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Order preserving data compression can improve sorting and searching
performance, and hence the performance of database systems. We describe
a new parsing (tokenization) technique that can be effectively applied to
“keys”, producing substantial compression. It can be applied to both the
uncompressed and compressed strings, permiting a more flexible choice of
variable length dictionary entries and their compressed forms. The key notion
is that the way that entries partition the space of strings determines how the
entries are to be parsed. The result is economy in the number of encodings
that are needed in order to preserve order and great flexibility in how they
are encoded. We illustrate one use of order preserving compression, padding
character compression for multifield keys. This demonstrates the dramatic
gains possible with the new technique, some of which cannot be achieved by
any other method.

Keywords: compression, order preserving, padding, multifield, searching,
sorting
©Digital Equipment Corporation 1994. All rights reserved.






1 INTRODUCTION 1

1 Introduction

There are many techniques that permit the lossless compression of data.
Most of these compression techniques do not, however, preserve the ordering
of the compressed data [5, 2]. There are important reasons for wanting data
compression that preserves order. Such a compression technique facilitates
both sorting and searching.

Sorting: Tag sorting is a method by which, instead of moving entire records
when sorting them, one extracts the sort key (the tag) of each record
and stores it with a record pointer [6]. This reduces greatly the amount
of data that needs to be moved during sorting and improves cache
locality during comparisons and moves. AlphaSort [8], currently the
world’s fastest sort, exploits tag sort in this way. Order preserving
key compression reduces the size of the tags, speeds comparisons and
moves, and further benefits cache locality. There is an especially large
payoff for large tags and multifield tags.

Searching: The index terms in an index tree, e.g. a B-tree [1], can store the
order preserved compressed keys instead of the uncompressed variants.
This permits a binary search within the index node, while facilitating
increased fanout. This is particularly important when dealing with
multifield keys [3]. Without being able to eliminate the storage used
by the pad characters, the fixed size keys must be represented in full.
Such multifield keys can destroy index node fanout. This leads to
increased index tree height and reduced search performance, as well as
greatly increasing the storage consumed by each index.

For both of these compression tasks, it is important that the compression
technique be static as well as order preserving. Only a static technique will
preserve the order over time, which is important in both these applications.
This rules out many of the most powerful techniques, such as those based
on the Ziv-Lempel method [10], which are more attuned to compression of
long text passages in any event. Also, the need to preserve order eliminates
many dictionary techniques such as Huffman’s [5]. As we shall see, however,
our new approach can be applied to non-order preserving situations as well,
permitting us to potentially do better than Huffman coding.



1 INTRODUCTION 2

1.1 Order Preserving Compression

There are many special case order preserving compressions. For example, the
characters represented by bytes might not be dense, e.g. the byte can encode
more characters than are needed. Alphabetic characters might need only 26
distinct bit patterns, perhaps up to 64 if one includes upper and lower case
and some punctuation. A byte can encode 256 patterns in its eight bits,
while 64 patterns requires only six bits, which if used for the representation,
would compress the data by 25%. This may be effective in some cases, but
this compression is not large, nor can it be exploited as a general method.

1.1.1 Arithmetic Compression

Arithmetic compression can be used for order preserving string compression.

It is based on knowing the probabilities of the items to be encoded, and

works by adding cumulative probabilities to the results of prior encodings

that have already been calculated. This calculation preserves ordering when

the cumulative probabilities are computed based on entries in sort order [2].
Two factors work against using arithmetic coding.

o Especially for tagged sorts, where every sort key needs compression
during the run time of the sort operation, one needs the compression
algorithm to work at very high speed. Dictionary approaches, especially
those that can deal with units of multiple symbols, are much faster than
arithmetic methods. !

e A dictionary approach can be very closely tailored to the problem. For
example, one might compress some entries without compressing others.
Indeed, we illustrate this in our running example.

Finally, arithmetic coding, while optimal given the right model of the in-
put, does not show much improvement over dictionary methods when the
frequencies of dictionary entries are all small. Hence, it is hard to justify its
increased computational cost.

In [7], arithmetic coding was reported as being a factor of 40 slower than their dictio-
nary approach.



1 INTRODUCTION 3

1.1.2 Dictionary Compression Methods

One systematic and “optimal” method of performing order preserving com-
pression is the Hu-Tucker algorithm [5]. Like Huffman coding, it builds an
optimal weighted binary tree, where the weights are assigned based on the
frequency of the entry to be encoded. The entries constitute a “dictionary”
of tokens to be compressed. Unlike Huffman encodings, the weighted nodes
cannot be re-arranged arbitrarily because the order of the compressed forms
needs to be the same as the order of the original entries. Like Huffman’s
method, the compressed forms are of variable size and have the prefix prop-
erty in which no form is a prefix of any other.
Hu-Tucker has two limitations also.

e Hu-Tucker does not address the issue of how to parse the input string.
This problem needs to be solved so as to permit correct ordering of
dictionary entries. In particular, how does one order entries when one
entry is a prefix of a second entry?

e The set of compressed forms is required to have the prefix property by
the limitations in decoder parsing. It is important both for effectiveness
of compression and for flexibility that we not require the prefix property
for the encoded forms.

1.2 Ouwur Approach

Our method, which we shall refer to as the ALM method for obvious reasons,
is a dictionary method in which the parsing for encoding and decoding can
be performed by the same parser. And, importantly, the parser does not
require that dictionary entries have the prefix property. Thus, ALM permits
very long strings to be compressed very flexibly. The parsing method relies
on the ordering of the dictionary entries. Order preservation is assured by
ordering encoded forms in the same order as the dictionary entries. Ordering
of entries may, however, require information about strings that follow the
entries.

ALM'’s parsing method permits us to reduce the number of encodings
needed to preserve order compared with its only real competitor, the ZIL
method [9] which we learned of during the writing of this paper. ALM’s very
flexible parsing also permits more choice of compressed forms, leading to
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potentially higher compression. We briefly compare ZIL to ALM in section
4.

1.3 Multifield Compression
1.3.1 The Problem

In many database systems, and in particular, in the ISO standard SQL [4],
only fixed length fields are supported. Thus, when one has, for example,
a NAME field in an EMPLOYEE relation, the size of the field must be
specified as sufficiently large to accommodate the names of all employees.
Typically, and surely in this case, the average size of an employee’s name is
much shorter. It is not unusual to have a NAME field of 50 to 100 bytes
while the typical employee name is perhaps 15 to 20 bytes.

The SQL standard is very precise as to what is required when fields of
different lengths are compared. One extends the shorter field with blanks
(‘20°X) until the shorter field is of the same length as the longer field and
then one does the comparison as between two fields of the same length. The
correct result can then typically be achieved by using the standard hardware
supported byte string comparison. Thus:

[{3 ” .,

xyz” :: “xyzuvw” means “xyz ULIL” 2 “xyzuvw”

where LI denotes a blank and :: signifies comparison. Representing strings
using Ll as our symbol for a blank will be our consistent practice throughout
this paper.)

Multifield comparisons require that every component field be padded out
to its declared length. Thus, we have

A || B:: A’ || B’ (where || denotes concatenation) means
val(A) || “uul” || val(B) || “uu” : val(A’) || “uoud” || val(B’) || “U”

where the different number of pad characters are intended to denote that the
relevant values are of different lengths, all shorter than the declared lengths
of A or B.

ALM works well in solving the multifield compression problem. We use

this problem as a running example to illustrate the power of the ALM ap-
proach.
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1.3.2 Prior Work

Multifield comparison was recognized as a problem during the System R
project at IBM and an IBM technical report [3] describes their solution.
Briefly, they propose that padding characters can be truncated if one inserts
control characters at intervals of N characters, where N is a fixed parame-
ter, into the resulting concatenated character string. The control characters
indicate whether the next field begins or the current field continues. Since
the control characters are at fixed intervals, a byte string compare will al-
ways compare one control character with another. The control character
that starts a new field always compares low to the control character for a
field continuation. Values are padded out to an integral multiple of N, which
means that fields always begin immediately following a control character.
The specific control characters used were the following:

‘FF’X : denotes that the preceding N bytes contain no padding characters
and that the field is continuing.

‘nn’X : denotes that the previous field ends within the preceding N bytes
with ‘nn’X denoting, in hexadecimal, how many non-padding charac-
ters there were in the preceding N bytes of the representation.

In [3], an example of the representation of a key consisting of the two
fields with values “ABCDEF” and “XYZ” is the following, with N = 4:

CCABCD" || ‘FF’X || “‘EF"|]0000*X || ‘02X | *XYZ"}]1¢00°X|]|‘03°’X
| | | | |
Control Pad Control Pad Control

For this method, continuing fields always compare high to fields that are
terminating. Further, if both fields are terminating, the longer one compares
high. Unfortunately, this is not the way that comparison is specified in
SQL. It is not the same as extending the fields with blanks, which have a
hexadecimal representation of ‘20’X.

1.3.3 Impossibility of Simple Concatenation

In [3], it was shown that multifield comparison cannot be solved with an
encoding that involves a straightforward concatenation of variable length
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strings, no matter what information is appended onto the end of each com-
ponent string. The problem is that any end markers may also occur within
the strings and hence our control characters are compared with data charac-
ters. This proof is correct as it is written! The conclusion drawn is that “an
encoder must mutilate the strings in some way” to correctly preserve order.

We can do much better by viewing the multifield string problem as an
opportunity to apply order preserving compression. The “mutilation” then
merely consists of applying the same order preserving compression to all
instances of padding characters (end markers), be they at the end of a string
or elsewhere in the string.

2 Forward Context Parsing

Solving the multifield string problem by order preserving compression re-
quires that compression be applied to strings of padding characters of many
different lengths. That is, we need to encode strings of one pad character,
two pad characters, .... n pad characters, where clearly, the shorter strings
of padding characters are prefixes of longer strings. This is an example of a
general problem with dictionary compression techniques of encoding entries
which do not have the prefix property.

Consider compressing the pad character strings “LLJ” and “UILILI" such
that order is preserved when all other characters are encoded via the identity
mapping and are unchanged. It should be clear that for the other characters,
the encoding is order preserving. But how do we choose an encoding for these
strings that preserves order. Assume that the encodings for “LILI” and “LILIL"
are e(LiLl) and e(lJULI) and that these encodings have the prefix property so
that they can be uniquely ordered. Suppose that e(LiJ) > e(ULIL)). Then,
when “A” compares low to blank, the string “LILIA” becomes “e(LIL)A”,
which is greater than e(LLILJ). Hence order is not preserved. Now suppose
e(U) < e(ULil). Then when “C” compares high to blank, “ULIC” becomes
“e(L)C” which is less than e(ULILI), which likewise does not preserve order.
Hence, any such scheme which provides only one encoded form for a string
and permits the order to be determined as described cannot succeed.

Notice that an identity transformation trivially preserves order. This
results in different length strings encoding to strings of these different lengths.
That encoding does not have a unique ordering between “LILI” and “LILILI”.
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Rather, how these strings compare is a property of what comes after the
shorter string. With this observation in mind, let us now try to solve the
padding problem.

2.1 Solving the Padding Problem

We would like to compress padding characters into some representation that
preserves order for many lengths of padding character strings and that usually
results in a dramatic reduction in the length of a string. Our prior observation
leads to the following insight. We need different encodings for a given length
string of padding characters depending on whether the character that follows
the string compares high or low to the padding character itself. That way, for
example, a “UILI” would be encoded differently when followed by byte that
compares low to blank than when followed by a byte that compares high.

Since it must be possible to decode the encoded string and recover the
original string, our encodings must represent, in some way, the lengths of the
strings they encode. Further, recall, we need two representations for each
length (except for the longest string that we encode, which is not a prefix of
a longer string), one for the context in which the following character compares
low to the pad character, and one for when it compares high. The following
is a solution to the padding problem. Encode a string of blanks as

U || length(string)

when the character following the string compares low to a blank. Encode
this same string as

U || (2*maxstring - length(string))

when the character following the string compares high to a blank. It is
straightforward that this encoding is order preserving. Short strings compare
low to longer strings when the following character is low and compare high
to longer strings when the following character is high.

Thus, all strings of padding characters with lengths between 1 and 128
can be represented in two bytes. All pad strings are compressed except for
strings of length one which now need two bytes, not one, and those of length
two which remain unchanged.
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Pad Strings | Encoding | Trailing Context

U U1 character comparing low to blank

(Wi U2 "

UL L3 "

UL L4 all contexts, only one encoding needed
([ us character comparing high to blank

L L6 ”

L L7 ”

Table 1: The pyramid formed when multiple length blank strings are to be
parsed so as to preserve order. L is used to denote a blank.

2.2 Identifying and Ordering Strings

The above technique is a special case of a more general approach which .
involves carefully identifying when strings need multiple encodings. One
first identifies all strings for which encodings are desired. Those strings are
organized so as to partition the entire range of string values into disjoint
subranges which are correctly ordered. This requires that strings that are
prefixes of other strings have multiple encodings.

A simple example of how this is done can be seen in the padding example.
Let the maximum size string to be encoded be of length four. Then the
ordering that is needed is given in the Table 1. The pyramid is formed by
the need for the shorter(prefix) string to appear both before and after the
longer string(of which it is a prefix). [This kind of parsing is also permitted
by the ZIL method. ALM parsing, as will be seen in section 4, includes the
ZIL capability as a special case but is strictly more flexible.]

2.3 Strings as Boundaries and Prefixes of Ranges
2.3.1 The Nature of the Problem

We want to generalize from the above examples by applying context depen-
dent encoding to the general order preserving compression problem. There
are two aspects to the order preserving translation problem.
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e The input string must be parsed to yield tokens, which are the units
to be encoded.

o The tokens must be mapped(encoded) so that order is preserved.

The method we are about to describe introduces new techniques for both
of these tasks. The input string is parsed to yield tokens by taking “trailing”
context into account, not just relying on exact match of a string prefix with
the substring denoting the token. In addition, this “trailing” context can be
used to change the mapping of the token. There is no requirement that a
given token be mapped in only one way.

There are usually two additional requirements that must be satisfied if
order preserving translation is to be used for compression.

¢ all input strings must be encodable. This is called dictionary complete-
ness in [2].

e encoded strings must be decodable so as to produce the original input
string.

2.3.2 The Dictionary

To perform this context dependent parsing and translation, we arrange the
entries of our dictionary into an ordered list such that the list decomposes
the entire string space into disjoint ranges. Each range must have a unique
prefix that is one of the tokens on our list. This prefix is consumed by the
encoding process.

Not all dictionaries satisfy the needs of our encoding process. Consider
the set of strings consisting only of “A”, “B”, and “C”. Let us try to compress
sequences of three “A”s and three “B”s. So we construct the table consisting
only of “AAA” and “BBB” as indicated in column 1 of Table 2. These entries
are given encodings that are ordered by the position that our entries have in
the table.

This listing of encodings is clearly inadequate. There is no way, for ex-
ample to translate the strings such as “AB”, or “A”, “B”, or “C” for that
matter, etc. We need to make sure that all possible strings have encodings.
One way to do that is to include all individual characters in the table of
strings to be encoded. One possible result is given in column 2 of Table 2.



2 FORWARD CONTEXT PARSING 10

1 | 2 IE] | Range | Seq. No. |
A A | [A.AAA) 0
AAA | AAA | AAA | [AAA-AAAH] 1
A | (AAA+A) 2
A-,AB)
AB | [AB-,AC) = [AB-ABY] 3
AC [ [AC.,B.) = [AC-ACH] 1
B B B-,BB.) 3
BB | BB | |BB-BBB.) 8
BBB | BBB | BBB | [BBB-,BBB+] 7
B |B | (BBB+.B) 8
[B-,C-) = [B-,B+]
C C (B+,C+] = [C-,C+] 9

Table 2: Strings consisting of characters {A, B, C} to be encoded in an order
preserving way. The pluses and minuses represent respectively the highest
and lowest possible string values.

Now all substrings of length one have translations, and for context inde-
pendent encodings, that would be sufficient to encode all strings. However,
we wish to encode “AAA” and “BBB” as well. With the entries of column 2,
we can encode all prefixes preceding and including “AAA” and also prefixes
following and including “BBB”. However, we cannot translate strings that
order between “AAA” and “B”, for example “AB”. We need entries between
“AAA” and “BBB” to take care of all possibilities between these entries.
One example is given in column 3 of Table 2.

Table 2 illustrates the constraints that must be satisfied to successfully
encode strings in an order preserving way. The tokenization of the input
string requires the following:

e Each range in our table must have as a common prefix one of the entries
on our list.

1. An entry that is not a prefix of a longer entry is the prefix for a
range that includes all strings for which it is a prefix.

2. When one entry is a prefix of a longer adjacent entry, the prefix
for the range bounded by these entries will be this shorter entry.
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e Any string is in exactly one range, and the ranges partition the set of
all strings to be encoded.

All strings fall into exactly one range of the partitioning and the common
prefix for that range is the token that is encoded. Thus, all strings can be
encoded unambiguously. The entries of column 3 partition the set of all
strings and each range of the partition has a prefix that is one of the entries
of the column.

Two observations illustrate the flexibility that is permitted in choosing
which dictionary entries.

1. When a multicharacter string is listed, not all of its prefixes need have
encodings. Thus, “AA” has no explicit encoding, despite the fact that
both “A” and “AAA” do.

2. Symmetry about some encoded multicharacter string is not required.
Thus, “BB” is encoded when it precedes “BBB”, i.e. when it is either
the end of the string or is followed by an “A”. But it is not encoded as a
distinct entry when following “BBB”. There, it is encoded by applying
the encoding for “B” twice.

2.3.3 Traditional Parsing Techniques

The traditional parsing schemes are context independent and are special cases
of the context dependent parsing described here. For context independent
parsing, the prefix property is satisfied and each entry defines a range that
includes all strings of which it is a prefix. Our parsing method deals with
entries satisfying the prefix property as a special case. However, we also
permit entries that can be prefixes of other entries.

There are existing techniques for parsing strings for compression using
dictionaries of variable size entries which do not have the prefix property.
One can do “optimal” parsing in which all possible parsings are examined,
and where the shortest resulting encoded form is selected. This is not typi-
cally done because of the computation cost. More typically, one does greedy
parsing in which the largest matching dictionary entry is the one selected
for encoding. Neither of these two strategies can guaranteed that order is
preserved.
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let In be the input string to be translated
let Out be the output string, initially empty,

that will contain the translated input string
let D[] be the table of decoded entries (to be translated)
let E[] be the table of their translations(encodings)

do while( In “= empty)
i <- Search(D, In) % D[i] is "matching" entry
In <- Truncation(D[i],In)
Out <- Out||E[i]
end do while

return (Out)

Figure 1: The conceptual parsing and translation procedure.

One can also handle variable length dictionary entries by extending the
entries with enough trailing context to ensure that no entry is a prefix of
another. If a given prefix is extended by an additional character, then all
strings that include that prefix followed by any character must be included
in the table. Thus, if “AA” is included in the encoding table, then so must
“AB”, “AC”, etc. This explodes the size of the dictionary and decreases the
effectiveness of the encoding. Of course, when dealing with bit strings, one
has a two character alphabet and the “explosion” is very well contained. For
larger alphabets, context dependent encodings provide real leverage because
they avoid this explosion.

2.4 The Conceptual Parsing Function

Conceptually, the translation process is very simple. The procedure, in its
abstract form is given in Figure 1.

There are, of course, many data structures and search techniques that
might be used in the translation process. Abstractly one searches for a dic-
tionary entry that matches the prefix of the remaining string and for which
the remaining string falls within its associated range, as indicated in, e.g.,
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Table 2. The dictionary is represented by the vector D[] in the procedure. of
Figure 2.

3 Forward Context Encodings

What we have described so far is the parsing of the original string and the
substitution of parsed input tokens from our dictionary by some translated
form. This is half the task. The other half is chosing translated forms for the
tokens so that decoding is possible, and the decoding process itself. Decoding
has the constraint, of course, that it must regenerate the original input string.
We exploit multiple “context dependent” encodings for some substrings in
performing our order preserving compression. However, unlike encoding, a
given substring must have only one translation when we are decoding. We
tackle encoded forms and their decoding here.

3.1 Prefix Property Encoding

The simplest form of encoding is one in which we can totally order the en-
codings. When the ordering of the unencoded substrings, as enumerated say
in Table 2, column 3, matches the ordering of their encoded forms, then or-
der is preserved. We begin by requiring that the encoded forms be capable
of being ordered among themselves with no further context. Thus, we can
order the encodings by simply sorting them. This is possible exactly if the
encoded forms satisfy the prefix properly.

The simplest possible encoding to understand is derived by simply using
the sequence number of the substring to be encoded. Thus, in the example
of Table 2, the numbers from zero to nine can be used. We assume here that
all sequence numbers are represented in the same number of bytes. A given
substring may need to appear more than once in the list of substrings to be
encoded based on its following context. This means that there may not be
a one-one correspondence between encodings and substrings encoded, which
is illustrated in Table 2.

Huffman or Hu-Tucker based encodings are tree addresses of leaves in
optimal trees. The average length of the paths in these “weighted” trees
is minimized based on the frequency with which its unencoded character
appears. The bit strings that are the encoded forms are variable in length
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but have the prefix property. Hence, in decoding the string of encodings, it is
straightforward to identify (parse) this string and map the encoding back to
the unencoded substring. This can be done via a tree walk or, equivalently,
by performing a binary search of a vector containing the encodings, searching
for the encoding that matches the prefix of the string being decoded.

3.2 Symmetry with Parsing Input Strings

Despite the great generality permitted by our translation process, if we con-
fine ourselves to generating encodings with the prefix property, we have not
captured all order preserving translations. In particular, there is a trivial
order preserving translation that is not included. Consider the example in
table 1, and let the substrings identified for encodings be as given in column
3. Then, what we have described does not permit us to use the identity map-
ping for these substrings, despite the fact that this is clearly order preserving
since the original string is unchanged. The crucial point here is that the
variable length encodings do not have the prefix property. It is impossible
to construct a well defined ordering for encoded strings when one encoded
string is a prefix of another without making an assumption about the string
following the substring being encoded. This is, of course, a similar problem
as that encountered by the unencoded forms.

3.3 Better Pad Compression

The above discussion is not merely theoretical. There are good reasons for
wanting the added flexibility described above. Consider yet again the mul-
tifield pad compression problem. Suppose that a multiword text string can
be a value for one of these fields where a blank character is used to separate
the words. We use blank is the pad character as well.

The situation we have constructed results in singleton blanks occurring
with some frequency. In the encoding we described above, all strings of
blanks, including such singletons, require two bytes to represent them, a
blank followed by a representation for the length of the string. So, all single-
ton blank strings are doubled in length. While there may be enough longer
blank strings for us to achieve an overall reduction in the size of the entire
multifield string, we can probably do better. Consider the following blank
string frequencies:
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singleton blank: .75
longer blank string: .25; average length = 10 characters
average blank string: .75%1 + .26%10 = 3.25

Then using our original encoding, we get an average blank string of
.75%2 + .25%2 = 2,00

That is, the average blank string, which before was 3.25 bytes long, will be
reduced by 1.25 bytes, and now be 2 bytes long.

We can do better than this if we do not compress singletons, but only the
longer strings, even if we need to use a longer encoded form for these long
strings. Suppose that this required us to make the longer strings three bytes.
Then

.7b%1 + ,25%3 = 1.5

Thus, we gain an extra .5 bytes per string savings in the encoded strings.
One order preserving encoding that permits the above is to translate
singleton blanks to singleton blanks and all longer strings to

U || length(string)
when LILI is followed by substrings that compare low to blank and
Uu || (2*maxlength - length(string))

when LU is followed by substrings that compare high to blank.

The question is, why is this effective? It is so exactly because the vari-
able length encodings can be ordered correctly when the context, i.e. the
substrings that can follow them, are considered, even though they cannot
be ordered effectively when just considering the substrings them-
selves.

3.4 Ordering the Encodings

We need to understand the correct way to order encodings that do not have
the prefix property and hence require that the following substring be exam-
ined. When we have two encodings, where one is a prefix of the other, it is
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impossible to determine which should come first without making an assump-
tion about what follows the shorter string. The assumption that is usually
implicitly made for comparison purposes is that the shorter string is followed
by binary zeros, and hence that the longer string always compares high to
the shorter string. But when a substring is embedded in a longer string its
following substring can potentially be many other strings. Hence, we need
to order substrings that we wish to use as follows:

Let strl immediately precede str2 in the ordering of unencoded strings as
previously described. Note that strl need not be a prefix of str2. Further,
let HIGH(str) be the highest substring that can follow str and LOW(str) be
the lowest such value.

First, assume that encode(strl) is a prefix of encode(str2). Then we
require that

encode(strl) || (encode(HIGH(strl)) < encode(str2)

Next, assume that encode(str2) is a prefix of encode(strl). Then we require
that

encode(str2) || (encode(LOW(str2)) > encode(strl)

where the comparisons are done out to the full length of the longer string if
that is needed. It is not necessary to compute HIGH(str) or LOW(str) out
further the the length of the longer string as the comparison must distinguish
the ordering by then.

We are accustomed to thinking of HIGH(strl) as the highest possible
string value and similarly, of LOW(strl) as the lowest possible string value,
independent of context. But that is not the case when the strings being
encoded do not have the prefix property. As an example, when dealing with
the encoding of padding blanks (the pyramid example), the string LIL| occurs
twice in the pyramid. The set of strings that follow it in each context are
not the same. It is the context dependent HIGH or LOW string that we use
in the ordering.

The ordering that we need for encoded values is, in fact, exactly the
same ordering property that we need for the unencoded values. There is a
complete symmetry in what is required for these two tables of values. And
exactly the same translation algorithm is used for encoding and decoding.
The only difference is that the roles of the two tables are interchanged.
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3.5 Equivalence of Encoding and Decoding

What we have achieved is order preserving translations in both directions,
where the strings encoded or decoded can be variable length and can be
prefixes of adjacent entries. Indeed, we do not care whether we are encoding
or decoding. The procedure for translation is the same as is given in section
2.4. The translation produced by that procedure is unique. However, a given
substring might be translated differently depending on what follows it. This
is content dependent translation.

When encoding, the usual assumption is that any entry being encoded
can follow any other entry. Decoding works from strings produced by prior
encoding. Hence, for decoding, the set of strings that can follow an entry
may be restricted. However, there is no inherent reason why the entries to be
encoded cannot be context dependent. For example, in English, a ‘q” must be
followed by a ‘u”. Context dependence permits more effective compression.

The correctness of the method relies on the facts that

1. the tokenization is unique (there is no choice in the procedure)
2. the tokenization is complete (tokenizing all input strings),

3. the encoded forms are ordered exactly as the unencoded forms. The
translation table D[] is ordered and the encodings in E[] are ordered in
the same way (when context is considered).

The fact that the decoding satisfies the same constraints permits it to use the
same translation procedure, executed with encodings and decodings reversed.

Thus, the translation process is run in reverse to perform the decoding to
re-create the original string.

4 Comparisons with Other Methods

4.1 Improving on Hu-Tucker

Traditional Huffman and Hu-Tucker encodings are produced from optimal
binary trees, where the tree addresses are the compressed encodings. The
trees are optimal in that the “weighted” lengths of the paths to the leaves is
minimized. By permitting encodings that do not satisfy the prefix property,
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| Frequency | Hu-Tucker | ALM I
49 00 0
.01 01 011
49 10 10
.01 11 1011
Average(Hu-Tucker) = 2.0
Average(ALM) = 49°1 + .01°3 + 492 + .01%4 = 1.54

Table 3: Comparison of Hu-Tucker coding with ALM coding. Hu-Tucker
requires its encoded forms to have the prefix property, while ALM does not.

it 1s possible to construct encodings that are more effective at compressing
data than Hu-Tucker. Consider the example of Figure 2, where we have four
entries to be encoded and we compare ALM with Hu-Tucker coding.

The entry frequencies that are given prevent Hu-Tucker from assigning a
bit string of length less than two to any encoding. ALM is not so constrained.
While ALM cannot assign a ‘1’B as the encoding for the third entry, it can
assign a ‘0’B for the first entry. A ‘1’B cannot be assigned for entry three
because the suffix appended to entry one to form entry two must be greater
than all possible continuations produced by entries one through four. This
suffix is ‘11’B, and no entry starts with a prefix that is greater than ‘10’B.

One can consider ALM in terms of binary trees, in a way analogous to
what Huffman and Hu-Tucker exploit. The difference is that ALM does not
require that only the leaf nodes represent valid encodings. It is certainly true
that not all interior nodes of a binary tree can be used as encodings, but we
can find some that are acceptable. For interior nodes, we also need to know
whether the token so identified is less than, greater than, or both (i.e. the
bit pattern represents two ranges). Applying this observation to our example
gives us the trees of Figure 2.

4.2 Improving on ZIL

ZIL [9] is described as a parsing method based on an augmented trie. We
map our method to an augmented trie to illustrate the difference. First, we
present an example that will serve to demonstrate the ALM generalization
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Hu-Tucker

Figure 2: The binary trees representing the encoded entries from the encod-
ings represent in Table 3. The boxes indicate the nodes that denote encoded
entries, the circles the other interior nodes.

with respect to ZIL.

4.2.1 More Pad Compressions

There is no need for order preserving translations to be symmetric about the
longest string being translated, as was indicated in section 3.3. We only need
do that when we wish to provide a translation for the shorter string in both
contexts.

Using again our padding compression example, we note that very few byte
encodings precede ‘20’X representing a blank which is used as the padding
character. We do not expect to frequently encode a string of blanks followed
by a character that compares low to blanks. Thus, we might want td conserve
our translations of blanks to provide better encodings for the blank strings
that are followed by characters that compare high to blanks. We can do that
by arranging our translation table as follows:

Here we assume that we can only store numbers up to 7 in the byte that
follows the blanks. In reality, we can store numbers up to 255 in a byte. What
the asymmetric entries then permit is for us to compress longer strings of
blanks than when the entries are symmetric. However, these encodings work
only when the blank string is followed by characters that compare high to
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| Padding Strings | Encodings |

U L
[N N W E ug| o
UL U1
L L ]| 6
uu g 7
U L

Table 4: Encoding of strings does not require symmetry about the longest
string. Symmetry is required by the ZIL method.

blank. When the following string compares low to the string “LILULILILILILY,
then each blank is translated as itself, and no compression occurs. Thus,
we can compress strings of blanks up to 256 when using asymmetric entries,
while only compressing strings of blanks up to 128 when using symmetric
entries. Which technique is best depends on the frequencies with which the
entries occur.

4.2.2 The Tries of ALM and ZIL

Let us examine the trie that ALM might use to parse the example of Table
4, and compare it with the closest trie permitted by ZIL. Each leaf of the trie
requires an encoding. ZIL requires at each internal node of the trie that a
“zilch” character appear both before and after the path by which the trie is
being extended with blanks. The effect of this is to give “before” and “after”
encodings of each prefix. With ALM, the one “zilch” extension that is less
than blank occurs after a single blank and provides an entry that encodes
all strings of blanks less than length eight that compare low to a string of
eight blanks. This extension encodes such strings one blank at a time in this
example.

As we have seen in comparing ALM with Huffman and Hu-Tucker meth-
ods, ALM uses the same parsing strategy to decode as it does to encode.
Thus, it provides very flexible encodings as well. The encodings need not
have the prefix property. This is not discussed with the ZIL method [9].
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Figure 3: ALM parse trie for the dictionary of Table 4 compared with the
ZIL parse trie. Blank is denoted by “b”and ”zilch” by “z”. Note thatt ZIL
needs symmetric prefixes. Hence, each ZIL prefix needs two encodings. With
ALM, the "zilch” marked with a “4+” encodes all blank strings shorter than
the maximum length that are followed by strings that compare low to blanks.

5 Discussion

5.1 ALM Framework

ALM encoding is a framework for performing variable length order preserv-
ing translations. It gives you a new forward context method for uniquely
tokenizing strings. That is, the strings considered for encoding might not oc-
cur in arbitrary contexts, but only with a constrained set of following strings.
We can use ALM’s more powerful tokenization to achieve great flexibility in
choosing which strings to encode. We can also use it to expand the choice of
encodings so as to achieve better compression.

The ALM framework provides constraints that can be tested to ensure
that the strings chosen for encoding and the encodings chosen for them are
appropriate for ALM. ALM also provides the procedure which, when pro-
vided with the tables of entries and encodings, does the translation.

The Hu-Tucker method gives you a procedure for generating the encoding,
i.e., you provide the alphabet, you provide the frequencies, and it generates
the optimal weighted tree. The tree addresses of the leaves are a set of bit
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string encodings that have the prefix property and that preserve order. ALM
does not provide this. Rather, it gives you a way of doing context dependent
parsing so that the translatable substrings can be prefixes of other entries.
What entries you choose to translate and what to translate them into remain
your responsibility. So long as the context dependent order is observed for
both original and encoded forms, the translation will preserve order. (One
can also produce translation/compression that does not preserve order. That
is ALM can do the translation for Huffman encoding as well for Hu-Tucker.)

5.2 Results

We have used ALM to solve the multifield comparison problem. It very
efficiently compresses out blanks, providing a more effective solution than its
predecessors. The maximum compression factors achieved for blank strings
are in the range of 128:2. The multifield mapping with blank compression
is implemented in the newest release of DEC Rdb. This compression is fully
conformant with the SQL standard.

We have also illustrated how ALM can out-perform the Hu-Tucker “op-
timal” tree method. The length of the ALM encoding in our example is only
about 75 per cent of the length produced by Hu-Tucker. So it should be
clear that ALM can achieve very substantial compression. We point out also
that translating entries with the prefix propeerty is simply a special case of
context dependent translation. The same translation algorithm is effective.
So, if one generates a Hu-Tucker encoding, one can use the ALM translation
mechanism to do the translation. It is also possible to improve such an en-
coding using the ALM framework by exploiting encodings without the prefix
property.

5.3 Future Work

The largest loose end is discovering methods for generating optimal encodings
given the ALM framework. One can view ALM as producing a tree in which
interior nodes can denote encoded entries, not just leaf nodes. How best
to minimize the weight of entries in that tree is an open problem. How to
minimize the weight when the entries can only appear in some contexts is a
further elaboration of this problem.
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An open question here is whether the order preserving compression is
sufficiently good that the compression can be considered a form of order-
preserving hashing. That is, are the compressed forms even approximately
uniformly distributed? With perfect compression, the answer is yes, as per-
fect compression is only achieved when each bit of an encoding is equally
likely to be either a zero or a one. How close we come to perfect compres-
sion using ALM? And is this good enough so that a “hashing” method will
have search performance that is independent of the number of entries to be
searched.
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