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Abstract

We present some quantitative performance measurements for the computing power of Pro-
grammable Active Memories (PAM), as introduced by [BRV89]. Based on Field Programmable
Gate Array (FPGA) technology, the PAM is a universal hardware co-processor closely coupled
to a standard host computer. The PAM can speed up many critical software applications
running on the host, by executing part of the computations through a specific hardware design.
The performance measurements presented are based on two PAM architectures and ten specific
applications, drawn from arithmetics, algebra, geometry, physics, biology, audio and video.
Each of these PAM designs proves as fast as any reported hardware or super-computer for
the corresponding application. In cases where we could bring some genuine algorithmic
innovation into the design process, the PAM was measured to be an order of magnitude faster
than any previously existing system (see [SBV91] and [Sku92]).

Résumé

Nous présentons quelques mesures quantitatives de performance afin d’´evaluer la puissance
de calcul des M´emoires Actives Programmables (PAM), introduites par [BRV89]. Bas´ee
sur la technologie des pr´ediffusés programmables (FPGA), une PAM est un coprocesseur
matériel universel connect´eà un ordinateur hˆote standard. La PAM permet d’acc´elérer nombre
d’applications logicielles sp´ecifiques. Les mesures de performance pr´esentées ici sont bas´ees
sur deux architectures PAM et dix applications sp´ecifiques, tirées de l’arithm´etique, de
l’algèbre, de la g´eométrie, de la physique, de la biologie, de l’audio et de la video. Chacune
des réalisations PAM pr´esentées se r´evèle être plus rapide que tout autre type de mat´eriels
ou de super-ordinateurs pour l’application correspondante. Quand nous avons pu apporter des
innovations algorithmiques dans le processus de conception, la PAM s’est montr´ee au moins
un ordre de grandeur plus rapide que tous les syst`emes ant´erieurs (voir [SBV91] et [Sku92]).
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1 PAM concept

Like any RAM memory module, a PAM is attached to the system bus of a host computer.
The processor can write into, and read from the PAM. Being an active hardware co-processor
however, the PAM processes data between write and read instructions. The specific processing
is determined by the content of itsconfiguration memory. The host can change the PAM
configuration bydownloadinga new design into it, within a few milliseconds.

We speed up a specific software application running on the host, by executing itscritical
inner-loopthrough an appropriate hardware design downloaded into the PAM. Ten examples
of such designs and applications are presented below.

In selecting them, we have attempted to cover as many application areas as we could. In each,
we picked basic and frequent enough problems, where a large inner-loop speedup through a
specific PAM design results in a significant speedup of the application system, software and
hardware combined.

For the sake of specification and debugging, the functionality ofeach hardware design is
matched, bit-wise at the I/O level, by a software implementation. Through successive
refinements, both hardware and software implementations are optimized for speed, while
retaining identical I/O behavior. This is how we derived our experimental data in this
assessment of PAM’s computing power.

The traditional measurement unit here is the Mips1, or its multiple the Gips (1G= 109) which
is more appropriate to the levels of performance at hand. As explained in [HP90], quantitative
performance comparisons between different computer architectures is a challenging art. First,
our Mips are measured in different units: for the 32b MIPS R3000 or the 64b Alpha AXP
instruction sets? for which clock speed? cache size? bus bandwidth? Second, in a number
of cases we have external data for both VLSI and super-computer implementations of systems
close enough to some of ours, so that we could make meaningful speed comparisons. Such
external data is typically given in Gflops (Giga floating point operations per second) for super
computers; for VLSI, number of transistors with operating clock frequency are normally
quoted.

To make quantitative comparisons significant across such a wide spectrum of feasible
implementation technologies, we introduce a common unit for measuring all forms of
computing power, theGbops(billion of binary operations per second) whereeach useful
boolean operation with up to 4 inputs, be it clocked or not, counts for one. For example the
computing power of a standard carry-ripple 32b adder operating at 100 Mhz is 6.4 Gbops,
accounting for both carries and sums. That of an bits multiplier at 1 GHz is2n2 Gbops. Any
specific computer operation can be similarly decomposed at the bit level, so we can evaluate
its corresponding power in Gbops.

1Million of instructions per second
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2 Patrice Bertin, Didier Roncin, and Jean Vuillemin

2 Two PAM architectures

Our assessment is based on two PAM architectures realized at DEC Paris Research Lab.,
DECPeRLe-0 (see [BRV89]) and DECPeRLe-1 which we respectively refer to asP0 andP1 in
the following.

Each PAM is built around a large array of bit-level configurable logic cells (hereafter called
Programmable Active Bits or PABs) in which the application-specific hardware operator is
programmed. This array is surrounded with local RAM banks used as a cache (wide and
fast enough to match the PAM’s processing bandwidth), a programmable clock generator, and
some additional non-configurable logic to manage the host bus interface and the download
process.

RAM RAM

RAM

RAM

Ext I/O Ext I/O

DATA

ADR

CNTR

VME-Bus

Dwld/Rdb

Cntr

The above figure sketches the architecture ofP0 (1988). The central computational array is
made of a5� 5 matrix of Xilinx XC3020 Programmable Gate Arrays [Xil87]; it has two
32-bit wide RAM banks on the south and east sides, a VME bus interface on the west side
and general-purpose interface connectors on the north side. The control and bootstrap logic is
implemented in two extra XC3020 (non user-programmable). Finally, additional bus switching
resources are provided for global data routing (represented here with diamond-shape boxes).

The architecture ofP1 was designed after two years ofP0 usage . It features a 4-times-bigger
central computational matrix with accordingly wider RAM, a faster host interface, and a much
more flexible global interconnection network for data routing and switching.

March 1993 Digital PRL



Programmable Active Memories: a Performance Assessment 3

For the purpose of evaluating Xilinx-based designs such as ours, it is convenient to define the
Programmable Active Bit as in [BRV89]: a PAB consists of a universal 4 input combinatorial
gate and a synchronous flip-flop. Using this measurement unit, our two PAM architecturesP0
andP1 have the following vital statistics:

PAM part number PABs Fmax Power RAM Host bus
(MHz) (Gbops) (MB) (MB/s)

P0 XC3020 25 3.2K 25 80 0.5 8
P1 XC3090 23 14K 40 588 4 100

This chart exhibits the three most important architectural parameters conditioning which
application benefits most from a PAM speed-up:

� The number of PABs (3.2K forP0 and 14K forP1), together with the application-
dependent maximal clock frequency (25 MHz and 40 MHz) at which we can reliably
operate. The product of these two numbers is the maximum theoretical computing
power of the PAM, expressed in Gbops (80 Gbops forP0 and 588 Gbops forP1).

� The host bus bandwidth: 8 MB/s forP0 through a VME bus, and 100 MB/s forP1
through a TURBOchannel interface [DEC91].

� The size of the local (fast) RAM: 0.5 MB forP0 and 4 MB forP1.

3 PAM programming

Programming an algorithm on the PAM is similar to casting it in conventional hardware
(gate-array or VLSI), with two very important differences: first the target hardware provides
a clean implementation of the synchronous logic model, so there is no need to worry about
low-level electrical details; second the whole design process is entirely software operated with
a fast turnaround time (5 to 30 minutes edit-compile-run loop), so it can be approached with
the same methodology of piecewise testing and successive refinements as a software design.
For a given application, it involves:

1. identifying the critical computations which are best implemented in hardware; this is
usually done by successive refinement, under constraints of communication bandwidth
and load balancing between the software and hardware;

2. implementing the hardware part on the PAM and gradually optimizing it;

3. implementing the software part on the host processor and gradually optimizing it.

Step 3 above is done with conventional techniques. Step 2 consists in describing the logic
design to implement in the PAM down to the individual bit level, as well as its geometric
layout, much as is done for a conventional VLSI design.
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4 Patrice Bertin, Didier Roncin, and Jean Vuillemin

For this, we have developed a tool suite in which the hardware design is described by the
writing of a program in a conventional programming language (we use Lisp, C++ [Tou92]
and Esterel [Ber92]) using a specialized library. This program will describe the various logic
modules by their bit-level logic equations, or by using standard library modules (adders,
registers, standard interfaces. . . ). It will also contain layout (geometric) information to the
level of details the designer wishes to specify: this usually starts with global floorplanning and
detailed layout of the important datapath components only, to be enriched with more precise
descriptions along the optimization process.

Executing this program produces a partially placed, hierarchical netlist which can either be
simulated, or compiled to the final PAM configuration in a fully automatic way, through tools
developed in-house (board-level routing, logic optimization) and standard Xilinx back-end
software (chip-level placement and routing, bitstream generation).

The design can then be downloaded into the PAM for debugging and testing under real
conditions; its maximum running speed can be characterized, and its critical paths identified
(we have developed specialized interactive tools to help visualize the latter). The designer can
then gradually optimize it, for example by adding extra levels of pipeline to increase the clock
speed, or optimizing the geometric layout, or adding new functionalities to further unload the
software. The most important point there is that, as compiling and trying a new version costs
no money and only a few minutes to an hour of time, it is possible to incrementally design, test
and optimize the algorithms and implementations involved, as is usually done with software,
as opposed to having to have them correct and optimal on the first try.

4 Ten PAM applications

The following applications were chosen to span a wide range of current leading edge
computational challenges. In each case, we provide a brief description of the design, the
names of the implementors, and a performance comparison with similar reported work. In
each case, the following simple paradigm has been applied:

compile the inner loop in PAM hardware, and let software handle the rest!

In what follows, we let(a� b) represent the quotient and(a �j�b) the remainder in the integer
division.
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Programmable Active Memories: a Performance Assessment 5

4.1 Long multiplication

As/pReg

Bs/pReg

Ss/pReg

Ps/pReg
32 32

2

2

2

2512 / 2K
x

Mul.
Slice

Mul. CntrHost Adr.

Host Data

A Reg

We have programmed both PAMs into long multipliers (n = 512 bits for P0, andn = 2K
bits for P1) computingP = A� B + S, with A a n-bit multiplier, andB; S arbitrary size
multiplicands and summands (see [Lyo76], [BRV89] and [SBV91]). These multipliers are
interfaced with an arbitrary-precision arithmetic packageBigNum(see [SVH89]) so that any
program based on that software takes advantage of the PAM without modification, by simply
relinking with a modified BigNum library. This respectively speeds up raw multiplication by
a factor up to 24 (P0) and 30 (P1) for long operands, as compared to optimized assembly code
running on the host workstation. For example,P0 equipped with this design computes RSA
encryption/decryption at 1500 bits per second for arbitrary 512-bit keys (see [RSA79]); this is
about 10 times faster than our best software version on the same host.

The P1 implementation produces product bits at 66 Mbits/s, which makes it faster thanany
known machine for which we could obtain benchmark measures. It is at least 16 times faster
than the best figures for a Cray II or a Cyber 170/750 reported by [BW89]. This multiplier can
be used to compute a 50 coefficient (16-bits) polynomial convolution (FIR filter) at 16 times
audio real time(2� 24bits samples at 48 kHz).

4.2 RSA cryptography

To further investigate the tradeoffs which are possible in our hybrid hardware/software system
we focused on the RSA cryptosystem (see [RSA79]), which can be cast entirely in terms of
long multiplications. Starting from the above general-purpose multiplier, M. Shand from DEC-
PRL implemented a series of hardware/software systems spanning two orders of magnitude
in performance. The latest version is based on an original hardware design for computing
modular products at the rate of two bits per cycle [SV93].

The system originally used three differently programmedP0 boards, all operating in parallel
with the host (see [SBV91]). At 200 kbit/s decoding speed, it was faster thananycurrently
existing 512 bits RSA implementation, inany technology, as of February 1990. A survey by
[Bri90] grants the previous speed record for 512 bits keys RSA decryption to a VLSI from
AT&T, at 19 kbits/sec.
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6 Patrice Bertin, Didier Roncin, and Jean Vuillemin

+
X

X

S

B2

B1
M

Data In

Data Out

32

32 256

2

2

M. Shand recently ported this RSA system to a singleP1 board; at 40 MHz, this design
provides either two independent 600 Kb/s RSA encryption channels for 480b keys, or one 175
Kb/s RSA encryption channel for 970b keys.

4.3 Data compression

M. Skubiszewski from DEC-PRL has implemented aP0 design to speed up the algorithm of
[ZL77], which is well known to achieve an average data compression ratio varying from 2 for
English (or French, or Polish. . . ) plain text to 3 for C (or Lisp, or Pascal. . . ) source code.

Best Match

F1 2 15 Past
Buffer

14Kb

8

16

The design is a massively parallel method which computes 64 byte comparisons on each
(70 ns) cycle; it matches the next 16 bytes in the file to be compressed against the last 4k
bytes seen (stored in the local RAM), in order to detect the longest substring previously seen.
While this design performs a respectable 1 Gops (8 bits integer comparison), it ends up in
a disappointing factor two speed-up, when compared to optimized software such as Unix
compress . Indeed, such optimized software avoids most of the comparisons performed in
the hardware, by detecting early that they are irrelevant to the final output. A more elaborate
hardware design is needed to genuinely speed up this particular algorithm.
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Programmable Active Memories: a Performance Assessment 7

4.4 String matching

Given an alphabetA = (a1; . . .; an), a probability(Sij)i;j=1...n of substitution ofai by aj , and
a probability(Ii)i=1...n (resp. (Di)i=1...n) of insertion (resp. deletion) ofai , one can use a
classical dynamic programming algorithm to compute a probability of transformation ofw1
into w2; this defines adistancebetween any two wordsw1 andw2 overA.

P1 P2 P3 P4 P5

30K Words Dictionary

Coefficients

D. Lavenier from IRISA (Rennes, France) has implemented this algorithm with aP0 design
which computes the distance between an input word and all 30K words in a dictionary; it
reports thek words found in the dictionary which are closest to the input. The system processes
200K words/sec: this is faster than a solution previously implemented at CNET using 12
Transputers; it has only half of the performance obtained by a system previously developed at
IRISA, based on 28 custom VLSI chips and 2 PC boards.

Applications of this algorithm include automated mail sorting using OCR scanners, on-the-fly
keyboard spelling corrections, and DNA sequence matching (see [Lop87]).

4.5 Heat and Laplace equations

[Vui93] shows how to adapt the classical finite difference method (see [FLS63]) to compute
solutions of the heat and Laplace equations inn dimensions with help from special purpose
hardware. An implementation of the method onP1 operates with a pipe-line depth of 128
operators:

+ +
. . .

+ +

R
A
M

R
A
M

Each operator computes:

O(v0; v1) =

(
v0; whenv0 �j�2= 1;
2(v0 � 4 + v1 � 4 + (v0 �j�4)� 2); otherwise,

(1)

all with 24b fixed-point data format. At 20 MHz, this amounts to 5 Gops (24b adds, tests and
shifts); it is easy to show (see [Vui93]) that fixed-point gives the same results as floating-point
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8 Patrice Bertin, Didier Roncin, and Jean Vuillemin

operations for this specific problems; the achieved performance thus exceeds those reported
in [McB89] and [MF+91] for solving the same problem with super-computers. A sequential
computer needs to execute 25 billion instructions per second (25 Gips), to reproduce the same
computation.

The heat and Laplace equations have many applications in mechanics, circuit technology, fluid
dynamics, electrostatics, optics, finance, and so on.

4.6 Newton’s mechanics

J. Vuillemin has specified aP1 design for computing the evolution of an-body system, using
Newton’s equations. The design computes the gravitational field acting on bodyk by summing
the individual fields induced atk by each other body in the system. This amounts to the
following 18 operations:

(xi � xk) ) dx
(yi � yk) ) dy
(zi � zk) ) dz
(dx� dx) ) dx2
(dy� dy) ) dy2
(dz� dz) ) dz2

(dx2 + dz2) ) dxz
(dxz+ dy2) ) d2p

d2 ) d
d� d2 ) d3

1
d3 ) fd

fd�mi ) fm

fm� dx ) fdx
fm� dy ) fdy
fm� dz ) fdz
fx + fdx ) fx
fy + fdy ) fy
fz+ fdz ) fz

Positions and forces are represented as 20 bit floating-point numbers. Assuming a 40 ns
internal cycle (achievable through deep pipe-line) the expected throughput exceeds 2.5 GFlops
(this design has not been tested at publication time).

x

y

z

x i

F y

F z

y i

z i

F x
d y

d z

d x

1/x

M

X

+

+

+

-

-

-

+X

X

X
X

X

X

X

4.7 Binary 2D convolution

B. Chen and J. Vuillemin have implemented a7�7 binary 2D convolver onP0, for performing
erosion, dilation and matching on black and white images, as defined in [Ser82].
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RAM

S
I

S
O

R R

32 32

1

Adress Generation

The convolver runs at 25 MHz, generating one pixel each 40 ns; it completes a single
convolution pass over one512� 512 image in 10 milliseconds; this allows for up to
4 successive operations (erosion, dilation, or matching) at video rate. Reproducing this
performance through optimized software would require a 200 Mips computer.

4.8 Boltzmann machine

M. Skubiszewski has implemented two successive versions of a hardware emulator for binary
neural networks, based on theBoltzmann machinemodel (see [Sku90] and [Sku92]).

The Boltzmann Machine is a probabilistic algorithm which minimizes quadratic forms over
binary variables, i.e. expressions of the form

E(~N) =
n�1X
i=0

iX
j=0

wi;jNiNj (2)

where~N = (N0; . . .; Nn�1) is a vector of binary variables and(wi;j)0�i;j<n is a fixed matrix
of weights. It is typically used to find approximate solutions toNP-hard problems, such as
graph partitioning or circuit placement.

Proc
#1

Proc
#2

Proc
#32

Weight Ram

Data
Ram

Inputs

Host Data I/O

The latest realization, onP1, can solve problems with up to 1400 variables, using 16-bit
weights, for a total computing power of 500megasynapses per second(the megasynapse is
the traditional unit used in this field, it amounts to one million additions and multiplications,
or one million terms of (2)).
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10 Patrice Bertin, Didier Roncin, and Jean Vuillemin

4.9 3D Geometry

H. Touati from DEC-PRL has implemented a 3-D graphic accelerator forP1, which supports
translation, rotation, clipping and perspective projection, to directly compute the screen image
of a cloud of points in 3-D space.

Pixel
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Outy

1/m

+

+

+

Translate

Translate
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L
I
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P
I
N
G
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m

x

y

z

x

y

At 25MHz, it has a peak performance of 1.56 million points per second, using 16 bit fixed
point coordinates for the input and output, and up to 32 bits for the intermediate results. One
needs a 300 Mips processor to achieve the same throughput in software.

4.10 Discrete cosine transform

This design (by J. Vuillemin and D. Martineau onP1) compresses a video stream inreal time
through multi-dimensional fast discrete cosine transform. The fDCT implements the following
network:
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The overall design computes 48 fixed-point (32 bit outputs) operations (add, subtract, multiply
and shift) on each 40 ns cycle, for a total of 1.4 Gops. To match this performance through
software would require a 15 Gips processor.

5 Conclusion

The following chart summarizes the practical PAM performance achieved by each of our ten
designs:

Design PABs MHz Gbops Gops Gips PAM
Multiplier 8k 33 264 0.8 2.6 P1

RSA 8k 32 256 0.5 4 P1
DCT 10k 25 250 1.4 15 P1

Newton 10k 25 250 2.5y 5 P1
Laplace 10k 20 200 7.5 20 P1

Boltzmann 8k 25 200 1 1.5 P1
3D Geometry 3k 25 75 0.5 0.7 P1
Ziv-Lempel 3k 15 45 1 2 P0

String 3k 10 30 0.15 0.3 P0
2D convolution 1k 25 25 1 P0

yThese are Gflops, with 20 bit floating-point numbers.

The applications are ranked according to the most reliable performance measure, namely the
Gbops. As a comparative measure of resource utilisation in such systems, the following table
charts the maximum theoretical performance of generic PAM hardware (in Gbops) obtained
by multiplying the maximal clock frequency (in MHz) by the area (in PABs):

PAM Area 1 MHz 20 MHz 50 MHz
XC3020 128 0.1 2.5 6.4
XC3090 640 0.6 12.8 32

P0 3.2K 3.2 64
P1 14K 14 280 700

Three years of PAM design lead us to believe the following:

1. For each of the chosen application, we have shown that the level of performance
achieved with the PAM is comparable to the best figures reported using super-computer
or custom silicon circuits.

Our applications have been carefully selected for having a clearly identified (PAM
implementable) inner-loop, which accounts for a vast percentage of the software run-
time. For such low level processing, the PAM proves more cost effective than any
super-computer.

Due to their software complexity, many current super-computer applications still remain
outside the possibilities of current PAM technology.
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12 Patrice Bertin, Didier Roncin, and Jean Vuillemin

2. Each mentioned PAM design was implemented and tested within one or two months,
starting from the delivery of the specification software. This is roughly equivalent to the
time it takes to implement ahighly optimizedsoftware version of the same system with
a super-computer; both are technically challenging, yet remain an order of magnitude
faster than the time it takes to cast a system into silicon.

3. The cost ofP1 is comparable to that of a high-end workstation. This is orders of
magnitude lower than the cost of a super-computer. Based on figures from [McB89],
we find that the price (in $ per operation per second) of solving the heat and Laplace
equations is 100 times higher with super-computers than with the PAM.

4. Another field of applications, not covered by any existing supercomputer, is open to PAM
technology: high-bandwidth interfaces to the external world, withfully programmable
real-timecapabilities. TheP1 PAM has a 256b wide connector, capable to deliver up
to 6.4 Gb/s of external bandwidth. It is a “simple matter of hardware programming”
to interface directly with any electrically-compatible external device, by programming
its communication protocol into the PAM itself. Applications for this capability are
numerous, including interfaces to high-bandwidth networks, audio and video input or
output devices, and on-the-fly data acquisition and filtering.
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