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Abstract

This paper describes an approach for verifying programs in the presence of data
abstraction and information hiding, which are key features of modern program-
ming languages with objects and modules. The paper focuses on the property of
modular soundness, that is, the property that the separate verifications of the indi-
vidual modules of the program suffice to ensure the correctness of the composite
program. The paper introduces a new specification language construct, the ab-
straction dependency, and argues that it is needed to achieve modular soundness
in the presence of data abstraction and information hiding. This paper discusses
in detail two varieties of abstraction dependencies: static and dynamic. The paper
also presents a new technical definition of modular soundness as a monotonicity
property of verifiability with respect to scope and uses this technical definition
to formally prove the modular soundness of a programming discipline for static
dependencies.
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The romance of the precise is not the elision
Of the tired romance of imprecision.
It is the ever-never-changing same,

An appearance of Again, the diva-dame.
— Wallace Stevens

0 Introduction

This paper describes an approach for verifying programs in the presence of data
abstraction, object types, and information hiding. The genesis of this work was the
Extended Static Checking project (ESC) [8], which applies program verification
technology to systems programs written in Modula-3. The aim of ESC is not to
prove full functional correctness, but to prove the absence of common errors, such
as array index errors, nil dereference errors, race conditions, deadlocks, etc.

One of the biggest problems we encountered in the ESC project is that the
verification methodology we know from the literature does not seem to apply
to the systems programs in the Modula-3 libraries. The problem is not that the
programs use low-level tricks or unsafe code; the problem is that the programs use
patterns of modularization and data abstraction that are richer than those treated
in the verification literature. This is not an artifact of Modula-3, but would apply
to any modern object-oriented language.

The data abstraction technology we know from the literature extends and re-
fines the seminal paper on data abstraction by C.A.R. Hoare in 1972 [18]. In
particular, Hoare and all subsequent treatments that we know impose the require-
ment that all of the concrete variables used to represent an abstraction must be
declared in the same module. This requirement is too strict: if it were applied
to the Modula-3 libraries, many small modules would have to be combined, with
a loss of desirable information-hiding. Writing specifications is supposed to im-
prove the structure of a program, so it is ironic that standard treatments of data
abstraction are incompatible with good modularization. Therefore, in this paper
we weaken Hoare’s requirement and allow the concrete variables used to represent
an abstraction to be divided among several modules.

A key technical challenge is to check modules where an abstract variable is
visible, some of the concrete variables used to represent it are visible, but the
abstraction representation function is not visible. To meet this challenge, we in-
troduce a new specification construct called the abstraction dependency. This
construct specifies that an abstraction connection exists between the variables, but
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does not specify the actual abstraction representation, which can be confined to
a more private scope. There are different types of dependencies, and these types
produce a useful taxonomy of the patterns of abstraction in modular software.

Abstraction dependencies give the programmer considerable freedom in ar-
ranging the declarations of abstract variables, concrete variables, abstraction rep-
resentation functions, and dependencies among the modules of a program. Too
much freedom: without further restrictions, we would lose the property of modu-
lar soundness, that is, the property that the separate verifications of the individual
modules of the program suffice to ensure the correctness of the composite pro-
gram. We therefore impose several requirements, called modularity requirements,
and argue that modular verification is sound for programs that meet the modularity
requirements.

1 On the need for data abstraction

Before we get into the details of our generalization, we set the stage by reviewing
the rôle of data abstraction in modular verification.

To check that a large program does what it is supposed to do, we must study
it piece by piece. Nobody’s short-term memory is big enough to hold all the
details of a large program. If the checking effort (formal or informal) is to be
manageable, we cannot afford to re-examine the body of a procedure for every one
of its calls. This is the reason for writing specifications, formal or informal. Given
specifications, we check that each procedure meets its specification, assuming that
the procedures it calls meet theirs.

This checking process is called modular verification, and for simple program-
ming languages it has been understood since C.A.R. Hoare’s work on axiomatic
semantics in the 1960s. (As long as the bulk of the verification is done modularly,
we do not exclude simple link-time checks, such as the check that each proce-
dure is implemented somewhere in the program.) The central goal of this paper is
to understand modular verification in the presence of two modern programming
features: data abstraction and information hiding.

A procedure specification includes a precondition and a postcondition. The
precondition is the part of the contract to be fulfilled by the caller of the proce-
dure, and the postcondition is the part of the contract to be fulfilled by the pro-
cedure implementation. But precondition and postcondition are not enough: the
specification also includes a “modifies list” that limits which variables the pro-
cedure is allowed to modify. Without the modifies list, the contract would allow
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a procedure to have arbitrary side effects on any variable not constrained by the
postcondition, which would make the contract useless to the client.

It is possible to view the modifies list as syntactic sugar for extra conjuncts
in the postcondition, asserting that every variable not mentioned in the modifies
list is unchanged. That is, in a program with three variables x , y , and z , the
specification

requires P modifies x ensures Q

could be “desugared” into

requires P ensures Q ∧ y = y′ ∧ z = z′

in which primed variables denote post-values and unprimed variables denote pre-
values. We cannot, however, use this desugaring to pretend that each procedure
specification consists of a precondition and postcondition only. The reason is that,
in modular verification, we never know, when verifying a procedure, what the
set of all variables in the final program will be. Perhaps x , y , and z are the
only variables visible where the procedure is declared, but more variables may be
visible where the procedure is called. Therefore, in this paper we take the view
that the modifies list is an integral part of the specification. Although we will
rewrite modifies lists, the rewriting is different for different scopes.

Unfortunately, and perhaps surprisingly to those who have used verification
more in principle than in practice, the methodology described so far is still inad-
equate. In many cases, it would be preposterous to try to list every piece of state
that might be modified by a call to a procedure. For example, what would be the
list for the putchar procedure from the C standard I/O library? What putchar

does is simply write a character to output, but anybody who has implemented an
I/O system will be aware that the list of what can be modified during the execution
of a call to putchar is very long. It includes, for example, the I/O buffers, the
internal state of the device drivers for the disk and network, the device registers
in these drivers, and the disk and network themselves. The minor problem is that
this list is long; the major problem is that the variables in the list are not visible at
the point of declaration of putchar , and to make them visible would be to give
up on information hiding, which would be to resign the game before it starts.

The solution to this difficulty —at least the only solution that we can imagine—
is data abstraction. Abstractly, putchar modifies a single abstract variable, of a
simple type (say, sequence of byte). All the internal state, from buffers to devices,
must be treated as concrete state that is part of the representation of the abstract
state.
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Some people see data abstraction as an algorithm design methodology only,
as a methodology for deriving an efficient algorithm from a simple algorithm by
changing the representation of the state. We have no quarrel with their use of data
abstraction, but our point is that data abstraction is also an essential ingredient
in any scheme for modular verification of large systems, since it seems to be the
only hope for writing a useful modifies list for a procedure whose implementation
changes the system state at many levels of abstraction.

Having identified the general idea of the solution to the putchar problem as
data abstraction, we would add that the patterns of data abstraction that arise in
verifying putchar are beyond the current state of the art of specification: we
believe that no semantics or methodology presented in the literature is equal to
the task. We hope this paper will be a useful step in this neglected area.

2 Validity as an abstract variable

The generalized data abstraction described in this paper is relevant regardless of
whether verification is being used for full functional correctness or for more lim-
ited aims, such as the ESC aim of verifying the absence of certain classes of errors
only. The examples in this paper will be ESC verifications. These verifications
tend to have a typical form, which is described in this section.

In a typical ESC verification, we associate two abstract variables with each
type, valid and state . The first of these records whether objects of the type
satisfy the internal representation invariant required by the implementation, and
the second represents the abstract value of variables of the type.

If we were verifying full functional correctness, we would have to write many
specifications about the state variable. But in doing extended static checking,
we rarely say anything about the state. We aren’t proving that the program meets
its full functional specification, only that it doesn’t crash. The main purpose of
the state variable is to account for the side effects in the implementations of the
methods, which otherwise would lead to spurious errors reported by the verifier.
Indeed, in many ESC verifications, we don’t even bother to provide the concrete
representation for state .

In contrast to state , the checking performed by ESC depends critically on
valid . Most operations on an object o will have valid[o] as a precondition. The
checker uses the concrete representation for valid to translate valid[o] into a
concrete precondition, which it then uses in proving that the implementation of
the operation does not cause an error.
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In Hoare’s original paper on data abstraction, the notion of a validity invariant
was built into the methodology. Initialization was required to establish validity
and all other operations were required to preserve it. In contrast, we consider valid
to be an abstract variable like any other; the programmer explicitly provides valid
as a precondition (and/or postcondition), and the implementation infers the details
of validity in terms of the concrete state via the usual process of data abstraction.
Our approach has several advantages over Hoare’s, of which we mention one: we
allow operations like closing a file, which destroy validity. Such operations are
frequently essential in order to deallocate resources.

3 Definition of notation

This section introduces the notation and terminology that we use in the rest of the
paper.

Modularity. A program is a collection of declarations. Declarations introduce
names for entities (such as types, abstract and concrete variables, and methods)
and/or specify properties of named entities (such as subtype relationships, repre-
sentations of abstract variables, method specifications, and method implementa-
tions). The declarations of a program are partitioned into units (sometimes called
interfaces and modules). The declarations in effect in a unit are its own decla-
rations and the declarations in effect in units that it imports. If an entity E is
declared in a unit M , it is known as M.E in importers of M and known simply
as E within M . For example:

unit M unit N import M

type T . . . uses of M.T . . .
. . . uses of T . . .

In this paper, we sometimes write E instead of M.E when M is clear from the
context.

A set of units D is called a scope if it is closed under imports, that is, if
whenever a unit M in D imports a unit N , then N is also in D . A declaration
is visible in a scope if it appears in one of the units in the scope.

We use units and imports in this paper since they are simple and extremely
general. Restrictive patterns are common in practice. For example, Modula-3
requires that every unit be an interface unit, which can declare procedures and
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methods but not declare implementations, or an implementation unit, which can
declare implementations but which cannot be imported. As another example,
CLU imposes a correspondence between units and type declarations. We have
not imposed such restrictions in this paper, because they seem orthogonal to the
modularity issues that we are discussing.

Types. In this paper, we will use primitive types like int and bool , as well as
object types and array types. Our objects are like those of Simula and Modula-
3: they are implicitly references, and each object type has a uniquely determined
direct supertype. More precisely, an object is either nil or a reference to a set
of data fields and methods; a method is a procedure that will accept the object as
its first parameter. Equality of objects is reference equality. An object type deter-
mines the names and types of a prefix of the fields and the names and signatures
of a prefix of the methods of its objects.

An object type T is declared

type T <: S

where S is an object type declared elsewhere. This introduces the name T for
a new object type whose direct supertype is S , meaning that T contains all the
fields and methods of S and possibly includes other fields and methods declared
elsewhere. The “<: S ” is optional; if omitted, S defaults to an anonymous object
type serving as the root of the subtype hierarchy.

Every object has a dynamic type determined when it is allocated. Every ex-
pression has a static type determined at compile time. If v is the dynamic value
of an expression E , v has dynamic type D , and E has static type S , then con-
ventional static type-checking rules assure that D is a subtype of S .

We consider a data field, abstract or concrete, to be a map from objects to
values. Thus, where others write

class T = { . . . f : int . . . }
we write

type T

var f : T → int

Also, we write f [t] where others write t.f to denote the value of the f field of ob-
ject t . We refer to T and int as the index type and range type of f , respectively.
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The class notation forces f to be co-declared with T , whereas our notation al-
lows them to be declared independently. This generality is not problematical; in
fact, it simplifies the semantics.

If T is a type, we write

array[T]

to denote the type of (references to) arrays with element type T . If a is of type
array[T] and is non- nil , then number(a) denotes the number of elements in a ,
and a[i] denotes element i of a for 0 ≤ i < number(a) . To properly model the
fact that arrays are references, we introduce the predeclared map variable elems :
the expression elems[a] denotes the sequence of elements referred to by an ar-
ray a . For example, a = b means that a and b reference the same sequence,
while elems[a] = elems[b] means that the sequences referenced have the same
elements. In fact, a[i] is shorthand for elems[a][i] .

If T is an object type, new(T) allocates and returns a new object of dynamic
type T . For any type T , new(T, n) allocates and returns a new array of dynamic
type array[T] and of length n .

A method m for type T is declared by

proc m(t: T, . . . args . . .): R

requires P

modifies w

ensures Q

where in the signature “ (t: T, . . . args . . .): R ”, T is an object type, t is the self
parameter, args lists the names and types of any additional parameters, and R
is the result type. In this paper, all parameters are in-parameters. In addition to
declaring the name and signature of the method, the declaration associates with it
as a specification the precondition P , postcondition Q , and modifies list w . A
program can contain at most one declaration for a given method for a given type;
for example, we don’t allow strengthening a method specification in a subtype
(this is a simplification that does not actually limit expressiveness, see p. 348
of [31]). In the postcondition, result denotes the result value, primed variables
denote values in the post-state, and unprimed variables denote values in the pre-
state. If the precondition or postcondition is omitted, it defaults to true ; if the
modifies list is omitted, it defaults to the empty list.

A method m for type T can be implemented differently for each subtype of
T . A method implementation of m for some subtype U of T is declared by

impl m(u: U, . . . args . . .): R is S end
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where S is an executable statement, and the implementation signature

(u: U, . . . args . . .): R

coincides with the declared signature except (possibly) for the type of the first
parameter. Statement S must satisfy (that is, the verifier checks that it satisfies)
the specification associated with the m method for T . The ideas in this paper
don’t depend on the particular executable statements allowed. The examples in
this paper use Algol-like executable statements, whose meaning we hope will be
clear to the reader.

A method is called by

t.m(. . . args . . .)

where t is an object (the actual self parameter), m is a method name, and args is
a list of any additional actual parameters. The static type of t is used in determin-
ing the declaration and specification of m . The declaration is used to type-check
the actual parameters and determine the static type of the result, the specification
is used to reason about the semantics of the call. The dynamic type of t is used
at run-time to determine which implementation of m to invoke. Since all method
implementations are proved to meet their specifications, and since the dynamic
type of t is a subtype of the static type of t , it is sound to reason about the se-
mantics of the dynamic dispatch in this way.

Abstraction. A data field can be declared to be abstract by preceding its decla-
ration with spec . For example:

spec var valid: T → bool

An abstract field occupies no memory at run-time; it is a fictitious field whose
value (or representation) is defined as a function of other fields. The representa-
tion is declared by a syntax like

rep valid[t: T] ≡ f [t] 	= 0 (0)

which means that for any object t of type T , the abstract value of valid[t] is true
if and only if f [t] 	= 0 .

The representation of an abstract variable can be different for different sub-
types. As an example, consider the object type Rat representing rational num-
bers, and two of its subtypes, Ratio , which represents each rational as a ratio,
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type Rat

spec var valid: Rat → bool
type Ratio <: Rat

var num, den: Ratio → int
rep valid[r: Ratio] ≡ den[r] > 0
type CFrac <: Rat

var parquo: CFrac → array[int]
rep valid[cf : CFrac] ≡

parquo[cf ] 	= nil ∧
〈 ∀ i :: 1 ≤ i < number(parquo[cf ]) ⇒ parquo[cf ][i] > 0 〉

Figure 0: An example program, illustrating that representation of an abstract vari-
able can be subtype-specific.

and CFrac , which represents each rational as a continued fraction (which is a
representation of a rational as a sequence of integers), see Figure 0. These dec-
larations specify that the concrete representation of valid[q] varies depending on
the dynamic type of q : for rationals represented as ratios, validity means that the
denominator is positive, whereas for continued fractions, validity means that each
partial quotient is positive, except possibly the first.

A rep declaration given for a type T applies to all non- nil objects of type
T , including those whose dynamic type is a subtype of T . One might think
that it would be possible to override a rep declaration for T with another rep
declaration for some subtype of T , but this is not allowed. This rule is enforced
at link-time.

The variables appearing in the right-hand side of the rep declaration for an
abstract variable are called dependencies of the abstract variable. The dependen-
cies can themselves be either concrete or abstract. Our notion of dependencies is
not to be confused with use-def dependencies [2].

A major novelty of our approach is to require that dependencies be declared
explicitly. For example, the representation (0) would cause an “undeclared de-
pendency” error unless f [t] were declared as a dependency of valid[t] , which is
done by a declaration of the form

depends valid[t: T] on f [t]
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In this paper, we sometimes omit the “ : T ” when T is obvious or unimportant.
The depends declaration can be subtype-specific, just like the rep declaration.
For example, the representations in Figure 0 might be accompanied by

depends valid[r: Ratio] on den[r]
depends valid[cf : CFrac] on parquo[cf ], elems[parquo[cf ]]

The validity of the continued fraction cf depends both on the array parquo[cf ]
and on the contents of the array. These are different dependencies and both must
be declared, as shown above. The validity of the ratio r depends only on den[r] .

This paper is principally concerned with two forms of dependencies, static and
dynamic. A static dependency has the form

depends a[t: T] on c[t] (1)

A dynamic dependency has the form

depends a[t: T] on c[b[t]] (2)

In each case, a is an abstract variable and c is either an abstract or a concrete
variable. In the case of the dynamic dependency, b is concrete. A dependency on
the contents of an array counts as a dynamic dependency, with elems playing the
rôle of c . Other forms of dependencies will be discussed in Section 9.1, but static
and dynamic dependencies are more common and fundamental.

A major goal of this paper is to design a discipline for the placement of depen-
dency declarations in a multi-module program. The paper is long, but the main
conclusion is short: the static dependency (1) must be visible wherever c is, and
the dynamic dependency (2) must be visible wherever b is.

Dependencies affect the verification process in several ways. One way is mod-
ifies list desugaring. For example, in a scope where

depends a[t] on c[t]

is visible, the modifies list

modifies a[t]

is desugared into something like

modifies a[t], c[t]

This reflects the common-sense view that the license to modify an abstract vari-
able implies the license to modify its representation. The precise details of modi-
fies list desugaring will be described later in the paper.
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4 Example: Readers

From our experience with ESC, we have found that dependencies are not just a
detail but a key ingredient of the specification language that we used constantly.
However, since dependencies are a tool for programming in the large, no small
example does them full justice. This section presents the smallest example we
know that motivates the essential points: a simplified version of readers, which
are the object-oriented buffered input streams used in the standard I/O library of
Modula-3. A key point that the example will illustrate is that modern information
hiding together with subtyping creates situations where both an abstract variable
and one or more of its dependencies are visible, but the associated representation
is not visible. In these situations, sound modular verification would be impossible,
but dependencies save the day.

Readers (and their output counterparts, writers) were invented by Stoy and
Strachey for the OS6 operating system [47]. Although Stoy and Strachey never
used the word “object” or “class” in describing them, they are in fact one of the
most compelling examples of the engineering utility of object-oriented program-
ming. Each reader is an object with a buffer and a method for refilling the buffer.
Different subtypes of readers override the refill method with code appropriate to
that type of reader; for example, a disk reader fills the buffer from the disk, a
network reader from the network.

As part of the ESC project, we have mechanically verified the absence of errors
from most of the Modula-3 standard I/O library, including all the standard reader
subtypes. In this paper we want to focus on generalized data abstraction, and
many of the complexities of the actual I/O system would distract us from this
focus, so we will simplify the reader interface rather drastically. (The actual code
and specifications that we have used as input to the Extended Static Checker can
be found on the Web [13].)

Our simplified interface Rd declares the type T representing a reader, and
specifies the two methods getChar and close , see Figure 1. Since our examples
show ESC verifications only, we specify the range type of state as any , and we
ignore the effects on state in the ensures clauses. We use the convention that
rd.getChar() returns −1 when rd is exhausted, and otherwise returns the next
byte of input. The specification of close reflects the design decision that a reader
can be closed only once (a second call to close requires validity, which may have
been destroyed by the first call).

Next we describe the unit that defines the generic buffer structure (by generic,
we mean common to all readers, as opposed to subtype-specific), see Figure 2.
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unit Rd

type T

spec var valid: T → bool
spec var state: T → any
proc getChar(rd: T): int

requires valid[rd]
modifies state[rd]
ensures −1 ≤ result < 256

proc close(rd: T)

requires valid[rd]
modifies valid[rd], state[rd]

Figure 1: The interface Rd , which declares type T representing readers.

The integer cur[rd] is the index in the abstract stream rd of the next byte to be
returned by getChar . The integers lo[rd] and hi[rd] delimit the range of bytes
in the abstract stream that are contained in the buffer buff [rd] (see Figure 3).

Interface RdRep declares and specifies the refill method, but leaves its im-
plementation to various subtypes. The convention used by refill is that the call
rd.refill() must make at least one new byte available (that is, it must establish
cur[rd] < hi[rd] ), unless rd is exhausted, in which case it must establish the
condition cur[rd] = hi[rd] .

The postconditions of getChar and refill don’t reflect the conventions for
signaling that the reader is exhausted (nor does the variable state describe the
condition that the reader is exhausted), because our example is an ESC verifica-
tion, not a verification of full functional correctness.

The rep declaration reveals the representation of the abstract variable valid
in terms of the concrete variables lo , cur , hi , and buff . In addition, because
subtypes may have their own validity invariants, the interface declares the ab-
stract variable svalid , and adds the conjunct svalid[rd] to the representation of
valid[rd] . The intended meaning of svalid[rd] is that rd satisfies the validity in-
variant of its dynamic type. Each subtype of Rd.T will include a rep declaration
specifying the representation of svalid for readers of that subtype. For example, a
reader for a disk file would include a file handle as one of its fields, and its svalid
would include the validity of the file handle.
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unit RdRep import Rd

var lo, cur, hi: Rd.T → int
var buff : Rd.T → array[byte]
spec var svalid: Rd.T → bool
rep valid[rd: Rd.T] ≡

rd 	= nil ∧
0 ≤ lo[rd] ≤ cur[rd] ≤ hi[rd] ∧
buff [rd] 	= nil ∧ hi[rd] − lo[rd] ≤ number(buff [rd]) ∧
svalid[rd]

proc refill(rd: Rd.T)

requires valid[rd]
modifies state[rd]
ensures cur[rd] = cur′[rd]

depends valid[rd: Rd.T] on lo[rd], cur[rd], hi[rd], buff [rd], svalid[rd]
depends state[rd: Rd.T] on lo[rd], cur[rd], hi[rd], buff [rd],

elems[buff [rd]]
depends svalid[rd: Rd.T] on lo[rd], hi[rd], buff [rd]

Figure 2: The interface RdRep , which defines the buffer structure common to all
objects of type Rd.T .

 buff [ rd ]

 lo [ rd ]
 cur [ rd ]

 hi [ rd ]

Abstract
Source

... ...

Figure 3: Buffer representation of readers.
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unit RdImpl import Rd,RdRep

impl getChar(rd: Rd.T): int is
if cur[rd] = hi[rd] then rd.refill() end ;
if cur[rd] = hi[rd] then

result := −1
else

result := buff [rd][cur[rd] − lo[rd]] ;
cur[rd] := cur[rd] + 1

end
end

Figure 4: The implementation unit RdImpl , which contains the implementation
of the method getChar .

The depends declaration for valid is explained by our requirement that de-
pendencies be explicit—without it, the checker would complain that the rep dec-
laration for valid contains undeclared dependencies. The depends declarations
for state and svalid are more subtle and will be explained later.

Next we present the generic implementation in Figure 4.
To give the flavor of an ESC verification, consider checking that cur[rd] −

lo[rd] is a valid index into buff [rd] in the implementation of getChar . Since
valid[rd] is a precondition of getChar , and is preserved by rd.refill() , we con-
clude that valid[rd] holds at the first semicolon. Thus, the validity of the index
boils down to showing that

0 ≤ cur[rd] − lo[rd] ∧ cur[rd] − lo[rd] < number(buff [rd]) (3)

follows from

valid[rd] ∧ cur[rd] 	= hi[rd] (4)

Since RdImpl imports RdRep , the representation of valid[rd] is visible. Since
this representation contains the conjunct lo[rd] ≤ cur[rd] , the first conjunct of
(3) follows immediately. The proof of the second conjunct is:

cur[rd] − lo[rd]
< { cur[rd] ≤ hi[rd] ∧ cur[rd] 	= hi[rd] (from (4)) }
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unit BlankRd import Rd

type T <: Rd.T

proc init(brd: T, n: int): T

requires 0 ≤ n

modifies valid[brd], state[brd]
ensures valid′[brd] ∧ result = brd

Figure 5: Unit BlankRd declares a subtype BlankRd.T of Rd.T , whose readers
deliver streams of blanks.

hi[rd] − lo[rd]
≤ { valid[rd] }

number(buff [rd])

Returning to general comments about rd.getChar() , notice that the imple-
mentation modifies cur[rd] , but the modifies clause in the specification of the
method getChar does not mention cur[rd] . Why does the checker not com-
plain? Because of modifies list desugaring, as mentioned in the previous section.
Modifies list desugaring gives getChar the license to modify cur[rd] , because
getChar is specified to modify state[rd] , which is declared in RdRep to depend
on cur[rd] . This explains why cur[rd] was declared a dependency of state[rd] .

The object-oriented I/O stream design by Stoy and Strachey illustrates the flex-
ibility of subtyping: having carefully designed the central abstraction Rd.T , it can
serve as the blueprint for dozens of useful subtypes. To illustrate the modularity
issues that arise when a subtype is defined, we now give the interface (Figure 5)
and implementation (6) of a trivial type of reader, a blank reader, which delivers
a sequence of blanks whose length is determined at initialization time. More pre-
cisely, the expression new(BlankRd.T).init(n) allocates, initializes, and returns a
reader that delivers a stream of exactly n blanks. The conjunction “ result = brd ”
in the postcondition specifies that the init method return the object that it initial-
izes, a convention we have found useful. The method init stores the argument n
in the field num[brd] for later use by the method refill . The method also initial-
izes the lo , cur , and hi fields in the obvious way, allocates a buffer of size up to
8192 (that is, up to 8 kilobytes), and fills the buffer with blanks (code 32).

As we shall see later, it is critical to the verification of the module that each
blank reader brd satisfy the invariant hi[brd] ≤ num[brd] . Therefore, the unit
BlankRdImpl provides a subtype-specific representation for svalid , effectively
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unit BlankRdImpl import Rd,RdRep,BlankRd

var num: BlankRd.T → int
rep svalid[brd: BlankRd.T] ≡ hi[brd] ≤ num[brd]
impl init(brd: BlankRd.T, n: int): BlankRd.T is

num[brd] := n ;
buff [brd] := new(byte,min(8192, n)) ;
lo[brd] := 0 ; cur[brd] := 0 ;
hi[brd] := number(buff [brd]) ;
for i := 0 to hi[brd] − 1 do

buff [brd][i] := 32
end ;
result := brd

end
impl refill(brd: BlankRd.T) is

lo[brd] := cur[brd] ;
hi[brd] := min(lo[brd] + number(buff [brd]), num[brd])

end
depends state[brd: BlankRd.T] on num[brd]
depends svalid[brd: BlankRd.T] on num[brd]

Figure 6: The blank reader implementation unit BlankRdImpl .
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strengthening the general reader validity invariant as needed for the particular
subtype BlankRd.T .

Notice that brd.refill() must be proved to maintain valid[brd] , because its
modifies list does not allow it to modify valid[brd] . Among the proof obligations
associated with maintaining valid[brd] is that at exit,

cur′[brd] ≤ hi′[brd]

Since the body of refill does not change cur[brd] and makes hi′[brd] equal to

min(cur[brd] + number(buff [brd]), num[brd])

proving this postcondition boils down to showing that each argument to min is at
least cur[brd] . For the first argument, this follows from the fact that the number
of any array is non-negative. The proof for the second argument is:

valid[brd]
⇒ { rep for valid }

cur[brd] ≤ hi[brd] ∧ svalid[brd]
= { brd is of type BlankRd.T , rep for svalid for this type }

cur[brd] ≤ hi[brd] ∧ hi[brd] ≤ num[brd]
⇒ { transitivity }

cur[brd] ≤ num[brd]

We present this calculation in detail to illustrate that the verification of the refill
method of even the trivial BlankRd.T requires the subtype-specific validity con-
junct. (The need for the svalid conjunct is more conspicuous in more interesting
reader subtypes.)

Read-only by specification. The calculation that cur[brd] ≤ num[brd] follows
from valid[brd] would be in vain if the generic code could modify hi[brd] . If,
for example, the generic implementation of rd.getChar() would sometimes in-
crement hi[rd] , then it could destroy svalid[rd] , which could cause all kinds of
errors. To prevent this, the Modula-3 interface from which we translated RdRep
contains the following English comment:

The generic code modifies cur[rd], but not lo[rd], hi[rd], or buff [rd]. (5)

This guarantee is essential to subtypes, since between calls to their refill methods,
they may need to know that lo , hi , and buff have not been changed by the
generic code.
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How do we translate the sentence (5) into a formal specification? Modula-3
does not have any kind of readonly qualifier for field declarations. Java and C++
have qualifiers like private and protected , but these declarations don’t help
with the current problem. Both of them allow the implementation to read and write
the fields, while limiting the access from subtypes (and from other clients). What
we need here is almost the opposite: a declaration that will forbid the generic
implementation from writing the fields, while allowing subtypes to write them.
We can hardly expect a programming language to have a declaration qualifier that
enforces this highly particular access policy, but modular verification will not be
sound unless the access policy is formally stated and enforced.

We wrestled with the problem for some time before realizing happily that
depends provides a neat solution. In fact, the third dependency declaration in
RdRep , which states that svalid[rd] depends on lo[rd] , hi[rd] , and buff [rd] , is
the desired formalization of (5). For if the generic code were to modify any of
these fields, the presence of the dependency would alert the checker to the pos-
sibility that svalid , and therefore valid , might be changed. In other words, in
a scope where lo[rd] , hi[rd] , and buff [rd] are known to be part of the repre-
sentation of svalid[rd] , but the explicit representation is unknown, the only hope
for maintaining svalid[rd] invariant is to avoid modifying lo[rd] , hi[rd] , and
buff [rd] . We call this technique “read-only by specification”.

Summary. To repeat our main conclusion from this example, we see that mod-
ular verification with subtyping creates situations where both an abstract variable
and one or more of its dependencies are visible, but where the associated repre-
sentation is not visible. We have seen two instances of this:

• The dependencies of state are specified in RdRep , but no representation for
state is specified. The dependencies must be visible so that the implemen-
tations of operations that modify the state (for example, getChar ) will have
the license to modify the concrete variables that represent the state. The
representation declaration cannot be visible, for two reasons. First, because
we are doing extended static checking only, we never give a representation
for the state. Second, even if we were doing full-scale verification, the rep-
resentation would be subtype-specific, but the dependencies must be visible
in the generic scope.

• The dependencies of svalid are specified in RdRep , but no representation
for svalid is given there. The dependencies are necessary to prevent generic
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operations from modifying the variables that are reserved for the use of
subtypes. But it is clearly impossible to present a representation declaration
for svalid in the RdRep scope, since the whole point of svalid is to allow
subtypes to include their own invariants as part of validity: these invariants
can’t be known in the generic scope.

Explicit dependencies may seem verbose, and it would be nice to be able to
infer them automatically. But this will not always be possible. For example, of the
three depends declarations in RdRep , we can imagine inferring the first (from
the rep declaration for valid ), but the second and third could not be automatically
inferred since they are used to specify non-trivial design decisions (namely, which
fields can be modified by generic code, and which can be modified by subtypes
only).

This concludes our example of the rôle of dependencies in modular verifica-
tion. In the remainder of the paper, we investigate different kinds of dependencies
and the way they affect the verification process.

5 Static dependencies

In this section, we describe more fully how dependencies affect the verification
process. Our guiding principles are:

• Abstract function principle. An abstract variable is a function of the con-
crete variables on which it depends.

• Abstraction modification principle. The license to modify an abstract vari-
able implies the license to modify its concrete representation, but the license
to modify a concrete variable does not imply the license to modify an ab-
stract variable that depends on it.

Our technique is to rewrite preconditions, postconditions, modifies lists, and rep
declarations into equivalent forms that contain concrete variables only. In this
section, we will describe the rewriting steps and explain how they follow from the
principles.

We confine ourselves to static dependencies for simplicity; in Section 7, we
will extend this material to dynamic dependencies.
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5.0 Functionalization

Guided by the abstraction function principle, and following in the footsteps of
Hoare, we introduce a new function symbol for each abstract variable. In this
paper, we write F.a to denote the function symbol introduced for the abstract
variable a . The idea is that F.a gives a ’s value as a function of the concrete state.
Occurrences of a in preconditions and postconditions are replaced by function
applications of the form F.a(. . .) . For example, a[t] > 6 becomes F.a(. . .)[t] >
6 . The arguments to F.a are the variables on which a depends (together with
other arguments that will be introduced later). The process of substituting F.a for
a is called functionalization.

The rep declaration for a is rewritten into an appropriate axiom about F.a
(a rep axiom). If a is visible but its representation is not, then F.a occurs in the
rewritten program but its rep axiom does not. In this case, the theorem prover
treats F.a as an uninterpreted function.

Functionalization and pointwise axioms. There are more details to be pre-
sented about functionalization. We will introduce them with an example. Con-
sider

spec var a: T → X

var c: T → Y

var d: T → Z

depends a[t: T] on c[t], d[t]

(6)

Then occurrences of a are replaced by the expression F.a(c, d) . Had c for exam-
ple also been abstract, functionalization would continue, producing the expression
F.a(F.c(. . .), d) .

Notice that c , d , and F.a(c, d) are all maps. In typical functionalized expres-
sions, we can expect to encounter expressions like F.a(c, d)[t] . Allowing F.a to
take maps as arguments is technically convenient, but without further restrictions,
it would allow F.a(c, d)[t] to depend on the entire maps c and d , which we
do not want: our view is that the dependency declaration 6) implies that a[t] is
unchanged by a modification to c[s] or d[s] for s 	= t . We enforce this point of
view by imposing a pointwise axiom on each abstraction function. In the case of
a , c , and d above, this axiom is:

〈 ∀ t: T, c0, c1, d0, d1 ::
c0[t] = c1[t] ∧ d0[t] = d1[t]
⇒ F.a(c0, d0)[t] = F.a(c1, d1)[t] 〉

(7)
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We would like to emphasize that in (7), variables c0 , c1 , d0 , and d1 are dum-
mies, not program variables. Even if program variables c and d were abstract,
there would be no need to functionalize the dummies in (7).

For each abstract variable, there will be a pointwise axiom for each subtype
of its index type, since different subtypes may have different dependencies. For
example, consider

type T

spec var a: T → X

type U <: T

var c: U → Y

depends a[u: U] on c[u]
type V <: T

var d: V → Z

depends a[v: V] on d[v]

There will be three pointwise axioms, one for each of the types T , U , and V .
The axiom for T is (7), the same as the axiom where c and d had index type T .
The axiom for U is

〈 ∀ u: U, c0, c1, d0, d1 ::
c0[u] = c1[u]
⇒ F.a(c0, d0)[u] = F.a(c1, d1)[u] 〉

The axiom for V is similar.
When rewriting a postcondition, a post-value a′ leads to post-values in the ar-

guments to F.a . For example, the postcondition of init for blank readers includes
the conjunct

valid′[brd]

This is rewritten into

F.valid(lo′, cur′, hi′, buff ′,F.svalid(rd, lo′, hi′, buff ′))[rd]

The number of arguments of F.a depends on the number of dependencies of
a that are visible in the scope where the rewriting takes place. For example, in the
unit RdRep , F.svalid has four arguments, whereas in BlankRdImpl , F.svalid
has five arguments because of the extra dependency of svalid[brd] on num[brd] .
Within the verification of any one unit, all occurrences of F.a have the same
number of arguments.
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Rep axioms. We now explain how a rep declaration is rewritten into a rep
axiom. A rep declaration has the form

rep a[t: T] ≡ R

where the only free variables allowed in R are fields that are dependencies of
a , and each occurrence of such a field must be indexed by the dummy t . For
definitiveness, suppose that these dependencies are

var c: T → X

var d: T → Y

depends a[t: T] on c[t], d[t]

This rep declaration is rewritten into the rep axiom

〈 ∀ t: T, cV, dV :: F.a(cV, dV)[t] = R(c, d := cV, dV) 〉
in which we use the assignment operator to denote substitution. In this axiom,
we have appended V ’s in the names of the dummies to emphasize that they are
universally quantified dummies, not the program variables c and d .

The same treatment works with minor alterations to accommodate subtype-
specific rep declarations and dependencies. For example, the rep declarations
in

type T

spec var a: T → W

var c: T → X

depends a[t: T] on c[t]

type T0 <: T

var d: T0 → Y

depends a[t: T0] on d[t]
rep a[t: T0] ≡ R0

type T1 <: T

var e: T1 → Z

depends a[t: T1] on e[t]
rep a[t: T1] ≡ R1
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produce the rep axioms

〈 ∀ t: T0, cV, dV, eV :: F.a(cV, dV, eV)[t] = R0(c, d := cV, dV) 〉
〈 ∀ t: T1, cV, dV, eV :: F.a(cV, dV, eV)[t] = R1(c, e := cV, eV) 〉

Note that different rep axioms are produced for the different rep declarations.
Note also that all dependencies of a for any subtype become arguments to F.a ,
and each axiom ignores those arguments that are irrelevant to its subtype.

Examples. In the unit RdRep described previously, the precondition of refill is
written

valid[rd]

Using the static dependencies of valid[rd] , this precondition is rewritten into

F.valid(lo, cur, hi, buff , svalid)[rd]

Since svalid is itself abstract, the rewriting continues:

F.valid(lo, cur, hi, buff ,F.svalid(lo, hi, buff ))[rd] (8)

which is the final functionalized form of valid[rd] in the scope RdRep .
As an example of a rep axiom, the rep for valid in RdRep is rewritten into

〈 ∀ rd: Rd.T, loV, curV, hiV, buffV, svalidV ::
F.valid(loV, curV, hiV, buffV, svalidV)[rd] ≡

rd 	= nil ∧
0 ≤ loV[rd] ≤ curV[rd] ≤ hiV[rd] ∧
buffV[rd] 	= nil ∧
hiV[rd] − loV[rd] ≤ number(buffV[rd]) ∧
svalidV[rd] 〉

(9)

To see how these formulas work together, consider the verification of the
method refill . The rewritten precondition (8) together with the rep axiom (9)
allow the verifier to conclude that buff [rd] 	= nil , by instantiating buffV to buff ,
loV to lo , and so on.

Because RdRep contains no rep declaration for svalid , F.svalid remains an
uninterpreted function in this scope. A subtype-specific rep axiom is produced in
the scope of an implementation of a reader subtype like BlankRd .
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(In this description, we have glossed over some detailed rules that prevent
representations for different subtypes from producing inconsistent values of an
abstract variable at nil .)

Our final example illustrates reasoning about the abstraction function as an
uninterpreted function symbol. Consider the following generic procedure, which
replaces a reader’s buffer, copying the contents of the old buffer into the new:

proc copyBuffer(rd: Rd.T)

requires valid[rd]
modifies state[rd]

impl copyBuffer(rd: Rd.T) is
var nb := new(byte, number(buff [rd])) in

for i := 0 to number(buff [rd])− 1 do
nb[i] := buff [rd][i]

end ;
buff [rd] := nb

end
end

The proof that copyBuffer maintains valid[rd] boils down to proving

lo[rd] = lo′[rd] ∧ hi[rd] = hi′[rd] ∧ elems[buff [rd]] = elems′[buff ′[rd]]
⇒

svalid[rd] = svalid′[rd]

which functionalizes into

lo[rd] = lo′[rd] ∧ hi[rd] = hi′[rd] ∧ elems[buff [rd]] = elems′[buff ′[rd]]
⇒
F.svalid(lo, hi, buff )[rd] = F.svalid(lo′, hi′, buff ′)[rd]

But this cannot be proved, since distinct arrays may have the same elements. Thus,
the checker would reject copyBuffer , warning that it possibly destroys the validity
of rd . This warning is accurate, since generic code is not allowed to modify buff .
For example, the design of readers allows a subtype to cache the buffer pointer, but
such a cache would be invalidated unexpectedly by copyBuffer . Thus, reasoning
about the abstraction function as an uninterpreted function symbol enforces the
read-only by specification idiom.
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An alternative design for readers would have replaced the dependency

depends svalid[rd] on buff [rd]

by

depends svalid[rd] on elems[buff [rd]]

In this design, copyBuffer would be legal, and it would be illegal for subtypes to
assume that the buffer pointer remains unchanged by generic code. This happens
not to be the approach taken by the Modula-3 I/O library.

So much for rewriting preconditions and postconditions. Now we consider
rewriting modifies lists.

5.1 Modifies list desugaring

Guided by the abstraction modification principle (page 19), we introduce a closure
operation on modifies lists. The closure operation expands the modifies list as
required by the first half of the principle without expanding it so much as to violate
the second half of the principle. The rewritten specification allows a method to
modify a field f [s] (abstract or concrete) if and only if the closure of the method’s
modifies list includes f [s] . Thus the rewriting is parameterized by the definition
of closure. In this section, we first define the rewriting from a closed modifies
list, and then define the closure operation appropriate for static dependencies. In
Section 7.1, we will define the closure operation for dynamic dependencies.

Modification constraints. Closed modifies lists are rewritten into modification
constraints. Consider a specification

modifies M ensures P (10)

occurring in a scope D . We rewrite this specification into

modifies N ensures P ∧ Q

where N is the list of all concrete maps f for which a term of the form f [E]
occurs in the closure of M , and Q is a conjunction with one conjunct for each
map variable visible in the scope. The conjunct for a particular map f asserts that
f [s] changes only where it is allowed to change. That is, if { f [E1], . . . , f [En] } is
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the set of terms in the closure of M of the form f [. . .] (that is, the set of terms
whose outer map variable is f ), then the conjunct for f is

〈 ∀ s :: f [s] = f ′[s] ∨ s = E1 ∨ . . . ∨ s = En 〉
We call this conjunct the modification constraint for f , and we call {E1, . . . ,En}
the set of modification points of f . The modification constraint for a map variable
limits the points at which the variable may be modified, that is, it protects the
variable from change at other points. In particular, if the dependencies of an
abstract variable a are changing at points where a itself is not allowed to be
changed, a ’s modification constraint limits the modification of a ’s representation
to preserve the values at points where a is not allowed to change. We say that a
is protected from changes to its representation.

(When verifying an implementation, ESC does not bother to produce a modi-
fication constraint for a map if a syntactic scan of the implementation determines
that the map is never changed by the implementation.)

This strengthening of the postcondition occurs before the postcondition is
functionalized.

Closure definition. A set of terms M is statically closed in a scope D if

a[E] ∈ M ∧ “depends a[t] on c[t]” ∈ D ⇒ c[E] ∈ M

(We have intentionally ignored the type of E and the index types of a and c in
this definition. Thus, a closed set of terms may include f [E] even if E is not of
the index type of f . Actually, ESC does use type information to produce a smaller
closure, but in retrospect, we don’t think it makes much difference.)

The static closure of a modifies list is its smallest statically closed superset.
For example, in the scope of the unit BlankRdImpl , the static closure of

valid[brd] is

lo[brd], cur[brd], hi[brd], buff [brd], svalid[brd], num[brd]

Example. As an artificial example, suppose that f is a concrete field and con-
sider the dependencies

depends g[t] on f [t]
depends h[t] on f [t]

g h

f
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and the modifies list

modifies g[u], f [v]

The static closure of this modifies list is

modifies g[u], f [u], f [v]

This produces the rewritten specification

modifies f

ensures 〈 ∀ s :: g[s] = g′[s] ∨ s = u 〉 ∧
〈 ∀ s :: f [s] = f ′[s] ∨ s = u ∨ s = v 〉 ∧
〈 ∀ s :: h[s] = h′[s] 〉

Notice that since there are no modification points for h , the conjunct for h in
the rewritten postcondition does not allow it to be changed anywhere. Thus, the
second half of the abstraction modification principle is satisfied: the license to
modify g[u] does not imply the license to modify h[u] , even though g[u] and
h[u] have the concrete dependency f [u] in common. Also, the license to modify
f [v] does not imply the license to modify g[v] or h[v] .

Finally, functionalization produces

modifies f

ensures 〈 ∀ s :: F.g(f )[s] = F.g(f ′)[s] ∨ s = u 〉 ∧
〈 ∀ s :: f [s] = f ′[s] ∨ s = u ∨ s = v 〉 ∧
〈 ∀ s :: F.h(f )[s] = F.h(f ′)[s] 〉

That is, the specification allows changes to f at indices u and v , provided the
changes preserve the value of F.h(f )[s] for all s , and F.g(f )[s] for all s except
u .

6 Soundness of modular verification

We remind the reader that we are interested in modular soundness, that is, the
property that the separate verifications of the individual modules of the program
suffice to ensure the correctness of the composite program.

The standard approach for reasoning about procedure calls breaks down for
modular programs. The standard approach reasons about a procedure call by as-
suming that it meets its specification, and discharges this assumption by verifying
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the implementation of the procedure. The approach breaks down if the specifi-
cation is interpreted differently in the two contexts. But as we have seen, the
meaning of a modifies list depends on the scope in which it is used. In particular,
it may be desugared differently when reasoning about a call to a procedure than
when reasoning about the implementation of the procedure.

To be more precise about modular soundness, we will define scope mono-
tonicity, which means that anything verifiable in a scope is also verifiable in any
larger scope. Then, we will argue that modular soundness is equivalent to scope
monotonicity. The notion of scope monotonicity seems to be new.

For a scope D and a procedure implementation P in D , the judgment

D � P

means that P meets its specification in D . More precisely, let

requires Pre modifies M ensures Post (11)

be the result of desugaring the specification of P in scope D , as described in
Section 5. Let A be the body of P , and let R be the conjunction of pointwise ax-
ioms and rep axioms in D , as described in Section 5.0. The requirement is that R
implies that A meets the specification (11). In checking this, the verification con-
dition generator reasons about method calls within A by using their specifications
as desugared in D .

We say that � is monotonic with respect to scope if, for any procedure imple-
mentation P and scopes D and E ,

if D ⊆ E , then D � P implies E � P

If we can prove that � is monotonic with respect to scope, then it is reasonable
to say that our modular verification system is sound. For, if P has been verified
in a scope D , that is, if we have proved D � P , it follows by monotonicity that
E � P , where E is the entire program. Thus, anything that verifies in a limited
scope would also verify had there been no information hiding and all information
had been global.

It is too much to hope that � be monotonic in any program whatsoever. We
will impose some requirements, called modularity requirements, such that � is
monotonic in any program that meets the requirements. We will also argue that
these requirements are reasonable from a methodological point of view, that is,
that they don’t rule out useful designs.
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Our notion of modular soundness is different from the soundness of an ax-
iomatic semantics with respect to an operational semantics. The consistency of
axiomatic and operational semantics is certainly important, but it concerns the
conventional control structures of programming in the small, like iteration and
conditionals. These are mostly irrelevant to the issues of information hiding in
programming in the large, which are the issues of concern in this paper. In this
paper, we simply assume that the standard operational semantics is consistent with
the axiomatic semantics of a single-module program. Therefore, any discrepancy
between the axiomatic and operational semantics is due to unsound modular ver-
ification.

6.0 Visibility requirement

Our first modularity requirement is the visibility requirement. A program satisfies
the visibility requirement if each of its static dependencies

depends a[t] on c[t]

is visible in every scope in which both a and c are visible.
It is easy to see that this requirement is necessary to have any hope of achieving

scope monotonicity. Suppose there were a scope where a and c were visible
but the dependency is not. In such a scope, it is provable that a change to c
has no effect on a . But this would not be provable in a larger scope where the
dependency is visible.

The requirement is necessary for informal as well as formal checking. If a
program violated the requirement, it would be impossible to reason about a and
c in the scope where they are visible but the dependency is not. In such a scope,
an assignment to c could change a unexpectedly, and a call to a procedure that
modifies a could change c unexpectedly. Nothing in the program text warns
of either side effect. Almost all failures of scope monotonicity can be traced to
unexpected side effects of this sort.

For example, consider what would happen if the dependency

depends svalid[rd] on hi[rd]

were placed not in unit RdRep but in unit BlankRdImpl . A modular checker
would then allow the generic implementation, where the dependency of svalid
on hi is not visible, to increase the value of hi[rd] beyond num[rd] , which for
blank readers destroys validity.
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6.1 Top-down requirement

The second modularity requirement is the top-down requirement. A program sat-
isfies the top-down requirement if, for each of its static dependencies

depends a[t] on c[t]

variable a is visible in every scope in which c is visible.
Here’s an example of a rather pathological program unit that violates the top-

down requirement.

unit U import Rd,RdRep

type T <: Rd.T

spec var isEven: T → bool
depends isEven[t: T] on cur[t]
rep isEven[t: T] ≡ cur[t] mod 2 = 0
proc P(t: T)

requires Rd.valid[t], isEven[t]
modifies Rd.state[t]

impl P(t: T) is
t.getChar() ; assert cur[t] mod 2 = 0

end

This pathological unit would verify, since

• the precondition of P requires isEven[t] ,

• isEven[t] does not appear in the modifies list of getChar , and consequently,
isEven[t] is formally provable at the exit of the call to t.getChar( ) , and

• the representation of isEven[t] implies cur[t] mod 2 = 0 .

But of course the assert would fail at run-time, since getChar will change the
parity of cur[t] .

At first, this problem may not seem like a failure of scope monotonicity, but
it is. The getChar method verified in the scope RdImpl , where it was presented
earlier in the paper. But if the scope RdImpl were expanded by importing the unit
U , then getChar would no longer verify, because it does not preserve the value
of isEven[t] .
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To put it another way, the problem is that isEven is not visible in the scope
where getChar is implemented, and therefore the desugaring of getChar ’s spec-
ification does not strengthen the postcondition to protect isEven from change.
The top-down requirement ensures that isEven is visible wherever cur is, and
thus any procedure that modifies cur and claims not to modify isEven will be
checked appropriately.

Here is an explanation of the name of this requirement. The reader package
was designed in a top-down fashion, and cur was introduced as part of the con-
crete representation of Rd.state and Rd.valid . To come along later and define a
new unit ( U ) that attempts to use cur for part of the representation of something
else ( isEven ) would be a violation of top-down design. We believe that imposing
the top-down requirement for static dependencies does not rule out any useful de-
signs. As we shall see in Section 7, the situation is more interesting for dynamic
dependencies.

6.2 Static placement rule

There is a simple discipline that guarantees that both the visibility and top-down
requirements are satisfied, called the static placement rule: simply place each
static dependency

depends a[t] on c[t]

in the unit that declares c . We leave it to the reader to show that the visibility and
top-down requirements follow from this rule. Furthermore, the converse is almost
true: for programs without cyclic imports, if both requirements are satisfied, then
the static placement rule is satisfied as well. Thus, if we’d like, we can replace both
requirements by the rule. We have stated the requirements separately, because they
seem to be separable concerns, and are used in different parts of the soundness
proof.

6.3 Residues

The visibility and top-down requirements are two giant steps toward modular
soundness. But they don’t quite reach the goal. If they did, then the following
implication would be true, for any procedure implementation P and scopes D
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and E containing static dependencies only:

D � P and D ⊆ E and E satisfies the two modularity requirements
⇒

E � P

Unfortunately, this is false according to the way of functionalizing abstract vari-
ables described in Section 5.0. There is one more technicality that must be in-
troduced to fix the problem, called residues. Here is an artificial program that
demonstrates the problem:

unit A

type T

spec var a: T → any
var c: T → int
depends a[t: T] on c[t]
proc outer(t: T)

proc inner(t: T) modifies a[t] ensures c[t] = c′[t]
impl outer(t: T) is t.inner() end

The absence of a modifies list for outer means that a call to outer has no side
effects. We will now argue that without residues, unit A verifies. We then argue
that it should not verify. Finally, we will define residues and explain how they fix
the problem.

As described in Section 5, the modifies list a[t] of the call t.inner() has the
static closure a[t], c[t] , so the rewritten specification of t.inner() (before func-
tionalization) is

modifies c

ensures c[t] = c′[t] ∧
〈 ∀ s :: c[s] = c′[s] ∨ s = t 〉 ∧
〈 ∀ s :: a[s] = a′[s] ∨ s = t 〉

After functionalization, the specification is

modifies c

ensures c[t] = c′[t] ∧
〈 ∀ s :: c[s] = c′[s] ∨ s = t 〉 ∧
〈 ∀ s :: F.a(c)[s] = F.a(c′)[s] ∨ s = t 〉
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The first two lines imply that c[s] does not change for any s . The third line then
implies that a[s] , that is, F.a(c)[s] , also does not change for any s . Therefore,
the call t.inner() has no side effects at all, and the body of outer will verify.

But we now argue that outer ’s body should not verify. Consider the following
unit B , providing an implementation of inner .

unit B import A

var d: A.T → int
depends a[t: A.T] on d[t]
impl inner(t: A.T) is d[t] := 0 end

Unit B reveals another dependency ( d ) of a , which the implementation of inner
in fact modifies. Unit B will verify in isolation, because inner modifies only
variables in the static closure of its modifies list a[t] .

We are in trouble, because outer ’s side effect on d will be unexpected in a
scope that sees d together with outer ’s specification:

unit C import A,B

proc R(t: A.T) modifies a[t]
impl R(t: A.T) is

var dd := d[t] in t.outer() ; assert dd = d[t] end
end

This implementation verifies, because outer ’s modifies list does not include d ,
but clearly the assert will fail at run-time.

This is a failure of scope monotonicity, because although outer ’s body verifies
in the unit A , it would not do so in the larger scope of unit B , where d is visible
and the call t.inner() will be desugared to have a side effect on d[t] .

We blame the failure on the body of outer . Here’s an informal explanation
of why: Procedure outer , which is specified to be side-effect free, calls inner ,
which modifies a . Although a depends on c , it should not be inferred that
a depends only on c . Therefore, the call to inner should be inconsistent with
outer ’s modifies list.

Individual residues. To change our rewriting so that outer ’s body will not ver-
ify, we introduce residues. The residue of an abstract variable a , written res.a ,
can be viewed as a stand-in for those of a ’s dependencies that are not visible.
Residues are introduced automatically by the verifier and cannot be mentioned
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explicitly in specifications or programs. The verifier treats every abstract variable
declaration

spec var a: T → X

as a shorthand for the three declarations

spec var a: T → X

var res.a: T → any
depends a[t: T] on res.a[t]

The implicit dependency of a on res.a introduces res.a into the static closure of
any modifies list that mentions a , just as for explicit dependencies.

Desugaring of modifies lists as described in Section 5 will now work out
soundly for this example. The modifies list a[t] of the call t.inner() in the body
of outer has the static closure a[t], res.a[t], c[t] , so the rewritten specification of
t.inner() (before functionalization) is

modifies c, res.a

ensures c[t] = c′[t] ∧
〈 ∀ s :: c[s] = c′[s] ∨ s = t 〉 ∧
〈 ∀ s :: res.a[s] = res.a′[s] ∨ s = t 〉 ∧
〈 ∀ s :: a[s] = a′[s] ∨ s = t 〉

This allows both a[t] and res.a[t] to change, and therefore the implementation
of outer will not verify.

Shared residues. We are now very close to modular soundness, so close that it
took our colleague Jim Saxe to find a sufficiently pathological example to demon-
strate that we are not yet there. The example is shown in Figure 7. In this scope,
the implementation of outer verifies, because a[t] and res.a[t] are allowed to be
changed, c[t] is restored to its initial value, res.b[t] is not changed by the body,
and the invariance of b[t] (i.e., of F.b(res.b, c)[t] ) follows from the invariance
of res.b and c . But in a larger scope in which it is revealed that a and b have a
common dependency, outer will not verify:

unit E import D

var d: D.T → int
depends a[t: D.T] on d[t]
depends b[t: D.T] on d[t]
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unit D

type T

spec var a: T → int
spec var b: T → int
var c: T → int
depends b[t: T] on c[t]
proc outer(t: T) modifies a[t]
proc inner(t: T) modifies a[t]
impl outer(t: T) is

var cc := c[t] in
c[t] := 0 ; t.inner() ; c[t] := cc

end
end

Figure 7: Example program that motivates shared residues.

In scope E , the required proof of invariance of b[t] for outer does not go
through. The modification constraint for b that is added to the postcondition
of outer is

〈 ∀ s :: F.b(res.b, c̀, d̀)[s] = F.b(res.b, ć, d́)[s] 〉 (12)

where the accents on c and d denote their initial and final values. We do not
accent res.b , because nothing in this example modifies it. The modification con-
straints for b and d that we get to assume at exit from inner are

〈 ∀ s :: d̀[s] = d́[s] ∨ s = t 〉 ∧
〈 ∀ s :: F.b(res.b, c̄, d̀)[s] = F.b(res.b, c̄, d́)[s] 〉 (13)

where c̄ denotes the value of c on entry and exit of inner , that is,

c̄ = store(c̀, t, 0)

where the expression store(c̀, t, 0) denotes a map like c̀ but mapping t to 0.
Because d is unmodified except in the call to inner , d̀ and d́ serve to denote
the values of d around the call to inner as well as around the implementation of
outer .
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But (12) does not follow from (13). Although inner is constrained to modify
d only in ways that preserve F.b(res.b, c, d) , this constraint is in force only for
the value of c at the time of the call to inner . Therefore, scope monotonicity and
modular soundness do not hold.

To restore modular soundness, we must arrange either that outer verifies in
unit E or that it does not verify in unit D . We choose the latter, that is, we
take the view that outer was misprogrammed: modifying part of the representa-
tion ( c ) of an abstraction ( b ) whose representation is hidden and then calling a
method ( inner ) that may manipulate the abstraction is methodologically unjusti-
fiable, even if the modification of c is restored after the call.

Consider that the example might continue as follows:

rep b[t: T] ≡ c[t] · d[t]
impl inner(t: T) is

if c[t] = 0 then d[t] := d[t] + 1 end
end

This possible continuation shows clearly that the failure of outer to verify in unit
E is appropriate, and therefore its verification in unit D is inappropriate.

The essential difficulty revealed by Saxe’s example is that two abstract vari-
ables that have no common dependency in a small scope may turn out to have
a common dependency in a larger scope. To fix our proof system to be modu-
larly sound, we will force all small-scope verifications to respect the possibility
that larger scopes may reveal common dependencies. To do this, we introduce
another residue variable, a shared residue sres to augment the individual residues
introduced earlier.

In more detail, sres is a predeclared variable visible in all scopes. The verifier
treats every abstract variable declaration

spec var a: T → X

as shorthand for

spec var a: T → X

depends a[t: T] on sres[t]
var res.a: T → any
depends a[t: T] on res.a[t]

The combination of individual and shared residues achieves modular sound-
ness. For Saxe’s example, the attempted verification of outer in unit D will
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now fail: the details of the failure are exactly the previously described details of
the failure of outer to verify in unit E (see formulas (12) and (13)) with sres
playing the rôle of d .

It seems necessary to introduce both the shared residue and the individual
residues. Here is an example that shows that the shared residue alone does not
suffice for modular soundness. We begin with a small unit G :

unit G

type T

spec var a: T → X

spec var b: T → Y

proc outer(t: T) modifies a[t]
proc inner(t: T) modifies b[t] ensures b[t] = b′[t]
impl outer(t: T) is t.inner() end

The following unit H shows that in a larger scope, the call to inner may have
side effects that are not allowed by outer ’s specification:

unit H import G

var c: T → Z

depends b[t: T] on c[t]

But with the shared residue variable only, inner ’s modification to the shared
residue is consistent, in unit G , with outer ’s modification constraint. To achieve
the verification failure that we need, we must distinguish res.a from res.b .

6.4 Modular soundness for static dependencies

The appendix contains a proof of modular soundness for programs whose depen-
dencies are static, and that satisfy the visibility and top-down requirements, given
that specifications are desugared as described in Section 5 and residues are used.

This marks the end of our presentation of static dependencies. In the next
section, we describe dynamic dependencies.

7 Dynamic dependencies

Most of the dependencies that arise in top-down program design are static. By
a top-down design, we mean a design in which each successive layer of imple-
mentation provides the representation of the abstraction specified in layers above.
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However, not all useful designs are top-down. A bottom-up design is often bet-
ter, in which an object type is defined and later used to build higher-level objects,
which may not even have been envisioned at the time the first type was defined.
Most of the dependencies that arise in bottom-up design are dynamic.

Recall that a dynamic dependency has the form

depends a[t] on c[b[t]]

This means that the abstract state a[t] is represented in terms of the concrete state
c[b[t]] , which is a field not of the object t but of the separate object b[t] . The
field b is called a pivot field. Pivot fields introduce a level of indirection that
makes dynamic dependencies more complicated than static dependencies. Static
dependencies allow the representation of an abstraction to be divided among sev-
eral modules; dynamic dependencies allow it also to be divided among several
dynamically allocated objects.

For example, sequences are useful abstractions. To define sequences and then
use them in different ways is a bottom-up approach and leads to the use of dynamic
dependencies. To see this, consider a set type Set.T implemented in terms of a
sequence type Seq.T . Somewhere in the set implementation, there will be a field,
say q , declared as

var q: Set.T → Seq.T

The representation of the validity and state of a set s will inevitably involve prop-
erties of the sequence q[s] . Almost always, for example, set validity requires
validity of the underlying sequence, in which case we have

rep Set.valid[s: Set.T] ≡ . . . ∧ Seq.valid[q[s]]

This rep declaration requires the dependency

depends Set.valid[s: Set.T] on Seq.valid[q[s]]

which is dynamic, with pivot field q .
Although we have built a checker that handles dynamic dependencies, we

don’t understand them as well as static dependencies. In particular, we haven’t
proved any soundness theorem about them, and our view of their modularity re-
quirements is still evolving.

In this section, we will explain how dynamic dependencies affect functional-
ization and modifies list desugaring, and then explain what we believe about their
modularity requirements.
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7.0 Functionalization

Functionalization in the presence of dynamic dependencies is analogous to func-
tionalization in the presence of static dependencies only. Both of the fields in the
right-hand side of the dynamic dependency become arguments to the abstraction
function.

For example, in the presence of the dependencies

depends a[t] on e[t]
depends a[t] on c[b[t]]

the functionalized form of a[x] is

F.a(e, c, b)[x]

or, more precisely, taking residues into account,

F.a(sres, res.a, e, c, b)[x]

The pointwise axiom for F.a is

〈 ∀ t, sres0, sres1, res.a0, res.a1, e0, e1, c0, c1, b0, b1 ::
sres0[t] = sres1[t] ∧ res.a0[t] = res.a1[t] ∧ e0[t] = e1[t] ∧
c0[b0[t]] = c1[b1[t]]

⇒
F.a(sres0, res.a0, e0, c0, b0)[t] =
F.a(sres1, res.a1, e1, c1, b1)[t] 〉

We don’t introduce anything like residue variables for dynamic dependencies.

7.1 Modifies list desugaring

Unlike functionalization, which is pretty much the same for static and dynamic
dependencies, modifies list desugaring is surprisingly different in the two cases.
It has taken us several tries to converge on a desugaring that suits all the examples
that we know.

In this subsection, we assume that no abstract variable depends, directly or
indirectly, on itself. This restriction will be lifted in Section 9.0.

To explain the issues, we start by exploring the obvious extension of the ap-
proach for static dependencies, and show how this goes wrong. Then we give what
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we think is the right desugaring, followed by two more supporting examples. Fi-
nally, we impose a restriction that seems to be necessary to make the desugaring
sound.

Recall the main points of Section 5.1:

• the definition of closure,

• the rule that modifies M allows the modification of anything in the closure
of M , and

• the modification constraints that enforce the rule.

We will reuse the second and third points. That is, to accommodate dynamic
dependencies, we redefine closure and leave everything else the same.

The need to close upwards. Recall that a set of terms M is statically closed in
a scope D if it satisfies the property

a[E] ∈ M ∧ “depends a[t] on c[t]” ∈ D ⇒ c[E] ∈ M (14)

The obvious extension to include dynamic dependencies is to require in addition:

a[E] ∈ M ∧ “depends a[t] on c[b[t]]” ∈ D ⇒ c[b[E]] ∈ M (15)

To give this new closure a name, we define a set of terms M to be downward
closed in a scope D if it satisfies (14) and (15). Will we get a good desugaring
if we replace “static closure” with “downward closure” in Section 5.1? Unfortu-
nately not.

To explain why the replacement doesn’t work, we give a straightforward ex-
ample of integer sets implemented in terms of extensible integer sequences. Fig-
ure 8 shows the two interfaces, together with ESC-style specifications. (In these
interfaces, we have varied our convention and elected not to return anything from
the init methods.) A simple implementation of all Set objects, in which all ele-
ments are kept in a sequence with duplicates allowed, begins as shown in Figure 9.

The whole point of this example is: what will be the effective modifies list used
in reasoning about the call to Seq.init in the body of Set.init ? Since Seq.init(sq)
modifies valid[sq] , state[sq] , and length[sq] , the modifies list (before closure)
of the call q[st].init() is

modifies Seq.valid[q[st]], Seq.state[q[st]], Seq.length[q[st]]
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unit Set

type T

spec var valid: T → bool
spec var state: T → any
proc init(st: T)

modifies valid[st], state[st]
ensures valid′[st]

proc insert(st: T, i: int)
requires valid[st]
modifies state[st]

proc delete(st: T, i: int)
requires valid[st]
modifies state[st]

proc member(st: T, i: int): bool
requires valid[st]

unit Seq

type T

spec var valid: T → bool
spec var length: T → int
spec var state: T → any
proc init(sq: T)

modifies valid[sq], state[sq], length[sq]
ensures valid′[sq] ∧ length′[sq] = 0

proc addhi(sq: T, i: int)
requires valid[sq]
modifies state[sq], length[sq]
ensures length′[sq] = length[sq] + 1

proc get(sq: T, i: int): int
requires valid[sq] ∧ 0 ≤ i < length[sq]

Figure 8: The interfaces Set for sets and Seq for sequences.
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unit SetImpl import Set, Seq

var q: Set.T → Seq.T

rep valid[st: Set.T] ≡ st 	= nil ∧ q[st] 	= nil ∧ Seq.valid[q[st]]
depends valid[st: Set.T] on q[st], Seq.valid[q[st]]
depends state[st: Set.T] on Seq.state[q[st]], Seq.length[q[st]]
impl init(st: Set.T) is

q[st] := new(Seq.T) ; q[st].init()
end

impl insert(st: Set.T, i: int) is q[st].addhi(i) end
...

Figure 9: The implementation unit SetImpl .

This is also the modifies list after closure, since it is already downward closed
(not counting residues, which we will ignore since they are irrelevant to this ex-
ample). Transforming the closed modifies list into modification constraints, the
postcondition of the rewritten specification is

ensures 〈 ∀ sqv :: Seq.valid[sqv] = Seq.valid′[sqv] ∨ sqv = q[st] 〉 ∧
〈 ∀ sqv :: Seq.state[sqv] = Seq.state′[sqv] ∨ sqv = q[st] 〉 ∧
〈 ∀ sqv :: Seq.length[sqv] = Seq.length′[sqv] ∨ sqv = q[st] 〉 ∧
〈 ∀ stv :: Set.valid[stv] = Set.valid ′[stv] 〉 ∧
〈 ∀ stv :: Set.state[stv] = Set.state′[stv] 〉 ∧
〈 ∀ stv :: q[stv] = q′[stv] 〉

The fourth conjunct “protects” the higher-level abstraction Set.valid from a change
to its representation. In the old world of static dependencies only, this was nec-
essary, but in the new world with dynamic dependencies, it is preposterous. The
whole purpose of the Seq.init call is to modify the validity of the enclosing set.

The example shows that using the downward closure produces too strong an
ensures clause, that is, too small a closure.

Let us summarize what the example has shown about the difference between
static dependencies and dynamic dependencies. In the presence of a static de-
pendency of a[t] on c[t] , the presence of the term c[x] in the modifies list does
not, and should not, imply the presence of a[x] in the closure, since the license
to modify a concrete variable does not imply the license to modify an abstract
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variable that depends on it. However, in the presence of a dynamic dependency
of a[t] on c[b[t]] , the example shows that the presence of the term c[x] in the
modifies list should imply the presence of a[t] in the closure, for any t such that
b[t] = x . That is, we must close upwards as well as downwards.

Dynamic closure. In the next few paragraphs, we define the closure that we use
when desugaring modifies lists in the presence of dynamic dependencies, which
we call the dynamic closure. We have already indicated that it is larger than the
downward closure. In fact, it is the union of the downward closure with a portion
of the upward closure (defined soon).

Another change from our previous treatment is that the closure will contain
expressions of the form f −1 . We call these “map inverses”, but they are not
to be thought of as ordinary notation, for example, the notation does not imply
that f is invertible: they are a syntactic fiction that will be eliminated when the
closure is transformed into a modification constraint. The elimination is achieved
by rewriting an equality of the form

s = f −1
1 [ f −1

2 [· · · [ f −1
n [E]]]] (16)

into

fn[· · · [ f2[ f1[s]]]] = E

All of the map inverses will be eliminated by this rewriting, because the terms of
the closure of a modifies list affect the rewritten specification only in modification
constraints, in which map inverses will occur only in equalities of the form (16).

The dynamic closure of a modifies list M in a scope D is the union of the
downward closure of M with the upward closure of the flexible subset of M .

The flexible subset of a set of terms M in a scope D consists of those terms
f [E] where D contains no dependency of the form depends a[t] on f [t] .

A set of terms M is upward closed in a scope D if

c[E] ∈ M ∧ “depends a[t] on c[t]” ∈ D ⇒ a[E] ∈ M

c[E] ∈ M ∧ “depends a[t] on c[b[t]]” ∈ D ⇒ a[b−1[E]] ∈ M

The upward closure of a set of terms is its smallest upward-closed superset.
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Examples. Let use redo the Set.init example with the new rule. The desugaring
begins, as before, with the modifies list from the specification, namely

modifies Seq.valid[q[st]], Seq.state[q[st]], Seq.length[q[st]]

The dynamic closure of this list includes the term

Set.valid[q−1[q[st]]]

since the scope includes the dependency

depends Set.valid[st] on Seq.valid[q[st]]

This extra term in the closure weakens the modification constraint for Set.valid .
With the downward closure, the constraint was

〈 ∀ stv :: Set.valid[stv] = Set.valid ′[stv] 〉
However, with the dynamic closure, the constraint is

〈 ∀ stv :: Set.valid[stv] = Set.valid ′[stv] ∨ stv = q−1[q[st]] 〉
which when map inverses are eliminated becomes

〈 ∀ stv :: Set.valid[stv] = Set.valid ′[stv] ∨ q[stv] = q[st] 〉
which in turn is functionalized to

〈 ∀ stv :: F.Set.valid(sres, res.Set.valid, q,

F.Seq.valid(sres, res.Seq.valid))[stv]
=
F.Set.valid(sres′, res.Set.valid′, q′,

F.Seq.valid(sres′, res.Seq.valid′))[stv]
∨ q[stv] = q[st] 〉

which eliminates the problem since the disjunct q[stv] = q[st] allows the method
to change the validity of st . (The disjunct also allows the method to change
the validity of any other set whose q field coincides with the q field of st .
This accurately reflects the semantics of the situation, and we take it as evidence
that our rewriting is appropriate. It is a different issue whether the designer of
Set.T should allow such sharing of the q field—probably not, as explained in
Section 9.3.)
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Here is an example to show why the dynamic closure is the union of two clo-
sures, rather than, for example, the upward closure of the downward closure or
some kind of bi-directional closure. Suppose that we were doing full functional
verification instead of extended static checking only, and that sets were repre-
sented by sequences without duplicates. Then we would have the dependency

depends Set.valid[st] on Seq.state[q[st]]

since the rep declaration for Set.valid[st] would forbid duplicates in q[st] , which
is an assertion about Seq.state[q[st]] . In addition, we still have the dependency

depends Set.state[st] on Seq.state[q[st]]

If the dynamic closure were the upward closure of the downward closure, then the
dynamic closure of the modifies list

modifies Set.state[st]

would include Set.valid[st] . Thus, in the scope of the implementation, any oper-
ation that changes the state of a set would be allowed also to modify its validity,
which would be preposterous. (It would also be unsound, since in the scope of a
client of the Set interface, such a side effect would be unexpected.)

Finally, here is an example to show why the dynamic closure contains the full
upward closure of the flexible terms of a modifies list, rather than a single level.
Suppose R is a subtype of Rd.T (see Section 4), that

var rq: R → Seq.T

is a sequence-valued field of readers of type R , and that the subtype-specific
validity of R readers depends on the validity of the associated sequence:

depends svalid[r: R] on Seq.valid[rq[r]]

In this scenario, we would argue that a call that modifies Seq.valid[rq[r]] should
be allowed to modify both svalid[r] and Rd.valid[r] .

Dependency segregation. Our desugaring of modifies lists requires a restric-
tion, which we call the dependency segregation restriction: no field c occurs both
in a static dependency of the form a[t] on c[t] and in a dynamic dependency of
the form z[s] on c[b[s]] . Because of the visibility and top-down requirements,
this restriction can easily be enforced modularly.
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To see that this restriction is necessary, consider the following example:

unit A
...

depends a[t] on c[t]
proc P(t) modifies c[t]

unit B import A
...

depends z[s] on c[b[s]]
. . . call t.P() . . .

Because c[t] is not in the flexible subset of the modifies list of P , the caller in B
expects the value of z[b−1[t]] to be unchanged. However, if the implementation
of P is placed in unit A (or in any unit where the dynamic dependency is not
visible), then no modification constraint will be added to the implementation to
enforce the unchangedness of z .

The dependency segregation restriction does not seem to rule out any useful
programs.

7.2 Modularity requirements for dynamic dependencies

The visibility and top-down requirements that we impose for static dependencies
both have analogues for dynamic dependencies, but the analogues are significantly
different from the originals. One of the differences is that because pivot fields can
be updated dynamically, several of the requirements for dynamic dependencies
can be checked only by reasoning about specifications, not by a simple check on
the placement of declarations. Our checker enforces the requirements of this sort
by transforming an annotated input program into another annotated program that
will verify exactly when the input program would verify and the input program
obeys the requirements.

Before getting into these deep waters, we describe the one modularity require-
ment for dynamic dependencies that can be checked simply by looking at the
placement of declarations.

Pivot visibility requirement. The pivot visibility requirement requires that a
dynamic dependency

depends a[t] on c[b[t]]
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be visible anywhere b is.
This can be enforced simply by checking that the dependency is placed in the

same unit as the declaration of b .
Here is the reason we impose the requirement. If there were a scope where

a and b are visible but the dependency is not, then a modification to b[t] could
change a[t] unexpectedly. The requirement is not burdensome, since the module
that implements the abstraction a usually declares both the pivot field and the
dependency.

It would probably be sound to require only that the dependency be visible
where both a and b are, but we have not found any examples where the extra
flexibility of this weaker requirement would be of any engineering use.

Absence of abstract aliasing. The visibility requirement for static dependen-
cies prevents unexpected side effects between an abstract variable and its repre-
sentation. For the dynamic dependency of a[t] on c[b[t]] , the pivot visibility
requirement prevents unexpected side effects between a and b , but we still need
to protect against unexpected side effects between a and c . This is the function
of absence of abstract aliasing.

For static dependencies, the problem is solved by requiring the dependency to
be visible anywhere both a and c are, but for dynamic dependencies, this would
be undesirably strict. For example, consider the sets and sequences described
earlier. This strict version of the requirement would force the dependency (and
therefore the pivot field as well) to be declared in the public interface Set instead
of in the private implementation where they belong. (It is obviously unreasonable
to place the pivot and dependency declarations in the public interface Seq , since
sets may not have been envisioned when sequences were defined.)

To find the right modularity requirement, we focus on the situation that goes
wrong, and use our judgment as programmers to assign blame. The situation that
goes wrong is an unexpected side effect between a[t] and c[u] for some values t
and u . For the side effect to happen, it must be that b[t] = u . For the side effect
to be unexpected, it must occur in a scope where a and c are visible but the
dependency is not. Because of the pivot visibility requirement, it must therefore
be that b is not visible either.

More formally, we say that abstract aliasing occurs if execution reaches some
point in the program text where, for some expressions E and F and pivot field b ,
all free variables of E and F are visible, b is not visible, and E = b[F] ∧ E 	=
nil . Notice that the condition E = b[F] makes sense even outside the scope
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of b , since b ’s value exists even at program points where b is not visible. We
require that programs be designed so that abstract aliasing does not occur. This
requirement, together with the pivot visibility requirement, is the analogue for
dynamic dependencies of the visibility requirement for static dependencies.

So much for the definition of abstract aliasing. A further question is to find a
static discipline for avoiding the problem.

One simple discipline that prevents abstract aliasing would be to forbid com-
municating a pivot value b[t] into or out of the scope declaring b . All forms of
communication must be forbidden, including communication via procedure pa-
rameters, procedure results, and global and heap locations. We say that the value
of a pivot field transferred into or out of the scope of the field’s declaration is
leaked.

Unfortunately, the simple discipline of forbidding all leaking is too strict, for
several reasons. For example, initialization methods occasionally take parameters
that are stored into pivot fields. Also, methods of container classes must return
the elements of the container. Most compellingly, to operate on a pivot, an imple-
mentation of an abstraction must pass the pivot value to the pivot’s own methods.

We have defined a more flexible discipline for avoiding leaking, which solves
the three problems mentioned in the previous paragraph. But our solution is not
totally satisfactory, and instead of describing it in this paper, we refer the reader
to the companion paper Wrestling with rep exposure [7].

Disjoint ranges requirement. The disjoint ranges requirement states that pivot
fields declared in distinct units have disjoint ranges. That is, if b and d are pivot
fields whose declarations occur in different units, then, at any procedure boundary,

〈 ∀ s, t :: b[s] = d[t] ⇒ b[s] = nil 〉
where s and t range over non- nil objects. The requirement is enforced by rewrit-
ing pre- and postconditions.

To motivate the disjoint ranges requirement, we first recall the motivation for
the top-down requirement for static dependencies. In the presence of the depen-
dencies

depends a[t] on c[t]
depends v[t] on c[t]

the checker protects related abstractions by adding the postcondition

v[t] = v′[t]
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to any procedure specified with modifies a[t] . If the dependency of v[t] on c[t]
were not visible, the checker would be unable to add this postcondition, making
modular verification unsound. Soundness is achieved for static dependencies by
imposing the top-down requirement.

The top-down requirement works for static dependencies, but it would be
ridiculously strict to generalize it in the obvious way for dynamic dependencies.
For example, it would be too strict to require that Set.valid be visible wherever
Seq.valid is, since Set is a higher-level abstraction, which quite possibly was not
envisioned when Seq was designed.

The disjoint ranges requirement is the analogue of the top-down requirement,
but for dynamic instead of static dependencies. Consider the following variables
and dependencies:

depends a[t] on c[b[t]]
depends v[t] on c[d[t]]

and a procedure P specified with modifies a[t] . Then P is allowed to modify
a[t] and c[b[t]] , but not v[s] for any s , not even when d[s] = b[t] . If d is
visible in the scope containing P ’s body, then modifies list desugaring adds an
appropriate conjunct to the postcondition. But if d is not visible in that scope, the
only way to guarantee that v[s] is unchanged is to guarantee d[s] 	= b[t] , which
is ensured by the disjoint ranges requirement.

Swinging pivots restriction. Consider the modifies list

modifies b[t]

It gives a procedure the license to modify b , but only at t . More precisely, the
procedure is required to establish the postcondition

〈 ∀ s :: b0[s] = b′[s] ∨ s = t 〉
where, in this discussion, we write b′ for the final value of b and b0 for the initial
value of b .

Now consider the modifies list

modifies b[t], c[b[t]]

It, too, gives a procedure the license to modify b , only at t . In addition, it allows
the modification of c at one point only. But is this point b0[t] or b′[t] ? It is
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traditional to choose the first alternative, allowing the modification of c only at
b0[t] , and we follow this tradition. However, the possibility that b0[t] may be
different from b′[t] causes a difficulty, which we will now describe.

Consider the following artificial procedure that returns from a reader not the
current character but the second character:

proc secondChar(rd: Rd.T): int
requires valid[rd]
modifies state[rd]

impl secondChar(rd: Rd.T) is
result := rd.getChar() ;
result := rd.getChar()

end

We certainly hope that this implementation will verify: since rd.getChar() ’s
specification requires valid[rd] and modifies state[rd] , that same specification
should be satisfied by two calls in a row. Indeed, it does verify in a scope where
only Rd is imported.

Unfortunately, the implementation does not verify if RdRep is imported! The
problem is that, in the presence of the dependencies declared in RdRep , the
checker will issue a warning because of the possibility that the first call to getChar
changes buff [rd] and the second call changes the contents of the new buff [rd] .
Thus the net effect is inconsistent with our interpretation of secondChar ’s speci-
fication

modifies state[rd]

since this desugars to

modifies buff [rd], elems[buff [rd]], . . .

which allows changing elems[buff0[rd]] , but not elems[buff ′[rd]] .
Reversing the tradition does not help: if secondChar ’s specification were

desugared to allow modification of elems at buff ′[rd] instead of at buff0[rd] ,
then the checker would warn about the possibility that the first call to getChar
changes the contents of the buffer and the second call changes the buffer pointer.

This problem is a failure of modular soundness, which can only be rectified
in two ways: by changing the proof system so that secondChar does not verify
when only Rd is imported, or by changing it so that secondChar does verify
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when RdRep is imported. Our engineering judgment is that the latter course is the
right one. The best way we have found to achieve this is to impose a rather strict
requirement that we call the swinging pivots restriction: a procedure specified
to modify a pivot field is allowed to change it only to nil or to a value newly
allocated within the procedure. This discipline is enforced formally by adding,
for each pivot field b , a conjunct to the postcondition of every procedure:

〈 ∀ s :: b0[s] = b′[s] ∨ b′[s] = nil ∨ ¬alloc0[b′[s]] 〉 (17)

where alloc0[x] means the object x was allocated in the pre-state (Section 8.1
provides more details about alloc ). With this postcondition of getChar , the spu-
rious warnings will not occur, since the problematic control paths are inconsistent
with the strengthened postcondition.

As we have described it, the swinging pivots restriction is too strict. For ex-
ample, the restriction forbids an initialization method from assigning one of its
parameters to a pivot field in the object being initialized, which is occasionally
necessary. It is straightforward to revise the swinging pivots restriction to accom-
modate such assignments, by adding a disjunct to (17), but we won’t describe
it in this paper since it requires the nomenclature defined in Wrestling with rep
exposure [7].

We can envision situations where even the revised restriction is too strict, for
example, a double-buffered reader implementation in which one buffer is being
filled while the other is being emptied. But the swinging pivots restriction is the
best solution to the problem that we know.

8 Reasoning about types and allocation

A central issue described in this paper is the rewriting of specifications found in
a modular program into specifications about which one can reason using standard
techniques for verifying one-scope programs. Although those techniques have
been described widely in the literature, there are some areas where we have had
to innovate in order to build the Modula-3 Extended Static Checker, in particular
in the areas of reasoning about types and allocation. We describe these techniques
here, both because some of the techniques related to allocation are new, and be-
cause this material interacts with the modularity issues discussed in Section 9.

51



8.0 Reasoning about types

Conditions that the type system guarantees can be assumed by the checker without
proof. We call such conditions “freeconditions”. For example, in checking a
procedure implementation like

impl P(n: nat) is . . . end

we get the free precondition n ≥ 0 . The full story is more complicated, since the
value of type nat might be a field of some object rather than a simple parameter.

Therefore, every verification condition R in a scope D is discharged under
the background predicate for D :

BackgroundPredD ⇒ R

The background predicate is a conjunction of axioms formed from the declarations
that are visible. This subsection gives a flavor of what the background predicate
contains.

For every type T , the background predicate contains the definition of a pred-
icate symbol is$T , which asserts that its argument is of type T . In addition, for
each object type T , the background predicate contains a constant tc$T represent-
ing the typecode of T . If T is declared to be a subtype of an object type U , the
background predicate will contain the conjunct

subtype1(tc$T, tc$U)

For an object type T , is$T is defined by the conjunct

〈 ∀ t :: is$T(t) ≡ t = nil ∨ subtype(typecode(t), tc$T) 〉
where subtype is the reflexive, transitive closure of subtype1 .

Data fields are treated as maps from objects to values. For every map type
T → U occurring in the program, the background predicate defines a predicate
symbol field$T$U . One of the axioms about field$T$U asserts that applying a
map to a value in its domain produces a value in its range:

〈 ∀ f , t :: field$T$U(f ) ∧ is$T(t) ∧ t 	= nil ⇒ is$U(f [t]) 〉
For the full details of the background predicate of a small object-oriented lan-

guage, we refer the reader to the axiomatic semantics of Ecstatic [29]. The back-
ground predicate used for Modula-3 in the Extended Static Checker is similar, but
more complicated, because, for example, Modula-3 has a larger variety of types.
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8.1 Reasoning about allocation

Consider the following specification puzzle: A procedure P takes a filename as
a parameter, opens the named file, reads four bytes, and returns their value as an
integer. We would like to specify P with an empty modifies list, since P is essen-
tially functional from the point of view of the client. However, it is impossible to
implement P without side effects on allocated data. For example, if a file reader
is used, its buffer will be changed.

Our solution is to make it implicit in the specification of every procedure that
modifications to newly allocated state are allowed. Thus, although P ’s modifies
list is empty, its implementation is allowed to change the fields of the file reader,
since it allocates that reader (but if P used a pre-existing reader rd , it would have
to mention state[rd] in the modifies list, as usual). We say that by convention
we allow “free modification of unused state”. In fact, we have already used this
convention: BlankRd.init modifies the contents of the buffer. This is allowed
by our convention, because the buffer is newly allocated, but it would have been
inconsistent with the modifies list otherwise.

We believe this convention is sound with respect to the standard operational
semantics, but we have neither proved it nor noticed that anyone else has.

The convention affects the desugaring of specifications. To describe this in
more detail, we must explain the semantics of allocation. Since successive calls
to the storage allocator return different results, it must be that the calls have some
side effect. Informally, the side effect is to extend the set of allocated objects. In
the formal semantics, the side effect is to change the “allocated” property of the
returned object from false to true . We model this property with the predeclared
boolean object field alloc .

The program expression new(T) is sugar for

var x in
x 	= nil ∧ ¬alloc[x] ∧ x ∈ T

→
alloc[x] := true ; result := x

end

that is, nondeterministically choosing any non- nil , unallocated object of type T ,
and allocating and returning it.

The modifies list of every procedure implicitly contains alloc , and the post-
condition of every procedure implicitly includes

〈 ∀ s :: alloc[s] ⇒ alloc′[s] 〉
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that is, the procedure can allocate objects, but not deallocate them (we assume
the usual fiction of garbage collected languages wherein objects are allocated but
never deallocated).

Recall that, for every field g , a modifies list desugars to a conjunct in the
postcondition of the form

〈 ∀ s :: g[s] = g′[s] ∨ s = E0 ∨ s = E1 ∨ . . . 〉
where the E ’s are the modification points allowed for g by the modifies list. With
our allocation convention, this conjunct becomes

〈 ∀ s :: g[s] = g′[s] ∨ ¬alloc[s] ∨ s = E0 ∨ s = E1 ∨ . . . 〉
This allows the procedure to modify g at any newly allocated object.

The specification language admits assertions that quantify over all objects of a
particular type. Such assertions are considered by convention to apply to allocated
objects only. For example, a universal quantification 〈 ∀ x: T :: P(x) 〉 occurring
in a specification is desugared into

〈 ∀ x: T :: alloc[x] ⇒ P(x) 〉
except if it occurs in a postcondition, in which case it is desugared into

〈 ∀ x: T :: alloc′[x] ⇒ P(x) 〉
These kinds of assertions are not common in pre- or postconditions, but they are
common in program invariants, which will be discussed in Section 9.3.

Unlike the mini-language used in this paper, many programming languages
allow declarations to specify default values for object fields. These will become
important when we discuss program invariants in Section 9.3. Taking default
values into account, the desugaring of new must be altered slightly from the
version given above. Suppose, for example, that f is one of T ’s fields, and that
the default value of f is the constant C . Then new(T) is sugar for

var x in
x 	= nil ∧ ¬alloc[x] ∧ x ∈ T ∧ f [x] = C

→
alloc[x] := true ; result := x

end

This desugaring nondeterministically chooses an object whose f field has the
right value. (We prefer this to an alternative desugaring which assigns f [x] := C
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after choosing x . Our version reduces the number of assignments, which speeds
mechanical checking.)

The story we have told so far about new is not new. For example, our story
is essentially equivalent to that given by Hoare and Wirth in their classic paper on
an axiomatic semantics for Pascal [19]. We were surprised to find, when applying
our checker to the Modula-3 library, that the story doesn’t work. The following
artificial program illustrates the problem:

type T,U

var f : T → U

proc P(t: T) requires t 	= nil
impl P(t: T) is

var u: U in
u := new(U) ;
assert f [t] 	= u

end
end

Procedure P , which takes an object t as a parameter and allocates a new object
u , will crash if the f field of t is u . As programmers, we know this won’t ever
happen, but nothing we have said so far allows this procedure to be verified. We
have ensured that new returns a previously unallocated object, but we have not
ensured that all reachable objects are allocated. This problem seems to be less
appreciated than the more easily solved problem of ensuring that new returns a
previously unallocated object.

The background predicate helps, since we can arrange that it provide the as-
sumption alloc[t] for each parameter or global variable of an object type. But as
the example shows, this is not sufficient, since alloc[f [t]] does not follow log-
ically from alloc[t] . The basic idea of our solution is to allow the checker to
assume that fields of allocated objects are themselves allocated, that is, that for
every declared field f whose range type is an object type, alloc is closed under
f . It is not enough to assume this condition once and for all in the background
predicate, since both alloc and f are mutable. Instead, the closure condition is
an implicit pre- and postcondition of every procedure, including new . We will
not describe the details here, since they are not particularly relevant to modular
verification. Instead, we refer interested readers to the axiomatic semantics of
Ecstatic [29].
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9 Further challenges

Static and dynamic dependencies allow us to check many parts of the Modula-3
run-time library that we were unable to check without them. But there remain
programming paradigms that are used in practice and seem sound and modular to
which our approach does not apply. This section describes some of these chal-
lenges and some tentative ideas we have for addressing them.

9.0 Cyclic dependencies

Dynamic dependencies give rise to the possibility of cyclic dependencies, that is,
an abstract variable may depend on itself indirectly, via some pivot fields. Indeed,
this happens in the case of a “filter” object that “forwards” method calls to an
instance of one of its supertypes. For example, consider a DOSRd subtype of
Rd that returns all the characters of a given child reader, but with carriage return
characters filtered out:

unit DOSRd import Rd

type T <: Rd.T

proc init(drd: T, rd: Rd.T): T

requires valid[rd]
modifies valid[drd]
ensures valid′[drd] ∧ result = drd

(For simplicity, we’re ignoring state .) The expression new(DOSRd.T).init(rd)
allocates, initializes, and returns a new DOS reader with child reader rd . The
implementation of DOS readers will need to store the child reader in some field
of the DOS reader, say ch :

var ch: DOSRd.T → Rd.T

The implementation will also have to give the representation of svalid for DOS
readers, which will include a conjunct expressing that the child is valid:

rep svalid[drd: DOSRd.T] ≡ . . . ∧ valid[ch[drd]]

This requires the dynamic dependency

depends svalid[drd: DOSRd.T] on valid[ch[drd]]
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Combined with the static dependency of valid[rd] on svalid[rd] in RdRep , this
produces a cycle of dependencies.

To accommodate cyclic dependencies, we make two changes to our proof sys-
tem. We will describe the two changes for the case that there is exactly one pivot
field involved in any cycle. This is the only case that we have implemented in
ESC, although we believe that the ideas could be generalized.

The first change is in taking the closure of a modifies list. We need to make
some change to prevent the closure from being infinite. We introduce two new
notations allowed in closures: f ∗[t] and f −∗[t] . Intuitively, they represent the set
of terms

t, f [t], f [f [t]], . . .

and the set of terms

t, f [−1t], f [−1f [−1t]], . . .

respectively. These notations appear in the closures of modifies list, but they are
fictions that are eliminated when the closures are transformed into postconditions.
Since we assume only one pivot field per cycle, the infinite set of terms produced
by the closure rules described previously can be summarized in a finite set of terms
involving the new notations. For example, in the context of the implementation of
DOS readers, the modifies list

modifies valid[drd]

has the closure

valid[ch∗[drd]], svalid[ch∗[drd]],
valid[ch−∗[drd]], svalid[ch−∗[ch−1[drd]]]

Recall that modifies lists are closed, and then closed modifies lists are turned into
modification constraints in postconditions. Thus, to eliminate our new notations,
we must show how to rewrite them into modification constraints. The license to
modify a[b∗[t]] gives rise to the postcondition contribution

〈 ∀ s :: a[s] = a′[s] ∨ t
b−→

nil
s 〉

where the notation t
b−→
x

s , read “ t reaches s via (applications of) b , not going

through x ”, is defined by Nelson [42]. Similarly, the license to modify a[b−∗[t]]
gives rise to the postcondition contribution

〈 ∀ s :: a[s] = a′[s] ∨ s
b−→

nil
t 〉
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The second change to our proof system is to the pointwise axiom for any
abstract variable involved in a cycle of dependencies. We will describe the change
by means of an example. To set the stage, we consider first an example with a
dynamic but non-cyclic dependency, say

depends a[t] on e[t]
depends a[t] on c[b[t]]

The pointwise axiom for a (leaving out residues) is

〈 ∀ s, e0, e1, c0, c1, b0, b1 :: e0[s] = e1[s] ∧ c0[b0[s]] = c1[b1[s]]
⇒ F.a(e0, c0, b0)[s] = F.a(e1, c1, b1)[s] 〉

Now let the dynamic dependency be cyclic:

depends a[t] on e[t]
depends a[t] on a[b[t]]

The new pointwise axiom for a (leaving out residues) is

〈 ∀ s, e0, e1, b0, b1 ::

〈 ∀ r :: s
b0−→
nil

r ⇒ e0[r] = e1[r] ∧ b0[r] = b1[r] 〉
⇒ F.a(e0, b0)[s] = F.a(e1, b1)[s] 〉

That is, a[t] ’s value depends only on the e and b fields of objects reachable from
t via b .

We will illustrate this pointwise axiom by showing the verification of the init
method of DOS readers, implemented as:

impl init(drd: T, rd: Rd.T): T is
ch[drd] := rd ; lo[drd] := 0 ; . . . ; result := drd

end

where we assume the elided code initializes the cur , hi , and buff fields of drd to
satisfy the validity requirements given in RdRep . The first part of this verification
is showing that the assignment to the ch field establishes svalid[drd] . This is
easy since the init method requires valid[rd] as a precondition. The second
part is showing that the assignment does not affect the validity of any other reader
(except as allowed by the modifies list). As we have already remarked, the closure
of the modifies list includes

valid[ch∗[drd]], valid[ch−∗[drd]]
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which produces the postcondition

〈 ∀ s :: valid[s] = valid′[s] ∨ drd
ch−→
nil

s ∨ s
ch−→
nil

drd 〉

which is functionalized to

〈 ∀ s :: F.valid(ch, lo, . . .)[s] = F.valid(ch′, lo′, . . .)[s]

∨ drd
ch−→
nil

s ∨ s
ch−→
nil

drd 〉

which follows from the pointwise axiom for valid , which is

〈 ∀ s, ch0, ch1, lo0, lo1 ::

〈 ∀ r :: s
ch0−→
nil

r ⇒ ch0[r] = ch1[r] ∧ lo0[r] = lo1[r] ∧ . . . 〉
⇒
F.valid(ch0, lo0, . . .)[s] = F.valid(ch1, lo1, . . .)[s] 〉

We leave the proof to the reader.
In the verification of the init method of DOS readers, no properties of the

reachability predicate were used: it might as well have been an uninterpreted
predicate. Properties of the reachability predicate come into play when verifying
a non-trivial operation on the DOS reader whose implementation modifies the
child reader (for example the refill method, which recursively invokes the refill
method of the child).

In summary, we have described the essential ideas of a proof system for cyclic
dependencies. More details are described by Rajeev Joshi [24]. At least two
problems still remain: Cyclic dependencies with more than one pivot field per
cycle require some generalization. Also, even with just one pivot field per cycle,
our rewriting produces verification conditions that are beyond the limit of what
our automatic theorem prover can handle efficiently.

9.1 Yet more dependencies

We have concentrated on static and dynamic dependencies because they play a
central rôle in the patterns of abstractions in the library programs we took as test
cases in the ESC project, not because we can’t imagine other kinds of dependen-
cies. In this section, we sketch what we know about other dependencies.
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If a global abstract variable (not a field) depends on a global concrete variable
(not a field), we call it an entire dependency. For example,

spec var k: int
var m, n: nat
rep k ≡ m − n

depends k on m, n

This kind of abstraction occurs frequently in papers on data refinement, but in
practice we have found static and dynamic dependencies far more frequent. One
place in which entire dependencies are useful is in reasoning about module initial-
ization, which we will address in Section 9.2. We have a soundness theorem for
entire dependencies, and the modularity requirements are essentially the same as
those for static dependencies, that is, the dependency of a on c must be placed
in the unit that declares c [28].

If an abstract field (not a global variable) depends on a global concrete variable
(not a field), we have a dependency of the form

depends a[t] on g

As an example of how this might come up, consider an abstract type whose in-
stances contain unique id fields. Each id field is initialized from a global counter,
gcount . This might well lead to a representation of validity of the form

rep valid[t] ≡ . . . ∧ id[t] < gcount

which in turn would require a dependency of the form

depends valid[t] on gcount

However, the soundness of these dependencies is problematical, and our current
view is that they are not useful and should be forbidden. To specify a data type
containing unique identifiers, we recommend using program invariants, as will be
described in Section 9.3.

If an abstract field depends on concrete fields of the elements of an array,
we have an array dependency. We would suggest overloading the notation for
dynamic dependencies: if b[t] has type array[U] and c is a field with index
type U , then

depends a[t] on c[b[t]]
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is an array dependency that allows a[t] to depend on the sequence of values

c[b[t][0]], c[b[t][1]], . . .

So an array dependency seems akin to a dynamic dependency, but with an array
of pivots instead of just one.

As an example of an array dependency, consider a type T representing sets
of elements of type E . Suppose that the implementation automatically enlarges
itself when necessary, and that enlarging requires rehashing the current elements,
and that rehashing an element requires that the element be valid. Then, the validity
of the set will require the validity of all its elements. If the elements are held in an
array, say b , then the validity of the set will have the form

rep T.valid[t: T] ≡
. . . ∧ 〈 ∀ i :: 0 ≤ i < number(b[t]) ⇒ E.valid[b[t][i]] 〉

which involves the array dependency

depends T.valid[t: T] on E.valid[b[t]]

We suspect that array dependencies are a straightforward generalization of dy-
namic dependencies, but we have not investigated them thoroughly.

One can imagine many other kinds of dependencies, for example,

depends a[t] on c[b[d[t]]]

But we have never been able to make a strong case that such dependencies are
useful.

9.2 Checking initialization order

Initializing global data is more complicated in a multi-module program than in a
single-module program and is a common source of programming errors. Some
of the procedures in a module require that the module’s globals be initialized, but
generally not all of them: for example, any procedure that is used in performing
the initialization. Thus, there are two classes of procedures: those that require
prior initialization of the module and those that don’t. A common error is to
inadvertently call a procedure of the first class before initialization is complete,
either through confusion over which class a procedure is in, or because the linker
initializes the modules in an unexpected order.
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We suggest that abstraction and specification can help in solving this prob-
lem. The idea is to introduce into the interface of each module a boolean abstract
variable, called an init variable, which means the module has been initialized.
Procedures of the first class require the init variable as a precondition, while those
of the second class do not. The purpose of a module body is to ensure an init vari-
able as a postcondition; to achieve this, it may call other procedures that modify
and ensure the init variable.

A programmer can also require one or more init variables of other modules as
preconditions of the module body. The linker calls the module bodies in an order
such that each body’s precondition is established before it is called, or reports a
cycle if this is impossible. Each module provides a rep declaration that connects
its init variable to the globals of the module, so occurrences of init variables in
specifications are desugared like any other abstract variable.

An init variable generally depends on the global variables in the module.
These dependencies satisfy the modularity requirements for entire dependencies
since they are placed in the same units as the declarations of the globals, and thus
present no problem to modular verification. An init variable may also depend on
other init variables, since

rep Minit ≡ Ninit ∧ . . .

where Minit and Ninit are the init variables of two modules M and N , is a
simple way of giving M ’s procedures of the first class the right to call N ’s proce-
dures of the first class. Unfortunately, the dependency of Minit on Ninit is most
naturally placed in the implementation of module M , a unit that declares neither
Minit nor Ninit . Thus, this dependency violates both the visibility and top-down
requirements, which in general destroys soundness. We have several ideas for
restoring soundness while allowing init variables to depend on one another. These
ideas are based on the observation that init variables change only from false to
true . But we have not proved a soundness theorem.

9.3 Invariants

In practice, almost all pivot fields are injective (one-to-one), that is, if b is a pivot
field and u and v are distinct objects in the domain of b , then b[u] and b[v] are
distinct (or they are both nil ). The reason for this is easily seen by considering the
prototypical example involving a dynamic dependency, shown in Figure 10. The
call to R from P modifies c[b[t]] . This affects the value of a[t] . If the pivot field
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unit M

type T

spec var a: T → . . .

...

proc P(t: T) modifies a[t]

unit N

type U

spec var c: U → . . .

...

proc R(u: U) modifies c[u]

unit MImpl import M,N

var b: T → U

depends a[t: T] on c[b[t]]
...

impl P(t: T) is . . .R(b[t]) . . . end

Figure 10: A prototypical example involving a dynamic dependency.
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b were not injective, it would also affect a[u] for any u such that b[u] = b[t] .
In general, when a[t] is modified by changing part of its representation c[b[t]] ,
the only hope for showing that the modification obeys the modifies list

modifies a[t]

is to require the injectivity of b .
Note that although we find injectivity necessary to be able to verify interesting

programs, we have not found injectivity to be a requirement for soundness.
By the way, it is surprisingly difficult to verify a procedure that initializes an

injective field. While showing that a command like

b[t] := new(U)

maintains the injectivity of b is easy, a command like

b[t] := NewU()

does not verify, even if procedure NewU is specified to ensure ¬alloc[result] ∧
alloc′[result] . The checker dreams up the possibility that NewU allocates a new
U object, squirrels it away into some b field, and then returns it. To cope with
this problem, we enrich the specification language with the expression virgin[x] ,
which means that x is not, and has never been, the value of any object field or
global variable. The details are found in a paper by Leino and Stata [34].

How should a programmer use the specification language to record the design
decision that a field is to be injective? One might first try to include this as part of
the representation of an object’s validity, producing a rep declaration like

rep valid[t: T] ≡ . . . ∧ (b[t] = nil ∨ 〈 ∀ s: T :: s 	= t ⇒ b[s] 	= b[t] 〉)
But this seems problematical. It makes valid[t] depend not just on b[t] , but on
b[s] for all s of the appropriate type. It seems perverse to think of this unbounded
collection of b[s] ’s to be part of the “representation” of valid[t] .

A simpler and better strategy is to extend the specification language with the
notion of a program invariant: a declaration of the form

invariant J

records the intention that the predicate J hold at every procedure call and return.
For example, to specify the injectivity of b , the following program invariant can
be used:

invariant 〈 ∀ t, u: T :: t 	= nil ∧ u 	= nil ∧ t 	= u

⇒ b[t] 	= b[u] ∨ b[t] = nil 〉
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The checker enforces program invariants with two checks. First, it checks
that J is true at the “beginning of time”. Second, it checks that every procedure
respects J (assuming that all the procedures it calls respect J ), that is, it conjoins
J to the pre- and postcondition of every procedure implementation and procedure
call.

The beginning-of-time test is straightforward and presents no modularity prob-
lems. It consists of the following proof obligation for each declared program in-
variant J :

〈 ∀ t :: t = nil ∨ ¬alloc[t] 〉 ⇒ J

That is, J must hold in a state in which no non- nil objects have been allocated.
More precisely, this proof obligation must follow from the background predicate.
If J contains free variables of primitive types like integers, then it must hold
regardless of their values. To enforce invariants about global variables, the init-
vars technique described in Section 9.2 is more useful. In our experience, we
mostly use program invariants to assert universally quantified properties of objects
of a certain type, like injectivity. In this case, the beginning-of-time test passes
trivially.

The second test, that every procedure respects J , involves subtle modularity
issues. The basic idea is simple: when in a scope D the checker desugars a spec-
ification (either in reasoning about a procedure call or in checking a procedure
implementation), it adds to the pre- and postcondition all invariants whose decla-
rations are in D . However, if the program consists of a single global scope, then
the soundness of this approach is clear: the change to the pre- and postconditions
is the same for reasoning about the calls as for checking the implementations. If
the program consists of many scopes, then modularity requirements must be im-
posed to achieve soundness, by ensuring that primitive steps in a scope where the
invariant is not visible cannot falsify the invariant. We will build up to the correct
modularity requirements in stages. To begin with, we assume that the invariant
contains concrete variables only.

The first modularity requirement for invariants that comes to mind is:

a program invariant must be declared near all of its free variables.

Two declarations are near one another if they are contained in the same unit. It
follows that they are visible in the same scopes.

This simple modularity requirement achieves soundness because an invariant
cannot be falsified except by modifying its free variables. Thus, those procedures
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whose implementation lies outside the scope of the invariant preserve the invariant
because they cannot mention any of its free variables. The rest of the procedures
are proved to maintain the invariant.

Unfortunately, this simple requirement is too strong because of the special
concrete variable alloc , which represents the set of allocated objects and occurs
implicitly in almost all invariants: recall from Section 8.1 that a quantification

〈 ∀ t: T :: . . . 〉
is desugared to

〈 ∀ t: T :: alloc[t] ⇒ . . . 〉
Consequently, it is necessary to loosen the simple rule to allow program invariants
to mention alloc . This introduces the danger of a procedure falsifying an invariant
invisible to it by modifying alloc . We address this difficulty by observing that the
only way a procedure can directly modify alloc is by performing an allocation,
and we can demand of an invariant that it be maintained by any allocation in any
portion of the program in which it is not visible. To this end, we say that an
invariant J passes the blind allocation test for a type T if J is invariant under
new(T) .

This brings us to the second version of the modularity requirement for invari-
ants:

(0) a program invariant must be declared near all of its free concrete variables,
except alloc , and

(1) for all types T , either (a) T is declared near the invariant, or (b) the invari-
ant passes the blind allocation test for T , or (c) T is not mentioned in the
invariant.

Here’s a sketch of a justification for this version of the modularity requirement:
Because of (0), the only invariant-falsifying primitive steps that we need to worry
about are those that modify alloc , that is, expressions of the form new(T) for
some type T . But it is impossible for the expression new(T) to falsify the in-
variant, because for such a T , neither (a) nor (b) nor (c) could hold: not (a), since
if T is declared near the invariant, the invariant is visible wherever new(T) can
be called; not (b), since the blind allocation test explicitly checks that new(T)
maintains the invariant; and not (c), since new(T) cannot falsify the invariant if
the invariant doesn’t mention T and passes the blind allocation test for T .
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In order to pass the blind allocation test, a programmer must choose appro-
priate default values for the fields of an object type. For example, if a pivot is
specified to be injective, its default value should be nil .

Let us return to a problem that we touched on in Section 9.1, namely the
problem of declaring a data type containing unique identifiers:

unit U

type T

spec var valid: T → bool
proc init(t: T): T

modifies valid[t]
ensures valid′[t] ∧ result = t

unit UImpl import U

var id: T → int
. . . (other fields) . . .
rep valid[t: T] ≡ . . .

var gcount: int
impl init(t: T): T is

id[t] := gcount ; gcount := gcount + 1
. . .

result := t

end

To record the design decisions about id and gcount , one can add to UImpl the
program invariants:

invariant 〈 ∀ t: T :: t 	= nil ∧ valid[t] ⇒ id[t] < gcount 〉
invariant 〈 ∀ t, u: T ::

t 	= nil ∧ u 	= nil ∧ valid[t] ∧ valid[u] ∧ t 	= u

⇒ id[t] 	= id[u] 〉
In this approach, the statements about id and gcount that were problematical to
place in the rep declaration (see Section 9.1) have been moved into program in-
variants. The rep declaration for valid[t] concerns only fields of t . This seems
an improvement, but this approach still has two problems: one is giving the pub-
lic init method the license to modify the private variable gcount , the other is
allowing the abstract variable valid to appear in a program invariant.

67



To solve the first problem, we can introduce an abstract variable, say istate
for internal state, in the interface U :

spec var istate: any

We then allow init to modify istate , but istate has no other occurrences in the
interface:

proc init(t: T): T

modifies valid[t], istate

ensures valid′[t] ∧ result = t

Finally, we add the entire dependency of istate on gcount to the module UImpl :

depends istate on gcount

which by downward closure gives init the license to modify gcount .
The second problem is that the invariants mention valid[t] , but so far we have

considered invariants containing concrete variables only. We cannot just eliminate
the occurrences of valid[t] , since no default value for id will make the second
invariant pass the blind allocation test for T . The blind allocation test is needed,
since T is mentioned in the invariant but T and the invariant are not declared
near one another.

One way to solve the second problem is to allow abstract variables in program
invariants. We believe that it is sound to do so, provided that the invariant satisfies
(0) and (1) from above, and also, for each abstract variable a appearing in the
invariant:

(2) all dependencies of a are static, and

(3) either (a) the invariant is declared near a , or (b) the invariant is declared
near every rep declaration of a and near every dependency of a .

However, this story is getting more complicated than we like. Perhaps it is best
simply to forbid abstract variables from appearing in program invariants. If we
do, we need some other way of dealing with the occurrences of valid[t] in the
program invariants in the unique identifiers example. This we can do simply by
inlining them, that is, by replacing valid[t] by whatever expression is given as its
rep. Although awkward, this entails no loss of modularity or information hiding,
since the invariants occur in a scope ( UImpl ) where the representation of valid[t]
is visible.
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10 Implementation status

Almost everything described in this paper has been implemented in the Modula-3
Extended Static Checker. Exceptions are:

0. the checker implements only the individual residues, not the shared residue
sres described in Section 6 beginning on page 34,

1. the checker does not enforce the dependency segregation restriction of Sec-
tion 7.1 on page 45, but instead uses a more general way of computing the
dynamic closure (“upward closure of dynamic predecessors”), which does
not necessitate the restriction,

2. the checker does not enforce the disjoint ranges requirement of Section 7.2
(and as mentioned in that section, we leave it to the programmer to avoid
abstract aliasing), and

3. the checker does not implement the initialization order checking of Sec-
tion 9.2.

Our experience with the checker is described in more detail in our companion
paper [8]. We have applied the checker to thousands of lines of code, both from
the Modula-3 libraries and from programs that use the libraries. In specifying the
libraries, we constantly used static and dynamic dependencies.

After experimenting with our Modula-3 checker, we embarked on another
project to build an extended static checker for Java [13, 32]. In the ESC/Java
project, we circumvented most of the difficulties described in this paper by omit-
ting data abstraction from the annotation language. To partially make up for the
omission, we provide object invariants [33] and ghost variables, but the fundamen-
tal basis of our decision was to accept less thorough checking in order to produce
a simpler checker.

11 Related work

Most work on data abstraction seems to be directed at one of two goals: algorithm
design or structuring large systems.

When data abstraction is used for algorithm design, the representation is “in-
lined” into the site of use as the refinement step of the design [5, 16, 25, 22, 39,
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17, 14]. Consequently, the work on this kind of data abstraction is largely uncon-
nected with the large system structuring problems that we are concerned with in
this paper. This is not to deny that the underlying mathematics of data abstraction
applies to both enterprises. Indeed, our first verification condition generator did
not use explicit functionalization of abstract variables but instead used the “change
of coordinates” approach common in algorithm refinement. However, we found
that the result was that our theorem-prover was constantly forced to apply the
“one-point rule” and that for our purposes, explicit functionalization is preferred.

Turning to data abstraction for the purpose of structuring large systems, the
earliest treatments were in contexts where there was no independent information-
hiding mechanism (like our units) and therefore the problems addressed in the
present paper did not arise, or were ignored in the semi-formal treatments in the
literature. These treatments include Milner’s definition of simulation [37], Hoare’s
classic treatment of abstraction functions [18], and the influential work of Liskov
and Guttag and the rest of the CLU community [35].

The first programming language to support information hiding in the way our
units do was Mesa [38], with its definition modules and implementation modules.
The Mesa designers appear to have been influenced by Parnas’s classic paper on
decomposing systems into modules [46]. Mesa in turn influenced Modula [50],
Modula-2 [51], Modula-3 [44], Oberon-2 [40], and Ada [4]. Ernst, Hookway,
and Ogden have studied the problem of specifying Modula-2 programs where the
objects of a module may share some global state [12]. These authors share our
concern for modular verification, but the possible scopes they consider are not rich
enough to allow subclasses or the RdRep interface of our example.

Another, rather different, approach of hiding information is to classify decla-
rations as public or private. This approach is used in Oberon [49], C++ [11], and
Java [15]. In the course of the ESC/Java project [13, 32], we used the modularity
requirements of the units approach to guide our design for visibility of invariants
in the public/private approach [33].

One of the central ideas of this paper, explicit dependency declarations, were
introduced in Leino’s PhD thesis [28] in 1995. Between that time and this, they
have been applied in a number of contexts: they played a central rôle in ESC for
Modula-3 [8], and they were incorporated in the specification languages JML [27]
and Larch/C++ [26] and in the programming logic of Müller and Poetzsch-Heffter
[41]. Another application (or reformulation) of dependency declarations is Leino’s
technique of Data Groups [30].

As described in Section 7.2, our best attempt at a solution to the problem
of abstract aliasing [7] is not fully satisfactory. We do find that our framework
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of modular soundness and dynamic dependencies has allowed us to give a more
incisive definition of the problem than other approaches in the literature, such as
Hogg’s Islands [20], Almeida’s Balloons [3], Utting’s Extended Local Stores [48],
the Flexible Aliasing Protection of Noble et al. [45], and Boyland’s Alias Bury-
ing [6].

A few other researchers have employed declarations similar to our depends
declaration connecting an abstract variable to the (more) concrete variables in its
representation. Daniel Jackson’s Aspect system features dependencies much like
ours, but his motivation seems to be to avoid the need for reasoning about the de-
tails of the actual representation, whereas we have argued that dependency decla-
rations are necessary even in the presence of full representation declarations [21].
The COLD specification language of Jonkers includes abstract variables (called
functions) and dependency declarations between them, but COLD seems not to
allow an abstract variable to appear in a modifies list, so it doesn’t address many
of the problems we have wrestled with [23].

12 Conclusions

We have applied precise formal methods to systems programs that are typical
examples of the programming techniques used by careful and experienced con-
temporary programmers. We found that the formal methods described in the ver-
ification literature are inadequate to deal with the patterns of data abstraction and
modularization in these programs. We have developed new formal methods to
address these shortcomings.

Central to the new methods is the concept of an abstraction dependency, which
is a kind of abstraction of an abstraction function, in the same sense that an opaque
type is an abstraction of a concrete type. A dependency specifies one or more of
the variables that occur in an abstraction function, but hides the detailed definition
of the function. Just as an opaque type may be widely visible in a multi-module
program, while the corresponding concrete type may be visible only narrowly, we
discovered that it is often useful to make a dependency more widely visible than
the abstraction function itself.

Different kinds of abstraction dependencies occur in different styles of design.
Top-down programming leads to static dependencies, where an abstract field of
an object is represented in terms of other fields of that same object. Bottom-
up programming with reusable libraries leads to dynamic dependencies, where
an abstract field of an object is represented in terms of fields of other objects,
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reachable indirectly from the first object.
We have shown how to verify programs in the presence of static and dynamic

dependencies by rewriting modifies lists, preconditions, and postconditions.
For static dependencies, we have two simple modularity requirements, which

are laws for the placement of dependency declarations in a multi-module program.
The requirements do not seem to preclude any useful designs, and we have a for-
mal proof of modular soundness for the requirements. The formal proof makes
use of our identification of modular soundness with the monotonicity of verifiabil-
ity with respect to scope. For dynamic dependencies, we have several modularity
requirements, but no soundness theorem, nor any confidence that the list of re-
quirements is complete.

In our experience with static checking of contemporary program libraries, we
have found that we use dependencies constantly in our annotations. We have
also found that dependencies provide a new perspective on old problems like the
problem of encapsulation and rep exposure.
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Appendix: Modular soundness of
static dependencies
This appendix provides a proof that the treatment of static dependencies in Sec-
tions 5 and 6 is monotonic with respect to scope, that is, that it adheres to modular
soundness. In Part I, we describe the user input, that is, programs and their decla-
rations. In Part II, we describe how a user program is transformed into verification
conditions (VCs). In Part III, we state the soundness theorem and give its proof.
The soundness theorem is that VC generation is monotonic with respect to scope.
Our overall proof strategy is to apply semantic-preserving, syntactic transforma-
tions to a valid VC generated in a small scope, arriving at the VC generated in a
larger scope. We conclude with Part IV, in which we reflect on the theorem and
its proof.

Part I

User input

A0 Declarations

A declaration introduces a name for a type, field, or method and/or specifies prop-
erties of such entities.

Types play almost no rôle in this appendix, but for completeness, we repeat
here the two kinds of (object) type declarations:

type T
type T <: U

where U names an object type. These introduce the name T for an object type
about which nothing is known, except, in the second case, that T is a subtype of
the object type U . In addition to object types declared in this way, we postulate a
set of predeclared types ( int , bool , etc.).

A concrete field declaration has the form

var c: T → U
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where T is an object type and U is a type. This introduces the name c for a
U -valued concrete field present in all instances of class T .

An abstract field declaration has the form

spec var a: T → U

where T is an object type and U is a type. This introduces two names: the name
a for a U -valued abstract field present in all instances of class T , and the name
res.a for a typeless field present in all instances of class T . The field res.a is
called an individual residue variable, as described in Section 6.3.

There is also a predeclared typeless field sres present in all object instances.
This field is called the shared residue variable, as described in Section 6.3.

Our only dependency declaration under consideration is a static dependency
of the form

depends a[t: T] on f [t]

where a is an abstract field, f is either an abstract field other than a or a concrete
field, T is an object type, and t is a dummy. Given such a declaration, we say
that f is a direct dependency of a .

A rep declaration has the form

rep a[t: T] ≡ e

where a is an abstract field, e is an expression whose value is represented by a
as described in Section 3, T is an object type, and t is a dummy whose scope is
e . The only fields that may occur in e are direct dependencies of a , and each
such occurrence must be indexed by the dummy t . The only free scalar variable
in e is t .

A method specification declaration has the form

method m(t: T) requires p modifies w ensures q

where p and q are expressions, w is a modifies list, T is an object type, and t
is a formal parameter that can be used in p , w , and q . This declaration intro-
duces the name m for a method with the given signature and specification. For
simplicity, we consider only methods with one parameter (the so-called self pa-
rameter); result values and additional parameters can be passed via the fields of
the self parameter (cf. [0, 1, 31]).

A method implementation declaration has the form

impl m(t: U) is C end
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where m names a method, C is a command, U is an object type, and t is the
name of the formal parameter as introduced in the declaration of m . The param-
eter t can be used in C , but C may not assign to t .

Actual programming languages would place further restrictions on the decla-
rations above, including requirements of well-typedness and non-overlapping rep
declarations (see, for example, Section 3). For the purposes of this appendix, how-
ever, we consider a more general input, independently of such further restrictions.

We assume that all names introduced are unique. So where actual program-
ming languages may use scope rules to resolve certain names, we assume that all
names are always fully qualified.

A1 Scopes

For a set of declarations D , we write x ∈ D to denote that x is an abstract field,
concrete field, or individual residue variable declared in D , or that x is sres . For
fields or residue variables x and y and a set of declarations D , we write x onD y
to denote that x is abstract and y is res.x or sres , or that D contains a direct
dependency of x on y . We write on∗

D for the reflexive, transitive closure of
onD .

A set of declarations D is closed when every name mentioned in D also has a
declaration in D . A set of declarations D is cycle-free when there are no distinct
names x and y in D such that x on∗

D y ∧ y on∗
D x .

A scope is a (finite and) closed, cycle-free set of declarations. In an actual
programming language, a scope would be determined by the units and the import
relation among units (see Section 3). However, for the purposes of this appendix,
defining scopes by units and imports is over-specific. Therefore, we require sim-
ply that the underlying language have some way of specifying scopes and that
each scope is a closed, cycle-free set of declarations.

A2 User expressions

Rep, method specification, and method implementation declarations contain com-
mands and expressions. We call these expressions user expressions, in contrast to
the expressions of verification conditions that will be described in Part II. We will
give grammars for commands and user expressions, starting in this section with
the grammar for user expressions.
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We use eD to denote a user expression that can be written in a scope D . The
shape of eD is defined by the following grammar:

eD ::= s scalar variable
| f̃ [eD] select
| eD op eD any operator other than select
| 〈 ∀ s :: eD 〉 quantified expression

A scalar variable is a parameter, local variable, or quantified scalar variable.
A scalar variable is local to the enclosing declaration, command, or expression.

In the select expression f̃ [eD] , f is a field in D (not a residue variable) and f̃
is an adornment of f . Three kinds of adornments may be used in user expressions:
the default (empty) adornment f , the pre-adornment f̀ , and the post-adornment
f́ . Pre- and post-adornments are allowed only in ensures clauses, where they
are used to denote the values of fields in the pre- and post-states of the method,
respectively. The default adornment is used everywhere else and may not be used
in ensures clauses. In this appendix, we write f̃ and f̄ to denote arbitrary adorn-
ments of f .

From the point of view of the meaning of an adorned variable, the adornment
can be thought of simply as part of the name of the variable. But in the syntactic
transformations occurring in verification condition generation and in our proof, it
will be necessary to systematically change adornments within a formula.

We call the second argument of a select expression an index expression.

Here and throughout, we denote an arbitrary operator by the binary opera-
tor op . Extensions to operators of other arities (including nullary operators) will
always be straightforward and obvious; we omit them for brevity. We have distin-
guished between select and other operators in the grammar for user expressions
because fields in user expressions are allowed to occur only as first arguments to
select. Other than that, select is really just another operator.

The scope of the scalar variable s introduced by the quantified expression is
bracketed by 〈 and 〉 .

Note that residue variables cannot be mentioned explicitly in user expressions.

We say “ e is a user expression in D ” to mean that e is generated by the
grammar for eD .
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A3 Modifies lists

The modifies clause of a method specification declaration lists the designators
that the method is allowed to modify. We call this list a modifies list.

We use wD to denote a modifies list that can be written in a scope D . The
shape of wD is defined by the following grammar:

wD ::= list of f [eD] designator expressions

where in each designator expression f [eD] , f is any field in D and all scalar
variables in eD are parameters (in particular, the self parameter of the method
being specified, since that’s the only parameter we allow in our simple notation).

The index expression of each designator expression is interpreted as being
evaluated in the pre-state of the method (cf. Section 7.2 under “Swinging pivots
requirement”).

We say “ w is a modifies list in D ” to mean that w is generated by the gram-
mar for wD .

A4 Commands

We use CD to denote a command that can be written in a scope D . The shape of
CD is defined by the following grammar:

CD ::= s := eD simple assignment (to local variable)
| c[eD] := eD field update
| assert eD

| assume eD

| CD ; CD sequential composition
| CD CD choice composition
| var s in CD end local variable introduction
| call m(eD) method call

Simple assignment is used to update the values of local variables. (There is no
command to update the values of formal parameters once they have been bound
through a method call.) The field update command c[e0] := e1 sets the concrete
field c of object e0 to e1 . There is no command to directly update abstract fields
(or residue variables for that matter). Changing the value of a concrete field may
cause a change in the values of abstract fields that depend on the concrete field.
Residue variables cannot be modified by assignment commands.
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The command assert e has no effect on the state if e holds, and causes the
computation to go wrong if e does not hold. The command assume e also has no
effect on the state, but can be started only in states that satisfy e . Further descrip-
tion of these commands (other than their formal semantics, which is given below)
is beyond the scope of this note (but see, for example, Nelson’s Generalization of
Dijkstra’s calculus [43]).

Command C0 ; C1 executes C0 , then C1 . Command C0 C1 executes
either C0 or C1 , blindly choosing which one. Command var s in C end intro-
duces for use in C new local variable s , with an arbitrary initial value. Finally,
call m(e) invokes method m with e as the actual self parameter.

Other commands, such as a new command that allocates a new object, can be
modeled as predefined methods or written in terms of the given commands.

We say “ C is a command in D ” to mean that C is generated by the grammar
for CD .

Part II

Verification condition generation

A5 Verification conditions

Each method implementation gives rise to a verification condition, a logical for-
mula that is valid if and only if the method implementation is correct with respect
to the specification; that is, started in a state satisfying the precondition, no exe-
cution of the implementation goes wrong, and every terminating execution ends
in a state that satisfies the postcondition, having modified only those designators
permitted by the modifies list.

Since we are interested in modular verification, the verification condition gen-
eration is a function of the scope. For a method implementation C of a method m
in a scope D , we write VCD(m,C) to denote the verification condition generated
in D for C .

If m is declared with the specification

requires p modifies w ensures q
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we define VCD(m,C) as

BPD ∧ RepD ∧ PWD ∧ FD(p) ⇒
〈∀ z̀z :: z̀z = zz ⇒

wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉
(18)

where BPD is the background predicate generated in D , RepD denotes the rep
axioms of D , PWD denotes the pointwise axioms of D , FD is the meta function
that functionalizes a user expression in D , zz is the list of concrete fields and
residue variables in D , z̀z and źz are the list zz but with each field and residue
variable pre-adorned and post-adorned, respectively, wlpD is the meta function
that gives the semantics of a command in D , and mcD is the meta function that
generates a modification constraint in D . All of these things will be defined in
the next several sections.

For any lists of variables xx and yy of equal lengths (such as z̀z and zz in
(18)), we write xx = yy as a shorthand for x1 = y1 ∧ x2 = y2 ∧ . . . ∧ xN = yN

where the xi ’s and yi ’s are the variables of the two respective lists.
A remark about the second line of the definition of VCD is in order. This line

essentially expresses the weakest precondition of command C with respect to the
postcondition FD(q) ∧ mcD(w) , that is, the postcondition contributions from the
ensures clause and modifies clause, respectively. However, as we shall see from
their definitions, the expressions FD(q) and mcD(w) are predicates on the pre-
adorned and post-adorned fields, whereas the wlpD works on the default-adorned
fields of its second argument. For any predicate Q , the expression

〈 ∀ źz :: źz = zz ⇒ Q 〉

effectively changes the coordinates of Q : it says about zz whatever Q says about
źz . This change of coordinates can equivalently be written as a substitution

Q(źz := zz)

This explains the shape of the second argument to wlpD in the definition of VCD .
The quantification around the wlpD , which is really also a substitution, serves
the purpose of identifying the pre-adorned fields of the wlpD expression with the
default-adorned fields of the initial state.

In Section A12, we give a grammar that generates the kinds of expressions
that the meta expression VCD(m,C) produces. To distinguish these expressions
from user expressions, we’ll call them vanilla expressions.
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A6 Functionalization

For any scope D , we define a meta function FD that functionalizes user expres-
sions in D , that is, that turns each occurrence of an abstract field a into an appli-
cation of the abstraction function named F.a to a ’s dependencies, as described
in Section 5.0. Meta function FD is defined inductively over the syntactic struc-
ture of user expressions, and for convenience we also define FD on fields and
residue variables:

FD(s) = s scalar variable
FD(f̃ [e]) = FD(f̃ )[FD(e)] select
FD(c̃) = c̃ concrete field
FD(ã) = F.a( ˜sres, ˜res.a,FD(f̃ )) abstract field
FD(e0 op e1) = FD(e0) op FD(e1) other operators
FD(〈 ∀ s :: e 〉) = 〈 ∀ s :: FD(e) 〉 quantified expressions
FD(r̃) = r̃ residue variable

In these equations, the line for select is identical to the line for op , but we list
it separately anyway. In the line for FD(ã) , we have shown the definition for
when a is an abstract field with exactly one direct dependency, f , in D . More
general forms of this line are straightforward extensions. For example, if a has
no dependencies in D , we have

FD(ã) = F.a( ˜sres, ˜res.a)

and if a has two direct dependencies, f 0 and f 1 , in D , we have

FD(ã) = F.a( ˜sres, ˜res.a,FD( ˜f 0),FD( ˜f 1))

Throughout this appendix, we will usually show only the case for one direct de-
pendency.

In ordering the arguments to an abstraction function, any order (for example,
alphabetical order) can be used as long as it is used consistently.

Note, by the way, that the definition of FD is well-founded—that is, its recur-
sive applications will eventually terminate—since D is a scope, which is (finite
and) cycle-free.

Finally, note that FD is really just a substitution: it substitutes a function
application for each abstract variable. Consequently,

FD is monotonic (19)

that is, for boolean user expressions e0 and e1 , if e0 ⇒ e1 is universally true,
then so is FD(e0) ⇒ FD(e1) .
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A7 Modification constraints

For any scope D and modifies list w in D , we define mcD(w) , the modification
constraint according to w in D , as follows:

mcD(w) = 〈∧ x
 x ∈ D :: modconD(w, x, x) 〉

where modconD(w, x, x) states that the variable x is not modified except as al-
lowed by w . Before we give the formal definition of modconD , we introduce two
new pieces of notation.

First, here and throughout, we use
∧

and
∨

to denote meta-level quantifiers,
that is, macros that generate expressions. The meta-level expression

〈∧ x
 R(x) :: S(x) 〉

generates a conjunction with a conjunct S(x) for every x that satisfies R(x) , and
similar for

∨
-quantifications which generate disjunctions. Another meta-level

expression is set construction. It is written

{ x
 R(x) :: S(x) }

and denotes the set with an element S(x) for every x that satisfies R(x) .
Second, recall that our overall proof strategy is to transform the small-scope

VC into a large-scope VC that is equally valid. To perform this syntactic trans-
formation, we find it necessary to introduce syntactic markers into the VC as it
is constructed. These markers have no semantic significance, but will be used in
our proof. To introduce them, we use the syntax m:P to denote the expression P
labeled with the marker m .

Now for the definition of modconD and some auxiliary meta functions.
For any scope D and modifies list w in D , clD(w) denotes the static closure

of w in D and is defined as the set

{ f , e, x
 f [e] ∈ w ∧ f on∗

D x :: x[e] } (20)

A property of clD that we will use later is that for any abstract variable a , user
expression e , and modifies list w in D ,

a[e] ∈ clD(w) ≡ res.a[e] ∈ clD(w) (21)

(Proof: since a onD res.a , both sides of (21) are equivalent to the existence of a
term f [e] in w such that f on∗

D a .)
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For any scope D , field or residue variable y in D , modifies list w in D , and
dummy variable s , the predicate modpointD(y,w, s) states that s is a modifica-
tion point of y according to w . We define it as follows:

modpointD(y,w, s) = 〈∨ e
 y[e] ∈ clD(w) :: s = è 〉 (22)

where e ranges over user expressions and where we have written è to denote e
in which all fields have been pre-adorned. The reason for this pre-adornment is
mentioned in Section 7.2 under “Swinging pivots restriction”.

A consequence of the definition of modpoint and the cl property (21) is: for
any modifies list w and abstract field a in a scope D , and any dummy s ,

modpointD(a,w, s) = modpointD(res.a,w, s) (23)

Let D be any scope and w be any modifies list in D . Then, for any fields or
residue variables x and y in D , the predicate modconD(w, x, y) states that x is
unchanged except possibly at the modification points of y according to w . We
define it as follows:

modconD(w, x, y) =
w:〈 ∀ s :: FD(x̀[s] = x́[s] ∨ modpointD(y,w, s)) 〉 (24)

where s is a fresh dummy. The “ w:” in front of the quantification is a syntactic
marker without semantic meaning. The predicate is usually used with the second
and third arguments being equal, but we will use the extra generality in our proof.

A8 Weakest liberal preconditions

The semantics of commands is defined using weakest liberal preconditions. For
any scope D , command C in D , and vanilla expression Q in D that contains no
free occurrences of post-adorned fields or residue variables, the vanilla expression
wlpD(C,Q) characterizes those pre-states ps of C such that

• no execution of C from ps goes wrong, and

• every terminating execution of C from ps ends in a post-state that satisfies
Q .
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Meta function wlpD is defined inductively over the syntactic structure of com-
mands:

wlpD(s := e, Q) = 〈 ∀ s′ :: s′ = FD(e) ⇒
〈∀ s :: s = s′ ⇒ Q 〉〉

wlpD(c[e0] := e1, Q) = 〈 ∀ c′ :: c′ = store(c,FD(e0),FD(e1)) ⇒
〈∀ c :: c = c′ ⇒ Q 〉〉

wlpD(assert e, Q) = FD(e) ∧ Q
wlpD(assume e, Q) = FD(e) ⇒ Q
wlpD(C0 ; C1, Q) = wlpD(C0, wlpD(C1, Q))
wlpD(C0 C1, Q) = wlpD(C0, Q) ∧ wlpD(C1, Q)
wlpD(var s in C end, Q) = 〈 ∀ s :: wlpD(C, Q) 〉

In the first two lines, s′ and c′ are fresh dummies. In the second line, store
is the function associated with the select function [36] (see also axiom (43) in
Section A22). The last of these lines requires that s not occur free in Q . Finally,
for any method m whose specification, after renaming its parameter to a fresh
dummy t , is

method m(t: T) requires p modifies w ensures q

we define
wlpD(call m(e), Q) =

〈 ∀ t :: t = FD(e) ⇒
FD(p) ∧
〈 ∀ z̈z :: z̈z = z̀z ⇒ 〈∀ z̀z :: z̀z = zz ⇒

〈∀ źz :: FD(q) ∧ mcD(w) ⇒
〈∀ z̀z :: z̀z = z̈z ⇒ 〈∀ zz :: zz = źz ⇒ Q 〉〉〉〉〉〉

where zz is the list of concrete fields and residue variables in D , and z̈z denotes
fresh adornments of zz . The reason for introducing z̈z is to effectively avoid vari-
able capture of z̀z in Q (which may be easier to see in the equivalent formulation
with substitutions, next).

In the definition of wlpD , the quantifications occurring in the simple assign-
ment, field update, and method call commands can also be written as substitutions.
The wlpD of these commands are thus equivalently written as

wlpD(s := e, Q) = Q(s := FD(e))
wlpD(c[e0] := e1, Q) = Q(c := store(c,FD(e0),FD(e1)))
wlpD(call m(e), Q) =
〈 ∀ t :: t = FD(e) ⇒

FD(p) ∧ 〈 ∀ źz :: (FD(q) ∧ mcD(w))(z̀z := zz) ⇒ Q(zz := źz) 〉〉
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A9 Rep axioms

For any scope D , we define RepD as a conjunction with one conjunct for each
rep declaration in D . For a rep declaration

rep a[t: T] ≡ e

the corresponding conjunct, called a rep axiom, is

〈 ∀ t: T, res.a, f :: t 	= nil ⇒ F.a(sres, res.a, f )[t] = e 〉
where we have shown the case where a has exactly one direct dependency, f , in
D .

Note that e is not functionalized, see Section 5.0.
This is the only place in our verification condition generation where we make

use of types: we retain the type of the dummy t in the rep axiom. (This is not
important for the soundness of modular verification, but it is important in order
to generate a desirable verification condition. In particular, this avoids logical
inconsistencies resulting from inconsistent rep axioms.)

A10 Pointwise axioms

Because occurrences of dependencies of a in a rep declaration for a[t: T] are
indexed by t , it follows that the abstract value of a[t] does not change if a ’s de-
pendencies change only at objects other than t . But our functionalization, which
transforms a[t] into an expression like F.a(sres, res.a, f )[t] , seems to lose this
fact. To compensate, we supply an explicit pointwise axiom for each abstraction
function, see Section 5.0.

For any scope D , we define PWD as a conjunction with one conjunct for
each abstract field in D . For an abstract field a , the corresponding conjunct is
the pointwise axiom for F.a :

〈 ∀ t, `sres, ´sres, `res.a, ´res.a, f̀ , f́ ::
`sres[t] = ´sres[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t]

⇒
F.a( `sres, `res.a, f̀ )[t] = F.a( ´sres, ´res.a, f́ )[t] 〉

(25)

where t is a fresh dummy, and where we have shown the case where a has exactly
one direct dependency, f , in D .
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A11 Background predicate

Each scope gives rise to a background predicate, which is a conjunction of ax-
ioms that formalize various properties of the type system. For any scope D , we
use BPD to denote the background predicate produced in D . The exact axioms
placed in the background predicate are not relevant to this appendix, but we do
assume that the set of axioms produced grows monotonically with the set of type
declarations in a scope. That is, let BPSD denote the set of background-predicate
conjuncts produced for a scope D so that

BPD = 〈∧ Q
 Q ∈ BPSD :: Q 〉

and let Types(D) denote the set of type declarations in D ; then we assume BPS
to have the following property, for any scopes D and E :

Types(D) ⊆ Types(E) ⇒ BPSD ⊆ BPSE

Consequently, we have

D ⊆ E ⇒ [BPD ⇐ BPE] (26)

Note that if Types(D) = Types(E) , then BPSD = BPSE . Thus, a consequence of
our assumption about the background predicate is that BPD does not depend on
the field declarations in D .

A12 Vanilla expressions

Now that we have defined all of VCD(m,C) , we can describe the shape of the
resulting expressions. Such a description will come in handy in Part III of this
appendix. We define a vanilla expression to be an expression that is generated by
the grammar below and satisfies characteristics V0 through V5, listed below. We
claim that any expression generated by VCD(m,C) is a vanilla expression.

Using QD to denote a typical vanilla expression in a scope D , the grammar
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is:

QD ::=
s scalar variable

| c̃ concrete field
| F.a( ˜sres, ˜res.a,QD) abstraction function
| QD op QD operator, possibly select or store
| 〈 ∀ s :: QD 〉 quantification over scalar
| 〈 ∀ x̃ :: QD 〉 quantification over concrete field or

residue variable
| 〈 ∀ r̃ :: r̃ = r̄ ⇒ QD 〉 quantification over residue variable,

with equality antecedent
| wD:〈 ∀ s :: r̀[s] = ŕ[s] ∨ QD 〉 residue modification constraint
| see formula (25), page 84 pointwise axiom
| 〈 ∀ t: T, sres, res.a, f :: t 	= nil ⇒ F.a(sres, res.a, f )[t] = eD 〉

rep axiom

As usual, we have shown only the cases where an abstract variable has exactly
one dependency in D ; extensions to other numbers of dependencies are straight-
forward and obvious. We have treated expressions with markers, like w:Q , as
unary expressions where the “ w:” is the operator, except in the case of residue
modification constraints, whose inside of the quantified formula is otherwise not
a vanilla expression.

The definition of VCD seems not to fit this grammar, because it produces
quantified expressions that quantify over all concrete fields and residue variables
in D . For example, visible directly in the definition of VCD , (18) on page 79, is
a subexpression of the form

〈 ∀ z̀z :: z̀z = zz ⇒ Q 〉 (27)

where zz is the list of all concrete fields and residue variables in D . To fit the
grammar for vanilla expressions, we must think of expression (27) as the seman-
tically equivalent expression

〈 ∀ c̀1 :: c̀1 = c1 ⇒ 〈∀ c̀2 :: c̀2 = c2 ⇒ · · · 〈 ∀ c̀N :: c̀N = cN ⇒
〈∀ `sres :: `sres = sres ⇒
〈∀ r̀1 :: r̀1 = r1 ⇒ · · · 〈 ∀ r̀K :: r̀K = rK ⇒ Q 〉 · · · 〉〉〉 · · · 〉〉

where the ci ’s denote the concrete fields in D and the ri ’s denote the individual
residue variables in D . A similar remark applies to the other quantification in
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(18) and the quantifications in the definition of wlpD for a method call. We will
treat the two representations interchangeably and refer to the quantifications as
forming a cluster.

We say the bound variables (adorned concrete fields and residue variables) of
one cluster belong to the same generation. Variables of the same generation have
the same adornments, but variables with the same adornments are not necessarily
of the same generation.

The formulas generated by VCD have more characteristics than are expressed
by the grammar. We note the following characteristics of formulas generated by
VCD(m,C) :

V0. Pointwise axioms and rep axioms occur only in negative positions.

V1. For any concrete field or residue variable x , quantifications over x̃ , with and
without equality antecedents (more precisely, the quantifications occurring
in the sixth and seventh lines of the grammar of QD ), occur only in positive
positions.

V2. For any concrete field or residue variable x , if there is no field update com-
mand of x in C , then any quantification over x̃ , with or without equal-
ity antecedent, appears in VCD(m,C) in a cluster of quantifications (with
or without equality antecedents, respectively) over all the variables in z̃z ,
where zz is the list of concrete fields and residue variables in D .

V3. Modification constraints, and in particular shared-residue modification con-
straints, are generated only by the modcon meta function. Thus, a residue
modification constraint

w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ Q 〉 (28)

occurring in VCD(m,C) has the form dictated by

modconD(w, sres, sres)

In other words, the Q in (28) necessarily has the form

FD(modpointD(sres,w, s))
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V4. Each occurrence of an abstraction function F.a is generated either by the
meta function FD or as part of a pointwise axiom or rep axiom. By inspect-
ing these definitions, one finds that the arguments to F.a are sres , res.a ,
and the direct dependencies of a , all adorned in the same way.

V5. For any subexpression Q in VCD(m,C) that does not break any cluster of
quantifications (that is, Q does not contain part of a cluster without con-
taining all of it), the free occurrences in Q of concrete fields and residue
variables with the same adornments belong to the same generation, except
possibly for those concrete fields for which C contains a field update com-
mand. Consequently, and using V4, the arguments of any given application
of an abstraction function F.a are all of the same generation, except pos-
sibly those concrete-field arguments for which C contains a field update
command.

We define a vanilla expression to be any expression generated by the grammar
above and satisfying the characteristics V0 through V5.

So much for verification condition generation.

Part III

Modular soundness

A13 The theorem of soundness of modular verifica-
tion

Soundness of modular verification is what justifies that one can prove the cor-
rectness of a method implementation without needing the entire program. This
is important because it allows modules to be proved separately, without a need to
re-prove them as they are linked together. Our theorem of soundness of modu-
lar verification states that to prove the VC generated in a larger scope for some
method implementation, it suffices to prove the VC generated in a smaller scope
for that method implementation.

We use the notation [P] (pronounced “everywhere P ”) to say that a formula
P is true in all infinite models. Since the theory with respect to which we verify
programs includes the integers, of which there are infinitely many, “ [P] ” is for
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our purposes as good as saying that “ P is valid”, that is, that P is semantically
equivalent to true [10]. Nevertheless, for technical reasons that we will describe
later, we must define our “everywhere brackets” to ignore finite models. Our
everywhere brackets satisfy [P] ≡ [〈 ∀ x :: P 〉] for x an individual variable or
function symbol, and therefore we may think of them as universally quantifying
all free variables and function symbols over some infinite domain.

Equipped with everywhere brackets, we can now state our soundness theorem.
As discussed in Section 6, the property

D ⊆ E ∧ [VCD(m,C)] ⇒ [VCE(m,C)]

where D and E are scopes containing an implementation C for a method m ,
does not hold for all scopes D and E . This discussion then led us to the intro-
duction of the visibility and top-down requirements for static dependencies. Here,
we formalize those requirements as a relation on two scopes D and E , where
D ⊆ E :

Vis(D,E) = 〈 ∀ x, y :: x ∈ D ∧ y ∈ D ∧ x onE y ⇒ x onD y 〉
TopDown(D,E) = 〈 ∀ x, y :: y ∈ D ∧ x onE y ⇒ x ∈ D 〉

The theorem of soundness of modular verification is:

Soundness Theorem. For any scopes D and E , containing an implementation
C for a method m ,

D ⊆ E ∧ Vis(D,E) ∧ TopDown(D,E) ∧ [VCD(m,C)] ⇒ [VCE(m,C)]

The theorem essentially states that VC generation is monotonic with respect
to scope.

Note that the theorem is not about the soundness of the VC generation with
respect to some operational semantics of the command language. In fact, the
theorem says nothing about the utility of the meta functions VCD and VCE —
for all we know, these meta functions might generate formulas that are totally
irrelevant to any question of program correctness. Our theorem simply states that
if the VC generated by VCD is valid, then so is the VC generated by VCE .

But of course we do claim that the theorem is useful, because we claim, with-
out proof, that VCE generates a VC that is appropriate for an entire program E ,
modulo the issues discussed in Part IV of this appendix.
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A14 Proof strategy

The soundness theorem states that if the modularity requirements are respected,
then adding declarations to a scope does not invalidate method implementations
in the scope. For some kinds of added declarations, the proof is quite easy; for
others, it is harder. We begin with two lemmas (Soundness Lemmas A and B,
in Section A15) that handle all the easy cases (namely: additional type declara-
tions, rep declarations, method declarations, and method implementation decla-
rations). We then proceed to the difficult case, which is where the added decla-
rations consist of a new field together with some number of dependencies on the
field. Soundness Lemma C (Section A16) applies to this case if the new field is
concrete, and Soundness Lemma D (also in Section A16) applies if the new field
is abstract. The proof of Soundness Lemma D relies on Soundness Lemma C, so
the heart of the soundness proof is Soundness Lemma C. Soundness Lemma E
(Section A16) combines Soundness Lemmas C and D in a straightforward way.
Soundness Lemma F (Section A17) uses induction and Soundness Lemma E to
prove the soundness of extensions by multiple fields. Finally, Section A18 shows
that these soundness lemmas add up to a proof of the Soundness Theorem.

In Section A16, we state Soundness Lemma C and sketch an informal argu-
ment for its correctness, but the formal proof (Sections A19–A32) is deferred for
the convenience of any readers who may prefer to skim it.

Our journey will be long. To make it as readable as possible, we make heavy
use of the calculational proof format suggested by Wim H. J. Feijen [10]. We hope
its explicit hints will make each of the numerous little proof steps manageable to
check.

A15 Type, rep, and method declaration discrepan-
cies

In this section and the next two, we consider specializations of the Soundness The-
orem. We start in this section by stating and proving two lemmas. The first lemma
considers scopes D and E that differ only in their type declarations. The second
lemma considers scopes that differ only in their rep and method declarations.

Soundness Lemma A. For any scopes D and E , containing an implementation
C for a method m , if D and E differ only in their type declarations (that is, if
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the sets D and E minus their type declarations are equal), then

D ⊆ E ∧ Vis(D,E) ∧ TopDown(D,E) ∧ [VCD(m,C)] ⇒ [VCE(m,C)]

Proof. Let zz denote the list of concrete fields and residue variables in D , and
suppose the specification of m is

requires p modifies w ensures q

We then calculate,

[VCD(m,C)]
= { VCD }

[BPD ∧ RepD ∧ PWD ∧ FD(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉]

⇒ { by D ⊆ E and (26), we have [BPD ⇐ BPE] }
[BPE ∧ RepD ∧ PWD ∧ FD(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒

wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉]
= { D and E are equal except for their type declarations, so

RepE = RepD , PWE = PWD , FE = FD , wlpE = wlpD , and
mcE = mcD }

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
wlpE(C, 〈 ∀ źz :: źz = zz ⇒ FE(q) ∧ mcE(w) 〉) 〉]

= { VCE , since zz is the list of concrete fields and residue variables
in E }

[VCE(m,C)]

Soundness Lemma B. For any scopes D and E , containing an implementation
C for a method m , if D and E differ only in their rep, method specification, and
method implementation declarations, then

D ⊆ E ∧ Vis(D,E) ∧ TopDown(D,E) ∧ [VCD(m,C)] ⇒ [VCE(m,C)]

Proof. Let zz denote the list of concrete fields and residue variables in D (hence
also in E ), and suppose the specification of m is

requires p modifies w ensures q

We calculate,
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[VCD(m,C)]
= { VCD }

[BPD ∧ RepD ∧ PWD ∧ FD(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉]

⇒ { by D ⊆ E and (26), we have [BPD ⇐ BPE] }
[BPE ∧ RepD ∧ PWD ∧ FD(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒

wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉]
⇒ { by D ⊆ E , the fact that D and E coincide in their field and

dependency declarations, and the definition of rep axioms, we
have [RepE ⇒ RepD] }

[BPE ∧ RepE ∧ PWD ∧ FD(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉]

= { D and E are equal except for their rep, method specification,
and method implementation declarations, so PWD = PWE ,
FD = FE , wlpD = wlpE , and mcD = mcE }

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
wlpE(C, 〈 ∀ źz :: źz = zz ⇒ FE(q) ∧ mcE(w) 〉) 〉]

= { VCE , since zz is the list of concrete fields and residue variables
in E }

[VCE(m,C)]

A16 Single field-declaration discrepancies

In this section, we state three lemmas as specializations of the Soundness Theo-
rem. We prove the second and third, but defer the proof of the first lemma until
Section A19 and beyond.

We define a property Extend . For any D , ε , and E , Extend(D, ε,E) says
that D and E are scopes that differ only in that E additionally contains the
declaration of a concrete field ε and some number of dependencies on ε . Note
that

Extend(D, ε,E) ⇒ D ⊆ E ∧ Vis(D,E) ∧ TopDown(D,E)

Here’s the first of the three lemmas of this section, a lemma that captures the
essence of the Soundness Theorem.

92



Soundness Lemma C. For any scopes D and E , containing an implementation
C for a method m , and any concrete field ε ,

Extend(D, ε,E) ∧ [VCD(m,C)] ⇒ [VCE(m,C)]

The formal proof of Soundness Lemma C is presented in Sections A19 through
A32. In the meantime, here is an informal sketch of an argument for the correct-
ness of the lemma.

Proof sketch. Given Extend(D, ε,E) and that VCD(m,C) is valid, we must prove
that VCE(m,C) is also valid. There are two differences between VCD(m,C) and
VCE(m,C) .

The first difference is that, for any abstract variable a that depends on ε (in
E ), occurrences of a are functionalized differently in D and in E . Wherever we
have in D a subexpression like F.a(sres, . . .) , we have instead in E a subexpres-
sion like F.a(sres, . . . , ε) .

The second and more difficult difference is that modifies lists are desugared
differently in D and in E : the modification constraints in E mention ε , but the
corresponding modification constraints in D do not mention ε .

The first difference is resolved using shared residues: the universal validity
of the formula VCD(m,C) implies the validity of 〈 ∀ sres :: VCD(m,C) 〉 ,
which means that for the D -scope sres we can substitute the ordered pair of
ε and the E -scope sres . Thus by a validity-preserving transformation, the D -
subexpression F.a(sres, . . .) becomes F.a((sres, ε), . . .) . The universal validity
also allows us to substitute any function for the uninterpreted function F.a . So for
the D -scope F.a we can then substitute a function that picks apart the ordered
pair and applies the E -scope F.a to sres , ε , and any other arguments, which
is exactly the E -scope expression to which occurrences of a are functionalized.
Thus by composing these two validity-preserving transformations, the differences
between VCD and VCE due to differently functionalized abstract variables disap-
pear.

The second difference is resolved using individual residues: Since m ’s imple-
mentation C contains no occurrences of ε , we must prove that m ’s modification
constraint for ε follows from the various modification constraints for ε arising
for each method call in C . For any abstract variable a , the VC in the small scope
asserts that m ’s modification constraint for res.a follows from the various mod-
ification constraints for res.a arising for each method call in C , because there
are no occurrences of residue variables in C . Since the modification points of ε
equals the union of the modification points of the abstract variables that depend on
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ε , which coincides with the modification points of the residues of those variables,
the small-scope proof for the residues implies the large-scope proof for ε .

The next lemma is like Soundness Lemma C, except that ε is abstract. We
will not define another flavor of Extend for abstract fields, so the lemma repeats
the relevant properties of Extend .

Soundness Lemma D. Let D and E be scopes containing an implementation
C for a method m . If D and E differ only in that E additionally contains the
declaration of an abstract field ε and some number of dependencies on ε , then

[VCD(m,C)] ⇒ [VCE(m,C)]

Proof. We prove the lemma by constructing two new scopes G and H , applying
Soundness Lemma C to the pairs of scopes (D,G) and (G,H) , respectively, and
then obtaining [VCE(m,C)] by massaging the formula [VCH(m,C)] .

Let D and E satisfy the antecedent of the lemma, and let G be the set E but
where E contains the declaration

spec var ε: T → U

G instead contains the declaration

var ε: T → U

We have that D and G now fit the description of D and E in the antecedent of
Soundness Lemma C, from which we then conclude [VCG(m,C)] .

Let H be the set G but where G contains the declaration

var ε: T → U

H additionally contains the declaration

var δ: T → U

and where G contains a declaration

depends a[v: V] on ε[v]

for any a , v , and V , set H additionally contains the declaration

depends a[v: V] on δ[v]
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We have that G and H fit the description of D and E in the antecedent of
Soundness Lemma C, from which we conclude [VCH(m,C)] .

Let us now consider how the formula VCH(m,C) differs in structure from the
formula VCE(m,C) , so that we can take validity-preserving steps to reconcile the
differences.

Let zz denote the concrete fields and residue variables in D , and suppose the
specification of m is

requires p modifies w ensures q

Then VCH(m,C) is the expression

BPH ∧ RepH ∧ PWH ∧ FH(p) ⇒
〈∀ z̀z, ὲ, δ̀ :: z̀z = zz ∧ ὲ = ε ∧ δ̀ = δ ⇒

wlpH(C, 〈 ∀ źz, έ, δ́ :: źz = zz ∧ έ = ε ∧ δ́ = δ ⇒
FH(q) ∧ mcH(w) 〉) 〉

Scope H contains the concrete fields ε and δ , whereas scope E contains the
abstract field ε . Since the user expressions that play a part in the generation of
the verification conditions VCH(m,C) and VCE(m,C) are all in the smaller scope
D , there is no direct mention of ε or δ in the command C or in the specifications
of the methods called from C . But ε and δ may still appear in VCH(m,C) and
VCE(m,C) , as follows:

• For every abstract variable a that depends on ε in E , and thus on ε and δ
in H , the abstraction function F.a in H has arguments corresponding to
both ε and δ , whereas the function F.a in E has an argument correspond-
ing to ε but not to δ . The extra argument is found in all occurrences of F.a
in VCH(m,C) , that is, in functionalized user expressions, in rep axioms for
a , and in the pointwise axiom for F.a .

• For every modifies list v , mcH(v) contains the conjuncts

v:〈 ∀ s :: ὲ[s] = έ[s] ∨ FH(modpointH(ε, v, s)) 〉 ∧
v:〈 ∀ s :: δ̀[s] = δ́[s] ∨ FH(modpointH(δ, v, s)) 〉

whereas mcE(v) instead contains the conjuncts

v:〈 ∀ s :: F.ε( `sres, ὲ)[s] = F.ε( ´sres, έ)[s] ∨
FE(modpointE(ε, v, s)) 〉 ∧

v:〈 ∀ s :: `res.ε[s] = ´res.ε[s] ∨ FE(modpointE(res.ε, v, s)) 〉
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Note that since v does not directly mention ε or δ , and since an abstract
field depends on ε in H exactly when it also depends on δ in H , we have

〈 ∀ e :: ε[e] ∈ clH(v) ≡ δ[e] ∈ clH(v) 〉

and hence modpointH(ε, v, s) = modpointH(δ, v, s) . Moreover, due to (23),
we have modpointE(ε, v, s) = modpointE(res.ε, v, s) . Finally, since an ab-
stract field depends on ε in H exactly when it depends on ε in E , we
have

〈 ∀ e :: ε[e] ∈ clH(v) ≡ ε[e] ∈ clE(v) 〉

and hence modpointH(ε, v, s) = modpointE(ε, v, s) . Thus, the expansions
of the four modpoint expressions above are the same. Their functionaliza-
tions differ as described in the previous bullet.

• Since ε is abstract in E , VCE(m,C) contains a pointwise axiom for F.ε .
There is no such axiom in VCH(m,C) .

• Where the verification conditions contain quantifications over all concrete
fields and residue variables, with or without equality antecedents, the quan-
tifications in VCH(m,C) are over ε̃ and δ̃ , possibly with the equality an-
tecedent ε̃ = ε̄ ∧ δ̃ = δ̄ , whereas the quantifications in VCE(m,C) are
over ˜res.ε , with the respective antecedent ˜res.ε = ¯res.ε .

The verification conditions VCH(m,C) and VCE(m,C) are vanilla expres-
sions as defined by the grammar and characteristics V0 through V5 in Section A12.
Figure 11 classifies the differences between the two VCs according to the vanilla
grammar. In particular, it shows all the ways that ε̃ , δ̃ , F.ε , and ˜res.ε may oc-
cur. Using characteristic V2 (page 87), the figure shows the quantifications over ε̃
and δ̃ together with the neighboring quantifications over ˜sres . Squinting at this
formula, we see that variables ε and δ in VCH(m,C) play rôles that are similar
but not identical to F.ε(sres, res.ε) and res.ε , respectively, in VCE(m,C) . We
will have to work on the differences.

We are now starting the process of transforming VCH(m,C) into VCE(m,C) .
We do so by a series of transformations to the working formula, which starts off
as the formula VCH(m,C) and ends up as VCE(m,C) . Our series of transforma-
tions are guided by the differences shown in Figure 11. To help us keep track of
the effect of the transformations applied so far, we will provide sketches of the
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VCH(m,C) VCE(m,C)

A0. Functionalized occurrences of abstract variables that depend on ε:
F.a( ˜sres, . . . , ε̃, δ̃) F.a( ˜sres, . . . ,F.ε( ˜sres, ˜res.ε))

A1. Quantifications over concrete fields and residue variables:
〈 ∀ ˜sres, δ̃, ε̃ :: . . . 〉 〈 ∀ ˜sres, ˜res.ε :: . . . 〉

A2. Quantifications over concrete fields and residue variables,
with antecedents:

〈 ∀ ˜sres, δ̃, ε̃ ::
˜sres = ¯sres ∧ δ̃ = δ̄ ∧ ε̃ = ε̄

⇒ . . . 〉

〈 ∀ ˜sres, ˜res.ε ::
˜sres = ¯sres ∧ ˜res.ε = ¯res.ε
⇒ . . . 〉

A3. Modification constraints of ε:
v:〈 ∀ s :: ὲ[s] = έ[s] ∨ . . . 〉 v:〈 ∀ s :: F.ε( `sres, `res.ε)[s] =

F.ε( ´sres, ´res.ε)[s] ∨ . . . 〉
A4. Modification constraints of δ and res.ε:

v:〈 ∀ s :: δ̀[s] = δ́[s] ∨ . . . 〉 v:〈 ∀ s :: `res.ε[s] = ´res.ε[s] ∨ . . . 〉
A5. Pointwise axiom for F.ε:

no pointwise axiom for F.ε pointwise axiom for F.ε
A6. Pointwise axiom for F.a:

includes δ argument to F.a does not includes δ argument to F.a
A7. Rep axioms for a:

includes δ argument to F.a does not includes δ argument to F.a

Figure 11: An illustration of the syntactic differences between VCH(m,C) and
VCE(m,C) .
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A0: F.a( ˜sres, . . . , ε̃, δ̃)
A1: 〈 ∀ ˜sres, δ̃, ε̃ :: . . . 〉
A2: 〈 ∀ ˜sres, δ̃, ε̃ :: ˜sres = ¯sres ∧ δ̃ = δ̄ ∧ ε̃ = ε̄ ⇒ . . . 〉
A3: v:〈 ∀ s :: ὲ[s] = έ[s] ∨ . . . 〉
A4: v:〈 ∀ s :: δ̀[s] = δ́[s] ∨ . . . 〉
A5: no pointwise axiom for F.ε
A6: 〈 ∀ t, `sres, ´sres, . . . , ὲ, έ, δ̀, δ́ ::

`sres[t] = ´sres[t] ∧ . . . ∧ ὲ[t] = έ[t] ∧ δ̀[t] = δ́[t] ⇒
F.a( `sres, . . . , ὲ, δ̀)[t] = F.a( ´sres, . . . , έ, δ́)[t] 〉

A7: 〈 ∀ t: T, sres, . . . , ε, δ :: t 	= nil ⇒ F.a(sres, . . . , ε, δ)[t] = . . . 〉

Figure 12: A sketch of the initial working formula, VCH(m,C) .

working formula in Figures 12 through 16. Figure 12 contains our first sketch of
the discrepancy formulas from the left column of Figure 11.

(Alternatively, but more verbosely, instead of showing a sketch of each work-
ing formula, we could give a grammar that describes the formula. Or even more
verbosely, we could give the full recipe for generating the formula, more or less
duplicating Part II for each working formula. We find our sketches to convey the
essential information more concisely.)

Step 0: From Figure 12 to Figure 13. In our first transformation of the work-
ing formula, we replace F.a , for every a that depends on ε , by a function that
doesn’t actually make use of the δ argument. This transformation is justified by
the fact that everywhere brackets quantify over function symbols like F.a : Let Q
denote the current working formula. We consider the case where abstract variable
a has exactly three dependencies, f , ε , and δ ; other cases are straightforward
and omitted. We calculate,

[Q]
⇒ { instantiate the universally quantified F.a }

[Q(F.a := 〈 λ sres, res.a, f , ε, δ :: F.a(sres, res.a, f , ε) 〉)]
After applying this calculation to the working formula for every a that directly
depends on ε and then applying β-conversion (unfold) on the λ-expressions (that
is, applying the λ-expressions to their arguments), the working formula will have
the form sketched in Figure 13.
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A0: F.a( ˜sres, . . . , ε̃)
A1: 〈 ∀ ˜sres, δ̃, ε̃ :: . . . 〉
A2: 〈 ∀ ˜sres, δ̃, ε̃ :: ˜sres = ¯sres ∧ δ̃ = δ̄ ∧ ε̃ = ε̄ ⇒ . . . 〉
A3: v:〈 ∀ s :: ὲ[s] = έ[s] ∨ . . . 〉
A4: v:〈 ∀ s :: δ̀[s] = δ́[s] ∨ . . . 〉
A5: no pointwise axiom for F.ε
A6: 〈 ∀ t, `sres, ´sres, . . . , ὲ, έ, δ̀, δ́ ::

`sres[t] = ´sres[t] ∧ . . . ∧ ὲ[t] = έ[t] ∧ δ̀[t] = δ́[t] ⇒
F.a( `sres, . . . , ὲ)[t] = F.a( ´sres, . . . , έ)[t] 〉

A7: 〈 ∀ t: T, sres, . . . , ε, δ :: t 	= nil ⇒ F.a(sres, . . . , ε)[t] = . . . 〉

Figure 13: A sketch of the working formula after substituting new functions F.a
for those in Figure 12, which affects lines A0, A6, and A7.

Step 1: From Figure 13 to Figure 14. It is now easy to tidy up any rep axioms
for a and the pointwise axiom for F.a . Let’s do each in turn.

Consider a rep axiom for any a that depends on ε . If a depends on f , ε , and
δ in H , the rep axiom has the following shape in the current working formula:

〈 ∀ t: T, sres, res.a, f , ε, δ :: t 	= nil ⇒ F.a(sres, res.a, f , ε)[t] = e 〉
Since e is a user expression in D , it does not mention δ . So the quantification
over δ can be dropped, producing the equivalent formula:

〈 ∀ t: T, sres, res.a, f , ε :: t 	= nil ⇒ F.a(sres, res.a, f , ε)[t] = e 〉
Cases where a has a different set of dependencies in H are similar and omitted.

Similarly, for any a that depends on f , ε , and δ in H , we calculate from
the pointwise axiom for F.a in the working formula,

〈 ∀ t, `sres, ´sres, `res.a, ´res.a, f̀ , f́ , ὲ, έ, δ̀, δ́ ::
`sres[t] = ´sres[t] ∧ `res.a[t] = ´res.a[t] ∧

f̀ [t] = f́ [t] ∧ ὲ[t] = έ[t] ∧ δ̀[t] = δ́[t] ⇒
F.a( `sres, `res.a, f̀ , ὲ)[t] = F.a( ´sres, ´res.a, f́ , έ)[t] 〉

⇐ { weaken antecedent }
〈 ∀ t, `sres, ´sres, `res.a, ´res.a, f̀ , f́ , ὲ, έ, δ̀, δ́ ::

`sres[t] = ´sres[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t] ∧ ὲ[t] = έ[t] ⇒
F.a( `sres, `res.a, f̀ , ὲ)[t] = F.a( ´sres, ´res.a, f́ , έ)[t] 〉

= { δ̀ and δ́ do not occur }
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A0: F.a( ˜sres, . . . , ε̃)
A1: 〈 ∀ ˜sres, ˜res.ε, ε̃ :: . . . 〉
A2: 〈 ∀ ˜sres, ˜res.ε, ε̃ :: ˜sres = ¯sres ∧ ˜res.ε = ¯res.ε ∧ ε̃ = ε̄ ⇒ . . . 〉
A3: v:〈 ∀ s :: ὲ[s] = έ[s] ∨ . . . 〉
A4: v:〈 ∀ s :: `res.ε[s] = ´res.ε[s] ∨ . . . 〉
A5: no pointwise axiom for F.ε
A6: 〈 ∀ t, `sres, ´sres, . . . , ὲ, έ ::

`sres[t] = ´sres[t] ∧ . . . ∧ ὲ[t] = έ[t] ⇒
F.a( `sres, . . . , ὲ)[t] = F.a( ´sres, . . . , έ)[t] 〉

A7: 〈 ∀ t: T, sres, . . . , ε :: t 	= nil ⇒ F.a(sres, . . . , ε)[t] = . . . 〉

Figure 14: A sketch of the working formula after tidying up the rep and pointwise
axioms and renaming δ̃ to ˜res.ε , which affects A1, A2, A4, A6, and A7.

〈 ∀ t, `sres, ´sres, `res.a, ´res.a, f̀ , f́ , ὲ, έ ::
`sres[t] = ´sres[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t] ∧ ὲ[t] = έ[t] ⇒

F.a( `sres, `res.a, f̀ , ὲ)[t] = F.a( ´sres, ´res.a, f́ , έ)[t] 〉

Cases where a has a different set of dependencies in H are similar and omitted.
Since pointwise axioms appear only in negative positions (see characteristic

V0, page 87), applying these transformations to rep and pointwise axioms in the
working formula sketched in Figure 13 preserves its validity.

Having removed occurrences of δ̃ from rep and pointwise axioms, we now
rename each remaining occurrence of δ̃ to ˜res.a The resulting formula is shown
in Figure 14.

Step 2: From Figure 14 to Figure 15. We are now done with the transformation
of δ into res.ε and so we turn to the transformation of ε into F.ε(sres, res.ε) .
To this end, we first add the pointwise axiom for F.ε . Since pointwise axioms
occur in negative positions (by characteristic V0, page 87), this transformation
weakens the working formula, preserving its validity. Next, we calculate for any
predicate Q , possibly including equality antecedents,

〈 ∀ ˜sres, ˜res.ε, ε̃ :: Q 〉
⇒ { instantiate ε̃ := F.ε( ˜sres, ˜res.ε) }

〈 ∀ ˜sres, ˜res.ε :: Q(ε̃ := F.ε( ˜sres, ˜res.ε)) 〉
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A0: F.a( ˜sres, . . . ,F.ε( ˜sres, ˜res.ε))
A1: 〈 ∀ ˜sres, ˜res.ε :: . . . 〉
A2: 〈 ∀ ˜sres, ˜res.ε :: ˜sres = ¯sres ∧ ˜res.ε = ¯res.ε ∧

F.ε( ˜sres, ˜res.ε) = F.ε( ¯sres, ¯res.ε) ⇒ . . . 〉
A3: v:〈 ∀ s :: F.ε( `sres, `res.ε)[s] = F.ε( ´sres, ´res.ε)[s] ∨ . . . 〉
A4: v:〈 ∀ s :: `res.ε[s] = ´res.ε[s] ∨ . . . 〉
A5: 〈 ∀ t, `sres, ´sres, `res.ε, ´res.ε ::

`sres[t] = ´sres[t] ∧ `res.ε[t] = ´res.ε[t] ⇒
F.ε( `sres, `res.ε)[t] = F.ε( ´sres, ´res.ε)[t] 〉

A6: 〈 ∀ t, `sres, ´sres, . . . , ὲ, έ ::
`sres[t] = ´sres[t] ∧ . . . ∧ ὲ[t] = έ[t] ⇒

F.a( `sres, . . . , ὲ)[t] = F.a( ´sres, . . . , έ)[t] 〉
A7: 〈 ∀ t: T, sres, . . . , ε :: t 	= nil ⇒ F.a(sres, . . . , ε)[t] = . . . 〉

Figure 15: A sketch of the working formula after introducing the pointwise axiom
for F.ε and instantiating the concrete ε with the functionalized abstract ε . These
transformations affect A0, A1, A2, A3, and A5.

Since such quantifications appear only in positive positions (by characteristic
V1, page 87), applying this transformation to all quantifications, with or with-
out equality antecedents, preserves the validity of the working formula. The re-
sulting working formula is sketched in Figure 15. Because of characteristic V5
(page 88), the arguments we have supplied to F.ε are indeed the ones supplied to
F.ε in VCE(m,C) .

Step 3: From Figure 15 to Figure 16. Almost there. Now we just need to get
rid of the conjunct

F.ε( ˜sres, ˜res.ε) = F.ε( ¯sres, ¯res.ε)

from quantifications with equality antecedents. We calculate,

˜sres = ¯sres ∧ ˜res.ε = ¯res.ε ∧ F.ε( ˜sres, ˜res.ε) = F.ε( ¯sres, ¯res.ε)
= { third conjunct follows from the first two }

˜sres = ¯sres ∧ ˜res.ε = ¯res.ε

Applying this transformation to the working formula from Figure 15, we arrive
at the formula sketched in Figure 16, which is exactly the formula VCE(m,C)
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A0: F.a( ˜sres, . . . ,F.ε( ˜sres, ˜res.ε))
A1: 〈 ∀ ˜sres, ˜res.ε :: . . . 〉
A2: 〈 ∀ ˜sres, ˜res.ε :: ˜sres = ¯sres ∧ ˜res.ε = ¯res.ε ⇒ . . . 〉
A3: v:〈 ∀ s :: F.ε( `sres, `res.ε)[s] = F.ε( ´sres, ´res.ε)[s] ∨ . . . 〉
A4: v:〈 ∀ s :: `res.ε[s] = ´res.ε[s] ∨ . . . 〉
A5: 〈 ∀ t, `sres, ´sres, `res.ε, ´res.ε ::

`sres[t] = ´sres[t] ∧ `res.ε[t] = ´res.ε[t] ⇒
F.ε( `sres, `res.ε)[t] = F.ε( ´sres, ´res.ε)[t] 〉

A6: 〈 ∀ t, `sres, ´sres, . . . , ὲ, έ ::
`sres[t] = ´sres[t] ∧ . . . ∧ ὲ[t] = έ[t] ⇒

F.a( `sres, . . . , ὲ)[t] = F.a( ´sres, . . . , έ)[t] 〉
A7: 〈 ∀ t: T, sres, . . . , ε :: t 	= nil ⇒ F.a(sres, . . . , ε)[t] = . . . 〉 . . .

Figure 16: A sketch of the final working formula, obtained from Figure 15 by
applying the pointwise axiom for F.ε , which affects A2.

sketched in the right column of Figure 11. So in summary, we have transformed
formula VCH(m,C) into formula VCE(m,C) by applying validity-preserving
steps, thereby completing the proof of Soundness Lemma D.

The third lemma of this section is a simple corollary of the other two, allowing
the field ε to be either concrete or abstract.

Soundness Lemma E. Let D and E be scopes containing an implementation
C for a method m . If D and E differ only in that E additionally contains a
declaration of a (concrete or abstract) field ε and some number of dependencies
on ε , then

[VCD(m,C)] ⇒ [VCE(m,C)]

Proof. Follows directly from Soundness Lemmas C and D.

A17 Multiple field-declaration discrepancies

In this section, we present the last of the specializations of the Soundness Theo-
rem. The specialization concerns scopes that differ only in their field and depen-
dency declarations. We prove this specialization from Soundness Lemma E and
induction.
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Soundness Lemma F. For any scopes D and E , containing an implementation
C for a method m , if D and E differ only in their field and dependency declara-
tions, then

D ⊆ E ∧ Vis(D,E) ∧ TopDown(D,E) ∧ [VCD(m,C)] ⇒ [VCE(m,C)]

Proof. Let D and E be scopes satisfying the antecedent. Using Soundness
Lemma E, we now prove the lemma by induction over the number of fields de-
clared in E and not in D . We consider two cases.

CASE D and E coincide in their field declarations: Due to Vis(D,E) , we have
that D and E coincide also in their dependency declarations. Hence, D and E
are equal, so the lemma follows trivially.

CASE E contains some field declaration not in D : Since D and E differ only
in their field and dependency declarations, the only uses in E of a field not in D
are in dependency declarations (since D is a scope, which is closed). For any
declaration

depends a[t: T] on f [t]

in E where a ∈ E D , TopDown(D,E) implies that f ∈ E D . So, fields
in E D can depend only on other fields in E D . Since E is a scope, it is
cycle-free, and thus there is some field among those in E D , call it ε , such that
there is no field f for which ε onE f .

Let H be the set E minus the declaration of ε and minus any declaration of
the form

depends a[t: T] on ε[t]

for any a , t , and T . We have that H is a scope, that D ⊆ H and H ⊆ E , and
Vis(D,H) , TopDown(D,H) , Vis(H,E) , and TopDown(H,E) . We calculate,

[VCD(m,C)]
⇒ { induction hypothesis, with D,E := D,H }

[VCH(m,C)]
⇒ { Soundness Lemma E, with D,E := H,E }

[VCE(m,C)]

Since under our premise D ⊆ E , the two cases we have considered are ex-
haustive, we have now proved the lemma.
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A18 Proving the Soundness Theorem

In this section, we prove the Soundness Theorem from the Soundness Lemmas of
the previous three sections.

Proof of Soundness Theorem. Let D and E be scopes satisfying the antecedent
of the theorem. We define sets of declarations G and H such that G is D union
the type declarations of E and H is G union the field and dependency declara-
tions of E . Sets H and E hence differ only in their rep, method specification,
and method implementation declarations, and we have

D ⊆ G ⊆ H ⊆ E

Furthermore, G and H are scopes, and the following properties hold: Vis(D,G) ,
TopDown(D,G) , Vis(G,H) , TopDown(G,H) , Vis(H,E) , and TopDown(H,E) .
We calculate,

[VCD(m,C)]
⇒ { Soundness Lemma A with D,E := D,G }

[VCG(m,C)]
⇒ { Soundness Lemma F with D,E := G,H }

[VCH(m,C)]
⇒ { Soundness Lemma B with D,E := H,E }

[VCE(m,C)]

So, we have proved the Soundness Theorem from the Soundness Lemmas, but
we’re not done yet, because we have deferred the proof of Soundness Lemma C. In
the remaining sections of Part III of this appendix, we prove Soundness Lemma C.

A19 Consequences of the modularity requirements

In this section, we prove three lemmas that follow from the definitions of Vis and
TopDown .

Lemma. Let scopes D and E satisfy D ⊆ E , Vis(D,E) , and TopDown(D,E) .
Then,

〈 ∀ x, y :: x ∈ D ∧ y ∈ D ∧ x on∗
E y ⇒ x on∗

D y 〉 (29)

That is, the larger scope introduces no new dependencies of old variables.
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Proof. To prove this lemma, we first formalize “reflexive, transitive closure of
onD ”: for any scope D , any x and y , and any natural number n , we define

x on0
D y ≡ x ∈ D ∧ x = y

x onn+1
D y ≡ 〈 ∃ a :: x onn

D a ∧ a onD y 〉
We thus have

〈 ∀D, x, y :: x on∗
D y ≡ 〈 ∃ n :: x onn

D y 〉〉 (30)

and

〈 ∀D, x, a, y :: x on∗
D a ∧ a onD y ⇒ x on∗

D y 〉 (31)

Using the new notation, we rewrite the lemma as follows:

〈 ∀ x, y :: x ∈ D ∧ y ∈ D ∧ x on∗
E y ⇒ x on∗

D y 〉
= { (30) }

〈 ∀ x, y :: x ∈ D ∧ y ∈ D ∧ 〈 ∃ n :: x onn
E y 〉 ⇒ x on∗

D y 〉
= { predicate calculus }

〈 ∀ x, y, n :: x ∈ D ∧ y ∈ D ∧ x onn
E y ⇒ x on∗

D y 〉
We prove this formula by induction on n .

CASE n = 0 :

x ∈ D ∧ y ∈ D ∧ x on0
E y

⇒ { on0
E }

x ∈ D ∧ x = y
⇒ { on0

D and on∗
D }

x on∗
D y

CASE n = k + 1 :

x ∈ D ∧ y ∈ D ∧ x onk+1
E y

= { onk+1
E }

x ∈ D ∧ y ∈ D ∧ 〈 ∃ a :: x onk
E a ∧ a onE y 〉

⇒ { by TopDown(D,E) , y ∈ D ∧ a onE y ⇒ a ∈ D }
x ∈ D ∧ y ∈ D ∧ 〈 ∃ a :: a ∈ D ∧ x onk

E a ∧ a onE y 〉
⇒ { by Vis(D,E) , a ∈ D ∧ y ∈ D ∧ a onE y ⇒ a onD y }

x ∈ D ∧ y ∈ D ∧ 〈 ∃ a :: a ∈ D ∧ x onk
E a ∧ a onD y 〉

⇒ { by induction hypothesis, x ∈ D ∧ a ∈ D ∧ x onk
E a ⇒ x on∗

D a }
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x ∈ D ∧ y ∈ D ∧ 〈 ∃ a :: a ∈ D ∧ x on∗
D a ∧ a onD y 〉

⇒ { (31): x on∗
D a ∧ a onD y ⇒ x on∗

D y }
x ∈ D ∧ y ∈ D ∧ 〈 ∃ a :: a ∈ D ∧ x on∗

D y 〉
⇒ { predicate calculus }

x on∗
D y

That proves lemma (29).

Lemma. Let scopes D and E satisfy D ⊆ E , Vis(D,E) , and TopDown(D,E) .
Then, for any modifies list w in D and any field or residue variable x in D ,

〈 ∀ e :: x[e] ∈ clD(w) ≡ x[e] ∈ clE(w) 〉 (32)

Proof. The proof is by mutual implication. One direction is that clD is mono-
tonic with respect to D , which follows from that onD , and thus also on∗

D , is
monotonic in D :

x[e] ∈ clD(w)
= { (20): definition of clD }

〈 ∃ f :: f [e] ∈ w ∧ f on∗
D x 〉

⇒ { D ⊆ E ∧ f on∗
D x ⇒ f on∗

E x }
〈 ∃ f :: f [e] ∈ w ∧ f on∗

E x 〉
= { (20): definition of clE }

x[e] ∈ clE(w)

For the other direction,

x[e] ∈ clE(w)
= { (20): definition of clE }

〈 ∃ f :: f [e] ∈ w ∧ f on∗
E x 〉

⇒ { f [e] ∈ w ⇒ f ∈ D , and
by lemma (29), f ∈ D ∧ x ∈ D ∧ f on∗

E x ⇒ f on∗
D x }

〈 ∃ f :: f [e] ∈ w ∧ f on∗
D x 〉

= { (20): definition of clD }
x[e] ∈ clD(w)

That proves lemma (32).

The third lemma is a simple corollary of the second lemma:
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Lemma. Let scopes D and E satisfy D ⊆ E , Vis(D,E) , and TopDown(D,E) .
Then, for any modifies list w in D , any field or residue variable x in D , and any
dummy s ,

modpointD(x,w, s) = modpointE(x,w, s) (33)

Proof. We calculate,

modpointD(x,w, s)
= { (22): definition of modpointD }

〈∨ e
 x[e] ∈ clD(w) :: s = è 〉

= { lemma (32) }
〈∨ e

 x[e] ∈ clE(w) :: s = è 〉
= { (22): definition of modpointE }

modpointE(x,w, s)

A20 A property about modification points

In this section, we prove a lemma about modification points.

Lemma. For any scope D and modifies list w in D , let f be a field not listed in
w (that is, for all e , f [e] 	∈ w ). Then,

[modconD(w, f , f ) ⇒ modconD(w, f , sres)] (34)

Proof. For any user expression e , we calculate,

f [e] ∈ clD(w)
= { (20): definition of clD }

〈 ∃ g :: g[e] ∈ w ∧ g on∗
D f 〉

= { f is not listed in w , so f [e] 	∈ w }
〈 ∃ g :: g[e] ∈ w ∧ g on∗

D f ∧ g 	= f 〉
⇒ { definitions of on∗

D and onD }
〈 ∃ g :: g[e] ∈ w ∧ g is abstract 〉

⇒ { definitions of onD and on∗
D }

〈 ∃ g :: g[e] ∈ w ∧ g on∗
D sres 〉

= { (20): definition of clD }
sres[e] ∈ clD(w)

107



Therefore,

modpointD(f ,w, s)
= { (22): definition of modpointD }

〈∨ e
 f [e] ∈ clD(w) :: s = è 〉

⇒ { calculation above }
〈∨ e

 sres[e] ∈ clD(w) :: s = è 〉
= { (22): definition of modpointD }

modpointD(sres,w, s)

Thus, we prove lemma (34) as follows:

modconD(w, f , f )
= { (24): definition of modconD }

w:〈 ∀ s :: FD(f̀ [s] = f́ [s] ∨ modpointD(f ,w, s)) 〉
= { calculation above, and (19): monotonicity of FD }

w:〈 ∀ s :: FD(f̀ [s] = f́ [s] ∨ modpointD(sres,w, s)) 〉
= { (24): definition of modconD }

modconD(w, f , sres)

A21 Properties of liberal preconditions

We now start a three-section journey that culminates in a lemma at the heart of
our soundness proof, regarding liberal preconditions, individual residue variables,
and variables not in scope.

In this section, we define a variation of weakest liberal preconditions that ig-
nores the possibility of commands going wrong, ultra-liberal preconditions, writ-
ten ulp , and develop some properties of wlp and ulp .

For any scope D , command C in D , and vanilla expression Q in D that
contains no free occurrences of post-adorned fields or residue variables, the vanilla
expression ulpD(C,Q) characterizes those pre-states ps of C such that

• every terminating execution of C from ps ends in a post-state that satisfies
Q .

Note that unlike wlpD(C,Q) , ulpD(C,Q) does not guarantee that executions do
not go wrong (cf. Section A8). The fact that this is the only difference between
wlpD and ulpD is captured by the following relation: for any D , C , and Q ,

[wlpD(C,Q) ≡ wlpD(C, true) ∧ ulpD(C,Q)] (35)
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This relation is in fact the same relation as between Dijkstra’s weakest precon-
ditions, which account for non-termination, and weakest liberal preconditions,
which ignore non-termination [9].

We define ulpD(C,Q) inductively over the syntactic structure of C . Except
for the assert command and the method call command, ulpD is defined like wlpD

in Section A8, but with occurrences of wlpD replaced by ulpD . For the assert
command, we define

ulpD(assert e, Q) = true ∧ Q

And for any method m whose specification, after renaming its parameter to a
fresh dummy t , is

method m(t: T) requires p modifies w ensures q

we define

ulpD(call m(e), Q) =
〈 ∀ t :: t = FD(e) ⇒

true ∧
〈 ∀ z̈z :: z̈z = z̀z ⇒ 〈∀ z̀z :: z̀z = zz ⇒

〈∀ źz :: FD(q) ∧ mcD(w) ⇒
〈∀ z̀z :: z̀z = z̈z ⇒ 〈∀ zz :: zz = źz ⇒ Q 〉〉〉〉〉〉

where zz is the list of concrete fields and residue variables in D , and z̈z denotes
fresh adornments of zz .

From the definitions of ulpD and wlpD , one can easily prove property (35). A
simple consequence of (35) is: for any D , C , and Q ,

[wlpD(C,Q) ⇒ ulpD(C,Q)] (36)

An important property of ulpD is that it is conjunctive in its second argument:
for any scope D , command C in D , and predicates Q0 and Q1 ,

[ulpD(C,Q0 ∧ Q1) ≡ ulpD(C,Q0) ∧ ulpD(C,Q1)] (37)

This property can easily be proved from the definition of ulpD .
Similarly, one can prove from the definition of wlpD that wlpD also is con-

junctive. Furthermore, conjunctivity implies monotonicity [10], so we have that
wlpD is monotonic in its second argument. That is, for any scope D , command
C in D , and predicates Q0 and Q1 ,

[Q0 ⇒ Q1] ⇒ [wlpD(C,Q0) ⇒ wlpD(C,Q1)] (38)
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Another property that follows from (35) and (37) is: for any scope D , com-
mand C , and predicates Q0 and Q1 ,

[wlpD(C,Q0 ∧ Q1) ≡ wlpD(C,Q0) ∧ ulpD(C,Q1)] (39)

We end this section by proving one more lemma about ulp . This lemma,
which we will use a couple of sections from now, lets us restrict our attention to

-free commands in certain cases.

Lemma. For any scope D , command C in D , and sufficiently large set of fresh
variables ss , there exists a non-negative integer n and a set of -free commands
{ j

 0 ≤ j < n :: Cj } such that for any predicate Q that has no free occurrences
of any variable in ss ,

[ulpD(C,Q) ≡ 〈∧ j
 0 ≤ j < n :: 〈 ∀ ss :: ulpD(Cj,Q) 〉〉] (40)

Remark: more precisely, the set ss is “sufficiently large” when it contains at least
one fresh variable for every var . . . end command in C .

Proof. We prove the lemma by induction over the structure of commands. We
consider four cases.

CASE -free commands: For commands that are already -free (including the
inherently -free commands simple assignment, field update, assert, assume, and
method call), the lemma follows trivially (with n,C0 := 1,C ).

CASE var s in C end : Let t be one of the fresh variables in ss , and let tt denote
the rest of the variables. We calculate,

ulpD(var s in C end,Q)
= { rename s to t in C and call the result C′ }

ulpD(var t in C′ end,Q)
= { ulpD }

〈 ∀ t :: ulpD(C′,Q) 〉
= { induction hypothesis, with C, ss := C ′, tt }

〈 ∀ t :: 〈∧
j
 0 ≤ j < n :: 〈 ∀ tt :: ulpD(Cj,Q) 〉〉〉

= { predicate calculus }
〈∧ j

 0 ≤ j < n :: 〈 ∀ t, tt :: ulpD(Cj,Q) 〉〉
CASE C0 C1 : Divide ss into two sufficiently large parts, tt and uu . Then,

ulpD(C0 C1,Q)
= { ulpD }
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ulpD(C0,Q) ∧ ulpD(C1,Q)
= { induction hypothesis, with C, ss := C0, tt and with

C, ss := C1, uu }
〈∧ j

 0 ≤ j < m :: 〈 ∀ tt :: ulpD(Cj,Q) 〉〉 ∧
〈∧ j

 0 ≤ j < n :: 〈 ∀ uu :: ulpD(C′
j ,Q) 〉〉

= { for j: 0 ≤ j < n , let Cm+j := C′
j }

〈∧ j
 0 ≤ j < m :: 〈 ∀ tt :: ulpD(Cj,Q) 〉〉 ∧

〈∧ j
 0 ≤ j < n :: 〈 ∀ uu :: ulpD(Cm+j,Q) 〉〉

= { predicate calculus }
〈∧ j

 0 ≤ j < m + n :: 〈 ∀ tt, uu :: ulpD(Cj,Q) 〉〉

CASE B ; C : Divide ss into two sufficiently large parts, tt and uu . Then,

ulpD(B ; C,Q)
= { ulpD }

ulpD(B, ulpD(C,Q))
= { induction hypothesis, with C, ss,Q := B, tt, ulpD(C,Q) }

〈∧ i
 0 ≤ i < m :: 〈 ∀ tt :: ulpD(Bi, ulpD(C,Q)) 〉〉

= { induction hypothesis, with ss := uu }
〈∧ i

 0 ≤ i < m :: 〈 ∀ tt :: ulpD(Bi,

〈∧ j
 0 ≤ j < n :: 〈 ∀ uu :: ulpD(Cj,Q) 〉〉) 〉〉

= { (37): ulpD is conjunctive }
〈∧ i

 0 ≤ i < m :: 〈 ∀ tt :: 〈∧
j
 0 ≤ j < n :: 〈 ∀ uu ::

ulpD(Bi, ulpD(Cj,Q)) 〉〉〉〉
= { predicate calculus }

〈∧ i, j
 0 ≤ i < m ∧ 0 ≤ j < n :: 〈 ∀ tt, uu :: ulpD(Bi, ulpD(Cj,Q)) 〉〉

= { ulpD }
〈∧ i, j

 0 ≤ i < m ∧ 0 ≤ j < n :: 〈 ∀ tt, uu :: ulpD(Bi ; Cj,Q) 〉〉

Since we have now considered an exhaustive set of cases, we have proved the
lemma.

A22 Chain of Equalities Lemma

In the informal proof sketch for Soundness Lemma C (page 93), we argued that in
the large scope, m ’s body C establishes modconE(w, ε, ε) , where w is the modi-
fies list of m , because in the small scope, C establishes modconD(w, res.a, res.a)
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for each abstract variable a that depends on ε . In the next three lemmas, we make
this argument formal.

Each occurrence in C of a method call leads to a modification constraint in
the VC of the form

〈 ∀ s :: res.aj[s] = res.aj+1[s] ∨ modpointD(res.a, v, s) 〉 (41)

which is assumed about the call (where v is the modifies list of the called method,
and the subscripts j and j + 1 indicate whatever adornments the VC generator
used when it processed that method call). The VC also contains the modification
constraint

〈 ∀ s :: res.a0[s] = res.an[s] ∨ modpointD(res.a,w, s) 〉 (42)

as a proof obligation (where res.a0 and res.an are the initial and final values of
res.a ). The validity of the VC implies that (42) follows from the various instances
of (41). An obvious way in which (42) can be proved to follow from the various
instances of (41) is to show, for each instance, that ¬modpointD(res.a, v, t) holds
(in the context of the VC) for each t such that ¬modpointD(res.a,w, t) . In fact,
we claim that this is the only circumstance in which (42) follows from the various
instances of (41). This claim is the formal version of the fact that there is no way
to undo a side effect to a residue variable. The claim is useful because, when
combined with the connection between the modification points of ε and those
of the abstract variables that depend on ε , it proves that modconE(w, ε, ε) also
follows from the same instances of (41). The essence of the proof of this claim is
the Chain of Equalities Lemma, which follows next.

To understand this lemma, it may help to first state a simpler property and then
explain in which ways the Chain of Equalities Lemma is more complicated. The
simpler property is:

Let a , b , and c be variables, and let P , K , and L be predicates
independent of a , b , and c (that is, the predicates contain no free
occurrences of these variables). Then,

[ P ∧ (a = b ∨ K) ∧ (b = c ∨ L) ⇒ a = c ]
⇒

[ P ∧ (a = b ∨ K) ∧ (b = c ∨ L) ⇒ ¬K ∧ ¬L ]

This simpler property says that if the equality a = c follows from the antecedent
“ P ∧ . . . ”, then so does ¬K ∧ ¬L . Informally (and somewhat imprecisely), the
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reason the simpler property is true is that the antecedent contains no information
about the variables a , b , and c , and thus the only way to conclude a = c is to
first conclude the chain of equalities a = b and b = c , which can be achieved
only by establishing ¬K ∧ ¬L .

The simpler property is true, and it resembles the Chain of Equalities Lemma.
But the latter lemma is more complicated in four ways.

First, instead of three variables a , b , and c and two predicates K and L , we
have a sequence of n + 1 variables a0, . . . , an and n predicates K0, . . . ,Kn−1 .

Second, P and the Kj ’s are not entirely independent of the variables, but
only “almost independent”, a notion that involves a given uninterpreted function
f (corresponding to an abstraction function).

Third, instead of equalities between entire variables, the Chain of Equalities
Lemma concerns equalities between indexed map variables.

Fourth, the predicate P is replaced by Q ∧ P , where Q provides properties
of f (corresponding to rep axioms and pointwise axioms).

Here’s the definition of almost-independence: for any uninterpreted function
symbol f and set of variables aa , we say an expression P is almost independent
of aa with respect to f when

• the only free occurrences of the aa variables in P appear as the first argu-
ment to f , and

• every application of f has a free occurrence of one of the aa variables as
its first argument.

We use the following properties of the select and store functions:

(43)
〈 ∀m, i, j, v :: i = j ⇒ store(m, i, v)[j] = v 〉 ∧
〈 ∀m, i, j, v :: i 	= j ⇒ store(m, i, v)[j] = m[j] 〉

(44)〈 ∀m, n :: m = n ≡ 〈 ∀ s :: m[s] = n[s] 〉〉
(Advanced remark: Part IV of this appendix has more to say about property (44).)

Chain of Equalities Lemma. Let f be a 2-argument uninterpreted function sym-
bol, let n be a non-negative integer, and let aa denote a set of n + 1 variables
{ j

 0 ≤ j ≤ n :: aj } . Define Q as:

〈 ∀ x, y, z, s :: M(y, z, s) ⇒ f (x, y)[s] = z 〉 ∧
〈 ∀w, x, y, z, s :: w[s] = x[s] ∧ N(y, z, s) ⇒ f (w, y)[s] = f (x, z)[s] 〉
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where M(y, z, s) and N(y, z, s) are predicates independent of f and of the vari-
ables in aa . Let P be a predicate almost independent of aa with respect to f .
For any j: 0 ≤ j < n and any dummy variable s , let Kj(s) be a predicate almost
independent of aa (with respect to f ). Let S denote

Q ∧ P ∧ 〈∧ j
 0 ≤ j < n :: 〈 ∀ s :: aj[s] = aj+1[s] ∨ Kj(s) 〉〉

Then, for any h: 0 ≤ h < n and any t not in aa ,

[ S ⇒ a0[t] = an[t] ] ⇒ [ S ⇒ ¬Kh(t) ] (45)

(End of Lemma.)

Proof. The everywhere brackets say a given formula is valid. Elsewhere in this
appendix, we take this to mean that the everywhere brackets implicitly quantify
over all variables and uninterpreted function symbols. Equivalently, it means that
the formula holds in all models.

We prove the lemma by proving its contrapositive: from a model φ that is a
counterexample to “S ⇒ ¬Kh(t)” , we show a model ψ that is a counterexample
to “S ⇒ a0[t] = an[t]” .

Let φ be a counterexample to “S ⇒ ¬Kh(t)” . That is, we have the following
properties of φ :

φ(Q) ∧ φ(P) ∧
〈∧ j

 0 ≤ j < n :: φ(〈 ∀ s :: aj[s] = aj+1[s] ∨ Kj(s) 〉) 〉 ∧
φ(Kh(t))

(46)

Let F = φ(f ) , Aj = φ(aj) for j: 0 ≤ j ≤ n , and T = φ(t) .
We will now construct a model ψ that falsifies the antecedent of (45). The

model ψ will interpret the first h + 1 variables in aa as the h + 1 maps Bj ,
j: 0 ≤ j ≤ h . The most important part of each Bj is its value Bj[T] . These values
Bj[T] are defined to be any Vj , j: 0 ≤ j ≤ h , satisfying

(47){ j
 0 ≤ j ≤ h :: Vj } ∩ { j

 h < j ≤ n :: Aj[T] } = ∅
(48)〈 ∀ i, j

 0 ≤ i ≤ j ≤ h :: Vi = Vj ≡ Ai[T] = Aj[T] 〉
Condition (47) requires that the V ’s be disjoint from the Aj[T] ’s, and condition
(48) requires that the V ’s be partitioned by equality in the same way as the cor-
responding Aj[T] ’s. (Part IV of this appendix argues that V ’s satisfying (47) and
(48) exist in all of the models that matter.)

Having chosen the V ’s, we can now define

Bj = store(Aj, T,Vj)

114



for j: 0 ≤ j ≤ h .
Model ψ will interpret f as a function G , defined by

G = 〈 λ x, y :: if x[T] = Vj for some j: 0 ≤ j ≤ h then
F(store(x, T,Aj[T]), y)

else
F(x, y)

end 〉
Note that (48) implies that G is well-defined.

For any j: 0 ≤ j ≤ h and any s ,

store(Bj, T,Aj[T])[s]
= { (43): select and store }

if s = T then Aj[T] else Bj[s] end
= { Bj = store(Aj, T,Vj) , and (43): select and store with s 	= T }

if s = T then Aj[T] else Aj[s] end
= { cases of if . . . end are the same }

Aj[s]

and thus by select property (44),

store(Bj, T,Aj[T]) = Aj (49)

Consequently, for any j: 0 ≤ j ≤ h and any Y ,

G(Bj, Y)
= { G since Bj[T] = Vj }

F(store(Bj, T,Aj[T]), Y)
= { (49) }

F(Aj, Y)

which shows

G(Bj, Y) = F(Aj, Y) (50)

Finally, we define ψ to be the following model:

ψ = 〈 λ v :: if v = “aj” for some j: 0 ≤ j ≤ h then Bj

elsif v = “f ” then G
else φ(v)
end 〉
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To prove the theorem, we need to prove that ψ is a counterexample to “S ⇒
a0[t] = an[t]” .

We continue by proving the following lemmita: for any expression e almost
independent of aa ,

ψ(e) = φ(e) (51)

We prove this lemmita by induction on the structure of e . The only difference
between φ and ψ is how they interpret the function f and the variables aa .
Almost-independence tells us that every occurrence of an aa variable appears
as the first argument to some application of f . Hence, to prove the lemmita, it
suffices to consider applications of f ; all other cases are trivial. Furthermore,
almost-independence tells us that each application of f has one of the aa vari-
ables as its first argument, so we only need to consider expressions of the form
f (aj, e) for every j: 0 ≤ j ≤ n . We consider two cases. First, for j: 0 ≤ j ≤ h and
any e almost independent of aa ,

ψ(f (aj, e))
= { ψ }

G(Bj, ψ(e))
= { (50) with Y := ψ(e) }

F(Aj, ψ(e))
= { induction hypothesis }

F(Aj, φ(e))
= { φ }

φ(f (aj, e))

Second, for j: h < j ≤ n and any e almost independent of aa ,

ψ(f (aj, e))
= { ψ and Aj = φ(aj) }

G(Aj, ψ(e))
= { (47) and G }

F(Aj, ψ(e))
= { induction hypothesis }

F(Aj, φ(e))
= { φ }

φ(f (aj, e))
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This proves lemmita (51).
From this lemmita, we have

ψ(P) = φ(P) ∧
〈∧ j

 0 ≤ j < n :: 〈 ∀ s :: ψ(Kj(s)) = φ(Kj(s)) 〉〉 (52)

From (46), we then also have

ψ(P) (53)

We continue by proving another lemmita: for any j: 0 ≤ j < n and any
dummy variable s ,

j 	= h ∨ s 	= T ⇒ ψ(aj[s] = aj+1[s]) = φ(aj[s] = aj+1[s]) (54)

Technically, φ and ψ do not have any dummy variables in their domains. Thus,
the proper way to write the consequence of this lemmita would be

〈 ∀Y :: ψ(“s” #→ Y)(aj[s] = aj+1[s]) = φ(“s” #→ Y)(aj[s] = aj+1[s]) 〉
where ψ(“s” #→ Y) denotes function ψ extended to map “s” to Y . However,
for brevity, and we claim without actual precision, we take φ and ψ to map
dummy variables to themselves, implicitly denoting any value. This allows us
to state the lemmita the way we did and lets us avoid unnecessary clutter in our
proof. Actually, this comment also applies to lemmita (51), where we shamelessly
swept this issue under the rug.

We prove lemmita (54) by considering four cases:

h < j
j < h ∧ s 	= T
j < h ∧ s = T
j = h ∧ s 	= T

First, if h < j , then

ψ(aj[s] = aj+1[s])
= { ψ }

φ(aj)[s] = φ(aj+1)[s]
= { φ }

φ(aj[s] = aj+1[s])

Second, if j < h ∧ s 	= T , then
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ψ(aj[s] = aj+1[s])
= { ψ }

Bj[s] = Bj+1[s]
= { Bj , Bj+1 , and (43): select and store, since s 	= T }

Aj[s] = Aj+1[s]
= { φ }

φ(aj[s] = aj+1[s])

Third, if j < h ∧ s = T , then

ψ(aj[s] = aj+1[s])
= { ψ }

Bj[s] = Bj+1[s]
= { Bj , Bj+1 , and (43): select and store, since s = T }

Vj = Vj+1

= { (48) }
Aj[T] = Aj+1[T]

= { s = T and φ }
φ(aj[s] = aj+1[s])

Fourth, if j = h ∧ s 	= T , then

ψ(ah[s] = ah+1[s])
= { ψ }

Bh[s] = φ(ah+1)[s]
= { Bh and (43): select and store, since s 	= T }

Ah[s] = φ(ah+1)[s]
= { φ }

φ(Ah[s] = ah+1[s])

This proves lemmita (54).
We can now prove that ψ satisfies

〈∧ j
 0 ≤ j < n :: ψ(〈 ∀ s :: aj[s] = aj+1[s] ∨ Kj(s) 〉) 〉 (55)

We consider two cases. First, if j 	= h , then

ψ(〈 ∀ s :: aj[s] = aj+1[s] ∨ Kj(s) 〉)
= { ψ }

〈 ∀ s :: ψ(aj[s] = aj+1[s]) ∨ ψ(Kj(s)) 〉
= { (52), and lemmita (54) since j 	= h }

118



〈 ∀ s :: φ(aj[s] = aj+1[s]) ∨ φ(Kj(s)) 〉
= { φ }

φ(〈 ∀ s :: aj[s] = aj+1[s] ∨ Kj(s) 〉)
Second, if j = h , then

ψ(〈 ∀ s :: ah[s] = ah+1[s] ∨ Kh(s) 〉)
= { ψ }

〈 ∀ s :: ψ(ah[s] = ah+1[s]) ∨ ψ(Kh(s)) 〉
= { split range }

〈 ∀ s :: s 	= T ⇒ ψ(ah[s] = ah+1[s]) ∨ ψ(Kh(s)) 〉 ∧
〈 ∀ s :: s = T ⇒ ψ(ah[s] = ah+1[s]) ∨ ψ(Kh(s)) 〉

= { (52), and lemmita (54) since s 	= T }
〈 ∀ s :: s 	= T ⇒ φ(ah[s] = ah+1[s]) ∨ φ(Kh(s)) 〉 ∧
〈 ∀ s :: s = T ⇒ ψ(ah[s] = ah+1[s]) ∨ φ(Kh(s)) 〉

= { T = φ(t) , and (46): φ(Kh(t)) , hence s = T ⇒ φ(Kh(s)) }
〈 ∀ s :: s 	= T ⇒ φ(ah[s] = ah+1[s]) ∨ φ(Kh(s)) 〉 ∧
〈 ∀ s :: s = T ⇒ φ(Kh(s)) 〉

= { T = φ(t) , and (46): φ(Kh(t)) , hence s = T ⇒ φ(Kh(s)) }
〈 ∀ s :: s 	= T ⇒ φ(ah[s] = ah+1[s]) ∨ φ(Kh(s)) 〉 ∧
〈 ∀ s :: s = T ⇒ φ(ah[s] = ah+1[s]) ∨ φ(Kh(s)) 〉

= { combine range }
〈 ∀ s :: φ(ah[s] = ah+1[s]) ∨ φ(Kh(s)) 〉

= { φ }
φ(〈 ∀ s :: ah[s] = ah+1[s] ∨ Kh(s) 〉)

That proves (55).
We have two things left to prove before we can conclude that ψ is a coun-

terexample to “S ⇒ a0[t] = an[t]” : checking that Q holds under ψ and
checking that the consequent does not hold under ψ . We continue by working on
the latter, and thus prove:

(56)ψ(a0[t] 	= an[t])
= { ψ , since 0 ≤ h < n }

B0[T] 	= An[T]
= { B0 = store(A0, T,V0) , and (43): select and store }

V0 	= An[T]
= { (47), since 0 ≤ h < n }

true
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Finally, using the fact that applying φ in the conjunct φ(Q) of (46) yields

(57)〈 ∀ x, y, z, s :: φ(M(y, z, s)) ⇒ F(x, y)[s] = z 〉 ∧
(58)

〈 ∀w, x, y, z, s :: w[s] = x[s] ∧ φ(N(y, z, s)) ⇒
F(w, y)[s] = F(x, z)[s] 〉

we show:

ψ(Q) (59)

For the first conjunct of Q , we calculate,

ψ(〈 ∀ x, y, z, s :: M(y, z, s) ⇒ f (x, y)[s] = z 〉)
= { ψ }

〈 ∀ x, y, z, s :: ψ(M(y, z, s)) ⇒ G(x, y)[s] = z 〉
= { M(y, z, s) is independent of f and aa }

〈 ∀ x, y, z, s :: φ(M(y, z, s)) ⇒ G(x, y)[s] = z 〉
We consider two cases. First, if x[T] is not among the V ’s (that is, if there is no
j: 0 ≤ j ≤ h such that x[T] = Vj ), we have

G(x, y)[s] = z
= { G , since x[T] is not among the V ’s }

F(x, y)[s] = z
⇐ { (57) }

φ(M(y, z, s))

Second, for any j: 0 ≤ j ≤ h such that x[T] = Vj , we have

G(x, y)[s] = z
= { G , since x[T] = Vj }

F(store(x, T,Aj[T]), y)[s] = z
⇐ { (57) with x := store(x, T,Aj[T]) }

φ(M(y, z, s))

Now for the second conjunct of Q , we calculate,

ψ(〈 ∀w, x, y, z, s :: w[s] = x[s] ∧ N(y, z, s) ⇒ f (w, y)[s] = f (x, z)[s] 〉)
= { ψ }

〈 ∀w, x, y, z, s :: w[s] = x[s] ∧ ψ(N(y, z, s)) ⇒ G(w, y)[s] = G(x, z)[s] 〉
= { N(y, z, s) is independent of f and aa }

〈 ∀w, x, y, z, s :: w[s] = x[s] ∧ φ(N(y, z, s)) ⇒ G(w, y)[s] = G(x, z)[s] 〉
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We consider three cases. First, if neither w[T] nor x[T] is among the V ’s, then

G(w, y)[s] = G(x, z)[s]
= { G , since neither w[T] nor x[T] is among the V ’s }

F(w, y)[s] = F(x, z)[s]
⇐ { (58) }

w[s] = x[s] ∧ φ(N(y, z, s))

Second, if exactly one of w[T] and x[T] is among the V ’s, say w[T] = Vj , then
we note that w[T] 	= x[T] and calculate,

G(w, y)[s] = G(x, z)[s]
= { G , given assumptions about w[T] and x[T] }

F(store(w, T,Aj[T]), y)[s] = F(x, z)[s]
⇐ { (58) with w := store(w, T,Aj[T]) }

store(w, T,Aj[T])[s] = x[s] ∧ φ(N(y, z, s))
= { (43): select and store }

(s = T ⇒ Aj[T] = x[T]) ∧ (s 	= T ⇒ w[s] = x[s]) ∧ φ(N(y, z, s))
⇐ { w[T] 	= x[T] , and thus vacuously w[T] = x[T] ⇒ Aj[T] = x[T] }

(s = T ⇒ w[T] = x[T]) ∧ (s 	= T ⇒ w[s] = x[s]) ∧ φ(N(y, z, s))
= { combine cases }

w[s] = x[s] ∧ φ(N(y, z, s))

Third, if both w[T] and x[T] are among the V ’s, say w[T] = Vi and x[T] = Vj ,
then

G(w, y)[s] = G(x, z)[s]
= { G , since w[T] = Vi and x[T] = Vj }

F(store(w, T,Ai[T]), y)[s] = F(store(x, T,Aj[T]), z)[s]
⇐ { (58) with w, x := store(w, T,Ai[T]), store(x, T,Aj[T]) }

store(w, T,Ai[T])[s] = store(x, T,Aj[T])[s] ∧ φ(N(y, z, s))
= { (43): select and store }

(s = T ⇒ Ai[T] = Aj[T]) ∧ (s 	= T ⇒ w[s] = x[s]) ∧ φ(N(y, z, s))
= { (48), and w[T] = Vi and x[T] = Vj }

(s = T ⇒ w[T] = x[T]) ∧ (s 	= T ⇒ w[s] = x[s]) ∧ φ(N(y, z, s))
= { combine cases }

w[s] = x[s] ∧ φ(N(y, z, s))

With that, we have proved (59).
Formulas (59), (53), (55), and (56) show that ψ is a counterexample to “S ⇒

a0[t] = an[t]” , which completes the proof of the Chain of Equalities Lemma.
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A23 Chain Rewriting Lemma

Recall the simple argument that we are formalizing: VCD(m,C) is valid, hence
C respects the modification constraint for res.a , for each a that depends on ε .
Hence each procedure call in C respects these constraints, from which it can be
concluded that C itself respects the modification constraint for ε . The Chain of
Equalities Lemma is our essential tool for formalizing this argument, but there is
still an argument required to show that VCD(m,C) can be written in a form to
which the Chain of Equalities Lemma applies. This argument is a structural in-
duction on the command C . We show by induction that the verification condition
is equivalent to an implication in which the antecedent is a conjunction to which
the Chain of Equalities Lemma applies. The exact inductive assertion is a lemma
that we call the Chain Rewriting Lemma.

The setting of this lemma is as follows. Let E be any scope, ε a concrete
field in E , and zz the list of concrete fields and residue variables in E . Let xx
denote the list consisting of ε and the residue variable res.a for each a such that
a onE ε .

The verification conditions that are the subject of our inductive proof can con-
tain many adorned variables, so in this lemma, we will adorn variables with nu-
merical subscripts instead of with accents. We will even use negative subscripts,
so that, for example, x0 , x−3 , and x17 are three adornments of x . The relevant
adornments of each variable are always a linear sequence, whose subscripts range
from −2k to 3k + 1 for some natural number k . The first adornment, x−2k ,
represents the input value x̀ and the last adornment, x3k+1 , represents the current
value (default adornment) x . Therefore, for any k , we define a k -replacement to
be a substitution θ such that for any x in xx ,

x̀ θ = x−2k and x θ = x3k+1

A k -replacement may also arbitrarily rename local-variable scalars.
We next define a predicate chain . For any sequence α of modifies lists in

E , any x in xx , and any integer k , chainx(α, k) asserts a relation between the
adornments of x from x−2k to x3k+1 : pairs of adjacent x ’s are either equal or are
related as allowed by one of the modifies lists in α . In particular, one fifth of the
pairs are constrained by a modifies list in α , and the other pairs are constrained
to be equal. (The reason for this strange definition is that the wlp equation for
method call avoids variable capture by introducing five dummies, one of which is
constrained by a modifies list.) Formally, we define chainx(α, k) as:

〈∧ j
 − 2k ≤ j < 3k + 1 :: 〈 ∀ s :: xj[s] = xj+1[s] ∨ Kj(x, α, s) 〉〉
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where

Kj(x, α, s) = if 0 ≤ j ∧ i = (j − 2)/3 for some integer i then
FE(modpointE(x, αi, s))(z̀z := zzj)

else
false

end

The definition implies equality between four out of five adjacent adornments, be-
cause due to select property (44),

xj = xj+1 ≡ 〈 ∀ s :: xj[s] = xj+1[s] ∨ false 〉

Note that

chainx(α, 0) ≡ x0 = x1

and that

(60)chainx(α, k + 1) ≡
chainx(α, k) ∧
x−2k−2 = x−2k−1 ∧ x−2k−1 = x−2k ∧ x3k+1 = x3k+2 ∧
〈 ∀ s :: x3k+2[s] = x3k+3[s] ∨ FE(modpointE(x, αk, s))(z̀z := zz3k+2) 〉 ∧
x3k+3 = x3k+4

From the definitions of modpointE and FE , we observe, for any x , w , and s ,

FE(modpointE(x,w, s)) is independent of źz (61)

Finally, we define

chain(α, k) = 〈∧
x
 x ∈ xx :: chainx(α, k) 〉

In this setting, we now state the lemma:
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Chain Rewriting Lemma. For any -free command C in E that does not assign
directly to ε , any sequence α of modifies lists in E , and any k -replacement θ ,
there exist

• a predicate P such that, for every individual residue variable res.a in xx
for an abstract field a , P is almost independent (page 113) of res.a with
respect to function F.a ,

• a sequence β of modifies lists in E ,

• an integer � , and

• an � -replacement σ ,

such that for any predicate Q and for any predicate R whose free variables are
not post-adorned,

[Q ∧ chain(α, k) ⇒ ulpE(C,R) θ ] ≡
[Q ∧ P ∧ chain(β, �) ⇒ R σ ]

(62)

(End of Lemma.)

Proof. We prove the lemma by induction over the structure of C . We consider a
number of cases, each of which is proved by a calculation that ends with suitable
β , � , σ , and P .

CASE s := e :

[Q ∧ chain(α, k) ⇒ ulpE(s := e,R) θ ]
= { ulpE }

[Q ∧ chain(α, k) ⇒ 〈∀ s′ :: s′ = FE(e) ⇒ 〈∀ s :: s = s′ ⇒ R 〉〉 θ ]
= { distribute quantification over s′ out (since s′ is fresh), then absorb

it into the everywhere brackets; predicate calculus }
[Q ∧ chain(α, k) ∧ s′ = FE(e) θ ⇒ 〈∀ s :: s = s′ ⇒ R 〉 θ ]

= { rewrite quantification as a substitution }
[Q ∧ chain(α, k) ∧ s′ = FE(e) θ ⇒ R(s := s′) θ ]

which is the right side of (62) with β := α , � := k , σ := (s := s′) θ , and
P := s′ = FE(e) θ .

CASE c[e0] := e1 :
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[Q ∧ chain(α, k) ⇒ ulpE(c[e0] := e1,R) θ ]
= { ulpE }

[Q ∧ chain(α, k) ⇒
〈∀ c′ :: c′ = store(c,FE(e0),FE(e1)) ⇒ 〈∀ c :: c = c′ ⇒ R 〉〉 θ ]

= { predicate calculus, since c′ is fresh }
[Q ∧ chain(α, k) ∧ c′ = store(c,FE(e0),FE(e1)) θ ⇒
〈∀ c :: c = c′ ⇒ R 〉 θ ]

= { rewrite quantification as a substitution }
[Q ∧ chain(α, k) ∧ c′ = store(c,FE(e0),FE(e1)) θ ⇒ R(c := c′) θ ]

CASE assert e :

[Q ∧ chain(α, k) ⇒ ulpE(assert e,R) θ ]
= { ulpE }

[Q ∧ chain(α, k) ⇒ R θ ]

CASE assume e :

[Q ∧ chain(α, k) ⇒ ulpE(assume e,R) θ ]
= { ulpE }

[Q ∧ chain(α, k) ⇒ (FE(e) ⇒ R) θ ]
= { predicate calculus }

[Q ∧ chain(α, k) ∧ FE(e) θ ⇒ R θ ]

CASE C0 ; C1 :

[Q ∧ chain(α, k) ⇒ ulpE(C0 ; C1,R) θ ]
= { ulpE }

[Q ∧ chain(α, k) ⇒ ulpE(C0, ulpE(C1,R)) θ ]
= { induction hypothesis, with C,R := C0, ulpE(C1,R) }

[Q ∧ P ∧ chain(β, �) ⇒ ulpE(C1,R) σ ]
= { induction hypothesis, with Q, k,C, θ := Q ∧ P, �,C1, σ }

[Q ∧ P ∧ P′ ∧ chain(γ,m) ⇒ R τ ]

CASE var s in C end : We assume s is a fresh name.

[Q ∧ chain(α, k) ⇒ ulpE(var s in C end,R) θ ]
= { ulpE }

[Q ∧ chain(α, k) ⇒ 〈∀ s :: ulpE(C,R) 〉 θ ]
= { predicate calculus, since s is fresh }
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[Q ∧ chain(α, k) ⇒ ulpE(C,R) θ ]
= { induction hypothesis }

[Q ∧ P ∧ chain(β, �) ⇒ R σ ]

CASE call m(e) : Assume the specification of m , after renaming its parameter to
a fresh dummy t , is

method m(t: T) requires p modifies w ensures q

We calculate,

[Q ∧ chain(α, k) ⇒ ulpE(call m(e),R) θ ]
= { ulpE }

[Q ∧ chain(α, k) ⇒ 〈∀ t :: t = FE(e) ⇒
〈∀ z̈z :: z̈z = z̀z ⇒ 〈∀ z̀z :: z̀z = zz ⇒
〈∀ źz :: FE(q) ∧ mcE(w) ⇒
〈∀ z̀z :: z̀z = z̈z ⇒ 〈∀ zz :: zz = źz ⇒ R 〉〉〉〉〉〉 θ ]

= { predicate calculus, and rename z̈z, z̀z, źz, z̀z, zz to
zz−2k−1, zz3k+2, zz3k+3, zz−2k−2, zz3k+4 }

[Q ∧ chain(α, k) ∧ t = FE(e) θ ⇒
〈∀ zz−2k−1 :: zz−2k−1 = z̀z ⇒ 〈∀ zz3k+2 :: zz3k+2 = zz ⇒
〈∀ zz3k+3 :: (FE(q) ∧ mcE(w))(z̀z, źz := zz3k+2, zz3k+3) ⇒
〈∀ zz−2k−2 :: zz−2k−2 = zz−2k−1 ⇒ 〈∀ zz3k+4 :: zz3k+4 = zz3k+3 ⇒

R(z̀z, zz := zz−2k−2, zz3k+4) 〉〉〉〉〉 θ ]
= { predicate calculus }

[Q ∧ chain(α, k) ∧ t = FE(e) θ ∧ zz−2k−1 = z̀z θ ∧ zz3k+2 = zz θ ∧
(FE(q) ∧ mcE(w))(z̀z, źz := zz3k+2, zz3k+3) ∧ zz−2k−2 = zz−2k−1 ∧
zz3k+4 = zz3k+3

⇒ R(z̀z, zz := zz−2k−2, zz3k+4) θ ]
= { let yy denote the list of variables in zz but not in xx ,

let mcxx
E (w) = 〈∧ x

 x ∈ xx :: modconE(w, x, x) 〉 , and
let mcyy

E (w) = 〈∧ y
 y ∈ yy :: modconE(w, y, y) 〉 }

[Q ∧ chain(α, k) ∧ t = FE(e) θ ∧
xx−2k−1 = x̀x θ ∧ yy−2k−1 = ỳy θ ∧ xx3k+2 = xx θ ∧ yy3k+2 = yy θ ∧
(FE(q) ∧ mcyy

E (w))(z̀z, źz := zz3k+2, zz3k+3) ∧
mcxx

E (w)(z̀z, źz := zz3k+2, zz3k+3) ∧
xx−2k−2 = xx−2k−1 ∧ yy−2k−2 = yy−2k−1 ∧
xx3k+4 = xx3k+3 ∧ yy3k+4 = yy3k+3

⇒ R(z̀z, zz := zz−2k−2, zz3k+4) θ ]
= { θ is a k -replacement, hence x̀x θ = xx−2k and xx θ = xx3k+1 }
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[Q ∧ chain(α, k) ∧ t = FE(e) θ ∧
xx−2k−1 = xx−2k ∧ yy−2k−1 = ỳy θ ∧ xx3k+2 = xx3k+1 ∧ yy3k+2 = yy θ ∧
(FE(q) ∧ mcyy

E (w))(z̀z, źz := zz3k+2, zz3k+3) ∧
mcxx

E (w)(z̀z, źz := zz3k+2, zz3k+3) ∧
xx−2k−2 = xx−2k−1 ∧ yy−2k−2 = yy−2k−1 ∧
xx3k+4 = xx3k+3 ∧ yy3k+4 = yy3k+3

⇒ R(z̀z, zz := zz−2k−2, zz3k+4) θ ]
= { let β be the sequence α but with βk = w , and apply (60) and

(61) }
[Q ∧ chain(β, k + 1) ∧ t = FE(e) θ ∧
yy−2k−1 = ỳy θ ∧ yy3k+2 = yy θ ∧
(FE(q) ∧ mcyy

E (w))(z̀z, źz := zz3k+2, zz3k+3) ∧
yy−2k−2 = yy−2k−1 ∧ yy3k+4 = yy3k+3

⇒ R(z̀z, zz := zz−2k−2, zz3k+4) θ ]

Note that (z̀z, zz := zz−2k−2, zz3k+4) θ is a (k + 1) -replacement, which completes
the case for method calls.

We have now exhausted all cases (since C is -free), and thus we have
proved the Chain Rewriting Lemma.

We define a meta function mcr representing modification constraints for rel-
evant residue variables. For any scopes D and E such that D ⊆ E , any modifies
list w in D , and any concrete field ε in E but not in D , we define mcrE(w) to
be the following predicate:

〈∧ a
 a is an abstract field in E ∧ a onE ε ::

modconE(w, res.a, res.a) 〉 (63)

We now wrap up the Chain of Equalities Lemma and the Chain Rewriting
Lemma into a lemma at the heart of the proof of Soundness Lemma C. The lemma
says that if C respects the modification constraints for the relevant residue vari-
ables, then C respects the modification constraint for ε .

Chain of Equalities Corollary. For any scopes D and E such that D ⊆ E , any
user expression p , modifies list w , and command C in D , and any concrete field
ε in E but not in D ,

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
ulpE(C, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉) 〉]

⇒
[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒

ulpE(C, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉) 〉]
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where zz denotes all concrete fields and residue variables in E .

Proof. We begin by showing that it suffices to consider -free commands. Let S
abbreviate the antecedent BPE ∧ RepE ∧ PWE ∧ FE(p) , let ss be a sufficiently
large set of fresh variables, and let n and { j

 0 ≤ j < n :: Cj } be like in lemma
(40). Then,

[S ⇒ 〈∀ z̀z :: z̀z = zz ⇒ ulpE(C, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉) 〉]
= { lemma (40) }

[S ⇒ 〈∀ z̀z :: z̀z = zz ⇒ 〈∧
j
 0 ≤ j < n :: 〈 ∀ ss ::

ulpE(Cj, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉) 〉〉〉]
= { predicate calculus }

〈∧ j
 0 ≤ j < n :: 〈 ∀ ss :: [S ⇒ 〈∀ z̀z :: z̀z = zz ⇒

ulpE(Cj, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉) 〉] 〉〉
⇒ { a version of the Chain of Equalities Corollary for -free

commands, to be proved }
〈∧ j

 0 ≤ j < n :: 〈 ∀ ss :: [S ⇒ 〈∀ z̀z :: z̀z = zz ⇒
ulpE(Cj, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉) 〉] 〉〉

= { predicate calculus }
[S ⇒ 〈∀ z̀z :: z̀z = zz ⇒ 〈∧

j
 0 ≤ j < n :: 〈 ∀ ss ::

ulpE(Cj, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉) 〉〉〉]
= { lemma (40) }

[S ⇒ 〈∀ z̀z :: z̀z = zz ⇒
ulpE(C, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉) 〉]

Thus, from now on, we assume C to be -free.
Since w is in D but ε is not, ε is not mentioned in w , and so with a ranging

over the abstract variables in E ,

[modpointE(ε,w, t) ≡ 〈∨ a
 a onE ε :: modpointE(a,w, t) 〉]

From (23), we then have, with res.a denoting the residue variable of a ,

[modpointE(ε,w, t) ≡ 〈∨ a
 a onE ε :: modpointE(res.a,w, t) 〉] (64)

For any abstract variable a , let QRa be the conjunction of all rep axioms for
a in E . Note that QRa can be written in the form

〈 ∀ res.a, y, z, s :: M(y, z, s) ⇒ F.a(res.a, y)[s] = z 〉
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for some suitable M and suitable list y of variables. For any abstract variable a ,
let QPa be the pointwise axiom for F.a in E . Note that QPa has the form

〈 ∀ `res.a, ´res.a, y, z, s :: `res.a[s] = ´res.a[s] ∧ N(y, z, s) ⇒
F.a( `res.a, y)[s] = F.a( ´res.a, z)[s] 〉

for some suitable N (essentially y[s] = z[s] ) and suitable lists of variables y and
z . Therefore, QRa ∧ QPa has the shape prescribed for the predicate Q in the
Chain of Equalities Lemma (page 113).

Here, let Q be the conjunction

〈∧ a
 a onE ε :: QRa ∧ QPa 〉

Note that Q has no free variables: it is a closed statement about the various ab-
straction functions. Let R denote the conjuncts of

BPE ∧ RepE ∧ PWE ∧ FE(p)

that are not in Q . So, we have

[Q ∧ R ≡ BPE ∧ RepE ∧ PWE ∧ FE(p)] (65)

Also, for any abstract variable a , let Q′
a be the conjunction

〈∧ b
 b onE ε ∧ a 	= b :: QRb ∧ QPb 〉

So, we have for any a ,

[Q ≡ QRa ∧ QPa ∧ Q′
a] (66)

Let xx denote the list consisting of ε and the residue variable res.a for each
a such that a onE ε , and let yy denote the list of variables in zz but not in xx .

For any sequence α of modifies lists in E , any x in xx , and any integer k ,
we define chain′

x(α, k) to be the conjunction

〈∧ v
 v ∈ xx ∧ x 	= v :: chainv(α, k) 〉

where chain is defined as in the setting of the Chain Rewriting Lemma (page 122).
So, we have for any x in xx and any α and k ,

[chain(α, k) ≡ chainx(α, k) ∧ chain′
x(α, k)] (67)

We calculate,
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[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
ulpE(C, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉) 〉 ]

= { (65) }
[Q ∧ R ⇒ 〈∀ z̀z :: z̀z = zz ⇒

ulpE(C, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉) 〉 ]
= { predicate calculus, since Q and R have no free occurrences

of z̀z }
[Q ∧ R ∧ z̀z = zz ⇒ ulpE(C, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉) ]

= { rename z̀z, zz to fresh zz0, zz1 , using the fact that Q has no free
variables; and zz = (xx, yy) }

[Q ∧ R(z̀z, zz := zz0, zz1) ∧ xx0 = xx1 ∧ yy0 = yy1 ⇒
ulpE(C, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉)(z̀z, zz := zz0, zz1) ]

= { let T abbreviate R(z̀z, zz := zz0, zz1) ∧ yy0 = yy1 ,
and definition of chain (page A23) for any list α }

[Q ∧ T ∧ chain(α, 0) ⇒
ulpE(C, 〈 ∀ źz :: źz = zz ⇒ mcrE(w) 〉)(z̀z, zz := zz0, zz1) ]

= { Chain Rewriting Lemma with
Q, k, θ := Q ∧ T, 0, (z̀z, zz := zz0, zz1) }

[Q ∧ T ∧ P ∧ chain(β, �) ⇒ 〈∀ źz :: źz = zz ⇒ mcrE(w) 〉 σ ]
= { rewrite quantification as a substitution }

[Q ∧ T ∧ P ∧ chain(β, �) ⇒ mcrE(w)(źz := zz) σ ]
= { (63): mcrE , and predicate calculus, leaving the range of a

implicit }
〈∧ a :: [Q ∧ T ∧ P ∧ chain(β, �) ⇒

modconE(w, res.a, res.a)(źz := zz) σ ] 〉
= { modconE , using a fresh t }

〈∧ a :: [Q ∧ T ∧ P ∧ chain(β, �) ⇒
〈∀ t :: `res.a[t] = ´res.a[t] ∨

modpointE(res.a,w, t) 〉(źz := zz) σ ] 〉
= { predicate calculus, since t does not occur free in antecedent }

〈∧ a :: [Q ∧ T ∧ P ∧ chain(β, �) ∧
¬modpointE(res.a,w, t)(źz := zz) σ ⇒

( `res.a[t] = ´res.a[t])(źz := zz) σ ] 〉
= { σ is an � -replacement, and let τ abbreviate (źz := zz) σ }

〈∧ a :: [Q ∧ T ∧ P ∧ chain(β, �) ∧ ¬modpointE(res.a,w, t) τ ⇒
res.a−2�[t] = res.a3�+1[t] ] 〉

= { (66) and (67) }
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〈∧ a :: [QRa ∧ QPa ∧ Q′
a ∧ T ∧ P ∧ chainres.a(β, �) ∧

chain′
res.a(β, �) ∧ ¬modpointE(res.a,w, t) τ ⇒
res.a−2�[t] = res.a3�+1[t] ] 〉

= { Chain of Equalities Lemma, since Q′
a , T , P , chain′

res.a(β, �) ,
¬modpointE(res.a,w, t) τ , and the Kj ’s in chain′

res.a(β, �) are
almost independent of res.a with respect to F.a }

〈∧ a :: [QRa ∧ QPa ∧ Q′
a ∧ T ∧ P ∧ chainres.a(β, �) ∧

chain′
res.a(β, �) ∧ ¬modpointE(res.a,w, t) τ ⇒
〈∧ j

 − 2� ≤ j < 3�+ 1 :: ¬Kj(res.a, β, t) 〉 ] 〉
= { (66), (67), and predicate calculus, henceforth leaving the range of j

implicit }
〈∧ a :: [Q ∧ T ∧ P ∧ chain(β, �) ⇒

modpointE(res.a,w, t) τ ∨ 〈∧ j :: ¬Kj(res.a, β, t) 〉 ] 〉
⇒ { by (64), [modpointE(res.a,w, t) ⇒ modpointE(ε,w, t)] }

〈∧ a :: [Q ∧ T ∧ P ∧ chain(β, �) ⇒
modpointE(ε,w, t) τ ∨ 〈∧ j :: ¬Kj(res.a, β, t) 〉 ] 〉

= { predicate calculus }
[Q ∧ T ∧ P ∧ chain(β, �) ⇒

modpointE(ε,w, t) τ ∨ 〈∧ j :: 〈∧
a :: ¬Kj(res.a, β, t) 〉〉 ]

= { by (64), the definition of Kj , and DeMorgan’s law, we have
[〈∧ a :: ¬Kj(res.a, β, t) 〉 ≡ ¬Kj(ε, β, t)] }

[Q ∧ T ∧ P ∧ chain(β, �) ⇒
modpointE(ε,w, t) τ ∨ 〈∧ j :: ¬Kj(ε, β, t) 〉 ]

⇒ { instantiating the quantifications in chainε(β, �) with s := t yields
〈∧ j :: εj[t] = εj+1[t] ∨ Kj(ε, β, t) 〉 }

[Q ∧ T ∧ P ∧ chain(β, �) ⇒
modpointE(ε,w, t) τ ∨ 〈∧ j :: εj[t] = εj+1[t] 〉 ]

⇒ { transitivity of = }
[Q ∧ T ∧ P ∧ chain(β, �) ⇒

modpointE(ε,w, t) τ ∨ ε−2�[t] = ε3�+1[t] ]
= { predicate calculus, since t does not occur free in antecedent;

and τ = (źz := zz) σ where σ is an � -replacement }
[Q ∧ T ∧ P ∧ chain(β, �) ⇒

〈∀ t :: modpointE(ε,w, t) ∨ ὲ[t] = έ[t] 〉 τ ]
= { modconE ; and τ , substitution, and quantification }
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[Q ∧ T ∧ P ∧ chain(β, �) ⇒
〈∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉 σ ]

= { Chain Rewriting Lemma with the same C , α , k , and θ as before,
but with R := 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉 }

[Q ∧ T ∧ chain(α, 0) ⇒
ulpE(C, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉)(z̀z, zz := zz0, zz1) ]

= { T , chain(α, 0) , yy , xx }
[Q ∧ R(z̀z, zz := zz0, zz1) ∧ zz0 = zz1 ⇒

ulpE(C, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉)(z̀z, zz := zz0, zz1) ]
⇒ { rename zz0, zz1 back to z̀z, zz , since zz0, zz1 were chosen to be

fresh }
[Q ∧ R ∧ z̀z = zz ⇒

ulpE(C, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉) ]
= { predicate calculus, since Q has no free variables and R has no free

occurrences of z̀z }
[Q ∧ R ⇒ 〈∀ z̀z :: z̀z = zz ⇒

ulpE(C, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉) 〉 ]
= { (65) }

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
ulpE(C, 〈 ∀ źz :: źz = zz ⇒ modconE(w, ε, ε) 〉) 〉 ]

With that, we have proved the Chain of Equalities Corollary.

A24 Refunctionalization

The formula VCD(m,C) has been generated using declarations in D . How do
we get from it to VCE(m,C) , that is, how can we even begin to relate VCD(m,C)
to VCE(m,C) ? For example, an occurrence of a variable a that depends on ε in
E will be functionalized in VCE to an expression of the form F.a(. . . , ε) ; while
in VCD the corresponding occurrence of a will be functionalized to F.a(. . .) .
We deal with these kinds of discrepancies by refunctionalizing VCD(m,C) into a
formula that looks closer to VCE(m,C) than VCD(m,C) does. Refunctionaliza-
tion is driven by the syntactic form of the given formula. Here is where it will be
useful that we left some markers in the VC generated by VCD(m,C) , to give us
guidance in refunctionalization.

We introduce refunctionalization as a meta function XD,E : if Q is a vanilla
expression in D , then XD,E(Q) approximates a vanilla expression in E . To have
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mercy on our readers, and on ourselves, we drop the subscripts of X and will
write simply X for XD,E from now on.

For any D , ε , and E such that Extend(D, ε,E) (defined in Section A16),
we define X in Figure 17. The definition follows the cases in the grammar for
vanilla expressions in Section A12, but with more special cases added. Since
scalars (line 0) and concrete fields (line 1) are unchanged by functionalization,
they are also unchanged by refunctionalization. An abstract variable a (line 2)
with one direct dependency, say f , in D and one additional dependency, ε , in
E is refunctionalized by recursively refunctionalizing the arguments to F.a (the
residue arguments remain unchanged) and adding ε as an extra argument adorned
in the same way as the residue arguments. Since the argument order of an abstrac-
tion function is arbitrary, we order ε last among a ’s dependencies. Cases where
the abstract variable has different numbers of dependencies are straightforward
and omitted from Figure 17 (for example, if a does not depend on ε in E , then
refunctionalization does not add the extra argument ε̃ ).

X distributes over operators. Line 3 shows the equation for an arbitrary binary
operator; operators with other arities are similar. Except as stated below, X also
distributes over quantifications over scalars (line 4), concrete fields (line 5), and in-
dividual residue variables, with (line 8) and without (line 6) equality antecedents.
Quantifications over ε and equality antecedents for ε are introduced during the
refunctionalization of quantifications over shared residues (lines 7 and 9).

For quantifications arising from individual-residue modification constraints
(line 10), X applies recursively to the subpredicate Q . Shared-residue mod-
ification constraints (line 11) are similar, but in this case, X also introduces
a special modification constraint for ε , namely modconE(w, ε, sres) , where w
comes from the marker “ w:” around the given modification constraint for sres .
Note that the second and third parameters to this use of modconE are different,
whereas they always coincide when modconE is generated in a VC. (The rea-
son for the special modification constraint is as follows. In order to prove that X
preserves the validity of VCs, see (75), refunctionalization must add some modi-
fication constraint for ε . In the main proof of Soundness Lemma C, we will get
the desired modconE(w, ε, ε) by applying the Chain of Equalities Corollary. At
that time, modconE(w, ε, sres) is absorbed, because it turns out to be weaker than
modconE(w, ε, ε) .)

Refunctionalization simply replaces the pointwise axioms (line 12) and rep
axioms (line 13) generated in D by those that would be generated in E .
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0 : X(s) = s
1 : X(c̃) = c̃
2 : X(F.a( ˜sres, ˜res.a,Q)) = F.a( ˜sres, ˜res.a,X(Q), ε̃)
3 : X(Q0 op Q1) = X(Q0) op X(Q1)
4 : X(〈 ∀ s :: Q 〉) = 〈 ∀ s :: X(Q) 〉
5 : X(〈 ∀ c̃ :: Q 〉) = 〈 ∀ c̃ :: X(Q) 〉
6 : X(〈 ∀ ˜res.a :: Q 〉) = 〈 ∀ ˜res.a :: X(Q) 〉
7 : X(〈 ∀ ˜sres :: Q 〉) = 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: X(Q) 〉〉
8 : X(〈 ∀ ˜res.a :: ˜res.a = ¯res.a ⇒ Q 〉) =

〈 ∀ ˜res.a :: ˜res.a = ¯res.a ⇒ X(Q) 〉
9 : X(〈 ∀ ˜sres :: ˜sres = ¯sres ⇒ Q 〉) =

〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ˜sres = ¯sres ⇒ X(Q) 〉〉
10 : X(w:〈 ∀ s :: `res.a[s] = ´res.a[s] ∨ Q 〉) =

w:〈 ∀ s :: `res.a[s] = ´res.a[s] ∨ X(Q) 〉)
11 : X(w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ Q 〉) =

w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ X(Q) 〉) ∧
modconE(w, ε, sres)

12 : X( formula (25), page 84 ) = 〈 ∀ t, `sres, ´sres, `res.a, ´res.a, f̀ , f́ , ὲ, έ ::
`sres[t] = ´sres[t] ∧
`res.a[t] = ´res.a[t] ∧

f̀ [t] = f́ [t] ∧ ὲ[t] = έ[t] ⇒
F.a( `sres, `res.a, f̀ , ὲ)[t] =
F.a( ´sres, ´res.a, f́ , έ)[t] 〉

13 : X(〈 ∀ t: T, sres, res.a, f :: t 	= nil ⇒ F.a(sres, res.a, f )[t] = e 〉) =
〈 ∀ t: T, sres, res.a, f , ε :: t 	= nil ⇒ F.a(sres, res.a, f , ε)[t] = e 〉

Figure 17: The definition of the refunctionalization meta function X .
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A25 Properties of X

The refunctionalization meta function X enjoys several distributive and commu-
tative properties. We list these properties in this section for use in the main proof
of Soundness Lemma C. After we give the main proof in the next section, we will
spend a number of sections giving the proofs of the properties listed here.

The properties in this section are stated in the context of any D , ε , and E
that satisfy Extend(D, ε,E) .

For any user expression e in D ,

X(FD(e)) = FE(e) (68)

For the background predicate, rep axioms, and pointwise axioms,

[X(BPD) ⇐ BPE] (69)

X(RepD) = RepE (70)

X(PWD) = PWE (71)

For any modifies list w in D ,

(72)[X(mcD(w)) ∧ modconE(w, ε, ε) ≡ mcE(w)]
(73)[X(mcD(w)) ⇒ mcrE(w)]

where mcrE is the meta function defined by (63) on page 127. For any command
C in D and any predicate Q in D ,

[X(wlpD(C,Q)) ⇒ wlpE(C,X(Q))] (74)

For any implementation C in D of a method m ,

[VCD(m,C)] ⇒ [X(VCD(m,C))] (75)

Properties (69) through (74) essentially say that meta function X refunction-
alizes formulas in the way we intended, that is, that X transforms a VC generated
in D into a formula quite similar to the VC that would have been generated in E
(the only differences are that X doesn’t conjoin the background-predicate axioms
that are generated only in E and that X introduces modconE(w, ε, sres) instead
of the proper modification constraint modconE(w, ε, ε) ).

Property (75), which states that X preserves the validity of VCs, plays a vital
rôle in our proof of the Soundness Theorem. The essence of the Soundness The-
orem is captured by Soundness Lemma C, and at the heart of its proof are two
pieces: the Chain of Equalities Corollary and X property (75).
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A26 The main proof of Soundness Lemma C

Using the yet-to-be-proved properties of X stated in the previous section, we give
the proof of Soundness Lemma C.

Proof of Soundness Lemma C. Let D , ε , E , m , and C satisfy the antecedent
of Soundness Lemma C. Let zz be the concrete fields and residue variables in D ,
and suppose the specification for m is

requires p modifies w ensures q

We calculate,

[VCD(m,C)]
⇒ { (75): X preserves the validity of VCs }

[X(VCD(m,C))]
= { VCD }

[X(BPD ∧ RepD ∧ PWD ∧ FD(p) ⇒ 〈∀ z̀z :: z̀z = zz ⇒
wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉]

= { definition of X on operators ⇒ and ∧ }
[X(BPD) ∧ X(RepD) ∧ X(PWD) ∧ X(FD(p)) ⇒
X(〈 ∀ z̀z :: z̀z = zz ⇒

wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉)]
⇒ { (69): X and BP }

[BPE ∧ X(RepD) ∧ X(PWD) ∧ X(FD(p)) ⇒
X(〈 ∀ z̀z :: z̀z = zz ⇒

wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉)]
= { (70) and (71) and (68): X , Rep , PW , and F }

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒
X(〈 ∀ z̀z :: z̀z = zz ⇒

wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉) 〉)]
= { X }

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒
X(wlpD(C, 〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉)) 〉]

⇒ { (74): X and wlp }
[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒

wlpE(C,X(〈 ∀ źz :: źz = zz ⇒ FD(q) ∧ mcD(w) 〉)) 〉]
= { X }
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[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒
wlpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ X(FD(q) ∧ mcD(w)) 〉) 〉]

= { definition of X on ∧ , and (68) }
[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒

wlpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ FE(q) ∧ X(mcD(w)) 〉) 〉]
= { (38): monotonicity of wlpE , since by (73),

[FE(q) ∧ X(mcD(w)) ⇒ mcrE(w)] }
[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒

wlpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ FE(q) ∧ X(mcD(w)) 〉) 〉] ∧
[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒

wlpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ mcrE(w) 〉) 〉]
⇒ { (36): wlpD implies ulpD }

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒
wlpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ FE(q) ∧ X(mcD(w)) 〉) 〉] ∧

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒
ulpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ mcrE(w) 〉) 〉]

⇒ { Chain of Equalities Corollary (page 127) with zz := (zz, ε) }
[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒

wlpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ FE(q) ∧ X(mcD(w)) 〉) 〉] ∧
[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒

ulpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ modconE(w, ε, ε) 〉) 〉]
= { (39): conjunctivity, wlpE , and ulpE }

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒
wlpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒

FE(q) ∧ X(mcD(w)) ∧ modconE(w, ε, ε) 〉) 〉]
= { (72): X and modification constraints }

[BPE ∧ RepE ∧ PWE ∧ FE(p) ⇒ 〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒
wlpE(C, 〈 ∀ źz, έ :: źz = zz ∧ έ = ε ⇒ FE(q) ∧ mcE(w) 〉) 〉]

= { VCE , since zz , ε are the concrete fields and residue variables
in E }

[VCE(m,C)]

Now, all that remains is proving the eight properties of X .
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A27 X and user expressions

In this section, we prove X property (68): for any D , ε , and E such that
Extend(D, ε,E) and any user expression e ,

X(FD(e)) = FE(e)

Proof of (68). We actually prove this property not just for user expressions, but
for any expression e in the domain of FD except residue variables. The proof is
by induction over the shape of e .

CASE s :

X(FD(s))
= { FD and X }

s
= { FE }

FE(s)

CASE c̃ :

X(FD(c̃))
= { FD and X }

c̃
= { FE }

FE(c̃)

CASE ã :

X(FD(ã))
= { FD }

X(F.a( ˜sres, ˜res.a,FD(f̃ )))
= { X }

F.a( ˜sres, ˜res.a,X(FD(f̃ )), ε̃)
= { induction hypothesis }

F.a( ˜sres, ˜res.a,FE(f̃ ), ε̃)
= { FE on concrete field ε̃ }

F.a( ˜sres, ˜res.a,FE(f̃ ),FE(ε̃))

= { FE }
FE(ã)
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CASE e0 op e1 :

X(FD(e0 op e1))
= { FD }

X(FD(e0) op FD(e1))
= { X }

X(FD(e0)) op X(FD(e1))
= { induction hypothesis, twice }

FE(e0) op FE(e1)
= { FE }

FE(e0 op e1)

CASE 〈 ∀ s :: e 〉 :

X(FD(〈 ∀ s :: e 〉))
= { FD }

X(〈 ∀ s :: FD(e) 〉)
= { X }

〈 ∀ s :: X(FD(e)) 〉
= { induction hypothesis }

〈 ∀ s :: FE(e) 〉
= { FE }

FE(〈 ∀ s :: e 〉)
That concludes the proof of property (68).

A28 X and the background predicate

In this section, we prove X property (69): for any D , ε , and E such that
Extend(D, ε,E) ,

[X(BPD) ⇐ BPE]

Proof of (69). Since the background predicate BPD is generated as a function of
the type declarations in D , independent of what other declarations D contains,
it follows that BPD does not mention abstraction functions, residue variables,
residue modification constraints, pointwise axioms, or rep axioms. Thus, we have

X(BPD) = BPD

We calculate,
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X(BPD)

= { observation above }
BPD

⇐ { D ⊆ E , which follows from Extend(D, ε,E) , and (26) }
BPE

A29 X and rep and pointwise axioms

In this section, we prove X properties (70) and (71): for any D , ε , and E such
that Extend(D, ε,E) ,

X(RepD) = RepE and

X(PWD) = PWE

Proof of (70) and (71). Let D , ε , and E satisfy Extend(D, ε,E) . By the
definition of X , the refunctionalization of any pointwise axiom or rep axiom in D
equals the corresponding axiom in E . Since D and E coincide in their abstract
field and rep declarations, (70) and (71) follow.

A30 X and modification constraints

In this section, we prove properties (72) and (73), which relate X and modification
constraints. We start by proving a three-part lemma that will be useful in the
proofs of these properties.

Lemma. For any D , ε , and E such that Extend(D, ε,E) , any modifies list w
in D , any field f in D , and any individual residue variable res.a in D ,

(76)X(modconD(w, f , f )) = modconE(w, f , f )
(77)X(modconD(w, res.a, res.a)) = modconE(w, res.a, res.a)

(78)
X(modconD(w, sres, sres)) =

modconE(w, sres, sres) ∧ modconE(w, ε, sres)
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Proof. For any field f in D , we calculate,

X(modconD(w, f , f ))
= { (24): definition of modconD }

X(w:〈 ∀ s :: FD(f̀ [s] = f́ [s] ∨ modpointD(f ,w, s)) 〉)
= { X on unary operator “ w:” and on scalar quantification }

w:〈 ∀ s :: X(FD(f̀ [s] = f́ [s] ∨ modpointD(f ,w, s))) 〉
= { (68): X ◦ FD = FE }

w:〈 ∀ s :: FE(f̀ [s] = f́ [s] ∨ modpointD(f ,w, s)) 〉
= { lemma (33) with x := f }

w:〈 ∀ s :: FE(f̀ [s] = f́ [s] ∨ modpointE(f ,w, s)) 〉
= { (24): definition of modconE }

modconE(w, f , f )

For any individual residue variable res.a , we calculate,

X(modconD(w, res.a, res.a))
= { (24): definition of modconD }

X(w:〈 ∀ s :: FD( `res.a[s] = ´res.a[s] ∨ modpointD(res.a,w, s)) 〉)
= { FD }

X(w:〈 ∀ s :: `res.a[s] = ´res.a[s] ∨ FD(modpointD(res.a,w, s)) 〉)
= { X on individual-residue modification constraint }

w:〈 ∀ s :: `res.a[s] = ´res.a[s] ∨ X(FD(modpointD(res.a,w, s))) 〉
= { (68): X ◦ FD = FE }

w:〈 ∀ s :: `res.a[s] = ´res.a[s] ∨ FE(modpointD(res.a,w, s)) 〉
= { lemma (33) with x := res.a }

w:〈 ∀ s :: `res.a[s] = ´res.a[s] ∨ FE(modpointE(res.a,w, s)) 〉
= { FE }

w:〈 ∀ s :: FE( `res.a[s] = ´res.a[s] ∨ modpointE(res.a,w, s)) 〉
= { (24): definition of modconE }

modconE(w, res.a, res.a)

For the shared residue variable, we calculate,

X(modconD(w, sres, sres))
= { (24): definition of modconD }

X(w:〈 ∀ s :: FD( `sres[s] = ´sres[s] ∨ modpointD(sres,w, s)) 〉)
= { FD }

X(w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ FD(modpointD(sres,w, s)) 〉)
= { X on shared-residue modification constraint }
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w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ X(FD(modpointD(sres,w, s))) 〉 ∧
modconE(w, ε, sres)

= { (68): X ◦ FD = FE }
w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ FE(modpointD(sres,w, s)) 〉 ∧
modconE(w, ε, sres)

= { lemma (33) with x := sres }
w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ FE(modpointE(sres,w, s)) 〉 ∧
modconE(w, ε, sres)

= { FE }
w:〈 ∀ s :: FE( `sres[s] = ´sres[s] ∨ modpointE(sres,w, s)) 〉 ∧
modconE(w, ε, sres)

= { (24): definition of modconE }
modconE(w, sres, sres) ∧ modconE(w, ε, sres)

That proves the three parts of the lemma.

Now for the proof of X property (72): for any D , ε , and E such that
Extend(D, ε,E) and any modifies list w in D ,

[X(mcD(w)) ∧ modconE(w, ε, ε) ≡ mcE(w)]

Proof of (72). For any D , ε , and E such that Extend(D, ε,E) and any modifies
list w in D , we calculate

X(mcD(w)) ∧ modconE(w, ε, ε)
= { mcD }

X(〈∧ x
 x ∈ D :: modconD(w, x, x) 〉) ∧ modconE(w, ε, ε)

= { definition of X on ∧ }
〈∧ x

 x ∈ D :: X(modconD(w, x, x)) 〉 ∧ modconE(w, ε, ε)
= { split range: let f range over fields, let a range over abstract fields,

and let (as usual) res.a denote the residue variable associated with
a }

〈∧ f
 f ∈ D :: X(modconD(w, f , f )) 〉 ∧

〈∧ a
 a ∈ D :: X(modconD(w, res.a, res.a)) 〉 ∧

X(modconD(w, sres, sres)) ∧ modconE(w, ε, ε)
= { lemma (76)–(77)–(78) }

〈∧ f
 f ∈ D :: modconE(w, f , f ) 〉 ∧

〈∧ a
 a ∈ D :: modconE(w, res.a, res.a) 〉 ∧

modconE(w, sres, sres) ∧ modconE(w, ε, sres) ∧ modconE(w, ε, ε)
= { lemma (34): [modconE(w, ε, ε) ⇒ modconE(w, ε, sres)] }
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〈∧ f
 f ∈ D :: modconE(w, f , f ) 〉 ∧

〈∧ a
 a ∈ D :: modconE(w, res.a, res.a) 〉 ∧

modconE(w, sres, sres) ∧ modconE(w, ε, ε)
= { combine ranges }

〈∧ x
 x ∈ E :: modconE(w, x, x) 〉

= { mcE }
mcE(w)

And now the proof of X property (73): for any D , ε , and E such that
Extend(D, ε,E) and any modifies list w in D ,

[X(mcD(w)) ⇒ mcrE(w)]

Proof of (73). Let D , ε , and E satisfy Extend(D, ε,E) , let w be any modifies
list D , and let a by any abstract field in E such that a onE ε . Since D and E
coincide in their declarations of abstract fields, a is also in D . Let res.a denote
the individual residue variable of a . Then, modconE(w, res.a, res.a) denotes an
arbitrary conjunct of mcrE(w) . We calculate,

modconE(w, res.a, res.a)
= { lemma (77) }

X(modconD(w, res.a, res.a))
⇐ { strengthening, since res.a ∈ D }

〈∧ x
 x ∈ D :: X(modconD(w, x, x)) 〉

= { definition of X on ∧ }
X(〈∧ x

 x ∈ D :: modconD(w, x, x) 〉)
= { mcD }

X(mcD(w))

A31 X and wlp

In this section, we prove X property (74): for any D , ε , and E such that
Extend(D, ε,E) , any command C in D , and any predicate Q in D ,

[X(wlpD(C,Q)) ⇒ wlpE(C,X(Q))]
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Proof of (74). Let D , ε , and E satisfy Extend(D, ε,E) , let C be a command
in D , and let Q be a predicate in D . We proceed by induction over the shape of
C .

CASE s := e :

X(wlpD(s := e,Q))
= { wlpD }

X(〈 ∀ s′ :: s′ = FD(e) ⇒ 〈∀ s :: s = s′ ⇒ Q 〉〉)
= { X }

〈 ∀ s′ :: s′ = X(FD(e)) ⇒ 〈∀ s :: s = s′ ⇒ X(Q) 〉〉
= { (68): X ◦ FD = FE }

〈 ∀ s′ :: s′ = FE(e) ⇒ 〈∀ s :: s = s′ ⇒ X(Q) 〉〉
= { wlpE }

wlpE(s := e,X(Q))

CASE c[e0] := e1 :

X(wlpD(c[e0] := e1,Q))
= { wlpD }

X(〈 ∀ c′ :: c′ = store(c,FD(e0),FD(e1)) ⇒ 〈∀ c :: c = c′ ⇒ Q 〉〉)
= { X }

〈 ∀ c′ :: c′ = store(c,X(FD(e0)),X(FD(e1))) ⇒ 〈∀ c :: c = c′ ⇒ X(Q) 〉〉
= { (68): X ◦ FD = FE , twice }

〈 ∀ c′ :: c′ = store(c,FE(e0),FE(e1)) ⇒ 〈∀ c :: c = c′ ⇒ X(Q) 〉〉
= { wlpE }

wlpE(c[e0] := e1,X(Q))

CASE assert e :

X(wlpD(assert e,Q))
= { wlpD }

X(FD(e) ∧ Q)
= { X on ∧ , and (68): X ◦ FD = FE }

FE(e) ∧ X(Q)
= { wlpE }

wlpE(assert e,X(Q))

CASE assume e :
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X(wlpD(assume e,Q))
= { wlpD }

X(FD(e) ⇒ Q)
= { X on ⇒ , and (68): X ◦ FD = FE }

FE(e) ⇒ X(Q)
= { wlpE }

wlpE(assume e,X(Q))

CASE C0 ; C1 :

X(wlpD(C0 ; C1,Q))
= { wlpD }

X(wlpD(C0,wlpD(C1,Q)))
⇒ { induction hypothesis }

wlpE(C0,X(wlpD(C1,Q)))
⇒ { induction hypothesis, since (38): wlpE is monotonic }

wlpE(C0,wlpE(C1,X(Q)))
= { wlpE }

wlpE(C0 ; C1,X(Q))

CASE C0 C1 :

X(wlpD(C0 C1,Q))
= { wlpD }

X(wlpD(C0,Q) ∧ wlpD(C1,Q))
= { X on ∧ }

X(wlpD(C0,Q)) ∧ X(wlpD(C1,Q))
⇒ { induction hypothesis, twice }

wlpE(C0,X(Q)) ∧ wlpE(C1,X(Q))
= { wlpE }

wlpE(C0 C1,X(Q))

CASE var s in C end :

X(wlpD(var s in C end,Q))
= { wlpD }

X(〈 ∀ s :: wlpD(C,Q) 〉)
= { X }

〈 ∀ s :: X(wlpD(C,Q) 〉)
⇒ { induction hypothesis }
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〈 ∀ s :: wlpE(C,X(Q)) 〉
= { wlpE }

wlpE(var s in C end,X(Q))

CASE call m(e) : Suppose the specification of m , after renaming its parameter to
a fresh dummy t , is

method m(t: T) requires p modifies w ensures q

and let zz denote the list of concrete fields and residue variables in D . Then,

X(wlpD(call m(e),Q))
= { wlpD }

X(〈 ∀ t :: t = FD(e) ⇒ FD(p) ∧ 〈 ∀ z̈z :: z̈z = z̀z ⇒
〈∀ z̀z :: z̀z = zz ⇒ 〈∀ źz :: FD(q) ∧ mcD(w) ⇒
〈∀ z̀z :: z̀z = z̈z ⇒ 〈∀ zz :: zz = źz ⇒ Q 〉〉〉〉〉〉)

= { X }
〈 ∀ t :: t = X(FD(e)) ⇒ X(FD(p)) ∧ 〈 ∀ z̈z, ε̈ :: z̈z = z̀z ∧ ε̈ = ὲ ⇒
〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒ 〈∀ źz, έ :: X(FD(q)) ∧ X(mcD(w)) ⇒
〈∀ z̀z, ὲ :: z̀z = z̈z ∧ ὲ = ε̈ ⇒ 〈∀ zz, ε :: zz = źz ∧ ε = έ ⇒

X(Q) 〉〉〉〉〉〉
= { (68): X ◦ FD = FE , three times }

〈 ∀ t :: t = FE(e) ⇒ FE(p) ∧ 〈 ∀ z̈z, ε̈ :: z̈z = z̀z ∧ ε̈ = ὲ ⇒
〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒ 〈∀ źz, έ :: FE(q) ∧ X(mcD(w)) ⇒
〈∀ z̀z, ὲ :: z̀z = z̈z ∧ ὲ = ε̈ ⇒ 〈∀ zz, ε :: zz = źz ∧ ε = έ ⇒

X(Q) 〉〉〉〉〉〉
⇒ { by (72), [X(mcD(w)) ⇐ mcE(w)] }

〈 ∀ t :: t = FE(e) ⇒ FE(p) ∧ 〈 ∀ z̈z, ε̈ :: z̈z = z̀z ∧ ε̈ = ὲ ⇒
〈∀ z̀z, ὲ :: z̀z = zz ∧ ὲ = ε ⇒ 〈∀ źz, έ :: FE(q) ∧ mcE(w) ⇒
〈∀ z̀z, ὲ :: z̀z = z̈z ∧ ὲ = ε̈ ⇒ 〈∀ zz, ε :: zz = źz ∧ ε = έ ⇒

X(Q) 〉〉〉〉〉〉
= { wlpE , since zz , ε are the concrete fields and residue variables

in E }
wlpE(call m(e),X(Q))

A32 X and VC

We now have only one property left to prove to complete the proof of Soundness
Lemma C and thus the Soundness Theorem, namely X property (75): for any
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D , ε , and E such that Extend(D, ε,E) and any implementation C in D of a
method m ,

[VCD(m,C)] ⇒ [X(VCD(m,C))]

Proof of (75). The proof consists of a number of steps that transform the syntactic
expression Q into the syntactic expression X(Q) , preserving the validity of the
original Q . This technique is the same as we used in Section A16, where we
proved Soundness Lemma D from Soundness Lemma C, but the steps here will
be different.

For use in the proof, we define three functions, “ ( , ) ”, car , and cdr , which
satisfy the following properties:

〈 ∀ a, b, c, d :: (a, b) = (c, d) ≡ a = c ∧ b = d 〉 (79)

〈 ∀ p, a, b :: p = (a, b) ≡ a = car(p) ∧ b = cdr(p) 〉 (80)

〈 ∀ a, b, t :: (a, b)[t] ≡ (a[t], b[t]) 〉 (81)

(Readers who doubt that such properties can be postulated in this soundness proof
are encouraged to consult Part IV of this appendix.)

From the definition of X (Figure 17, page 134), we can see the syntactic dif-
ferences between VCD(m,C) and X(VCD(m,C)) . These differences are shown
side by side in Figure 18. In that figure, a is an abstract variable in D that de-
pends on ε in E .

The idea is to transform the formula VCD(m,C) into X(VCD(m,C)) , pre-
serving validity. We do so by a series of transformations to the working formula,
which starts off as VCD(m,C) and ends up as X(VCD(m,C)) . Our series of
transformations are guided by the differences shown in Figure 18.

So, initially, our working formula contains subexpressions of the forms sug-
gested by Figure 19. In that figure, a takes the rôle of a typical abstract variable
that depends on ε in E , and b takes the rôle of a typical abstract variable that
does not depend on ε .

Step 0: From Figure 19 to Figure 20. We start by reconciling an easy differ-
ence: D1. For each formula of the form (shown in the left column in Figure 18
under the label) D1 in the working formula, we insert a surrounding quantification
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VCD(m,C) X(VCD(m,C))
D0. Functionalized forms:
F.a( ˜sres, . . .) F.a( ˜sres, . . . , ε̃)

D1. Quantifications over shared residues:
〈 ∀ ˜sres :: . . . 〉 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: . . . 〉〉

D2. Quantifications over shared residues with equality antecedents:
〈 ∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉 〈 ∀ ε̃ :: ε̃ = ε̄ ⇒

〈∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉〉
D3. Shared-residue modification constraints:
w:〈 ∀ s :: `sres[s] = ´sres[s]

∨ . . . 〉
w:〈 ∀ s :: `sres[s] = ´sres[s]

∨ . . . 〉 ∧ modconE(w, ε, sres)
D4. Pointwise axioms:
〈 ∀ t, `sres, ´sres, . . . ::

`sres[t] = ´sres[t] ∧ . . . ⇒
F.a( `sres, . . .)[t] =
F.a( ´sres, . . .)[t] 〉

〈 ∀ t, `sres, ´sres, . . . , ὲ, έ ::
`sres[t] = ´sres[t] ∧ . . . ∧ ὲ[t] = έ[t] ⇒
F.a( `sres, . . . , ὲ)[t] =
F.a( ´sres, . . . , έ)[t] 〉

D5. Rep axioms:
〈 ∀ t: T, sres, . . . :: t 	= nil ⇒

F.a(sres, . . .)[t] = e 〉
〈 ∀ t: T, sres, . . . , ε :: t 	= nil ⇒
F.a(sres, . . . , ε)[t] = e 〉

Figure 18: A diagram showing the syntactic differences between VCD(m,C) and
X(VCD(m,C)) .

D0: F.a( ˜sres, . . .)
F.b( ˜sres, . . .)

D1: 〈 ∀ ˜sres :: . . . 〉
D2: 〈 ∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉
D3: w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ . . . 〉
D4: 〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.a( `sres, . . .)[t] = F.a( ´sres, . . .)[t] 〉
〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.b( `sres, . . .)[t] = F.b( ´sres, . . .)[t] 〉
D5: 〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.a(sres, . . .)[t] = e 〉

〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.b(sres, . . .)[t] = e 〉

Figure 19: A sketch of the initial working formula.
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D0: F.a( ˜sres, . . .)
F.b( ˜sres, . . .)

D1: 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: . . . 〉〉
D2: 〈 ∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉
D3: w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ . . . 〉
D4: 〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.a( `sres, . . .)[t] = F.a( ´sres, . . .)[t] 〉
〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.b( `sres, . . .)[t] = F.b( ´sres, . . .)[t] 〉
D5: 〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.a(sres, . . .)[t] = e 〉

〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.b(sres, . . .)[t] = e 〉

Figure 20: A sketch of the working formula after transforming it to reconcile the
D1 differences.

over ε . The fact that this transformation preserves the validity of the working for-
mula is justified by the following fact: if R is a predicate with no free occurrences
of ε̃ , then

[R ≡ 〈 ∀ ε̃ :: R 〉]
In Figure 19, the working formula has no free occurrences of ε̃ and inserting
quantifications over ε̃ as suggested does not introduce any free occurrences of ε̃ ,
so this transformation can be done one place at a time, in any order. After the
transformation, the working formula has the shape suggested by Figure 20.

Step 1: From Figure 20 to Figure 21. Differences of the form described by D2
between the formulas VCD(m,C) and X(VCD(m,C)) are also easy to reconcile
in the working formula. First, we insert quantifications over ε̃ as needed, like we
did in the previous transformation. Then, we insert the antecedent “ ε̃ = ε̄ ⇒ ” in
these places. Since the subexpressions of the form D2 appear only in positive posi-
tions (by characteristic V1, page 87), inserting these antecedents will only weaken
the working formula, hence preserving its validity. After this transformation, the
working formula has the shape suggested by Figure 21.

Step 2: From Figure 21 to Figure 22. To transform the working formula fur-
ther, we need to tackle the problem that the arity of abstraction function F.a is
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D0: F.a( ˜sres, . . .)
F.b( ˜sres, . . .)

D1: 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: . . . 〉〉
D2: 〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉〉
D3: w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ . . . 〉
D4: 〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.a( `sres, . . .)[t] = F.a( ´sres, . . .)[t] 〉
〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.b( `sres, . . .)[t] = F.b( ´sres, . . .)[t] 〉
D5: 〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.a(sres, . . .)[t] = e 〉

〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.b(sres, . . .)[t] = e 〉

Figure 21: A sketch of the working formula after transforming it also to reconcile
the D2 differences.

different in D than in E . In particular, the arity of F.a in the current working
formula is one less than the arity of F.a in X(VCD(m,C)) . To reconcile this
difference, we will substitute a new function for F.a , similar to what we did in
Section A16, but here we must first worry about getting the appropriate extra argu-
ment, namely various bindings of ε̃ , in place. To that end, we start by performing
the transformation justified by the following calculation:

〈 ∀ ˜sres :: R 〉
⇒ { instantiate ˜sres }

〈 ∀ ˜sres :: R( ˜sres := ( ˜sres, ε̃)) 〉
We perform this transformation at each place in the working formula where there’s
a quantification over ˜sres , except in pointwise axioms and rep axioms. The trans-
formation preserves the validity of the working formula, since the affected quan-
tifications occur in positive positions (by characteristic V1). The transformation
yields a working formula whose shape is suggested by Figure 22. Note that this
transformation does not change occurrences of sres bound to the quantifications
in pointwise axioms and rep axioms. Note also that the transformation does alter
occurrences of sres that appear in equality antecedents and in residue modifica-
tion constraints, as shown in the figure.

Step 3: From Figure 22 to Figure 23. Let’s clean up the equality antecedents
right away. We apply the following calculation to all ˜sres quantifications with
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D0: F.a(( ˜sres, ε̃), . . .)
F.b(( ˜sres, ε̃), . . .)

D1: 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: . . . 〉〉
D2: 〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ( ˜sres, ε̃) = ( ¯sres, ε̄) ⇒ . . . 〉〉
D3: w:〈 ∀ s :: ( `sres, ὲ)[s] = ( ´sres, έ)[s] ∨ . . . 〉
D4: 〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.a( `sres, . . .)[t] = F.a( ´sres, . . .)[t] 〉
〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.b( `sres, . . .)[t] = F.b( ´sres, . . .)[t] 〉
D5: 〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.a(sres, . . .)[t] = e 〉

〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.b(sres, . . .)[t] = e 〉

Figure 22: A sketch of the working formula after substituting the pair ( ˜sres, ε̃)
for occurrences of ˜sres in the formula sketched in Figure 21. This transformation
affects D0, D2, and D3.

equality antecedents in the working formula:

〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ( ˜sres, ε̃) = ( ¯sres, ε̄) ⇒ Q 〉〉
= { (79): pairing and equality }

〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ˜sres = ¯sres ∧ ε̃ = ε̄ ⇒ Q 〉〉
= { predicate calculus }

〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ˜sres = ¯sres ⇒ Q 〉〉
Now we are ready to replace abstraction functions with new ones whose ar-

ity is one larger. Let Q denote the current working formula. For each abstract
variable a that depends on ε in E (and as usual, we show the case where a has
exactly one dependency, f , in D ), we perform the following steps:

[Q]
⇒ { instantiate the universally quantified F.a }

[Q(F.a := 〈 λ p, res.a, f :: F.a(car(p), res.a, f , cdr(p)) 〉)]
And for each abstract variable b that does not depend on ε in E (and as usual,
we show the case where b has exactly one dependency, g , in D ), we perform
the following steps:

[Q]
⇒ { instantiate the universally quantified F.b }

[Q(F.b := 〈 λ p, res.b, g :: F.b(car(p), res.b, g) 〉)]
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D0: F.a( ˜sres, . . . , ε̃)
F.b( ˜sres, . . .)

D1: 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: . . . 〉〉
D2: 〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉〉
D3: w:〈 ∀ s :: ( `sres, ὲ)[s] = ( ´sres, έ)[s] ∨ . . . 〉
D4: 〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.a(car( `sres), . . . , cdr( `sres))[t] = F.a(car( ´sres), . . . , cdr( ´sres))[t] 〉
〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.b(car( `sres), . . .)[t] = F.b(car( ´sres), . . .)[t] 〉
D5: 〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.a(car(sres), . . . , cdr(sres))[t] = e 〉

〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.b(car(sres), . . .)[t] = e 〉

Figure 23: A sketch of the working formula after cleaning up equality antecedents
and replacing abstraction functions with ones of larger arity, which affects D0, D2,
D4, and D5.

Note that since b does not depend on ε , the new F.b has the same arity as the
old F.b , but it throws away half of the first argument given to the old F.b . After
applying β-conversion to all of these λ-expressions and applying the car and cdr
of pairs according to (80), the working formula will have the form sketched in Fig-
ure 23. Note that the substitutions we made affect all occurrences of abstraction
functions, even those in pointwise axioms and rep axioms.

Step 4: From Figure 23 to Figure 24. At this point, the first four lines of the
sketch of the working formula in Figure 23 look like we want them to, but the
other lines of the sketch do not. We choose to address rep axioms next.

For any abstract variable a that depends on ε in E , we calculate,

〈 ∀ t: T, sres, res.a, f :: t 	= nil ⇒
F.a(car(sres), res.a, f , cdr(sres))[t] = e 〉

= { rename dummy sres to a new name p ; note that e does not
contain any occurrences of sres , since e is a user expression }

〈 ∀ t: T, p, res.a, f :: t 	= nil ⇒ F.a(car(p), res.a, f , cdr(p))[t] = e 〉
= { one-point rule to introduce sres and ε (neither of

which occurs free in the body of the rep axiom) for the
expressions car(p) and cdr(p) }
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〈 ∀ t: T, p, res.a, f , sres, ε :: t 	= nil ∧ sres = car(p) ∧ ε = cdr(p) ⇒
F.a(sres, res.a, f , ε)[t] = e 〉

= { (80): pairing, car , and cdr }
〈 ∀ t: T, p, res.a, f , sres, ε :: t 	= nil ∧ p = (sres, ε) ⇒

F.a(sres, res.a, f , ε)[t] = e 〉
= { one-point rule to eliminate p }

〈 ∀ t: T, sres, res.a, f , ε :: t 	= nil ⇒ F.a(sres, res.a, f , ε)[t] = e 〉
This last line has the form of the corresponding rep axiom for a in X(VCD(m,C)) .
For any abstract variable b that does not depend on ε in E , we calculate,

〈 ∀ t: T, sres, res.b, g :: t 	= nil ⇒ F.b(car(sres), res.b, g)[t] = e 〉
= { rename dummy sres to a new name p ; note that e does not

contain any occurrences of sres , since e is a user expression }
〈 ∀ t: T, p, res.b, g :: t 	= nil ⇒ F.b(car(p), res.b, g)[t] = e 〉

= { one-point rule to introduce sres and ε (neither of
which occurs free in the body of the rep axiom) for the
expressions car(p) and cdr(p) }

〈 ∀ t: T, p, res.b, g, sres, ε :: t 	= nil ∧ sres = car(p) ∧ ε = cdr(p) ⇒
F.b(sres, res.b, g)[t] = e 〉

= { (80): pairing, car , and cdr }
〈 ∀ t: T, p, res.b, g, sres, ε :: t 	= nil ∧ p = (sres, ε) ⇒

F.b(sres, res.b, g)[t] = e 〉
= { one-point rule to eliminate p }

〈 ∀ t: T, sres, res.b, g, ε :: t 	= nil ⇒ F.b(sres, res.b, g)[t] = e 〉
= { ε does not occur free in the body of the quantification }

〈 ∀ t: T, sres, res.b, g :: t 	= nil ⇒ F.b(sres, res.b, g)[t] = e 〉
This last line has the form of the corresponding rep axiom for b in X(VCD(m,C)) .
Applying these transformations to every rep axiom in the working formula, we end
up with a working formula whose shape is suggested by Figure 24.

Step 5: From Figure 24 to Figure 25. For any abstract variable a that depends
on ε in E , we calculate,

〈 ∀ t, `sres, ´sres, `res.a, ´res.a, f̀ , f́ ::
`sres[t] = ´sres[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t] ⇒
F.a(car( `sres), `res.a, f̀ , cdr( `sres))[t] =
F.a(car( ´sres), ´res.a, f́ , cdr( ´sres))[t] 〉

= { rename dummies `sres , ´sres to new names p̀ , ṕ }
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D0: F.a( ˜sres, . . . , ε̃)
F.b( ˜sres, . . .)

D1: 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: . . . 〉〉
D2: 〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉〉
D3: w:〈 ∀ s :: ( `sres, ὲ)[s] = ( ´sres, έ)[s] ∨ . . . 〉
D4: 〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.a(car( `sres), . . . , cdr( `sres))[t] = F.a(car( ´sres), . . . , cdr( ´sres))[t] 〉
〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.b(car( `sres), . . .)[t] = F.b(car( ´sres), . . .)[t] 〉
D5: 〈 ∀ t: T, sres, . . . , ε :: t 	= nil ⇒ F.a(sres, . . . , ε)[t] = e 〉

〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.b(sres, . . .)[t] = e 〉 . . .

Figure 24: A sketch of the working formula after massaging the rep axioms in
Figure 23, which affects D5.

〈 ∀ t, p̀, ṕ, `res.a, ´res.a, f̀ , f́ ::
p̀[t] = ṕ[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t] ⇒
F.a(car(p̀), `res.a, f̀ , cdr(p̀))[t] = F.a(car(ṕ), ´res.a, f́ , cdr(ṕ))[t] 〉

= { one-point rule to introduce `sres , ´sres , ὲ , and έ as names for the
car and cdr expressions }

〈 ∀ t, p̀, ṕ, `res.a, ´res.a, f̀ , f́ , `sres, ´sres, ὲ, έ ::
`sres = car(p̀) ∧ ὲ = cdr(p̀) ∧ ´sres = car(ṕ) ∧ έ = cdr(ṕ) ∧

p̀[t] = ṕ[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t] ⇒
F.a( `sres, `res.a, f̀ , ὲ)[t] = F.a( ´sres, ´res.a, f́ , έ)[t] 〉

= { (80): pairing, car , and cdr }
〈 ∀ t, p̀, ṕ, `res.a, ´res.a, f̀ , f́ , `sres, ´sres, ὲ, έ ::

p̀ = ( `sres, ὲ) ∧ ṕ = ( ´sres, έ) ∧
p̀[t] = ṕ[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t] ⇒
F.a( `sres, `res.a, f̀ , ὲ)[t] = F.a( ´sres, ´res.a, f́ , έ)[t] 〉

= { one-point rule to eliminate p̀ and ṕ }
〈 ∀ t, `res.a, ´res.a, f̀ , f́ , `sres, ´sres, ὲ, έ ::

( `sres, ὲ)[t] = ( ´sres, έ)[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t] ⇒
F.a( `sres, `res.a, f̀ , ὲ)[t] = F.a( ´sres, ´res.a, f́ , έ)[t] 〉

= { (81): pairing and select, and (79): pairing and equality }
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〈 ∀ t, `sres, ´sres, `res.a, ´res.a, f̀ , f́ , ὲ, έ ::
`sres[t] = ´sres[t] ∧ `res.a[t] = ´res.a[t] ∧ f̀ [t] = f́ [t] ∧ ὲ[t] = έ[t] ⇒
F.a( `sres, `res.a, f̀ , ὲ)[t] = F.a( ´sres, ´res.a, f́ , έ)[t] 〉

This last line has the form of the pointwise axiom for F.a in X(VCD(m,C)) . For
any abstract variable b that does not depend on ε in E , we calculate,

〈 ∀ t, `sres, ´sres, `res.b, ´res.b, g̀, ǵ ::
`sres[t] = ´sres[t] ∧ `res.b[t] = ´res.b[t] ∧ g̀[t] = ǵ[t] ⇒
F.b(car( `sres), `res.b, g̀)[t] = F.b(car( ´sres), ´res.b, ǵ)[t] 〉

= { rename dummies `sres , ´sres to new names p̀ , ṕ }
〈 ∀ t, p̀, ṕ, `res.b, ´res.b, g̀, ǵ ::

p̀[t] = ṕ[t] ∧ `res.b[t] = ´res.b[t] ∧ g̀[t] = ǵ[t] ⇒
F.b(car(p̀), `res.b, g̀)[t] = F.b(car(ṕ), ´res.b, ǵ)[t] 〉

= { one-point rule to introduce `sres , ´sres , ὲ , and έ as names for
car and cdr expressions }

〈 ∀ t, p̀, ṕ, `res.b, ´res.b, g̀, ǵ, `sres, ´sres, ὲ, έ ::
`sres = car(p̀) ∧ ὲ = cdr(p̀) ∧ ´sres = car(ṕ) ∧ έ = cdr(ṕ) ∧

p̀[t] = ṕ[t] ∧ `res.b[t] = ´res.b[t] ∧ g̀[t] = ǵ[t] ⇒
F.b( `sres, `res.b, g̀)[t] = F.b( ´sres, ´res.b, ǵ)[t] 〉

= { (80): pairing, car , and cdr }
〈 ∀ t, p̀, ṕ, `res.b, ´res.b, g̀, ǵ, `sres, ´sres, ὲ, έ ::

p̀ = ( `sres, ὲ) ∧ ṕ = ( ´sres, έ) ∧
p̀[t] = ṕ[t] ∧ `res.b[t] = ´res.b[t] ∧ g̀[t] = ǵ[t] ⇒

F.b( `sres, `res.b, g̀)[t] = F.b( ´sres, ´res.b, ǵ)[t] 〉
= { one-point rule to eliminate p̀ and ṕ }

〈 ∀ t, `res.b, ´res.b, g̀, ǵ, `sres, ´sres, ὲ, έ ::
( `sres, ὲ)[t] = ( ´sres, έ)[t] ∧ `res.b[t] = ´res.b[t] ∧ g̀[t] = ǵ[t] ⇒

F.b( `sres, `res.b, g̀)[t] = F.b( ´sres, ´res.b, ǵ)[t] 〉
= { (81): pairing and select, and (79): pairing and equality }

〈 ∀ t, `sres, ´sres, `res.b, ´res.b, g̀, ǵ, ὲ, έ ::
`sres[t] = ´sres[t] ∧ `res.b[t] = ´res.b[t] ∧ g̀[t] = ǵ[t] ∧ ὲ[t] = έ[t] ⇒
F.b( `sres, `res.b, g̀)[t] = F.b( ´sres, ´res.b, ǵ)[t] 〉

⇐ { weaken antecedent }
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D0: F.a( ˜sres, . . . , ε̃)
F.b( ˜sres, . . .)

D1: 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: . . . 〉〉
D2: 〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉〉
D3: w:〈 ∀ s :: ( `sres, ὲ)[s] = ( ´sres, έ)[s] ∨ . . . 〉
D4: 〈 ∀ t, `sres, ´sres, . . . , ὲ, έ :: `sres[t] = ´sres[t] ∧ . . . ∧ ὲ[t] = έ[t] ⇒

F.a( `sres, . . . , ὲ)[t] = F.a( ´sres, . . . , έ)[t] 〉
〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.b( `sres, . . .)[t] = F.b( ´sres, . . .)[t] 〉
D5: 〈 ∀ t: T, sres, . . . , ε :: t 	= nil ⇒ F.a(sres, . . . , ε)[t] = e 〉

〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.b(sres, . . .)[t] = e 〉

Figure 25: A sketch of the working formula after fixing up pointwise axioms from
Figure 24, which affects D4.

〈 ∀ t, `sres, ´sres, `res.b, ´res.b, g̀, ǵ, ὲ, έ ::
`sres[t] = ´sres[t] ∧ `res.b[t] = ´res.b[t] ∧ g̀[t] = ǵ[t] ⇒
F.b( `sres, `res.b, g̀)[t] = F.b( ´sres, ´res.b, ǵ)[t] 〉

= { ὲ and έ do not occur free in the body of the quantification }
〈 ∀ t, `sres, ´sres, `res.b, ´res.b, g̀, ǵ ::

`sres[t] = ´sres[t] ∧ `res.b[t] = ´res.b[t] ∧ g̀[t] = ǵ[t] ⇒
F.b( `sres, `res.b, g̀)[t] = F.b( ´sres, ´res.b, ǵ)[t] 〉

This last line has the form of the pointwise axiom for F.b in X(VCD(m,C)) .
Applying these transformations for every abstract variable to the working formula,
we end up with a working formula whose shape is suggested by Figure 25. The
strengthening step we did in the calculation for F.b has the effect of weaking the
working formula, since by characteristic V0, rep axioms appear only in negative
positions.

Step 6: From Figure 25 to Figure 26. We now have only one difference left
between the working formula and formula X(VCD(m,C)) : shared-residue mod-
ification constraints. Consider the elided disjunct of the modification constraint
shown in Figure 25. According to V3 (page 87), each modification constraint for
sres in VCD(m,C) has the form

w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ FD(modpointD(sres,w, s)) 〉
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D0: F.a( ˜sres, . . . , ε̃)
F.b( ˜sres, . . .)

D1: 〈 ∀ ε̃ :: 〈 ∀ ˜sres :: . . . 〉〉
D2: 〈 ∀ ε̃ :: ε̃ = ε̄ ⇒ 〈∀ ˜sres :: ˜sres = ¯sres ⇒ . . . 〉〉
D3: w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ . . . 〉 ∧ modconE(w, ε, sres)
D4: 〈 ∀ t, `sres, ´sres, . . . , ὲ, έ :: `sres[t] = ´sres[t] ∧ . . . ∧ ὲ[t] = έ[t] ⇒

F.a( `sres, . . . , ὲ)[t] = F.a( ´sres, . . . , έ)[t] 〉
〈 ∀ t, `sres, ´sres, . . . :: `sres[t] = ´sres[t] ∧ . . . ⇒

F.b( `sres, . . .)[t] = F.b( ´sres, . . .)[t] 〉
D5: 〈 ∀ t: T, sres, . . . , ε :: t 	= nil ⇒ F.a(sres, . . . , ε)[t] = e 〉

〈 ∀ t: T, sres, . . . :: t 	= nil ⇒ F.b(sres, . . .)[t] = e 〉

Figure 26: The final sketch of the working formula, which includes the transfor-
mations of shared-residue modification constraints, which affect D3.

for some w and s . Now that we’ve transformed the working formula into what
looks like X(VCD(m,C)) except for modification constraints, we have trans-
formed the elided FD(modpointD(sres,w, s)) into X(FD(modpointD(sres,w, s)))
for which

X(FD(modpointD(sres,w, s)))
= { (68): X ◦ FD = FE }

FE(modpointD(sres,w, s))
= { lemma (33) }

FE(modpointE(sres,w, s))

In summary, the elided disjunct of the modification constraint shown in Figure 25
has the form FE(modpointE(sres,w, s)) . We calculate,

w:〈 ∀ s :: ( `sres, ὲ)[s] = ( ´sres, έ)[s] ∨ FE(modpointE(sres,w, s)) 〉
= { (81): pairing and select, and (79): pairing and equality }

w:〈 ∀ s :: ( `sres[s] = ´sres[s] ∧ ὲ[s] = έ[s]) ∨ FE(modpointE(sres,w, s)) 〉
= { distribute ∧ , ∨ , and ∀ }

w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ FE(modpointE(sres,w, s)) 〉 ∧
w:〈 ∀ s :: ὲ[s] = έ[s] ∨ FE(modpointE(sres,w, s)) 〉

= { (24): definition of modconE }
w:〈 ∀ s :: `sres[s] = ´sres[s] ∨ FE(modpointE(sres,w, s)) 〉 ∧
modconE(w, ε, sres)
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The last formula of this calculation has the form of shared-residue modifica-
tion constraints in X(VCD(m,C)) , see D3 of Figure 18. Applying this trans-
formation to the working formula, we end up with a working formula whose
shape is suggested by Figure 26, which agrees on all accounts with the formula
X(VCD(m,C)) . In summary, we have performed validity preserving steps that
transform formula VCD(m,C) into formula X(VCD(m,C)) .

Tah-dah, we have proved X property (75), and thus also the Soundness Theo-
rem.

Part IV

Epilogue
We conclude with a few miscellaneous observations about our theorem and proof.

Length. We can easily imagine readers who doubt the utility of an 80-page
proof. One purpose of a proof is to persuade. With an eye to this purpose, we
placed the informal arguments to Soundness Lemma C as early as possible. An-
other purpose of a proof is to reveal errors. Regarding this purpose, we can report
that our proof has already demonstrated its value: an earlier attempted proof came
to ground on Saxe’s counterexample in Section 6.3. Of course, we would be de-
lighted to learn of a shorter proof.

Limitations of the VC generator. Observant readers may have noticed that the
verification condition generator that we have proved to be modularly sound does
not include the refinements explained in Section 8. That is, it does not allow
“freeconditions” or “free modification of unused state”. We suspect that we could
remedy these limitations of the proof without major changes, but we have not
checked the details.

Names of adornments. For most of the proof, it seems to make things easier
if the number of different adornments is kept small. For example, this means
that definition (24) of modcon can hard-wire the pre- and post-adornments x̀ and
x́ , rather than taking them as additional parameters. But to apply the Chain of
Equalities Lemma (page 113), we need to rename variables so that each genera-
tion of variables has its own unique adornment. As the Chain Rewriting Lemma

158



(page 124), its proof, and the proof of the Chain of Equalities Corollary (page 127)
show, this takes some effort.

The inclusion of Soundness Lemma D. The specialization Soundness Lemma D
of the Soundness Theorem applies when the difference between scopes D and E
is one abstract field declaration and a number of dependency declarations on that
field. By including this lemma, the definition of X (Figure 17, page 134) can as-
sume ε to be concrete. This means that various applications of FE to expressions
involving ε can be omitted in the definition of X , since FE is the identity on
concrete fields. This appears to reduce clutter in the proofs of the X properties,
especially in the proof of X property (75) in Section A32. It also means that the
proof of Soundness Lemma D, which uses Soundness Lemma C whose proof uses
X and its properties, focuses only on the differences of the field ε being abstract
versus it being concrete.

Selection determines maps. In the proofs of the Chain of Equalities Lemma
(page 113) and the Chain Rewriting Lemma (page 124), we use axiom (44) (specif-
ically, on pages 115 and 123), which says that two maps are equal if all of their
elements are. In other words, there is no other feature of maps that distinguishes
them. While we don’t see anything wrong with using this axiom about select in
our soundness proof, it is interesting that in our experience with applying ESC
to real systems programs, we have not found a need to provide this axiom to the
theorem prover. Stated differently, although our soundness proof relies on this
axiom, whether or not the verification conditions we produce hold does not seem
to rely on this axiom.

Selection on map pairs. The proof of X property (75) in Section A32 intro-
duces three functions (pairing, car , and cdr ) and postulates three axioms about
these functions. (To be suggestive, these functions have familiar names, but they
should nevertheless be considered to be fresh function symbols that do not clash
with other interpreted or uninterpreted function symbols in the user language.)

The first of these axioms, (79), seems in no way controversial.
The second axiom, (80), is not controversial in its “only if” direction. The

“if” direction implies that car and cdr are total functions that return two pieces
a and b whose pairing is again p . Thus, there are no indivisible “atoms” on
which car and cdr are not defined: everything is a “pair”.
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The third axiom, (81) relates the pairing and the previously defined function
select. This may appear to lie beyond more usual, “trusted” axioms.

The fact that these axioms, and select axiom (44) for that matter, are used in the
proof means in general that they should always appear in the background predicate
as things that one can use to prove or disprove a verification condition. However,
if one can prove that these axioms are a conservative extension of the select and
stores axioms (43), then they need not be included in the background predicate.
Being a conservative extension means that their inclusion does not allow one to
prove more things about relevant formulas (in particular, generated verification
conditions) that do not contain the new function symbols than one could without
the additional axioms.

We have not proved that these axioms are a conservative extension. In fact, we
know that, in general, they are not. In particular, if one mixes maps and non-maps
(for example, by using an integer as the first argument to select), then one can find
counterexamples that show that these axioms are not a conservative extension.
However, by considering a multi-sorted logic that distinguishes between maps and
non-maps, then the counterexamples we know do not apply. In such a multi-sorted
logic, one needs two sets of the three functions in Section A32. The signatures of
these functions would be

select: Map × NonMap → NonMap
store: Map × NonMap × NonMap → Map
mappair: Map × Map → Map
mapcar: Map → Map
mapcdr: Map → Map
nonmappair: NonMap× NonMap → NonMap
nonmapcar: NonMap → NonMap
nonmapcdr: NonMap → NonMap

We claim our VC generation to be consistent with these signatures. In the multi-
sorted logic, axioms (79) and (80) would be duplicated, once for each set of pair-
ing functions, and axiom (81) would be written

〈 ∀ a: Map, b: Map, t: NonMap ::
mappair(a, b)[t] ≡ nonmappair(a[t], b[t]) 〉

We do not know whether or not these functions and axioms are a conservative
extension in such a multi-sorted logic.
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Use of modularity requirements and residues in the proof. As motivated in
Sections 6 and 7.2, the soundness of modular verification relies crucially on the
modularity requirements and the use of residue variables in the VC generation. So
where are these actually used in the proof?

The visibility and top-down requirements are used in the proof of lemma (29).
This lemma is used to prove lemma (32), which in turn proves lemma (33), which
is used in two places. First, lemma (33) proves the three-part lemma (76)–(77)–
(78), which in turn is used to prove the X properties (72) and (73). Second, lemma
(33) is used in the proof of X property (75).

The visibility requirement is also used in the first case in the proof of Sound-
ness Lemma F and the top-down requirement is used in the second case of that
proof.

Residues appear more ubiquitously in the proof, but the lemma that cannot be
proved without them is Soundness Lemma C. More precisely, individual residue
variables are vital to the Chain of Equalities Corollary (page 127) and shared
residue variables are vital to X property (75).
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