
April 28, 1994

SRC
Research

Report 123

Inside Hector: The Systems View

Loretta Guarino Reid and James R. Meehan

d i g i t a l
Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the

art in computer systems. From our establishment in 1984, we have performed basic
and applied research to support Digital's business objectives. Our current work

includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and

selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting systems

are too complex to be evaluated solely in the abstract; extended use allows us to
investigate their properties in depth. This experience is useful in the short term in

re�ning our designs, and invaluable in the long term in advancing our knowledge.
Most of the major advances in information systems have come through this strategy,
including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical avor. Some of it is in

established �elds of theoretical computer science, such as the analysis of algorithms,
computational geometry, and logics of programming. Other work explores new

ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-

standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with

whom we have common interests, and we encourage collaboration with university
researchers.

Robert W. Taylor, Director

Inside Hector: The Systems View

Loretta Guarino Reid and James R. Meehan

April 28, 1994

i

A�liations

Loretta Guarino Reid is now at MicroUnity Systems Engineering Inc.
(guarino@MicroUnity.com). James Meehan is now at Adobe Systems, Inc.

(jmeehan@mv.us.adobe.com). Both authors worked at the Digital Equipment
Corporation Systems Research Center during the course of the Hector project,

October 1990{March 1993.

cDigital Equipment Corporation 1994
This work may not be copied or reproduced in whole or in part for any commercial

purpose. Permission to copy in whole or in part without payment of fee is granted
for nonpro�t educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission of

the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the

work; and all applicable portions of the copyright notice. Copying, reproducing, or
republishing for any other purpose shall require a license with payment of fee to

the Systems Research Center. All rights reserved.

ii

Abstract

Over a period of two and a half years, a team from the Systems Research Center

designed, built, and revised a set of software tools for the dictionary division of
Oxford University Press. Many aspects of this project were novel, including the
approach to lexicography, the software environment, the problems of scale, and the

demands of high performance and high reliability. In this paper, two members of
the team describe some of the systems problems they faced in building these tools,

and the solutions they devised to solve them.

iii

iv

Contents

1 Introduction 1

1.1 The Goal of the Project : 1

1.2 Modula-3 : 2

1.3 Terminology : 3

1.4 Required features : 3

1.5 Overview : 4

2 Searching the Corpus 4

2.1 Parsing the Corpus : 5

2.2 Indexing : 6

2.2.1 The Index Server : 6

2.2.2 The Corpus Position Server : : : : : : : : : : : : : : : : : : : 8

2.3 Displaying Concordances : 8

2.4 Sorting the Concordances : 9

3 More Sophisticated Searches 11

3.1 Sets of Words : 11

3.2 Wordclass Constraints : 11

3.3 Syntactic Information : 12

3.4 Collocates : 13

3.5 Lexical Sets : 15

4 Connecting Words and De�nitions 16

4.1 Naming Senses : 16

4.2 Sense-Tagging : 18

4.3 The Sense Server : 19

4.4 Searching and Sorting on Senses : 20

5 Creating Dictionary Entries 21

5.1 The Structure of a Dictionary Entry : : : : : : : : : : : : : : : : : : 21

5.2 Managing Entry Files : 22

5.3 Presenting Entries E�ectively : 23

5.4 Reordering and Renumbering : 25

5.5 Communication between Ajax and Argus : : : : : : : : : : : : : : : 26

5.6 Monitoring Active Tags : 28

6 Conclusion 29

v

A Evaluating the Results 31

A.1 Better dictionary de�nitions : 31
A.2 Links between the corpus and the senses : : : : : : : : : : : : : : : : 31

A.3 Distribution of senses in the corpus : : : : : : : : : : : : : : : : : : : 32
A.4 The predictive value of the corpus links : : : : : : : : : : : : : : : : 33

A.5 Evaluating automatic wordclass assignments : : : : : : : : : : : : : : 35
A.6 Evaluation of corpus clean-up : 36

B The Adam wordclass tagger 37

B.1 Optimizing the core : 37

B.2 Tags and Tokens : 37
B.3 Apostrophes: contractions and genitives : : : : : : : : : : : : : : : : 38

B.4 Abbreviations : 39
B.5 Sentence boundaries : 39

B.6 Unknown words : 40
B.7 Accuracy : 41

References 43

vi

1 Introduction

This paper describes a software project that operated within an unusual set of con-

straints. The software was built in a research laboratory and written in a language
recently developed there, but it had to be reliable as soon as it went into use. The

speci�cations constantly changed, yet we, the implementors, had to work within
fairly strict time limits and ensure that program execution was fast at all times.

These constraints resulted in part from having users who were depending on the

software for completing their own work within a speci�ed time. In part, the nature
of that work imposed its own limitations on us. We describe here the approaches
we took to working within this unusual environment, and the compromises we had

to make.

The project, called Hector, was a joint venture between the Systems Research
Center of the Digital Equipment Corporation (SRC) and Oxford University Press

(OUP). Hector was a feasibility study in computer-assisted corpus lexicography: its
purpose was to create a database of information about words and their senses, based

on evidence from a large corpus of English text drawn from a variety of sources.
Indeed, each item in this database was to be directly linked to the corpus evidence

on which it was based. The lexicographers from Oxford decided what information
to put into the database; the computer scientists from SRC created the software

tools that made it possible for the lexicographers to search the corpus, write the
database entries, and create the links between them.

A mid-project report on Hector, published in Glassman et al.[1], describes these

software tools. That report and an accompanying videotape were produced for an
audience of lexicographers; they give the users' view of the Hector system. This

report is intended for software engineers; it describes the implementors' view.

1.1 The Goal of the Project

From SRC's standpoint, the goal of the project was to explore the systems challenges

in building software tools to enable lexicographers both to compile dictionaries and
to extend their research in corpus lexicography.

SRC and OUP had agreed that the lexicographers would spend a year in Palo

Alto, using the tools to write dictionary entries and to create the links from those
entries to the corpus examples. At the end of the year, the lexicographers would

return to Oxford and evaluate the project. As a result, we were under considerable

1

time pressure. The tools needed to be ready when the lexicographers arrived, and

they needed to continue to work at all times, so that the lexicographers could get a
full year's work done to form the basis for the evaluation.

The most important challenge that we faced in building Hector was to keep the
design exible without completely sacri�cing performance. Since we were exploring
issues in the use of computers in lexicography, we expected the details of the speci-

�cation to change over the course of the project. As the lexicographers tested their
ideas about what would prove useful and why, they requested changes in the tools.

Performance was critical at all times. If the tools were too slow, the lexicog-
raphers would not use them. The tools also had to be robust. Lexicography is

very labor-intensive; it was not acceptable to lose a lexicographer's work because of
program errors or system problems.

1.2 Modula-3

Most of the Hector software was written in Modula-3[4], a strongly typed object-
oriented programming language developed at SRC. We describe here briey the

features of the language that helped us work with the constraints presented in the
previous section.

Modula-3's interfaces and strong type-checking made it much easier to make
systematic design changes. We could feel con�dent that the compiler would ag all
places that were a�ected by such changes. This feature was particularly important

for Hector because the speci�cations were constantly changing. In addition, Modula-
3's distinction between interfaces and implementations served us well when several

of us were working on di�erent parts of the same program.

Some features of Modula-3 made it much easier to design the structure of the

Hector software. Objects and subtypes provided referential transparency and en-
capsulation, and were used extensively, especially in the graphics code. We made

heavy use of threads, which are Modula-3's built-in support for concurrent processes.
In addition, Modula-3's garbage collection relieved us of the design complexities of
storage management.

The Modula-3 environment was still maturing at the start of the Hector project;
there were no existing large applications in the language. We were early customers

of many of the library and runtime facilities. As a result, we uncovered problems
in threads, the scheduler, the garbage collector, and other parts of the system that

a�ect all clients. Some Modula-3 facilities were rewritten several times to accommo-
date the size and speed requirements of Hector. However, the bene�ts provided by

the Modula-3 language and environment o�set these disadvantages for the project.

2

1.3 Terminology

In the rest of this report, we use some terminology that was speci�c to the Hector

project. We present it here.

A target word is the word that is the object of a search of the on-line corpus.

A word can have one or more senses. For instance, the word \plaything" has
one sense in which it is an object that is used as a toy. It also has a second sense, in
which the word is used �guratively to describe a person who is the victim of another

person or force. (He was the plaything of the gods.)

Each sense includes a de�nition and some grammatical information.

An entry is the collection of all the senses associated with a word, with some
indication of the relationships between the senses. For instance, within an entry, all

the noun senses might be grouped together, or the noun and verb senses of the same
meaning might be grouped together, or the senses might be ordered by frequency.

When a lexicographer searches the on-line corpus for a certain word or pat-

tern, the resulting list of all the occurrences of that word in its context is called a
concordance. Each single example of the word in its context is called a citation.

Tagging a word in the corpus means linking it with some information in the

database; in this paper, unless otherwise indicated, tagging will mean creating a
link between a word in the corpus and a sense in an entry.

A homograph is a word of the same spelling as another but which has a di�erent
meaning. For example, \stock" in a �nancial context is a security; in a botanical

context, a type of ower.

A wordclass is a part of speech.

Finally, a collocate is a word that typically occurs near another word. For ex-
ample, \ham" is often collocated with \eggs", and \�sh" with \chips".

1.4 Required features

From the outset of the project, the lexicographers required the software to provide
certain basic functionality:

1. They wanted to test hypotheses about word senses by creating lexical search

patterns and having the computer quickly �nd all the matching examples in the
corpus. The patterns might include, not only a target word near other selected

words, but also information about wordclass and membership in certain word
lists we call lexical sets, described in section 3.5.

2. They needed to record their insights about word senses in a dictionary entry; as

they understood more clearly the boundaries between word senses, they needed

3

to revise the structure of the entry, splitting one sense into two, combining

several senses into a single broader sense, or making one sense a subsense of
another.

3. They had to tag words in the corpus with their dictionary senses. The tools for
searching the corpus and for composing the dictionary entry would therefore

have to cooperate with each other.

1.5 Overview

This report explains the way in which we structured the software to provide the
required functionality. We focus �rst on Argus, the corpus search tool, and second

on Ajax, the dictionary entry editor. We examine, in particular, how the design of
Argus and Ajax was a�ected by the following requirements: changing speci�cations,

good performance, and robustness. Section 2 describes how Argus searched the
corpus for examples of a word. In section 3 we look at how this feature was extended

to permit more sophisticated searches. Section 4 shows how we attached senses to
words in the corpus, and �nally section 5 describes the tools for editing dictionary

entries.

In appendix A, we evaluate how well the system described in the body of the

report enabled us to meet the goals set out in the Hector overview [1]. We are not
lexicographers, so we have not set our results in the context of related work by the

lexicography research community.

Appendix B describes the details of a wordclass tagger for raw corpus text.

2 Searching the Corpus

The Oxford Hector Pilot Corpus contained 20 million words of running English text,
with SGML[6] markings to indicate special characters and certain general classes of
text, such as headings, signatures, and captions.

For various practical reasons, we decided that, after some initial cleanup work

such as removing large duplicate sections, we would not change the text of the corpus
during the course of the project, nor would we allow the lexicographers to edit the

existing text.

As a consequence of this decision, we were able to simplify the design of the search

tool. In order to search such a large corpus quickly for the patterns requested by
the lexicographers, it was clear that we needed a full-text index. Since the corpus

wasn't going to change, we simply used the index of each word in the corpus as

4

a reliable way to identify it; word number 3,467,122 would not change during the

project.

This decision also meant that we could a�ord to invest considerable time in

precomputing lexical and syntactic information, which we added to the static index
as well.

The tool that we built to search the text, and to view the corpus, was called

Argus. In its simplest form, Argus resembled the Unix utility grep. However, we
needed much better performance than grep provides. We also needed richer func-

tionality, such as being able to search for more than one word at a time, and allowing
various other constraints on the search.

The lexicographers needed to search the corpus and quickly extract all instances
of the target word they were studying. They also needed to see the target words

in a KWIC concordance. For example, the concordance for the word \stock" might
include these citations:

at while Dai Ichi would change its stock portfolio this year, there wo

ought 500 April 2,150 puts. In the stock options, BP was the busiest,

future." The 250,000 tonne buffer stock, which was bought in a vain a

ack enough to put it in order, and stock and equip it. <hdl> Putting

laborious, to carry water or move stock to it. When these top-priorit

The lexicographers also needed to sort a concordance in di�erent ways. For

instance, they might want to sort it by the words to the right of the target word, to
uncover patterns of use.

The following subsections describe the parts of Argus and the supporting pro-
grams that locate and display concordances of a single word.

2.1 Parsing the Corpus

In order to search for words in the corpus, we needed to identify them by determining

their boundaries. For instance, when is punctuation part of a word? In the sentence
\I'd've drunk another pint", is \I'd've" one word or three?

To perform this lexical analysis, we used a parser from Houghton Mi�in. We ran
the parser over each document in the corpus and stored the results in disk �les, one

for each corpus �le. (We stored the corpus not as one large �le, but as 276 separate
�les. This made the corpus slightly easier to manage early in the project when we

were still modifying the text and the analysis tools.) We numbered all the words
in the corpus sequentially from 1 to 20 million, across �le boundaries, producing a

unique index for each word.

5

The parser also performed syntactic analysis. It produced a set of four binary

�les containing wordclass tags, sentence boundaries, clause boundaries, and preposi-
tional phrases. Each �le contained a set of records; for example, a wordclass record

contained the starting position of the word, its length, its wordclass tag, and its
baseform. The Adam wordclass tagger, a separate program, produced a �fth �le for

each document.

We could not keep all 1,380 of these data �les open all the time. Consequently,

Argus spent a lot of time opening and closing �les. Caching �le handles and the
static data from the �les helped somewhat, but we believe that this disk activity

reduced performance noticeably.

2.2 Indexing

The basic operation of searching for a word needed to be very fast. We implemented

it with a precomputed index that mapped words to their positions in the corpus.
Most of the search operations were implemented most naturally in terms of word

indexes. We found that it simpli�ed the structure of the system to split the search
code into two parts. One computed results in terms of word indexes; the other

translated word indexes into a �le name and the character position in that �le.

For performance reasons, we wanted only a single copy of the search code exe-

cuting: the index was quite large. However, we needed to provide service to several
users simultaneously. The index was therefore managed by a pair of servers, shared

by all the users. One server, the Index Server, took search requests and returned
a list of word indexes. The other server, the Corpus Position Server, took requests

containing word indexes, and returned lists containing �lenames and positions within
those �les. Each server had a front end that handled multiple TCP connections and
controlled access to the database managers, which were single-threaded programs.

Both servers were designed and implemented by our colleague Mike Burrows.

2.2.1 The Index Server

The Index Server implemented the search facility, returning the list of words that
satis�ed a search request. We discuss two aspects of the Index Server: the scheme

for compact data representation used for the index �le, and the implementation of
the search operations.

The central index �le was a sequence of alphabetically sorted records, each con-

taining a word and the list of word indexes where the word occurred.To save space,

6

both the words and the indexes were encoded. Each word was represented by the

number of leading characters it shared with its predecessor in the �le, and the text
of the unshared su�x.

For example, suppose a document contained only the four words \propel", \pro-
peller", \propellers", and \propels". Instead of storing all 32 characters, the index

would contain only 11 characters plus 4 single-byte numbers, arranged like this:

word count su�x

propel 0 propel

propeller 6 ler

propellers 9 s

propels 6 s

Since the list of word indexes was in increasing order, it was stored as a list of

consecutive di�erences, so the list 100150, 100170, 100185, 100202 would be stored
as 100150, 20, 15, 17. Each individual number was stored as a sequence of 7-bit

digits; the 8th (high-order) bit indicated the end of the sequence.

We kept sub-indexes to help locate a word and its list of word-indexes quickly.
A sub-index �le contained one entry for every 4,000 bytes of data in the index �le.
Each entry in the sub-index consisted of a byte-o�set in the central �le and the word

and word index at that o�set. Binary search in the sub-index yielded a location close
to a word/location pair, from which the index �le was searched using the word and

word-index information from the sub-index entry.

This compression scheme saved us a factor of three in space; each index entry
in the Hector databases (words, wordclasses, and so on) took 1.33 bytes on average.
If the data had not been compressed, each pair would have taken more than 4

bytes per entry, since the position values didn't �t in 3 bytes. Accessing the disk
�le containing the index contributed substantially to the time needed to query the

corpus, so the compression sped up queries in addition to saving disk space.

Even with this compression scheme, the Hector index �le required about 130
megabytes of storage.

Although the index representation was compact, it still permitted the search
operations to be executed quite quickly. To �nd all the examples of a word, the

Index Server located the record for that word using binary search. Then it generated
all the locations where the word occurred by unpacking the list of indexes stored

with the word.

7

We discuss the ways in which the Index Server implemented more complicated

searches in section 3.

2.2.2 The Corpus Position Server

The function of the Corpus Position Server was straightforward. However, its im-

plementation was not.

Given the index of a word, the Corpus Position Server returned the name of
the document in which that word occurred, and its starting position within that

document. A simple implementation might be an array that mapped a word index
to a document name and a character position, but we exploited characteristics of

the data (e.g., most words are relatively short) to store it more compactly.

We used three arrays: one contained the character position of every thousandth

word; one recorded the length of all the other words; and one contained the character
position of the start of each document. We used binary search to search the �rst
array for the nearest position that was not past the target, then added up the lengths

in the second array between that position and the target position. This gave us a
map from word index to character index. Then we used the third array to translate

from the absolute character index to a location within a particular document �le.

The �rst array, the one we searched with binary search, contained an entry with

the index and position of every word in the corpus that was longer than 15 characters
(i.e., whose length could not be represented in 4 bits), as well as an entry for every
thousandth word in the corpus, regardless of length.

The second array, used to home in on the target, contained 4-bit numbers repre-
senting the length of each of the 20 million words. (If the word actually occurred in

the �rst array, it had a dummy entry in the second array because we never needed
to look at the entry in that array.)

The three arrays together �t in less than 10 megabytes. This was small enough

that the server kept them entirely in main memory. This permitted fast access to
the data, and hence a rapid translation from word index to �le name and character

position.

2.3 Displaying Concordances

Having described the support tools for performing searches on the corpus, we now
explain how we implemented the code that took a request for a target word from

the lexicographer and displayed the resulting concordance.

The early versions of Argus merely applied the operations in a straightforward,

linear way: �rst a call to the Index Server to get a list of word indexes, then a

8

call to the Corpus Position Server, and �nally a call to the display routine for each

concordance line. The display routine extracted a 96-character text segment from
the corpus �le, centered around the target word, and displayed it on the screen.

We felt that since the corpus search code was fast, this approach would perform

adequately. However, it proved to be too slow: the lexicographers were spending a
lot of time waiting for results. So was Argus. After Argus had sent o� a request to
one of the three servers, it simply waited for the result before taking the next step.

This wasn't necessary; the servers were designed to run independently, yet Argus
was using only one of them at a time.

We therefore decided to exploit Modula-3's support for multi-threaded programs

and improve the performance by pipelining the information owing to and from the
servers. Argus was modi�ed to maintain a pair of consumer/producer queues for

each of the servers, and three background threads managed the communication.

What went into the pipeline was a user request, and what came out was a set of
matches that satis�ed that request.

Apart from coordinating the various processes, the only hard part of implement-
ing the pipeline was handling interrupts cleanly. After seeing a few lines of the

concordance, the lexicographers might realize that their query was incomplete, in-
correct, or likely to produce vast quantities of data, so they would cancel the search.

When they did so, it was important to clear the pipeline completely.

This pipeline greatly reduced the time it took for the lexicographers to see the
results of a search. It permanently altered the way in which they used the system,
giving new support to the adage that performance is functionality. With the new

implementation, the lexicographers felt free to make a series of successively more re-
�ned searches, rather than doing the most general possible search and then scrolling

through the results.

2.4 Sorting the Concordances

It was important for the lexicographers to call up the concordance for a word quickly;

it was also important that they be able to sort it quickly in di�erent ways to gain
insights into the sense divisions of words. Sorting by the words to the right of the

target word, for example, was helpful for distinguishing the various senses of phrasal
verbs: run along, run in, run into, run o�, run over a bicycle, run over your lines,

run over an account. Sorting by the words to the left helped distinguish senses of
nouns: a �rst edition, the morning edition, the paperback edition, a smaller edition

(of). It was also useful to sort the examples by the order of the documents within
the corpus, which was organized roughly by genre: for example, journalism, �ction,

correspondence. Finally, the lexicographers needed to sort a concordance by the

9

order of the senses that had already been assigned to the target words.

In order for us to sort the citation in all these di�erent ways, our internal rep-
resentation included not only the text of the citation, but also its location in the

corpus, a description of the document in which it was found, a list of all the indi-
vidual words in the citation, and information to facilitate its display on the screen.

The words themselves were similarly represented by text, position, sense-tag, and
so on.

The obvious advantage to this scheme was that the text of the target word and

its document order were already stored in memory by the time the concordance was
displayed, so it was easy to sort by those criteria.

The obvious disadvantage was that citations were fairly heavyweight, requiring
much more memory than the text alone. However, we observed that the lexicog-

raphers frequently repeated a search with slightly di�erent parameters, so that the
same citations would often be retrieved. Therefore we used a simple cache for the

target word objects rather than re-creating them every time. Initially, there was no
mechanism for emptying the cache; we simply relied on virtual memory to hold it

all.
Normally this worked out satisfactorily; the users would usually quit the pro-

gram before the workstation's memory manager was overloaded. But this did cause

problems when the system was used to generate a wide variety of examples of dif-
ferent words (for a paper that one of the lexicographers was writing, not something

that occurred in the day-to-day work of writing senses). We considered various au-
tomatic memory management schemes, but each had its drawbacks, so we decided

eventually to provide a simple button labeled \Empty the Cache" and leave the
decision up to the user, who was, after all, in the best position to know when the

contents of the cache were no longer useful.
There was one other interesting design issue related to sorting. Sorting by the

words to the right or left of the target word required access to the text of those
words. (We could easily identify them by calculating their word indexes relative to
the target word.)

The problem was deciding when to construct the heavyweight objects represent-
ing all the surrounding words in the citation. If we had deferred the decision until we

were asked to sort the citations, there would have been a long delay while we waited
for the database server. Instead, we constructed them in the process of displaying

the citation line; the request for the surrounding words was part of the fourth stage
of the pipeline. In hindsight, it should have been an independent, �fth stage of the

pipeline. Although the 4-stage pipeline was fast enough for the lexicographers, a
�fth stage would have given us even greater speed, since the citation could then be

displayed before this information was retrieved.

10

3 More Sophisticated Searches

In addition to being able to search for a single word in the corpus, Argus also pro-
vided a variety of more sophisticated searching techniques. The lexicographers could

search for any of several alternative words (\stock" or \investment" or \bond"), or
constrain the search to a word belonging to one or more wordclasses (\stock" used

as a noun or as an adjective). The word could also be constrained to occur in the
presence of a collocate, which could have its own constraints. In this section, we

describe the ways in which the basic search mechanisms were extended to provide
this exibility.

3.1 Sets of Words

The most common use of alternatives was in searching for a word along with its
inections, case variations, and spelling variations. The lexicographers considered

these to be di�erent examples of the same word. For example, the concordance with
case variations and inections of \stock" contained these citations:

olls like oats to make a palatable stock feed. Rye flour does not rise

kind of change in the rules of the Stock Exchange," said Charles, `th

UBLISHER WITH A SCHEDULE OF UNSOLD STOCK AT THE DUE DATE OF PAYMENT. T

ring holidays here. There's a well stocked supermarket, shops and a ra

lies may be restricted to conserve stocks. If you need a new light bul

ty people. We are one of the great stocks of Europe. We are the people

We provided code to generate the inections and variations automatically. Our
implementation was largely brute-force; we wrote some simple inection routines,

a small set of exceptions to those routines, and a table of spelling variations. This
implementation gave us a 90% solution, but occasionally generated spurious inected

forms, like \importanter" and \importantest". However, it didn't cost the Index
Server any signi�cant time to check for a word that didn't occur in the corpus, and

the lexicographers found it quite useful to have the program generate inections so
easily.

3.2 Wordclass Constraints

The lexicographers wanted to specify more than just literal words (text) in their
search patterns; they wanted to �nd words that had certain properties as well.

For example, as described in [1], we used two programs, Adam and the Houghton

Mi�in parser, to generate wordclass tags for all the words in the corpus, drawn from

11

a set of over 300 wordclasses. This information was stored in the database. The

lexicographers identi�ed 20 general wordclasses.1 Argus reduced the 300 to these
20, and we made them available for the lexicographers to use as constraints in the

search pattern.

The Index Server built indexes for the wordclasses by treating the names of
the wordclasses as special \words". (We added an initial character, \@", to each

name, so that is was not possible to confuse a wordclass name with a word in the
corpus.) Then we created an index for these wordclass names, parallel to the index

of the words in the corpus. For example, this index made it appear as if the word
\@NOUN" occurred wherever the corpus contained a word that had been marked
as a noun. The procedure for �nding a wordclass was therefore the same as the

procedure for �nding a word.

To �nd all the occurrences of \stock" used as a noun, the Index Server could

have generated the list of all the positions where the word \stock" occurred, and
the (very, very lengthy) list of all the positions where a noun occurred, and then
taken their intersection. In practice, it achieved the same result, without actually

generating the long intermediate lists, by traversing the indexes in parallel; the
indexes were sorted in ascending order. The sub-index scheme described in section

2.2.1 let the Index Server quickly skip over large sections of the index without even
reading it from the disk.

3.3 Syntactic Information

The Houghton Mi�in Parser also generated syntactic information for sentences. For
each word in the corpus, it produced the baseform of the word. It computed the

position and length of each sentence, prepositional phrase, clause, subject, and pred-
icate. For prepositional phrases, the parser also produced a code for the preposition

that headed the phrase. This information was stored in much the same way as the
wordclass information.

The lexicographer could see this data on the screen by selecting a citation from

the concordance and asking for a detailed description. We hoped this data would also
be useful in restricting a search by syntax, �nding only those citations, for example,

in which the word \stock" occurs as the subject of a clause. Unfortunately, the
syntactic analysis was often unreliable, and since it didn't include all the information
that the lexicographers wanted, we abandoned this feature of searching.

1The set included noun, proper noun, verb, adjective, adverb, degree adverb, preposition, per-

sonal pronoun, reexive pronoun, determiner, number, ordinal, modal, auxiliary, possessive, in�ni-

tive marker, negative, conjunction, and \other". There was some overlap in the small set|\myself"

counted as both a personal pronoun and as a reexive pronoun.

12

3.4 Collocates

The lexicographers often needed to search for target words that occurred in the
presence of one or more collocates. To do this, the lexicographer speci�ed the

distance between that word and the desired collocate, either exactly or within a
certain range. So for instance, the lexicographer could ask for all occurrences of the

target word \stock" where \exchange" is within three words to the right.

s securities market, Francis Yuen, stock exchange chief executive, say

1987 stock market crash, when the stock and futures exchanges closed

ght former senior officials of the stock exchange, including former ch

The lexicographer could use the same search constraints on a collocate as on a
target word: wordclass, inections, etc. In fact, the lexicographer could specify that

the collocate be any word that satis�ed a particular set of constraints.2 For instance,
the lexicographer could ask for all occurrences of \stock" followed immediately by

any preposition:

derwriters worldwide began to take stock of the disaster, estimates we

g authorities. At some stage, the stock of colleges, counties and reg

he literature of recipes ('Clarify stock to the brightness of sherry')

, encased with caul and bound with stock) of pig's trotter, came crisp

a casino, it's becoming a laughing stock around the world and the way

The lexicographers could also specify a collocate of a collocate. For instance,
suppose a lexicographer working on the word \neck" wishes to see all instances

of the idiom \breathe down one's neck". The search for the idiom is most easily
expressed using a collocate of a collocate. The target is \neck" and its inections.

The collocate of the target is \breathe" and its inections, within ten words to the
left of \neck". The collocate of the collocate is \down" within �ve words to the

right of \breathe".

nnifer Capriati breathing down her neck. These are rich and exciting t

With the French breathing down its neck, Northumbrian will have a more

attentiveness, breathing down his neck. Toby gave up. Too tired to do

ury breathed down the authorities' necks if they hung on to it," the W

n't breathe down the back of their necks. Though he was a slave-driver

were breathing furiously down the necks of the Opposition Party, and

2It was possible to do this for the target word too, but this rarely proved useful.

13

If the lexicographers had used a simpler search, they might well have missed

the last three examples, where \breathe down" is separated from \neck" by several
intervening words, and where \breathe" is also separated from \down".

Collocates introduced a fundamental change in the search requests to the Index

Server. It was no longer su�cient to specify properties that applied to a single word;
it was necessary to specify a relationship between several words in a search. These

positional constraints on the search requests contained two pieces of information:

� The two words that had to satisfy the constraint; for example, the target word

and a collocate, or two collocates.

� The distance between these two words.

In practice, a positional constraint between two words was cast as a condition

on one of the words; the condition speci�ed another word in the search request and
a range of word indexes, where a negative index meant to the left of the word and

a positive index meant to the right of the word.

To make this concrete, let's consider how the positional constraints would be
expressed in some of the examples above. In the �rst example, \stock" with \ex-

change" within three words to the right, the search conditions for \exchange" would
contain a positional constraint (written as \stock 1, 3"). In the third example,

\breathe down one's neck", the search conditions for \breathe" would contain a po-
sitional constraint (neck -10, -1) and the search conditions for \down" would contain

a positional constraint (breathe 1, 5).

These positional constraints complicated the search strategy of the Index Server.
The Server would simultaneously search for words that satis�ed the non-positional

constraints of the request. In our �rst example, it would search for all the instances
of \stock" and all the instances of \exchange". Then for each possible combination of

\stock" and \exchange", it would check that the positional constraints were satis�ed
before reporting a match.

Of course, the structure of the indexes permitted the Index Server to perform

such searches much more quickly than this simple-minded description would imply.
The Index server used the positional constraints to skip over sections of the corpus

that could not contain a match. If the next word that matched \stock" was, say, a
thousand words beyond the next word that matched \exchange", there was no way
to produce any matches in that thousand-word range, and the server could skip over

all intervening occurrences of \exchange".

This was particularly important for examples like our second, all occurrences of

\stock" followed immediately by any preposition. There are many prepositions in

14

the corpus, but few of them will follow immediately after \stock", and it would be

very slow if we had to examine each preposition individually to con�rm this.

3.5 Lexical Sets

Quite late in the project we added another way of classifying words in the corpus,
by their membership in what we called lexical sets. These sets were derived very

simply from a thesaurus that Macquarie Inc. made available to us. For instance, the
lexical set called Creatures included such words as \dog", \cat", and \�sh", along

with their case variants and inections.

The sets are lexical, not semantic. Creatures is not the set of terms that actually
refer to animals, but just a list of words. For example, the phrases \hot dog", \the
cat is out of the bag", and \three �sh short of a lawnmower" (an actual example

from the corpus) contain items from Creatures that do not denote animals. But
even this simple tool proved to be quite useful to the lexicographers, and we would

design the lexical sets systematically and thoroughly if we were starting over.

Because the lexical sets were experimental, Argus was structured to make it easy
to change the number and composition of the lexical sets. A library routine returned

the words in the lexical sets at runtime, based on the contents of a text �le.

In principle, a lexical set is quite similar to a wordclass. It is a property or

value of a word (even encoded with an \@" name like the wordclass names), and
the Index Server searched for words with that property. The lexical sets were quite

large, however; the program for generating all the members of a lexical set in the
corpus occasionally failed because it could not handle such large sets in a single

pass.

Lexical sets introduced another problem. The lexicographer could ask to see
all occurrences of the word \taste" that occurred within �ve words of any word
belonging to the lexical set Food:

loaded with sugar to kill the taste. He keeps two diaries, one for

ight fruit juices, because the taste is too strong and sharp. `Our f

has revealed that Jeff's sauce tastes much better on chicken wings th

ou wish 1 green pepper salt to taste 2 lbs chicken wings, jointed and

e rose. All of the wines were tasted blind by a panel of three &dash

The semantics of \within �ve words" had to be \within �ve words before the

target word, or �ve words after the target word, but not including the target word
itself". Otherwise, if the target word were treated as a member of the same lexical

set as the collocate, the search would return every occurrence of the target word.

15

For instance, we might want to distinguish uses of \orange" as a color from uses of

\orange" as a fruit. Since colors often occurred together (\his orange and yellow
ball"), we might have searched for the word \orange" within �ve words of any word

in the lexical set Color. However, since \orange" can be a color and is always within
�ve words of itself, all occurrences would have matched our search, which would

have defeated the purpose. We referred to this problem as \auto-collocation." To
prevent it, we required that a match never use the target word to satisfy a collocate
constraint.

The implementation of the Index Server made auto-collocation di�cult to pre-
vent automatically. Instead, we solved the problem in Argus, not in the Index

Server, by splitting a position-range that included the target position into its left-
hand and right-hand ranges, explicitly excluding the target position. For instance,

if the lexicographer requested a collocate within three words of the target, Argus
sent the Index Server two separate queries; one for collocates on the left, and one for

collocates on the right. Argus merged the resulting lists into a single concordance.

4 Connecting Words and De�nitions

Hector was not just a system for viewing static corpus data. As the lexicographers
examined words in context, they acquired new insights about their meanings. To

preserve this information, the lexicographers needed a way of recording the connec-
tions between words in the corpus and de�nitions they had written.

In this section, we review the implementation of the Sense Server, which main-
tained these connections, and we look at the way in which the connections were used

in searching the corpus. Understanding how the Sense Server worked requires some
explanation about how we named the senses (section 4.1), and how we recorded

connections that were not simple mappings of one word to one sense (section 4.2).

4.1 Naming Senses

In order to establish the connections between the words in the corpus and their
senses, we needed ways to name the things being connected.

Argus already provided a way of naming corpus words, by making them the
target words of queries. The Argus user interface provided a sense-tag �eld with

each concordance line that the lexicographer used to associate a sense with the
target word in the line.

In addition, we needed a way to name the senses in an entry. If the number of
senses, and their order, were established once and never changed thereafter, we could

have named them according to this ordering. For example, \fence", homograph 1,

16

sense 3.1. But the sense numbers were changing all the time as an entry evolved

and the relationships became clearer.

In order to provide a reliable reference to a sense, Ajax, the dictionary-entry

editor, assigned each sense a six-digit unique identi�er (UID) when the sense was
created. This UID never changed and remained permanently associated with the

sense, no matter how the sense was renumbered. It provided an unambiguous name
for the sense, and it was used to establish the connections to corpus words.

It would have been awkward and error-prone for the lexicographers to use UIDs

directly, so Ajax let them choose nicknames (mnemonics) to represent the UID for
each sense. The lexicographers were free to choose whatever mnemonics they found

suggestive. The mnemonics were meaningful only within a single entry; the same
mnemonic could be used in a di�erent entry, and these would have nothing to do

with each other. The lexicographers changed the mnemonics whenever they liked.

As an example, consider this excerpt containing some of the senses from the

entry for \leap". Each sense or subsense contains a UID, a mnemonic assigned by
the lexicographer, some grammatical information, and a de�nition.

1 uid=508119 mnemonic=JUMP

vi; usu with adjunct-dir; (of a person or animal) to jump

forcefully or pounce suddenly

1.1 uid=522775 mnemonic=RUSH

vi; with adjunct; (in metaphorical or hyperbolical use)

(especially of a person) to make a sudden rush to do

something; to act precipitately or impulsively in some

situation; to start eagerly or quickly

1.2 uid=508132 mnemonic=JUMPTRANS

vt; (of a person or animal) to jump over (a barrier or gap);

often in metaphorical use

2 uid=508122 mnemonic=PROGRESS

vi; with adjunct-dir; to progress or advance

dramatically or suddenly

3 uid=508118 mnemonic=JUMPNOUN

nc; a forceful jump or pounce

Argus mapped the mnemonics to UIDs and used the UIDs internally for identi-
fying senses. Later, we discuss how Ajax managed the mapping between the UIDs

and the senses, and how it communicated relevant changes to Argus.

17

4.2 Sense-Tagging

We originally thought that sense-tagging the corpus would be a simple mapping:

each word in the corpus would be associated with one sense in the dictionary. The
lexicographers, on the other hand, knew that language was not that straightforward.
For example, puns typically map to more than one sense, while strings of words such

as the idiom \kick the bucket" map to one sense. Metaphorical uses are a distinct
category. And sometimes the lexicographers just couldn't be sure of the sense from

the context. They wanted to express that a word might be one sense or possibly
another.

We therefore had to develop a sense-tag notation to capture the range of con-
nections that the lexicographers wanted to make. We added \or" expressions for

indicating ambiguity, and we de�ned a set of su�x tags to indicate unusual uses.
There were six modi�ers, each written as a su�x on a basic tag:

-a used as an adjective
-m used as a metaphor

-n used as a noun
-p used as a proper noun
-x an exploitation (neither literal nor metaphorical)

-z auxiliary word of a multi-word lexical item (e.g., part of a
�xed phrase)

We also allowed a question mark at the end of a tag, to indicate that the lexi-

cographer was uncertain about the tag.
Most tags were simple: one mnemonic, no su�x. These were stored in the

database compactly and uniformly, using just the single UID. But because expres-

sions in the sense-tag notation could be arbitrarily long, the non-simple tags, referred
to as complex, required a separate representation and a separate �le in the database.

As an example of a complex sense-tag, the word \leap" in the sentence:

The leap into the unknown of German monetary unity is being greeted

with a serenity which borders on complacency.

was tagged as

JUMPNOUN-m or PROGRESS-x

which means that the lexicographers thought this was either a metaphorical use of
the JUMPNOUN sense (as in, say, \a jump of 10 meters") or it was an exploitation of

the PROGRESS sense (as in, say, \making a great leap forward").

18

Argus provided support for tagging multi-word lexical items, such as idioms,

compounds, and phrasal verbs. Each word in a multi-word item had to be tagged
with the same tag, since the entire item was associated with a single sense. We

could have had the lexicographers use the basic sense-tag mechanism to tag each
word in turn, but that would have been laborious and error-prone.

Instead, we provided a multi-word mode. In this mode, the lexicographer se-
lected a main word under which the multi-word item would be indexed, then selected

the remaining words in the item as auxiliary words, and �nally assigned a tag to the
entire group. The tag was associated with the main word; the same tag but with

the su�x \-z" was associated with each of the auxiliary words. The words did not
need to be contiguous. For example, you could tag the phrasal verb \boot out" in

the sentence \His father had booted him out after catching him with a girl in his
room".

4.3 The Sense Server

The Sense Server was a program that managed the sense-tag database. It performed
two functions: it ensured that changes were applied to the database in a robust way,

without any loss of data, and it captured the richness of the connections expressed
by the sense-tag notation.

Since several lexicographers could be simultaneously reading and writing the
�les where the sense tags were stored, the Sense Server ensured that changes were

synchronized, and that requests for sense tags always yielded the most recent as-
signments.

In order to represent the richness of the sense-tag notation while making it easy

for the Index Server to use the sense assignments, the information about sense
assignments was represented in two �les. One was a binary �le, suitable for use by

the Index Server. The other was a text �le that contained additional information
about words that had been assigned complex tag expressions, rather than just a
single, unmodi�ed sense tag.

The binary �le contained the index of the word in the corpus, the UID of the

sense, the ID of the lexicographer who made the assignment, and a ag that indicated
whether there was an entry for this word in the text �le.

If the word was assigned a single, unmodi�ed sense, then there was no informa-
tion in the text �le; the sense-tag expression was just the sense UID. If the sense

assignment was a complex expression, then the Sense Server stored the full tag ex-
pression in the text �le. (This �le was not encoded, since there was wide variation

in the sense-tag expressions, and there were relatively few complex tag expressions.)

We had originally attempted to manage the sense tags directly in Argus, without

19

a separate Sense Server, but we �nally concluded that we could not implement a

consistent view of a shared, mutable �le using NFS. When one copy of Argus rewrote
the sense-tag �le to record new assignments, there was no way to tell whether other

instances were still using the old version, and hence whether it was safe to delete
it. We found ourselves either referencing non-existent �les or squandering huge

quantities of disk space on obsolete versions of the sense-tag �le that were of no
interest to anyone.

4.4 Searching and Sorting on Senses

Argus allowed the lexicographers to use the sense-tagging information to search the

corpus. The search could either include or exclude all words with a given sense tag;
for example, the lexicographers might want to ignore all items that had already been
tagged, or they might want to see only the words with a particular sense tag, or

the words that had been assigned a tag unrelated to the current entry (to see, say,
multi-word tags or just wrong tags).

Most sense-tag search conditions were implemented by the Index Server directly.

The sense-tag assignments were just properties of words. When the sense-tag search
condition was equivalent to checking whether a word had a speci�ed sense assigned,

the Index Server handled it.

However, if the lexicographer wished to include other tagged words and exclude
untagged words, or vice versa, the logic required was more than the Index Server was
designed to handle. These search conditions were implemented by a downstream

sense-tag �lter in Argus.

The presence of sense tags also provided new opportunities for sorting the con-
cordance. Of the many possible ways of sorting, the lexicographers found these three

to be useful:

1. Sort by UID. While the UIDs themselves were not meaningful to the lexicog-

raphers, this was the fastest way of seeing which lines had been given the same
sense tag.

2. Sort in alphabetical order by mnemonic. See section 4.1 for the relations
between UIDs and mnemonics.

3. Sort by dictionary order. The citations were sorted �rst by the headword,
then by the homograph, and �nally by the sense number.

The lexicographers could constrain a search by sense tag only for the target

word, not for a collocate. By the end of the project, there were enough sense-tagged

20

words in the corpus that the lexicographers wished they also had had the ability to

constrain a collocate by sense tag.

5 Creating Dictionary Entries

Our motivation in creating Ajax, the dictionary-entry editor, was to hide the details
of the encoding of dictionary entries so the lexicographers could focus on the contents
of the entries.

Because Ajax managed the encoding, we could ensure that the entries were
always consistently represented and could be analyzed easily by the computer. For

instance, we wrote programs that checked that terms used in the Register or Field
values of a word sense were consistent with the dictionary editorial policy. If this

information hadn't been consistently encoded in the dictionary entries, we couldn't
have checked it.

The lexicographers experimented with the organization and structure of the

dictionary entries throughout the year, attempting to �nd a form that would let
them easily express the relationships between word senses. We also experimented

with ways to display the dictionary entry information on the screen, so that the
lexicographers could see the information they needed when they needed it.

In this section, we review the changing structure for the dictionary entries and
our strategies for dealing with these changes. We explain how we stored the dictio-

nary entries and provided back-ups and versions for robustness. Then we review the
di�erent views of the entry that Ajax implemented, and how the views related to
one another. We describe some of the implementation di�culties in implementing

the Reorder and Renumber commands. Finally, we describe how Ajax sent Argus
information about the mapping between UIDs and dictionary senses.

5.1 The Structure of a Dictionary Entry

When we �rst set out to work with the lexicographers to de�ne the formal grammar
of a dictionary entry, we assumed that the information and structure of a dictionary

entry were well understood. We thought that there was consensus on what infor-
mation dictionary entries contained and how that information was structured. We

believed we were merely recording the grammar of the entry formally so that we
could program the editor correctly. Our assumptions about dictionary entries were

wrong.

For every grammar we proposed, the lexicographers could envision an entry that

didn't �t the grammar. Our requirements and theirs were apparently at odds. They

21

felt our formal grammar was con�ning, and wanted to leave as much exibility as

possible. We needed an unambiguous grammar so we could analyze entries reliably.

We revised the grammar of a dictionary entry several times as the lexicographers
re�ned their representation. In fact, we continued to make changes to the grammar
until the end of the project. Our early struggles with the grammar de�nition led

us to design Ajax so that the entry grammar was de�ned by a speci�cation �le.
Changing the grammar of the dictionary entries required that we change only the

speci�cation �le, not the program itself.

When the grammar changed, we needed to convert any existing dictionary entries
so they conformed to this new speci�cation. Unfortunately, we did not mechanize

this conversion, partly because there were technical problems (nesting and unnesting
of semantic information), but mostly because we didn't realize soon enough that we

should have made this a priority. As a result, once the lexicographers had written
more than a handful of entries, we permitted only upward-compatible changes to
the grammar, so the existing entries automatically satis�ed the new grammar.

This was an instance where our system shortcomings a�ected the project goals.

The lexicographers requested several grammar changes which we could not make
because of the restriction that the changes be upward compatible. This hindered

their exploration of e�ective ways to present the relationship of information in a
dictionary entry.

Here is an example of the textual representation of an entry. Its structure is
explicitly encoded using SGML.

<entry done=TRUE>above board

<lex>

<vf>above-board</vf>

<sen uid=516356 tag=board>

<gr>comp</gr>

<def>openly acknowledged, without concealment or deceit</def>

<ex>&ellip. everything about the lease was legal and

above board.

<clues>=</clues></ex></sen></lex></entry>

5.2 Managing Entry Files

We stored each entry in its own �le. This simpli�ed access to the entries; if we had

stored several entries per �le, we might have needed to permit several lexicographers
to modify that �le at the same time. The simpler scheme also let us use the �le

system directly for backup and �le locking.

22

This scheme worked well, although having lots of small �les meant that we had to

do some �le management. Rather than keep all the �les in one directory, we created
a set of directories and used the �rst two letters of each headword to decide where

to put each entry. As it turned out, for the number of entries completed during the
year, we could have just used a at directory structure for the new entries, but a

complete dictionary would need the more elaborate strategy.

To locate the �le containing a headword, we used an Ingres database. The

database contained two tables: the dictionary table, which contained the mapping
from headwords to �lenames, and the UID table, which contained the mapping

from UIDs to �lenames. We planned to use the UID table for generating consistent
cross-references, but this feature was never used by the lexicographers.

Using a database for headword-to-�lename mapping was overkill, of course. We
used Ingres because we originally envisioned using it to handle information such as

wordclasses. When we changed those plans, we never got around to reimplementing
Ajax to use a simpler scheme.

We used RCS[5], a standard Unix utility, to do backups and version management.

When a lexicographer saved an entry, Ajax used RCS commands to write a version-
history.

RCS does not export a library that can be called from a program, so we had
to use the shell commands intended for human users. Ajax checked out the �le,

stored the text representation of the entry in the �le, then checked the �le back in,
leaving a read-only version available. If any part of this commit operation failed,

Ajax released the RCS lock on the �le.

Because there was no RCS library, Ajax had to deal with forking processes and

ensuring that it provided the right input under all circumstances. An error in this
part of the implementation would have lost the lexicographers' work just as they

thought they were �nished.

RCS protected us against the unlikely event that two lexicographers were trying
to save the same �le at the same time. We did not use RCS to prevent two lexicog-
raphers from trying to edit the same entry at the same time. It seemed unnecessary

because no two lexicographers would ever work on the same entry at the same time.
We could have locked an entry by checking out the �le the �rst time a lexicographer

modi�ed it.

5.3 Presenting Entries E�ectively

The most di�cult challenge in Ajax was how to present the dictionary entries ef-
fectively. The lexicographers wanted to see as much of the entry on the screen as

possible, so they could get an overview of how the entry was developing. They also

23

needed to change the entry easily, both the information in the �elds of the entry and

the structure of homographs, senses and subsenses. At the same time, we needed the
separate �elds of information cleanly marked, so we could encode the entry properly.

We provided several di�erent solutions to this problem by presenting three dif-
ferent views of an entry. Each had a di�erent set of virtues and shortcomings, and

none proved ideal, but by switching between them judiciously, the lexicographers
managed to get their work done. The three views were:

� The Complete Structure View: This view allowed all the information in an en-

try to be edited. It faithfully reected the complete structure of the dictionary
entry.

� The Set-of-Senses View3: This view concentrated on the individual senses: it

included the mnemonic, homograph and sense numbers, grammar, de�nition,
examples, register (formal, slang, etc.), cross-reference, and a general-purpose
\note" �eld. This was the view that the lexicographers edited while they

examined the corpus and decided how to break the word into senses and sub-
senses.

� The Print View: This was a read-only view that displayed the entry in a

separate window, formatted as it would be for the printed dictionary. This
provided the lexicographers with a compact, familiar format that made it easy
to review their work or scan another entry quickly.

The Complete Structure View was a fairly direct representation of the hierar-
chical structure of the entry itself. The structure of dictionary entries speci�ed the

order of the �elds and whether those �elds were optional. For example, in any given
word sense the (optional) inections preceded the (optional) variant forms, which

in turn preceded the (required) de�nition, which preceded the (required) examples.
The lexicographers determined this order, which reected the order in which the

�elds appeared in a printed dictionary entry.
In order to make as much of an entry visible on the screen as we could, our

strategy was to display the �elds in order, but to pack the �elds together as tightly
as possible, left to right, then top to bottom. We assumed that most �elds had a
typical width, which was given in the speci�cation �le. Ajax determined the size of

a �eld by creating a box of the width in the speci�cation �le, then making the box
as tall as necessary to display all the information in the �eld.

Our emphasis on compactness meant that we sacri�ced spatial consistency, since
each sense potentially had a di�erent set of �elds, and the �elds were always packed

3This view was called a skeletal view in [1].

24

as tightly as possible. For example, the grammar �eld in an idiom sense appeared

on the second line, while the same �eld for a non-idiom sense appeared on the �rst
line.

One possible solution to the problem of spatial consistency would have been to

set the order for the �elds so that the mandatory �elds always preceded optional
ones, and thus always appeared in the same place. This would have meant keeping
two di�erent �eld orders in the speci�cation �le, since the current design asserted

that the order of the �elds was the same as the order in the printed dictionary entry.

The Set-of-Senses View presented a scrollable view with horizontal lines separat-
ing individual senses. The format of senses in this view was �xed; it was not driven

from a speci�cation �le. This decision was based on schedule pressures: if we had
had more time, we would have made this view speci�cation-driven as well.

The Set-of-Senses View did not handle the full complexity of the entry struc-

ture; it supported only those �elds that appeared in most senses. It didn't include
information tied to a homograph rather than a sense (pronunciation, etymology,
variant forms, etc.), nor did it allow, say, a pronunciation or an inection that was

speci�c to a sense. To create such complex entries, the lexicographer had to use the
complete structure view.

The Print View of an entry was implemented by the Sid program, written at

OUP. Sid is a general-purpose formatting program for text marked in SGML. We
wrote a speci�cation �le describing the Hector output format, and we ran Sid in a

separate process. We converted the entry to its text representation and piped the
result to the Sid process.

5.4 Reordering and Renumbering

Early versions of Ajax managed all sense and homograph numbering automatically,
based on the position of the sense or homograph in the entry hierarchy. As described

in [1], we changed our strategy so that it was always the responsibility of the lex-
icographer to provide sense numbers. To help the lexicographers manage sense
numbering, both editable views provided reordering and renumbering operations.

Implementing these operations proved more di�cult than you might imagine at

�rst glance. Sometimes the lexicographers wanted the senses to be rearranged to cor-
respond to the sense numbers that they had assigned. At other times, they wanted

the opposite: they wanted the sense numbers to be recomputed to correspond with
the way they had arranged the senses. We satis�ed both requirements. Rearrang-

ing the senses to reect the sense numbers was called reordering. Recomputing the
sense numbers based on the order of the senses was called renumbering. Either

operation could be invoked explicitly by the lexicographer; Ajax also reordered the

25

senses whenever the lexicographer opened an entry.

In the Set-of-Senses View, reordering was implemented with a simple numerical
sort.

In the Complete Structure View, the implementation was complicated because
we had to ensure that the reordered entry represented a legal entry structure; for

instance, there could be no duplicate homograph or sense numbers. First we sorted
the homographs and checked for duplicates. Then, within each homograph, we
gathered all the senses together. We ensured that the hierarchy was complete. For

instance, if the entry contained sense 3.1a we checked that it also contained senses
3 and 3.1, adding dummy senses if it didn't. Finally, we re-inserted the senses into

the entry structure as indicated by their sense numbers.
This reordering was the one instance in the Complete Structure View where the

functionality was not independent of the contents of the speci�cation �le. In this
operation, Ajax knew that sense �elds were special and that they could nest inside

one another.
To renumber in the Complete Structure View, we simply traversed the entry

hierarchy and assigned successive values at each level.
To renumber in the Set-of-Senses View, the challenge was to determine what

structure was implied by the order of the senses. Our implementation started from

the top and compared homograph and sense numbers for successive senses. We
preserved the structural relationship implied by the original numbers; that is, if two

successive senses appeared to belong to the same homograph in the original num-
bering, we assigned them to the same homograph in the new numbering. Similarly,

we preserved the relationships between senses in a homograph. If sense 2a was a
subsense of sense 2 in the original numbering, we ensured that it is still a subsense

in the new numbering.
Figure 1 below shows how the homograph (Hom) and sense number �elds look

before and after renumbering. Fields originally without numbers get numbers as-
signed to them.

5.5 Communication between Ajax and Argus

As we described in section 4.1, the lexicographers used mnemonics to link corpus
words with senses. Argus needed to convert those mnemonics into unambiguous

UIDs: for example, if a lexicographer tagged a use of \leap" with the mnemonic
JUMPNOUN, Argus needed to determine that the lexicographer meant the sense with

UID 508118.
Insisting that all the mnemonics in the dictionary be unique would have placed

an unreasonable burden on the lexicographers. Instead, we established the notion

26

Original Renumbered

Hom Sense number Hom Sense number

1 6 1 1

1 5 1 2

empty empty 2 1

empty 1 2 2

empty 1a 2 2a

1 3 3 1

empty 4 4 1

empty 7 4 2

Figure 1: Homograph and sense numbers before and after renumbering.

of an \active set" of mnemonics, and we required that there be no duplicates in
the active set. In order to add mnemonics to the active set, the lexicographers had
to ensure that the entry containing those mnemonics was in an Ajax window; then

they pushed the \Tags" button in that window. The window's mnemonics remained
active until they pushed the button again.

Ajax maintained a table of all active mnemonics from all its windows. Internally,
Ajax stored the mnemonics in a normalized form: all uppercase characters, with no

leading or trailing whitespace. When adding new mnemonics to the table, Ajax
checked for duplicates. If it discovered a duplicate, it issued an error message and

refused to activate the new mnemonics. Ajax did not check the legality of the
mnemonic, however; illegal mnemonics were detected by Argus. Ideally, both Ajax

and Argus should have checked their validity.

When the lexicographer activated a set of tags, Ajax sent Argus a list of \tag
name, tag information" pairs. The tag information included the UID of the sense,

its headword, its homograph number, and its sense number. (Argus needed the
headword, homograph, and sense numbers to implement dictionary-order sorting.)

Ajax and Argus used the selection mechanism provided by the window manager
to communicate information about active tags. The selection mechanism is normally

used to implement cut-and-paste between the windows of di�erent applications.
Argus owned the selection, and Ajax wrote information to the selection owner, so

Ajax pushed active tag information to Argus rather than having Argus pull it from
Ajax.

If Argus started up after Ajax had already activated some tags, Argus would

27

not know about the tags. In practice, we asked the lexicographers to turn the tags

o� and on again in this situation, which was rare.

We discovered that our assumption about when the lexicographers needed to
use the mnemonics was too restrictive. There were times when the lexicographers

wanted to use mnemonics in Argus without having the corresponding entry displayed
in Ajax. If a search in Argus yielded some examples that were tagged with a UID

that was not in the lexicographer's active set, Argus displayed only the numerical
UID, not the mnemonic. When the lexicographers saw such tags, they were not
always able to tell which entry to load into Ajax to activate the mnemonics. At

other times, the lexicographers wanted to use mnemonics just so they could exclude
collocates with a certain sense. In neither case did they need the entry in Ajax; they

just wanted the mnemonics available to Argus.

5.6 Monitoring Active Tags

While editing an entry, the lexicographers could change information about an active

tag, by changing the mnemonic itself or by changing the sense number associated
with a mnemonic. Argus needed to know about these changes|but when? We

didn't want to inform Argus on every keystroke: that would have been computa-
tionally expensive and also potentially incorrect, since the lexicographers might go

through illegal states in the middle of their edit. For instance, all the tags within an
entry had to be unique. However, if a lexicographer already had a tag \big", and

wanted to add another tag \bigger", two tags \big" would temporarily exist before
the lexicographer had typed the second \g" in \bigger".

The strategy we adopted to overcome this was to ask the window manager to
signal the program whenever an active tag �eld gained or lost the input focus. (The

window with the input focus is the window to which keystrokes will be sent.) We
used the input focus as an indication that the lexicographer was beginning or ending

an edit to a �eld.

When we gained the input focus for an active �eld, we recorded the value of
that �eld. When we lost the input focus, we compared the new value to the old.

If it had changed, we attempted to remove the old value from the active-tag table
and add the new value. If this was successful, we informed Argus of the new tag

information.

In general, this worked pretty well. The only drawback came when the change
in input focus was explicit rather than implicit. If a lexicographer didn't need to

make any other edits, the natural thing would be just to leave the input focus in
the active �eld; it was odd to have to move the input focus explicitly in order to

communicate with Argus.

28

There were other bookkeeping tasks connected with active tags. When adding

or deleting a sense, it was important to check to see whether the tags in that entry
were active, so that the tag could be added or removed from the tag table. There

were a number of bugs that resulted in old tags being left in the active tag table,
with the unfortunate result that Ajax would complain about duplicate tags when

there were no duplicates visible.

Certain other operations, such as renumbering, changed some active �elds with-

out involving the focus mechanism. These operations had to cause the tags to be
re-evaluated explicitly.

6 Conclusion

We have reported the systems decisions we made in building the software tools for

the Hector project. In the course of the project, we formed some opinions that we
present here.

After observing the painstaking care and e�ort it took the lexicographers to

study the citations, to re�ne their thoughts about words and their meanings, and to
write the dictionary entries, we realized that much of the lexicographic wisdom they
acquired and recorded in the process might never appear in any printed dictionary.

This seems to be both a pity and a loss to scholarship. We are convinced that this
information should be stored as part of an on-line lexical database that would evolve

as new information was added to it. Such a database, accessible using computer
tools, could be an invaluable resource for compiling new dictionaries, and performing

lexicographic research.

Moreover, we believe that this database and the tools for corpus lexicography

could be built using commercially available software. This point was not at all ob-
vious to us when we began the project. We built Hector practically from scratch.

Some components were rewritten many times; others were discarded as our experi-
ence grew. At the end, we had a hand-crafted collection of software tools in very

traditional areas: data compression, database storage and retrieval, a graphic user
interface toolkit, a multi-user interactive application, and an assortment of free-

standing utilities for analyzing text.

Having seen what worked and what didn't, what was really useful and what

was interesting but not essential, we conclude that Version 2 of the tools would not
be di�cult to construct. Designing the software tools for corpus lexicography was

hard, but having done so, we feel that the design could now be implemented with
standard software packages. Furthermore, hardware components are now readily

available with su�cient power and capacity to support a network-based system for

29

indexing and searching.

In contrast, there are still no standard tools for natural language processing that
are suitable for this work. For example, the syntactic analyzer that we used was

better than one we could have built ourselves, but it was far from having the accuracy
needed. Although the existing tools are adequate, in our opinion, improvement in

this area would make the single biggest di�erence to corpus lexicography.

Acknowledgements

Thanks to our friends and colleagues who assisted us in designing and implementing

the Hector system:
To the users of the Hector system, who had to educate us about the practical

problems of lexicography and live with our evolving system: Sue Atkins, Kather-
ine Barber, Peter Gilliver, Patrick Hanks, Helen Liebeck, Rosamund Moon, Della
Thompson, and Bill Trumble.

To the Modula-3 crew, who �xed problems in the Modula-3 system and libraries,
and extended the functionality of the language to meet our needs: Marc H. Brown,

Steve Glassman, Bill Kalsow, Eric Muller, Mark Manasse, Greg Nelson, and Ted
Wobber.

To Mike Burrows, for writing the Hector Index Server.
To Jim Horning, for keeping a watchful eye on the Hector project and providing

wisdom at many critical points.
To our colleagues and co-implementors on the Hector project: Lucille Glassman,

Cynthia Hibbard, and Mary-Claire van Leunen.

Thanks also to our friends and colleagues for their help with this report:

To Mary-Claire van Leunen for getting us started.
To Mike Burrows and Jim Horning for their constructive comments on an earlier

version.

To Cynthia Hibbard and Lucille Glassman for their helpful suggestions on the
report's presentation. Special thanks to Cynthia, without whose persistence and

excellent editing this report would never have been written.

30

A Evaluating the Results

In the Hector overview paper[1], we listed things that the SRC Hector team hoped
to accomplish by the end of the project. Here, we review the status of each of those

items.

A.1 Better dictionary de�nitions

Goal: 500 dictionary entries.

At the beginning of the project, we selected 570 words as candidates for the
database. The lexicographers decided to use some of these target words, and they

included some other words that were not in the original target set. The exact words
weren't critical, as long as they were chosen within the scope of the project's goals.

At the end of the project, the lexicographers had produced 1,510 dictionary
entries. This far exceeded our original goal of 500; however, many of these were

single-sense entries for compounds related to a broader headword.
For the lexicographers, the Hector experience reinforced the lessons of other

corpus-based projects, like COBUILD[7]: a corpus is invaluable when working on the
de�nition of ordinary words. Even within the limited scope of the Hector project, the

lexicographers found a number of word senses that were overlooked in dictionaries
not based on corpus evidence. For example, the metaphorical meaning of the word

\capture", as in \capture two seats in Parliament", is missing from dictionaries
such as Longman and the Oxford Concise, although it is present in corpus-based
dictionaries such as COBUILD Student's and the American Heritage III. This sense

accounts for 15% of the occurrences of \capture" in the corpus.

A.2 Links between the corpus and the senses

Goal: A 20-million-word corpus with 300,000 words linked to those 500

dictionary entries.

At the end of the project, the lexicographers had linked 230,847 words in the

corpus to senses in 1,510 entries. This is 1.3% of the words in the corpus. Our
original target|the number of occurrences of the original target words|was 366,670

links. Using this as a metric, the lexicographers accomplished 63% of what we
thought they could do.

Clearly, we overestimated how much the lexicographers would be able to accom-
plish. Although there were delays that could be attributed to immature software

and training time as new lexicographers learned to use the tools, we must conclude

31

that we were overly optimistic about how much the computer would speed the basic

task of deciding on sense-boundaries and establishing the links. The lexicographers
still had to look at, and think about, every occurrence of each target word in the

corpus.

A.3 Distribution of senses in the corpus

Goal: Statistical information on the distribution of words, wordclasses,

and dictionary senses in the corpus.

We wrote a program called entrystats to calculate and display statistics about

the distribution of a word within the corpus. It produced two kinds of statistics:
one based on the set of senses that the lexicographer had de�ned in the dictionary

entry, and one based on the wordclass tags that the lexicographer had assigned.

To calculate the distribution of senses of a headword, entrystats read its dic-
tionary entry for information about the senses and any variant forms or variant

spellings, and then produced statistical information on the frequency of each sense
(and each variant, if any) in the corpus. The program ignored case variation in the
corpus. Here is the output for the headword \treasure":

treasure: 13 per million

80% noun (treasure 30%, treasures 49%)

13% verb (treasure 4%, treasures 1%,

treasuring <1%, treasured 7%)

7% adj (treasured 7%)

- ------------------------------

treasure

1 thing 50% 112

1.1 thingex 10% 22

1.2 person 2% 4

2 hoard 7% 15

2a mod 4% 8

2.1 met 5% 12

2.2 collection 1% 3

3 wealth 2% 5

4 cherish 13% 29

4a cherished 7% 16

32

The headword is followed by a count per million. The next three lines show

the percentages for each wordclass, with the wordclass information further broken
down into percentages for each wordform. The �nal section lists, for each sense

in the entry, the sense number, the mnemonic assigned by the lexicographer, the
percentage of all occurrences of the headword that were tagged with this sense, and

the absolute count of occurrences in the corpus.

To compute the information on wordclass, we parsed the lexicographer's gram-

mar �eld to extract a wordclass from the set fnoun, verb, adverb, adjective, otherg.
We then generated the inections for the wordclass, including expansions for all vari-

ant forms and variant spellings. If the lexicographer had de�ned a lexical form, we
included that as well. (A lexical form is a sense that applies to only one wordform;

for example, \treasured" is a lexical form for the adjective sense of \treasure".)

Using variant forms, variant spellings, case variations, wordclass inections, and
lexical forms gave us a list of all possible wordforms for a wordclass. When a
wordform appeared in more than one wordclass (e.g., \treasures," which can be both

a noun and a verb), we checked the tag in the corpus to do the disambiguation. We
reported the frequency of inected forms as a percentage of the relevant baseform.

A.4 The predictive value of the corpus links

Goal: A test of the predictive value of the links between words and senses.

One of the goals of the Hector project was to explore automatic sense disam-
biguation: could we use the computer to determine the dictionary sense of a word by

examining its context? For example, can a computer determine the correct sense of
\key" in the sentence, \This is the key di�erence in industrial performance"? Does

it mean \something of vital importance" or \a system of notes in a piece of music"?

Initially we thought that we would have to log the search requests that the lexi-
cographers made during their disambiguation to infer the context that characterized

a sense. However, the lexicographers decided to describe their disambiguations ex-
plicitly, as they were doing the lexicography. They developed a notation called

clues for describing conditions about the context of a word that could be used for
disambiguation.

The clues could be lexical (collocations on individual words, lexical sets, or even
punctuation), morphological, grammatical (proper noun, plural noun), or syntactic

(subject, object). Clues could refer to the source word, to collocates, or to any word
in the same clause.

Clues for nouns were typically just collocates; clues for attributive adjectives had

the semantic class of the nouns they modi�ed; clues for verbs were usually syntactic

33

patterns. Our lexicographers concentrated on verbs and adjectives: there seemed

little point in recording collocate information for nouns manually, since it was easy
to derive signi�cant collocates automatically. Ideally they would have created a

clues �eld whenever two or more senses of a word shared the same wordclass; in
practice, it was often impossible to capture distinctions sensibly.

Although we consider the clues mostly as the basis for future work, we did run

some experiments to evaluate them. We evaluated a clue by translating it into an
Argus query, running the query against the corpus, and counting how many of the

query matches were tagged with the sense associated with that clue. The percentage
with the correct tag was an indication of the e�ectiveness of that clue in identifying

the sense. A clue with 90% e�ectiveness, for example, would be quite useful for
disambiguation; a clue with 25% e�ectiveness would not.

This experiment was awed in a number of ways. First, we were running our test
over the corpus: we were evaluating the clues against the same data that was used to

generate the clues in the �rst place. Second, the clues also expressed knowledge that
could not be translated into a query; our inability to use all the information in the
clues reduced the e�ectiveness of our queries. For example, many of the clues relied

on a (mythical) very sophisticated parser; they equated active and passive voice,
assumed understanding of anaphoric constructions like \Naomi likes a purple shirt

better than a blue one", and so on. We reduced syntactic restrictions to wordclass
restrictions; a word marked as the subject was probably a noun or pronoun.

Once the clues were evaluated for e�ectiveness, we attempted disambiguation.
If we were disambiguating a word in a sentence, we �rst needed to determine which

entries might possibly apply. Then we compared each clue in all these entries against
the sentence, to see whether the sentence satis�ed the clue. Finally, we chose the
sense corresponding to the most accurate clue that the sentence satis�ed.

As an example, suppose we were disambiguating \key" in the sentence, \This is
the key di�erence in industrial performance", and we had the following clues:

1. \key" immediately followed by a noun.

2. \key" collocated with any word in the lexical set \vehicle".

3. \key" collocated with any of the words \major", \minor", \sharp", or \at".

Of these clues, only the �rst is satis�ed by this sentence. So we would choose
the sense associated with it, \something of vital importance".

To test this approach, we disambiguated every entry the lexicographers pro-
duced. The results of this disambiguation varied wildly. Sometimes there was

su�cient information available to distinguish between senses, sometimes not. Some

34

of the lexicographers wrote clues that were too narrow; others wrote clues that were

too broad. None of these problems was surprising, of course: it was hard for the lex-
icographers to do the disambiguations in the �rst place, by hand, and even harder

for them to try to capture their understanding using an unfamiliar and untested
notation.

If we consider only words with more than one or two senses, and more than 500
instances in the corpus, some of the more successfully disambiguated words include:

complain 87% 981 correct out of 1124 5 senses

spite 78% 453 correct out of 584 5 senses

cease 78% 413 correct out of 528 4 senses

vegetable 77% 501 correct out of 652 4 senses

key 76% 1590 correct out of 2096 35 senses

Some of the less successfully disambiguated words include:

pledge 10% 52 correct out of 505 14 senses

generous 13% 74 correct out of 561 7 senses

breed 12% 80 correct out of 679 25 senses

steam 23% 122 correct out of 541 31 senses

evil 24% 122 correct out of 507 18 senses

angle 25% 152 correct out of 600 20 senses

steer 32% 168 correct out of 523 13 senses

From these �gures, we observed that most of the results were signi�cantly better

than random even for the less successfully disambiguated words.
We conjecture that it might be useful to use the entrystats information when

doing disambiguation: if in doubt, we would choose the more common sense.

A.5 Evaluating automatic wordclass assignments

Goal: An evaluation of the automatic wordclass assignments.

A hand-tagged corpus is a useful testbed for evaluating computer programs that

attempt to analyze natural language. By comparing the program's results with the

35

information implied by the sense tags, we can evaluate the accuracy of the program

against a large body of data.
We were interested in evaluating the accuracy of the wordclass assignments gen-

erated by Adam and the Houghton Mi�in parser. Originally, we had hoped the
lexicographers would correct, or at least note, wordclass errors while they were

sense-tagging entries; in reality, they didn't have time. However, we found we could
detect wordclass errors ourselves by analyzing the grammar �elds in the lexicogra-
phers' dictionary entries.

Generally, there is a set of wordclasses that are valid for any grammar �eld. For
instance, if the grammar for a sense is \proper noun," then the wordclass assigned

might be NPL (capitalized locative noun), NPLS (capitalized plural locative noun),
NP (proper noun), NPS (plural proper noun), NPT (capitalized titular noun), or

NPTS (capitalized plural titular noun).
We made an optimistic evaluation by checking whether the tag assigned to a

word fell within the set of wordclasses for its sense's grammar. This was optimistic
because the tagger might have assigned a wordclass that was wrong but that was

still within the right set. For instance, it might have identi�ed a singular proper
noun as a plural proper noun.

For the portion of the corpus that was sense-tagged during the Hector project,

both programs were just under 90% accurate. It would be premature to extrapolate
this accuracy to the entire corpus, since the sample of words sense-tagged was not

random.
For instance, we were surprised that neither program seemed to recognize cardi-

nal numbers successfully until we noticed that the only word that had been tagged
as a cardinal was \mill", meaning a million. We expect that the programs would be

more successful with more common cardinals.
On the other hand, since the pilot project focused only on words that occurred

a few thousand times in the corpus, we had no evaluation of the programs for words
like \take" or \run" that both occur very frequently and have dozens of senses.

Although both programs had the same overall accuracy, they made di�erent

errors. Adam identi�ed prepositions, adjectives, and nouns more successfully than
the Houghton Mi�in parser did, but the Houghton Mi�in parser was more successful

than Adam at identifying plural nouns, proper nouns, verbs, adverbs, and conjuncts.

A.6 Evaluation of corpus clean-up

Goal: Contrast the raw and the cleaned-up versions of the corpus.

Our original intention was to run the corpus search tools on both the raw and

cleaned-up versions of the corpus, take measurements, and report our �ndings. By

36

doing this we hoped to gain some statistical evidence that would either support or

refute the thesis that extensive handwork on a corpus isn't worth doing.

As it turned out, we never made the measurements.

B The Adam wordclass tagger

This section describes some of the problems we faced in building Adam, a program
that identi�ed wordclasses automatically. The interesting aspect of this program
was that although the core algorithm was quite simple to state, making it work on

real-world text was not simple at all. The core algorithm in Adam had only 50 lines
of code, but it was surrounded by over 4,000 lines of code that handled punctuation,

abbreviations, sentence boundaries, numbers, and unknown words.

B.1 Optimizing the core

The core algorithm, as described by Ken Church[2], uses lexical probabilities (What

are the odds that this word is a noun?), and contextual probabilities (What are the
odds that a noun would follow a determiner and an adjective?). It is the product

of those probabilities that determines the best tagging sequence. We used the fre-
quency tables and the lexicon from the Lancaster-Oslo-Bergen (LOB) corpus[3]. A

straightforward implementation of this algorithm, however, was far too slow; tagging
the entire corpus would have taken weeks.

Fortunately, Jim Horning, a colleague at SRC, pointed out that if we were care-

ful, we could get nearly the same behavior by multiplying the frequencies, which
were in the original LOB data, rather than the probabilities, which had to be com-

puted. Furthermore, instead of multiplying numbers, we could add their logarithms,
which was faster. Finally, since the data was static, we could pre-compute all the

logarithms, while we processed the original LOB data. We stored the logarithms in
�les that were loaded into tables in memory when Adam started up. Tagging the
corpus became an overnight job.

That was the 50-line core of the code. The rest of this section discusses the
problems we faced in dealing with the text.

B.2 Tags and Tokens

The tagger's basic function was to read an SGML-marked �le and record a part-of-
speech tag for each token in that �le. But what is a token, and how do you �nd it

in raw text? Words are tokens, but so are punctuation marks and SGML tags.

37

Some SGML symbols were treated as text. Some were delimiters and formed

separate tokens (e.g., \&dash."). They were in the LOB lexicon, although written
in a di�erent notation; the LOB version of \&dash.", for example, was written *-".

Others were left as part of the token. For example, the French name Andr�e was
written in SGML as \Andre´.". Our SGML parser treated that as two tokens:

a word, \Andre", and a form, \´.". The tagger had to put them back together,
since that name was in the LOB lexicon, written \Andre*?2".

Other SGML symbols were handled on a case-by-case basis. For example,
ffraction ...g was simply treated as one token and was always tagged CD (car-

dinal) without further interpretation. The most complicated case was the form
that marked typographical errors in the corpus: ftypo bad="..." good="..."g.

The \good" text was processed as if it were the normal input. It could contain
closing-tags, as in ftypo bad="//s>" good="</s>"g, and other unbalanced text.

B.3 Apostrophes: contractions and genitives

Following the conventions of the LOB data, contractions were represented as two
tokens: \can't" was tagged as \can" (MD= modal) + \n't" (XNOT). This presented

some di�culties when we were searching for words in the corpus; some \words" were
actually adjacent tokens, not separated by whitespace or punctuation.

The LOB data included some genitives (the company's logo) but not many. The

LOB wordclass-set included 27 genitive tags, 23 of which were for words that were
orthographically marked with 's or s'. For example, NN represented a singular

common noun (company), so NN$ represented a singular common noun + genitive
(company's). Likewise, CD indicated a cardinal (0), so CD$ indicated cardinal +
genitive (0's).

This data was unsatisfactory, for several reasons. First, there was no consistency
of coverage (the lexicon contained \board's" but not \boarder's"). Second, none of
the LOB words ending in 's were marked as contractions for \is", \has", or \us".

(John's in New York. He's been there before. Let's join him.) Third, \0's" indicated
a plural (Howmany 0's are there in one million?) as often as it was used as a genitive

(Knuth discusses 0's origin). Indeed, the whole notion of putting individual numbers
in the lexicon was problematic.

In the tagger, then, a �nal 's was always split o�, and in a �nal s', the s stayed

but the ' was split o�. We deleted all 23 genitive tags (e.g., NN$). In the contextual-
probability table, we replaced every occurrence of NN$ with NN and a new tag, $.

The tag for 's was either $ (genitive), PP1OS (us), HVZ (has), or BEZ (is). The
tag for ' itself was either $ (genitive) or, with very low probability, &FW (foreign

word).

38

All the numbers were removed from the lexicon. The word-scanner recognized

several forms of numbers lexically, and marked them all as CD (cardinals). These
included integers (123456), real numbers (1234.567), and numbers with commas in

the right places (1,234,567) optionally followed by two decimals (1.98 or 12,345.67
[for money]). Preceding plus-signs or minus-signs were included.

B.4 Abbreviations

Abbreviations at the end of a sentence presented a problem for the tagger: should
the �nal period be marked as part of the abbreviation? We decided that �nal

periods should be attached to the abbreviation, unless they also indicated the end
of a sentence. For example, in \Toys, etc., are fun.", there was a token for \etc.",

but in \I like toys, etc.", there was one token for an abbreviation spelled \etc" and
another for the �nal \.". In both cases, the tag on the abbreviation was the same
(RB = adverb).

B.5 Sentence boundaries

By far the most di�cult problem for the tagger was detecting sentence boundaries

in free text. The LOB corpus-markings included many cases where there was no
punctuation at the end of a sentence; a sentence could end with a singular common

noun or a past-tense verb, for example. Other sentences ended with commas; more
precisely, some sentences began after a comma, as in \I'm lost, he thought". Since
sentence-beginnings weren't marked in the Hector corpus, there was the possibility

that a sentence could begin after any noun, verb, comma, etc.

Adam considered all of these possibilities, and used the frequencies from the LOB
data to determine the most likely one. A standard method of handling optional tags

(marking the \invisible" sentence-beginnings) would be for the tagger to consider
tagging-sequences of di�erent lengths. After every noun, for example, we could have

considered two possible tagging-sequences, one ending in NN, and the other ending
in NN followed by ^ (the tag for sentence-beginnings). In fact, the early versions of
the tagger did just this.

However, there was some overhead in managing sequences of di�erent length.

Moreover, the optimizations in the core algorithm required that all the alternative
paths have the same length. So we invented pseudo-tags or boundary tags with

names like NN^, which indicated a singular common noun at the end of a sentence.
The most popular boundary tag indicated a period at the end of a sentence. We

estimated the frequencies for these new tags.

39

B.6 Unknown words

The LOB lexicon included 45,561 di�erent words; while that gave Adam excellent

coverage of the basic English vocabulary, there were many words in the corpus that
weren't in the lexicon, especially proper nouns. In order to make reasonable guesses

about the wordclass tags for unknown words, we applied some simple heuristics.

When we processed each word, we looked it up in the LOB lexicon. For the word
\set" for example, the lexicon indicated that it could be a verb, a past participle, a

past-tense verb, a noun, and an adjective, with various frequencies. Each of those
possibilities was considered, that is, added to the set of lexical probabilities for the

word.

If a word began with a capital letter, it may or may not have been in the LOB
lexicon; \Meehan" was, for example, but \Atkins" wasn't. If it wasn't in the lexicon,

or if it was the �rst word in the sentence, we also looked up its lower-case version,
and considered that possibility as well.

If we still hadn't found anything, we applied other heuristics. First, if the word

ended in \ly", we guessed that it was an adverb. (Here, \guessed" means that we
treated it as if it actually occurred, exactly once, in the LOB lexicon.) This was

a good rule, although there were many exceptions; \curly" is not an adverb, and
\doubtless" is.

If it ended in \ed", we guessed that it was a past-tense verb or a past participle.

If it ended in \ing", we guessed that it was a present participle.

If it ended in \er", we guessed that it was a comparative adjective; if it ended

in \est", we guessed that it was a superlative adjective.

In addition to those heuristics, we used one �nal set of rules. In practice, there
seemed to be only three reasonable guesses for unknown words: nouns, verbs, and

adjectives. Many of the other classes were closed sets; all the prepositions, for
example, were already in the lexicon, so there was no point in guessing that an

unknown word might be a preposition.

If the unknown word did not have an initial capital letter, or if it did but it
was at the beginning of the sentence, we guessed that it might be an adjective (JJ),

a verb (VB), and either a singular common noun (NN) or a plural common noun
(NNS), depending on whether it ended with an s.

If the word did begin with a capital letter, regardless of whether it was at the

beginning of a sentence, we guessed that it could be a proper adjective (JNP). If
it ended with an s, we guessed that it might be a plural proper noun (NPS, e.g.,

\Rockefellers") or a capitalized plural common noun (NNPS, e.g., \Californians").
If it didn't end with s, we guessed that it might be a proper noun (NP, \Rockefeller")

or a capitalized common noun (NNP, \Californian").

40

Thus, the unknown word \Meese" was usually tagged as a proper noun, but in

the sentence \Meese ordered Jenkins to prepare a memo", it was tagged as a singular
common noun, while in the sentence \After he made his pitch, Meese ordered Jenkins

to prepare a memo", it was tagged as an adjective. (So was \ordered", which is a
known word.)

B.7 Accuracy

No matter how much tuning one does, a stochastic tagger like Adam is ultimately
only as good as the data that drives it. In the LOB corpus, the word \a" was tagged

as an article 21,926 times, but it was also tagged as a post-determiner, a preposition,
a simple adjective, an adverb, a foreign word, and a letter of the alphabet. Certainly
there are tricky uses of this word (\3 times a year", \many a fool has tried this"),

and some of the taggings (e.g., simple adjective) were probably wrong. But we
couldn't just go in and �x the data, willy-nilly, changing \a" so that it was always

tagged as an article, for example. The more changes you make, the less reliable your
results are.

When we made changes to the LOB data, we tried to preserve the original
information exactly. The heuristics for dealing with unknown words, for example,

were neither consistent nor inconsistent with the LOB data, although a simple scan
of the LOB wordlist reveals that most of the words in the dictionary are nouns, so

our heuristics were at least reasonable.

41

42

References

[1] Lucille Glassman, Dennis Grinberg, Cynthia Hibbard, James Meehan, Loretta
Guarino Reid, and Mary-Claire van Leunen. Hector: Connecting Words with

De�nitions, Digital Equipment Corporation Systems Research Center Report
92A, October, 1992.

An accompanying videotape, Report 92B, demonstrates the Hector tools.

Also published in the Proceedings of the Eighth Annual Conference of the UW

Centre for the New OED and Text Research, University of Waterloo, Canada,
1992.

[2] Ken Church. A stochastic parts program and noun phrase parser for unre-

stricted text. In Proceedings of the Second Conference on Applied Natural Lan-

guage Processing, Austin, Texas, 1988.

[3] Stig Johansson and Knut Hoand. Frequency Analysis of English Vocabulary

and Grammar. Oxford University Press, 1989.

[4] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[5] Walter Tichy. RCS|A System for Version Control. In Software Practice and

Experience, July, 1985.

[6] Martin Bryan. SGML: An Author's Guide to the Standard Generalized Markup

Language. Addison-Wesley Publishing Co., 1988.

[7] J. M. Sinclair, editor. Looking Up: An acount of the COBUILD Project in

lexical computing. Collins, 1987.

43

