
AudioFile: A Network-Transparent System for
Distributed Audio Applications

Thomas M. Levergood, Andrew C. Payne,
James Gettys, G. Winfield Treese, and Lawrence C. Stewart

Digital Equipment Corporation
Cambridge Research Lab

CRL 93/8 June 11, 1993

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is
applications technology; that is, the creation of knowledge and tools useful for the preparation of
important classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

TM

AudioFile: A Network-Transparent System for
Distributed Audio Applications

Thomas M. Levergood, Andrew C. Payne,
James Gettys, G. Winfield Treese1, and Lawrence C. Stewart2

Digital Equipment Corporation
Cambridge Research Lab

CRL 93/8 June 11, 1993

Abstract

AudioFile is a portable, device-independent, network-transparent system for
computer audio systems. Similar to the X Window System, it provides an abstract
interface with a simple network protocol to support a variety of audio hardware
and multiple simultaneous clients. This report describes our approach to digital
audio, the AudioFile protocol, the client library, the audio server, and some client
applications. It also discusses the performance of the system and our experience
with using standard network protocols for audio. A source code distribution is
available for anonymous FTP.

Keywords: audio, client-server, multimedia, speech
c�Digital Equipment Corporation 1993. All rights reserved.

1Also with MIT Laboratory for Computer Science.
2The authors are listed in random order.

An overview of the material in this report will appear in the Proceedings of the Summer
1993 USENIX Conference.

i

Touch-Tone is a trademark of AT&T.
SPARC and SunOS are trademarks of Sun Microsystems, Inc.
Macintosh is a trademark of Apple Computer, Inc.
Indigo is a trademark of Silicon Graphics, Inc.
UNIX is a trademark of Unix Systems Laboratories.
X Window System is a trademark of Massachusetts Institute of Technology.
The following are trademarks of Digital Equipment Corporation: Alpha AXP,
DEC, DECaudio, DECstation, DECtalk, TURBOchannel, ULTRIX, XMedia, and
the DIGITAL logo.
Some of the figures and tables are copyright c�1993 by the USENIX Association
and are used here by permission.

ii

CONTENTS iii

Contents

1 Introduction 1
1.1 Design Goals � 2
1.2 Fundamental Principles � 3
1.3 Implementation � 4

2 Audio Abstractions 5
2.1 Time � 5
2.2 Output Model � 10
2.3 Input Model � 11
2.4 Events � 12

3 Background 13
3.1 Signal Processing � 13
3.2 Etherphone � 13
3.3 Firefly � 14
3.4 VOX � 14
3.5 Related Work � 14

4 Audio Hardware 15
4.1 LoFi � 15
4.2 JVideo � 16
4.3 Integral Workstation Audio Devices � � � � � � � � � � � � � � � � 16
4.4 LineServer � 16
4.5 SGI Indigo � 16

5 Protocol Description 17
5.1 Data Transport � 17
5.2 Events � 17
5.3 Protocol Requests � 17
5.4 Audio Device Attributes � 18
5.5 Telephony � 20
5.6 Audio Contexts � 20
5.7 GetTime, Play, and Record � 21
5.8 Input and Output Gain, and I/O Control � � � � � � � � � � � � � � 21
5.9 Inter-Client Communications � � � � � � � � � � � � � � � � � � � 21

iv CONTENTS

6 Client Libraries 23
6.1 Core Library � 23

6.1.1 Connection Management � � � � � � � � � � � � � � � � � 23
6.1.2 Error Handling � 24
6.1.3 Synchronization � 24
6.1.4 Events � 24
6.1.5 Audio Handling � 25

6.2 Client Utility Library � 27
6.2.1 Utility Tables � 27
6.2.2 Utility Procedures � 28

7 Server Design 34
7.1 Implementation Considerations � � � � � � � � � � � � � � � � � � 34
7.2 Buffering � 34
7.3 Server Implementation � 37

7.3.1 Device-Independent Audio Server � � � � � � � � � � � � � 37
7.3.2 Device-Independent and Dependent Server Interfaces � � � 39

7.4 Device-Dependent Server Examples � � � � � � � � � � � � � � � � 45
7.4.1 Alofi � 45
7.4.2 Aaxp and Asparc � 49
7.4.3 Als � 49

8 AudioFile Clients 51
8.1 aplay — A Play Client � 52

8.1.1 aplay Options � 53
8.1.2 aplay Implementation � � � � � � � � � � � � � � � � � � � 54
8.1.3 Flow Control � 57

8.2 arecord — An Record Client � 58
8.2.1 arecord options � 58
8.2.2 arecord implementation � � � � � � � � � � � � � � � � � � 59
8.2.3 Flow Control � 61

8.3 apass — Copy From One Server to Another � � � � � � � � � � � � 61
8.3.1 apass Options � 62
8.3.2 apass Implementation � � � � � � � � � � � � � � � � � � � 64
8.3.3 Discussion � 66

8.4 Telephone Control � 67
8.5 Miscellaneous Clients � 67
8.6 A Trivial Answering Machine � � � � � � � � � � � � � � � � � � � 67

CONTENTS v

9 Contributed Clients 68
9.1 abob — A Tk Demonstration � � � � � � � � � � � � � � � � � � � 69
9.2 adial — A Screen-based Telephone Dialer � � � � � � � � � � � � � 69
9.3 Device Control � 70
9.4 xpow — Display Signal Power � � � � � � � � � � � � � � � � � � � 70
9.5 afft — A Real-time Spectrogram Displayer � � � � � � � � � � � � 70
9.6 Miscellaneous Contributed Clients � � � � � � � � � � � � � � � � � 73
9.7 Other AudioFile Applications � � � � � � � � � � � � � � � � � � � 73

9.7.1 Speech Synthesis � 74
9.7.2 DECspin � 74
9.7.3 ARGOSEE � 74
9.7.4 VAT � 74

10 Performance Results 75
10.1 Server and Client Performance � � � � � � � � � � � � � � � � � � � 75

10.1.1 Basic Latency � 75
10.1.2 Play and Record � 76
10.1.3 Preempt Play vs Mix Play � � � � � � � � � � � � � � � � � 78
10.1.4 Open Loop Record/Play � � � � � � � � � � � � � � � � � � 79

10.2 CPU Usage � 82
10.3 Data Transport � 84

11 Summary 85
11.1 Areas for Further Work � 85
11.2 Conclusions � 86
11.3 How to Get AudioFile � 87
11.4 Acknowledgments � 88

12 Glossary 90

References 94

Index 96

vi CONTENTS

1

1 Introduction

Audio hardware is becoming increasingly common on desktop computers, such
as workstations, PCs, and Macintoshes. In 1990, the authors began a project at
Digital’s Cambridge Research Laboratory to explore desktop audio. 1 One of us
(Levergood) designed a TURBOchannel 2 I/O module called LoFi, with capabilities
for telephony and both low and high-fidelity audio. Once that hardware was
available, we began work on software. The result of our efforts is the AudioFile
System.

It was clear from the outset that audio on the desktop should have the same
flexibility that users have come to expect of the display. Similar to the X Win-
dow System[14], AudioFile was designed to allow multiple clients, to support a
variety of underlying hardware, and to permit transparent access through the net-
work. Since its original implementation, AudioFile has been used for a variety of
applications and experiments with desktop audio. These applications include au-
dio recording, playback, video teleconferencing, answering machines, voice mail,
telephone control, speech recognition, and speech synthesis. AudioFile supports
multiple audio data types and sample rates, from 8 KHz telephone quality through
48 KHz high-fidelity stereo.

Currently, AudioFile runs on Digital’s RISC DECstations under ULTRIX, Digital’s
Alpha AXP systems under DEC OSF/1 for Alpha AXP, Sun SPARC systems
under SunOS, and Silicon Graphics Indigo workstations under IRIX. A source
code distribution is available by anonymous FTP over the Internet.

Like the X Window System, AudioFile has four main components:

� The Protocol. The AudioFile System defines a wire protocol that links the
server with client applications over a variety of local and network commu-
nication channels. The semantics of the protocol commands and responses
define what servers are expected to do and what services clients can expect.

� Client Library and API. The AudioFile client library and applications pro-
gramming interface (API) provide a means for applications to generate pro-
tocol requests and to communicate with the server using a procedural instead
of a message-passing interface.

� The Server. The AudioFile server contains all code specific to individual

1And video, but that is another story.
2TURBOchannel is the I/O bus used on Digital’s DECstation and Alpha AXP workstations.

2 1 INTRODUCTION

devices and operating systems. It mediates access to audio hardware devices
and exports the device-independent interface to clients.

� Clients. The AudioFile distribution includes several out-of-the-box appli-
cations which make the system immediately usable and which serve as
illustrations for more complex applications.

This report begins with a discussion of the design goals and the fundamental
principles of AudioFile. We then place this work into the historical context of
earlier desktop audio efforts and other more recent audio work. Following a
discussion of some of the hardware used for desktop audio, we discuss the network
protocol, the client library, and the server implementation in some detail. Then we
describe a sampling of applications that use AudioFile, followed by an analysis of
AudioFile’s performance. We conclude with a brief discussion of plans for future
work and explain how to get the software.

1.1 Design Goals

AudioFile was designed with several goals in mind. These include:

� Network transparency. Applications can run on machines scattered through-
out the network. This property is desirable for several reasons: an application
may be licensed to run only on a specific machine, or it may require comput-
ing resources not available on every desktop. Network transparency allows
such constrained applications to run anywhere but still interact with the user.
Another quite different benefit of network transparency is that it enables
applications to use audio on several systems at once. Teleconferencing is
such an application; it must communicate with multiple audio servers.

� Device-independence. Applications need not be rewritten to run on new au-
dio hardware. The AudioFile System provides a common abstract interface
to the real hardware, insulating applications from the messy details. Fur-
thermore, as we will describe in Section 8, some applications can operate on
generic audio, without worrying about details such as sampling rate, number
of channels, or encoding.

� Support for multiple simultaneous clients. Applications can run concur-
rently, sharing access to the actual audio hardware. Two audio applications

1.2 Fundamental Principles 3

running on a single computer should behave just like those same applications
running on separate computers in the same room. 3

� Support a wide range of clients. It should be possible to implement applica-
tions ranging from audio biff 4 to multiuser teleconferencing. We have chosen
to implement a few very general-purpose mechanisms that permit a wide va-
riety of applications, including both aggressively real-time applications and
those which are more easygoing.

� Simplicity. Adding simple audio to an application should be easy. Simple
play and record clients should require very little code. Complex applications
should be possible, but one should not burden simple clients with massive
mechanism.

� Quick time to implement. We wanted to start building applications quickly.
We chose to leverage as much existing mechanism as we could, and we
tried to put as little as possible into the operating system kernel. Although
debugging kernel device drivers is possible, it is neither a rewarding nor a
time-efficient process.

1.2 Fundamental Principles

In addition to our goals, we designed AudioFile with a few fundamental principles
in mind. These include:

� Computers are fast. Modern machines are fast enough to handle a variety of
signal processing and real-time problems. There is no need to be frightened
by a requirement that the computer look at every audio sample. Unnecessary
copies of data are to be avoided, but it is frequently better to copy data than
to corrupt the structure of an application. We assume an ADC/DAC model
for the audio hardware device and do not depend on intelligent controllers.

� Client control of time. Clients are responsible for specifying the exact timing
of recording and playback. This puts a minor additional load on the clients,
but greatly simplifies the server and makes the AudioFile System capable of
handling applications requiring a wide range of real-time behavior. Explicit

3We do think that there is room for something like an “audio window manager” which would
impose a policy on multiple applications, but so far we have not found it necessary to implement one.
In any case, we think the core system should “provide mechanism, not policy”.

4biff is a Berkeley UNIX program that notifies a user when new mail arrives.

4 1 INTRODUCTION

control of time also makes it very easy to construct applications requiring
synchronization of multiple activities.

� No rocket science. AudioFile does not require specialized low-level network
protocols or multithreaded environments. These facilities were not necessary
to achieve our goals and using special protocols or threads would impede
the portability of the system. Consequently, the AudioFile server is single
threaded, we use standard TCP/IP, and no operating system support more
complex than the select() system call is required. 5

� Simple applications should be simple. Complicated applications should be
possible. In other words, simple applications should not have to pay a price
in complexity when they need only simple functionality. 6

1.3 Implementation

The parts of the implementation of AudioFile that are not specific to audio, such as
client/server communications, are based on X11 Release 4. The code was freely
available and provided a well-understood communications infrastructure. 7 While
we considered several languages for the implementationof AudioFile, starting with
the MIT X11R4 source code tipped the scales in favor of the C language.

Of course, traveling this route caused us to carry extra baggage. For example,
the original MIT source code is written with C preprocessor commands, mostly
used by the client library, that conditionally build code with or without function
prototypes. At least one well known vendor of big-endian computers does not
support function prototypes with their stock C compiler. Function prototypes have
proven to be quite useful for developing large portable systems in C. Unfortunately,
“portable” sometimes means “lowest common denominator” — so our code is also
cluttered with left-justified chicken scratches [19]. 8

We should emphasize the fact that AudioFile is not an addition to an X Window
System server. The AudioFile server is a separate entity which borrowed some

5It seems likely that a multithreaded server would permit a slightly cleaner implementation in the
server, but we felt the performance and portability risks did not justify it.

6This is really important — notice that simplicity is both a goal and an abiding principle. Our
thinking is that if one gets the core functionality right, then an explosion of complexity can be avoided.

7Why start from a clean sheet of paper? For more information on how to steal code, consult
Spencer[15].

8The next AudioFile release will require a compiler that supports function prototypes.

5

common source code to build the implementation. Contrary to others, we believe
that audio services should be separate from graphics.

2 Audio Abstractions

This section describes the fundamental abstractions used by AudioFile. These
provide the view of audio available to clients and guided the design of the protocol,
client library, and audio server. We model an audio device as an entity that produces
and consumes sampled data at a regular rate known as the sampling frequency. The
sample data is one of several predefined types and consists of one or more channels.
The actual hardware is based on Analog to Digital (ADC) and Digital to Analog
(DAC) converters. The important abstractions discussed here are time, the audio
input and output models, and events.

2.1 Time

The concept of audio device time is critical to understanding the design of all
AudioFile components. We expose audio device time in the protocol and at the
client library API. It is also fundamental to the correct operation of the audio server.
All audio recording and playback operations in the AudioFile System are tagged
with time values that are directly associated with the relevant audio hardware.

This section discusses our decision to use device time, the time abstraction, and
how to calculate with audio device times, then finishes with a brief discussion of
alternative approaches.

In multimedia systems, exact timing is necessary to synchronize the different
aspects of a presentation or to relate the occurrence of multiple events. AudioFile
permits clients to express the precise timing of individual digital audio samples.

Why device time?

There are a remarkable number of clocks in a modern distributed computer system.
A simple desktop system might have four different time sources: the time-of-day
clock, the interval timer, the display refresh, and the audio clock. Each clock has
its own uses: the time-of-day clock might be used to schedule overnight backup,
the interval timer might be used to schedule program counter sampling for profiling
a program, the display clock might be used to schedule cursor tracking, and the
audio clock is used by the audio hardware to schedule the recording and playback
of individual digital audio samples.

6 2 AUDIO ABSTRACTIONS

Each computer system in a network has its own clocks. There are network proto-
cols, such as NTP[8], which keep the time-of-day clocks approximately synchro-
nized, but no existing systems we are aware of keep interval timers, display, or
audio clocks synchronized. Each of these many clocks has a nominal rate at which
“ticks” occur, and if these rates were exact, then one could easily convert from
time as shown by one clock to time as shown by another. Unfortunately, all these
clocks vary from their nominal rates, and the exact rates are subject to change with
the age of the equipment, temperature, and other environmental factors.

In principle, it is possible to use any clock for audio synchronization. However we
wanted to be able to specify audio down to the individual sample, so we chose to
use audio device time. When a server supports multiple audio devices, it traffics
in device time for each device separately. AudioFile does not provide a complete
infrastructure for synchronization; rather, it supplies low-level timing information
to its clients. Client applications can build conversion mechanisms suitable to their
own needs for synchronizing multimedia streams, relating events to the real world,
or simultaneously communicating with multiple audio devices.

We envision adding standard client library and server mechanisms for synchroniz-
ing multiple clocks and for providing clock conversion services to clients, but we
have not yet encountered a compelling need to do so.

The device time abstraction

The underlying implementation of the audio device clock is the oscillator that
controls the hardware sample rate. This clock may be directly accessible to the
audio server, or only indirectly as the running total of audio samples generated
or accepted by the hardware. In either case, the server maintains a representation
of the clock in a “time register” for scheduling all audio events for the particular
device.

Converting time values

There is no absolute reference value for a device time; the value is set to 0 when
the server is initialized and advances thereafter. This is in contrast to the usual
computer method of handling time-of-day, in which the binary representation is
something like the number of seconds since January 1, 1900. The AudioFile time
can not be algorithmically converted to a calendar date and time.

One can establish a correspondence between two clocks. Given clocks A and B,
and a pair of values �Ta� Tb) of the two clocks that occurred “at the same time,”
and the rates of advance of the two clocks Ra and Rb, then given a future value of

2.1 Time 7

clock A, say ta, one can compute the corresponding value tb according to clock B:

tb � Tb � Rb � ��ta � Ta��Ra�

Although there is no exact relationship between device time and time measured by
the system real-time clock or to time shown by the clock on the office wall, because
the rates are not known to infinite precision, there is an approximate relationship
which is good enough to permit reasonably accurate conversions between different
clocks. The audio device sampling rate is used to move between time in sample
ticks and time in seconds. For example, at 8 KHz, four seconds in the future maps
to the current device time plus 32000 ticks. This is sufficiently accurate for most
purposes, even though the exact sampling rate might be 7999.96 Hz rather than
8000.00.

Representation

Audio device time is represented by a 32-bit (finite length) unsigned integer that
increments once per sample period and wraps on overflow. These time values are
specific to a particular audio device.

"Before"

"After"

t

q

Figure 1: Circular representation of audio time

It is convenient to map this representation of time onto a circle, as shown in
Figure 1. In this diagram, the time t is marked with the clock hand that sweeps out
clockwise. The circumference of the circle is the range of the time counter, or 232

samples.

Because the 32-bit numbers eventually wrap, one cannot simply compare two val-
ues to establish their ordering. Servers and clients often have to make comparisons
between two times and decide their relative positions. This is done by dividing all

8 2 AUDIO ABSTRACTIONS

possible time values into the equally sized past and future regions. The division
point q (equal to t � 231) is marked on Figure 1. Any time from t clockwise to q
is considered to be after t, and any time from q clockwise to t is considered to be
before t.

Time comparisons are easy to implement. Given two time values, a and b, compute
their 32-bit two’s complement difference a � b. The most significant bit of the
result gives the result of the comparison. If it is set, then b is in the future relative
to a. Otherwise, b is in the past. This computation is easily made by casting the
difference to a signed data type. The following example is for a device running at
8000 samples per second.

if ((int) (b - a) > 0) /* time b is later than time a. */
if ((int) (b - a) < 0) /* time b is earlier than time a. */
if ((int) (b - a) == 8000) /* time b is one second later than time a */

There is a problem, of course, when the difference approaches 231. A time in
the distant past may suddenly switch over to the distant future as time advances.
Programs that deal with time must be careful not to make comparisons between
widely separated time values. However, this is usually not a problem since even at
a 48 KHz sampling rate, 231 samples represents about 12 hours of audio. At 8000
samples per second, this period is about 3 days.

Usually, an audio device supports both input and output. However, AudioFile
supports only one time register for each audio device. This means that if the actual
hardware uses different sampling rates for input and output, then the server will
present distinct unidirectional audio devices for input and output.

Client use of explicit time

Each play and record request carries with it an exact timestamp. The implemen-
tation of this abstraction is accomplished by buffering future playback and recent
record data in the server. Continuous recording or playback is accomplished by
advancing the requested device time for a request by the duration of the previous
request.

Explicit control of time provides the mechanism needed for real-time applications.
As long as playback requests reach the server before their requested start times,
playback will be continuous. A leisurely application will schedule playback for
well in the future, while an aggressive real-time application will schedule playback
requests for the very near future. The server will buffer requests up to four seconds
in the future.9 Both applications must supply audio at the same rate, but the real-

9We use four seconds to be concrete; the precise size of the server buffer is available to clients as

2.1 Time 9

time application must assure a much lower variance in latency. For example, if an
application is scheduling audio for one second in the future, any individual block
can be delayed for up to one second without disturbing the playback. In contrast,
an application scheduling audio for 50 milliseconds in the future has to assure that
blocks cannot be delayed for more than 50 milliseconds.

The fact that the server buffers audio for future playback also allows clients to
schedule playback asynchronously. This permits single threaded clients to handle
audio in addition to their other activities.

Recording is a much easier problem than playback. The server buffers all device
input, typically for the past four seconds. Therefore, unless a record request fails
to reach the server until four seconds after its requested start time, no data will be
lost. Of course an application making real-time use of the record data must make
record requests close enough to current time to satisfy its real-time constraints.

Because the server buffers all device input, clients can request recording at times
“in the past” and deliver the appearance of instantaneous response. For example,
consider an application that displays a “Record” button. There is some delay
between the time that the user presses the button and when the record request
reaches the audio device. By recording from the recent “past,” the application can
begin recording at the instant the button was hit. This is a more natural interaction
than requiring the user to wait for some indication, such as a visual display or
audible beep, that recording has begun.

Alternate designs

In contrast to AudioFile’s design, the usual way to handle sequential data such as
audio in computers is as a stream, just a sequence of values. The stream is a very
simple abstraction, but for audio work, it fails three crucial tests:

� Streams do not permit synchronization. It is usually necessary to employ
complex out-of-band mechanisms to find out how much data is buffered in
a stream or to find out if a stream is running or blocked. Consequently, an
application using a stream mechanism will have difficulty establishing the
moment a particular sound will emerge from the loudspeaker or the moment
a particular sample was recorded.

� Streams do not solve real-time problems. Streams tend to obscure issues of
bandwidth and latency that are critical to real-time applications. The idea
is good: the application merely writes audio data into the stream, and the

an attribute of the audio device.

10 2 AUDIO ABSTRACTIONS

sound will emerge from the speaker without gaps. In fact, the application
must still keep up, but it has no way of telling how much margin there is.

� Streams do not deliver any additional simplicity to the application. In the
abstract, audio is just an unending sequence of samples and might seem to
be a good match for streams, but in practice, applications deal with the data
in blocks anyway, so all streams do is force applications and services to
continually create and discard the blocking information.

Instead of dealing with streams of audio samples, the fundamental operations in
AudioFile are block-oriented, and specify exact times at which the blocks are to
be recorded or played. 10

2.2 Output Model

The output model we use for an audio device is shown in Figure 2. In general,
clients can schedule playback at any time from the present to four seconds into the
future. Playback data that falls in the past is silently discarded. Playback data that
falls in the future is buffered unless it also falls beyond four seconds in the future.
Playback requests that fall beyond the four-second buffer are suspended until time
advances to within four seconds.

+

G[0]

G[n]

Server play buffer,
mixing by default

Transmit audio

Conversion

Conversion

Client
data

Client
data

Client specified
gain G[i]

(Sample rate, data type)

Gain

Figure 2: AudioFile server output model

After a playback request is received by the server several stages of processing take
place. The sample data will be one of the several sample types supported by the

10We may have mentioned this before, but it is important.

2.3 Input Model 11

abstract device, but possibly different than the data type supported by the actual
hardware. The data is first passed through a conversion module that translates the
data type received by the server to the data type supported by the audio hardware.
Frequently, the client data type is the same as the audio hardware data type and
this conversion stage is not necessary. The server support for conversion modules
will also be used to handle compressed audio data types. In designing AudioFile
we envisioned this module handling sample rate conversion as well, but the design
for resampling is not complete. 11

Once the data is in the form required by the audio hardware, it is adjusted by a
client specified gain value before being mixed into a common server buffer. The
client gain is stored in an audio context (see Section 7) and defaults to 0 dB. The
mixed data stays in the server buffer until its scheduled playback time approaches.
As the sample data is drawn from the output buffer and sent to the hardware, a
final gain stage is applied. This master gain acts as a volume control for the mixed
version of all client data sources. Frequently, this volume control is implemented
by the audio hardware.

The server is responsible for ensuring that the samples in the output buffer are
sent to the DAC at their corresponding values of the time register. Since time is
exposed at the client library API, client applications are able to manipulate data at
arbitrary sample boundaries within the server.

The output model specifies that silence is emitted during periods of time in which
no client data has been written to the output buffer. This means that applications
need not transport “silent” data from client to server. Instead, a client simply
advances its playback time accross the silent interval before resuming playback.
This mechanism can reduce network bandwidth requirements.

2.3 Input Model

The input model for an audio device is shown in Figure 3. Like the output model,
the input model buffers four seconds of sample data. However, the input model
is conceptually simpler since there are no dependencies between clients such as
those introduced by the mixing stage for playback.

As shown in Figure 3, the recorded data is modified by an input gain which is often
implemented by the hardware. The data is placed into a server buffer indexed by

11Actually, we still need to add the support of multiple audio sample data types by a single audio
device . We were not able to implement this aspect of the AF2R2 design in time for the release of
the kit.

12 2 AUDIO ABSTRACTIONS

Conversion

Conversion

Client
data

Client
data

Receive audio

(Sample rate, data type)

Server record
buffer

Time
Gain

Figure 3: AudioFile server input model

the current value of time.

Clients requesting input data older than four seconds in the past are given silence.
Record requests within the past four seconds return the buffered data. Record
requests in the future cause the client connection to block until time advances far
enough to service the request.

The system also supports a non-blocking record interface. If the client chooses
not to block, the server will reply with as much data as it can supply immediately.
With either blocking or non-blocking recording, the client application can record
consecutive blocks by advancing the requested record time by the duration of the
previous block.

The input model also supports a module which converts the native audio hardware
data type to a client requested data type.

We did not include a per-client gain modification on recording since the data will
always be replayed through a path where gain modification is supported.

2.4 Events

In a client/server system, the server usually waits for the client to ask for service,
then responds. An event is the exception: an asynchronous message from server to
client. Events may be caused by a device or as a side effect of some client’s request.
An event is never sent unless a client registers an interest in receiving notification.
Clients can register for various classes of events such as a telephone device ringing

13

or a change in a property used for inter-client communications. Protocol events
are discussed in Section 5.2; the way the client library handles events is described
in Section 6.1.

3 Background

Computer handling of digital audio is not new. The important historical points of
reference are those of signal processing, telephone integration, device-independence,
and network-transparency.

3.1 Signal Processing

Research groups have used analog-to-digital (A/D) and digital-to-analog (D/A)
converters for computer recording and playback of speech and audio for many
years. For the most part, this “data acquisition” has been accomplished with ex-
pensive and specialized hardware and software intended for the laboratory instru-
mentation market, rather than for general use. We would categorize these systems
as device-dependent and standalone (not networked). However, essentially all
existing technology for audio signal processing was developed this way.

3.2 Etherphone

In the early 1980’s, the Xerox Palo Alto Research Center built a telephone sys-
tem in which voice was transmitted over an Ethernet. This system was called
Etherphone [16]. Besides its utility as a telephone system, the Etherphone sys-
tem had capabilities for workstation recording and playback, voice storage, and
it was certainly network transparent. Each workstation was associated with a
nearby Etherphone, which was a dedicated computer directly connected to the
office phone line, local audio devices, and the Ethernet. The Etherphone system
was used primarily to explore issues of multimedia documents and telephone in-
tegration. Etherphone audio was entirely telephone-quality. In addition, because
audio was passed directly from Etherphone to Etherphone, without intervention by
more powerful computers, there was little opportunity for signal processing.

14 3 BACKGROUND

3.3 Firefly

In the mid 1980’s, the Firefly multiprocessor workstation[18], developed at Dig-
ital’s Systems Research Center, had simple telephone-quality audio. An audio
server on the Firefly buffered the previous four seconds of recorded data and the
next four seconds of playback data; it exported a simple remote procedure call
(RPC) interface to applications. The Firefly audio system was primarily used for
applications such as teleconferencing and multimedia presentations. The Firefly
audio capability was primarily used for applications such as teleconferencing and
multimedia presentations.

We would categorize this system as network-transparent, but it was still device-
dependent. The Firefly audio system pioneered explicit client control of time.

3.4 VOX

In the mid to late 1980’s, the MIT Media Lab and the Olivetti Research Lab in Palo
Alto collaborated on a project called VOX[4]. VOX was an audio server based
on a model in which essentially all audio related functions were included in the
server, with the client mainly handling control those functions. The VOX server
was responsible both for record and playback functions and for establishing direct
connections between disparate devices.

VOX was partly constrained by a view that audio would be primarily sourced
and sunk by external devices, possibly with direct connections between them. In
addition, the view was that audio was such a real-time compute intensive data type
that clients could not manage the load. Instead, all details of audio handling were
subsumed into the server.

We would categorize this system as device-independent,but not network-transparent.

3.5 Related Work

Other projects similar to AudioFile were underway at about the same time.

XMedia Tools[3], a Digital product, was somewhat more ambitious than AudioFile,
using a more complex protocol and putting more emphasis on implementing ap-
plications within the server. In contrast, AudioFile emphasizes simplicity of the
protocol and the server, leaving more complicated actions to be performed by
clients. As described in Section 10, our experience to date indicates that the

15

resulting performance is quite good.

Terek and Pasquale at UCSD developed an audio conferencing system based on a
modified X server [17]. In contrast, we chose not to incorporate audio into the X
server. Our approach has several advantages: AudioFile is independent of X and
can be used when X is not, server implementors need not understand the intricacies
of the X server, and clients do not suffer because of the scheduling decisions that the
X server makes in servicing graphics requests and input events. If synchronization
between audio and graphics is necessary, it can be performed by the clients or by
using the X synchronization extension.

Sonix[12] is a network-transparent sound server developed at Bellcore. It was
also inspired by X and is similar to XMedia in design, with “patchcords” to
internally connect audio devices or to bypass the Sonix server itself. AudioFile
takes a different view of time and emphasizes doing work in clients, rather than
manipulating the flow of audio data within the server. Sonix includes minimal
support for synchronization.

4 Audio Hardware

This section describes the audio hardware currently supported by AudioFile.

4.1 LoFi

In 1990, as part of the Cambridge Research Lab’s overall goals of exploring net-
worked audio and video, one of us (Levergood) designed a TURBOchannel audio
module called LoFi[7]. 12 Later, Digital’s Multimedia Engineering organization
released the design as the product DECaudio. The research “LoFi” and the product
“DECaudio” are substantially identical; we will use “LoFi” to refer to this device
in the rest of this document.

LoFi supports two 8 KHz telephone quality CODECs, one connecting to a telephone
line and one connecting to local audio devices. LoFi also contains a Motorola 56001
DSP chip with 32K 24-bit words of memory shared with the host processor. The
56001 serial port supports a 44.1 KHz stereo DAC and can also be used with

12We called it LoFi primarily becauseit wasn’t. LoFi always included high fidelity audio capability,
but we chose the name to obscure this fact, because we knew we wouldn’t get around to writing the
HiFi support software for a while and we wanted to defuse expectations. The high fidelity support
software was completed in 1992.

16 4 AUDIO HARDWARE

external DSP port devices including stereo A/D and D/A converters operating at
sample rates up to 48 KHz.

The telephone interface on LoFi enables applications such as voice mail and remote
information access. We see no difficulty in adding AudioFile support for other kinds
of telephone interfaces, such as ISDN or PhoneStation [20].

4.2 JVideo

JVideo is a TURBOchannel module developed at Digital Equipment Corporation
for experiments in desktop video. Like LoFi, JVideo has a Motorola 56001 DSP
processor with shared memory, but JVideo also has stereo ADC and DAC hardware
that is capable of variable sample rates. However, JVideo has neither telephony
capability nor an external DSP port.

4.3 Integral Workstation Audio Devices

The Personal DECstation series, the Alpha AXP-based DEC 3000/300, 3000/400
and 3000/500, and the Sun SPARCstation-2 all include 8 KHz CODEC devices on
their system modules.

4.4 LineServer

The LineServer is an Ethernet peripheral. It is a Motorola 68302 microcomputer
system with 128K ROM and 64K RAM, an Ethernet controller, high speed V.35
serial line interface, and an 8 KHz ISDN CODEC. We use LineServer within
Digital’s research labs for remote Ethernet bridging and IP network routing over
both dedicated digital circuits and dial-up ISDN circuits.

The LineServer version of the AudioFile server is interesting because the server
runs on a nearby Ethernet host, not on the LineServer itself. The audio server
exchanges low-level device-specific network messages with the LineServer.

4.5 SGI Indigo

Recently Guido van Rossum of CWI in the Netherlands contributed AudioFile
device support for the Silicon Graphics Indigo workstation. The Indigo supports
stereo audio at a variety of sample rates up to 48 KHz.

17

5 Protocol Description

The AudioFile protocol is designed on the same basic principles as the X Window
System protocol. Control and audio data are multiplexed over a single byte-stream
connection between client and server. A single connection can carry more than
one audio stream. Multiple clients, potentially running on multiple machines of
different architectures, can use the same server at the same time.

5.1 Data Transport

AudioFile is intended to be used over almost any transport protocol, though their
behavior may affect real-time audio performance (see Section 11 for some perfor-
mance analysis).

As in X, the AudioFile protocol presumes that the data transport between the client
to the server is reliable and does not reorder or duplicate data. Any transport
mechanism fulfilling these criteria could be used. AudioFile takes advantage of
streaming when possible, though we believe this is less common than in the X case.
The current version of AudioFile supports TCP/IP and UNIX-domain sockets.

We believe that the programming model AudioFile presents may reduce the number
of audio applications needing low-latency communications, because clients can
control exactly when audio will appear or when it was recorded.

5.2 Events

As in X, events have a fixed size. Only five event types are currently defined: four
for telephone control and one for interclient communications. Some details of the
telephone events are discussed below in Section 5.5.

All device events contain both the audio device time of the device and the clock time
of the host of the server. The host clock time may be needed when synchronizing
with other media on the same host (for example, video being displayed by the
window system).

5.3 Protocol Requests

All protocol requests have a length field (16 bits, expressed in 32-bit quantities),
an opcode (one byte), and an optional opcode extension (one byte). The shortest

18 5 PROTOCOL DESCRIPTION

possible request is therefore four bytes long. The length field limits the longest
request to 262144 bytes, though in practice AudioFile’s longest request is substan-
tially shorter. All data in the requests are kept naturally aligned inside the request
header; requests that use additional data are padded to a 32-bit boundary.

There are 37 requests in the AudioFile protocol. Most of these are related to
audio, although only two deal with audio data. The remaining requests are used for
housekeeping purposes, such as access control, inter-client communications, and
extensions (although no extensions are implemented today). In comparison, the X
Window System has 119 requests in the core protocol.

At connection setup, the client and server exchange version information and clients
provide the server authentication information, exactly as in the X Window System.
Table 1 summarizes AudioFile’s protocol requests.

5.4 Audio Device Attributes

An abstract audio device has several attributes that are visible to clients. The
sampling rate, sample data type, and buffer size have been discussed in previous
sections. This and other information is returned for each device at connection setup
time. The additional information includes the number of channels for record and
playback and whether a channel is connected to a telephone device.

An audio device may have multiple inputs or outputs. For example, some devices
may have both line-in and microphone-in connectors which share a single ADC,
and line-out and speaker-out connectors driven from a common DAC. The abstract
audio device encodes these capabilities of the audio hardware in two quantities
indicating the number of inputs and outputs and two masks indicating which inputs
and outputs are connected to a telephone line interface.

We intend to modify AudioFile to make the sample data type attribute a prioritized
list rather than a single enumerated type. This change would permit the system to
have several conversion modules per audio device. These conversion modules can
translate one or the enumerated data types to the native audio hardware data type.
We will probably extend the same scheme to handle various popular compression
methods.

5.4 Audio Device Attributes 19

Audio and Events SelectEvents Select which events the client wants
CreateAC Create an audio context
ChangeACAttributes Change the contents of an audio context
FreeAC Free an audio context
PlaySamples Play samples
RecordSamples Record samples
GetTime Get the audio device’s time

Telephony QueryPhone Get telephone state
EnablePassThrough Enable telephone passthrough
DisablePassThrough Disable telephone passthrough
HookSwitch Control hookswitch
FlashHook Flash hookswitch
EnableGainControl Not for general use
DisableGainControl Not for general use
DialPhone Obsolete, do not use

I/O Control SetInputGain Set input gain
SetOutputGain Set output gain (volume)
QueryInputGain Find out current input gain
QueryOutputGain Find out current output gain
EnableInput Enable input
EnableOutput Enable output
DisableInput Disable input
DisableOutput Disable output

Access Control SetAccessControl Set access control
ChangeHosts Change access control list
ListHosts List which hosts are permitted access

Atoms and Properties InternAtom Allocate unique ID
GetAtomName Get name for ID
ChangeProperty Change device property
DeleteProperty Remove device property
GetProperty Retrieve device property
ListProperties List all device properties

Housekeeping NoOperation Non-blocking NoOperation
SyncConnection Round-trip NoOperation
QueryExtension Not yet implemented
ListExtensions Not yet implemented
KillClient Not yet implemented

Table 1: AudioFile protocol requests

20 5 PROTOCOL DESCRIPTION

5.5 Telephony

While we have evolved the design of AudioFile and added support for several
devices, LoFi is still the only device supported by AudioFile that has an analog
telephone line interface.

LoFi’s telephone line interface includes a line jack, a set jack, hookswitch relay, ring
detection circuitry, loop current detection circuitry, Dual Tone Multi-Frequency
(Touch-Tone) decoding circuitry, and output power limiting circuitry. With suitable
software this hardware allows applications to originate calls using DTMF or pulse
dialing, receive calls, receive DTMF events, monitor the extension phone status
(on-hook or off-hook), and source and sink audio to/from the telephone line for
applications such as voice mail and remote information access.

While the current protocol includes a DialPhone request, it is not used, because
we found it difficult to meet FCC timing requirements for dialing by using our
internal tasking system in the server. Instead, the client library implements client
side tone dialing by generating appropriate tones and using device time to play
them at exactly the right time. We do not support pulse dialing, though the LoFi
hardware could in principle do so.

Client applications can learn of state changes in the telephone line interface by
monitoring the telephone events. DTMF detect, loop current detect, hookswitch,
and ring detect events can be generated by the server each time there is a change
in state. DTMF detection can be used to receive information from a remote caller.
Loop current detection (PhoneLoop) can be used to indicate if the extension phone
is on-hook or off-hook. Loop current detection together with DTMF detection can
be used to track numbers dialed manually on the extension phone. Hookswitch
events (HookSwitch) can be used to determine if the telephone line interface is on-
hook or off-hook. Finally, ring detect events (PhoneRing) can be used to determine
whether there is an incoming call.

Other than the support for events and device control, there are no special audio
arrangements for supporting telephony in the AudioFile design.

5.6 Audio Contexts

Rather than specifying all parameters for play and record with each request, a client
uses an “audio context” (AC) to encapsulate most of these parameters. The AC
includes the play gain (relative to the 0 dB point of all clients, independent of user
volume control) and preemption flag. The client AC data structure also stores the

5.7 GetTime, Play, and Record 21

number of channels, sample type, and byte order. ACs simplify the programming
interfaces for play and record considerably.

5.7 GetTime, Play, and Record

GetTime is the protocol request which returns the audio device time. PlaySamples
and RecordSamples requests also return the device time as a convenience to the
application programmer.

The PlaySamples and RecordSamples protocol requests are almost symmetric.
Both pass the start time for the play or record to begin, the number of samples
to use, the number of channels in the data, and the data type, with a flag bit to
indicate the byte order of the data. An audio context specifies the device, gain
parameters, and in the PlaySamples case, a preemption flag that controls mixing.
In addition, PlaySamples uses a flag to specify whether the server should suppress
the usual time reply, because the client library does not need intermediate replies
during a series of contiguous play requests. RecordSamples uses another flag to
control whether the server should block the client if not all the requested data can
be returned immediately.

At the client library interface, long play and record requests are “chunked” into 8K
byte pieces, so that no single request will take very long for the server to process.

5.8 Input and Output Gain, and I/O Control

Each audio device may have multiple input or outputs. AudioFile provides requests
to select inputs and to enable or disable outputs. In addition, the gain can be
controlled for each input or output device for use as end user volume control.

5.9 Inter-Client Communications

AudioFile adopted from X the same extensible atom type system and property
list mechanism to enable clients to communicate. Atoms are short unique integer
handles for strings. There are a set of built-in atoms for commonly used types
and property names such as sample types, time, and so on. New types or property
names can be added by “interning” new strings to create new atoms. Named, typed
data (called “properties”) can be associated with a device, given a name and type,
and stored and retrieved from the server. Table 2 summarizes AudioFile’s built-in

22 5 PROTOCOL DESCRIPTION

atoms. Clients can register to be notified by event when properties are changed by
other clients.

Primitive types
ATOM Unique id for a string
CARDINAL Unsigned integer
INTEGER Integer
STRING String
AC Audio context ID
DEVICE Device number
TIME Time
MASK Bit vector, often inputs or outputs
TELEPHONE Telephone device type
COPYRIGHT Copyright string
FILENAME Filename string

Encoding types
SAMPLE MU255 �-law
SAMPLE ALAW A-law
SAMPLE LIN16 16-bit linear
SAMPLE LIN32 32-bit linear
SAMPLE ADPCM32 ADPCM compressed
SAMPLE ADPCM24 ADCPM compressed
SAMPLE CELP1016 CELP compressed
SAMPLE CELP1015 CELP compressed

Properties
LAST NUMBER DIALED Type STRING, contains last number dialed

Table 2: AudioFile built-in atoms

For example, the property LAST NUMBER DIALED can be used by cooperating
applications for storing the last telephone number dialed. It would have type
STRING and its name would be LAST NUMBER DIALED, with the convention
that any client dialing the telephone should update the value of this property. Other
clients interested in tracking telephone activity would register for notification of
changes. In this way, a directory of recently used numbers could acquire all
numbers dialed by all telephone applications.

Clients can use such facilities to coordinate use of resources (like the telephone)
and to cooperate among themselves, allowing a collection of small applications to
implement complex functions, rather than requiring a single monolithic application.

23

6 Client Libraries

We have developed two libraries for use by clients of AudioFile. The first is
a “core” library that provides the standard interface to an AudioFile server. The
second is a utility library that includes common functions required by many clients.

The client libraries perform two functions. The first is as the sole interface to
the protocol. These functions include connection management, local maintenance
of data structures such as the client-side copy of the audio context and device
data, translation of client requests into protocol requests, demultiplexing of the
reply/event stream, and buffer management of the communications channel. The
second main function of the client libraries is to provide language bindings of
the requests, events, and functions suitable for a particular client programming
environment. We currently supply bindings only for C language and semantics,
but other languages could be added.

6.1 Core Library

The core client library is the standard interface for AudioFile clients. Some
of its functions provide interfaces to the AudioFile protocol; others provide an
interface to the library’s internal data structures. Tables 3 and 4 summarize the
library functions. The header file AFlib.h contains the necessary definitions and
declarations while the library libAF.a contains the implementation.

6.1.1 Connection Management

AFOpenConnection() opens a connection to the audio server. The user can specify
which server to use in the following ways: explicit argument on the command line,
the AUDIOFILE environment variable, or the DISPLAY13 environment variable.
DISPLAY is used as a convenient fallback, since the user’s workstation usually
has both audio and graphics systems. AFAudioConnName() returns the name of
the connection as used by AFOpenConnection().

AudioFile provides a simple access control scheme based on host network address.
The access control functions allow programmers to add or remove hosts from the
access list and to enable or disable access control entirely.

13DISPLAY is used by the X Window System for specifying a particular graphics display.

24 6 CLIENT LIBRARIES

6.1.2 Error Handling

Several functions modify the behavior of library functions when errors occur. The
default action is to exit the application. AFSetErrorHandler() can be used to specify
an application-specific error handler instead. An application can handle system call
errors by supplying a new handler with AFSetIOErrorHandler(). AFGetErrorText()
translates a protocol error code into a string. This is commonly used to provide
useful error messages to the user.

6.1.3 Synchronization

Some of the library functions, such as AFGetTime(), require an immediate response
from the server; others, such as AFCreateAC(), do not. In the former case, the
library blocks until a reply is received. When a response is not needed right
away, the library may delay sending the request to the server and put it on an
outgoing request queue. In these cases, the library function will return to the client
immediately. Certain operations, including the synchronous functions, flush the
outgoing request queue; these are noted below.

Sometimes it is necessary to force synchronous operation for all protocol requests,
particularly when debugging. AFSynchronize() is used to enable or disable syn-
chronous operation with the server. If synchronous operation is enabled, every
library function that normally generates an asynchronous protocol request calls
AFSync() before returning. AFSync() flushes all output to the server and uses a syn-
chronous protocol request to wait for the server’s reply. If an application requires a
different synchronization procedure, it can specify one using AFSetAfterFunction().

AFFlush() flushes the output buffer. Most client applications will not need to call
this, because the output buffer is flushed as needed by calls to AFPending() and
AFNextEvent(). Any events generated by the server are put onto the library’s event
queue.

6.1.4 Events

The library filters events out of the data stream from the server and keeps them
on a private queue. This allows events to be interspersed on the audio connection
with other traffic from server to client.

Several functions can be used to examine and manipulate the library’s event queue.
The most important one is AFNextEvent(), which returns the next event in the

6.1 Core Library 25

queue. If the queue is empty, it will flush the output buffer and block until an event
arrives. AFEventsQueued() checks the queue for pending events. Depending
upon its arguments, it may check only previously read events, unread but available
events, or it may flush the output buffer and try to read new events. AFPending()
is similar, but it returns only the number of pending events that have been received
but not yet processed.

Occasionally a client may wish to block until a specific event occurs. To do
this, the client calls AFIfEvent() with a predicate procedure. AFIfEvent() blocks
until the predicate returns True for an event in the queue. The matching event is
removed from the queue and copied into a client-supplied AEvent structure. If
the client does not wish to block when checking for a specific event, it can use
AFCheckIfEvent(), which removes a matching event (if there is one) from the queue
and copies it into a client supplied AEvent structure. As an alternative, a client can
call AFPeekIfEvent(), which is like AFCheckIfEvent(), but it does not remove the
event from the queue.

6.1.5 Audio Handling

AFPlaySamples() is used by an application to play back digital audio. The block
of samples in the given buffer is played back starting at the specified time.

ATime AFPlaySamples(AC ac, ATime startTime, int nbytes, unsigned char *buf)

A client can use the startTime parameter of a call to AFPlaySamples() to schedule
samples to be played at any time in the near future. The time parameter specifies
when the initial sample of the request is to be played. The precise behavior of the
server depends upon the requested time:

� Past. If part or all of the request is scheduled for the past , the server discards
that part of the request and plays any remaining samples beginning with the
current time.

� Near future. If any part of the request is scheduled for the interval between
“now” and four seconds in the future, the server copies that part of the request
directly to the appropriate location in the playback buffer.

� Beyond near future. If any part of the request is scheduled for the interval
beyond four seconds in the future, the server will block the client until the

26 6 CLIENT LIBRARIES

rest of the request can be safely copied into the playback buffer. This is the
only case in which AFPlaySamples() will not immediately return control to
the client application.14

The client is also allowed to modify any scheduled playback material right up until
the moment the samples have been played. If no client request is received for a
given time interval, the server plays silence.

AFPlaySamples() returns the current AudioFile device time, as would be returned
by a call to AFGetTime(). This is done as a convenience to programmers. We
noticed that many applications would alternately call AFPlaySamples() and AFGet-
Time(). Adding the return value makes application programming easier and reduces
client/server communications.

AFRecordSamples() is used by an application to capture sound in digital form.
A block of samples beginning at the time specified is filled into the given buffer.
AFRecordSamples() also returns the current device time.

ATime AFRecordSamples(AC ac, ATime startTime, int nbytes,
unsigned char *buf, ABool block)

A client may use AFRecordSamples() to request samples from either the past or the
future. If block is ABlock, then AFRecordSamples() blocks until all of the requested
data is available. If block is ANoBlock, it returns whatever data is immediately
available; the returned time can be used to compute how many samples were
actually returned. The precise behavior of the server depends upon the requested
time:

� Distant past. If part or all of the request is for samples from more than four
seconds in the past, that part of the request is filled by samples representing
silence. This is data no longer retained by the server.

� Recent past. If part or all of the request is for samples from the interval
between four seconds ago and the present, that part of the request is filled
by the appropriate samples from the record buffer. If the entire request is in
this interval, the call to AFRecordSamples() will return without blocking.

14The server should probably return an error indication for the “distant” future, because such
requests usually indicate programming errors.

6.2 Client Utility Library 27

� Future. If part of the request is for samples from the future, AFRecordSam-
ples() will block until the data is available, but will return as soon as the last
requested sample becomes available.15

6.2 Client Utility Library

The AudioFile distributionalso includes a utility library libAFUtil.a, whose contents
are described in the header file AFUtils.h.

The utility library provides a number of facilities that are used by several clients.
Two kinds of facilities are provided: tables and subroutines. Table 5 summarizes
the library tables and Table 6 summarizes the library subroutines.

6.2.1 Utility Tables

The AudioFile System handles a variety of digital audio data formats, particularly
�-law and A-law, the eight-bit-per-sample companded formats used in the US
and European telephone industries, respectively. These formats are described
by CCITT recommendation G.711. They are similar logarithmically companded
formats resembling 8-bit floating point numbers. The �-law (A-law) format is
roughly equivalent to a linearly encoded format of 14 (13) bits. For mixing
and gain control, the AudioFile server and some clients need to convert these
formats to and from linear encoding. It is possible but time consuming to do this
algorithmically; fortunately, it is very easy to do the necessary conversions by
table lookup. Conversion from �-law or A-law to linear requires tables containing
256 16-bit entries. Gain control for a specific gain requires only a 256 byte table.
Tables for conversion from linear to �-law or A-law requires 16,384 bytes.

Another frequent operation is the computation of the signal power of a block
of samples. The utlity library provides tables AF power uf and AF power af to
translate �-law and A-law values to the square of the corresponding linear value.

As discussed further below, table lookup is a very powerful method of generating
sine waves or other wave shapes at various frequencies. The library provides integer
and floating point sine wave tables, AF sine int and AF sine float, for this purpose.
Finally, the library makes a first attempt to describe various encoding formats that
AudioFile supports today or may support in the future. The table AF sample sizes
is an array of AFSampleTypes structure indexed by AEncodeType, which is an

15As with AFPlaySamples(), the notion of future should probably be bounded.

28 6 CLIENT LIBRARIES

enumerated type describing various digital audio encodings.

struct AFSampleTypes {
unsigned int bits_per_samp;
unsigned int bytes_per_unit;
unsigned int samps_per_unit;
char *name;

};

Many encoding types do not have integral numbers of bytes per sample, so AF-
SampleTypes has two fields for bytes per unit and samps per unit. Together these
fields can describe any fixed-length encoding format. (The field bits per samp is
only a hint).

6.2.2 Utility Procedures

The AudioFile utility library gathers together a number of useful subroutines. With
the exception of AFDialPhone(), these procedures do not directly interact with the
AudioFile protocol.

Two procedures, AFMakeGainTableU() and AFMakeGainTableA(), are supplied
to compute on-the-fly translation tables for gain modification of �-law and A-law
encoded samples. Applications may find it more convenient to use the precomputed
tables (AF gain table u and AF gain table a), but the procedures are provided for
those situations calling for gain values outside the range -30 dB to +30 dB or for
clients without enough memory to store all 61 tables.

Two procedures, AFTonePair() and AFSingleTone(), are supplied for generating
tones or tone pairs. These procedures use the technique of direct digital synthesis,
where sample values are produced by stepping through a wave table at a rate
proportional to the requested frequency. The requested frequency is divided by the
sample rate to produce a phase increment value. The phase increment is added to
a phase accumulator, and the fractional value is used to index the wave table.

AFSingleTone() is used to generate a floating point tone into a buffer, with a given
peak value. AFSingleTone() accepts an initial phase and returns the final phase,
allowing multiple calls to AFSingleTone() to produce a signal that is continuous at
block boundaries.

double AFSingleTone(double freq, double peak, double phase,
float *buffer, int length)

6.2 Client Utility Library 29

AFTonePair() is used to generate a�-law tone pair into a buffer. The two frequencies
are individually specified, with individual power levels relative to the “digital
milliwatt”, which in turn is 3.16 dB down from digital clipping level. A special
parameter, gainramp, controls how the tones will ramp up to full volume and ramp
down at the end. This reduces the frequency splatter associated with switching the
signal on and off. Two-tone signals are frequently used in telephony, for Touch-
Tone, ringback, busy, and dialtone sounds. Table 7 shows some of the telephony
related signals represented by tone pairs. The table shows the frequencies in Hertz
and power levels in dB relative to the digital milliwatt of the two tones, and the
on- and off- times in milliseconds. An off-time of 0 represents a continuous tone.

void AFTonePair(double f1, double dBgain1,
double f2, double dBgain2,
int gainramp,
unsigned char *buffer, int length);

AoD() stands for “Assert Or Die”. A common idiom in programming is to check
a condition and exit with an error message if the condition does not hold. AoD()
simply captures this idiom into a library procedure. The first argument is a boolean
expression. If the expression is true, AoD() returns right away. If the expression is
false, the rest of the arguments are interpreted as a format string and arguments for
fprintf(stderr,...) after which AoD() calls exit(1). 16

void AoD(int bool, char *errmsg, ...);

Finally, AFDialPhone() encapsulates the operations necessary to generate Touch-
Tone dialing sequences on a telephone device.

16This should be in a more general library, but it isn’t.

30 6 CLIENT LIBRARIES

Connection Management
AFOpenAudioConn Open a connection to the audio server
AFCloseAudioConn Close the audio connection
AFSynchronize Synchronize with the audio server
AFSetAfterFunction Set a synchronization function

Audio Handling
AFGetTime Get the device time of a device
AFPlaySamples Play digital audio samples
AFRecordSamples Record digital audio samples

Audio Contexts
AFCreateAC Create a new audio context
AFChangeACAttributes Modify an audio context
AFFreeAC Free resources associated with an audio context

Event Handling
AFEventsQueued Check for events
AFPending Returns number of unprocessed events
AFIfEvent Find and dequeue a particular event (blocking)
AFCheckIfEvent Find and dequeue a particular event (non-blocking)
AFPeekIfEvent Find a particular event (blocking)
AFNextEvent Return the next unprocessed event
AFSelectEvents Select events of interest

Telephone
AFCreatePhoneAC Create an audio context for a telephone device
AFFlashHook Flash the hookswitch on a telephone device
AFHookSwitch Set the state of the hookswitch
AFQueryPhone Returns the state of the hookswitch and loop current

Table 3: AudioFile client library functions

6.2 Client Utility Library 31

I/O Control
AFEnableInput Enable inputs on an audio device
AFDisableInput Disable inputs on an audio device
AFEnableOutput Enable outputs on an audio device
AFDisableOutput Disable outputs on an audio device
AFEnablePassThrough Connect local audio to the telephone
AFDisablePassThrough Remove the direct local audio/telephone connection
AFQueryInputGain Get minimum/maximum input gains for a device
AFQueryOutputGain Get minimum/maximum output gains for a device
AFSetInputGain Set the input gain of a device
AFSetOutputGain Set the output gain of a device

Access Control
AFAddHost Add a host to the access list
AFAddHosts Add a set of hosts to the access list
AFListHosts Return the host access list
AFRemoveHost Remove a host from the access list
AFRemoveHosts Remove a set of hosts from the access list
AFSetAccessControl Enable or disable access control checking
AFEnableAccessControl Enable access control checking
AFDisableAccessControl Disable access control checking

Properties
AFGetProperty Manipulate properties
AFListProperties Get a list of existing properties
AFChangeProperties Modify a property
AFDeleteProperty Delete a property
AFInternAtom Install a new atom name
AFGetAtomName Fetch the name of an atom

Error Handling
AFSetErrorHandler Set the fatal error handler
AFSetIOErrorHandler Set the system call error handler
AFGetErrorText Translate error code to a string

Miscellaneous
AFNoOp Don’t do anything
AFFlush Flush any queued requests to the server
AFSync Default synchronization function
AFAudioConnName Return the name of the audio server

Table 4: Additional AudioFile client library functions

32 6 CLIENT LIBRARIES

Conversion Tables
AF comp u 13-bit linear to �-law
AF comp a 13-bit linear to A-law
AF exp u �-law to 13-bit linear
AF exp a A-law to 13-bit linear
AF cvt u2s �-law to 16-bit linear
AF cvt u2a A-law to 16-bit linear
AF cvt u2f �-law to floating point
AF cvt a2f A-law to floating point
AF cvt u2a �-law to A-law
AF cvt a2u A-law to �-law

Mixing Tables
AF mix u Mix two �-law samples
AF mix a Mix two A-law samples

Gain Tables
AF gain table u �-law gain
AF gain table a A-law gain

Sine Wave Tables
AF sine int 1024 entry 16-bit integer sine wave
AF sine float 1024 entry floating point sine wave

Encoding Information Tables
AF sample sizes Datatype information

Table 5: AudioFile client utility library tables

Gain Control Procedures
AFMakeGainTableU Generate a �-law gain table
AFMakeGainTableA Generate an A-law gain table

Signal Generation Procedures
AFTonePair Generate a two-tone signal
AFSingleTone Generate a precise sine wave
AFSilence Generate silence
AFDialPhone Generate tone dialing signals

Utility Procedures
AoD Assertion checking

Table 6: AudioFile client utility library functions

6.2 Client Utility Library 33

Name f1 dB1 f2 dB2 Time-on Time-off
Call Progress Tones

dialtone 350 -13 440 -13 1000 0
ringback 440 -19 480 -19 1000 3000
busy 480 -12 620 -12 500 500
fastbusy 480 -12 620 -12 250 250

DTMF Tones
1 697 -4 1209 -2 50 50
2 697 -4 1336 -2 50 50
3 697 -4 1477 -2 50 50
4 770 -4 1209 -2 50 50
5 770 -4 1336 -2 50 50
6 770 -4 1477 -2 50 50
7 852 -4 1209 -2 50 50
8 852 -4 1336 -2 50 50
9 852 -4 1477 -2 50 50
� 941 -4 1209 -2 50 50
0 941 -4 1336 -2 50 50
941 -4 1477 -2 50 50
A 697 -4 1633 -2 50 50
B 770 -4 1633 -2 50 50
C 852 -4 1633 -2 50 50
D 941 -4 1633 -2 50 50

Table 7: Tone pairs for telephony

34 7 SERVER DESIGN

7 Server Design

The AudioFile server is responsible for managing the audio hardware and present-
ing abstract device interfaces to clients via the AudioFile protocol. This section
discusses some of the important issues in the server’s design, the implementation
of buffering to provide the audio device abstraction, and some other details of the
server’s implementation.

7.1 Implementation Considerations

Performance was our primary concern for the implementation of an AudioFile
server. We wanted the server to run continuously in the background, so we
felt that the quiescent server should present a negligible CPU load. Further,
load due to the server with a few clients running should leave most of the CPU
available for applications. Otherwise, users would not be inclined to use audio-
based applications because they would not get any work done. While server
performance was a primary focus, we realized the overall design must be kept in
balance so that an efficient server was not compromised by an inefficient client or
client library.

We considered using threads to implement the server, but were apprehensive about
the performance and portability of existing thread packages. Although the internal
structure of the server might be slightly cleaner with threads, we took the safer
route and designed the server as a single-threaded process.

The server must be fair in its processing of client requests, in order to meet the
real-time constraints of the applications. To satisfy our fairness goal, the server
is designed such that one client cannot dominate the processing time within the
server and preclude the server from getting work done on the behalf of other clients.
The server attempts to achieve fairness by servicing active client connections in a
round-robin fashion and by breaking large requests into smaller chunks.

7.2 Buffering

In Section 1, we mentioned the existence of audio device input and output buffers.
There are several buffering details that merit further examination. Figure 4 pic-
torially represents the input and output buffers along a time line centered around
now, the current value of the time register.

7.2 Buffering 35

Now

Record buffer

Play buffer

Update Regions

4 seconds

4 seconds

Time

Figure 4: AudioFile server buffering

Play or record requests that correspond to points on the time line that map to
unshaded portions of the buffers are handled trivially. Record requests can be
serviced from the record buffer and play request data can be simply mixed into the
play buffer.

Requests that correspond to the shaded regions of the buffers are treated as special
cases by the server. The shaded “update regions” represent where the server buffers
may be inconsistent with the audio hardware buffers. If a record request falls into
the shaded region, the server performs a record update operation which makes
the input record buffer consistent until now. 17 Once the input record buffer has
been updated, recent data can be delivered to the client. If a play request falls
into the shaded region, the server writes the data through the server buffer into the
audio hardware (or low level software) in order to ensure that sample data for the
near-future is immediately available to the DAC without intervention by the server.

In these descriptions of how the server buffers data, we have described how client
requests cause movement to occur in the input and output buffers. It should be
clear that a piece of the buffering picture is missing. There must be a mechanism
which periodically moves data between the audio hardware and the server buffers
independent of any client request activity. This mechanism is an update task that
keeps the hardware buffer consistent, such that the hardware buffer always reflects
the server’s buffer at the time the hardware consumes an output sample.

Figure 5 illustrates the server record and play buffers before and after the update
task executes. At each invocation, the update task moves new record data (since

17Or very close to now. It is possible that the record update task can only make the buffer consistent
through a time that occurred a few sample ticks in the past depending upon the latency in the audio
hardware.

36 7 SERVER DESIGN

timeRecLastUpdated) from the hardware buffer to the server buffer, and moves
the next batch of playback data (starting at the “before” timeNextUpdate) from the
server buffer to the hardware buffer.

Record buffer

Play buffer

Time
Record buffer

Play buffer

Before

After

timeNextUpdate

timeRecLastUpdated

Now

Figure 5: AudioFile periodic update task

If a record request falls after timeRecLastUpdated, the server performs an update
before handling the request. If a playback request falls before timeNextUpdate, the
server writes the data all the way through to the hardware.

Since the update task generally copies all data (whether any client sample was
written to the output buffer or not), the server buffer must be initialized with
silence data. In general, the server’s buffers are implemented as circular buffers.
Therefore, the silence data is written by the update task in the segment (now stale)
from the time of the last update until now. This places a constraint on the server’s
play handler; it must consider the server’s play buffer as ending at the device time
of the last update plus the server buffer size.

The server was designed to mix output data from multiple clients by default. We
believe this is the natural case. However, it is important that a client can preemp-
tively play sample data, such as in an urgent warning message. Clients specify
preemption through the audio context used in the play request. If preemption is
specified, the play data will overwrite any data already in place. 18

In cases where hardware buffer accesses are expensive, the server should attempt
to minimize the number of hardware accesses for each sample played. At one
extreme, the server could perform an access for each client playing at time T . The

18We have yet to devise a CPU and memory efficient scheme that supports a stacking order for
clients playing data. Imagine that the relative mixing levels are controlled by the client’s location
on the stack with each level mixing 6 dB lower than the previous level for example. A design that
supports this would require unique server buffers for each active client.

7.3 Server Implementation 37

minimum is one access for all clients playing audio at time T . For recording, the
server always performs one access per sample.

The number of accesses per output sample is approximately one for the periodic
update task access as the server’s buffer slides into the update interval, plus one for
each client playing in the update interval. A large number of applications will play
audio by getting the current time and begin playing immediately and quickly move
outside the update interval because they run faster than real-time (for example:
abiff, background music, audio announcements). These clients enable the server
to approach the minimum number of accesses desired. This may not be true for
low-latency applications which always schedule playback just ahead of the current
time.

7.3 Server Implementation

An AudioFile server is organized like an X server. It includes device independent
audio (DIA), device-dependent audio (DDA), and operating system (OS) compo-
nents. The DIA section is responsible for managing client connections, dispatching
on client requests, sending replies and events to clients, and executing the main
processing loop. The DDA section is responsible for presenting the abstract inter-
face for each supported device and contains all device-specific code. Finally, the
OS section includes all the platform or operating system-specific code. Much of
the OS and DIA code is based on X11R4.

The remainder of this section describes some of the functions provided by the DIA,
DDA, and OS components as well as presenting some example DDA servers. The
discussion is detailed; the interested reader may wish to refer to the source code.
Because much of the OS and DIA infrastructure is based on X11R4 code, various
documents describing the implementation of the X Window System server [1, 2,
13, 14] may be helpful.

7.3.1 Device-Independent Audio Server

Interoperability

The server contains code to support byte-swapping when communicating with
clients on a machine with the opposite byte order. Each protocol request may
have a companion swap procedure that interprets the contents of the request and
byte-swaps the necessary fields. Play and record requests specify the byte order of

38 7 SERVER DESIGN

the sample data; by default, the AudioFile library uses the byte order of the client
unless told otherwise by the application.

Tasks

Instead of using threads, we implemented a simple task mechanism which allows
procedures to be scheduled for execution at future times, outside the main flow of
control. The task mechanism is used by the server’s update mechanism and by the
dispatcher to resume execution of partially completed client requests.

A task includes the address of a procedure (proc()), the system time to execute
(systime), and closure data (p, time, len, ssize, mask, aDev, ac). 19 Procedures can
create a new task, initialize the task, and add the task to the run list.

typedef struct tTask {
struct Task *next; /* Next task on free list. */
ClientPtr client; /* Pointer to client struct. */
fd_set fdmask; /* Save fd mask for processing loop.*/
pointer request; /* Client request information. */
ATime time; /* ATime at which to process task. */
VoidProc proc; /* Procedure to call. */
pointer p; /* Pointer to the task data. */
int len; /* Amount of data left. */
int ssize; /* sample size of remaining data */
int mask; /* request mask: endian-ness */
AudioDevicePtr aDev; /* Pseudo device handle. */
ACPtr ac; /* Audio context handle. */
struct timeval systime; /* System time (for scheduling). */

} Task;

/* Exported procedures. */
void AddTask(VoidProc proc, TaskPtr task, int ms);
TaskPtr NewTask(void);

Here is a code example from the Alofi server that uses the task interface. The update
procedure is named codecUpdateTask(). During the server initialization sequence,
the DDA creates a new task, attaches an audio device structure to the task structure,
and schedules codecUpdateTask() to run MSUPDATE milliseconds from now.

TaskPtr task;
AudioDevicePtr aDev;

task = NewTask();
task->aDev = aDev;
task->time = 0;
AddTask(codecUpdateTask, task, MSUPDATE /* 100 */);

19This data should be private to proc().

7.3 Server Implementation 39

The codecUpdateTask() procedure will be invoked once system time has advanced
beyond the task’s expiration time. As shown by this example, the update task
reschedules itself for execution MSUPDATE milliseconds into the future, causing
this procedure to execute periodically. codecUpdateTask() calls codecUpdate()
which does the actual work of updating the server buffers.

void
codecUpdateTask(TaskPtr oldTask)
{

TaskPtr newTask=NewTask();
AudioDevicePtr aDev=oldTask->aDev;

*newTask = *oldTask; /* Task for next time. */

/* Get the current device time and update audio device time. */
CODEC_UPDATE_TIME(aDev);

/* Perform the write-back update with silence fill. */
codecUpdate(aDev);

newTask->time = aDev->time0; /* Mark new task with old time. */
AddTask(codecUpdateTask, newTask, MSUPDATE /* 100 */);

}

Main Loop

At the core of the DIA section is the main control loop. Inside of this loop the
procedure WaitForSomething() is called when the server does not have anything
to do. WaitForSomething() returns when a client, audio device, or task needs
attention. WaitForSomething() relies heavily on the select() system call. select()
is called with file descriptors for client connections and open devices, as well as a
timeout argument for the next task which needs to execute. When select() returns,
the server runs any pending tasks and then handles input events and client requests.

Client requests are processed by the dispatcher. The request type is used to index
into a table of protocol request handler procedures. All handlers are implemented
by the device-independent part of the server, but audio requests are passed to the
device-dependent part. When necessary, the request handler calls into the DDA
using interfaces that are defined below.

7.3.2 Device-Independent and Dependent Server Interfaces

This section describes the interfaces shared between the device independent (DIA)
and device-dependent audio (DDA) server components. The interfaces include the

40 7 SERVER DESIGN

procedures exported by the DDA and the DIA as well as the shared data structures:
AudioDeviceRec and AC.

Exported DDA Interfaces

When the components of an AudioFile server are linked while excluding the DDA
library, the linker complains about six unresolved symbols. The six symbols,
described in detail below, are InitDevices(), ProcessInputEvents(), ddaGiveUp(),
AbortDDA(), ddaUseMsg(), and ddaProcessArgument().

InitDevices() is called during server initialization from dia/main.c. 20 This procedure
creates and initializes an AudioDevice structure for each (abstract) audio device
supported by the DDA. The DDA can perform any necessary hardware initialization
at this time.

The DDA registers file descriptors for open devices that may deliver events with the
DIA to be used in generating the arguments to select(). If select() returns because a
hardware device becomes ready for I/O, the DIA will call the ProcessInputEvents()
procedure within the DDA. The ProcessInputEvents() procedure in the DDA is
called from dia/dispatch.c when there are events pending and it is time to process
them. The DDA removes pending events from a device driver input queue and
then posts them to the DIA’s FilterEvents() procedure for further processing before
being sent to interested clients.

The ddaGiveUp() procedure is invoked by the dispatcher in dda/main.c if dis-
patchException masked with DE TERMINATE is true. 21 The DDA should close
any open devices and tear down its state.

The AbortDDA() procedure is invoked from within AbortServer() in os/4.2bsd/utils.c.
Any fatal server error will cause AbortServer() to be invoked and subsequently,
AbortDDA(). The DDA should close any open devices and tear down its state.

The ddaUseMsg() procedure is invoked from within os/4.2bsd/utils.c if the server
command line could not be parsed successfully. The DDA server should use
ErrorF() to print formatted error messages indicating the list of DDA-specific
server command line switches.

The ddaProcessArgument() procedure is invoked from within os/4.2bsd/utils.c if
the command line argument is not understood by the DIA server. The DDA server
should check to see if this is a DDA-specific argument. If it is, the DDA should con-
sume this argument and any subsequent related arguments that follow immediately.

20Pathnames are relative to the server directory in the AF sub-tree within the AudioFile source kit.
21We do not think this can happen.

7.3 Server Implementation 41

ddaProcessArgument() should return the number of arguments consumed.

Exported DIA Interfaces

The device-independent audio section of the server exports several procedures to
the device-dependent audio section. These procedures are briefly described below.

The DDA creates an audio device by using the MakeDevice() procedure. MakeDe-
vice() returns a pointer to a newly created AudioDeviceRec structure (described
below).

The AddEnabledDevice() and FilterEvents() procedures are used by DDA imple-
mentations that produce events. The DDA informs the DIA of open devices
through AddEnabledDevice(). The DDA hands events to the DIA from the Pro-
cessInputEvents()procedure by calling FilterEvents()with a pointer to an initialized
event structure and an audio device number.

The exported interfaces to the task mechanism are the NewTask() and AddTask()
procedures. NewTask() is used to allocate a task structure. Once the DDA adds
its private data to the structure, it schedules it for execution by passing the task
structure to AddTask().

The Xalloc() and Xfree() procedures allocate and free memory.

The DDA uses ErrorF() to output formatted warnings and informational messages.
The FatalError() procedure is called to output an informational message and then
die.

Audio Device Structure

The AudioDeviceRec structure is used to share information between the DIA and
DDA components. This structure encapsulates the information specific to an
abstract audio device. For convenience, similar fields within this structure are
grouped together and described separately.

The first grouping in the AudioDeviceRec structure includes general fields for
dealing with the audio device. For example, index indicates the audio device
number and type indicates the type of enumerated audio device. The remaining
elements in this group are private to the audio device and are located in this structure
for convenience. userProps is used only by the DIA. devPtr and privPtr are only
used by the DDA.

typedef struct _AudioDevice {
/* ... */

int index; /* Index of audiodev device. */
DevType type; /* Codec, Hi-Fi ... */

42 7 SERVER DESIGN

/* */
PropertyPtr userProps; /* Properties for this device.*/
/* DDA hangs a physical device structure here */
pointer devPtr;
/* Audiodev device private information is attached here. */
pointer privPtr;

/* ... */
} AudioDeviceRec;

This next grouping contains the elements to maintain the audio device time. The
server’s copy of the time register is held in time0 and represents the server’s view of
current time. dsptime and oldDevTime are used by the server to maintain time0. If
the hardware maintains a time register that is narrower than 32 bits, the server uses
the difference between two consecutive hardware time register values to update
time0. The previous hardware time register is held in oldDevTime. dsptime is
the current view of the hardware time register and is only maintained here for
implementation convenience. If the hardware time register is a 32-bit register, then
time0 can be a copy of that register.

/* Some time information. */
ATime time0; /* Last computed. */
ATime oldDevTime; /* Old device time for delta. */
ATime dsptime; /* Holds dsp time at update. */

The input and output capabilities are described by the next grouping of Au-
dioDeviceRec structure fields. numberOfInputs and numberOfOutputs indicate
the number of input and output connections that can be selected by clients. in-
putsFromPhone and outputsFromPhone are masks to indicate which of the input
and output connections source/sink audio to/from a telephone line interface. These
fields contain a binary 1 in the bit position represented by the audio device number
if that input or output is connected to the phone.

/* Describe the I/O capability. */
int numberOfInputs; /* Number of input sources */
int numberOfOutputs; /* Number of output destinations */
unsigned int inputsFromPhone; /* Mask of inputs conn. to phone line */
unsigned int outputsToPhone; /* Mask of outputs conn. to phone line */

The play and record features of the audio device are specified by the next grouping
of fields. These fields indicate the sampling rate, native audio hardware data type,

7.3 Server Implementation 43

number of channels, and the buffer size in samples. The buffer size in seconds is
computed by dividing the the buffer size by the sampling rate.

/* Describe the play buffer type and size. */
unsigned int playSampleFreq; /* Sampling frequency. */
AEncodeType playBufType; /* Data type supported. */
unsigned int playNSamplesBuf; /* Length in samples of play buffer. */
unsigned int playNchannels; /* Number of channels. */

/* Describe the record buffer type and size. */
unsigned int recSampleFreq; /* Sampling frequency. */
AEncodeType recBufType; /* Data type supported. */
unsigned int recNSamplesBuf; /* Length in samples of record buffer*/
unsigned int recNchannels; /* Number of channels. */

The update task uses the next grouping of fields to manage the movement of sample
data between the audio hardware and the server buffers. This process is described
in the discussion of server buffering in Section 7.2.

/* Server Update Information. */
ATime timeLastUpdated; /* Time of last update. */
ATime timeNextUpdate; /* Time at start of next update. */
ATime timeLastValid; /* Time of last valid play data */
ATime timeRecLastUpdated; /* time of last record update. */

/* reference counts */
int recRefCount; /* Number of open record streams */

/* Server Buffer Data */
pointer playBuf; /* Server’s play buffer. */
pointer recBuf; /* Server’s record buffer. */

Lastly, this next grouping of fields contain function pointers that are used by the
DIA to invoke device dependent procedures in the DDA usually as a result of client
protocol requests. The procedure pointers are further grouped into sets that support
time, AC, telephone interface, and device control functions. These procedures are
specific to an audio device and do not have client-specific state.

/* ATime and Misc. */
ATime (*GetTime)();

/* AC */
ABool (* CreateAC)();

44 7 SERVER DESIGN

/* Telephone Specific Procedures */
int (*Dial)();
int (*HookSwitch)();
int (*FlashHook)();
int (*HookSwitchState)();
int (*LoopCurrentState)();
int (*TLICraftHookSwitchEvent)();

/* Device control procedures. */
void (*ChangeOutput)();
void (*ChangeInput)();
void (*ChangePassThrough)();
int (*QueryOutputGain)();
int (*QueryInputGain)();
int (*SelectOutputGain)();
int (*SelectInputGain)();

Audio Contexts

The context in which a client plays or records audio data is held in the AC structure.
The server maintains play and record conversion procedure pointers for each audio
context. The procedure pointers are used by the DIA to invoke the appropriate
audio context handler in the DDA. For example, play and record requests are
handled by context-specific procedures supporting the design of the output and
input conversion modules described earlier. Conceptually, the AC encapsulates
audio device attributes and handlers for individual clients.

typedef struct _ACOps {
int (* ConvertPlay)();
int (* ConvertRec)();

} ACOps;

typedef struct _AC {
AudioDevicePtr aDev;
AEncodeType playType;
AEncodeType recType;
int playGain;
int recordGain;
ABool preempt; /* Whether it should preempt. */
/* ... */
ACFuncs *funcs;
ACOps *ops; /* DDA context specific handlers. */
int recRef; /* Record reference count. */

} AC;

Each client’s play or record request contains a handle to an audio context main-
tained within the audio server. The audio context is used to determine the client’s

7.4 Device-Dependent Server Examples 45

sample data type and the output gain (prior to mixing) and preemption mode for
play requests. When the audio context structure AC is created, the DDA server ini-
tializes the input and output conversion procedure pointers in the contained ACops
structure. If the client data type is identical to the hardware data type, then the
DDA may choose to bypass the conversion stage. Upon receipt of a play or record
client request, the dispatch handler invokes the DDA through the ACops structure
permitting the DDA to implement conversion modules on a per AC basis.

7.4 Device-Dependent Server Examples

We have written servers for a variety of systems and audio hardware. These
examples range from the simple 8 KHz base-board audio CODEC on Alpha AXP
workstations and SPARCstations to the LoFi with two CODECs, a HiFi DAC,
and a NeXT compatible DSP port. In addition to these direct connected audio
hardware devices, we have implemented a server for a detached audio device
named LineServer. This section describes some of the implementation details for
these servers.

7.4.1 Alofi

As described in Section 1, the LoFi hardware has two 8 KHz CODECS, a DSP56001
processor, and HiFi hardware. The Alofi server presents five audio devices to clients:
two CODEC audio devices and three DSP port audio devices. Each of these audio
devices has a separate notion of time.

DSP Firmware

The LoFi module has a DSP processor, with 32K 24-bit words of memory shared
between the host workstation and the DSP. The DSP runs a simple program written
in DSP56001 assembler language that is loaded by the AudioFile server at startup.

The DSP firmware maintains several important structures in shared memory. De-
vice time counters for the CODEC and HiFi devices are incremented once per
sample. The DSP maintains the counters in 24-bit registers in shared memory. The
server software updates its view of time by the difference between the previous
and current samples of the DSP’s counter.

The DSP also maintains input and output buffers for each audio device. The host
performs audio I/O by reading and writing these buffers. There are 4 circular buffers
for the CODEC devices: a play and record buffer for each of the two CODECs.

46 7 SERVER DESIGN

Currently, we store one 8-bit sample in each 24-bit word. One optimization would
be to double or triple the CODEC buffer sizes by packing multiple samples per
word, at the expense of more complex (and slower) firmware. There are also 4
circular buffers for the stereo HiFi device: a play and record buffer for each channel
with one 16-bit sample in each 24-bit word.

The buffer sizes are set by the server startup code, before enabling the DSP. Each
CODEC buffer contains 1024 samples (about 125 milliseconds at 8 KHz), and each
HiFi buffer contains 4096 samples (about 85 milliseconds at 48 KHz). These sizes
were chosen to be as large as possible given the size of the DSP static memory and
to allow approximately equal buffering time for the CODEC and HiFi devices. 22

The server startup code also sets the initial configuration for the DSP port, such
as sample rate and framing details. Currently, there is no way to change the
configuration while the server is running.

After the DSP firmware is initialized, it goes into an infinite wait loop. All of the
work is done by two interrupt routines: one each for the CODEC and HiFi devices.
The CODEC interrupt routine fires at the CODEC rate (8000 Hz) and performs the
following functions (for each of the CODEC devices): 23

� Write play sample from play ring buffer to CODEC registers

� Backfill play buffer with silence.

� Read record buffer from CODEC register to record ring buffer

� Increment device time counter.

The HiFi interrupt fires at twice the HiFi rate, or once per channel. This routine
performs the same functions as the CODEC update, except that the update alternates
between the left and right channels.

The interrupt routines are optimized for execution speed. At high sampling rates,
the overhead of processing interrupts must be minimal. For example, at a 48
KHz sampling rate, the HiFi interrupts occur every 10 microseconds. This gives
an upper bound of about 280 DSP cycles (or 140 instructions, not counting time
to access memory) between HiFi interrupts. To reduce overhead, the firmware
minimizes memory accesses by keeping global values in registers.

22Since the current implementation uses the circular addressingmodes supported by the DSP56001,
the buffer sizes are also constrained because they must be a power of two.

23Both CODEC devices can be serviced at the same time since their interrupts are synchronized.

7.4 Device-Dependent Server Examples 47

One feature that is not yet implemented is device gain control for the HiFi device.
Because many HiFi hardware devices have no mechanism for manipulating the
device gain, it must be done in software. Fortunately, such a mechanism would be
easy to implement on the DSP chip where integer multiplies are inexpensive.

HiFi Details

The HiFi section of the DDA is similar to the section supporting the 8 KHz
CODECs. The differences that do exist are described below.

The HiFi section of the LoFi server supports two modes of operation. The server
supports output at 44.1 KHz through the LoFi’s built-in stereo DAC. The server
also supports external devices, such as the Ariel ProPort, attached to LoFi’s external
DSP port. External devices may provide input as well as output at a variety of
sample rates.

The sample rate and operating mode are selected at server startup and cannot be
changed by client applications. Currently, the only sample type supported by the
server is 16-bit linear.

In our server, we implemented a single stereo device that represents both the left
and right channels. (By convention, left and right samples alternate in the data
stream, so a stereo “sample” consists of a 16-bit left sample and a 16-bit right
sample). To support mono channel operations, we also implemented two audio
devices that represent the separate left and right channels of the stereo device.

In the server, everything is implemented in stereo because it is the most common
mode of operation, and it is more efficient to move stereo samples around as a unit
than as two independent mono channels. The mono channel devices are built on
top of the server’s stereo buffers. A mono play request is simply written (or mixed)
into the appropriate channel in the stereo buffers, and a record request simply reads
from the appropriate channel.

Performance Considerations

To date, we have only optimized the HiFi part of the server. The memory band-
width and CPU load requirements for supporting the CODECs does not justify the
optimizations for that part of the DDA server.

Most of the time in the server is spent moving high-fidelity samples around in the
play and record buffers. The server’s periodic updates (the routines that move
samples between the server’s buffers and the hardware) can consume quite a few
CPU cycles, especially at high sample rates. We had to spend some time optimizing

48 7 SERVER DESIGN

the update procedures to achieve adequate performance.24

The record update only needs to run if there is a client that wants record data.
AudioFile has no explicit mechanism for clients to indicate their intent to record,
but it is likely that clients that record once are likely to record again. The first
record operation performed under a context marks the context as recording. Each
device maintains a count of recording contexts: as long as there is one or more,
the record update code runs. Note that this optimization breaks clients that start up
and immediately want to start recording in the past.

Similarly, the play update should run only if there are samples to play. To accom-
plish this, the server maintains a variable for each device, timeLastValid, with the
time of the last valid playback sample written by any client. The play update code
only runs when this variable is in the future relative to the current device time.

A second possible play update optimization has to do with back-filling silence.
AudioFile’s playback model says that periods with no playback data are filled with
silence. Our first implementation achieved this by filling the play buffer with
silence immediately after the play data was sent to the device. While this method
was easy to implement, it doubles the memory bandwidth requirements to the play
buffer. When playing continuous stream (the common case), the samples in the
play buffer got written twice; once with silence, and once again with the playback
data.

The solution is to fill silence only when absolutely necessary. This can be simply
achieved with the timeLastValid variable. If a client play request starts in the future
relative to timeLastValid, then the region from timeLastValid to the start of the play
request must be silence filled. The play data is then mixed or copied into the server
buffer. If a play request is preemptive, the data is copied into the server buffer.
Otherwise, samples before timeLastValid are mixed and samples after timeLastValid
are copied. In both cases, timeLastValid is updated if necessary to reflect the time
of the last valid sample. Note that in the common case of contiguous playback
requests, silence filling is never necessary.

Pass-Through

The LoFi hardware is able to directly route audio data between the CODEC devices.
This turned out to be a very useful feature that permitted users to communicate
through the telephone line interface from the local audio device with very low
latency. While this is not a general mechanism, AudioFile supports this feature

24We should point out that when audio hardware with DMA support appears, this should be less
of a problem.

7.4 Device-Dependent Server Examples 49

with a device control primitive that connects the inputs and outputs of two audio
devices.

7.4.2 Aaxp and Asparc

The audio servers for the base-board audio on Alpha AXP workstations and
SPARCstations use device drivers with similar interfaces. As a result these two
servers are nearly identical. They differ from other audio servers in that the DDA
does not directly talk to the audio hardware but rather use a kernel device driver.

The base-board audio hardware is an 8 KHz CODEC. The device driver implements
read and write entry points for recording and playing audio data. The hardware
update procedure in the DDA writes a block of data to the device driver which
is then responsible for seeing it is delivered to the CODEC. Similarly, the update
procedure reads a block of data from the device driver and stores it in the server
buffer.

Because the kernel device drivers do not maintain a time register for the base-board
CODECs, the server must maintain an estimated value using the system clock and
must occasionally resynchronize the message queue in the device driver.

7.4.3 Als

For the LineServer, an AudioFile server running on a nearby workstation uses a
private UDP-based protocol to communicate with the device. The LineServer runs
simple firmware that processes incoming packets and moves samples to and from
the audio hardware. On the workstation, a periodic update task moves data between
the server’s buffers and the LineServer’s buffers using the private protocol. The
server makes every attempt to minimize access to the LineServer, since crossing
the network is a relatively expensive operation. Only requests in the update regions
require network traffic. For requests that require returning a device time, the server
generates an estimate.

An AudioFile server running on the workstation drives the hardware using a special
UDP-based protocol between the workstation and the LineServer. There are six
packet types, supporting the following functions:

� Play samples

� Record samples

50 7 SERVER DESIGN

� Read CODEC registers

� Write CODEC registers

� Loopback (for testing)

� Reset

Request and reply packets have the same format, with four header fields: sequence
number, audio time, function code, and parameter. Any extra bytes after the header
are considered data bytes.

The LineServer only sends packets as replies to requests from the workstation.25

All requests generate replies which consist of the original command packet header
with the time updated to the current LineServer audio device time and any data
bytes (if applicable).

The LineServer firmware is very simple. There are two threads of control: a
network thread and an update thread. The network thread is a loop that reads
request packets, processes them, then sends the reply back to the workstation. The
LineServer maintains small (2048 samples, or 1/4 second at 8 KHz) record and
playback buffers, and play or record requests write or read samples from these
buffers. The CODEC read and write requests manipulate the CODEC registers
on the LineServer. The update routines are interrupt driven, and copy play and
record samples between the buffers and the CODEC. A loopback request returns
the original request packet.

Client play and record requests that can be completely satisfied in the server’s
buffers are completed without touching the LineServer at all. Only requests that
cover the update regions need to go through to the LineServer. For requests that
require returning a device time (like play and record), the server generates an
estimate of the LineServer time from the time stamp of the last LineServer packet
and the local server time.

Other client requests, such as adjust output gain, are converted into the appropriate
CODEC read or write command and sent through to the LineServer.

No attempt is made to retry play or record packets (by then, it is probably too late
anyway). CODEC read and write requests are retried by the server, if necessary.

25There is something to be said for peripherals that speak only when spoken to.

51

8 AudioFile Clients

The AudioFile System includes two suites of application programs. These ap-
plications are called “clients” after the fashion of the X Window System. This
is because in a client-server system like AudioFile, the application programs are
clients of the facilities provided by the AudioFile server.

The first suite of clients include core applications for recording, playback, telephone
control, device control, and access control. These applications have very few
dependencies, so they are easily ported to new systems, yet they have enough
functionality that they can be used to build useful applications. Table 8 shows the
core clients, grouped by their functions of access control, device control, inter-client
communications, and audio handling.

Access control
ahost AudioFile server access control

Device control
ahs Telephone hook switch control
aphone Telephone dialer
aset Device control
aevents Report input events

Inter-client communications
alsatoms Display defined atoms
aprop Display and modify properties

Audio handling
apass Record from one AF server and playback on another
aplay Playback from files or pipes
arecord Record to files or pipes

Table 8: AudioFile core clients

The AudioFile System distribution also includes a suite of “contributed” appli-
cations, shown in Table 9. These applications tend to be more complex or have
dependencies on other software packages which are not ubiquitously available.
In particular, many of the contributed clients have graphical user interfaces using
the Tcl language [10] and Tk toolkit [11] developed by John Ousterhout at the
University of California, Berkeley. 26 Section 11.3 explains how to get Tcl and Tk.

26We have found Tk to be a very effective toolkit, yet one which is much easier to understand than
any of the standard X Window System toolkits. We recommend Tcl and Tk to anyone interested in
graphical user interfaces.

52 8 AUDIOFILE CLIENTS

Device control
adial Tk telephone dialer
axset Tk version of aset
afxctl X-based event display and device control

Audio handling
abiff Incoming email notification by audio
abob Tk-based multimedia demonstration
radio Multicast network audio
xplay An X-based sound file browser
abrowse Tk-based sound file browser

Signal processing utilities
afft Tk-based real-time spectrogram display
afxpow X display of audio signal power
autil Stdio-based signal generators

Table 9: AudioFile contributed clients

In the remainder of this section we describe the audio handling core clients in some
detail, in order to illustrate the simplicity of the AudioFile client library API.

8.1 aplay — A Play Client

aplay is the primary client of the AudioFile System. It reads digital audio from a
file or from standard input and sends the audio data to the audio server for playback.
aplay has several options, which are discussed below.

When used to play back from a file, aplay can serve as the core of a sound-clip
browser or voice mail retrieval program. When used to play from the standard
input, aplay can serve as the final stage in a signal processing pipeline. For example,
the output of our software implementation of the DECtalk speech synthesizer can
connect directly to the input of aplay.

At this writing, aplay handles only “raw” sound files. It would be appropriate to
extend aplay to handle a variety of popular sound file formats. aplay does not
process the file data at all; it simply passes the data to the server. It is the user’s
responsibility to assure that the data is of an appropriate type for the audio device
specified. One interesting benefit of this approach is that aplay is extraordinarily
general purpose. It needs no modification to work on any fixed-size encoding or
for any number of channels. On the other hand, the user must know the format of

8.1 aplay — A Play Client 53

the file and choose an appropriate server device in order to play it back.

8.1.1 aplay Options

The command line for aplay looks like this, with optional elements enclosed in
square brackets:

aplay [-d <device>] [-t <time>] [-g <gain>] [-f] [-c] [-b] [-l] [<file>]

aplay supports a number of command line options; some of them are summarized
here.

-d device Specifies which audio device to play the sound file through.
If not specified, aplay defaults to the first device that is
not connected to the telephone. This is usually correct,
because the first non-telephone device is usually connected
to the local loudspeaker. In the current implementation,
the audio device is what specifies the sample rate, number
of channels, and encoding. The manual page for each
AudioFile server explains what devices exist.

-t time Specifies how far in the future the sound will start to play
relative to the current device time. A positive value of
time will begin playing time seconds in the future. If time
is negative, time seconds of sound data will be thrown
away. The default is 0.1 seconds.

Incidentally, if one desires to play only a portion of a sound file, existing utilities
such as dd(1) can be used. For example, if the sampling rate were 8000 Hz, the
following command would skip the first second of sound, then play the next two
seconds, then stop.

dd if=sound-file bs=8000 skip=1 count=2 bs=1000 | aplay

-g gain A gain in dB can be used to attenuate or amplify the sound
data prior to mixing in the audio server. This permits rel-
ative gain adjustments without changing the server global
gain controls and can be used to correct for low or high
recording levels in the sound file.

54 8 AUDIOFILE CLIENTS

-f This switch turns on flush mode. Normally, aplay will exit
several seconds before the last sound is played, because
of buffering in the server. This switch forces aplay to wait
until the last sound has been played before exiting. This
is very useful when writing shell scripts. For example,
“aplay -f sound-file” followed by “arecord”.

For some data types, the sound file may be in big-endian or little-endian format.
Normally, aplay assumes the format of the client machine. Two options, -b and -l
explicitly specify a big-endian or little-endian input format. The server converts to
its byte order as appropriate.

There are several opportunities for enhancements to aplay. We have already
mentioned that it would be desirable for aplay to understand and interpret a variety
of popular self-describing sound file formats. In addition, it would be interesting
and straightforward to add the capability for aplay to begin playback at a specified
absolute time, related to the wall clock, rather than simply a relative time related
to the moment aplay begins to execute. This capability would make it possible to
synchronize several instances of aplay.

8.1.2 aplay Implementation

In this section, we take a look the code of aplay. The truth is somewhat more
complicated than we present here, but not much. Readers who wish all the details
should read the sources, which are included in the AudioFile distribution.

int flushflag = 0; /* set from command line */

AFAudioConn *aud; /* connection to AF server */
AC ac; /* audio context */
AFSetACAttributes attributes; /* AC attributes record */
ATime t, act, nact; /* Time */

aplay()
{

attributes.play_gain = gain; /* set from command line */
attributes.endian = endian; /* set from command line */

/* open a connection to the audio server specified by
the AUDIOFILE environment variable */

AoD ((aud = AFOpenAudioConn("")) != NULL,
"%s: can’t open connection.\n", argv[0]);

8.1 aplay — A Play Client 55

FindDefaultDevice() is not reproduced here. Its job is to locate the lowest numbered
audio device that is not connected to the telephone. This will usually be the local
audio device. (FindDefaultDevice() is not used if the -d command line switch is
given).

device = FindDefaultDevice(aud);

/* set up audio context, possibly setting the gain and endian-ness */

ac = AFCreateAC(aud, device, (ACPlayGain | ACEndian), &attributes);

At this writing, important properties of the audio device, such as sampling rate,
number of channels, and encoding type occupy fields in the device data structure.
There should be standard access procedures or macros for these fields, but we have
not yet implemented them.

/* extract properties of the device */
srate = ac->device->playSampleFreq; /* sample rate */
type = ac->device->playBufType; /* encoding type */
channels = ac->device->playNchannels; /* number of channels */
ssize = AF_sample_sizes[type]/8; /* bytes per sample */
ssize *= channels;

/* allocate play buffer */
AoD((buf = malloc(BUFSIZE*ssize)) != NULL,

"Couldn’t allocate play buffer\n");

/* pre-read the first buffer-full from the file */
if((nbytes = read(fd, buf, BUFSIZE*ssize)) <= 0)

exit(0);

It is not logically necessary to pre-read the first file block, but doing so avoids
putting the latency of the file read between the call to AFGetTime() and the first
call to AFPlaySamples().

The following section is the inner loop of aplay. It establishes the current playback
time on the server, and schedules the exact server time for playback of the first
block of audio. Thereafter, it schedules each successive block to play directly
on the heels of the the previous block, so that playback will be uninterrupted
and continuous. After each call to AFPlaySamples(), the time pointer is simply
incremented by the number of samples played.

/* establish an initial AF server time */
t = AFGetTime(ac);

56 8 AUDIOFILE CLIENTS

/* schedule the initial playback for a short time in the future.
toffset can be set from the command line */

t = t + (toffset * srate);

do {
/* send samples to the server */
nact = AFPlaySamples(ac, t, nbytes, buf);

/* figure how many samples we read from the file,
and schedule the next block to start after this one */

nsamples = nbytes / ssize;
t = t + nsamples;

/* At this point, the buffers in the AF server hold
the samples from time nact to time t */

} while ((nbytes = read(fd, buf, BUFSIZE*ssize)) > 0);

At this point, we’ve finished reading the file, and sent all the data to the server, but
a lot of it has not yet been played out. If the command line specified -f, we now
wait until the server finishes the playback. sleep(1) is a sloppy way to do this, but
it is easy to program.

if (flushflag) {
while ((((int) AFGetTime(ac)) - ((int) t)) < 0)

sleep(1);
}
/* we’re done! Just abandon the connection to the server, it will

be cleaned up automatically. */
}

The only substantive code omitted above is the mechanism which allows aplay to
respond immediately to a control-C or interrupt signal. Without special handling,
the signal would cause aplay to exit immediately, but the buffered audio in the
server would continue to play for several seconds. For control-C to cause aplay to
immediately halt, special handling is necessary. aplay sets up a signal handler for
SIGINT, that sets a flag. Each time around the main playback loop, aplay checks
the flag and if it is set, aplay breaks out of the loop, as though it had reached
end-of-file. If the interrupt flag is set on loop exit, then aplay does the following:

if (int_flag)
{

/* fill the playback buffer with ‘‘silence’’ according to
the encoding type */

AFSilence(ac->device->playBufType, buf, BUFSIZE*ssize);

/* turn on preemptive playback */

8.1 aplay — A Play Client 57

attributes.preempt = 1;
AFChangeACAttributes(ac, ACPreemption, &attributes);

/* erase the buffered audio still held in the server, by
writing preemptive silence over top of it. This needs to
be done for the time interval between time nact, ‘‘now’’ and
time t, the time farthest in the future for which the
server is holding buffered audio. */

while (nact < t)
{

act = AFPlaySamples(ac, nact, nsamples*ssize, buf);
nact += nsamples;

}
}

This code fragment is interesting because it illustrates how explicit client control of
time allows aplay to take full advantage of all the buffering capacity of the server
during normal operation — insulating aplay from most real-time issues, yet still
allows it to stop “on a dime” when necessary, by erasing the remaining buffered
audio. 27

8.1.3 Flow Control

Note that there is no explicit code in aplay for flow control. aplay merely reads
from its input with fread() and writes to the audio server with AFPlaySamples().
There is a fundamental, but unwritten, assumption in aplay that the file system is
fast enough to supply audio data faster than it is required by the server. Assuming
that this is so, aplay will copy data from the input to the AudioFile server at a
speed limited only by file system performance and the performance of the transport
protocol to the server. The audio data will be buffered in the server, until aplay
gets about four seconds ahead of real-time. At that point, the server connection
(AFPlaySamples()) will block, providing flow control. Once the server buffers
are full, successive calls to AFPlaySamples() will return at intervals given by the
block size. This mechanism of providing flow control means that the file I/O side
of aplay could block for as long as four seconds before there would be a break in
the smooth playback of audio. Server buffering also gives rise to the need for the
-f flush flag and the interrupt code in aplay. The flush flag causes aplay to wait
until the audio is all played out before exiting, while the interrupt code in aplay

27Actually, this is still not quite right. If aplay is running concurrently with other clients, the
preemptive playback will erase all the other clients’ sound as well as that buffered by this instance of
aplay.

58 8 AUDIOFILE CLIENTS

actually erases the “future” audio buffered in the server, so that playback halts as
soon as aplay is interrupted.

8.2 arecord — An Record Client

arecord and aplay are complementary programs. arecord reads samples from
the audio server and writes the data to file, or to standard output if a file is not
specified. The sampling rate, encoding format, and number of channels are all
specified indirectly by the AudioFile server device. arecord always connects to
the server specified in the AUDIOFILE environment variable.

8.2.1 arecord options

The command line for arecord is as follows, with optional elements enclosed in
square brackets:

arecord [-d <device>] [-l <length>] [-t <time>] [-silentlevel <level (dB)>]
[-silenttime <time>] [-printpower] [-b] [-l] [<file>]

arecord has a number of command line switches which improve its flexibility. The
following paragraphs describe these options in more detail.

-d device Specifies from which audio device to record. If not spec-
ified, arecord defaults to the first device that is not con-
nected to the telephone. The sample rate and recording
format are specified indirectly by the device selection.

arecord offers three methods of halting the record. It will record indefinitely if no
option is specified. It can record for a specific length of time, via the -l switch, or it
can record until the input appears to be silent (via the -silentlevel and -silenttime
switches).

-l length length of sound data to record, specified in seconds.

-silentlevel level level (in dBm) below which the sound is deemed to be
silent. The default value is -60. The 0 dBm reference
level is the “digital milliwatt”.

-silenttime time time (in seconds) of silence which will terminate the
recording. The default value is 3.0.

8.2 arecord — An Record Client 59

If either -silentlevel or -silenttime is set, then arecord will terminate recording
after so many seconds of "silence".

-printpower Print input power level in dBm on the standard error output
every block (8 times a second). This is a debugging option,
but it may be useful in figuring out proper values for the
-silentlevel option. arecord | apower will accomplish a
similar function.

-t time time can be used to adjust the audio device time at which
the the arecord client begins to record the sound data. A
positive value of time will begin recording time seconds in
the future. If time is negative, sound data will be returned
from time seconds in the past. Generally, the AudioFile
server is always recording, and keeps the past four seconds
in buffers. Thus arecord -t -2 will start recording two
seconds earlier than the time arecord begins to execute.
If the time offset is too early (beyond the server buffering
capacity), silence will be returned. The defaults is 0.125
seconds.

file arecord writes data to file in the current working directory.
If the file name is not specified, then arecord writes the
audio data to standard output.

Like aplay, arecord defaults to the byte order of the client machine. The -b and -l
options will explicitly set a big-endian or little-endian output format.

8.2.2 arecord implementation

This section discusses the implementation of arecord. The initialization of the
server connection are essentially the same as described for aplay, so those details
are not shown below. The reader is encouraged to study the full source code for
arecord, which is distributed with AudioFile.

arecord()
{

/* open a connection to the audio server and device specified. */
. . .

/* If the user specifies the number of seconds to record, convert
the length into a number of samples to record. */

if(length >= 0) nsamples = srate * length;

60 8 AUDIOFILE CLIENTS

/* establish an initial AF server time, and schedule the initial
record request according to toffset. toffset can be set on the
command line */

t = AFGetTime(ac) + (toffset * srate);

while (nsamples > 0) {

/* If we are recording the last block of a timed record, then
the request will be shorter than BUFSIZE */

int nb = (nsamples > BUFSIZE) ? BUFSIZE : nsamples;

/* Record nb samples at server time t */
AFRecordSamples(ac, t, nb * ssize, buf, ABlock);

/* advance the time pointer by the size of the current block */
t += nb;

/* decrement the samples to go (for a timed record) */
nsamples -= nb;

/* write the samples on the output stream */
fwrite(buf, ssize, nb, f);
fflush(f);

The fflush() operation is not strictly necessary, but if arecord is used in a pipeline
leading into some real-time application, then we do not want to introduce any
excess latency.

If recording is to be terminated by silence, then the following code is active. The
program waits for a run of blocks of total length silent time, each of which has a
power level below silent level.

if (silent_level_flag)
{

/* compute the power of the block */
pow = power(buf, nb);

if (pow < silent_level)
silent_run += (nb / ((double) srate));

/* break will exit the record loop */
if (silent_run >= silent_time) break;
if (pow > silent_level) silent_run = 0.0;

}
}

}

8.3 apass — Copy From One Server to Another 61

8.2.3 Flow Control

In arecord, flow control is provided by the server. In normal operation, each call to
AFRecordSamples() requests a block beginning slightly in the past and extending
into the future. The server blocks the call until the requested segment is completely
recorded, and the call returns to the client slightly after the time corresponding to
the end of the block.

One very interesting property of the AudioFile System is that the server is always
listening. It is possible for AFRecordSamples() to request data from the recent
past (typically within four seconds). In this case, the call is fulfilled from the
server buffers and returns to the client right away. This capability permits voice
applications to omit the usual beep that means it is OK to start talking. Instead,
the user can invoke arecord with a small negative offset, and recording will start
“before” arecord begins execution.

8.3 apass — Copy From One Server to Another

apass is an AudioFile client which records from a device attached to one AudioFile
server and, after a small delay, plays back on a device attached to another server.

One of our primary goals in the development of the AudioFile System was to enable
experiments in teleconferencing. apass is not a teleconferencing application,
but it addresses some of the fundamental problems of network teleconferencing:
communications with multiple audio servers, management of end-to-end delay,
and management of multiple clock domains.

It is possible to record from one audio server and to route the audio to an output
device on the same or on a different audio server by piping arecord into aplay. (If
you have an AudioFile environment, try this). However, this is not a satisfactory
solution for several reasons:

� In teleconferencing, it is important to have tight control over the end-to-
end delay of the audio connection. If, for example, the round trip delay
is over about 300 milliseconds, then humans begin to have difficulty with
conversational dynamics. apass sets up a strict delay budget, accounting for
the various factors involved.

� In a system with multiple audio devices, frequently the different devices will
be controlled by different sampling rate clocks. Even though both clocks

62 8 AUDIOFILE CLIENTS

nominally run at the same rate, the physical implementations are subject to
slight frequency errors. For example, crystal oscillators have tolerances of
perhaps 100 parts per million and they vary slightly with temperature. If
the transmitting end samples faster than the receiving end, then the excess
samples will accumulate in buffers in between. This accumulation will
manifest itself as gradually increasing end-to-end delay. If the transmit
clock is slower than the receive clock, the buffers will run dry and the
playback sound will be broken up. apass tracks the transmit and receive
clock rates and resynchronizes as necessary.

apass operates by reading blocks of samples from the transmit server, one after
another in real-time, and scheduling their playback on the receive server. The
overall delay between input and output is made up of three components:

� Packetization delay. Since apass deals in blocks of samples, the last sample
of a block must be recorded at the transmit end before the first sample can
be played back. Thus the size of the block sets a minimal value of the end-
to-end delay. This component of the overall delay is called the packetization
delay and is constant.

� Transport delay. The blocks of samples are sent from the transmitting
server to apass, and from apass to the receiving server. The associated
transmission delay, plus all software overhead and rescheduling delays make
up the transport delay. This component of the overall delay is variable.

� Anti-jitter delay. apass inserts extra delay at the receiving AudioFile server
by scheduling playback for a point in the near future, rather than as soon as
possible. This is possible because AudioFile permits explicit control over
playback time. The delay at the receiver serves to absorb variation in the
transport delay, provided that the variation in transport delay is not larger
than the anti-jitter delay.

Any additional end-to-end delay specified by the user is allocated to additional
anti-jitter delay.

8.3.1 apass Options

Some command line options to apass serve mundane purposes — the specification
of input and output AudioFile servers and the input and output devices. The more

8.3 apass — Copy From One Server to Another 63

interesting switches allow the user to specify the end-to-end delay, buffer size, and
anti-jitter delays.

The command line for apass is as follows, with optional elements enclosed in
square brackets.

apass [-ia <input-AF-server>] [-oa <output-AF-server>] [-id
<input-device>] [-od <output-device>] [-delay <seconds>] [-aj
<anti-jitter-seconds>] [-buffering <buffering-seconds>] [-gain
<dB-gain>] [-log] [-f <parameter-file>]

If no options are given, apass will “loop back” the first non-telephone audio device
connected to the server specified by the AUDIOFILE environment variable.

The various options are discussed below:

-ia server Specifies which audio server to record the sound from.
Defaults to the value of the AUDIOFILE environment
variable.

-oa server Specifies which audio server to play the sound to. Defaults
to the value of the AUDIOFILE environment variable.

-id device Specifies which audio device on the input server to record
the sound from. Defaults to the first device that is not
connected to the telephone, which is often the local mi-
crophone device.

-od device Specifies which audio device on the output server to play
the sound to. Defaults to the first device that is not con-
nected to the telephone, which is often the local speaker
device.

-delay seconds Sets the record to playback delay. The default value is
0.3 seconds. This delay is made up of three components:
packetization, transport, and anti-jitter. The minimum
value of this parameter is buffering+aj and the maximum
is 3.0 seconds.

-aj seconds Sets the tolerance for clock drift between the input and
the output. If the input to output delay drifts from its
nominal value by more than this amount, the delay will
be resynchronized, probably resulting in an audible blip.
The default value is 0.1 seconds. Legal values are 0 to 1
second.

64 8 AUDIOFILE CLIENTS

-buffering seconds This parameter sets the amount of audio read from the
input and written to the output as a single operation. It
sets a minimum value for delay. The default value is 0.2
seconds. Legal values are 0.1 to 0.5 seconds.

-gain dB-gain Controls the playback gain. The default value is 0 dB.
Legal values are from -30 to +30 dB.

-log If set, apass will print a message on standard output when-
ever it is necessary to resynchronize clocks between input
and output and whenever the record side of the program
takes longer than 400 milliseconds.

-f file Whenever a SIGUSR1 is received, apass will read file to
acquire parameters. The parameter file should contain one
or more lines. Each value should have a keyword and a
value. Legal keywords are delay, buffering, aj, and gain.

A typical parameter file might contain:

delay 0.3
buffering 0.2
aj 0.1
gain 0.0

The -f option allows another process to control apass. For example, a Tk program
or EMACS keybindings could alter the behavior of apass. This permits a multi-
process but single-threaded environment to act like a multi-threaded environment.
This feature permits the user to experiment with different delay configurations
without restarting the application.

8.3.2 apass Implementation

This section describes the inner loop of the apass application. Many details and
error checks are omitted. The interested reader can refer to the apass.c source
module, which is included in the AudioFile distribution.

int delay_in_samples; /* nominal delay except packetization */
int delay_upper_limit; /* nominal delay + aj */
int delay_lower_limit; /* nominal delay - aj */
float delay = 0.2; /* seconds delay from input to output */
float aj = 0.1; /* anti-jitter tolerance */
float time_bufsize = 0.1; /* data buffer, measured in seconds */

8.3 apass — Copy From One Server to Another 65

int samples_bufsize; /* data buffer, measured in samples */

#define SLIPHIST 4
int slip, sliphist[SLIPHIST], nextslip; /* recent delay values */

apass()
{

/* open connections to the from and to audio servers */
faud = AFOpenAudioConn(faf);
taud = AFOpenAudioConn(taf);

/* set up audio contexts, find sample size and sample rate */
fac = AFCreateAC(faud, fdevice, ACRecordGain, &attributes);
fsrate = fac->device->playSampleFreq;
fssize = sample_sizes[fac->device->playBufType] *

fac->device->playNchannels;

tac = AFCreateAC(taud, tdevice, ACPlayGain, &attributes);

/* establish a value for the delay from record to playback */
delay_in_samples = fsrate * delay_in_seconds;

/* get starting times for the two servers */
ft = AFGetTime(fac);

/* playback will start delay_in_samples in the future */
tt = AFGetTime(tac) + delay_in_samples;

for (;;) {
/* record samples from the source server */
factt = AFRecordSamples(fac, ft, samples_bufsize*fssize, buf, ABlock);
/* play them back on the sink server */
tactt = AFPlaySamples(tac, tt, samples_bufsize*fssize, buf);

Note that AFRecordSamples() and AFPlaySamples() accept the parameters ft
(from-time) and tt (to-time) respectively, and return factt (from-actual-time) and
tactt (to-actual-time). In apass, factt will be approximately equal to ft+samples bufsize,
because the pacing flow control of apass is provided by the source AudioFile
server. The full implementation checks for this, but that test is not included in this
abbreviated version.

Time tt should be about delay in samples in the future relative to time tact (now).
The exact value of this difference is an instantaneous estimate of the current
end-to-end delay minus packetization and transport delays. apass averages four
consecutive values of this delay in order to compute “slip”. apass then checks
to see if slip is within a range specified by a nominal delay plus or minus the
anti-jitter specification. If the receive clock is faster than the transmit clock, slip
will eventually drift below the lower end of the range. If the receive clock is

66 8 AUDIOFILE CLIENTS

slower than the transmit clock, then slip will eventually drift above the upper end
of the allowable range. In either case, tt is reset to exactly the nominal delay,
resynchronizing the connection.

/* Record the delay in the circular history buffer. */
sliphist[nextslip++] = tt - tactt;
if (nextslip >= SLIPHIST) nextslip = 0;

/* compute an average of the recent delays */
slip = 0;
for (i = 0; i < SLIPHIST; i += 1) slip += sliphist[i];
slip /= SLIPHIST;

/* if the actual delay has drifted outside of the allowable
region, then resynchronize the connection */

if ((slip < delay_lower_limit) || (slip >= delay_upper_limit))
tt = tactt + delay_in_samples;

/* finally, update the start time of the next block */
ft += samples_bufsize;
tt += samples_bufsize;

}
}

8.3.3 Discussion

apass uses the simplest imaginable algorithm for handling clock drift. It simply
resynchronizes the connection whenever the delay leaves a tolerance band. There
is much room for more complicated algorithms — for example, the connection
could be resynchronized whenever the audio is quiet, or apass could use digital
signal processing to interpolate the digital audio at the receive sample rate. A
simple enhancement would be for apass to perform some simple averaging of the
waveform at the point of resynchronization. This would tend to reduce the audible
blip caused by a waveform discontinuity.

The reader should note that time values from the two audio servers cannot be
directly compared, because they have different initial values and slightly different
rates. Instead, one must compare differences. A calculation like �ft2� ft1���tt2� tt1�
estimates the ratio between the two clock rates, provided that time “2” and time
“1” are sampled at the same time according to a third clock. apass avoids such cal-
culations by instead allowing the overall flow control to be set by the transmitting
audio server. Then apass judges the necessity of resynchronization by tracking
the buffering available at the receiving server.

8.4 Telephone Control 67

8.4 Telephone Control

AudioFile supplies a number of core clients for control of a telephone connection:

� ahs provides hookswitch control. “ahs off” will take the telephone off-hook,
either answering a call or beginning the process of placing a call. “ahs on”
places the telephone back on hook, terminating a call.

� aevents is a general-purpose application for printing events generated by
the AudioFile server. Most AudioFile events are generated by telephone
devices. aevents also has options to count rings.

� aphone is a core client which dials the telephone. aphone uses the AFDial-
Phone() library procedure to digitally synthesize the DTMF tones generated
by pushbutton telephones.

8.5 Miscellaneous Clients

Besides the clients discussed so far, AudioFile is distributed with a few miscella-
neous clients:

� aset is a general-purpose device control application

� ahost allows the user to add or delete hosts from the list of machines that
are allowed to make connections to the server. This provides a rudimentary
form of privacy control and security.

� alsatoms displays a list of atoms defined by the server.

� aprop displays properties attached to AudioFile devices and can track changes
to those properties.

8.6 A Trivial Answering Machine

The core clients can be used to construct interesting applications. This section
shows a very simple answering machine application as a shell script connecting
various core client applications. This is a particularly simple example, because the
sequence of actions for an answering machine are fixed.

68 9 CONTRIBUTED CLIENTS

The general idea is to use the core clients in a strict sequence, to wait for the phone
to ring, to answer it, to play the outgoing message, to record the incoming message,
and to hang up the phone.

#!/bin/sh
#
loop forever
#

while true; do
#
wait for the phone to ring three times
#

aevents -ringcount 3.0
#
answer the phone using LoFi
#

ahs off
#
play the outgoing message, then a beep from the effects library
#

aplay -f -d 0 outgoing_message.snd
aplay -f -d 0 beep.snd

#
record up to 30 seconds, or until the caller stops talking
#

arecord -silentlevel -35.0 \
-d 0 -silenttime 4.0 -l 30.0 -t -1.0 >>messages.snd

#
play a thank-you message, then hang up the phone
#

aplay -f -d 0 thanks.snd
ahs on

#
add a date stamp to the message file using a text to speech
synthesizer (not part of AudioFile ...)
#

date | tts >>messages.snd
mail ‘whoami‘ -s "New voice mail received" </dev/null

#
done! Go back and get the next message
#

done
#

9 Contributed Clients

The AudioFile contributed clients include a wide variety of things, and users are
encouraged to browse the manual pages in the AudioFile distribution to see what

9.1 abob — A Tk Demonstration 69

is there. A sampling of the contributed clients are discussed below.

9.1 abob — A Tk Demonstration

abob is a very simple multimedia application, combining audio with scanned image
and on-line help facilities. abob has a Tk user interface which allows the user to
play a prerecorded sound clip and to display an image of the performer. abob also
includes a device selection menu, gain control, and help screens. Figure 6 shows
the main abob window together with a tear-off menu for device selection. The Tk
toolkit makes this sort of application very easy to implement.

Figure 6: abob client

9.2 adial — A Screen-based Telephone Dialer

adial is a simple Tk based telephone dialer. It uses the Tcl exec command to run
the standard core client programs ahs, aset, and aphone to control the hookswitch,
talking path, and dialing.

adial will dial a number entered in the entry field. If a name is entered instead of
a number, adial will attempt to translate the name to a number through a personal
phone directory stored in the file .phonelist in your home directory.

If the entry field of adial is blank, adial uses a Tk facility to retrieve the current X
Window System primary selection. In this way, adial can be used to establish a
telephone connection to anyone whose name or number is anywhere on the screen.

70 9 CONTRIBUTED CLIENTS

Figure 7: adial client

9.3 Device Control

axset and afxctl are interfaces to the device control capabilities of an AudioFile
server, based on the Tk and Xt toolkits, respectively. axset also illustrates the
power of the Tk toolkit, because it automatically adds controls for whatever audio
devices exist on the given server. The preferred application for device control is
axset, but afxctl has an event history log while axset does not.

9.4 xpow — Display Signal Power

xpow, shown in Figure 8, is a simple client that displays a calibrated line chart of
signal power. It can be used to help judge proper recording level.

Figure 8: xpow client

9.5 afft — A Real-time Spectrogram Displayer

afft accepts audio data from one of several sources, executes a running Fourier
transform on the data, and displays the transform result. The display is updated
continuously in either “waterfall” or “spectrogram” format. Figure 9 shows afft in

9.5 afft — A Real-time Spectrogram Displayer 71

waterfall mode.

afft is initially configured through command line switches. Many of the parameters
can be changed while the program is running via the graphical user interface, as
described below.

Figure 9: afft client

The core of afft is a C program which reads audio samples from a file, from the
standard input, or from a server in real-time. afft windows the data using a selectable
window function, then performs a Fourier transform on the data. The resulting
spectrogram is presented in an X Window System display in either the waterfall or
spectrogram format. An optional on-screen oscilloscope display shows the actual
waveform.

The C core of afft is surrounded by a Tk-based graphical interface, which allows
the user to alter a number of parameters:

� Display colors. The amplitude of the spectral information can be presented in
gray scale, blue through orange, or the traditional blue through red “spectral”
colors.

72 9 CONTRIBUTED CLIENTS

� Window functions. The data can be windowed by Hamming, Hanning, or
triangular windows, or the windowing can be disabled.

� FFT length. The tradeoff between time and frequency resolution can be
altered by changing the transform block size in power of two steps from 64
to 512 samples.

� FFT stride. The poor effects of a large transform block on time resolution
can be ameliorated by overlapping the transforms of adjacent blocks. The
overlap can be adjusted from 64 to 512 samples.

� Log scale. The display can be presented in linear or logarithmic form.

� Display. The user is given the choice of waterfall or spectrogram displays.

� Live vs. demo. A built-in swept frequency sine wave is displayed when afft
is put into “demo” mode.

� Sliders. Slider controls govern the display gain, and permit the user to
compress the power levels shown by the display.

The command line for afft is shown below. Full details are in the manual page.

afft [-color] [-d <device>] [-file <file>] [-gain <gainvalue>] [-length
<fftlength>] [-log] [-min <minvalue>] [-max <maxvalue>]
[-nodc] [-noscope] [-nowindow] [-realtime] [-sine] [-spec]
[-stride <stridelength>]

Most of the command line switches are also available at runtime, but -file and
-realtime must be specified on the command line.

The source of the audio that is displayed depends on the command line as follows: If
the -file switch is given, then the audio source is a file of �-law samples. Otherwise,
if the -sine switch is given, the audio source is a “canned” sine wave that sweeps
up and down the frequency spectrum. If neither -file or -sine are given, then afft
takes its audio data from the audio server local input.

When input is taken from a file, afft will continuously loop through the file from
beginning to end, rewind the file, and repeat. If file is given as “-”, input is taken
from standard input. Since it is not possible to rewind standard input, afft will
terminate on end-of-file in this case.

9.6 Miscellaneous Contributed Clients 73

If afft can connect to the audio server, then the file is played through the audio
output device in synchronization with the fft display.

If the -realtime switch is given, afft attempts to stay synchronized with the audio
server in real-time. If afft cannot get enough CPU cycles to keep up with the
incoming audio stream, it may fall behind enough that it no longer captures valid
audio data. If the switch is not given, afft will discard audio samples in order to
keep up with real-time.

9.6 Miscellaneous Contributed Clients

Some of the other contributed clients in the AudioFile distribution include:

� abiff is the audio analog to the Berkeley UNIX application biff. abiff uses our
DECtalk text to speech synthesizer to announce the from and subject field
of arriving electronic mail.

� radio is a network unidirectional multicast system. An application at the
transmitting end, radio mcast, transmits audio using Ethernet multicast.
Many users can then run the receiving program, radio recv, to listen in
to a multipoint broadcast. We have used these programs, for example, to
relay radio broadcasts into regions of our building where ordinary radio
reception is poor.

� abrowse and xplay are Tk and Xt toolkit, respectively, applications for
browsing and playing directories of audio sound files.

� apower and atone are standard I/O-based signal processing utilities. apower
calculates�-law signal power relative either to the CCITT “digital milliwatt”
or to a sine wave 3.16 dB below the digital clipping level. atone is a �-law
signal generator that will create a specified frequency and power level sine
wave. “atone | aplay” is a useful technique for setting playback levels.

9.7 Other AudioFile Applications

There are already a number of applications which use AudioFile but are not dis-
tributed with it. We mention some interesting examples here.

74 9 CONTRIBUTED CLIENTS

9.7.1 Speech Synthesis

We built a software-only version of the DECtalk text-to-speech synthesizer[5]
which generates output via the AudioFile system.

The DECtalk synthesizer is a three stage process: letter to sound translation, phone-
mic synthesizer, and the vocal tract model. Of these, the vocal tract model, which
generates the output digital waveform, consumes about 95% of the synthesizer’s
CPU time. However, the entire system uses only about 37% of the processing
power of the DECstation 5000 Model 200, which is based on a 25 MHz R3000
MIPS CPU.

9.7.2 DECspin

DECspin is a network audio and video teleconferencing product produced by the
Digital Equipment Corporation. DECspin uses AudioFile to provide audio tele-
conferencing facilities. An audio-only version of DECspin is generally available
for public FTP.

9.7.3 ARGOSEE

A group at Digital’s Systems Research Center in Palo Alto, California is exploring
teleconferencing and collaborative work, using, among other things, AudioFile.

9.7.4 VAT

A team at the University of California, led by Van Jacobson, has built a network
teleconferencing application using IP multicast protocols. VAT can use AudioFile
for its audio I/O.

75

10 Performance Results

In this section, we present some performance results for our implementation of the
AudioFile System. First, we measure the time to complete client library operations.
Next, we measure the CPU load for recording and playback. Finally, we discuss
our experience using TCP as the transport protocol.

10.1 Server and Client Performance

We measured latencies and performance of our AudioFile implementation by the
timing various client library functions. We tested with two types of systems (MIPS
and Alpha) under six local and networked configurations:

alpha Alpha local client & server
alpha/mips Alpha client, MIPS server
alpha/alpha Alpha networked client & server
mips MIPS local client & server
mips/mips MIPS networked client & server
mips/alpha MIPS client, Alpha server

The testing environment was as follows:

� All testing was done with the LoFi server, Alofi, with a CODEC (8 KHz)
device.

� All MIPS systems were DECstation 5000/200s running ULTRIX 4.3. All
Alpha systems were DECstation 3000/400s running DEC OSF/1 for Alpha
AXP V1.2.

� All network testing took place on a lightly loaded Ethernet (10 Mbit/sec).

� Unless stated otherwise, all functions were timed by measuring the time to
complete 1000 iterations, then computing the average time per iteration.

10.1.1 Basic Latency

The library function AFGetTime() is a good baseline case for measuring the time
to process AudioFile functions because it incurs minimal processing on the server

76 10 PERFORMANCE RESULTS

and client side. 28 Figure 10 shows the time required for a call to AFGetTime() for
the different configurations.

alpha

alpha/alpha

alpha/mips

mips

mips/alpha

mips/mips

0.0 1.0 2.0 3.0

Time, ms

Figure 10: AFGetTime() function timings

This example shows the latency through the operating system network code and
over the wire. Most of this overhead is spent in the operating system and network
driver: the actual network latency is negligible. The AFGetTime() function causes
an 8 byte request packet to be sent to the server and an 8-byte reply to be returned.
Adding the TCP, IP, and Ethernet overheads results in 66-byte request and reply
packets. At 10 Megabits/second, these packets spend less than 50 microseconds
on the wire.

10.1.2 Play and Record

The AudioFile library functions that move data have latencies that depend on the
length of the data. Figure 11 shows the time required to process various length
AFRecordSamples() requests on the different system configurations. The record
requests were scheduled to hit entirely in the server’s record buffer (and not block).

28In this version of AudioFile, The no-op function AFNoOp() does not incur a full client-server
exchange.

10.1 Server and Client Performance 77

o

Length (bytes)

T
im

e
(m

s)

0 5000 10000 15000 20000

0
10

20
30

40

alpha
alpha/alpha
alpha/mips
mips
mips/alpha
mips/mips

Figure 11: AFRecordSamples() timings

78 10 PERFORMANCE RESULTS

A record request packet is 20 bytes long, and the reply packet is 32 bytes plus the
returned samples.

The timing for short requests represents the basic overhead and correlate with the
base times for AFGetTime(). The jumps at approximately 8K bytes are due to
“chunking” performed in the client library. Requests longer than 8K bytes (not
samples) are broken into 8K byte request chunks to better control interactions with
the transport protocol heuristics and to simplify the server implementation. Each
request completes synchronously—the client library waits for the reply before
sending the next chunk. A 16K byte request therefore takes the same time as two
independent 8K byte requests.

Is this overhead significant? For high sample rates, it might be. For 16-bit 48 KHz
stereo data, an 8K byte request is about 42 milliseconds worth of samples. In the
slowest configuration (mips/mips), handling an 8K byte request takes about 12
milliseconds, of which 2.5 milliseconds is the basic overhead. This means that
our slowest machines are only about three times faster than they need to be. This
example assumes that the throughput for the HiFi device (as measured in bytes per
second) is the same as the CODEC device’s throughput.

The slopes of the lines in Figure 11 give a measure of basic throughput. Table 10
shows the throughput for the six different configurations.

Configuration Throughput
(client/server) (K bytes/sec)
alpha 4400
alpha/alpha 980
alpha/mips 760
mips 2200
mips/alpha 770
mips/mips 580

Table 10: Record throughput

10.1.3 Preempt Play vs Mix Play

The AudioFile play request is very similar to the record case: the request packet
is a 20 bytes plus the play data, and the reply packet is 8 bytes. However, the play
request can be processed in one of two modes: Mix or Preempt, which may have
performance implications for the server. A preemptive play request is usually the

10.1 Server and Client Performance 79

fastest, since the data is just copied into the server’s play buffers. A mixing play
request requires some processing to be done by the server as the new play samples
are mixed with the existing samples.

Figure 12 shows the time to complete preemptive play operations of various lengths.
In an early implementation, the play performance was nearly identical to record
performance because it used the same chunking algorithm. However, we realized
that many replies in the play case were unnecessary. We modified the play protocol
request to let the client specify if there should be a server reply for the request. We
then modified the play chunking code to request (and wait for) the server reply for
only the final chunk.

The resulting play timing is a nearly linear function of play request size. The slight
jumps at 8K byte multiples are due to the (minimal) request overhead.

Figure 13 shows the timings for mixing play operations, and the cost of mixing
by the server is clearly evident. A mixing play operation is always slower than a
preemptive play. Table 11 summarizes the throughput for mixing and preemptive
play requests.

Configuration Throughput (K bytes/sec)
(client/server) Mixing Preempt
alpha 2500 5500
alpha/alpha 1000 1100
alpha/mips 660 940
mips 1100 2500
mips/alpha 950 1000
mips/mips 650 830

Table 11: Play throughput

10.1.4 Open Loop Record/Play

The timings of various AudioFile operations have implications for applications that
process audio in real-time. Simple applications, such as playing a file, do not really
care how long the operations take to complete, as long as the throughput exceeds the
audio data rate. However, other applications (such as a conferencing application
where audio streams are set up between participants) depend on minimizing the
time needed to handle samples.

To illustrate some of the fundamental limits, we coded a loopback test that reads

80 10 PERFORMANCE RESULTS

o

Length (bytes)

T
im

e
(m

s)

0 5000 10000 15000 20000

0
10

20
30

40

alpha
alpha/alpha
alpha/mips
mips
mips/alpha
mips/mips

Figure 12: Preemptive AFPlaySamples() timings

10.1 Server and Client Performance 81

o

Length (bytes)

T
im

e
(m

s)

0 5000 10000 15000 20000

0
10

20
30

40

alpha
alpha/alpha
alpha/mips
mips
mips/alpha
mips/mips

Figure 13: Mixing AFPlaySamples() timings

82 10 PERFORMANCE RESULTS

samples from a device and then writes them back as quickly as possible. The test
uses a non-blocking record function that returns only what samples are available.
The algorithm is shown in this code fragment:

for(;;) {
now = AFRecordSamples(ac, next, 8000, buffer, ANoBlock);
length = now - next;
AFPlaySamples(ac, next+4000, length, buf);
next = now;

}

The rate at which this loop iterates is governed entirely by the AudioFile overhead,
and represents a limit for handling real-time audio. The average times to complete
one iteration are shown in table 12.

Configuration Time
(client/server) (ms)
alpha 0.87
alpha/alpha 1.27
alpha/mips 2.17
mips 1.93
mips/alpha 2.15
mips/mips 3.45

Table 12: Loopback timing

AudioFile’s overhead establishes a minimum latency for real-time applications.
However, we believe that AudioFile will be adequate for all but the most demanding
real-time requirements. In a networked configuration AudioFile’s overhead will
be dominated by the network delays. The latency for a link across North America
has a minimum 15 millisecond propagation time, not including transmission and
routing time.

10.2 CPU Usage

In this section, we investigate the CPU usage for playback and record operations.
The test were configured as before, with a local configuration (the client and server
running on the same machine using UNIX domain sockets).

The tests consisted of playing and recording 100 seconds of audio at two sample
rates and types: 8 KHz �-law, and 44.1 KHz CD quality stereo. Table 13 sum-
marizes the server and client CPU usage for the two cases. Both user and system

10.2 CPU Usage 83

times (in seconds) are given. The total time can also be viewed as a percentage
load.

Server Client
User Sys User Sys Total

Alpha 8 KHz playback 0.6 0.5 0.0 0.1 1.2
DEC 3000/400 8 KHz record 0.3 0.3 0.3 0.3 1.0

44.1 KHz playback 10.0 7.4 0.1 1.6 19.2
44.1 KHz record 12.1 3.1 2.3 4.9 22.5

MIPS 8 KHz playback 0.6 0.4 0.0 0.4 1.4
DEC 5000/200 8 KHz record 0.4 0.6 0.0 0.6 1.6

44.1 KHz playback 5.5 6.5 0.3 9.8 22.1
44.1 KHz record 13.5 11.9 4.0 10.8 40.2

Table 13: CPU usage

Much of the server time is spent moving samples to and from the audio hardware.
The LoFi does not have DMA and must be accessed with programmed I/O.

Table 14 summarizes the times to perform read and write operations to LoFi’s shared
memory. These timings were obtained by measuring the time to complete ten
millionoperations, then computing the average time per operation. These timings
were collected with LoFi’s DSP disabled. With the DSP enabled, contention for
the shared memory could increase these access times by up to 70%.

Reads are expensive because the processor stalls until the read data returns. Writes
are fast because they are buffered; they run at nearly the full speed of the option
module.

One optimization we have not yet pursued is taking advantage of the Alpha’s 64-
bit operations. An Alpha-specific version of the server could nearly double the
bandwidth to the TURBOchannel by performing 64-bit reads and writes.

Time per op.
System Operation (ms)
Alpha read 0.89

write 0.23
MIPS read 0.66

write 0.25

Table 14: Read and write timings for LoFi

84 10 PERFORMANCE RESULTS

10.3 Data Transport

AudioFile can be used over almost any transport protocol, though the details of
the protocol may affect real-time audio performance. This section discusses our
experience using TCP as the transport layer.

Although applications such as apass may exercise tight control over timing, most
do not have strong real-time requirements. TCP is usually sufficient for these
applications because the delay caused by retransmission of lost packets is small
compared to the buffering of unplayed samples. On the other hand, applications
like teleconferencing do require timely delivery of the audio data.

We found that a naively implemented teleconferencing application displayed seri-
ous problems when used over a transcontinental TCP link. We observed frequent
and lengthy dropouts in the audio stream, which were especially likely with bidirec-
tional data streams. These stem from packet losses caused by a phenomenon known
as “ACK-compression” [9, 21], a subtle consequence of the use of window-based
flow control. The duration of each dropout is exacerbated by TCP’s slow-start
algorithm [6], which comes into play when packets are dropped by the network.

ACK-compression occurs when the spacing between acknowledgments is changed
by delays in the routers. This can cause cause TCP to send large bursts of packets,
which overrun the buffers in a router, causing packets to be dropped. Unfortunately,
the TCP slow-start algorithm converts these losses into lengthy recovery periods
during which data flows more slowly. On a connection such as a long-haul T1
circuit, it can take several seconds to restore full throughput.

TCP is arguably the wrong transport protocol for applications such as teleconfer-
encing, since it tries to guarantee ordered packet delivery without any concern
for packet delay. Many applications instead need guarantees on bandwidth and
latency, but they may be prepared to accept some lost data. Networks and protocols
that provide such guarantees are active areas of research. To manage these issues,
all of the teleconferencing applications mentioned in Section 8 are split among
sites, using special protocols over long-haul paths, and only communicate locally
with AudioFile servers.

85

11 Summary

The AudioFile System provides device-independent, network-transparent audio
services. With AudioFile, multiple audio applications can run simultaneously,
sharing access to the actual audio hardware. Network transparency means that
application programs can run on machines scattered throughout the network. Be-
cause AudioFile permits applications to be device-independent, applications need
not be rewritten to work with new audio hardware.

Development of AudioFile began in 1990 at Digital Equipment Corporation’s
Cambridge Research Laboratory. In February, 1993, we released a version for
public use. It supports both low and high-fidelity audio using a variety of audio
devices, and runs on several different computer architectures.

11.1 Areas for Further Work

It is remarkably difficult to get something as big as AudioFile completely right.
We are very pleased with the basic design decisions we made, but we do have a list
of items which, if fixed or implemented, would make AudioFile still more useful.

� It should be possible for a device to support multiple sample rates and it
should be possible to support dynamic changes in sample rate. On the other
hand, it would seem like a mistake to add a lot of mechanism to handle
the confusion that would result when multiple clients which want to run
simultaneously but require different sample rates. In the long run, real-time
sample rate conversion may be the answer.

� Audio devices should have an ordered list of supported data formats, so that
clients can match against it and so that a device preference for one format
over another can be communicated.

� The protocol and library should offer improved support for synchronization
and conversion between clocks, including clock prediction routines and
the simultaneous reporting of all device clocks. This would aid aggressive
applications or those requiring synchronization with other media on the same
host.

� The various audio channels supported by a server are assigned integer device
numbers arbitrarily. There should be a symbolic way to refer to “the local

86 11 SUMMARY

loudspeaker” or “the telephone”. Device sample rate and data types are also
useful ways to select devices.

� AudioFile clients which deal with disk files only know about uninterpreted
byte streams. There should be support for the various popular sound file
formats which automatically specify their data types.

� We would like to add the capability for the server to play and record com-
pressed data types. There is a possibility that the current play and record
protocol interfaces are not adequate for complex compressed formats which
might include variable rate codes and unusual blocksizes.

� The client library should provide support for sample rate conversion.

� Right now we have separate servers for each hardware device on a particular
machine. A single server should be able to support all configured devicesa
and should be able to support multiple devices of the same kind as well. This
is not a design issue, just implementation.

� We should be able to use real-time services provided by the OS to good
advantage. DEC OSF/1, for example, supports the POSIX real-time library.

� We should improve the error handling in the AudioFile libraries, before the
present inadequate error handling support becomes too widespread.

� We have built the infrastructure for inter-client communications using prop-
erties stored in the server, but the out-of-the-box clients do not yet use the
mechanism.

� We need to include support for additional transport protocols which meet the
needs of audio services.

11.2 Conclusions

We believe that AudioFile has done well in meeting our design objectives: network
transparency, device independence, simultaneous clients, simplicity, and and ease
of implementation. We also believe we our experience to date has validated our
principles:

� Client control of time. AudioFile permits both real-time and non real-time
audio applications using the same primitives. It is much easier to learn one
way to do something than to learn two ways.

11.3 How to Get AudioFile 87

� No rocket science. Our decision to build on top of standard communications
protocols and not to use threads, have improved the portability of the system.
It is also arguable that AudioFile performs so well precisely because of its
minimalist underpinnings.

� Simplicity. Simple play and record clients require very little code. Indeed,
many applications can be constructed using independent AudioFile clients
organized by shell scripts.

� Computers are fast. We did not let fear of per-sample processing get in our
way. Our slowest implementation platform supports audio mixing playback
at telephone quality with less than 2% of the machine per connection.

11.3 How to Get AudioFile

The AudioFile distribution is located at FTP site crl.dec.com (Internet 192.58.206.2)
in /pub/DEC/AF. The kit is contained in a compressed tar file named AF2R2.tar.Z.
Use anonymous FTP to retrieve the file.

% ftp crl.dec.com
...

ftp> cd /pub/DEC/AF
ftp> binary
ftp> get AF2R2.tar.Z

The kit is shipped as a compressed tar file. To unpack the kit,

% cd <audio_root>
% zcat AF2R2.tar.Z | tar xpBf -

We also provide a sample kit of stereo sound bites: AF2R2-other.tar.Z. These high-
fidelity files should work with Hi-Fi capable AudioFile servers, such as the LoFi
and the SGI Indigo versions.

Other files available in this same directory are the release notes, copyright notice,
and a README file. Read these first!
We have set up an Internet mailing list for discussions of AudioFile:

af@crl.dec.com

Send a message to af-request@crl.dec.com to be added to this list.

The Tcl and Tk distributions may be obtained from many FTP sites on the Internet,
including sprite.berkeley.edu (128.32.150.27) and gatekeeper.pa.dec.com.

88 11 SUMMARY

11.4 Acknowledgments

Many people have contributed to AudioFile. We would like to thank Ricky Palmer
and Larry Palmer for the SPARCstation DDA code. They, along with Lance
Berc and Dave Wecker, persevered as early users of AudioFile. Lance Berc’s
experiments with long-distance teleconferencing taught us much about the network
issues. Jeff Mogul offered valuable assistance on understanding these issues.
Guido van Rossum contributed the DDA code for the Silicon Graphics Indigo only
two weeks after we released the first public distribution. Dick Beane provided
useful comments on drafts of this paper. We would also like to thank Victor
Vyssotsky and Mark R. Brown for putting up with us.

Author Information

Lawrence C. Stewart joined the Cambridge Research Lab (CRL)
in 1989 after 5 years at Digital’s Systems Research Center. His
interests include speech, audio, and multiprocessors. He was one of
the designers of the first Alpha AXP computer system. Before joining
Digital, Larry was at Xerox PARC. He received an S.B. from MIT in
1976, and M.S. and Ph.D. degrees from Stanford in 1977 and 1981,
all in Electrical Engineering.

G. Winfield Treese joined CRL in 1988 after working at MIT on
Project Athena. Win’s interests are in networks and distributed sys-
tems. He received an S.B. in Mathematics from MIT in 1986 and an
S.M. in Computer Science from Harvard University in 1992. He is
now pursuing a Ph.D. at MIT in the area of computer networks.

James Gettys joined CRL in 1989. Jim’s focus at CRL is multimedia
audio and video systems. Before joining CRL, Jim spent two years at
the Systems Research Center. Before that, he was a Digital engineer
and visiting scientist at MIT working on Project Athena. He is one of
the two principal designers and developers of the X Window System.
Jim received an S.B. from MIT in 1978.

Andrew C. Payne joined CRL in 1992 after receiving a B.S. in
Electrical Engineering from Cornell University. As a co-op at Digital
in 1990, he helped build the first Alpha AXP chip. Andy’s interests
include signal processing, speech, and user interfaces.

Thomas M. Levergood joined CRL in 1990. Tom’s focus is on speech
and audio-related research. He is also involved in Alpha AXP system
and software projects, including an experimental evaluation of split
user/supervisor cache memories. He received his B.S. in Electrical
Engineering in 1984 and M.S. in Electrical Engineering in 1993, both
from Worcester Polytechnic Institute.

All of the authors can be reached at: Digital Equipment Corporation, Cambridge Research
Lab, One Kendall Square, Bldg. 650, Cambridge, MA 02139, or by e-mail as fstewart,
treese, jg, payne, tmlg@crl.dec.com.

90 12 GLOSSARY

12 Glossary

AC AC is an abbreviation for audio context. See Audio con-
text.

Access control list An AudioFile server maintains a list of hosts from which
client program can be run. By default, only programs
on the local host and hosts specified in an initial list read
by the server can use the server. This access control list
can be changed by clients on the local host. Some server
implementations can also implement other authorization
mechanisms in addition to or in place of this mechanism.
The action of this mechanism can be conditional based on
the authorization protocol name and data received by the
server at connection setup.

ADC Analog to digital converter. A hardware device that con-
verts analog signals into digital form.

Atom An atom is a unique ID corresponding to a string name.
Atoms are used to identify properties and types.

Audio context Various information for audio input and output is stored in
an audio context (AC), such as the sample type, number
of channels, playback gain, record gain, and so on. An
audio context can only be used with the audio device on
which it was created.

Audio device An audio device is the abstraction AudioFile uses to de-
scribe the underlying audio hardware’s ADC and DAC.
Attributes of an audio device include audio data type,
sampling rate, and server buffer size. A server may sup-
port multiple audio devices. Devices may support input,
output, or both.

Byte order For audio data, the client defines the byte order and the
server swaps bytes as necessary.

Client A client is an application program that connects to the
audio server by some interprocess communication (IPC)
path, such as a TCP connection or a shared memory buffer.

91

CODEC Contraction of CODer and DECoder. As used in this
paper, a CODEC is an 8 KHz sampling device with integral
ADC and DAC and anti-aliasing filtering. The CODEC
is generally used in telecommunications applications and
supports the CCITT G.711 �-law and A-law encoding
specifications.

Connection The IPC path between the server and client program is
known as a connection. A client program typically (but
not necessarily) has one connection to the server over
which requests and events are sent.

DAC Digital to analog converter. A hardware device that con-
verts digital signals to analog form.

dB An abbreviation for decibel, which is a measure of relative
power level. It is equal to 10 times the log of a power ratio,
so that a signal twice as powerful as another is said to be
3 dB louder. One decibel is approximately the minimum
perceptible change in loudness.

DECaudio See LoFi

DSP Digital Signal Processor (or Processing).

DSP port The DSP port encapsulates two flexible serial interfaces
first found on the DSP56001 and used by NeXT on their
first workstation. This interface has become an industry
standard. Third party vendors such as Ariel and Applied
Speech Technologies make boxes that connect to the DSP
port and support flexible ADC and DAC sampling rates.

DTMF Dual Tone Multi-Frequency, also known as Touch-Tone.
This is the in-band signaling method for dialing push-
button telephones that use 16 tone pairs constructed from
two groups of four frequencies. In addition to its dialing
function, DTMF generation and decoding is frequently
used to control voice response systems.

92 12 GLOSSARY

Event Clients are informed of information asynchronously by
means of events. Events can be either generated from
devices or generated as side effects of client requests.
Events are grouped into types. The server never sends
an event to a client unless the client has specifically asked
to be informed of that type of event. Event timestamps are
reported relative to an audio device.

Event mask Events are requested relative to an audio device. The set
of event types a client requests is described by the event
mask.

Extension Named extensions to the core protocol can be defined to
extend the system. Extensions can add both new requests
and new kinds of events.

LineServer The LineServer is an Ethernet peripheral. It is a Motorola
68302 microcomputer system with 128K ROM and 64K
RAM, an Ethernet controller, high speed V.35 serial line
interface, and an 8 KHz ISDN codec. We use LineServer
within Digital’s research labs for remote Ethernet bridging
and IP network routing over both dedicated digital circuits
and dial-up ISDN circuits.

LoFi LoFi is a TURBOchannel option module that contains two
CODECs, a DSP56001 signal processor with static RAM,
a 44.1 KHz stereo DAC, a DSP port interface, and analog
and digital (ISDN) telephone line interfaces. This module
is available from DEC as PN AV01B-AA. (LoFi is the
research prototype version of DECaudio).

Property Devices can have associated properties that consist of a
name, a type, a data format, and some data. The protocol
places no interpretation on properties. They are intended
as a general-purpose naming mechanism for clients. For
example, clients might use properties to share information
such as the last telephone number dialed.

Property list The property list of a device is the list of properties that
have been defined for that device. See also Property.

93

Reply Information requested by a client program using the Au-
dioFile protocol is sent back to the client with a reply. Both
events and replies are multiplexed on the same connection.
Some requests do not generate replies.

Request A command to the server is called a request. It is a single
block of data sent over a connection.

Sample rate The frequency at which and audio signal is sampled; usu-
ally given in Hertz, or samples per second. Popular rates
are 8 KHz, for telephone quality audio and 44.1 KHz for
compact disc quality audio.

Sample type The encoding format of the sample data supported by an
audio device in the server. Popular encodings are 16-bit
linear PCM and �-law.

Server The server provides the basic audio mechanism. It handles
connections from clients, multiplexes multiple requests
onto the audio devices, and demultiplexes input back to
the appropriate clients.

Tcl The Tool Command Language. Tcl is a small, interpreted,
application-independent command language. See also Tk.

Time Audio device time is represented by a 32-bit (finite length)
unsigned integer that increments once per sample period of
an audio device and wraps on overflow. The audio device
sampling rate is used to move between time in sample
ticks and time in seconds. As an example at 8 KHz, four
seconds in the future maps to the current value in the time
register plus 32000 ticks.

Tk An X toolkit which is an extension to Tcl. See also Tcl.

94 REFERENCES

References

[1] Susan Angebranndt, Raymond Drewry, Philip Karlton, and Todd Newman
et. al. Definition of the porting layer for the X v11 sampler server, 1990.
Located in the doc/Server directory in the MIT X distribution.

[2] Susan Angebranndt, Raymond Drewry, Philip Karlton, and Todd Newman
et. al. Strategies for porting the X v11 sample server, 1990. Located in the
doc/Server directory in the MIT X distribution.

[3] Susan Angebranndt, Richard L. Hyde, Daphne Huetu Luong, Nagendra Sir-
avara, and Chris Schmandt. Integrating audio and telephony in a distributed
workstation environment. In Proceedings of the USENIX Summer Confer-
ence. USENIX, June 1991.

[4] B. Arons, C. Binding, K. Lantz, and C. Schmandt. The VOX audio server.
In Multimedia ’89: 2nd IEEE COMSOC International Multimedia Commu-
nications Workshop, 1989.

[5] Edward Bruckert, Martin Minow, and Walter Tetschner. Three-tiered software
and VLSI aid developmental system to read text aloud. Electronics, Apr. 21,
1983.

[6] Van Jacobson. Congestion avoidance and control. In Proc. SIGCOMM ’88
Symposium on Communications Architectures and Protocols, pages 314–329,
Stanford, CA, August 1988.

[7] Thomas M. Levergood. LoFi: A TURBOchannel audio module. CRL
Technical Report 93/9, Digital Equipment Corporation, Cambridge Research
Lab, 1993.

[8] D. L. Mills. Network time protocol (NTP). Internet RFC 958, Network
Information Center, September 1985.

[9] Jeffrey C. Mogul. Observing TCP dynamics in real networks. In Proc.
SIGCOMM ’92 Symposium on Communications Architectures and Protocols,
Baltimore, MD, August 1992.

[10] John K. Ousterhout. Tcl: An embeddable command language. In Proceedings
of the USENIX Winter Conference, January 1990.

[11] John K. Ousterhout. An X11 toolkit based on the Tcl language. In Proceedings
of the USENIX Winter Conference, January 1991.

REFERENCES 95

[12] Steven J. Rohall. Sonix: A network-transparent sound server. In Proceedings
of the Xhibition 92 Conference, June 1992.

[13] David S. H. Rosenthal and Adam R. de Boor et al. Godzilla’s guide to porting
the X V11 sample server, 1990. Located in the doc/Server directory in the
MIT X distribution.

[14] Robert W. Scheifler and James Gettys. X Window System. Digital Press,
Bedford, MA, 3rd edition, 1991.

[15] Henry Spencer. How to steal code -or- inventing the wheel only once. In
Proceedings of the USENIX Winter Conference, pages 335–346. USENIX,
February 1988.

[16] D. C. Swinehart, L. C. Stewart, and S. M. Ornstein. Adding voice to an office
computer network. In Proceedings of GlobeCom 1983, November 1983.

[17] Robert Terek and Joseph Pasquale. Experiences with audio conferencing
using the X window system, UNIX, and TCP/IP. In Proceedings of the
USENIX Summer Conference. USENIX, June 1991.

[18] Charles P. Thacker, Lawrence C. Stewart, and Edwin H. Satterthwaite Jr.
Firefly: A multiprocessor workstation. IEEE Transactions on Computers,
37(8):909–920, Aug. 1988.

[19] Ken Thompson. A new C compiler. In Proceedings of the Summer 1990
UKUUG Conf., pages 41–51, London, July 1990.

[20] Stephen A. Uhler. PhoneStation, moving the telephone onto the virtual
desktop. In Proceedings of the USENIX Winter Conference. USENIX, January
1993.

[21] Lixia Zhang, Scott Shenker, and David D. Clark. Observations on the dy-
namics of a congestion control algorithm: The effects of two-way traffic.
In Proc. SIGCOMM ’91 Symposium on Communications Architectures and
Protocols, pages 133–147, Zurich, September 1991.

Index

access control list, 90
applications, 90

abiff, 37, 52, 73
abob, 52, 69
abrowse, 52, 73
adial, 52, 69
aevents, 51, 67
afft, 52, 70–73
afxctl, 52, 70
afxpow, 52
ahost, 51, 67
ahs, 51, 67, 69
alsatoms, 51, 67
apass, 51, 61–66, 84
aphone, 51, 67, 69
aplay, 51–59, 61, 73
apower, 59, 73
aprop, 51, 67
arecord, 51, 54, 58–61
aset, 51, 67, 69
atone, 73
autil, 52
axset, 52, 70
Alofi, 38, 45
ARGOSEE, 74
biff, 3
DECspin, 74
for access control, 51
for device control, 51
for playback, 51–52
for recording, 51, 58
for telephone control, 51, 67
miscellaneous, 67
radio, 52, 73
VAT, 74
xplay, 52, 73
xpow, 70

atom, 21, 90
audio context, 20, 36, 44, 90, 90
audio device, 90

attributes visible to clients, 18

AudioDeviceRec structure, 41
connected to telephone, 18
definition, 5
hardware buffers, 35
input and output buffers, 34
input model, 11
inputs, 18
output model, 10
outputs, 18
time, 5, 7, 20, 93

Aaxp, 49
AC, 90
ADC, 3, 90
Alpha AXP, 49
Ariel ProPort, 47
Asparc, 49
AudioFile

applications, see also applications
design goals, 2–3
events, 17
first public release, 85
FTP from crl.dec.com, 87
independent of X server, 15
library, 1

core, 23
utility, 23

mailing list, 87
out-of-the-box applications, 2
performance

see also performance, 75
protocol, 1, 10, 17, 21, 34

chunking of large requests, 78
real-time latency, 82
server, 4

contains all device and O.S. de-
pendent code, 1

supported devices, 15–16
AUDIOFILE, 23
buffers

hardware buffers, 35
byte order, 90

96

INDEX 97

byte-swapping, 37
client

blocks if record data is in future, 12
connection, 91
conversion module, 11–12, 18
CODEC, 91
dB, 91
DAC, 3, 91
DECaudio, 91

see LoFi, 15
substantially identical to LoFi, 15

DECtalk, 52, 73–74
DISPLAY, 23
DSP, 91

port, 91
DTMF, 20, 91
environment variable

AUDIOFILE, 23, 58, 63
DISPLAY, 23

event, 92
event mask, 92
event

DTMF, 20
HookSwitch, 20
PhoneLoop, 20
PhoneRing, 20

extension, 92
filename

.phonelist, 69
AFlib.h, 23
AFUtils.h, 27
dda

main.c, 40
dia

dispatch.c, 40
main.c, 40

libAFUtil.a, 27
os

4.2bsdutils.c, 40
function prototypes, 4
future work, 85
Fourier transform, 70
gain

client specified output, 11

input gain, 11–12
output gain, 11

Guido van Rossum, 16
interoperability, 37
library

buffers unless value returned, 24
core, 23
predicate event procedures, 25
queues events from server, 24
synchronous mode aids debugging,

24
tables, 27
utility library, 27
utility procedures, 28

LineServer, 45, 92
LoFi, 20, 45, 92

DSP Port, 16
DSP

buffers, 45
firmware, 45
HiFi, 46
NeXT compatible serial port, 47

Motorola 56001 DSP, 15
prototype of DECaudio, 15
stereo audio device, 47
supports two 8 KHz CODECs, 15

mixing, 35
NeXT compatible DSP port, 45
pass-through, 49
performance

as a function of play data, 78
as a function of play data while mix-

ing, 79
as a function of play data while pre-

empting, 79
as a function of record data, 76
cpu usage, 82
loopback test illustrates fundamen-

tal limit for real-time, 79
network latency is negligible, 76
silence fill, 48
suppressing unneeded replies, 79
update task, 47–48
used LoFi server for testing, 75

98 INDEX

preemption, 36
problems, 85
procedure

AbortDDA, 40
AbortServer, 40
AddEnabledDevice, 41
AddTask, 41
AFAudioConnName, 23
AFCheckIfEvent, 25
AFCreateAC, 24
AFDialPhone, 28–29, 67
AFEventsQueued, 25
AFFlush, 24
AFGetErrorText, 24
AFGetTime, 24, 26, 55, 75–76, 78
AFIfEvent, 25
AFMakeGainTableA, 28
AFMakeGainTableU, 28
AFNextEvent, 24
AFNoOp, 76
AFOpenConnection, 23
AFPeekIfEvent, 25
AFPending, 24–25
AFPlaySamples, 25–27, 55, 57, 65,

80–81
behavior in future, 25
behavior in near future, 25
behavior in the past, 25

AFRecordSamples, 26–27, 61, 65,
76–77

behavior in distant past, 26
behavior in near future, 27
behavior in recent past, 26

AFSetAfterFunction, 24
AFSetErrorHandler, 24
AFSetIOErrorHandler, 24
AFSingleTone, 28
AFSync, 24
AFSynchronize, 24
AFTonePair, 28–29
AoD, 29
codecUpdate, 39
codecUpdateTask, 38–39
ddaGiveUp, 40

ddaProcessArgument, 40–41
ddaUseMsg, 40
ErrorF, 40–41
fflush, 60
fread, 57
FatalError, 41
FilterEvents, 40–41
FindDefaultDevice, 55
InitDevices, 40
MakeDevice, 41
NewTask, 41
proc, 38
ProcessInputEvents, 40–41
select, 4, 39–40
WaitForSomething, 39
Xalloc, 41
Xfree, 41

property, 21, 92
property list, 92
protocol request

ChangeACAttributes, 19
ChangeHosts, 19
ChangeProperty, 19
CreateAC, 19
DeleteProperty, 19
DialPhone, 19–20
DisableGainControl, 19
DisableInput, 19
DisableOutput, 19
DisablePassThrough, 19
EnableGainControl, 19
EnableInput, 19
EnableOutput, 19
EnablePassThrough, 19
FlashHook, 19
FreeAC, 19
GetAtomName, 19
GetProperty, 19
GetTime, 19, 21
HookSwitch, 19
InternAtom, 19
KillClient, 19
ListExtensions, 19
ListHosts, 19

INDEX 99

ListProperties, 19
NoOperation, 19
PlaySamples, 19, 21
QueryExtension, 19
QueryInputGain, 19
QueryOutputGain, 19
QueryPhone, 19
RecordSamples, 19, 21
SelectEvents, 19
SetAccessControl, 19
SetInputGain, 19
SetOutputGain, 19
SyncConnection, 19

real-time, 79
related work

Etherphone, 13
Firefly, 14
VOX, 14
XMedia, 14

reply, 93
request, 93
sample rate, 93
sample type, 93
server, 93

audio context, 44
AudioDeviceRec, 41–43
buffers, 35
byte-swaps requests for clients, 37
chunks large requests into pieces, 34
DDA, 40
DIA, 40–41
DIA and DDA interfaces, 39
initialization, 40
minimize data accesses, 36
performance, see also performance
preemption, 36
structure

AudioDeviceRec shared between
DDA and DIA, 41

tasks, 38, 41
tenet, 36
tenets, 34
update task, 39

signal processing, 13

silence
arecord can stop automatically, 59
emitted when no data written, 11
if data is more than four seconds old,

12
streams

definition, 9
problems, 9–10

structure
AC, 40, 44–45
ACops, 45
AEvent, 25
AFSampleTypes, 27–28
ASampleTypes, 27
AudioDevice, 40
AudioDeviceRec, 40–42

supported systems
Digital Alpha AXP, 1, 49
Digital DECstation, 1
Silicon Graphics Indigo, 1
Sun SPARCstation, 1, 49

SPARCstation, 49
telephone control, 20
telephone

dialing, 29
events, 20

tenets
complex apps. should be possible,

4
computers are fast, 3, 87
control of time, 3, 86
no rocket science, 4, 87
simple apps. should be simple, 4
simplicity, 87

time
carried with each play and record

request, 8
comparisons, 7
control vital for real-time apps., 8
explicit control by client, 8
exposed at library API, 11
representation, 7

transport protocols, 17, 84
TCP, 4, 17

100 INDEX

Taylor, Robert W.
abob, see also abob
Director of Digital’s System Research

Center, 69
Tcl, 93
Tcl and Tk, 51, 64, 69

FTP from sprite.berkeley.edu, 87
Tk, 93
variable

ABlock, 26
ANoBlock, 26

volume control, 11
X Window System, 1, 17, 51

AudioFile similar to, 1
freely available code, 4
synchronization extension, 15
Xt toolkit, 70, 73

Xerox Palo Alto Research Center, 13

