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Abstract

High-performance web crawlers are an important component of many web ser-
vices. For example, search services use web crawlers to populate their indices,
comparison shopping engines use them to collect product and pricing information
from online vendors, and the Internet Archive uses them to record a history of the
Internet. The design of a high-performance crawler poses many challenges, both
technical and social, primarily due to the large scale of the web. The web crawler
must be able to download pages at a very high rate, yet it must not overwhelm any
particular web server. Moreover, it must maintain data structures far too large to
fit in main memory, yet it must be able to access and update them efficiently. This
chapter describes our experience building and operating such a high-performance
crawler.





1 Introduction

A web crawler (also known as a web robot or spider) is a program for downloading
web pages. Given a sets of “seed” Uniform Resource Locators (URLs), the crawler
repeatedly removes one URL froms, downloads the corresponding page, extracts
all the URLs contained in it, and adds any previously unknown URLs tos.

Although the web crawling algorithm is conceptually simple, designing a high-
performance web crawler comparable to the ones used by the major search en-
gines is a complex endeavor. All the challenges inherent in building such a high-
performance crawler are ultimately due to the scale of the web. In order to crawl a
billion pages in a month, a crawler must download about 400 pages every second.
Moreover, the crawler must store several data structures (such as the sets of URLs
remaining to be downloaded) that must all scale gracefully beyond the limits of
main memory.

We have built just such a high-performance web crawler, called Mercator,
which has the following characteristics:

Distributed. A Mercator crawl can be distributed in a symmetric fashion across
multiple machines for better performance.

Scalable. Mercator is scalable in two respects. First, due to its distributed archi-
tecture, Mercator’s performance can be scaled by adding extra machines to
the crawling cluster. Second, Mercator has been designed to be able to cope
with a rapidly growing web. In particular, its data structures use a bounded
amount of main memory, regardless of the size of the web being crawled.
This is achieved by storing the vast majority of data on disk.

High performance. During our most recent crawl, which ran on four Compaq
DS20E 666 MHz Alpha servers and which saturated our 160 Mbit/sec Inter-
net connection, Mercator downloaded about 50 million documents per day
over a period of 17 days.

Polite. Despite the need for speed, anyone running a web crawler that overloads
web servers soon learns that such behavior is considered unacceptable. At
the very least, a web crawler should not attempt to download multiple pages
from the same web server simultaneously; better, it should impose a limit
on the portion of a web server’s resources it consumes. Mercator can be
configured to obey either of these politeness policies.

Continuous. There are many crawling applications (such as maintaining a fresh
search engine index) where it is desirable to continuously refetch previously
downloaded pages. This naturally raises the question of how to interleave
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the downloading of old pages with newly discovered ones. Mercator solves
this problem by providing a priority-based mechanism for scheduling URL
downloads.

Extensible. No two crawling tasks are the same. Ideally, a crawler should be de-
signed in a modular way, where new functionality can be added by third par-
ties. Mercator achieves this ideal through a component-based architecture.
Each of Mercator’s main components is specified by an abstract interface.
We have written numerous implementations of each component, and third
parties can write new implementations from scratch or extend ours through
object-oriented subclassing. To configure Mercator for a particular crawling
task, users supply a configuration file that causes the appropriate components
to be loaded dynamically.

Portable. Mercator is written entirely in Java, and thus runs on any platform for
which there exists a Java virtual machine. In particular, it is known to run on
Windows NT, Linux, Tru64 Unix, Solaris, and AIX.

There is a natural tension between the high performance requirement on the
one hand, and the scalability, politeness, extensibility, and portability requirements
on the other. Simultaneously supporting all of these features is a significant design
and engineering challenge.

This chapter describes Mercator’s design and implementation, the lessons we’ve
learned in the process of building it, and our experiences in performing large
crawls.

2 A Survey of Web Crawlers

Web crawlers are almost as old as the web itself [16]. The first crawler, Matthew
Gray’s Wanderer, was written in the spring of 1993, roughly coinciding with the
first release of NCSA Mosaic [9]. Several papers about web crawling were pre-
sented at the first two World Wide Web conferences [7, 18, 20]. However, at the
time, the web was three to four orders of magnitude smaller than it is today, so
those systems did not address the scaling problems inherent in a crawl of today’s
web.

Obviously, all of the popular search engines use crawlers that must scale up
to substantial portions of the web. However, due to the competitive nature of the
search engine business, the designs of these crawlers have not been publicly de-
scribed. There are two notable exceptions: the Google crawler and the Internet
Archive crawler. Unfortunately, the descriptions of these crawlers in the literature
are too terse to enable reproducibility.
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The original Google crawler [2] (developed at Stanford) consisted of five func-
tional components running in different processes. AURL server process read
URLs out of a file and forwarded them to multiple crawler processes. Eachcrawler
process ran on a different machine, was single-threaded, and used asynchronous
I/O to fetch data from up to 300 web servers in parallel. The crawlers transmitted
downloaded pages to a singleStoreServer process, which compressed the pages
and stored them to disk. The pages were then read back from disk by anindexer
process, which extracted links from HTML pages and saved them to a different
disk file. A URL resolver process read the link file, derelativized the URLs con-
tained therein, and saved the absolute URLs to the disk file that was read by the
URL server. Typically, three to four crawler machines were used, so the entire
system required between four and eight machines.

Research on web crawling continues at Stanford even after Google has been
transformed into a commercial effort. The Stanford WebBase project has im-
plemented a high-performance distributed crawler, capable of downloading 50 to
100 documents per second [14]. Cho and others have also developed models
of document update frequencies to inform the download schedule of incremental
crawlers [5].

The Internet Archive also used multiple machines to crawl the web [4, 15].
Each crawler process was assigned up to 64 sites to crawl, and no site was as-
signed to more than one crawler. Each single-threaded crawler process read a list
of seed URLs for its assigned sites from disk into per-site queues, and then used
asynchronous I/O to fetch pages from these queues in parallel. Once a page was
downloaded, the crawler extracted the links contained in it. If a link referred to
the site of the page it was contained in, it was added to the appropriate site queue;
otherwise it was logged to disk. Periodically, a batch process merged these logged
“cross-site” URLs into the site-specific seed sets, filtering out duplicates in the
process.

The WebFountain crawler shares several of Mercator’s characteristics: it is
distributed, continuous (the authors use the term “incremental”), polite, and con-
figurable [6]. Unfortunately, as of this writing, WebFountain is in the early stages
of its development, and data about its performance is not yet available.

3 Mercator’s Architecture

The basic algorithm executed by any web crawler takes a list ofseed URLs as its
input and repeatedly executes the following steps:

Remove a URL from the URL list, determine the IP address of its host
name, download the corresponding document, and extract any links
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Figure 1: Mercator’s main components.

contained in it. For each of the extracted links, ensure that it is an
absolute URL (derelativizing it if necessary), and add it to the list of
URLs to download, provided it has not been encountered before. If
desired, process the downloaded document in other ways (e.g., index
its content).

This basic algorithm requires a number of functional components:

• a component (called the URL frontier) for storing the list of URLs to down-
load;

• a component for resolving host names into IP addresses;

• a component for downloading documents using the HTTP protocol;

• a component for extracting links from HTML documents; and

• a component for determining whether a URL has been encountered before.

The remainder of this section describes how Mercator refines this basic algo-
rithm.

Figure 1 shows Mercator’s main components. Crawling is performed by mul-
tiple worker threads, typically numbering in the hundreds. Each worker repeatedly
performs the steps needed to download and process a document. The first step
of this loop 1 is to remove an absolute URL from the shared URL frontier for
downloading.

An absolute URL begins with a scheme (e.g., “http” ), which identifies the net-
work protocol that should be used to download it. In Mercator, these network
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protocols are implemented by protocol modules. The protocol modules to be used
in a crawl are specified in a user-supplied configuration file, and are dynamically
loaded at the start of the crawl. The default configuration includes protocol mod-
ules for HTTP, FTP, and Gopher.

Based on the URL’s scheme, the worker selects the appropriate protocol mod-
ule for downloading the document. It then invokes the protocol module’s fetch
method, which downloads the document from the Internet 2 into a per-thread
RewindInputStream 3 (or RIS for short). A RIS is an I/O abstraction that is ini-
tialized from an arbitrary input stream, and that subsequently allows that stream’s
contents to be re-read multiple times.

Courteous web crawlers implement the Robots Exclusion Protocol, which al-
lows web masters to declare parts of their sites off limits to crawlers [17]. The
Robots Exclusion Protocol requires a web crawler to fetch a resource named “ /robots.txt”
containing these declarations from a web site before downloading any real content
from it. To avoid downloading this resource on every request, Mercator’s HTTP
protocol module maintains a fixed-sized cache mapping host names to their robots
exclusion rules. By default, the cache is limited to 218 entries, and uses an LRU
replacement strategy.

Once the document has been written to the RIS, the worker thread invokes the
content-seen test to determine whether this document with the same content, but a
different URL, has been seen before 4 . If so, the document is not processed any
further, and the worker thread goes back to step 1 .

Every downloaded document has a content type. In addition to associating
schemes with protocol modules, a Mercator configuration file also associates con-
tent types with one or more processing modules. A processing module is an ab-
straction for processing downloaded documents, for instance extracting links from
HTML pages, counting the tags found in HTML pages, or collecting statistics
about GIF images. In general, processing modules may have side-effects on the
state of the crawler, as well as on their own internal state.

Based on the downloaded document’s content type, the worker invokes the
process method of each processing module associated with that content type 5 .
For example, the Link Extractor and Tag Counter processing modules in Figure 1
are used for text/html documents, and the GIF Stats module is used for image/gif
documents.

By default, a processing module for extracting links is associated with the con-
tent type text/html. The process method of this module extracts all links from an
HTML page. Each link is converted into an absolute URL and tested against a
user-supplied URL filter to determine if it should be downloaded 6 . If the URL
passes the filter, it is submitted to the duplicate URL eliminator (DUE) 7 , which
checks if the URL has been seen before, namely, if it is in the URL frontier or has
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already been downloaded. If the URL is new, it is added to the frontier 8 .
Finally, in the case of continuous crawling, the URL of the document that was

just downloaded is also added back to the URL frontier. As noted earlier, a mecha-
nism is required in the continuous crawling case for interleaving the downloading
of new and old URLs. Mercator uses a randomized priority-based scheme for
this purpose. A standard configuration for continuous crawling typically uses a
frontier implementation that attaches priorities to URLs based on their download
history, and whose dequeue method is biased towards higher priority URLs. Both
the degree of bias and the algorithm for computing URL priorities are pluggable
components. In one of our configurations, the priority of documents that do not
change from one download to the next decreases over time, thereby causing them
to be downloaded less frequently than documents that change often.

In addition to the numerous worker threads that download and process doc-
uments, every Mercator crawl also has a single background thread that performs
a variety of tasks. The background thread wakes up periodically (by default, ev-
ery 10 seconds), logs summary statistics about the crawl’s progress, checks if the
crawl should be terminated (either because the frontier is empty or because a user-
specified time limit has been exceeded), and checks to see if it is time to checkpoint
the crawl’s state to stable storage.

Checkpointing is an important part of any long-running process such as a web
crawl. By checkpointing we mean writing a representation of the crawler’s state
to stable storage that, in the event of a failure, is sufficient to allow the crawler to
recover its state by reading the checkpoint and to resume crawling from the exact
state it was in at the time of the checkpoint. By this definition, in the event of a
failure, any work performed after the most recent checkpoint is lost, but none of
the work up to the most recent checkpoint. In Mercator, the frequency with which
the background thread performs a checkpoint is user-configurable; we typically
checkpoint anywhere from 1 to 4 times per day.

The description so far assumed the case in which all Mercator threads are run
in a single process. However, Mercator can be configured as a multi-process dis-
tributed system. In this configuration, one process is designated the queen, and the
others are drones.1 Both the queen and the drones run worker threads, but only the
queen runs a background thread responsible for logging statistics, terminating the
crawl, and initiating checkpoints.

In its distributed configuration, the space of host names is partitioned among
the queen and drone processes. Each process is responsible only for the subset

1This terminology was inspired by the common practice of referring to web crawlers as spiders.
In fact, our internal name for the distributed version of Mercator is Atrax, after atrax robustus, also
known as the Sydney Funnel Web Spider, one of the few spider species that lives in colonies.
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Figure 2: A four-node distributed crawling hive

of host names assigned to it. Hence, the central data structures of each crawling
process — the URL frontier, the URL set maintained by the DUE, the DNS cache,
etc. — contain data only for its hosts. Put differently, the state of a Mercator crawl
is fully partitioned across the queen and drone processes; there is no replication of
data.

In a distributed crawl, when a Link Extractor extracts a URL from a down-
loaded page, that URL is passed through the URL Filter, into a host splitter com-
ponent. This component checks if the URL’s host name is assigned to this process
or not. Those that are assigned to this process are passed on to the DUE; the others
are routed to the appropriate peer process, where it is then passed to that process’s
DUE component. Since about 80% of links are relative, the vast majority of discov-
ered URLs remain local to the crawling process that discovered them. Moreover,
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Mercator buffers the outbound URLs so that they may be transmitted in batches for
efficiency. Figure 2 illustrates this design.

The above description omits several important implementation details. De-
signing data structures that can efficiently handle hundreds of millions of entries
poses many engineering challenges. Central to these concerns are the need to bal-
ance memory use and performance. The following subsections provide additional
details about the URL frontier, the DUE, and the DNS resolver components. A
more detailed description of the architecture and implementation is available else-
where [12, 19].

3.1 A Polite and Prioritizing URL Frontier

Every web crawler must keep track of the URLs to be downloaded. We call the data
structure for storing these URLs the URL frontier. Despite the name, Mercator’s
URL frontier actually stores objects that encapsulate both a URL and the download
history of the corresponding document.

Abstractly speaking, a frontier is a URL repository that provides two major
methods to its clients: one for adding a URL to the repository, and one for obtaining
a URL from it. Note that the clients control in what order URLs are added, while
the frontier controls in what order they are handed back out. In other words, the
URL frontier controls the crawler’s download schedule.

Like so many other parts of Mercator, the URL frontier is a pluggable com-
ponent. We have implemented about half a dozen versions of this component.
The main difference between the different versions lies in their scheduling poli-
cies. The policies differ both in complexity and in the degree of “politeness” (i.e.,
rate-limiting) they provide to the crawled web servers.

Most crawlers work by performing a breadth-first traversal of the web, starting
from the pages in the seed set. Such traversals are easily implemented by using a
first-in/first-out (FIFO) queue. However, the prevalence of relative URLs on web
pages causes a high degree of host locality within the FIFO queue; that is, the queue
contains runs of URLs with the same host name. If all of the crawler’s threads
dequeue URLs from a single FIFO queue, many of them will issue HTTP requests
to the same web server simultaneously, thereby overloading it. Such behavior is
considered socially unacceptable (in fact, it has the potential to crash some web
servers).

Such overloads can be avoided by limiting the number of outstanding HTTP
requests to any given web server. One way to achieve this is by ensuring that at
any given time, only one thread is allowed to contact a particular web server. We
call this the weak politeness guarantee.

We implemented a frontier that met the weak politeness guarantee and used it
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to perform several crawls, each of which fetched tens of millions of documents.
During each crawl, we received a handful of complaints from various web server
administrators. It became clear that our weak politeness guarantee was still con-
sidered too rude by some. The problem is that the weak politeness guarantee does
not prevent a stream of requests from being issued to the same host without any
pauses between them.

Figure 3 shows our most sophisticated frontier implementation. In addition
to providing a stronger politeness guarantee that rate-limits the stream of HTTP
requests issued to any given host, it also distributes the work among the crawling
threads as evenly as possible (subject to the politeness requirement), and it provides
a priority-based scheme for scheduling URL downloads. The frontier consists of a
front-end (the top part of the figure) that is responsible for prioritizing URLs, and
a back-end (the bottom part of the figure) that is responsible for ensuring strong
politeness.

When a URL u is added to the frontier, a pluggable prioritizer component
computes a priority value p between 1 and k based on the URL and its download
history (e.g. whether the document has changed since the last download), and
inserts u into front-end FIFO queue p.

The back-end maintains n FIFO queues, each of which is guaranteed to be non-
empty and to contain URLs of only a single host, and a table T that maintains a
map from hosts to back-end queues. Moreover, it maintains a heap data structure
that contains a handle to each FIFO queue, and that is indexed by a timestamp in-
dicating when the web server corresponding to the queue may be contacted again.
Obtaining a URL from the frontier involves the following steps: First, the call-
ing thread removes the root item from the heap (blocking, if necessary, until its
timestamp is in the past). It then returns the head URL u from the corresponding
back-end queue q. The calling thread will subsequently download the correspond-
ing document.

Once the download has completed, u is removed from q. If q becomes empty,
the calling thread refills q from the front end. This is done by choosing a front-
end queue at random with a bias towards “high-priority” queues, and removing a
URL u ′ from it. If one of the other back-end queues contains URLs with the same
host component as u′, u′ is inserted into that queue and process of refilling q goes
on. Otherwise, u′ is added to q, and T is updated accordingly. Also, the calling
thread computes the time at which u’s host may be contacted again, and reinserts
the handle to q with that timestamp back into the heap.

Note that the number n of back-end queues and the degree of rate-limiting go
hand in hand: The larger the degree of rate-limiting, the more back-end queues
are required to keep all the crawling threads busy. In our production crawls, we
typically use 3 times as many back-end queues as crawling threads, and we wait 10
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times as long as it took us to download a URL from a host before contacting that
host again. These values are sufficient to keep all threads busy and to keep the rate
of complaints to a bare minimum.

In a crawl of the entire web, the URL frontier soon outgrows the available
memory of even the largest machines. It is therefore necessary to store most of the
frontier’s URLs on disk. In Mercator, each of the FIFO queues stores the bulk of
its URLs on disk, and buffers only a fixed number of the URLs at its head and tail
in memory.

3.2 Efficient Duplicate URL Eliminators

In the course of extracting links, any web crawler will encounter multiple links to
the same document. To avoid downloading and processing a document multiple
times, a duplicate URL eliminator (DUE) guards the URL frontier. Extracted links
are submitted to the DUE, which passes new ones to the frontier while ignoring
those that have been submitted to it before.

One of our implementations of the DUE maintains an in-memory hash table
of all URLs that have been encountered before. To save space, the table stores
8-byte checksums of the URLs rather than the URLs themselves. We compute the
checksums using Rabin’s fingerprinting algorithm [3, 21], which has good spectral
properties and gives exponentially small probabilistic bounds on the likelihood of
a collision. The high-order 3 bytes of the checksum are used to index into the hash
table spine. Since all checksums in the same overflow bucket would have the same
high-order 3 bytes, we actually store only the 5 low-order bytes. Taking pointer
and counter overhead into account, storing the checksums of 1 billion URLs in
such a hash table requires slightly over 5 GB.

This implementation is very efficient, but it requires a substantial hardware in-
vestment; moreover, the memory requirements are proportional to the size of the
crawl. A disk-based approach avoids these problems, but is difficult to implement
efficiently. Our first disk-based implementation essentially stored the URL finger-
print hash table on disk. By caching popular fingerprints in memory, only one in
every six DUE submissions required a disk access. However, due to the spectral
properties of the fingerprinting function, there is very little locality in the stream
of fingerprints that miss on the in-memory cache, so virtually every disk access re-
quired a disk seek. On state-of-the-art disks, the average seek requires about 8 ms,
which would enable us to perform 125 seeks or 750 DUE submissions per second.
Since the average web page contains about 10 links, this would limit the crawling
rate to 75 downloads per second. Initially, this bottleneck is masked by the operat-
ing system’s file buffer cache, but once the disk-based hash table grows larger than
the file buffer cache, the seek operations become the performance bottleneck.
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Both designs described so far add never-before-seen URLs to the frontier im-
mediately. By buffering URLs, we can amortize the access to the disk, thereby
increasing the throughput of the DUE. Figure 4 shows the main data structures of
our most efficient disk-based DUE implementation. This implementation’s largest
data structure is a file F of sorted URL fingerprints.

When a URL u is submitted to the DUE, its fingerprint fp is computed. Next,
fp is checked against a cache of popular URLs and an in-memory hash table T . If
fp is contained in either, no further action is required. Otherwise, u is appended to
a URL disk file U , and a mapping from fp to u’s ordinal in U is added to T .

Once T ’s size exceeds a predefined limit, the thread that “broke the camel’s
back” atomically copies T ’s content to a table T′ consisting of fingerprint/ordinal
pairs, empties T , and renames U to U′. Once this very short atomic operation
completes, other crawling threads are free to submit URLs to the DUE, while the
back-breaking thread adds the new content of T′ and U ′ into F and the frontier,
respectively. It first sorts T ′ by fingerprint value, and then performs a linear merge
of T ′ and F , marking every row in T ′ whose fingerprint was added to F . Next, it
sorts T ′ by ordinal value. Finally, it scans both T′ and U ′ sequentially, and adds all
URLs in U ′ that are marked in T ′ to the frontier.

In real crawls, we found that this DUE implementation performs at least twice
as well as the one that is seek-limited; however, its throughput still deteriorates
over time, because the time needed to merge T′ into F eventually exceeds the time
required to fill T .

3.3 The Trouble with DNS

Hosts on the Internet are identified by Internet Protocol (IP) addresses, which are
32-bit numbers. IP addresses are not mnemonic. This problem is avoided by the
use of symbolic host names, such as cnn.com, which identify one or more IP ad-
dresses. Any program that contacts sites on the internet whose identities are pro-
vided in the form of symbolic host names must resolve those names into IP ad-
dresses. This process is known as host name resolution, and it is supported by
the domain name service (DNS). DNS is a globally distributed service in which
name servers refer requests to more authoritative name servers until an answer is
found. Therefore, a single DNS request may take seconds or even tens of seconds
to complete, since it may require many round-trips across the globe.

DNS name resolution is a well-documented bottleneck of most web crawlers.
We tried to alleviate this bottleneck by caching DNS results, but that was only
partially effective. After some probing, we discovered that the Java interface to
DNS lookups is synchronized. Further investigation revealed that the DNS inter-
face on most flavors of Unix (i.e., the gethostbyname function provided as part
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Figure 5: Mercator’s performance over a 17-day crawl

of the Berkeley Internet Name Domain (BIND) distribution [1]) is also synchro-
nized. This meant that only one DNS request per address space on an uncached
name could be outstanding at once. The cache miss rate is high enough that this
limitation causes a severe bottleneck.

To work around these problems, we made DNS resolution one of Mercator’s
pluggable components. We implemented a multi-threaded DNS resolver compo-
nent that does not use the resolver provided by the host operating system, but rather
directly forwards DNS requests to a local name server, which does the actual work
of contacting the authoritative server for each query. Because multiple requests can
be made in parallel, our resolver can resolve host names much more rapidly than
either the Java or Unix resolvers.

This change led to a significant crawling speedup. Before making the change,
performing DNS lookups accounted for 70% of each thread’s elapsed time. Using
our custom resolver reduced that elapsed time to 14%. (Note that the actual number
of CPU cycles spent on DNS resolution is extremely low. Most of the elapsed time
is spent waiting for remote DNS servers.) Moreover, because our resolver can
perform resolutions in parallel, DNS is no longer a bottleneck; if it were, we would
simply increase the number of worker threads.

4 Experiences from a Large Crawl

This section describes the results of our crawling experiments. Our crawling cluster
consists of four Compaq DS20E AlphaServers, each one equipped with 4 GB of
main memory, 650 GB of disk, and a 100 Mbit/sec Ethernet card. The cluster is
located close to the Internet backbone. Our ISP rate-limits our bandwidth to 160
Mbits/sec.

In December 2000, we performed a crawl that processed 891 million URLs

14



200 − OK (81.36%)
404 − Not Found (5.94%)
302 − Moved temporarily (3.04%)
Excluded by robots.txt (3.92%)
TCP error (3.12%)
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Figure 6: Outcome of download attempts

over the course of 17 days.2 Figure 5a shows the number of URLs processed per
day of the crawl; Figure 5b shows the bandwidth consumption over the life of the
crawl. The periodic downspikes are caused by the crawler checkpointing its state
once a day. The crawl was network-limited over its entire life; CPU load was below
50%, and disk activity was low as well.

As any web user knows, not all download attempts are successful. During
our crawl, we collected statistics about the outcome of each download attempt.
Figure 6 shows the outcome percentages. Of the 891 million processed URLs, 35
million were excluded from download by robots.txt files, and 9 million referred to
a nonexistent web server; in other words, the crawler performed 847 million HTTP
requests. 725 million of these requests returned an HTTP status code of 200 (i.e.,
were successful), 94 million returned an HTTP status code other than 200, and 28
million encountered a TCP failure.

There are many different types of content on the internet, such as HTML pages,
GIF and JPEG images, MP3 audio files, and PDF documents. The MIME (Mul-
tipurpose Internet Mail Extensions) standard defines a naming scheme for these
content types [8]. We have collected statistics about the distribution of content
types of the successfully downloaded documents. Overall, our crawl discovered
3,173 different content types (many of which are misspellings of common content
types). Figure 7 shows the percentages of the the most common types. HTML

2As a point of comparison, the current Google index contains about 700 million fully-indexed
pages (the index size claimed on the Google home page – 1.35 billion — includes URLs that have
been discovered, but not yet downloaded).

text/html (65.34%)
image/gif (15.77%)
image/jpeg (14.36%)
text/plain (1.24%)
application/pdf (1.04%)
Other (2.26%)

Figure 7: Distribution of content types
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Figure 8: Distribution of document sizes

pages (of type text/html) account for nearly two-thirds of all documents; images
(in both GIF and JPEG formats) account for another 30%; all other content types
combined account for less than 5%.

Figure 8 is a histogram showing the document size distribution. In this figure,
the documents are distributed over 22 bins labeled with exponentially increasing
document sizes; a document of size n is placed in the rightmost bin with a label not
greater than n. Of the 725 million documents that were successfully downloaded,
67% were between 2K and 32K bytes in size, corresponding to the four tallest bars
in the figure.

Figure 9 shows the distribution of content across web servers. Figure 9a mea-
sures the content using a granularity of whole pages, while Figure 9b measures
content in bytes. Both figures are plotted on a log-log scale, and in both, a point
(x, y) indicates that x web servers had at least y pages/bytes. The near-linear shape
of the plot in Figure 9a indicates that the distribution of pages over web servers is
Zipfian.

Finally, Figure 10 shows the distributions of web servers and web pages across
top-level domains. About half of the servers and pages fall into the .com domain.
For the most part, the numbers of hosts and pages in a top-level domain are well-
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Figure 9: Document and web server size distributions
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Figure 10: Distribution of hosts and pages over top-level domains

correlated. However, there are some interesting wrinkles. For example, the .edu
domain contains only about 1.53% of the hosts, but 5.56% of the total pages. In
other words, the average university web server contains almost four times as many
pages as the average server on the web at large.

5 Conclusion

High-performance web crawlers are an important component of many web ser-
vices. Building a high-performance crawler is a non-trivial endeavor: the data
manipulated by the crawler is too big to fit entirely in memory, so there are perfor-
mance issues related to how to balance the use of disk and memory. This chapter
has enumerated the main components required in any crawler, and it has discussed
design alternatives for some of those components. In particular, the chapter de-
scribed Mercator, an extensible, distributed, high-performance crawler written en-
tirely in Java.

Mercator’s design features a crawler core for handling the main crawling tasks,
and extensibility through a component-based architecture that allows users to sup-
ply new modules at run-time for performing customized crawling tasks. These
extensibility features have been quite successful. We were able to adapt Mercator
to a variety of crawling tasks, and the new code was typically quite small (tens to
hundreds of lines). Moreover, the flexibility afforded by the component model en-
couraged us to experiment with different implementations of the same functional
components, and thus enabled us to discover new and efficient data structures. In
our experience, these innovations produced larger performance gains than low-
level tuning of our user-space code [13].

Mercator’s scalability design has also worked well. It is easy to configure the
crawler for varying memory footprints. For example, we have run it on machines
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with memory sizes ranging from 128 MB to 2 GB. The ability to configure Mer-
cator for a wide variety of hardware platforms makes it possible to select the most
cost-effective platform for any given crawling task.

Although our use of Java as an implementation language was met with con-
siderable scepticism when we began the project, we have not regretted the choice.
Java’s combination of features — including threads, garbage collection, objects,
and exceptions — made our implementation easier and more elegant. Moreover,
on I/O-intensive applications, Java has little negative impact on performance. Pro-
filing Mercator running on Compaq AlphaServers reveals that over 60% of the
cycles are spent in the kernel and in C libraries; less than 40% are spent execut-
ing (JIT-compiled) Java bytecode. In fact, Mercator is faster than any other web
crawler for which performance numbers have been published.

Mercator has proven to be extremely popular. It has been incorporated into
AltaVista’s Search Engine 3 product, and it is being used as the web crawler for
AltaVista’s American and European search sites. Our colleague Raymie Stata has
performed Mercator crawls that collected over 12 terabytes of web content, which
he has contributed to the Internet Archive’s web page collection. Raymie also
performed a continuous crawl on behalf of the Library of Congress to monitor
coverage of the 2000 U.S. Presidential election. That crawl took daily snapshots
of about 200 election-related web sites during the five months preceding the in-
auguration. Finally, Mercator has been an enabler for other web research within
Compaq. For example, we have configured Mercator to perform random walks
instead of breadth-first search crawls, using the crawl traces to estimate the quality
and sizes of major search engine indices [10, 11].
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