
106

The Vesta Repository:

A File System Extension for

Software Development

Sheng-Yang Chiu

Roy Levin

June 14, 1993

d i g i t a l

Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed
basic and applied research to support Digital's business objectives. Our current
work includes exploring distributed personal computing on multiple platforms,
networking, programming technology, system modelling and management tech-
niques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting
systems are too complex to be evaluated solely in the abstract; extended use
allows us to investigate their properties in depth. This experience is useful in the
short term in re�ning our designs, and invaluable in the long term in advancing
our knowledge. Most of the major advances in information systems have come
through this strategy, including personal computing, distributed systems, and
the Internet.

We also perform complementary work of a more mathematical avor. Some of
it is in established �elds of theoretical computer science, such as the analysis of
algorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and test-
ing our ideas in the research and development communities leads to improved
understanding. Our research report series supplements publication in profes-
sional journals and conferences. We seek users for our prototype systems among
those with whom we have common interests, and we encourage collaboration
with university researchers.

Robert W. Taylor, Director

ii

The Vesta Repository: A File System Extension

for Software Development

Sheng-Yang Chiu

Roy Levin

June 14, 1993

iii

Sheng-Yang Chiu is at the GO Corporation, Foster City, California.

cDigital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any commer-
cial purpose. Permission to copy in whole or in part without payment of fee is
granted for nonpro�t educational and research purposes provided that all such
whole or partial copies include the following: a notice that such copying is by
permission of the Systems Research Center of Digital Equipment Corporation in
Palo Alto, California; an acknowledgment of the authors and individual contrib-
utors to the work; and all applicable portions of the copyright notice. Copying,
reproducing, or republishing for any other purpose shall require a license with
payment of fee to the Systems Research Center. All rights reserved.

iv

Authors' Abstract

Conventional �le systems are increasingly recognized as an unsuitable basis
for software con�guration management, especially for large systems. While
ordinary �le systems have many useful properties, their facilities for managing
coordinated changes that span many �les are weak. To address this problem,
the Vesta con�guration management system implements a �le system extension
that tailors the �le abstraction to the needs of large-scale software development.

This paper begins by presenting the essential properties required in the stor-
age facility that underlies a successful con�guration management system. It then
de�nes a �le-system-like abstraction derived from those properties and explains
how it can be implemented on top of a conventional �le system.

v

Contents

1 Introduction 1

2 A user's view of the Vesta repository 2

3 Policy implementation 8

3.1 Version numbering : 9
3.2 The log : 10
3.3 Access control : 10

4 The administrator's view of the repository 11

4.1 Derived �le management : 11
4.2 Replicas : 13
4.3 Load-balancing in the �le system : : : : : : : : : : : : : : : : : : 14

5 Implementation 15

5.1 UIDs : 15
5.2 Storing and locating �les : 16
5.3 The log : 19
5.4 Source �le representation : 20
5.5 Replication : 21
5.6 The underlying �le system : 21

6 Related work 24

6.1 File-oriented repositories : 25
6.2 Object-oriented databases : 25
6.3 Hybrids : 25
6.4 Discussion : 26

7 Evaluation 26

8 Acknowledgements 32

vi

1 INTRODUCTION 1

1 Introduction

E�ective software development requires facilities that support the orderly cre-
ation and organization of system components and tools that manipulate them.
These facilities, roughly speaking, provide con�guration management. Software
developers have long used ordinary �le systems or traditional data base systems
as the basis for con�guration management. By applying careful discipline, they
can employ these general-purpose storage systems adequately without any ad-
ditional facilities. But automation is more reliable than discipline (and scales
better), so, in recent years, developers have sought systems that provide con�g-
uration management services directly. The notion of a repository, a specialized
storage system for software development, has therefore received much attention.

What exactly is a repository? There doesn't seem to be a single, widely
accepted de�nition, and the term has been applied to markedly di�erent classes
of system. In all cases a repository o�ers integration of the data associated
with the design, development, and deployment of a software product. However,
di�erent repositories attach rather di�erent meanings to the term \integration".
In sections 1{5 of this paper, we present the Vesta repository and show why
its particular facilities and approach to integration are well suited to software
con�guration management. Section 6 briey compares the Vesta approach with
other repositories.

The Vesta repository notion builds directly on the well-understood �le sys-
tem abstraction. By introducing a few carefully chosen modi�cations to conven-
tional �le system semantics, we can create an abstraction that supports e�ective
con�guration management, yet remains familiar. That familiarity has consid-
erable value. Users easily adapt to a �le-system-based repository. The tools
they already know can integrate well with the repository, and they don't need
to learn many new concepts.

What is it about software con�guration management that leads us to aug-
ment the �le system abstraction?

First, the creation and arrangement of �les used for software development
is more stylized than in general-purpose �le system use. Files exist in many
versions over time, and at any instant, multiple versions may be of interest.
Furthermore, particular versions of di�erent �les typically \go together"; that
is, the user thinks of particular groups of versions of �les as corresponding to
signi�cant states of a system under development. A generic �le system (even
one with versioned �les) provides limited help in describing and managing these
groups of �les. A system focused on con�guration management can provide
grouping and versioning facilities that are well matched to the software devel-
opment process.

Second, e�ective con�guration management bene�ts substantially from the
knowledge that versions of �les, once created, cannot change. If �les are im-
mutable, then the construction process can be made reproducible more read-
ily, and reproducibility has great value in software development. In an ordi-

2 A USER'S VIEW OF THE VESTA REPOSITORY 2

nary �le system, mutable �les are the norm, which complicates con�guration
management.1

Third, many of the �les involved in the software development process are me-
chanically generated from other �les. We can readily distinguish handmade, or
source, �les frommechanically-produced, or derived, �les. Frequently in software
development, most of the �les with which the developer has to cope are derived.
If the software development system completely understands how to perform the
mechanical steps that construct these �les, then it can assume responsibility for
producing them on demand, choosing either to store or to (re)compute their con-
tents, depending upon the available resources. It can thereby relieve the user of
the substantial burden of naming and manually keeping track of mechanically-
generated �les. An ordinary �le system, lacking the source/derived distinction,
cannot do this.

As these points indicate, the �le-like abstraction best suited for con�guration
management di�ers signi�cantly from the one provided by a conventional �le
system. The remainder of this paper focuses on the nature of that abstraction
and the means used to implement it in Vesta. We assume the reader has read
section 2 of the companion paper [Levin and McJones], and is therefore familiar
with the basic Vesta concepts.

2 A user's view of the Vesta repository

Since Vesta seeks to extend the �le system abstraction, it provides access to the
�les it manages through the existing �le system interface. By and large, Vesta
�les are named in the same way, and have the same semantics, as ordinary
�les. This has the obvious advantage that conventional applications, which
know nothing of Vesta, can readily interoperate with it. In fact, applications
that only read �les see the contents of Vesta repositories as ordinary Unix �les.
But some of Vesta's facilities, which extend the �le system semantics, cannot
be provided so simply. Consequently, users see the Vesta facilities through a
combination of the �le system interface and discrete tools (applications) that
they invoke directly. In this section and the three subsequent ones, we'll examine
these facilities and see how Vesta provides them.

The repository abstraction is not particularly dependent upon the details of
the underlying �le system. As long as the �le system supports the notion of
hierarchically named �les and directories, the Vesta repository can �t in quite
naturally. In our implementation, we chose to build on top of Unix, so some
detailed choices in the design were made with Unix �le system semantics in
mind.

1Immutable �les can generally be simulated to some extent in an ordinary �le system, e.g.,

by using access control mechanisms, but this isn't the customary mode of operation. As a
result, this approach is too fragile to depend upon.

2 A USER'S VIEW OF THE VESTA REPOSITORY 3

Vesta supports an arbitrary number of repositories. Each one is named by
a Unix �le path. The names of all user-visible �les in a repository have this
path as a pre�x. Thus, the �les in a repository form a rooted subgraph of
the Unix �le-naming space.2 Vesta retains the Unix syntax for paths within a
repository; that is, slash characters (\/") separate path components, and each
component except possibly the �nal one names to a directory. However, the
precise semantics of a path are a little di�erent from an ordinary Unix path.
These semantics derive from the following three properties that distinguish the
contents of a Vesta repository from those of the ordinary �le system:

� Directories are versioned.

� All �les and directories are immutable.

� Directories contain source �les only.

These properties represent fundamental design choices in the Vesta repository,
which arise from its emphasis on con�guration management. Let's examine
them in more detail.

� Directories are versioned.

The very phrase \con�guration management" suggests the notion of
grouping objects. File system directories are a familiar mechanism for
doing just that. At a particular instant in time, an ordinary �le system
directory holds a set of related versions of �les. At some later instant,
the directory may hold a di�erent set, which may have some common
membership with the �rst set.

Ordinary �le systems and source code management systems built on top
of them (e.g., VMS [DEC89], SCCS [Rochkind], RCS [Tichy]) keep track
of individual �le versions, but don't record relationships between versions
of di�erent �les. Vesta's repository does this by de�ning versioning at
the directory level instead of the �le level. So, in Vesta, we refer to two
di�erent versions of a �le foo.c as

p.1/foo.c

p.2/foo.c

while a conventional (versioned) �le system might instead name the two
versions

p/foo.c.1

p/foo.c.2

2Readers experienced in the ways of Unix will recognize that each repository appears in
the name space at a mount point, just as an NFS �le system does.

2 A USER'S VIEW OF THE VESTA REPOSITORY 4

The distinction is uninteresting if only a single �le is involved. However, we
normally have multiple �les in a directory, and the Vesta naming scheme
clearly groups related versions of these �les. Thus, the three directories
p.1, p.2, and p.3 with contents

p.1/foo.c p.2/foo.c p.3/foo.c

p.2/baz.c p.3/baz.c

naturally de�ne three con�gurations of the �les foo.c and baz.c. In
contrast, a single directory p containing

foo.c.1 foo.c.2 foo.c.3

baz.c.1 baz.c.2

doesn't give us any clue about which versions of foo.c and baz.c go
together.

This naming scheme has a disadvantage, however. While we can tell that
foo.c.1 and foo.c.2 are (almost surely) di�erent by examining only their
names, we can't tell so easily whether p.1/foo.c and p.2/foo.c di�er.
p.1 and p.2 are (almost surely) di�erent, but the di�erence may be in
some other �le, say baz.c, while foo.c remains unchanged. So, versioning
at the �le level makes it easy to spot (potential) di�erences between �le
versions, while versioning at the directory level makes those di�erences
less evident. To be certain that two �les di�er, we must actually compare
their contents3. Nevertheless, this inconvenience is out-weighed by the
advantage of clearly identi�able con�gurations.

� All �les and directories are immutable.

A Vesta repository changes only by growing. Once a new version of a di-
rectory comes into existence, it cannot subsequently be changed or deleted.
Clearly, Vesta departs in this regard from conventional �le systems, which

may support the notion of making a directory read-only, but which cer-
tainly expect most directories to change over time. A Vesta repository is
embedded in an ordinary �le system, in which ordinary �les and directories
can change over time. However, in a Vesta repository, only the top-level
directory can change, and only by the addition of new subdirectories. So,
for example, if /vesta/proj is the name of a repository, /vesta/proj/p.3
is the name of an immutable directory, and /vesta/proj/p.3/foo.c is
the name of an immutable �le within it. Over time, additional subdirecto-
ries of /vesta/proj may come into existence, such as /vesta/proj/p.4,
but, once created, these directories never change.

3Or compare something other than the �le names, like Unix i-node numbers or Vesta unique
identi�ers (see section 5.1).

2 A USER'S VIEW OF THE VESTA REPOSITORY 5

Because directories are immutable, only one version number is necessary
in any path to a Vesta �le. As the examples above illustrate, we attach this
version number to the subdirectories of the top-level directory of the repos-
itory. We call these versioned directories packages (or package versions),
and we refer to the collection of versioned directories whose names agree
up to the \." as a package family. So, for example, /vesta/proj/p.3
and /vesta/proj/p.4 name two package versions, and the set of directo-
ries /vesta/proj/p.* is a package family. (Henceforth, we will omit the
repository name when it is irrelevant or evident from context.) Files in a
package version are named in the obvious way, so p.3/foo.c is a �le in
package p.3. Package versions may have subdirectories as well; for exam-
ple, p.3/tests/script.run names the �le script.run in the subdirectory
tests of the package version p.3.

Vesta's package versioning scheme permits tree-structured names, which
provide a natural way to identify branched and parallel development.
So far, all our examples have used simple versions like p.3. However,
as with RCS [Tichy] and SCCS [Rochkind], Vesta allows path names like
p.3.bug fix.1 or p.2.fred.1.new approach.4. Notice the alternating
names and numbers. The names represent lines of descent (or branches);
the numbers identify di�erent versions along each line.

We should also note that, while directories provide a particular hierarchi-
cal organization for �les, it is necessary to have other connections that
cut across the hierarchy. For example, Unix systems provide \hard" links
that represent the normal naming hierarchy and \soft" (or \symbolic")
links that allow arbitrary cross-connections. In a Vesta repository, a
cross-connection is called an import, and allows one package to refer to
another. An import is a link to a package version, that is, a top-level
directory within a repository. An import must refer to an existing direc-
tory (unlike a Unix symbolic link). Hence, because Vesta package versions
are immutable, an import cannot cause a cycle among directories. (For
an example of an import, refer to section 2.1 of the companion paper
[Levin and McJones].)

� Directories contain source �les only.

Vesta makes a crisp distinction between source and derived �les. A source
�le is one that cannot be mechanically created by Vesta; it is essentially
handmade by a human. A derived �le is just the opposite; it can be
mechanically produced by Vesta using other �les.

Vesta adopts the principle that derived �les don't appear in the repository
name space. That is, the Vesta repository assigns human-sensible names
only to source �les. Of course, the repository must store derived �les
somewhere; we'll discuss this in section 5.2.

2 A USER'S VIEW OF THE VESTA REPOSITORY 6

On the face of it, this approach may seem surprising. How can a con-
�guration management system hope to help the user when it makes the
derived �les invisible? In our view, Vesta simpli�es the user's life by allow-
ing him to concentrate exclusively on the source �les of a con�guration.
Vesta assumes responsibility for creating derived �les on demand, giving
them (machine-oriented) names, storing them for later use, and delet-
ing them when they become obsolete. The creation occurs as a result
of interpreting Vesta's complete building descriptions (that is, applying
the Evaluate operation to a system model) as explained in the compan-
ion paper [Hanna and Levin]. The other operations are handled by the
repository.

Obviously, if Vesta can deliver on this promise, the user can cope with
many fewer �les and is freed of the bookkeeping responsibility that often
overwhelms large software development projects. The bene�ts of manag-
ing derived �les automatically become especially evident when we consider
multi-targeted systems, for which multiple sets of derived �les typically
are produced from only slightly di�ering source con�gurations. In this sit-
uation, derived �les can dominate the name space, and the bookkeeping
task looms large.

These three properties that distinguish a Vesta repository from an ordinary
�le system also have two secondary consequences that a�ect the user's view.

Atomic creation of con�gurations. Because every package version is im-
mutable, it �rst appears in a repository as a \fully populated" directory.
Unlike a conventional, mutable Unix directory in which �les are normally
inserted one-at-a-time, a package version is created in toto, atomically.
Thus, a user cannot see the directory in an inconsistent, intermediate
state; either it's there or it isn't. This reduces the opportunity for con-
fusion when users are sharing con�gurations; the mere appearance of the
directory name in the repository name space provides su�cient synchro-
nization. While the same e�ect can be achieved in an ordinary �le sys-
tem by using auxiliary tools or willpower4, it is a direct consequence of
the Vesta repository's immutability semantics, and eliminates a situation
in which users can make subtle, time-dependent errors. To ensure the
atomic-creation semantics, Vesta requires that new con�gurations be pro-
duced with special, Vesta-speci�c operations rather than with ordinary
�le system operations. These operations are summarized at the end of
this section.

4A Unix program that wants to achieve this e�ect creates a directory o� in a corner,

populates it, then renames it, causing it to appear atomically where the user can see it.
However, this method requires care to do properly and to recover correctly in the case of

failure at an intermediate point. Perhaps as a result, it is not systematically used by existing
Unix tools.

2 A USER'S VIEW OF THE VESTA REPOSITORY 7

Easy distributed development. When software development occurs at two
or more geographically separated sites, developers need to share access to
a common base of �les. Because of the inherent bandwidth limitations of
wide-area communications, one or more sites typically pay a substantial
performance penalty in accessing the common �les. To alleviate this prob-
lem, �les are often replicated at the various sites. However, if an ordinary
�le system is used, this approach risks introducing transient inconsisten-
cies in the replicas, since all �les are, in principle, mutable. By contrast,
because a Vesta repository contains only immutable �les, and changes only
by the addition of new directories, replication becomes much easier. Only
newly created directories and their contents need to be shipped between
sites; there's no need to worry about changes in previously replicated di-
rectories.

We can summarize the preceding discussion of the properties of a Vesta
repository as follows:

� Each repository is a subtree of the Unix �le name space.

� A repository consists of a (at) name space of versioned packages, each of
which is an immutable directory of immutable subdirectories and source
�les.

� Derived �les are created as a side-e�ect of the Evaluate operation on a
system model. They are invisible to the user.

While these properties follow from the three fundamental design choices,
there are other aspects of the repository design that, although not essential,
signi�cantly a�ect the user's mental model of the repository. Let's look at these
properties briey; they are discussed in more detail in the companion paper
[Levin and McJones].

� A Vesta repository is either public or private. Shared �les are stored in
public repositories, and individual development work occurs in private
repositories. Both kinds of repository provide a versioned name space
for packages, with each package version being immutable. Thus, every
package version that a user deals with, including all the intermediate ones
produced in the course of a development session, is immutable. This is
quite di�erent from the more customary approach of providing a versioning
facility only for shared �les and leaving the individual user to keep track
of what happens while �les are checked out.

� The creation of a new package version in a public repository begins with a
Checkout operation and ends with a Checkin operation. Checkout reserves
a package version name in a public repository and establishes an initial
version in the user's private repository to serve as the starting point for

3 POLICY IMPLEMENTATION 8

development of a new public version. That development produces a se-
quence of versions in the private repository. Eventually, the user invokes
Checkin, which binds the reserved name in the public repository to a pack-
age version from the private repository (generally, but not necessarily, the
�nal one in the sequence of development versions). Checkin thus creates a
new package version in the public repository, that is, it atomically creates
a new immutable directory.

� During the period between Checkout and Checkin, a user creates a series
of new package versions in the private repository. This works as follows.
The user actually creates new source �les in an ordinary (Unix) working
directory. A snapshot of that directory is made whenever the user invokes
the Advance operation, which creates a new package version in the private
repository using the �les it �nds in the working directory. Because the
user creates and edits source �les in an ordinary directory, she can use
ordinary tools (e.g., unmodi�ed text editors) that understand nothing
about Vesta.5

The three operations Checkout, Advance, and Checkin provide the only
means for a user to modify a repository. Their semantics are too di�erent from
the ordinary �le system semantics to be hidden under the �le system interface.
Accordingly, Vesta must provide them separately and include tools so that the
user can invoke these operations. The next section discusses some important
considerations in the design of the repository programming interface (that is,
its API) and the tools that use it.

3 Policy implementation

In the preceding section, we presented the repository facilities from a user's
point of view. However, di�erent organizations can arrange for their users to
see somewhat di�erent facilities; in particular, the detailed behavior of major
operations (like Checkout and Checkin) can vary with the organization. The
variation results from the di�erent development methodologies and processes
employed by di�erent groups. To support a variety of development styles, the
Vesta repository API presents a number of mechanisms that can be used to
implement various policies. In this section, we look into this separation of
mechanism and policy.

5This approach is simple, but doesn't scale well for large working directories, since Advance
must check every �le to determine if it has changed. To eliminate this problem, Vesta can
implement the working directory itself, at a mount point, thereby intercepting the operations
on �les in the directory. Vesta then arranges for this directory to look to the user just like an
ordinary one, but it keeps some additional hidden information. Speci�cally, whenever a �le
in the directory is created, deleted, or altered, Vesta records the change in an associated log.
The Advance operation then uses the information in the log to create a new package version
without having to scan all the �les in the directory.

3 POLICY IMPLEMENTATION 9

We can identify three strategies for implementing policy at the repository
API:

Encapsulation is perhaps the most obvious way of implementing policy and
requires no explicit facilities in the repository API. A tool that implements
a selected policy using encapsulation does so by wrapping up one or more
repository operations in custom code. An example of this technique is the
numbering of package versions, which is discussed in section 3.1, below.

Triggering permits an arbitrary tool to be invoked as a consequence of
some speci�c operation on the repository. The repository API provides
the mechanism that connects the operation to the tool invocation. Trig-
gering is asynchronous with the operation, and the invoker of the opera-
tion is unaware of it. Section 3.2 describes several uses of the triggering
mechanism.

Parameterization is used in certain repository operations to permit a selec-
tion of choices from a restricted set. The repository API provides a form
of access control that illustrates this technique, as described in section 3.3,
below.

Although the repository API is designed to facilitate implementation of pol-
icy in tools, we have exploited this facility in only limited ways to date. Con-
sequently, the examples below mostly illustrate expected uses of the available
mechanisms rather than policies that we have actually implemented.

3.1 Version numbering

In the repository API, the Checkout procedure accepts a parameter that spec-
i�es the package version to be checked out. It requires only that this version
be new; that is, it must not already exist or be checked out. However, the
user doesn't invoke this procedure directly; instead, he uses a Checkout opera-
tion provided by a tool that encapsulates the API's Checkout procedure. This
tool customarily imposes two additional requirements: the package version to
be checked out must be the next one in sequence, and its immediate predeces-
sor must be checked in. For example, if the user asks that /vesta/proj/p.4
be checked out, the tool requires that /vesta/proj/p.3 already exist and be
checked in.

This encapsulation of the Checkout procedure might seem unnecessary. At
�rst glance, the additional requirements imposed by the tool appear obviously
desirable, so one might be tempted to implement them beneath the repository
API. However, this turns out to be unwise, for not every software development
organization that uses Vesta wants sequentially numbered versions and sequen-
tial checkouts. For example, some organizations want the version numbers in a
particular package family to correspond to independently chosen release num-
bers, which don't necessarily advance sequentially. Furthermore, two of these

3 POLICY IMPLEMENTATION 10

releases may be independent; whether or not one is checked out has no bearing
on the other. Consequently, there is no compelling reason to limit exibility on
this point at the repository API. Accordingly, Vesta leaves the policy around
the assignment of version numbers up to tools that can be altered conveniently
to support di�erent development styles.

3.2 The log

Each Vesta repository maintains a log of actions that alter its user-visible con-
tents, chiey Checkout, Checkin, and Advance. The repository API provides
operations to read this log, and to discover when new entries have been made.
These primitives enable a variety of services to be provided by tools above the
repository API. For example, it is a simple matter to generate reports on reposi-
tory activity by scanning the log. A daemon process that sends mail to interested
users when selected packages are checked in is equally straightforward.

More generally, the log, monitored and �ltered by a daemon process, serves
as a source of fairly arbitrary triggers for tools that assist developers in com-
plying with the development process rules imposed by their organization. For
example, if a developer is required to report the disposition of a bug report, the
tool used to do so could be automatically invoked by a daemon that watches for
Checkin operations. As another example, a checkin trigger can alert a quality
assurance group of a new version that requires testing, or can serve as input to a
critical-path tool used by a project manager to track the progress of a large sys-
tem toward release. Many other cases arise in the software development process
that �t the trigger-on-new-version paradigm.

3.3 Access control

Because the Vesta repository semantics di�er signi�cantly from those of an
ordinary �le system, the facilities for controlling access need to be di�erent as
well. Modi�cation of a repository is limited to the creation of new package
versions, and the repository API includes an operation to set an access control
list that speci�es which users can do so. There is one other access control list
for the administrative functions, which are described in section 4.

At SRC we had only limited local need for access controls and therefore
didn't actually design this part of the repository API very carefully. (For ex-
ample, all our repositories extend read privileges to all users.) It is evident that
�ner control of access is necessary in many organizations. Some groups want
to limit the ability to perform Checkout operations on a per-package-family
basis, and to allow only certain users to read the �les in particular package
families. We believe that the repository API could be readily extended with the
mechanisms to support policies like these, but we haven't yet done so.

4 THE ADMINISTRATOR'S VIEW OF THE REPOSITORY 11

4 The administrator's view of the repository

We now turn our attention to more specialized facilities of the repository that
are of interest to administrators.

4.1 Derived �le management

Recall that, because Vesta generates all derived �les as necessary, ordinary users
do not concern themselves with the location, or even the names, of these �les.
Consequently, the task of keeping the consumption of disk storage under control
falls to the repository administrator. We want this task to be easy for the
administrator to carry out, and for the results to be \natural" for the users.
That is, we want to �nd an invariant for the retention of derived �les that both
satis�es the desire of the users to have useful �les retained and enables the
administrator to reclaim adequate disk space when necessary.6

What can a user reasonably expect? When developing a Vesta package, the
user expects that recently produced derived �les won't disappear. That is, if
a Vesta evaluation causes a compilation of module X to occur, the resulting
derived �le should be available for at least a while, so that X won't have to
be recompiled on every subsequent evaluation. But the user can't reasonably
expect every derived �le to be retained inde�nitely. So when does the result of
compiling X disappear?

We adopt the following strategy. Derived �les accumulate until the adminis-
trator of a repository announces to the users that the repository is to be weeded
(our term for getting rid of unnecessary derived �les). The administrator spec-
i�es a list of package versions whose associated derived �les will be retained.7

(We'll see in a minute what \associated" means.) All derived �les not associated
with those packages will be deleted from the repository. After giving the users
su�cient time to suggest alterations to the set of packages whose derived �les
are to be retained, the administrator runs a tool (the weeder) that implements
the necessary deletions.

To understand what weeding means, we must delve a little deeper into the
machinery used to keep track of derived �les. When the Vesta evaluator inter-
prets the system model of a particular package version, it records the set of all
derived �les that are produced.8 This set includes not just the �les produced

6The reader might wonder whether the administrator needs to be concerned with source
�les as a signi�cant consumer of disk space. The short answer is no; we'll see why in section 7.

7Actually, the administrator gives a predicate on package versions, rather than an ex-
plicit list. This makes some common situations easier to express, e.g., \keep all derived �les

associated with checked-out package versions."
8More precisely, it records all the derived �les that would have been produced if the model

were evaluated from scratch. Because of the extensive caching implemented by the evaluator
[Hanna and Levin], an evaluation might �nd some derived objects that were produced by
previous evaluations. However, the list recorded for the purposes of weeding does not reect
this; it includes everything that would have been produced in the absence of caching.

4 THE ADMINISTRATOR'S VIEW OF THE REPOSITORY 12

by the package model itself, but also those resulting from the interpretation of
any system models imported by that model. An association between this set
and the package version is recorded for use by the weeder.

Operation of the weeder is conceptually straightforward, and similar to that
of a mark-and-sweep garbage collector. The administrator provides a set of
roots, that is, package names whose associated derived �les are to be retained.
The weeder reads the sets of derived �les recorded by the evaluator, then scans
the repository deleting every derived object not contained in these sets.9

If this were the whole story, the invariant preserved by the weeder would
be easy to understand: a �le is retained if and only if it is involved in the con-
struction of at least one of the speci�ed roots. While this invariant is certainly
simple, it is unfortunately too strong to be practical. That is, it causes too many
derived objects to be retained, and therefore doesn't solve the administrator's
problem of limited disk space. Let's see why.

Recall (from [Levin and McJones]) that a Vesta system model expresses the
construction of software (derived �les) entirely in terms of source. That is, in
principle, every Vesta evaluation constructs every derived �le it uses, including
the \standard environment" �les (compilers, libraries, and the like). So, the
list of derived �les produced by an evaluation (and recorded for the weeder)
includes the executables of all the compilers, which, in turn, are constructed from
other derived �les using (other) compilers, and so on. Thus, the list includes
all the derived �les used to produce all the generations of tools, back to the
original source.10 So, if the weeder naively retained all derived �les produced
by an evaluation, it would potentially include many versions of the standard
environment, most of which are almost certainly uninteresting.

A natural solution presents itself. We modify the weeder's marking algorithm
to \cut o�" when it reaches su�ciently old derived objects that are part of
(a version of) the standard environment. The precise de�nition of the cut-
o� is a little messy, but the basic notion is simple enough. The importing
relationship among versions of the environment forms a directed acyclic graph.
The representation of the lists produced by the Vesta evaluator retains this
graph structure, so it is a simple matter for the weeder to cease marking when
it reaches a speci�ed depth in the graph. The choice of depth depends on the
structure of the system models that de�ne the standard environment; for the

9Weeding can take hours to complete, and it would be intolerable to prohibit Vesta eval-
uations (which produce new derived �les) while collection is in progress. Consequently, the
weeder must operate concurrently with evaluation, and the two actions must be properly
synchronized.

10In many programming shops, this doesn't pose a problem, since the tools are not con-
structed locally; they are externally produced and treated as source. However, some shops,
including ours, develop their programming environment tools and libraries in Vesta as well,
and these facilities undergo continuous change. In such a shop, even a package that builds a

simple application program imports a Vesta system model that constructs (a version of) the
standard environment. That model, in turn, imports an earlier version of the environment to

obtain the tools required for its construction, and so on.

4 THE ADMINISTRATOR'S VIEW OF THE REPOSITORY 13

environment described in the companion paper [Levin and McJones] using the
building-env model, we found a nesting depth of two gave quite satisfactory
results.

So, to summarize, the invariant for derived �le retention is: a derived �le is
retained if and only if it is produced by evaluation of a system model reachable
(by importation) from a speci�ed root, unless it is produced only by evaluation
of standard environment models that are more than an administrator-speci�ed
importation depth from all roots. This invariant is certainly less intuitive than
the simple one mentioned earlier, but, in our experience, it is possible to set
the cut-o� depth large enough that users are essentially unaware of it, yet small
enough that weeding is e�ective in controlling the use of disk storage.

4.2 Replicas

Vesta repositories are intended to be used by software development organiza-
tions that span a wide-area network. But if a repository were stored at a single
site, users of the repository at other sites would likely see signi�cantly poorer
performance. Vesta avoids this problem by permitting public repositories to be
replicated. With replication, however, comes the potential problem of inconsis-
tency. Fortunately, the repository semantics (especially immutability of package
versions) largely eliminate this problem, as we'll see shortly.

The only purpose of replication in Vesta repositories is to improve perfor-
mance for users in a network that lacks ubiquitous fast communication. We do
not use replication within a site to increase local availability. Instead, we regard
highly available �le storage in the local network as a lower-level service to be
provided by the underlying �le system (as indeed it was in our environment
[Mann et al.]). So, all users at a site share a replica, and if the replica becomes
unavailable, the users do not attempt to use a remote one instead.

Given this assumption about the use of replicas, we can tolerate some incon-
sistency between the contents of two replicas of the same repository. All users
at the same site see a consistent repository, since they all use the same replica.

However, updates do not propagate instantaneously between replicas, so users
at di�erent sites see somewhat di�erent contents.11 Even so, the nature of the
di�erence is constrained. Two sites never see di�erent �les within the same
package version; at worst, a package version is de�ned at some sites but not at
others. This is because the replicated repository still maintains the fundamental
property that �les and directories, once created, are immutable. Immutability
implies that new package versions appear atomically in a repository (replica);
hence, if the same package name is de�ned in two or more replicas, its contents
are identical.12

11Of course, users are not likely to be aware of the di�erence, since each user can see only
the local replica. Only if they communicate outside the Vesta system, say by telephone, can
they discover the di�erence.

12The copying algorithm also follows all import links (within the same repository).

4 THE ADMINISTRATOR'S VIEW OF THE REPOSITORY 14

Our replication technique is simple, and is based on experience with the
siphon mechanism [Prusker and Wobber]. Whenever an operation occurs that
changes (that is, adds to) the name space of a repository, that operation is
propagated to all other replicas. Since only public repositories are replicated,
this boils down to propagation of Checkout and Checkin operations. Recall
that Checkout reserves a new package name; thus some sort of synchronization
among replicas is required to ensure that conicting Checkout operations do
not occur simultaneously. There are many ways to do this; we chose a simple
one|a designated replica must be consulted synchronously for all Checkout
operations on its repository. If the Checkout operation is successful, the newly-
reserved name is visible in both the \master" replica and the user's \local"
replica. Often these are the same one.

Note that no such synchronization is required during Checkin. Since Checkin
binds a previously reserved name to a system model, and can be performed only
by the user who made the reservation, there is no possibility of race conditions.
(A user can be at only one site at a time!) Thus, it su�ces to perform the
Checkin operation on the local replica only, and propagate its e�ects to the other
replicas asynchronously. Since, in general, Checkin binds an entire directory
tree of �les, the replication entails the transmission of that tree across a wide-
area network, which can be time-consuming. So, making it asynchronous is
attractive. (The machinery that actually implements the replication is discussed
in section 5.5.) By contrast, Checkout performs a small, �xed amount of work
(recording a reserved name). Doing this synchronously across the wide-area,
while slower than a strictly local action, is still fast enough.

All the replication occurs automatically, with little work required by the
repository administrator. The administrator designates the master replica at
which all Checkouts are synchronized. This choice is made when the repository
is created and naturally is the site at which most updates to the repository occur.
The administrator also adds and removes replicas as necessary. It is possible
to change a repository's master replica, if required, but this is an infrequent
operation.

We should note that, although most of the repository replication machinery
is implemented, it has not actually been put into service. The replication scheme
is straightforward, and we expect it will be adequate for the tra�c rate of
Checkout/Checkin operations we observe (a steady-state average of 3{4 per
hour in a community of 25 full-time users). More elaborate algorithms that
assign \mastership" on a �ner grain (for example, the package family) or more
dynamically (say, by holding elections among the replicas) are certainly feasible
and could be added if experience shows them to be necessary.

4.3 Load-balancing in the �le system

As with any �le system, the Vesta repository administrator faces the problem
of arranging the �les and directories on physical disks to balance the load on

5 IMPLEMENTATION 15

the �le servers. Typically, there are two problems the administrator must cope
with: computational load and available disk space.

As we will see later (section 5.6), the Vesta repository implementation does
not use central servers. Rather, a dedicated server runs on each user's work-
station. These servers communicate with the underlying �le system through
the usual operating system interfaces. We do not observe excessive load on the
Vesta servers, but inappropriate arrangement of the repository �les can cause
load imbalances for the underlying �le system in which they are stored.

Limitations on available disk space arise because the Vesta repository stores
the �les associated with a package family together. Furthermore, as we will
see in section 5.6, the repository implementation exploits atomicity properties
that the �le system can guarantee only within certain limits. This means that a
newly created �le cannot be stored on whatever disk has adequate space; it can
go only on the disk associated with its family. Consequently, an administrator
must occasionally move families between disks in order to free adequate disk
space in the appropriate places.

We should note that, while this arrangement obviously isn't ideal, it is famil-
iar to any administrator of a Unix installation of signi�cant size. For example,
the arrangement of users' home directories frequently must be altered due to
changing space requirements. If future �le systems solve this problem adequately
for ordinary Unix �les, the Vesta repository will bene�t equally.

5 Implementation

We now consider the issues and techniques involved in implementing the Vesta
repository API. In the main, the implementation techniques are simple ones;
we use the most straightforward data structures except when performance or
robustness considerations demand more complex ones. Because the repository
semantics generally follow those of an ordinary Unix �le system, the implemen-
tation can take considerable advantage of the underlying �le system.

In this section, we focus on the aspects of the repository implementation
whose implementation is not immediately obvious.

5.1 UIDs

In Vesta repositories, as in most �le systems, there is a low-level, machine-
oriented mechanism for identifying �les. In Unix, this mechanism is the \i-node
number"; in Vesta, it is the unique identi�er, or UID.

A Vesta repository UID unambiguously and immutably identi�es a sequence
of bytes. Thus, UIDs are never reused (unlike Unix i-node numbers). Multiple
path names may lead to the same UID, just as multiple Unix �le names may
lead to the same i-node number. Thus, if we want p.2/foo.c and p.3/foo.c

to refer to the same �le, then we arrange for them to be bound to the same

5 IMPLEMENTATION 16

UID. This occurs very often, since successive versions of a package (e.g., p.2
and p.3) nearly always have �les in common.

A UID is an absolute name; that is, it incorporates the name of the repository
in which it is de�ned. Both directories and �les have UIDs.

UIDs are used to identify both source and derived �les. As we have noted
several times, only source �les have human-sensible names. But UIDs can be
used through the repository API to access derived �les as well; in fact, they are
the only way to name derived �les. The UID of a derived �le gives no information
about the �le's provenance. That is, neither a program nor a human can look
at a derived �le's UID and determine, say, that it is an object �le produced by
compiling p.3/foo.c.

5.2 Storing and locating �les

Now that we understand the properties of UIDs, let's see how user-sensible
names are interpreted to yield UIDs and how the byte sequences that UIDs
immutably identify are actually stored.

Vesta �les (named by UIDs) are stored in ordinary Unix directories. In prin-
ciple, all �les in a repository could be stored in a single directory, since their
names are, by de�nition, unique. Two problems with typical Unix implemen-
tations make this impractical. First, directory search is typically linear, which
yields poor performance for even a moderate-sized repository. Second, the �les
named in a Unix directory (by hard links) must all reside on a single disk13,
which uncomfortably limits the size of a repository. To eliminate these prob-
lems, the Vesta repository implementation uses a separate Unix directory for
each package family, which is further subdivided into separate directories for
source and derived �les. Each of these subdirectories is then assigned to a disk.

In practice, this works out well enough, although the directories do some-
times contain hundreds of �les. We designed the repository to permit a further
subdivision of the directories for performance purposes (by a simple hashing
scheme on the UIDs), but we never found it necessary to implement this re�ne-

ment.
Now we can see how source �les are actually read. Recall that the reposi-

tory provides read-only access to source �les through the ordinary �le system
interface. Suppose, for example, that a program asks to open (for reading) the
�le /vesta/proj/p.3.bug fix.1/test.c. Let's see how Vesta implements this
request. Refer to �gure 1.

1. The pre�x /vesta/proj is interpreted by the Unix �le system, which
discovers that it corresponds to a Vesta repository \mount point". The
Unix open system call invokes the repository implementation, passing it

13Strictly speaking, we should say \disk partition" rather than \disk". Actually, since Vesta
was implemented on Echo [Mann et al.], the proper notion is an Echo volume, which in many
ways is a more exible kind of partition. See section 5.6.

5 IMPLEMENTATION 17

Other
repositories

/

vesta

proj 0a873c492

v

.meta_data p

p

family_tree

source derived

S47.4b0 M47.4ba D47.8e93410f

Other
families

Other repository
implementations

Underlined directories are Unix mount points.
Straight lines are ordinary Unix hard links.
Curved lines are "links" implemented by the Vesta repository.

Figure 1: Locating �les in a Vesta repository

the remainder of the path (p.3.bug fix.1/test.c) and an identi�er for
the mounted volume. The latter is used to construct the name of the
ordinary Unix directory that is the \root" of the repository, which in this
case is /v/0a873c492.

2. The repository implementation extracts the family name (p) from the �rst
arc of the path. It then reads /v/0a873c492/.meta data/p/family tree,
a Unix �le that contains a mapping from package version names within
the family to the UIDs of the system models to which they are bound. In
this case, let's suppose that the package version 3.bug fix.1 is translated

5 IMPLEMENTATION 18

to the (source) UID /v/0a873c492/M47.4ba.p.

3. This UID is rearranged to form /v/0a873c492/p/source/M47.4ba; this
�le is then opened. Since it is a system model, it begins with a DIRECTORY
clause [Levin and McJones], which is parsed and searched for the next
element of the path (test.c). The DIRECTORY associates a UID with the
name test.c, say /v/0a873c492/S47.4b0.p.

4. The repository implementation rearranges this UID into the Unix �le name
/v/0a873c492/p/source/S47.4b0. All arcs of the original path have been
consumed, so this name is returned to the Unix open implementation as
the �le to be accessed.

Two performance-related issues are immediately evident. First, to map the
package version name to a system model UID requires reading a family tree

�le (step 2). We eliminate most of the cost here by caching that mapping in
main memory. This is e�ective because the data structure is relatively small,
is typically used several times following the �rst use, and needs to be updated
only when a Checkout or Checkin occurs in the package family. Second, the
DIRECTORY clause of each system model along the path must be parsed before
it can be searched (step 3). An alternative would be to store the directory in
a non-textual form with better lookup performance. We found that the sim-
ple approach had adequate performance (roughly comparable with Unix name
lookup). We considered various potential improvements, such as storing a hash
table in an auxiliary �le with a name derived from the system model's UID, but
never found the need to implement them.

Reading derived �les works similarly, but is quite a bit simpler, since derived
�les do not have human-sensible names. A derived �le's UID is already quite
close to a Unix �le name. So, the repository implementation simply takes the
UID, say /v/0a873c492/D47.8e93410f.p, and rearranges it slightly to form
the Unix �le name /v/0a873c492/p/derived/D47.8e93410f, which it presents
to the Unix open system call.

Next, let's consider how new source �les are created. Creation is more
complicated than reading, because of Vesta's immutability requirement and the
atomic directory creation it implies. Fundamentally, new �les are created by
the Advance operation. Recall from section 2 that Advance copies an ordinary
Unix directory tree rooted in a working directory into a (private) repository.
Advance performs this replication \bottom up" (i.e., it processes subdirectories
before the directory that contains them) as follows:

1. Copy each �le in the subdirectory by obtaining a new UID and copying the
contents of the �le in the working directory into the �le in the repository
named by the UID. (The implementation actually copies the data into a
temporary �le with a related name, then renames the �le as implied by

5 IMPLEMENTATION 19

the UID. This makes �le creation atomic with respect to crashes.14)

2. For each copied �le, update the DIRECTORY portion of the system model
for the subdirectory to include the newly-created UID.

3. When all �les have been copied, copy the system model itself, obtaining a
UID for it in the same manner.

4. When the entire tree has been copied, update the family tree �le for
the package to bind the new human-sensible version to the UID of the
system model. This update is performed atomically by the same write-
then-rename approach that is used for individual source �les. Thus, from
the point of view of a user of the repository, the entire directory tree
associated with the new package version becomes available at the instant
that its version name is bound.

We should note that the updating of the family tree �le in step 4 represents
the commit point of the Advance operation. Any failure before then causes the
entire sequence of �le and directory copying to occur again when the Advance
operation is subsequently retried by the user. This simple approach makes
Advance robust, which is certainly what the user wants, but orphans any �les in
the repository that were created by the failed Advance. These �les are eventually
garbage-collected as a side-e�ect of weeding.

Creating derived �les is much simpler than creating source �les. Atomic
creation of individual derived �les is implemented using the write-then-rename
technique of step 1 above. No other atomicity requirements exist, since derived
�les are not directly visible to users.

5.3 The log

Unfortunately, not all changes to a repository can be implemented by an atomic
change to a family tree �le. More complex operations|Checkout and Check-
in|require atomic changes to multiple repositories, that is, to multiple directory
trees. In general, the Unix �le system provides no atomicity guarantees that
are useful in this case, so the repository implementation must provide its own.

We accomplish this with the familiar device of a write-ahead log, to which
the data required to perform an operation is �rst atomically appended, then
acted upon in a sequence of steps. This sequence has the property (sometimes
called log idempotence) that arbitrary pre�xes can be arbitrarily replayed with-
out altering the �nal result. Thus, if a crash occurs, the recovery procedure is
simple: process the tail of the log and redo the operation from the beginning.

14Here the repository implementation depends on the detailed semantics of the Unix rename

operation. Actually, Echo provides a particularly strong version of that operation, but ordi-
nary Unix rename semantics are su�cient to ensure the necessary atomicity.

5 IMPLEMENTATION 20

Some initial sequence of suboperations will have been completed previously, but
log idempotence ensures that redoing them is harmless.15

Building the implementation around a log has a second signi�cant bene�t
beyond simplying crash recovery|it also makes recovery from internal inconsis-
tencies simpler. For example, should a family tree �le become corrupt, it can
be rebuilt by scanning the log and processing each relevant entry. We found this
quite useful on more than one occasion. Also, because we could perform this re-
construction easily, we had the freedom to change our minds about the internal
representation of the family tree �le, and did so on more than one occasion.
In each case we simply installed a new version of the repository implementation
and told it to rebuild the family tree �le from the log.

This illustrates a principle that was exploited in several places in the repos-
itory implementation: record the truth in as simple a form as possible (the log)
and build derived structures that give optimized access to the data. If something
goes wrong with the optimized structure (corruption, or a bug in the repository
implementation), it is simply discarded and rebuilt from the truth. We even
went to the trouble of writing the log as a human-readable ASCII �le, so that
if the log becomes corrupt, the damage can be repaired with an ordinary text
editor. Happily, we never found ourselves in this predicament.

5.4 Source �le representation

Systems that store many versions of source �les customarily provide a mecha-
nism to store only the version-to-version changes (or \deltas") rather than com-
plete copies of each version. Experience with conventional source code control
systems [Tichy] [Rochkind] [LeBlang and Chase] has shown that the reduction
in storage can be quite substantial. We therefore augmented the simple source
storage scheme described in section 5.2 with what is generally called a \delta
engine".

Recall that in Vesta repositories derived �les may be deleted when space
becomes limited, but source �les persist forever. This suggests that the disk
space required to store them may become a concern, and some sort of space-
reduction scheme should be employed. Vesta performs line-oriented di�erencing
of source �les transparently. That is, the UID of a source �le may lead either
to a clear-text version directly or to di�erencing information. In the latter
case, the deltas are applied transparently as the client reads the �le. Vesta can
change between the two representations on the basis of available space, or access
frequency, or whatever, without the user being explicitly involved or even aware
of the representation choice.

The implementation of this facility is straightforward. When the �le associ-
ated with a UID is looked up, the repository implementation �rst tries to locate

15The individual suboperations are usually set-insertion or set-deletion, which makes log

idempotence straightforward to implement in this case.

5 IMPLEMENTATION 21

a clear-text version, as described in section 5.2. If none exists, a per-family
table is consulted, which gives the mapping between a UID and the �le used to
hold the deltas from which the clear-text version is constructed. The repository
implementation then reconstructs the clear-text version, using the same sort of
algorithm as a conventional delta engine [Tichy] does.

Converting from the clear-text form to the delta form is also straightfor-
ward. The deltas are computed and added to the appropriate �le (using atomic
replacement, as described earlier), then a new entry is added to the per-family
mapping table for the UID under consideration (again using atomic replace-
ment). The clear-text version can be deleted at the same time or subsequently,
depending upon available disk space.

5.5 Replication

The implementation of repository replication exploits the log mentioned in sec-
tion 5.3. There is a separate log for each repository replica. A daemon process
watches the tail of the log and notices new Checkout and Checkin entries. It
forwards these entries to other replicas where they are appended to the log if
they don't duplicate a pre-existing entry. Once in the log, they are acted upon
in the usual way (e.g., to update the family tree �les of the replica), just as if
they had been locally generated. In the case of Checkout, this simply involves
updating the family tree information to record the newly reserved name. For
Checkin, the source �les must be copied from another replica before the package
version name can be bound.

The �le transmission employs the same technique as was used in the Siphon
[Prusker and Wobber]. However, the Siphon must deal with the complexities
induced by an ordinary, unversioned, Unix �le system. Vesta's immutable, ver-
sioned �le system simpli�es the synchronization requirements of the repository
siphon. Vesta's siphon works much like the Advance operation, copying the
source tree bottom-up, exploiting the atomic creation of directories at each
level. Relevant derived �les may be moved as well, using the same lists that the

weeder uses (see section 4.1).
We must note that the replication machinery just described has not been

fully implemented. However, the log-processing machinery exists, and the imple-
mentation of the Siphon that replicates ordinary (non-Vesta) directories receives
extensive use daily. We haven't connected the two together yet; the delay results
from a lack of need rather than any technical impediment.

5.6 The underlying �le system

We've made repeated reference to the Unix �le system upon which the Vesta
repository implementation is layered. We designed the repository to depend
on as few properties of the Unix �le system as we could. However, when we

5 IMPLEMENTATION 22

actually implemented it, we took advantage of some attractive properties of our
locally-available �le system to improve the performance of key operations.

Speci�cally, we implemented the Vesta repository on top of the Echo �le sys-
tem [Mann et al.], which provides a Unix-compatible API with several impor-
tant additional facilities not found in ordinary Unix �le system implementations.
The ones we exploited were:

� the ability to control the order of write operations on a collection of �les
and directories, subject to certain limitations, and

� the ability to use advisory locks on �les and to receive a properly synchro-
nized noti�cation when a lock is broken.

Let's consider these in more detail.
The Echo �le system allows a client program to specify a partial ordering of

operations that modify �les and directories. The �le system guarantees that the
modi�cations occur according to the partial order. In the case of a crash, some
modi�cations may be lost, but the ones that actually occur reect the partial
order.

This property eliminates many of the force-to-disk (fsync) operations that
are otherwise required. For example, recall the bottom-up copying algorithm
of the Advance operation. With ordinary Unix semantics, Advance has two
choices, neither of which performs well: it can issue either an fsync operation
for each �le it copies, or a \ush all writes" (sync) operation before writing each
system model. Without these operations, a system model could be written to
disk before one or more of the �les it names in its DIRECTORY, and an inopportune
crash would leave a dangling reference. However, exploiting Echo semantics,
Advance simply registers the requirement that the modi�cation of the system
model follow the modi�cation of the �les it refers to. No fsync or sync is
needed.

Practicalities in the Echo implementation impose some limitations on the
orderings that are permitted. Echo provides a concept called a volume, which is
an abstraction of a disk connected to a �le server. (Actually, a volume may span
several physical disks, but all of them must be connected to a single �le server.)
Echo supports ordering guarantees only among �les on the same volume. Thus,
to support the \fsync-less" implementation of Advance, the Vesta repository
implementation puts all the source UIDs in a package family on a single volume,
as described in section 5.2.

Echo's convenient write-ordering semantics within a volume simplify the im-
plementation of a fast, reliable, recoverable Advance operation. However, other
operations, notably Checkout and Checkin, need to make atomic modi�cations
to data structures on multiple volumes. Speci�cally, these operations modify
two repositories at the same time, and a more elaborate mechanism is therefore
required to achieve atomicity.

5 IMPLEMENTATION 23

The mechanism has two parts. We've already seen one of them|the log.
By writing a log record at the start of the operation, then performing a log-
idempotent sequence of steps to modify the repository data structures, we ensure
that the repository modi�cation is recoverable. However, Checkout and Checkin
modify two repositories; hence two log records must be written, one to each
repository's log. To make these writes atomic, we bundle the two log records
into a single intentions record, which we use as follows:

1. Write the intentions record stably to a �le in the private repository.

2. Test that the proposed operation (Checkout or Checkin) is valid. If so,
proceed to step 3; otherwise, delete the intentions record and report an
error to the user.

3. Append the appropriate record to the public repository's log.

4. Append the appropriate record to the private repository's log.

5. Update the repository data structures as dictated by the log records.

6. Delete the intentions record.

The sequence of steps 2{6 possesses the log idempotence property described
in section 5.3, so if a crash occurs after step 1 and before the completion of
step 6, the intentions record will exist at recovery time and the log-idempotent
sequence will be replayed.

This sequence must be atomic with respect to other Checkout operations;
otherwise, nearly simultaneous, conicting Checkouts may not be properly de-
tected. To ensure atomicity, we rely on one additional property of Echo|
dependable �le locks. Like several Unix variants, Echo provides advisory locks,
which enable cooperating clients to synchronize their access to a shared �le.
Echo provides a strong guarantee: a write operation performed to a �le by the
holder of the �le's lock succeeds only if the lock remains held at the conclusion
of the operation. That is, if the lock holder loses its lock involuntarily|say, be-
cause of a lock server crash or because the lock server lost network connectivity
with the lock holder and declared it down|the lock holder simultaneously loses
access to the locked �le as well. Let's see how this property enables us to make
atomic the sequence of steps described above.

Before step 1 of the sequence above, the repository implementation acquires
a lock on the public repository log. The commit point is step 3, which appends
an entry to that log. If the lock is lost sooner, step 3 fails and the Checkout
operation is aborted. However, if step 3 succeeds, then a subsequent crash and
recovery can complete the Checkout operation from information in the intention
record, secure in the knowledge that the Checkout is still legitimate; that is,

6 RELATED WORK 24

nothing can have happened to violate the checks performed in step 2.16 Thus,
the lock provides atomicity of the crucial pair of steps, 2 and 3, which test
that the Checkout operation is legitimate and record a stable record of it in the
public repository log.

Echo's reliable �le locks provide a natural, e�cient mechanism that achieves
the necessary atomicity. By comparison, we were unable to �nd a way to achieve
equivalent synchronization at reasonable cost on an ordinary (NFS) �le system.
Neither of the advertised mechanisms|atomic �le creation and an auxiliary lock
server|o�ered su�ciently strong guarantees. It may be that these facilities, or
others, can be combined to produce the desired semantics, but it seems likely
that such a combination will be signi�cantly more cumbersome than Echo's
rather straightforward mechanism.

Echo's convenient locking semantics also permit Vesta servers to be state-

less, in the sense that no individual server is a site for synchronizing access to
persistent state. Each server caches data from repository �les in its own main
memory. To validate the cache data, a server locks the �le, veri�es that the
�le's last-written time matches the cached value of that time, extracts the de-
sired data from the main memory cache, and unlocks the �le. To modify the �le,
a server locks it, tests to ensure the modi�cation is consistent with the cached
data, updates the main-memory cache, writes it to the �le (using atomic replace-
ment or atomic append), and unlocks the �le. These simple protocols, together
with the Echo locking semantics, ensure that updates to a �le are atomic and
that cached data is a copy of data in the �le on disk.

To summarize: Because Echo makes guarantees stronger than normal for �le
locking and write-ordering, it is feasible to implement the Vesta repository as a
one-per-user server with no permanent local state. All the state is shared in the
�le system, and the locking machinery permits local caching for good perfor-
mance. The write-ordering eliminates the delay that is otherwise required for
synchronous force-write-to-disk operations. Thus, unshared (i.e., one-per-user)
servers can be built with correct synchronization and adequate performance. By
contrast, a shared (i.e., multi-user) server requires considerably more elaborate
administration to ensure adequate availability and performance.

6 Related work

We've now surveyed the facilities provided by the Vesta repository. Others
have adopted di�erent approaches for storing software con�guration manage-
ment data, sometimes also under the name \repository". In this section, we
briey compare Vesta's approach with some other notable ones.

16The details of recovery are beyond the scope of this paper. It relies on the assumption

that a private repository is not shared by multiple users, and that the intention record is
stored in the private repository and acted upon (i.e., recovered) before any subsequent action

on that repository.

6 RELATED WORK 25

6.1 File-oriented repositories

Repositories in this class build directly on the �le system abstraction, but em-
bellish it very little. Most of these systems evolved from simple �le-versioning
systems like SCCS and RCS, which also provide a checkout/checkin mechanism.
Examples include CVS II [Berliner], ODE II [Open Software Foundation], and
the packagetool [Prusker and Wobber]. These systems provide some mecha-
nisms for grouping related �les into con�gurations and may support parallel
development to a limited extent. However, none of them actually guarantee
immutability or provide any support for consistent removal of groups of derived
�les (weeding). Because these systems largely retain the �le system abstraction,
they are relatively easy to adopt, although sometimes the versioning mechanism
is introduced in a way that prevents unmodi�ed tools from using it.

6.2 Object-oriented databases

At the other extreme are the most ambitious repositories, which build on object-
oriented databases ([Boudier et al.], [DEC91]). These systems store typed ob-
jects, and have many object types that are specialized for software development.
Individual object types may or may not be versioned, and a mechanism is usu-
ally provided for grouping objects into con�gurations. These repositories may
provide a simple checkout/checkin paradigm on objects, or may leave this for
add-on tools to implement. They generally de�ne their own namingmechanism,
which is not integrated with the �le system, so existing tools must be modi�ed to
access repository objects. The concept of immutability and the source/derived
distinction have no special status; they are simply properties attached to certain
object types.

6.3 Hybrids

Between these two extremes lie systems that combine aspects of each. These
systems (such as DSEE [LeBlang and Chase], ClearCase [Atria Software], and
TeamNet [TeamOne]) begin with a �le-based approach and tend to retain the �le
naming regime of the platform under them. Sometimes the naming is introduced
seamlessly, so that unmodi�ed tools can access repository objects; in other cases,
special tools must be used. However, the systems add a database on top of the
�le system, in which each �le is represented by an object to which a collection
of additional attributes is attached. Search paths and/or special objects in
the database group �le-like objects into con�gurations, but these groupings are
rarely immutable. The database also is used to support checkout/checkin of �le
objects, but typically not con�gurations.

7 EVALUATION 26

6.4 Discussion

Where does Vesta �t into this taxonomy?
The Vesta repository is most similar in spirit to the �le-oriented repositories,

but provides crucial features|immutability and a clear separation of source and
derived �les|that the simpler repositories lack. Indeed, no other repositories,
not even the most elaborate ones, support these facilities well. As a result,
while these systems are all reasonably competent at storing �les and organizing
meta-data associated with them, they don't support incremental, reproducible
system construction on a large scale. Vesta does so because the repository was
explicitly designed to support the builder. In other systems, the builder is \just
another tool".

Of course, Vesta's repository can't do everything that the object-oriented
repositories can do. These repositories emphasize the organization of data and
meta-data in a type system intended to facilitate tool interoperation. They aim
to make it easy for tools to exchange (typed) data through the repository rather
than through private agreements. This is certainly an admirable goal. However,
these systems require a critical mass of tools that work with the repository, and,
at present, no commercially available system provides such a collection. Demon-
stration systems exist, but exhibit poor performance, and there are formidable
technical di�culties in delivering an OODB-based repository that supports the
development of large software systems with acceptable performance.

Although the Vesta repository doesn't include a database for storing meta-
data, as the hybrid repositories do, there is a natural way to couple such a
database with a Vesta repository. We view the Vesta repository as the ap-
propriate place to store the essential information that constitutes a software
system, while an auxiliary database is an attractive place to store relationships
derived from that essential core. Many tools that support the software develop-
ment process can extract information from the repository, process it, and enter
the results in the database. For example, the builder can record inter-module
dependency relationships in the database in a form that facilitates subsequent
queries. Since this information is mechanically derived from the contents of the
repository, it can be reconstructed if necessary, which simpli�es the reliability
demands on the database system.

7 Evaluation

The preceding sections illustrate the essential properties of the Vesta repository:

1. It integrates closely with the �le-system abstraction, making existing �le-
based tools able, without modi�cation, to access �les in Vesta repositories.

2. It implements additional properties|notably immutability, versioned di-
rectories, and a source/derived distinction|that support e�ective con�g-
uration management.

7 EVALUATION 27

3. It exhibits adequate performance.

4. It has a robust yet economical implementation.

5. It provides for administration that is only slightly more elaborate than
that of an ordinary �le system.

6. It scales to accommodate geographically dispersed organizations that
share data while shielding users from the unpleasant realities of wide-area
networking.

7. It permits organizations to introduce policies for repository use that �t
their software development methodologies and management practices.

We built a prototype implementation of Vesta and used it extensively for
over a year. Based on that experience, we can evaluate how several of these
properties have worked out in practice.

1. File-system integration. Embedding Vesta's notions of package families
and versions in a familiar and pervasive hierarchical naming scheme proved
extremely e�ective. Many existing facilities were immediately reused with-
out modi�cation. Our software developers depended upon a rich set of
tools for reading, parsing, and comparing �les (e.g., grep, awk, sed, diff),
which, because of Vesta's close integration with the �le system, could con-
tinue to be used without modi�cation. The users exploited this interop-
erability in two ways, both of which are important. First, they invoked
standard Unix tools from a Vesta system model as part of the construc-
tion or testing of a package, just as they would with a conventional builder
like make [Feldman]. Second, the users invoked these tools from the Unix
shell, applying them directly to �les in the repository. (Indeed, many of
the numbers reported later in this section were collected using such tools
to read �les stored in the repository.) Because of this close integration,
the Vesta system didn't have to provide analogues of these familiar tools,
and the users required no additional training to apply them to Vesta �les.

Although we understood how important it was for the Vesta repository
to integrate well with the �le system, we didn't always achieve ideal inte-
gration. A particular example is illustrative. Recall that package versions
are essentially tree-structured names whose components are delimited by
periods. Unix �le names are also tree-structured, but are delimited by
slashes. Smooth integration would suggest using the Unix approach uni-
formly, so that the package version /vesta/proj/p.3.bug fix.1 would
instead be written /vesta/proj/p/3/bug fix/1. We considered adopting
this approach, but it doesn't permit easy identi�cation of the repository,
package, and �le name components of a path, which we felt would cause
problems. So, we chose instead to use periods to separate components of

7 EVALUATION 28

a package name. As a consequence, we had to replicate some of the stan-
dard browsing facilities (like \wildcarding", the Unix find command, and
some forms of the Unix ls command) that would otherwise have come for
free and been better integrated.

2. Immutability and the source/derived distinction. When users can truly
depend on immutability and reproducible construction, they can a�ord to
adopt a exible development approach. The Vesta prototype system was
used by about 25 users on a daily basis, collectively evolving a code base
of about 1.4 million source lines. They used the repository's mechanisms
that support branched and parallel development quite extensively. In
particular:

� Branched development was common. Even with a relatively small
group of developers, the need to record variants from a \main line"
of development arises frequently; 23% (1372 of 5864) of the package
versions in the public repository are on branches.

� Parallel development (i.e., concurrent work on more than one version
within a single package family) was common. 19% of the package
families (93 of 486) exhibited parallel development. 16% of all devel-
opment sessions were conducted in parallel with at least one other
session in the same package family. Of these sessions, 72% involved
two or more distinct users; 28% involved a single user changing mul-
tiple versions within the package in parallel. So, about 1 of every 9
development sessions represented work within a package family car-
ried out in parallel with one or more other users.

The source/derived distinction de�nitely simpli�ed the users' view and
the administrators' job. This was particularly true for our environment, in
which a signi�cant number of apparent source �les|that is, �les presented
to a compiler|were actually derived �les (such as the output of an RPC
stub generator). Since Vesta knew for certain which �les were source and
which were not, it could ensure that only the derived �les were deleted
and that apparent sources were not needlessly retained.

Nevertheless, the source/derived distinction was sometimes inconvenient.
Occasionally, a user needs to look at the output of a preprocessor or com-
piler. This often happens because the translator has done something un-
expected, which may actually turn out to be a bug. In our environment,
the tools themselves were under active development, and bugs of this sort
did indeed occur. Vesta's strict source/derived dichotomy hides the de-
rived �les from the user, which complicates the task of tracking down
these problems. Although it is possible to extract derived �les from the
Vesta repository and look at them with conventional tools, the process is
clumsy. In the future we intend to make derived �les visible to the user
without compromising their clear distinction from source.

7 EVALUATION 29

3. Adequate performance. We devoted only modest e�ort to performance
tuning of the prototype implementation. In several cases we made an
implementation choice on the basis of simplicity, with the intention of do-
ing something more elaborate later if experience indicated a need. Usually
the simple solution was quite adequate. For example, the prototype imple-
mentation serialized all Checkout and Checkin operations, each of which
takes 30 seconds or less. The long-term average rate of these actions was
two per hour; even assuming they all occurred during a single 8-hour shift
(actually, only 65% occurred during the busiest shift), we would see only
one every ten minutes.

Actually, we didn't apply this principle|build only what is necessary
�rst|as ruthlessly as we should have. The source di�erencing machinery
(see section 5.4) seemed like a necessary facility to reduce the consumption
of secondary storage. (We based it on a related mechanism reported in
DSEE [LeBlang and Chase].) But though we built all the machinery to
perform the di�erencing and to change source �le representations dynami-
cally, we never found the need to turn it on. This is because the total space
required for source �les, even in clear-text form, was dwarfed by the total
amount of space required for a \working set" of derived �les. We found
that, in our public repositories, only about 20% of the disk space was
consumed by source �les. Applying aggressive di�erencing would perhaps
have cut this in half, giving a modest increase in the amount of available
disk space and thus in the interval between runs of the weeder. However,
the rate of source creation is roughly constant (programmers can type only
so fast), and the asymptotic size of source �les is also constant, while the
amount of disk space one can purchase for a �xed amount of money is
growing exponentially. We believe the cross-over point has been reached,
and that source-di�erencing machinery, while important for this sort of
application a decade ago, is no longer necessary.

Performance of the repository implementation on common operations,
such as opening a �le or listing a directory, is also a concern. This is es-
pecially true because the repository implements portions of the �le name
space, and users are dismayed if the performance of the �le system appears
to vary substantially in di�erent parts of the name space. Access to Vesta
�les incurred a small but noticeable penalty (variable, but around 20%) as
a result of going through the repository layer on top of the Echo �le sys-
tem. We did very little performance tuning of that layer in the prototype.
Moreover, Echo itself was a new and experimental system, and had not
received much performance tuning either. However, some analysis after
the fact suggests that the whole system could have been made to perform
competitively with standard �le servers. (Making the repository perform
well without Echo is somewhat more work|see below.)

7 EVALUATION 30

4. Robust and economical implementation. The repository implementation
in the Vesta prototype is approximately 30,000 lines of source code. It
required less than a person-year to build and has never lost a �le. Most of
the complexity lies in Checkout and Checkin, arranging that each of these
operations is implemented by a log-idempotent sequence of sub-operations.
Log-idempotence enables simple recovery, which in turn contributes to the
robustness of the system as seen by the user.

Having a log simpli�es disaster recovery as well. We used the log to recover
repository meta-data on several occasions. We also used it as a simple
and convenient way to change the internal representation of the meta-
data without having to write elaborate conversion code. If we weren't
already convinced of the advantages of a log-driven implementation before
we started, these positive experiences certainly eliminated any residual
doubts.

The implementation bene�ted from the special facilities of the Echo �le
system (see section 5.6), but sacri�ced portability as a consequence. To
build the Vesta repository on a standard, widely available �le system like
NFS requires more machinery, chiey to cope with the absence of orderly
locking and write-behind. Implementing that machinery without sacri�c-
ing performance presents some signi�cant challenges.

Overall, the implementation achieves adequate performance and excellent
reliability with rather low-tech machinery. It requires neither a DBMS nor
a transactional substrate, although it employs some related techniques
(like write-ahead logging). No elaborate persistent data structures are
used unless there is a simple mechanism (like log replay) for reconstructing
them in case of corruption. This approach requires a little extra imple-
mentation care but pays handsome dividends in system robustness.

We believe that robustness is of particular importance in a repository.
When a user is directly manipulating �les in a �le system, there is some
chance that she will be able to correct blunders by hand. However, the

repository adds a substantial layer of implementation complexity over the
basic �le system, in exchange for some more useful and powerful invariants.
The burden of restoring those invariants by hand when the implementation
fails is simply too great, therefore, a robust implementation is essential.

5. Modest administration demands. As noted in section 4, administering the
Vesta repository is much like administering a normal �le system, with the
additional need to perform weeding. Over about 14 months, the weeder
was run 33 times (roughly bi-weekly) to delete unnecessary derived �les,
recovering an average of about 1.1GB of disk space each time. The total
disk space available to the repository during this time was about 9GB.
While the weeder itself wasn't particularly speedy (taking 6{13 hours on
each run), the time spent by the administrator to set up the work was

7 EVALUATION 31

perhaps a couple of hours each time, or about 2% of the administrator's
time. Note that these numbers reect the administrative cost for the
public repository. Private repositories were largely weeded by a mostly
automatic procedure; the setup time required by their administrators was
negligible.

However, we did have problems with the weeder, despite the rather small
burden it imposed on the administrator. In the prototype, we didn't
pay su�cient attention to the design of the data structures shared by
the weeder and the evaluator. As a result, the weeder didn't really have
enough information to do its job properly. Some heuristics enabled us
to get around the worst of the problems, but some di�culties remained,
showing up when the evaluator thought a particular derived �le existed
even though it had actually been weeded. These problems occurred rather
unpredictably, and recovery required assistance from a Vesta implementor.
This was probably the most serious design error in the Vesta prototype.
To correct it, we have substantially redesigned the shared data structures,
but have not yet implemented the result.

Two properties of the Vesta design were not fully realized in the prototype
system, so our evaluation of them is necessarily incomplete.

6. Geographical distribution. The Vesta prototype system did not fully im-
plement replication across a wide area. However, the design for wide area
replication builds on the highly successful Siphon [Prusker and Wobber].
We feel con�dent that when the siphon approach is coupled with Vesta's
immutability guarantees, the result will be a system that is even more
useful.

7. Flexible policies. We implemented only a few rather simplistic policies
in the Vesta prototype system. Access control and limitations on certain
forms of checkout were mentioned in section 3. We have some additional
experience using the mechanisms intended to support exible policy, most

notably the log (section 3.2). We haven't yet encountered problems in this
area, but more experience is needed before their value can be reasonably
assessed.

In summary, our experience indicates that a simple, �le-system-based repos-
itory with additional semantics and support keyed to con�guration management
provides attractive functionality and implementation economy. The prototype
implementation on which our experience is based proved quite serviceable for a
non-trivial workload. Its de�ciencies didn't seriously detract from its usability,
and its functionality does not appear to be available either in other �le-based
repositories or in more elaborate database-oriented ones.

8 ACKNOWLEDGEMENTS 32

8 Acknowledgements

The authors are particularly grateful to Butler Lampson and Mark Brown,
whose insights and experience greatly improved the Vesta repository design
and implementation. The members of the Echo team, especially Tim Mann and
Garret Swart, helped us to integrate the repository with the Echo �le system
and provided valuable advice on proper use of the Echo facilities. Bob Ayers
built an early Vesta prototype that exposed several aws in our early repository
designs.

REFERENCES 33

References

[Atria Software] Atria Software, Inc. ClearCase Concepts Manual. 1992.

[Berliner] Brian Berliner. CVS II: Parallelizing Software Development. Prisma,
Inc., Colorado Springs, CO. 1992.

[Boudier et al.] Gerald Boudier, Ferdinando Gallo, Regis Minot, and Ian M.
Thomas. \An Overview of PCTE and PCTE+." Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Soft-

ware Development Environments. November 1988.

[DEC91] Digital Equipment Corporation, CDD/Repository Architecture Man-

ual. Order #AA-PJ1JA-TE. Maynard, MA., 1991.

[DEC89] Digital Equipment Corporation, VMS User's Manual, Order #AA-
LA98B-TE. Maynard, MA., 1989.

[Feldman] S. I. Feldman, \Make|A Program for Maintaining Computer Pro-
grams", Software|Practice and Experience. 9(4), April 1979.

[Hanna and Levin] Christine B. Hanna and Roy Levin. \The Vesta Language
for Con�guration Management." Research Report 107, Digital Equipment
Corporation Systems Research Center, June 1993.

[LeBlang and Chase] David B. LeBlang and Robert P. Chase, Jr. Computer-
aided software engineering in a distributed workstation environment. SIG-
PLAN Notices 19, 5, May 1984.

[Levin and McJones] Roy Levin and Paul McJones. \The Vesta Approach to
Precise Con�guration of Large Software Systems." Research Report 105,
Digital Equipment Corporation Systems Research Center, June 1993.

[Mann et al.] Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Jerian,
and Garret Swart. \A Coherent Distributed File Cache with Directory
Write-behind." Research Report 103, Digital Equipment Corporation Sys-
tems Research Center, 1993.

[Open Software Foundation] Open Software Foundation, Inc. ODE-II Devel-

oper's User Guide. Version 1.0, June 1991.

[Prusker and Wobber] Francis J. Prusker and Edward P. Wobber. \The Siphon:
Managing Distant Replicated Repositories." Research Report 7, Digital
Equipment Corporation Paris Research Laboratory, May 1991.

[Rochkind] Marc J. Rochkind. \The Source Code Control System." IEEE

Transactions on Software Engineering. SE-1, Issue 4, December 1975.

REFERENCES 34

[Tichy] Walter F. Tichy. \RCS|A system for version control." Software|

Practice and Experience, 15,7, (July 1985).

[TeamOne] TeamOne Systems Inc. TeamNet Quick Start Tutorial. Sunnyvale,
CA, 1993.

