
December 25, 1994

SRC
Research

Report 132

Processes are in the Eye of the Beholder

Leslie Lamport

d i g i t a l
Systems Research Center

130 Lytton Avenume

Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state

of the art in computer systems. From our establishment in 1984, we have

performed basic and applied research to support Digital's business objec-

tives. Our current work includes exploring distributed personal computing

on multiple platforms, networking, programming technology, system mod-

elling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by

building hardware and software prototypes and using them as daily tools.

Interesting systems are too complex to be evaluated solely in the abstract;

extended use allows us to investigate their properties in depth. This ex-

perience is useful in the short term in re�ning our designs, and invaluable

in the long term in advancing our knowledge. Most of the major advances

in information systems have come through this strategy, including personal

computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical avor. Some

of it is in established �elds of theoretical computer science, such as the

analysis of algorithms, computational geometry, and logics of programming.

Other work explores new ground motivated by problems that arise in our

systems research.

We have a strong commitment to communicating our results; exposing and

testing our ideas in the research and development communities leads to im-

proved understanding. Our research report series supplements publication

in professional journals and conferences. We seek users for our prototype

systems among those with whom we have common interests, and we encour-

age collaboration with university researchers.

Robert W. Taylor, Director

Processes are in the Eye of the Beholder

Leslie Lamport

December 25, 1994

cDigital Equipment Corporation 1994

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

ii

Author's Abstract

A two-process algorithm is shown to be equivalent to an N -process one,

illustrating the insubstantiality of processes. A completely formal equiva-

lence proof in TLA (the Temporal Logic of Actions) is sketched.

Contents

1 Introduction 1

2 The Algorithm in TLA 3

3 The Proof 8

3.1 Step 1: Removing the Process Structure : : : : : : : : : : : : 9

3.2 Step 2: Adding History Variables : : : : : : : : : : : : : : : : 11

3.3 Step 3: Equivalence of �h
2 and �h

N
: : : : : : : : : : : : : : : 13

4 Further Remarks 17

A Proof of the Theorem 19

B Proof of Lemma 1 21

References 23

1 Introduction

Processes are often taken to be the fundamental building blocks of concur-

rency. A concurrent algorithm is traditionally represented as the composi-

tion of processes. We show by an example that processes are an artifact

of how an algorithm is represented. The di�erence between a two-process

representation and a four-process representation of the same algorithm is no

more fundamental than the di�erence between 2 + 2 and 1 + 1 + 1 + 1.

Our example is a �fo ring bu�er, pictured in Figure 1. The ith input

value received on channel in is stored in buf [i�1 mod N], until it is sent on

channel out . Input and output may occur concurrently, but input is enabled

only when the bu�er is not full, and output is enabled only when the bu�er

is not empty.

Figure 2 shows a representation of the ring bu�er as a two-process pro-

gram in a CSP-like language [2]. The variables p and g record the number

of values received on channel in by the Receiver process and sent on channel

out by the Sender process, respectively. Declaring p and g to be internal

means that their values are not externally visible, so a compiler is free to

implement them any way it can, or to eliminate them entirely.

The intuitive meaning of this program should be clear to readers ac-

quainted with CSP. We will not attempt to give a rigorous meaning to the

program text. Programming languages evolved as a method of describing

algorithms to compilers, not as a method for reasoning about them. We do

not know how to write a completely formal proof that two programming-

language representations of the ring bu�er are equivalent. In Section 2, we

represent the program formally in TLA, the Temporal Logic of Actions [5].

Figure 2 will serve only as an intuitive description of the TLA formula.

Figure 3 shows another representation of the ring bu�er, where IsNext

buf [0]

buf [1]
...

buf [N�1]

-in -out

Figure 1: A ring bu�er.

1

in, out : channel of Value

buf array 0 : : N�1 of Value

p, g : internal Natural initially 0

Receiver :: �

"
p � g 6= N ! in ? buf [p mod N];

p := p+1

#
jj

Sender :: �

"
p � g 6= 0 ! out ! buf [g mod N];

g := g+1

#

Figure 2: The ring bu�er, represented in a CSP-like language.

in, out : channel of Value

buf array 0 : : N�1 of Value

pp, gg : internal array 0 : : N�1 of f0; 1g initially 0

Bu�er(i : 0 : :N�1) ::

�

26664
empty : IsNext(pp; i) ! in ? buf [i];

pp[i] := (pp[i]+1)mod 2 ;

full : IsNext(gg ; i) ! out ! buf [i];

gg [i] := (gg [i]+1)mod 2

37775
Figure 3: Another representation of the ring bu�er.

2

p pp[0] pp[1] pp[2] pp[3]

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1
...

...
...

...
...

Figure 4: The correspondence between values of pp and p, for N = 4.

is de�ned by

IsNext(r ; i)
�

= if i = 0 then r [0] = r [N�1]
else r [i] 6= r [i�1]

This is as an N -process program; the ith process, Bu�er(i), reads and writes

buf [i]. Variables p and g of the two-process program are replaced by arrays

pp and gg of bits. Array elements pp[i] and gg [i] are read and written by

process Bu�er(i), and are read by process Bu�er(i+1 mod N).

The two programs are equivalent because the values assumed by pp and

gg in the N -process program correspond directly to the values assumed by

p and g in the two-process one. The correspondence between pp and p is

shown in Figure 4 for N = 4. A boxed number in the pp[i] column indicates

that IsNext(pp; i) equals true. The correspondence between gg and g is

the same.

It is not hard to argue informally that the two programs are equivalent.

Formalizing this argument should be as straightforward as proving formally

that 222 + 222 equals 111 + 111 + 111 + 111. But, even if straightforward,

a completely formal proof of either result from �rst principles is not trivial.

In Section 3, we sketch a formal TLA proof that the two versions of the ring

bu�er are equivalent.

2 The Algorithm in TLA

We now write the TLA formulas that describe the programs of Figures

2 and 3. The program texts do not tell us what liveness properties are

3

assumed. To make the example more interesting, we assume no liveness

properties for sending values on the in channel, but we require that every

value received in the bu�er be eventually sent on the out channel. For the

two-process program, this means assuming fairness for the Sender , but not

for the Receiver . For the N -process program, it means assuming fairness for

the full action of each process, but not for the empty action.

We give an interleaving representation of the ring bu�er|one in which

sending and receiving are represented by distinct atomic actions. In Sec-

tion 4, we describe how the speci�cations and proofs could be written in

terms of a noninterleaving representation that allows values to be sent and

received simultaneously.

We use the following notation: N is the set of natural numbers; Zm is the

set f0; : : : ;m�1g; square brackets denote function application; [S ! T] is

the set of functions with domain S and range a subset of T ; [i 2 S 7! e] is the

function f with domain S such that f [i] = e for all i 2 S ; [f except ! [i] = e]

is the function bf that is the same as f except bf [i] = e; angle brackets enclose

tuples; t [i] is the ith component of tuple t , so hv ;w i[2] = w ; and S nT is

the set of elements in S that are not in T .

A TLA formula is an assertion about behaviors , which are sequences

of states. Steps (pairs of successive states) in a behavior are described

by actions , which are boolean-valued expressions containing primed and

unprimed variables; unprimed variables refer to the old state and primed

variables refer to the new state. To describe CSP-style communication, we

represent a channel by a variable and represent the sending of a value by a

change to that variable. We de�ne Channel(V) to be the set of legal values

of a channel of type V , and Comm(v ; c) to be the action that represents

communicating a value v on channel c. The actual de�nitions, given below,

are irrelevant; we require only that a Comm(v ; c) action changes c, if v 2 V

and c 2 Channel(V).

Channel(V)
�

= V �Z2

Comm(v ; c)
�

= c0 = hv ; 1� c[2]i

The TLA formula �2 that represents the two-process program is de�ned in

Figure 5. We now explain that de�nition.

A list of expressions bulleted by ^ denotes their conjunction; indentation

is used to eliminate parentheses. If formula F is written as such a list, then

F :i is its ith conjunct|for example, Rcv :2 is p0 = p+1. A similar convention

is used for disjunctions.

4

Type2
�

= ^ p; g 2 N

^ buf 2 [ZN ! Value]

^ in; out 2 Channel(Value)

UnB(i)
�

= [j 2 ZN nfig 7! buf [j]]

Rcv
�

= ^ p � g 6= N

^ p0 = p + 1

^ Comm(buf 0[p mod N]; in)

^ unchanged hg ; out ;UnB(p mod N)i

Snd
�

= ^ p � g 6= 0

^ g 0 = g + 1

^ Comm(buf [g mod N]; out)

^ unchanged hp; buf ; in i

�2

�

= ^ 2Type2

^ (p = 0) ^2[Rcv]hp;buf ;in i

^ (g = 0) ^2[Snd]hg;outi ^WFhg;out i(Snd)

�2

�

= 999999 p; g : �2

Figure 5: The TLA formula �2 representing the two-process program.

The state predicate Type2 asserts that each variable has the correct

type. (The array variable buf of the programming language representation

becomes a variable whose value is a function.) The type declarations of the

two-process program are represented by the TLA formula 2Type2, which

asserts that Type2 equals true in all states of the behavior.

Action Snd describes a step of the Sender process; it can occur only

when p � g 6= 0, and it increments g by 1, communicates buf [g mod N] on

channel out , and leaves p, buf , and in unchanged (unchanged v is de�ned

to equal v 0 = v). Similarly, action Rcv describes a step of the Receiver

process. The conjunct Rcv :3 asserts that the value buf 0[p mod N] (the new

value of buf [p mod N]) is communicated on channel out . The state function

UnB(i) is de�ned so that, if it is unchanged, then buf [j] is unchanged for

all j 6= i . Thus, Rcv asserts that the new value of buf [p mod N] is the

value communicated on channel in, and that buf [j] remains unchanged for

all j 6= p mod N .

Formula �2:2 describes the Receiver process. It asserts that p is initially

0, and that every step is a Rcv step or leaves p, buf , and in unchanged ([A]v
is de�ned to equal A_ (v 0 = v)). Steps that leave p, buf , and in unchanged

represent steps of the Receiver 's environment|either steps of the Sender

5

or steps of the entire program's environment. The conjunct �2:3 similarly

represents the Sender process. The formula WFhg;out i(Snd) asserts weak

fairness of the Snd action. In general, WFv (A) asserts that if action hAiv
(de�ned to equal A^ (v 0 6= v)) remains continuously enabled, then an hAiv
step must eventually occur.

Formula �2 is the conjunction of the speci�cations of the two processes

with the formula asserting type correctness. It describes the two-process

program with p and q visible. The complete program speci�cation �2 is

obtained by hiding p and q . In logic, hiding means existential quanti�cation;

in temporal logic, exible variables (distinct from rigid variables like N) are

hidden with the temporal existential quanti�er 999999 .

The conjunct 2Type2 of �2 makes type correctness an explicit part of the

speci�cation. We put type-correctness assumptions in our speci�cations to

make them as much like Figures 2 and 3 as possible. However, it is usually

better to let type correctness be a consequence of the speci�cation. We

could rewrite �2 as follows to eliminate the conjunct 2Type2. The conjunct

2Type2:1 is already redundant because it is implied by �2:2^�2:3. We can

eliminate 2Type2:3 by making Type2:3 part of the initial condition, since

Type2:3^�2:2^�2:3 implies 2Type2:3. We can eliminate 2Type2:2 in the

same way, if we modify Rcv so it leaves the domain of buf unchanged.

The TLA formula �N that represents the N -process program is de�ned

in Figure 6. There are two things in this de�nition that merit further ex-

planation. First, we introduce an array ctl to represent the control state.

The value of ctl [i] equals \empty" if control in process Bu�er(i) is at the

point labeled empty , and it equals \full" if control is at full . Second, we

introduce an action NotProc(i) that has no obvious counterpart in Figure 3

or in �2. The speci�cations of the two processes in Figure 2 are especially

simple because each variable is changed by an action of only one of the

processes. For example, a step of the Sender 's environment can be char-

acterized as any step that leaves g and out unchanged. We can think of

g and out as belonging to the Sender . In the N -process program, pp[i],

gg [i], and ctl [i] belong to Bu�er(i). However, in and out don't belong to

any single process; they can be changed by a step of any of the N pro-

cesses. The variable in belongs to Bu�er(i) only when IsNext(pp; i) equals

true, and out belongs to Bu�er(i) only when IsNext(gg ; i) equals true.

Action NotProc(i) characterizes steps of Bu�er(i)'s environment, which is

allowed to change in when IsNext(pp; i) equals false, and to change out

when IsNext(gg ; i) equals false. The subscript in 2[: : :]varN allows steps of

the entire program's environment that leave all the variables unchanged. It

6

TypeN
�

= ^ pp; gg 2 [ZN ! Z2]
^ ctl 2 [ZN ! f\empty"; \full"g]

^ buf 2 [ZN ! Value]

^ in; out 2 Channel(Value)

Fill(i)
�

= ^ ctl [i] = \empty"

^ IsNext(pp; i)

^ ctl 0 = [ctl except ! [i] = \full"]

^ pp0 = [pp except ! [i] = 1� pp[i]]

^ Comm(buf 0[i]; in)

^ unchanged hgg ; out ;UnB(i)i

Empty(i)
�

= ^ ctl [i] = \full"

^ IsNext(gg ; i)

^ ctl 0 = [ctl except ! [i] = \empty"]

^ gg 0 = [gg = except ! [i] = 1� gg [i]]

^ Comm(buf [i]; out)

^ unchanged hpp; in; buf i

NotProc(i)
�

= ^ unchanged hpp[i]; gg [i]; ctl [i]; buf [i]i
^ IsNext(pp; i)) unchanged in

^ IsNext(gg ; i)) unchanged out

varN
�

= hpp; gg ; ctl ; buf ; in; out i

�N

�

= ^ 2TypeN
^ 8 i 2 ZN : ^ (pp[i] = gg [i] = 0) ^ (ctl [i] = \empty")

^ 2[Fill(i)_ Empty(i)_NotProc(i)]varN
^ WFvarN (Empty(i))

�N

�

= 999999 pp; gg ; ctl : �N

Figure 6: The TLA formula �N representing the N -process program.

7

is semantically superuous, since NotProc(i) already allows such steps, but

the syntax of TLA requires some subscript.

3 The Proof

We now give a hierarchically structured proof that �2 and �N are equiva-

lent [4]. The proof is completely formal, meaning that each step is a mathe-

matical formula. English is used only to explain the low-level reasoning. The

entire proof could be carried down to a level at which each step follows from

the simple application of formal rules, but such a detailed proof is more suit-

able for machine checking than human reading. Our complete proof, with

\Q.E.D." steps and low-level reasoning omitted, appears in Appendix A.

The correctness of the algorithm rests on simple properties of integers

and of the mod operator. We need the following lemma, where the bit array

Rep(m) used to represent the integer m is de�ned by

Rep(m)
�

= [i 2 ZN 7! if i < m mod 2N � i +N then 1 else 0]

The lemma is proved in Appendix B. We assume throughout that N is a

positive integer.

Lemma 1 If m 2 N and i 2 ZN , then

1. IsNext(Rep(m); i)� (i = m mod N)

2. IsNext(Rep(m); i))
Rep(m + 1) = [Rep(m) except ! [i] = 1� Rep(m)[i]]

For temporal reasoning, we use the following TLA rules from Figure 5 of

[5]. (This version of TLA2 generalizes the one in [5].)

STL2: ` 2F) F STL3: ` 22F � 2F

STL4: F) G

2F) 2G

STL5: ` 2(F ^G) � (2F) ^ (2G)

INV1: I ^ [N]f) I 0

I ^2[N]f) 2I

INV2: ` 2I) (2[N]f � 2[N ^ I ^ I 0]f)

TLA2: P ^ (8 i 2 S : [Ai]fi)) Q ^ [B]g

2P ^ (8 i 2 S : 2[Ai]fi)) 2Q ^2[B]g

The high-level structure of the proof is shown in Figure 7. The proofs of

steps 1{3, and the de�nitions of �u
2
, �u

N
, �h

2
, and �h

N
, are given in the

following sections.

8

Theorem �2 � �N

1a. �2 � �u

2

b. �N � �u

N

2a. �u

2
� 999999pp; gg ; ctl : �h

2

b. �u

N
� 999999p; g : �h

N

3. �h
2
� �h

N

4. Q.E.D.

Proof: �2 � 999999 p; g : �u

2
step 1a and the de�nition of �2

� 999999 p; g ; pp; gg ; ctl : �h

2
step 2a

� 999999 p; g ; pp; gg ; ctl : �h

N
step 3

� 999999 pp; gg ; ctl ; p; q : �h

N
simple logic

� 999999 pp; gg ; ctl : �u

N
step 2b

� �N step 1b and the de�nition of �N

Figure 7: The high-level structure of the proof.

var2
�

= hp; g ; buf ; in; out i

�u
2

�

= ^ 2Type2

^ (p = 0) ^ (g = 0)

^ 2[Rcv _ Snd]var2
^ WFhg;out i(Snd)

�u

N

�

= ^ 2TypeN

^ 8 i 2 ZN : (pp[i] = gg [i] = 0)^ (ctl [i] = \empty")

^ 2[9 i 2 ZN : Fill(i)_ Empty(i)]varN
^ 8 i 2 ZN : WFvarN (Empty(i))

Figure 8: Formulas �u
2 and �u

N
.

3.1 Step 1: Removing the Process Structure

Formulas �u
2 and �u

N
are de�ned in Figure 8. They can be thought of as

uniprocess versions of the two algorithms. We obtained them by rewriting

�2 and �N as formulas with a single next-state relation, instead of as the

conjunction of processes.

Step 1a is proved as follows.

1a. �2 � �u

2

1a.1. Type2) ([Rcv]hp;buf ;in i ^ [Snd]hg;out i � [Rcv _ Snd]var2)

Proof: Given below.

9

1a.2. 2Type2) (2[Rcv]hp;buf ;in i ^2[Snd]hg;out i � 2[Rcv _ Snd]var2)

Proof: Step 1a.1 and rule TLA2.

1a.3. Q.E.D.

Proof: Step 1a.2 and the de�nitions of �2 and �u
2
.

Step 1a.1 is proved by showing that Type2 implies

[Rcv]hp;buf ;in i ^ [Snd]hg;out i

� by de�nition of [A]v

^ Rcv _ (hp; buf ; in i0 = hp; buf ; in i)
^ Snd _ (hg ; out i0 = hg ; out i)

� by propositional logic

_ Rcv ^ (hg ; out i0 = hg ; out i)
_ Snd ^ (hp; buf ; in i0 = hp; buf ; in i)
_ Rcv ^ Snd

_ (hg ; out i0 = hg ; out i) ^ (hp; buf ; in i0 = hp; buf ; in i)

� _ Rcv Rcv implies hg;out i0 = hg;out i

_ Snd Snd implies hp; buf ; in i0 = hp; buf ; in i

_ false Type2 ^Rcv implies p0 6= p, and Snd implies p0 = p

_ var20 = var2 hv1; : : : ; vm i0 = hv1; : : : ; vm i i� (v 0

1 = v1) ^ : : : ^ (v 0

m = vm)

� [Rcv _ Snd]var2 by de�nition of [A]v

All of the nontemporal steps in our proof can be reduced to this kind of

algebraic manipulation. From now on, we just sketch such proofs and leave

the detailed calculations to the reader.

The proof of step 1b is similar to that of step 1a, but it is a bit more

di�cult because it requires an invariant InvN , which asserts that the arrays

pp and gg are representations of natural numbers.

InvN
�

= (9m 2 N : pp = Rep(m)) ^ (9m 2 N : gg = Rep(m))

1b. �N � �u

N

1b.1a. �N) 2InvN

b. �u

N
) 2InvN

Proof: Described below.

1b.2. TypeN ^ InvN)

[9 i 2 ZN :Fill(i) _ Empty(i)]varN �

8 i 2 ZN : [Fill(i)_ Empty(i) _NotProc(i)]varN

Proof: If i 6= j , then TypeN implies that Fill(i)^ Fill(j), Empty(i) ^
Empty(j), and Fill(i)^Empty(j) are all false; and TypeN^InvN implies
Fill(i)) NotProc(j) and Empty(i)) NotProc(j). By Lemma 1.1,
TypeN ^ InvN implies (8 i 2 ZN : NotProc(i)) � (varN 0 = varN).

10

1b.3. 2TypeN ^2InvN)
2[9 i 2 ZN :Fill(i) _ Empty(i)]varN �

8 i 2 ZN : 2[Fill(i)_ Empty(i) _NotProc(i)]varN

Proof: Step 1b.2.1 and rule TLA2.

1b.4 Q.E.D.

Proof: Steps 1b.1 and 1b.3 and the de�nitions of �N and �u

N
.

Steps 1b.1a and 1b.1b are standard invariance properties; 1b.1a is proved as

follows.

1b.1a �N) 2InvN

1b.1a.1 TypeN ^ (8 i 2 ZN : pp[i] = gg [i] = 0)) InvN

Proof: Rep(0) = [i 2 ZN 7! 0]

1b.1a.2 ^ InvN

^ [TypeN ^ (8 i 2 ZN :Fill(i) _ Empty(i) _NotProc(i))]varN
) InvN 0

1b.1a.2.1. InvN ^TypeN ^ (i 2 ZN) ^ Fill(i)) InvN 0

1b.1a.2.2. InvN ^TypeN ^ (i 2 ZN) ^ Empty(i)) InvN 0

1b.1a.2.3. InvN ^TypeN ^ (8 i 2 ZN :NotProc(i))) InvN 0

1b.1a.2.4. InvN ^ (varN 0 = varN)) InvN 0

1b.1a.2.5. Q.E.D.

Proof: Steps 1b.1a.2.1{1b.1a.2.4.

1b.1a.3. ^ TypeN ^ (8 i 2 ZN : pp[i] = gg [i] = 0)
^ 2TypeN
^ 2[8 i 2 ZN :Fill(i) _ Empty(i) _NotProc(i)]varN
) 2InvN

Proof: Steps 1b.1a.1 and 1b.1a.2 and rules INV1 and INV2.

1b.1a.4. Q.E.D.

Proof: Step 1b.1a.3 and rule TLA2, since (8 i : [Ai]v) � [8 i :Ai]v .

Steps 1b.1a.2.1 and 1b.1a.2.2 are proved using Lemma 1.2; steps 1b.1a.2.3

and 1b.1a.2.4 follow because their hypotheses imply pp 0 = pp and gg 0 = gg .

As indicated in the appendix, the proof of step 1b.1b is similar.

3.2 Step 2: Adding History Variables

Formulas �h
2
and �h

N
are de�ned in Figure 9, which also de�nes their safety

parts, �hS
2 and �hS

N
. We obtained �h

2 by adding pp, gg , and ctl as history

variables to �u
2
; and we obtained �h

N
by adding p and g as history variables

to �u

N
. In general, adding an auxiliary variable a to a formula F means

writing a formula F a such that F � 999999 a : F a . A history variable is an

11

Init
�

= ^ p = g = 0

^ pp = gg = [i 2 ZN 7! 0]

^ ctl = [i 2 ZN 7! empty]

Type
�

= Type2^ TypeN

var
�

= hpp; gg ; ctl ; p; g ; buf ; in; out i

HRcv
�

= ^ Rcv

^ pp0 = [pp except ! [p mod N] = 1� pp[p mod N]]

^ ctl 0 = [ctl except ! [p mod N] = \full"]

^ unchanged gg

HSnd
�

= ^ Snd

^ gg 0 = [gg except ! [g mod N] = 1� gg [g mod N]]

^ ctl 0 = [ctl except ! [g mod N] = \empty"]

^ unchanged pp

�hS
2

�

= ^ 2Type
^ Init

^ 2[HRcv _ HSnd]var

�h
2

�

= �hS
2
^WFhg;out i(Snd)

HFill(i)
�

= ^ Fill(i)

^ p0 = p + 1

^ unchanged g

HEmpty(i)
�

= ^ Empty(i)

^ g 0 = g + 1

^ unchanged p

�hS

N

�

= ^ 2Type

^ Init

^ 2[9 i 2 ZN : HFill(i)_ HEmpty(i)]var

�h

N

�

= �hS

N
^ (8 i 2 ZN : WFvarN (Empty(i)))

Figure 9: Formulas �h
2
and �h

N
.

12

auxiliary variable that records information from previous states. It is added

by using the following lemma, which can be deduced from the results in [1].

Step 2 is easily proved by repeated application of this lemma.

Lemma 2 (History Variable) If h and h 0 do not occur in Init, Ai , Bj ,

v , or f, and h0 does not occur in g i , for all i 2 I and j 2 J , then

Init ^ 2[9 i 2 I : Ai]v ^ (8 j 2 J : WFv (Bj))

� 999999 h : ^ Init ^ (h = f)

^ 2[9 i 2 I : Ai ^ (h0 = g i)]hh;v i

^ 8 j 2 J : WFv (Bj)

3.3 Step 3: Equivalence of �h

2
and �h

N

In the two-process algorithm, p and g are the actual internal variables, while

pp, gg , and ctl are history variables. The situation is reversed in the N -

process algorithm. Step 3 involves showing that the history variables of one

algorithm behave like the internal variables of the other. Its proof uses the

following formulas, where Inv will be shown to be an invariant of both �h
2

and �h

N
.

IsFull(g ; p; i)
�

= 9m 2 N : (g � m < p)^ (i = m mod N)

Inv
�

= ^ pp = Rep(p)

^ gg = Rep(g)

^ ctl = [i 2 ZN 7! if IsFull(g ; p; i) then \full" else \empty"]

^ 0 � p � g � N

The high-level structure of the proof is:

3. �h

2
� �h

N

3.1a. Type ^ Inv) (HRcv � 9 i 2 ZN : HFill(i))
b. Type ^ Inv) (HSnd � 9 i 2 ZN : HEmpty(i))

3.2. [Type ^ Inv ^ (HRcv _HSnd)]var �
[Type ^ Inv ^ (9 i 2 ZN : HFill(i) _HEmpty(i))]var

3.3a. �hS

2
) 2Inv

b. �hS

N
) 2Inv

3.4. �hS

2
� �hS

N

3.5. 2Inv ^�hS

N
) (WFhg;out i(Snd) � (8 i 2 ZN :WFvarN (Empty(i))))

3.6. Q.E.D.

Proof: Immediate from steps 3.3{3.5.

13

Steps 3.1 and 3.2 are (nontemporal) action formulas. They make it intu-

itively clear why the two transformed formulas are equivalent. Step 3.1a is

proved as follows.

3.1a. Type ^ Inv) (HRcv � 9 i 2 ZN : HFill(i))

3.1a.1 Type ^ Inv) (HRcv � HFill(p mod N))

3.1a.1.1. Type ^ Inv) ((p � g 6= N) � (ctl [p mod N] = \empty"))

Proof: Arithmetic reasoning and the de�nition of IsFull .

3.1a.1.2. Type ^ Inv) IsNext(pp; p mod N)

Proof: Lemma 1.1.

3.1a.1.3. Q.E.D.

Proof: Steps 3.1a.1.1 and 3.1a.1.2, and the de�nitions of
HRcv and HFill .

3.1a.2 Type ^ Inv) (HFill(p mod N) � (9 i 2 ZN : HFill(i))

Proof: By Lemma 1.1, Type ^ Inv implies IsNext(pp; p mod N) and
:IsNext(pp; i), if i 2 ZN and i 6= (p mod N).

3.1a.3 Q.E.D.

Proof: Steps 3.1a.1 and 3.1a.2.

As indicated in the appendix, the proof of 3.1b is analogous. Step 3.2 follows

easily from step 3.1.

Step 3.3 asserts that Inv is an invariant of both formulas; its proof is a

standard invariance argument.

3.3a. �hS
2) 2Inv

b. �hS

N
) 2Inv

3.3.1. Init) Inv

Proof: Rep(0) equals [i 2 ZN 7! 0] and IsFull(0; 0; i) = false, for
all i 2 ZN .

3.3.2a. Inv ^ [Type ^ (HRcv _HSnd)]var) Inv 0

b. Inv ^ [Type ^ (9 i 2 ZN : HFill(i) _HEmpty(i))]var) Inv 0

Proof: Given below.

3.3.3. Q.E.D.

Proof: Steps 3.3.1 and 3.3.2, and rules INV1 and INV2.

Step 3.3.2 asserts that the next-state actions leave Inv invariant. The proof

of 3.3.2a is:

3.3.2a. Inv ^ [Type ^ (HRcv _HSnd)]var) Inv 0

3.3.2a.1 Inv ^Type ^HRcv) Inv 0

Proof: Assume Inv ^ Type ^ HRcv . Then Inv :10 is immediate
because p0 = p and pp0 = pp; Inv :20 follows from Lemma 1.2;

14

Inv :40 follows from Inv4, since HRcv implies p0 = p + 1, g 0 = g ,
and p � g 6= N ; and Inv :30 holds because

IsFull(g 0; p0; i) � by de�nition of HRcv

IsFull(g ; p + 1; i)
� by de�nition of IsFull

9m 2 N : (g � m < p + 1) ^ (i = m mod N)
� by Rcv :1 and Inv :4

if i = p mod N then true else IsFull(g ; p; i)

3.3.2a.2 Inv ^Type ^HSnd) Inv 0

Proof: Similar to the proof of 3.3.2a.1.

3.3.2a.3 Inv ^ (var 0 = var)) Inv 0

Proof: Immediate.

3.3.2a.4 Q.E.D.

Proof: Steps 3.3.2a.1{3.3.2a.3.

Step 3.3.2b follows from steps 3.3.2a and 3.2. This completes the proof of

step 3.3.

Steps 3.4 and 3.5, assert the equivalence of the safety and liveness parts

of the formulas, respectively. Step 3.4 follows from 3.3 and

2Type ^ 2Inv)

2[HRcv _ HSnd]var � 2[9 i 2 ZN : HFill(i)_HEmpty(i)]var

which follows from step 3.2 and rule TLA2. Step 3.5 has the following

high-level proof.

3.5. 2Inv ^�hS

N
) (WFhg;out i(Snd) � (8 i 2 ZN :WFvarN (Empty(i))))

3.5.1. 2Inv ^�hS

N
)

(8 i 2 ZN :WFvarN (Empty(i))) � WFvarN (9 i 2 ZN : Empty(i))

3.5.2. 2Inv ^2Type ^2[HRcv _HSnd]var)
WFhg;out i(Snd) � WFvarN (9 i 2 ZN :Empty(i))

3.5.3. Q.E.D.

Proof: Steps 3.5.1 and 3.5.2.

We �rst consider step 3.5.1. When writing TLA speci�cations, one often has

to choose between asserting fairness of A1 _ : : :_Am and asserting fairness

of each action Ai . The choice becomes a matter of taste when the resulting

speci�cations are equivalent. This is the case if, whenever one of the Ai

becomes enabled, a step of no other Aj can occur before the next Ai step.

For weak fairness, the equivalence is a consequence of the following result,

which can be derived from the TLA proof rules of [5].

15

Lemma 3 If

Enabled hAi iv ^ 2Inv ^ 2[N ^ :Ai]v) 2:Enabled hAj iv

for all i ; j 2 S with i 6= j , then

2Inv ^ 2[N]v) (WFv (9 i 2 S : Ai) � (8 i 2 S : WFv (Ai)))

We use this lemma to prove step 3.5.1.

3.5.1. 2Inv ^�hS

N
)

(8 i 2 ZN :WFvarN (Empty(i))) �WFvarN (9 i 2 ZN :Empty(i)))

3.5.1.1. �hS

N
) 2[9 i 2 ZN : Fill(i) _ Empty(i)]varN

Proof: TLA2, since HFill(i)) Fill(i) and HEmpty(i)) Empty(i).

3.5.1.2. ^ i 2 ZN

^ Next(gg ; i)
^ 2(Inv ^Type)
^ 2[(9 j 2 ZN : Fill(j) _ Empty(j)) ^ :Empty(i)]varN
) 2Next(gg ; i)

Proof: By rules INV1 and INV2, since

Inv ^Type ^ (Fill(j) _ Empty(j)) ^ :Empty(i)

implies gg 0 = gg , for all i ; j 2 ZN .

3.5.1.3. ^ (i ; j 2 ZN) ^ (i 6= j)
^ Enabled hEmpty(i)ivarN
^ 2(Inv ^Type)
^ 2[(9 k 2 ZN : Fill(k) _Empty(k)) ^ :Empty(i)]varN
) 2:Enabled hEmpty(j)ivarN
Proof: Step 3.5.1.2 and rule STL4, since Enabled hEmpty(i)ivarN
implies Next(gg ; i), and Lemma 1.1 implies

Inv ^Type ^Next(gg ; i)) :Next(gg ; j)

for all i ; j 2 ZN with i 6= j .

3.5.1.4. Q.E.D.

Proof: Steps 3.5.1.1 and 3.5.1.3, and Lemma 3.

Finally, we prove 3.5.2, which completes the proof of the theorem.

3.5.2. 2Inv ^2Type ^2[HRcv _HSnd]var)
WFhg;out i(Snd) � WFvarN (9 i 2 ZN :Empty(i))

3.5.2.1. Inv ^Type ^ [HRcv _HSnd]var)
hSnd ihg;out i � h9 i 2 ZN :Empty(i)ivarN

Proof: By steps 3.1b and 3.2, since Inv ^Type ^ [HRcv _HSnd]var
implies hSnd ihg;out i � HSnd , and

Inv ^Type ^ [9 i 2 ZN : HFill(i)_HEmpty(i)]var

implies h9 i 2 ZN :Empty(i)ivarN � (9 i 2 ZN :HEmpty(i)).

16

3.5.2.2. 2Inv ^2Type ^2[HRcv _HSnd]var)
23hSnd ihg;out i � 23h9 i 2 ZN : Empty(i)ivarN

Proof: 2Inv ^2Type ^2[HRcv _HSnd]var
) by 3.5.2.1 and rules STL5 and TLA2, since hAiv � :[:A]v

2[:Snd]hg;out i � 2[:9 i 2 ZN :Empty(i)]varN
) :2[:Snd]hg;out i � :2[:9 i 2 ZN :Empty(i)]varN
) by rules STL3, STL4, and STL5

2:2[:Snd]hg;out i � 2:2[:9 i 2 ZN :Empty(i)]varN
) since 3� :2:

23:[:Snd]hg;out i � 23:[:9 i 2 ZN :Empty(i)]varN
) since hAiv � :[:A]v

23hSnd ihg;out i � 23h9 i 2 ZN :Empty(i))ivarN

3.5.2.3 2Inv ^2Type ^2[HRcv _HSnd]var)
23:Enabled hSnd ihg;out i �
23:Enabled h9 i 2 ZN :Empty(i))ivarN

Proof: Rules STL2 (which implies F) 3F), STL4, STL5, and
TLA2, since by 3.5.2.1, Inv ^Type ^ [HRcv _HSnd]var implies

Enabled hSnd ihg;out i � Enabled h9 i 2 ZN :Empty(i))ivarN

3.5.2.4 Q.E.D.

Proof: Steps 3.5.2.2 and 3.5.2.3, since WFv (A) is de�ned to equal
23:Enabled hAiv _ 23hAiv .

4 Further Remarks

We have proved the equivalence of two di�erent representations of the ring

bu�er. This is not just an intellectual exercise; the ability to transform an

algorithm into a completely di�erent form is important for applying formal

methods to real systems. Going from the two-process version to the N -

process one reduces the internal state of each process from an unbounded

number (p or q) to three bits (pp[i], qq [i], and ctl [i]). As explained in [3],

such a transformation enables us to apply model checking to unbounded-

state systems.

In retrospect, it is not surprising that programs with di�erent numbers

of processes can be equivalent. Multiprocess programs are routinely exe-

cuted on single-processor computers by interleaving the execution of their

processes. The transformation of �2 and �N to �u
2
and �u

N
can be viewed

as a formal description of this interleaving.

Using an interleaving representation makes the proof of equivalence a

bit simpler, but it is not necessary. The equivalence of noninterleaving

17

representations can be proved as follows. Let RcvNI and SndNI be the ac-

tions obtained from Rcv and Snd by removing the unchanged conjuncts

and adding the conjunct unchangedUnB(p mod N) to RcvNI . Replac-

ing Rcv and Snd with RcvNI and SndNI in the de�nition of �2 yields a

noninterleaving representation of the two-process program. Similarly, we

get a noninterleaving representation of the N -process program by replacing

Fill(i) and Empty(i) with actions FillNI (i) and EmptyNi(i) that have no

unchanged conjuncts except the one for UnB(i). In the proof of equiva-

lence, formula �u
2
is changed by replacing its next-state action Rcv _ Snd

with Rcv _Snd _(RcvNI ^SndNI), and �u

N
is changed by replacing its next-

state action with 9 i 2 ZN : Fill(i)_Empty(i)_ (FillNI (i)^EmptyNI (i)).

Formulas �h
2 and �h

N
are obtained by adding history variables to the new

versions of �u

2
and �u

N
. The proof of equivalence is the same as before,

except we have to consider the next-state actions' extra disjuncts. These

disjuncts represent the simultaneous sending and receiving of values.

Indivisible state changes are an abstraction; executing an operation of a

real program takes time. In TLA, we can represent the concurrent execution

of program operations either as successive steps, or as a single step. Which

representation we choose is a matter of convenience, not philosophy. We

have found that interleaving representations are usually, but not always,

more convenient than noninterleaving ones for reasoning about algorithms.

A proof that two algorithms are equivalent can be turned into a deriva-

tion of one algorithm from the other. Our proof yields the following deriva-

tion, where each equivalence is obtained from the indicated proof step(s).

�2 � 999999 p; q : �u
2

1a

� 999999 p; q ; pp; qq ; ctl : �h
2 2a

� 999999 p; q ; pp; qq ; ctl : �h
2
^2Inv 3.3a

� 999999 pp; qq ; ctl ; p; q : �h

N
^2Inv 3.4 and 3.5

� 999999 pp; qq ; ctl ; p; q : �h

N
3.3b

� 999999 p; q : �u

N
2b

� 999999 p; q : �u

N
^2InvN 1b.1b

� 999999 p; q : �N ^2InvN 1b.3

� �N 1b.1a

Our derivation uses rules of logic to rewrite formulas. In process algebra [6],

analogous transformations are performed by applying algebraic laws. It

would be interesting to compare a process-algebraic proof of equivalence of

the two ring-bu�er programs with our TLA proof.

18

A Proof of the Theorem

Theorem �2 � �N

1a. �2 � �u
2

1a.1. Type2) ([Rcv]hp;buf ;in i ^ [Snd]hg;out i � [Rcv _ Snd]var2)

1a.2. 2Type2) (2[Rcv]hp;buf ;in i ^2[Snd]hg;out i � 2[Rcv _ Snd]var2)

1b. �N � �u

N

1b.1a. �N) 2InvN

1b.1a.1 TypeN ^ (8 i 2 ZN : pp[i] = gg [i] = 0)) InvN

1b.1a.2 ^ InvN

^ [TypeN ^ (8 i 2 ZN :Fill(i) _ Empty(i) _NotProc(i))]varN
) InvN 0

1b.1a.3. ^ TypeN ^ (8 i 2 ZN : pp[i] = gg [i] = 0)
^ 2TypeN ^2[8 i 2 ZN :Fill(i) _ Empty(i) _NotProc(i)]varN
) 2InvN

1b.1b. �u

N
) 2InvN

1b.1b.1. TypeN ^ (8 i 2 ZN : pp[i] = gg [i] = 0)) InvN

1b.1b.2. ^ InvN

^ [TypeN ^ (9 i 2 ZN : Fill(i)_ Empty(i)]varN
) InvN 0

1b.1b.3. ^ TypeN ^ (8 i 2 ZN : pp[i] = gg [i] = 0)
^ 2TypeN ^2[9 i 2 ZNFill(i) _ Empty(i)]varN
) InvN 0

1b.2. TypeN ^ InvN)
[9 i 2 ZN :Fill(i) _ Empty(i)]varN �
8 i 2 ZN : [Fill(i)_ Empty(i) _NotProc(i)]varN

1b.3. 2TypeN ^2InvN)
2[9 i 2 ZN :Fill(i) _ Empty(i)]varN �
8 i 2 ZN : 2[Fill(i)_ Empty(i) _NotProc(i)]varN

2a. �u

2
� 999999pp; gg ; ctl : �h

2

b. �u

N
� 999999p; g : �h

N

3. �h
2 � �h

N

3.1a. Type ^ Inv) (HRcv � 9 i 2 ZN : HFill(i))

3.1a.1 Type ^ Inv) (HRcv � HFill(p mod N))

3.1a.1.1. Type^ Inv) ((p�g 6= N) � (ctl [p mod N] = \empty"))

3.1a.1.2. Type ^ Inv) IsNext(pp; p mod N)

3.1a.2 Type ^ Inv) (HFill(p mod N) � (9 i 2 ZN : HFill(i))

3.1b. Type ^ Inv) (HSnd � 9 i 2 ZN : HEmpty(i))

3.1b.1 Type ^ Inv) (HSnd � HEmpty(g mod N)

19

3.1b.1.1. Type ^ Inv) ((p � g 6= 0) � (ctl [g mod N] = \empty"))

3.1b.1.2. Type ^ Inv) IsNext(gg ; g mod N)

3.1b.1 Type ^ Inv) (HEmpty(p mod N) � (9 i 2 ZN : HEmpty(i))

3.2. [Type ^ Inv ^ (HRcv _HSnd)]var �
[Type ^ Inv ^ (9 i 2 ZN : HFill(i) _HEmpty(i))]var

3.3a. �hS
2
) 2Inv

b. �hS

N
) 2Inv

3.3.1. Init) Inv

3.3.2a. Inv ^ [Type ^ (HRcv _HSnd)]var) Inv 0

3.3.2a.1 Inv ^Type ^HRcv) Inv 0

3.3.2a.2 Inv ^Type ^HSnd) Inv 0

3.3.2a.3 Inv ^ (var 0 = var)) Inv 0

3.3.2b. Inv ^ [Type ^ (9 i 2 ZN : HFill(i) _HEmpty(i))]var) Inv 0

3.4. �hS
2 � �hS

N

3.5. 2Inv ^�hS

N
) (WFhg;out i(Snd) � (8 i 2 ZN :WFvarN (Empty(i))))

3.5.1. 2Inv ^�hS

N
)

(8 i 2 ZN :WFvarN (Empty(i))) � WFvarN (9 i 2 ZN :Empty(i))

3.5.1.1. �hS

N
) 2[9 i 2 ZN : Fill(i) _ Empty(i)]varN

3.5.1.2. ^ i 2 ZN

^ Next(gg ; i)
^ 2(Inv ^Type)
^ 2[(9 j 2 ZN : Fill(j) _ Empty(j)) ^ :Empty(i)]varN
) 2Next(gg ; i)

3.5.1.3. ^ (i ; j 2 ZN) ^ (i 6= j)
^ Enabled hEmpty(i)ivarN
^ 2(Inv ^Type)
^ 2[(9 k 2 ZN : Fill(k) _ Empty(k)) ^ :Empty(i)]varN
) 2:Enabled hEmpty(j)ivarN

3.5.2. 2Inv ^2Type ^2[HRcv _HSnd]var)
WFhg;out i(Snd) � WFvarN (9 i 2 ZN : Empty(i))

3.5.2.1. Inv ^Type ^ [HRcv _HSnd]var)
hSnd ihg;out i � h9 i 2 ZN :Empty(i)ivarN

3.5.2.2. 2Inv ^2Type ^2[HRcv _HSnd]var)
23hSnd ihg;out i � 23h9 i 2 ZN : Empty(i))ivarN

3.5.2.3 2Inv ^2Type ^2[HRcv _HSnd]var)
23:Enabled hSnd ihg;out i �
23:Enabled h9 i 2 ZN : Empty(i))ivarN

20

B Proof of Lemma 1

Lemma 1 If m 2 N and i 2 ZN , then

1. IsNext(Rep(m); i)� (i = m mod N)

2. IsNext(Rep(m); i))
Rep(m + 1) = [Rep(m) except ! [i] = 1� Rep(m)[i]]

1. Rep(m + 1) = [Rep(m) except ![m mod N] = 1� Rep(m)[m mod N]]

1.1. Case: (m+1) mod 2N = (m mod 2N) + 1

Proof: It su�ces to prove that

Rep(m + 1)[j] = if j = m mod N then Rep(m)[j]
else 1�Rep(m)[j]

for any j 2 ZN . The proof follows.

1.1.1. (j = m mod N) � (j = m mod 2N) _ (j +N = m mod 2N)

Proof: Simple number theory.

1.1.2. If j = m mod N , then
(j < 1 + (m mod 2N) � j +N) � :(j < m mod 2N � j + N)

Proof: Step 1.1.1 and simple arithmetic.

1.1.3. If j 6= m mod N then
(j < 1 + (m mod 2N) � j +N) � (j < m mod 2N � j + N)

Proof: Step 1.1.1 and simple arithmetic.

1.1.4. Q.E.D.

Proof: By 1.1.2, 1.1.3, and the de�nition of Rep.

1.2. Case: (m+1) mod 2N 6= (m mod 2N) + 1

Proof: The case assumption implies m mod 2N = 2N � 1, which implies

Rep(m) = [i 2 ZN 7! if i = N � 1 then 0 else 1]

Rep(m + 1) = [i 2 ZN 7! 0]

1.3. Q.E.D.

Proof: Steps 1.1 and 1.2.

2. IsNext(Rep(m); i) � (i = m mod N)

The proof is by induction on m.

2.1. Case: m = 0

Proof: Rep(0) = [j 2 ZN 7! 0] and IsNext(Rep(0); i) � (i = 0), for
i 2 ZN .

2.2. Assume: IsNext(Rep(m); i) � (i = m mod N)

Prove: IsNext(Rep(m + 1); i) � (i = m + 1 mod N)

2.2.1. (i = m mod N)) (IsNext(Rep(m + 1); i) � :IsNext(Rep(m); i))

21

Proof: i = m mod N implies IsNext(Rep(m + 1); i)
� by de�nition of IsNext

if i = 0 then Rep(m + 1)[0] = Rep(m + 1)[N � 1]
else Rep(m + 1)[i] 6= Rep(m + 1)[i � 1]

� by step 1

if i = 0 then 1�Rep(m)[0] = Rep(m)[N � 1]
else 1�Rep(m)[i] 6= Rep(m)[i � 1]

� :IsNext(Rep(m); i)

2.2.2. (i�1 = m mod N)) (IsNext(Rep(m+1); i) � :IsNext(Rep(m); i))

Proof: i � 1 = m mod N implies IsNext(Rep(m + 1); i)
� by de�nition of IsNext

if i = 0 then Rep(m + 1)[0] = Rep(m + 1)[N � 1]
else Rep(m + 1)[i] 6= Rep(m + 1)[i � 1]

� by step 1

if i = 0 then Rep(m)[0] = 1�Rep(m)[N � 1]
else Rep(m)[i] 6= 1�Rep(m)[i � 1]

� :IsNext(Rep(m); i)

2.2.3. (i 6= m mod N) ^ (i � 1 6= m mod N))
IsNext(Rep(m + 1); i) � IsNext(Rep(m); i)

Proof: The hypothesis implies IsNext(Rep(m + 1); i)
� by de�nition of IsNext

if i = 0 then Rep(m + 1)[0] = Rep(m + 1)[N � 1]
else Rep(m + 1)[i] 6= Rep(m + 1)[i � 1]

� by step 1

if i = 0 then Rep(m)[0] = Rep(m)[N � 1]
else Rep(m)[i] 6= Rep(m)[i � 1]

� IsNext(Rep(m); i)

2.2.4. Q.E.D.

Proof: By 2.2.1{2.2.3 and the induction assumption.

2.3 Q.E.D.

Proof: By steps 2.1 and 2.2 and mathematical induction.

3. Rep(m + 1) = [Rep(m) except ![i] = 1�Rep(m)[i]]

Proof: Immediate from steps 1 and 2.

4. Q.E.D.

Proof: Steps 2 and 3.

22

References

[1] Mart��n Abadi, Leslie Lamport, and Stephan Merz. Re�ning speci�ca-

tions. To appear.

[2] C. A. R. Hoare. Communicating sequential processes. Communications

of the ACM, 21(8):666{677, August 1978.

[3] R. P. Kurshan and Leslie Lamport. Veri�cation of a multiplier: 64 bits

and beyond. In Costas Courcoubetis, editor, Computer-Aided Veri�ca-

tion, volume 697 of Lecture Notes in Computer Science, pages 166{179,

Berlin, June 1993. Springer-Verlag. Proceedings of the Fifth Interna-

tional Conference, CAV'93.

[4] Leslie Lamport. How to write a proof. Research Report 94, Digital

Equipment Corporation, Systems Research Center, February 1993. To

appear in American Mathematical Monthly.

[5] Leslie Lamport. The temporal logic of actions. ACM Transactions on

Programming Languages and Systems, 16(3):872{923, May 1994.

[6] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New

York, 1980.

23

