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Abstract

This paper presents a motion estimation algorithm based on a new multiresolution representa-

tion, thequadtree spline. This representation describes the motion field as a collection of smoothly

connected patches of varying size, where the patch size is automatically adapted to the complex-

ity of the underlying motion. The topology of the patches is determined by a quadtree data struc-

ture, and both split and merge techniques are developed for estimating this spatial subdivision. The

quadtree spline is implemented using another novel representation, theadaptive hierarchical ba-

sis spline, and combines the advantages of adaptively-sized correlation windows with the speedups

obtained with hierarchical basis preconditioners. Results are presented on some standard motion

sequences.
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1 Introduction 1

1 Introduction

One of the fundamental tradeoffs in designing motion estimation and stereo matching algorithms is

selecting the size of the windows or filters to be used in comparing portions of corresponding im-

ages. Using larger windows leads to better noise immunity through averaging and can also disam-

biguate potential matches in areas of weak texture or potential aperture problems. However, larger

windows fail where they straddle motion or depth discontinuities, or in general where the motion

or disparity varies significantly within the window.

Many techniques have been devised to deal with this problem, e.g., using adaptively-sized win-

dows in stereo matching. In this paper, we present a technique for recursively subdividing an image

into square patches of varying size and then matching these patches to subsequent frames in a way

which preserves inter-patch motion continuity. Our technique is an extension of thespline-based

image registration technique presented in [Szeliski and Coughlan, 1994], and thus has the same

advantages when compared to correlation-based approaches, i.e., lower computational cost and the

ability to handle large image deformations.

As a first step, we show how usinghierarchical basis splines instead of regular splines can

lead to faster convergence and qualitatively perform a smoothing function similar to regulariza-

tion. Then, we show how selectively setting certain nodes in the hierarchical basis to zero leads

to anadaptive hierarchical basis. We can use this idea to build a spline defined over a quadtree

domain, i.e., aquadtree spline. To determine the size of the patches in our adaptive basis, i.e., the

shape of the quadtree, we develop both split and merge techniques based on the residual errors in

the current optical flow estimates.

While this paper deals primarily with motion estimation (also known asimage registration or

optical flow computation), the techniques developed here can equally well be applied to stereo match-

ing. In our framework, we view stereo as a special case of motion estimation where theepipolar

geometry (corresponding lines) are known, thus reducing a two-dimensional search space at each

pixel to a one-dimensional space. Our techniques can also be used as part of adirect method which

simultaneously solves for projective depth and camera motion [Szeliski and Coughlan, 1994].

The adaptive hierarchical basis splines developed in this paper are equivalent to adaptively sub-

dividing global parametric motion regions while maintaining continuity between adjacent patches.

We can therefore implement a continuum of motion models ranging from a single global (e.g.,

affine) motion, all the way to a completely general local motion, as warranted by the data in a given

image sequence. By examining the local certainty in the flow computation, we can also use our
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algorithm as a parallel feature tracker for very long motion sequences where image deformations

may be significant [Szeliskiet al., 1995].

The motion estimation algorithms developed in this paper can be used in a number of applica-

tions. Examples include motion compensation for video compression, the extraction of 3D scene

geometry and camera motion, robot navigation, and the registration of multiple images, e.g., for

medical applications. Feature tracking algorithms based on our techniques can be used in human

interface applications such as gaze tracking or expression detection, in addition to classical robotics

applications.

The remainder of the paper is structured as follows. Section 2 presents a review of relevant pre-

vious work. Section 3 gives the general problem formulations for image registration. Section 4 re-

views the spline-based motion estimation algorithm. Section 5 shows how hierarchical basis func-

tions can be used to accelerate and regularize spline-based flow estimation. Section 6 presents our

novel quadtree splines and discusses how their shape can be estimated using both split and merge

techniques. Section 7 discusses the relationship of adaptive hierarchical basis splines to multiscale

Markov Random Fields. Section 8 presents experimental results based on some commonly used

motion test sequences. We close with a comparison of our approach to previous algorithms and a

discussion of future work.

2 Previous work

Motion estimation has long been one of the most actively studied areas of computer vision and

image processing [Aggarwal and Nandhakumar, 1988; Brown, 1992]. Motion estimation algo-

rithms include optical flow (general motion) estimators, global parametric motion estimators, con-

strained motion estimators (direct methods), stereo and multiframe stereo, hierarchical (coarse-to-

fine) methods, feature trackers, and feature-based registration techniques. We will use this rough

taxonomy to briefly review previous work, while recognizing that these algorithms overlap and that

many algorithms use ideas from several of these categories.

The general motion estimation problem is often calledoptical flow recovery [Horn and Schunck,

1981]. This involves estimating an independent displacement vector for each pixel in an image.

Approaches to this problem include gradient-based approaches based on thebrightness constraint

[Horn and Schunck, 1981; Lucas and Kanade, 1981; Nagel, 1987], correlation-based techniques

such as thesum of squared differences (SSD) [Anandan, 1989], spatio-temporal filtering [Adelson
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and Bergen, 1985; Heeger, 1987; Fleet and Jepson, 1990; Weber and Malik, 1993], and regulariza-

tion [Horn and Schunck, 1981; Hildreth, 1986; Poggioet al., 1985]. Nagel [1987], Anandan [1989],

and Otte and Nagel [1994] provide comparisons and derive relations between different techniques,

while Barronet al. [1994] provide some numerical comparisons.

Global motion estimators [Lucas, 1984; Bergenet al., 1992] use a simple flow field model pa-

rameterized by a small number of unknown variables. Examples of global motion models include

affine and quadratic flow fields. In the taxonomy of Bergenet al. [1992], these fields are called

parametric motion models, since they can be used locally as well (e.g., affine flow can be estimated

at every pixel). The spline-based flow fields we describe in the next section can be viewed as local

parametric models, since the flow within each spline patch is defined by a small number of control

vertices.

Global methods are most useful when the scene has a particularly simple form, e.g., when the

scene is planar. These methods can be extended to more complex scenes, however, by using a col-

lection of global motion models. For example, each pixel can be associated with one of several

global motion hypotheses, resulting in alayered motion model [Wang and Adelson, 1993; Jepson

and Black, 1993; Etoh and Shirai, 1993; Bober and Kittler, 1993]. Alternatively, a single image can

be recursively subdivided into smaller parametric motion patches based on estimates of the current

residual error in the flow estimate [M¨uller et al., 1994]. Our approach is similar to this latter work,

except that it preserves inter-patch motion continuity, and uses both split and merge techniques.

Stereo matching [Barnard and Fischler, 1982; Quam, 1984; Dhond and Aggarwal, 1989] is

traditionally considered as a separate sub-discipline within computer vision (and, of course, pho-

togrammetry), but there are strong connections between it and motion estimation. Stereo can be

viewed as a simplified version of constrained motion estimation where theepipolar geometry is

given, so that each flow vector is constrained to lie along a known line. While stereo is traditionally

performed on pairs of images, more recent algorithms use sequences of images (multiframe stereo

or motion stereo) [Bolleset al., 1987; Matthieset al., 1989; Okutomi and Kanade, 1993]. The idea

of using adaptive window sizes in stereo [Okutomi and Kanade, 1992; Okutomi and Kanade, 1994]

is similar in spirit to the idea used in this paper, although their algorithm has a much higher com-

putational complexity.

Hierarchical (coarse-to-fine)matching algorithms have a long history of use both in stereo match-

ing [Quam, 1984; Witkinet al., 1987] and in motion estimation [Enkelmann, 1988; Anandan, 1989;

Singh, 1990; Bergenet al., 1992]. Hierarchical algorithms first solve the matching problem on
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smaller, lower-resolution images and then use these to initialize higher-resolution estimates. Their

advantages include both increased computation efficiency and the ability to find better solutions by

escaping from local minima.

The algorithm presented in this paper is also related to patch-based feature trackers [Lucas and

Kanade, 1981; Rehg and Witkin, 1991; Tomasi and Kanade, 1992]. It differs from these previous

approaches in that we use patches of varying size, we completely tile the image with patches, and

we have no motion discontinuities across patch boundaries. Our motion estimator can be used as

a parallel, adaptive feature tracker by selecting spline control vertices with low uncertainty in both

motion components [Szeliskiet al., 1995].

3 General problem formulation

The general motion estimation problem can be formulated as follows. We are given a sequence of

imagesIt�x� y�which we assume were formed by locally displacing a reference imageI�x� y�with

horizontal and vertical displacement fields� ut�x� y� andvt�x� y�, i.e.,

It�x� ut� y � vt� � I�x� y�� (1)

Each individual image is assumed to be corrupted with uniform white Gaussian noise. We also

ignore possible occlusions (“foldovers”) in the warped images.

Given such a sequence of images, we wish to simultaneously recover the displacement fields

�ut� vt� and the reference imageI�x� y�. The maximum likelihood solution to this problem is well

known and consists of minimizing the squared error
X
t

Z Z
	It�x� ut� y � vt�� I�x� y�
�dx dy� (2)

In practice, we are usually given a set of discretely sampled images, so we replace the above inte-

grals with summations over the set of pixelsf�xi� yi�g.

If the displacement fieldsut andvt at different times are independent of each other and the refer-

ence intensity imageI�x� y� is assumed to be known, the above minimization problem decomposes

into a set of independent minimizations, one for each frame. For now, we will assume that this is

the case, and only study the two frame problem, which can be rewritten as

E�fui� vig� �
X
i

	I��xi � ui� yi � vi�� I��xi� yi�

�� (3)

�We will use the termsdisplacement field, flow field, andmotion estimate interchangeably.
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This equation is called thesum of squared differences (SSD) formula [Anandan, 1989]. Expanding

I� in a first order Taylor series expansion in�ui� vi� yields the theimage brightness constraint [Horn

and Schunck, 1981]

E�fui� vig� �
X
i

	�I � Ixui � Iyvi

��

where�I � I� � I� andrI� � �Ix� Iy� is the intensity gradient.

The squared pixel error function (3) is by no means the only possible optimization criterion. For

example, it can be generalized to account for photometric variation (global brightness and contrast

changes), using

E��fui� vig� �
X
i

	I��xi � ui� yi � vi�� cI��xi� yi� � b
��

whereb andc are the (per-frame) brightness and contrast correction terms. Both of these parameters

can be estimated concurrently with the flow field at little additional cost. Their inclusion is most

useful in situations where the photometry can change between successive views (e.g., when the

images are not acquired concurrently).

Another way to generalize the criterion is to replace the squaring function with a non-quadratic

penalty function, which results in arobust motion estimator which can reject outlier measurements

[Black and Anandan, 1993; Bober and Kittler, 1993; Black and Rangarajan, 1994]. Another possi-

bility is to weight each squared error term with a factor proportional to

�

��
I � ��

ujrIj�
�

where��
I and��

u are the variances of the image and derivative noise, which can compensate for noise

in the image derivative computation [Simoncelliet al., 1991]. To further increase noise immunity,

the intensity images used in (3) can be replaced by filtered images [Burt and Adelson, 1983].

The above minimization problem typically has many local minima. Several techniques are com-

monly used to find a more globally optimal estimate. For example, the SSD algorithm performs the

summation at each pixel over anm �m window (typically� � �) [Anandan, 1989]. More recent

variations use adaptive windows [Okutomi and Kanade, 1992] and multiple frames [Okutomi and

Kanade, 1993]. Regularization-based algorithms add smoothness constraints on theu andv fields

to obtain good solutions [Horn and Schunck, 1981; Hildreth, 1986; Poggioet al., 1985]. Finally,

multiscale or hierarchical (coarse-to-fine) techniques are often used to speed the search for the op-

timum displacement estimate and to avoid local minima.
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Figure 1: Displacement spline: the spline control verticesf��uj� �vj�g are shown as circles (�) and

the pixel displacementsf�ui� vi�g are shown as pluses (�).

The choice of representation for the�u� v� field also strongly influences the performance of the

motion estimation algorithm. The most commonly made choice is to assign an independent esti-

mate at each pixel�ui� vi�, but global motion descriptors are also possible [Lucas, 1984; Bergenet

al., 1992; Szeliski and Coughlan, 1994]. One can observe, however, that motion estimates at indi-

vidual pixels are never truly independent. Both local correlation windows (as in SSD) and global

smoothness constraints aggregate information from neighboring pixels. The resulting displacement

estimates are therefore highly correlated. While it is possible to analyze the correlations induced

by overlapping windows [Matthieset al., 1989] and regularization [Szeliski, 1989], the procedures

are cumbersome and rarely used. For these reasons, we have chosen in our work to represent the

motion field as a spline, which is a representation which falls in between per-pixel motion estimates

and purely global motion estimates.

4 Spline-based flow estimation

Our approach is to represent the displacements fieldsu�x� y�andv�x� y�as two-dimensionalsplines

controlled by a smaller number of displacement estimates�uj and�vj which lie on a coarserspline

control grid (Figure 1). The value for the displacement at a pixeli can be written as

u�xi� yi� �
X
j

�ujBj�xi� yi� or ui �
X
j

�ujwij� (4)
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where theBj�x� y� are called thebasis functions and are only non-zero over a small interval (fi-

nite support). We call thewij � Bj�xi� yi� weights to emphasize that the�ui� vi� are known linear

combinations of the��uj� �vj�.�

In our current implementation, the basis functions are spatially shifted versions of each other,

i.e., Bj�x� y� � B�x � �xj� y � �yj�. We have studied five different interpolation functions: (1)

block, (2) linear on squares, (3) linear on triangles, (4) bilinear, and (5) biquadratic [Szeliski and

Coughlan, 1994]. In practice, we most often use the bilinear bases. We also impose the condition

that the spline control grid is a regular subsampling of the pixel grid,�xj � mxi, �yj � myi, so that

each set ofm�m pixels corresponds to a single spline patch.

4.1 Function minimization

To recover the local spline-based flow parameters, we need to minimize the cost function (3) with

respect to thef�uj� �vjg. We do this using a variant of the Levenberg-Marquardt iterative non-linear

minimization technique [Presset al., 1992]. First, we compute the gradient ofE in (3) with respect

to each of the parameters�uj and�vj,

guj �
�E

��uj

� 
X
i

eiG
x
iwij

gvj �
�E

��vj
� 

X
i

eiG
y
iwij� (5)

where

ei � I��xi � ui� yi � vi�� I��xi� yi� (6)

is the intensity error at pixeli,

�Gx
i � G

y
i � � rI��xi � ui� yi � vi� (7)

is the intensity gradient ofI� at the displaced position for pixeli, and thewij are the sampled values

of the spline basis function (4). Algorithmically, we compute the above gradients by first forming

the displacement vector for each pixel�ui� vi� using (4), then computing the resampled intensity

and gradient values ofI� at �x�i� y
�
i� � �xi�ui� yi� vi�, computingei, and finally incrementing the

guj andgvj values of all control vertices affecting that pixel [Szeliski and Coughlan, 1994].

�In the remainder of the paper, we will use indicesi for pixels andj for spline control vertices.
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For the Levenberg-Marquardt algorithm, we also require the approximate Hessian matrixA

where the second-derivative terms are left out. The matrixA contains entries of the form

auujk � 
X
i

�ei
��uj

�ei
��uk

� 
X
i

wijwik�G
x
i �

�

auvjk � avujk � 
X
i

�ei
��uj

�ei
��vk

� 
X
i

wijwikG
x
iG

y
i (8)

avvjk � 
X
i

�ei
��vj

�ei
��vk

� 
X
i

wijwik�G
y
i �

��

The entries ofA can be computed at the same time as the energy gradients.

The Levenberg-Marquardt algorithm proceeds by computing an increment�u to the current

displacement estimateu which satisfies

�A� �I��u � �g� (9)

whereu is the vector of concatenated displacement estimatesf�uj� �vjg, g is the vector of concate-

nated energy gradientsfguj � g
v
j g, and� is a stabilization factor which varies over time [Presset al.,

1992]. To solve this large, sparse system of linear equations, we use preconditioned gradient de-

scent

�u � ��B��g � ���g (10)

whereB � �A� �I, and�A � block diag�A� is the set of�  block diagonal matrices defined in

(9) with j � k, and�g � B��g is called thepreconditioned residual vector.� An optimal value for

� can be computed at each iteration by minimizing

�E��d� � ��dTAd� �dTg�

i.e., by setting� � �d � g���dTAd�, whered � �g is thedirection vector for the current step. See

[Szeliski and Coughlan, 1994] for more details on our algorithm implementation.

To handle larger displacements, we run our algorithm in a coarse-to-fine (hierarchical) fash-

ion. A Gaussian image pyramid is first computed using an iterated 3-point filter [Burt and Adelson,

1983]. We then run the algorithm on one of the smaller pyramid levels, and use the resulting flow

estimates to initialize the next finer level (using bilinear interpolation and doubling the displacement

magnitudes).

�Preconditioning means adjusting the descent direction to accelerate the convergence, e.g., by pre-multiplying it by

an approximate inverse ofA [Axelsson and Barker, 1984; Presset al., 1992].
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(a) (b)

(c) (d)

Figure 2: Example of general flow computation: (a) input image, (b)–(d)flow estimates form � ��,

��, and�.
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Figure 2 shows an example of the flow estimates produced by our technique. The input image

is �� � �� pixels, and the flow is displayed on a�� � � grid. We show the results of using a

3 level pyramid, 9 iterations at each level, and with three different patch sizes,m � ��, m � ��,

andm � �. As we can see, using patches that are too large result in flow estimates which are too

smooth, while using patches that are too small result in noisy estimates. (This latter problem could

potentially be fixed by adding regularization, but at the cost of increased iterations.) To overcome

this problem, we need a technique which automatically selects the best patch size in each region of

the image. This is the idea we will develop in the next two sections.

5 Hierarchical basis splines

Regularized problems often require many iterations to propagate information from regions with

high certainty (textures or edges) to regions with little information (uniform intensities). Several

techniques have been developed to overcome this problem. Coarse-to-fine techniques [Quam, 1984;

Anandan, 1989] can help, but often don’t converge as quickly to the optimal solution as multi-

grid techniques [Terzopoulos, 1986]. Conjugate gradient descent can also be used, especially for

non-linear problems such as shape-from-shading [Simchonyet al., 1989]. Perhaps the most ef-

fective technique is a combination of conjugate gradient descent with hierarchical basis functions

[Yserentant, 1986], which has been applied both to interpolation problems in stereo matching [Szeliski,

1990] and to shape-from-shading [Szeliski, 1991].

Hierarchical basis functions are based on using a pyramidal representation for the data [Burt and

Adelson, 1983], where the number of nodes in the pyramid is equal to the original number of nodes

at the finest level (Figure 3). To convert from the hierarchical basis representation to the usual fine-

level representation (which is called thenodal basis representation [Yserentant, 1986]), we start at

the coarsest (smallest) level of the pyramid and interpolate the values at this level, thus doubling

the resolution. These interpolated values are then added to the hierarchical representation values

at the next lower level, and the process is repeated until the nodal representation is obtained.� This

process can be written algorithmically as

procedureS

for l � L� � down to�

�Hierarchical basis splines are therefore a degenerate (non-orthogonal) form of wavelets [Mallat, 1989] with ex-

tremely compact support and inverses.
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Figure 3: Multiresolution pyramid

The multiple resolution levels are a schematic representation of the hierarchical basis spline. The

circles indicate the nodes in the hierarchical basis. Filled circles (�) are free variables in the quadtree

spline (Section 6), while open circles (�) must be zero (see Figure 6).

for j � Ml

ul
j � �ul

j �
P

k�Nj
�wjk�u

l��
k

endS .

In this procedure, each node is assigned to one of the level collectionsMl (the circles in Figure

3). Each node also has a number of “parent nodes”Nj on the next coarser level that contribute to

its value during the interpolation process. The�wjk are the weighting functions that depend on the

particular choice of interpolation function. For the examples shown in this paper, we use bilinear

interpolation, since previous experiments suggest that this is a reasonable choice for the interpolator

[Szeliski, 1990].

We can write the above process algebraically as

u � S�u � S�S� � � �SL���u� (11)
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with

�Sl�jk �

�����
����

� if j � k

�wjk if j � Ml andk � Nj

� otherwise

and�u is the hierarchical basis representation. Using a hierarchical basis representation for the flow

field is equivalent to usingSST as a preconditioner, i.e.,�g � SSTg [Axelsson and Barker, 1984;

Szeliski, 1990]. The transformationSST can be used as a preconditioner because the influence of

hierarchical bases at coarser levels (which are obtained from theST operation) are propagated to

the nodal basis at the fine level through theS operation. To evaluateST , i.e., to convert from the

nodal basis representation to the hierarchical basis representation, we use the procedure

procedureST

for l � � toL� �

for k � Ml��

�ul��
k � ul��

k �
P

j�k�Nj
�wjk�ul

j

endST .

When combining hierarchical basis preconditioning with the block diagonal preconditioning in

(10), we have several choices. We can apply the block diagonal preconditioning first,�g � SSTB��g,

or second,�g � B��SSTg, or we can interleave the two preconditioners�g � SB��STg, or �g �
�B�TSST �Bg, where�B � B

�
� . The latter two operations correspond to well-defined precondition-

ers (i.e., optimization under a change of basis), while the first two are easier to implement. In our

current work, we use the first form, i.e., we apply block preconditioning first, and then use sweep

up and then down the hierarchical basis pyramid to smooth the residual. In future work, we plan to

develop optimal combinations of block diagonal and hierarchical basis preconditioning.

To summarize our algorithm (Figure 4), we keep both the hierarchical and nodal representations,

and map between the two as required. For accumulating the distances and gradients required in

(9), we compute the image flows and the derivatives with respect to the parameters in the nodal

basis. We then use the hierarchical basis to smooth the residual vectorg before selecting a new

conjugate direction and computing the optimal step size. Using this technique not only makes the

convergence faster but also propagates local corrections over the whole domain, which tends to

smooth the resulting flow significantly.

To demonstrate the performance improvements available with hierarchical basis functions, we

use as our example theSquare 2 sequence, which is part of the data set used by Barronet al. [1994].
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�� �� � �� d�� � �

�� gn � �rE�u�

�y �gn � SZSTB��gn

�� �n � �gn � gn��gn�� � gn��

�� dn � �gn � �ndn��

�� �n � dn � gn�dT
nAdn

�� un�� � un � �ndn

�� incrementn, loop to��

y S � mapping from hierarchical to nodal basis,

B � blockdiag�A��

Z � 0/1 matrix for quadtree spline basis (Section 6).

Figure 4: Hierarchical basis preconditioned conjugate gradient algorithm
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Figure 5:Square 2 sample image and convergence plot
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Figure 5a shows one image in the sequence, while Figure 5b shows the convergence rates for regular

gradient descent (L � �), coarse-to-fine estimation (L � �), and preconditioning with hierarchical

basis functions (H � �), with different amounts of regularization (�� � �� ���� ����). As we can

see from these results, adding more regularization results in a more accurate solution (this is because

the true flow is a single constant value), using coarse to fine is quicker than single-level relaxation,

and hierarchical basis preconditioning is faster than coarse-to-fine relaxation. It is interesting to

note that using hierarchical basis functions even without regularization quickly smooths out the

solution and outperforms coarse-to-fine without regularization.

6 Quadtree (adaptive resolution) splines

While hierarchical basis splines can help accelerate an estimation algorithm or even to add extra

smoothness to the solution, they do not in themselves solve the problem of having adaptively-sized

patches. For this, we will use the idea ofquadtree splines, i.e., splines defined on a quadtree domain.

A quadtree is a 2-D representation built by recursively subdividing rectangles into four pieces (Fig-

ure 6) [Samet, 1989]. The basic concept of a quadtree spline is to define a continuous function over

a quadtree domain by interpolating numeric values at the corners of each spline leaf cell (square).

However, because cells are non-uniformly subdivided,cracks or first-order discontinuities in the in-

terpolated function will arise (Figure 6b) unless acrack-filling strategy is used [Samet, 1989]. The

simplest strategy is to simply replace the values at the nodes along a crack edge (the white circles

in Figure 6) with the average values of its two parent nodes along the edge. This is the strategy we

used in developingoctree splines for the representation of multi-resolution distance maps in 3-D

pose estimation problems [Lavall´eeet al., 1991].

When the problem is one of iterativelyestimating the values on the nodes in the quadtree spline,

enforcing the crack-filling rule becomes more complicated. A useful strategy, which we developed

for estimating 3-D displacement fields in elastic medical image registration [Szeliski and Lavall´ee,

1994], is to use a hierarchical basis and to selectively zero out nodes in this basis. Observe that if in

Figures 3 and 6a we set the values of the open circles (�) to zero in the hierarchical basis and then

re-compute the nodal basis usingS, the resulting spline has the desired continuity, i.e., nodes along

longer edges are the averages of their parents.

The formulation of the quadtree spline in terms of anadaptive hierarchical basis, i.e., a basis

in which some nodes are set to zero, has several advantages. First, it is very easy to implement,
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Figure 6: Quadtree associated with spline function, and potential cracks in quadtree spline

(a) the nodes with filled circles (�) are free variables in the associated hierarchical basis, whereas

the open circles (�) (and also the nodes not drawn) must be zero (in the nodal basis, these nodes

are interpolated from their ancestors); (b) potential cracks in a simpler quadtree spline are shown

as shaded areas.

simply requiring a selective zeroing step between theST andS operations (algebraically, we write

�g � SZSTg, whereZ is a diagonal matrix with 1’s and 0’s on the diagonal—see Figure 4).� Second,

it generalizes to splines of arbitrary order, e.g., we can build aC� quadtree spline based on quadratic

B-splines using adaptive hierarchical basis functions. However, for higher-order splines, even more

nodes have to be zeroed in order to ensure that finer level splines do not affect nearby coarser (un-

divided) cells. Third, as we will discuss in the next section, the adaptive hierarchical basis idea is

even more general than the quadtree spline, and corresponds to a specific kind of multi-resolution

prior model.

The quadtree spline as described here ensures that the function within any leaf cell (square do-

main) has a simple form (single polynomial description, no spurious ripples). An alternative way

of interpreting the quadtree in Figure 6a is that it specifies theminimum degree of complexity in

each cell, i.e., that each square is guaranteed to have its full degrees of freedom (e.g., all 4 corners

have independent values in the bilinear case). In this latter interpretation, the open circles in the

hierarchical basis are not zeroed, and only the circles actually not drawn in Figure 6a are zeroed.

In this approach, large squares can have arbitrarily-detailed ripples inside their domain resulting

�Whenever theZ matrix changes, we also have to re-compute the quadtree spline usingu � SZS
��
u. TheS��

procedure is similar toST , but now�uj � �uj � �wjk�uk.
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from fine-level basis functions near the square’s boundaries. To date, we have not investigated this

alternative possibility.

6.1 Subdivision strategy

The quadtree spline provides a convenient way to use adaptively-sized patches for motion estima-

tion, while maintaining inter-patch continuity. The question remains how to actually determine the

topology of the patches, i.e., which patches get subdivided and which ones remain large. Ideally,

we would like each patch to cover a region of the image within which the parametric motion model

is valid. In a real-world situation, this may correspond to planar surface patches undergoing rigid

motion with a small amount of perspective distortion (bilinear flow is then very close to projective

flow). However, usually we are nota priori given the required segmentation of the image. Instead,

we must deduce such a segmentation based on the adequacy of the flow model within each patch.

The fundamental tool we will use here is the concept ofresidual flow [Irani et al., 1992], recently

used by Mülleret al. [1994] to subdivide affine motion patches (which they calltiles). The residual

flow is the per-pixel estimate of flow required to register the two images in addition to the flow

currently being modeled by the parametric motion model. At a single pixel, only the normal flow

can be estimated,

uN
i �

�eiGx
i � eiG

y
i �

k�Gx
i � G

y
i �k� �

� (12)

where the intensity errorei and the gradientrI� � �Gx
i � G

y
i � are given in (6–7). This measure

is different from that used in [Iraniet al., 1992; Müller et al., 1994], who sum the numerator and

denominator in (12) over a small neighborhood around each pixel.

To decide whether to split a spline patch into four smaller patches, we sum the magnitude of

the residual normal flowkuN
i k over all the pixels in the patch and compare it to a threshold	u.�

Patches where the motion model is adequate should fall below this threshold, while patches which

have multiple motions should be above. Starting with the whole image, we subdivide recursively

until either the p-norm residual falls below an acceptable value or the smallest patch size considered

(typically 4-8 pixels wide) is reached.

Figures 7a–c show an example of a quadtree spline motion estimate produced with this split-

ting technique for a simple synthetic example in which two central disks are independently moving

�Actually, we use ap�norm,�
P

i ku
N

i k
p���p, which can model a max operation asp��.
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(a) (b)

(c) (d)

Figure 7: Quadtree spline motion estimation (Two Discs (SRI Trees) sequence): (a) input image,

(b) true flow, (c) split technique, (d) merge technique.
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against a textured background. The quadtree boundaries are warped to show the extent of the esti-

mated image motion (up and left for the top disc, down and right for the bottom disc). Note how the

subdivision occurs mostly at the object boundaries, as would be expected. The most visible error

(near the upper right edge of the lower disc) occurs in an area of little image contrast and where the

motion is mostly parallel to the region contour.

An alternative to the iterative splitting strategy is to start with small patches and to thenmerge

adjacent patches with compatible motion estimates into larger patches (within the constraints of

allowable quadtree topologies). To test if a larger patch has consistent flow, we compare the four

values along the edge of the patch and the value at the center with the average values interpolated

from the four corner cells (look at the lower left quadrant of Figure 6a to visualize this). The relative

difference between the estimated and interpolated values,

d �
k�uj � ujkq
k�ujk� � kujk�


 	d�

whereuj is the interpolated value, must be below a threshold	d (typically 0.25-0.5) for all five

nodes before the four constituent patches are allowed to be merged into a larger patch. Notice

that the quantity�uj � uj is exactly the value of the hierarchical basis function at a node (at least

for bilinear splines), so we are in effect converting small hierarchical basis values close to be ex-

actly zero (this has a Bayesian interpretation, as we will discuss in the next section). Note also that

this consistency criterion may fail in regions of little texture where the flow estimates are initially

unreliable, unless regularization is applied to make these flow fields more smooth.

Figure 7d shows an example of a quadtree spline motion estimate produced with this merging

technique. The results are qualitatively quite similar to the results obtained with the split technique.

7 A Bayesian interpretation

The connection between energy-based or regularized low-level vision problems and Bayesian esti-

mation formulations is well known [Kimeldorf and Wahba, 1970; Marroquinet al., 1987; Szeliski,

1989]. In a nutshell, it can be shown that the energy or cost function being minimized can be con-

verted into a probability distribution over the unknowns using a Gibbs or Boltzmann distribution,

and that finding the minimum energy solution is equivalent tomaximum a posteriori (MAP) es-

timation. The Bayesian model nicely decomposes the energy function into a measurement model
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(typically the squared error terms between the measurements and their predicted values) and a prior

model (which usually corresponds to the stabilizer or smoothing term), i.e.,

E�u� � Ed�u�d� � Ep�u� 	 p�u� 
 e�E	u
 � e�Ed	u�d
 e�Ep	u
 
 p�u�d� p�u� (13)

It then becomes straightforward to make use of robust statistical models by simply modifying the

appropriate energy terms [Black and Anandan, 1993; Black and Rangarajan, 1994].

The basic spline-based flow model introduced in [Szeliski and Coughlan, 1994] is already a

valid prior model, since it restricts the family of functions to the smooth set of tensor-product splines.

In most cases, a small amount of intensity variation inside each spline patch is sufficient to ensure

that a unique, well-behaved solution exists. However, just to be on the safe side, it is easy to add a

small amount of regularization with quadratic penalty terms on the�uj ’s and their finite differences.

Hierarchical basis splines, as well as other multilevel representations such as overcomplete pyra-

mids can be viewed as multiresolution priors [Szeliski and Terzopoulos, 1989]. There are two ba-

sic approaches to specifying such a prior. The first, which we use in our current work, is to simply

view the hierarchical basis as a preconditioner, and to define the prior model over the usual nodal

basis [Szeliski, 1990]. The alternative is to define the prior model directly on the hierarchical ba-

sis, usually assuming that each basis element is statistically independent from the others (i.e., that

the covariance matrix is diagonal) [Szeliski and Terzopoulos, 1989; Pentland, 1994]. An extreme

example of this is thescale-recursive multiscale Markov Random Fields introduced in [Chinet al.,

1993], whose special structure makes it possible to recover the field in a single sweep through the

pyramid. Unfortunately, their technique is based on a piecewise-constant model of flow, which re-

sults in recovered fields that have excessive “blockiness” [Luettgenet al., 1994].

Within this framework, adaptive hierarchical basis splines can be viewed as having a more com-

plex multiresolution prior where each hierarchical node has a non-zero prior probability of being

exactly zero. The split and merge algorithms can be viewed as simple heuristic techniques designed

to recover the underlying motion field and to decide which nodes are actually zero. More sophisti-

cated techniques to solve this problem would include simulated annealing [Marroquinet al., 1987]

and mean-field annealing [Geiger and Girosi, 1991].

Quadtree splines have an even more complicated prior model, since the existence of zeros at

certain levels in the pyramid implies zeros at lower levels as well as zeros at some neighboring

nodes (depending on the exact interpretation of the quadtree spline). We will not pursue these model

further in this paper, and leave their investigation to future work.
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Technique Pixel
Error

Std.
Dev.

Avg. Ang.
Error

Std.
Dev. Density

regular spline (s � ��) ���� ���� ����� ������ ����

regular spline (s � �) ���� ���� ������ ������ ����

regular spline (s � �) ���� ���� ������ ������ ����

quadtree spline (merge,s � �) ���� ���� ������ ������ ����

quadtree spline (split,s � �) ���� ���� ������ ������ ����

Table 1: Summary ofTwo Discs (SRI Trees) results

8 Experimental results

To investigate the performance of our quadtree spline-based motion estimator, we use the synthet-

ically generatedTwo Discs (SRI Trees) sequence shown in Figure 7, for which we know the true

motion (Figure 7b). The results of our spline-based motion estimator for various choices of win-

dow sizes, as well as the results with both the split and merge techniques, are shown in Table 1.

The experiments show that the optimal fixed window size iss � �, and that both split and merge

techniques provide slightly better results. The relatively small difference is error between the vari-

ous techniques is due to most of the error being concentrated in the regions where occlusions occur

(Figure 8). Adding an occlusion detection process to our algorithm should help reduce the errors

in these regions.

We also tested our algorithm on some of the standard motion sequences used in other recent

motion estimation papers [Barronet al., 1994; Wang and Adelson, 1993; Otte and Nagel, 1994].

The results on theHamburg Taxi sequence are shown in Figure 9, where the independent motion

of the three moving cars can be clearly distinguished. Notice that the algorithm was also able to

pick out the small region of the moving pedestrian near the upper left corner.

The result on theFlower Garden sequence are shown in Figure 10. Here, the trunk of the tree

is clearly segmented from the rest of the scene. The top of the flower garden, on the other hand, is

not clearly segmented from the house and sky, since it appears that theC� continuous motion field

represented by the splines is an adequate description.�

The final sequence which we studied is the table of marble blocks acquired by Michael Otte

�Unlike the global motion estimates used in [Wang and Adelson, 1993], we do not require that the motion be a

combination of a few global affine motions.
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Figure 8: Flow errorku�u�k and residual normal flowkuNi k for Two Discs (SRI Trees) sequence.

Note how most of the errors are concentrated near the motion discontinuities and especially the

disoccluded region in the center.

Figure 9:Hamburg Taxi sequence: estimated quadtree and estimated flow, mergings � � patches

in a 3-level pyramid.
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Figure 10: Flower Garden sequence: estimated quadtree and estimated flow, mergings � �

patches in a 4-level pyramid.

[Otte and Nagel, 1994]. In this scene, the camera is moving forward and left while all of the blocks

are stationary, except for the short central block, which is independently moving to the left. The

quadtree segmentation of the motion field has separated out the tall block in the foreground and the

independently moving block, but has not separated the other blocks from the table or the checkered

background. Changing the thresholds on the merge algorithm could be used to achieve a greater

segmentation, but this does not appear to be necessary to adequately model the motion field.

9 Extensions

We are currently extending the algorithm described in this paper in a number of directions, which

include better multiframe flow estimation, parallel feature tracking, and local search.

When given more than two frames, we must assume a model of motion coherency across frames

to take advantage of the additional information available. The simplest assumption is that oflinear

flow, i.e., that displacements between successive images and a base image are known scalar multi-

ples of each other,ut � stu�.� Flow estimation can then be formulated by summing the intensity

differences between the base frame and all other frames [Szeliski and Coughlan, 1994], which is

similar to thesum of sum of squared-distance (SSSD) algorithm of [Okutomi and Kanade, 1993].

We have found that in practice this works well, although it is often necessary tobootstrap the motion

�In the most common case, e.g., for spatio-temporal filtering, a uniform temporal sampling (st � t) is assumed, but

this is not strictly necessary.
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Figure 11: Michael Otte’s sequence: estimated quadtree and estimated flow, mergings � �

patches in a 4-level pyramid.

estimate by first computing motion estimates with fewer frames (this is because gradient descent

gets trapped in local minima when the inter-frame displacements become large).

When the motion is not linear, i.e., we have a non-zero acceleration, we cannot perform a single

batch optimization. Instead, we can compute a separate flow field between each pair of images,

using the previous flow as an initial guess. Alternatively, we can compute the motion between a base

image and each successive image, using a linear predictorut � ut�� � �ut�� � ut���. This latter

approach is useful if we are trying to track feature points without the problem ofdrift (accumulated

error) which can occur if we just use inter-frame flows.

The linearly predicted multiframe motion estimator forms the basis of our parallel extended im-

age sequence feature tracker [Szeliskiet al., 1995]. To separate locations in the image where fea-

tures are being tracked reliably from uninformative or confusing regions, we use a combination of

the local Hessian estimate (9) and the local intensity error within each spline patch. This is similar

to Shi and Tomasi’s tracker [Shi and Tomasi, 1994], except that we use bilinear patches stitched

together by the spline motion model, which yields better stability than isolated affine patches.

To deal with the local minima which can trap our gradient descent technique, we are also adding

an exhaustive search component to our algorithm. At the beginning of each set of iterations, e.g.,
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after inter-level transfers in the coarse to fine algorithm, or after splitting in the quadtree spline es-

timator, we search around the current�u� v� estimate by trying a discrete set of nearby�u� v� values

(as in SSD algorithms [Anandan, 1989]). However, because we must maintain spline continuity,

we cannot make the selection of best motion estimate for each patch independently. Instead, we

average the motion estimates of neighboring patches to determine the motion of each spline con-

trol vertex.

In future work, we plan to extend our algorithm to handle occlusions in order to improve the

accuracy of the flow estimates. The first part, which is simpler to implement, is to simply detect

foldovers, i.e., when one region occludes another due to faster motion, and to disable error con-

tributions from the occluded background. The second part would be to add an explicit occlusion

model, which is not as straightforward because our splines are currentlyC� continuous. In other

work, we would also like to study the suitability of our method as a robust way to bootstrap layered

motion models. We also plan to test our technique on standard stereo problems.

10 Discussion and Conclusions

The quadtree-spline motion algorithm we have developed provides a novel way of computing an ac-

curate motion estimate while performing an initial segmentation of the motion field. Our approach

optimizes the same stability versus detail tradeoff as adaptively-sized correlation windows, with-

out incurring the large computational cost of overlapping windows and trial-and-error window size

adjustment. Compared to the recursively split affine patch tracker of [M¨ulleret al., 1994], our tech-

nique provides a higher level of continuity in the motion field, which leads to more accurate motion

estimates.

The general framework of quadtree splines and hierarchical basis functions is equally applicable

to other computer vision problems such as surface interpolation, as well as computer graphics and

numerical relaxation problems. It has already been applied successfully to the elastic registration

of 3D medical images [Szeliski and Lavall´ee, 1994], and we plan to extend our approach to other

applications.
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