention Insert�IIn�� an IIn lock indicates that the record forming the
upper bound of a range is the result of an insertion

��� New Lock Modes for Changing Ranges ��

Operation Range Lock Key Lock Next Range Lock

Update IU X
Insert IIn X IIn �instant�

ID if next range locked ID
SIX if next range locked S or SIX

Delete ID �instant� X ID

Table � Locking required for updates� and for insert and delete operations
that cause ranges to change� when key valued locks are used and ranges are
distinct from keys
 The locking exploits new lock modes
 Once again� if the
resource is already locked by the transaction� the new lock must cover both
previous and new locks

Intention Delete�ID�� an ID lock indicates that the range identi	ed by
the record forming its upper bound contains a deletion

These new lock modes permit us to avoid using the overly restrictive
SIX lock to guard delete ranges
 Locking for update� insert� and delete are
illustrated in Table �
 Read and scan locking do not change

The new intention modes behave like the IX mode with respect to other
lock modes
 However� their compatibilities among themselves di�er so as
to facilitate increased concurrency for dynamically changing ranges
 Their
compatibilities are described in Table �

The new lock mode compatibilities permit us to maximize the concur�
rency that is possible within the general framework of key valued locks �see
Table ��
 In particular� we can now update a record whose key guards a
delete range
 �While this is a small improvement� we subsequently use these
lock modes in more substantive ways
� What we have done is very straight�
forward
 We made the intention lock modes operation speci	c
 Then we
constructed the lock mode compatibility table to directly correspond to the
exclusion and compatibility needed by each operation

Once again� we need to handle ranges already locked by our transac�
tion when range boundaries change
 If the range �ki��� ki��� was previously
scanned� when that range is divided by the insertion of ki� the range �ki��� ki�
must remain scan locked and SIX is su�cient for this
 If this range guards

�� � COMMON RESOURCES FOR REDUCED LOCKING

Lock Mode IS IU IIn ID S SIX X

IS x x x x x x
IU x x x x
IIn x x x
ID x x
S x x
SIX x
X

Table � The compatibilities of lock modes� including now the new intention
locks for guarding ranges in which a change has occurred
 These are more
restrictive than IX �except for IU� but less restrictive than SIX

a delete� then the new current range must similarly guard a delete with an
ID lock
 For deletes� if the range �ki� ki��� has been scanned� this range has
now been scanned and guards a delete
 An SIX lock is su�cient for this

� Common Resources for Reduced Locking

��� Ranges and Keys in Common

Our goal is to achieve the highest possible concurrency with the lowest pos�
sible locking overhead
 Concurrency is assessed by determining how many
operations are prevented unnecessarily by locks that are too �heavy handed�

Lock overhead is measured by the number of locks needed by the locking pro�
tocol
 We 	rst discuss range locking using existingMGL locks� then introduce
new lock modes to achieve greater concurrency
 Here� the key value identi	es
both itself and the range for which it is an upper bound

����� Key Value Locks�KVL�

The best locking protocol for range locking using existing MGL lock modes is
ARIES�KVL ���
 It does not distinguish range from key lock modes
 usually
locks with modes which are the least upper bound of the range and key lock

��� Ranges and Keys in Common ��

Operation Current Key Next Key

Read Single S
Update Single X
Read Scan S
Update Scan X
Insert IX IX �instant�

X if next key is locked
with S� SIX� X

Delete X �instant� X

Table � Locking required in ARIES�KVL for the various operations

ARIES�KVL identi	es ranges and keys as the same resource and uses MGL
lock modes

modes on the separate resources are used
 Sometimes the stronger lock mode
for one operation will be su�cient to protect against the con�icts that must
be precluded without strengthening another operation�s lock mode
 For the
operations that we are considering� the ARIES�KVL lock table is given in
Table � �for unique keys�

The 	rst four operations simply use the stronger key lock as the range
lock
 Insert uses the weaker IX lock
 This is satisfactory in preventing read�
update or delete of the inserted record since IX con�icts with S and X

Since IX is compatible with IX� inserts in front of inserts are permitted

For deletes� the X next key lock prevents inserts into a delete range

The result of folding range and record into a single resource is to pre�
vent inserts in front of Read Single and Update Single
 The X lock for the
key guarding the delete range prevents the reading or update of this record�
even though the record may not itself be the subject of con�icting opera�
tions
 It also prevents deletes in front of such records
 �See Table �
� Thus�
concurrency is impeded where logically the operations do not con�ict

����� Expanded Lock Modes�KRL�

It is possible to achieve high concurrency by expanding the lock modes once
again so that the lock modes denote the separate lock modes needed by both

�� � COMMON RESOURCES FOR REDUCED LOCKING

Operation Current Key Next Key

Read Single IS�S
Update Single IU�X
Read Scan S
Update Scan S �on read�

X �on modify�
Insert IIn�X IIn� �instant�

X if next key is locked
with ID��S�SIX�X

Delete X �instant� ID�

Table � Locking and lock modes required when KRL locks for both ranges
and records are mapped into a single resource

range and key
 Thus� our lock modes are pairs �RangeMode�KeyMode�

The RangeMode can be an intention lock or a covering lock� whileKeyMode

may be any simple covering lock or the null lock
 For example� a lock mode
of ID � X on a resource denoted by ki means that the range �ki��� ki� is
locked in mode ID while the key ki is locked in mode X
 We call our locks
key range locks or KRL locks

The lock modes for our operations are given in Table �
 There are only
eight distinct lock modes while the cartesian product of lock modes for ranges
and lock modes for keys is ��� six range lock modes �IS� IU� IIn� ID� S� SIX�
times three key lock modes �null� S�X�
 The combinations �IS�� IS �
X� IU�� IU � S� IIn� S� S � S� S �X�SIX � S� do not arise
 Some com�
binations share compatibilities �ID �X�SIX �X� denoted as X since it
is incompatible with all other modes� and �ID� S� SIX�� denoted as SIX
since it is compatible only with an intention shared lock mode� here IS �S

We rename S� as S since its compatibilities are the same

The lock mode compatibility for our new lock modes is de	ned in Ta�
ble �
 It is a direct result of composing the separate lock compatibilities of
ranges and records
 That is� �RangeMode��KeyMode�� is compatible with
�RangeMode��KeyMode�� if RangeMode� is compatible with RangeMode�
and KeyMode� is compatible with KeyMode�

��� Ranges and Keys in Common ��

MODES IS�S IIn� ID� IU�X IIn�X S SIX X

IS�S x x x x x
IIn� x x x x
ID� x x
IU�X x x
IIn�X x
S x x
SIX x
X

Table � The lock mode compatibility matrix for the new combined resource
lock modes needed for KRL locking

The concurrency permitted when using separate range and key locks is
achieved using KRL lock modes on a single combined �range� key� resource

Where separate range and key locks required that both range and key locks be
acquired� the KRL protocol requires that one lock be acquired that satis	es
the constraints of both these separate locks
 KRL distinguishes precisely the
separate range and record con�icts by its composite lock mode
 ARIES�KVL
locking� with its restriction to traditional lock modes� does not

As with ARIES�KVL locking� KRL locking permits or precludes the fol�
lowing

�
 Inserts in front of inserts are still permitted as the IIn� instant lock
is compatible with the IIn�X commit duration lock

�
 Changes to a range that has been scanned are precluded as no X lock
of any kind is permitted for either S� SIX� or X

�
 No inserts into a delete range are possible because IIn� con�icts with
ID�� SIX� and X

�
 Deletes in front of inserts are precluded because ID� con�icts with
IIn�X

�
 Multiple scans� including update scans� are possible so long as there is
no record updated because S locks are compatible
 Similarly� singleton

�� � COMMON RESOURCES FOR REDUCED LOCKING

reads are permitted in scanned ranges� so long as the record involved
has not been updated� because IS�S is compatible with S and SIX

�
 Scans into delete guarded ranges are precluded because ID� con�icts
with SIX� S� and X

The following are correctly permitted by KRL locking� but are precluded
by ARIES�KVL locking

�
 Inserts in front of singleton reads and updates are permitted because
IIn� is compatible with IS � S and IU �X

�
 Deletes in front of singleton reads and updates are permitted because
ID� is compatible with IS�S and IU�X� which also permits Reading
or updating a record guarding a delete range

KRL locking achieves all of the concurrency indicated as possible in Ta�
ble �

��� Ranges� Keys and Records in Common

����� Multiple Paths and Locking

Multi�granularity locking can be e�ective not only in tree resource hierarchies
but also for directed acyclic graphs�DAGs�
 However� when the resource
hierarchy is a DAG� our locking protocol must provide an appropriate level
of exclusion on all paths to the underlying data

A KRL lock applied to a common �range� key� resource locks only the
access path that proceeds by way of the index on the key �attribute� in
question
 This provides for high concurrency because it permits accesses on
other paths to proceed
 Thus� this approach distinguishes and locks only the
ranges that have been scanned �see Figure ��a��
 However� operations on
speci	c records require that exclusion by applied on all paths
 For example�
we must preclude other operations on an updated record� regardless of which
access path is traversed to the record

For DAG locking via key value locks to be e�ective� di�erent key values
may need to be locked in several indexes� e
g
 for insert and delete operations�
all indexed values need updating and hence locking
 The reading of a record
via a scan in one index needs to be visible as a singleton read via other

��� Ranges� Keys and Records in Common ��

k1
:Rx k2:Rx k1:Rx() k2:Rx(*)

A B A B

(a) (b)

Index:

Data: Rx:Rx:

Figure � Locking key values is contrasted with locking records for locking
ranges
 �a� Locking a range and key on a path� here from index A� permits
accesses through other indexes� here index B
 �b� A record lock used as a
range lock locks all paths that involve attributes from the record� here paths
from indexes A and B
 It also locks the access path that bypasses all indexes

indexes
 Also� records are usually accessible on an access path that does not
traverse an index
 This access path needs lock protection as well

The bottom line here is that� while concurrency is high because the ranges
denoted by the key values in each index are carefully discriminated and kept
separate� the cost in lock overhead and complexity can be high
 One solution
is to acquire record locks as well as key�range locks in an index

����� Record Locks

One can shortcircuit the additional locking described above by treating the
lock needed for range� key� and record as a single resource� as proposed in
ARIES�IM ���� described brie�y below
 The penalty of doing such consoli�
dation of resources is less concurrency
 Can KRL locking be applied when
this is done� The answer is yes

ARIES�IM uses a lock on a record identi	er instead of a key value lock as
the way to lock a range
 This one lock then serves as range� key and record
lock
 An index entry consists of a pair � key� rid �
 When a scan is done
through an index� range� key value and record resources are all identi	ed by
a single rid
 This is a great simpli	cation and reduces locking overhead� but

�� � DISCUSSION

at the expense of concurrency
 The locked rid locks all ranges which contain
attribute values from the record
 Essentially we are preventing �phantoms�
in key value ranges that do not participate in the scan
 This is illustrated in
Figure ��b�

We cannot easily escape from the reduced concurrency of record locking
with the invention of additional lock modes
 The problem is that the lock
modes for the common resource denoted by rid do not distinguish which
ranges we really intended to lock
 And the number of ranges involved varies
with the database design� and can be quite large in any event
 Thus� inventing
new lock modes does not seem to be an e�ective strategy

We can� however� combine KRL lock modes with the record locking tech�
nique for range locks
 This achieves greater concurrency than ARIES�IM

For example� KRL successfully distinguishes record locks for singleton updat�
ing and reading from range locks for phantom protection
 ARIES�IM does
not
 However� we can no longer maintain that the locking is optimal
 Each
range lock on a record will serve to lock all ranges that involve attributes
values of the record

When the data of a 	le is stored and clustered via a primary index� the
primary key becomes the record identi	er
 Hence� key locking in a primary
index is the same as record locking via an rid
 Scans that involve the primary
key then have the low overhead of the ARIES�IM�s record locking approach�
even when doing key valued locking

� Discussion

Three other issues are worthy of some discussion

��� Scans Directly on Records

Not all scans are through indexes
 Not all attributes are indexed� and not all
predicates controlling a scan can make e�ective use of an index
 For these
scans� one needs to search through an entire table
 This is� in fact� very little
di�erent whether the table is clustered by primary key or by a more arbitrary
rid
 Table scans still need to guard against phantoms
 So long as records
might be inserted or deleted in the midst of already scanned records� these
operations can give rise to phantoms

��� Non�unique Keys ��

KRL locks are e�ective in preventing phantoms for these clustering or�
der scans
 A record and the range between it and its immediate physical

predecessor is locked during a scan via the record�s rid
 The range locks do
not protect a speci	c logical predicate or key value range
 Rather� the locks
prevent insertions into physical ranges that have been previously scanned by
active transactions

��� Non�unique Keys

Non�unique keys occur when an attribute value can occur more than once

An index on hair color would 	nd many people with brown hair
 We need
to look again at locking protocols� their lock overhead� and the concurrency
that they can achieve

One approach works well when rids are used to identify ranges and keys
to the lock manager
 We organize the entries of an index in sort order by �
key� rid � pair
 These pairs are unique entries
 Insertion of a � key� rid � is
handled as a unique key insertion
 The new entry� its key and rid� is inserted
into this ordered list
 This does not optimize the potential concurrency� as
the ordering of rids imposes a logically unnecessary restriction on where a
new entry might be inserted
 But the concurrency is good and the KRL
locking protocol is unchanged
 This technique does not require that each
� key� rid � be stored as a physically separate entry
 One can have an index
where an entry consists of a key paired with the ordered list of rids
 It simply
means that rid order must be preserved

More concurrency is possible if the entries above are not required to be or�
dered by rid within the key ordering
 Then� one might� for example� insert a
new rid into a set of rids associated with a key anywhere that was convenient

The result� however� is a more complex protocol
 ARIES�KVL ��� discusses
the non�unique key case when keys� not records� are the lockable resources�
and illustrates the less restrictive locking that might be exploited
 The con�
currency advantages of the ARIES�KVL approach versus ordering entries by
� key� rid � and using KRL locking are not clear
 While ARIES�KVL does
not impose an rid ordering� and hence will sometimes permit additional con�
currency� an ARIES�KVL key value lock in a scan locks all the records with
that key value
 This lowers locking overhead but leads to less concurrency

�� � DISCUSSION

��� Deletions as Updates

If deleted keys or records were marked as deleted� instead of being removed�
then some of the strict exclusion required by deletions can be relaxed
 Dele�
tion could then be treated as a record update
 Actual removal of the �delete
stub� could be done in a separate short atomic action when this stub is not
locked
 This improves concurrency as marking deletes does not consolidate
ranges
 It does� however� increase storage costs and requires a subsequent
garbage collection step

��� Summary

Our range locking protocols work with a conventional LM� in which the LM
is a simple con�ict detector for locks on discrete resources
 Such an LM does
not know about dependencies between resources� and� in particular does not
work directly with ranges
 Within this conventional context� and using key
value ranges based on actual keys present� we derived Table �
 It describes the
maximum concurrency possible under these conditions
 We then introduced
new lock modes to cope with insert and delete operations� which can change
the ranges described by key values and showed that these lock modes achieve
this maximum concurrency

To reduce lock overhead� we uni	ed range and key resources so that both
can be locked with a single lock
 This reduces the locking overhead dra�
matically
 Maximum concurrency was retained when we introduced KRL
compound lock modes that distinguish the separate roles of ranges and keys�
but with greatly reduced locking overhead

Finally� to even further reduce lock overhead� we combined range� key� and
record into a single lockable resource� a technique exploited in ARIES�IM

This reduces concurrency because one record lock can lock ranges for mul�
tiple attribute �key� ranges� even when the additional ranges do not require
locking
 This appears to be an intrinsic penalty of this mapping
 KRL lock
modes do very well under these conditions� strictly better than previous so�
lutions
 The extraneously locked ranges prevent us from claiming optimality

REFERENCES ��

References

��� Bernstein� P
� Hadzilacos� V
 and Goodman� N
 Concurrency Control and
Recovery in Database Systems Addison Wesley� Reading MA ������

��� Eswaren� K
� Gray� J
� Lorie� R
� and Traiger� I
 The notions of consistency
and predicate locks in a database system
 Communications of the ACM

����� �Nov
 ����� �������

��� Gray� J
N
� Lorie� R
 A
� Putzulo� G
 R
� and Traiger� I
 L
 Granularity
of locks and degrees of consistency in a shared data base
 IFIP Working

Conf on Modeling of Data Base Management Systems ������ ����

��� Gray� J
 and Reuter� A
 Transaction Processing� Concepts and Tech�

niques� Morgan Kaufmann� San Mateo� CA ������

��� Lomet� D
 Private Lock Management Digital Equipment Corp
 Tech Re�
port �draft� �Aug
 ����� Cambridge Research Lab� Cambridge� MA

��� Lomet� D
 and Green� R
 Key range locking with index trees
 Digital
Equipment Corp
 Tech Report �draft� �Sept
 ����� Cambridge Research
Lab� Cambridge� MA

��� Mohan� C
 ARIES�KVL A key�value locking method for concurrency
control of multiaction transactions operating on B�tree indexes� Proc�
Very Large Databases Conf� Brisbane� AU �Aug �����

��� Mohan� C
 and Levine� F
 ARIES�IM an e�cient and high concurrency
index management method using write�ahead logging
 IBM Research Re�
port RJ ����� �Aug ����� Almaden Research Center� San Jose� CA

�� CONTENTS

Contents

� Introduction �
�
� The Phantom Problem �
�
� Ranges as Lockable Granules �
�
� Forms of Resource Mapping �
�
� This Paper �

� Fundamentals �
�
� Multi�granularity Locking �
�
� Independent Ranges �

�
�
� Scans �
�
�
� Singleton Record Operations � � � � � � � � � � � � � � � �
�
�
� Intention Locking Summary � � � � � � � � � � � � � � � �

� Separate Key Value Ranges 	
�
� Key Valued Ranges �
�
� Permissible Concurrency �
�
� Inserts and Deletes Using MGL Lock Modes � � � � � � � � � � �

�
�
� Insert �
�
�
� Delete �
�
�
� ARIES�KVL and ARIES�IM � � � � � � � � � � � � � � ��

�
� New Lock Modes for Changing Ranges � � � � � � � � � � � � � ��

� Common Resources for Reduced Locking ��
�
� Ranges and Keys in Common � � � � � � � � � � � � � � � � � � ��

�
�
� Key Value Locks�KVL� � � � � � � � � � � � � � � � � � � ��
�
�
� Expanded Lock Modes�KRL� � � � � � � � � � � � � � � ��

�
� Ranges� Keys and Records in Common � � � � � � � � � � � � � ��
�
�
� Multiple Paths and Locking � � � � � � � � � � � � � � � ��
�
�
� Record Locks ��

 Discussion ��
�
� Scans Directly on Records ��
�
� Non�unique Keys ��
�
� Deletions as Updates ��
�
� Summary ��

