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Abstract

We establish the following correspondences between the ring of2adic integers2Z from
arithmetics anddigital circuits (finite and infinite, combinational and synchronous) from
electronics (Theorems 1 and 2):

1. A function is computed by acombinationalcircuit if and only if it is continuousover
the 2adic integers2Z:

8n 2 N; x 2 2Z; 9m2 N : f (x) = f (x mod2m) (mod 2n):

2. A function is computed by asynchronouscircuit if and only if it ison-lineover2Z:

8n 2 N; x 2 2Z : f (x) = f (x mod2n) (mod 2n):

The proof of this result provides a SDDnormal form for synchronous circuitswhich
generalizes the BDD and TDG constructions (Algorithm 1) proposed by [A78], [B86]
and [B87] for processing finite boolean functions. We show that the circuit SDD(f)
synthesized by Algorithm 2 isfinite if and only if function f may be realized by some
finite state machine (Proposition 3).

From simple identities in thering of 2adic integers, we derive both classical and new bit-serial
circuits for computing:(+;�;�; 1=(1+ 2x);

p
1 + 8x). All but the adders(+;�) areinfinite

synchronous circuits (Proposition 4). Ineach case, thecorrectnessof the circuit directly
follows from the 2adic definition of the corresponding operator.

We demonstrate that our2adic semanticsis fully general and may be fruitfully applied toany
digital circuit. In particular, we characterize when the multiplexer and register commute with
arbitrary logic; the retiming property, expressed by:8x 2 2Z : f (2x) = 2f(x); holds of an
on-line functionf 2 2Z ! 2Z if and only if f (0) = 0 (Proposition 6). We also provide a
simple characterization ofreversiblesynchronous circuits (Proposition 7).

We introduce a general procedure (Algorithm 3) which transforms any synchronous circuit into
an equivalent infinite parallel combinational implementation. Conversely, we show that every
continuous function is computable by a synchronous circuit with output enable (Theorem 3).

We use reset signals in order to pipeline finite integer computations through arbitrary 2adic
networks (Theorem 4); in this context, all arithmetic circuits becomefinite.
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Résumé

Nousétablissons les correspondances suivantes entre l’anneau des entiers 2adiques2Z issu de
l’arithmétique, et les circuits digitaux (finis et infinis, combinatoires et synchrones) issus de
l’ électronique (Th´eorèmes 1 et 2).

1. Une fonction est calcul´ee par un circuit combinatoire si et seulement si elle est continue
en toutx 2 2Z entier 2adique :

8n 2 N; x 2 2Z; 9m2 N : f (x) = f (x mod2m) (mod 2n):

2. une fonction est calcul´ee par un circuit synchrone si et seulement si elle est en-ligne :

8n 2 N; x 2 2Z : f (x) = f (x mod2n) (mod 2n):

La démonstration de ce r´esultat fournit une forme normale SDD pour les circuits
synchrones, qui g´enéralise les constructions BDD et TGD (Algorithme 1) propos´ees par
[A78], [B86] et [B87] pour traiter des fonctions bool´eennes finies. Nous montrons que
le circuit SDD synth´etisé par l’Algorithme 2 est fini si et seulement si il peut ˆetre réalisé
par une machine `a état fini (Proposition 3).

A partir d’identités simples sur les entiers 2adiques, nous trouvons des circuits en s´erie, à
la fois classiques et nouveaux, pour calculer :(+;�;�; 1=(1+ 2x);

p
1 + 8x). Mis à part

les additionneurs(+;�), tous ces circuits synchrones sont des circuits infinis (Proposition
4). Dans chaque cas, l’exactitude du circuit d´ecoule de la d´efinition 2adique de l’op´erateur
correspondant.

Nous démontrons que notre s´emantique 2adique est g´enérale et peut s’appliquer avec profit `a
tout circuit digital. Plus pr´ecisément, nous caract´erisons quand le multiplexeur et le registre
binaire commutent avec une logique arbitraire. La propri´eté de ”retiming” est exprim´ee par :
8x 2 2Z : f(2x) = 2f(x): Elle vaut pour une fonction en-lignef 2 2Z ! 2Z si et seulement
si f (0) = 0 (Proposition 6). Nous donnons aussi une caract´erisation simple des circuits
synchrones qui sont r´eversibles (Proposition 7).

Nous présentons une m´ethode g´enérale qui transforme tout circuit synchrone en une r´ealisation
combinatoire parall`ele infinie. Inversement, nous montrons que toute fonction continue peut
être calculée par un circuit synchrone avec validation des sorties (enable).

Nous utilisons des signaux de remise `a zéro (reset synchrone) afin d’enchaˆıner (pipe-line) des
calculs entiers finis au travers de r´eseaux 2adiques arbitraires. De cette fa¸con, tous les circuits
arithmétiques consid´erés deviennent finis.
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On Circuits and Numbers 1

1 Introduction

Modern electronic circuits fall in two categories,analoganddigital.

The dynamic analysis of analog circuits involves physical parameters, such as currents and
voltages, whose valuevt 2 R varies continuously withreal time t2 R. Carver Mead’s book
[M89] provides an excellent introduction to analog circuits.

Digital circuits are characterized by a finite number of physical variables, whose value
vt 2 B = f0; 1g may be identified with either zero or one, when properly discretized (say 0
when voltage< 1V and 1 when voltage> 2V) at integer multiples (t = n�t for n 2 N) of the
clock period�t. Setting�t = 1 through a suitable choice of the physical units allows us to
identify digital time t2 N = f0; 1; 2; � � �g with the set of natural numbers.

The present work is exclusively concerned with digital circuits, which we introduce mathe-
matically as follows:

Definition 1 (Digital Circuit) In a digital circuit C, the value of any variable v2 V(C) is a
bit vt 2 B which may only change at integer time t2 N:

8v 2 V(C); t 2 R; 9n= btc 2 N : vt = vn 2 B:

A direct consequence of Definition 1 is that all delays in a digital circuit areexact integers. In
particular,combinationalcircuits havezero delay: the output response to changes in the inputs
is instantaneous, and time plays no part in their mathematical analysis. Withsynchronous
circuits, changes in the digital values of variables are equally instantaneous and they precisely
occur at digital timet 2 N.

Of course, any physical implementation of our mathematical digital circuits has (hopefully
very) small delays, but (certainly) not zero delays. As a consequence, the physical behaviour
matches its mathematical idealization only when operated with a clock whose period�t > �

exceeds the maximum physical delay� (critical path).

Synchronous circuits operate uponinfinite binary sequences: in any computation performed
by circuit C, each variablev 2 V(C) takes consecutive binary valuesv0; v1; � � �vt; � � � 2 B as
digital time progresses through the natural numberst 2 N. So, synchronous circuits naturally
map infinite binary sequences, representing the successive input values at each clock tick
t 2 N, into infinite binary sequences, representing the corresponding output values.

Infinite binary sequences have a rich mathematical structure, namely that of the2adic
integers 2Z, whose algebraic properties are presented in Section 2 (Propositions 1 and
2). Operations over2Z contain most1 of the usual operations over the ordinary integers
Z = f� � � ;�2;�1; 0; 1; 2; � � �g hence the name. In addition, they contain all set operations
over the subsets2N of the natural numbers. In short, the 2adic integers2Z form both aring
(0; +;�; 1;�) and aboolean algebra(;; ;[;\).

1but not all, as we loose integer comparison and division by a number which is not a power of 2;
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2 Jean Vuillemin

Each digital circuit defines an operator over the 2adic integers, and the correspondence works
in two dualways:

1. In a combinational circuitC 2 C(?) (Definition 6), where time takes no part, input
variablesi[0]; � � � ; i[n]; � � � 2 V(C) and output variableso[0]; � � � ; o[n]; � � � 2 V(C)
are groupedin space so as to form the 2adic integersI =

P
n2N i[n]2n and

O =
P

n2N o[n]2n. We show (Theorem 1) that a functionO = C(I) may be so
realized by a combinational circuit if and only if it is acontinuousmapping over2Z.

2. In a synchronous circuit (Definition 8), the successive boolean valuesv0; � � � ; vt; � � � 2 B
taken by each variablev 2 V(C) at each clock tickt 2 N are groupedin time, so as to
form the 2adic integerV =

P
t2N vt2t. We show (Theorem 2) that a function may be so

realized by a synchronous circuit if and only if it is anon-linemapping over2Z.

Combining these two results provides a simple and effective characterization of which functions
may or may notbe directly implemented by synchronous and combinational circuits, with
many forthcoming concrete examples.

2 The 2adic integers 2Z

The p-adic integers were introduced around 1900 by K. Hensel [H13] (for each primep 2 N)
and they play a central role in arithmetic (see [A75] and [K77]). Such numbers are obtained
by extending indefinitely the ordinary basep representation, as computed by the rule:

Bp(n) ) (n �j�p) Bp(n� p): (1)

We usen� p to represent thequotientandn �j�p the remainderin the integer division ofn
by p 6= 0: n = p� (n� p) + (n �j�p) with 0 � (n �j�p) < p: For example, we compute the
infinite binary (p = 2) representation of decimal number 22 by:

B2(22) �) 011010� � �0 � � �= 201101(0):

In the above equality, subscript2 indicate the representation base 2 as well as the reading
order, from low order bits to high order bits; the(0) denotes an infinite (periodic) sequence of
zeroes. Similarly, we find:

B2(�7) �) 1001� � �1 � � � = 2100(1);
and B2(1

3)
�) 110� � �10� � � = 21(10):

One may correctly infer from these three motivating examples that:

1. The infinite binary representation of a natural number, such as0 = 2(0), is ob-
tained by appending infinitely many non-significant zeroes to its ordinary finite binary
representation.
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On Circuits and Numbers 3

2. The infinite binary representation of a negative integer, such as�1 = 2(1), is obtained
by extending indefinitely the most significant 1 bit from its ordinary two’s complement
finite representation.

3. Rational numbers having anevendenominator, such as12, are not members of2Z:
applying Rule (1) to these numbers fails to deliver a meaningful binary representation.

4. Rational numbers having anodddenominator, such as�1
7 = 2(100), are characterized

by their ultimately periodic infinite binary representation. Equivalently, theodd
rationalsZ=1 + 2N are precisely the members of2Z which admit afinitenotation upon
adopting our parenthesis convention (Proposition 2); they are associated with finite
synchronous circuits having constant inputs, or any equivalent explicit representation of
finite automata.

5. The 2adic integers also contain non-periodic numbers, which the practical designer may
choose to ignore since they are exclusively associated withinfinite circuits, such asp�7 = 21010110100000010� � �

While Hensel’s construction applies for any primep, we need only concern ourselves with the
casep = 2 of the 2adic integers2Z for the purpose of studying digital circuits. Thearithmetic
properties of2Z are (almost) similar to those of the p-adic integers forp > 2. The logical
properties of2Z are unique, a fact which we emphasize in the following definition.

Definition 2 A 2adic integer B2 2Z is the limit of three equivalent infinite sequences

B = lim
n7!1 2b0 � � �bn = lim

n7!1
b(n) = lim

n7!1
bfng;

each composed of (for n2 N):

1. bits bn 2 B, with bn = (B� 2n) �j�2;

2. natural numbers b(n) 2 N, with b(n) = B �j�2n+1 =
P

0�k�n bk2k, for n 2 N;

3. finite sets of integers bfng � f0; 1; � � � ; ng, with bfng= fk� n : bk = 1g.

Let us make explicit the meaning of the wordlimit in Definition 2, by introducing adistance
over binary sequences.

Definition 3 Thevaluationv2(b) 2 N of a 2adic integer b2 2Z is:

1. the index of the first non-zero bit in the binary representation of b;

2. the largest power of two which divides b(n), for all n 2 N;

3. the smallest element in the set xfng, for all n 2 N.

Research Report No. 25 November 1993



4 Jean Vuillemin

Thenormof a 2adic integer x2 2Z is defined by2jxj= 2�v2(x).

Thedistancebetween two 2adic integers x; y 2 2Z is the norm of their difference:2jx� yj.

Note thatv2(0) = 1 so 2jxj = 0 if and only if x = 0, and0 < 2jxj � 1 for x 6= 0. Norm
2jxj satisfies:

(i) 2jx + yj � maxf 2jxj; 2jyjg;
(ii) 2jx� yj = 2jxj � 2jyj;

Property (i), which is characteristic ofultra-metric norms (see [K77]) isstrongerthan the
classical triangle inequality for real numbersR: jx + yj � jxj + jyj.
It follows from Definition 3 of the distance between 2adic integers that thefiniteapproximants

2b0 � � �bn = b(n) = bfng converge to numberB 2 2Z according to:

8n 2 N : 2jB� 2b0 � � �bnj= 2jB� b(n)j= 2jB� bfngj � 2�n+1:

So, each infinite binary sequenceA = (a0 � � �an � � �) with an 2 B for n 2 N is equal to the
unique2adic integerA =

P
n2N an2n of which it is the base 2 representation, as computed by

Rule (1) forp = 2. Two infinite binary sequencesA;B areequalwhen 2jA� Bj = 0, which
is equivalent to each of the following:

A = B, 8n 2 N : an = bn , 8n 2 N : a(n) = b(n), 8n 2 N : afng= bfng:

This justifies to use of the following notations for representing a 2adic integerB 2 2Z:

B = 2b0 � � �bn � � � =
X
n2N

bn2n =
_

n2N
b(n) =

[
n2N

bfng:

One may choose either of the proposed representations - bits or integers or sets - in order to
introduce operations over2Z.

Definition 4 Let A=
W

n2N a(n) =
S

n2N afng and B=
W

n2N b(n) =
S

n2N bfng be two
2adic integers A;B2 2Z. We define the operations:

� complement :A =
S

n2Nfk� n : k =2 afngg,

� or A_ B=
S

n2N(afng [ bfng),

� and A^ B=
S

n2N(afng \ bfng).

� sum A+ B =
W

n2N(a(n) + b(n)) �j�2n+1,

� difference A� B=
W

n2N(a(n)� b(n)) �j�2n+1,

� product A� B=
W

n2N(a(n)� b(n)) �j�2n+1.

It follows from elementary set theory and arithmetic that:

November 1993 Digital PRL



On Circuits and Numbers 5

Proposition 1 (Structure of 2Z)

1. The 2adic integers(2Z;:;_;^) form aboolean algebra, isomorphic to(2N; ;[;\).
2. The 2adic integers(2Z; +;�;�) form aring which contains the ordinary integersZ and

the odd rationalsZ=1 + 2N as proper sub-rings.

Let us characterize further the set inclusionsZ � Z=1 + 2N � 2Z, both arithmetically and in
terms of synchronous circuits (forward Definition 8):

Proposition 2 Assertions (i), (ii), (iii) and (iv) are equivalent:

(i) A 2adic integer B2 2Z is an ordinary integer B2 Z.

(ii) 9z2 Z; 8k 2 N : B = z (mod 2k+1).

(iii) The binary representation of B= 2b0 � � �bl�1(bl) is ultimately constant:
9l 2 N; 8k � l : bk = bl; here, l+ 1 is the (ordinary) binary length of z2 Z.

(iv) B =
P

t2N bt2t is the output of somefinite acyclicsynchronous circuit with constant
inputs, either0 = 2(0) or �1 = 2(1).

Assertions (v), (vi), (vii) and (viii) are equivalent:

(v) A 2adic integer B2 2Z is an odd rational B2 Z=1 + 2N.

(vi) 9z2 Z; n 2 N; 8k 2 N : B� (1 + 2n) = z (mod 2k+1).

(vii) The binary representation of B= 2b0 � � �bi�1(bi � � �bi+p�1) is ultimately periodic:
9i 2 N; p 2 N + 1 8k � i : bk = bk+p.

(viii) B =
P

t2N bt2t is the output of somefinite synchronous circuit with constant inputs.

As a consequence of this fact, we can systematically label each variable in a synchronous
circuit having constant inputs with odd rationals, starting from0 = 2(0) for the electrical
groundand�1 = 2(1) for the electricalpower supply. In the following example, labels are
given both in decimal and in binary,(low order bit first, periodic part in parenthesis).

Example 2.1 The numbers22;�7; 1
3 and�4

5 as circuits:

0

1(0)

1 2 11 22

01(0) 1101(0) 01101(0)(0)

−6

010(1)

−1

(1)

−2

0(1)

−4

00(1) 100(1)

−7

(01)

3

1(10)

3
1−2

−(1+x)

x 2x
5

(0011)

(0110)

5
−2 −4
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6 Jean Vuillemin

In our schemas: circles denote inverters and squares denote binary registers,a.k.a.synchronous
flip-flop with initial valuezero(Example 2.1). A register with inverters on both sides is easily
recognized as a synchronous flip-flops with initial valueone(Example 4.2).

The circuits presented in the proof (Section 8.1) of the Paragraphs (iii) and (vi) in Proposition
2 are precisely those constructed by the SDD procedure (Algorithm 2) upon constant (arity=0)
input f () = z2 Z andf () = z

1+2n 2 Z=1+2N. It establishes a direct correspondence between
the ultimately periodic binary representation of an odd rational, such as

22
7
= 20101(110);

and its realization by a finite synchronous circuit containing exactlyoneloop, such as:

22

7

3 Combinational Circuits

Combinational circuits can all be built from a single atomic gate, themultiplexer.

Definition 5 (The Multiplexer ?2 B3 ! B) mux m=?(c,b,a)
The value of output m2 B is determined from
the three input values c; b; a2 B by:

m=?(c; b; a) =

(
b if c= 1;
a if c= 0:

c

m
b

a

Note the relations: ?(c; b; a) = (c^ b) _ (:c^ a) = if c thenb elsea.
Together with 0 and 1, the multiplexer is abasisfor boolean algebra, as seen from:

:b =?(b; 0; 1) a_ b =?(a; a; b) a^ b=?(a; b; a)

Theexclusive or a� b= (a^ :b) _ (:a^ b) is realized with two muxes:

a� b =?(a; ?(b; 0;1);b)

We construct arbitrarily complex boolean functions by wiring together mux gates, subject to
the following caveat:

1. the graph of the circuit is acyclic;

November 1993 Digital PRL



On Circuits and Numbers 7

2. every path between inputs and outputs is finite.

Condition 1 eliminates from consideration cyclic structures, such asu =?(u; 0; 1) whose
output value isundefinedin the boolean domain. Condition 2 guarantees that the value ofeach
variable may be computed within afinite combinational delay. In particular, this ensures that
any finite combinational circuit may be operated reliably with a synchronous clock having a
finite period�t > � greater than the circuit’s largest delay� (critical path).

Definition 6 (Combinational circuits C(?)) A combinational circuitC 2 C(I; ?) is a set
V(C) = I [M of digital variables partitioned into:

� InputsI = fi[0] � � � i[n] � � �g; they may take arbitrary boolean values i[n] 2 B.

� MultiplexersM= fm[0] � � �m[n] � � �g; each is defined by a mux equation:

8m2 M; 9c; a; b2 V(C) : m=?(c; b; a):

The mux-ordering� induced over the variablesV(C) by

m=?(c; b; a) implies c� m; b� m and a� m;

must bewell-founded:every descending chain v[1] � � � � � v[n] � � � � is finite.

The circuit’s outputsO = fo[0] � � �o[n] � � �g � V(C) form a subset of the variables.

Note that Definition 6 allows for infinite as well as finite circuits. From an arbitrary assignment
of boolean values to the inputs, corresponding to the 2adic integerI =

P
n2N i[n]2n, we can

follow the mux-ordering in order to compute the value of each variable inM, so as to obtain
the 2adic integerO =

P
n2N o[n]2n which represents the circuit’s output response.

Theorem 1 A function is computable by some combinational circuit f2 C(?) if and only if
the mapping f2 2Z ! 2Z defined by f(

P
n�0 i[n]2n) =

P
n�0 o[n]2n is continuous, that is:

8I 2 2Z; � 2 R > 0; 9� 2 R; 8I 0 2 2Z : 2jI � I 0j < � implies 2jf (I)� f (I 0)j < �: (2)

The proof of this result is given in Section 8.2.

Any finite boolean function, such as the full-adder from Example 3.1, is continuous; it is well
known (Algorithm 1) that each may be computed by a finite combinational circuit.

On-line functions (Theorem 2) such as +;�;� are continuous. The corresponding infinite
combinational circuit may be directly constructed from Theorem 1. We may also start from
a bit-serial synchronous circuit implementing the on-line function (Theorem 2), and apply
the parallelization procedure of Section 5 (Algorithm 3) in order to obtain an equivalent
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8 Jean Vuillemin

(infinite) combinational implementation. The parallel adder from Example 3.2 is compiled by
Algorithm 3 from the serial adder of Section 5.1, and the parallel multiplier (Example 6.1)
from the serial-parallel multiplier in Section 5.3.

Example 3.3 presents examples of continuous functions, the Peano projections, which are not
on-line: they may be realized by an infinite combinational circuit; they may not be realized by
any synchronous circuit.

The test for zero functionz2 2Z ! 2Z defined byz(0) = 0 andz(x) = �1 for x 6= 0 is not
continuous at 0, therefore, is is not computable byanydigital circuit. The relatedz0 defined
by z0(0) = 0 andz0(2v(1 + 2x)) = �2v is continuous (and on-line); so, it is computable by a
combinational circuitz0 2 C(?) (and by a synchronous circuitz0 2 C(?;2�)).

Example 3.1 (Full Adder)
The full-adder computes the unique boolean solution to the equationa + b + c= s+ 2r ,
namelys= a�b�c andr = (a^b)_(b^c)_(c^a). The following circuit implements
the function with aminimalnumber of 5 muxes:

FullAdd(a; b; c) = (s; r)
where fb = ?(b; 0; 1);

x = ?(a; b; b);
c = ?(c; 0; 1);
r = ?(x; a; c);
s = ?(x; c; c)g

a
b

c

x

r

s

0
1

0
1

Example 3.2 (Parallel Adder) From here on, a trapezoid with two + signs represents a
full-adder:

0 a[0] b[0] a[1] b[1]

s[0] s[1]

a[2] b[2]

s[2]

.  .  .

a[3] b[3]

s[3]

+  + +  + +  + +  +

While this circuit contains an infinite carry chain, the longest path of muxes leading from
inputs to each output is finite:n + 3 for n � 1, with the full-adder from Example 3.1.

Example 3.3 (Peano Pairing) Define thecartesian product� 2 2Z � 2Z ! 2Z of two
2adic integers byinterleavingthe binary representations of each operand. The inverse first
projection�0 2 2Z ! 2Z extracts theevenbits, and the second�1 2 2Z ! 2Z theoddbits.
They are computed by the recursive system:

�(a; b) = a �j�2 + 2� �(b; a� 2);
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�0(a) = a �j�2 + 2� �0(a� 4);
�1(a) = �0(a� 2):

We easily verify that8a; b 2 2Z : �0(�(a; b)) = a; �1(�(a; b)) = b and that each of
�; �1; �2 2 C(?) may be realized by amux-lesscombinational circuit (just wires). Note
that� establishes a one to one mappingN $ N � N between natural numbers and pairs of
natural numbers; similarly for the odd rationalsZ=1 + 2N and the 2adic integers2Z.

4 Synchronous Circuits

Synchronous circuits are built from two atomic gates, themultiplexerand theregister, also
known as flip-flop. When operating in a synchronous environment, the multiplexer retains its
zero-delay (mathematical) property: the output valuemt 2 B is determined, at all timest 2 N,
from the input valuesct; bt; at 2 B by:

mt =?(ct; bt; at) = if ct thenbt elseat:

We need to change our Definition of the logical complement to:b =?(b; 0;�1) . This

accounts for the difference between�1 = 2(1), the electrical power supply, and1= 21(0),
thebootsignal. The register introduces aunit time delay:

Definition 7 (The Register 2� 2 2Z ! 2Z) reg r = 2� i
The output rt of a register is 0 at initial time: r0 = 0; for
t � 1, it is equal to the value it�1 of its input, sampled at
the previous clock tick:8t 2 N + 1; rt = it�1:

i r

As we represent the input sequence by the 2adic integeri =
P

t2N it2t, the 2adic integer
o =

P
t2N ot2t representing the output of the register is equal tor = 2� i.

Complex synchronous circuits are realized by wiring together a number of muxes and registers.
All registers aresynchronousin that they share the same clock signal. As before, no infinite
combinational path is allowed.

Definition 8 A synchronous circuitC 2 C(?;2�) is a setV = V(C) = I [M[R of digital
variables made of:

� InputsI = fi[0] � � � i[i � 1]g in finite number i= jIj; they may take arbitrary 2adic
integer values.

� MuxesM= fm[0] � � �m[n] � � �g; each is defined by a mux equation:

8m2 M; 9c; a; b2 V(C) : m=?(c; b; a):

The mux-ordering must be well-founded, as in Definition 6.
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� RegistersR = fr[0] � � � r[n] � � �g; each is defined by aregequation:

8r 2 R; 9i 2 V(C) : r = 2� i:

The outputsO = fo0 � � �oo�1g � V(C) form afinite subset o= jOj of the variables.

Like combinational circuits,synchronous circuits may be finite or infinite; unlike combinational
circuits, synchronous circuits have only finitely many inputs and outputs.

When the graph of a synchronous circuit contains loops, it is straightforward to verify from
the well-founded mux ordering that each loop through the circuit must traverse at least one
register.

From an arbitrary assignmentof boolean values for each timet 2 N to the inputs, corresponding
to the 2adic integersI[j] =

P
t2N it[j]2t for 0 � j < i = jIj, we may compute, from

t = 0; 1; 2; � � � on, the values of each mux and reg in circuitC 2 C(?;2�), so as to obtain the
2adic integersO[j] =

P
t2N ot[j]2t for 0 � j < o = jOj which represent the circuit’s output

responses.

Theorem 2 A function is computed by k inputs, one output synchronous circuit f2 C(?;2�)
if and only if the mapping f2 2Zk ! 2Z defined by

f(
X
t2N

it[0]2t; � � � ;
X
t2N

it[k� 1]2t) =
X
t2N

ot2t

is on-line, that is:
8t 2 N; I[0]; � � � ; I[k� 1] 2 2Z :

f (I[0] �j� 2t+1; � � � ; I[k� 1] �j�2t+1) = f (I[0]; � � � ; I[k� 1]) (mod 2t+1):

The direct implication simply expresses that the outputs of a synchronous circuit at timet 2 N
may only depend upon the values of its inputs during the firstt clock cycles.

The converse implication is proved in Section 8.3 by constructingsynchronous decision
diagrams(SDD Algorithm 2) which synthesize synchronous circuits. The SDD generalize
thebinary decision diagrams(BDD Algorithm 1), introduced by [A78], [B86] and [B87] for
representing and manipulating finite boolean circuits. While it is by nature aninfiniteprocess,
algorithmSDD(f ) generates a finite synchronous circuit (in finite time) if and only if function
f may be defined by afinite automaton.

Proposition 3 (Finite State Machines) An on-line function f is representable by some finite
state machine if and only if the SDD (Algorithm 2) generates afinite synchronous circuit
SDD(f ) 2 C(?;2�):

When applied to a finite purely combinational function (no registers, finitely many muxes and
constants), the SDD procedure (Algorithm 2) generates the same circuit as the BDD procedure
(Algorithm 1).
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The SDD procedure provides anormal formfor synchronous circuits. The technical restriction
imposed on circuits by this normal form are:

1. the control inputc of each muxm=?(c; b; a)must be one of the circuit’s primary inputs
c 2 I;

2. along with the multiplexer and the register, we take the logical negation:x in our set of
primitive operators; as usual, it is schematized by a small circle.

Condition 1 is used by Akers [A78] and Bryant [B86] for establishing the BDD normal form.
The negation is introduced by Billon [B87] who defines TDG (typed decision graphs) and
shows that TDGs keep all the advantages of BDDs, and further reduce the circuit’s size.

The structure of theuniversal syn-
chronous circuit for computing an ar-
bitrary on-line function

f (x) =
X
t2N

ft(x0; � � � ; xt)2t;

whereft 2 Bt+1 ! B for t 2 N, is the
following infinite binary tree structured
circuit, result of SDD(f); the labels
inside the squares represent the initial
value (0 or 1) of the corresponding
register. 2

2

2

2

2

2

2

2

f(000)

f(100)

f(010)

f(110)

f(001)

f(101)

f(011)

f(111)

f(00)

f(10)

f(01)

f(11)

f(0)

1

1

1

1

0

0
f(1)

. . .

. . .

. . .

. . .

x

f(x)

Condition 1 guarantees that all SDD circuits having a small number of primary inputs are
electrically fast. Though the method has not yet been thoroughly tested, it gives almost optimal
results when hand-applied to the synthesis of the simple arithmetic functions1 + 2x; 1 + x and
x + y (Examples 4.2, 4.3, 4.4). The procedure works equally well on 2x and1 + 2x (Example
4.2).

Example 4.1 shows that the BDD procedure is not optimal: it synthesizes 7 muxes for the full
adder, instead of 5 in Example 3.1. Similarly, Example 4.5 shows that SDD(3x) has 8 muxes
and 5 registers, compared to 5 muxes and 1 register in Section 5.1.

The arithmetic functions�; i(x) = 1
1+2x and r(x) =

p
1 + 8x are on-line. Although they

are amenable to the SDD algorithm, we construct in Section 5 simpler bit-serial circuits for
implementing these arithmetic operations.

Functionf (x) = x� 2 is noton-line sincef (2) 6= f (2 �j�2) (mod 2). Indeed, thisanti-flop
is not computable byanysynchronous circuit. The relatedf (x) = 2� (x� 2) = x� (x �j�2)
is an on-line function.

While Peano’s cartesian product� 2 C(?;2�) is synchronous, neither is�0 nor�1. We leave
it as an interesting design exercise (for the reader) to realize� by a synchronous circuit.
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12 Jean Vuillemin

Example 4.1 (FullAdder) The following 7 muxes result from applying the BDD
procedure (Algorithm 1) to the synthesis of the full-adder.

FullAdd(a; b; c) = (s; r)
where fo = ?(b; b; a);

e = ?(b; a; b);
r = ?(c; o; e);
a = :a;
x = ?(b; a; a);
x = :x;
s = ?(c; x; x)g

a
b
c

r

s

Example 4.2 (Register with initial value 1)
The circuit to the right computes o = 1 + 2� i

where
fi = ?(i; 0;�1);
2i = 2� i;
o = ?(2i; 0;�1)g

i 1+2i

Example 4.3 (Serial increment) The following circuit results from applying the SDD
procedure to the synthesis of the increment function1 + x.

fSDD(1 + x) = ?(x; v;:v);
v = 2�?(x; v;:x)g

Note the relationv = �2v2(x)+1, wherev2(x)
is the valuation ofx (Definition 3).

1+x

x

Example 4.4 (SDD Adder) Apply the SDD procedure to the synthesis of a serial adder
(see Section 5.1) computingx + y. The 2 states finite automaton and SDD(x + y) are:

0

1

0:0 1:1

0:12:0

1:0 2:1

0

−1

x+y

x

y

In our finite state diagrams, circles represent states (numbered inside); the 2:0 label on a
transition arc means that both inputs are one, and the output zero (0:1 means that both inputs
are 0, and the output is 1).
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Example 4.5 (Times 3) The following circuit, to be compared with the simpler realization
in Example 5.1, results from computing SDD(3x).

0 10:
0

0:
1

1:
0

2

0:
0

1:
1

1:
1

x

0

3x

−1

Example 4.6 (
 5) The reversible circuity = C(x) = x� 4x implements a convolution
code with generatorg(x) = 1 + x2; its inverse by Proposition 7 isx = C�(y) = y� 4x.

x
+

y xy
+

5 Arithmetic circuits

We now introduce bit-serial synchronous circuits for computing the arithmetic operations
+;�;�; 1

1+2x and
p

1 + 8x. From each of these synchronous circuits, we may derive a fully
parallel combinational implementation through a systematic circuit transformation procedure
(Algorithm 3). Theonlyfinite circuits in this section are the serial + and�, since:

Proposition 4 Any synchronous circuit for squaring a 2adic integer contains infinitely many
registers.

5.1 Addition

The basic arithmetic invariant of the full-adder is:a+b+c= s+2r:
We solve this system by lettingc = 2r, and define addition by:
s= a + b where(s; c) = FullAdd(a; b; 2� c):

5.2 Subtraction

Binary substraction is computed asa � b = a + (�b), with
�b = 1 + :b the opposite ofb. So, define substraction by
d = a� b where(d; c) = FullAdd(a;:b; 1+ 2� c):

a
b
c r

s
+
+

a
b
c r

d
+
+

From now on, a triangle with a + inside denotes a serial adder, a serial substracter with a�.
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5.3 Serial-Parallel Multiplier

In order to construct a synchronous circuit which multiplies inputx 2 2Z by some fixed 2adic
integerC=

P
k2N c[k]2k, consider the following elementary identity:

C� x= (c[0] + 2(C� 2))� x= (�c[0]) ^ x + (C� 2)� 2x:

This provides a direct recursive defi-
nition for the following infinite mul-
tiplier: +

0

+

0

+

0

+

−c[0] 0

Cx

−c[1]−c[2]−c[3]

. . .

x

When C is constant, slices corresponding toc[n] = 0 simplify to a single register, and all
muxes may be eliminated. WhenC= 2c0 � � �ci�1(ci � � �ci+p�1) is a constant odd rational, the
multiplier becomes finite withi + p slices: the input to the last slice is the output from the i-th
slice. WhenC= 2c0 � � �ce�1(ce) is a constant integer, the multiplier becomes identical to the
classical two’s complement Lyon’s multiplier [Ly81].

Example 5.1 The following circuits compute respectively3 � x = 211(0) � x and
x=3 = 21(10)� x:

+

x 3x
+ +

x x/3

5.4 Serial-Serial Multiplier

Let x = 2x0 � � �xt � � � and y = 2y0 � � �yt � � � be the operands to be multiplied in order to
compute serially the productp = x� y = 2p0 � � �pt � � �. The invariant of this synchronous
multiplier M 2 C(?;2�) is:

M(2t; x; y) = 2t(x� 2t)� (y� 2t):

From the elementary identity in the 2adic ring,

(x� 2t)� (y� 2t) = xtyt + 2xt(y� 2t+1) + 2yt(x� 2t+1) + 4(x� 2t+1)� (y� 2t+1);

we derive the recurrence relation,

M(2t; x; y) = A(2t; x; y) + 2M(2t+1; x; y);

whereA is the auxiliary function:

2�tA(2t; x; y) = a[t] = xtyt + 2xt(y� 2t+1) + 2yt(x� 2t+1): (3)
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The final product is obtained asp = M(1; x; y) =
P

t2N a[t]2t, where:

M(c; x; y) = A(c; x; y) + 2M(2� c; x; y):

The resulting cellular
structure looks like:

x

A

+

A

+

A

+

. . .

122 2 n−1n

y

pa[0]a[1]a[n]

. . .

In order to design cellA, rewrite (3) asA(c; x; y) =

(x^ y^ c) + x^ (�2(c^ y)) + y^ (�2(c^ x))

which is equal to2ta[t], provided thatc = 2t. This
equation translates to the finite circuit to the right,
where triangles denoteandgates, and half-circlesor
gates.

y +
+

x

x

y

c
y
x

a

This design leads to more economical circuits than the Atrubin (see [K81]) or the Chen and
Willoner constructions [CW79].

5.5 Odd Inverse

An even 2adic integerb = 2b0 2 2Z hasno inverseb� 2 2Z: indeed2b� b� is even and
2b� b� 6= 1 for all b�. So2Z is not a field, but it comes close: we can define theodd inverse
i = 1=(1� 2b) 2 2Z of any 2adic integerb 2 2Z by the formula:

i =
1

1� 2b
=

X
k2N

(2b)k: (4)

Rewriting (4) asi(1�2b) = 1, we obtaini = 1+2ib
which translates to the synchronous circuit to the
right. While it looks finite in the picture, this is
yet another infinite circuit since it contains the serial
multiplier from the previous section.

b
x

1/(1−2b)

5.6 Square Root

An odd 2adic integer has a square root if and only if it is congruent to one modulo 8 (Proposition
8). Such a number1 + 8b 2 2Z has exactly two square roots:(+

p
1 + 8b) �j�4 = 1
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and (�p1 + 8b) �j�4 = 3. We compute the former
p

1 + 8b = 1 + 4r so as to verify:
(1+ 4r)2 = 1+ 8r + 16r2 = 1+ 8b. Simplifying this last expression tor + 2r2 = b;we see that
the square root1 + 4r = +

p
1 + 8b is given byr = b� 2r2 which translates to the following

(infinite) synchronous circuit:

−
x

b

r

1+4r

6 Applications

This section groups various applications of the 2adic theory to practical circuit design problems.

The following corollary to Theorems 1 and 2 provides an explicit representation of the
functions computed by digital circuits in terms of finite boolean functions. It is stated for
unary (k = 1) functions, the generalization (k > 1) being straightforward. A combinational
circuit is said to befinite if it has finitely many inputs and outputs.

Proposition 5 Function f2 2Z ! 2Z is computable by

� a finite combinational circuit if and only if it isbitwise:

9f 0 2 B ! B : f (
X
t2N

xt2t) =
X
t2N

f 0(xt)2t;

� a synchronous circuit if and only if it ison-line:

8t 2 N; 9ft 2 Bt+1 ! B : f (
X
t2N

xt2t) =
X
t2N

ft(x0; � � � ; xt)2t;

� an infinite combinational circuit if and only if it iscontinuous:

8t 2 N; 9m(t) 2 N; ft 2 Bm(t)+1 ! B : f (
X
t2N

xt2t) =
X
t2N

ft(x0; � � � ; xm(t))2t:

6.1 Commutation with mux, reg and retiming

The following general commutation properties between mux, reg and arbitrary functions play
an important role in the optimization of electrical delays in digital circuits (see [LS91]). To
simplify notations, we state them for functions havingk = 2 arguments, the generalization to
arbitraryk � 0 being straightforward.
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Proposition 6 � A continuous function f2 2Z2 ! 2Z commutes with the mux

8a; b; c; d; e2 2Z : ?(a; f (b; c); f (d;e)) = f (?(a; b; d);?(a; c; e))

if and only if it is a finite boolean function.

� An on-line function f2 2Z2 ! 2Z commutes with the register

8a; b 2 2Z : 2� f (a; b) = f (2� a; 2� b)

if and only if f(0; 0) = 0.

6.2 Parallelization of synchronous circuits

Since anyon-linefunction is alsocontinuous, it may be computed by a synchronous circuit as
well as by an infinite combinational circuit. The procedure (Algorithm 3) which translates one
into the other byunfolding time into spaceis detailed in Section 8.4. The application of this
procedure to the synthesis of a parallel adder (from the serial adder of Section 5.1) is given
in Example 3.2; the synthesis of a parallel multiplier (from the serial-parallel multiplier in
Section 5.3) is given in Example 6.1. In both cases, the longest path (electrical delay) between
inputs and then-th output is a linear function ofn; in both cases, faster and bigger designs
exist for solving the problem within alogarithmicelectrical delay (see [GV82] and [V83]).

Example 6.1 (Parallel Multiplier)

The circuit to the right, is a
fragment of the (infinite)high-
school parallel multiplier ob-
tained by unfolding the serial-
parallel multiplier in Section 5.3
through Algorithm 3:

0 0 0 0

a[0]

b[0]

b[1]

b[2]

b[3]

a[1]a[2]a[3]

p[0]

p[1]

p[2]

p[3]

6.3 Reversible Synchronous Circuits

Consider one last characterization of synchronous (a.k.a. on-line) functions asnorm contrac-
tions; we state the definition in the unary (one input/outputf 2 2Z ! 2Z) case only:

8x; y 2 2Z : 2jf (x)� f (y)j � 2jx� yj: (5)
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Relation (5) is easily seen to be equivalent to each of the previously stated characterizations of
synchronous functions. With this in mind, we make a short incursion intocoding theory:

Proposition 7 A synchronous circuit C2 C(?;2�) computing f2 2Z ! 2Z is reversibleif
and only if each of the following equivalent properties hold:

One to One 9C� 2 C(?;2�); 8x 2 2Z : C�(C(x)) = x;

Norm Preserving 8x; y 2 2Z : 2jf (x)� f (y)j= 2jx� yj;
Galois Sum 9d 2 B;D 2 C(?;2�) : C(x) = x� d� 2D(x):

Sincey = C(x) has an inverseC� if and only if :y = C(x) has an inverse, we may choose
d = 0 in the expressiony= x� 2G(x). The inversex = C�(y) is given byx= y� 2D(x),
as illustrated by Examples 4.5 and 4.6, and the schemas below.

x +
y

D

x +
y

D

6.4 Synchronous circuits with output enable

By Theorem 2, we know that there exists no synchronous circuit which computes the output
sequencex � 2 = 2x1x2 � � � in response to the inputx = 2x0x1x2 � � � . In general, no
synchronous circuit is capable of producing strictly less output bits than it consumes inputs.
To get around this problem, experienced designers add a signalen2 V(C) which is used to
enablethe outputs from the synchronous circuit C: it is set toent = 1 on cyclest 2 N when the
outputs of C are significant; it is set toent = 0 on cycles when the outputs of C are irrelevant.

By this convention, we may computex� 2 through the identity circuit with output enable
en = 20(1) = �2. The same identity circuit with output enableen = 2(10) = �1=3
computes Peano’s first projection�0(x0x1x2 � � �xt � � �) = x0x2 � � �x2t � � �. Indeed, these are
special cases of the following general result:

Theorem 3 Every continuous function f2 2Z ! 2Z is computable by some synchronous
circuit with output enable.

Let us describe how to compose circuits with output enables. Suppose that some synchronous
circuit A 2 C(?; 2�) has output enable enA. We want to connect the inputs ofA to the outputs
I of some other synchronous circuit with output enable enI. The rules are:

1. Replace every registera= 2� b in A by the enabled registera = 2�?(enI; b; a).
2. Set the output enable of the results of A toen= enA ^ enI.
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6.5 Synchronous circuits with reset

The arithmetic circuits in Section 5 all have a finite implementation when we interpret each
operation modulo an odd number1 + 2p. In particular, we show in [SV93] how to derive from
equation (4) afinitemultiplier modulo1+ 2p, which operates from low order bits to high order
bits. Combined with other techniques presented in [SV93], this modular multiplier is the key
to the record breaking performances of this design.
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Consider an arbitrary synchronous network, such as the one drawn above which computes the
fast discrete cosine transform for appropriate coefficientss1; � � � ; s7; c1; � � � ; c7 2 N. How can
we pipe-line a sequence of finite precision integer computations through such a network? By
simply adjoining a (synchronous)resetinput, and replacing each register equationr = 2� i
in the network by the register with reset:

r = 2�?(reset; 0; i):

Theorem 4 In order to pipe-line a network f2 2Z ! 2Z over integer input sequences
i0 i1 � � � it � � � 2 Z whose binary lengths vary in time8t 2 N; 9m(n) 2 N : it < 2m(n), we adjoin
the following reset signal to all registers:

rst = 1 +
X
t2N

2m(t):

With this reset, network f now computes:

F(
X
t2N

itz
t) =

X
t2N

(f (it) �j�2m(t))zt:
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Note that all the operators which have so far received an infinite definition, such as multipli-
cation, becomefiniteas soon as the numberm= maxn2Nm(n) is itself finite; indeed, we can
truncate the whole network atm bits since all final results are correct modulo2m+1. The reset
signals of two circuits get or-ed together, during composition.

7 Conclusions

We expect that the 2adic semantics introduced here for synchronous circuits will have an
impact on current CAD systems, for the following reasons.

7.1 Synchronous Circuits Description

With F. Bourdoncle and G. Berry, we are attempting to map this 2adic theory into alanguage
called2Z for describing synchronous circuits, as they naturally occur in practical PAM designs
(see [BRV89]), such as the ones reported in [BRV93]. For example, the following2Z source
code generates the counters from [V91] whose operating speed is, for all practical purposes,
independentof the counter’s length.

SlowCounter[n](incr) = (s[n],ovfl)
where

c[0]=incr;
for k<n do

c[k+1] = c[k] and s[k];
s[k] = reg(c[k] xor s[k])

end for;
ovfl = c[n]

end where;

FastCounter[n](incr) = s[n]
where

k=2; // this parameter is technology-dependent //
if n<k

then (s,ovfl) = SlowCounter[n](incr);
else (s[0..k-1],en) = SlowCounter[k](incr);

enable en in
(s[k..n-1],cn) = SlowCounter[n-k](-1);

end enable;
ovfl = cn and en;

end if
end where

The schemas resulting from to the execution of the2Z expressionFastCounter[6] are:
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++incr

s[0]

+ +

s[2]s[1] s[3]

+ +

s[4] s[5]
−1

7.2 Synchronous Circuits Synthesis

As pointed out earlier, the SDD procedure is an interesting candidate for compiling from finite
state machine descriptions (hopefully produced by higher level systems) into real hardware
(silicon or FPGA). It should be instructive in this respect to compare the resulting SDD
implementation with the direct technique reported by [B92], and others.

7.3 Synchronous Circuits Verification

Finally, we expect some CAD systems to incorporate rules for circuit verification having to do
with the ring properties of 2adic algebra, not just the boolean part. The need for such tools
is clear when one consider the problem of proving functionally equivalent, such structurally
different multipliers as the ones from Example 6.1 and Reference [V83]. To prove further that
such parallel multipliers compute the same function as their serial counterparts (Sections 5.3
and 5.4), we seem to need the full 2adic apparatus introduced here; any proof attempt through
independent means has to discover, prove and use the ring laws somewhere along the line.

8 Proofs

This section regroups the mathematical definitions, lemmas and constructions required to
demonstrate the various claims made in this paper.

8.1 2adic integers

Proof of Proposition 2

(ii) Let l 2 N be the least integer such thatjzj < 2l. After computingl bits of z by Rule 1,

we reach the state:B2(z)
l) z0 � � �zl�1B2(z� 2l): Whenz� 0, we havez� 2l = 0, so

B2(z� 2l) = 2(0); whenz< 0, we havez� 2l = �1, soB2(z� 2l) = 2(1).

(iii) Conversely 2z0 � � �zl�1(zl) =
P

k<l zk2k � 2lzl is an integerz2 Z.

(iv) Integerz= 2z0 � � �zl�1(zl) is computed by the following acyclic synchronous circuit,
with l registers:r[l�1] = zl�1+2�zl; r[l�2] = zl�1+2�r[l�1]; � � � ; r[0] = z0+2�r[1]:
The inputs�zl = 2(zl); 0;�1 are constant, and the output isr[0].

Conversely, it follows from Definitions 5,7 of mux and reg that an acyclic synchronous
circuit with l 2 N registers produces a constant output after at mostl cycles, upon
constant input.
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(vi) Let B = z
1+2n be an odd rational, withz 2 Z and n 2 N + 1. Define theperiod

p= p2(1+ 2n) of the denominator1+ 2n to be the order of 2 in the multiplicative group
Z �j� (1 + 2n) of the integers modulo1 + 2n, namely the smallest natural number such
that:

2p = 1 (mod 1 + 2n):

Let the quotient beq = (2p� 1)� (1 + 2n), the corresponding remainder being 0.

ComputeI = zq� (2p � 1) the quotient, andP = zq�j� (2p � 1) = 2p0 � � �pp�1 the
remainder in the integer division ofz� q by 2p� 1, so as to write:

B =
z

1 + 2n
= I � P

2p � 1
:

The binary representation of�P
2p�1 = 2(p0 � � �pp�1) is purely periodic. It follows that

the binary representation ofB is ultimately periodic:bk = bk+p for k� i + p.

(vii) Let numberB = 2b0 � � �bi�1(bi � � �bi+p�1) be ultimately periodic, and consider the
integersI = 2b0 � � �bi�1 andP = 2bi � � �bi+p�1. NumberB 2 Z=1 + 2N is the odd
rational:

B = I � 2iP
2p� 1

:

(viii) The periodic rationalB = 2b0 � � �bi�1(bi � � �bi+p�1) is computed by the following
synchronous circuit, withi + p registers:

r[i+p�1] = bi+p�1+2�r[i]; r[i+p�2] = bi+p�2+2�r[i+p�3]; � � � ; r[0] = b0+2�r[1]:

The inputs0 and�1 are constants, and the output isr[0].

Conversely, letr[0]; � � � ; r[n � 1] be the n registers of a finite synchronous circuit
C 2 C(?;2�). Define thestateof C at time t by the integerSt =

P
0�k<n rt[k]2k.

This number is obviously bounded bySt < 2n; so, there must exist two instants
0 � t0 < t1 < 2N where we find the circuit in thesamestate:St0 = St1: With a constant
input, the output must therefore be periodicB = 2b0 � � �bi�1(bi � � �bi+p�1) with i = t0
andp = t1� t0.

8.2 Combinational circuits

Definition 9 Thetruth tableof a finite boolean function f2 Bn ! B is the natural number
f = 2f0 � � � f2n�1 2 N defined by:

f =
X

b0;���;bn�12B
f (b0; � � � ; bn�1)22b0;���;bn�1:

The BDD [B86] and TDG [B87] algorithms produce a combinational circuitf 2 C(?) which
computes a finite boolean function presented by its truth table as follows:
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1. Recursively decomposef into a tree of muxes by Shannon’s formula:

f (x0; � � � ; xn�2; xn�1) =?(xn�1; f (x0; � � � ; xn�2; 1); f (x0; � � � ; xn�2; 0)):

2. Share all equal sub-expressions generated during this decomposition.

Within our framework, this procedure may be expressed as follows.

Algorithm 1 (BDD) Let f 2 Bn ! B be any finite boolean function presented by its truth
tablef 2 N. The finite combinational circuit BDD(f ) 2 C(?) which computes f has:

1. Inputsfi[0]; � � � ; i[n� 1]g.
2. Output o= m[f ].

3. A setM(n; f) of muxes where each mux m[k] 2 M(p; k) implements the truth table
k 2 N over p> 0 inputs by:

m[k] = ?(i[p];m[k� 2p];m[k �j�2p]) if k is even;
m[k] = :m[:k] if k is odd:

These equations are simplified when either of the following applies:

?(c; b; b) ) b;

?(c; 1; 0) ) c:

Proof of Theorem 1

The proof is decomposed in three lemmas:

1. functionf is continuous if and only if it is uniformly continuous (Lemma 2);

2. functionf is uniformly continuous if and only if each output depends upon finitely many
inputs (Lemma 3);

3. each output of functionf depends upon finitely many inputs if and only iff is computable
by some combinational circuit (Lemma 1).

The well-founded ordering of the variables in a combinational circuit (Definition 6) implies
that each output only depends upon afinitesubset of the inputs.

Lemma 1 A function f2 2Z ! 2Z over the 2adic integers is computed by a combinational
circuit f 2 C(?) if and only if it can be expressed as a sum

f(
X
n2N

i[n]2n) =
X
n2N

fn(i[0] � � � i[m(n)])2n; (6)

where for all n2 N, number m(n) 2 N is an integer and fn 2 Bm(n)+1 ! B is a boolean
function with m(n) + 1 inputs.
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Proof: Through topological sort, we may assumew.l.o.g. that the mux numbering is
compatible with the mux ordering in Definition 6:m[i] � m[j] implies i < j. The first mux
outputm[0] is determined bym[0] =?(c0; b0; a0) which depends upon (at most) 3 different
inputsc0; b0; a0 2 I; similarly,m[1] is computed through (at most) two multiplexers involving
(at most) 5 different inputs inI. In general,m[n� 1] may be drawn as atreeof multiplexers
having depth less thann, and at most3ndifferent leaves inI. It follows that outputo[n] may be
expressed, for eachn 2 N, as a boolean functiono[n] = fn(i[0] � � � i[m(n)]) wherem(n) 2 N
is the highest input index which appears in the leaves of the mux tree definingo[n]. Conversely,
we know from the BDD (Algorithm 1) how to realize boolean functionfn from Expression (6)
by a finite combinational circuitCn, for eachn 2 N; the unionf = [n�0Cn 2 C(?) of all such
circuits realizes any functionf given by an expression of the form (6).

Our next result is a special case of Heine’s theorem, which says that a function is continuous
over a topologically compact set (namely the whole of2Z) if and only if it is uniformly
continuous (seee.g. [A75]).

Lemma 2 A function f2 2Z ! 2Z is continuousif and only if it isuniformly continuous:

8n 2 N; 9m2 N; 8x; y 2 2Z : 2jx� yj < 2�n implies 2jf (x)� f (y)j < 2�m: (7)

Lemma 3 A function f 2 2Z ! 2Z is uniformly continuousover the 2adic integers if and
only if it is computed by some combinational circuit Cf 2 C(?):

Proof: Let us first express uniform continuity in the equivalent form:

8n 2 N; 9m(n) 2 N; 8x 2 2Z : 2jf (x)� f (x �j� 2m)j < 2�n: (8)

Clearly (7) implies (8); conversely,2jf (x+2my)�f (x)j = 2jf (x+2my)�f (x �j�2m)+f (x �j� 2m)�
f (x)j � maxf 2jf (x + 2my) � f ((x + 2my) �j�2m)j; so we have2jf (x) � f (x �j�2m)jg < 2�n

for any y 2 2Z by (7) and the ultra-metric property (i). Expression (8) says that we
can determine the firstn bits of f(x) �j�2n = 2f0 � � � fn�1 = f (x �j� 2m) �j�2n from the first
m = m(n) bits of the argumentx 2 2Z. In particular, the first output bitf0 = f (x) �j�2
is given by f0 = f0(x0; � � � ; xm(0)�1), for some boolean functionf0 2 Bm(0) ! B defined
by f0(x0; � � � ; xm(0)�1) = f (

P
0�k<m(0) xk2k) �j�2. In general, functionf 2 2Z ! 2Z is

uniformly continuous if and only if it can be expressed as a sum of the form (6), in which
boolean functionfn 2 Bm(n) ! B is defined for each integern 2 N by fn(x0; � � � ; xm(n)�1) =
(f (
P

0�k<m(n) xk2k)� 2n�1) �j�2. We conclude this proof by invoquing Lemma 1.

8.3 Synchronous circuits

To simplify notations, the SDD procedure is presented in the generic case of a one input
(k = 1), one output on-line function. The generalization to an arbitrary number of inputs
k � 0 is direct; Example 2.1 shows applications of the procedure with zero input (k = 0);
Examples 4.1,4.3,4.5 have one input (k= 1) and Example 4.4 has two inputs (k = 2).
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The basic step in the SDD construction is to express each on-line functionf in the form

f(x) =?(x; b1 + 2f (1)(x); b0 + 2f (0)(x))

for some booleansb0; b1 2 B and on-line functionsf (0); f (1) 2 2Z ! 2Z. From the expression

f (x) =
X
t2N

ft(x0; � � � ; xt)2t;

we see thatb0 = f0(0), b1 = f0(1) and, forb 2 B:

f (b)(x) =
X
t2N

ft(x0; � � � ; xt; b)2t:

Algorithm 2 (SDD) Let f 2 2Z ! 2Z be any on-line function defined by

f (x) =
X
t2N

ft(x0; � � � ; xt)2t;

with ft 2 Bt+1 ! B for t 2 N. The synchronous circuit SDD(f ) 2 C(?;2�) which computes f
is constructed as follows.:

1. It has input x= 2x0 � � �xt � � � 2 2Z.

2. Its output is defined by o=?(x; v[1]; v[0]).

3. It has an infinite setV(f ) = fv[b0 � � �bp�1] : p 2 N; b0; � � � ; bp�1 2 Bg of variables,
indexed by all possible finite binary strings. Each variable computes the function

v[b0 � � �bp�1] =
X
t2N

ft+p(x0; � � � ; xt; b0; � � � ; bp�1)2t

which is defined (in the absence of simplification) by the equation:

v[b0 � � �bp�1] = fp�1(b0; � � � ; bp�1) + 2�?(x; v[b0 � � �bp�11]; v[b0 � � �bp�10]):

4. For each equality v= v0 or v= :v0 between two different variables v� v0, replace the
equation defining v0 by:

v0 = v or v0 = :v:

The replaced variable v0 is chosen to be the largest of v and v0 in the lexicographic
ordering: v[b0 � � �bp�1] � v[b00 � � �b0p0�1] if p < p0 or 2b0 � � �bp�1 < 2b00 � � �b0p�1.

5. Simplify each mux sub-expression according to the four rules:

?(c; b; b) ) b;

?(c;�1; 0) ) c;

?(c;:b;:a) ) :?(c; b; a);

?(c; 2� b; 2� a) ) 2�?(c; b; a):
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Let us apply the SDD construction to the simple synchronous circuit defined by the equations:

r = 2� S(x; r); f (x) = O(x; r):

Registerr contains the current state, exclusively determined from the inputx by the combina-
tional state functionS. The outputf (x) is given by the combinational functionO. One step
of the SDD construction introduces the functionsf (0) andf (1) related tof by:

f (x) =?(x; f0(1) + 2f (1)(x); f0(0) + 2f (0)(x)):

Through elementary 2adic transformations, circuitf (b) for b 2 B has the expression:

r = 2� S(x; r); f (b)(x) = O(b)(x; r):

The circuit definingf (b) has thesamestate functionS asf , and output function:

O(b)(x; r) = O(�b;S(x; r)):

Each variablev= f (b0���bp�1) in the SDD construction is defined by a circuit of the form

r = 2� S(x; r); f (b0���bp�1)(x) = O(b0���bp�1)(x; r);

for some output functionO(b0���bp�1). Termination of the SDD procedure follows in this case,
as there are finitely many such combinational functions.

We now state the argument in a formal way.

Definition 10 Let f 2 C(?;2�) be a synchronous circuit, with registers

R(f ) = fr[0]; � � � ; r[n]; � � �g:

1. ThestateS(f ; x; k) 2 2Z of f at time k2 N on input x2 2Z is the 2adic integer:

S(f ; x; k) =
X

r[n]2R(f )

rk[n]2n;

where rk[n] 2 B is the value of register r[n] 2 R(f ) at cycle k2 N, in the computation
of f(x), starting from theinitial zero stateS(f ; x; 0) = 0.

2. To each state st = S(f ; x; k) 2 2Z, we associate thestate functionf [st] 2 2Z ! 2Z
defined by

8x; z2 2Z; k 2 N : f [S(f ; x; k)](z) = f (x + z2k)� 2k:

3. An on-line function f2 2Z ! 2Z is finite when the set

S(f ) =
[

x22Z;k2N
S(f ; x; k)

of statesreachablefrom the initial zero state is finite:jS(f )j= s2 N.
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Note that the state function is independent of the specific input(x; k) leading to that state,
sinceS(f ; x; k) = S(f ; x0; k0) impliesf [S(f ; x; k)] = f [S(f ; x0; k0)].
Proof of Proposition 3If SDD(f ) 2 C(?;2�) is a finite synchronous circuit, thenf 2 2Z ! 2Z
is clearly a finite on-line function. To prove the converse, we must show that, forp 2 N large
enough, each variable

v[b0 � � �bp�1] =
X
t2N

ft+p(x0; � � � ; xt; b0; � � � ; bp�1)2t (9)

in the SDD algorithm is equal to somev[b00 � � �b0p0�1], with b00 � � �b0p0�1 � b0 � � �bp�1. We
may ignore for this proof the use of negation in the SDD construction, since it may only reduce
the size of the generated logic. Through state functions, we rewrite (9) as:

v[b0 � � �bp�1] =
X
t2N

fp[st](b0; � � � ; bp�1)2t; (10)

wherest = S(f ; x; t) 2 f0; � � � ; s� 1g; s = jS(f )j and fp[st](b) = (f [st](b) � 2p) �j�2: In
order to provev[b00 � � �b0p0�1] = v[b0 � � �bp�1], we see from (10) that it is sufficient to establish:

8st 2 S(f ) : f [st](b0; � � � ; bp�1) = f [st](b00; � � � ; b0p0�1): (11)

Equation (11) must certainly be satisfied in a non-trivial manner as soon asp > s2, since there
are at mosts2 pairs of state functions.

8.4 Arithmetic circuits

Proof of Proposition 4: Any circuit for squaring arbitrary 2adic integers must contain
infinitely many registers. Suppose the contrary, namely some circuitC 2 C(?; 2�) with n
registers produces outputx2 for each inputx 2 2Z. Circuit C may reach at most2n different
statesS. There are2n+1 integers in the setI = fy 2 N : y = 2n+1x; x� 2n+1g: Take inputs to
circuit C from setI, and consider what happens at timet = 2n + 2:

1. all the outputs produced up to this point are zero, sinceC is squaring;

2. there are more elements inI than possible states, hence there must exist twodifferent
y 6= y0 numbers inI which bringC into thesamestateS2n+2(y) = S2n+2(y0), on inputsy
andy0. Since all subsequent inputs are zero, all subsequent outputs must necessarily be
equal; soC(y) = C(y0) yet y2 6= y02, a contradiction.

Proposition 8 A non zero 2adic integer b0 2 2Z is a square if and only if it is of the form
b0 = 22v(1 + 8b) with even valuation v2(b0) = 2v and odd part1 + 8b congruent to 1 modulo
8.

Proof: Any non zero 2adic integerb 2 2Z can be written asb = 2v(1 + 2b1) with valuation
v = v2(b) 2 N and odd part1 + 2b1 + 4B2, whereb1 2 B andB2 2 2Z. The squareS= b2
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of b has the form:S= 22v(1 + 8(b1 + b2)(1 + 2b2)). Conversely, a number of the form
S= 22v(1 + 8b) has the two square roots�2v

p
1 + 8b, one of which being constructed by the

circuit in Section 5.6.

8.5 Applications

Algorithm 3 (Parallelization of a Synchronous circuit)

� The input to this algorithm is a synchronous circuit C2 C(?;2�), whose set of variables
V(C) = I [ R [M consists of:

1. InputsI = fi[0]; � � � ; i[i � 1]g for i = jIj.
2. Muxes M = fm[0]; � � � ;m[n]; � � �g, each defined by a mux equation

m[n] =?(cn; bn; an) for some cn; bn; an 2 V(C).
3. RegistersR = fr[0]; � � � ; r[n]; � � �g, each defined by a reg equation r[n] = 2� in

for some in 2 V(C).

The outputs of C form a finite subset of the variablesO = fo[0]; � � �o[o� 1]g � V(C)
and the mux ordering� is well-founded.

� The output from this algorithm is an infinite combinational circuit C0 2 C(?). To each
variable v2 V(C), we associate an infinite set of variables in C0:
V(C0) = fv[t] : v 2 V(C); t 2 Ng:

1. The inputs of C0 areI0 = fi[j][ t] : i[j] 2 I; t 2 N:g
2. The muxes of C0 areM0 = fm[j][ t] : m[j] 2 M; t 2 N:g, each defined by the mux

equation m[n][ t] =?(cn[t]; bn[t]; an[t]).

3. To each r[n] 2 R correspond the equalities: r[n][0] = 0 and r[n][ t + 1] = in[t]
for t 2 N.

The outputs of C0 are O0 = fo[j][ t] : o[j] 2 O; t 2 N:g The mux ordering�0 is
(lexicographically) well-founded since v1[t1] �0 v2[t2] implies t1 < t2 or t1 = t2 and
v1 � v2.

Proof of Theorem 3By Proposition 5, we may expressf as

f (x) =
X
k2N

2kfk(x0 � � �xm(k)):

Since a boolean function withk inputs may be considered as a function withk+ 1 inputs which
ignores the last one, we may assume thatm(k) < m(k + 1) for all k 2 N.

For j 2 N, definegj(x0 � � �xj) = fk(x0 � � �xm(k)) where indexk = k(j) is determined by the
relationm(k) � j < m(k + 1).
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Consider the on-line functiong defined by:

g(x) =
X
j2N

2jgj(x0 � � �xj)

We know from Theorem 2 that g may be computed by some synchronous circuitCg. By
construction, functionf is thus computed by circuitCg with output enable:

en=
X
k2N

2m(k):
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