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Abstract

Over the past few years, we have developed JCAT, a system for building Web-based
collaborative active textbooks on algorithms. JCAT augments the expressive power
of Web pages for publishing passive multimedia information with a full-fledged
interactive algorithm animation system. Views of a running program can reside
on different machines; in an electronic classroom or distance learning setting, a
teacher controls the animation, while students view the animation by pointing their
Web browsers at the appropriate page.

In this report, we integrate our earlier work on using interactive 3D graphics for
algorithm animation into the JCAT system, and we present three new animations.
The JCAT architecture is well-suited for 3D animations because each user can
interact with the 3D views locally, independent of the views on other machines.
The ability to interactively control a 3D scene provides motion cues that are crucial
for resolving ambiguities of 3D scenes displayed on flat screens.





1 Introduction

This report describes how we have integrated our research on using interactive 3D
graphics for algorithm animations [5] with our research on utilizing the Web as a
delivery mechanism [6, 7] for algorithm animations.

Interactive, animated 3D graphics is a powerful visualization tool. It adds a
level of expressiveness to the display of information, akin to the way that smooth
transitions, color, and sound have increased the repertoire available to visualization
designers in the past. Pioneering research in the Information Visualizer project at
Xerox PARC showed that three-dimensional views help shift the viewing process
from being a cognitive task to being a perceptual one. That is, 3D views lever-
age the ability of the human perceptual system for discovering patterns, noticing
relationships, spotting anomalies, and so on [10, 15].

We have used animated 3D graphics in the Zeus3D system for visualizing the
workings of algorithms. In particular, we have used 3D graphics in three funda-
mental ways: to capture a history of a two-dimensional view, to unite multiple 2D
views of an algorithm, and to express additional fundamental information about
structures that are inherently two-dimensional [5]. This report provides a new ani-
mation for each of these categories.

Other researchers have also experimented with 3D graphics for animating al-
gorithms. Stasko and Wehrli extended the Polka system with a 3D animation li-
brary, and used it to produce a number of illuminating 3D algorithm animations.
They also provided a taxonomy of the types of displays possible [18]. Two other
convincing uses of 3D graphics for algorithm animation were Cox and Roman’s
Pavane system [12] and Koike’s VOGUE system [13].

Over the past two decades, we have built a number of algorithm animation sys-
tems, most notably BALSA [8], BALSA-II [2], Zeus [3], and Zeus3D [5]. With the
advent of the Web, we became interested in integrating our algorithm animations
into Web pages. Web pages are ideal for delivering passive multimedia content
(text, images, audio, and video), such as a description of an algorithm, whereas
applets are well-suited for delivering interactive content, such as an interactive an-
imation of an algorithm.

Our first foray into Web-based algorithm animation was the Collaborative Ac-
tive Textbook (CAT) system [6], in which algorithm animation applets were em-
bedded in Web pages. Animations in CAT were coded in Obliq, a distributed lan-
guage, and ran in an Obliq-aware Web browser that we implemented in Modula-3.
The main drawback of this work was that it required installing a non-standard Web
browser.

We addressed this shortcoming in our follow-up system JCAT [7], a Java-based
version of CAT. With JCAT, 2D animations can be run in any industry-standard
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Web browser, with no installation.
In addition to enabling users to interactively explore algorithms on their own,

JCAT also supports collaborative experiences. The prototypical collaborative set-
ting is an electronic classroom, where each student has a computer, slaved in some
fashion to the instructor’s machine. Another setting is distance learning, where
students are in distributed geographical locations.

In such environments, JCAT allows an instructor to “drive” the algorithm, by
providing input data and controlling the execution flow. Students can “attach” their
animations to the instructor’s algorithm, thereby yielding control of the execution
of the algorithm, but retaining full control over the presentation of the views.

The traditional technique that has been used since the mid-80’s to retrofit algo-
rithm animation systems for use in electronic classrooms utilizes shared windows
of some sort [1]. Such systems display replicas of the windows on the instructor’s
machine on each student’s machine. This approach is easy to implement, because
the replication is handled at the window system level, not by the algorithm anima-
tion system.

JCAT does not transmit bitmaps from an instructor to each student. The al-
gorithm, running on the instructor’s machine, communicates “interesting events”
to the views that are running on student machines, and the views on the students’
machines react to the interesting events by updating their displays. The use of
“interesting events” has four advantages over a window-sharing design.

First, the student has the ability to interact with the applet and control the way
data is presented. Interactive control over the presentation of the views is partic-
ularly important in a 3D setting. When viewing 3D scenes on a flat screen, many
people have difficulties resolving the ambiguities in the image. Providing inter-
active controls, such as moving the virtual camera viewing the scene, or rotating
the object being viewed, allows viewers to resolve ambiguities in the images us-
ing their hand-eye feedback loop. Such interactive manipulation is essential for
leveraging the human perceptual system.

Second, performing animations on each student’s machine is better utilization
of network bandwidth. Achieving smooth animations using a window-sharing ap-
proach requires the transmission of 10 to 30 bitmaps per second, while our ap-
proach only requires the transmission of one interesting event every few seconds.

Third, our approach has the advantage of leveraging the particular hardware
characteristics of each machine. For example, if a student’s machine contains a 3D
graphics chipset, 3D animations will be able to exploit this hardware.

Finally, using the web to deliver the educational material gives the students
control over what pages to view. For example, a novice student may choose to visit
a web page that contains only a single view surrounded by lots of explanatory text,
whereas an advanced student may choose a page that shows multiple views of the
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same algorithm at once. Similarly, a student who is color-blind may choose to visit
a web page containing all black-and-white applets. All these views can be driven
simultaneously by the algorithm running on the teacher’s machine.

The remainder of this report is organized as follows. The next section pro-
vides an overview of the system’s architecture. Section 3 develops an example
animation. Section 4 presents more examples of how we have used 3D graphics
for algorithm animation. Five of these examples are adaptations from our earlier
work; the other three examples (Figures 4, 7, and 8) represent recent work not
shown before. Finally, Section 5 offers some concluding remarks.

2 System Architecture

From the user’s point of view, in JCAT there are multiple views of the running pro-
gram, and each is updated simultaneously as the program runs. In addition, there is
a control panel for starting, pausing, single-stepping, and stopping the animation,
for adjusting its speed, and for giving input to the algorithm. Each view in JCAT,
as well as the algorithm itself and the control panel, is implemented as an applet.
Because JCAT uses Java’s Remote Method Invocation technology [19] to allow ap-
plets to communicate with each other, the views of an algorithm can reside on any
machine. Thus, in an electronic classroom, the instructor can control an animation
on his machine (specifying input, stepping the program to some point, and so on),
and each student in the class can see views of the program on their machines by
pointing their browsers at the appropriate page.

The framework for animating an algorithm follows the model pioneered by
BALSA: strategically important points of an algorithm are annotated with proce-
dure calls that generate “interesting events” [9] (e.g. a “swap elements” event in a
sorting algorithm). These events are reported to an event manager, which in turn
forwards them to all registered views. Each view responds to interesting events by
drawing appropriate images.

JCAT’s 2D animation package, modeled after TANGO’s “path-transition” para-
digm [17], is based on the metaphor of graphs consisting of vertices and edges, with
time-varying visual properties. It is implemented on top of AWT, Java’s low-level
2D graphics library.

The 3D animations in JCAT are implement using Java3D [16], an object-
oriented, scene-graph based graphics library that provides simple animation sup-
port. We have added powerful higher-level animation constructs modeled after our
earlier work in 3D animation [14].

Unfortunately, Java3D is not supported by the Java interpreters bundled into
industry-standard Web browsers. Therefore, the JCAT applets on our Web pages
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are configured to use Sun’s Java Plug-In [20], rather than the browser’s built-in
interpreter. When a user visits a page with such an applet for the first time, an
ActiveX control is run which downloads and installs the Java Plug-In. In addition,
if Java3D has not been installed yet, the plugin will automatically download and
install Java3D.

3 Authoring an Animation

The task of animating an algorithm in JCAT consists of four parts: Defining the
interesting events; implementing the algorithm and annotating it with the events;
implementing one or more views; and finally, creating web pages that make use
of the algorithm and views. The web pages are prepared using HTML; the events,
algorithm, and views are implemented in Java.

This section describes the Java-related parts of the authoring process, using
Dijkstra’s shortest-path algorithm as an example. Given a directed graph with
weighted edges (where W (u, v) is the weight of the edge from u to v), this al-
gorithm finds the shortest path from a designated vertex, called the source, to all
other vertices. The length of a path is defined to be the sum of the weights of the
edges along the path.

To do this, Dijkstra’s algorithm associates a cost D(u) with each vertex u,
indicating the length of the shortest path found so far from the source to u. Initially,
this cost will be infinite for all vertices except the source, whose cost will be zero.
It also maintains a bit per vertex indicating whether the vertex has been processed
or not. The algorithm then repeatedly selects the unprocessed vertex u with the
minimal cost, marks it as processed, and lowers the cost of each neighboring vertex
v to D(u) + W (u, v), provided that this value is indeed lower than the current cost
of v.

Figure 1 shows an animation of the algorithm. The upper-left image shows the
initial graph. This view is actually three-dimensional, and we are viewing it from
straight above. From this vantage point, we see that the edges are directed, but we
are not able to tell their weights.

The upper-right image, which shows the scene from an oblique viewing angle,
reveals this information. Each edge leaves a vertex at height 0, and enters the other
vertex at a height proportional to its weight. The cost associated with each vertex
is shown as a green column protruding from the vertex. The height of the column
is proportional to the cost of the vertex.

When the algorithm marks a vertex as processed, the color of the vertex in the
view is changed from gray to red. When the algorithm considers an edge from u
to v, the edge is highlighted in yellow, and lifted by an amount proportional to the
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Figure 1: An animation of Dijkstra’s shortest path algorithm
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cost of u. Hence, after the lifting is complete, the startpoint of the edge coincides
with the tip of the green column above u.

If the endpoint of the lifted edge is lower that the green column above v, this
column is lowered to the endpoint, reflecting the lowering of the cost of v by the
algorithm, and the color of the edge changes from yellow to red. Otherwise, the
yellow edge simply disappears.

When the algorithm is finished, the graph has been replaced by the shortest-
path tree, and the columns above each vertex reflect the length of the shortest path
from the source to that vertex.

This algorithm operates on data that is inherently two-dimensional, given that
graphs can be quite naturally drawn in the plane. The third dimension is used to
augment the view with additional information; in this case, it is used to represent
scalar values, namely the cost of vertices and the weight of edges.

3.1 Specifying the Interesting Events

The first task of the animation author is to specify the set of interesting events that
are transmitted from the algorithm to the views, in the form of a Java interface. Ta-
ble 1 shows the interface describing the interesting events of Dijkstra’s algorithm.
The semantics of the methods in this interface is as follows:

• start(m) is called at the very beginning of the algorithm’s execution; in-
dicating that the graph has m vertices.

• addVertex(u,x,y,d) adds a vertex u to the graph, where u is an integer
identifying the vertex, x and y are its location, and d is its initial cost.

• addEdge(u,v,w) adds an edge from u to v with weight w to the graph.

• selectVertex(u) indicates that u was marked as processed.

• raiseEdge(u,v,d) indicates the addition D(u)+W (u, v); the caller passes
D(u) for d.

• lowerDist(u,d) indicates that D(u) gets lowered to d.

• promoteEdge(u,v) indicates that the edge (u, v) is part of the shortest-
path tree.

• demoteEdge(u,v) indicates that the edge (u, v) is not part of the shortest-
path tree.
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The Interesting Events

interface ShortestPath {
void start(int n);
void addVertex(int u, double x, double y, double d);
void addEdge(int u, int v, double w);
void selectVertex(int u);
void raiseEdge(int u, int v, double d);
void lowerDist(int u, double d);
void promoteEdge(int u, int v);
void demoteEdge(int u, int v);

}

The Annotated Algorithm

public class Alg extends ShortestPathAlg {
public void init() {

super.init();
// create algorithm input panel -- elided

}
public void runAlg() {

NumTokenizer ntok = ... // graph data - elided
int m = ntok.nextInt(); // num verts
start(m);
double[] X = new double[m]; // x coords
double[] Y = new double[m]; // y coords
double[] D = new double[m]; // cost
double[][] W = new double[m][m]; // weight
for (int i = 0; i < m; i++) {

X[i] = ntok.nextDouble();
Y[i] = ntok.nextDouble();
D[i] = (i == 0) ? 0.0 : 10.0;
addVertex(i, X[i], Y[i], D[i]);

}
int n = ntok.nextInt(); // num edges
int[] U = new int[n]; // edge start
int[] V = new int[n]; // edge end
for (int i = 0; i < n; i++) {

int u = U[i] = ntok.nextInt();
int v = V[i] = ntok.nextInt();
W[u][v] = ntok.nextDouble();
addEdge(u, v, W[u][v]);

}
boolean[] done = new boolean[m];
for (int iter = 0; iter < m; iter++) {

int u = -1;
double min = Double.POSITIVE_INFINITY;
for (int i = 0; i < n; i++) {

if (!done[i] && D[i] < min) {
min = D[i];
u = i;

}
}
done[u] = true;
selectVertex(u);
for (int i = 0; i < n; i++) {

if (U[i] == u) {
int v = V[i];
raiseEdge(u, v, D[u]);
if (D[v] < D[u] + W[u][v]) {

demoteEdge(u, v);
} else {

D[v] = D[u] + W[u][v];
promoteEdge(u, v);
lowerDist(v, D[v]);

}
}

}
}

}
}

The 3D View

public class View3D extends ShortestPathView3D {
DiskGO[] verts;
CylinderGO[] dists;
GroupGO[][] edges;
int[] parents;
public void start(int m) {

verts = new DiskGO[m];
dists = new CylinderGO[m];
parent = new int[m];
for (int i = 0; i < m; i++) parents[i] = -1;
edges = new GroupGO[m][m];
scene.flush();

}
public void addVertex(

int u, double x, double y, double d)
{

verts[u] = new DiskGO(new Point3(x,y,0),
new Point3(0,0,1), 0.2);

scene.add(verts[u]);
if (d > 0.0) {

Point3 top = new Point3(x,y,d);
dists[u] = new CylinderGO(

new Point3(x,y,0),
new PointProp(top), 0.1);

SurfaceGO.SetColor(dists[u],"green");
scene.add(dists[u]);

}
}
public void addEdge(int u, int v, double w) {

Point3 a = verts[u].getCenter();
Point3 b = verts[v].getCenter();
Point3 c = Point3.Plus(b,Point3(0,0,w));
Point3 d = Point3.Minus(c,a);
Point3 e = Point3.Minus(c,Point3.Times(d,0.4));
let grp = new GroupGO();
GO.SetTransform(grp,

new TransformProp(Matrix4.Id));
grp.add(new DiskGO(a,d,0.1));
grp.add(new CylinderGO(a,e,0.1));
grp.add(new DiskGO(e,d,0.2));
grp.add(new ConeGO(e,c,0.2));
edges[u][v] = grp;
scene.add(grp);

}
public void selectVertex(int u) {

SurfaceGO.SetColor(verts[u],"red");
}
public void raiseEdge(int u, int v, double z) {

SurfaceGO.SetColor(edges[u][v],"yellow");
Point3 v = new Point3(0,0,z);
GO.GetTransform(edges[u][v]).translate(v,0,2);
scene.animate();

}
public void lowerDist(int u, double z) {

PointProp pp = CylinderGO.GetPoint2(dists[u]);
Point3 p = pp.get();
pp.linMoveTo(new Point3(p.x,p.y,z),0,2);
scene.animate();

}
public void promoteEdge(int u, int v) {

SurfaceGO.SetColor(edges[u][v],"red");
if (parents[v] != -1) demoteEdge(parents[v],v);
parents[v] = u;

}
public void demoteEdge(int u, int v) {

scene.remove(edges[u][v]);
}

}

Table 1: Implementation of the animation of Dijkstra’s shortest-path algorithm
shows in Figure 1
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The JCAT preprocessor reads the ShortestPath interface and generates a num-
ber of Java classes, among them ShortestPathAlg and ShortestPathView3D.
The author then implements the algorithm and view(s) by subclassing these classes.

3.2 Implementing the Algorithm

The animation author implements the shortest-path algorithm by subclassing the
ShortestPathAlg class that was generated by the JCAT preprocessor, and over-
riding the methods init and runAlg. The init method is responsible for ini-
tializing the user interface elements of the algorithm (e.g., to enable the user to
provide inputs to the algorithm); for reasons of space, this code is elided. The
runAlg method is invoked when the user presses the “run” button in the algorithm
control panel. It starts out by obtaining an input data stream from the algorithm
input panel (details are elided), and proceeds by initializing the graph and com-
puting the shortest path. Note that runAlg makes calls to start, addVertex,
addEdge, etc. These methods are implemented by the superclass; and correspond
to the interesting events from section 3.1.

3.3 Implementing a View

JCAT provides animation authors with a powerful animation library that is based
on our earlier research in 3D animation [15]. Scenes are composed of graphical
objects, either primitive ones (such as disks, cylinders, and cones) or complex ones,
called groups of graphical objects. Attached to a graphical object are properties
that govern its appearance, i.e. its location, orientation, color, texture, etc. A
property consists of a name (e.g. Cone.Tip) and a value. Property values are
time-variant, and provide the basic animation support.

The animation author implements a 3D view by subclassing the Shortest-

PathView3D class that was generated by the JCAT preprocessor, and overriding
the methods corresponding to the eight interesting events.

View3D introduces four new fields: verts, an array of disk objects represent-
ing the vertices, dists, an array of cylinders representing the costs of the vertices,
edges, an array of arrows (where each arrow is composed of two disks, a cylin-
der, and a cone, and aggregated into a group object) representing the edges, and
parents, an array of vertex numbers identifying the parent of each node in the
shortest-path tree. It also inherits a group field named scene from its superclass;
every graphical object added to this scene will be displayed by the view applet.
Moreover, the user can interactively manipulate (rotate, move, zoom, etc) the scene
and all objects contained therein.
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The start method is responsible for clearing the scene and for initializing the
various fields defined in View3D.

The addVertex method adds a new vertex to the scene. Vertices are repre-
sented by white disks that lie in the xy plane. Above each vertex, we also show
a green column of height d, provided that d is greater than 0. The location of
the cylinder’s base is constant, while its top is controlled by an animatable point
property value.

The addEdge method adds an edge (represented by an arrow) from vertex u
to vertex v. The arrow starts at the disk representing u, and ends at the column
over v at height w. An arrow is composed of a cone, a cylinder, and two disks; its
geometry is computed based on the Center properties of the disks representing u
and v.

The selectVertex method indicates that vertex u has been marked as pro-
cessed by coloring u’s disk red.

The raiseEdge method highlights the edge from u to v by coloring it yellow,
and then lifting it up by z. The arrow is moved by calling the translate method
on its transformation property. The animation will start 0 seconds after animate
is called, and will take 2 seconds to complete.

The lowerDist method indicates that the cost D(u) of vertex u got lowered,
by shrinking the green cylinder representing D(u). This is done by calling the
linMoveTo (“move over a linear path to”) method on the Point2 (“second end-
point”) property of the cylinder.

The promoteEdge method indicates that (u, v), the edge that is currently be-
ing highlighted, becomes part of the shortest-path tree. This is indicated by color-
ing the edge red. If there already was a red edge leading to v, it is removed from
the view.

Finally, the demoteEdge method removes the edge (u, v) from the view.

4 More Examples

This section shows various ways in which we have used interactive 3D graphics in
the JCAT system. The example algorithms are: shaker sort; heap sort; quicksort;
finding the closest pair in a set of points; inserting points into a space partition-
ing tree; finding intersection points of a set of horizontal and vertical lines; and
constructing a Voronoi diagram.

Of course, the static images in this report cannot do justice to actual anima-
tions. The printed page cannot capture the animation aspects, nor does it allow for
interactive manipulation. We invite the interested reader to explore the animations
by visiting the URL given at the end of this report.

9



4.1 Example: Elementary Sorting

Figure 2 shows how JCAT can be used collaboratively in an electronic classroom.
The upper image shows the Web page that a teacher is visiting in his browser; the
two images below show the Web browsers of two students at the same time. Al-
though the students are viewing different Web pages than the instructor, everyone
sees views of the same execution of the algorithm that is running on the instructor’s
machine. The views are executing locally on each machine.

The Web page that the instructor is viewing (top image) contains five applets.
The JCAT control panel is in the upper left; it allows the instructor to start, single-
step, and abort the algorithm, and to control the speed of the animation. The algo-
rithm itself is manifested as the applet in the upper right, with various widgets that
allow the user to provide data to the algorithm.

Below that is the “Sticks View,” a common 2D representation of an array: each
stick represents an element in the array, and the height of the stick is proportional
to the value of the element. Whenever two elements of the array are exchanged,
the corresponding sticks trade places in a smooth animation. When the array is
completely sorted, the sticks will be arranged from short to tall, from left to right.

In the lower right, we see the “Chips View.” This view captures a history of
the contents of the array being sorted. A chip represents an element of the array.
As in the “Sticks View,” the horizontal position of a chip indicates its position in
the array. However, values of array elements are expressed through color rather
than height. This frees up one dimension, which has been used to capture a history
of the algorithm’s execution. Whenever the algorithm completes an iteration of its
outer loop, a copy of the topmost row of chips is drawn on top. Changes to array
elements affect the chips in the topmost row only. When the array is sorted, the
chips will be sorted from red to violet.

Finally, in the lower left, we see a 3D version of the “Sticks View.” This view
combines the strengths of the “Sticks View” and the “Chips View” into a single
view. As in the 2D view, exchanging two elements in the array is shown with a
smooth animation of the corresponding sticks trading places. Whenever the al-
gorithm completes an iteration of its outer loop, the frontmost row of sticks is
duplicated. As the algorithm continues, changes are made to the new frontmost
row of sticks only. In this way, the “3D Sticks View” combines the elegance of the
Sticks View with the Chips View’s capacity for capturing history.

The bottom-left image shows a student’s Web browser. It contains two applets.
At the top is the student control panel, which allows him to specify the name of the
instructor’s machine. Below is a variation of the “3D Sticks View.” In this view,
the current contents of the array are displayed by the row of sticks in the rear. After
each iteration of the main loop, the sticks stamp their color onto a plane, which is
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Figure 2: Teacher’s and students’ web pages containing views of an elementary
sorting algorithm
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then pulled forward. Thus, the history plane looks exactly like the “Chips View.”
The bottom-right image is another student’s Web browser. In addition to the

views we have mentioned before, it contains a “Transcript View” containing a tex-
tual log of the interesting events.

4.2 Example: Heap Sort

Figure 3 also shows how JCAT can be used in an electronic classroom setting, this
lecture being about Heapsort. Recall that Heapsort works in two phases: First, it
arranges the elements being sorted into a heap, a complete binary tree in which
the value of each node is larger than the values of each of its children. Second, it
repeatedly removes the root (i.e., the largest value among the elements) from the
heap, sets it aside, and reestablishes the heap property, doing so until the heap is
empty.

Heaps can be implemented as arrays by placing the root node at position 1, and
for each node at position i , placing its left child at position 2i and its right child at
position 2i + 1.

As in the previous example, all three screen dumps were captured at the same
time. The upper image shows the instructor’s Web browser; the images below show
two students’ Web browsers.

The instructor’s Web page contains six applets: the JCAT control panel; the
algorithm input panel; a “Transcript View;” a “Tree View” that shows the heap as
a binary tree; a “Sticks View” that shows how the heap is implemented as an array;
and a 3D view that combines the tree view and the sticks views. In the Tree View
and Sticks View, color is used to distinguish which elements are on the heap and
which have been removed.

The 3D view shows a binary tree whose nodes are rods that extend in the z-
dimension. As in the sticks view, the length of each rod is proportional to the
value of the corresponding heap element. In addition, the rods are color-coded as
in Figure 2. It might appear as if color were redundant since the values are already
encoded by the lengths of the rods; however, it is quite helpful when the tree is
viewed from the front.

In the tree, siblings are not drawn at the same y value; rather, right nodes are
slightly lower than their left siblings. More precisely, the y position of each rod
corresponds to the index of the corresponding array entry. The effect of this un-
conventional layout is that the tree, when viewed from the side, shows the familiar
sticks view.

The two students are viewing the same Web page. That Web page contains two
applets: the Student Control Panel for connecting to an instructor’s machine and
the same 3D view as on the instructor’s Web page. Each student, as well as the
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Figure 3: Teacher’s and students’ web pages containing views of heap sort
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instructor, has rotated the scene in a different way. The student viewing the left
image sees the 3D tree as a familiar “Sticks View” (rotated 90 degrees clockwise);
the student viewing the right image see the 3D tree as a familiar binary tree; and
the instructor views the scene at an oblique angle, thereby revealing both the sticks
and binary tree view.

The 3D views have a row of buttons at the bottom. These buttons rotate the
scene into various key positions (e.g., a frontal view that reveals the tree, a side
view that shows the sticks, and an oblique view that shows both).

The 3D view does not contain any more information than is contained in the
two 2D views. However, integrating the two 2D views requires cognitive ef-
fort, while obtaining the same information from the single 3D view leverages the
viewer’s perceptual system and thereby lessens the cognitive load.

4.3 Example: Quicksort

Figure 4 shows an animation of quicksort. Recall that quicksort is a divide-and-
conquer algorithm. An invocation of quicksort proceeds as follows: First, it selects
a pivot element. Second, it scans the array from its two endpoints inwards, ex-
changing elements from the left side that are larger than the pivot element with
elements from the right side that are smaller. Eventually, the two scan pointers
meet, meaning that the array has been divided into two parts. All elements in the
left part are smaller than the pivot, and all elements in the right are larger. Third,
quicksort invokes itself recursively on the two parts.

The four images in Figure 4 are taken at different points during the execution.
The upper-left image was taken just after the array was initialized. It shows the
familiar sticks view. It also uses the color-coding introduced in Figure 2 to (re-
dundantly) express the value of array elements. The sticks view is actually three-
dimensional, as can be seen in the following images, which show the scene from
an oblique angle.

The upper-right image shows the algorithm during the partitioning phase of the
right part of the initial array. The scan pointers are represented by wire cages that
surround the array elements that have been scanned. As the scanning proceeds,
these cages grow inward until they meet. If you look carefully, you will see that
two sticks have left the array and are traveling above it, indicating that the snapshot
was taken while an exchange operation was in progress.

The vertical extent of this view indicates the depth of the recursion. Whenever
quicksort calls itself recursively, the part of the array that is being passed to the
recursive call is lifted up one level, and the corresponding portion of the lower level
is faded out. When a recursive call to quicksort returns, the part of the array that
has been sorted by that call is lowered to the level below, obliterating the faded-out
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Figure 4: Teacher’s view of an animation of quicksort, progressing over time
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placeholder.
From this view, it is easy to see that quicksort can be implemented as an in-

place sorting algorithm: Recursive invocations of quicksort manipulate only the
opaque part of the array that has been passed to them, and at any point in time,
there is only one opaque instance of each array entry.

The lower-left image shows quicksort at the fourth level of recursion, and the
lower-right image shows the final unwinding of quicksort’s recursion.

4.4 Example: Closest Pair

Figure 5 shows an animation of a divide-and-conquer algorithm for finding the
closest pair in a set of 2D points.

The algorithm is as follows: First it divides the plane by a line parallel to the
y-axis such that each half contains about the same number of points. Next, it
recursively finds the closest pair of points in each half. And finally, it merges the
two halves, checking if there is a new pair of points (saddling the dividing line)
that are closer to each other than the closest pairs found thus far.

The images in Figure 5 show four snapshots of a Web page containing a 3D
view of this algorithm as it executes.

The upper-left image shows the initial set of 2D points, viewed from above.
The upper-right image shows the initial process of recursively dividing the

plane into half-planes until each half-plane contains a single point. The snapshot
was captured exactly as the recursion bottomed-out for the first time. At each re-
cursive call, the original plane is faded out, and an opaque copy of it is lifted up. It
is then split into two halves, and the halves are moved apart slightly. The division
process is repeated recursively on the left and right halves.

The two images below show the merge phase, looking for a pair of points, one
from each half, that are closer to each other than the closest pair found thus far.
The closest pair is highlighted with a red line connecting the two points. The two
points from the two half planes that are being checked are temporarily connected
by a blue line. The yellow-green region extends to the left and right of the dividing
line by the distance of the closest-pair thus far. Only points that lie in this region
need to be considered as candidates for a closer pair of points.

After all the candidate points have been considered, the merge phase completes
and the merged plane is lowered.

In this example, the data that the algorithm operates on — the 2D points —
are naturally displayed using two dimensions. The third dimension allows us to
augment the view with additional information, namely, the algorithm’s recursive
calling pattern.
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Figure 5: An animation of a divide-and-conquer algorithm for finding the closest
pair in a set of 2D points
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4.5 Example: 2D Tree

Figure 6 shows a visualization of a 2D tree, a space-partitioning tree whose nodes
represent points in the plane. This data structure provides support for efficient
range searching. A 2D tree is essentially a binary search tree with 2D points in the
nodes, using the x and y coordinates of the points as keys in a strictly alternating
sequence.

The upper-left image shows the points in the plane. The horizontal and vertical
lines indicate the partitioning imposed by nodes in the 2D tree. The long vertical
blue line corresponds to the root of the tree; the two horizontal cyan lines corre-
spond to its children, and so on. The edges of the 2D tree are displayed as black
lines. This representation of a tree resembles the standard layout of a spanning
tree, but it does not reveal parent-child relationships.

By contrast, the tree shown in the upper-right image is displayed using a stan-
dard binary tree layout, where parent nodes are located above their children. This
tree is the result of viewing the scene from the side rather than from the top. The
drawback of this viewing angle is that we can no longer see the points in the plane.

The image at the bottom shows the scene as viewed from an oblique angle. It
simultaneously shows the points in the plane, the walls partitioning the plane that
are induced by the nodes of the 2D tree, and the 2D tree.

Arguably, it is disconcerting to see the edges of the tree overlapping; more-
over, the left and right children are not necessarily drawn to the left and right of
their parent. However, we found that when the tree is interactively rotated about
the z-axis, it appears to have depth. The rotation provides the viewer with the vi-
sual cues needed to understand the overlaps and perceive the tree’s depth. This is
another example of why it is crucial for the viewers of 3D animations to be able to
interactively manipulate the scene.
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Figure 6: A visualization of a 2D tree
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4.6 Example: Line Intersection

Figure 7 shows an animation of a scan-line algorithm for finding the intersection
of horizontal and vertical line segments. The algorithm works by advancing a
scan-line from the bottom, stopping each time that it encounters an endpoint of
a vertical line or a horizontal line. When the scan-line encounters a horizontal
line, the algorithm tests the horizontal line for intersection among all vertical lines
touched by the scan-line.

The algorithm uses two binary search trees. First, it builds a y-tree containing
the y-coordinates of both end-points of each line (horizontal lines contribute only
one node to the tree). Next, it performs an in-order traversal of this tree, which
corresponds to the scan-line advancing.

When the scan-line touches the lower endpoint of a vertical line, it puts the
line’s x-coordinate into a second binary search tree, called the x-tree; when it
touches the upper endpoint, the node is removed from the x-tree. When the scan-
line touches a horizontal line, it searches the x-tree to find all nodes in the line’s
horizontal range. These nodes identify the vertical lines that intersect this horizon-
tal line.

The figure contains three 2D views: One view shows the plane containing the
line segments along with the scan-line. The second view shows the y-tree, with a
highlight surrounding the node currently being visited, corresponding to the loca-
tion of the scan-line. The third view shows the x-tree; this tree grows and shrinks
as the scan-line progresses. Note that we had to resort to labeling the lines and
nodes in order to help the viewer to integrate the three views.

In the 3D view, the two tree views have been drawn orthogonal to the plane
view. By aligning the y-tree along the y-axis, we are able to position each node at
the same y-coordinate as the line segment endpoint it represents. We have drawn
thin grid lines to anchor the tree nodes. The x-tree is laid out in a similar fashion,
that is, the x-coordinate of each node is the same as the x-coordinate of the corre-
sponding segment. In addition, the tree moves along with the scan-line, growing
and shrinking as vertical line segments are reached and passed.

The spatial arrangement of the trees obviates the need for any explicit textual
labels; line segments and tree nodes can be correlated by visual inspection purely
based on their placement. (The anchor lines help in this screen dump, but are not
as crucial to a user who can interactively manipulate the scene.)
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Figure 7: An animation of an algorithm for computing the intersections of a set of
horizontal and vertical lines
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4.7 Example: Voronoi Diagram

A Voronoi Diagram is induced by a set of distinguished points in the plane as
follows: Each distinguished point d is surrounded by a polygon whose interior
points are closer to d than to any other distinguished point. The Voronoi diagram
is simply the union of all these polygons.

Figure 8 shows a filmstrip of an animation that provides an intuitive explanation
of this definition. The animation progresses by growing “hills” out of each distin-
guished point. In the limit, each hill is the Voronoi polygon of the distinguished
point, and the valleys between the hills are the edges of the Voronoi diagram.

The view is implemented by drawing cones (a graphics primitive) centered
about the distinguished points and progressively scaling them. Once the cones in-
tersect, the hidden surface removal algorithm provided by the underlying graphics
package produces the desired effect: when viewed from the top (the left column
of Figure 8), we see the Voronoi Diagram, and when viewed from an angle (right
column), we see the hills and valleys.

This example demonstrates the versatility and flexibility of the JCAT system:
It is being used here to illustrate a high-level mathematical concept rather than the
working of an algorithm. We have used JCAT’s predecessor algorithm animation
systems for illustrating geometric proofs, biological simulations, and game theory.

22



Figure 8: An animation illustrating the definition of a Voronoi diagram
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5 Conclusion

This report describes how we have extended JCAT, a Web-based algorithm ani-
mation system, with support for interactive 3D animations. JCAT augments the
expressive power of HTML with interactive animations of algorithms in a dis-
tributed environment, such as an Electronic Classroom. Since JCAT is based on
the “interesting event” paradigm, and since views (including 3D animations) run
locally in each student’s Web browser, students can control their views indepen-
dently of each other and of the instructor. Interactive control of the viewpoint is
crucial for assimilating 3D scenes on a flat display. For this reason, we believe that
the JCAT approach is vastly superior to the standard approach of using a shared
window system to facilitate an electronic classroom.

This report also has presented a number of examples of ways that 3D graphics
can be used for exposing properties of algorithms. Shakersort (Figure 2) shows
how the third dimension can be used to capture the history of an algorithm’s exe-
cution. Heapsort (Figure 3) shows how two different 2D views can be fused into a
single 3D scene. The line intersection algorithm (Figure 7) pushes this idea even
further by merging three 2D views. Quicksort (Figure 4) and the closest pair al-
gorithm (Figure 5) use the third dimension to illustrate the recursive nature of a
divide-and-conquer algorithm directly on its standard visualization. The shortest
path algorithm (Figure 1), the 2D tree visualization (Figure 6), and the Voronoi
diagram visualization (Figure 8) use the third dimension to show additional infor-
mation about structures that are inherently two-dimensional.

Unlike stand-alone algorithm animation systems, JCAT does not require any
software installation. Animations are immediately accessible simply by pointing a
standard Web browser to a page containing an animation. At first blush, this might
seem a minor detail, but we believe it makes a significant difference. Having built a
series of stand-alone systems for the past two decades, we learned that installation
overhead does deter many potential users. By making the installation completely
automatic, we create a seamless user experience. We believe that this technology
will expose a much wider audience to algorithm animation.

You can experience the examples from this report by visiting the JCAT home
page at http://research.compaq.com/SRC/JCAT/.
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