
Registration and Integration of Textured

3-D Data
Andrew Johnson and Sing Bing Kang

Digital Equipment Corporation

Cambridge Research Lab

CRL 96/4 Oct., 1996

Digital Equipment Corporation has four research facilities: the Network Systems Laboratory, the
Systems Research Center, and the Western Research Laboratory, all in Palo Alto, California;
and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is
applications technology; that is, the creation of knowledge and tools useful for the preparation of
important classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

TM

Registration and Integration of Textured

3-D Data
Andrew Johnson� and Sing Bing Kang

Digital Equipment Corporation

Cambridge Research Lab

CRL 96/4 Oct., 1996

Abstract

In general, multiple views are required to create a complete 3-D model of an object or a multi-

roomed indoor scene. In this work, we address the problem of merging multipletextured 3-D data

sets, each of which corresponding to a different view of a scene or object. There are two steps to

the merging process: registration and integration.

Registration is the process by which data sets are brought into alignment. To this end, we use

a modified version of the Iterative Closest Point algorithm (ICP); our version, which we callcolor

ICP, considers not only 3-D information, but color as well. This has shown to have resulted in

improved performance.

Once the 3-D data sets have been registered, we then integrate them to produce a seamless,

composite 3-D textured model. Our approach to integration uses a 3-D occupancy grid to rep-

resent likelihood of spatial occupancy through voting. The occupancy grid representation allows

the incorporation of sensor modeling. The surface of the merged model is recovered by detecting

ridges in the occupancy grid, and subsequently polygonized using the standard Marching Cubes

algorithm. Another important component of the integration step is the texture merging; this is

accomplished by trilinear interpolation of overlapping textures corresponding to the original con-

tributing data sets. We present results of experiments involving synthetic and real scenes.

�The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213

Keywords: 3-D scene modeling, 3-D registration, 3-D data merging, color iterative closest point

(ICP), 3-D occupancy grid technique.

c�Digital Equipment Corporation 1996. All rights reserved.

Contents i

Contents

1 Introduction � 1

1.1 Outline . 2

1.2 Recovery of 3-D scene data . 2

1.3 Textured 3-D data . 4

2 Registration � 5

2.1 Iterative closest point algorithm . 5

2.2 Color ICP . 7

2.3 Results . 11

3 Integration � 14

3.1 Related work . 14

3.2 Occupancy grids . 16

3.3 Sensor model . 17

3.4 Surface probability field . 19

3.5 Extracting surface from probability field . 23

3.6 Blending texture . 27

3.7 Results . 28

4 Implementation � 33

5 Discussion and future work � 34

6 Summary � 36

ii LIST OF FIGURES

List of Figures

1 Illustration of the merging problem. The thick�’s mark the locations of the cam-

era, with each corresponding to a different range data set. 1

2 Processes involved in our approach for merging multiple 3-D data sets. 3

3 Generating scene model from multiple 360� panoramic images. 3

4 Pseudo-code of traditional ICP algorithm. 6

5 Demonstration of the use of color in registration. In traditional ICP closest points

depend only on shape, so it can produce incorrect texture registration. Since closest

points depend on color and shape in Color ICP, it will aligns texture correctly. . . . 8

6 Pseudo-code of color ICP algorithm. 9

7 Two textured 3-D data sets of a synthetically generated room shown in wireframe

and texture mapped (top). A top view of the points in the sets before and after

registration by the Color ICP algorithm (bottom). 12

8 Histogram of registration errors for the traditional ICP and Color ICP algorithms

from a typical trial (synthetic room case). The histogram clearly shows that the

Color ICP algorithm is an order of magnitude improvement over the traditional

ICP algorithm. 13

9 Geometry for the two components of the sensor model: the Sensor Error Model,

a cylindrical gaussian oriented along the sensor viewing direction and the Point

Spread Model, a cylindrical gaussian oriented along the surface normal. 19

10 The insertion of a point in to the surface probability field. Vectors aligned with the

point’s surface normal with magnitude depending on the sum of the Point Spread

and Sensor Error Model are inserted into the voxel space.S is the sensor origin. . . 20

11 Consensus surface normal definitions. The consensus surface normal is the weighted

sum of the normals of surrounding points (top left). Adding probabilities as vec-

tors prevents opposing surfaces from mixing (lower left). Coherence of normals

determines magnitude of consensus surface normal (lower right). 22

12 Pseudo-code of algorithm to create surface probability field. 23

13 Registered point sets with sensor origins shown as shaded spheres and the middle

horizontal slice of surface probability through the voxel space for those points.

Notice that only allocated voxels are shown. 24

LIST OF FIGURES iii

14 The dot product of the consensus surface normal and the surface probability gradi-

ent create an implicit surface function. 25

15 Three views of the consensus surface mesh generated for six registered data sets

(merged point distribution shown on the top left). The six small spheres in the

point distribution indicate the six camera locations. 26

16 The geometry for creating a texture map cell for a face. The color of each pixel

of the cell is the weighted average of the colors projected onto it by data sets that

view the pixel. Each face in the consensus surface mesh has an associated texture

cell. 29

17 The result of integrating six textured 3-D data sets created directly from a synthetic

room model. The complete room model with texture blended on the surfaces of

the room is shown as well as a close up of the texture blending. 29

18 The result of integrating five textured 3-D data sets created from omnidirectional

stereo applied to panoramic images created from a synthetic room model. The reg-

istered points, wireframe consensus surface, shaded consensus surface and texture

mapped surface are shown. Note: the small spheres in the top left figure represent

the different camera center locations. 31

19 The result of integrating two textured 3-D data sets created with omnidirectional

multibaseline stereo of an office. The registered points, wire frame surface, texture

mapped surface and two close-ups of the texture mapping using different blending

functions are shown. Max texture blending results in clear texture with more visi-

ble discontinuities while linear blending of texture produces less clear texture but

with less visible discontinuities. Note: the two small spheres in the top two figures

represent the different camera center locations. 32

20 Two representative panoramas of the vision lab. 33

21 The result of culling data of each data set to ensure non-violation of visibility of

other data sets. Left: original (noisy) data sets; right: processed data sets. 34

22 The result of integrating two textured 3-D data sets created with omnidirectional

multibaseline stereo of a lab. The texture of the merged modeled is created using

the max texture blending scheme. Note: the two small spheres in the top two

figures represent the different camera center locations. 35

iv LIST OF TABLES

List of Tables

1 Comparison of registration results to ground truth for a typical trial for the synthetic

room. The angles are in degrees. 11

1 Introduction 1

view 1

register
and

integrateview 2

complete model

Figure 1: Illustration of the merging problem. The thick�’s mark the locations of the camera,

with each corresponding to a different range data set.

1 Introduction

There is an increasing interest in modeling scenes for virtual reality applications, either in the

areas of business (real estate, architecture, information-dispensing kiosk), education (electronic

museums and multimedia books), or entertainment (interactive 3-D games, movies). The option of

creating virtual environments by capturing real scenes through video cameras is getting particular

attention, given the labor-intensive and thus expensive nature of creating models by hand using a 3-

D geometric modeler. The problem of creating models of a large scene or an entire object is that any

given view of the camera or a depth imaging such as a light-stripe rangefinder is insufficient—thus

merging of multiple views taken at different locations is usually necessary. This is then followed

by integrating the different views to result in a seamless 3-D textured model. The problem is

illustrated in Figure 1.

A lot of research work has been done in the area of model creation through multiple view merg-

ing. Shumet al. [Shumet al., 1994], for example, recover the merged model through simultaneous

determination of planar surface parameter location and pose of constituent range data sets. They

assume, however, that the surfaces of objects can be represented using planar patches. There is

work that involves modeling of free-form (i.e., smooth-varying) objects as well [Higuchiet al.,

1993; Shumet al., 1995], but they require exhausive search in pose space to determine relative

camera location.

The act of reconstructing the model of a real scene from a camera images (as opposed to direct

2 1 Introduction

3-D data recovery from rangefinders) has been termedVideoCopying�. (This term is an allusion to

“photocopying” in 2-D.) The idea is to be able to reconstruct and model the 3-D world by merely

using a commercially available video camcorder and continuously videotaping the scene while

moving the camcorder. The structure of the scene can be recovered from multiple images using

structure from motion algorithms such as [Azarbayejani and Pentland, 1995; Szeliski and Kang,

1994; Taylor and Kriegman, 1995] if the camera motion is not known.

1.1 Outline

This document is organized as follows: The rest of this section briefly describes how 3-D data that

are used in this work is recovered, and defines the notion oftextured 3-D data. The steps involved

in our proposed 3-D data merging work are depicted in Figure 2. The first step in the merging

process is data set registration; this step is described in Section 2. Here we introduce the idea of

using color in addition to 3-D location in the registration step.

Subsequent to registration is the integration step to produce a seamless 3-D textured model.

Section 3 delineates the integration step, which involves the use of occupancy grids based on

sensor modeling and ridge detection to recover composite 3-D surfaces. The technique to blend

textures from different data sets is also explained in this section.

Section 4 provides some implementational details of the technique of merging multiple textured

3-D data sets. Discussion of data merging issues and future work is given in Section 5 before we

summarize our work in Section 6.

1.2 Recovery of 3-D scene data

In our work, we use 3-D data recovered from omnidirectional multibaseline stereo, i.e., using mul-

tiple panoramic images [Kang and Szeliski, 1996]. Each panoramic image spans a 360� horizontal

field of view. The primary advantage of this method is that at any given camera center location,

the scene can be recovered at a very wide horizontal field of view. This is done without resorting

to any intermediate 3-D merging.

The omnidirectional multibaseline stereo approach to recover 3-D data and subsequently the

scene model is summarized in Figure 3. We provide only a brief outline of the approach here.

�The term “VideoCopying” was coined by S.B. Kang in 1995, and was originally referred to in the web site

http://www.research.digital.com/CRL/personal/sbk/research/scene-sensing.html.

1.2 Recovery of 3-D scene data 3

shape
recovery

registration

integration

textured 3-D data sets

textured 3-D data sets &
rigid transformations

single textured surface model

Figure 2: Processes involved in our approach for merging multiple 3-D data sets.

P

omnidirectional

multibaseline stereo recovered points textured 3-D data

Figure 3: Generating scene model from multiple 360� panoramic images.

4 1 Introduction

Full details can be found in [Kang and Szeliski, 1996]. The approach is straightforward: at each

camera location in the scene, sequences of images are captured while rotating the camera about the

vertical axis passing through the camera optical center. Each set of images are then composited to

produce panoramas at each camera location. The stereo algorithm is then used to extract 3-D data

of the scene. Finally, the scene is modeled using the 3-D data input; the model is rendered with the

texture provided by the 2-D image input.

1.3 Textured 3-D data

As described earlier, omnidirectional multi-baseline stereo produces a set of 3-D points with asso-

ciated 2-D image coordinates in a panoramic image. By connecting the 3-D points based on the

connectivity given by the Delaunay triangulation of the 2-D image coordinates, a 3-D triangular

surface mesh is generated [Kanget al., 1995]. The surface normal at each vertex in the mesh can

be determined by fitting a plane to the vertex and all of the vertices adjacent to it in the mesh. The

surface normal is then set to the normal of the best fit plane that points toward the sensor origin.

Every point on the surface mesh (including any point on the faces of the mesh) can be projected

into the panoramic image to obtain the color for that point. In this manner, the texture from the

panoramic image can be mapped onto the surface mesh. A surface mesh and associated image that

texture maps it is called a textured 3-D data set. The color for a point on the surface mesh of a

textured 3-D data set is determined by projecting the 3-D position of the point�x� y� z� into the

panoramic image (of heightHI and widthWI) to determine its 2-D image coordinates�u� v�; the

set of equations governing this projection is given by (2).

� � tan��
�
y

x

�

� � sin��
zp

x� � y� � z�

u � ��� � ��
WI

��
(1)

v �
HI

�
� WI

��
tan �

Since the projected point will not necessarily project to an exact integer pixel location, the color

of the point is determined from bilinear interpolation of the colors from the four pixels surrounding

2 Registration 5

the 2-D image coordinates. The purpose of bilinear interpolation is to smoothly resample the image

when the point does not project to an exact integer pixel location. We call a 3-D point with its

associated color acolor-point.

2 Registration

Registration is the process by which two data sets are brought into alignment. In the case of 3-D

modeling from images, we are interested in determining the rigid transformation that aligns two

textured 3-D data sets, so that they can be placed in a common world coordinate system. Since

no assumptions can be made about the shape of the data, the registration algorithm used must be

able to handle free-form surfaces. The Iterative Closest Point algorithm (ICP) [Besl and McKay,

1992; Zhang, 1994] is an established algorithm for registration of free-form surfaces that is simple

to implement and easy to modify to meet specific needs. A requirement of the Iterative Closest

Point algorithm is that the two data sets to be registered are coarsely aligned. Since we have an

initial guess for the transformation that aligns two data sets (based on the coarse measurements of

relative camera placements), we can use an ICP algorithm to register textured 3-D data sets.

2.1 Iterative closest point algorithm

Registration of free-form surface is a hard problem because it is difficult to establish correspon-

dences between data sets. To solve this problem Besl and McKay [Besl and McKay, 1992] pro-

posed the Iterative Closest Point algorithm which establishes correspondences between data sets

by matching points in one data set to the closest points in the other data set. Traditional ICP works

as follows. Given a point set M and a surfaceS: For eachmi in M , find si, the closest point on the

surfaceS. Next the rigid transformationT that minimizes the distance between the�mi� si� pairs in

a least squares sense is calculated. All of the points inM are transformed byT , and the process is

repeated until the distance between closest points falls below a thresholddmax. A pseudo-code de-

scription of the algorithm is given in Figure 4. ICP is an elegant way to register free-form surfaces

because it is intuitive and simple. Besl and McKay’s algorithm requires an initial transformation

that places the two data sets in approximate registration and operates under the condition that one

data set be a proper subset of the other. Since their algorithm looks for a corresponding scene

point for every model point, incorrect registration can occur when a model point does not have a

6 2 Registration

ICP(point_set M, surface S) {

while (d(T)>dmax) {

for each mi in M {

si = ClosestPoint(mi,S)

}

transformation T =

M = TransformPointSet(M,T)

}

}

min
T

d T() min
T

si T mi
 –

2

i
∑=

Figure 4: Pseudo-code of traditional ICP algorithm.

corresponding scene point due to occlusion in the scene.

Zhang [Zhang, 1994] also proposed an iterative closest point algorithm that has two improve-

ments over the algorithm of Besl and McKay. The first improvement used k-dimensional trees

[Friedmanet al., 1977; Sproull, 1991] to speed up the closest point computation. The second im-

provement uses robust statistics to generate a dynamic distance threshold on the distance allowed

between closest points. This dynamic distance threshold is used to relax the requirement that one

data set be a proper subset of the other, so that partially overlapping data sets can be registered. He

showed good results with stereo data, which motivated our use of the ICP algorithm for registra-

tion.

Simonet al. [Simonet al., 1994] created a real time 3-D tracking system that built on Besl and

McKay’s ICP algorithm. They added many improvements to the algorithm to increase the speed of

registration including k-d trees for closest point computation, closest point caching, storage of 2-D

face representations and decoupled acceleration of the ICP algorithm. They found that the greatest

speed improvements were due to the use of k-d trees and the ICP acceleration.

We have developed an ICP algorithm that builds on the algorithm presented by Zhang [Zhang,

1994]. In addition to using k-d trees for closest point computations and a dynamic distance thresh-

old, our algorithm uses shape and color information to improve the registration beyond that ob-

tained with an ICP algorithm that uses just shape information.

2.2 Color ICP 7

2.2 Color ICP

During integration of textured 3-D data, shape as well as texture are integrated to form the final

consensus surface model. Our approach to texture integration is to project the texture from all of

the registered data sets onto the final consensus surface where the overlapping textures are blended.

For texture to be blended correctly, the texture projected from all of the data sets must be accurately

aligned on the final consensus surface. In other words, for correct alignment of texture, registration

on the order of a few image pixels projected into the scene is required. For example, a 2000 pixel

wide panorama becomes misregistered by one pixel if the estimated rotation is incorrect by 0.18

degrees. Inaccuracies in scene shape introduced by the shape recovery algorithm (omnidirectional

stereo) are too large to obtain the accuracy in registration needed to blend texture using a traditional

ICP algorithm. However, by including color in the closest point computation of the ICP algorithm,

the necessary registration accuracy can be obtained.

In traditional ICP, closest points are searched for in 3-D Euclidean space, so two data sets are

registered based on similarity in shape. However, for registration of textured 3-D data, accurate

alignment of shape and texture is required. This can be accomplished by modifying the distance

metric used to compute closest points to include a measure of texture similarity. This idea is shown

in Figure 5. Since texture is conveyed by the color projected onto the points in the surface mesh,

adding a measure of color difference to the Euclidean distance metric will be sufficient. Consider

two pointsp� andp� with positionsx� � �x��� x��� x��� andx� � �x��� x��� x��� and colors

c� � �c��� c��� c��� andc� � �c��� c��� c��� then the 6-DL� color/shape distance between the points

is

d��p��p�� �
h
�x�� � x���

� � �x�� � x���
� � �x�� � x���

��

���c�� � c���
� � ���c�� � c���

� � ���c�� � c���
�
i�
� (2)

where� � ���� ��� ��� are scale factors that weigh the importance of color against the impor-

tance of shape. These scale factors and the color model used will be discussed later in this section.

Adding color to the distance metric used to compute closest points will ensure that points that are

close to each other and of similar color are aligned. Then end result will be better registration than

can be obtained with shape alone.

In general, with stereo data, the number of recovered 3-D points is much smaller than the

8 2 Registration

Traditional ICP Color ICP

incorrect texture alignment correct texture alignment

before

after

registration

registration

closest
points

closest
points

Figure 5: Demonstration of the use of color in registration. In traditional ICP closest points depend

only on shape, so it can produce incorrect texture registration. Since closest points depend on color

and shape in Color ICP, it will aligns texture correctly.

number of pixels in the image. This can be caused by many things including lack of texture

variation in the image, occlusions and subsampling to reduce the amount of processing. Therefore,

the color variation in the image will not be completely captured by the color projected onto the

vertices of the surface mesh. To adequately capture the color variation in the image, we super-

sample the surface mesh by creating extra 3-D points on the faces of the surface mesh which can

be projected into the image to obtain their color. The extra points for each face are created on a

regular grid of fixed size attached to each face. We set the size of the grid so that the number of

3-D points is between one fifth and one tenth the number of pixels in the image. For registration it

is only necessary to super-sample one of the data sets because the super sampled set will contain

all of the color points in the other data set.

The flow of theColor ICP algorithm (whose pseudo-code is shown in Figure 6) is similar to

the ICP algorithm developed by Zhang. Suppose that two textured 3-D data setsM andS are to be

registered. First, super sampleS, as detailed above, to create a dense set of color-points represent-

ing the shape and texture ofS. Next, create a set of color-points from the vertices of the surface

mesh ofM and transform the points ofM by the initial guess of the registration transformation.

Then using the distance metric from (2), create a 6-D k-D tree for efficient determination of the

closest color-point inS. Once the data structures are initialized, the iterations of the ICP algorithm

2.2 Color ICP 9

ColorICP(int Dmax, transformation IT, textured_3D_data_set M,

textured_3D_data_set S) {

color_point_set CS = CreateSuperSampledColorPoints(S)

color_point set CM = CreateColorPointsFromVertices(M)

tree TS = CreateClosestPointTree(CS)

CM = TransformPointSet(CM,IT)

while (!StoppingCriteriaMet(T)) { // Equation 4

color_point_set US = ClearPointSet()

color_point_set UM = ClearPointSet()

for each mi in CM {

si = ClosestColorPoint(mi,TS,CS)

}

if (ColorDistance(mi,si) < Dmax){ // Equation 2

AddColorPoint(US,si)

AddColorPoint(UM,mi)

}

transformation T := BestTransformation(US,UM)// Equation 3

CM = TransformPointSet(CM,T)

Dmax = UpdateDistanceThreshold(US,UM,T) // Zhang’s method

}

}

Figure 6: Pseudo-code of color ICP algorithm.

commence. For each color-pointmi in M find the closest color-pointsi in S using the 6-D tree

for S. Given the�mi� si� pairs, compute the rigid transformationT that will minimize the 3-D

Euclidean distance between them using the quaternion method of Faugeras and Hebert [Faugeras

and Hebert, 1986]:

T �tx� ty� tz� rx� ry� rz� � min
T

X
i

jjsi � T �mi�jj� (3)

Finally, transform the points in M by T repeat the iterations until the convergence criterion is

met. A pseudo-code description of the Color ICP algorithm is given in Figure 4.

To make our ICP algorithm robust to registration when the model is not a proper subset of

10 2 Registration

the scene, we have incorporated the dynamic maximum distance threshold employed by Zhang

[Zhang, 1994]. This threshold limits the maximum distance between closest points (6-D); if two

points are farther apart than this threshold, they are not used to compute the rigid transformation.

Zhang applies rules based on the statistics of the histogram of distances between closest points

in order to set this threshold automatically. We use all of the same rules for setting the distance

threshold, except we do not use the rule that sets the threshold when the registration is very bad.

Instead of finding the first minimum after the main peak in the histogram, and setting the threshold

to this if the registration is very bad, we apply a simpler rule that sets the distance threshold to its

starting value.

Our stopping criterion is met when the magnitude of the translation and the magnitude of a

vector made from the rotation angles is fall below separate thresholds.

dt �
q
t�x � t�y � t�z � Ht

dr �
q
r�x � r�y � r�z � Hr (4)

By separating the stopping criterion into translational and rotational components, we have more

control over the convergence of the registration. In particular, the Color ICP algorithm will con-

tinue to iterate if either the translational or rotational components of the computed transformation

are significant.

If the 3-D position and color of points are to be compared then the scale that relates them must

be determined. Before this scale can be determined, an appropriate color model that determines the

color coordinates of a point must be chosen. Color is being used to register two textured 3-D data

sets that may be created under different lighting conditions or with different sensors. Under normal

lighting (i.e., white light) most variations in color of an object taken from different viewpoints will

come from variations in shading. Shading generally affects the intensity of light coming from an

object, but not its intrinsic color. Therefore, we would like the color model to separate intensity

from intrinsic color, so that the role of intensity in the matching of color can be reduced. The color

model that we chose that meets this criterion is the YIQ color model [Foleyet al., 1990]. In the YIQ

model the intensity of light is conveyed by the Y channel and the intrinsic color (hue, saturation) is

conveyed by the I and Q channels. The HSB color space also separates out the intensity of color,

but its polar nature creates singularities which make the calculation of distance more complicated.

The mapping from YIQ to the color coordinates of (2) is�y� i� q� � �c�� c�� c��.

The scale of color with respect to 3-D position is determined by the a vector in 8. To reduce

2.3 Results 11

registration transformation parameters errors

algorithm tx ty tz rx ry rz Et Er

ICP 1.976 0.806 -0.043 -0.380 0.196 1.112 0.050 1.191

Color ICP 1.993 0.793 -0.005 -0.049 -0.035 -0.018 0.011 0.041

Correct 2.000 0.800 0.000 0.000 0.000 0.000 0.000 0.000

Table 1: Comparison of registration results to ground truth for a typical trial for the synthetic room.

The angles are in degrees.

the effect of intensity on the matching of points, we make the scale of the Y channel one tenth the

scale of the I and Q channels. We have produced excellent registration results when� � ��� ��� ���.

Since the spatial variation of the 3-D textured data sets that we are merging is on order of 10 units,

this scale factor makes the intrinsic color of points have an effect that is on order of the effect of

the spatial coordinates.

2.3 Results

An example registration result is shown in Figure 7. At the top of the figure are shown two textured

3-D data sets (in wireframe and texture mapped) generated from a synthetic room model generated

using the Rayshade modeling package [Kolb, 1994]. The room has 4 walls, a doorway into another

room and various objects along the wall (tori, vases, columns). The walls of the room are also

texture mapped with common vision images (such as the mandrill face image) to add extra texture

to the scene. The room model is sufficiently complicated to test the Color ICP algorithm, while

also allowing a comparison to ground truth since the exact transformation between the two data

sets is known. At the bottom of Figure 7 are shown the points in the data sets before and after

registration by the Color ICP algorithm. No misregistration is apparent.

Since we know the transformation between the data sets a comparison of the results of the

algorithm to ground truth and traditional ICP can be made. Table 1 shows the transformation

parameters�tx� ty� tz� rx� ry� rz� calculated for traditional ICP and Color ICP in comparison with

ground truth. Also shown are the translational errors (Et) and rotational errors (Er) between the

computed registrations and ground truth. The Color ICP algorithm performs much better than

the traditional ICP algorithm as can be seen from a comparison of their errors. As mentioned

12 2 Registration

(a) Data set 1 (b) Data set 2

(c) Before registration (d) After registration

Figure 7: Two textured 3-D data sets of a synthetically generated room shown in wireframe and

texture mapped (top). A top view of the points in the sets before and after registration by the Color

ICP algorithm (bottom).

2.3 Results 13

0.001 0.010 0.100 1.000

Log10 Distance of Point from Correct Position

0

200

400

600

C
ou

nt

Color ICP

Traditional ICP

Figure 8: Histogram of registration errors for the traditional ICP and Color ICP algorithms from a

typical trial (synthetic room case). The histogram clearly shows that the Color ICP algorithm is an

order of magnitude improvement over the traditional ICP algorithm.

previously, to integrate texture, the rotational registration error should be on order of tenths of a

degree. The registration produced by the Color ICP algorithm is within the error bound, so it can

be used to register textured 3-D data sets for integration.

Another measure of registration error is the distance between a point after registration and the

true location of the point. A histogram of this distance, for all of the points in the second textured

3-D data set, is shown for the traditional ICP and Color ICP algorithm in Figure 8. The median

of the errors for the traditional ICP algorithm is around 0.10 and the median of the errors for the

Color ICP algorithm is around 0.01, so the Color ICP algorithm is an order of magnitude better

than the traditional ICP algorithm at registering textured 3-D data sets. Other measurements of

registration error and an extensive discussion of the ICP algorithm can be found in [Simon, 1996].

14 3 Integration

3 Integration

The purpose of registering the individual textured 3-D data sets is to place them in a common

world coordinate system. Once in the same coordinate system, the data sets can be combined into

a single surface model that contains shape as well as appearance information. The process which

combines textured 3-D data sets is called integration. Stated succinctly, the purpose of integration

is to combine multiple co-registered 3-D data sets into a single textured surface model.

Our approach to integration is related to work in 3-D occupancy grids and volumetric ap-

proaches to integration.

3.1 Related work

The integration problem is an active area of research where the common approaches are divided

into two groups based on the type of data input into the algorithm. The first group integrates

unstructured point sets. The second group of algorithms are supplied structured data which pro-

vides some knowledge about the underlying surface shape usually in the form of a surface mesh.

The structured data approaches can be broken down further into surface based and volumetric

approaches.

Integration algorithms that can be applied to unstructured point sets are useful when no un-

derlying surface information is available. The surface is constructed using proximity information

in 3-D space. Boissonnat [Boissonnat, 1984] developed an algorithm for efficient computation of

the Delaunay tetrahedronization of space. Veltkamp [Veltkamp, 1991] creates surfaces from unor-

ganized points by generalizing the concept of closest point using a�-neighborhood graph, when

constructing a 3-D tetrahedronization of space. Hoppeet al. [Hoppeet al., 1992] use an augmented

Euclidean Minimal Spanning Tree to create a signed distance function from a set of unorganized

points. They then polygonize the signed distance function using the Marching Cubes surface poly-

gonizer. Bajajet al. [Bajaj et al., 1995] use alpha-shapes and Bernstein-Bezier forms to construct

smooth surfaces from a set of unorganized points. Because unstructured point algorithms have no

surface information to begin with, they produce smooth surfaces which can give unreliable surface

estimates near discontinuities in the scene. Furthermore, these algorithms assume that the surface

from a single object is to be recovered, making them less useful for integrating views of complex

scenes.

3.1 Related work 15

The next group of algorithms assumes that some information describing the shape of the surface

to be reconstructed is available. Usually this information is conveyed by connectivity information

obtained through the data acquisition process (e.g., scanning). With connectivity, the surface nor-

mal at each point can be calculated, giving a richer description of the shape of the object than 3-D

points without surface normals.

Surface based algorithms for integration of structured points usually operate on polygonal

meshes. Soucy and Laurendeau [Soucy and Laurendeau, 1992] partition the points into disjoint

sets based on a Venn diagram of views. Within each disjoint set they create a rectangular grid

of surface points which are integrated along boundaries in the Venn diagram. Turk and Levoy

[Turk and Levoy, 1994] developed a method which zips together overlapping surface meshes fol-

lowed by adjustment of mesh vertex positions based on all the overlapping data. The algorithm of

Rutishauseret al. [Rutishauseret al., 1994] use a sensor error model to combine redundant points

followed by a retriangulation step. By using the surface information these algorithms will produce

better results than those produced by the unorganized point algorithms. However, dependence on a

view-based retriangulation step will result in poor results near complex regions of high curvature.

Chen and Medioni [Chen and Medioni, 1994] avoid the view dependent retriangulation step by

growing a deformable surface to the surface data. However, their approach assumes the object

being modeled is genus zero which is not true when modeling complex scenes.

The final group of integration algorithms constructs a continuous 3-D implicit function de-

scribing the surface using a volumetric data structure to discretely sample the function. Once the

implicit surface is constructed, it is polygonized using the Marching Cubes algorithm to create the

surface from the volumetric data. The methods vary in how the implicit surface is constructed and

the volumetric data is organized. Hiltonet al. [Hilton et al., 1996] and Curless and Levoy [Cur-

less and Levoy, 1996] have developed volumetric integration algorithms that construct a weighted

signed distance function to the surface from structured point data. Hiltonet al. use surface normal

and distance to compute the signed distance function. Curless and Levoy augment their algorithm

with a space carving step to clean up the meshes produced by polygonization. However, both of

these methods are designed for modeling single objects without texture; in addition, prior accurate

alignment of data sets is assumed.

Our algorithm is most similar to the volumetric approaches that construct a 3-D implicit surface

function. We construct an implicit function describing the surface using a volumetric data structure.

However, we approach the problem from the direction of probabilistic occupancy grids developed

16 3 Integration

by Elfes [Elfes, 1987]. Occupancy grids describe the probability of surface based on the proximity

of points and a sensor error model. The occupancy grid paradigm is intuitive and is easily changed

to accommodate different sensors. Unfortunately, occupancy grids do not address the problem of

surface extraction which is generally a difficult and error prone operation. In the next sections,

we show how we can build a volumetric surface probability field and robustly extract a single

consensus surface from it.

3.2 Occupancy grids

The occupancy grid paradigm was first developed to create detailed spatial maps from wide-angle

sonar measurements [Eberlyet al., 1994]. Later it was determined that occupancy grids were a

useful method for accumulating the probability of surface from multiple (possibly of different type)

noisy sensors [Martin and Moravec, 1996]. The fundamental procedure for creating an occupancy

grid is simple. First the world is partitioned into a fixed grid; in our case, the grid is a 3-D array

of voxels. Stored in each voxel is the probability of surface existing in that voxel. When a surface

point measurement is taken, the probability of surface is increased around that point according to

a sensor model. After all of the reading have been taken the most likely surface will correspond to

the ridge of probability in the 3-D array of voxels. The occupancy grid paradigm is very attractive

for integration of 3-D textured data sets because it is

� incremental: Occupancy grids can be built gradually as sensor data is taken, so at any mo-

ment in the data collection process, the surface can be extracted. When additional data is

collected, it can be inserted into the occupancy grid and a new surface generated. Incremen-

tal algorithms are important when a scene is gradually being explored.

� simple: The concept of accumulating surface evidence is intuitive and easy to implement.

� free-form: Occupancy grids make no assumption about the shape of the scene that is being

measured. Since no model is assumed, any complex scene (up to voxel resolution) can be

described.

� flexible: The occupancy grid paradigm can be modified easily to incorporate data from dif-

ferent sensors and sensing algorithms with different sensor error models. For example, oc-

cupancy grids can combine stereo point sets with spline-based structure-from-motion depth

3.3 Sensor model 17

maps to create a single consensus surface. Occupancy grids can also be used to combine

different sensing modalities. In our implementation, we use an occupancy grid to integrate

surface shape as well as texture.

3.3 Sensor model

Before accumulating surface evidence in an occupancy grid, a sensor model must be determined.

Our sensor model combines a model describing the sensor error distribution and a model that

spreads the contribution of the point along the surface that is being imaged. Matthies and Shafer

[Matthies and Shafer, 1987] showed that a good approximation of the error model for stereo is an

ellipsoidal gaussian distribution centered at the measured 3-D point and oriented along the line of

sight. Analytically, the sensor error model has the form of a cylindrically symmetric gaussian with

its axis aligned with the local viewing direction

GE��� �� 	�� 	�� �
�p
��

vuut �

	��
�

�

	��
exp

�
��

�

�
��

	�
�
��

	�

��

� �
p
x � x� x � �v

� � x � �v (5)

x � Q�P

�v �
S�P

jjS�Pjj

where� is the distance of the query pointx from the unit viewing vector�v and� is the distance of

the query pointx along the unit viewing vector. The spread of the gaussian can be characterized by

two parameters,	�� the variance perpendicular to the viewing direction and	�� the variance along

the viewing direction. A 2-D slice of the sensor error geometry is given in Figure 9.

Matthies and Shafer show that the variances of the sensor error model should vary depending

on the position of the sensed point. To reduce the amount of calculation per point, we have assumed

that the variances of the sensor error model are fixed for all points. However, the variances of the

model are set automatically by analyzing local changes in distance from the sensor. Consider a

pointP from surface meshM that hasNM points and sensor originS. Call the local surface mesh

neighborhood ofP (points connected toP by the mesh),LP with NP points. The RMS spread in

18 3 Integration

distancedrms is calculated as follows:

�d �
�

N

X
P�LP

jjP� Sjj

dP �
�

NP

X
P�LP

�d � jjP� Sjj (6)

drms �
�

NM

sX
P�M

d�P

drms measures the average local change in distance which is a good measure of sensor error

assuming that neighborhoods are locally planar, with normals roughly oriented along the viewing

direction. The variances in the sensor error model are set automatically based estimated error as

	� � drms and	� � �drms.

Stereo returns discrete point measurements on the surface of objects. By spreading the contri-

bution of a point along the tangent plane of the point, a continuous surface can be generated. To

meet this end, a point spread function is added to the sensor model. The point spread function has

the form of a cylindrically symmetric gaussian with its axis aligned with the local surface normal

GS���
� 	�� 	�� �
�p
��

vuut �

	��
�

�

	��
exp

�
��

�

�
��

	�
�

�

	�

��

� �
p
x � x� x � �n (7)

 � x � �n
x � Q�P

where� is the distance of the query pointx from the unit surface normal�n and
 is the distance

of the query pointx along the unit surface normal. The spread of the gaussian can be characterized

by two parameters,	�� the variance along the tangent plane and	�� the variance along the surface

normal. A 2-D slice of the surface spreading geometry is given in Figure 9.

The variances of the point spread function can be calculated automatically for each surface

mesh by estimating the local resolution at each point. Ideally the variances of the spread function

would be different for each point in the surface mesh, since the local resolution changes for each

point. However, to reduce the computation for each point, the variances are fixed for each surface

mesh and are based on the average mesh resolution for all of the points in the mesh. The average

3.4 Surface probability field 19

S

P
α

β

Q

v̂ n̂

γ

δ

Q

P

Sensor Error Model GE Point Spread Model GS

x x

Figure 9: Geometry for the two components of the sensor model: the Sensor Error Model, a

cylindrical gaussian oriented along the sensor viewing direction and the Point Spread Model, a

cylindrical gaussian oriented along the surface normal.

mesh resolutionrav for a surface meshM with NM points is

rav �
�

NM

�
� X
pi�pj�M

jjpi � pjjj
�
A (8)

Based on the average mesh resolution, the variances of the point spread function can be set as

	� � �rav and	� � rav.

A linear combination is used to combine the sensor error and surface spread models into one

sensor modelM .

M��� 	�� 	�� 	�� 	�� � �GE�	�� 	�� � �� � ��GS�	�� 	�� (9)

By adjusting the parameter� on the interval [0,1], the relative importance of the sensor error

and point spread models can be set. Convolution of the point spread model with the sensor error

model is a more rigorous way of combining the models, but computationally we found it infeasible

because both models change dynamically with the point being processed.

3.4 Surface probability field

The voxels of a traditional occupancy grid store a single scalar value, the probability of surface.

Given structured data a more sophisticated occupancy grid representation can be used that encodes

20 3 Integration

S

n̂

P

Figure 10: The insertion of a point into the surface probability field. Vectors aligned with the

point’s surface normal with magnitude depending on the sum of the Point Spread and Sensor Error

Model are inserted into the voxel space.S is the sensor origin.

the structure of the data and the probability of surface. Instead of storing a scalar probability in

each voxel of the occupancy grid, a vector encoding the surface shape and probability is stored.

The direction of this vector encodes the consensus surface normal based on all of the local mea-

surements, and the magnitude of the vector encodes the probability of surface. Because a vector is

being stored at each voxel instead of a scalar, we call the occupancy grid that holds structured sur-

face information a surface probability field. The magnitude of the surface probability field which

conveys the belief in surface existing is termed the surface probability function. A example of the

vectors inserted into the surface probability field for a single point at given in Figure 10.

A traditional occupancy grid is incrementally built from measurements by finding the location

of a measurement in the occupancy grid and then adjusting the nearby voxels based on the sensor

model. The adjustment takes the form of scalar addition of the sensor model probability to the

probability that already exist in the voxel. In our occupancy grid representation, when a new mea-

surement is to be inserted into the surface probability field, the voxel containing the measurement

is determined. Then for each surrounding voxel, a vector oriented in the direction of the measure

ment surface normal with magnitude equal to the sensor model probability at that voxel is calcu-

lated. This vector is added to the vector that is already stored in the existing voxel. As shown in

Figure 11, using surface normal vectors to combine probabilities has many advantages:

� Creates consensus surface normal

The direction of the vector stored in each voxel is the consensus surface normal because it

3.4 Surface probability field 21

is the weighted average (based on the sensor model) of the normals from the measurements

near the voxel. The consensus surface normal is essential for robust surface extraction.

� Enforces surface shape coherence

Measurements are being added in the surface probability field as vectors. Voxels that are

updated with normals pointing in a similar direction will have a larger vector magnitude that

voxels that get updated with surface normals that point in different directions. Therefore,

only voxels that get updated with measurements of similar surface normal will have high

probability of being part of the surface.

� Prevents mixing of opposing surfaces

Opposing surfaces will have opposite surface normals, so between them a gap of low surface

probability (due to the cancellation of surface normals) will be generated. This will prevent

opposing surfaces from being joined during surface extraction and will aid in the correct

generation of blended texture on the extracted surface.

Only voxels, that are close to a sensed point will be updated. For typical scenes, only a small

fraction of the voxels that in the volume surrounding the scene will be updated because the scene

surface is a small fraction of the volume. Instead of allocating all of the voxels surrounding the

scene, we dynamically allocate the voxels when they are needed. Dynamic allocation requires a

special voxel storage data structure, called a voxel space, to efficiently determine if a voxel has

been allocated. Given the bounding box of the scene points and the size of the voxels, a unique

integer key can be assigned to each voxel using the order of the voxels in the raster scan of the

bounding box. Allocated voxels are stored in a dictionary (a binary tree that is sorted based on

a the keys of its elements) to ensure efficient lookup of already allocated voxels and insertion of

newly created voxels. In summary, a voxel space stores the voxel size, volume bounding box and

the allocated voxels stored in a dictionary for efficient access.

Given the sensor model and a way of storing voxels, the algorithm for creation of the surface

probability field is straightforward. For each scene point determine the voxel that it falls in. Loop

over a cube of voxel ids surrounding the location of the point. Search for each voxel id in the voxel

space, if the voxel corresponding to the voxel id does not exist, allocate it and insert it into the voxel

space. For each voxel in the cube, update its consensus surface normal based on the position of

the voxel and the sensor model for the current point (each point has position, surface normal, and

22 3 Integration

Σ =

Consensus Surface Normal

+ =

+ =

+ =

coherent = high probability

partially coherent = average probability

not coherent = zero probability

Coherence

Opposing Surfaces

surface

surface

low probability
between surfaces

high probability
on surface

high probability
on surface

Key

point and
surface
normal

consensus
surface
normal

Figure 11: Consensus surface normal definitions. The consensus surface normal is the weighted

sum of the normals of surrounding points (top left). Adding probabilities as vectors prevents oppos-

ing surfaces from mixing (lower left). Coherence of normals determines magnitude of consensus

surface normal (lower right).

3.5 Extracting surface from probability field 23

CreateSurfaceProbabilityField(scene_points S, bounding_box B, voxel_size S)

voxel_space VS = InitializeVoxelSpace(B,S)

For each scene_point P in S {

For each voxel_id I in cube around P {

if V = LookupVoxel(I,VS) does not exist {

V = AllocateVoxel(I,VS)

}

vector N = SensorModel(P,V)*Normal(P)

ConsensusNormal(V) = ConsensusNormal(V) + N

UpdateVoxel(V,VS)

}

}

}

Figure 12: Pseudo-code of algorithm to create surface probability field.

sensor position information). The end result is the surface probability field for all of the currently

sensed scene points where consensus surface normal magnitude corresponds to surface probability.

A pseudo-code version of the algorithm is given in Figure 9.

To test our integration method we created six synthetic data sets from the synthetic room model

described in the registration section of the paper. The data sets are shown in Figure 13 after

registration by the Color ICP algorithm. The location of the sensor origins of the six data sets

are shown as shaded spheres that follow a path from one room to the other through the doorway

between the rooms. Since multiple data sets taken from different positions throughout the scene,

most of the surfaces in the scene are sensed. By creating these synthetic data sets we are able to

test our integration algorithm in a controlled setting independently of the scene recovery method.

The middle horizontal slice through the final surface probability field showing the magnitude of

the consensus surface normal for the 6 synthetic points sets is given in Figure 13.

3.5 Extracting surface from probability field

The surface probability field describes the probability of surface in the volume from which the

exact surface can be extracted. Given the scene data, the best estimate of the surface is the set of

24 3 Integration

Figure 13: Registered point sets with sensor origins shown as shaded spheres and the middle

horizontal slice of surface probability through the voxel space for those points. Notice that only

allocated voxels are shown.

ridges in the surface probability function. If an implicit function can be generated that is positive

for voxels on one side of the surface and negative for voxels on the other side of the surface, then

the exact surface can be extracted from the voxels using an implicit surface polygonizer, such as

the Marching Cubes algorithm. The most difficult component of this approach is detecting the

ridges in the surface probability function.

In the overview of ridge detection operators by Eberlyet al. [Eberly et al., 1994], they define

a ridge as a point that it a local maximum of some function along a special direction. In image

analysis the special directions are usually computed as the eigenvectors of the local Hessian of

the function. The Hessian is computed from second order derivatives on the image, hence, in the

presence of noise, it cannot be computed robustly. However, if the special direction along which to

calculate the local maximum is available through some other robust method, then ridge detection

operation will be robust.

In our case, the ridge corresponds to local maxima of the surface probability function in a

direction perpendicular to the surface. The consensus surface normal is the direction perpendicular

to the surface at each voxel computed as the weighted average of the normals of nearby points.

Therefore, the ridge can be computed as the local maxima of the surface probability function in the

direction of the consensus surface normal. The direction along which to compute the local maxima

does not depend on calculation of second order derivatives, but on the smoothly varying consensus

surface normal. Therefore, our method for computing the ridge is more robust than those that use

3.5 Extracting surface from probability field 25

probability
consensus

surface
normal gradient

ridge

n g

I n g 0>⋅=

I n g 0<⋅=

I n g⋅ 0= =

Figure 14: The dot product of the consensus surface normal and the surface probability gradient

create an implicit surface function.

traditional ridge operators. Through an intelligent use of structure information available from the

scene points, ridge detection is made robust.

Since the exact surface will lie between voxels, animplicit surface function is computed at each

voxel followed by the Marching Cubes algorithm to polygonize the implicit surface. The implicit

surface function is computed as follows. First, the gradientg of the surface probability function

is computed at each voxel in the voxel space through finite differences. The value of the implicit

surface functionI is then the projection of the gradient onto the consensus surface normaln at

each voxel.

I � n � g (10)

This will give the component of the gradient along the consensus surface normal (the special

ridge detection direction), and it will be zero along the ridge. The gradient will always point away

from the surface probability ridge while the consensus surface normal will point in a consistent

direction on both sides of the surface. Therefore, on one side of the ridge of the surface probability

function, the dot product of the gradient with the consensus surface normal will be positive and on

the other it will be negative. Figure 14 graphically explains the generation of the implicit surface

function.

Valleys in the surface probability function will also cause the implicit surface function to

change sign. To prevent this, valleys can be detected by computing the local Hessian H at the

point and checking ifnTHn � �, wheren is the consensus surface normal. Instead of doing this,

we apply a threshold based on surface probability, that will prevent the implicit surface function

26 3 Integration

Figure 15: Three views of the consensus surface mesh generated for six registered data sets

(merged point distribution shown on the top left). The six small spheres in the point distribution

indicate the six camera locations.

from being calculated for voxels with surface probability that is less than a user defined threshold.

Since valleys correspond to low probability regions, in most cases, this will prevent the surface

from being extracted along valleys. It will also prevent false surfaces from being generated by

noisy gradients calculated from small surface probabilities. Using the threshold is a computation-

ally cheaper way to eliminate valleys.

Once the implicit surface function is defined, it is polygonized using the standard Marching

Cubes algorithm [Lorensen and Cline, 1987] with a modified lookup table of 22 cases to prevent

the creation of holes in the surface [Montaniet al., 1994]. The resultingconsensus surface mesh

is the best surface mesh based on the scene data because it corresponds to the surface of highest

probability given the sensor model. A vertex of the consensus surface mesh on an edge is deter-

mined through linear interpolation of the implicit surface function between voxels connected by

the edge.

The consensus surface mesh generated from the 6 synthetic data sets is shown in Figure 15. The

walls of the rooms are extracted along with the shape of the objects on the walls. Since the surface

probability field is generated through vector addition, two sides of the walls in the middle of the

room are kept separated. Some gaps appear where surfaces actually exist in the model because too

few points fall on these surfaces for surface extraction.

3.6 Blending texture 27

3.6 Blending texture

Overlap of textured 3-D data sets causes the textures from multiple images to be projected onto a

single point in the consensus surface mesh. Texture blending is an informed way of deciding how

separate textures are mapped onto the consensus surface mesh. The basic idea is to create a weight

for every textured 3-D data set in each voxel. The texture applied to the faces between the voxels is

then a weighted average of the texture from the 3-D data sets. A weight for each textured 3-D data

set in each voxel can be created from the surface probability field with some extra book-keeping.

Each textured 3-D data set adds to the consensus surface normal at a voxel, when a point from the

set is near the voxel. The contribution of each data set can be kept track of if the contribution of

each data set to the consensus normal is stored as a separate vector in each voxel.

Suppose there areN textured 3-D data sets to be integrated. After all of the points have been

inserted into the surface probability field, there areN vectorsni in each voxel which measure the

contribution of each data seti to the consensus surface normalnc of the voxel. Thetexture weight

wi of each data set is then the dot product of the consensus surface normal with the contribution of

that data set to the voxel

wi � max���ni � nc� (11)

If ni � nc is negative, thenni is pointing away from the consensus surface normal. This means

that the sensor origin of data seti is on the opposite side of the consensus surface, and so data seti

should not be contributing texture to the surface. Therefore, ifni � nc is negative,wi is set to zero.

Using the dot product to create texture weights is the same as setting the texture weight equal to

the ratio of area visible to the sensor to actual surface area. This is a reasonable heuristic for vision

sensors because as the ratio of visible to actual surface decreases, the reliability of the appearance

measured decreases.

Given texture weights for each data set, the texture mapped onto the faces of the consensus sur-

face mesh can be determined. Because the consensus surface mesh was created using the Marching

Cubes algorithm, each face in the surface mesh lies in a cube formed by eight voxels. A simple

method for determining the texture weights at a pointp on a face in the cube is to trilinearly inter-

polate the texture weights from the eight voxels based on the 3-D location ofp in the cube. Then

the color atp is the texture weighted average of the color projected ontop from each data sets.

Since trilinear interpolation of image weights is used, the texture will vary continuously over the

faces.

28 3 Integration

A modification must be made to the texture blending to prevent mixing of textures from op-

posite surfaces. Suppose a facef is being texture mapped. Iff is close to an opposite surface

(i.e. the other side of a wall) voxels on the opposite side off can have positive texture weights for

data sets from whichf is not visible. Therefore, only the texture from data sets that contribute to

voxels on the side off that the consensus surface normal points away from (the sensor side) should

contribute to the texture applied tof . The modification to the texture blending is then to only use

the texture weights that come from the voxels on the sensor side off when trilinearly interpolating

the texture weights for a point onf . Fortunately, because of the continuity of the consensus surface

mesh, the texture weights and hence texture will still be continuously interpolated over the surface

mesh.

To apply texture to the consensus surface mesh, a small, square texture map, called a texture

cell, is made for each face. The texture cell lies in the plane of the face with the top of the texture

cell aligned with the longest edge of the face. The vertices of the longest edge face are mapped to

the upper corners of the texture map, so the location of the third vertex in the texture cell can be

calculated by geometry. The color of the pixels of the texture cell are then determined by finding

the 3-D position of the pixels on the plane of the face followed by texture blending at the point.

There is one texture cell for each face, so the texture cells are kept small (i.e., between 8 and 64

pixels wide). Figure 16 shows the geometry for texture mapping onto a face.

3.7 Results

Figure 17 shows the result of texture blending on the surfaces of the consensus surface mesh shown

in Figure 15. No misregistration of texture is visible. A close-up of the texture blended surface

confirms that there is no misregistration of texture; the pillars and dragon head are clearly visible

and distinct with little blurring of boundaries. The integrated texture mapped model coveys the

shape of the rooms and their appearance using 14318 faces each with a 16�16 texture cell. This

result demonstrates that our shape and appearance registration and appearance algorithms work

independently of the shape recovery algorithm.

The next test of our algorithm is the integration of 5 textured 3-D data sets made by perform-

ing omnidirectional stereo on the synthetic room model. Camera images are captured from the

room model and then composited together into panoramic images. Omnidirectional stereo is then

applied to these panoramic images to obtain the resulting textured 3-D data sets. These data sets

3.7 Results 29

V2

V3

V1

cp w1c1 w2c2 w3c3+ +=

cp

Figure 16: The geometry for creating a texture map cell for a face. The color of each pixel of the

cell is the weighted average of the colors projected onto it by data sets that view the pixel. Each

face in the consensus surface mesh has an associated texture cell.

textured surface

texture close-up

close-up
location

Figure 17: The result of integrating six textured 3-D data sets created directly from a synthetic

room model. The complete room model with texture blended on the surfaces of the room is shown

as well as a close up of the texture blending.

30 3 Integration

allow testing of our shape recovery, registration and integration algorithms with perfect synthetic

images. The resulting integrated model can also be compared to the synthetic model to analyze the

performance of the algorithms with known ground truth. Figure 18 shows the results of integrating

five textured 3-D data sets generated using omnidirectional stereo on the synthetic room model

into a single model comprising 12990 faces and associated 16�16 texture cells. The registered

points, wireframe consensus surface, shaded consensus surface and the texture mapped surface are

all shown. The consensus surface clearly shows the shape of the room and the shape of objects

on the on the walls of the rooms even when the data is very noisy. In particular the torus on the

middle wall of the rooms is clearly defined even though the data defining the torus is corrupted.

The integration of texture does not work as well as in the case of previous case of perfect shape

recovery. Future work will look into the problem of robust blending texture.

The final demonstration of our algorithms is using real data. Two textured 3-D data sets of an

office are created using omnidirectional stereo. The registered points, consensus surface, integrated

surface and two close ups of the texture blending are shown in Figure 19. The rectangular shape of

the office is reconstructed well enough to blend the texture on its surfaces made from 1099 faces.

The closes ups of the texture blending demonstrate two forms of texture blending. One close-up

shows the linear blending of texture that was discussed in the previous section. Because of slight

misregistration of the 3-D data sets some blurring of texture is visible. Another form of blending

uses a maximum operator instead of linear blending. In max blending, the texture of a pixel on a

face is taken from a single 3-D data set, the data set with the maximum texture weight at that pixel.

This form of blending produces clearer texture, but also allows discontinuities in texture when

adjacent pixels take texture from different textured 3-D data sets. Future work will investigate

ways to blend texture that combine max blending and linear blending to create continuous and

clear texture on the surface of the reconstructed model.

Figures 21 and 22 show the results for merging another two real data sets, this time from two

views of the CRL vision lab. These two data sets mostly intersect, except that the first data set

includes the small back room in the lab while the other data set does not. The reference panoramic

images corresponding to the two data sets are shown in Figure 20.

A difficulty with these data sets stems from the door to the back room (with the stack of VCR’s)

is relatively narrow, causing the algorithm that creates the 3-D mesh to connect across the doorway

for the second data set, as shown at the bottom left of Figure 21. As a result, a preprocessing

step of culling points that violates visibility of other data points is performed; the results of this

3.7 Results 31

points (top view) wireframe surface (top view)

textured surface (oblique view)

wireframe surface (oblique view) shaded surface (oblique view)

Figure 18: The result of integrating five textured 3-D data sets created from omnidirectional stereo

applied to panoramic images created from a synthetic room model. The registered points, wire-

frame consensus surface, shaded consensus surface and texture mapped surface are shown. Note:

the small spheres in the top left figure represent the different camera center locations.

32 3 Integration

points (oblique view)

surface (oblique view) textured surface (oblique view)

close-up: linearclose-up: max

points (top view)

Figure 19: The result of integrating two textured 3-D data sets created with omnidirectional multi-

baseline stereo of an office. The registered points, wire frame surface, texture mapped surface and

two close-ups of the texture mapping using different blending functions are shown. Max texture

blending results in clear texture with more visible discontinuities while linear blending of texture

produces less clear texture but with less visible discontinuities. Note: the two small spheres in the

top two figures represent the different camera center locations.

4 Implementation 33

Figure 20: Two representative panoramas of the vision lab.

step is shown in Figure 21. The results of merging the two data sets are shown in Figure 22. The

discontinuity in the resulting combined texture bears testimony to the recovered shapes at the two

different sites not being exact.

4 Implementation

The code for our model merging work is written in C++ and uses LEDA (Library of Efficient Data

types and Algorithms) [Naher and Uhrig]. LEDA is a library of data types and algorithms that

includes, among others, graph data structures and algorithms to manipulate them. Each vertex,

edge, and face of a 3-D scene model has its own data structure, while the connectivity information

between the vertices is encoded in a graph. This graph represents the geometrical surface mesh

of the 3-D model. Meanwhile, the occupancy grid is represented as a dynamically allocated list

of voxel structures; each voxel structure contains the surface normal and probability information.

Access to the voxel structure is efficient as it is implemented as a dictionary. The 3-D data merging

and modeling program is compiled and run on a DEC Unix Alpha workstation.

While we have written our own version of a 3-D model viewer, we also provide a facility to

output our 3-D models as VRML� files, primarily because of the increasing popularity of VRML.

To view these VRML files, we use a browser called VRweb�. Our choice of the VRML browser

is strongly influenced by two factors: the complete source code is free, and it can be compiled and

run on Unix Alpha workstations.

�Virtual Reality Modeling Language, a 3-D version of HTML that enables 3-D models to be directly accessible

through the web. The primary web site for VRML is http://www.sdsc.edu/vrml/.
�The web site for the VRweb browser is http://www.iicm.edu/vrweb.

34 5 Discussion and future work

Original set #1 Processed set #1

 Original set #2 Processed set #2

Figure 21: The result of culling data of each data set to ensure non-violation of visibility of other

data sets. Left: original (noisy) data sets; right: processed data sets.

5 Discussion and future work

It is not surprising that adding color information to the registration step improves performance.

There is a danger, on the other hand, of adding many more local minima with color. This is clearly

a function of both the shape and texture distribution. Repetitive shape and texture would have an

adverse influence. A solution to this may be to add a simulated annealing-like characteristic to the

algorithm to break out of local minima.

One of the problems associated with the integration step is the sensitivity of the results of

texture blending to the accuracy of the recovered shape. There is very little recourse to bad input

data, though a more sophisticated structure from motion algorithm may be bootstrapped to the

registration step to improve both relative camera pose and 3-D data.

The work described here is used to recover 3-D models of indoor scenes for the on-going

5 Discussion and future work 35

points
(top view)

surface
(top view)

textured
surface
(top view)

surface
(oblique
view)

textured
surface
(oblique
view)

close-up #1
(max blend)

close-up #2
(max blend)

Figure 22: The result of integrating two textured 3-D data sets created with omnidirectional multi-

baseline stereo of a lab. The texture of the merged modeled is created using the max texture

blending scheme. Note: the two small spheres in the top two figures represent the different camera

center locations.

36 6 Summary

Smart Kiosk project at Cambridge Research Lab, Digital Equipment Corp. [Waterset al., 1996].

The Smart Kiosk can be considered as an enhanced version of the Automatic Teller Machine, with

the added capability of being able to interact with the user through body tracking, and gesture and

speech recognition. The recovered model of the environment would allow the kiosk to situate the

user relative to the environment. As a result, it would enable a more engaging level of user-kiosk

interaction, specifically being able to provide relative directions as well as give a virtual tour of

the environment. The incorporation of the enhanced feature (using the recovered model of the

environment) to the Smark Kiosk is currently underway.

It is perhaps worthwhile to investigate an alternative, view interpolation-based means of gen-

erating synthetic views of the model. Recent impressive progress has been made in this area, e.g.,

[Gortler et al., 1996; Levoy and Hanrahan, 1996; McMillan and Bishop, 1995; Seitz and Dyer,

1996]. However, these methods are not appropriate whenever 3-D structural information of the

scene is desired or when certain kinds of views (such as flythroughs involving camera positions

very different than those of the known sampled views) are desired.

6 Summary

We have described our approach to merging multipletextured 3-D data sets. In our work, the

3-D data sets are recovered using omnidirectional multibaseline stereo, which involves multiple

panoramic images of the scene.

Data merging is a two-step process, namely registration and integration. In registering multiple

data sets using a variant of the ICP algorithm called thecolor ICP, we not only consider 3-D

point location, but also color information. The color information has been shown to improve the

registration significantly, especially if there is ambiguity in using just 3-D information.

Once the multiple data sets have been registered, we then extract the complete model. The

construction of the merged model is based on voting through occupancy as well as consistency

in surface normal direction. The surface of the merged model is recovered by detecting ridges in

the occupancy grid, and subsequently polygonized using the standard Marching Cubes algorithm.

The texture on the complete model is determined through trilinear interpolation of the overlapping

textures corresponding to the original data sets.

6 Summary 37

References

[Azarbayejani and Pentland, 1995] A. Azarbayejani and A. P. Pentland. Recursive estimation of

motion, structure, and focal length.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 17(6):562–575, June 1995.

[Bajaj et al., 1995] C. Bajaj, F. Bernardini, and G. Xu. Automatic reconstruction of surfaces and

scalar fields from 3-D scans.Computer Graphics (SIGGRAPH’95), :109–118, August 1995.

[Besl and McKay, 1992] P. Besl and N. McKay. A method of registration of 3-D shapes.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(2):239–256, 1992.

[Boissonnat, 1984] J. Boissonnat. Geometric structures for three-dimensional shape representa-

tion. ACM Transactions on Graphics, 3(4):266–286, 1984.

[Chen and Medioni, 1994] Y. Chen and G. Medioni. Surface description of complex objects from

range images. InIEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, pages 153–158, 1994.

[Curless and Levoy, 1996] B. Curless and M. Levoy. A volumetric method for building complex

models from range images.Computer Graphics (SIGGRAPH’96), :303–312, August 1996.

[Eberlyet al., 1994] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for

image analysis.The Journal of Mathematical Imaging and Vision, 4(4):353–373, December

1994.

[Elfes, 1987] A. Elfes. Sonar-based real world mapping and navigation.IEEE Journal of Robotics

and Automation, RA-3(3):249–265, 1987.

[Faugeras and Hebert, 1986] O. Faugeras and M. Hebert. The representation, recognition and

locating of 3-D objects.International Journal of Robotics Research, 5(3):27–52, 1986.

[Foleyet al., 1990] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.Computer Graphics:

Principles and Practice. Addison-Wesley, Reading, MA, 2nd edition, 1990.

[Friedmanet al., 1977] J. Friedman, J. Bentley, and R. Finkel. An algorithm for finding best

matches in logarithmic expected time.ACM Transactions on Mathematical Software,

3(3):209–226, 1977.

[Gortleret al., 1996] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph.

Computer Graphics (SIGGRAPH’96), :43–54, August 1996.

38 6 Summary

[Higuchi et al., 1993] K. Higuchi, M. Hebert, and K. Ikeuchi.Building 3-D models from un-

registered range images. Technical Report CMU-CS-93-214, Carnegie Mellon University,

November 1993.

[Hilton et al., 1996] A. Hilton, A. Stoddart, J. Illingworth, and T. Windeatt. Reliable surface re-

construction from multiple range images. InFourth European Conference on Computer Vi-

sion (ECCV’96), pages 117–126, Springer-Verlag, Cambridge, England, April 1996.

[Hoppeet al., 1992] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface

reconstruction from unorganized points.Computer Graphics (SIGGRAPH’92), :71–78, July

1992.

[Kang and Szeliski, 1996] S. B. Kang and R. Szeliski. 3-D scene data recovery using omnidi-

rectional multibaseline stereo. InProc.s IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 364–370, June 1996.

[Kanget al., 1995] S. B. Kang, A. Johnson, and R. Szeliski.Extraction of Concise and Real-

istic 3-D Models from Real Data. Technical Report 95/7, Digital Equipment Corporation,

Cambridge Research Lab, October 1995.

[Kolb, 1994] C. E. Kolb.Rayshade User’s Guide and Reference Manual. August 1994.

[Levoy and Hanrahan, 1996] M. Levoy and P. Hanrahan. Light field rendering.Computer Graph-

ics (SIGGRAPH’96), :31–42, August 1996.

[Lorensen and Cline, 1987] W. Lorensen and H. Cline. Marching cubes: A high resolution 3D

surface construction algorithm.Computer Graphics (SIGGRAPH’92), :163–169, July 1987.

[Martin and Moravec, 1996] M. Martin and H. Moravec.Robot Evidence Grids. Technical Re-

port CMU-RI-TR-96-06, The Robotics Institute, Carnegie Mellon University, March 1996.

[Matthies and Shafer, 1987] L. Matthies and S. A. Shafer. Error modeling in stereo navigation.

IEEE Journal of Robotics and Automation, RA-3(3):239–248, June 1987.

[McMillan and Bishop, 1995] L. McMillan and G. Bishop. Plenoptic modeling: An image-based

rendering system.Computer Graphics (SIGGRAPH’95), :39–46, August 1995.

[Montaniet al., 1994] C. Montani, R. Scateni, and R. Scopigno. A modified look-up table for

implicit disambiguation of marching cubes.Visual Computer, 10:353–355, 1994.

[Naher and Uhrig] S. Naher and C. Uhrig.The LEDA User Manual Version R 3.3.1.

6 Summary 39

[Rutishauseret al., 1994] M. Rutishauser, M. Stricker, and M. Trobina. Merging range images of

arbitrarily shaped objects. InIEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’94), pages 573–580, IEEE Computer Society, Seattle, Washing-

ton, June 1994.

[Seitz and Dyer, 1996] S. M. Seitz and C. R. Dyer. View morphing.Computer Graphics (SIG-

GRAPH’96), :21–30, August 1996.

[Shumet al., 1994] H.-Y. Shum, K. Ikeuchi, and R. Reddy. Principal component analysis with

missing data and its application to object modeling. InIEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’94), pages 560–565, IEEE Computer

Society, Seattle, Washington, June 1994.

[Shumet al., 1995] H.-Y. Shum, K. Ikeuchi, and R. Reddy.An integral approach to free-form ob-

ject modeling. Technical Report CMU-CS-95-135, Carnegie Mellon University, May 1995.

[Simon, 1996] D. Simon.Fast and Accurate Shape-Based Registration. PhD thesis, Carnegie

Mellon University, 1996.

[Simonet al., 1994] D. Simon, M. Hebert, and T. Kanade. Real-time 3-D pose estimation using a

high-speed range sensor. InIEEE Int’l Conference on Robotics and Automation, pages 2235–

2241, IEEE Society, May 1994.

[Soucy and Laurendeau, 1992] M. Soucy and D. Laurendeau. Multi-resolution surface modeling

from multiple range views. InIEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’92), pages 348–353, IEEE Computer Society Press, Champaign,

Illinois, June 1992.

[Sproull, 1991] R. Sproull. Refinements to nearest neighbor searching in k-dimensional trees.

Algorithmica, 6:579–589, 1991.

[Szeliski and Kang, 1994] R. Szeliski and S. B. Kang. Recovering 3D shape and motion from

image streams using nonlinear least squares.Journal of Visual Communication and Image

Representation, 5(1):10–28, March 1994.

[Taylor and Kriegman, 1995] C. J. Taylor and D. J. Kriegman. Struction and motion from line

segments in multiple images.IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 17(11):1021–1032, November 1995.

[Turk and Levoy, 1994] G. Turk and M. Levoy. Zippered polygonal meshes from range images.

40 6 Summary

Computer Graphics (SIGGRAPH’94), :311–318, July 1994.

[Veltkamp, 1991] R. Veltkamp.2D and 3D object reconstruction with the g-neighborhood graph.

Technical Report CS-R9116, CWI Centre for Mathematics and Computer Science, 1991.

[Waterset al., 1996] K. Waters, J. Rehg, M. Loughlin, S. B. Kang, and D. Terzopoulos.Visual

sensing of humans for active public interfaces. Cambridge, UK, April 1996.

[Zhang, 1994] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces.

International Journal of Computer Vision, 13(2):119–152, 1994.

