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Abstract

Typically, users of teleconferencing desktop applications must use headphones
to eliminate the direct-path echo introduced by having a loudspeaker and a micro-
phone in the same room. Unfortunately, many users prefer not to use headphones.
Implementing echo cancelation would be one way for desktop audio conferencing
systems to overcome this limitation.

One technique used to remove the echo is to introduce an autoregressive filter
to identify the echo path impulse response defined by the systemfSpeaker + Room
+ Microphoneg. The signal output to the speaker is then filtered by the estimated
echo path impulse response, and the result is subtracted from the degraded input
speech to obtain an estimate of the input speech without echoes.

In thispaper, we describe the identificationprocess which leads to the least mean
square (LMS) algorithms and the recursive least square (RLS) algorithms. We also
present an “Echo-Cancelation Software Lab” whichwas implemented and optimized
to allow real-time testing of the LMS, normalized LMS, homogeneous adaptation,
and individual adaptation algorithms.

Keywords: audio, echo cancelation, least mean square, adaptive filtering, gradient
algorithm, conferencing
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1 Introduction

A typical desktop audio conferencing system uses a speaker and a microphone at
each end of the transmission link. An audible problem occurs, however, when the
output of the speaker is simultaneously recorded by the microphone and then trans-
mitted digitally, hence creating a direct-pathecho which interferes withspokenwords.
Also, reverberations of the output speaker signal on walls, tables and human bodies
located in the conference room add to this direct echo and constitute indirect echoes.

To overcome this problem, a replica of the echoes can be synthesized by modeling
the echo path and then subtracting the result from the outgoing signal. Adaptive
filtering methods can be used to implement this model, and the systemf Speaker
+ Room + Microphoneg can be modelled with an autoregressive filter with time-
varying coefficients. The least mean square (LMS) and recursive least square (RLS)
algorithm classes are most commonly used to update the filter coefficients.

In this paper, Section 2 relates the identification process which leads to the LMS
and the RLS algorithms. The LMS algorithms are then described in Section 3 in
more detail. Section 4 presents an “Echo-Cancelation Software Lab” which was
implemented to allow real-time testing of LMS algorithms such as the LMS, the
normalized LMS, the homogeneous adaptation, and the individual adaptation.

2 Identification, Model and Criterion

2.1 Identification

In parametric spectrum analysis, the power spectrum of a process is estimated by
assuming a modelH�z� for this process�. In the case of the echo path impulse re-
sponse, the unknown systemfSpeaker + Room + Microphoneg is identified as the
output of a linear adaptive filter that is excited by a white-noise process�.

Figure 1 defines the identification procedure used to evaluate the model. The un-
known system and the model are driven by the same inputu�n� which is the in-
coming speech signal from the far-end of a conference. A criterion on the difference
e�n� of the output is optimized, and a feedback is given to the model for adaptation.
e�n� also defines the outgoing signal and is played back at the far-end speaker.

�A good reference for adaptive filter theory is [1].
�By definition, a white-noise process has a constant power spectrum.
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Model: H(z)

Optimization

Criterion

u(n)

s(n)

s’(n)

e(n)

Speaker + Room + Microphone

Figure 1: Identification of unknown systemfSpeaker + Room + Microphoneg

2.2 Model

A model that is of practical utility because of its simple implementation is the au-
toregressive (AR) model. Indeed, the filter’s transfer function is assumed to consist
only of poles. Let this transfer function be denoted by

H�z� �
G

� �
Pp

i�� aiz
�i

where theai are called the autoregressive parameters or filter coefficients,p the
model order and G, the system’s scale factor.

Another way to understand the AR model is to see the outputs�n� of the unknown
system as a linear prediction of the delayed output values and an unknown input
signalu�n� which is defined as white noise:

s�n� �
pX

i��

ais�n� i� � Gu�n�

Therefore, we will approximate the output signal recorded by the microphone as a
linear prediction of the past output signal:

s��n� �
pX

i��

ais�n� i�

When using this model, we have the following error:
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e�n� � s�n�� s��n� � s�n��
pX

i��

ais�n� i�

For the optimal case where the unknown system is autoregressive, the variance of
the error is the square of the scale factor:

E�e�n��� � G�

whereE�x�� is the expected value ofx�.

2.3 Criterion

Since the statistical properties of the room change slowly in time, we define the
model to be time varying.

To estimate the time dependent filter coefficients, we can choose among adaptive
methods that are differentiated by their criterion. There are two criteria commonly
used:

� If the criterion is defined as minimizing the mean squared error at timen,
E�e�n���, compared to the autoregressive parameters, then the algorithm is a
least mean square based algorithm.

� If the criterion is defined as minimizing a weighted sum of squared errors
such as

nX

k��

w�k�e�p�k�

wherew���� w���� ��� is a sequence of weights, then the algorithm is called a
recursive least square (RLS) algorithm.

The computationalcomplexity of the LMS and RLS algorithmsareO�p�andO�p��,
(with p being the order of the model). The use of the LMS algorithms is widespread
due to its computational simplicity.

Note that fast RLS algorithms have been introduced that circumvent the computa-
tional burden of the conventional RLS algorithms. There are two families of such
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fast algorithms, correspondingto two possiblefilter structures: the fast lattice (FLA)
and the fast transversal filter (FTF) algorithms. While the LMS has a computational
complexity of�p multiplications, the FLA and the FTF need	p to 
�p multiplica-
tions. Although less burdensome computationally than RLS, the FTF algorithm can
be subject to numerical instabilityproblems. A solution to this problem is proposed
in [2].

3 The Mean-Squared-Error Criterion

3.1 The Gradient or Steepest-Descent Method

The criterion of the LMS algorithms is defined as minimizing the Mean-Square-
ErrorE�e�n��� compared to the filter coefficient vector:

ap�n� � �a��n�� a��n�� � � � � ap�n��
T

The idea is to search for the pointapmin
on the surfacef�ap�n�� defined by

f�ap�n�� � E��s�n��
pX

i��

ai�n�s�n� i����

To do this, the steepest-descent method is used by successive approximations, con-
verging to the vectorapmin

. The mean-squared-error surface can be viewed as a
�p � ��-dimensional paraboloid wherep is the number of coefficients (or taps) of
the impulse response. The optimum impulse response then corresponds to the min-
imum of the paraboloid.

The gradient method has three steps:

� initialization:

– chose initial vectorap���

� propagation:

– compute gradient at pointap�n�, defined asrf�ap�n��

– move on the surface by going in the opposite direction of the gradient,
modifying the vectorap�n� as follows:

ap�n� �� � ap�n�� �rf�ap�n��
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� termination:

– stop whenjrf�ap�n��j � threshold

where� is the displacement step. As we will show,� controls the speed and con-
dition of convergence.

3.2 The Gradient Algorithm

The following notations are used to define the gradient.

sp�n� � �s�n� ��� s�n� ��� � � � � s�n� p��T

Rp � E�sp�n�sp�n�
T �

cp � E�s�n�sp�n��

The gradient is defined by equation 1 and the propagation step of the gradient algo-
rithm is given by equation 2.

rf�ap�n�� � ��E�ep�n�sp�n�� � �Rpap�n�� �cp (1)

ap�n� �� � ap�n� � ��E�ep�n�sp�n�� (2)

Using equations 1 and 2 and assuming that the gradient is 0 at the minimum, the
estimation error of vectorap�n� is defined by

�ap�n� ��� apmin
� � �I � ��Rp��ap�n�� apmin

�

From thisexpression, we have information about the convergence of the gradient al-
gorithm: the algorithm converges if at each step the norm of vector�ap�n� ��� apmin

�
is smaller than the norm of vector�ap�n�� apmin

�. This is the case if all the eigen-
values�k of the correlation matrixRp satisfy the following condition�:

� � � �
�

�k
�Pointers to initial proofs are given in [3].
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So, by restricting� to

� � � �
�

�max

we are sure that the algorithm converges.

Finding an estimate of�max is not easy. To bypass the estimation, we use the fact
that

Tr�Rp� �
pX

k��

�k � �max

and a sufficient condition (which is restrictive) is to take

� � � �
�

Tr�Rp�
�

�

pE�s�n���

Hence,� can be controlled with an estimate ofE�s�n���which is the average signal
power.

3.3 The LMS Algorithms

In practice, the gradient’s value is not known, but we can estimate it using the input
signal. The LMS algorithms estimate the gradient as the instantaneous expected
value:

rf�ap�n�� � ��E�ep�n�sp�n�� � ��ep�n�sp�n�

With this estimation, the LMS algorithms comprise these steps:

� Initialization:

ak��� � �

� Filter coefficient update:

ak�n � �� � ak�n� � ��ep�n�s�n�
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� Output of system:

ep�n� � s�n��
pX

k��

ak�n�s�n� k�

As shown earlier, the convergence factor� can be controlled with an estimation of
the average signal power. The following four algorithmsdiffer only in the definition
of this estimation:

� TheLMS defines the average signal power as a constantPs. Therefore, the
convergence factor is

� �
�

�pPs
(3)

� TheNormalized LMS algorithm (NLMS) defines the input power as

Ps�n� �� � �Ps�n� � ��� ��s��n� (4)

with� usually in the range� of 0.99 to 0.9999. The convergence factor is then

��n� �
�

�pPs�n�
(5)

� TheHomogeneous Adaptation algorithm (HA) [4] estimates the input power
as

Ps�n� �
�

p

p��X

i��

s��n� i� (6)

The convergence factor is defined as

��n� �
�

�
Pp��

i�� s
��n� i�

(7)

�Note if � is zero, no averaging takes place. As� approaches one, the effective length of the
average becomes longer. For� equal to one, the NLMS reduces to the LMS algorithm.
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� Finally, instead of defining� as a scalar, theIndividual Adaptation algorithm
(IA) [4] defines it as a vector, hence controlling each coefficient separately.

�j�n� �
js�n� j�j

�
Pp��

i�� js�n� i�j�
(8)

3.4 Computational Complexity

Assuming the filter coefficients are updated at the same time as the output of the
filter, the number of multiplications and additions for the different LMS algorithms
are shown in Table 1. The last column gives the total number of operations. This ta-
ble shows that each of the LMS, NLMS, HA and IA algorithms has a computational
complexity which is linear in the number of filter taps.

Algorithm * � Total number of operations
LMS �p� � �p �p� �
NLMS �p� � �p� � �p� 
HA �p� � �p� � �p� 
IA 
p�  �p� � �p� 	

Table 1: Computational complexity (p is the number of filter taps)

If no coefficient update is made, the number of operations at each step is algorithm
independent and isp� � multiplications andp additions.

Note that in the case of HA, we do not compute the sum of p squared terms each
time, instead we update the sum as follows:

S�n� �
p��X

i��

s��n� i� � s��n� � S�n� ��� s��n� p�

A similar decomposition was used for IA.
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4 Experiments

4.1 Evaluation: ERLE Measurements

In order to evaluate the performance of an echo canceling system, the ratio of the
expected value of the microphone output squaredE�s��n�� divided by the expected
value of the error signal squaredE�e��n�� is monitored. This quantity, in dB, is
called the Echo Return Loss Enhancement, or ERLE:

ERLE � �� log
E�s��n��

E�e��n��

The expected value is estimated as follows:

E�x�� �
�

N

NX

k��

x�

4.2 The “Echo-Cancelation Software Lab”

The “Echo-Cancelation Software Lab” is used to perform real-time testing of adap-
tive filtering algorithms. For this report, we have implemented the following algo-
rithms: LMS, normalized LMS, homogeneous adaptation, and individual adapta-
tion.

This testbed is written in the ‘C’ programming language, with a graphical user in-
terface written in Tcl/Tk [5], and uses the AF System [6] for audio support. Figure 2
shows this graphical user interface

As shown in Figure 3, this lab establishes a full-duplex audio connection between
two offices. The echo cancelation algorithms were implemented and tested on one
side of the conference where a speaker and a microphone were used. In the other
office, the user could chose between a headset or a speaker/microphone set.

The user can control the following algorithm parameters:

� The lengthp of the filter

� The error threshold setting the termination step of the gradient algorithm�

�To save computation, the termination step is not controlled by the norm of the gradient, but by
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Figure 2: The “Echo-Cancelation Software Lab”

� The stepsizec coefficient controlling the convergence factor�. Indeed, to al-
low a linear control, the convergence factor in the testbed was defined asc�

���

with c varying from 0 (no filter coefficient update) to 100.

� Thegap in sample periods between record and play time-stamps, simulating
a transmission time delay between two offices

� The filter delay introduced by the Analog to Digital and Digital to Analog
Converter

This test-bed also supports center-clipping echo suppression which, although not
described in this paper, can be used to suppress the small amplitude tails of rela-
tively long-delay echos.

the norm of the error which is the output of the system. Therefore, the gradient need not be computed
at each output update if the error is small enough.

�This coefficientc was not introduced before so as not to overload the notations.
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LMS

Playbuf1

Recbuf1
Playbuf0

Recbuf0

Office B Office A

Figure 3: Testbed system diagram

4.3 Results from the “Echo-Cancelation Software Lab”

This experiment was done between two neighboring offices (call them A and B).
In both offices, we used MD518 SENNHEISER microphones with a SHURE FP11
microphone pre-amplifier set to the same gain (+54 dB). In office A, a J-Video AF
audio server and Realistic Minimus -7 speakers were used, and the microphone was
oriented towards the user (i.e. not toward the speaker). In office B, a J300 Sound
and Motion board [7] was used with Labtec CS-180 speakers. The microphone in
office B was oriented towards the speaker 12 inches away.

4.3.1 Filter Calibration

Starting with arbitrary initial filter coefficients, the algorithm will converge faster if
a white noise is played at the input of the adaptive system�. During this calibration
time, the filter adapts to the current echo path impulse response.

The ERLE measurements for each algorithm were collected during the calibration
and are shown in Figure 4. For this experiment, the same parameters were used for
all algorithms. As we can see, the algorithms HA and IA converge faster than the
NLMS, which converges faster than the LMS. This graph shows the relative per-
formance between the different algorithms for a given set of parameters. Note that

�[8] gives a good explanation for why white noise is better during calibration.
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this graph does not show thebest performance of each algorithm. By changing the
parameters, one can find the best set for each algorithm and for the studied acoustic
environment.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

20

seconds

E
R

LE
 in

 d
B

Calibration with White Noise

LMS

NLMS

HA

IA

Figure 4: Calibration of the algorithms LMS, NLMS, HA and IA. Parameters used
were as follows: filter length of 200, stepsize of 100, an error threshold of 1000, a
gap of 1000 samples, and a delay of 280 samples.

4.3.2 The HA Algorithm

We now use the homogeneous adaptation algorithm as an example to demonstrate
the effects of varying the filter length, step size, and delay. Comparing the computa-
tional complexity of the HA algorithm given in Table 1 and the convergence speed
suggested by Figure 4 with the other algorithms, we believe that this algorithm is
best from a complexity/performance perspective.

� Varying the filter length

Figure 5 shows two interesting properties as the number of the adaptive filter
taps increases:

– The Echo Return Loss Enhancement also increases. With 50 taps, the
ERLE value is 12 dB at steady state, whereas with 250 taps it is 18 dB.
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Figure 5: HA algorithm with filter length 50, 100 and 250

– The convergence time also increases. With 50 taps, the steady state is
reached after 300 milliseconds and after 2 seconds for 250 taps.

Note that the ERLE value does not start at zero. This is because the HA al-
gorithm started to converge, with the ambient noise from office B, before ini-
tiating the noise burst.

� Varying the stepsize

Figure 6 shows that as the stepsize increases, the convergence time decreases.
(Recall that for the HA algorithm to be stable, the stepsizec���� may not be
greater than 1.0). We note also that the smaller the stepsize is, the closer the
algorithm converges to the optimal point (increasing the ERLE value).

� Varying the delay

Figure 7 represents the filter coefficients for the HA algorithm with two dif-
ferent delays (250 and 280 samples). The offset in the filter coefficients is
due to the delay introduced by some components in the system (the Analog
to Digital Converter and Digital to Analog Converter filter implementations).
If this delay is not estimated correctly, most of the leading filter coefficients
will be zeroes and CPU power will be wasted.
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Figure 6: HA algorithm with c
���

equal to 1.0, .51 and .23

4.4 Performance Analysis

One major goal for an echo canceler algorithm is to provide real-time operation.
Therefore, we implemented the four LMS algorithms, then analyzed the perfor-
mance and measured the number of cycles per filter tap for each algorithm.

4.4.1 Implementation and Analysis

The four algorithms were implemented in C and compiled on OSF/1 for Alpha V3.0
using the native C compiler. The compilation arguments used were
-O2 -non_shared -float -float_const.

The following tools were used to analyze and profile the programs:

� Theomdiag utility from the ATOM [9] kit was used to diagram how instruc-
tions issued.

� The Alpha process cycle counter was used to measure the number of cycles
spentupdating the outputand the filter coefficients. The process cycle counter
provides CPU clock cycle resolution, and can be used to gather real-time or
process virtual time data.
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Figure 7: HA algorithm with delay 280 (top) and 250 (bottom)

� Theprof -pixie command gave us profiling information.

We found, as expected, that most of the CPU cycles were used to execute twofor
loops, one computing the output of the system, the other updating the filter coef-
ficients. These two loops are shown below. The C comments give the number of
cycles executed in each line over the total number of cycles executed by the pro-
gram.

/* update output of system */
for (hi=0,n=start;hi<filterlen;hi++, n++) {
if (n==MAXLEN) n=0; /* 2.67% */
y += h[hi] * x[n]; /* 44.10% */

}
.
.
.

/* update the filter coefficients */
for (hi=0,n=start;hi<filterlen;hi++,n++) {
if (n==MAXLEN)n=0; /* 2.67% */
h[hi] += u * x[n]; /* 49.43% */

}

In the case of the HA algorithm, we observed that these two loops took 98.87% of
the total number of cycles executed.
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4.4.2 Bench Mark Results

The performance test program counted the number of CPU cycles executed to com-
pute the output of the system and update the filter coefficients. To do this, we com-
puted an average number of cycles per tap for filters of length 17, 33, 49,...,1025
and the average of these results was defined as the output of the bench mark.

We ran the test on three systems:

� A DEC 3000 Model 400 workstation, 21064 processor running at 133 MHz

� A DEC 3000 Model 700 workstation, 21064A processor running at 225 MHz

� A DEC 3000 Model 900 workstation, 21064A processor running at 275 MHz

LMS NLMS HA IA
DEC 3000 Model 400 19 20 20 49
DEC 3000 Model 700 19 19 19 48
DEC 3000 Model 900 19 19 19 48

Table 2: Cycles per tap

Table 2 gives the results of the bench mark in number of cycles per tap while Table 3
gives the computation time in microseconds for a 500 tap filter	.

LMS NLMS HA IA
DEC 3000 Model 400 72 75 75 184
DEC 3000 Model 700 42 42 42 107
DEC 3000 Model 900 35 35 35 87

Table 3: Computation time for a 500 tap filter (in microseconds)

As depicted in Table 2, the IA algorithm costs��� times more in executed cycles
than the other algorithms. The extra computation cost is incurred because the com-
piler did not unroll thefor loop updating the filter coefficients. If the compiler

�Note: if x is the number of cycles per tap andS the CPU clock speed in Hz, a��� tap filter
takes���xS�� seconds to compute. For a sampling rate of 8000 Hz, the filter update and output
computation must not exceed 125 microseconds.
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unrolled the loop below, or if it were unrolled by hand, then the computation time
for IA would be closer to HA.

/* update the coefficients */
for (hi=0,n=start;hi<filterlen;hi++,n++) {
if (n==MAXLEN)n=0; /* 7.68% */
tmp = x[n]; /* make it a local variable */ /* 11.52% */
if ((bufx1 = tmp) < 0) bufx1 = -bufx1; /* 7.68% */
h[hi] += u * bufx1 * tmp; /* 38.42% */

}

5 Conclusion

In this paper, we described the identification process which leads to the LMS algo-
rithms and the recursive least square algorithms. We presented an optimized real-
time Echo-Cancelation Software Lab which allows testing of the LMS, normalized
least mean square, homogeneous adaptation, and individual adaptation algorithms.
We also presented the results of a bench mark measuring the number of cycles per
tap for each of these four algorithms on three different DEC 3000 Model worksta-
tions. With this Software Lab, we found the homogeneous adaptation algorithm to
produce the best results.
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