
Page 1

Operations on Records

Luca Cardelli John C. Mitchell
Digital Equipment Corporation Department of Computer Science

Systems Research Center Stanford University

Abstract
We define a simple collection of operations for creating and manipulating record

structures, where records are intended as finite associations of values to labels. A
second-order type system over these operations supports both subtyping and
polymorphism. We provide typechecking algorithms and limited semantic models.

Our approach unifies and extends previous notions of records, bounded
quantification, record extension, and parametrization by row-variables. The general aim
is to provide foundations for concepts found in object-oriented languages, within a
framework based on typed lambda-calculus.

Appears in: Mathematical Structures in Computer Science, vol 1, pp. 3-48, 1991

SRC Research Report 48, August 25, 1989. Revised January 1, 1993.
 Digital Equipment Corporation 1989,1993.
This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of the Systems Research Center of Digital Equipment Corporation
in Palo Alto, California; an acknowledgment of the authors and individuals contributors to the work; and all applicable portions of the
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a license with payment of fee to the
Systems Research Center. All rights reserved.

Page 2

1. Introduction
Object-oriented programming is based on record structures (called objects) intended

as named collections of values (attributes) and functions (methods). Collections of
objects form classes. A subclass relation is defined on classes with the intention that
methods work “appropriately” on all members belonging to the subclasses of a given
class. This property is important in software engineering because it permits after-the-fact
extensions of systems by subclasses, without requiring modifications to the systems
themselves.

The first object-oriented language, Simula67, and most of the more recent ones (see
references) are typed by using simple extensions of the type rules for Pascal-like
languages. These extensions mainly involve a notion of subtyping. In addition to
subtyping, we are interested here in more powerful type systems that smoothly
incorporate parametric polymorphism.

Type systems for record structures have recently received much attention. They
provide foundations for typing in object-oriented languages, data base languages, and
their extensions. In [Cardelli 88] the basic notions of record types, as intended here, were
defined in the context of a first-order type system for fixed-size records. Then Wand
[Wand 87] introduced the concept of row-variables while trying to solve the type inference
problem for records; this led to a system with extensible records and limited second-order
typing. His system was later refined and shown to have principal types in [Jategaonkar

Mitchell 88], [Rémy 89], and again in [Wand 89]. The resulting system provides a flexible
integration of record types and Milner-style type inference [Milner 78].

Meanwhile [Cardelli Wegner 85] defined a full second-order extension of the system
with fixed-size records, based on techniques from [Mitchell 84]. In that system, a program
can work polymorphically over all the subtypes B of a given record type A, and it can
preserve the “unknown” fields (the ones in B but not in A) of record parameters from
input to output. However, some natural functions are not expressible. For example, by the
nature of fixed-size records there is no way to add a field to a record and preserve all its
unknown fields. Less obviously, a function that updates a record field, in the purely
applicative sense of making a modified copy of it, is forced to remove all the unknown
fields from the result. Imperative update also requires a careful typing analysis.

In this paper we describe a second-order type system that incorporates extensible
records and solves the problem of expressing the natural functions mentioned above. We
believe this second-order approach makes the presentation of record types more natural.
The general idea is to extend a standard second-order (or even higher-order) type system
with a notion of subtyping at all types. Record types are then introduced as specialized
type constructions with some specialized subtyping rules. These new constructions
interact well with the rest of the system. For example, row-variables fall out naturally
from second-order type variables, and contravariance of function spaces and universal
quantifiers mixes well with record subtyping.

Page 3

In moving to second-order typing we give up the principal type property of weaker
type systems, in exchange for some additional expressiveness. But most importantly for
us, we gain some perspective on the space of possible operations on records and record
types, unencumbered (at least temporarily) by questions about type inference. Since it is
not clear yet where the bounds of expressiveness may lie, this perspective should prove
useful for comparisons and further understanding.

The first part of the paper is informal and introduces the main concepts and problems
by means of examples. Then we formalize our intuitions by a collection of type rules. We
give a normalization procedure for record types, and we show soundness of the rules with
respect to a simple semantics for the pure calculus of records. Finally, we discuss
applications and extensions of the basic calculus.

2. Informal development
Before looking at a formal system, we describe informally the desired operations on

records and we justify the rules that are expected to hold. The final formal system is
rather subtle, so these explanations should be useful in understanding it.

We also give simple examples of how records and their operations can be used in the
context of object-oriented languages.

2.1 Record values
A record value is intended to represent, in some intuitive semantic sense, a finite map

from labels to values where the values may belong to different types. Syntactically, a
record value is a collection of fields, where each field is a labeled value. To capture the
notion of a map, the labels in a given record must be distinct. Hence the labels can be
used to identify the fields, and the fields can be taken to be unordered. This is the notation
we use:

Üá the empty record.

Üx=3, y=trueá a record with two fields, labeled x and y,
equivalent to Üy=true, x=3á.

There are three basic operations on record values.
 ¢ Extension Ür | x=aá ; adds a field of label x and value a to a record r, provided a field of
label x is not already present. (This condition will be enforced statically.) We write
Ür | x=a | y=bá for ÜÜr | x=aá | y=bá.
 ¢ Restriction r\ x ; removes the field of label x, if any, from the record r. We write r\ xy
for r\ x\ y.
 ¢ Extraction r.x ; extracts the value corresponding to the label x from the record r,
provided a field having that label is present. (This condition will be enforced statically.)

Page 4

We have chosen these three operations because they seem to be the fundamental
constituents of more complex operations. An alternative, considered in [Wand 87], would
be to replace extension and restriction by a single operation that either modifies or adds a
field of label x, depending on whether another field of label x is already present. In our
system, the extension operation is not required to check whether a new field is already
present in a record: its absence is guaranteed statically. The restriction operation has the
task of removing unwanted fields and fulfilling that guarantee. This separation of tasks
has advantages for efficiency, and for static error detection since fields cannot be
overwritten unintentionally by extension alone. Based on a comparison between the
systems of [Wand 87] and [Jategaonkar Mitchell 88], it also seems possible that a reasonable
fragment of our language will have a practical type inference algorithm.

Here are some simple examples. The symbol óïñ (value equivalence) means that two
expressions denote the same value.

ÜÜá | x=3á óïñ Üx=3á extension
ÜÜx=3á | y=trueá óïñ Üx=3, y=trueá

Üx=3, y=trueá\ y óïñ Üx=3á restriction (cancelling y)
Üx=3, y=trueá\ z óïñ Üx=3, y=trueá (no effect)
Üx=3, y=trueá.x óïñ 3 extraction

ÜÜx=3á | x=4á invalid extension
Üx=3á.y invalid extraction

Some useful derived operators can be defined in terms of the ones above.
 ¢ Renaming r[xóïôy] =def Ür\ x | y=r.xá: changes the name of a record field.
 ¢ Overriding Ür óïô x=aá =def Ür\ x | x=aá: if x is present in r, overriding replaces its value
with one of a possibly unrelated type, otherwise extends r (compare with [Wand 89]).
Given adequate type restrictions, this can be seen as an updating operator, or a method
overriding operator. We write Ür óïô x=a óïô y=bá for ÜÜr óïô x=aá óïô y=bá.

Obviously, all records can be constructed from the empty record using extension
operations. In fact, in the formal presentation of the calculus, we regard the syntax for a
record of many fields as an abbreviation for iterated extensions of the empty record, e.g.:

Üx=3á =def ÜÜá | x=3á
Üx=3, y=trueá =def ÜÜÜá | x=3á | y=trueá

This definition allows us to express the fundamental properties of records in terms of
combinations of simple operators of fixed arity, as opposed to n-ary operators. Hence, we
never have to use schemas with ellipses, such as Üx1=a1 , ..., xn=aná, in our formal
treatment.

Since r\ x óïñ r whenever r lacks a field of label x, we can formulate the definition
above using any of the following expressions:

Page 5

ÜÜá | x=3 | y=trueá óïñ ÜÜÜá\ x | x=3á\ y | y=trueá óïñ ÜÜá óïô x=3 óïô y=trueá

The latter forms match better a similar definition for record types, given in the next
section.

2.2 Record types
In describing operations on record values we made positive assumptions of the form

“a field of label x must occur in record r” and negative assumptions of the form “a field of
label x must not occur in record r”.

These constraints will be verified statically by embedding them in a type system,
hence record types will convey both positive and negative information. Positive
information describes the fields that members of a record type must have. (Members may
have additional fields.) Negative information describes the fields the members of that
type must not have. (Members may lack additional fields.)

Note that both positive and negative information expresses constraints, hence
increasing either kind of information will lead to smaller sets of values. The smallest
amount of information is expressed by the record type with no fields, äã, which therefore
denotes the collection of all records, since all records have at least no fields and lack at
least no fields. This type is called the total record type.

äã the type of all records.
Contains, e.g.: Üá, Üx=3á.

äã\ x the type of all records which lack fields of
label x. E.g.: Üá, Üy=trueá, but not Üx=3á.

äx:Int, y:Boolã the type of all records which have at least fields
of labels x and y, with values of types Int and
Bool. E.g.: Üx=3, y=trueá, Üx=3, y=true, z="str"á,
but not Üx=3, y=4á, Üx=3á.

äx:Intã\ y the type of all records which have at least a field
of label x and type Int, and no field of label y.
E.g. Üx=3, z="str"á, but not Üx=3, y=trueá.

Hence a record type is characterized by a finite collection of (positive) type fields (i.e.
labeled types) and negative type fields (i.e. labels)1. We often simply say “fields” for
“type fields”. The positive fields must have distinct labels and are unordered. Negative
fields are also unordered. We have assumed so far that types are normalized so that
positive and negative labels are distinct, otherwise positive and negative fields may
cancel, as described shortly.

1In this section we consider only ground record types, i.e., those containing no record type variables.

Page 6

As with record values, we have three basic operations on record types.
 ¢ Extension äR | x:Aã : This type denotes the collection obtained from R by adding x fields
with values in A in all possible ways (provided that none of the elements of R has x
fields). More precisely, this is the collection of those records Ür | x=aá such that r is in R
and a is in A, provided that a positive type field x is not already present in R. (This
condition will be enforced statically.) We sometimes write äR | x:A | y:Bã for ääR | x:Aã | y:Bã.
 ¢ Restriction R\ x : this type denotes the collection obtained from R by removing the field
x (if any) from all its elements. More precisely, this is the collection of those records r\ x
such that r is in R. We write R\ xy for R\ x\ y.
 ¢ Extraction R.x : this type denotes the type associated with label x in R, provided R has
such a positive field. (This condition will be enforced statically.)

Again, derived operators can be defined in terms of the ones above.
 ¢ Renaming R[xóïôy] =def äR\ x | y=R.xã: changes the name of a record type field.
 ¢ Overriding äR óïô x:Aã =def äR\ x | x:Aã: if a type field x is present in R, overriding
replaces it with a field x of type A, otherwise extends R. Given adequate type restrictions,
this can be used to override a method type in a class signature (i.e. record type) with a
more specialized one, to produce a subclass signature.

The crucial formal difference between these operators on types and the similar ones
on values is that type restrictions do not cancel as easily, for example: äã\ y ≠ äã, äx:Aã\ y
≠ äx:Aã, etc., since äã\ y is a smaller set than äã. As a consequence, one must always make
a type restriction before making a type extension, as can be seen in the examples below,
because the extension operator needs proof that the extension label is missing. The
symbol óïñ (type equivalence) means also that two type expressions denote the same type.

ääã\ x | x:Intã óïñ äx:Intã extension
ääx:Intã\ y | y:Boolã óïñ äx:Int, y:Boolã

äx:Int, y:Boolã\ y óïñ äx:Intã\ y restriction (cancelling y)
äx:Int, y:Boolã\ z óïñ äx:Int, y:Boolã\ z (no effect on x,y)
äx:Int, y:Boolã.x óïñ Int extraction

ääã | x:Intã invalid extension
ääx:Intã | x:Intã invalid extension

äx:Intã.y invalid extraction

It helps to read these examples in terms of the collections they represent. For
example, the first example for restriction says that if we take the collection of records that
have x and y (and possibly more) fields, and remove the y field from all the elements in
the collection, then we obtain the collection of records that have an x field (and possibly
more fields) but no y field. In particular, we do not obtain the collection of records that
have x and possibly more fields, because those would include y.

Page 7

The way positive and negative information is formally manipulated is easier to
understand if we regard record types as abbreviations, as we did for record values, e.g.:

äx:Intã =def ääã\ x | x:Intã
äx:Int, y:Boolã =def äääã\ x | x:Intã\ y | y:Boolã

Then, when considering äy:Boolã\ y we actually have the expansion ääã\ y | y:Boolã\ y. If we
allow the outside positive and negative y labels to cancel, we are still left with äã\ y. In
other words, the inner y restriction reminds us that y fields have been eliminated.

Remark. It is deceptive to think that every record in äR | x:Aã has at least the fields
of some record in R (i.e., that äR | x:Aã has “more type fields” than R), since
äR | x:Aã is not necessarily contained in R. For example, if R=äã\ x the two
collections are incomparable.

Based on this example, one might then think that äR\ x | x:Aã has more type
fields than R, and this is indeed true for R=äã. However, in general this fails; for
example R=äã\ x makes the collections incomparable, and R=ääã\ x | x:Aã causes the
two collections to have the same fields.

It is also deceptive to think that R\ x has fewer type fields than R, since R is in
general not contained in R\ x. This containment is true for R=äã\ x, but false for
R=äã where the opposite is true, and R=ääã\ x | x:Aã makes the two collections
incomparable.

These observations might appear to conflict with our previous assertion that
positive and negative information always makes things smaller. The assertion is
true for normalized record types, but not for arbitrary applications of operators
which may later cancel out. We shall study the normalization process in a later
section.

2.3 Record value variables
Now that we have a first understanding of record types, we can introduce record value

variables which are declared to have some record type. For example, r:äã\ y means that r
must not have a field y, and r:äx:Aã means that r must have a field x of type A. The well-
formed record expressions can now be formulated more precisely:

Ür | x=aá where r:äã\ x
r\ x where r:äã
r.x where r:äx:Aã for some A

Record value variables can now be used to write function abstractions. Here we have
a function that increments a field of a record, and adds another field to it:

let f(r: äx:Intã\ y) : äx:Int, y:Intã =
Ür óïô x=r.x+1 | y=0á

Page 8

This function requires an argument with a field x and no field y; it has type:

f : äx:Intã\ y îïñ äx:Int, y:Intã

and can be used as follows:

f(Üx=3á) óïñ Üx=4, y=0á : äx:Int, y:Intã
f(Üx=3, z=trueá) óïñ Üx=4, y=0, z=trueá : äx:Int, y:Intã

The first application uses the non-trivial fact that Üx=3á : äx:Intã\ y. We could also have
matched the parameter type precisely by f(Üx=3á\ y), which is of course equivalent. The
second application is noticeable for several reasons. First, it uses the non-trivial fact that
Üx=3, z=trueá : äx :Intã\ y. Second, the “extra” field z is preserved in the result value,
because of the way f is defined. Third, the “extra” field z is not preserved in the result
type, because f has a fixed result type; we shall come back to this problem.

Remark. An alternative syntactic notation, along the lines of [Jategaonkar Mitchell

88], could use pattern matching of record parameters:

let f(Ürr\ y | x=rxá) : äx:Int, y:Intã =
Ürr | x=rx+1 | y=0á

Here the actual parameter must match the shape of a record with a field x and a
collection of remaining components that lack y. The variables rr and rx are bound
to the appropriate components and then used in the body of f, where rr acquires
the assumption that it does not contain either x or y fields. There are some non-
trivial details to pattern matching in the presence of subtyping. Since our main
objective is to illustrate the fundamental ideas, we choose the simpler syntax.

2.4 Record type variables
In the previous section we introduced record value variables, and we used record

types to impose restrictions on the values which could be bound to such variables. Now
we want to introduce record type variables in order to write programs that are
polymorphic over a collection of record types. We similarly need to express restrictions
on the admissible types that these variables can be bound to; these restrictions are written
as subtype specifications.

To write subtype specifications, we use a predicate A<:B meaning that A is a subtype
of B: in other words, every value of A is also a value of B. The typing rule based on this
condition is called subsumption, and will play a central role in the formal system.

Using subtype assumptions, we can better formulate the restrictions on the record type
operators:

Page 9

äR | x:Aã where R <: äã\ x
R\ x where R <: äã
R.x where R <: äx:Aã for some A

We may now write a polymorphic version of the function f of the previous section:

let f(R<:äx:Intã\ y)(r:R) : äR | y:Intã =
Ür óïô x=r.x+1 | y=0á

This function expects first a type parameter R which must be a subtype of äx:Intã\ y, and
then an actual value parameter of type R. An example application is:

f(äx:Int, z:Boolã\ y)(Üx=3, z=trueá) óïñ
Üx=4, y=0, z=trueá : äx:Int, y:Int, z:Boolã

First, note that R is bound to äx:Int, z:Boolã\ y, which is a subtype of äx:Intã\ y as required.
Second, Üx=3, z=trueá has type äx:Int, z:Boolã\ y as required. Third, the result type,
obtained by instantiating R, is ääx:Int, z:Boolã\ y | y:Intã, which is the same as äx:Int, y:Int,
z:Boolã by definition. Finally, note that the “extra” field z has not been forgotten in the
result type this time, because all the “extra” fields are carried over from input to output
type by the type variable R. This is the advantage of writing f in polymorphic style.

What is the type of f then? We cannot write this type with simple function arrows,
because we have a free variable R to bind. Moreover, we want to mark the precise
location where this binding occurs, because this permits more types to be expressed.
Hence, we use an explicit bounded universal quantifier:

f : Ó(R<:äx:Intã\ y) R îïñ äR | y:Intã

This reads rather naturally: “for all types R which are subtypes of äx:Intã\ y, f is a function
from R to äR | y:Intã”. (The scope of a quantifier extends to the right as much as possible.)

Remark. Notice that we have freedom in the typing of the polymorphic function
f; for example, we could have chosen the typing:

let f(R<:äã\ x y)(r:äR | x:Intã) : äR | x:Int | y:Intã =
Ür óïô x=r.x+1 | y=0á

f(äz:Boolã\ x y)(Üx=3, z=trueá) : äx:Int, y:Int, z:Boolã

This typing turns out to be incomparable with the previous one; in general we do
not seem to have a “best” way of typing an expression. However, we have not
studied this aspect of the system carefully.

Page 10

2.5 Subtype hierarchies
Our operations on record types and record values make it easy to define new types

and values by reusing previously defined types and values.
For example, we want to express the subtype hierarchy shown in the diagram below,

where various entities can have a combination of coordinates x and y, radius r, and color
c.

First, we could define each type independently:

let Point = äx:Real, y:Realã
let ColorPoint = äx:Real, y:Real, c:Colorã
let Disc = äx:Real, y:Real, r:Realã
let ColorDisc = äx:Real, y:Real, r:Real, c:Colorã

But these explicit definitions do not scale up easily to large hierarchies; it is much
more convenient to define each type in terms of previous ones, e.g:

let Point = äx:Real, y:Realã
let ColorPoint = äPoint óïô c:Colorã
let Disc = äPoint óïô r:Realã
let ColorDisc = äColorPoint óïô r:Realã

Note that äPoint | c:Colorã would not be well-formed here, since members of Point may
have a c label. In section 4.3 we shall examine another way of defining this hierarchy, for
example deriving Point from ColorPoint by “retracting” the c field.

Point
x y

ColorPoint
x y c

Disc
x y r

ColorDisc
x y r c

Similarly, record values can be defined by reusing available values:

let p:Point = Üx=3, y=4á
let cp:ColorPoint = Üp óïô c=greená
let cd:ColorDisc = Ücp óïô r=1á
let d:Disc = cd\ c

We should notice here that the subtyping relation depends only on the structure of the
types, and not on how the types are named or constructed. Similarly, record values belong

Page 11

to record types uniquely based on their structure, independently of how they are declared
or constructed.

Another observation, which we already made in a more abstract context, is that
Point\ r <: Point since Point does not contain r, but Point\ y is incomparable with Point
since Point requires y:Int while Point\ y forbids it.

2.6 The update problem
The type system for records we have described in the previous sections was initially

motivated by a single example which involves typing an update function. Here updating
is intended in the functional sense of creating a copy of a record with a modified field, but
the discussion is also relevant to imperative updating.

The problem is to define a function that updates a field of a record and returns the
new record; the type of this function should be such that when an argument of the
function has a subtype of the expected input type, the result has a related subtype. That is,
no type information regarding additional fields should be lost in updating. (We have
already seen that bounded quantification can be useful in this respect.)

It is pretty clear what the body of such a function should look like; for example for an
input r and a boolean field b which has to be negated, we would write:

Ür óïô b=not(r.b)á (an abbreviation for Ür\ b | b=not(r.b)á)

The overriding operator here preserves the additional fields of r.
One might expect the following typing, which seems to preserve subtype information

as desired:

let update(R<:äb:Boolã)(r:R): R =
Ür óïô b=not(r.b)á

In words, we expect update to be a function from R to R, for any subtype R of äb:Boolã.
But this typing is not derivable from our rules and, worse, it is semantically unsound. To
see this, assume we have a type True <: Bool with unique element true, as follows2:

true : True <: Bool
not : Bool îïñ Bool (alternatively, not : Ó(A<:Bool)AîïñBool)

update(äb:Trueã)(Üb=trueá) óïñ Üb=falseá : äb:Trueã

This use of update produces an obviously incorrect result type. In general, a function with
result type R has a fixed range; it cannot restrict its output to an arbitrary subtype of R,
even when this subtype is given as a parameter.

2Although the singleton type True may seem artificial, this argument can be reformulated with any proper inclusion between

two types.

Page 12

To avoid this problem, we must update the result type as well as the result. The
correct typing comes naturally from typechecking the body of update according to the
rules for each construct involved; note how the shape of the result type matches the shape
of the body of the function:

let update(R<:äb:Boolã)(r:R): äRóïôb:Boolã =
Ür óïô b=not(r.b)á

update(äb:Trueã)(Üb=trueá) óïñ
Üb=falseá : (ääb:Trueãóïôb:Boolã óïñ äb:Boolã)

The outcome is that the overriding operator on types, which involves manipulation of
negative information, is necessary to express the type of update functions. Bounded
quantification by itself is not sufficient.

The type Ó(B<:A) B îïñ B turns out to contain only the identity function on A in many
natural semantic models, such as [Bruce Longo 88]. For example take A=Int and let the
subranges [n..m] be subtypes of Int. Then any function of type Ó(B<:Int) B îïñ B can be
instantiated to [n..n] îïñ [n..n], hence it must be the identity on [n..n] for any n, and hence
the identity over all of Int.

A further complication manifests itself when updating acts deep in a structure,
because then we have to preserve type information with subtyping occurring at multiple
levels. Here is the body of a function that negates the s.a.b field of a record s of type
äa:äb:Boolãã :

Üsóïôa=Üs.aóïôb=not(s.a.b)áá

The following is a correct typing which does not lose information on subtypes (simpler
typings would). Here we need to introduce an additional type parameter in order to use
two type variables in the result type and to avoid two possible ways of losing type
information:

let deepUpdate(R<:äb:Boolã)(S<:äa:Rã)(s:S): äSóïôa:äRóïôb:Boolãã =
Üsóïôa=Üs.aóïôb=not(s.a.b)áá

Of course this is rather clumsy; we need one additional type parameter for each additional
depth level of updating. Fortunately, we can avoid the extra type parameters by using
extraction types S.a. Again, the following typing comes naturally from typechecking the
body of deepUpdate according to the rules for each construct:

let deepUpdate(S<:äa:äb:Boolãã)(s:S): äSóïôa:äS.aóïôb:Boolãã =
Üsóïôa=Üs.aóïôb=not(s.a.b)áá

The output type is still complex (it could be inferred) but the input is more natural. Here
is a use of this function:

Page 13

deepUpdate(äa:äb:True, c:Cã, d:Dã)(Üa=Üb=true, c=vá, d=wá) óïñ
Üa=Üb=false, c=vá, d=wá : äa:äb:Bool, c:Cã, d:Dã

Here we have provided an argument type that is a subtype of äa:äb:Boolãã in “all possible
ways”.

Finally, we should remark that the complexity of the update problem seems to
manifests itself only in the functional case, while simpler solutions are available in the
imperative case. Simpler type systems for records, such as the one in [Cardelli Wegner 85],
may be adequate for imperative languages when properly extended with imperative
constructs, as sketched below.

The imperative updating operator := has the additional constraint that the new record
should have the same type as the old record, since intuitively updating is done “in place”.
This requirement produces something very similar to the typing we have initially shown
to be unsound. Here assignable fields are identified by var:

let update(R<:ävar b:Boolã)(r:R): R =
r.b := not(r.b)

Soundness is then recovered by requiring that assignable fields be both covariant and
contravariant. Hence, True <: Bool does not imply ävar b:Trueã <: ävar b:Boolã, thereby
blocking the counterexamples to soundness.

Imperative update, with the natural requirement of not changing the type of a record,
leads to simpler typing. However, this approach does not completely solve the problem
we have discussed in this section. Imperative update alone does not provide the
functionality of polymorphically extending existing records; when this is added, all the
problems discussed above about functional update resurface.

3. Formal development
Now that we have acquired some intuitions, we can discuss the formal type inference

rules in detail. We first define judgment forms and environment structures. Then we look
at inference rules individually, and we analyze their properties. Finally, we provide a set-
theoretical semantics for the pure calculus of records.

3.1 Judgments and inferences
A judgment is an inductively defined predicate between environments, value terms,

and type terms. The following judgments are used in formalizing our system:

 ∫ E env E is an environment

E ∫ A type A is a type
E ∫ A <: B A is a subtype of B

Page 14

E ∫ a : A a has type A

E ∫ A óïñ B equivalent types
E ∫ a óïñ b : A equivalent values of type A

The formal system is given by a set of inference rules below, each expressed as a
finite set of antecedent judgments and side conditions (above a horizontal line) and a
single conclusion judgment (below the line). Most inference rules are actually rule
schemas, where meta-variables must be instantiated to obtain concrete inferences. For
typographical reasons, we write the side conditions for these schemas as part of the
antecedent.

3.2 Environments
An environment E is a finite sequence of (a) unconstrained type variables, (b) type

variables constrained to be subtypes of a given type, and (c) value variables associated
with their type.

We use dom(E) for the set of type and value variables defined in an environment.

(ENV1) (ENV2) (ENV3) (ENV4)

XÌdom(E) E ∫ A type XÌdom(E) E ∫ A type xÌdom(E)
 ———— ————— ——————————– ——————————–

∫ env ∫ E, X env ∫ E, X<:A env ∫ E, x:A env

Hence, a legal environment is obtained by starting with the empty environment and
extending it with a finite set of assumptions for type and value variables. Note that the
assumptions involve distinct variables; we could perhaps allow multiple assumptions
(e.g., , X<:A , X<:B) but this would push us into the more general discipline of
conjunctive types.

Assumptions about variables can then be extracted from well-formed environments:

(VAR1) (VAR2) (VAR3) (VAR4)

∫ E,X,E' env ∫ E,X<:A,E' env ∫ E,X<:A,E' env ∫ E,x:A,E' env
 ——————— ————————– ———————— ——————–

E,X,E' ∫ X type E,X<:A,E' ∫ X type E,X<:A,E' ∫ X<:A E,x:A,E' ∫ x:A

All legal inferences take place in (well-formed) environments. All judgments are
recursively defined in terms of other judgments. For example, above we have used the
typing judgment E ∫ A type in constructing environments; vice versa, well-formed
environments are involved in constructing types.

We now consider the remaining judgments in turn.

3.3 Record type formation
The following collection of rules determines when record types are well-formed.

There is some interdependence between this section and the following ones, since

Page 15

equivalence rules have assumption that involve subtyping, which is discussed later.
Fortunately, these assumptions are fairly simple, so a full understanding of the subtype
relation is not required at this point.

(F1) (F2) (F3) (F4)

∫ E env E ∫ R<:äã\ x E ∫ A type E ∫ R<:äã E ∫ R<:äS | x:Aã<:äã
————— ——————————— —————— —————————

E ∫ äã type E ∫ äR | x:Aã type E ∫ R\ x type E ∫ R.x type

As shown above, and already discussed informally, the legal record types are: the type
of all records, äã; a record type variable X, (because of (VAR2) in the previous section); an
extension äR | x:Aã of a record type R, provided R does not have x; and a restriction R\ x
of a record type R. Moreover, extracting a component R.x of a record type R that has a
label x, produces a legal type.

In general, if R does not have x, then R will be a subtype of the type äã\ x of all records
without x. This explains the hypothesis of rule (F2). In rule (F4) we use R<:äS | x:Aã to
guarantee that every record in R has an x field.

3.4 Record type equivalence
When are two record types equivalent? We discuss here the formal rules for

answering such a question. Type equivalence, as a relation, is reflexive (over well-formed
expressions), symmetric, and transitive; it is denoted by the symbol óïñ. Substituting two
equivalent types in a third type should produce an equivalent result; this is called the
congruence property, and requires a number of rules to be fully formalized (these are
listed in section 3.7). We now consider, by cases, the equivalence of extended, restricted
and extracted record types.

Two extended record types are equivalent if we can reorder their fields to make them
identical (or, recursively, equivalent). This simple fact is expressed by the following rule.
A number of applications of this rule, and of the congruence property, may be necessary
to adequately reorder the fields of a record type.

(TE1)

E ∫ R<:äã\ xy E ∫ A,B type x≠y
——————————————

E ∫ ääR | x:Aã | y:Bã óïñ ääR | y:Bã | x:Aã

Similarly, we can reorder restrictions. Moreover, a double restriction R\ xx reduces to R\ x.
This fact is expressed in slightly more general form below, since the assumption that R
does not have x is sufficient to deduce that R\ x is the same as R:

(TE2) (TE3)

E ∫ R<:äã\ x E ∫ R<:äã
—————— ————————

E ∫ R\ x óïñ R E ∫ R\ xy óïñ R\ yx

Page 16

The most interesting rules concern the distribution of restriction over extension. An
outside restriction and inner extension of the same variable can cancel each other.
Otherwise, a restriction can be pushed inside or outside of an extension of a different
variable.

(TE5) (TE6)

E ∫ R<:äã\ x E ∫ A type E ∫ R<:äã\ x E ∫ A type x≠y
——————————— ——————————————

E ∫ äR | x:Aã\ x óïñ R E ∫ äR | x:Aã\ y óïñ äR\ y | x:Aã

Note however that in a situation like äR\ x | x:Aã no cancellation or swap can occur. The
inner restriction may be needed to guarantee that the extension is sensible, and so neither
is redundant.

Finally, a record extraction is equivalent to the extracted type:

(TE7) (TE8)

E ∫ R<:äã\ x E ∫ A type E ∫ R<:äS | y:Bã\ x<:äã E ∫ A type x≠y
—————————— ————————————————

E ∫ äR | x:Aã.x óïñ A E ∫ äR | x:Aã.y óïñ R.y

(TE4)

E ∫ R<:äS | y:Bã<:äã x≠y
——————————

E ∫ R\ x.y óïñ R.y

These equivalence rules can be given a direction and interpreted as rewrite rules
producing a normal form for record types; normalization is investigated in a later section.

3.5 Record subtyping
We have seen that subtyping is central to the notion of abstracting over record type

variables, and we have intuitively justified some of the valid subtype assertions. In this
section we take a more rigorous look at the subtype relation.

Subtyping should at least be a pre-order: a reflexive and transitive relation. Given a
substitutive type equivalence relation óïñ, such as the one discussed in the previous
section, we require:

(G1) (G2)

E ∫ A óïñ B E ∫ A <: B E ∫ B <: C
————— ——————————

E ∫ A <: B E ∫ A <: C

Reflexivity is a special case of (G1).
It would be natural to require subtyping to be anti-symmetric, hence obtaining a

partial order. A reasonable semantics of subtyping will in fact construct such a partial
order. However, it might be too strong to require anti-symmetry as a type rule. In some
systems anti-symmetry may introduce obscure ways of proving type equivalence, while

Page 17

in other systems it may be provable from the other rules. Moreover, anti-symmetry does
not seem very useful for typechecking, hence we do not include it.

The basic intuition about subtyping is that it behaves much like the subset relation;
this is expressed by the subsumption rule, which claims that if A<:B and a is an element
of A, then a is also an element of B.

(G3)

E ∫ a:A E ∫ A <: B
—————————

E ∫ a : B

We feel strongly that subsumption should be included in the type system, since this rule
gives object-oriented programming much of its flavor. One should not be satisfied, for
programming purposes, with emulating subsumption by explicit coercions. The latter
technique is interesting and adequate for providing semantics to a language with
subsumption [Breazu-Tannen Coquand Gunter Scedrov 89] [Curien Ghelli 91], but even then it
would seem more satisfactory to exhibit a model that satisfies subsumption directly.

Combining (G1) and (G3) we obtain another standard type rule:

E ∫ a:A E ∫ A óïñ B
—————————

E ∫ a : B

This rule is normally taken as primitive, but here it is derived.

We are now ready to talk about subtyping between record types. It helps if we break
this problem into pieces and ask what are the subtypes of: (1) the total record type äã, (2)
an extended record type äR | x:Aã, (3) a restricted record type R\ x, and (4) a record type
extraction R.x.

Case (1). Every record type should be a subtype of the total record type. Hence, we
have three subcases: (1a) the total record type is of course a subtype of itself, and this is
simply a consequence of (G1); (1b) any well-formed extended record type is a subtype of
äã; and (1c) any well-formed restricted record type is a subtype of äã. Hence we have the
following rules corresponding to 1b and 1c respectively:

(S1) (S2)

E ∫ R<:äã\ x E ∫ A type E ∫ R<:äã
——————————— ——————

E ∫ äR | x:Aã <: äã E ∫ R\ x <: äã

Case (2). A subtype of an extended record type will be another extended record type,
provided all respective components are in the subtype relation:

Page 18

(S3)

E ∫ R<:S<:äã\ x E ∫ A<:B
————————————

E ∫ äR | x:Aã <: äS | x:Bã

The condition A<:B says that we can produce a subtype by weakening the type of a given
field. The condition R<:S tells us that we can produce a subtype either (a) by weakening
other fields inductively, because of (S3) itself, or (b) by requiring the presence of
additional components, because of (S1), or (c) by requiring the absence of additional
components, for example y, because from (S2) we are able to derive äã\ yx <: äã\ x.

Case (3). The subtype rule for restricted types is semantically straightforward: if every
r in R occurs in S, then every r\ x in R\ x occurs in S\ x:

(S4)

E ∫ R<:S<:äã
——————

E ∫R\ x <: S\ x

Remark. Although this rule looks innocent, it hides some interesting subtlety in
its assumption. Let us analyze R<:S by cases.

The cases when R and S are themselves restrictions (either of x or of some
other variable) are straightforward. Similarly simple are the cases when R and S
are matching extensions, both of them either containing or not containing an x
field.

Suppose however that R has a positive x field and S does not, for example
R=äT | x:Aã and S=T. In that case, if we had R<:S we would erroneously conclude
that R\ x = äT | x:Aã\ x óïñ T <: T\ x = S\ x (which is false for T=äã).

Fortunately there was a flaw in this argument; the assumption for (S4) requires
R = äT | x:Aã <: T = S, but this is false (for T=äã\ x). Note also that taking
R=äT\ x | x:Aã and S=T leads to a similar contradiction for T=äã\ x.

A legal instance of the assumption is R = ääã\ x | x:Aã <: äã = S, from which we
conclude that R\ x = ääã\ x | x:Aã\ x óïñ äã\ x <: äã\ x = S\ x, which is correct.

Case (4). We have to consider the subtypes of record type extractions; that is
situations of the form R.x <: T.x, or more generally R.x <: A under an assumption R <:
äS | x:Bã. If R can be converted to the form R=äR' | x:Aã, then the extraction R.x simplifies
and no special rule is required to deduce R.x<:A. But if R is a type variable, for example,
the following rule is necessary:

(S5)

E ∫ R<:äS | x:Aã<:äã
————————

E ∫ R.x <: A

This says that if R has an x field of type A, then R.x is a subtype of A (and possibly equal
to A).

Page 19

Finally, there is a another subtyping rule that we must consider. If every record r in R
has an x field, then any such r is described also by the type äR\ x | x:R.xã, since r\ x is
described by R\ x and the x field of r is described by R.x. Therefore we have the
following inclusion:

(S6)

E ∫ R<:äS | x:Aã<:äã
————————–

E ∫ R <: äR\ x | x:R.xã

The inverse inclusion is not necessarily valid, although it might seem natural to require it
as we shall see later.

 The rule (S6) can be used in the following derivation, which provides a “symmetrical”
version of (S5) as a derived rule:

E ∫ R<:S<:äT | x:Aã<:äã
—————————–

(S6) E ∫ S<:äS\ x | x:S.xã
———————–

(G2) E ∫ R<:äS\ x | x:S.xã
———————–

(S5) E ∫ R.x <: S.x

In absence of (S6), the derived rule above would have to be taken as primitive, replacing
(S5).

3.6 Record typing and equivalence
Now that we have seen the rules for type equivalence and subtyping, the rules for

record values follow rather naturally. The only subtle point is about the empty record. We
must be able to assign it a type which lacks any given set of labels. This is obtained by
repeatedly applying the following two rules:

(I1) (I2)

∫ E env E ∫ Üá\ x1..xn : R<:äã
——————— —————————

E ∫ Üá\ x1..xn : äã E ∫ Üá\ x1..xn : R\ y

The remaining constructions on record values are typed by the corresponding
constructions on record types, given the appropriate assumptions:

(I3) (E1) (E2)

E ∫ r:R<:äã\ x E ∫ a:A E ∫ r:R<:äã E ∫ r:äR | x:Aã<:äã
——————————– —————— ————————

E ∫ Ür | x=aá : äR | x:Aã E ∫ r\ x : R\ x E ∫ r.x : A

As we did in the previous section, we can use the rule (S6) to derive a “symmetrical”
version of (I2):

Page 20

E ∫ r:R<:äS | x:Aã<:äã
—————————

(S6) E ∫ R<:äR\ x | x:R.xã
————————

(G3) E ∫ r:äR\ x | x:R.xã
———————

(E2) E ∫ r.x : R.x

Finally, we have to examine the rules for record value equivalence. These rules are
formally very similar to the ones already discussed for record type equivalence; record
extensions can be permuted, record components can be extracted, and restrictions can be
permuted and pushed inside extensions, sometimes cancelling each other.

The main formal difference between these and the rules for types is that we equate Üá\ x
óïñ Üá. Hence, restriction can always be completely eliminated from variable-free records.

Because of the formal similarity we omit a detailed discussion; the complete set of
rules for our type system follows in the next section.

3.7 Type rules
We can now summarize and complete the rules for record types and values, along

with selected auxiliary rules. These rules are designed to be immersed in a second-order
λ-calculus with bounded quantification (see [Cardelli Wegner 85]), and possibly with
recursive values and types.

We only list the names of the rules that have already been discussed.

Environments

(ENV1)...(ENV4), (VAR1)...(VAR4)

General properties of <: and óïñ

(G1)...(G3)

(G4) (G5)

E ∫ A óïñ B E ∫ A óïñ B E ∫ B óïñ C
————— ——————————

E ∫ B óïñ A E ∫ A óïñ C

(G6) (G7)

E ∫ a óïñ b : A E ∫ a óïñ b : A E ∫ b óïñ c : A
—————— ————————————

E ∫ b óïñ a : A E ∫ a óïñ c : A

Formation

(F1)...(F4)

Subtyping

(S1)...(S6)

Page 21

Introduction/Elimination

(I1)...(I3), (E1), (E2)

Type Congruence

(TC1) (TC2) (TC3)

∫ E env E ∫ X type E ∫ R óïñ S <: äã\ x E ∫ A óïñ B
————— ————— ——————————————

E ∫ äã óïñ äã E ∫ X óïñ X E ∫ äR | x:Aã óïñ äS | x:Bã

(TC4) (TC5)

E ∫ R óïñ S <: äã E ∫ R óïñ S <: äT | x:Aã<:äã
——————— ————————————

E ∫ R\ x óïñ S\ x E ∫ R.x óïñ S.x

Type Equivalence

(TE1)...(TE8)

Value Congruence

(VC1a) (VC2) (VC3)

∫ E env E ∫ x : A E ∫ r óïñ s : R<:äã\ x E ∫ a óïñ b : A
—————— —————— ———————————————–

E ∫ Üá óïñ Üá : äã E ∫ x óïñ x : A E ∫ Ür | x=aá óïñ Üs | x=bá : äR | x:Aã

(VC4) (VC5)

E ∫ r óïñ s : R<:äã E ∫ r óïñ s : R<:äS | x:Aã<:äã
————————— ————————————

E ∫ r\ x óïñ s\ x : R\ x E ∫ r.x óïñ s.x : R.x

Value Equivalence

(VE1) (VE2)

E ∫ r:R<:äã\ xy E ∫ a:A E ∫ b:B x≠y ∫ E env
————————————————————– ———————

E ∫ ÜÜr | x=aá | y=bá óïñ ÜÜr | y=bá | x=aá : ääR | x:Aã | y:Bã E ∫ Üá\ x óïñ Üá : äã

(VE3) (VE4) (VE5)

E ∫ r:R<:äã\ x E ∫ r:R<:äã E ∫ r:äR | x:Aã<:äã x≠y
——————— —————————– ——————————

E ∫ r\ x óïñ r : R E ∫ r\ xy óïñ r\ yx : R\ xy E ∫ r\ y.x óïñ r.x : A

(VE6) (VE7)

E ∫ r:R<:äã\ x E ∫ a:A E ∫ r:R<:äã\ x E ∫ a:A x≠y
——————————– ———————————————

E ∫ Ür | x=aá\ x óïñ r : R E ∫ Ür | x=aá\ y óïñ Ür\ y | x=aá : äR | x:Aã\ y

(VE8) (VE9)

E ∫ r:R<:äã\ x E ∫ a:A E ∫ r:äR | y:Bã\ x<:äã E ∫ a:A x≠y
——————————– ———————————————

E ∫ Ür | x=aá.x óïñ a : A E ∫ Ür | x=aá.y óïñ r.y : B

Page 22

(VE10)

E ∫ r:R<:äS | x:Aã<:äã
——————————

E ∫ r óïñ Ür\ x | x=r.xá : R

Special rules
In the following sections we discuss the rules (VC1b) and (TE9) below; these are valid

only with respect to particular semantic interpretations.

(VC1b) (TE9)

E ∫ r:äã E ∫ s:äã E ∫ R<:äS | x:Aã<:äã
———————– —————————

E ∫ r óïñ s : äã E ∫ R óïñ äR\ x | x:R.xã

In presence of (TE9), the rule (S6) is redundant, and the rules (TC5) and (VC5) are implied by
the simpler (TC5b) and (VC5b) below.

(TC5b) (VC5b)

E ∫ R óïñ äS | x:Aã<:äã E ∫ r óïñ s : äR | x:Aã<:äã
—————————— ———————————

E ∫ R.x óïñ A E ∫ r.x óïñ s.x : A

Properties

Lemma 3.7.1:
(1) If E ∫ A type, then ∫ E env.
(2) If E ∫ A <: B, then ∫ E env.

Proof
Simple simultaneous induction on derivations, with (F1) as the base case.

M

Lemma 3.7.2:
(1) If E ∫ A óïñ B, then E ∫ A type and E ∫ B type.
(2) If E ∫ A <: B, then E ∫ A type and E ∫ B type.

Proof
Show (1) and (2) simultaneously by induction on derivations. The hardest case is
(TE1). The next hardest is (TE8). All the others are substantially simpler. We prove
(TE1) below and leave the remaining cases to the reader.

To prove (1) for (TE1), we assume E ∫ R<:äã\ xy and E ∫ A,B type. Using (S2)

and (S4) we may derive E ∫ äã\ xy<:äã\ x and so by transitivity and (F2) we have E ∫
äR | x:Aã type. The next goal is to show that äR | x:Aã is a subtype of äã\ y. Using (S2)

and (S4) we have E ∫ R<:äã\ y by transitivity, and so by (TE2), E ∫ R\ y óïñ R. The
type congruence rules give E ∫ äR | x:Aã óïñ äR\ y | x:Aã. By (TE6) and transitivity we
now have E ∫ äR | x:Aã óïñ äR | x:Aã\ y. From (S1) and the original hypotheses, it is
easy to show E ∫ äR | x:Aã <: äã and so by (S4), E ∫ äR | x:Aã\ y <: äã\ y. This allows
us to derive E ∫ äR | x:A ã <: äã\ y, from which we may finally obtain E ∫
ääR | x:Aã | y:Bã type.

Page 23

The proof of E ∫ ääR | y:Bã | x:Aã type is similar.
M

Sample derivations
We show the main steps of some derivations that can be carried out in this system,

assuming rules for typing basic constants.

The first example simply builds a record of two fields, with its natural type.
——–

(I1) Üá : äã
———— ——–

(E1) Üá\ x : äã\ x (const) 3 : Int
————————————

(I3) ÜÜá\ x | x=3á : ääã\ x | x:Intã
——————————— ————–

(E1) ÜÜá\ x | x=3á\ y : ääã\ x | x:Intã\ y (const) true : Bool
——————————————————————–

(I3) ÜÜÜá\ x | x=3á\ y | y=trueá : äääã\ x | x:Intã\ y | y:Boolã
——————————————————

(def) Üx=3, y=trueá : äx:Int, y:Boolã

Next, we derive a non-trivial type inclusion. To construct record types of different
lengths on the two sides of <:, we start with the basic asymmetry of (S1) and we build up
symmetrically from there (there is no more direct way).

———–

(G1) äã <: äã
—————

(S4) äã\ x <: äã\ x
——————–

(S1) ääã\ x | x:Intã <: äã
———————— —————–

(S4) ääã\ x | x:Intã\ y <: äã\ y (G1) Bool <: Bool
————————————————————–

(S3) äääã\ x | x:Intã\ y | y:Boolã <: ääã\ y | y:Boolã
——————————————–––

(def) äx:Int, y:Boolã <: äy:Boolã

Now we show that a given record lacks a given label. This time the key rule is (I2).
Some type equivalence rules are used to rearrange the type into a standard form.

——–

(I1) Üá : äã
———– ————

(I2) Üá : äã\ y (S2) äã\ y <: äã
————— —————– ——–

(E1) Üá\ x : äã\ y\ x (S4) äã\ y\ x <: äã\ x (const) 3 : Int
———————————————————————–

(I3) ÜÜá\ x | x=3á : ääã\ y\ x | x:Intã
—————————–

(TE3,TC3,G1,G3) ÜÜá\ x | x=3á : ääã\ x\ y | x:Intã
—————————–

(TE6,G1,G3) ÜÜá\ x | x=3á : ääã\ x | x:Intã\ y
—————————–

(def) Üx=3á : äx:Intã\ y

Finally, we show that by removing a label we obtain a subtype. The basic asymmetry
here is provided by (S2).

Page 24

———–

(G1) äã <: äã
————

(S2) äã\ y <: äã
—————– ————

(S4) äã\ y\ x <: äã\ x (G1) Int <: Int
——————————————–

(S3) ääã\ y\ x | x:Intã <: ääã\ x | x:Intã
———————————–

(TE3,TC2,G1,G2) ääã\ x\ y | x:Intã <: ääã\ x | x:Intã
———————————–

(TE6,G1,G2) ääã\ x | x:Intã\ y <: ääã\ x | x:Intã
———————————–

(def) äx:Intã\ y <: äx:Intã

3.8 Semantics of the pure calculus of records
Our stated intent is to define a second-order type system for record structures.

However, models of such a system are rather complex, and outside the scope of this
paper.

In this section we provide a simple set-theoretical model of the pure calculus of
records, without any additional functional or polymorphic structure. The intent here is to
show the plausibility of the inference rules for records, by proving their soundness with
respect to a natural model.

This model is natural because it embodies the strong set-theoretical intuitions of
subtyping seen as a subset relation, and of records seen as finite tuples. Although this
model does not extend to more complex language features, it exhibits the kind of simple-
minded but (usually) sound reasoning that guides the design and implementation of
object-oriented languages.

Syntax
We start with the language implied by the type rules of section 3.7. Since no basic

non-record values are expressible in this calculus, we must make some arbitrary choices
to get started. To this end, we will consider an extension of the pure calculus with any
collection G1 , G2 , ... of basic (ground) type symbols and an arbitrary collection of
subtype relations Gi <: Gj between them. To incorporate these new symbols into the
calculus, we add the following two rules (which preserve lemmas 3.7.1 and 3.7.2):

∫ E env ∫ E env
————— —————

E ∫ Gi type E ∫ Gi <: Gj (as appropriate)

For simplicity, we do not introduce value constants; instead we work with environments
containing assumptions of the form k : Gi .

We will now construct a model of the extended calculus.

Semantic domains
In the following, we rely largely on context to distinguish between syntactic

expressions and semantic expressions, and we often identify terms with their denotations.

Page 25

We start by choosing some fixed set of labels L, and a collection of sets G1 , G2 , ...
corresponding to the type symbols G1 , G2 , ... such that Gi ⊆ Gj if Gi <: Gj is a
subtyping axiom.

For simplicity, we assume that no element of any Gi is a finite partial function on L
(i.e. a record, as we shall see shortly). This assumption is useful when we define the
subtype relations of sections 3.9 and 3.10.

Since äã serves as a type of all records, we will need some value space closed under
record formation. This property may be accomplished by regarding records as finite
functions from L to values, and using ranked values with rank < ω. We use A îïÕfin B for
the set of partial functions from A to B with finite domain, f(x)¶ to indicate that the partial
function f is undefined at x, and f(x)ß to indicate that f is defined at x.

Define set R i of records of rank i, and set Vi of values of rank i, as follows:

V0 = êj Gj Vi+1 = R i ∪ Vi
R 0 = L îïÕfin V0 R i+1 = L îïÕfin Vi+1

R = êi < ω R i the set of records
V = êi < ω Vi the set of values

The essential properties of this construction are summarized by the relationship:

R = (L îïÕfin V) ⊆ V

It is clear by construction that R i ⊆ Vi+1 and so R ⊆ V. To see that R = L îïÕfinV, we first
show that L îïÕfinV ⊆ R . If r Ï L îïÕfinV , then since dom(r) is finite there is some i with
range(r) ⊆ Vi ; hence r Ï R i ⊆ R . The converse follows from the fact that if rÏR , then r Ï
R i = (L îïÕfinVi) ⊆ L îïÕfinV.

We now summarize the notation used to describe the semantic interpretation of
syntactic constants and operators:

 = λyÏL. ¶

r-x =def λyÏL. if y=x then ¶ else r(y)
provided rÏR and xÏL

r[x=a] =def λyÏL. if y=x then a else r(y)
provided rÏR , xÏL, aÏV, and xÌdom(r).

r(x) is well-defined,
provided rÏR , xÏL, and xÏdom(r).

Lemma 3.8.1:
(1) The empty record is an element of R .
(2) For any rÏR we have r-xÏR .

Page 26

(3) If rÏR is not defined on x, then for any aÏV we have r[x=a]ÏR .
(4) If rÏR is defined on x, then r(x)ÏV.

Proof
(1) The empty function is a finite function.
(2) If rÏR then r-x remains a finite partial function in R .
(3) Suppose rÏR with x Ì dom(r), and aÏV.

Then r[x=a] is well-defined (is a function) and belongs to R .
(4) If rÏR = L îïÕfinV and r(x) is defined then r(x) Ï V.

M

Types and type operations
Types are interpreted as subsets of our global value set; hence we have a type of all

values, and a type of all records. Subtyping is interpreted as set inclusion.
We introduce the following notation for operations on record types:

R-x =def {r-x | rÏR}
if R ⊆ R

R[x:A] =def {r[x=a] | rÏR, aÏA}
if R ⊆ R -x (R undefined on x) and A ⊆ V

R(x) =def {r(x) | rÏR}
if R ⊆ S[x:A] for some S ⊆ R and A ⊆ V

Lemma 3.8.2:
Under the conditions stated above, the sets R-x and R[x:A] are subsets
of R , and the sets R(x) are subsets of V.

Proof
(1) If R ⊆ R , then R-x = {r-x | rÏR} ⊆ R , by 3.8.1.
(2) If R ⊆ R -x, then R is a set of functions rÏ L îïÕfinV with x Ì dom(r).

Hence for any A ⊆ V, R[x:A] = {r[x=a] | rÏR, aÏA} ⊆ R , by 3.8.1.
(3) If R ⊆ S[x:A], then for any rÏR, rÏS[x:A] = {s[x=a] | sÏS, aÏA};

so that r(x)ÏA. Hence R(x) = {r(x) | rÏR} ⊆ A ⊆ V.
M

Interpretation of judgments
An assignment ρ is a partial map from type variables to subsets of V, and from

ordinary variables to elements of V. We say that an assignment ρ satisfies an environment
E if the following conditions are satisfied:

If X in E, then ρ(X) ⊆ V
If X <: A in E, then ρ(X) ⊆ Aρ ⊆ V
If x : A in E, then ρ(x) Ï Aρ ⊆ V

Page 27

where Aρ is the type defined by A under the assignment ρ. Similarly, by aρ we indicate
the value of a term a under an assignment ρ for its free variables.

The judgments of our system are interpreted as follows.

∫ E env 1 for every initial segment E',X<:A or E',x:A of E,
if ρ satisfies E' then Aρ ⊆ V.

E ∫ A type 1 Aρ ⊆ V, for every ρ satisfying E.
E ∫ A <: B 1 Aρ ⊆ Bρ ⊆ V, for every ρ satisfying E.
E ∫ A óïñ B 1 Aρ = Bρ ⊆ V, for every ρ satisfying E.
E ∫ a : A 1 aρ Ï Aρ ⊆ V, for every ρ satisfying E.
E ∫ a óïñ b : A 1 aρ = bρ Ï Aρ ⊆ V, for every ρ satisfying E.

Type and value expressions are interpreted using:

äã 1 R
R\ x 1 R-x
äR | x:Aã 1 R[x:A]
R.x 1 R(x)

Üá 1
r\ x 1 r-x
Ür | x=aá 1 r[x=a]
r.x 1 r(x)

Soundness
Finally, we can show that this semantics satisfies the type rules. More precisely, we

consider the system S1 consisting of all the rules listed in section 3.7, except for the
special rules (VC1b) and (TE9).

Theorem 3.8.3 (soundness):
The inference rules of system S1 are sound with respect to the
interpretation of judgments given in this section.

Proof
See appendix.

M

3.9 A construction giving R = äR\␣x␣ |␣x:R.xã
The type equivalence rule below seems very natural semantically. It also simplifies

the types associated with the override operation, and has application to extensional
models studied in the next section.

Page 28

(TE9)

E ∫ R<:äS | x:Aã<:äã
—————————–

E ∫ R óïñ äR\ x | x:R.xã

In the simple model described in section 3.8, it is easy to see that if R ⊆ äx:Aã, then,
as required by (S6):

R ⊆ äR\ x | x:R.xã

The reason is that every record r in R has an x component r(x) Ï R(x), and remaining
components r-x in R-x. However, it is not necessarily true that every combination of r-x
from R-x and r(x) from R(x) occur together in a single record in R. For example, the set of
records:

R = {Üx=1, y=trueá, Üx=0, y=falseá}

is clearly a subset of äx:Intã. However, R ≠ äR\ x | x:R.xã since the records Üx=1, y=falseá
and Üx=0, y=trueá do not appear in R. In category-theoretic terms, the equation R =
äR\ x | x:R.xã says that R is the product of R\ x and R.x.

In this section we present a variant of the construction of section 3.8 in which rule
(TE9) is sound. Since we are ultimately interested in polymorphism and bounded
quantification, we construct a model with R = äR\ x | x:R.xã for every semantic type R with
R.x defined. The construction uses the same collection of values as before, but allows
only certain subsets of V as types. In this way we eliminate sets of records which violate
(TE9).

We use a value space satisfying:

R = (L îïÕfin V) ⊆ V

constructed as in section 3.8. Then for each natural number i, we define the collection Ti
of subsets of V which we wish to consider types of stage i. At the first stage, we may
select any subsets of V, provided we include the given ground types Gj . For definiteness,
let us take:

T0 = {G1 , G2 , ... }

We now define record types over preceding types. At each stage we take all record
types defined by a finite set of labeled component types, and a finite set of absent labels.
Each component type must belong to the preceding stage.

This construction may be clarified using an auxiliary definition. Suppose P: L îïÕfin Ti
is a finite partial function from labels to types at stage i, and N ⊆fin L is a finite set of
labels disjoint from the domain of P . Then the set RP,N of records with components
present according to P and components absent according to N is defined by:

Page 29

RP,N = {rÏR | ÓxÏL. (P(x)ß ⊃ r(x)ÏP(x)) ∧ (xÏN ⊃ r(x)¶)}

We define the set of record types at stage i+1 to be the set of all R P,N for suitable
“present” function P and “absent” set N:

Ti+1 = {RP,N | P: L îïÕfin Ti ∧ N ⊆fin L ∧ dom(P) ∩ N = } ∪ Ti

Note that R = R, belongs to every Ti+1.
The collection T of all types is defined by:

T = êi < ω Ti

As we have defined T, the set V of all values is not a type. However, it is possible to
include V in T0 if desired.

It is natural to consider any set of records RP,N with P: L îïÕfin T and N ⊆fin L, as a
“record type” over V. Define RT to be the collection of all record types:

RT =def {RP,N | P: L îïÕfin T , N ⊆fin L, and dom(P)∩N = }

Note that R, = êRT , so RT has a maximal element. We may show that T is precisely
the union of T0 and the record types over V ; that is T = T0 ∪ RT.

Lemma 3.9.1:
If P: L îïÕfin T and N ⊆fin L with dom(P)∩N = , then RP,N Ï T.
That is, RT ⊆T.

Proof
Suppose P: L îïÕfin T and N ⊆fin L. Since the domain of P is finite,
there is some i with P: L îïÕfin Ti . Hence, RP,N Ï Ti+1 ⊆ T.

M

In this model we will interpret all judgments as before, except that type variables and
type expressions must denote elements of T. Since we consider only elements of T as
types, we define the relation A ⊆: B (A semantic subtype of B) as:

A ⊆: B iff A ⊆ B and A,B Ï T

By the simplifying assumption in section 3.9 that no ground type contains records, we
know that every subtype of R will be an element of RT. If we had not made this
assumption, then we might have some subtype of R which “accidentally” could cause
(TE9) to fail.

We may show that for any non-empty R Ï RT, a function P and set N with R = RP,N are
determined uniquely.

Lemma 3.9.2:
Let R Ï RT be non-empty. Then R = RP,N where:

Page 30

dom(P) = {xÏL | ÓrÏR. r(x)ß},
N = {xÏL | ÓrÏR. r(x)¶}, and
P(x) = R(x) for all xÏdom(P)

Proof
Suppose R Ï RT is non-empty and let r0ÏR.
We know that R = RP,N for some P,N.

(1) By construction of RP,N we have ÓrÏR. dom(P) ⊆ dom(r).
Moreover, if ÓrÏR. r(x)ß, then xÏdom(P), since xÌdom(P) implies
r0-xÏR and (r0-x)(x)¶. Consider the function f defined by:

f(x) = r0(x) if ÓrÏR. r(x)ß, and ¶ otherwise
This function belongs to R, and dom(f) = {xÏL | ÓrÏR. r(x)ß} ⊆ dom(P).
Hence dom(P) =dom(f) = {xÏL | ÓrÏR. r(x)ß}.

(2) By construction of RP,N we have ÓrÏR. N ⊆ ¶(r) =def {xÏL | r(x)¶}.
Moreover, if ÓrÏR. r(x)¶, then xÏN (since xÌN implies either r0(x)ß
or (r0[x=a])(x)ß for an appropriately chosen r0[x=a]ÏR).
Choose rx from Rx =def {rÏR | r(x)ß} whenever Rx ≠ , and define:

g(x) = ¶ if ÓrÏR. r(x)¶, and rx(x) otherwise
This function belongs to R and ¶(g) = {xÏL | ÓrÏR. r(x)¶} ⊆ N.
Hence, N = ¶(g) = {xÏL | ÓrÏR. r(x)¶}.

(3) Assume xÏdom(P).
R(x) = RP,N(x) = {r(x) | rÏR , ÓyÏL. r(y)ÏP(y)} (since xÌN)

= {r(x) | rÏR , r(x)ÏP(x)} = {aÏV | aÏP(x)} = P(x)
M

This allows us to write each non-empty record type R Ï RT as RP,N without
ambiguity. The lemma also demonstrates that whenever R(x) is defined, R(x) = RP,N(x) =
P(x) Ï T is a type.

It is now straightforward to show that the record types are closed under restriction (R-
x) and extension (R[x:B]):

Lemma 3.9.3:
If R = RP,N is any record type, then R-x = RP',N', where

P' = P - {<x÷ïñP(x)>} if P(x)ß, and P otherwise.
N' = N ∪ {x}

Proof
Straightforward.

M

Lemma 3.9.4:
If R = RP,N with xÏN, and BÏ T, then R[x:B] = RP',N' , with:

P' = P ∪ {<x÷ïñB>}
N' = N-{x}

Page 31

Proof
By definition, R[x:B] = {r[x=b] | rÏR, bÏB}. It is easy to check
that every r[x=b] belongs to RP',N' and conversely.

M

The semantic subtyping relation on record types R ⊆: R' is now determined by the
present and absent information.

Lemma 3.9.5:
RP,N ⊆: RP',N' iff

ÓxÏdom(P'). P(x)ß ∧ P(x) ⊆: P'(x)
N' ⊆ N

Proof
Assume RP,N ⊆: RP',N'.
It is easy to check that N' ⊆ N by the definition of RP,N.
Similarly, if P'(x)ß then we must have P(x)ß ∧ P(x) ⊆ P'(x).
By definition P(x) and P'(x) are types.
The converse is straightforward.

M

Since the point of this model construction is to give R = (R-x)[x:R(x)] for every record
type R with R(x)ß, we must also prove this equation. Given the preceding lemmas, the
proof is almost immediate.

Lemma 3.9.6:
Let R Ï RT be a record type with r(x)ß for all rÏR.
Then R = (R-x)[x:R(x)].

Proof
We know R = RP,N for some finite function P and finite set N.
By preceding lemmas, we also have:

R-x = RP',N'

(R-x)[x:R(x)] = RP",N"

with P' = P - {<x÷ïñR(x)>}, N' = N ∪ {x}
and P" = P' ∪ {<x÷ïñR(x)>}, N" = N' - {x}.
Since P" = P and N" = N, it follows that R = (R-x)[x:R(x)].

M

Finally, we have the soundness theorem. System S2 is system S1 of Theorem 3.8.3
plus the rule (TE9).

Theorem 3.9.7 (soundness):
The inference rules of system S2 are sound with respect to the
interpretation of judgments given above.

Page 32

Proof
See appendix.

M

3.10 An extensional model construction
The following inference rule gives us an extensional equality between records:

(VC1b)

E ∫ r:äã E ∫ s:äã
———————–

E ∫ r óïñ s : äã

The intuitive reason for adopting this rule is that if r and s both belong to äã, then r
and s are indistinguishable. In fact, assume r and s differ at some label x. We cannot use
r.x or s.x to distinguish them since neither is well-typed; if we use r\ x or s\ x then we
simply remove the difference.

In addition to giving us more equations between records of type äã, rule (VC1b) implies
the following extensionality property: for any r,s : äx1:A1 , ... , xk:Akã, we have r óïñ s :
äx1:A1 , ... , xk:Akã iff r.xióïñs.xi : Ai for i = 1...k. The straightforward proof of this uses
r\ x1...xk óïñ s\ x1...xk : äã and the value congruence rules.

Recall that in the previous models a record type was simply a set of records, and
equality of records was independent of the type. Therefore, any two distinct records
would be unequal elements of äã, causing (VC1b) to fail.

In this section, we will construct a model of the pure record calculus satisfying (TE9)

and (VC1b). It will be clear from the construction that (TE9) is essential; we do not know
how to construct an extensional model satisfying (VC1b) without requiring that record types
satisfy R = äR\ x | x:R.xã. The main use of (TE9) lies in showing that if R is a record type
with extensional equality, then both R-x and R(x), when defined, are extensional record
types.

We begin with a value space V satisfying:

R = (L îïÕfin V) ⊆ V

constructed as in section 3.8, and define types as certain partial equivalence relations
(abbreviated PER's) over V (see [Longo Moggi 88]). A PER is a binary relation which is
symmetric and transitive, but not necessarily reflexive. An element of a type is defined as
an equivalence class of values in the PER.

Subtyping is based on set containment of partial equivalence relations, as in [Bruce

Longo 88], except that we consider only certain PER's as types.
The type of all records äã is interpreted by the PER R ×R . This type has only one

element since there is a single equivalence class in R ×R : while äã contains all records,
all records are equivalent in äã (hence (VC1b) holds).

Page 33

The three operations on record types are defined as follows:

¢ If R is a PER on R with r(x)¶ for every record rRr, and A is a PER

on V, then R[x:A] is the relation on R given by:

r R[x:A] s iff r-x R s-x and r(x) A s(x)

In writing r(x) A s(x) we imply that r(x)ß and s(x)ß.

¢ If R is a PER on R , we define the relation R-x by:

R-x =def {<r-x, s-x> | rRs}

¢ If R is a PER on R , with r(x)ß whenever rRr, we define the
relation R(x) by:

R(x) =def {<r(x), s(x)> | rRs}

It is easy to show that under the hypotheses above, R[x:A] is a partial equivalence
relation on R . However, R-x and R(x) are not necessarily transitive. This will not cause
any problems, as it turns out, since by restricting the class of record types to some
collection satisfying (TE9), R-x and R(x) are guaranteed to be types (and hence PER's).

The types over V will be defined in stages, as before. We begin with some collection:

T0 = {E1 , E2 , ... }

of partial equivalence relations over V that do not relate any records to themselves. A
typical choice would be to begin with the identity relations on the ground types G1 , G2 ,
... .

Given any finite partial map P from L to PER's over V and a set N ⊆fin L disjoint from
the the domain of P, we define the PER RP,N over R by:

r RP,N s iff ÓxÏL. (P(x)ß ⊃ r(x) P(x) s(x)) ∧ (xÏN ⊃ r(x)¶∧ s(x)¶)

Note the similarity to RP,N for subsets of V ; if we represent a subset S⊆V by the PER

(S×S) ⊆ (V ×V), the two definitions coincide. It is easy to see that if each P(x) is a PER,
then so is RP,N.

Following the earlier definition of record types in stages, we define:

Ti+1 = {RP,N | P:L îïÕfinTi ∧ N⊆finL ∧ dom(P)∩N = } ∪ Ti

and let:

T = êi < ω Ti

This construction has much the same character as the previous non-extensional one,
although we have the added complication of establishing that R-x and R(x) (when

Page 34

defined) are PER's whenever RÏT. Since every RÏT is easily seen to be a PER, we will do
this by showing R-xÏT and R(x)ÏT.

It is easy to prove Lemma 3.9.1 for this model, showing that we need not consider
stages of the construction in later arguments.

Lemma 3.10.1:
If P: L îïÕfin T and N ⊆fin L with dom(P)∩N = , then RP,N Ï T.

Define the collection of all record types by RT = {RP,N}.
Subtyping is interpreted as before, with:

A ⊆: B iff A ⊆ B and A,B Ï T

We now use present functions and absent sets to show that for every R Ï RT, we have
R-xÏT and R(x)ÏT if r(x)ß for every rRr.

Lemma 3.10.2:
If R Ï RT , then R-xÏT .
If R Ï RT with r(x)ß whenever rRr, then R(x)ÏT .

Proof
The lemma is trivial if R= , hence we assume R≠ .

(1) Let R=RP,N. Then R-x = RP',N' with P' = P - {<x÷ïñP(x)>} and
N' = N ∪ {x}. To see this, suppose r R-x s. Then there must
be records r',s'ÏR with r'Rs' and r=r'-x, s=s'-x.
Since P'(y)ß ⊃ r(y) P(y) s(y) and yÏN' ⊃ r(y)¶ ∧ s(y)¶,
it follows that r RP',N' s.
To show the converse, we assume r RP',N' s and note that since
R≠ , there must be some bÏV with b P(x) b. It is easy to see
that r[x=b] R s[x=b], and so r R-x s.

(2) We now assume r(x)ß whenever rRr. Since R=RP,N
 , we have

P(x)ÏT. It remains to show that R(x)=P(x). If a R(x) b,
then there exist r and s with rRs and a=r(x), b=s(x).
By definition of RP,N it follows that a P(x) b.
For the converse, we assume a P(x) b; since R≠ , there exist
r and s with r RP,N s and r(x)=a, s(x)=b. Hence a R(x) b.

M

Lemma 3.10.3:
If R Ï RT with r(x)¶ whenever rRr, and BÏT, then R[x:B]ÏT .

Proof
The lemma is trivial if R= . Otherwise, we let R=RP,N and show that
R[x:B]=RP',N' with P' = P ∪ {<x÷ïñB>} and N' = N-{x}.

Page 35

This is straightforward.
M

It is now an easy matter to show analogs of Lemma 3.9.2 and Lemma 3.9.6. These
conclude the basic properties of the construction. System S3 is system S1 of Theorem
3.8.3 plus the rules (TE9) and (VC1b).

Theorem 3.10.4 (soundness):
The inference rules of system S3 are sound for the PER model
construction.

Proof
See appendix.

M

3.11 The update operator
Extensional models are useful to characterize a natural form of record update, here

denoted by r.x :- a for functional update. The discussion is also relevant to the typing of
imperative update, r.x := a, although our models do not directly capture side-effects.

The functional update operator cannot be introduced by a simple definition. We want:

r.x :- a =def Ür\ x | x=aá

but only provided that r.x exists, and that r.x :- a does not modify the type of the x field.
Sufficient assumptions are that r:R<:äã and a:R.x; then we can derive the following
typing:

E ∫ r:R<:äã
——————

(E1) E ∫ r\ x : R\ x E ∫ a:R.x
———————————–

(I1) E ∫ Ür\ x | x=aá : äR\ x | x:R.xã
——————————–

(def) E ∫ r.x :- a : äR\ x | x:R.xã

This is not quite satisfactory, because we would expect the result type to be R,
meaning that the type of a record is not modified by updating one of its fields (with a
value of the correct type).

Fortunately, by using (TE9) (äR\ x | x:R.xãóïñR) we can derive the expected type rule:

(UPD)

E ∫ r:R<:äã E ∫ a:R.x
——————————

E ∫ r.x :- a : R

This seems to be a compelling reason for adopting (TE9), because of its impact on such an
important operator as updating.

Page 36

Note that the (UPD) rule is very strong; it applies even when R is a variable. From it we
can derive a perhaps more natural but less general rule:

(UPD')

E ∫ r:äR | x:Aã<:äã E ∫ a:A
————————————

E ∫ r.x :- a : äR | x:Aã

Remark. Here we might be tempted to weaken the assumption to E ∫ a:A'<:A,
and strengthen the conclusion to E ∫ r.x :- a : äR | x:A'ã. This is valid but
undesirable, since we might then be unable to update the x field again with its
original contents.

The strong (UPD) rule would not be expressible without R.x types; the following
apparently natural variation is unsound:

E ∫ r:R<:äS | x:Aã E ∫ a:A
———————————

E ∫ r.x :- a : R

For example, take A=Bool, R=äx:Trueã, and r=Üx=trueá; then from r.x:Bool and false:Bool
we can derive r.x:-false : äx:Trueã.

3.12 Normalization and decidability
Even though the basic ideas behind the record calculus are relatively simple, the

formal system has quite a few rules. As a consequence, it is not easy to see, by inspection,
how we could determine whether a supposed type A is well-formed, or whether a record
expression has type R.

In this section, we show that all of the basic properties of the calculus are decidable,
using relatively natural algorithms. In the process, we show that every type expression
has a unique normal form (modulo permuting the order of fields) and every typable
record expression has a principal type in each suitable environment.

The first properties we consider are deciding whether a supposed environment E is
well-formed and whether a given A is a well-formed type expression in E. A quick glance
at the formation rules shows that in order to determine whether a type is well-formed we
must be able to decide the following apparently simple properties; assuming E ∫ R type is
derivable, we want to know whether E ∫ R<:äã\ x and whether there exist S and A such
that E ∫ R<:äS | x:Aã. Therefore, we consider these first. Once we develop a simple
method for these, it is easy to check whether a type or environment is well-formed.

For each derivable E ∫ R type, we define a labeled tree Tree(E ∫ R type) with:

edges: labeled by field names
vertices: labeled by finite sets of field names

Page 37

If v is a vertex in Tree(E ∫ R type), we call the finite set of field names at v the absent set
at v.

Intuitively, if p = x1x2 ... xk is a path from the root of Tree(E ∫ R type) and N = {y1, y2,
..., yl} is the absent set of the vertex designated by this path, then:

E ∫ (..(R.x1).x2 ...).xk type
E ∫ (..(R.x1).x2 ...).xk <: äã\ y1y2 ... yl

A convenient notational shorthand is to write R.p for (..(R.x1).x2 ...).xk, where p is the
path p = x1x2 ... xk. If p = ε is the empty path, then we may write R.ε for R. If e is an edge
leading from the root of a tree to the root of some subtree, we call e a root edge.

We define Tree(E ∫ R type) by induction on the length of E. If E has length 0 then R
must be the type constant äã. In this case, we define:

Tree(∫ äã type) = single node with empty absent set.

For context E = E',X<:A we use induction on the form of type expressions:

Tree(E ∫ Y type) = Tree(E' ∫ Y type) for Y ≠ X

Tree(E ∫ X type) = Tree(E' ∫ A type)

Tree(E ∫ äS | x:Bã type) is obtained from
T = Tree(E ∫ S type) and T' = Tree(E ∫ B type)
by making T' a subtree of the root of T along a root edge
labelled x, and removing x from the absent set of the
root of T (if there).

Tree(E ∫ S\ x type) is obtained from Tree(E ∫ S type)
by deleting the subtree along the root edge labeled x (if there), and
adding x to the absent set of the root.

Tree(E ∫ S.x type) is the subtree of Tree(E ∫ S type)
located along the root edge labeled x.

For context E = E',X the definition of Tree(E ∫ R type) is the same as above, except for
the following case:

Tree(E,X ∫ X type) = empty tree.

For context E = E',x:A we let:

Tree(E ∫ R type) = Tree(E' ∫ R type)

This concludes the definition.

Page 38

In the clauses defining Tree(E ∫ äS | x:Bã type) and Tree(E ∫ S.x type), we have
assumed certain properties of Tree(E ∫ S type). These are justified by the following
lemma.

Lemma 3.12.1:
Suppose E ∫ R type and let T = Tree(E ∫ R type).
(1) If p is a path in T, then E ∫ R.p type.
(2) If x is in the absent set of T at position p, then E ∫ R.p <: äã\ x.

Proof
Induction on the derivation of T.
Case ∫ äã type. Trivial.
Cases E',X<:A ∫ Y type and E',X ∫ Y type with Y≠X.

Induction hypothesis and the property that if E ∫ J for
any judgment J, and E,E' env, then E,E' ∫ J.

Case E',X<:A ∫ X type.
By induction hypothesis E' ∫ A.p type and E' ∫ A.p <: äã\ x.
The conclusion follows by repeated use of (F4) and (S6), and
transitivity of <: .

Case E',X ∫ X type. Vacuous.
Cases E',X<:A ∫ äS | y:Bã type and E',X ∫ äS | y:Bã type.

Case p = ε. (1) is trivial.
(2) by induction hypothesis E ∫ S <: äã\ x for x in
the absent set of T (x≠y). Hence, E ∫ äS | y:Bã <: äã\ x.

Case p = yp'. Use (TE7) and induction hypothesis for E ∫ B type.
Otherwise. Use (TE8) and induction hypothesis for E ∫ R type.

Case E',X<:A ∫ S\ y type and E',X ∫ S\ y type.
Case p = ε. Two subcases:

Case x=y. Since E ∫ S\ y type must follow from (F3), we must
have E ∫ S <: äã. The result follows by (S4).

Case x≠y. Then x must be in the absent set for Tree(E ∫ S type)
and so E ∫ S <: äã\ x. By (S4), E ∫ S\ y <: äã\ xy, and we
know that äã\ xy <: äã\ x.

Case p ≠ ε. Then p must be a path in Tree(E ∫ S type) not beginning
with y. It follows from the induction hypothesis that
E ∫ S<: äT | z:Aã for z≠y the first symbol of p. By (TE4), we have
E ∫ S.z óïñ S\ y.z, and the lemma follows by the congruence rules.

Cases E',X<:A ∫ S.y type and E',X ∫ S.y type.
Straightforward from induction hypothesis.

Case E',x:A ∫ R type. By induction hypothesis.
M

Page 39

The preceding lemma shows that the path and absent information provided by Tree(E
∫ R type) is “sound” with respect to the proof rules of the calculus. Since the proof rules
are sound with respect to our semantics, it follows that the assertions of the form E ∫
R<:äã\ x and ÔS,A. E ∫ R<:äS | x:Aã determined from Tree(E ∫ R type) are semantically
sound.

We may also show that the assertions are semantically complete. It follows from the
preceding lemma that the proof rules are also semantically complete for deducing
assertions of the form: (1) E ∫ R<:äã\ x, and (2) if there exists S and A with R<:äS | x:Aã in
every assignment satisfying E, then E ∫ R<:äS' | x:A'ã for some S' and A'.

Lemma 3.12.2:
Suppose E ∫ R type and let T = Tree(E ∫ R type).
There is a semantic model M and assignment ρ such that:
(1) If p is a sequence of labels which is not a path in T, then there

is some record r in Rρ with r.p undefined.
(2) If p is a path in T with x absent from every record in (R.p)ρ ,

then x is in the absent set of T at the vertex located at p.
Proof

We may use the model constructed in section 3.8 using a single
ground type G=N, for example. For each environment E, we define
an assignment ρE such that whenever E ∫ R type, there is some rÏR
with r.pß iff p is a path in Tree(E ∫ R type). (This is straightforward.)
It is easy to verify that for any vertex v in any Tree(E ∫ R type), if x is in
the absent set at v, then there is no child along any edge labeled x.
This and (1) imply part (2) of the lemma.

M

By constructing trees of absent sets, it is relatively easy to decide whether a purported
environment or type expression is well-formed. The basic idea is simply to check whether
∫ E env or E ∫ R type by reading the environment and formation rules backwards. This
gives us mutually recursive procedures which rely on Tree(E ∫ R type) in checking the
hypotheses of (F2) and (F4).

Theorem 3.12.3:
Given environment E and expression A, there are mutually
recursive procedures which decide whether ∫ E env and E ∫ A type.

The next problems to consider are, given well-formed types E ∫ A type and E ∫ B
type, whether E ∫ AóïñB or E ∫ A<:B. Since type equality may be used to prove subtyping
assertions, both depend on our choice of type equality rules. For definiteness, let us
assume we have (TE9). Similar results seem to hold without (TE9), but we have not checked
the details.

Page 40

If E ∫ R type, then it is evident that by directing type equality rules, we may rewrite R
to one of the following “normal” forms:

(1) äã
(2) X (a type variable)
(3) (..(R0.x1)xi)\ y1 ... yj where R0 is either äã or a type variable.
(4) äR0\ x1 ... xi | y1:A1 ... yj:Ajã where, considering T = Tree(E ∫ R type):

 ¢ R0 is either äã or a type variable;
 ¢ y1 ... yj are exactly the labels on the root edges of T;
 ¢ {y1 ... yj} ⊆ {x1 ... xi};
 ¢ {x1 ... xi} - {y1 ... yj} is the absent set at the root of T;
 ¢ A1 ... Aj are also in normal form.

In the semantics of section 3.9, the meaning of a type expression of form (4) is a
record type RP,N, where N={x1 ... xi} - {y1 ... yj}, dom(P) = {y1 ... yj}, and P(yn) is the
meaning of An. Since we may construct models in which no type is empty, and
assignments in which each type variable denotes a different type, we may show that two
type expressions are provably and semantically equal iff they have the same normal
forms, modulo differences in the order of field names and component types. By lemma
3.9.5, we may also see that, semantically:

äR0\ x1 ... xi | y1:A1 ... yj:Ajã ⊆: äS0\ u1 ... uk | v1:B1 ... vl:Blã
iff

 ¢ ({u1 ... uk} - {v1 ... vl}) ⊆ ({x1 ... xi} - {y1 ... yj})
 ¢ {v1 ... vl} ⊆ {y1 ... yj}
 ¢ if vm = yn then Am ⊆ Bn

This property allows us to decide semantic subtyping by normalizing type expressions,
comparing outer-most forms, and recursively examining corresponding component types.
Since all of the steps of the algorithm correspond to derivations in the proof system,
completeness of the proof rules (for type equality or subtyping assertions) follows.

Theorem 3.12.4:
Given E ∫ A type and E ∫ B type, there are straightforward algorithms
to determine whether E ∫ AóïñB or E ∫ A<:B. Moreover, the proof rules
are semantically complete for deducing type equality and subtype
assertions.

The final algorithmic problem is, given E ∫ R type and an expression r, determine
whether E ∫ r:R.

Since we can decide whether one type is a subtype of another, it suffices to compute a
minimal type S with E ∫ r:S and check whether E ∫ S<:R.

Page 41

However, most record expressions do not have a minimal type. This stems from the
fact that for any sequence x1 ... xk of labels, we have Üá : äã\ x1 ... xk , and we can always
obtain a smaller type by adding more labels. To get around this problem, we use type
schemas that contain sequence variables. We show that each typable record expression r
has a scheme S such that every type for r is a supertype of some instance of S. This allows
us to test whether a record expression has any given type. We use l, l1, ... for sequence
variables in schemas.

If S is any scheme with sequence variable l, then we say E ∫ S type if E ∫ S' type for
every S' obtained by replacing l with a sequence of labels (including the empty sequence).
If E ∫ S type, then a useful algorithm is MakeAbsent(x,S) which attempts to compute a
substitution instance S' (possibly containing sequence variables) such that E ∫ S'<:äã\ x. If
such an instance exists, MakeAbsent(x,S) returns the smallest one. If no instance exists,
the algorithm fails. (Algorithm MakeAbsent uses an extension of Tree(E ∫ R type) to
schemas; details are straighforward and omitted.)

Using MakeAbsent, we may compute a principal type schema PTS(E,r), for any well-
formed environment E and expression r, as follows:

PTS(E, Üá) = äã\ l (where l is a fresh sequence variable)
PTS(E, x) = E(x)
PTS(E, r.x) = PTS(E, r).x if defined, else fail
PTS(E, r\ x) = PTS(E, r)\ x
PTS(E, Ür | x=aá) = äMakeAbsent(x, PTS(E, r)) | x:PTS(E, a)ã

Theorem 3.12.5:
Given ∫ E env and an expression r, if E ∫ r:R then PTS(E,r) succeeds,
producing S with E ∫ S'<:R for some instance S' of S. Otherwise,
PTS(E,r) fails. Furthermore, given S = PTS(E,r) and E ∫ R type, it is
easy to compute the smallest instance S' of S such that if any instance
is a subtype of R, then E ∫ S'<:R.

This concludes our investigation of decidability properties. We leave extensions of
these properties to functions and polymorphism for further work.

4. Applications and extensions
One might ask why we should go to the trouble of defining the subtle extension and

restriction operators, instead of adopting the override operator as a primitive, as in [Wand

89]. In particular, our explicit handling of negative information seems to introduce much
complexity.

Page 42

One answer is that negative information seems necessary to a proper understanding of
the override operator. For example, the notion of absent fields is critical to Rémy's
account of overriding in [Rémy 89]. Hence, it seems worthwhile to investigate negative
information as formalized by a separate operator.

A more pragmatic answer is that overriding really performs two different actions in
different situations; it either extends a record or updates it. From a methodological point
of view, a single override operator is rather undesirable because it may silently destroy
information. A separate extension operator is preferable, because a type error occurs if we
attempt to use it to destroy an existing field. A separate update operator is also preferable,
because normally we do not want to update a field with a value of a totally different type.

Hence, in a programming language we would probably want to replace the override
operator by two separate operators: one for extension, which we have, and one for
updating, discussed in section 3.11. The restriction operator could still be used when we
really intend to delete a field.

Admittedly, restriction is still ambiguous, because it may or may not remove a field,
depending on whether the field is actually present. It is however possible to define a safe
restriction operator which produces a type error if the restricted field is not present.
Unfortunately, we could not find a way of completely eliminating the need for general
restriction (at least on types); this operator seems necessary to express crucial well-
formedness conditions.

This said, we are now ready to investigate some useful derived operators.

4.1 The override operator
The override operator Ür óïô x=aá =def Ür\ x | x=aá is certainly very natural, in fact we

have used it almost exclusively in our examples. The derived type rules for this operator,
described below, are also very simple, especially if we consider the subsystem with only
overriding and extraction. The rules mixing overriding with restriction are still rather
interesting.

We recall the definition of the override operator:

Ür óïô x=aá =def Ür\ x | x=aá
äRóïôx:Aã =def äR\ x | x:Aã

The following rules are all simply derivable from the rules for our basic operators (we
assume (TE9)); with these, extension need not be a primitive.

Formation

E ∫ R<:äã E ∫ A type E ∫ R<:äSóïôx:Aã<:äã
—————————— —————————––

E ∫ äRóïôx:Aã type E ∫ R.x type

Page 43

Subtyping

E ∫ R<:äã E ∫ A type E ∫ R<:S<:äã E ∫ A<:B
—————————— ———————————

E ∫ äRóïôx:Aã <: äã E ∫ äRóïôx:Aã <: äSóïôx:Bã

E ∫ R<:äSóïôx:Aã<:äã E ∫ R<:äSóïôx:Aã<:äã
—————————– ——————————

E ∫ R.x <: A E ∫ R <: äRóïôx:R.xã

Introduction/Elimination

E ∫ r:R<:äã E ∫ a:A E ∫ r:äRóïôx:Aã<:äã
—————————— —————————

E ∫ Üróïôx=aá : äRóïôx:Aã E ∫ r.x : A

Type Congruence

E ∫ R óïñ S <: äã E ∫ A óïñ B E ∫ R óïñ äSóïôx:Aã<:äã
————————————— ——————————

E ∫ äRóïôx:Aã óïñ äSóïôx:Bã E ∫ R.x óïñ A

Type Equivalence

E ∫ R<:äã E ∫ A,B type x≠y E ∫ R<:äSóïôx:Aã<:äã
—————————————————— —————————–

E ∫ ääRóïôx:Aãóïôy:Bã óïñ ääRóïôy:Bãóïôx:Aã E ∫ R óïñ äRóïôx:R.xã

E ∫ R<:äã E ∫ A type E ∫ R<:äã E ∫ A type x≠y
——————————– ——————————————

E ∫ äRóïôx:Aã\ x óïñ R\ x E ∫ äRóïôx:Aã\ y óïñ äR\ yóïôx:Aã

E ∫ R<:äã E ∫ A type E ∫ R<:äSóïôy:Bã<:äã E ∫ A type x≠y
—————————— ——————————————————

E ∫ äRóïôx:Aã.x óïñ A E ∫ äRóïôx:Aã.y óïñ R.y

Value Congruence

E ∫ r óïñ s : R<:äã E ∫ a óïñ b : A E ∫ r óïñ s : äRóïôx:Aã<:äã
———————————————— ———————————

E ∫ Üróïôx=aá óïñ Üsóïôx=bá : äRóïôx:Aã E ∫ r.x óïñ s.x : A

Value Equivalence

E ∫ r:R<:äã E ∫ a:A E ∫ b:B x≠y
————————————————————————

E ∫ÜÜróïôx=aáóïôy=bá óïñ ÜÜróïôy=báóïôx=aá : ääRóïôx:Aãóïôy:Bã

E ∫ r:R<:äã E ∫ a:A E ∫ r:R<:äã E ∫ a:A x≠y
——————————— —————————————————–

E ∫ Üróïôx=aá\ x óïñ r\ x : R\ x E ∫ Üróïôx=aá\ y óïñ Ür\ yóïôx=aá : äRóïôx:Aã\ y

E ∫ r:R<:äã E ∫ a:A E ∫ r:äRóïôy:Bã<:äã E ∫ a:A x≠y
—————————– ———————————————

E ∫ Üróïôx=aá.x óïñ a : A E ∫ Üróïôx=aá.y óïñ r.y : B

Page 44

E ∫ r:äRóïôx:Aã<:äã x≠y E ∫ r:R<:äSóïôx:Aã<:äã
——————————— —————————–

E ∫ r\ y.x óïñ r.x : A E ∫ r óïñ Üróïôx=r.xá : R

4.2 The rename operator
We may consider a rename operator, that shows another interesting use of R.x types.

r[xóïôy] =def Ür\ x | y=r.xá
R[xóïôy] =def äR\ x | y:R.xã

The rules for this operator are easily derived. The only interesting questions are whether
renaming with an identical variable produces an equivalent value or type:

r[xóïôx] óïñ r ?
R[xóïôx] óïñ R ?

These equivalences are derivable for arbitrary r and R, by using:

(VE10) (TE9)

E ∫ r:R<:äS | x:Aã<:äã E ∫ R<:äS | x:Aã<:äã
—————————— —————————–

E ∫ r óïñ Ür\ x | x=r.xá : R E ∫ R óïñ äR\ x | x:R.xã

Recall that (VE10) is satisfied in all our models, but (TE9) only holds in the latter two.
These are similar to the surjective pairing rules in λ-calculus. An alternative, not
involving surjective pairing, is to axiomatize the renaming operators independently.

4.3 The retraction operator: forgetting information
We have seen that even negative information should be considered as “additional”

information. So, one might ask whether there is any way to retract information, both
positive and negative. This would seem to be more a convenience than a necessity, since
one could avoid introducing information in the first place, rather then retracting it later.
However, it is still interesting to investigate the possibilities.

We have not been able to formulate operators that independently retract positive and
negative information, but we can describe an operator that retracts all information about a
given label in a type. This operator works purely on type information; there is no
corresponding operator on values.

The retraction operator, R~x, means “forget everything about x in record type R”; the
following rules enforce the cancellation of all the x information in R.

Formation/Subtyping

E ∫ R<:äã E ∫ R<:S<:äã E ∫ R<:äã
—————– ——————– —————–

E ∫ R~x type E ∫ R~x <: S~x E ∫ R <: R~x

Page 45

Type Equivalence

∫ E env E ∫ R<:äã E ∫ R<:äã
——————– ———————– ————————

E ∫ äã~x óïñ äã E ∫ R~xx óïñ R~x E ∫ R~xy óïñ R~yx

E ∫ R<:äã E ∫ R<:äã x≠y
———————— —————————–

E ∫ R\ x~x óïñ R~x E ∫ R\ x~y óïñ R~y\ x

E ∫ R<:äã\ x E ∫ A type E ∫ R<:äã\ x E ∫ A type x≠y
——————————— ——————————————

E ∫ äR | x:Aã~x óïñ R~x E ∫ äR | x:Aã~y óïñ äR~y | x:Aã

The main consequences for values involve the rule R <: R~x together with the
subsumption rule: if r:R, then we are allowed to forget some information about r and
conclude r:R~x.

Here are some interesting inferences:

E ∫ R<:äã E ∫ R<:äã
——————– —————

E ∫ R~x<: äã~x E ∫ r:R E ∫ R <: R~x
——————– —————————–

E ∫ R~x<: äã E ∫ r : R~x

E ∫ r : R E ∫ r : R <: äã\ x E ∫ a : A
————— ———————————

E ∫ r\ x : R\ x E ∫ Ür | x=aá : äR | x:Aã
—————— —————————–

E ∫ r\ x : R\ x~x E ∫ Ür | x=aá : äR | x:Aã~x
—————— —————————–

E ∫ r\ x : R~x E ∫ Ür | x=aá : R~x

The conclusion r\ x : R~x above seems to say that restriction on values can be seen as a
retraction operator, as well as a restriction operator.

Going back to a previous example from section 2.5, we can see the usefulness of the
retraction operator for defining hierarchies in “inverse” order:

let ColorDisc = äx:Real, y:Real, r:Real, c:Colorã
let ColorPoint = ColorDisc~r
let Disc = ColorDisc~c
let Point = ColorPoint~c

Note that the restriction operator would not produce the desired results.

4.4 The concatenation operator
Concatenation is a prime candidate for a primitive operator for a calculus of records.

Unfortunately this operator is very difficult to handle; so difficult that we have instead
chosen extension and restriction as our primitive notions. Here we discuss the main
problems.

Page 46

Type hierarchies are naturally expressed by a concatenation operator R ∏ S on types;
for example we would like to define:

let ColorDisc = ColorPoint ∏ Disc

Given a corresponding operator of values, r ∏ s of type R ∏ S for r:R and s:S, we would
like to guarantee that if we can derive r ∏ s : R ∏ S then there is a succesful and
unambiguous way to execute r ∏ s at run-time.

Under these conditions, we can see that concatenation is in fundamental conflict with
the subsumption rule. Consider the function:

let f1(X<:äx:Intã)(Y<:äy:Boolã)(r:X)(s:Y) : X ∏ Y = r ∏ s
f1(äx:Int, z:Intã)(äy:Bool, z:Boolã)(Üx=3, z=4á)(Üx=3, z=trueá) óïñ ? : ?

There is no explicit conflict in the definition of f1, so it should typecheck. But when
f1 is used as above, we have to decide which z field to produce, both in the result type and
in the result value. A popular choice is to have X ∏ Y perform a left-to-right (or right-to-
left) overriding of common fields; similarly for r ∏ s at run-time. However, run-time
overriding can run into difficulties:

let f2(r:äx:Intã)(s:äy:Boolã) : äx:Int, y:Boolã = r ∏ s
f2(Üx=3, y=4á)(Üy=true, x=falseá) óïñ ?

Let us assume here that, whatever definition we give to ∏, it satisfies the equation:
äx:Intã ∏ äy:Boolã = äx:Int , y:Boolã ; then f2 is well-typed. Could we use run-time
overriding in the invocation of f2 above? According to the result type of f2, the left x
should override the right x, while the right y should override the left y, so monodirectional
overriding will not work.

An option here is to give a run-time error, but this seems to defeat the purpose of
typechecking r ∏ s. Another option might be to compile special code for r ∏ s, according to
the types of r and s, so as to pick the x field from r and the y field from s, and to do
overriding on the additional fields (to deal with the polymorphic case, below). This idea
however runs into further difficulties:

f1(äx:Int, y:Int, z:Intã)(äy:Bool, x:Bool, z:Boolã)
(Üx=3, y=4, z=4á)(Üy=true, x=false, z=trueá) óïñ ? : ?

If X ∏ Y is computed by overriding, here, we get the wrong result. Making X ∏ Y
compatible with the behavior of r ∏ s above, would require violating some basic rules,
such as the beta-conversion rules for type parameters.

Because of all these difficulties, we should now feel compelled to define R ∏ S only
when R and S are disjoint: that is when any field present in an element of R is absent from
every element of S, and vice versa. Unfortunately, there is no way to axiomatize this
notion without drastically changing our type system: any two record types R and S have a

Page 47

non-empty intersection, and an element of this intersection can be exhibited via the
subsumption rule.

5. Conclusions
We have investigated a theory of record operations in presence of type variables and

subtyping. The intent is to embed this record calculus in a polymorphic λ-calculus, thus
providing a full second-order theory of record structures and their types. Although we
have not investigated the type inference problem for this calculus, we have provided
typechecking and subtyping algorithms. We have also presented several models of the
basic record calculus; a full second-order model is left for future work.

The result is a very flexible system for typing programs that manipulate records. In
particular, polymorphism and subtyping are incorporated in full generality. We expect
that this theory will be useful in analyzing fundamental aspects of object-oriented
programming.

Acknowledgements
We would like to acknowledge G. Longo and E. Moggi, for several clarifying

discussions.

Page 48

Appendix
This appendix contains soundness proofs for the semantic interpretations given in the

paper.

Semantics of the pure calculus of records
System S1 consists of all the rules listed in section 3.7, except for the special rules

(VC1b) and (TE9).

Theorem 3.8.3 (soundness):
The inference rules of systems S1 are sound with respect to the
interpretation of judgments given in section 3.8.

Proof
By induction on the length of the derivation of the judgments.

Environments
(ENV1). Vacuously true.
(ENV2). Vacuously true.
(ENV3). By hypothesis, E ∫ A type and so Aρ ⊆ V for any ρ satisfying E.

Moreover, E is well-formed by lemma 3.7.1, hence E,X<:A is also
well-formed.

(ENV4). Similar to (ENV3).

Variables
(VAR1). If ρ satisfies E,X,E', then by definition ρ(X) ⊆ V.
(VAR2). If ∫ E,X<:A,E' env, then for any ρ satisfying E we have Aρ ⊆ V.

Thus any ρ satisfying E,X<:A,E' must yield ρ(X) ⊆ Aρ ⊆ V.
(VAR3). Similar to (VAR2).

(VAR4). If ∫ E,x:A,E' env, then for any ρ satisfying E we have ρ(x) Ï Aρ
⊆ V. Thus any ρ satisfying E,x:A,E' must yield ρ(x) Ï Aρ ⊆ V.

General
(G1). If, for every ρ satisfying E, Aρ=Bρ ⊆ V then Aρ ⊆ Bρ.
(G2). By transitivity of subset.
(G3). If, for every ρ satisfying E, aρÏAρ and Aρ ⊆ Bρ then aρÏBρ.
(G4). By symmetry of equality.
(G5). By transitivity of equality.
(G6). If, for every ρ satisfying E, aρ=bρ Ï Aρ then bρ=aρ Ï Aρ.
(G7). If, for every ρ satisfying E, aρ=bρ Ï Aρ and bρ=cρ Ï Aρ

then aρ=cρ Ï Aρ.

Page 49

Formation
(F1). R ⊆ V
(F2). If, for every ρ satisfying E, Rρ ⊆ R -x and Aρ ⊆ V

then Rρ[x:Aρ] ⊆ R ⊆ V, by Lemma 3.8.2.
(F3). If Rρ ⊆ R , then Rρ-x ⊆ R ⊆ V, by Lemma 3.8.2.
(F4). If Rρ ⊆ Sρ[x:Aρ] ⊆ R , then Aρ ⊆ V; hence Rρ(x) ⊆ V by Lemma 3.8.2.

Subtyping
(S1). If, for every ρ satisfying E, Rρ ⊆ R -x, then Rρ is a set of finite

 functions r Ï L îïÕfinV with x Ì dom(r). For each such r, and any
a Ï Aρ ⊆ V, we have r[x=a] Ï L îïÕfinV. Thus Rρ[x:Aρ] ⊆ R .

(S2). If Rρ ⊆ R , then Rρ-x ⊆ Rρ ⊆ R .
(S3). Suppose Rρ ⊆ Sρ ⊆ R -x and Aρ ⊆ Bρ ⊆ V. Let rÏRρ[x:Aρ].

This means ÔsÏRρ with r = s[x=a]. Since sÏSρ and Aρ ⊆ Bρ,
we have s[x=a] Ï Sρ[x:Bρ]. Hence Rρ[x:Aρ] ⊆ Sρ[x:Bρ].

(S4). Suppose Rρ ⊆ Sρ ⊆ R . If r'ÏRρ-x, then r' = r-x for some rÏRρ.
Since rÏSρ, it follows that r' = r-x Ï Sρ-x.

(S5). Suppose Rρ ⊆ Sρ[x:Aρ] ⊆ R , then for any rÏRρ, rÏSρ[x:Aρ] = {s[x=a] |
sÏSρ, aÏAρ}; so that r(x)ÏAρ. Hence Rρ(x) = {r(x) | rÏRρ} ⊆ Aρ.

(S6). Suppose Rρ ⊆ Sρ[x:Aρ] ⊆ R , then for any rÏRρ, rÏSρ[x:A], so that
 r=s[x=a] for some sÏSρ and aÏAρ. We have a=r(x)ÏRρ(x), and
s=r-xÏRρ-x, hence r=(r-x)[x=r(x)]Ï(Rρ-x)[x:Rρ(x)]. It follows that
Rρ⊆(Rρ-x)[x:Rρ(x)].

Introduction
(I1). Ï R ⊆ V.
(I2). If, for every ρ satisfying E, the empty function Ï Rρ ⊆ R ,

then = -x1..xn Ï Rρ-y ⊆ R .
(I3). If rρÏRρ with x Ì dom(rρ) and aρÏAρ, then rρ[x=aρ] is well-defined,

by Lemma 3.8.1, and belongs to Rρ[x:Aρ] ⊆ R , by Lemma 3.8.2.

Elimination
(E1). If, for every ρ satisfying E, rρÏRρ ⊆ R , then x Ì dom(rρ-x).

Hence rρ-x Ï Rρ-x ⊆ R , by Lemma 3.8.2.
(E2). If rρÏRρ[x:Aρ] ⊆ R , then Aρ ⊆ V, and rρ is a record with rρ(x)ÏAρ.

Type congruence
(TC1). R =R ⊆ V.
(TC2). For every ρ satisfying E, Xρ =Xρ ⊆ V.
(TC3). Suppose Rρ=Sρ, Sρ ⊆ R -x, and Aρ=Bρ ⊆ V.

Then Rρ[x:Aρ] = Sρ[x:Bρ] ⊆ R ⊆ V.
(TC4). Suppose Rρ=Sρ ⊆ R , then Rρ-x=Sρ-x ⊆ R ⊆ V.

Page 50

(TC5). Suppose Rρ=Sρ ⊆ Tρ[x:Aρ] ⊆ R .
Then both Rρ and Sρ are sets of functions r with x Ì dom(r).
Hence Rρ(x) = {r(x) | rÏRρ} = {r(x) | rÏSρ} = Sρ(x) ⊆ V.

Type equivalence
(TE1). Suppose, for every ρ satisfying E, Rρ ⊆ (R -x)-y, Aρ,Bρ ⊆ V,

and x,y Ï L. For each rÏRρ, x,y Ì dom(r). Then,
Rρ[x:Aρ][y:Bρ] =

{s[y=b] | sÏ{r[x=a] | rÏRρ, aÏAρ}, bÏBρ} =
{r[x=a][y=b] | rÏRρ,aÏAρ,bÏBρ} = {r[y=b][x=a] | rÏRρ,bÏBρ,aÏAρ}=
{s[x=a] | sÏ{r[y=b] | rÏRρ, bÏBρ}, aÏAρ} =
Rρ[y:Bρ][x:Aρ] ⊆ R ⊆ V.

(TE2). If Rρ ⊆ R -x, then Rρ is a set of r with x Ì dom(r). Hence Rρ-x = Rρ.
(TE3). If Rρ ⊆ R then (Rρ-x)-y = (Rρ-y)-x.
(TE4). Suppose Rρ ⊆ Sρ[y:Bρ] ⊆ R and x≠y.

For each rÏRρ, y Ì dom(r). Then,
(Rρ-x)(y) =

{s(y) | sÏ{r-x | rÏRρ}} = {(r-x)(y) | rÏRρ} = {r(y) | rÏRρ} =
Rρ(y) ⊆ V.

(TE5). Suppose Rρ ⊆ R -x and Aρ ⊆ V.
Then Rρ[x:Aρ] = {r[x=a] | rÏRρ, aÏAρ}.
So (Rρ[x:Aρ])-x = {r | rÏRρ} = Rρ.

(TE6). Suppose Rρ ⊆ R -x, Aρ ⊆ V, and x≠y. Then,
(Rρ[x:Aρ])-y =

{(r[x=a])-y | rÏRρ, aÏAρ} = {(r-y)[x=a] | rÏRρ, aÏAρ} =
(Rρ-y)[x:Aρ] ⊆ R ⊆ V.

(TE7). Suppose Rρ ⊆ R -x and Aρ ⊆ V.
Then Rρ[x:Aρ] = {r[x=a] | rÏRρ, aÏAρ}.
Hence (Rρ[x:Aρ])(x) = {(r[x=a])(x) | rÏRρ, aÏAρ} = Aρ ⊆ V.

(TE8). Suppose Rρ ⊆ Sρ[y:Bρ]-x ⊆ R , Aρ ⊆ V, and x≠y. Then,
(Rρ[x:Aρ])(y) = {(r[x=a])(y) | rÏRρ, aÏAρ} = {r(y) | rÏRρ} = Rρ(y) ⊆ V.

Value congruence
(TC1). = ⊆ R
(TC2). If, for every ρ satisfying E, ρ(x) Ï Aρ ⊆ V, then ρ(x)=ρ(x) Ï Aρ.
(TC3). Suppose rρ=sρ Ï Rρ ⊆ R -x and aρ=bρ Ï Aρ ⊆ V.

Then x Ì dom(rρ)∪dom(sρ). Hence rρ[x=aρ] = sρ[x=bρ] Ï Rρ[x:Aρ] ⊆ R ,
by case (I3).

(TC4). Suppose rρ=sρ Ï Rρ ⊆ R . Then rρ-x=sρ-x Ï Rρ-x ⊆ R , by case (E1).

Page 51

(TC5). Suppose rρ=sρ Ï Rρ ⊆ Sρ[x:Aρ] ⊆ R .
Then Rρ ⊆ (Rρ-x)[x:Rρ(x)] (by case (S6)), and rρ,sρ Ï (Rρ-x)[x:Rρ(x)].
Hence, by case (E2), rρ(x)=sρ(x) Ï Rρ(x) ⊆ V.

Value equivalence
(VE1). Suppose, for every ρ satisfying E, rρÏRρ ⊆ R -x-y, aρÏAρ ⊆ V,

bρÏBρ ⊆ V, and x≠y. Then, x,y Ì dom(rρ), and
rρ[x=aρ][y=bρ] = rρ[y=bρ][x=aρ] Ï Rρ[x:Aρ][y:Bρ] ⊆ R .

(VE2). -x = Ï R .
(VE3). Suppose rρÏRρ ⊆ R -x. Since x Ì dom(rρ), rρ-x = rρ.
(VE4). Suppose rρÏRρ ⊆ R . (rρ-x)-y = (rρ-y)-x Ï (Rρ-x)-y ⊆ R .
(VE5). Suppose rρÏRρ[x:Aρ] ⊆ R and x≠y.

Then x Ï dom(rρ) and rρ-y.x = rρ.x Ï Aρ ⊆ V.
(VE6). Suppose rρÏRρ ⊆ R -x and aρÏAρ ⊆ V.

Then x Ì dom(rρ) and rρ[x=aρ]-x = rρ.
(VE7). Suppose rρÏRρ ⊆ R -x, aρÏAρ ⊆ V and x≠y.

Then x Ì dom(rρ) and (rρ[x=aρ])-y = (rρ-y)[x=aρ] Ï (Rρ[x:Aρ])-y ⊆ R .
(VE8). Suppose rρÏRρ ⊆ R -x, and aρÏAρ ⊆ V.

Then x Ì dom(rρ) and (rρ[x=aρ])(x) = aρ.
(VE9). Suppose rρÏRρ[y:Bρ]-x ⊆ R , aρÏAρ ⊆ V and x≠y.

Then Bρ ⊆ V, x Ì dom(rρ), y Ï dom(rρ), and (rρ[x=aρ])(y) = rρ(y) Ï Bρ.
(VE10). Suppose rρÏRρ ⊆ Sρ[x:Aρ] ⊆ R .

Then rρÏSρ[x:Aρ], so that rρ=s[x=a] for some sÏSρ and aÏAρ.
We have a=rρ(x)ÏRρ(x), and s=rρ-xÏRρ-x, hence rρ=(rρ-x)[x=rρ(x)],
which is well-formed (is a member of (Rρ-x)[x:Rρ(x)]).

M

A construction giving R = äR\␣x␣| ␣x:R.xã
System S2 is system S1 of Theorem 3.8.3 plus the rule (TE9).

Theorem 3.9.7 (soundness):
The inference rules of system S2 are sound with respect to the
interpretation of judgments given in section 3.9.

Proof
The proof follows the general pattern of Theorem 3.8.3. The main new
properties that are needed are proved as lemmas in section 3.9.
In particular, (TE9) follows from Lemma 3.9.6. The formation rules
come from Lemmas 3.9.2, 3.9.3, 3.9.4, and 3.9.5.

M

Page 52

An extensional model construction
System S3 is system S1 of Theorem 3.8.3 plus the rules (TE9) and (VC1b).

Theorem 3.10.4 (soundness):
The inference rules of system S3 are sound for the PER model
construction given in section 3.10.

Proof
The proof follows the general pattern of Theorem 3.8.3, using the lemmas
proved in section 3.10

M

Page 53

References

[Breazu-Tannen Coquand Gunter Scedrov 89] V.Breazu-Tannen, T.Coquand, C.Gunter, A.Scedrov:
Inheritance and explicit coercion , Proc. of the Fourth IEEE Symposium on Logic in Computer
Science, pp 112-129, 1989.

[Bruce Longo 88] K.B.Bruce, G.Longo: A modest model of records, inheritance and bounded
quantification, Proc. of the Third IEEE Symposium on Logic in Computer Science, pp 38-50, 1988.

[Bruce Meyer Mitchell 90] K.B.Bruce, A.R.Meyer, J,C.Mitchell: The semantics of second order lambda
calculus, Information and Computation, Vol 85 No 1, pp76-134, 1990.

[Cardelli 88] L.Cardelli: A semantics of multiple inheritance, in Information and Computation 76, pp 138-
164, 1988. (First appeared in Semantics of Data Types, G.Kahn, D.B.MacQueen and G.Plotkin Ed.
Lecture Notes in Computer Science n.173, Springer-Verlag 1984.)

[Cardelli Donahue Glassman Jordan Kalsow Nelson 89] L.Cardelli, J.Donahue, L.Glassman, M.Jordan,
B.Kalsow, G.Nelson: Modula-3 report (revised), Research Report n.52, DEC Systems Research
Center, 1989.

[Cardelli Wegner 85] L.Cardelli, P.Wegner: On understanding types, data abstraction and polymorphism,
Computing Surveys, Vol 17 n. 4, pp 471-522, December 1985.

[Curien Ghelli 91] P.-L.Curien, G.Ghelli: Coherence of subsumption, Mathematical Structures in
Computer Science, to appear.

[Dahl Nygaard 66] O.Dahl, K.Nygaard: Simula, an Algol-based simulation language, Communications of
the ACM, Vol 9, pp. 671-678, 1966.

[Girard 71] J-Y.Girard: Une extension de l'interprétation de Gödel à l'analyse, et son application à
l'élimination des coupures dans l'analyse et la théorie des types, Proceedings of the second
Scandinavian logic symposium, J.E.Fenstad Ed. pp. 63-92, North-Holland, 1971.

[Girard 72] J-Y.Girard: Interprétation fonctionelle et élimination des coupures dans l'arithmétique
d'ordre supérieur, Thèse de doctorat d'état, University of Paris, 1972.

[Jategaonkar Mitchell 88] L.A.Jategaonkar, J.C.Mitchell: ML with extended pattern matching and
subtypes, Proc. of the ACM Conference on Lisp and Functional Programming, pp.198-211, 1988.

[Longo Moggi 88] G.Longo, E.Moggi: Constructive natural deduction and its ‘w-set’ interpretation,
Report CMU-CS-88-131, CMU, Dept. of Computer Science, 1988.

[Meyer 88] B.Meyer: Object-oriented software construction, Prentice Hall, 1988.

[Milner 78] R.Milner: A theory of type polymorphism in programming, Journal of Computer and System
Science 17, pp. 348-375, 1978.

[Mitchell 84] J.C.Mitchell: Coercion and type inference, Proc. of the 11th ACM Symposium on Principles
of Programming Languages, pp.175-185, 1984.

[Mitchell 86] J.C.Mitchell: A type inference approach to reduction properties and semantics of
polymorphic expressions, Proc. Symposium on Lisp and Functional Programming, pp.308-319, 1986.
(Revised version in Logic Foundations of Functional Programming, ed. G. Huet, Addison-Wesley,
1989.)

[Mitchell 90] J.C.Mitchell: Type systems for programming languages, in Handbook of Theoretical
Computer Science, ed. J. van Leeuwen et al. North Holland, pp 365-458, 1990.

[Ohori Buneman Breazu-Tannen 88] A.Ohori, P.Buneman, V.Breazu-Tannen: Database programming in
Machiavelli - a polymorphic languaage with static type inference, Report MS-CIS-88-103, University
of Pennsylvania, Computer and Information Science Dept., 1988.

Page 54

[Ohori Buneman 88] A.Ohori, P.Buneman: Type inference in a database programming language, Proc. of
the ACM Conference on LISP and Functional Programming, pp.174-183, 1988.

[Rémy 89] D. Rémy: Typechecking records and variants in a natural extension of ML, Proc. of the 16th
ACM Symposium on Principles of Programming Languages, pp.77-88, 1989.

[Reynolds 74] J.C.Reynolds: Towards a theory of type structure, in Colloquium sur la programmation pp.
408-423, Springer-Verlag Lecture Notes in Computer Science, n.19, 1974.

[Schaffert Cooper Bullis Kilian Wilpolt 86] C.Schaffert, T.Cooper, B.Bullis, M.Kilian, C.Wilpolt: An
introduction to Trellis/Owl, Proc. ACM Conference on Object Oriented Programming Systems,
Languages, and Applications, pp 9-16, 1986.

[Stroustrup 86] B.Stroustrup: The C++ programming language, Addison-Wesley 1986.

[Wand 87] M.Wand: Complete Type Inference for Simple Objects, Proc. of the Second IEEE Symposium
on Logic in Computer Science, pp 37-44, 1987.

[Wand 89] M.Wand: Type inference for record concatenation and multiple inheritance, Proc. of the
Fourth IEEE Symposium on Logic in Computer Science, pp. 92-97, 1989.

