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Abstract

The problem of image registration subsumes a number of problems and techniques in multiframe

image analysis, including the computation of optic flow (general pixel-based motion), stereo

correspondence, structure from motion, and feature tracking. We present a new registration

algorithm based onspline representations of the displacement field which can be specialized to

solve all of the above mentioned problems. In particular, we show how to compute local flow,

global (parametric) flow, rigid flow resulting from camera egomotion, and multiframe versions of

the above problems. Using a spline-based description of the flow removes the need for overlapping

correlation windows, and produces an explicit measure of the correlation between adjacent flow

estimates. We demonstrate our algorithm on multiframe image registration and the recovery of 3D

projective scene geometry. We also provide results on a number of standard motion sequences.

Keywords: motion analysis, multiframe image analysis, hierarchical image registration, optical

flow, splines, global motion models, structure from motion, direct motion estimation.
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1 Introduction 1

1 Introduction

The analysis of image sequences (motion analysis) is one of the more actively studied areas of

computer vision and image processing. The estimation of motion has many diverse applications,

including video compression, the extraction of 3D scene geometry and camera motion, robot

navigation, and the registration of multiple images. The common problem is to determine corre-

spondences between various parts of images in a sequence. This problem is often calledmotion

estimation, multiple view analysis, or image registration.

Motion analysis subsumes a number of sub-problems and associated solution techniques, in-

cluding optic flow, stereo and multiframe stereo, egomotion estimation, and feature detection and

tracking. Each of these approaches makes different assumptions about the nature of the scene and

the results to be computed (computational theory and representation) and the techniques used to

compute these results (algorithm).

In this paper, we present a general motion estimation framework which can be specialized to

solve a number of these sub-problems. Like Bergenet al. [1992], we view motion estimation as

an image registration task with a fixed computational theory (optimality criterion), and view each

sub-problem as an instantiation of a particular global or local motion model. For example, the

motion may be completely general, it can depend on a few global parameters (e.g., affine flow),

or it can result from the rigid motion of a 3D scene. We also use coarse-to-fine (hierarchical)

algorithms to handle large displacements.

The key difference between our framework and previous algorithms is that we represent the

local motion field using multi-resolution splines. This has a number of advantages over previous

approaches. The splines impose an implicit smoothness on the motion field, removing in many

instances the need for additional smoothness constraints (regularization). The splines also remove

the need for correlation windows centered at each pixel, which are computationally expensive and

implicitly assume a local translational model. Furthermore, they provide an explicit measure of the

correlation between adjacent motion estimates.

The algorithm we develop to estimate structure and motion from rigid scenes differs from

previous algorithms by using a general camera model, which eliminates the need to know the

intrinsic camera calibration parameters. This results in estimates ofprojective depth rather than

true Euclidean depth; the conversion to Euclidean shape, if required, can be performed in a later

post-processing stage [Szeliski, 1994b].
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The remainder of the paper is structured as follows. Section 2 presents a review of relevant

previous work. Section 3 gives the general problem formulations for image registration. Section

4 develops our algorithm for local motion estimation. Section 5 presents the algorithm for global

(planar) motion estimation. Section 6 presents our novel formulation of structure from motion

based on the recovery of projective depth. Section 7 generalizes our previous algorithms to multiple

frames and examines the resulting performance improvements. Section 8 presents experimental

results based on some commonly used motion test sequences. Finally, we close with a comparison

of our approach to previous algorithms and a discussion of future work.

2 Previous work

A large number of motion estimation and image registration algorithms have been developed in

the past [Brown, 1992]. These algorithms include optical flow (general motion) estimators, global

parametric motion estimators, constrained motion estimators (direct methods), stereo and multi-

frame stereo, hierarchical (coarse-to-fine) methods, feature trackers, and feature-based registration

techniques. We will use this rough taxonomy to briefly review previous work, while recognizing

that these algorithms overlap and that many algorithms use ideas from several of these categories.

The general motion estimation problem is often calledoptical flow recovery [Horn and Schunck,

1981]. This involves estimating an independent displacement vector for each pixel in an image.

Approaches to this problem include gradient-based approaches based on thebrightness constraint

[Horn and Schunck, 1981; Lucas and Kanade, 1981; Nagel, 1987], correlation-based techniques

such as the Sum of Squared Differences (SSD) [Anandan, 1989], spatio-temporal filtering [Adelson

and Bergen, 1985; Heeger, 1987; Fleet and Jepson, 1990], and regularization [Horn and Schunck,

1981; Hildreth, 1986; Poggioet al., 1985]. Nagel [1987] and Anandan [Anandan, 1989] provide

comparisons and derive relations between different techniques, while Barronet al. [1994] provide

some numerical comparisons.

Global motion estimators [Lucas, 1984; Bergenet al., 1992] use a simple flow field model

parameterized by a small number of unknown variables. Examples of global motion models

include affine and quadratic flow fields. In the taxonomy of Bergenet al. [1992], these fields are

called parametric motion models, since they can be used locally as well (e.g., you can estimate



2 Previous work 3

affine flow at every pixel from filter outputs [Manmatha and Oliensis, 1992]).1 Global methods are

most useful when the scene has a particularly simple form, e.g., when the scene is planar.

Constrained (quasi-parametric [Bergenet al., 1992]) motion models fall between local and

global methods. Typically, these use a combination of global egomotion parameters with local

shape (depth) parameters. Examples of this approach include thedirect methods of Horn and

Weldon [1988] and others [Hanna, 1991; Bergenet al., 1992]. In this paper, we use projective

descriptions of motion and depth [Faugeras, 1992; Mohret al., 1993; Szeliski and Kang, 1994] for

our constrained motion model, which removes the need for calibrated cameras.

Stereo matching [Barnard and Fischler, 1982; Quam, 1984; Dhond and Aggarwal, 1989]

is traditionally considered as a separate sub-discipline within computer vision (and, of course,

photogrammetry), but there are strong connections between the two problems. Stereo can be

viewed as a simplified version of the constrained motion model where the egomotion parameters

(theepipolar geometry) are given, so that each flow vector is constrained to lie along a known line.

While stereo is traditionally performed on pairs of images, more recent algorithms use sequences

of images (multiframe stereo or motion stereo) [Bolleset al., 1987; Matthieset al., 1989; Okutomi

and Kanade, 1992; Okutomi and Kanade, 1993].

Hierarchical (coarse-to-fine) matching algorithms have a long history of use both in stereo

matching [Quam, 1984; Witkinet al., 1987] and in motion estimation [Enkelmann, 1988; Anandan,

1989; Singh, 1990; Bergenet al., 1992]. Hierarchical algorithms first solve the matching problem

on smaller, lower-resolution images and then use these to initialize higher-resolution estimates.

Their advantages include both increased computation efficiency and the ability to find better

solutions (escape from local minima).

Tracking individual features (corners, points, lines) in images has always been alternative to

iconic (pixel-based) optic flow techniques [Dreschler and Nagel, 1982; Sethi and Jain, 1987;

Zheng and Chellappa, 1992]. This has the advantage of requiring less computation and of being

less sensitive to lighting variation. The algorithm presented in this paper is closely related to patch-

based feature trackers [Lucas and Kanade, 1981; Rehg and Witkin, 1991; Tomasi and Kanade,

1992]. In fact, our general motion estimator can be used as a parallel, adaptive feature tracker

by selecting spline control vertices with low uncertainty in both motion components. Like [Rehg

and Witkin, 1991], which is an affine-patch based tracker, it can handle large deformations in the

1The spline-based flow fields we describe in the next section can be viewed as local parametric models, since the

flow within each spline patch is defined by a small number of control vertices.
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patches being tracked.

Spline-based image registration techniques have been used in both the image processing and

computer graphics communities. The work in [Goshtasby, 1986; Goshtasby, 1988] applies surface

fitting to discrete displacement estimates based on feature correspondences to obtain a smooth

displacement field. Wolberg [1990] provides a review of the extensive literature in digital image

warping, which can be used to resample images once the (usually global) displacements are known.

Spline-based displacement fields have recently been used in computer graphics to performmorphing

[Beier and Neely, 1992] (deformable image blending) using manually specified correspondences.

Registration techniques based on elastic deformations of images [Burr, 1981; Bajcsy and Broit,

1982; Bajcsy and Kovacic, 1989; Amit, 1993] also sometimes use splines as their representation

[Bajcsy and Broit, 1982].

3 General problem formulation

The general image registration problem can be formulated as follows. We are given a sequence

of imagesIt�x� y� which we assume were formed by locally displacing a reference imageI�x� y�

with horizontal and vertical displacement fields2 ut�x� y� andvt�x� y�, i.e.,

It�x� ut� y � vt� � I�x� y�� (1)

Each individual image is assumed to be corrupted with uniform white Gaussian noise. We also

ignore possible occlusions (“foldovers”) in the warped images.

Given such a sequence of images, we wish to simultaneously recover the displacement fieldsut

andvt and the reference imageI�x� y�. The maximum likelihood solution to this problem is well

known [Szeliski, 1989], and consists of minimizing the squared error

X
t

Z Z
�It�x� ut� y � vt�� I�x� y��2dx dy� (2)

In practice, we are usually given a set of discretely sampled images, so we replace the above

integrals with summations over the set of pixelsf�xi� yi�g.

If the displacement fieldsut and vt at different times are independent of each other and

the reference intensity imageI�x� y� is assumed to be known, the above minimization problem

2We will use the termsdisplacement field, flow field, andmotion estimate interchangeably.
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decomposes into a set of independent minimizations, one for each frame. For now, we will assume

that this is the case, and only study the two frame problem, which can be rewritten as3

E�fui� vig� �
X
i

�I1�xi � ui� yi � vi�� I0�xi� yi��
2� (3)

This equation is called theSum of Squared Differences (SSD) formula [Anandan, 1989]. Expanding

I1 in a first order Taylor series expansion in�ui� vi� yields the theimage brightness constraint [Horn

and Schunck, 1981; Anandan, 1989].

The above minimization problem will typically have many locally optimal solutions (in terms

of thef�ui� vi�g). The choice of method for finding the best estimate efficiently is what typically

differentiates between various motion estimation algorithms. For example, the SSD algorithm

performs the summation at each pixel over a 5�5 window [Anandan, 1989] (more recent variations

use adaptive windows [Okutomi and Kanade, 1992] and multiple frames [Okutomi and Kanade,

1993]). Regularization-based algorithms add smoothness constraints on theu and v fields to

obtain good solutions [Horn and Schunck, 1981; Hildreth, 1986; Poggioet al., 1985]. Multiscale

or hierarchical (coarse-to-fine) techniques are often used to speed the search for the optimum

displacement field.

Another decision that must be made is how to represent the�u� v� fields. Assigning an

independent estimate at each pixel�ui� vi� is the most commonly made choice, but global motion

descriptors are also possible [Lucas, 1984; Bergenet al., 1992] (see also Section 5). Constrained

motion models which combine a global rigid motion description with a local depth estimate are

also used [Horn and Weldon Jr., 1988; Hanna, 1991; Bergenet al., 1992], and we will study these

in Section 6.

Both local correlation windows (as in SSD) and global smoothness constraints attempt to

disambiguate possible motion field estimates by aggregating information from neighboring pixels.

The resulting displacement estimates are therefore highly correlated. While it is possible to

analyze the correlations induced by overlapping windows [Matthieset al., 1989] and regularization

[Szeliski, 1989], the procedures are cumbersome and rarely used.

3.1 Spline-based motion model

3We will return to the problem of multiframe motion in Section 7.
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Figure 1: Displacement spline: the spline control verticesf�ûj� v̂j�g are shown as circles (�) and

the pixel displacementsf�ui� vi�g are shown as pluses (�).

The alternative to these approaches, which we introduce in this paper, is to represent the displace-

ments fieldsu�x� y� and v�x� y� as two-dimensionalsplines controlled by a smaller number of

displacement estimates ˆuj andv̂j which lie on a coarserspline control grid (Figure 1). The value

for the displacement at a pixeli can be written as

u�xi� yi� �
X
j

ûjBj�xi� yi� or ui �
X
j

ûjwij� (4)

where theBj�x� y� are called thebasis functions and are only non-zero over a small interval (finite

support). We call thewij � Bj�xi� yi� weights to emphasize that the�ui� vi� are known linear

combinations of the�ûj� v̂j�.4

In our current implementation, the basis functions are spatially shifted versions of each other,

i.e.,Bj�x� y� � B�x� x̂j� y � ŷj�. We have studied five different interpolation functions:

1. block:B�x� y� � 1 on�0�1�2

2. linear:B�x� y� �

�����
����

�1� x� y� on �0�1�2�

�x� 1� on ��1�0�� �0�1�� and

�y � 1� on �0�1�� ��1�0�

3. linear on sub-triangles:B�x� y� � max�0�1�max�jxj� jyj� jx� yj��

4In the remainder of the paper, we will use indicesi for pixels andj for spline control vertices.
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4. bilinear:B�x� y� � �1� jxj��1� jyj� on ��1�1�2

5. biquadratic:B�x� y� � B2�x�B2�y� on ��1�2�2, whereB2�x� is the quadratic B-spline

Figure 2 shows 3D graphs of the basis functions for the five splines. We also impose the condition

that the spline control grid is a regular subsampling of the pixel grid, ˆxj � mxi, ŷj � myi, so

that each set ofm �m pixels corresponds to a single spline patch. This means that the set ofwij

weights need only be stored for a single patch.

How do spline representations compare to local correlation windows and to regularization?

This question has previously been studied in the context of active deformable contours (snakes).

The original work on snakes was based on a regularization framework [Kasset al., 1988], giving

the snake the ability to model arbitrarily detailed bends or discontinuities where warranted by the

data. More recent versions of snakes often employ theB-snake [Menetet al., 1990; Blakeet al.,

1993] which has fewer control vertices. A spline-based snake has fewer degrees of freedom, and

thus may be easier to recover. The smooth interpolation function between vertices plays a similar

role to regularization, although the smoothing introduced is not as uniform or stationary.

In our use of splines for modeling displacement fields, we have a similar tradeoff (see Section

9 for more discussion). We often may not need regularization (e.g., in highly textured scenes).

Where required, adding a regularization term to the cost function (3) is straightforward, i.e., we

can use a first order regularizer [Poggioet al., 1985]

E1�fûk�l� v̂k�lg� �
X
k�l

�ûk�l � ûk�1�l�
2 � �ûk�l � ûk�l�1�

2 � � � � terms inv̂kl (5)

or a second order regularizer [Terzopoulos, 1986]

E2�fûk�l� v̂k�lg� � h�2
X
k�l

�ûk�1�l � 2ûk�l � ûk�1�l�
2 � �ûk�l�1 � 2ûk�l � ûk�l�1�

2 � (6)

�ûk�l � ûk�l�1� ûk�1�l � ûk�1�l�1�
2 � � � � terms inv̂kl

whereh is the patch size, and we index the spline control vertices with 2D indices�k� l�.

Spline-based flow descriptors also remove the need for overlapping correlation windows, since

each flow estimate�ûj� v̂j� is based on weighted contributions from all of the pixels beneath the

support of its basis function (e.g,�2m� � �2m� pixels for a bilinear basis). As we will show in

Section 4, the spline-based flow formulation makes it straightforward to compute the uncertainty

(covariance matrix) associated with the complete flow field. It also corresponds naturally to the
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optimal Bayesian estimator for the flow, where the squared pixel errors correspond to Gaussian

noise, while the spline model (and any associated regularizers) form the prior model5 [Szeliski,

1989].

Before moving on to our different motion models and solution techniques, we should point out

that the squared pixel error function (3) can be generalized to account for photometric variation

(global brightness and contrast changes). Following [Lucas, 1984; Gennert, 1988], we can write

E��fui� vig� �
X
i

�I1�xi � ui� yi � vi�� cI0�xi� yi� � b�2� (7)

whereb andc are the (per-frame) brightness and contrast correction terms. Both of these parameters

can be estimated concurrently with the flow field at little additional cost. Their inclusion is most

useful in situations where the photometry can change between successive views (e.g., when the

images are not acquired concurrently). We should also mention that the matching need not occur

directly on the raw intensity images. Both linear (e.g., low-pass or band-pass filtering [Burt and

Adelson, 1983]) and non-linear pre-processing can be performed.

4 Local (general) flow estimation

To recover the local spline-based flow parameters, we need to minimize the cost function (3) with

respect to thefûj� v̂jg. We do this using a variant of the Levenberg-Marquardt iterative non-linear

minimization technique [Presset al., 1992]. First, we compute the gradient ofE in (3) with respect

to each of the parameters ˆuj andv̂j,

guj �
�E

�ûj
� 2

X
i

eiG
x
iwij

gvj �
�E

�v̂j
� 2

X
i

eiG
y
iwij� (8)

where

ei � I1�xi � ui� yi � vi�� I0�xi� yi� (9)

is the intensity error at pixeli,

�Gx
i � G

y
i � � rI1�xi � ui� yi � vi� (10)

5Correlation-based techniques with overlapping windows do not have a similar direct connection to Bayesian

techniques.



10 4 Local (general) flow estimation

is the intensity gradient ofI1 at the displaced position for pixeli, and thewij are the sampled values

of the spline basis function (4). Algorithmically, we compute the above gradients by first forming

the displacement vector for each pixel�ui� vi� using (4), then computing the resampled intensity

and gradient values ofI1 at �x�i� y
�

i� � �xi � ui� yi � vi�, computingei, and finally incrementing the

guj andgvj values of all control vertices affecting that pixel.

For the Levenberg-Marquardt algorithm, we also require the approximate Hessian matrixA

where the second-derivative terms are left out.6 The matrixA contains entries of the form

auujk � 2
X
i

�ei
�ûj

�ei
�ûk

� 2
X
i

wijwik�G
x
i �

2

auvjk � avujk � 2
X
i

�ei
�ûj

�ei
�v̂k

� 2
X
i

wijwikG
x
iG

y
i (11)

avvjk � 2
X
i

�ei
�v̂j

�ei
�v̂k

� 2
X
i

wijwik�G
y
i �

2�

The entries ofA can be computed at the same time as the energy gradients.

What is the structure of the approximate Hessian matrix? The 2� 2 sub-matrixAjj corre-

sponding to the termsauujj , auvjj , andavvjj encodes the local shape of the sum-of-squared difference

correlation surface [Lucas, 1984; Anandan, 1989]. This matrix is often used to compute an updated

flow vector by setting

�∆ûj ∆v̂j�T � �A�1
jj �g

u
j gvj �

T (12)

[Lucas, 1984; Anandan, 1989; Bergenet al., 1992]. The overallA matrix is a sparse multi-banded

block-diagonal matrix, i.e., sub-blocksAjk will be non-zero only if verticesj andk both influence

some common patch of pixels.

The Levenberg-Marquardt algorithm proceeds by computing an increment∆u to the current

displacement estimateu which satisfies

�A � �diag�A��∆u � �g� (13)

whereu is the vector of concatenated displacement estimatesfûj� v̂jg, g is the vector of concate-

nated energy gradientsfguj � g
v
j g, and� is a stabilization factor which varies over time [Presset

al., 1992]. For systems with small numbers of parameters, e.g., if only a single spline patch is

6As mentioned in [Presset al., 1992], inclusion of these terms can be destabilizing if the model fits badly or is

contaminated by outlier points.
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being used (Section 5), this system of equations can be solved at reasonable computational cost.

However, for general flow computation, there may be thousands of spline control variables (e.g.,

for a 640� 480 image withm � 8, we have 81� 61� 2� 104 parameters). In this case, iterative

sparse matrix techniques have to be used to solve the above system of equations.7

In our current implementation, we use preconditioned gradient descent to update our flow

estimates

∆u � ��B�1g � ��ĝ (14)

whereB � Â � �I, andÂ � block diag�A� is the set of 2� 2 block diagonal matrices used

in (12).8 In this simplest version, the update rule is very close to that used by [Lucas, 1984] and

others, with the following differences:

1. the equations for computing theg andA are different (based on spline interpolation)

2. an additional diagonal term� is added for stability9

3. there is a step size�.

The step size� is necessary because we are ignoring the off-block-diagonal terms inA, which can

be quite significant. An optimal value for� can be computed at each iteration by minimizing

∆E��d� � �2dTAd� 2�dTg�

i.e., by setting� � �d � g���dTAd�. The denominator can be computed without explicitly

computingA by noting that

dTAd �
X
i

�Gx
i �ui �Gy

i �vi�
2 where �ui �

X
j

wij�ûj� �vi �
X
j

wij�v̂j�

and the��ûj� �v̂j� are the components ofd.

To handle larger displacements, we run our algorithm in a coarse-to-fine (hierarchical) fashion.

A Gaussian image pyramid is first computed using an iterated 3-pt filter [Burt and Adelson,

7Excessivefill in prevents the application of direct sparse matrix solvers [Terzopoulos, 1986; Szeliski, 1989].
8The vectorĝ � B�1g is called thepreconditioned residual vector. For preconditioned conjugate gradient

descent, thedirection vector d is set toĝ.
9A Bayesian justification can be found in [Simoncelliet al., 1991], and additional possible local weightings in

[Lucas, 1984, p. 20].
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1983]. We then run the algorithm on one of the smaller pyramid levels, and use the resulting flow

estimates to initialize the next finer level (using bilinear interpolation and doubling the displacement

magnitudes). Figure 3 shows a block diagram of the processing stages involved in our spline-based

image registration algorithm.

Figure 4 shows an example of the flow estimates produced by our technique. The input image is

256�240 pixels, and the flow is displayed on a 30�28 grid. We used 16�16 pixel spline patches,

and 3 levels in the pyramid, with 9 iterations at each level. The flow estimates are very good in

the textured areas corresponding to the Rubik cube, the stationary boxes, and the turntable edges.

Flow vectors in the uniform intensity areas (e.g., table and turntable tops) are fairly arbitrary. This

example uses no regularization beyond that imposed by the spline patches, nor does it threshold

flow vectors according to certainty. For a more detailed analysis, see Section 8.

5 Global (planar) flow estimation

In many applications, e.g., in the registration of pieces of a flat scene, when the distance between

the camera and the scene is large [Bergenet al., 1992], or when performing a coarse registration

of slices in a volumetric data set [Carlbomet al., 1991], a single global description of the motion

model may suffice. A simple example of such a global motion is an affine flow [Koenderink and

van Doorn, 1991; Rehg and Witkin, 1991; Bergenet al., 1992]

u�x� y� � �m0x�m1y �m2�� x

v�x� y� � �m3x�m4y �m5�� y� (15)

The parametersm � �m0� � � � �m5�
T are called theglobal motion parameters. Models with fewer

degrees of freedom such as pure translation, translation and rotation, or translation plus rotation

and scale (similarity transform) are also possible, but they will not be studied in this paper.

To compute the global motion estimate, we take a two step approach. First, we define the spline

control vertices ˆuj � �ûj� v̂j�T in terms of the global motion parameters

ûj �

�
� x̂j ŷj 1 0 0 0

0 0 0 x̂j ŷj 1

�
�m�

�
� x̂j

ŷj

�
� � Tjm� x̂j� (16)

Second, we define the flow at each pixel using our usual spline interpolation. Note that for affine
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Figure 3: Block diagram of spline-based image registration

The numbers in the lower right corner of each processing box refer to the associated equation

numbers in the paper.
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Figure 4: Example of general flow computation

(or simpler) flow, this gives the correct flow at each pixel if linear or bilinear interpolants are used.10

For affine (or simpler) flow, it is therefore possible to use only a single spline patch.11

Why use this two-step procedure then? First, this approach will work better when we generalize

our motion model to 2D projective transformations (see below). Second, there are computational

savings in only storing thewij for smaller patches. Lastly, we can obtain a better estimate of the

Hessian atm at lower computational cost, as we discuss below.

To apply Levenberg-Marquardt as before, we need to compute both the gradient of the cost

function with respect tom and the Hessian. Computing the gradient is straightforward

gm �
�E

�m
�
X
j

�ûj

�m

�E

�ûj
�
X
j

TT
j gj (17)

wheregj � �guj � g
v
j �

T . The Hessian matrix can be computed in a similar fashion

Am �
�2E

�mT�m
�
X
jk

TT
j AjkTk� (18)

where theAjk are the 2� 2 submatrices ofA.

10The definitions of ˆuj andv̂j would have to be adjusted if biquadratic splines are being used.
11Multiple affine patches can also be used to track features [Rehg and Witkin, 1991]. Our general flow estimator

(Section 4) performs a similar function, except in parallel and with overlapping windows.
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We can approximate the Hessian matrix even further by neglecting the off-diagonalAjk matri-

ces. This is equivalent to modeling the flow estimate at each control vertex as being independent of

other vertex estimates. When the spline patches are sufficiently large and contain sufficient texture,

this turns out to be a reasonable approximation.

To compute the optimal step size�, we let

d � Tdm (19)

whereT is the concatenation of all theTj matrices, and then set� � �d � g���dTAd� as before.

Figure 5 shows a block diagram of the processing stages involved in the global motion estimation

algorithms presented in this and the next section.

Examples of our global affine flow estimator applied to two different motion sequences can

be seen in Figures 6 and 7. These two sequences were generated synthetically from a real base

image, with Figure 6 being pure translational motion, and Figure 7 being divergent motion [Barron

et al., 1994]. As expected, the motion is recovered extremely well in this case (see Section 8 for

quantitative results).

A more interesting case, in general, is that of a planar surface in motion viewed through a

pinhole camera. This motion can be described as a 2D projective transformation of the plane

u�x� y� �
m0x�m1y �m2

m6x�m7y � 1
� x

v�x� y� �
m3x�m4y �m5

m6x�m7y � 1
� y� (20)

Our projective formulation12 requires 8 parameters per frame, which is the same number as the

quadratic flow field used in [Bergenet al., 1992]. However, our formulation allows for arbitrarily

large displacements, whereas [Bergenet al., 1992] is based on instantaneous (infinitesimal) motion.

Our formulation also does not require the camera to be calibrated, and allows the internal camera

parameters (e.g., zoom) to vary over time. The price we pay is that the motion field is no longer a

linear function of the global motion parameters.

To compute the gradient and the Hessian, we proceed as before. We use the equations

ûj �
m0x̂j �m1ŷj �m2

m6x̂j �m7ŷj � 1
� x̂j

12In its full generality, we should have anm8 instead of a 1 in thedenominator. The situationm8 � 0 occurs only

for 90� camera rotations.
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Figure 5: Block diagram of global motion estimation

The numbers in the lower right corner of each processing box refer to the associated equation

numbers in the paper.
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Figure 6: Example of affine flow computation: translation

Figure 7: Example of affine flow computation: divergence (zoom)
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v̂j �
m3x̂j �m4ŷj �m5

m6x̂j �m7ŷj � 1
� ŷj (21)

to compute the spline control vertices, and use the B-spline interpolants to compute the flow at each

pixel. This flow is not exactly equivalent to the true projective flow defined in (20), since the latter

involves a division at each pixel. However, the error will be small if the patches are small and/or

the perspective distortion (m6�m7) is small.

To compute the gradient, we note that

�ûj �
1
Dj

�
� x̂j ŷj 1 0 0 0 �x̂jN

u
j �Dj �ŷjN

u
j �Dj

0 0 0 x̂j ŷj 1 �x̂jN
v
j �Dj �ŷjN

v
j �Dj

�
� �m � Tj�m (22)

whereNu
j � m0x̂j � m1ŷj � m2 andNv

j � m3x̂j � m4ŷj � m5 are the current numerators of

(21), Dj � m6x̂j � m7ŷj � 1 is the current denominator, andm � �m0� � � � �m7�
T . With this

modification to the affine case, we can proceed as before, applying (17)–(19) to compute the global

gradient, Hessian, and the stepsize. Thus, we see that even though the problem is no longer linear,

the modifications involve simply using an extra division per spline control vertex. Figure 8 shows

an image which has been perspectively distorted and the accompanying recovered flow field. The

motion is that of a plane rotating around itsy axis and moving slightly forward, viewed with a wide

angle lens.

6 Mixed global and local (rigid) flow estimation

A special case of optic flow computation which occurs often in practice is that ofrigid motion,

i.e., when the camera moves through a static scene, or a single object moves rigidly in front of

a camera. Commonly used techniques (direct methods) based on estimating the instantaneous

camera egomotion�R���� t� and a camera-centered depthZ�x� y� are given in [Horn and Weldon

Jr., 1988; Hanna, 1991; Bergenet al., 1992]. This has the disadvantage of only being valid for small

motions, of requiring a calibrated camera, and of sensitivity problems with the depth estimates.13

Our approach is based on aprojective formulation of structure from motion [Hartleyet al.,

1992; Faugeras, 1992; Mohret al., 1993; Szeliski and Kang, 1994]

u�x� y� �
m0x�m1y �m8 z�x� y� �m2

m6x�m7y �m10z�x� y� � 1
� x

13[Bergenet al., 1992] mitigate theZ sensitivity problem by estimating 1�Z�x� y� instead.
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Figure 8: Example of 2D projective motion estimation

v�x� y� �
m3x�m4y �m9 z�x� y� �m5

m6x�m7y �m10z�x� y� � 1
� y� (23)

This formulation is valid for any pinhole camera model, even with time varying internal camera

parameters. The local shape estimatesz�x� y� areprojective depth estimates, i.e., the�x� y� z�1�

coordinates are related to the true Euclidean coordinates�X�Y�Z�1� through some 3-D projective

transformation (collineation) which can, given enough views, be recovered from the projective

motion estimates [Szeliski, 1994b].14

Compared to the usual rigid motion formulation, we have to estimate more global parameters

(11 instead of 6) for the global motion, so we might be concerned with an increased uncertainty

in these parameters. However, we do not require our camera to be calibrated or to have fixed

internal parameters. We can also deal with arbitrarily large displacements and non-smooth motion.

Furthermore, situations in which either the global motion or local shape estimates are poorly

recovered (e.g., planar scenes, pure rotation) do not cause any problems for our technique.

A special case of the rigid motion problem is when we are given a pair of calibrated images

14There is an ambiguity in the shape recovered, i.e., we can add any plane equation to thez coordinates,z� �

ax� by � cz � d, and still have a valid solution after adjusting them l. This ambiguity is not a problem for gradient

descent techniques.



20 6 Mixed global and local (rigid) flow estimation

(stereo) or a set ofweakly calibrated images (only the epipoles in the images are known [Hartley

et al., 1992; Faugeras, 1992]). In either case, we can compute theml, resulting in a simple

estimation problem inz�x� y�. We can then either proceed to resample (rectify) the images so that

corresponding pixels lie along scanlines [Hartley and Gupta, 1993], or we can directly work with

the original images, proceeding as below but omitting them update step.

To compute the global and local flow estimates, we combine several of the approaches developed

previously in the paper. First, we compute the 2D flows at the control vertices by evaluating (23)

at the vertex locationsf�x̂j� ŷj�g. We compute the gradients and Hessian with respect to the global

motion parameters as before, with

Tj �
1
Dj

�
� x̂j ŷj 1 0 0 0 �x̂jN

u
j �Dj �ŷjN

u
j �Dj ẑj 0 �ẑjN

u
j �Dj

0 0 0 x̂j ŷj 1 �x̂jN
v
j �Dj �ŷjN

v
j �Dj 0 ẑj �ẑjN

v
j �Dj

�
� � (24)

Nu
j � m0x̂j �m1ŷj �m8ẑj �m2, Nv

j � m3x̂j �m4ŷj �m9ẑj �m5, andDj � m6x̂j �m7ŷj �

m10ẑj � 1. The derivatives with respect to the depth estimates ˆzj are

gzj �
�E

�ẑj
�

�E

�ûj

�ûj

�ẑj
�
�E

�v̂j

�ûj

�ẑj
� guj

m8�m10N
u
j �Dj

Dj
� gvj

m9 �m10N
v
j �Dj

Dj
(25)

The Hessian matrixAz for thez � fẑjg parameters has components

azjk � �puv�z
j �TAjkp

uv�z
k with p

uv�z
j � �pu�zj � p

v�z
j �T � �

�ûj

�ẑj
�
�v̂j
�ẑj

�T � (26)

There are two ways at this point to estimate them andz parameters. We can take simultaneous

steps in∆m and∆z, or we can alternate steps in∆m and∆z. The former approach is the one

we adopted in [Szeliski, 1994b], since the full Hessian matrix had already been computed thus

enabling a regular Levenberg-Marquardt step, and this proved to have faster convergence. In this

work, we adopt the latter approach, since it proved to be simpler to implement. We plan to compare

both approaches in future work.

The performance of our rigid motion estimation algorithm on a sample image sequence is

shown in Figure 9. As can be seen, the overall direction of motion (theepipolar geometry) has

been recovered well, and the motion estimates look reasonable.15 The computed depth map is

shown in grayscale. The lower right flow field shows the local (general flow) model applied to the

same image pair.
15We initialized them vector in this example to a horizontal epipolar geometry. If unknown, the epipolar geometry

can be recovered from a general 2-D motion field [Faugeras, 1992; Hartleyet al., 1992; Hartley and Gupta, 1993;

Szeliski, 1994b].
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(a) (b)

(c) (d)

Figure 9: Example of 3D projective (rigid) motion estimation

(a) intensity image, (b) constrained rigid flow, (c) recovered depth map, (d) unconstrained local

flow (for comparison)
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7 Multiframe flow estimation

Many current optical flow techniques use more than two images to arrive at local estimates of

flow. This is particularly true of spatio-temporal filtering approaches [Adelson and Bergen, 1985;

Heeger, 1987; Fleet and Jepson, 1990]. For example, the implementation of [Fleet and Jepson,

1990] described in [Barronet al., 1994] uses 21 images per estimate. Stereo matching techniques

have also successfully used multiple images [Bolleset al., 1987; Matthieset al., 1989; Okutomi and

Kanade, 1993]. Using large numbers of images not only improves the accuracy of the estimates

through noise averaging, but it can also disambiguate between possible matches [Okutomi and

Kanade, 1993].

The extension of our local, global, and mixed motion models to multiple frames is straightfor-

ward. For local flow, we assume that displacements between successive images and a base image

are known scalar multiples of each other,

ut�x� y� � stu1�x� y� and vt�x� y� � stv1�x� y�� (27)

i.e., that we have linear flow (no acceleration).16 We then minimize the overall cost function

E�fui� vig� �
X
t

X
i

�It�xi � stui� yi � stvi�� I0�xi� yi��
2� (28)

This approach is similar to thesum of sum of squared-distance (SSSD) algorithm of [Okutomi and

Kanade, 1993], except that we represent the motion with a subsampled set of spline coefficients,

eliminating the need for overlapping correlation windows.

The modifications to the flow estimation algorithm are minor and obvious. For example, the

gradient with respect to the local flow estimate ˆuj in (8) becomes

guj � 2
X
t

st
X
i

etiG
x
tiwij

with eti andGx
ti being the same asei andGx

i with I1 replaced byIt. Given a block of images,

estimating two sets of flows, one registered with the first image and another registered with the

last, would allow us to do bidirectional prediction for motion-compensated video coding [Le Gall,

1991]. Examples of the improvements in accuracy due to multiframe estimation are given in

Section 8.
16In the most common case, a uniform temporal sampling (st � t) is assumed, but this is not strictly necessary

[Okutomi and Kanade, 1993].



8 Experimental results 23

For global motion estimation, we can either assume that the motion estimatesmt are related

by a known transform (e.g., uniform camera velocity), or we can assume an independent motion

estimate for each frame. The latter situation seems more useful, especially in multiframe image

mosaicing applications. The motion estimation problem in this case decomposes into a set of

independent global motion estimation sub-problems.

The multiframe global/local motion estimation problem is more interesting. Here, we can

assume that the global motion parameters for each framemt are independent, but that the local

shape parameters ˆzj do not vary over time. This is the situation when we analyze multiple arbitrary

views of a rigid 3-D scene, e.g., in the multiframe uncalibrated stereo problem. The modifications

to the estimation algorithm are also straightforward. The gradients and Hessian with respect to

the global motion parametersmt are the same as before, except that the denominatorDtj is now

different for each frame (since it is a function ofmt).

The derivatives with respect to the depth estimates ˆzj are computed by summing over all frames

gzj �
X
t

p
u�z
tj gutj � p

v�z
tj gvtj (29)

where thepu�ztj andpv�ztj (which depend onmt) and thegutj andgvtj (which depend onIt) are different

for each frame. Note that we can no longer get away with a single temporally invariant flow field

gradient�guj � g
u
j � (another way to see this is that the epipolar lines in each image can be arbitrary).

8 Experimental results

In this section, we demonstrate the performance of our algorithms on the standard motion sequences

analyzed in [Barronet al., 1994]. Some of the images in these sequences have already been shown

in Figures 4–9. The remaining images are shown in Figures 10–14. We follow the organization

of [Barronet al., 1994], presenting quantitative results on synthetically generated sequences first,

followed by qualitative results on real motion sequences.

Tables 1–5 give the quantitative results of our algorithms. In these tables, the top two rows

are copied from [Barronet al., 1994]. The errors are reported as in [Barronet al., 1994], i.e.,

by converting flow measurements into unit vector inR3 and taking the angle between them. The

density is the percentage of flow estimates reported to have reliable flow estimates. The computation

times on a DEC 3000 Model 400 AXP for these algorithms range from 1 second for the 100� 100
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Technique
Average

Error
Standard
Deviation Density

Lucas and Kanade (no thresholding) 2�47� 0�16� 100%

Fleet and Jepson (� � 1�25) 0�03� 0�01� 100%

local flow (n � 2� s � 2,L � 1, b � 0) 0�17� 0�02� 100%

local flow (n � 3� s � 2,L � 1, b � 0) 0�07� 0�01� 100%

local flow (n � 5� s � 2,L � 1, b � 0) 0�03� 0�01� 100%

local flow (n � 7� s � 2,L � 1, b � 0) 0�02� 0�01� 100%

affine flow (s � 2,L � 1, b � 0) 0�13� 0�01� 100%

affine flow (s � 4,L � 1, b � 0) 0�06� 0�01� 100%

Table 1: Summary ofSinusoid 1 results

Sinusoid 1 image (single level, 9 iterations) to 30 seconds for the 300�300Nasa Sequence (three

levels, rigid flow, 9 iterations per level).

From the nine algorithms in [Barronet al., 1994], we have chosen to show the Lucas and Kanade

results, since their algorithm most closely matches ours and generally gives good results, and the

Fleet and Jepson algorithm since it generally gave the best results. The most salient difference

between our (local) algorithm and Lucas and Kanade is that we use a spline representation, which

removes the need for overlapping correlation windows, and is therefore much more computationally

efficient. The biggest difference with Fleet and Jepson is that they use the whole image sequence

(20 frames) whereas we normally use only two (multiframe results are shown in Table 3).

As with many motion estimation algorithms, our algorithms require the selection of some

relevant parameters. The most important of these are:

n [2] the number of frames

s [1] the step between frames, i.e., 1 = consecutive frames, 2 = every other frame,� � �

m [16] the size of the patch (width and height,m2 pixels per patch)

L [3] the number of coarse-to-fine levels

b [3] the amount of initial blurring (# of iterations of a box filter)

Unless mentioned otherwise, we used the default values shown in brackets above for the results in

Tables 1–5. Bilinear interpolation was used for the flow fields.

The simplest motions to analyze are two constant-translation sequences,Sinusoid 1 andSquare
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Figure 10:Sinusoid 1 andSquare 2 sample images

2 (Figure 10). The translations in these sequences are�1�585�0�863� and�1�333�1�333� pixels per

frame, respectively. Our local flow estimates for the sinusoid sequence are very good using only

two frames (Table 1), and beat all other algorithms when 7 or more frames are used. For this

sequence, we use a single level and no blurring and take a�s � 2� frame step for better results.

To help overcome local minima for the multiframe (n 	 2) sequences, we solve a series of easier

subproblems [Xuet al., 1987]. We first estimate two-frame motion, then use the resulting estimate

to initialize a three-frame estimator, etc. Without this modification, performance on longer (e.g.,

n � 8) sequences would start to degrade because of local minima. The global affine model motion

estimator performs well.

For the translating square (Table 2), our results are not as good because of the aperture problem,

but with additional regularization, we still outperform all of the nine algorithms studied in [Barron

et al., 1994]. To produce the sparse flow estimates (9–23% density), we set a thresholdTe on

the minimum eigenvalues of the local Hessian matricesAjj interpolated over the whole grid (this

selects areas where both components of the motion estimate are well determined). The affine

(global) flow for the square sequence works extremely well, outperforming all other techniques by

a large margin.

The sequencesTranslating Tree andDiverging Tree were generated using a real image (Figure
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Technique
Average

Error
Standard
Deviation Density

Lucas and Kanade (�2 � 5�0) 0�14� 0�10� 7.9%

Fleet and Jepson (� � 2�5) 0�18� 0�13� 12.6%

local flow (Te � 104) 2�98� 1�16� 9.1%

local flow (s � 2� Te � 104) 1�78� 1�07� 10.1%

local flow (s � 2� �1 � 103� Te � 104) 0�47� 0�27� 23.8%

local flow (s � 2� �1 � 104) 0�13� 0�10� 100%

affine flow 0�03� 0�02� 100%

Table 2: Summary ofSquare 2 results

Technique
Average

Error
Standard
Deviation Density

Lucas and Kanade (�2 � 5�0) 0�56� 0�58� 13.1%

Fleet and Jepson (� � 1�25) 0�23� 0�19� 49.7%

local flow (n � 2) 0�35� 0�34� 100%

local flow (n � 3) 0�30� 0�30� 100%

local flow (n � 5) 0�24� 0�15� 100%

local flow (n � 8) 0�19� 0�10� 100%

affine flow 0�17� 0�12� 100%

Table 3: Summary ofTranslating Tree results
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Technique
Average

Error
Standard
Deviation Density

Lucas and Kanade (�2 � 5�0) 1�65� 1�48� 24.3%

Fleet and Jepson (� � 1�25) 0�80� 0�73� 46.5%

local flow (s � 4� L � 1) 0�98� 0�74� 100%

local flow (s � 4� L � 1� �1 � 103) 0�78� 0�47� 100%

affine flow 2�51� 0�77� 100%

Table 4: Summary ofDiverging Tree results

Technique
Average

Error
Standard
Deviation Density

Lucas and Kanade (�2 � 5�0) 3�22� 8�92� 8.7%

Fleet and Jepson (� � 1�25) 5�28� 14�34� 30.6%

local flow (s � 2, Te � 3000) 2�19� 5�86� 23.1%

local flow (s � 2, Te � 2000) 3�06� 7�54� 39.6%

local flow, cropped (s � 2) 2�45� 3�05� 100%

rigid flow, cropped (s � 2) 3�77� 3�32� 100%

Table 5: Summary ofYosemite results

7) and synthetic (global) motion. Our results on the translating motion sequence (Table 3) are as

good as any other technique for the local algorithm (note the difference in density between our

results and the previous ones), and outperform all techniques for the affine motion model, even

though we are just using two frames from the sequence. The results on the diverging tree sequence

are good for the local flow, but not as good for the affine flow. These results are comparable or

better than the other techniques in [Barronet al., 1994] which produce 100% density.

The final motion sequence for which quantitative results are available isYosemite (Figure

11 and Table 5). The images in this sequence were generated by Lynn Quam using his texture

mapping algorithm applied to an aerial photograph registered with a digital terrain model. There

is significant occlusion and temporal aliasing, and the fractal clouds move independently from the

terrain. Our results on this more realistic sequence are better than any of the techniques in [Barron

et al., 1994], even though we again only use two images. As expected, the quality of the results

depends on the thresholdTe used to produce sparse flow estimates, i.e., there is a tradeoff between
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Figure 11:Yosemite sample image and flow (unthresholded)

the density of the estimates and their quality. We also ran our algorithm on just the lower 176

(out of 252) rows of the images sequence. The dense (unthresholded) estimates are comparable to

the thresholded full-frame estimates. Unfortunately, the results using the rigid motion model were

slightly worse.

To conclude our experimental section, we show results on some real motion sequences for

which no ground truth data is available. TheSRI Trees results have already been presented in

Figure 9 for both rigid and local (general) flow. Figure 12 shows theNASA Sequence in which

the camera moves forward in a rigid scene (there is significant aliasing). The motion estimates

look quite reasonable, as does the associated depth map (not shown).17 Figure 13 shows the sparse

flow computed for theRubik Cube sequence (the dense flows were shown in Figure 4). The areas

with texture and/or corners produce the most reliable flow estimates. Finally, the results on the

Hamburg Taxi are shown in Figure 14, where the independent motion of the three moving cars

can be clearly distinguished. Overall, these results are comparable or better than those shown in

[Barronet al., 1994].

Much work remains to be done in the experimental evaluation of our algorithms. In addition

to systematically studying the effects of the parametersn, s, m, L, andb (introduced previously),

we plan to study the effects of different spline interpolation functions, the effects of different

preconditioners, and the usefulness of using conjugate gradient descent.

17For this sequence and for the Yosemite sequence, we initialized them vector to a forward looming motion.
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/s.23.pp > /dev/null] --- rigid flow [compute_flow -d64 -n9 -l3 -p -s8 -w3 -y -e8 -Dtmp2.dump -M8 -L0,10,0 -Z1.0 nasa/s.19.pp nasa/s.23.pp > /

Image size 300 x 300    Subsampled by 8    scaled by   3.000

Figure 12:NASA Sequence, rigid flow

Figure 13:Rubik Cube sequence, sparse flow
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Figure 14:Hamburg Taxi sequence, dense local flow

9 Discussion

The spline-based motion estimation algorithms introduced in this paper are a hybrid of local

optic flow algorithms and global motion estimators, utilizing the best features of both approaches.

Like other local methods, we can produce detailed local flow estimates which perform well in

the presence of independently moving objects and large depth variations. Unlike correlation-

based methods, however, we do not assume a local translational model in each correlation window.

Instead, the pixel motion within each of our patches can model affine or even more complex motions

(e.g., bilinear interpolation of the four spline control vertices can provide an approximation to local

projective flow). This is especially important when we analyze extended motion sequences, where

local intensity patterns can deform significantly. Our technique can be viewed as a generalization

of affine patch trackers [Rehg and Witkin, 1991; Shi and Tomasi, 1994] where the patch corners

are stitched together over the whole image.

Another major difference between our spline-based approach and correlation-based approaches

is in computational efficiency. Each pixel in our approach only contributes its error to the 4

spline control vertices influencing its displacement, whereas in correlation-based approaches, each

pixel contributes tom2 overlapping windows. Furthermore, operations such as inverting the local

Hessian or computing the contribution to a global model only occur at the spline control vertices,

thereby providing anO�m2� speedup over correlation-based techniques. For typically-sized patches

(m � 8), this can be significant. The price we pay for this efficiency is a slight decrease in the
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resolution of the computed flow field, especially when compared to locally adaptive widows

[Okutomi and Kanade, 1992] (which are extremely computationally demanding). However, since

window-based approaches produce highly correlated estimates anyway, we do not expect this

difference to be significant.

Compared to spatio-temporal filtering approaches, we see a similar improvement in compu-

tational efficiency. Separable filters can reduce the complexity of computing the required local

features fromO�m3� toO�m�, but these operations must still be performed at each pixel. Further-

more, a large number of differently tuned filters are normally used. Since the final estimates are

highly correlated anyway, it just makes more computational sense to perform the calculations on a

sparser grid, as we do.

Because our spline-based motion representation already has a smoothness constraint built

in, regularization, which requires many iterations to propagate local constraints, is not usually

necessary. If we desire longer-range smoothness constraints, regularization can easily be added to

our framework. Having fewer free variables in our estimation framework leads to faster convergence

when iteration is necessary to propagate such constraints.

Turning to global motion estimation, our motion model for planar surface flow can handle

arbitrarily large motions and displacements, unlike the instantaneous model of [Bergenet al.,

1992]. We see this as an advantage in many situations, e.g., in compositing multiple views of

planar surfaces [Szeliski, 1994a]. Furthermore, our approach does not require the camera to be

calibrated and can handle temporally-varying internal camera parameters. While our flow field is

not linear in the unknown parameters, this is not significant, since the overall problem is non-linear

and requires iteration.

Our mixed global/local (rigid body) model shares similar advantages over previously devel-

oped direct methods: it does not require camera calibration and can handle time-varying camera

parameters and arbitrary camera displacements. Furthermore, experimental evidence from some

related structure from motion research [Szeliski, 1994b] suggests that our projective formulation

of structure and motion converges more quickly than traditional Euclidean formulations.

Our experimental results suggest that our techniques are competitive in quality with the best

currently available motion estimators examined in [Barronet al., 1994], especially when additional

regularization is used. A more complete experimental evaluation remain to be done.
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10 Future work and Conclusions

To improve the performance of our algorithm on difficult scenes with repetitive textures, we are

planning to add local search, i.e., to evaluate several possible displacements instead of just relying

on gradient descent [Anandan, 1989; Singh, 1990]. We also plan to study hierarchical basis

functions as an alternative to coarse-to-fine estimation [Szeliski, 1990]. This approach has proven

to be very effective in other vision problems such as surface reconstruction and shape from shading

where smoothness or consistency constraints need to be propagated over large distances [Szeliski,

1991]. It is unclear, however, if this is a significant problem in motion estimation, especially with

richly textured scenes. Finally, we plan to address the problems of discontinuities and occlusions

[Geigeret al., 1992], which must be resolved for any motion analysis system to be truly useful.

In terms of applications, we are currently using our global flow estimator to register multiple

2D images, e.g., to align successive microscope slice images or to composite pieces of flat scenes

such as whiteboards seen with a video camera [Szeliski, 1994a].

We plan to use our local/global model to extract 3D projective scene geometry from mul-

tiple images. We would also like to study the performance of our local motion estimator in

extended motion sequences as a parallel feature tracker, i.e., by using only estimates with high

local confidence. Finally, we would like to test our spline-based motion estimates as predictors for

motion-compensated video coding as an alternative to block-structured predictors such as MPEG.

To summarize, spline-based image registration combines the best features of local motion

models and global (parametric) motion models. The size of the spline patches and the order of

spline interpolation can be used to vary smoothly between these two extremes. The resulting

algorithm is more computationally efficient than correlation-based or spatio-temporal filter-based

techniques while providing estimates of comparable quality. Purely global and mixed local/global

estimators have also been developed based on this representation for those situations where a more

specific motion model can be used.
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