

1

Migratory Applications

Krishna A. Bharat

Luca Cardelli

February 15, 1996

SRC Research
Report 138

Migratory Applications

Krishna A. Bharat and Luca Cardelli

February 15, 1996

This report appears in the Proceedings of the Eighth Annual ACM Symposium on User Inter-
face Software and Technology, Pittsburg, Pennsylvania, 15-17 November 1995.
© 1995 Association for Computing Machinery, Inc. Reprinted by permission.

Krishna A. Bharat is a PhD student at the Graphics, Visualization & Usability Center of the
College of Computing at the Georgia Institute of Technology.
His electronic mail addres is kb@cc.gatech.edu.

© Digital Equipment Corporation 1995

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of fee is granted for nonprofit edu-
cational and research purposes provided that all such whole or partial copies include the fol-
lowing: a notice that such copying is by permission of the Systems Research Center of
Digital Equipment Corporation in Palo Alto, California; an acknowledgment of the authors
and individual contributors to the work; and all applicable portions of the copyright notice.
Copying, reproducing, or republishing for any other purpose shall require a license with pay-
ment of fee to the Systems Research Center. All rights reserved.

Abstract

We introduce a new genre of user interface applications that can migrate from
one machine to another, taking their user interface and application contexts with
them, and continue from where they left off. Such applications are not tied to one
user or one machine, and can roam freely over the network, rendering service to a
community of users, gathering human input and interacting with people. We envis-
age that this will support many new agent-based collaboration metaphors. The abil-
ity to migrate executing programs has applicability to mobile computing as well.
Users can have their applications travel with them, as they move from one comput-
ing environment to another. We present an elegant programming model for creating
migratory applications and describe an implementation. The biggest strength of our
implementation is that the details of migration are completely hidden from the
application programmer; arbitrary user interface applications can be migrated by a
single “migration” command. We address system issues such as robustness, persis-
tence and memory usage, and also human factors relating to application design, the
interaction metaphor and safety.

Contents

1 Introduction . 1

2 Programming Model . 2

2.1 Network Semantics .2
2.2 Agents. .4
2.3 Agent Migration .5

3 Application Migration . 7

3.1 Visual Obliq .7
3.2 Implementing Migration .10
3.3 The Visual Obliq runtime .13
3.4 Variants .15

4 A Complete Example . 16

5 Issues Raised by Migration. 19

6 Related Work . 20

7 Conclusions . 22

8 Acknowledgments . 22

9 References. 23

1

1 Introduction

The goal of the human-computer interaction community is to make powerful appli-
cations easy to use, while retaining their full potential. For this purpose metaphors
have been devised; metaphors like overlapping windows, direct manipulation, and
hypermedia. A successful metaphor hides complexity, and allows users to accom-
plish their tasks with little effort. Often, a metaphor requires advances in technology
before it can be effectively implemented. Conversely, a new technology often needs
the introduction of new metaphors to harness it.

As the infrastructure for ubiquitous computing comes into being, new demands
will be placed on the way applications cope with the needs of mobile and distributed
users. New metaphors will be necessary to cope with these demands.

We introduce a new genre of user interface applications:

migratory applications

can migrate from one host to another, maintaining intact the state of their user inter-
face. After migration, a former host may shut down without affecting the applica-
tion. We discuss how application migration can be implemented at the programming
language/environment level. Our approach places some demands on the program-
ming environment, but almost none on the application programmer. No restrictions
are placed, in principle, on the type of the application being migrated. The entire
migration operation can be realized by the execution of a single command. The same
technique use for transmitting an application can be used to save the running appli-
cation to file and transmit it over other channels to be resumed at a later time.

Application migration is useful in the context of many agent-based collabora-
tion metaphors. For example:

1. Applications that follow a user across physical locations: the

ubiquitous
computing

metaphor. For “eager” behavior, some applications could use
a location sensing device such as an “active badge”, to automatically fol-
low the user.

2. Applications that serve a group of people by travelling to each person’s
site in turn (e.g. a meeting scheduler): the

electronic secretary

 metaphor.
3. Applications that interact with people on a user’s behalf and carry out an

agenda: the

interactive agent

 metaphor.
4. Communication over email that is interactive and intelligent: the

 interac-
tive message

 metaphor. Unlike previous implementations of “active
mail” [6], the recipient is able to forward the interactive message after
interacting with it.

2

In addition to self-induced migration as described so far, it is equally easy to
allow a program to be migrated under external control. We could “drag-and-drop”
programs from one machine to another in the same manner that we move files
between folders, and windows between screens.

Section 2 describes our approach to programming migratory applications. In
Section 3, we show how this paradigm was applied in the Visual Obliq environment
[3] to support the migration of (arbitrary) user interface applications. In Section 4 we
provide a walk-through of the process of creating a migratory application. In Section
5 we discuss some issues raised by migration. Section 6 lists related work. In Section
7 we draw some conclusions.

2 Programming Model

Our programming model is based on the facilities available in the Obliq distributed
scripting language [7].

2.1 Network Semantics

In Obliq, arbitrary data, including procedures, can be transmitted over the network.
A piece of Obliq data can be seen as a graph where some nodes are

mutable

 (mean-
ing that they have local state that can be modified by assignment) and where other
nodes are

immutable

 (meaning that they cannot be modified). For example, the pro-
gram text of a procedure is immutable and cannot be modified, while fields in an
object are mutable because they can be assigned new values.

2.1.1 Network Transmission

When a data graph is passed to a remote procedure, or returned from a remote pro-
cedure, we say that it is transmitted over the network.

The meaning of transmitting a data graph is the following (see Figure 1). Start-
ing from a given root, the graph is copied from the source site to the target site up to
the point where mutable nodes or network references are found. Mutable nodes
(indicated by shaded boxes) are not copied; in their place, network references to
those nodes are generated. Solid pointers represent either local or remote references.
Existing network references are transmitted unchanged, without following the ref-
erence. Sharing and circularities are preserved.

For example, an Obliq

object

 (one of the basic data structures) is never copied
over the network on transmission, since objects have state. A network pointer to the
object is transmitted in its place. The object can then be referenced remotely through

3

that network pointer; for example, one of its methods may be remotely invoked.
Arrays and updatable variables are similarly not copied on transmission, since

they have state.
Obliq procedures are first-class data and, like other data, have a value that can

be manipulated and transmitted. The value of a procedure is called a

closure

; it con-
sists of the program text of the procedure, plus a table of values for the global vari-
ables of the procedure. Figure 2 shows the closure for a procedure incrementing a
global variable x; the variable x denotes a mutable location containing 0.

The closure table contains a single entry, indicated by “where x = ...”:

The transmission of a closure (Figure 3) follows the same rules as the transmis-
sion of any data graph. When a closure is transmitted, all the program text is copied,
since it consists of immutable data. The associated collection of values for free vari-
ables is copied according to the general rule. In particular, the locations of global
updatable variables are not copied: network references are generated to their loca-
tion, so that they can be remotely updated.

ToFrom

Transmit

Figure 1: Transmission of a data graph

0

proc() x:=x+1; x end
where x =

x =

Figure 2: The closure of a procedure

proc ... x ... end
where x=

x =

From
proc ... x ... end
where x= To

Transmit

Figure 3: Transmission of a closure

4

2.1.2 Network Copy

In contrast to the default transmission mechanism, which stops at mutable nodes and
network references, a special primitive is provided to perform a

network copy

 of a
data graph. This primitive makes a complete local copy of a possibly mutable and
distributed graph.

Network copy is useful, for example, when moving a user interface along with
a migrating application.

A user interface is normally closely bound to site-dependent resources, such as
windows and threads. Since these resources cannot migrate, a stand-alone snapshot
of the user interface is first assembled. The snapshot consists of some complex data
structure, including a representation of the current state of all the live windows of the
application. This data structure, resembling the graph in the picture above, can be
copied over to the target site, and then converted back to a live interface.

2.2 Agents

An agent is a computation that may

hop

 from site to site over the network [19]. We
review the concepts of agents, agent servers, suitcases, and briefings. In Section 2.3,
we describe an Obliq implementation of agent hopping.

A

suitcase

 is a piece of data that an agent carries with it as it moves from site to
site. It contains the long-term memory of the agent. It may include a list of sites to
visit, the tasks to perform at each site, and the results of performing those tasks.

A

briefing

 is data that an agent receives at each site, as it enters the site. It may
include advice for the agent (e.g. “too busy now, try this other site”), and any site-
dependent data such as local file systems and databases.

An

agent server

, for a given site, is a program that accepts code over the net-
work, executes the code, and provides it with a local briefing.

A

hop instruction

 is used by agents to move from one site to the next. This
instruction has as parameters an agent server, the code of an agent, and a suitcase.
The agent and the suitcase are sent to the agent server for execution.

ToFrom

Copy

Figure 4: Network Copy

5

Finally, an

agent

 is a user-defined piece of code parameterized by a suitcase and
a briefing. All the data needs of the agents should be satisfied by what it finds in
either the suitcase or the briefing parameters. At each site, the agent inspects the
briefing and the suitcase to decide what to do. After performing some tasks, it typi-
cally executes a hop instruction to move to the next site.

If an agent has a user interface, it takes a snapshot of the interface, stores it in the
suitcase during the hop, and rebuilds the interface from the snapshot at the destina-
tion.

2.3 Agent Migration

As we said in the previous section, an agent is a procedure parameterized with a suit-
case and a briefing; the suitcase travels with the agent from site to site, while a fresh
briefing is provided at each site. We assume that the agent code is self-contained
(that is, it has no free variables).

Agents move from site to site by executing a hop instruction:

(* definition of the recursive procedure

agent

*)

let

rec

 agent =

proc

(suitcase, briefing)

(*

work at the current site

*)
(*

decide where to go next *)

hop(nextSite, agent, suitcase);

(* run

agent

at

nextSite

with

suitcase

*)

end

;

In Obliq, agents, suitcases, briefings, and hop instructions are not primitive
notions. They can be fully understood in terms of the network semantics of Section
2.1.

Agents are just procedures of two parameters. Suitcases and briefings are arbi-
trary pieces of data, such as objects. Each agent is responsible for the contents of its
suitcase, and each agent server is responsible for the contents of the briefing. Agent
servers are simple compute servers whose main task is to run agents and supply them
with appropriate briefings (and maybe check the agent’s credentials).

The hop instruction can be programmed in Obliq as follows:

let

 hop =

proc

(agentServer, agent, suitcase)
agentServer(

6

(1)

proc

(briefing)

fork

(

(2)

proc

()

(3)

agent(

copy

(suitcase), briefing);

end

);
ok

end

);

end

;

Suppose a call

hop(agentServer, agent, suitcase)

 is executed at
a source site. Here,

agentServer

is (a network reference to) a remote com-
pute server at a target site.

The call

agentServer(...)

 has the effect of shipping the procedure

(1) to
the remote agent server for execution. At the target site, the agent server executes the
closure for procedure (1) by supplying it with a local briefing.

Next, at the target site, the execution of the body of (1) causes procedure (2) to
be executed by a forked thread. Immediately after the fork instruction, procedure (1)
returns a dummy value (ok), thereby completing the call to hop that originated at
the source site.

The source site is now disengaged, while the agent computation carries on at the
target site. The thread of computation at the target site is driven by the agent server.
At the target site, the forked procedure (2) first executes copy(suitcase). The
suitcase, at this point of the computation, is usually a network pointer to the former
suitcase that the agent had at the source site. The copy instruction (an Obliq primi-
tive) makes a complete local copy of the suitcase, as described earlier. Therefore, the

ToFrom

proc(briefing)
fork((2))

end
where agent =
and suitcase =

agentServer =

Suitcase

proc(suitcase,
briefing)

Do work; hop(...);
end

Briefing(1)

Transmit

Figure 5: The hop instruction - Part I

Agent
Server

7

result of copy(suitcase) is a suitcase whose state is local to the target site, suit-
able for local use by the agent.

After the copying of the suitcase, the agent migration is complete. The source
site could now terminate or crash without affecting the migrated agent.

Finally (3), the agent is invoked with the local suitcase and the local briefing as
parameters. The program text of the agent was copied over as part of the closure of
procedure (1). Since the agent has no free variables, it can execute completely
locally, based on the suitcase and the briefing.

In the special case when the suitcase contains the entire application state, we
have a migratory application.

3 Application Migration

We used the agent migration paradigm described in the previous section to imple-
ment migratory applications in Visual Obliq.

3.1 Visual Obliq

Visual Obliq is an environment for rapidly constructing user interface applications
by direct manipulation [18]. It consists of:

• An interactive application builder that allows the user interface to be drawn
and programmed. The builder generates code in Obliq.

• Runtime support, consisting of libraries and network services.

In previous work [3] we showed how the Visual Obliq environment supported

ToFrom

agent(copy(suitcase),
briefing)

where briefing =
and agent =

Suitcase
proc(suitcase,

briefing)
Do work; hop(...);
end

Briefing

and suitcase =

Copy

Figure 6: The hop instruction - Part II

Agent
Server

8

the construction of distributed, multi-user applications (II, in Figure 7), in addition
to traditional, non-distributed applications (I).

Here we describe how the environment was extended to support the creation of
migratory, non-distributed applications (III). This was done in a manner transparent
to the user, allowing any non-distributed application (in I) to be migrated by a single
command. Migratory multi-user applications (IV) are significantly more compli-
cated to implement, since connectivity needs to be maintained as the migration hap-
pens. We have yet to tackle this class of applications.

The support for distribution in II (described in [3]) has little in common with the
support for migration. Hence we do not describe it here. However Visobliq, the GUI
builder used to draw and program the interface has remained the same.

3.1.1 Visobliq

Figure 8 shows Visobliq in action. The window on the left (in the background) is
called the design window, and the window on the right (in the foreground) is known
as the attribute sheet. The design window has a palette of widgets at the top, and a
drawing area below, where widgets may be pieced together to form application win-
dows. The application windows thus designed are called forms. The figure shows a
single form being designed, containing the following widgets: a video-player, a but-
ton, a browser, and a file-browser. Widget geometry and the hierarchical nesting of
widgets within a form can be manipulated interactively. All other resources are spec-
ified via the attribute sheet.

Double-clicking on a widget causes the resources of the widget to be loaded into
the attribute sheet, for modification by the programmer. This includes attributes that
determine the appearance and interactive behavior of the widget, as well as any code
that is attached to the widget. When the resources have been modified, the program-
mer presses the ‘Apply’ button to make the changes take effect.

Pressing the ‘Run’ button causes the application to execute within an internal

Static Migratory

Non
Distributed

I

II IV

III

Distributed

Figure 7: The space of networked applications

9

interpreter for testing and debugging. The ‘Code’ menu option provides a facility to
output code in Obliq, for stand-alone execution within a Visual Obliq interpreter. We
talk more about the interpreter and its special features to support migration in Sec-
tion 3.3.

3.1.2 Programming a single-user application

Each form defines a class of window objects, and can be multiply instantiated at run-
time. Every instance of a form receives a unique index, and can be referenced
through a global array that bears the form’s name. For example, if the form being
designed in Figure 8 were called MainWin, there would be an array called Main-
Win[...], containing references to instances of MainWin created at run-time.Wid-
gets are implemented as objects nested inside the form instance. Suppose the button
labeled ‘Capture’ were named CaptureBtn, the programmer would refer to the but-
ton within instance n of MainWin as MainWin[n].CaptureBtn.

While building a single-user application in Visobliq, the programmer is asked to
write four types of code in Obliq:

i. Callback code, which is attached to a widget

ii. Form support code, which is associated with a form.

iii. Global code. Any other code needed by the application can be placed here.

iv. Initialization code, which is executed when the program starts up and creates
the initial form instances. After this the execution is fully input driven.

Figure 8: The Visobliq application builder

10

The above programming framework is general enough for the construction of
most single-user UI applications.

3.2 Implementing Migration

The programmer makes the application migrate to a new site by executing the
migration command within a callback. Specifically, one of the following commands
is executed:

• MigrateTo(Host)

• MigrateToServer(ServerName, Host)

The first command migrates the application to a default agent server called
‘VOMigrate’, on the machine named Host. VOMigrate continues the applica-
tion from where it left off, and does not provide any briefing. This is sufficient for
basic application migration. The second command causes the application to migrate
to a customized agent server called ServerName, on the machine named Host. In
both cases the agent server is run by the user who receives the application after it
migrates.

3.2.1 The Migration Command

The semantics of the migration command is that it returns true if the application
is migrated successfully, and false upon failure. If it succeeds, the local instance
of the application terminates the moment the callback finishes. The user interface is
destroyed and the entire application state gets garbage-collected. In the event of fail-
ure, the application continues to execute locally as if nothing happened.

The migration command executes the following steps:

i. It first contacts the agent server at the destination to ensure that the migration
can happen. Upon failure it returns immediately with a false value.

Otherwise...

ii. It checkpoints the state of the user-interface into the Obliq objects that make
up the widget hierarchy.

This step is necessary because widgets in Visual Obliq are high-level “interface
objects” in Obliq, which realize their presentation using lower-level interactors in
the local UI toolkit. Currently, the only toolkit that is supported is Trestle [12], but
if Obliq were ported to a different environment, the local toolkit would be used.
Hence, Visual Obliq widgets do not maintain all of their state explicitly. In particular

11

they do not maintain an up-to-date copy of attributes that can be changed interac-
tively by the user (e.g. the geometry). These attributes are retrieved from the under-
lying toolkit whenever needed; either when the programmer’s code requires them,
or when the user interface state is being checkpointed.

iii. The user interface is destroyed, breaking links to the UIMS.

iv. Links to the local runtime are explicitly removed.

v. Visobliq prepares a suitcase, and executes the hop instruction discussed in
Section 2.3. Recall that a suitcase is a data structure that gets copied to the
destination. In this case, the suitcase contains a reference to each of the form-
instance arrays in the program.

If the hop instruction executes successfully, true is returned. Upon failure (if
the network operation raises an exception), the command rebuilds the user interface
from the saved state, in the same way that the agent server at the destination would
have, and returns false.

The hop instruction causes the agent server to perform a network copy of suit-
case. Since the suitcase contains references to all form-instance arrays, this involves
copying every piece of data that is reachable from a form-instance. It is easy to see
that this will copy over every piece of the application state that is relevant to future
execution. If a piece of data is not accessible from any form-instance, it will never
be used, and so it is not copied.

At the source site, due to step iii, all links between the interpreter’s UI threads
and the application are destroyed. Once the existing callbacks exit, the application
state becomes inaccessible to any thread in the system. The Obliq interpreter has
automatic garbage-collection. Hence shortly after migration, the application state
gets garbage collected.

Step iv ensures that the application state has no references to the Visual Obliq
runtime when it is copied. This was done to prevent the runtime from being copied
as well. At the new host, the local runtime is patched in, causing the local environ-
ment to take effect.

3.2.2 The Agent Server

The agent server is an extended Visual Obliq interpreter. In addition to an internal
UIMS thread, the agent server has a ‘migration’ thread to assist incoming agents.

When an application migrates in (at step 1 in Figure 9), the agent performs the
following operations:

12

i. It performs a network copy of suitcase, causing the entire application state to
be copied over.

ii. References to the local Visual Obliq runtime are added.

iii. For each form-instance in the application, it rebuilds its user interface based
on its saved state. Callbacks are re-attached. This sets up links between the
application and the local UIMS thread.

When an application migrates out (step 2), links from the UIMS are broken, and
soon its state is garbage-collected (step 3). In this manner, the agent server allows
applications to migrate in and out of the host repeatedly, without running out of
memory. Multiple applications can co-exist within the interpreter, because they will
not have links to each other.

User-defined agent servers are created by extending the default agent server to
provide application-specific briefing and access control. To be useful, the agent
server needs to have a user interface of its own to help the user monitor and regulate
the activities of migratory applications. For example, the user might stipulate: “I will
entertain only applications of type X”; “I will be back at time Y”; “If you get an agent
from so-and-so, provide file Z as input”. This presupposes an underlying mechanism
for authentication and encryption. There is work in progress to provide secure com-
munication and authentication at the Network Objects layer [5] – the transport layer
for Visual Obliq.

In practice, there are likely to be other locale-specific resources, such as file-
handles and network connections, that need to be preserved during migration. The
replication of such resources cannot be automated since it is highly application and

UIMS

Migration

Thread

Migrates Migrates Garbage

In Out Collected

Created
UI UI

Destroyed

 Thread

Duration of Visit
2 31

Figure 9: Operation of an Agent Server

13

situation dependent. For instance, it is not clear how open files should be treated.
One option would be to have the system reopen all open files upon reaching the des-
tination, but often the two sites may not share a common file-system. Hence, we let
the application programmer deal with the checkpointing and reinstantiation of such
resources. The programmer is given the option of adding code to two system-defined
routines: PreMigrate() and PostMigrate(), which are invoked before and
after migration respectively.

3.3 The Visual Obliq runtime

The ‘Visual Obliq interpreter’ is simply the Obliq interpreter with a set of support
libraries (known as the runtime) preloaded. The original purpose of the runtime was
to provide access to the local UI library and implement abstractions needed by dis-
tributed applications.

Recently the runtime was redesigned and extended to meet the needs of migra-
tory applications.

Firstly, since the runtime is closely tied to the local environment, it was decided
that it would not be copied when the application migrates. Hence, all access to the
runtime is through handles which are local to the interpreter in which the application
is currently resident. The handles are removed before migration, and get patched in
when the application arrives at a new host. Hence, all operations that involve local
system resources such as the network, processor, file-system and the UI toolkit, are
customized to the local environment.

In addition, the runtime provides the following facilities:

3.3.1 Migration Support

It implements the migration commands described earlier. The runtime at the source
accesses the agent server using a remote-object access mechanism known as ‘Net-
work Objects’ [5]. Then it checkpoints the local interface. At the target site, the agent
server copies the application state over and uses the local runtime to rebuild the
interface.

The two operations on the interface are implemented thus:

a) Checkpointing the user interface. This is done by walking the Visual Obliq
widget hierarchy for each form-instance in the application, and copying rele-
vant state information from the UI toolkit into the Obliq widget. Any attribute
that cannot be modified by the user (and can only be modified under program
control) need not be checkpointed, since the widget will already have the lat-

14

est value.

b) Rebuilding the user interface. The same mechanism used to create the orig-
inal user interface is used to rebuild it at new sites. The routine walks the
Visual Obliq widget hierarchy for each form-instance and creates for each
widget therein, a corresponding interface using interactors in the local toolkit.
In doing so it may adhere to the checkpointed geometrical attributes or decide
to override them, e.g. if the application migrates to a portable computer with a
substantially smaller screen, dimensions might shrink. This provides the flexi-
bility needed to cope with the differences between individual machines, while
preserving the appearance of the interface as far as possible.

In our present implementation, we have another intervening layer, FormsVBT
[2]. FormsVBT allows Visual Obliq widgets to be described in terms of sym-
bolic expressions representing the hierarchical arrangement of (smaller) UI
components. The runtime generates the symbolic expression corresponding to
each Visual Obliq widget by replacing tokens in a template with the attributes
of the widget. Users can customize the appearance of the widgets displayed
by their agent server by manipulating the template.

Once the user interface has been rebuilt, the runtime re-attaches callbacks so
that interaction can resume.

3.3.2 Safety

The runtime is responsible for safety, and protects the user from attacks and privacy
violations by the applications that migrate in. It does this by disabling all unsafe
commands (namely commands that could be used to damage the user’s environment
and/or violate privacy), and instead provides safe alternatives that are subject to
user-specified checks before execution.

In Obliq, all unsafe operations are readily identified by the fact that they require
the use of “access” handles to system resources. For instance a processor handle
is needed by routines that create new processes and execute system calls. Similarly
there are handles to provide various levels of access to the file-system. The Visual
Obliq runtime hides all system handles after having defined a “safe” version of each
routine that uses a handle. The safe-routines have the handles bound inside them. An
alien program can access a safe-routine but not the handles within it. These routines
are considered safe because they compare their op-code and argument list with pat-
terns in a user-specified configuration file (called .vorestrict), to decide which

15

operations are to be allowed and which are to be blocked.

Operations that are allowed by the configuration file are executed in the regular
manner. When a blocked operation is encountered, the runtime notifies the user that
the program is attempting something illegal and aborts the application. When an
unsafe operation falls in neither category (which is the default case when no prefer-
ences have been specified) the runtime rewrites the operation in a human intelligible
form, and pops up a notice to ask the user if it should be allowed to go through.

Unlike in Safe-Tcl [13], where a special “Safe” interpreter is required, we are
able to implement safety entirely at the user level. Most users would use a default
.vorestrict file provided by the system administrator. The ability to customize
the file and relax the restrictions is useful within workgroups, where there is a high
level of trust.

3.4 Variants

A variant of migration is cloning. An application is cloned by network copying it to
the new site without destroying it at the original site. One possible application of
cloning is in debugging. When a bug is encountered in an application, the user can
send a clone of the application to the person responsible for debugging it, instead of
a mere ‘bug report’. Another application would be a divide-and-conquer agent
mechanism, wherein an agent splits into multiple agents that interact independently
with various users, and later merge or resynchronize.

Obliq provides a pickle operation, which is very similar to the network copy.
Instead of replicating the data-graph, it writes it to a buffer. The contents of the buffer
can be saved to a file or transmitted over another transport e.g. e-mail. At a later point
in time, it can be converted back into the original data-graph, by the complementary

#allow
processNew ls /tmp/*
fileWrOpen /tmp/*
#block
processNew rm processNew([“xv”,...]);

blocked

allowed

neither

Figure 10: Safe Routines in Visual Obliq

16

unpickle operation. This allows Visual Obliq programs to checkpoint their state to
file when necessary. If agents are expected to be persistent and endure machine
crashes, they will need the ability to periodically save their state to stable storage,
and resume from a saved configuration when the machine restarts.

4 A Complete Example

We present a small survey agent in its entirety, to demonstrate how easy it is to create
a migratory application in Visual Obliq. The agent has an agenda consisting of a list
of hosts to visit.

At each host it presents the user with two top-level forms: CommentsForm,
shown in Figure 11, and SurveyForm, shown in Figure 12†. SurveyForm has
two questions to be answered by the user, and CommentsForm has an editor wid-
get at the top, where comments may be typed in.

When a user finishes with the questionnaire she clicks on the button labeled
“Done” to send the agent on to the next user. The read-only “Transcript” window
maintains a log of the input given by each user. When the agent has visited all hosts
in its agenda, it will return to the host where it started.The initial list of users and

†. The annotations represent widget names in Visobliq

CommentsForm Comments

SuggestBtn Transcript DoneBtn
(read only)

Figure 11: CommentsForm, a top-level form

17

hosts to visit is supplied by the person who starts the application. Subsequently,
other users may add to the agenda. Users and hosts are added to the agenda via the
Suggest form (Figure 13), which is popped up by clicking on the “Suggest Some-
one” button (in CommentsForm).

By default, the application is configured to create one instance of each top-level
form when it starts up. In this case CommentForm[0] and SurveyForm[0]
will be created. So no user specified initialization code is necessary.

The global code (shown below) contains a counter, NumVisited, to keep
track of the number of hosts visited, and the arrays, people[...] and
hosts[...], to keep track of the agenda. The host name of the originating site is
saved in OrginalHost.

SurveyForm Qn1

Success Qn2 (read only)

Figure 12: SurveyForm, another top-level form

SuggestForm

Agenda

AddBtn

Name

Host

Figure 13: SuggestForm, a popup in Comments-

18

var NumVisited = 0, people = [], hosts = [];
let OriginalHost = volibLocal.getHostName();

The following callbacks are added:
Clicking on SuggestBtn causes SuggestForm to pop up. At design time,

SuggestForm is anchored to CommentsForm. This causes SuggestForm
to become a field within CommentsForm. In Visual Obliq, SELF is used within
a callback to refer to the current form. Hence the callback for SuggestBtn is as
follows:

 SELF.SuggestForm.show();
When AddBtn is clicked, the contents of the typein fields, Name and Host, are

appended to the arrays, people and hosts respectively, and also to the browser
named Agenda.

let name = SELF.Name.getText();
let host = SELF.Host.getText();
people := people @ [name];
hosts := hosts @ [host];
SELF.Agenda.append(name & “ (” & host & “)”);

The callback for the slider named Success copies the current slider value into
the typein field named Qn2 :

let n = SELF.Success.getValue();
SELF.Qn2.putText(fmt_int(n));

When the button labeled “Done” is clicked, the user’s comments and responses
(to the questions in SurveyForm[0]) are appended to the editor Transcript.
The editor, Comments, contains the user’s comments. The answer to the first ques-
tion is the name of the currently selected choice inside the frame named Qn1. The
names of the three choices are Yes, Maybe and No (not shown). The answer to the
second question is the text inside the typein field named Qn2. Then the destination
host, dest, is computed and the migration command is invoked. If the migration
succeeds the loop is exited; otherwise it tries to migrate to the next host. The code to
do this is as follows:

let comments = SELF.Comments.getText();

19

SELF.Comments.putText(
“<Please Type Your Comments Here>”);

SELF.Transcript.appendText(people[NumVisited]
& “ said\n” & comments & “\n”
& “ Qn 1: ” & SurveyForm[0].Qn1.getChoice()
& “ Qn 2: ” & SurveyForm[0].Qn2.getText());
loop

if SELF.Agenda.numElements() is NumVisited
then

dest := OriginalHost;
else

dest := hosts[NumVisited];
 NumVisited := NumVisited + 1;

end;
if MigrateTo(dest) then exit end

end;

The application programmer perceives the migration command as a primitive
operation. In reality the operation MigrateTo(dest) involves:

• Contacting the VOMigrate agent server on dest.

• Checkpointing and destroying the user interface.

• Performing a network copy of suitcase, an array containing references to
CommentsForm[...] and SurveyForm[...]. This causes Com-

mentsForm[0], SurveyForm[0] and all the global code to be copied
over as well.

• Rebuilding the interface at dest; reattaching callbacks.

5 Issues Raised by Migration

The ability to migrate applications can substantially change the way we view pro-
grams, and the way we interact with them.

• Interaction Techniques. The distinction between executing programs and
data becomes blurry with the ability to migrate and checkpoint applications.
Applications can now be treated as first-class objects on the desktop, and sub-
ject to direct manipulation in the same manner as files and folders. For
instance, the iconic representation of an application could be dragged-and-
dropped (or cut-and-pasted) from one region to another, causing it to move

20

between machines and disks.

• Privacy. The ability to operate on an application from afar raises privacy and
access-control issues. Does the person who started the application have
“yank” and “kill” privileges? Most people would not like others to know what
applications they have on their desktop; yet users would like to keep track of
the agents they have sent out. It should be possible to restrict access to users
within a group.

• Secrecy. Then there is the issue of privacy in the reverse direction. The user
who receives an agent may violate the privacy of the sender by examining its
hidden agenda. For instance a car dealership may wish to send an agent to a
client, with a list of cars and a strategy to negotiate the price. It should not be
possible for the client to learn what the strategy is, by examining the agent
code or modifying the interpreter. It seems impossible to prevent this from
happening in software. It could possibly be achieved by having a trusted third-
party implement the interpreter in hardware, with encryption of the agent
code.

• Protocol. In any agent-human interaction there is the issue of protocol. How
long does an agent wait for a user to respond before deciding to move on?
Does it leave a note? How does it know if the user is busy or away? It could
look at the idle time. How does a user prevent unwanted agents from bother-
ing him, while keeping the door open for acceptable agents? Do agents have a
classification?

• Heterogeneity. If applications are to migrate between diverse architectures,
the widget set needs to be chosen carefully so that it can be rendered effi-
ciently in all environments. When rebuilding an interface, the checkpointed
state should be interpreted in the light of available resources and local prefer-
ences. Fonts and labels need to change to match the local language.

6 Related Work

Application migration most closely resembles the work on process migration in
Operating Systems [14, 20], although the aim of process migration is to do load-bal-
ancing and improve parallelism. Process migration is usually implemented at a low
level, making no assumptions about the application structure, or even about the pro-
gramming language. The machine architecture and environment are assumed to be

21

very similar, if not identical, at the two ends of the migration. Process migration is
unable to cope directly with applications that keep part of their state externally, e.g.
when much of the user interface state information is stored within a window system
server (as in the X window system).

Our priorities are very different. Our focus is on heterogeneity (interoperabilty
with diverse machine architectures), customization to the local environment (the
user interface should be built using the local UI toolkit), and the flexibility that
comes with implementing migration at the programming language level. In our sys-
tem, the application programmer can implement new migration strategies by re-pro-
gramming the migration mechanism. For instance migration could be limited to
selected parts of an application by appropriately modifying the suitcase. Split and
merge techniques could be used to deploy agents in parallel.

One of the strengths of our design is that migration is completely captured by the
semantics of the programming language. This makes it easy to comprehend the pro-
gram and troubleshoot it if it does not behave as expected. Also, heterogeneity is not
a problem, since correct implementations of the language are guaranteed to interop-
erate.

Migratory applications may also be viewed as mobile, interactive agents. The
term “agent” has been used with many different meanings. There are agents in AI,
in databases, and in application software; classification and search agents (robots
and knowbots) in information retrieval [10, 11, 15]; agents within adaptive applica-
tions and learning-by-demonstration systems [9]; and assistants in design automa-
tion and help systems [4]. Typically, these mobile agents are not interactive; for
example, search agents operate silently on behalf of a client which interacts with the
user. Conversely, interactive agents are usually not mobile across machines; they are
usually “symbiotic” and exist within some application context or workspace; for
example, helpers in learning-by-demonstration systems such as Eager [8], and “Bal-
loon Help” on the Macintosh desktop [1].

Agents that support collaborative work on the other hand require to be mobile
or at least distributed, and also need a user interface to interact with users. A major
advantage of our design is that any single-user application in Visual Obliq can be
turned into a mobile, interactive agent by invoking the migration command. When
not in use, an agent can write its state to disk and be restarted when needed.

Obliq resembles Java [17], with its object oriented, multi-threaded features, but
also has integrated support for distributed objects which Java lacks. HotJava [16]
and Safe-Tcl [13] have taken steps to ensure safe execution of external code. Safe-

22

Tcl supports virtually no end-user customization; HotJava allows users to restrict
the execution of incoming programs, based on the host they came from (using
access-lists). A difference between the execution of external programs in these sys-
tems and the migratory applications in Visual Obliq is that in the former case the
applications always begin executing from a default (start) state when they arrive at
an interpreter, instead of continuing from where they left off as in our case. Hence
it would not be possible to forward an arbitrary program to a new user after inter-
acting with it, as one could with a piece of annotated electronic mail.

7 Conclusions

The ability to migrate applications has several applications. In a world of ubiquitous
computing, users may like their applications follow them – from home to work and
to a colleague’s machine. A migratory, interactive application can act as an agent,
moving from one user’s machine to another, interacting with each user, and carrying
out an agenda. Such agents may be short-lived, if they are deployed by a user or a
group for a specific task. They could be long-lived as well and perform a role in a
work-group as a human colleague would. All of this presupposes a mechanism to
migrate arbitrary applications between machines.

We have presented a distributed language semantics that supports application
migration, and an architecture for migratory applications. The architecture has been
incorporated into the Visual Obliq application programming environment [3]. We
have yet to explore the full potential of this paradigm in collaborative work, but we
have successfully migrated a number of small to medium size applications. In these
cases, the migration operation took between 5 and 45 seconds over a local area net-
work, depending on the program size and network traffic.

8 Acknowledgments

We thank Marc H. Brown for founding the Visual Obliq project and being a great
source of help and encouragement.

23

9 References

[1] Apple, “Human Interface Guidelines”, Addison-Wesley, 1994.
[2] Avrahami, G., Brooks, K.P., and Brown, M.H., “A Two-View Approach to

Constructing User Interfaces”, Computer Graphics, 23(3):137-146, 1989.
[3] Bharat, K., and Brown, M.H., “Building Distributed Multi-User Applications

By Direct Manipulation”, Proc. ACM Symposium on User Interfaces Software
and Technology, Marina Del Rey, 1994, pp. 71-82.

[4] Bharat, K. and Sukaviriya, P., “Animating User Interfaces with Animation
Servers”, Proc. of UIST’93. pp. 69-79.

[5] Birrell, A.D., G. Nelson, S. Owicki, and E. Wobber, “Network objects”. Proc.
14th Symposium on Operating Systems Principles. 1993.

[6] Borenstein, N. and M.T. Rose, “MIME Extensions for Mail-Enabled Appli-
cations: application/Safe-Tcl and multipart/enabled-mail”, Draft, Bellcore,
Dover Beach Consulting, September, 1993.

[7] Cardelli, L., “A Language with Distributed Scope”, Computing Systems, 8(1),
27-59. MIT Press. 1995.

[8] Cypher, A., “EAGER: Programming Repetitive Tasks by Example”, Proc. of
CHI ‘91, 1991, pp. 33-39.

[9] Cypher, A. [Ed], “Watch What I Do - Programming by Demonstration”, MIT
Press, 1993.

[10] Emtage, A. and Deutsch, P., “Archie: An Electronic Directory Service for the
Internet”, Proc. USENIX Winter 1992 Conference, 1992, pp. 93-110.

[11] Goldberg, D., Nichols, D., Oki, B. and Terry, D., “Using Collaborative Filter-
ing to Weave an Information Tapestry”, Communications of the ACM, 35(12),
pp. 61-70, 1992.

[12] Manasse, M.S. and G. Nelson, “Trestle reference manual”. Research Report
#68. Digital Equipment Corporation, Systems Research Center. 1991.

[13] Ousterhout, John K., “Scripts and Agents: The New Software High Ground”,
Invited Talk at the Winter 1995 USENIX Conference, New Orleans, LA, Jan-
uary 19, 1995.

[14] Powell, M. and Miller, B., “Process Migration in DEMOS/MP”, Proc. of 9th
ACM Symposium on Operating System Principles, 1983, pp. 110-119.

[15] Sheth, B., and Maes, P., “Evolving Agents for Personalized Information Fil-
tering”, Proc. of IEEE Conference on AI for Applications. 1993.

[16] Sun Microsystems, “HotJava Browser: A White Paper”, Sun Microsystems
White Paper, 1994.

24

[17] Sun Microsystems, “The Java Language: A White Paper”, Sun Microsystems
White Paper, 1994.

[18] Shneiderman, B., “Direct Manipulation: A Step Beyond Programming Lan-
guages”, Computer, 16(8), 1983, pp. 57-68

[19] White, J.E., “Telescript technology: the foundation for the electronic market-
place”, White Paper, General Magic, Inc. 1994.

[20] Zayas, E., “Attacking the Process Migration Bottleneck”, Proc. of 11th ACM
Symposium on Operating Systems Principles, 1987, pp. 13-24.

