
June 26, 1998

SRC
Research
Report 153

Continuous Monitoring and
Performance Specification

Sharon E. Perl, William E. Weihl, and Brian Noble

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

Continuous Monitoring and
Performance Specification

Sharon E. Perl, William E. Weihl, and Brian Noble

June 26, 1998

Author Affiliation

Brian Noble is currently an Assistant Professor in the Electrical Engineering and
Computer Science Department at the University of Michigan. He can be reached
as bnoble@eecs.umich.edu.

c©Digital Equipment Corporation 1998

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

Abstract

CMon is a general-purpose performance monitoring system. It enables monitoring
of long-running programs in a setting where the experimenters who are interested
in the performance data are different from the users who run the programs that
generate the data. Among other things, this permits programs to be monitored
under real workload conditions.

PSpec is a language and set of tools forperformance assertion checking, an
approach to automating the testing of performance properties of complex systems.
It can be used in conjunction with the CMon system to produce a performance
monitor that runs continuously, over the lifetime of a program, and automatically
detects performance anomalies.

In this report we describe the design and implementation of CMon and the
continuous monitoring features of PSpec, and report on our experience using the
systems.

Contents

1 Introduction 1

2 Continuous Monitoring 2
2.1 Design . 3
2.2 Implementation Issues . 5

3 Performance Specification 6
3.1 Overview . 7
3.2 Concepts . 8
3.3 Language Features. 8
3.4 Support for Continuous Monitoring. 10
3.5 The Checker . 12

4 Experience 12
4.1 Argo . 13
4.2 Automounter .. 14
4.3 Juno-2. 15
4.4 Lectern . 16

5 Evaluation and Lessons 20
5.1 Successes . 20
5.2 Lessons Learned . 21

6 Conclusions 22

7 Acknowledgments 23

A PSpec Language Specification 24
A.1 Definitions . 24
A.2 Types . 25
A.3 Declarations . 25
A.4 Imports . 30
A.5 Assertions . 30
A.6 Solve Declarations . 30
A.7 Print Statements . 31
A.8 Specifications . 31
A.9 Expressions . 31
A.10 Grammar . 40
A.11 Built-in Functions. 42

B PSpec Tools - pcheck, peval, psolve 44
Name . 44
Syntax . 44
Description . 44
Flags . 46
Error Messages . 48
Notes . 48
Monitoring . 48
More on Psolve . 50
See Also . 52

C CMon Tools - telemonitor, telemonreg, snarflog 53
C.1 telemonitor . 53
C.2 telemonreg . 57
C.3 snarflog . 57

D Extended PSpec Example 60

1 Introduction

In this report we describe a performance monitoring system with several key prop-
erties. The system allows monitoring of long-running programs, such as servers,
editors, drawing programs, and browsers, where the experimenter would like con-
tinuous or periodic analysis of performance. It automates the analysis of the per-
formance data so that the experimenter need not constantly attend to the monitor-
ing system in order to detect problems. The system also permits the users of the
program—who can generate data under real workload conditions but who don’t
want to be bothered with performance data gathering—to be different from the
experimenters who want to process the data generated by the users as it becomes
available.

The system we built consists of two separate tools. The first is called CMon
(Continuous Monitoring). It provides the ability to capture logs produced by ap-
propriately instrumented programs while the programs are being run by users, and
direct the logs to experimenters who are interested in processing them. The ex-
perimenters can set up tools that process the logs and provide notification when
performance problems occur. CMon is designed to work with a wide variety of log
processing tools.

The second tool is a log processing tool designed specifically for use in the
Continuous Monitoring setting. The tool is part of a system called PSpec (Per-
formance Specification), which embodies an approach to automating the testing
of performance properties of complex systems. System designers write assertions
that capture expectations for performance, which can then be checked automati-
cally against monitoring data to detect potential performance bugs. Automatically
checking expectations allows a designer to test a wide range of performance prop-
erties as a system evolves: data that meets expectations can be discarded automat-
ically, focusing attention on data indicating potential problems.

The PSpec system consists of a language for writing performance assertions
together with tools for testing assertions and estimating values for constants in as-
sertions. The language is small and efficiently checkable, yet capable of expressing
a variety of performance properties. The PSpec tools are designed to be useful both
online in a continuous-monitoring setting as well as offline in settings where logs
are not processed until after the programs that generated them have exited (e.g.,
during performance regression testing).

There are hundreds of published papers on software performance monitoring
tools, covering topics such as data collection techniques, visualization, data analy-
sis systems, tuning, and debugging. (See the citations describing Pablo [10], mon-
itoring based on relational algebras [13], IPS-2 [6], Paradyn [5], XPVM [15], the
Windows NT Performance Monitor [14], and SNMP [11] for a sampling of the

1

work that has been done.) In addition, most (perhaps all) computer systems in-
clude support for performance monitoring of some kind, and additional tools are
available from third-party vendors. It is beyond the scope of this paper to include
a survey of this vast body of work. We believe, however, that the combination of
PSpec and CMon is interesting in the following ways:

• CMon provides a generic mechanism that can be used by programmers and
developers of any system or application to acquire and process monitoring
logs.

• CMon permits a monitoring log to be processed online by an arbitrary pro-
gram, supporting the construction of a flexible suite of data analysis and
notification mechanisms.

• The continuous monitoring features of PSpec provide a language that is ef-
ficient, expressive, and easy to use for analyzing monitoring logs to detect
performance anomalies and compute other useful data from logs.

Together, PSpec and CMon provide a powerful and general mechanism for au-
tomatically processing performance data obtained online under production work-
loads.

The initial PSpec work was done as part of the first author’s Ph.D. thesis [8] and
reported on in SOSP’93 [9]. The idea of continuous monitoring arose in the context
of that work. Preliminary design discussions for the CMon system took place in
1993, and detailed design and implementation were done from mid-1994 through
mid-1995. Changes to PSpec to support continuous checking were implemented in
early-to-mid 1995.

In Section 2 we describe the design of the CMon system and discuss some
implementation details. Section 3 gives an overview of PSpec, with a description
of the extensions specifically designed for continuous monitoring. Section 4 de-
scribes several experiments in using the systems to do continuous monitoring and
performance assertion checking. Section 5 discusses what we accomplished and
what we learned from this work. Section 6 concludes. The Appendices contain
a reference manual for the PSpec language, as well as the manual pages for the
PSpec and CMon tools.

2 Continuous Monitoring

We had several goals in designing CMon. We wanted to be able to monitor pro-
grams continuously or periodically, so that performance bugs would be detected

2

as soon as possible. This goal necessitates a certain degree of “hands-free” op-
eration, since it is unreasonable to expect experimenters to be attending to perfor-
mance monitoring at all times. We wanted to monitor programs remotely, so exper-
imenters could be different from users of the programs. We wanted the monitoring
to have a minimal impact on the programmer (in terms of setting up a program for
continuous monitoring) and on the program (in terms of performance and robust-
ness). Finally, we wanted to allow the use of a wide variety of tools for processing
the performance data gathered during monitoring, so that a single continuous mon-
itoring mechanism could support many kinds of performance data processing.

The remainder of this section describes the system that we designed and built
to meet these goals. The system runs on MIPS-based DECstation workstations
running the Ultrix operating system and on Alpha-based workstations [12] running
Digital Unix [2] (formerly OSF-1). Appendix C contains the manual pages for the
CMon tools.

2.1 Design

The CMon system has three major kinds of components, illustrated in Figure 1.
Snarflogis the interface between the program being monitored and the rest of the
CMon system. Atelemonitoris a kind of control panel through which an experi-
menter can direct continuous monitoring experiments. Aregistryconnects snarflog
instances with telemonitor instances. Typically there are multiple snarflogs, one for
each instance of a monitored program, and multiple telemonitors, at least one for
each experimenter. There is a single registry for any collection of snarflogs and
telemonitors that need to communicate with one another. A snarflog communi-
cates with at most one telemonitor at a time. A telemonitor may be communicating
with several different snarflogs at once.

A snarflog has two jobs: to direct its associated log to interested telemonitors,
and to make the monitored program robust to failures of telemonitors or registries.
Our philosophy is that if a piece of the CMon system fails, the monitored program
should continue to work, though perhaps some of the log it produces will be lost.
This supports our goal of having minimal impact on the performance, robustness,
and usability of the monitored program.

Snarflog runs in a separate process from the monitored program, taking the log
either on the standard input or via a named pipe. We assume that a log is composed
of a (possibly empty)log headerfollowed by sequence oflog recordscontaining
the performance data. Snarflog has a fixed-size buffer for log records. If some
records are not shipped to a telemonitor by the time the buffer fills up, those records
are discarded. We guarantee to discard a whole number of log records, and to save
the log header so that it is always available when a new telemonitor connects to the

3

Analysis Tools

Log

User Experimenter

Registry

Prog+

SnarfLog Telemonitor

Figure 1: The CMon System. CMon components are in black.

log stream (since the log header may contain information necessary for interpreting
the log records). Snarflog communicates with the registry when it starts up, so as to
make its presence known to the rest of the CMon system. Thereafter, it can receive
requests from telemonitors to start or stop sending log data. Once one telemonitor
stops receiving log data another can start. Snarflog runs as long as the monitored
program is producing a log.

A telemonitor provides a “control panel” through which an experimenter can
control monitoring experiments. The experimenter indicates which classes of mon-
itored programs are of interest by giving a pattern that matches a program name,
machine name, and process id (possibly including wild cards). This information
is passed to the registry. The experimenter also specifies a tool for processing the
log of a monitored program, and says whether monitoring is to start automatically
whenever an instance of that program starts. Through the telemonitor interface,
the experimenter can see which monitored program instances are running or have
completed, and can look at the results of processing the logs as they are computed.

Finally, the registry ties together snarflogs and telemonitors. Snarflog notifies
the registry when it starts up, providing a handle through which telemonitors can
make direct requests for log data. The registry keeps track of which telemonitors
are interested in which classes of monitored programs, and notifies the interested
telemonitors whenever an instance of a class starts up.

4

The mechanism for causing programs to produce logs is outside of the CMon
system proper. The system that we built uses two different mechanisms. One is an
in-house tool calledetp(“elapsed time profiler”), which modifies a program binary
to produce log records of procedure calls and returns. Another is thetrace facility,
available in many varieties of Unix systems, which produces log records of system
calls and returns.

A programmer who wants to arrange for a program to be monitored would do
the following. First, run a telemonitor and set up a class that specifies the program
to be monitored (probably by name) and the desired tool for processing the output.
This information can be saved in a telemonitor configuration file. Next, arrange
that the program is always run in conjunction with snarflog—there are automatic
tools provided with the CMon system that generate scripts to do this. Finally, make
sure that a registry and a telemonitor are running while the log data from running
programs is to be collected.

2.2 Implementation Issues

CMon’s implementation is fairly straightfoward. We chose to implement all of the
programs (snarflog, telemonitor, and the registry) in the Modula-3 programming
language [7], using Network Objects [1] (Modula-3’s object-oriented remote pro-
cedure call mechanism) for communication among the programs. The implemen-
tation was done in 1994, and there was no clearly better choice of programming
technology at the time for our prototype system. If we were starting on the imple-
mentation today, in 1998, we would probably make different choices. In particular,
we would probably implement the telemonitor UI as a Java applet, thereby making
it accessible through a web browser.

The implementation of the telemonitor required careful attention to concur-
rency and locking, to handle all of the asynchronous events correctly while keep-
ing the UI responsive. Other than this, the more interesting implementation issues
involved the handling of logs.

The snarflog program has the responsibility for forwarding an application’s log
to interested telemonitors. By design, the log may be directed to different tele-
monitors over the course of the application’s run, or any given telemonitor may
intermittently stop receiving the log. Snarflog has to do two things to ensure rea-
sonable behavior when a telemonitor begins receiving a log in midstream. First, if
the log has a header, snarflog must save the header and prepend it to the log stream
each time the log stream is picked up anew by a telemonitor. Second, snarflog must
ensure that a telemonitor picks up the log stream at a log record boundary. These
actions ensure that the log processing tools invoked by the telemonitor receive what
appears to be a complete log, with a header and a whole number of log records.

5

Two other implementation issues arose specifically in the context of handling
logs produced by etp-instrumented programs. First, in order for snarflog to recog-
nize log headers and log record boundaries it is necessary to disable etp’s normal
log compression. This was easily accomplished by an existing switch to etp. Sec-
ond, etp puts timestamps on all of its log records, recording a relatively small time
counter (a few seconds worth) and reconstructing higher order bits of timestamps
by inferring when the counter wraps. Initially, etp ensured that at least one log
record was generated within each counter wrap interval, so that all wraps could
be inferred. But this meant that during a long idle period for a program, a steady
stream of log records was still being produced just for the purpose of detecting
timer wraps. This seemed wasteful of resources when continuously monitoring a
long-running program. At our request, etp’s designer modified etp so that it instead
counts the number of counter wraps during an idle period and emits just a single
log record counting the number of wraps rather than one log record per wrap inter-
val. This reduces logging and continuous monitoring overhead significantly while
a program is idle.

3 Performance Specification

We now turn to the second portion of this work: the PSpec tools. The PSpec
system embodies an approach that we callperformance assertion checking. In this
approach, system designers write assertions to capture their expectations about per-
formance. These assertions are then checked automatically, focusing the designers’
attention on monitoring data that indicate potential performance bugs. Our inten-
tion is that once a good set of assertions for a system is in place, they should be
monitored continuously, while the system is in actual use. This enables perfor-
mance problems to be detected soon after they appear.

While the PSpec language and tools were designed before the CMon system,
we had in mind that they would eventually be used for continuous monitoring.
However, PSpec is useful in other contexts as well:

1. Performance regression testing: when a system is changed, performance as-
sertions can be rechecked to ensure that the system still meets expectations.

2. Performance debugging: successively more detailed performance assertions
may be helpful for pinpointing the location of performance problems in the
system.

3. Clarifying expectations: writing precise performance assertions helps sys-
tem designers understand what they can and cannot guarantee about their
systems.

6

Solver CheckerEvaluator

Program +
Monitoring

Perf.
Spec.

assertion
failures

Log

computed
values

Figure 2: The PSpec approach

An earlier paper [9] gives a good overview of the PSpec language through a
series of examples. That paper was written before the language and tools fully
supported continuous monitoring. In this report, we briefly review the basic con-
cepts of the language and then present the extensions for continuous monitoring.
Appendix A gives a complete description of the current PSpec language, while
Appendix B contains the manual pages for the PSpec tools.

3.1 Overview

The PSpec system, illustrated in Figure 2, has several components: performance
specifications, monitoring logs, and the solver, evaluator, and checker tools.

A monitoring log represents anevent stream, which is an abstraction of a pro-
gram’s execution that contains the information relevant to expressing performance
assertions.

Performance specifications contain assertions about performance written in
the PSpec language. The language is a notation for expressing predicates about
event streams. Many common kinds of performance metrics, such as elapsed time,
throughput, utilization, and workload characteristics, can be expressed.

The user supplies an augmented version of the program that generates an event
stream in the form of a monitoring log for each run. The logging facility is not part
of PSpec. Instead, the PSpec tools use a log interface that can be implemented on

7

top of available logging facilities. PSpec is most useful with logging facilities that
permit user-defined event types, but also works if only a fixed set of event types is
available. In particular, PSpec works with the etp and trace monitoring facilities
mentioned earlier.

The checker is the PSpec tool of interest for continuous monitoring. It takes
as input a performance specification and a monitoring log; it produces as output
a report of which assertions fail to hold for the run represented by the log. The
checker was used in our continuous monitoring experiments. It is discussed further
is Section 3.5 and its manual page appears in Appendix B.

The evaluator and solver are useful for performance debugging and for writ-
ing performance specifications. The evaluator provides a read-eval-print loop for
evaluating expressions against data in a log. The solver uses logged data to help a
specification writer determine values for numeric constants in assertions. Manual
pages for these tools appear in Appendix B and a sample evaluator session appears
in Appendix D, but we do not discuss them further in this paper.

3.2 Concepts

An event streamis a sequence oftyped events. These events have named, nu-
meric attributes. An event contains information recorded at a single point in a
program’s execution. Depending upon the available monitoring facilities, a spec-
ification writer may or may not have control over what types of events appear in
event streams.

An interval consists of all events in a log between a designatedstart eventand
anend event. Intervals have named types and namedmetrics. An interval’s metric
values are based on the events in that interval. Interval types are defined by a spec-
ification writer; they are the primary abstraction used in writing PSpec assertions.
Typically, a specification writer decides what to assert about a programs’s perfor-
mance, defines interval types that capture the necessary metrics, and then writes
predicates that apply to a set of intervals.

3.3 Language Features

The PSpec language provides constructs for declaring event types, declaring in-
terval types, and expressing assertions. A performance specification is comprised
of a set of performance assertions with their accompanying declarations. Figure 3
shows a sample performance specification containing event type declarations, an
interval type declaration, and assertions; we will use it to illustrate the main PSpec
language features. The specification contains assertions about Read operations in
a file system.

8

perfspecFSRead
timed eventStartRead(tid, size);

EndRead (tid);
event CacheHit(tid);
interval Read =

s: StartRead, e: EndReadwheree.tid = s.tid
metrics

time = ts(e)− ts(s),
size = s.size,
hit = {count c : CacheHitwherec.tid = s.tid} 6= 0

endRead;
assert{& r : Read : r.time≤ 10 ms};

{mean r : Read : r.time} ≤ 5 ms;
{& r : Readwherer.size≤ 4096 : r.time≤ 8 ms};
{count r : Readwherer.hit} / {count r : Read} ≥ 0.75

endFSRead

Figure 3: An example performance specification.

An event type declaration introduces a type name and a list of attribute names.
The example specification in Figure 3 includes declarations that introduce the event
namesStartRead, EndRead, andCacheHit(the first two events are declared to have
timestamps, while the third does not). The names in parentheses,tid andsize, are
the attribute names for the event types. The rules for matching event types in a
performance specification with events in event streams are specific to the particular
monitoring log format.

An interval type declaration introduces a new interval type, which identifies a
set of intervals resulting from an event stream. The declaration includes predicates
for determining whether an event in the log is the start or end event for an interval
of the type, and expressions for computing the metric values for an interval of the
type.

The predicates for the start and end events in an interval type declaration may
refer to the type of the event and to values of the event’s attributes. The predi-
cate for an end event may also refer to attribute values of the corresponding start
event. In Figure 3 we see an interval type declaration where the start event has type
StartRead. The end event has typeEndRead, along with the restriction that itstid
attribute be the same as the start event’stid attribute. Thetid attribute records a
thread identifier. This type of restriction is useful for matching start and end events

9

of intervals in an event stream that contains events from multiple threads.
The example interval declaration contains threemetric definitions, for metrics

namedtime, size, andhit. Each of an interval’s metrics is evaluated over the events
spanned by the interval. Thetime metric is defined to be the difference of the
timestamps of end and start events of the interval, i.e., the duration of the inter-
val. Thesizemetric is the value of thesizeattribute from the interval’s start event
(which records how many bytes are being read). Thehit metric records a boolean
value that indicates whether aCacheHitevent with the appropriate thread identifier
occurred between the start and end events for the interval. The intention is that a
CacheHitevent would be generated in the event stream if the Read operation could
be serviced entirely from an in-memory cache, without having to go to disk.

An assertion in a performance specification is a predicate on the events and
intervals in event streams. One simple kind of assertion is a predicate that applies
to all events or intervals of a particular type in a log. For example, the first assertion
following theassertkeyword in Figure 3 can be read as: “for all intervalsr of type
Read, the value ofr ’s timemetric is at most 10 milliseconds”. This assertion is an
example of anaggregate expression, which provides a way to generate a sequence
of values and combine them with an operator. The remaining assertions in the
example also use aggregate operators: to compute the mean value of a series of
metrics, to express a “forall” type assertion over a restricted series of intervals, and
to count the number of intervals in a restricted series.

This section has glossed over many details of the PSpec language in the interest
of conveying the main ideas in a brief space. See Appendix A and the paper cited
earlier for more extensive descriptions of the language.

3.4 Support for Continuous Monitoring

The basic interval types described above permit interval type declarations—and
therefore, metric calculations—based on actual events occuring in monitoring logs.
For continuous monitoring, we would also like to write assertions about what hap-
pens in a monitored program over fixed periods of time. For this purpose, we
introduce time-based interval types, which effectively allow us to divide an event
stream into chunks based on time, and then write assertions about each of those
chunks.

In a time-based interval type, either or both of the start and end event declara-
tions can be replaced by expressions denoting times. These declarations cause new
virtual time eventsto be merged into an event stream from a monitoring log that
contains timestamped events; the time-based intervals are then defined in terms of
the virtual time events. These events are merged in while processing the log so
they do not affect the actual monitoring.

10

interval Chunk =
s: every1 day, e:after 1 day

metrics
hitratio = {count r : Readwherer.hit} / {count r : Read}

endChunk.

Figure 4: A time-based interval type declaration.

Figure 4 shows an example of a time-based interval declaration. It declares an
interval of typeChunkto start every day and to last for a day. The start and end
events are new virtual time events with type namesstart$Chunkandend$Chunk.
The start events occur in the event stream at intervals of one day and each cor-
responding end event occurs one day after the start event, so each interval spans
one day. As usual, an interval of typeChunkincludes all events between its start
and end events, including other virtual time events. The metrichitratio calculates
the hit ratio over the course of a day for file system Read operations. Using this
declaration we could write the assertion:

assert {& c : Chunk : c.hitratio≥ 0.75} .

That is, for all intervalsc of typeChunk, the value ofc’s hitratio metric is at least
0.75. This is similar to the last assertion in Figure 3, except that it is more suitable
to being checked by a continuous monitor because its truth can be evaluated each
time aChunkinterval is generated (any interval for which the hit ratio is less than
0.75 falsifies the assertion). The earlier assertion is defined to apply over an entire
log, and couldn’t be checked until the program generating the log had terminated.
We hope that the file system is a very long-running program, so we wouldn’t want
to have to wait until it exited to check a performance assertion about it. Also,
the time-based assertion is more explicit about the range of Read operations over
which the ratio should be computed.

Other variants of time-based intervals are possible. For example, to do periodic
monitoring one could define an interval that starts every day and ends after one
hour. To have a sliding window, an interval could start every hour and end after
one day. Intervals that start with a particular real event type and end after a fixed
amount of time, or start every given time interval and end with a real event type
may also be useful. Note that in order to connect intervals to real time (for example,
an interval that starts at 2 am every morning), there must be events in the log that
record real timestamps in their attributes.

Writing useful performance specifications using time-based intervals does re-

11

quire some care. Arbitrarily dividing a log into chunks at specific time intervals
may leave the chunks with partial event-based intervals, which will then not be
recognized as sub-intervals of the chunks. So a specification writer must think
carefully about the meaning of metrics for time-based intervals. This problem
shows up in the example presented in Section 4.4.

3.5 The Checker

The job of the PSpec Checker is fairly straightforward: to report which assertions
in a specification fail to hold for a monitoring log. It also attempts to provide some
information (log context) that can help an experimenter determine why an assertion
failed.

As the checker reads through a monitoring log, it incrementally evaluates all
expressions in the specification that refer to events in the log. This includes aggre-
gate expressions over intervals such as the ones in the examples above. As each
interval’s end event is encountered, the metrics for the interval are evaluated, and
any aggregate expressions using the interval’s metrics are evaluated incrementally.
The “forall” (&) aggregate operator is treated specially when the checker is run-
ning in “continuous mode.” In that mode, which is intended for use with continuous
monitoring tools, whenever a conjunct of a “forall” aggregate expression evaluates
to false, the checker reports an assertion failure and the value of the interval that
caused it. It continues to evaluate further conjuncts of the aggregate expression as
they are encountered, even though the ultimate value of the aggregate expression
is known to be false from the first false conjunct. In this way, details of any further
assertion failures are also reported.

All other types of assertions (those that are not aggregates with the “forall”
operator) are evaluated after the end of the monitoring log is reached; this may be
when the monitored program exits, or when an experimenter using a telemonitor
disconnects from the monitored program.

4 Experience

We have applied the CMon and PSpec tools to four systems used at SRC:

• Argo, a teleconferencing system that provides real-time audio and video con-
nections among multiple users; it has stringent performance requirements.

• The NFS automounter, which dynamically mounts and unmounts shared net-
work file system volumes; network problems at SRC were being manifested
as delays in automounting.

12

• Juno-2, a constraint-based drawing system [4]; it uses a numerical constraint
solver whose performance is critical to the interactive nature of the applica-
tion.

• Lectern, a document viewing system designed to provide fast high-quality
display of documents; it also has stringent performance goals.

Argo, Juno-2, and Lectern were all developed at SRC. The NFS automounter is a
standard system utility.

In the subsections below, we briefly summarize our goals in monitoring these
systems and how we accomplished the monitoring.

4.1 Argo

The goal of the Argo system is to allow medium-sized groups of users to collabo-
rate remotely from their desktops in a way that approaches as closely as possible
the effectiveness of face-to-face meetings [3]. In support of this goal, Argo com-
bines high quality multi-party digital video and full-duplex audio with telepointers,
shared applications, and whiteboards in a uniform and familiar environment. As for
other teleconferencing systems, jitter is an important issue for Argo; variations in
the rate at which packets (both video and audio) are delivered can be quite annoy-
ing to users. Audio jitter is particularly noticeable, and there had been occasional
problems with the audio, so our experiments focused onargohear, the subsystem
responsible for delivering audio to the user. Our goal was to discover how much
jitter was occuring, how frequently it occurred, and to isolate its causes.

The monitoring was accomplished by using etp to instrument the argohear pro-
gram, then setting up argohear to run under the CMon system. No source code
changes were required. Five people ran the instrumented argohear program for one
week. A telemonitor was used to collect the data and to save it to disk; data from
each separate run of argohear was saved in a separate log file. The performance of
argohear itself was minimally affected by the monitoring.

There were two possible sources of jitter in the audio system: the network
delays seen by separate packets of audio data, and the service time required for
each packet. After all the log files had been collected, we ran the PSpec checker
on each of the event logs to compute distributions of inter-arrival times and service
times for audio packets. The data showed that the jitter estimation algorithm used
to predict and compensate for network delays seemed to work; however, the service
time became erratic under high load, and the MIPS-based DECstations (40-MHz
R3000’s) used in the experiments could saturate with as few as three audio streams.
This information was quite useful to the designers of argohear in understanding and
fixing the jitter problems.

13

Note that the PSpec checker was not invoked directly by the telemonitor; we
experimented with argohear early in this work, and the checker did not support
continuous checking at that point. Given the way we monitored argohear, we could
have accomplished the same thing without the CMon infrastructure just by saving
log files in the shared file system. However, our experiments with argohear helped
us debug the CMon system and provided useful insights into how continuous mon-
itoring could be done better.

4.2 Automounter

We decided to try monitoring the automounter for several reasons: it was not a
“home-grown” application; it required different monitoring (the system “trace”
utility for tracing system calls rather than etp for tracing procedure calls); and at
the time SRC had been having a series of serious network problems that we thought
might have been detected by watching for unusual delays in the automounter. Our
hope was that early detection would have allowed a problem to be fixed before the
network died altogether. The latter was the primary motivation; since the network
was having problems that manifested themselves as serious performance problems
(to the point of making many machines unusable), we wanted to see if our tools
could both provide an early warning as problems were developing and also help
track them down.

We monitored the automounter by running “trace”, an Ultrix utility that traces
the system calls from a specified process. By tracing the activity of the automounter
process, we were able to identify intervals corresponding to the automounter re-
sponding to a request to mount a particular volume. One common symptom ob-
served during periods of network difficulties was a very long delay in the auto-
mounter responding to requests to mount a volume, so watching for this seemed
like a good way of detecting intermittent network outages.

Our automounter experiments were not very successful, for several reasons.
First, it was difficult to set up automated tracing of the automounter on machines
throughout our facility. Using etp to set up monitoring allows one to install an
instrumented executable, which then generates an etp log whenever it is run. With
the automounter, however, we had to run the trace utility on every machine on
which we wanted to collect a log, we had to set up snarflog to acquire the output
from trace (something that we had automated for etp but not for trace), and we
had to restart trace on a machine whenever the machine crashed or was rebooted.
Second, the PSpec checker did not support continuous checking at that point, so
manual intervention was required to feed the logs into the checker. Third, the
overhead of shipping trace logs around was quite high, which made using trace
less attractive than using etp for some other application. (The trace log format uses

14

ASCII and is much more verbose than etp’s format.) Finally, the underlying cause
of our network problems was found and fixed while we were working on setting up
monitoring for the automounter. We monitored the automounter for a few days on
a small number of machines, but no problems were detected. Since we were not yet
in a position to set up continuous monitoring and to use the system to monitor the
network on a regular basis, we decided to focus on completing the CMon system.

4.3 Juno-2

A key research question about Juno-2 is whether the constraint solver will scale.
The goal of monitoring was to understand the performance of the constraint solver
better by collecting data from program runs involving real data with real users, not
just from a small suite of test cases used by the developers. The developers wanted
to obtain data about the sizes of the constraint systems that arise in real use as well
as the elapsed time required to solve those systems.

As with argohear, the PSpec checker did not support continuous checking when
we started monitoring Juno-2, so the logs were simply saved by the telemonitor in
the file system so they could be analyzed later. The Juno-2 designers set things up
to monitor two procedures: one was the main constraint solver and the other was
introduced simply so that its arguments (the number of constraints and variables
in a constraint system, and the number of Newton iterations required to solve the
system) could be recorded in the log. The main goal of the monitoring was to
see if the data obtained previously from experiments with a small set of constraint
systems were representative of real-world constraint systems. As a minor side
benefit, the telemonitor was configured to send mail to one of the Juno-2 designers
whenever someone started up Juno-2, so he could keep track of how much people
were using it.

In the end, the designers of Juno-2 did not do much with the data collected.
There were two main problems. First, whenever the telemonitor crashed or the
machine on which it was running was rebooted, it had to be manually restarted.
Second, due to the nature of etp, shipping a new binary executable would render
useless any etp logs collected up to that point. A facility to save the symbol table
information from a binary made it possible to interpret old logs, but the process re-
quired too much manual intervention and was too error-prone to be very workable.
Since the designers were actively changing Juno-2 while they were monitoring it,
this made most of the collected logs useless.

15

4.4 Lectern

One of the main performance goals for Lectern was to display a page in less than
one second. We decided to monitor Lectern to test if the goal was being met during
actual use of the system by real users. We also wanted to collect data on peo-
ple’s use of the program. For example, do they tend to browse documents, flipping
quickly from one page to the next, or do they read them in depth, spending signif-
icant amounts of time on each page? How do they use the user interface? And so
on.

4.4.1 Monitoring Setup

The monitoring was accomplished by using etp to instrument the Lectern exe-
cutable, tracing four procedures. One of the procedures corresponds to virtually
all the time involved in displaying a page. Another corresponds to the user in-
putting a command. The other two correspond to particular commands for moving
among pages and documents. The arguments of the procedures recorded by etp
included enough information to be able to tell what command was requested and
whether two successive display requests were for the same page (e.g., to scroll
within a page) or for different pages.

We replaced the normal Lectern executable with a shell script that ran the in-
strumented executable together with snarflog, making the log available to any in-
terested telemonitors. We set up a telemonitor to pass the Lectern logs to the PSpec
checker, running the checker in continuous mode to check that the display time for
each page was less than a second. We also used the checker to produce a report
once per day with a summary of the usage during that day, including histograms
and averages of the time spent on each page and the number of pages accessed
per document, as well as a histogram showing the usage frequency of each of the
user-level commands in the user interface.

4.4.2 Assertion Checking

The performance specification used to check the assertions and compute the his-
tograms is shown in Figures 5 and 6. Four procedures are monitored:ApplyOp,
which does the work of dispatching a user-level command;lgm, which does vir-
tually all of the work of reading a page image from a file and rendering it to the
screen;ReadDoc, which is invoked when a new document is loaded; andGotoPage,
which is invoked whenever the user either scrolls on the current page or moves to
a new page.

The Lectern performance specification uses several constructs not discussed
above. First,procedures(proc) are declared. A declaration of the formproc P

16

perfspeclectern
proc Lectern ApplyOp(lect, op, time, event);
proc ImageRd lgm(t, width, height, hasMap)returns pixmap;
proc Lectern ReadDoc(lect, path, time, from);
proc Lectern GotoPage(lect, page, class, noisy)returns okay;

interval Apply = intv@Lectern ApplyOp
metrics

op = s.op,
% msTime is the time in milliseconds, truncated to the nearest multiple of 10.
msTime = trunc((timestamp(e)− timestamp(s))/10ms)∗10

endApply;

interval lgm = intv@ImageRdlgm
metrics

width = s.width,
height = s.height,
area = s.width∗ s.height,
msTime = trunc((timestamp(e)− timestamp(s))/10ms)∗10

end lgm;

interval Page =
s: call@Lectern GotoPage, e: call@LecternGotoPagewheree.page!= s.page

metrics
time = trunc((timestamp(e)− timestamp(s))/1sec)

endPage;

interval Doc =
s: call@Lectern ReadDoc, e: call@LecternReadDoc

metrics
pages ={count p : Page} + 1

endDoc;

Figure 5: Pspec input for Lectern monitoring, part 1.

17

interval Chunk =
s: every1 day, e:after 1 day

metrics
% histogram of opcodes:
applyOps ={+ a : Apply : a.op−→1},

% histogram of times for lgm:
lgmTimes ={+ l : lgm : l.msTime−→1},

% histogram for each image size of times for lgm:
lgmTimeByArea ={+ l : lgm : l.area−→(l.msTime−→1)},

% average pages read per document:
pagesPerDoc ={count p : Page} / ({count d : Doc} + 1),

% distribution of pages per document:
pageDist ={+ d : Doc : d.pages−→1},

% distribution of time per page:
pageTimes ={+ l : Page : l.Time−→1}

endChunk;

assert“1-day stats”: {& c : Chunk : false};
assert“1-sec max for display”:{& l : lgm : l.msTime<= 1000};

end lectern;

Figure 6: Pspec input for Lectern monitoring, part 2.

18

implicitly declares two event types, one of the formcall@P(corresponding to a call
of P) and the other of the formret@P(corresponding to a return ofP). The event
type call@P has attributes as listed in the procedure declaration; the event type
ret@Phas an attribute if the optionalreturnsclause is provided. These event types
can be used in interval declarations and in defining metrics or writing assertions.
Declaring a procedureP also declares an interval typeintv@P, with start and end
events nameds and e, that corresponds to a single invocation of that procedure
(from a call to a return in the same thread); the intervalsApply and lgm use this
predeclared interval type to define a new interval subtype with additional metrics
(e.g.,Apply = intv@Lectern ApplyOp).

The call and return events and interval types resulting from the four declared
procedures are used to define a number of additional interval types:Apply, which
corresponds to a single invocation ofApplyOp; lgm, which corresponds to a single
invocation of thelgm operation;Page, which corresponds to the interval from one
call of GotoPageto the next; andDoc, which corresponds to the interval from one
call of ReadDocto the next. Informally,Applyis the interval during which a single
user command is processed;lgm is the interval during which a page is read from
a file and rendered to the screen;Pageis the interval during which a single page
is displayed on the screen; andDoc is the interval during which a single document
is being examined by the user. The metrics for each of these intervals record or
compute various useful pieces of information; for example,Apply, lgm, andPage
all record the duration of the interval,lgmcomputes the size of the displayed image,
andDoccomputes the number of pages examined for the document.

An additional interval,Chunk, is defined to capture all of the events during a
one-day period. It has a number of metrics that compute statistics about the use
and behavior during that period. For example, the metricapplyOpsprovides a his-
togram of the different opcodes, mapping each opcode to a count of the number
of times it was used during the one-day period. This metric definition uses a fea-
ture of the PSpec language called amapping(defined in the language reference in
Appendix A). Briefly, a mapping is a partial function from integers to values; op-
erators are provided to create single-element mappings and to combine mappings.
Mappings can be used to construct histograms by making the domain of the map-
ping identify the thing to be counted, by making the range of the mapping be 1 for
each thing, and by combining the mappings with the+ operator.

Notice that someDocandPageintervals may overlap the boundaries ofChunk
intervals and, hence, would not be contained in anyChunkinterval. As a result,
some pages and documents would not be accounted for in the statistics of any
Chunkinterval. For this application it doesn’t really matter, but we point it out as
an example of the subtleties of writing useful time-based interval definitions.

Two assertions are used to print data periodically while a monitored instance

19

of Lectern is running. The first, called1-day stats, is a hack for printing each
day’sChunk. It assertsfalsefor everyChunkinterval. Sincefalsealways fails, this
forces the system to report an assertion failure for everyChunkinterval. When an
assertion fails for an interval, the checker prints out the interval’s metrics; thus, all
of the statistics computed for each one-day period are printed out at the end of the
period.

The second assertion, called1-sec max for display, asserts that the time for
an lgm interval is no more than one second. Whenever anlgm interval fails this
assertion, the checker prints out the metrics for the interval.

4.4.3 Results of Monitoring

We found no significant performance bugs in several months of monitoring Lectern.
All instances of Lectern started by users in our laboratory were monitored during
this period. Multi-second display times did occur, but rarely, and then they were
only slightly greater than one second and never greater than two seconds. The
information about people’s use of the program turned out to be less useful than
we had hoped. Lectern was quite mature when we started monitoring it, and by
the time we had accumulated enough data for it to be interesting, the designers of
Lectern were no longer interested in tuning its user interface.

5 Evaluation and Lessons

In this section we evaluate our tools based on our experience using them as de-
scribed in the previous section and discuss the lessons we learned about how con-
tinuous monitoring needs to be done for it to be effective.

5.1 Successes

CMon was successful at monitoring long-running programs continuously. Many
users would start Lectern and leave it running for days or weeks. The CMon tools
handled long runs such as this without any problems. The ability to monitor re-
motely also turned out to be quite useful. All instances of instrumented applica-
tions could be easily (and mostly automatically) monitored from a single place. In
the process, the CMon tools made it possible to gather data from runs of programs
under actual workloads. This allowed the developers of argohear and Juno-2 to
learn things about their systems that they could not learn by running test suites.
It also avoided any need for the users of the monitored programs to know about
details of the monitoring.

20

From the programmer’s perspective, using CMon in combination with etp was
easy. For most applications, properties of interest could be monitored and tested by
using etp to trace appropriate procedure calls; the application source did not need
to be changed. (Running etp is straightforward.) Occasionally it was necessary to
add “dummy” procedure calls to mark the occurrence of particular events.

The impact on programs was also small. Except for the overhead of logging
events and sending them to a telemonitor (about 20 microseconds per log record
on a 40-MHz MIPS R3000-based DECstation), CMon caused no significant perfor-
mance impact. As long as the granularity of logging was reasonably coarse, over-
head was undetectable by users. In all the applications we studied, the properties
of interest could be tested using very coarse-grained logging. As for robustness,
there were no reports of the CMon tools causing crashes or other problems with
monitored applications. The system was designed so that snarflog would insulate
applications from problems arising in the rest of the CMon system. We found this
property to be quite useful while developing the system, since we frequently had
cases where a telemonitor would crash but monitored applications would continue
running. CMon also tolerates failures of the registry very well; both snarflog and
the telemonitor reconnect when the registry restarts.

CMon permits experimenters to use a variety of log processing tools. The tele-
monitor was designed to allow any program to be used to process logs, as long as it
could take the log on standard input. The PSpec checker was set up to permit this,
but we also used Unix shell scripts to save logs in files (named with distinct names
based on the application name, machine name on which the application ran, and
the process id of the application). In some cases we used shell scripts to save the
log in files and at the same time process it continuously with the checker. It would
have been useful to have more tools that could perform interesting “continuous”
processing of etp logs. For example, online graphical display of data extracted
from a set of logs might be very useful for building a “watch” tool for monitoring
systems.

5.2 Lessons Learned

Perhaps the most important lesson we learned is that the telemonitor needs to be
more robust to system crashes and restarts. During network problems the telemon-
itor would often crash because of bad interactions between the Modula-3 system
and the NFS file system; when this happened it had to be manually restarted. A
better design would separate the monitoring functionality from the control func-
tionality (user interface). The monitoring functionality should be in a reliable and
automatically restarted server. The control functionality should be in a program
(perhaps a Java applet) that an experimenter runs in order to examine or reconfig-

21

ure the state of a telemonitor.
It would also be useful to have built-in support in the telemonitor for notifying

someone when a problem is detected. This could be cobbled together using shell
scripts to look for particular patterns in the output of the PSpec checker and then
send email to an appropriate user, but built-in support would be easier to use.

A related problem is the need to save relevant log data when a problem is
detected. CMon makes it easy to save the entire log (e.g., using the Unix utility
“tee”), but we believe it would be useful to save a chunk of the log containing
events from a relatively short time period in which a problem is detected in order
to save disk space. The problem here is determining what chunk to save; should it
be based on time, on event-based intervals, on total log size, or something else? We
discussed several options, but never implemented any of them. This issue would
need to be resolved to allow people to understand what caused a problem after it
was reported without saving all of the log data generated by a monitored program.

The CMon system processes the logs from separate instances of the same ap-
plication independently. It would be very useful to be able to process all the logs
together with a single tool, particularly for collecting data about the usage of a
program. The same is true (but less important) for using logs to detect perfor-
mance problems. Allowing a single tool invocation to process logs from multiple
instances would also reduce the load on the system running the telemonitor by not
creating a separate tool process for each instance of a monitored application.

In a similar vein, CMon supports monitoring of multi-threaded programs with
a single log from the entire program, but provides no way to merge the logs from
distributed pieces of a single distributed program. This was not a problem for the
systems we monitored, but it could be for other systems.

Finally, one needs to ensure that logs can be interpreted even if the program
that generated them has changed or been deleted. The developers of Juno-2 were
actively changing the program while they were running performance experiments.
An executable’s symbol table is needed to correctly process a corresponding etp
log. Hence, changing the executable causes old logs to become meaningless. Bet-
ter automatic support for saving the appropriate symbol table information (and
occasionally, the old executables) and correlating it with the logs would have made
processing the logs much easier.

6 Conclusions

The CMon system demonstrates the feasibility and utility of continuously mon-
itoring long-running programs, with support for remote monitoring and minimal
impact on programmers and monitored programs. Based on our experience build-

22

ing and using CMon, we are convinced that a monitoring system like CMon with
more complete hands-free operation could be invaluable in making it easy to mon-
itor a wide range of systems.

7 Acknowledgments

We are grateful to the following people for help with this work. Mike Burrows, the
author of etp, graciously accommodated our requests for modifications that would
allow etp to deliver logs to CMon easily and efficiently. Greg Nelson participated
in the initial design of CMon as well as helping with the Juno monitoring exper-
iments. Allan Heydon has been our most active PSpec and CMon user and has
provided many helpful bug reports and suggestions. Lance Berc assisted with the
Argo experiments. Andrew Birrell and Paul McJones assisted with the Lectern
experiments.

We would also like to thank our proof readers, Allan Heydon, Greg Nelson,
Shun-Tak Leung, and Cormac Flannagan, for many helpful comments on this re-
port.

23

A PSpec Language Specification

This appendix gives a complete description of the PSpec language. See Appendix D
for an extended example of using PSpec.

A.1 Definitions

First, some definitions. A PSpecevent streamis a sequence of primitive compo-
nents calledevents. Each event has a type and a sequence of named, numeric-
valued attributes. An event stream is derived from amonitoring log, which is pro-
duced by executing an instrumented program. Most of the events in an event stream
correspond directly to events in a monitoring log. (The details of this correspon-
dence are implementation-dependent. See, for example, the section of Appendix B
on monitoring using etp.)

Some of the events in an event stream are fabricated by the PSpec system. For
example, events may be fabricated to mark the start and end of the log. In addition,
a performance specification can introduce periodic events that are fabricated based
on time; these are calledvirtual time events.

An interval corresponds to a contiguous subsequence of an event stream start-
ing at some start event and ending at some end event. An interval has associated
metrics, which are named and have values (not necessarily numeric). Intervals may
be disjoint, may overlap, or may nest. An intervali is nested inside another inter-
val j if i ’s start and end events are properly betweenj ’s start and end events in the
event stream.

Values are mathematical entities with types. Some examples of value types
are events, intervals, numbers, and booleans. PSpec also has a special value called
UNDEFINED, which is a value of all types.UNDEFINED is used as the value of
certain expressions that do not have sensible values for particular event streams.

An expressionspecifies a computation that produces a value.
An identifier is a symbol declared as a name for a value. The region of a

specification over which a declaration applies is called thescopeof the declaration.
The outermost or top-level scope of a specification is called theglobal scope. Event
and interval type names and declared constants are all in the global scope. In
addition, interval declarations and aggregate expressions (to be described later)
introduce local scopes. Scopes nest, with names in the global scope accessible
from all enclosed scopes (though there are certain restrictions, described later).
Identifiers must be declared before they are used in expressions.

24

A.2 Types

Every value in a specification has a type that dictates how the value may be in-
terpreted. With the exception of event and interval types, types are never named
explicitly in specifications. However, the type of any value or expression can al-
ways be inferred statically.

The base types arenumber, boolean, andstring. From these base types,triple
andmapping typescan be constructed.

A triple consists of three numbers and represents a measurement (or combina-
tion of measurements) with associated error. The triple[t,p,m] represents a number
in the range[t-m,t+p] , wheret is the measured orfavored value, andp andm are
always non-negative. For example, a timestamp taken from a discrete clock mea-
suring elapsed time represents a time value sometime between the time at which
the clock last ticked and the next time it will tick. Such a timestamp is represented
as a triple with a favored value as the clock value (the time of the last tick), ap
value of one clock tick, and anmvalue of zero.

A mappingis a partial function from integers to values.
In addition to the above types, specification writers can declareeventandin-

terval types. The declarations for these types are described in the next section.
Event and interval types have names that uniquely identify them (i.e., two types
are equivalent if and only if they have the same name).

A.3 Declarations

A declaration introduces a name for a constant, event type, or interval type into the
global scope. The name is available in all expressions that follow the declaration.
An interval type name is not available in metric definitions for that type (thus,
interval declarations are not recursive). A declaration may also introduce a name
for an unknown number to be solved for later. It is an error to redeclare a name in
the same scope (but a name may be redeclared in a nested scope).

A.3.1 Constants

If id is an identifier ande is an expression, then:

def id = e

declaresid as a constant bound to the value ofe. e is evaluated in the global scope.
The declaration

def id = ?

25

declaresid to be an unknown. Unknowns are recognized by psolve, the PSpec
solver, and are different fromUNDEFINEDvalues.

A.3.2 Event Types

If id is an identifier andalist is a (possibly empty) comma-separated list of identi-
fiers, then the two declarations

event id ([alist])

and

timed eventid ([alist])

declareid as an event type.1 Events of the type have attributes named inalist.
The second form also indicates that events of typeid have an implicit timestamp
attribute, which is used by theelapsedfunction on intervals and thetimestamp
and elapsedfunctions on events. Note that the timed events in a log need not
necessarily occur in timestamp order.

A.3.3 Interval Types

An interval type declaration introduces a new interval type, which identifies a set
of intervals in an event stream. An interval type declaration provides predicates for
determining whether an event in the event stream is the start or end event for an
interval of the type, and expressions for computing the metric values for an interval
of the type.

An interval declaration may also introduce virtual time events into the event
stream to mark the start or end of an interval based on time. These are described in
the next section.

The basic interval type definition identifies an interval by the types of its start
and end events in an event stream. Ifid, s, andeare identifiers,stypeandetypeare
event type names, andspredandepredare boolean-valued expressions, then:

[nested] interval id =
s: stype[wherespred] ,
e: etype[whereepred]

[metrics
mlist]

end id

1The square brackets here and in the rest of the appendix indicate optional elements and are not
themselves part of the syntax.

26

declares an interval with type nameid. mlist is a comma-separated list of metric
definitions of the formm = exprwherem is an identifier andexpr is an expression.

The declaration defines an interval of typeid to be one that has a start event
nameds of type stypefor which spred is true, and an end event namede that is
the next event in the event stream of typeetypefollowing the start event for which
epredis true.

An interval declaration may be modified slightly by inserting the keyword
nestedbefore interval. A nested interval type has the further condition that the
end evente is not an end event for any other interval of typeid that starts after the
events. In this case,e is the end event for the interval started by the nearest preced-
ing s that does not already have an end event. Thus, without the nested restriction,
multiple intervals of the type may share the same end event. With the restriction,
all intervals of the type will have different end events and will nest like parentheses.
It is always the case that multiple intervals of different types may share end events.

For each interval of typeid in the event stream, its metrics are computed as
follows. A new scope is introduced withs ande bound to the start and end events
for the interval. The metric expressions are evaluated in this scope over the portion
of the event stream enclosed by the interval, and their values are bound to the inter-
val’s metric names. This binding is, in effect, simultaneous for all of an interval’s
metric definitions; hence metric definitions may not reference each other. Metric
expressions that aggregate over events or intervals may not refer to the end evente
(because of implementation efficiency considerations).

The where-clause for the start or end event may be omitted, in which case it
defaults totrue. Themetrics mlistclause may be omitted, in which case the interval
has no metrics (but theelapsedfunction may still be applicable for the interval).

The identifiers is available inspredandepred. The identifiere is available in
epred. Both identifiers are available in the metric expressions, as explained above.
The identifierid cannot be referenced insidemlist. Moreover, expressions inmlist
cannot reference constants that are defined in terms of aggregate expressions.

A.3.4 Time-based Interval Types

In an interval type declaration, the start event declaration

s: stype[wherespred]

can be replaced by the declaration:

s: [from oexpr] everytexpr

wheres is an identifier, andoexpr and texpr are positive number-valued expres-
sions. This declaration introduces new virtual time events of typestart$I (whereI

27

is the interval type name) into the event stream. The events have timestamp values
startts+ oexpr+ (i * texpr), for i = 0,1,. . . , wherestartts is the first event times-
tamp in the log. In other words, the virtual time events occur startingoexpr time
units after the first event in the log, and everytexpr time units thereafter. Each
such virtual time event starts a new interval of the type. Thefrom clause may be
omitted, in which caseoexprdefaults to 0.

If the events in the log are in timestamp order, the virtual time events are in-
serted in timestamp order, up to the last real event in the log. If a virtual event
has the same timestamp as a real event, the virtual event is inserted before the
real event. If two virtual events have the same timestamp, their relative order is
undefined.

If the events in the log are not in timestamp order, then the sequencing is more
complicated. For each declaration of an interval typeI , virtual eventsve0, ve1, . . .,
of typestart$I , are inserted into the event stream as follows:

1. ve0, which has timestampt0 = startts+ oexpr, is inserted before the first
real event whose timestamp is at leastt0.

2. vei , which has timestampti = startts+oexpr+ (i ∗ texpr) (for i = 1,2, . . .),
is inserted aftervei−1, and before the first real event whose timestamp is
at leastti and that occurs aftervei−1. If no such real event exists,vei is
discarded (as are all subsequent virtual events resulting from this interval
type declaration).

In addition, two virtual events that are adjacent in the event stream are in timestamp
order.

Similarly, the end event declaration for an interval type,

e: etype[whereepred]

may be replaced by the declaration:

e: after texpr

wheree is an identifier andtexpr is a positive number-valued expression. This
declaration introduces, for each start events that matches the interval type’s start
declaration (s may be virtual or real), a new virtual time eventv of type end$I
whereI is the interval type name, and with timestamp valuetimestamp(s)+ texpr.
v ends the interval that was started bys, and is inserted in the event stream before
the first real event followings that has a timestamp value at leasttimestamp(s)+
texpr.

28

A.3.5 Interval Subtypes

If id is an identifier,inttypeis the name of a previously declared interval type, and
mlist is a comma-separated list of metric definitions, then

interval id = inttype
[metrics

mlist]
end id

defines a new interval type, namedid, that is a subtype ofinttype. The new interval
type is nested ifinttypeis nested, and has the same start and end event specification
as inttype. It inherits all of inttype’s metric definitions, in addition to those newly
defined inmlist. If mlist is supplied, the metric names inmlist must be different
from inttype’s metric names.

A.3.6 Procedure Sugar

A proc statement provides a convenient syntax for declaring events and intervals
corresponding to procedures in a program. Ifp, a1, a2,. . ., an, andr are identifiers,
a statement of the form

proc p ([a1, a2, ..., an]) [returns r]

has the effect of declaring two new events types namedcall@p andret@pand a
new interval type namedintv@p. (These identifiers are special since@ cannot
appear in an identifier supplied by a PSpec user). The declarations for these new
types are equivalent to:

timed eventcall@p([a1, a2, . . ., an]); ret@p([r, exact]);
nested intervalintv@p =

s: call@p,
e: ret@pwherethread(s) = thread(e)

end intv@p

The argument list and returns-clause are optional.
An event of typecall@pcorresponds to a call of procedurep with integer argu-

mentsa1 throughan, and an event of typeret@pcorresponds to a return ofp with
resultr. Any of a1 throughan may be replaced by the symbol?, if the correspond-
ing procedure argument is not of interest. If thereturns r clause is omitted, the
equivalent return event isret@p(?, exact). Theexactattribute on the return event
has a value of 0 or 1, indicating whether the return event’s timestamp is approxi-
mate or exact. Ifexact=0, then the timestamp was estimated from other events in

29

the log and may be later than the actual time at which the procedure exited. (This
is to accommodate some monitoring techniques; for example, inexact timestamps
result when procedures exit with exceptions rather than normal returns.) Note that
in the interval typeintv@p, the start and end events are always nameds and e,
respectively.

A.4 Imports

An import statement allows names declared in one specification to be used in an-
other specification. A statement of the form:import idlist makes available to the
specification containing the import statement the event and interval types defined in
the specifications listed inidlist. These types are referenced by prefixing the name
of the declaring specification followed by “.” to the name of the type. For example,
if specificationSdeclares event typeE, a specificationT that importsSmay refer
to S.E. The nameS.Eis in T’s global scope and is called aqualified name.

Event and interval types produced by theproc statement are a special case.
These are never qualified by a specification name. Ifproc p appears in a specifica-
tion S, the event typescall@pandret@p, and the interval typeintv@pare referred
to in any specification that importsSwithout qualification. Ifprocp appears multi-
ple times, its last occurrance takes precedence. (Imports are processed in the order
in which they occur in theimport statement.)

A.5 Assertions

An assertion is a predicate (boolean-valued expression) that is expected to be true
when a specification is checked against a log. Ife is a predicate, thenasserte is an
assertion thateshould evaluate totrue. eis evaluated in the global scope. An error
is reported by the checker ife has the valueUNDEFINED.

An assertion may be labelled with a double-quoted string for easier identifica-
tion in messages produced by the checker. A labelled assertion has the form

assert“string” : e

A.6 Solve Declarations

The psolve tool accepts specifications with constants declared as unknowns and
estimates values for those constants. Solve declarations provide guidance to psolve.

If id is an identifier,idtype is an event or interval type,v andc are constants
declared as unknowns,pred and e are expressions, andm is a mapping-valued
expression, then the following three declarations are solve declarations:

30

solvee
solve dataid : idtype [where pred : e] [, var v] [, cor c]
solve dataid in domain(m) [where pred : e] [, var v] [, cor c]

See the psolve manual page in Appendix D for more information about how solve
declarations are used.

A.7 Print Statements

If e is an expression (possibly string-valued), thenprint e evaluatese in the global
scope and prints its value on the standard output.

A.8 Specifications

If id is an identifier andstmtsis a semi-colon separated list of statements, which
may be declarations, assertions, solve statements, imports, or print statements,
then:

perfspec id
stmts

end id

is a specification.id must be different from any top-level identifier instmts.

A.9 Expressions

An expression specifies a computation that produces a value. Expressions are either
operands (identifiers or literals), operators applied to arguments that are themselves
expressions, triple constructors, mapping constructors, or aggregate expressions.

The operators that have special syntax are classified and listed in decreasing
precedence in Figure 7. All infix operators are left associative. Parentheses can be
used to override the default precedence rules.

Except as noted below, most operators deal withUNDEFINEDvalues by prop-
agating them. That is, if any of the arguments to an operator has the valueUNDE-
FINED, the result of applying the operator to its arguments produces the value
UNDEFINED.

A.9.1 Literals

There are three kinds of literals: numeric, boolean, and string.
The boolean literals aretrue andfalse.

31

f(x) function or mapping application
i.f, n us,n ms, etc. infix dot for interval or event field access,

numeric literals with time units
− unary minus
∗ / div mod infix arithmetics
+ − infix arithmetics
= != < <= >= > infix relations
! prefix “not”
& infix “and”
| infix “or”
=> infix “implies”
−→ infix mapping constructor
? infix “if” operator
˜ infix “else” operator

Figure 7: Operators in order of decreasing binding power.

Numeric literals denote non-negative numbers and use the Modula-3 [7] syntax
for integer, real, and longreal literals. All numbers are converted into longreal
format internally, but we can still check when necessary whether a number has an
integral value.

A string literal is similar to a Modula-3 text literal (although extended char-
acters are not currently supported). No operations are provided on string literals.
(Thus, strings can only be printed, assigned to identifiers or metric names, and
stored in mappings.)

A.9.2 Triple Constructors

If v, p, andm, are numeric-valued expressions, then[v,p,m] is the triple whose
components are the values ofv, p, andm, in that order. Bothp andm must be
non-negative.

A.9.3 Mappings

If i is an integral expression andv is any expression, theni−→v is the single-
element mapping with the value ofi mapped to the value ofv. The expression
i−→v is called a single-element mapping constructor. The value ofv may beUN-
DEFINED, in which case the single-element mapping will contain the value ofi

32

mapped toUNDEFINED. If the value ofi is UNDEFINED then the value of the
mapping isUNDEFINED.

If e1,e2, . . . ,en are constant single-element mapping constructor expressions,
then the comma-separated, parenthesized expression(e1,e2, . . . ,en) evaluates to
a multi-element mapping. The set of domain values in the multi-element mapping
is the union of the domain values ofe1 throughen and their range values are the
corresponding range values. All of the component single-element mappings must
have the same type of range value and different domain values; if not, an error is
reported.

If m is a mapping andi is a number-valued expression, thenm(i) evaluates to the
value to whichmmapsi. If i is not inm’s domain,m(i) evaluates toUNDEFINED.
The expressionmapped(m,i)evaluates totrue if and only if i is in m’s domain.

Some of the arithmetic and logical operators are overloaded to work on map-
pings. These operators provide various ways of combining mappings. In particular,
+, ∗,& , |,min, andmaxcan take mappings as arguments. The result of combining
a sequence of mappingsm1, . . . ,mn with one of the above operatorsop is a new
mappingr whose domain is the union of the domains ofm1 throughmn. For any
numberi in r ’s domain,r (i) is the value obtained by applyingop to the sequence
of valuesmk(i) for all mk such thatmapped(mk, i) = true.

A.9.4 Field Access

If id is an identifier bound to an event or interval andf is one of its field names (a
metric or an attribute), thenid.f evaluates to the value of the field.

A.9.5 Time Units

Numeric values are unitless. Times computed using theelapsedfunction are also
unitless as values, but they represent a time value in some time unit specific to the
implementation. In order that a specification writer may use these time values in a
sensible way (e.g., to compare them to literals), operators are provided to convert
literals in specified time units to their equivalent values in internal time units. Ifn is
a numeric literal, then any of the following operators can follown in an expression:

Operator Meaning
us microseconds
ms milliseconds
sec seconds
min minutes
hour or hours hours
dayor days days

33

weekor weeks weeks
cyc cycles

For example,10 msevaluates to the real number of internal time units equal to
10 milliseconds. Hence, ifn is a time in internal time units,n/(1 ms) is the same
amount of time in milliseconds.

A.9.6 Arithmetic Operations

Some arithmetic operations are overloaded to work with triples and mappings as
well as numbers. The operations on numbers and triples are described here. The
section on mapping expressions describes operations on mappings.

A.9.7 Numeric Operations

The numeric operations are:- (unary),- (infix), + , * , / , div, mod, min, max, log,
power, abs, andtrunc. The first five of these are defined as in Modula-3.

div and mod are infix operations whose arguments must be integral values.
They produce integral results and are defined as in Modula-3.

minandmaxare invoked as functions, each taking two numeric arguments and
returning a number.min returns the minimum of its arguments andmaxreturns the
maximum.

If a and b are numeric expressions, then the logarithm to the basea of b is
written log(a,b), anda raised to theb power is writtenpower(a,b).Both of these
operations return numbers.

If n is a numeric expression, thenabs(n)is the absolute value ofn. trunc(n)
returns the greatest integral number that is at mostn for n positive, and the smallest
integral number that is at leastn for n negative.

A.9.8 Relational Operations

The relational operations are:<, <=, >, >=, =, and != (not equal). These
are defined both on numbers and on triples, and the result is a boolean. Their
definitions for numbers are as expected. Their definitions on triples are discussed
below. An expression of the form “a op b op c,” whereop is a relational operator,
is equivalent to the expression “a op b& b op c.”

A.9.9 Operations On Triples

In what follows lett andu be triples of the form[v,p,m]. The notationst.v, t.p, and
t.m refer to the components of triplet. Note that a numbern can be represented as

34

the triple[n,0,0]. Arithmetic for mixed triples and numbers (except for thelog and
power operations) is defined first to convert the numbers into the corresponding
triples, and then to use triple arithmetic.

The arithmetic operations on triples are defined in Figure 8. The definitions are
derived using the notion of a triple as a representation of a range of values with a
“preferred” value. Thev component of the result is the operation applied to thev
components of the operand triples. Thep component of the result is defined so that
v+p for the result is the maximum possible value that could result from applying
the operation to values in the ranges of the operands. Similarly, themcomponent is
defined so thatv-m for the result is the minimum possible value for the operation,
treating the operands as ranges.

The relational operations on triples are defined in Figure 9. Two triples are
considered equal if their ranges overlap. Note that this means that equality on
triples is not transitive. A triplet is less than a tripleu if all values in the range
represented byt are less than all values in the range represented byu, and similarly
for “greater than.”

A.9.10 Logical Operations

The logical operations are: & (and),| (or), ! (not), and=> (implication). They
have their usual meanings applied to boolean-valued arguments. & and| evaluate
all of their arguments.

As described in Section A.9.3, & and| are overloaded to work for mappings as
well.

A.9.11 Operations On Events

If e is a timed event, thentimestamp(e)returns the value ofe’s timestamp, which
is a triple whose “preferred value” is the clock value read when the event was
recorded. Typically the error associated with a timestamp is plus one clock unit
(because the time when the clock is read is actually somewhere between the time
value when the clock last ticked and the time of the next tick). However, inexact
timestamps (as mentioned in the section on “Procedure Sugar” above) may have
a different associated error, reflecting the known bounds on the time. Ife is not a
timed event, evaluatingtimestamp(e)is an error.

thread(e)returns the identifier of the thread that generated evente, if thread
identifiers are available in the log; otherwisethread(e)returns 0.

If eandsare both timed events, andets= timestamp(e) andsts= timestamp(s)
are triples of the form [v, p,m], then:

elapsed(e, s) = [ets.v − sts.v,ets.p+ sts.m,

35

t + u = [t.v + u.v, t.p+ u.p, t.m+ u.m]
−t = [−t.v, t.m, t.p]
t − u = t + (−u)
t ∗ u = [t.v ∗ u.v,

maxi∈t, j∈u{i ∗ j } − t.v ∗ u.v,
t.v ∗ u.v − (mini∈t, j∈u{i ∗ j })]

1/t = if 0 ∈ t then error
else [1/t.v,

max{1/(t.v + t.p),1/(t.v − t.m)} − 1/t.v,
1/t.v −min{1/(t.v + t.p),1/(t.v − t.m)}]

t/u = t ∗ 1/u
abs(t) = if t.v − t.m ≥ 0 thent

elseif t.v + t.p ≤ 0 then−t
else [|t.v|,max(t.v + t.p, t.m− t.v)− |t.v|, |t.v|]

trunc(t) = [trunc(t.v),
trunc(t.v + t.p)− trunc(t.v),
trunc(t.v)− trunc(t.v − t.m)]

min(t,u) = [min(t.v,u.v),
min(t.v + t.p,u.v + u.p)−min(t.v,u.v),
min(t.v,u.v)−min(t.v − t.m,u.v − u.m)]

max(t,u) = [max(t.v,u.v),
max(t.v + t.p,u.v + u.p) −max(t.v,u.v),
max(t.v,u.v)−max(t.v − t.m,u.v − u.m)]

log(b, t) = [logb t.v,
logb(t.v + t.p)− logb t.v,
logb t.v − logb(t.v − t.m)]

power(b, t)= [bt.v ,bt.v+t.p − bt.v ,bt.v − bt.v−t.m]
power(t,b)= [t.vb, (t.v + t.p)b − t.vb, t.vb − (t.v − t.m)b]

Figure 8: Arithmetic operations on triples.t andu are triples. b is a number.
For log andpower, (t.v − t.m) must be greater than 0; otherwise, the result is
unspecified. The notationi ∈ t meanst.v − t.m ≤ i ≤ t.v + t.p.

36

t = u ≡ (t.v − t.m ≤ u.v + u.p) ∧ (t.v + t.p ≥ u.v − u.m)
t != u ≡ !(t = u)
t > u ≡ t.v − t.m> u.v + u.p
t < u ≡ t.v + t.p < u.v − u.m
t ≥ u ≡ t = u ∨ t > u
t ≤ u ≡ t = u ∨ t < u

Figure 9: Relational operations on triples.

min(ets.v − sts.v,ets.m+ sts.p)] .

This definition ofelapsedgives the elapsed time between the two events, under
the assumption thatets.v ≥ sts.v (so all the values in the triple representing the
elapsed time are non-negative).

A.9.12 Operations on Intervals

If i is an interval whose start and end events are both timed, thenelapsed(i)returns
a triple representing the elapsed time for intervali. If e is the end event ofi ands
is the start event, then:

elapsed(i) = elapsed(e, s)

Note thatelapsedis overloaded; it can take a single interval-valued argument or
two triple-valued arguments.

A.9.13 Aggregates

An aggregate expression describes a computation over a sequence of values. The
sequence of values is produced by introducing a new identifier that gets bound to
a series of values in a specified range and evaluating a specified expression (which
may use the identifier) for each binding. The sequence resulting from evaluating
the expression for each binding is then combined using a specified aggregate oper-
ator.

The range may be specified in two ways: it may be a sequence of events or
intervals of a specified type and satisfying a specified predicate, or it may be the
values in the domain of a mapping that satisfy a specified predicate.

We define an implicit component of a scope, called the “current event se-
quence,” that is used in evaluating aggregate expressions that range over events

37

and intervals. In the global scope, the current event sequence is all events and
intervals in the event stream. Within the scope of an interval declaration, it is all
events and intervals wholly contained between (and not including) the start and end
events of the interval being declared. For the purpose of defining the current event
sequence for intervals, intervals are ordered by their end events. If two intervals
have the same end event, they can appear in either order in an interval sequence.

The first form of aggregate expression (ranging over the current event se-
quence) is written:

{op id : idtype[where pred] : expr}

whereop is an aggregate operator,id is an identifier,idtypeis an event or interval
type name,pred is a boolean-valued expression, andexpr is an expression.pred
andexprmay useid but may not reference any identifiers bound by outer aggregate
expressions. The where-clause may be omitted. If the where-clause is present and
has the valueUNDEFINED for any value ofid, the value of the entire aggregate
expression isUNDEFINED. The values bound toid are those events or intervals in
the current event sequence that have typeidtypeand for whichpred is true.

The second form of aggregate expression (ranging over the domain of a map-
ping) is written:

{op id in domain(m)[wherepred] : expr}

whereop, id, idtype, pred, and expr are as above, andm is a mapping-valued
expression. The where-clause may be omitted. If the where-clause is present and
has the valueUNDEFINED for any value ofid, the value of the entire aggregate
expression isUNDEFINED. The values bound toid are those values in the domain
of m for which pred is true. The domain values are produced in an arbitrary order.

The aggregate operators are:

+ ∗ & | min max mean stdev var the last first count

Thecountoperator is special—“: expr” is omitted from the aggregate expression,
and the result is the number of different values to whichid gets bound. (count is
provided for convenience and readability. The same result is produced using the
+ operator and lettingexpbe the constant 1.) The other aggregate operators are
defined to work on mapping-valued expressions as well as on non-mapping values.

For non-mapping values, the operators are defined as follows. The definitions
of the first six operators (+, ∗,& , |,min,max) are simply extensions of their def-
initions for two arguments. Ifa1, . . . ,an is a sequence of values andop is one
of these six operators, then the result of combining the sequence values with the

38

op empty seq. single elementv

+ 0 v

∗ 1 v

& true v

| false v

min, max, mean, the, last, firsterror v

stdev, var error error
count 0 1

Figure 10: Boundary case results for aggregate operators

operator is(((a1 op a2) op . . .) op an). (In other words, these six operators are re-
duction operators.) The result when the sequence is empty or has only one element
is defined in Figure 10.

The operatorsmean, stdev, andvar compute the arithmetic mean, standard
deviation, and variance, respectively, of the sequence values. For a sequence
a1, . . . ,an of numbers these are defined as:

mean(a1, . . . ,an) = 1
n

∑n
i=1 ai

var(a1, . . . ,an) = 1
n−1

∑n
i=1(ai − a)2

wherea = mean(a1, . . . ,an)

stdev(a1, . . . ,an) =
√

var(a1, . . . ,an)

(The variance formula is what statisticians would call a “modified sample vari-
ance” or “unbiased estimate” of the variance). The result of applying one of these
operators to a sequence of triples is computed using just the first component of the
triples (the “favored values”).

The expression{first id : idtype : expr} evaluates to the value ofexpr with id
bound to the first value of typeidtypein the aggregate’s range. Similarly,{last id :
idtype : expr} uses the last value of typeidtype.

The operatortheapplied to a single-element sequence returns the single value.
Applying the to a multi-element sequence results in the valueUNDEFINED.

Finally, when the sequence values are mappings, the aggregate operator defines
how to combine the mappings. The result of combining a sequence of mapping
values with an aggregate operator is a new mapping whose domain is the union of

39

the domains of the mapping values. The value to which the new mapping maps a
domain elementi is the result of combining the values to whichi is mapped by the
mappings in the sequence using the aggregate operator.

A.9.14 Conditional Operations

The infix operatorsif (written?) andelse(written ˜ (tilde)) provide for conditional
evaluation of expressions.

Let e1be a boolean-valued expression ande2be any other expression. Ife1’s
value is equal totrue then the expressione1 ? e2has the value ofe2. Otherwise (if
e1 isfalseor UNDEFINED), the value ofe1 ? e2is UNDEFINED.

Let e3 ande4 be expressions that have the same type of value. Ife3 is not
UNDEFINEDthen the expressione3 ˜ e4has the value ofe3. Otherwise it has the
value ofe4.

The ? operator binds more tightly thañ. Combining the two gives the ex-
pected “if-then-else” semantics. The expressione1 ? e2 ˜ e3has the value ofe2 if
e1 is true, and otherwise has the value ofe3. e2ande3must have the same types.

A predicate is provided for testing whether an expression’s value is defined.
The expressiondefined(e)wheree is any expression, evaluates totrue if e’s value
is notUNDEFINEDandfalseotherwise.

A.10 Grammar

In the grammar that follows, italicized words are non-terminals, words in type-
writer font are literals,term,+ means one or more occurrences ofterm, separated
by commas, andterm,* means zero or more occurrences ofterm,separated by com-
mas. (term;+ andterm;* are defined similarly). Optional elements are enclosed in
square brackets. Comments in PSpec are preceded by% and extend to the end of
the line.

spec::= perfspec id import;* stmt;+ end id
import ::= import id;+
stmt::= def constdef;+

| solve solvedecl;+
| [timed] event eventdef;+
| [nested] interval intervaldef;+
| proc sig;+
| assert [string:] expr;+
| print expr;+

sig ::= id [([argid,+])] [returns id]
argid ::= id | ?

40

constdef::= id = expr | id = ?
solvedecl::= [data varrange:] expr [, var id [, cor id]]
eventdef::= id (id,*)
intervaldef ::= id = intervalhead[metrics metricdef,+] end id
intervalhead::= intvstart, intvend
intvstart ::= varrange

| id : [from expr] every expr
intvend::= varrange| id : after expr

Note: exprs following from, every, andafter must evaluate to a constant
number, which is interpreted as a number of internal time units. In addition,
they cannot containids.

metricdef ::= id = expr
expr ::= expr op expr

| - expr
| [expr, expr, expr]
| expr-> expr
| expr(expr,*)
| expr? expr
| expr~ expr
| aggrexpr
| (expr [, expr]*)
| const
| id
| expr. id

aggrexpr::= { aggrop varrange[: expr] }
varrange::= id varset[where expr]
varset::= : intevtname| in expr
aggrop::= + | * | & | | | count | mean | stdev

| var | max | min | the | last | first
op ::= arithop | relop | boolop
arithop ::= + | - | * | / | div | mod
relop ::= < | <= | > | >= | = | !=
boolop::= & | | | ! | =>
const::= num| num timeunit| true | false
timeunit::= us | ms | sec | min | cyc | hour | hours

| day | days | week | weeks
intevtname::= [id .] unqualname
unqualname::= id | call@id | ret@id | intv@id
id ::= alpha [alphanum+]
alpha ::= | a | b | ... | z | A | B | ... | Z

41

alphanum::= alpha | digit
num::= digit+ [. digit+ [exp[-] digit+]]
exp::= E | e | D | d | X | x
digit ::= 0 | 1 | 2 | . . . | 9
string ::= " char* "
char ::= printingchar | escapedchar
escapedchar::= \n | \t | \r | \f | \\ | \"

| \ octaldig octaldig octaldig
octaldig ::= 0 | 1 | . . . | 7
printingchar ::= any character with ascii code 0x20 to 0x7e,

excluding\ (0x5c) and" (0x22)

A.11 Built-in Functions

The built-in functions names that can be used in expressions and their signature(s)
(multiple if the function names are overloaded) are shown in Figure 11.

The typemap[t] is the type of mappings with range typet.

42

Name Signature(s)

max, min num× num−→ num
num× triple−→ triple
triple× num−→ triple
triple× triple−→ triple
map[t]×map[t]−→ map[t]
(where t isnum, triple, or map[t’])

power num× num−→ num
num× triple−→ triple
triple× num−→ triple

log num× num−→ num
num× triple−→ triple

elapsed interval−→ triple
triple× triple−→ triple

abs num−→ num
triple−→ triple

trunc num−→ num
triple−→ triple

timestamp event−→ triple

thread event−→ num

defined any−→ bool

Figure 11: Signatures of built-in functions.

43

B PSpec Tools - pcheck, peval, psolve

This appendix contains the Unix-style manual pages for the PSpec checker, solver,
and evaluator.

Name

pcheck, peval, psolve - PSpec tools

Syntax

peval [-s specfile] [-etp etplog exefile] [-etpsymetplog symfile] [-trace tracefile]
[-r clockres] [-i specpath] [-v intervalfile] [-e eventfile] [-c cmdfile]

pcheck-s specfile[-etp etplog exefile] [-etpsymetplog symfile] [-trace tracefile]
[-r clockres] [-i specpath] [-v intervalfile] [-e eventfile] [-f] [-cont]

psolve-sspecfile[-etp etplog exefile] [-etpsymetplog symfile]
[-trace tracefile] [-r clockres] [-i specpath]
[-v intervalfile] [-eeventfile] [-d datafile] [-u name1 . . .namen]

Description

PSpec is a language together with a set of tools for testing the performance of
software. This man page describes a number of the PSpec tools.

Checker

Pcheck takes as input a specification written in the PSpec language and a monitor-
ing log in an appropriate format and reports which assertions in the specification
fail to hold for the run represented by the log. A message is printed for each asser-
tion failure, giving the line number of the assertion in the specification file. Where
appropriate, the particular events or intervals in the log that caused the assertion to
fail are listed. An interval is identified by a uid (the same as is printed ininterval-
file when using the-v flag). An event is identified by a two part index giving its
position in the event stream. (This index is printed ineventfilewhen using the-e
switch. For real events, the first part of the index gives the event’s position in the
underlying log, and the second part is 0; for virtual events, the first part is equal to
the first part for the closest preceding real event, and the second part is monotoni-
cally increasing for adjacent virtual events in the event stream.) A message is also
printed for each true assertion, unless the-f flag is given. It is also possible to use
the PSpecprint statement in a specification to cause pcheck to print out values of

44

arbitrary PSpec expressions. These will be printed after the messages about which
assertions failed.

Use the-cont switch on the pcheck command line when it is to be run in con-
tinuous monitoring mode, that is, when the reports of assertion failures should be
printed as they are encountered, rather than waiting until the entire log has been
processed. All print statements will still be done after the end of log has been
reached. (This may be changed in future versions to allow continuous printing.)

Evaluator

Peval provides an interactive read-eval-print loop for evaluating PSpec expressions
relative to a specific monitoring log and PSpec performance specification. The
evaluator repeatedly prompts the user to enter a command, evaluates the command,
using the monitoring log if necessary, and reports the result.

The evaluator accepts many of the commands that can appear in a PSpec speci-
fication, with slightly modified syntax (all commands must be followed by a semi-
colon, and expressions are not preceeded by a keyword). In addition to being able
to evaluate expressions, a peval user can define new named constants, define new
interval types, and declare new procs. The interval, event, and constant names
accessible in the evaluator include those defined or imported inspecfile(if it is
supplied) as well as those defined interactively. It is not possible to redefine names
in a peval session.

In addition, the evaluator accepts two commands that cannot appear in a PSpec
specification. Theechocommand, followed by a double-quoted string, writes the
string (without quotes) to the standard output. This is particularly useful when the
evaluator is used in a batch mode (with its input coming from a file) in order to
record in the output what is being evaluated. Thehelpcommand prints out help on
using the evaluator, including the grammar of the input language.

Hint: The evaluator normally prints timestamp and elapsed time values in
“ticks” (internal time) units. To examine such a value in more reasonable units,
simply divide by the unit of choice. For example, ift is an elapsed time value,
typing t/1msto the evaluator will print the value oft in milliseconds. This works
because the expression1 msevaluates to the number of ticks equivalent to one
millisecond.

Solver

Psolve helps to estimate values for unknown constants in PSpec performance spec-
ifications using data in a monitoring log. The specification must contain unknowns
and solve declarations. The output, written to the standard output, is a revised spec-

45

ification with the unknowns bound to their estimated values. By default, psolve
computes values for all unknowns appearing in the specification. To only solve for
specific unknowns, use the-u switch described below. See the section More on
Psolve below for more details.

Flags

-s specfile specfileis the name of the file containing a PSpec specification. The file
must exist in some directory on the search path, which defaults to “.:../src”
and may be changed with the-i switch

-etp etplog exefileFor etp logs,etplogis the name of the etp log file andexefileis
the name of the associated executable that produced the log. The executable
can be either the original, or etp’d version. Ifetplog is “-” the log is read
from the standard input. Note that for peval, if the log is on the standard
input, the-c flag is required for specifying the source of expressions to be
evaluated. Either the-etp switch or the-trace switch must be specified.

-etpsymetplog symfileLike the -etp switch above, howeversymfileis given as
the source of symbols in the log instead of an executable.symfileis an ascii
file, in the form generated by the command “nm -Bpd” run on the executable
file. This switch is useful in two cases:symfileis probably smaller than the
executable, so if you want to keep a log around for later evaluation but don’t
want to save the executable, you can just save the symbols. Also, it is useful
when generating an etp-format log (probably by a program other than etp)
on a machine where the executable does not contain the desired symbols, or
where the “nm” program cannot be used to read the symbols.

The filesymfilemust have the following format. The symbol definitions are
a sequence of ascii lines, one definition per line, where each line has:

<addr> <type> <symbol>

where<addr> is the decimal value of the symbol,<type> is a single let-
ter, and<symbol> is the symbol name. Only lines with<type> = ’t’ or
<type> = ’T’ are used by PSpec.<addr>, <type>, and<symbol> must
be separated by exactly one blank or tab and<addr> must not be preceded
by whitespace.

-trace tracefile For MIPS trace logs,tracefile is the name of the ascii log file. If
tracefile is “-” the log is read from the standard intput. Note that for peval,
if the log is on the standard input, the-c flag is required for specifying the

46

source of expressions to be evaluated. Either the-etp switch or the-trace
switch must be specified.

-r clockres Optional flag to specify the resolution of cycle counter “tick” values
used in the log in the case where the log does not specify the resolution
itself. clockrescan be the special symbol “myclock”, in which case the cy-
cle counter value is measured on the current machine and used to compute
timestamp values in the log regardless of where the log was generated. Oth-
erwise,clockresshould be expressed as a floating point number of seconds
per tick. For example, for a 40 ns clock the value would be40e-9. If the
flag is not specified and the log does not contain the cycle counter resolution
but the log was generated on the current machine, the cycle counter value of
the current machine is used. Otherwise, the cycle counter resolution cannot
be determined and an error message will be printed.

-i specpathOptional flag that changes the search path forspecfileand any specifi-
cations it imports.specpathhas the form of a colon-separated list of direc-
tory names.

-v intervalfile Optional flag which says to write to the file namedintervalfile de-
tailed information (in ascii) about the intervals in the log file (as interpreted
relative tospecfile). peval writes and closes the file on startup so that it can
be examined while peval is in use.

-e eventfile Optional flag which says to write to the file namedeventfiledetailed
information (in ascii) about the events relevant tospecfile. peval writes and
closes the file on startup so that it can be examined while peval is in use.

-c cmdfile Optional flag for peval which tells it to read the expressions to be eval-
uated from the filecmdfile. This flag is required when the log for peval is on
the standard input.

-f Optional flag for pcheck which tells it to report failures only (normally, true
assertions are also reported).

-cont Optional flag for pcheck which tells it to report failures as they occur, rather
than waiting until the end of log.

-d datafile Optional flag for psolve which tells it to write todatafileall the data-
points used in linear regressions.

-u unknown1 . . .unknownn Optional flag for psolve which tells it to solve for just
the unknowns namedunknown1 throughunknownn. These names must be

47

fully qualified identifiers (of the formspecname.defname). If this flag is
absent, values for all unknowns are computed.

Error Messages

Parse and Evaluation errors

Errors inspecfileor any file it imports are reported with the specification name
(if available) and the character offset in the file near where the error occurred,
followed by a message indicating the problem. Errors in expressions typed to the
evaluator are reported with the character offset (admittedly, not the most useful
form of message).

Log errors

For errors in log files, a message indicating the problem, along with the byte offset
in the log file (where appropriate) are printed. The message “log format mismatch”
is reported when the log format version number in the log header is one that pcheck
does not recognize.

Notes

Shared libraries are not yet supported.

Monitoring

Monitoring logs are the only connection between program runs and the Pspec tools;
therefore they must contain all information necessary to check performance asser-
tions about program runs.

A monitoring log is logically a sequence of “events” corresponding to points in
a program’s execution. An event has a type and some number of numeric attribute
values. It may also have a timestamp and a thread id. Events in monitoring logs
correspond to events in PSpec specifications. The mechanism for matching event
types in logs to event types in specifications depends on the monitoring mechanism
being used.

Monitoring with Etp

etp (the “elapsed time profiler”) provides a convenient mechanism for generating
logs of events that can be processed by the PSpec tools. Most of the events in an etp
log correspond to calls and returns of procedures. There are also events marking

48

log buffer flushes and the end of the log. For monitoring logs produced by etp, log
events are matched to PSpec events as follows:

• If the PSpec specification contains aproc declaration for procedureP the
resulting PSpec events of typescall@Pandret@Pcorrespond to log events
that are calls and returns, respectively, of the procedure namedP. (For a log
produced from a Modula-3 program, a procedure name is the fully qualified
Modula-3 name with replacing “.”). In addition, there will be fabricated
events of typeret@P that don’t appear explicitly in the etp log but can be
inferred to have occurred based on stack information in the log.

The attributes for call events correspond, in order, to at most the first four
integer arguments to the procedure being called. The first named attribute for
a return event is the first integer result returned by the procedure. The second
named attribute for a return event indicates whether the return appeared in
the log explicitly (and therefore the return event’s timestamp is exact) or was
inferred (and therefore the return event’s timestamp is approximate). The
attribute value is 1 if the return was explicit and 0 otherwise.

• An event type declared with nameE in a PSpec specification namedScor-
responds to events in the log that are calls of a procedure namedS E. The
attribute values ofE come from up to the first four integer arguments toS E.

• A PSpec event of typelogflush@corresponds to an etp log flush event. It
has a single attribute,time, whose value is the time spent flushing the log (in
internal timestamp units).

• A PSpec event of typelogstart@is a fabricated event with the same times-
tamp as the first event in the log.

• A PSpec event of typelogend@corresponds to the end-of-log event in the
etp log.

The timestamps and thread ids for all event types come from the timestamps
and thread ids recorded in corresponding log events (timestamps are made relative
to the first event in the log), except for inferred return events, where the timestamp
and thread id comes from the explicit log event following the inferred event. For
inferred return events, the error in the timestamp is computed using the event oc-
curring immediately before the event that produces the inferred return. For all other
events, the error in the timestamp is plus one clock unit. Timestamps are converted
to be relative to the first event in the log, which is assigned a timestamp of 0.

49

Monitoring with Trace

Another way on MIPS/Ultrix systems to generate a log that the PSpec tools can
understand is to use the trace(1) command. This command generates logs of system
call and return events for a process, in ascii format, one line per event.

Trace log events are matched to PSpec events as follows. A trace event marking
the invocation of the system call namedScorresponds to the PSpec eventcall@S.
Similarly, a trace event marking the return of the system call namedScorresponds
to the PSpec eventret@S. These PSpec events are declared in a PSpec specifica-
tion using the procedure syntactic sugar, with the system call name as the name
of the procedure. The timestamp of the PSpec event is the timestamp of its corre-
sponding trace entry; the error in the timestamp is plus one clock tick. The thread
id is the process id in the trace entry. For invocation events, the attributes are the
numeric attributes in the trace entry. For return events indicating successful system
call completion, the first attribute is the return value, and the second attribute is
1 (indicating that the return event is explicit). For return events indicating that an
error occurred, the first named attribute is the negative of the error number returned
and the second named attribute is 1 (indicating explicit). Additionally, there is an
initial fabricated event of typelogstart@with the same timestamp as the first event
in the log, and a final fabricated event of typelogend@with the same timestamp
as the last event in the log.

More on Psolve

Unknowns

An unknown is a symbolic constant whose value is left undetermined. It is intro-
duced into a specification using thedef statement:

def id = ?

whereid is the name of the unknown.

Solve Declarations

Solve declarations come in two forms. The simple form contains an equation that
is linear in one unknown:

solveeqn .

eqnhas to be an equation, where the expression on one side of the equal sign is
constant (contains no unknowns), and the expression on the other side is “linear”
in one unknown. In general, an equation is linear ink unknowns if it has the form
of a sum or difference of terms, where each term is one of the following:

50

texpr1∗ texpr2,where one of thetexprsis an unknown
and the other is a constant expression,

texpr1/ texpr2,wheretexpr1is an unknown andtexpr2is a
constant expression, or

texpr,which is an unknown or a constant expression.

Exactlyk terms contain unknowns. Each term must have a different unknown
from any other term, and at most one term may be an unknown by itself. At least
one term must contain an unknown.

The unknown in the simple form of solve declaration is solved for algebraically.
The constant expressions may contain log-aggregate expressions, which will be
evaluated relative to the supplied monitoring log.

The second form of solve declaration describes how to compute a set of data
points and gives an equation for use in a linear regression analysis that produces
estimates for the values of the unknowns. It is written:

solve dataid : idtype [wherepred] : eqn [,var vid [, cor cid]]

or

solve dataid in domain(mid) [wherepred] : eqn [,var vid [, cor cid]]

whereid, idtype, mid, vid, andcid are identifiers,pred is a boolean-valued expres-
sion, andeqnis an equation linear in some number of unknowns.

In the first case, the data values for the regression are computed using the log.
idtypemust name an event or interval type. The constant expressions in the equa-
tion are evaluated withid bound to each event or interval of typeidtype in turn to
produce one data point for the regression. The total number of data points will be
equal to the number of matching events or intervals in the log.

In the second case, the data values for the regression are computed using the
elements of a mapping.midmust name a mapping. The constant expressions in the
equation are evaluated withid bound to each element of the mapping’s domain in
turn to produce one data point for the regression. The total number of data points
will be equal to the size of the mapping’s domain.

In both cases, where-clauses may be used to restrict the set of events or intervals
or domain values in the iteration.

The var andcor clauses, if present, name identifiers to be bound to the com-
puted variance and coefficient of correlation of regression. These identifiers must
have been declared previously as unknowns.

51

Hints

It is a good idea to plot the data points for a linear regression along with the line
estimated by psolve to see whether the estimate is reasonable (and whether the data
is linear to start with). The output of psolve can be transformed without too much
trouble to input for gnuplot(1). For example, suppose you use psolve to estimate
the constantsa andb in the equationy = a ∗ x+ b. Use the-d switch to psolve to
get a dump of the data points for the regression. Suppose the data points are in the
file “solve.data” and the estimates produced by the solver fora andb are 3.0 and
4.5 respectively. You could run gnuplot and issue the following commands to see
a plot of the data and estimated line:

f(x) = 3.0 * x + 4.5
plot ’solve.data’ using 2:1, f(x)

See Also

For topics related to psolve, see a textbook on linear regression or statistics. The
following texts may be useful:

Robert V. Hogg and Elliot A. Tanis, Probability and Statistical Inference, Macmil-
lan Publishing Company, 1988.

Murray R. Spiegel, Theory and Problems of Statistics, Schaums Outline Series
in Mathematics, McGraw-Hill Book Company, 1988.

52

C CMon Tools - telemonitor, telemonreg, snarflog

This appendix includes the Unix-style manual pages for the telemonitor, registry,
and snarflog tools.

C.1 telemonitor

Name

telemonitor - user interface for processing logs during continuous monitoring

Syntax

telemonitor [-debug] [-regmachinemachine] [-regnamename] [-rc file]

Description

The telemonitor is a part of the Continuous Monitoring system. It provides a user
interface for selecting programs to monitor and for processing log data. The tele-
monitor can connect to programs already running and can discover when programs
start up.

A telemonitor must be able to connect to an instance of a registry (see the tele-
monreg(1) manual page below) in order to find program instances that are avail-
able for monitoring. Unless explicitly stated, the registry is assumed to be run-
ning on the same machine as the telemonitor, and is assumed to be exported under
the name “TelemonRegistry”. To cause the registry to be found under a different
name or on a different machine, either use the command line switches-regname
and -regmachine, or set the environment variables TELEMONREGNAME and
TELEMONREGMACHINE to the desired values.

When the telemonitor starts up, it attempts to read its initial settings from a
configuration file. If the-rc command line switch is given with a file name, it
reads that file. If no-rc switch is given, it checks the environment variable TELE-
MONRC for a file name, and if that is undefined, it tries “$HOME/.telemonrc”.
The format of configuration files is described below.

User Interface

The primary user interface of the telemonitor shows two pieces of information: the
classes of programs for which the telemonitor is registered to receive notifications
when an instance starts running, and the running instances of programs in those
classes. Each class of programs has the following information associated with it:

53

• The program name, machine name, and process id of program instances in
the class (any of which may be empty, indicating that any value is accept-
able). The sets of instances represented by two different classes must not be
equal. (They can overlap.) The “program name” is the name under which
the program is registered with telemonreg.

• A csh command line specifying a tool or set of tools to run over the log
data; the log data is passed to the processes created by the command line
via standard input, and the standard output of the processes is captured and
written to a typescript that can be displayed in the telemonitor. The csh vari-
ables MMACHINE, M PROG, and MPID will be set to the machine name,
program name, and pid, respectively, of the program instance providing the
log. These variables can be used on the command line, preceded by$; an
example command line might be:cat >/tmp/log.$M MACHINE.$M PID.

• Control flags, indicating: (1) whether it is acceptable to block the monitored
program (to avoid losing log data when the monitoring tool cannot process
data as fast as the monitored program generates it); and (2) whether monitor-
ing should be started automatically when an instance of the class starts up, or
whether the instance should simply be added to the list of running instances
to be available for the user to start monitoring later.

Controls are provided to add, delete, and modify program classes.
When the telemonitor is informed of a new running instance for one of its reg-

istered classes, it adds the instance to the list of running instances, highlighting it
to indicate that it is new. If the instance’s class is configured for automatic monitor-
ing, the specified command will be started and log data will be passed to it. When
a class is configured for automatic monitoring, the telemonitor synchronizes with
the monitored program to ensure that all log data is captured from the beginning of
the program’s execution.

A status/control window can be popped up for any instance in the list of running
instances. This windows provides controls to start and stop monitoring for the
instance and to view the output from the tool that is processing the log data, and
to direct the tool’s output to a file. Summary status information is also displayed
indicating the amount of data captured so far, and how long monitoring has been
going on.

The telemonitor maintains a set of default settings for new classes; these can
be modified using the “Config” menu in the user interface. The current state (con-
sisting of the default settings and the list of classes) can be saved to a file (default
~/.telemonrc) or restored from a file. The file should contain a sequence of S-
expressions, each describing either the defaults for new classes or a single class.

54

Exactly one default can be provided, and it must come first.

Configuration File Syntax

The S-expressions come from the following grammar:

description::= ((defaults | class) proplist)
proplist ::= property*
property ::= (prop value)
prop ::= prog | pid | machine | block | auto | tool
value ::= text | boolean
boolean ::= TRUE | FALSE

(Textis a double-quoted string.)
Prop names are case-sensitive. The type of aprop’s value is constrained as

follows: prog, pid, machine, andtool require typetext; block andauto require
typeboolean. If a given property appears multiple times in a description, the last
value provided for it is used. Blank lines and other whitespace outside oftexts
are ignored. A comment starts with a semicolon and ends with a new line, and is
ignored. (Note: for a value specified forpid to be useful, it must be a positive
integer.)

If a text-valuedprop is not specified for a class, its value is taken from the
defaults specified; if there is no default, its value is empty. Similarly, for a boolean-
valued prop, if there is no default, its value isTRUE.

Error Conditions

The telemonitor usually pops up an error log window when an error occurs. This
window can be recalled at any time using the “Show Error Log” button in the upper
right corner of the telemonitor UI. The “registry unavailable” message is reported
specially, in the upper left corner of the UI, rather than in the error log window.

Here is a partial list of the possible error messages and their causes.

• “Registry Unavailable”: the telemonitor lost contact (or could not initially
make contact) with a registry of the particular name and on the particular
machine indicated in the top left corner of the telemonitor window. While
the registry is unavailable, the telemonitor will not be able to learn about new
running instances of programs available for monitoring, but existing moni-
toring sessions will continue to work. To correct the situation, check to see
whether the registry is running on the specified machine under the specified
name. The telemonitor will repeatedly try to reconnect to the registry until it

55

is successful (so if the registry dies, it can be restarted without restarting the
telemonitor). For now, it is not possible to redirect a running telemonitor to
use a different registry. It must be restarted with the new registry name and
machine.

• “Could not create process for tool command”: The telemonitor encountered
an error when trying to start the tool command process and connect it to
a monitored program. Check the tool command to make sure it does not
contain errors.

• “Failed writing to tool command”: An error occurred trying to write the
monitoring log on the standard input of the tool command process. Check
whether the tool command appears to still be running and whether it has an
error.

• “Failed reading log from monitored program”: An error occurred trying
to transfer the log from the monitored program to the telemonitor. Check
whether the monitored program is still running. It is possible that the mon-
itored program is still running but has dropped the connection to this tele-
monitor.

• “Failed closing pipe to tool command”: An error occurred trying to shut
down the tool command process cleanly. You can probably ignore this error
in most cases, but it is reported just in case.

• “Failed calling donerd on snarflog for ...”: The telemonitor received an error
trying to shut down the connection to a monitored process. (This message
should probably be reworded.) You can probably ignore this error in most
cases.

• “Failed getting output from tool command”: An error occurred reading the
standard output from the tool command process. Check whether the tool
command still seems to be running.

• “Getrd raised NetObj.Error...”: There was an error trying to contact a moni-
tored program. Check whether the monitored program is still running.

• “Instance already connected (couldn’t start monitoring)...”: Another tele-
monitor is already monitoring the named instance. If it later disconnects this
telemonitor could have the opportunity to try connecting again, but it will
not happen automatically.

56

C.2 telemonreg

Name

telemonreg - global registry for the Continuous Monitoring system

Syntax

telemonreg [-debug]

Description

telemonreg is part of the Continuous Monitoring system. It acts as a global, well-
known registry for instances of the snarflog and telemonitor programs. Upon start-
ing up, snarflog reports its existence, as well the program it represents, the machine
on which it runs, and its process identifier. If there are any instances of telemonitor
that have indicated an interest in that particular snarflog, then they are notified and
given an opportunity to receive log records from the snarflog instance. Likewise,
when a user of a telemonitor adds a new class of programs in which that user is in-
terested, the telemonitor registers this interest with the telemonreg, and is notified
of any already existing snarflog instances that are in that class. Only one instance
of a telemonreg with a given TELEMONREGNAME should be run on any ma-
chine. In general, a single instance of a telemonreg should be used for all snarflog
and telemonitor instances that need to find each other.

Options

-debug Cause the telemonreg to print diagnostic messages when snarflog instances
come and go, as well as when telemonitor instances register and unregister
program classes.

Environment

TELEMONREG NAME The name telemonreg should use to export a reference
to itself. The default is “TelemonRegistry”.

C.3 snarflog

Name

snarflog - send log data extracted from an etp’d executable or traced program to a
telemonitor

57

Syntax

snarflogprogname<-etp|-ascii> [-buffer nbytes] [-debug]
snarfetpprogname[-buffer nbytes] [-debug]
snarfasciiprogname[-buffer nbytes] [-debug]

Description

The snarflog program is part of the Continuous Monitoring system. It extracts log
data from a running program and forwards the data to a telemonitor (which in turn
provides a user interface for processing the data with a variety of tools). There are
currently two versions of snarflog, for processing etp log data or ascii log data.

snarfetp (or equivalently, “snarflog -etp”) is the version of snarflog that ex-
tracts log data from a running program that has previously been processed with
etp(1) (the elapsed time profiler). For it to be possible to monitor a program con-
tinuously, snarfetp must be started together with the program. The program and
snarfetp communicate via the named pipe that is the value of the environment vari-
able ETPOUT.

snarfascii (or equivalently, “snarflog -ascii”) is the version of snarflog that reads
ascii log data from a program, parsing the log as a series of log records separated
by newlines. It reads the log on its standard input. An example of where snarfascii
can be useful is in processing logs generated by the trace(1) command.

When snarflog (or snarfetp or snarfascii) starts up, it registers itself with a tele-
monreg instance. It checks for the registry on the machine named by the environ-
ment variable TELEMONREGMACHINE, or the local host if no such variable
exists. It looks for a registry named by the environment variable TELEMON-
REG NAME, or the registry named “TelemonRegistry” if no such variable exists.
snarflog registers with program nameprogname, the machine name of the machine
on which it is running, and its own process id. A telemonitor user supplies some
or all of these names to the TelemonRegistry to locate the snarflog instance.prog-
nameshould identify the program being monitored such that the telemonitor user
can distinguish different programs and find any relevant data files required for pro-
cessing log data from the program.

Options

-etp Run the version of snarflog that processes etp logs. This is equivalent to
running snarfetp.

-ascii Run the version of snarflog that processes ascii logs. This is equivalent to
running snarfascii.

58

-buffer nbytes Set the size of snarflog’s internal buffer tonbytes(2 megabytes by
default).

-debug Cause the snarflog instance to print diagnostic messages about whether
data is being dropped or forwarded to a telemonitor.

Environment

TELEMONREG MACHINE The name of the machine on which telemonreg is
running. The default is the local host.

TELEMONREG NAME The name under which telemonreg exports itself. The
default is “TelemonRegistry”.

ETPOUT The pathname of a named pipe to use to extract etp log data from a
monitored program.

Bugs

snarflog should be able to tell the monitored program not to produce log data when
no telemonitor is listening.

59

D Extended PSpec Example

This appendix provides an additional example of using the PSpec language and
tools. It starts with a simple C program that can be compiled, linked, and instru-
mented with etp, and then shows some PSpec expressions that can be evaluated
against the log resulting from running the instrumented program. (To run the com-
mands described below, you must have etp and and peval installed.)

The following C program calls thefwrite function in a loop, writing a portion
of a memory buffer to a temporary file repeatedly. On each iteration of the loop,
one more character is written than on the previous iteration. The program reveals
aspects of the performance of thewrite system call andbcopy library routine.
(fwrite calls bcopy to copy the buffer contents into an I/O buffer, and it calls
write periodically to flush the I/O buffer).

#include <stdio.h>

main ()
{

int i;
char buf[2000];
FILE *fp = fopen("/tmp/foo", "w");

for (i = 0; i != 1024; i++) {
fwrite (buf, i+200, 1, fp);

}
}

This program can be compiled and linked with a C compiler to produce an exe-
cutable image, which can then be instrumented with etp. If the program is in a file
named “x.c” then the commands to produce the executables “x” and “x.etp” are:

cc -o x x.c
etp x

“x.etp” is the instrumented version of “x”. Whenever “x.etp” is run, it will
produce a file named “etp.out”, which is the log of timestamped procedure call and
returns events for the execution. Run x.etp as:

x.etp

Now, given the “etp.out” file, the command

etplog x >x.etplog

60

produces a file “x.etplog” containing an ASCII version of the log.
We can explore the log “etp.out” using the PSpec language by running “peval”

and evaluating expressions on the log. The command to start “peval” is:

peval -etp etp.out x

Here is an annotated sample “peval” session:

PSpec Evaluator. Type ”help” or ”?” for syntax.
-> proc fwrite;
-> proc bcopy;
-> proc write;
Declare events and intervals corresponding to the fwrite, bcopy, and write
procedures, using the procedure sugar.

-> {count f : intv@fwrite};
1024
Aggregate expression to count the number of fwrite intervals in the event stream -
there are 1024 of them.

-> {count b : intv@bcopy};
1112
Count the number of bcopy intervals in the event stream - there are 1112 of them.
This must mean either that bcopy is called from other places than fwrite or that
sometimes fwrite calls bcopy more than once.

-> interval fw = intv@fwrite
metrics bcnt = {count b : intv@bcopy},
btime = {+ b : intv@bcopy : elapsed(b)/1us}
end fw;
Declare an interval subtype of fwrite, with some additional metrics: bcnt counts
the number of bcopy intervals in an fwrite interval and btime is the elapsed time
(in microseconds) for all bcopy intervals in an fwrite interval. The new subtype is
named fw.

-> {count f : fw where f.bcnt = 1};
936
There are 936 fw intervals that contain only 1 bcopy...

-> {count f : fw where f.bcnt = 2};
88

61

..and 88 that contain 2 bcopys. This accounts for all 1024 fwrites and 1112
bcopys.

-> {mean f : fw : elapsed(f)/1us};
191.4820313
The mean elapsed time for fwrite calls is about 190 microseconds.

-> {stdev f : fw : elapsed(f)/1us};
2563.017376
But the standard deviation is very large - over 2 milliseconds. Much of this is
probably due to the write calls in some of the fwrite intervals.

-> interval fw2 = fw
metrics wcnt = {count w : intv@write},
wtime = {+ w : intv@write : elapsed(w)/1us}
end fw2;
Define a new subtype of fw with counts and elapsed times of the write
sub-intervals to check this.

-> {mean f : fw2 where f.wcnt = 0 : elapsed(f)/1us};
32.85547009
-> {stdev f : fw2 where f.wcnt = 0 : elapsed(f)/1us};
31.56264679
-> {mean f : fw2 where f.wcnt != 0 : elapsed(f)/1us};
1878.691818
-> {stdev f : fw2 where f.wcnt != 0 : elapsed(f)/1us};
8607.104389
Indeed, the fwrite intervals with writes take much longer than those without, and
they tend to have higher standard deviations.

-> {mean f : fw2 : elapsed(f)/1us - f.wtime};
35.21230469
-> {stdev f : fw2 : elapsed(f)/1us - f.wtime};
31.98921867
If we consider the elapsed times for all fwrite intervals subtracting out the time
for any write system calls during the intervals, the mean and standard deviation
are pretty close to those we computed when we excluded from the calculation
those fwrite intervals that contained writes.

-> {count f : fw2 where f.wcnt = 0 & elapsed(f) > 60us};

62

22
Suppose we wanted to examine some of the long fwrite intervals that didn’t
contain writes. The following expressions show a useful way to build mappings
using the aggregate operator called “the”.

-> interval fw3 = fw2 metrics sts = timestamp(s) end fw3;
First we define yet another subtype of the fwrite interval that contains a metric
that is the timestamp of the interval’s start event. This timestamp is a unique
identifier for all intervals of the same type.

-> {the f : fw3 where f.wcnt = 0 & elapsed(f) > 60us :
f.sts->elapsed(f)/1us};
(3.641230271e9-> [606.2,0.04,0.04],
3.641252357e9-> [128.68,0.04,0.04],
3.641393206e9-> [201,0.04,0.04],
3.643867565e9-> [88.92,0.04,0.04],
3.644452903e9-> [92.44,0.04,0.04],
3.644746097e9-> [113.12,0.04,0.04],
3.644773098e9-> [219.2,0.04,0.04],
3.644781774e9-> [100.88,0.04,0.04],
3.645039358e9-> [90.6,0.04,0.04],
3.645137258e9-> [87.12,0.04,0.04],
3.645159924e9-> [61.6,0.04,0.04],
3.645239792e9-> [63.52,0.04,0.04],
3.645326065e9-> [80.68,0.04,0.04],
3.645332368e9-> [83,0.04,0.04],
3.645409843e9-> [476.16,0.04,0.04],
3.645545851e9-> [100.08,0.04,0.04],
3.645798962e9-> [60.2,0.04,0.04],
3.64594163e9-> [158.84,0.04,0.04],
3.645989011e9-> [311.44,0.04,0.04],
3.646030861e9-> [178.92,0.04,0.04],
3.64608297e9-> [236.6,0.04,0.04],
3.646088959e9-> [91.96,0.04,0.04])
Here we’ve used PSpec’s mapping constructor, combined with the “the” operator
to produce a multi-element mapping where each element maps an interval start
timestamp (on the right of the->) to the elapsed time for the interval in
microseconds (on the left). The elapsed times are shown as triples. The result
mapping only includes intervals that contained no writes and that took more than
60 microseconds. If instead of the elapsed time for each of those intervals we

63

wanted to know how long their bcopys took, we could change the expression as
follows:

-> {the f : fw3 where f.wcnt = 0 & elapsed(f) > 60us :
f.sts -> f.btime};
(3.641230271e9-> [23.2,0.04,0.04],
3.641252357e9-> [123.68,0.04,0.04],
3.641393206e9-> [10.6,0.04,0.04],
3.643867565e9-> [83.72,0.04,0.04],
3.644452903e9-> [30.88,0.04,0.04],
3.644746097e9-> [107.28,0.04,0.04],
3.644773098e9-> [214.28,0.04,0.04],
3.644781774e9-> [34.56,0.04,0.04],
3.645039358e9-> [85.92,0.04,0.04],
3.645137258e9-> [82.12,0.04,0.04],
3.645159924e9-> [56.92,0.04,0.04],
3.645239792e9-> [57.48,0.04,0.04],
3.645326065e9-> [76,0.04,0.04],
3.645332368e9-> [78.24,0.04,0.04],
3.645409843e9-> [46.68,0.04,0.04],
3.645545851e9-> [95.4,0.04,0.04],
3.645798962e9-> [55.52,0.04,0.04],
3.64594163e9-> [147.52,0.04,0.04],
3.645989011e9-> [306.36,0.04,0.04],
3.646030861e9-> [174.04,0.04,0.04],
3.64608297e9-> [231.92,0.04,0.04],
3.646088959e9-> [26.12,0.04,0.04])
->

This example session gives a flavor of how the PSpec language can be used to
explore etp logs quantitatively. Once the behavior is understood, the above kinds
of expressions can be turned into assertions, such as:

assert {mean f : fw2 where f.wcnt = 0 : elapsed(f)/1us} < 50us;

This asserts that the mean elapsed time for anfwrite call that does not include a
write call is less than 50 microseconds.

64

References

[1] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network
objects. InProceedings of the Fourteenth ACM Symposium on Operating
Systems Principles, pages 217–230. ACM, December 1993.

[2] Digital unix web page. URL http://www.unix.digital.com.

[3] Hania Gajewska, James J. Kistler, Mark Manasse, and Dave Redell. Argo: A
system for distributed collaboration. InProceedings of the ACM Multimedia
’94 Conference, October 1994.

[4] Allan Heydon and Greg Nelson. The Juno-2 constraint-based drawing editor.
Technical Report 131a, Digital Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301, December 1994. http://gatekeeper.dec.com/pub/DEC/
SRC/research-reports/abstracts/src-rr-131a.html.

[5] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchitha-
padam, and Tia Newhall. The Paradyn parallel performance measurement
tools. IEEE Computer, 28(11), November 1995.

[6] Barton P. Miller, Morgan Clark, Steven Kierstead, and Sekl-See Lim.IPS-2:
The second generation of a parallel program measurement system. Computer
Sciences Technical Report 783, University of Wisconsin—Madison, Madi-
son, Wisconsin, August 1988.

[7] Greg Nelson, editor.Systems Programming With Modula-3. Prentice Hall Se-
ries in Innovative Technology. Prentice Hall, Englewood Cliffs, New Jersey,
1991.

[8] Sharon E. Perl. Performance assertion checking. Technical Report
MIT/LCS/TR-551, MIT Laboratory for Computer Science, Cambridge, MA
02139, September 1992.

[9] Sharon E. Perl and William E. Weihl. Performance assertion checking. In
Proceedings of the Fourteenth ACM Symposium on Operating Systems Prin-
ciples, pages 134–145. ACM, December 1993.

[10] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A.
Shields, Bradley Schwartz, and Luis F. Tavera. Scalable performance anal-
ysis: The Pablo performance analysis environment. In Anthony Skjellum,
editor,Proceedings of the Scalable Parallel Libraries Conference, pages 104–
113. IEEE Computer Society, October 1993.

65

[11] Marshall Rose.The Simple Book: An Introduction to Management of TCP/IP-
based Internets. Prentice-Hall, 1991.

[12] Richard L. Sites, editor.Alpha Architecture Reference Manual. Digital Press,
1992.

[13] Richard Snodgrass. A relational approach to monitoring complex systems.
ACM Transactions on Computer Systems, 6(2):157–196, May 1988.

[14] David Solomon.Inside Windows NT (2nd edition). Microsoft Press, 1998.

[15] Xpvm: A graphical console and monitor for pvm. http://www.netlib.org/utk/
icl/xpvm/xpvm.html.

66

