
Performance of Firefly RPC

MICHAEL D. SCHROEDER and MICHAEL BURROWS

April 15, 1989

SRC RESEARCH REPORT 43

 Digital Equipment Corporation 1989

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted for
nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of the Systems
Research Center of Digital Equipment Corporation in Palo Alto, California; an
acknowledgment of the authors and individual contributors to the work; and all applicable
portions of the copyright notice. Copying, reproducing, or republishing for any other
purposes shall require license with payment of fee to the Systems Research Center. All
rights reserved.



AUTHORS' ABSTRACT

In this paper, we report on the performance of the remote procedure call implementation
for the Firefly multiprocessor and analyze the implemen-tation to account precisely for all
measured latency.  From the analysis and measurements, we estimate how much faster
RPC could be if certain improve-ments were made.

The elapsed time for an inter-machine call to a remote procedure that accepts no
arguments and produces no results is 2.66 milliseconds.  The elapsed time for an RPC
that has a single 1440-byte result (the maximum result that will fit in a single packet) is
6.35 milliseconds.  Maximum inter-machine throughput using RPC is 4.65
megabits/second, achieved with 4 threads making parallel RPCs that return the maximum
sized single packet result.  CPU utilization at maximum throughput is about 1.2 on the
calling machine and a little less on the server.

These measurements are for RPCs from user space on one machine to user space on
another, using the installed system and a 10 megabit/second Ethernet.  The RPC packet
exchange protocol is built on IP/UDP, and the times include calculating and verifying
UDP checksums.  The Fireflies used in the tests had 5 MicroVAX II processors and a
DEQNA Ethernet controller.
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1. INTRODUCTION

Remote procedure call (RPC) is now a widely accepted method for encapsulating
communication in a distributed system.  With RPC, programmers of distributed
applications need not concern themselves with the details of managing communications
with another address space or another machine, nor with the detailed representation of
operations and data items on the communication channel in use.  RPC makes the
communication with a remote environment look like a local procedure call.

In building a new software system for the Firefly multiprocessor [9] we decided to
make RPC the primary communication paradigm, to be used by all future programs
needing to communicate with another address space, whether on the same machine or a
different one.  Remote file transfers as well as calls to local operating systems entry
points are handled via RPC.  For RPC to succeed in this primary role it must be fast
enough that programmers are not tempted to design their own special purpose
communication protocols.  Because of the primary role of RPC, however, we were able
to structure the system software to expedite the handling of RPCs and to pay special
attention to each instruction on the RPC "fast path".

This paper reports measurements of Firefly RPC performance.  It also details the
steps of the fast path and assigns an elapsed time to each step.  Correspondence of the
sum of these step times with the measured overall performance indicates that we have an
accurate model of where the time is spent for RPC.  In addition, this detailed
understanding allows estimates to be made for the performance improvements that would
result from certain changes to hardware and software.

1.1 Hardware and System Characteristics

The Firefly multiprocessor allows multiple VAX processors access to a shared memory
system via coherent caches.  The Firefly version measured here had 16 megabytes of
memory and 5 MicroVAX II CPUs [9], each of which provides about 1 MIPs of
processor power1.  One of these processors is also attached to a QBus I/O bus [5].
Network access is via a DEQNA device controller [4] connecting the QBus to a 10
megabit/second Ethernet.  In the Firefly the  DEQNA can use about 16 megabits/second
of QBus bandwidth.

The Firefly system kernel, called the Nub, implements a scheduler, a virtual memory
manager, and device drivers.  The Nub executes in VAX kernel mode.  The virtual
memory manager provides multiple user address spaces for application programs, one of
which contains the rest of the operating system.  The scheduler provides multiple threads
per address space, so that the Nub, operating system, and application programs can be
written as true concurrent programs that execute simultaneously on multiple processors.
The system is structured to operate best with multiple processors.

1.2 Overview of RPC Structure

The Firefly RPC implementation follows the standard practice of using stub procedures
[2].  The caller stub, automatically generated from a Modula-2+ [8] interface definition, is
included in the calling program to provide local surrogates for the actual remote
procedures.  When a procedure in this stub is called, it allocates and prepares a call packet
into which are marshalled the interface and procedure identification, and the arguments.
The stub calls the appropriate transport mechanism to send the call packet to the remote
server machine and then blocks, waiting for a corresponding result packet.  (Other threads

1  Since the measurements reported here were made, Fireflies have been upgraded with faster
CVAX processors and more memory .
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in the caller address space are still able to execute.)  When the result packet arrives, the
stub unmarshalls any results, frees the packet, and returns control to the calling program,
just as though the call had taken place within the same address space.

Similar machinery operates on the server.  A server stub is included in the server
program.  This stub receives calls from the transport mechanism on the server machine
when a suitable call packet arrives. The stub unmarshalls the arguments and calls the
identified procedure.  After completing its task, the server procedure returns to the stub,
which marshalls the results and then calls the appropriate transport mechanism to send the
result packet back to the caller machine.

More details on the structure of Firefly RPC appear in section 3.

2. MEASUREMENTS

In this section we report the overall performance of Firefly RPC.  All measurements in
this paper were made on the installed service system, software that was used by more than
50 researchers.  Except where noted all tests used automatically generated stubs for a
remote "Test" interface that exports three procedures:

PROCEDURE: Null();
PROCEDURE: MaxResult(VAR OUT buffer: ARRAY OF CHAR);
PROCEDURE: MaxArg(VAR IN buffer: ARRAY OF CHAR);

MaxArg and MaxResult were called with the following variable as the argument:

VAR b: ARRAY [0..1439] OF CHAR;

Calls to Null() measure the base latency of the RPC mechanism.  The Ethernet
packets generated for the call and return of this procedure, which accepts no argument and
produces no result, consist entirely of Ethernet, IP, UDP, and RPC headers and are the
74-byte minimum size generated for Ethernet RPC.

Calls to MaxResult(b) measure the server-to-caller throughput of RPC.  The single
1440-byte VAR OUT argument produces the minimal 74-byte call packet and a result
packet with 1514 bytes, the maximum allowed on an Ethernet.  (The RPC
implementation allows arguments and results larger than 1440 bytes, but such larger
arguments and results necessarily are transmitted in multiple packets.)  The VAR OUT
designation tells the RPC implementation that the argument value need only be
transferred in the result packet.  MaxArg(b) moves data from caller to server in the same
way.  The VAR IN designation means that the argument value need only be transferred in
the call packet.

2.1 Latency and Throughput

As an overall assessment of RPC performance on the Firefly, we measured the elapsed
time required to make a total of 10000 RPCs using various numbers of caller threads.
The caller threads ran in a user address space on one Firefly, and the multithreaded server
ran in a user address space on another.  Timings were done with the two Fireflies attached
to a private Ethernet to eliminate variance due to other network traffic.
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Table I:  Time for 10000 RPCs

# of caller Calls to Null() Calls to MaxResult(b)
threads seconds RPCs/sec seconds megabits/sec

1 26.61 375 63.47 1.82
2 16.80 595 35.28 3.28
3 16.26 615 27.28 4.25
4 15.45 647 24.93 4.65
5 15.11 662 24.69 4.69
6 14.69 680 24.65 4.70
7 13.49 741 24.72 4.69
8 13.67 732 24.68 4.69

From Table I we see that the base latency of the Firefly RPC mechanism is about
2.66 milliseconds and that 7 threads can do about 740 calls of Null() per second.  Latency
for a call to MaxResult(b) is about 6.35 milliseconds and 4 threads can achieve a server-
to-caller throughput of 4.65 megabits/second using this procedure.  We observed about
1.2 CPUs being used on the caller machine, slightly less on the server machine, to
achieve maximum throughput.  Those Fireflies,  which had all the standard background
threads started, used about 0.15 CPUs when idling.

2.2 Marshalling Time

RPC stubs are automatically generated from a Modula-2+ definition module.  The stubs
are generated as Modula-2+ source, which is compiled by the normal compiler.  For most
argument and result types, the stub contains direct assignment statements to copy the
argument or result to/from the call or result packet.  Some complex types are marshalled
by calling library marshalling procedures.

Andrew Birrell has measured the following times for passing various argument types
with the automatically generated stubs.  The measurements reported are the incremental
elapsed time for calling a procedure with the indicated arguments over calling Null().  The
differences were measured for calls to another address space on the same machine in order
to factor out the Ethernet transmission time for different sizes of call and result packets.
Such local RPC1 uses the same stubs as inter-machine RPC.  Only the transport
mechanism is different: shared memory rather than IP/UDP and the Ethernet.  Because the
pool of packet buffers (the same pool used for Ethernet transport) is mapped into each
user address space, the time for local transport is independent of packet size.

Table II:  4-byte integer arguments, passed by value

# of arguments Marshalling time
in microseconds

1 8
2 16
4 32

Integer and other fixed-size arguments passed by value are copied from the caller's
stack into the call packet by the caller stub, and then copied from the packet to the
server's stack by the server stub.  Such arguments are not included in the result packet.

1  The time for a local RPC to Null() is 937 microseconds for the system measured here.  See
Bershad et al. [1] for a report on successful efforts to speed up local RPC on the Firefly.
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Table III:  Fixed length array, passed by VAR OUT

Array size in bytes Marshalling time
in microseconds

4 20
400 140

Table IV:  Variable length array, passed by VAR OUT

Array size in bytes Marshalling time
in microseconds

1 115
1440 550

In Modula-2+, VAR arguments are passed by address.  The additional OUT or IN
designation tells the stub compiler that the argument is being passed in one direction
only.  The stub can use this information to avoid transporting and copying the argument
twice.  A VAR OUT argument is transported only in the result packet; it is not copied
into the call packet by the caller stub.  If the argument fits in a single packet then the
server stub passes the argument's address in the result packet buffer to the server
procedure, from where the server procedure can directly write it, so no copy is performed
at the server.  The single copy occurs upon return when the caller stub moves the value in
the result packet back into the caller's argument variable. VAR IN arguments work the
same way, mutatis mutandis, to transfer data from caller to server.  VAR OUT and VAR
IN arguments of the same type have the same incremental marshalling costs.  For single
packet calls and results the marshalling times for array arguments scale linearly with the
values reported in tables III and IV.

Table V:  Text.T argument

Array size in bytes Marshalling time
in microseconds

NIL 89
1 378

128 659

 A Text.T is a text string that is allocated in garbage collected storage and is
immutable.  The caller stub must copy the string into the call packet.  The server stub
must allocate a new Text.T from garbage collected storage at the server, copy the string
into it, and then pass a reference to this new object to the server procedure.  Most of the
time for marshalling Text.Ts is spent in the Text library procedures.

3. ANALYSIS

In this section we account for the elapsed time measured in section 2.1.  We start by
describing in some detail the steps in doing an inter-machine RPC.  Then we report the
time each step takes and compare the total for the steps to the measured performance.

3.1 Steps in a Remote Procedure Call

The description here corresponds to the fast path of RPC.  It assumes that other calls
from this caller address space to the same remote server address space have occurred
recently, within a few seconds, so that server threads are waiting for the call.  Part of
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making RPC fast is arranging that the machinery for retransmission, for having enough
server threads waiting, for multi-packet calls or results, for acknowledgements, and other
features of the complete RPC mechanism intrude very little on the fast path.
Consequently, the description of the fast path can ignore these mechanisms.  The path
described is that followed for the majority of RPCs that occur in the operational system.
It is this fast path that determines the normally observed performance of RPC.

Firefly RPC allows choosing from several different transport mechanisms at RPC
bind time.  Our system currently supports transport to another machine by a custom RPC
packet exchange protocol layered on IP/UDP, by DECNet to another machine, and by
shared memory to another address space on the same machine.  The choice of transport
mechanism is embodied in the particular versions of the transport procedures named
Starter, Transporter, and Ender that are invoked by the caller stub.  At the server the
choice is represented by the Receiver procedure being used.  In this paper we measure and
describe the first of these transport options, using Ethernet.  This custom RPC packet
exchange protocol follows closely the design described by Birrell and Nelson for Cedar
RPC [2].  The protocol uses implicit acknowledgements in the fast path cases.

3.1.1 Caller stub

When a program calls a procedure in a remote interface, control transfers to a caller stub
module for that interface in the caller's address space.  Assuming that binding to a suitable
remote instance of the interface has already occurred, the stub module completes the RPC
in five steps:

1. Call the Starter procedure to obtain a packet buffer for the call with a partially
filled-in header.

2. Marshall the caller's arguments by copying them into the call packet.
3. Call the Transporter procedure to transmit the call packet and wait for the

corresponding result packet.
4. Unmarshall the result packet by copying packet data to the caller's result

variables.
5. Call the Ender procedure to return the result packet to the free pool.

When the stub returns control to the calling program, the results are available as if the
call had been to a local procedure.

3.1.2 Server stub

The server stub has a similar job to do.  When it receives a call packet on an up call from
the Receiver procedure on the server machine, it performs three steps:

1. Unmarshall the call's arguments from the call packet.  Depending on its type, an
argument may be copied into a local stack variable, copied into newly allocated
garbage collected storage, or left in the packet and its address passed.  The call
packet is not freed.

2. Call the server procedure.
3. When the server procedure returns, marshall the results in the saved call packet,

which becomes the result packet.
When the server stub returns to the Receiver procedure, the result packet is transmitted
back to the caller.

3.1.3 Transport mechanism

The Transporter procedure must fill in the RPC header in the call packet.  It then
calls the Sender procedure to fill in the UDP, IP, and Ethernet headers, including the UDP
checksum on the packet contents.  To queue the call packet for transmission to the server
machine, the Sender invokes the Ethernet driver, by trapping to the Nub in kernel mode, .
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Because the Firefly is a multiprocessor with only CPU 0 connected to the I/O bus,
the Ethernet driver must run on CPU 0 when notifying the Ethernet controller hardware.
Control gets to CPU 0 through an interprocessor interrupt; the CPU 0 interrupt routine
prods the controller into action.

Immediately after issuing the interprocessor interrupt, the caller thread returns to the
caller's address space where the Transporter registers the outstanding call in an RPC call
table, and then waits on a condition variable for the result packet to arrive.  The time for
these steps is not part of the fast path latency as the steps are overlapped with the
transmission of the call packet, the processing at the server, and the transmission of the
result packet.  For the RPC fast path the calling thread gets the call registered before the
result packet arrives.

Once prodded, the Ethernet controller reads the packet from memory over the QBus
and then transmits it to the controller on the server machine.  After receiving the entire
packet, the server controller writes the packet to memory over the server QBus and then
issues a packet arrival interrupt.

The Ethernet interrupt routine validates the various headers in the received packet,
verifies the UDP checksum, and then attempts to hand the packet directly to a waiting
server thread.  Such server threads are registered in the call table of the server machine.  If
the interrupt routine can find a server thread associated with this caller address space and
called address space, it attaches the buffer containing the call packet to the call table entry
and awakens the server thread directly.

The server thread awakens in the server's Receiver procedure.1  The Receiver inspects
the RPC header and then calls the the stub for the interface ID specified in the call packet.
The interface stub then calls the specific procedure stub for the procedure ID specified in
the call packet.

The transport of the result packet over the Ethernet is handled much the same way.
When the server stub returns to the Receiver, it calls the server's Sender procedure to
transmit the result packet back to the caller machine.  Once the result packet is queued for
transmission, the server thread returns to the Receiver and again registers itself in the call
table and waits for another call packet to arrive.

Back at the caller machine, the Ethernet interrupt routine validates the arriving result
packet, does the UDP checksum, and tries to find the caller thread waiting in the call
table.  If successful, the interrupt routine directly awakens the caller thread, which returns
to step 4 in the caller stub described above.

The steps involved in transporting a call packet and a result packet are nearly
identical, from calling the Sender through transmitting and receiving the packet to
awakening a suitable thread in the call table.  We refer to these steps as the "send+receive"
operation.  A complete remote procedure call requires two send+receives -- one for the call
packet and one for the result packet.

3.2 Structuring for Low Latency

The scenario just outlined for the fast path of RPC incorporates several design features
that lower latency.  We already mentioned that the stubs use custom generated assignment
statements in most cases to marshall arguments and results for each procedure, rather than
library procedures or an interpreter.  Another performance enhancement in the caller stub
is invoking the chosen  Starter, Transporter, and Ender procedures through procedure
variables filled in at binding time, rather than finding the procedures by a table lookup.

Directly awakening a suitable thread from the Ethernet interrupt routine is another
important performance optimization for RPC.  This approach means that demultiplexing
of RPC packets is done in the interrupt routine.  The more traditional approach is to have
the interrupt handler awaken a datalink thread to demultiplex the incoming packet.  The

1  We lump 3 procedures of the actual implementation under the name Receiver here.
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traditional approach lowers the amount of processing in the interrupt handler, but doubles
the number of wakeups required for an RPC.  As wakeups tend to be expensive, we prefer
to avoid extra ones.  By carefully coding the demultiplexing code for RPC packets, the
time per packet in the interrupt handler can be kept within reasonable bounds (see Table
VI).  Even with only two wakeups for each RPC, the time to do these wakeups can be a
major contributor to RPC latency.  Considerable work has been done on the Firefly
scheduler to minimize this cost.  The slower traditional path through the datalink modules
in the operating system address space is used when the interrupt routine cannot find the
appropriate RPC thread in the call table, and when handling non-RPC packets.

The packet buffer management scheme we have adopted also increases RPC
performance.  We already mentioned above that the server stub hangs on to the call packet
to use it for the results.  We also arrange for the receive interrupt handler to immediately
replace the buffer used by an arriving call or result packet.  Each call table entry occupied
by a waiting thread also contains a packet buffer.  In the case of a calling thread it is the
call packet; in the case of a server thread it is the last result packet.  These packets must
be retained for possible retransmission.  The RPC packet exchange protocol is arranged so
that arrival of a result or call packet means that the packet buffer in the matching call
table entry is no longer needed.  Thus, when putting the newly arrived packet into the call
table, the interrupt handler removes the buffer found in that call table entry and adds it to
the Ethernet controller's receive queue.  Since the interrupt handler always checks for
additional packets to process before terminating, on-the-fly receive buffer replacement can
allow  many packets to be processed per interrupt.  Recycling is sufficiently fast that we
have seen several hundred packets processed in a single receive interrupt.

The alert reader will have suspected another feature of our buffer management
strategy: RPC packet buffers reside in memory shared among all user address spaces and
the Nub.  These buffers also are permanently mapped into Vax I/O space.  Thus, RPC
stubs in user spaces, and the Ethernet driver code and interrupt handler in the Nub, all can
read and write packet buffers in memory using the same addresses.  This strategy
eliminates the need for extra address mapping operations or copying when doing RPC.
While its insecurity makes shared buffers unsuitable for use in a time sharing system,
security is acceptable for a single user workstation or for a server where only trusted code
executes (say a file server).  This technique would also work for, say, kernel to kernel
RPCs.  For user space to user space RPCs in a time sharing environment, the more
secure buffer management required would introduce extra mapping or copying operations
into RPCs.

Like the pool of RPC buffers, the RPC call table also is shared among all user
address spaces and the Nub.  The shared call table allows the Ethernet interrupt handler to
find and awaken the waiting (calling or server) thread in any user address space.

  Several of the structural features used to improve RPC performance collapse layers
of abstraction in a somewhat unseemly way.  Programming a fast RPC is not for the
squeamish.

3.3 Allocation of Latency

We now try to account for the time an RPC takes.  Table VI shows a breakdown of time
for the send+receive operation that is executed twice per RPC, once for the argument
packet, once for the result packet.  The first seven actions are activities of the sending
machine.  The next three are Ethernet and hardware controller delays.  The last four are
actions performed by the receiving  machine.  All of the software in this table is written
in assembly language.
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Table VI:  Latency of steps in the send+receive operation

Action Microseconds for Microseconds for
74 byte packet 1514 byte packet

(if different)
Finish UDP header (Sender) 59 a
Calculate UDP checksum 45 b 440 b
Handle trap to Nub 37 a
Queue packet for transmission 39 a
Interprocessor interrupt to CPU 0 10 c
Handle interprocessor interrupt 76 a
Activate Ethernet controller 22 a
QBus/Controller transmit latency 70 d 815 e
Transmission time on Ethernet 60 d 1230 e
QBus/Controller  receive latency 80 d 835 e
General I/O interrupt handler 14 a
Handle interrupt for received pkt 177 a
Calculate UDP checksum 45 b 440 b
Wakeup RPC thread 220 a

Total for send+receive 954 4414
Key for Table VI:

a Calculated by adding the measured execution times of the machine instructions
in this code sequence.

b Measured by disabling UDP checksums and noting speedup.
c Estimated.
d Measured with logic analyzer.
e Measurements d  adjusted assuming 10 megabit/second Ethernet, 16

megabit/second QBus transfer, and no cut through.

Table VI shows that Ethernet transmission time and QBus/controller latency are
dominant for large packets, but software costs are dominant for small packets.  The
biggest single software cost is the scheduler operation to awaken the waiting RPC thread.

Table VII shows where time is spent in the user space RPC runtime code and
standard stubs for a call to Null().  The procedures detailed in Table VII are written in
Modula-2+.   The times were calculated by adding up the instruction timings for the
compiler-generated code.

Table VII: Latency of stubs and RPC runtime

    Machine Procedure Microseconds
Caller Calling program (loop to repeat call) 16

      Calling stub (call & return) 90
    Starter 128
    Transporter (send call pkt) 27
    Server Receiver (receive call pkt) 158
    Server stub (call & return) 68
    Null (the server procedure) 10
    Receiver (send result pkt) 27
    Caller Transporter (receive result pkt) 49
    Ender 33

TOTAL 606
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The Modula-2+ code listed in Table VII includes 9 procedure calls.  Since each
call/return takes about 15 microseconds, depending on the number of arguments,  about
20% of the time here is spent in the calling sequence.

In Table VIII we combine the numbers presented so far to account for the time
required for a complete call of Null() and of MaxResult(b).

Table VIII: Calculation of latency for RPC to Null() and MaxResult(b)

Procedure Action Microseconds
Null() Caller, server, stubs and RPC runtime 606

Send+receive 74-byte call packet 954
Send+receive 74-byte result packet 954
TOTAL 2514

MaxResult(b) Caller, server, stubs and RPC runtime 606
Marshall a 1440-byte VAR OUT result 550
Send+receive 74-byte call packet 954
Send+receive 1514-byte result packet 4414
TOTAL 6524

The best measured total latency for a call to Null() is 2645 microseconds, so we've
failed to account for 131 microseconds.  The best measured total latency for a call to
MaxResult(b) is 6347 microseconds, so we've accounted for 177 microseconds too much.
By adding the time of each instruction executed and of each hardware latency encountered,
we have accounted for the total measured time of RPCs to Null() and MaxResult(b) to
within about 5% .

4. IMPROVEMENTS

One of the important steps in improving the performance of Firefly RPC over its initial
implementation  was to rewrite the Modula-2+ versions of the fast path code in the
Ethernet send+receive operation in VAX assembly language.  In this section we illustrate
the speed-ups achieved by using  machine code.

We then use the analysis and measurement reported so far to estimate the impact that
other changes could have on overall RPC performance.  It is hard to judge how noticeable
these possible improvements would be to the normal user of the system.  The Firefly
RPC implementation has speeded up by a factor of three or so from its initial
implementation.  This improvement has produced no perceived change in the behavior of
most applications, since the throughput is still limited by I/O devices.  However, lower
latency RPC may encourage programmers to use RPC interfaces where they might
previously have been tempted to use ad hoc protocols before, and encourage the designers
of new systems to make extensive use of RPC.

4.1 Assembly Language vs. Modula-2+

In order to give some idea of the improvement obtained when Modula-2+ code fragments
are recoded in assembly language, the following table shows the time taken by one
particular code fragment at various stages of optimization.  This fragment was chosen
because it was the largest one that was recoded and is typical of the improvements
obtained for all the code that was rewritten.
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Table IX:  Execution time for main path of the Ethernet interrupt routine

Version Time in microseconds
Original Modula-2+ 758
Final Modula-2+ 547
Assembly language 177

The "Original Modula-2+" was the state of the code before any assembly language
code was written.  The interrupt routine had already been carefully written for speed (we
thought).  The "Final Modula-2+" code was structured so that the compiler output would
follow the assembly language version as closely as possible.  Writing in assembly
language is hard work and also makes the programs harder to maintain.  Because RPC is
the preferred communication paradigm for the Firefly, however, it seemed reasonable to
concentrate considerable attention on its key code sequence.  (There can't be too much
assembly language in the fast path, or it wouldn't be fast!)  The Modula-2+ compiler used
here doesn't generate particularly good code.  The speedup achieved by using assembly
language might be less dramatic starting from a different compiler, but would still be
substantial.

4.2 Speculations on Future Improvements

While improving the speed of the RPC system, we noticed several further possibilities
for improving its performance and also considered the impact that faster hardware and
networks would have.  In this section we speculate on the performance changes such
improvements might generate.  Some of these changes have associated disadvantages or
require unusual hardware.  For each change, we give the estimated speedup for a call to
Null() and a call to MaxResult(b).  The effect on maximum throughput has not been
estimated for all the changes, since this figure is likely to be limited by a single hardware
component.

Some estimates are based on "best conceivable" figures, and these may ignore some
practical issues.  Also, the effects discussed are not always independent, so the
performance improvement figures cannot always be added.

4.2.1. Different network controller

A controller which provided maximum conceivable overlap between Ethernet and QBUS
transfers would save about 300 microseconds on Null() (11%), and about 1800
microseconds (28%) on MaxResult(b).  It is more difficult to estimate the improvement
in throughput with multiple threads, since the Ethernet controller is already providing
some overlap in that case.  We think improvement is still possible on the transmission
side, since the saturated reception rate is 40% higher than the corresponding transmission
rate (see section 5.1).

4.2.2. Faster network

If the network ran at 100 megabits/second and all other factors remained constant, the
time to call Null() would be reduced by 110 microseconds (4%) and the time to call
MaxResult(b) would reduce by 1160 microseconds (18%).

4.2.3. Faster CPUs

If all processors were to increase their speed by a factor of 3, the time to call Null() would
reduce by about 1380 microseconds (52%).  The time to call MaxResult(b) would reduce
by 2280 microseconds (36%).
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4.2.4. Omit UDP checksums

Omitting UDP checksums saves 180 microseconds (7%) on a call to Null() and 1000
microseconds (16%) on a call to MaxResult(b).  At present, we use these end-to-end
software checksums because the Ethernet controller occasionally makes errors after
checking the Ethernet CRC.  End-to-end checksums still would be essential for crossing
gateways in an internet.

4.2.5. Redesign RPC protocol.

We estimate that by redesigning the RPC packet header to make it easy to interpret, and
changing an internal hash function, it would be possible to save about 200 microseconds
per RPC.  This represents approximately 8% of a call to Null() and 3% of a call to
MaxResult(b).

4.2.6. Omit layering on IP and UDP

We estimate that direct use of Ethernet datagrams, omitting the IP and UDP headers,
would save about 100 microseconds per RPC, assuming that checksums were still
calculated.  This is about 4% of a call to Null() and 1-2% of a call to MaxResult(b).  This
change would make it considerably more difficult to implement RPC on machines where
we do not have access to the kernel.  It would also make it impossible to use RPC via an
IP gateway.  (Some of the fields in IP and UDP headers are actually useful, and would
have to be incorporated into the RPC header.)

4.2.7. Busy wait

If caller and server threads were to loop in user space while waiting for incoming packets,
the time for a wakeup via the Nub would be saved at each end.  This is about 440
microseconds per RPC, which is 17% of a call to Null() and 7% of a call to
MaxResult(b).  Allowing threads to busy wait (in such a way that they would relinquish
control whenever the scheduler demanded) would require changes to the scheduler and
would make it difficult to measure accurately CPU usage for a thread.

4.2.8. Recode RPC runtime routines (except stubs)

If the RPC runtime routines in Table VII were rewritten in hand-generated machine
code, we would expect to save approximately 280 microseconds per RPC.  This
corresponds to 10% of a call to Null() and 4% of a call to MaxResult(b).  This figure is
based on an expected speedup of a factor of 3 in 422 microseconds of routines to be
recoded, which is typical of other code fragments that have been rewritten.

5. FEWER PROCESSORS

The Fireflies used in the tests reported here had 5 MicroVAX II processors.  The
measurements in other sections were done with all 5 available to the scheduler.  In this
section we report the performance when the number of available processors is decreased.

At first we were unable to get reasonable performance when running with a single
available processor on the caller and server machines.  Calls to Null() were taking around
20 milliseconds.  We finally discovered the cause to be a few lines of code that slightly
improved multiprocessor performance but had a dramatic negative effect on uniprocessor
performance.  The good multiprocessor code tends to lose about 1 packet/second when a
single thread calls Null() using uniprocessors, producing a penalty of about 600
milliseconds waiting for a retransmission to occur.  Fixing the problem requires
swapping the order of a few statements at a penalty of about 100 microseconds for
multiprocessor latency.  The results reported in this section were measured with the
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swapped lines installed.  (This change was not present for results reported in other
sections.)

These measurements were taken with the RPC Exerciser, which uses hand-produced
stubs that run faster than the standard ones (because they don't do marshalling, for one
thing).  With the RPC Exerciser, the latency for Null() is 140 microseconds faster and the
latency for MaxResult(b) is 600 microseconds faster than reported in Table I.  Such hand-
produced stubs might be used in performance-sensitive situations, such as kernel-to-kernel
RPCs, where one could trust the caller and server code to reference all arguments and
results directly in RPC packet buffers.

Table X: Calls to Null() with varying numbers of processors

caller server seconds for
processors processors 1000 calls

5 5 2.69
4 5 2.73
3 5 2.85
2 5 2.98
1 5 3.96
1 4 3.98
1 3 4.13
1 2 4.21
1 1 4.81

Table X shows 1 thread making RPCs to Null(), with varying numbers of processors
available on each machine.  When the calls are being done one at a time from a single
thread, reducing the number of caller processors from 5 down to 2 increases latency only
about 10%.  There is a sharp jump in latency for the uniprocessor caller.  Reductions in
server processors seem to follow a similar pattern.  Latency with uniprocessor caller and
server machines is 75% longer than for 5 processor machines.

Table XI:  Throughput in megabits/second of MaxResult(b)
with varying numbers of processors

caller processors 5 1 1
server processors 5 5 1
1 caller thread 2.0 1.5 1.3
2 caller threads 3.4 2.3 2.0
3 caller threads 4.6 2.7 2.4
4 caller threads 4.7 2.7 2.5
5 caller threads 4.7 2.7 2.5

Table XI shows the effect on the data transfer rate of varying the number of
processors on RPCs to MaxResult(b).  In this test each thread made 1000 calls.
Apparently throughput is quite sensitive to the difference between a uniprocessor and a
multiprocessor.  Uniprocessor throughput is slightly more than half of 5 processor
performance for the same number of caller threads.

We haven't tried very hard to make Firefly RPC perform well on a uniprocessor
machine.  The fast path for RPC is followed exactly only on a multiprocessor.  On a
uniprocessor, extra code gets included in the basic latency for RPC, such as a longer path
through the scheduler.  It seems plausible that better uniprocessor throughput could be
achieved by an RPC design, like Amoeba's [7], V's [3], or Sprite's [6], that streamed a
large argument or result for a single call in multiple packets, rather than depended on
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multiple threads transferring  a packet's worth of data per call.  The streaming strategy
requires fewer thread-to-thread context switches.

6. OTHER SYSTEMS

A sure sign of the coming of age of RPC is that others are beginning to report RPC
performance in papers on distributed systems.  Indeed, an informal competition has
developed to achieve low latency and high throughput.  Table XII collects the published
performance of several systems of interest.  All of the measurements were for inter-
machine RPCs to the equivalent of Null() over a 10 megabit Ethernet, with the exception
that the Cedar measurements used a 3 megabit Ethernet.  No other paper has attempted to
account exactly for the measured performance, as we have tried to do.

Table XII:  Performance of remote RPC in other systems

System Machine - ~ MIPs Latency in Throughput in
           Processor milliseconds megabits/sec
Cedar [2] Dorado - custom 1 x 4 1.1 2.0
Amoeba [7] Tadpole - M68020 1 x 1.5 1.4 5.3
V [3] Sun 3/75 - M68020 1 x 2 2.5 4.4
Sprite [6] Sun 3/75 - M68020 1 x 2 2.8 5.6
Amoeba/Unix [7] Sun 3/50 - M68020 1 x 1.5 7.0 1.8
Firefly FF - MicroVAX II 1 x 1 4.8 2.5
Firefly FF - MicroVAX II 5 x 1 2.7 4.6

Amoeba advertises itself as the world's fastest distributed system.  But the Cedar
system achieved 20% lower latency 4 years earlier (using a slower network and a faster
processor).  Determining a winner in the RPC sweepstakes is tricky business.  These
systems vary in processor speed, I/O bus bandwidth, and controller performance.  Some of
these RPC implementations work only kernel to kernel, others work user space to user
space.  Some protocols provide internet headers, others work only within a single
Ethernet.  Some use automatically generated stubs, others use hand-produced stubs.
Some generate end-to-end checksums with software, others do not.  The implementations
are written in different languages with varying quality compilers.  It is not clear which
corrections to apply to normalize the reported performance of different systems.

  It is clear that developers of distributed systems are learning how to get good
request/response performance from their system and network.  It is now widely understood
that it is not necessary to put up with high latency or low throughput from RPC-style
communication.  Some RPC implementations appear to drive current Ethernet controllers
at their throughput limit1 and to provide basic remote call latency only about 100 times
slower than that for statically- linked calls within a single address space.

7. CONCLUSIONS

Our objective in making Firefly RPC the primary communication mechanism between
address spaces, both inter-machine and local, was to explore the bounds of effectiveness of
this paradigm.  In making the RPC implementation fast, we sought to remove one
excuse for not using it.  To make it fast we had to understand exactly where time was
being spent, remove unnecessary steps from the critical path, give up some structural

1  In the case of Firefly RPC, we noticed that throughput has remained the same as the last few
performance improvements were put in place.  The CPU utilization continued to drop as the
code got faster.
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elegance, and write key steps in hand-generated assembly code.  We did not find it
necessary to sacrifice function; RPC still allows multiple transports, works over wide
area networks, copes with lost packets, handles a large variety of argument types
including references to garbage collected storage, and contains the structural hooks for
authenticated and secure calls.  The performance of Firefly RPC is good enough that
application and system designers accept it as the standard way to communicate.

The throughput of several RPC implementations (including ours) appears limited by
the network controller hardware;  a controller that provided more overlap between the I/O
bus and the Ethernet would lower Firefly RPC latency 10% to 30%.  The software
overheads of RPC in the Firefly are within a factor of 2 of the level where no further
effort should be expended to lower them for communication using a 10 megabit/second
Ethernet.  If, as expected, 100 megabit/second networks become a reality over the next
few years then we may face the challenge of speeding up the software once again.  Faster
processors might not do the entire job.
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