132

Processes are in the Eye of the Beholder

Leslie Lamport

Systems Research Center
130 Lytton Avenume
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the art in computer systems. From our establishment in 1984, we have performed basic and applied research to support Digital's business objectives. Our current work includes exploring distributed personal computing on multiple platforms, networking, programming technology, system modelling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by building hardware and software prototypes and using them as daily tools. Interesting systems are too complex to be evaluated solely in the abstract; extended use allows us to investigate their properties in depth. This experience is useful in the short term in refining our designs, and invaluable in the long term in advancing our knowledge. Most of the major advances in information systems have come through this strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is in established fields of theoretical computer science, such as the analysis of algorithms, computational geometry, and logics of programming. Other work explores new ground motivated by problems that arise in our systems research.
We have a strong commitment to communicating our results; exposing and testing our ideas in the research and development communities leads to improved understanding. Our research report series supplements publication in professional journals and conferences. We seek users for our prototype systems a mong those with whom we have common interests, and we encourage collaboration with university researchers.

Robert W. Taylor, Director

Processes are in the Eye of the Beholder

Leslie Lamport
December 25, 1994

(c)Digital Equipment Corporation 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of the Systems Research Center of Digital Equipment Corporation in Palo Alto, California; an acknowledgment of the authors and individual contributors to the work; and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other purpose shall require a license with payment of fee to the Systems Research Center. All rights reserved.

Author's Abstract

A two-process algorithm is shown to be equivalent to an N-process one, illustrating the insubstantiality of processes. A completely formal equivalence proof in TLA (the Temporal Logic of Actions) is sketched.

Contents

1 Introduction 1
2 The Algorithm in TLA 3
3 The Proof 8
3.1 Step 1: Removing the Process Structure 9
3.2 Step 2: Adding History Variables 11
3.3 Step 3: Equivalence of Φ_{2}^{h} and $\Phi_{\mathrm{N}}^{\mathrm{h}}$ 13
4 Further Remarks 17
A Proof of the Theorem 19
B Proof of Lemma 1 21
References 23

1 Introduction

Processes are often taken to be the fundamental building blocks of concurrency. A concurrent algorithm is traditionally represented as the composition of processes. We show by an example that processes are an artifact of how an algorithm is represented. The difference between a two-process representation and a four-process representation of the same algorithm is no more fundamental than the difference between $2+2$ and $1+1+1+1$.

Our example is a fifo ring buffer, pictured in Figure 1. The i th input value received on channel in is stored in buf $[i-1 \bmod N]$, until it is sent on channel out. Input and output may occur concurrently, but input is enabled only when the buffer is not full, and output is enabled only when the buffer is not empty.

Figure 2 shows a representation of the ring buffer as a two-process program in a CSP-like language [2]. The variables p and g record the number of values received on channel in by the Receiver process and sent on channel out by the Sender process, respectively. Declaring p and g to be internal means that their values are not externally visible, so a compiler is free to implement them any way it can, or to eliminate them entirely.

The intuitive meaning of this program should be clear to readers acquainted with CSP. We will not attempt to give a rigorous meaning to the program text. Programming languages evolved as a method of describing algorithms to compilers, not as a method for reasoning about them. We do not know how to write a completely formal proof that two programminglanguage representations of the ring buffer are equivalent. In Section 2, we represent the program formally in TLA, the Temporal Logic of Actions [5]. Figure 2 will serve only as an intuitive description of the TLA formula.

Figure 3 shows another representation of the ring buffer, where IsNext

Figure 1: A ring buffer.

```
in, out: channel of Value
buf array 0.. N-1 of Value
p,g}\mathrm{ : internal Natural initially 0
Receiver:: *[ [-g\not=N (位 in? buf[p\operatorname{mod}N];
    |
Sender:: *[ [-g\not=0 }->\begin{array}{l}{\mathrm{ out ! buf[gmod N];;}}\\{g:=g+1}\end{array}
```

Figure 2: The ring buffer, represented in a CSP-like language.
in, out : channel of Value
buf array $0 \ldots N-1$ of Value
$p p, g g$: internal array $0 \ldots N-1$ of $\{0,1\}$ initially 0
Buffer (i : $0 . . N-1$): :
$*\left[\begin{array}{rll}\text { empty: IsNext }(p p, i) \rightarrow & \text { in } ? \text { buf }[i] ; \\ & & p p[i]:=(p p[i]+1) \bmod 2 ; \\ \text { full }: \operatorname{IsNext~}(g g, i) \rightarrow & \text { out }!\text { buf }[i] ; \\ & & g g[i]:=(g g[i]+1) \bmod 2\end{array}\right]$
Figure 3: Another representation of the ring buffer.

p	$p p[0]$	$p p[1]$	$p p[2]$	$p p[3]$
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
\vdots	\vdots	\vdots	\vdots	\vdots

Figure 4: The correspondence between values of $p p$ and p, for $N=4$.
is defined by

$$
\begin{array}{r}
\text { IsNext }(r, i) \triangleq \text { if } i=0 \text { then } r[0]=r[N-1] \\
\text { else } r[i] \neq r[i-1]
\end{array}
$$

This is as an N-process program; the i th process, Buffer (i), reads and writes $b u f[i]$. Variables p and g of the two-process program are replaced by arrays $p p$ and $g g$ of bits. Array elements $p p[i]$ and $g g[i]$ are read and written by process Buffer (i), and are read by process Buffer $(i+1 \bmod N)$.

The two programs are equivalent because the values assumed by $p p$ and $g g$ in the N-process program correspond directly to the values assumed by p and g in the two-process one. The correspondence between $p p$ and p is shown in Figure 4 for $N=4$. A boxed number in the $p p[i]$ column indicates that $I s \operatorname{Next}(p p, i)$ equals true. The correspondence between $g g$ and g is the same.

It is not hard to argue informally that the two programs are equivalent. Formalizing this argument should be as straightforward as proving formally that $222+222$ equals $111+111+111+111$. But, even if straightforward, a completely formal proof of either result from first principles is not trivial. In Section 3, we sketch a formal TLA proof that the two versions of the ring buffer are equivalent.

2 The Algorithm in TLA

We now write the TLA formulas that describe the programs of Figures 2 and 3. The program texts do not tell us what liveness properties are
assumed. To make the example more interesting, we assume no liveness properties for sending values on the in channel, but we require that every value received in the buffer be eventually sent on the out channel. For the two-process program, this means assuming fairness for the Sender, but not for the Receiver. For the N-process program, it means assuming fairness for the full action of each process, but not for the empty action.

We give an interleaving representation of the ring buffer-one in which sending and receiving are represented by distinct atomic actions. In Section 4, we describe how the specifications and proofs could be written in terms of a noninterleaving representation that allows values to be sent and received simultaneously.

We use the following notation: \mathcal{N} is the set of natural numbers; \mathcal{Z}_{m} is the set $\{0, \ldots, m-1\}$; square brackets denote function application; $[S \rightarrow T]$ is the set of functions with domain S and range a subset of $T ;[i \in S \mapsto e]$ is the function f with domain S such that $f[i]=e$ for all $i \in S ;[f$ EXCEPT $![i]=e]$ is the function \hat{f} that is the same as f except $\hat{f}[i]=e$; angle brackets enclose tuples; $t[i]$ is the i th component of tuple t, so $\langle v, w\rangle[2]=w$; and $S \backslash T$ is the set of elements in S that are not in T.

A TLA formula is an assertion about behaviors, which are sequences of states. Steps (pairs of successive states) in a behavior are described by actions, which are boolean-valued expressions containing primed and unprimed variables; unprimed variables refer to the old state and primed variables refer to the new state. To describe CSP-style communication, we represent a channel by a variable and represent the sending of a value by a change to that variable. We define Channel (V) to be the set of legal values of a channel of type V, and $\operatorname{Comm}(v, c)$ to be the action that represents communicating a value v on channel c. The actual definitions, given below, are irrelevant; we require only that a $\operatorname{Comm}(v, c)$ action changes c, if $v \in V$ and $c \in$ Channel (V).

$$
\begin{aligned}
& \operatorname{Channel}(V) \triangleq V \times \mathcal{Z}_{2} \\
& \operatorname{Comm}(v, c) \triangleq c^{\prime}=\langle v, 1-c[2]\rangle
\end{aligned}
$$

The TLA formula Π_{2} that represents the two-process program is defined in Figure 5. We now explain that definition.

A list of expressions bulleted by \wedge denotes their conjunction; indentation is used to eliminate parentheses. If formula F is written as such a list, then $F . i$ is its i th conjunct-for example, $R c v .2$ is $p^{\prime}=p+1$. A similar convention is used for disjunctions.

$$
\begin{aligned}
& \text { Type } 2 \triangleq \wedge p, g \in \mathcal{N} \\
& \wedge \text { buf } \in\left[\mathcal{Z}_{N} \rightarrow \text { Value }\right] \\
& \wedge \text { in, out } \in \text { Channel (Value) } \\
& \operatorname{UnB}(i) \triangleq\left[j \in \mathcal{Z}_{N} \backslash\{i\} \mapsto \operatorname{buf}[j]\right] \\
& R c v \quad \triangleq \wedge p-g \neq N \\
& \wedge p^{\prime}=p+1 \\
& \wedge \operatorname{Comm}\left(b u f^{\prime}[p \bmod N], i n\right) \\
& \wedge \text { unchanged }\langle g, o u t, \operatorname{Un} B(p \bmod N)\rangle \\
& \text { Snd } \triangleq \wedge p-g \neq 0 \\
& \wedge g^{\prime}=g+1 \\
& \wedge \operatorname{Comm}(b u f[g \bmod N], \text { out }) \\
& \wedge \text { UNCHANGED }\langle p, b u f, i n\rangle \\
& \Phi_{2} \quad \triangleq \wedge \square \text { Type } 2 \\
& \wedge(p=0) \wedge \square[R c v]_{\langle p, b u f, i n\rangle} \\
& \wedge(g=0) \wedge \square[\text { Snd }]_{\langle g, o u t\rangle} \wedge W_{\langle g, o u t\rangle}(\text { Snd }) \\
& \Pi_{2} \quad \triangleq \exists p, g: \Phi_{2}
\end{aligned}
$$

Figure 5: The TLA formula Π_{2} representing the two-process program.

The state predicate Type 2 asserts that each variable has the correct type. (The array variable buf of the programming language representation becomes a variable whose value is a function.) The type declarations of the two-process program are represented by the TLA formula \square Type 2 , which asserts that Type 2 equals TRUE in all states of the behavior.

Action Snd describes a step of the Sender process; it can occur only when $p-g \neq 0$, and it increments g by 1 , communicates buf[gmod $N]$ on channel out, and leaves p, buf, and in unchanged (UNCHANGED v is defined to equal $v^{\prime}=v$). Similarly, action $R c v$ describes a step of the Receiver process. The conjunct $R c v .3$ asserts that the value $b u f^{\prime}[p \bmod N]$ (the new value of buf $[p \bmod N]$) is communicated on channel out. The state function $\operatorname{Un} B(i)$ is defined so that, if it is unchanged, then buf[j] is unchanged for all $j \neq i$. Thus, Rcv asserts that the new value of buf[p $\bmod N]$ is the value communicated on channel $i n$, and that buf[j] remains unchanged for all $j \neq p \bmod N$.

Formula $\Phi_{2} .2$ describes the Receiver process. It asserts that p is initially 0 , and that every step is a $R c v$ step or leaves p, buf, and in unchanged ($[A]_{v}$ is defined to equal $A \vee\left(v^{\prime}=v\right)$). Steps that leave $p, b u f$, and in unchanged represent steps of the Receiver's environment - either steps of the Sender
or steps of the entire program's environment. The conjunct $\Phi_{2} .3$ similarly represents the Sender process. The formula $\mathrm{WF}_{\langle g, o u t\rangle}($ Snd $)$ asserts weak fairness of the Snd action. In general, $\mathrm{WF}_{v}(A)$ asserts that if action $\langle A\rangle_{v}$ (defined to equal $A \wedge\left(v^{\prime} \neq v\right)$) remains continuously enabled, then an $\langle A\rangle_{v}$ step must eventually occur.

Formula Φ_{2} is the conjunction of the specifications of the two processes with the formula asserting type correctness. It describes the two-process program with p and q visible. The complete program specification Π_{2} is obtained by hiding p and q. In logic, hiding means existential quantification; in temporal logic, flexible variables (distinct from rigid variables like N) are hidden with the temporal existential quantifier \exists.

The conjunct \square Type 2 of Φ_{2} makes type correctness an explicit part of the specification. We put type-correctness assumptions in our specifications to make them as much like Figures 2 and 3 as possible. However, it is usually better to let type correctness be a consequence of the specification. We could rewrite Φ_{2} as follows to eliminate the conjunct \square Type 2 . The conjunct \square Type 2.1 is already redundant because it is implied by $\Phi_{2} .2 \wedge \Phi_{2} .3$. We can eliminate \square Type 2.3 by making Type 2.3 part of the initial condition, since Type $2.3 \wedge \Phi_{2} .2 \wedge \Phi_{2} .3$ implies \square Type2.3. We can eliminate \square Type 2.2 in the same way, if we modify $R c v$ so it leaves the domain of buf unchanged.

The TLA formula Π_{N} that represents the N-process program is defined in Figure 6. There are two things in this definition that merit further explanation. First, we introduce an array ctl to represent the control state. The value of ctl[i] equals "empty" if control in process $\operatorname{Buffer}(i)$ is at the point labeled empty, and it equals "full" if control is at full. Second, we introduce an action $\operatorname{NotProc}(i)$ that has no obvious counterpart in Figure 3 or in Π_{2}. The specifications of the two processes in Figure 2 are especially simple because each variable is changed by an action of only one of the processes. For example, a step of the Sender's environment can be characterized as any step that leaves g and out unchanged. We can think of g and out as belonging to the Sender. In the N-process program, $p p[i]$, $g g[i]$, and ctl $[i]$ belong to Buffer (i). However, in and out don't belong to any single process; they can be changed by a step of any of the N processes. The variable in belongs to Buffer (i) only when $\operatorname{IsNext}(p p, i)$ equals true, and out belongs to $\operatorname{Buffer}(i)$ only when $I s N e x t(g g, i)$ equals true. Action NotProc (i) characterizes steps of Buffer (i 's environment, which is allowed to change in when $\operatorname{IsNext}(p p, i)$ equals False, and to change out when $\operatorname{IsNext}(g g, i)$ equals falSE. The subscript in $\square[\ldots]_{\text {varN }}$ allows steps of the entire program's environment that leave all the variables unchanged. It

```
Type \(N \triangleq \wedge p p, g g \in\left[\mathcal{Z}_{N} \rightarrow \mathcal{Z}_{2}\right]\)
    \(\wedge\) ctl \(\in\left[\mathcal{Z}_{N} \rightarrow\{\right.\) "empty","full"\}]
    \(\wedge\) buf \(\in\left[\mathcal{Z}_{N} \rightarrow\right.\) Value \(]\)
    \(\wedge\) in, out \(\in\) Channel(Value)
\(\operatorname{Fill}(i) \triangleq \wedge \operatorname{ctl}[i]=" \mathrm{empty} "\)
    \(\wedge\) IsNext ( \(p \mathrm{p}, \mathrm{i}\) )
    \(\wedge c t l^{\prime}=[\) ctl EXCEPT ! \([i]=\) "full" \(]\)
    \(\wedge p p^{\prime}=[p p \operatorname{EXCEPT}![i]=1-p p[i]]\)
    \(\left.\wedge \operatorname{Comm}^{\left(b u f^{\prime}\right.}[i], i n\right)\)
    \(\wedge\) unchanged \(\langle g g\), out, \(\operatorname{Un} B(i)\rangle\)
\(\operatorname{Empty}(i) \triangleq \wedge \operatorname{ctl}[i]=" \mathrm{full} "\)
    \(\wedge \operatorname{IsNext}(g g, i)\)
    \(\wedge c t l^{\prime}=[c t l\) EXCEPT ! \([i]=\) "empty" \(]\)
    \(\wedge g g^{\prime}=[g g=\operatorname{EXCEPT}![i]=1-g g[i]]\)
    \(\wedge \operatorname{Comm}(\) buf [i], out)
    \(\wedge\) unchanged \(\langle p p, i n, b u f\rangle\)
\(\operatorname{NotProc}(i) \triangleq \wedge\) unchanged \(\langle p p[i], g g[i], \operatorname{ctl}[i], b u f[i]\rangle\)
    \(\wedge \operatorname{IsNext}(p p, i) \Rightarrow\) unchanged in
    \(\wedge \operatorname{IsNext}(g g, i) \Rightarrow\) unchanged out
\(\operatorname{var} N \triangleq\langle p p, g g, c t l, b u f\), in, out \(\rangle\)
\(\Phi_{\mathrm{N}} \quad \triangleq \wedge \square\) TypeN
    \(\wedge \forall i \in \mathcal{Z}_{N}: \wedge(p p[i]=g g[i]=0) \wedge(c t l[i]=\) "empty" \()\)
        \(\wedge \square[\operatorname{Fill}(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)]_{v a r N}\)
        \(\wedge \mathrm{WF}_{\text {varN }}(\) Empty \((i))\)
\(\Pi_{\mathrm{N}} \quad \triangleq \exists p p, g g, c t l: \Phi_{\mathrm{N}}\)
```

Figure 6: The TLA formula Π_{N} representing the N-process program.
is semantically superfluous, since $\operatorname{NotProc}(i)$ already allows such steps, but the syntax of TLA requires some subscript.

3 The Proof

We now give a hierarchically structured proof that Π_{2} and Π_{N} are equivalent [4]. The proof is completely formal, meaning that each step is a mathematical formula. English is used only to explain the low-level reasoning. The entire proof could be carried down to a level at which each step follows from the simple application of formal rules, but such a detailed proof is more suitable for machine checking than human reading. Our complete proof, with "Q.E.D." steps and low-level reasoning omitted, appears in Appendix A.

The correctness of the algorithm rests on simple properties of integers and of the mod operator. We need the following lemma, where the bit array $\operatorname{Rep}(m)$ used to represent the integer m is defined by

$$
\operatorname{Rep}(m) \triangleq\left[i \in \mathcal{Z}_{N} \mapsto \text { if } i<m \bmod 2 N \leq i+N \text { then } 1 \text { else } 0\right]
$$

The lemma is proved in Appendix B. We assume throughout that N is a positive integer.
Lemma 1 If $m \in \mathcal{N}$ and $i \in \mathcal{Z}_{N}$, then

1. IsNext $(\operatorname{Rep}(m), i) \equiv(i=m \bmod N)$

$$
\begin{aligned}
& \text { 2. } \quad \operatorname{IsNext}(\operatorname{Rep}(m), i) \Rightarrow \\
& \quad \operatorname{Rep}(m+1)=[\operatorname{Rep}(m) \operatorname{EXCEPT}![i]=1-\operatorname{Rep}(m)[i]]
\end{aligned}
$$

For temporal reasoning, we use the following TLA rules from Figure 5 of [5]. (This version of TLA2 generalizes the one in [5].)

$$
\begin{array}{ll}
\text { STL2. } \vdash \square F \Rightarrow F & \text { STL3. } \vdash \square \square F \equiv \square F \\
\text { STL4. } \frac{F \Rightarrow G}{\square F \Rightarrow \square G} & \text { STL5. } \vdash \square(F \wedge G) \equiv(\square F) \wedge(\square G) \\
& \\
\text { INV1. } \frac{I \wedge[N]_{f} \Rightarrow I^{\prime}}{I \wedge \square[N]_{f} \Rightarrow \square I} & \text { INV2. } \vdash \square I \Rightarrow\left(\square[N]_{f} \equiv \square\left[N \wedge I \wedge I^{\prime}\right]_{f}\right) \\
\text { TLA2. } \frac{P \wedge\left(\forall i \in S:\left[A_{i}\right] f_{i}\right) \Rightarrow Q \wedge[B]_{g}}{\left.\square P \wedge\left(\forall i \in S: \square\left[A_{i}\right]\right]_{i}\right) \Rightarrow \square Q \wedge \square[B]_{g}}
\end{array}
$$

The high-level structure of the proof is shown in Figure 7. The proofs of steps $1-3$, and the definitions of $\Phi_{2}^{\mathrm{u}}, \Phi_{\mathrm{N}}^{\mathrm{u}}, \Phi_{2}^{\mathrm{h}}$, and $\Phi_{\mathrm{N}}^{\mathrm{h}}$, are given in the following sections.

Theorem $\Pi_{2} \equiv \Pi_{\mathrm{N}}$
1a. $\Phi_{2} \equiv \Phi_{2}^{\mathrm{u}}$
b. $\Phi_{\mathrm{N}} \equiv \Phi_{\mathrm{N}}^{\mathrm{u}}$

2 a. $\Phi_{2}^{\mathrm{u}} \equiv \exists p p, g g$, ctl $: \Phi_{2}^{\mathrm{h}}$
b. $\Phi_{\mathrm{N}}^{\mathrm{u}} \equiv \exists p, g: \Phi_{\mathrm{N}}^{\mathrm{h}}$
3. $\Phi_{2}^{\mathrm{h}} \equiv \Phi_{\mathrm{N}}^{\mathrm{h}}$
4. Q.E.D.

$$
\text { Proof: } \begin{array}{rlr}
\Pi_{2} & \equiv \exists p, g: \Phi_{2}^{\mathrm{u}} & \\
& & \text { step } 1 \mathrm{a} \text { and the definition of } \Pi_{2} \\
& \equiv \exists p, g, p p, g g, \text { ctl }: \Phi_{2}^{\mathrm{h}} & \\
\text { step } 2 \mathrm{a} \\
& \equiv \exists p, g, p p, g g, \text { ctl }: \Phi_{\mathrm{N}}^{\mathrm{h}} & \\
\text { step } 3 \\
& \equiv \exists p p, g g, c t l, p, q: \Phi_{\mathrm{N}}^{\mathrm{h}} & \\
\text { simple logic } \\
& \equiv \exists p p, g g, \text { ctl }: \Phi_{\mathrm{N}}^{\mathrm{u}} & \\
& & \text { step 2b } \\
& \equiv \Pi_{\mathrm{N}} & \\
\text { step } 1 \mathrm{~b} \text { and the definition of } \Pi_{\mathrm{N}}
\end{array}
$$

Figure 7: The high-level structure of the proof.

```
var \(2 \triangleq\langle p, g\), buf, in, out \(\rangle\)
\(\Phi_{2}^{\mathrm{u}} \triangleq \wedge \square\) Type 2
            \(\wedge(p=0) \wedge(g=0)\)
            \(\wedge \square[R c v \vee S n d]_{\text {var } 2}\)
            \(\wedge \mathrm{WF}_{\langle g, o u t\rangle}(\) Snd \()\)
\(\Phi_{\mathrm{N}}^{\mathrm{u}} \triangleq \wedge \square\) Type \(N\)
    \(\wedge \forall i \in \mathcal{Z}_{N}:(p p[i]=g g[i]=0) \wedge(c t l[i]=\) "empty" \()\)
    \(\wedge \square\left[\exists i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i)\right]_{v a r N}\)
    \(\wedge \forall i \in \mathcal{Z}_{N}: \mathrm{WF}_{\text {varN }}(\operatorname{Empty}(i))\)
```

Figure 8: Formulas Φ_{2}^{u} and $\Phi_{\mathrm{N}}^{\mathrm{u}}$.

3.1 Step 1: Removing the Process Structure

Formulas Φ_{2}^{u} and $\Phi_{\mathrm{N}}^{\mathrm{U}}$ are defined in Figure 8. They can be thought of as uniprocess versions of the two algorithms. We obtained them by rewriting Φ_{2} and Φ_{N} as formulas with a single next-state relation, instead of as the conjunction of processes.

Step 1a is proved as follows.
1a. $\Phi_{2} \equiv \Phi_{2}^{\mathrm{u}}$
1a.1. Type $2 \Rightarrow\left([R c v]_{\langle p, b u f, \text { in }\rangle} \wedge[S n d]_{\langle g, \text { out }\rangle} \equiv[R c v \vee S n d]_{v a r 2}\right)$
Proof: Given below.

1a.2. \square Type $2 \Rightarrow\left(\square[R c v]_{\langle p, \text { buf,in }\rangle} \wedge \square[S n d]_{\langle g, \text { out }\rangle} \equiv \square[R c v \vee \text { Snd }]_{v a r 2}\right)$ Proof: Step 1a. 1 and rule TLA2.

1a.3. Q.E.D.
Proof: Step 1a. 2 and the definitions of Φ_{2} and Φ_{2}^{u}.
Step 1a. 1 is proved by showing that Type 2 implies

```
\([R c v]_{\langle p, b u f, \text { in }\rangle} \wedge[S n d]_{\langle g, o u t\rangle}\)
    \(\equiv\) by definition of \([A]_{v}\)
        \(\wedge R c v \vee\left(\langle p, b u f, i n\rangle^{\prime}=\langle p, b u f, i n\rangle\right)\)
        \(\wedge\) Snd \(\vee\left(\langle g, \text { out }\rangle^{\prime}=\langle g, o u t\rangle\right)\)
    \(\equiv\) by propositional logic
        \(\vee R c v \wedge\left(\langle g, \text { out }\rangle^{\prime}=\langle g\right.\), out \(\left.\rangle\right)\)
        \(\vee \operatorname{Snd} \wedge\left(\langle p, b u f, i n\rangle^{\prime}=\langle p, b u f, i n\rangle\right)\)
        \(\vee R c v \wedge\) Snd
        \(\vee\left(\langle g, \text { out }\rangle^{\prime}=\langle g\right.\), out \(\left.\rangle\right) \wedge\left(\langle p, \text { buf, in }\rangle^{\prime}=\langle p\right.\), buf, in \(\left.\rangle\right)\)
    \(\equiv \vee R c v \quad\) Rcv implies \(\langle g, o u t\rangle^{\prime}=\langle g, o u t\rangle\)
        \(\vee\) Snd \(\quad\) Snd implies \(\langle p, b u f, \text { in }\rangle^{\prime}=\langle p\), buf, in \(\rangle\)
        \(\vee\) FALSE Type \(2 \wedge\) Rcv implies \(p^{\prime} \neq p\), and Snd implies \(p^{\prime}=p\)
        \(\vee \operatorname{var} 2^{\prime}=\operatorname{var} 2 \quad\left\langle v_{1}, \ldots, v_{m}\right\rangle^{\prime}=\left\langle v_{1}, \ldots, v_{m}\right\rangle\) iff \(\left(v_{1}^{\prime}=v_{1}\right) \wedge \ldots \wedge\left(v_{m}^{\prime}=v_{m}\right)\)
    \(\equiv[R c v \vee S n d]_{v a r 2} \quad\) by definition of \([A]_{v}\)
```

All of the nontemporal steps in our proof can be reduced to this kind of algebraic manipulation. From now on, we just sketch such proofs and leave the detailed calculations to the reader.

The proof of step 1 b is similar to that of step $1 a$, but it is a bit more difficult because it requires an invariant InvN, which asserts that the arrays $p p$ and $g g$ are representations of natural numbers.

```
\(\operatorname{Inv} N \triangleq(\exists m \in \mathcal{N}: p p=\operatorname{Rep}(m)) \wedge(\exists m \in \mathcal{N}: g g=\operatorname{Rep}(m))\)
```

1b. $\Phi_{\mathrm{N}} \equiv \Phi_{\mathrm{N}}^{\mathrm{u}}$
1b.1a. $\Phi_{\mathrm{N}} \Rightarrow \square \operatorname{InvN}$
b. $\Phi_{\mathrm{N}}^{\mathrm{u}} \Rightarrow \square \operatorname{Inv} N$

Proof: Described below.
1b.2. Type $N \wedge \operatorname{Inv} N \Rightarrow$
$\left[\exists i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i)\right]_{\text {varN }} \equiv$ $\forall i \in \mathcal{Z}_{N}:[F i l l(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)]_{v a r N}$
Proof: If $i \neq j$, then TypeN implies that Fill $(i) \wedge \operatorname{Fill}(j), \operatorname{Empty}(i) \wedge$ Empty (j), and Fill $(i) \wedge \operatorname{Empty}(j)$ are all false; and Type $N \wedge \operatorname{Inv} N$ implies Fill $(i) \Rightarrow \operatorname{NotProc}(j)$ and Empty $(i) \Rightarrow \operatorname{NotProc}(j)$. By Lemma 1.1, $\operatorname{Type} N \wedge \operatorname{Inv} N \operatorname{implies}\left(\forall i \in \mathcal{Z}_{N}: \operatorname{NotProc}(i)\right) \equiv\left(\operatorname{var} N^{\prime}=\operatorname{var} N\right)$.

1b.3.
\square Type $N \wedge \square$ Inv $N \Rightarrow$
$\square\left[\exists i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i)\right]_{\text {var } N} \equiv$ $\forall i \in \mathcal{Z}_{N}: \square[F i l l(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)]_{\operatorname{varN}}$ Proof: Step 1b.2.1 and rule TLA2.
1b. 4 Q.E.D.
Proof: Steps 1 b .1 and 1 b .3 and the definitions of Φ_{N} and $\Phi_{\mathrm{N}}^{\mathrm{u}}$.
Steps 1b.1a and 1b.1b are standard invariance properties; 1b.1a is proved as follows.

1b.1a $\Phi_{\mathrm{N}} \Rightarrow \square \operatorname{InvN}$
1b.1a. 1 TypeN $\wedge\left(\forall i \in \mathcal{Z}_{N}: p p[i]=g g[i]=0\right) \Rightarrow \operatorname{InvN}$
Proof: $\operatorname{Rep}(0)=\left[i \in \mathcal{Z}_{N} \mapsto 0\right]$
1b.1a. $2 \wedge I n v N$
$\wedge\left[\text { TypeN } \wedge\left(\forall i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)\right)\right]_{\text {var } N}$
$\Rightarrow I n v N^{\prime}$
1b.1a.2.1. Inv $N \wedge \operatorname{Type} N \wedge\left(i \in \mathcal{Z}_{N}\right) \wedge$ Fill $(i) \Rightarrow \operatorname{Inv} N^{\prime}$
1b.1a.2.2. Inv $N \wedge \operatorname{Type} N \wedge\left(i \in \mathcal{Z}_{N}\right) \wedge \operatorname{Empty}(i) \Rightarrow \operatorname{Inv} N^{\prime}$
1b.1a.2.3. Inv $N \wedge \operatorname{Type} N \wedge\left(\forall i \in \mathcal{Z}_{N}: \operatorname{NotProc}(i)\right) \Rightarrow \operatorname{Inv} N^{\prime}$
1b.1a.2.4. $\operatorname{Inv} N \wedge\left(\operatorname{var} N^{\prime}=\operatorname{var} N\right) \Rightarrow \operatorname{Inv} N^{\prime}$
1b.1a.2.5. Q.E.D.
Proof: Steps 1b.1a.2.1-1b.1a.2.4.
1b.1a.3. $\wedge \operatorname{Type} N \wedge\left(\forall i \in \mathcal{Z}_{N}: p p[i]=g g[i]=0\right)$
\wedge ロTypeN
$\wedge \square\left[\forall i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)\right]_{v a r N}$
$\Rightarrow \square I n v N$
Proof: Steps 1b.1a. 1 and 1b.1a. 2 and rules INV1 and INV2.
1b.1a.4. Q.E.D.
Proof: Step 1b.1a. 3 and rule TLA2, since $\left(\forall i:\left[A_{i}\right]_{v}\right) \equiv\left[\forall i: A_{i}\right]_{v}$.
Steps 1b.1a.2.1 and 1b.1a.2.2 are proved using Lemma 1.2; steps 1b.1a.2.3 and 1b.1a.2.4 follow because their hypotheses imply $p p^{\prime}=p p$ and $g g^{\prime}=g g$. As indicated in the appendix, the proof of step 1 b .1 b is similar.

3.2 Step 2: Adding History Variables

Formulas Φ_{2}^{h} and $\Phi_{\mathrm{N}}^{\mathrm{h}}$ are defined in Figure 9, which also defines their safety parts, Φ_{2}^{hS} and $\Phi_{\mathrm{N}}^{\mathrm{hS}}$. We obtained Φ_{2}^{h} by adding $p p, g g$, and ctl as history variables to Φ_{2}^{u}; and we obtained $\Phi_{\mathrm{N}}^{\mathrm{h}}$ by adding p and g as history variables to $\Phi_{\mathrm{N}}^{\mathrm{U}}$. In general, adding an auxiliary variable a to a formula F means writing a formula F^{a} such that $F \equiv \exists a: F^{a}$. A history variable is an

```
Init \(\triangleq \wedge p=g=0\)
        \(\wedge p p=g g=\left[i \in \mathcal{Z}_{N} \mapsto 0\right]\)
        \(\wedge c t l=\left[i \in \mathcal{Z}_{N} \mapsto\right.\) empty \(]\)
Type \(\triangleq\) Type \(2 \wedge\) TypeN
var \(\triangleq\langle p p, g g, c t l, p, g, b u f\), in, out \(\rangle\)
\(H R c v \triangleq \wedge R c v\)
    \(\wedge p p^{\prime}=[p p \operatorname{ExCEPT}![p \bmod N]=1-p p[p \bmod N]]\)
    \(\wedge c t l^{\prime}=[c t l \operatorname{ExCEPT}![p \bmod N]=" f u l l "]\)
    \(\wedge\) UnCHANGED \(g g\)
HSnd \(\triangleq \wedge\) Snd
    \(\wedge g g^{\prime}=[g g \operatorname{EXCEPT}![g \bmod N]=1-g g[g \bmod N]]\)
    \(\wedge c t l^{\prime}=[c t l\) ExCept \(![g \bmod N]=\) "empty" \(]\)
    \(\wedge\) UnChanged \(p p\)
\(\Phi_{2}^{\mathrm{hS}} \triangleq \wedge \square\) Type
    \(\wedge\) Init
    \(\wedge \square[H R c v \vee H S n d]_{v a r}\)
\(\Phi_{2}^{\mathrm{h}} \triangleq \Phi_{2}^{\mathrm{hS}} \wedge \mathrm{WF}_{\langle g, \text { out }\rangle}(\) Snd \()\)
\(\operatorname{HFill}(i) \triangleq \wedge \operatorname{Fill}(i)\)
    \(\wedge p^{\prime}=p+1\)
    \(\wedge\) UnCHANGED \(g\)
\(\operatorname{HEmpty}(i) \triangleq \wedge \operatorname{Empty}(i)\)
    \(\wedge g^{\prime}=g+1\)
    \(\wedge\) Unchanged \(p\)
\(\Phi_{\mathrm{N}}^{\mathrm{hS}} \triangleq \wedge \square\) Type
    \(\wedge\) Init
    \(\wedge \square\left[\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i) \vee \operatorname{HEmpty}(i)\right]_{\text {var }}\)
\(\Phi_{\mathrm{N}}^{\mathrm{h}} \triangleq \Phi_{\mathrm{N}}^{\mathrm{hS}} \wedge\left(\forall i \in \mathcal{Z}_{N}: \mathrm{WF}_{\text {varN }}(\operatorname{Empty}(i))\right)\)
```

Figure 9: Formulas Φ_{2}^{h} and $\Phi_{\mathrm{N}}^{\mathrm{h}}$.
auxiliary variable that records information from previous states. It is added by using the following lemma, which can be deduced from the results in [1]. Step 2 is easily proved by repeated application of this lemma.

Lemma 2 (History Variable) If h and h^{\prime} do not occur in Init, $\mathcal{A}_{i}, \mathcal{B}_{j}$, v, or f, and h^{\prime} does not occur in g_{i}, for all $i \in I$ and $j \in J$, then

$$
\begin{aligned}
\text { Init } \wedge \square & {\left[\exists i \in I: \mathcal{A}_{i}\right]_{v} \wedge\left(\forall j \in J: \mathrm{WF}_{v}\left(\mathcal{B}_{j}\right)\right) } \\
\equiv \exists h: & \wedge \text { Init } \wedge(h=f) \\
& \left.\wedge \square\left[\exists i \in I: \mathcal{A}_{i} \wedge\left(h^{\prime}=g_{i}\right)\right]_{\langle h, v}\right\rangle \\
& \wedge \forall j \in J: \mathrm{WF}_{v}\left(\mathcal{B}_{j}\right)
\end{aligned}
$$

3.3 Step 3: Equivalence of Φ_{2}^{h} and $\Phi_{\mathrm{N}}^{\mathrm{h}}$

In the two-process algorithm, p and g are the actual internal variables, while $p p, g g$, and $c t l$ are history variables. The situation is reversed in the N process algorithm. Step 3 involves showing that the history variables of one algorithm behave like the internal variables of the other. Its proof uses the following formulas, where $I n v$ will be shown to be an invariant of both Φ_{2}^{h} and $\Phi_{\mathrm{N}}^{\mathrm{h}}$.

$$
\begin{aligned}
& \operatorname{IsFull}(g, p, i) \triangleq \exists m \in \mathcal{N}:(g \leq m<p) \wedge(i=m \bmod N) \\
& \operatorname{Inv} \triangleq \wedge p p=\operatorname{Rep}(p) \\
& \wedge g g=\operatorname{Rep}(g) \\
& \wedge c t l=\left[i \in \mathcal{Z}_{N} \mapsto \text { if } \operatorname{IsFull}(g, p, i)\right. \text { then "full" else "empty"] } \\
& \wedge 0 \leq p-g \leq N
\end{aligned}
$$

The high-level structure of the proof is:
3. $\Phi_{2}^{\mathrm{h}} \equiv \Phi_{\mathrm{N}}^{\mathrm{h}}$
3.1a. Type $\wedge \operatorname{Inv} \Rightarrow\left(H R c v \equiv \exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i)\right)$
b. Type \wedge Inv $\Rightarrow\left(H S n d \equiv \exists i \in \mathcal{Z}_{N}: \operatorname{HEmpty}(i)\right)$
3.2. $[\text { Type } \wedge \operatorname{Inv} \wedge(H R c v \vee H S n d)]_{v a r} \equiv$
$\left[\text { Type } \wedge \operatorname{Inv} \wedge\left(\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i) \vee \operatorname{HEmpty}(i)\right)\right]_{\text {var }}$
3.3a. $\Phi_{2}^{\mathrm{hS}} \Rightarrow \square I n v$
b. $\Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow \square I n v$
3.4. $\Phi_{2}^{\mathrm{hS}} \equiv \Phi_{\mathrm{N}}^{\mathrm{hS}}$
3.5. $\square \operatorname{Inv} \wedge \Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow\left(\mathrm{WF}_{\langle g, \text { out }\rangle}(\right.$ Snd $\left.) \equiv\left(\forall i \in \mathcal{Z}_{N}: \mathrm{WF}_{\text {varN }}(\operatorname{Empty}(i))\right)\right)$
3.6. Q.E.D.

Proof: Immediate from steps 3.3-3.5.

Steps 3.1 and 3.2 are (nontemporal) action formulas. They make it intuitively clear why the two transformed formulas are equivalent. Step 3.1a is proved as follows.
3.1a. Type \wedge Inv $\Rightarrow\left(H R c v \equiv \exists i \in \mathcal{Z}_{N}: H F i l l(i)\right)$
3.1a. 1 Type \wedge Inv $\Rightarrow(H R c v \equiv \operatorname{HFill}(p \bmod N))$
3.1a.1.1. Type \wedge Inv $\Rightarrow((p-g \neq N) \equiv(\operatorname{ctl}[p \bmod N]=$ "empty" $))$

Proof: Arithmetic reasoning and the definition of Is Full.
3.1a.1.2. Type $\wedge \operatorname{Inv} \Rightarrow \operatorname{IsNext}(p p, p \bmod N)$

Proof: Lemma 1.1.
3.1a.1.3. Q.E.D.

Proof: Steps 3.1a.1.1 and 3.1a.1.2, and the definitions of HRcv and HFill.
3.1a.2 Type \wedge Inv $\Rightarrow\left(\operatorname{HFill}(p \bmod N) \equiv\left(\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i)\right)\right.$

Proof: By Lemma 1.1, Type \wedge Inv implies IsNext $(p p, p \bmod N)$ and $\neg I s N e x t(p p, i)$, if $i \in \mathcal{Z}_{N}$ and $i \neq(p \bmod N)$.
3.1a.3 Q.E.D.

Proof: Steps 3.1a.1 and 3.1a.2.
As indicated in the appendix, the proof of 3.1 b is analogous. Step 3.2 follows easily from step 3.1.

Step 3.3 asserts that Inv is an invariant of both formulas; its proof is a standard invariance argument.
3.3a. $\Phi_{2}^{\mathrm{hS}} \Rightarrow \square$ Inv
b. $\Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow \square I n v$
3.3.1. Init \Rightarrow Inv

Proof: $\operatorname{Rep}(0)$ equals $\left[i \in \mathcal{Z}_{N} \mapsto 0\right]$ and $\operatorname{IsFull}(0,0, i)=$ False, for all $i \in \mathcal{Z}_{N}$.
3.3.2a. Inv $\wedge[\text { Type } \wedge(H R c v \vee H S n d)]_{v a r} \Rightarrow I n v^{\prime}$
b. Inv $\wedge\left[\text { Type } \wedge\left(\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i) \vee \operatorname{HEmpty}(i)\right)\right]_{v a r} \Rightarrow I n v^{\prime}$

Proof: Given below.
3.3.3. Q.E.D.

Proof: Steps 3.3.1 and 3.3.2, and rules INV1 and INV2.
Step 3.3.2 asserts that the next-state actions leave Inv invariant. The proof of 3.3.2a is:
3.3.2a. Inv $\wedge[\text { Type } \wedge(H R c v \vee H S n d)]_{v a r} \Rightarrow$ Inv $^{\prime}$
3.3.2a. 1 Inv \wedge Type $\wedge H R c v \Rightarrow$ Inv $^{\prime}$

Proof: Assume Inv \wedge Type \wedge HRcv. Then Inv. 1^{\prime} is immediate because $p^{\prime}=p$ and $p p^{\prime}=p p ;$ Inv. 2^{\prime} follows from Lemma 1.2;

Inv. 4^{\prime} follows from Inv4, since HRcv implies $p^{\prime}=p+1, g^{\prime}=g$, and $p-g \neq N$; and Inv. 3^{\prime} holds because IsFull $\left(g^{\prime}, p^{\prime}, i\right) \equiv$ by definition of HRcv $\operatorname{IsFull}(g, p+1, i)$
\equiv by definition of IsFull $\exists m \in \mathcal{N}:(g \leq m<p+1) \wedge(i=m \bmod N)$
\equiv by Rcv. 1 and Inv. 4
if $i=p \bmod N$ then True else $\operatorname{IsFull}(g, p, i)$
3.3.2a.2 Inv \wedge Type \wedge HSnd \Rightarrow Inv ${ }^{\prime}$

Proof: Similar to the proof of 3.3.2a.1.
3.3.2a.3 Inv $\wedge\left(\right.$ var $^{\prime}=$ var $) \Rightarrow$ Inv $^{\prime}$

Proof: Immediate.
3.3.2a.4 Q.E.D.

Proof: Steps 3.3.2a.1-3.3.2a.3.
Step 3.3.2b follows from steps 3.3.2a and 3.2. This completes the proof of step 3.3.

Steps 3.4 and 3.5 , assert the equivalence of the safety and liveness parts of the formulas, respectively. Step 3.4 follows from 3.3 and

```
\(\square\) Type \(\wedge \square \operatorname{Inv} \Rightarrow\)
    \(\square[\operatorname{HRcv} \vee H S n d]_{v a r} \equiv \square\left[\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i) \vee \operatorname{HEmpty}(i)\right]_{v a r}\)
```

which follows from step 3.2 and rule TLA2. Step 3.5 has the following high-level proof.
3.5. $\square \operatorname{Inv} \wedge \Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow\left(\mathrm{WF}_{\langle g, \text { out }\rangle}(\right.$ Snd $\left.) \equiv\left(\forall i \in \mathcal{Z}_{N}: \mathrm{WF}_{\text {varN }}(\operatorname{Empty}(i))\right)\right)$
3.5.1. $\square \operatorname{Inv} \wedge \Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow$ $\left(\forall i \in \mathcal{Z}_{N}: \mathrm{WF}_{\operatorname{varN} N}(\operatorname{Empty}(i))\right) \equiv \mathrm{WF}_{\operatorname{varN}}\left(\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)$
3.5.2. \square Inv $\wedge \square$ Type $\wedge \square[H R c v \vee H S n d]_{\text {var }} \Rightarrow$ $\mathrm{WF}_{\langle g, \text { out }\rangle}($ Snd $) \equiv \mathrm{WF}_{\text {varN }}\left(\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)$
3.5.3. Q.E.D.

Proof: Steps 3.5.1 and 3.5.2.
We first consider step 3.5.1. When writing TLA specifications, one often has to choose between asserting fairness of $A_{1} \vee \ldots \vee A_{m}$ and asserting fairness of each action A_{i}. The choice becomes a matter of taste when the resulting specifications are equivalent. This is the case if, whenever one of the A_{i} becomes enabled, a step of no other A_{j} can occur before the next A_{i} step. For weak fairness, the equivalence is a consequence of the following result, which can be derived from the TLA proof rules of [5].

Lemma 3 If

$\operatorname{Enabled}\left\langle\mathcal{A}_{i}\right\rangle_{v} \wedge \square I n v \wedge \square\left[\mathcal{N} \wedge \neg \mathcal{A}_{i}\right]_{v} \Rightarrow \square \neg \operatorname{Enabled}\left\langle\mathcal{A}_{j}\right\rangle_{v}$
for all $i, j \in S$ with $i \neq j$, then
$\square I n v \wedge \square[\mathcal{N}]_{v} \Rightarrow\left(\mathrm{WF}_{v}\left(\exists i \in S: \mathcal{A}_{i}\right) \equiv\left(\forall i \in S: \mathrm{WF}_{v}\left(\mathcal{A}_{i}\right)\right)\right)$
We use this lemma to prove step 3.5.1.
3.5.1. $\square \operatorname{Inv} \wedge \Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow$ $\left.\left(\forall i \in \mathcal{Z}_{N}: \mathrm{WF}_{\text {varN }}(\operatorname{Empty}(i))\right) \equiv \mathrm{WF}_{\text {varN }}\left(\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)\right)$
3.5.1.1. $\Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow \square\left[\exists i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i)\right]_{\text {var } N}$

Proof: TLA2, since HFill($(i) \Rightarrow$ Fill (i) and $H E m p t y(i) \Rightarrow \operatorname{Empty}(i)$.
3.5.1.2. $\wedge i \in \mathcal{Z}_{N}$
$\wedge \operatorname{Next}(g g, i)$
$\wedge \square($ Inv \wedge Type $)$
$\wedge \square\left[\left(\exists j \in \mathcal{Z}_{N}: \operatorname{Fill}(j) \vee \operatorname{Empty}(j)\right) \wedge \neg \operatorname{Empty}(i)\right]_{\text {var } N}$
$\Rightarrow \square \operatorname{Next}(g g, i)$
Proof: By rules INV1 and INV2, since
Inv \wedge Type $\wedge(\operatorname{Fill}(j) \vee \operatorname{Empty}(j)) \wedge \neg \operatorname{Empty}(i)$
implies $g g^{\prime}=g g$, for all $i, j \in \mathcal{Z}_{N}$.
3.5.1.3. $\wedge\left(i, j \in \mathcal{Z}_{N}\right) \wedge(i \neq j)$
$\wedge \operatorname{Enabled}\langle\operatorname{Empty}(i)\rangle_{v a r N}$
$\wedge \square($ Inv \wedge Type $)$
$\wedge \square\left[\left(\exists k \in \mathcal{Z}_{N}: \operatorname{Fill}(k) \vee \operatorname{Empty}(k)\right) \wedge \neg \operatorname{Empty}(i)\right]_{\text {var } N}$
$\Rightarrow \square \neg \operatorname{Enabled}\langle\operatorname{Empty}(j)\rangle_{\text {var } N}$
Proof: Step 3.5.1.2 and rule STL4, since Enabled $\langle E m p t y(i)\rangle_{v a r N}$ implies $\operatorname{Next}(g g, i)$, and Lemma 1.1 implies

Inv \wedge Type $\wedge \operatorname{Next}(g g, i) \Rightarrow \neg \operatorname{Next}(g g, j)$
for all $i, j \in \mathcal{Z}_{N}$ with $i \neq j$.
3.5.1.4. Q.E.D.

Proof: Steps 3.5.1.1 and 3.5.1.3, and Lemma 3.
Finally, we prove 3.5 .2 , which completes the proof of the theorem.
3.5.2.
$\square I n v \wedge \square$ Type $\wedge \square[H R c v \vee H S n d]_{\text {var }} \Rightarrow$
$\mathrm{WF}_{\langle g, \text { out }\rangle}(S n d) \equiv \mathrm{WF}_{\text {varN }}\left(\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)$
3.5.2.1. Inv \wedge Type $\wedge[H R c v \vee H S n d]_{\text {var }} \Rightarrow$
$\langle S n d\rangle_{\langle g, o u t\rangle} \equiv\left\langle\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right\rangle_{\text {var } N}$
Proof: By steps 3.1b and 3.2, since Inv \wedge Type $\wedge[H R c v \vee H S n d]_{v a r}$ implies $\langle\text { Snd }\rangle_{\langle g, o u t\rangle} \equiv H S n d$, and

$$
\text { Inv } \wedge \text { Type } \wedge\left[\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i) \vee \operatorname{HEmpty}(i)\right]_{v a r}
$$

implies $\left\langle\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right\rangle_{v a r N} \equiv\left(\exists i \in \mathcal{Z}_{N}: \operatorname{HEmpty}(i)\right)$.

```
3.5.2.2. \(\square\) Inv \(\wedge \square\) Type \(\wedge \square[H R c v \vee H S n d]_{\text {var }} \Rightarrow\)
    \(\square \diamond\langle\text { Snd }\rangle_{\langle g, o u t\rangle} \equiv \square \diamond\left\langle\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right\rangle_{\text {var } N}\)
    Proof: \(\square\) Inv \(\wedge \square\) Type \(\wedge \square[H R c v \vee H S n d]_{v a r}\)
    \(\Rightarrow\) by 3.5.2.1 and rules STL5 and TLA2, since \(\langle A\rangle_{v} \equiv \neg[\neg A]_{v}\)
        \(\square[\neg \text { Snd }]_{\langle g, \text { out }\rangle} \equiv \square\left[\neg \exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right]_{\text {var } N}\)
    \(\Rightarrow \neg \square[\neg S n d]_{\langle g, o u t\rangle} \equiv \neg \square\left[\neg \exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right]_{\text {var } N}\)
    \(\Rightarrow\) by rules STL3, STL4, and STL5
        \(\square \neg \square[\neg \text { Snd }]_{\langle g, \text { out }\rangle} \equiv \square \neg \square\left[\neg \exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right]_{v a r N}\)
    \(\Rightarrow\) since \(\diamond \equiv \neg \square \neg\)
        \(\square \diamond \neg[\neg S n d]_{\langle g, \text { out }\rangle} \equiv \square \diamond \neg\left[\neg \exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right]_{\text {var } N}\)
    \(\Rightarrow\) since \(\langle A\rangle_{v} \equiv \neg[\neg A]_{v}\)
        \(\left.\square \diamond\langle\text { Snd }\rangle_{\langle g, o u t\rangle} \equiv \square \diamond\left\langle\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)\right\rangle_{v a r N}\)
3.5.2.3 \(\square\) Inv \(\wedge \square\) Type \(\wedge \square[H R c v \vee H S n d]_{\text {var }} \Rightarrow\)
    \(\square \diamond \neg\) Enabled \(\langle\text { Snd }\rangle_{\langle g, \text { out }\rangle} \equiv\)
        \(\left.\square \diamond \neg \operatorname{EnableD}\left\langle\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)\right\rangle_{\text {var } N}\)
```

 Proof: Rules STL2 (which implies \(F \Rightarrow \diamond F\)), STL4, STL5, and
 TLA2, since by 3.5.2.1, Inv \(\wedge\) Type \(\wedge[H R c v \vee H S n d]_{\text {var }}\) implies
 Enabled \(\left.\langle\text { Snd }\rangle_{\langle g, o u t\rangle} \equiv \operatorname{Enabled}\left\langle\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)\right\rangle_{\text {var } N}\)
 3.5.2.4 Q.E.D.

Proof: Steps 3.5.2.2 and 3.5.2.3, since $\mathrm{WF}_{v}(A)$ is defined to equal $\square \diamond \neg \operatorname{Enabled}\langle A\rangle_{v} \vee \square \diamond\langle A\rangle_{v}$.

4 Further Remarks

We have proved the equivalence of two different representations of the ring buffer. This is not just an intellectual exercise; the ability to transform an algorithm into a completely different form is important for applying formal methods to real systems. Going from the two-process version to the N process one reduces the internal state of each process from an unbounded number (p or q) to three bits ($p p[i], q q[i]$, and $c t l[i]$). As explained in [3], such a transformation enables us to apply model checking to unboundedstate systems.

In retrospect, it is not surprising that programs with different numbers of processes can be equivalent. Multiprocess programs are routinely executed on single-processor computers by interleaving the execution of their processes. The transformation of Φ_{2} and Φ_{N} to Φ_{2}^{u} and $\Phi_{\mathrm{N}}^{\mathrm{U}}$ can be viewed as a formal description of this interleaving.

Using an interleaving representation makes the proof of equivalence a bit simpler, but it is not necessary. The equivalence of noninterleaving
representations can be proved as follows. Let $R c v N I$ and $S n d N I$ be the actions obtained from Rcv and Snd by removing the unchanged conjuncts and adding the conjunct unchanged $U n B(p \bmod N)$ to RcvNI. Replacing Rcv and Snd with RcvNI and SndNI in the definition of Π_{2} yields a noninterleaving representation of the two-process program. Similarly, we get a noninterleaving representation of the N-process program by replacing Fill (i) and Empty (i) with actions FillNI (i) and EmptyNi(i) that have no unchanged conjuncts except the one for $\operatorname{Un} B(i)$. In the proof of equivalence, formula Φ_{2}^{u} is changed by replacing its next-state action $R c v \vee S n d$ with $R c v \vee S n d \vee(R c v N I \wedge S n d N I)$, and $\Phi_{\mathrm{N}}^{\mathrm{U}}$ is changed by replacing its nextstate action with $\exists i \in \mathcal{Z}_{N}:$ Fill $(i) \vee \operatorname{Empty}(i) \vee(\operatorname{FillNI}(i) \wedge \operatorname{EmptyNI}(i))$. Formulas Φ_{2}^{h} and $\Phi_{\mathrm{N}}^{\mathrm{h}}$ are obtained by adding history variables to the new versions of Φ_{2}^{u} and $\Phi_{\mathrm{N}}^{\mathrm{U}}$. The proof of equivalence is the same as before, except we have to consider the next-state actions' extra disjuncts. These disjuncts represent the simultaneous sending and receiving of values.

Indivisible state changes are an abstraction; executing an operation of a real program takes time. In TLA, we can represent the concurrent execution of program operations either as successive steps, or as a single step. Which representation we choose is a matter of convenience, not philosophy. We have found that interleaving representations are usually, but not always, more convenient than noninterleaving ones for reasoning about algorithms.

A proof that two algorithms are equivalent can be turned into a derivation of one algorithm from the other. Our proof yields the following derivation, where each equivalence is obtained from the indicated proof step(s).

$$
\begin{aligned}
& \Pi_{2} \equiv \exists p, q: \Phi_{2}^{\mathrm{u}} \quad 1 \mathrm{a} \\
& \equiv \exists p, q, p p, q q, c t l: \Phi_{2}^{\mathrm{h}} \quad 2 \mathrm{a} \\
& \equiv \exists p, q, p p, q q, c t l: \Phi_{2}^{\mathrm{h}} \wedge \square I n v \text { 3.3a } \\
& \equiv \exists p p, q q, c t l, p, q: \Phi_{\mathrm{N}}^{\mathrm{h}} \wedge \square I n v 3.4 \text { and } 3.5 \\
& \equiv \exists p p, q q, c t l, p, q: \Phi_{\mathrm{N}}^{\mathrm{h}} \quad 3.3 \mathrm{~b} \\
& \equiv \exists p, q: \Phi_{\mathrm{N}}^{\mathrm{U}} \quad 2 \mathrm{~b} \\
& \equiv \exists p, q: \Phi_{\mathrm{N}}^{\mathrm{u}} \wedge \square \operatorname{InvN} \quad 1 \mathrm{~b} .1 \mathrm{~b} \\
& \equiv \exists p, q: \Phi_{\mathrm{N}} \wedge \square \operatorname{InvN} \quad 1 \mathrm{~b} .3 \\
& \equiv \Pi_{\mathrm{N}} \quad 1 \mathrm{~b} .1 \mathrm{a}
\end{aligned}
$$

Our derivation uses rules of logic to rewrite formulas. In process algebra [6], analogous transformations are performed by applying algebraic laws. It would be interesting to compare a process-algebraic proof of equivalence of the two ring-buffer programs with our TLA proof.

A Proof of the Theorem

Theorem $\Pi_{2} \equiv \Pi_{\mathrm{N}}$
1a. $\Phi_{2} \equiv \Phi_{2}^{\mathrm{u}}$
1a.1. Type $2 \Rightarrow\left([R c v]_{\langle p, b u f, \text { in }\rangle} \wedge[S n d]_{\langle g, o u t\rangle} \equiv[R c v \vee S n d]_{\text {var } 2}\right)$
1a.2. $\square T y p e 2 \Rightarrow\left(\square[R c v]_{\langle p, b u f, i n\rangle} \wedge \square[S n d]_{\langle g, o u t\rangle} \equiv \square[R c v \vee S n d]_{v a r 2}\right)$
1b. $\Phi_{\mathrm{N}} \equiv \Phi_{\mathrm{N}}^{\mathrm{u}}$
1b.1a. $\Phi_{\mathrm{N}} \Rightarrow \square \operatorname{Inv} N$
1b.1a. 1 Type $N \wedge\left(\forall i \in \mathcal{Z}_{N}: p p[i]=g g[i]=0\right) \Rightarrow \operatorname{InvN}$
1b.1a. $2 \wedge \operatorname{InvN}$

$$
\begin{aligned}
& \wedge\left[\text { TypeN } N \wedge\left(\forall i \in \mathcal{Z}_{N}: \text { Fill }(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)\right)\right]_{\operatorname{var} N} \\
& \Rightarrow \operatorname{Inv} N^{\prime}
\end{aligned}
$$

1b.1a.3. \wedge Type $N \wedge\left(\forall i \in \mathcal{Z}_{N}: p p[i]=g g[i]=0\right)$

$$
\begin{aligned}
& \wedge \square \text { Type } N \wedge \square\left[\forall i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)\right]_{v a r N} \\
& \Rightarrow \square \operatorname{InvN}
\end{aligned}
$$

1b.1b. $\Phi_{\mathrm{N}}^{\mathrm{u}} \Rightarrow \square \operatorname{InvN}$
1b.1b.1. Type $N \wedge\left(\forall i \in \mathcal{Z}_{N}: p p[i]=g g[i]=0\right) \Rightarrow \operatorname{InvN}$
1b.1b.2. $\wedge \operatorname{InvN}$
$\wedge\left[\right.$ Type $N \wedge\left(\exists i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i)\right]_{\operatorname{var} N}$
$\Rightarrow I n v N^{\prime}$
1b.1b.3. \wedge Type $N \wedge\left(\forall i \in \mathcal{Z}_{N}: p p[i]=g g[i]=0\right)$
$\wedge \square$ Type $N \wedge \square\left[\exists i \in \mathcal{Z}_{N} \text { Fill }(i) \vee \operatorname{Empty}(i)\right]_{\text {var } N}$
$\Rightarrow I n v N^{\prime}$
1b.2. Type $N \wedge \operatorname{Inv} N \Rightarrow$

$$
\begin{aligned}
& {\left[\exists i \in \mathcal{Z}_{N}: \text { Fill }(i) \vee \operatorname{Empty}(i)\right]_{\operatorname{var} N} \equiv} \\
& \quad \forall i \in \mathcal{Z}_{N}:[\operatorname{Fill}(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)]_{v a r N}
\end{aligned}
$$

1b.3.
\square Type $N \wedge \square \operatorname{Inv} N \Rightarrow$ $\square\left[\exists i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i)\right]_{v a r N} \equiv$ $\forall i \in \mathcal{Z}_{N}: \square[\operatorname{Fill}(i) \vee \operatorname{Empty}(i) \vee \operatorname{NotProc}(i)]_{v a r N}$
2a. $\Phi_{2}^{\mathrm{u}} \equiv \exists p p, g g, c t l: \Phi_{2}^{\mathrm{h}}$
b. $\Phi_{\mathrm{N}}^{\mathrm{u}} \equiv \exists p, g: \Phi_{\mathrm{N}}^{\mathrm{h}}$
3. $\Phi_{2}^{\mathrm{h}} \equiv \Phi_{\mathrm{N}}^{\mathrm{h}}$
3.1a. Type \wedge Inv $\Rightarrow\left(H R c v \equiv \exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i)\right)$
3.1a.1 Type $\wedge \operatorname{Inv} \Rightarrow(H R c v \equiv \operatorname{HFill}(p \bmod N))$
3.1a.1.1. Type \wedge Inv $\Rightarrow((p-g \neq N) \equiv(\operatorname{ctl}[p \bmod N]=$ "empty" $))$
3.1a.1.2. Type $\wedge \operatorname{Inv} \Rightarrow \operatorname{IsNext}(p p, p \bmod N)$
3.1a.2 Type $\wedge \operatorname{Inv} \Rightarrow\left(\operatorname{HFill}(p \bmod N) \equiv\left(\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i)\right)\right.$
3.1b. Type \wedge Inv $\Rightarrow\left(H S n d \equiv \exists i \in \mathcal{Z}_{N}: \operatorname{HEmpty}(i)\right)$
3.1b. 1 Type \wedge Inv $\Rightarrow(H S n d \equiv \operatorname{HEmpty}(g \bmod N)$
3.1b.1.1. Type $\wedge \operatorname{Inv} \Rightarrow((p-g \neq 0) \equiv(\operatorname{ctl}[g \bmod N]=$ "empty" $))$
3.1b.1.2. Type $\wedge \operatorname{Inv} \Rightarrow \operatorname{IsNext}(g g, g \bmod N)$
3.1b. 1 Type $\wedge \operatorname{Inv} \Rightarrow\left(\right.$ HEmpty $(p \bmod N) \equiv\left(\exists i \in \mathcal{Z}_{N}: \operatorname{HEmpty}(i)\right)$
3.2. $\quad[\text { Type } \wedge \operatorname{Inv} \wedge(H R c v \vee H S n d)]_{v a r} \equiv$
$\left[\text { Type } \wedge \operatorname{Inv} \wedge\left(\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i) \vee \operatorname{HEmpty}(i)\right)\right]_{v a r}$
3.3a. $\Phi_{2}^{\mathrm{hS}} \Rightarrow \square I n v$
b. $\Phi_{\mathrm{N}}^{\mathrm{h}} \Rightarrow \square \operatorname{Inv}$
3.3.1. \quad Init \Rightarrow Inv
3.3.2a. Inv $\wedge[\text { Type } \wedge(H R c v \vee H S n d)]_{\text {var }} \Rightarrow$ Inv $^{\prime}$
3.3.2a. 1 Inv \wedge Type \wedge HRcv \Rightarrow Inv ${ }^{\prime}$
3.3.2a.2 Inv \wedge Type \wedge HSnd \Rightarrow Inv ${ }^{\prime}$
3.3.2a. 3 Inv $\wedge\left(\right.$ var $^{\prime}=$ var $) \Rightarrow$ Inv ${ }^{\prime}$
3.3.2b. Inv $\wedge\left[\text { Type } \wedge\left(\exists i \in \mathcal{Z}_{N}: \operatorname{HFill}(i) \vee \operatorname{HEmpty}(i)\right)\right]_{\text {var }} \Rightarrow$ Inv $^{\prime}$
3.4. $\quad \Phi_{2}^{\mathrm{hS}} \equiv \Phi_{\mathrm{N}}^{\mathrm{hS}}$
3.5. $\square \operatorname{Inv} \wedge \Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow\left(\mathrm{WF}_{\langle g, \text { out }\rangle}(\operatorname{Snd}) \equiv\left(\forall i \in \mathcal{Z}_{N}: \mathrm{WF}_{\text {varN }}(\operatorname{Empty}(i))\right)\right)$
3.5.1. $\square \operatorname{Inv} \wedge \Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow$
$\left(\forall i \in \mathcal{Z}_{N}: \mathrm{WF}_{\operatorname{varN}}(\operatorname{Empty}(i))\right) \equiv \mathrm{WF}_{\operatorname{varN}}\left(\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)$
3.5.1.1. $\Phi_{\mathrm{N}}^{\mathrm{hS}} \Rightarrow \square\left[\exists i \in \mathcal{Z}_{N}: \operatorname{Fill}(i) \vee \operatorname{Empty}(i)\right]_{\text {var } N}$
3.5.1.2. $\wedge i \in \mathcal{Z}_{N}$
$\wedge \operatorname{Next}(g g, i)$
$\wedge \square($ Inv \wedge Type $)$
$\wedge \square\left[\left(\exists j \in \mathcal{Z}_{N}: \operatorname{Fill}(j) \vee \operatorname{Empty}(j)\right) \wedge \neg \operatorname{Empty}(i)\right]_{\operatorname{var} N}$
$\Rightarrow \square \operatorname{Next}(g g, i)$
3.5.1.3. $\wedge\left(i, j \in \mathcal{Z}_{N}\right) \wedge(i \neq j)$
$\wedge \operatorname{Enabled}\langle E m p t y(i)\rangle_{v a r N}$
$\wedge \square($ Inv \wedge Type $)$
$\wedge \square\left[\left(\exists k \in \mathcal{Z}_{N}: \operatorname{Fill}(k) \vee \operatorname{Empty}(k)\right) \wedge \neg \operatorname{Empty}(i)\right]_{\text {var } N}$
$\Rightarrow \square \neg \operatorname{EnableD}\langle\operatorname{Empty}(j)\rangle_{\text {varN }}$
3.5.2. \square Inv $\wedge \square$ Type $\wedge \square[H R c v \vee H S n d]_{v a r} \Rightarrow$
$\mathrm{WF}_{\langle g, \text { out }\rangle}($ Snd $) \equiv \mathrm{WF}_{\text {varN }}\left(\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right)$
3.5.2.1. Inv \wedge Type $\wedge[H R c v \vee H S n d]_{\text {var }} \Rightarrow$ $\langle\text { Snd }\rangle_{\langle g, \text { out }\rangle} \equiv\left\langle\exists i \in \mathcal{Z}_{N}: \operatorname{Empty}(i)\right\rangle_{v a r N}$
3.5.2.2. \square Inv $\wedge \square$ Type $\wedge \square[H R c v \vee H S n d]_{\text {var }} \Rightarrow$

$$
\left.\square \diamond\langle S n d\rangle_{\langle g, \text { out }\rangle} \equiv \square \diamond\left\langle\exists i \in \mathcal{Z}_{N}: \text { Empty }(i)\right)\right\rangle_{v a r N}
$$

3.5.2.3 \square Inv $\wedge \square$ Type $\wedge \square[H R c v \vee H S n d]_{v a r} \Rightarrow$
$\square \diamond \neg$ Enabled $\langle\text { Snd }\rangle_{\langle g, o u t\rangle} \equiv$ $\left.\square \diamond \neg \operatorname{Enabled}\left\langle\exists i \in \mathcal{Z}_{N}: E m p t y(i)\right)\right\rangle_{\text {var } N}$

B Proof of Lemma 1

Lemma 1 If $m \in \mathcal{N}$ and $i \in \mathcal{Z}_{N}$, then

1. IsNext $(\operatorname{Rep}(m), i) \equiv(i=m \bmod N)$
2. $\operatorname{IsNext}(\operatorname{Rep}(m), i) \Rightarrow$

$$
\operatorname{Rep}(m+1)=[\operatorname{Rep}(m) \operatorname{except}![i]=1-\operatorname{Rep}(m)[i]]
$$

1. $\operatorname{Rep}(m+1)=[\operatorname{Rep}(m) \operatorname{Except}![m \bmod N]=1-\operatorname{Rep}(m)[m \bmod N]]$
1.1. CASE: $(m+1) \bmod 2 N=(m \bmod 2 N)+1$

Proof: It suffices to prove that

$$
\operatorname{Rep}(m+1)[j]=\text { if } j=m \bmod N \text { then } \operatorname{Rep}(m)[j]
$$

$$
\text { else } 1-\operatorname{Rep}(m)[j]
$$

for any $j \in \mathcal{Z}_{N}$. The proof follows.
1.1.1. $(j=m \bmod N) \equiv(j=m \bmod 2 N) \vee(j+N=m \bmod 2 N)$

Proof: Simple number theory.
1.1.2. If $j=m \bmod N$, then
$(j<1+(m \bmod 2 N) \leq j+N) \equiv \neg(j<m \bmod 2 N \leq j+N)$
Proof: Step 1.1.1 and simple arithmetic.
1.1.3. If $j \neq m \bmod N$ then
$(j<1+(m \bmod 2 N) \leq j+N) \equiv(j<m \bmod 2 N \leq j+N)$
Proof: Step 1.1.1 and simple arithmetic.
1.1.4. Q.E.D.

Proof: By 1.1.2, 1.1.3, and the definition of Rep.
1.2. CASE: $(m+1) \bmod 2 N \neq(m \bmod 2 N)+1$

Proof: The case assumption implies m mod $2 N=2 N-1$, which implies

$$
\begin{aligned}
& \operatorname{Rep}(m)=\left[i \in \mathcal{Z}_{N} \mapsto \text { if } i=N-1 \text { then } 0 \text { else } 1\right] \\
& \operatorname{Rep}(m+1)=\left[i \in \mathcal{Z}_{N} \mapsto 0\right]
\end{aligned}
$$

1.3. Q.E.D.

Proof: Steps 1.1 and 1.2.
2. $\operatorname{IsNext}(\operatorname{Rep}(m), i) \equiv(i=m \bmod N)$

The proof is by induction on m.
2.1. Case: $m=0$

Proof: $\operatorname{Rep}(0)=\left[j \in \mathcal{Z}_{N} \mapsto 0\right]$ and $\operatorname{IsNext}(\operatorname{Rep}(0), i) \equiv(i=0)$, for $i \in \mathcal{Z}_{N}$.
2.2. Assume: $\operatorname{IsNext}(\operatorname{Rep}(m), i) \equiv(i=m \bmod N)$

Prove: $\operatorname{IsNext}(\operatorname{Rep}(m+1), i) \equiv(i=m+1 \bmod N)$
2.2.1. $(i=m \bmod N) \Rightarrow(\operatorname{IsNext}(\operatorname{Rep}(m+1), i) \equiv \neg \operatorname{IsNext}(\operatorname{Rep}(m), i))$

```
Proof: \(i=m \bmod N\) implies \(\operatorname{Is} \operatorname{Next}(\operatorname{Rep}(m+1), i)\)
    \(\equiv\) by definition of IsNext
            if \(i=0\) then \(\operatorname{Rep}(m+1)[0]=\operatorname{Rep}(m+1)[N-1]\)
                else \(\operatorname{Rep}(m+1)[i] \neq \operatorname{Rep}(m+1)[i-1]\)
    \(\equiv\) by step 1
            if \(i=0\) then \(1-\operatorname{Rep}(m)[0]=\operatorname{Rep}(m)[N-1]\)
                    else \(1-\operatorname{Rep}(m)[i] \neq \operatorname{Rep}(m)[i-1]\)
    \(\equiv \neg I s N e x t(\operatorname{Rep}(m), i)\)
```

2.2.2. $(i-1=m \bmod N) \Rightarrow(\operatorname{IsNext}(\operatorname{Rep}(m+1), i) \equiv \neg \operatorname{IsNext}(\operatorname{Rep}(m), i))$ Proof: $i-1=m \bmod N$ implies $\operatorname{IsNext}(\operatorname{Rep}(m+1), i)$

$$
\equiv \text { by definition of IsNext }
$$

$$
\text { if } i=0 \text { then } \operatorname{Rep}(m+1)[0]=\operatorname{Rep}(m+1)[N-1]
$$

$$
\text { else } \operatorname{Rep}(m+1)[i] \neq \operatorname{Rep}(m+1)[i-1]
$$

\equiv by step 1
if $i=0$ then $\operatorname{Rep}(m)[0]=1-\operatorname{Rep}(m)[N-1]$
else $\operatorname{Rep}(m)[i] \neq 1-\operatorname{Rep}(m)[i-1]$
$\equiv \neg \operatorname{IsNext}(\operatorname{Rep}(m), i)$
2.2.3. $(i \neq m \bmod N) \wedge(i-1 \neq m \bmod N) \Rightarrow$

$$
\operatorname{IsNext}(\operatorname{Rep}(m+1), i) \equiv \operatorname{IsNext}(\operatorname{Rep}(m), i)
$$

Proof: The hypothesis implies $\operatorname{IsNext}(\operatorname{Rep}(m+1), i)$

$$
\equiv \text { by definition of } I_{s} N e x t
$$

$$
\text { if } i=0 \text { then } \operatorname{Rep}(m+1)[0]=\operatorname{Rep}(m+1)[N-1]
$$

else $\operatorname{Rep}(m+1)[i] \neq \operatorname{Rep}(m+1)[i-1]$

$$
\equiv \text { by step } 1
$$

$$
\text { if } i=0 \text { then } \operatorname{Rep}(m)[0]=\operatorname{Rep}(m)[N-1]
$$

$$
\text { else } \operatorname{Rep}(m)[i] \neq \operatorname{Rep}(m)[i-1]
$$

$\equiv \operatorname{IsNext}(\operatorname{Rep}(m), i)$
2.2.4. Q.E.D.

Proof: By 2.2.1-2.2.3 and the induction assumption.
2.3 Q.E.D.

Proof: By steps 2.1 and 2.2 and mathematical induction.
3. $\operatorname{Rep}(m+1)=[\operatorname{Rep}(m) \operatorname{Except}![i]=1-\operatorname{Rep}(m)[i]]$

Proof: Immediate from steps 1 and 2.
4. Q.E.D.

Proof: Steps 2 and 3.

References

[1] Martín Abadi, Leslie Lamport, and Stephan Merz. Refining specifications. To appear.
[2] C. A. R. Hoare. Communicating sequential processes. Communications of the $A C M, 21(8): 666-677$, August 1978.
[3] R. P. Kurshan and Leslie Lamport. Verification of a multiplier: 64 bits and beyond. In Costas Courcoubetis, editor, Computer-Aided Verification, volume 697 of Lecture Notes in Computer Science, pages 166-179, Berlin, June 1993. Springer-Verlag. Proceedings of the Fifth International Conference, CAV'93.
[4] Leslie Lamport. How to write a proof. Research Report 94, Digital Equipment Corporation, Systems Research Center, February 1993. To appear in American Mathematical Monthly.
[5] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and Systems, 16(3):872-923, May 1994.
[6] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1980.

