
A Caching File System
For a Programmer’s Workstation

by

Michael D. Schroeder, David K. Gi�ord and Roger M. Needham

SRC Research Report 6

The work reported here was done by the authors at the Xerox Palo Alto
Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304. The
writing and publication of this paper was supported by the DEC Sys-
tems Research Center, where Michael D. Schroeder now works. David
K. Gi�ord is at the Laboratory for Computer Science, 545 Technology
Sq., Cambridge, MA 02139. Roger M. Needham is at the Computer
Laboratory, Corn Exchange St., Cambridge CB2 3QG, UK.

i

This paper has been accepted at the 10th ACM SIGOPS Symposium

on Operating Systems Principles, whose proceedings will appear as the
December 1985 issue of Operating Systems Review.

c1985 by the Association for Computing Machinery. All rights reserved.

Printed with permission.

ii

Authors' Abstract

This paper describes a workstation �le system that supports a group of

cooperating programmers by allowing them both to manage local naming

environments and to share consistent versions of collections of software.

The �le system has access to the workstation's local disk and to remote

�le servers, and provides a hierarchical name space that includes the �les
on both. Local names can refer to local �les or be attached to remote �les.

Remote �les, which also may be referred to directly, are immutable and

cached on the local disk. The �le system is part of the Cedar experimental

programming environment at Xerox PARC and has been in use since late
1983.

Capsule Review

A personal workstation with a local disk generally uses the disk to hold
a local �le system. In a large collection of workstations connected by a
network, the workstation �le systems contribute to the good responsive-
ness and high availability of the individual workstations. But if users of
di�erent workstations are working together on a project, the separate �le
systems get in the way. Typically, the users will cope with the problem
by manually copying �les through a shared directory on a �le server, but
this process is slow and error-prone.

The Cedar programming environment project used a simple technique
based on DF �les to manage �le sharing in a systematic way. This paper
describes CFS, a workstation �le system designed to support the use of
DF �les. CFS is unusual in that it only allows the sharing of immutable
�les; rather than changing an existing shared �le, you make a new version.
Workstations with CFS share �les using a �le server that provides �le
version numbers and whole-�le transfers. CFS does not require other �le
server features like random �le access or transactions.

CFS manages part of the local disk as a cache of immutable shared �les.

The DF �le methodology allows CFS and the �le servers to largely ignore
the cache consistency problem.

Experience with Cedar shows that DF �les plus CFS form a simple and

workable solution to the problem of multi-person �le sharing in a work-
station based programming environment. For some other applications of
workstations, it seems clear that a database server will be a useful addi-

tion, giving data sharing at a �ner grain than the immutable �les of CFS.

An interesting open question is whether or not there are applications that
demand something in between a database server and CFS.

| Mark Brown

iii

Introduction

A con�guration of personal workstations, each with a local disk, con-

nected to shared �le servers by a local area network can provide a respon-

sive base for software development by a team of programmers. The work-

stations provide each programmerwith dedicated hardware resources that

respond quickly to interactive demands. The �le servers provide a way
for the group of programmers to share information. This paper describes

a distributed �le system, called CFS, designed to support group pro-

gramming in this hardware context. CFS was developed as part of the

Cedar experimental programming environment [8, 18, 19] at the Xerox
Palo Alto Research Center.

A �le system that supports a group of cooperating programmers has

two important jobs to do. First, it must help each programmer manage
a private �le naming environment in which to work. Second, it must
help the group share consistent versions of the software subsystems being
developed in parallel. CFS addresses these requirements by providing
each workstation with a hierarchical name space that includes the �les
on the local disk and on all �le servers. The local �les are private to the
workstation. The remote �les are sharable among all workstations. CFS
supports a simple copying model of �le sharing. A client of CFS creates
a �le on the local disk. To make that �le available for sharing, the client
transfers it to a �le server, giving it a remote name. A client on another
workstation can then access the �le by its remote name and transfer it
to that workstation's local disk. The basis for consistency in sharing is
atomic creation of each remote �le.

A distinctive feature of CFS is that only immutable �les may be shared.
An immutable �le has two important properties: its name may not be
reused and its contents may not be altered. Thus, the name of an im-
mutable �le signi�es the �xed contents of the �le, not the �le as a con-
tainer for variable information. All remote �les in CFS are immutable
and only remote �les are shared. As we will see, sharing only immutable
�les makes it easy to support consistent sharing and makes it easy to

implement a distributed �le system.

Two other key features of CFS are the ability to attach local names to

remote �les and the caching of remote �les on the local disk. These two
features work together to decouple the management of the local naming
environment on a workstation from the management of space on the local
disk.

CFS was designed to be used by software management tools like Cedar's
DF package [16]. The tools in the DF package provide a way to de�ne

and share a static snapshot of a software subsystem. The de�nition is a
list of component �le names recorded in a DF �le. The components may

1

be source �les, object �les, documentation �les, and other DF �les. A

DF �le is the value of a subsystem, not a reference to it. A programmer
using a particular DF �le to identify the components of a subsystem can

be certain to �nd a set of �le contents that represents a consistent version

of the subsystem. The immutable �les provided by CFS directly support

this snapshot view of subsystems. A particular version of a subsystem
is shared via an immutable version of a DF �le that names immutable

versions of the component �les.

The tools in the DF package work by establishing a correspondence be-

tween remote �les named in DF �les and local �le names on a workstation.
The programmer then works in this local naming environment. The fa-

cilities in CFS for attaching local names to remote �les allow setting up

the local naming environment without actually copying the correspond-

ing �les from the �le servers. The presence of the actual �les on the local
disk is managed independently by the local cache for remote �les.

Simplicity and good performance were primary goals in the CFS design.
Forcing all sharing to be through �le servers eliminates workstation code
that responds to �le requests from other workstations and from servers.
Sharing only immutable �les means that the workstation cache machinery
can ignore the possibility of remote �les changing. Using simple atomic
updates to server directories to support consistent sharing eliminates the
need for transactions and long-term locks on the �le servers. In addition,
to reduce the load on the shared �le servers and reduce the complexity
of the workstation cache machinery, CFS transfers and caches whole �les
rather than individual �le blocks.

This paper documents the CFS design. After listing the facilities required
in the �le servers used by CFS, the paper presents the key features of
the design and shows by example how these features are used by the DF
package to support group programming. Then some detailed points about
naming, binding and caching are considered, and the implementation
structure is sketched. The �nal section bounds the design by discussing

potential goals not addressed and directions for future exploration. The
paper concludes that, when used with software management tools like the
DF package, CFS e�ectively supports the development of large programs
by groups of programmers. An appendix de�nes the semantics of the key

operations in the CFS interface.

Related Work

Much work has been done on distributed �le systems and many of the re-
cent e�orts are surveyed in Svobodova's article [17]. Most designs start by

distributing a traditional time-sharing �le system over multiple comput-
ers attached to a network. The clients on all computers see the same set

2

of shared, mutable �les. This traditional model of �le system semantics is

easy for clients to understand, but an e�cient distributed implementation
is quite complex. The simplest implementations, such as the Newcastle

Connection [5], provide direct access to the blocks of �les from a named

collection of �le system instances. Performance is improved in the Apollo

Domain �le system [11] and Sun Microsystems' NFS [22] by adding local
caching of �le blocks. The ITC distributed �le system [15] adds location

transparency for �les and replication of read-only �les. It has adopted the

transferring and caching of whole �les used in CFS, but still maintains

the traditional client model of shared, mutable �les. The performance im-

plications of this combination are not understood yet. In all these cases,
the �le system provides no assistance in organizing the consistent sharing

of sets of �les. The LOCUS �le system [21] addresses consistent sharing

with sophisticated locking and transaction mechanisms for shared, muta-
ble �les. It also provides for replication of such �les. This combination of
functions produces interface semantics and an implementation that are
quite complex.

CFS di�ers from these systems by changing the semantics of the tradi-
tional �le systems interface, as described earlier, to reect the intended
use. These semantics are carefully selected to provide the functionality
required to support group programming e�orts while enabling a simple,
e�cient distributed implementation.

File Servers

CFS integrates a private, local �le system for a workstation with the
shared, remote �le systems on network �le servers. The client interface
to CFS is in the workstation. All shared mechanism is in the �le servers.
The network interface of the �le servers is considered to be internal to the
CFS implementation, to be used only by the CFS code in a workstation,

but this restriction is not enforced. CFS uses the IFS �le servers that are
common in the Xerox research and development community. Before de-
scribing the key features available at the CFS client interface, we outline

the services provided by these �le servers.

Each �le server provides a shared hierarchical directory. Access control
mechanisms de�ne which authenticated users are able to access and ma-
nipulate each �le. Using a �le transfer protocol [3], new �les can be stored

and existing �les can be read, renamed and deleted. These operations

are on whole �les. File names include version numbers and when a new
version of a �le is stored the �le server automatically generates a new
version number for its name. The �le servers also allow directories to be

enumerated and information about existing �les to be retrieved.

Updates to �le server directories are indivisible and serialized. Thus,
transferring a new �le to the server, assigning it a new version number,

3

and entering its name in the �le server directory appear to be a single

act. If any step fails then no trace of the attempt remains visible. This
atomicity is implemented with simple mutual exclusion in each �le server.

CFS does not require �le servers to provide locks that can be held between

�le operations. No transaction facilities covering multiple operations are

needed. CFS does not need to read or write �le server directories as �les;

it can use remote directory operations.

Key Features of CFS

We now describe in more detail the features of CFS, as viewed from the
client interface in a workstation, that support consistent sharing of collec-

tions of software and management of the local name space. The appendix
contains detailed descriptions of the CFS operations that embody these
features.

CFS provides a uniform hierarchical naming structure for local and re-
mote �les. A complete �le name consists of a server, a root direc-
tory, zero or more subdirectories, a simple name, and a version. The
server part names the �le server that stores the �le. For example,
/ivy/Cedar/CFS/CFSNames.mesa!5 might be the name of version 5
of a program source �le as stored in the �le server ivy. An empty
server part means a �le on the local workstation. For example, //Ce-
dar/CFSNames.mesa!1 might be the name of a copy of the same �le on
the workstation.

CFS generates the version part for all new �le names. The new version is
the successor of the highest existing version, or 1 if no version exists. The
version part of a �le name argument to a CFS operation on an existing �le
may be a variable or be omitted. The variables allowed are !L, meaning
the lowest existing version, and !H, meaning the highest existing version.
When omitted the version part defaults to !L or !H, depending on the

operation being invoked, e.g., !L for Delete and !H for Open. This sort

of version naming �rst appeared in Tenex [2].

CFS encourages the view that all �les are immutable. It enforces the im-

mutability of remote �les | they may not be altered once created, except
to be deleted. Existing local �les may be modi�ed, but this feature is

used only for special purposes such as updating local log �les. Tools such
as the editor and compiler treat local �les as immutable too, by always

creating new �le versions when writing results to disk. The Swallow �le
system design [13] �rst explored the bene�ts of immutable versions.

A local working directory provides the naming environment in which a
programmer works. CFS prepends the current local working directory

name to any �le name argument that does not start with the character

4

\/". There is no search rule mechanism, however, as the use of search

rules is in conict with the philosophy of precise speci�cation of subsystem
components embodied in the software management tools.

In CFS, all access to �le servers is in units of whole �les. Thus, new

remote �les may be created only by copying from existing �les. Local

�les, however, are held open by clients while being read and written in

smaller units. Readers/writer locking is provided within a workstation
to synchronize such local access by multiple processes in a workstation.

Clients can read remote �les in smaller units too, but only the cached

copy of the remote �le is held open, the cache having been �lled by a

whole �le transfer from the server.

CFS uses a form of symbolic links between �le names, an idea introduced
in CTSS [6] and developed in Multics [1], to make it inexpensive to give
a local name to a remote �le. CFS forms an attachment between a local
name and a remote �le by storing the remote �le's name in the local
directory entry. Forming an attachment is viewed as lazy copying and
is done with a mode of the Copy operation. Access to the remote �le is
delayed until the �le contents associated with the local name are needed
by the client. As with symbolic links in other �le systems, the target �le
of a CFS attachment may turn out to be inaccessible when needed. Unlike
other �le systems, however, the target of a CFS attachment is immutable
and cannot change. Attachments are useful because they separate the
management of the local name space from the transfer and storage of
�les. With attachments it is practical to always set up a complete local
naming environment for a programming task, even when only a few of
the �les named will eventually get used.

CFS uses the portion of the local disk not occupied by local �les as the
cache for remote �les. All requests to open remote �les for reading are
satis�ed from the cache. Except for performance e�ects, the client cannot
tell whether the requested �le was already in the cache or had to be

transferred from the remote server. The cache is managed automatically
using an approximate LRU strategy.

Use of CFS

We now describe how these features of CFS are used with tools from
the DF package to manage a local naming environment and to share

consistent versions of multi-component subsystems among programmers.
A tool called BringOver is used to incorporate a subsystem version de�ned

by a DF �le into a local naming environment. A tool called SModel is
used to generate and share the DF �le that describes a new subsystem

version.

In a DF �le the identities of source �les, object �les and other DF �les
that are part of a subsystem are speci�ed by remote �le names with

5

version numbers. The BringOver tool uses CFS to copy each listed com-

ponent �le from the �le server to the current local working directory, if
the component is not already present. The local name that is the tar-

get of each copy operation is the simple name part of the remote name

listed in the DF �le. (Collapsing to simple names in this way can gener-

ate name conicts, which in Cedar are avoided by careful name choice!)
When BringOver is �nished, each subsystem component from the DF �le

appears in the current working directory as the highest version of the

simple name.

Attachments allow signi�cant optimizations of BringOver. Before CFS,
BringOver actually had to transfer the contents of missing �les to the

workstation disk | a fairly expensive proposition. Retrieving the entire

Cedar system with BringOver took more than an hour and frequently

would exhaust available local disk space before completing. Using the
attachment mode of copying in CFS, BringOver simply associates local
names with remote �le names. No �les other than the DF �les that need
to be read by BringOver are transferred. Thus BringOver is fast and does
not �ll up the local disk.

Figure 1a shows an example working directory in which the simple name
x.df!1 is attached to a previously created remote DF �le. When the user
issues the command \BringOver x.df", BringOver opens x.df and reads
the contents of the attached, remote DF �le.

Figure 1b shows that BringOver has created the attachments a.mesa!1

and b.mesa!1 for the components listed in the DF �le. Creation of these
attachments has no e�ect on the presence or absence of remote �les in
the cache. At this point only /ivy/Cedar/5.2/x.df!40 is certain to be in
the cache (since BringOver had to read its contents).

After using BringOver, the programmer makes changes to subsystem
components. He usually presents single-component �le names without
version parts as arguments to the editor, compiler and other tools. The

compiler and binder refer to object �les using such names. The cur-
rent working directory is the naming environment in which these single-
component names are bound to the collection of source and object �les
that de�ne a particular subsystem. Figure 1c supposes that the pro-

grammer has modi�ed b.mesa, say using the editor. The editor stored
the modi�ed source �le in a new local version, b.mesa!2. Note that this
new local �le has not yet been transferred to the �le server.

After a new consistent version of the subsystem under development has

been created, the SModel tool is used to move the changed components
back to their remote home on a �le server. Each changed �le is transferred

back to the remote server and the existing local name is attached to the
new remote �le. In addition, a new version of the DF �le is created to list

6

Local Working Remote File

Directory System

_______________ ___________________________

| x.df!1 -------|--|-> /ivy/Cedar/5.2/x.df!40 |

| (Attachment) | | Contents: X |

|_______________| |___________________________|

Figure 1a: An Attachment to a DF File

Local Working Remote File

Directory System

_______________ ___________________________

| x.df!1 -------|--|-> /ivy/Cedar/5.2/x.df!40 |

| (Attachment) | | Contents: X |

| | | |

| a.mesa!1 -----|--|-> /ivy/Cedar/5.2/a.mesa!36|

| (Attachment) | | Contents: A |

| | | |

| b.mesa!1 -----|--|-> /ivy/Cedar/5.2/b.mesa!28|

| (Attachment) | | Contents: B |

|_______________| |___________________________|

Figure 1b: Attachments Created by BringOver

Local Working Remote File

Directory System

_______________ ___________________________

| x.df!1 -------|--|-> /ivy/Cedar/5.2/x.df!40 |

| (Attachment) | | Contents: X |

| | | |

| a.mesa!1 -----|--|-> /ivy/Cedar/5.2/a.mesa!36|

| (Attachment) | | Contents: A |

| | | |

| b.mesa!1 -----|--|-> /ivy/Cedar/5.2/b.mesa!28|

| (Attachment) | | Contents: B |

| | | |

| b.mesa!2 | | |

| Contents B' | | |

|_______________| |___________________________|

Figure 1c: New Version of a Source File

7

Local Working Remote File

Directory System

_______________ ___________________________

| x.df!1 -------|--|-> /ivy/Cedar/5.2/x.df!40 |

| (Attachment) | | Contents: X |

| | | |

| a.mesa!1 -----|--|-> /ivy/Cedar/5.2/a.mesa!36|

| (Attachment) | | Contents: A |

| | | |

| b.mesa!1 -----|--|-> /ivy/Cedar/5.2/b.mesa!28|

| (Attachment) | | Contents: B |

| | | |

| b.mesa!2 -----|--|-> /ivy/Cedar/5.2/b.mesa!29|

| (Attachment) | | Contents: B' |

| | | |

| x.df!2 -------|--|-> /ivy/Cedar/5.2/x.df!41 |

| (Attachment) | | Contents: X' |

|_______________| |___________________________|

Figure 1d: Attachments Created by SModel

the components of the new subsystem version and then is copied to the
remote server. Figure 1d shows the state of the �le system after SModel
has been run. SModel created x.df!2 as a new local �le, then copied it to
the �le server and attached the local name x.df!2 to the new remote �le.

SModel maintains the consistency of multi-component subsystems as
viewed by clients. The last action of SModel is to copy the updated
DF �le to the server. Since �le creations are atomic on the �le servers,
and since all subsystem clients retrieve the components via the DF �le, a
client doing a BringOver while the SModel is in progress will get either
the old subsystem or the new one, but not a mixture. Knowledge that

a new version of a subsystem is available can be communicated implic-
itly via higher-level DF �les or outside the system via word-of-mouth, a
computer mail system, etc. Programmers who wish may continue to use
the old version of the subsystem, via the old version of the DF �le, until

it is deleted from the �le server.

The example in this section shows the overall pattern of how CFS works

with the system modelling tools to support group programming. Not all
use of CFS to access remote �les, however, is via DF �les. For example,

document display programs accept remote names and use CFS to retrieve
and cache the �les to be displayed. Users often use this facility to poke

8

around the remote �le servers directly, without the intervention of DF

�les.

More About Naming

It is acceptable for multiple names to be bound to the same immutable
�le contents and for some or all of these name bindings to be broken later.

Thus, copying and deletion are reasonable operations on immutable �les.

Strictly speaking, however, names for immutable �les should never be

reused. The version naming mechanism in CFS does not eliminate the

possibility of name reuse. If all the versions of a �le are deleted then
the record of the highest version that has existed is lost and version

numbering for that name will start over at 1. If the highest existing

version is deleted then that version number will be reused. With version
naming it is hard to eliminate these aws. Permanent memory of the
highest version issued for each name would be required. In practice,
using version numbers to approximate non-reused names for immutable
�les has proved adequate. People do not delete the highest version of a
remote �le unless the name is to become dormant.

As a safeguard against reused version numbers causing confusion, CFS
allows a �le's creation time to be included with �le name arguments to
CFS operations. The creation time, de�ned as the local clock reading
when the contents of a �le were �rst generated, is a �le property that
CFS propagates when a �le is copied or renamed. If a creation time
is speci�ed with a �le name argument then CFS searches for the �le
version with that creation time. Any version part in the name argument
is treated as a hint about which version to check �rst. The creation time
of a remote �le may be recorded in an attachment.

DF �les frequently specify the creation times along with the complete
names for component remote �les. BringOver includes these creation

times in the attachments it makes. This extra information provides as-
surance that incorrect component versions will not be found, even if ver-
sion numbers in the DF �les are incorrect or if version numbers on the

�le servers have gotten scrambled. Object �les produced by the compiler

contain the simple names and creation times of other object �les read
during compilation. The debugger presents these names with creation
times to CFS when opening object �les in the local working directory to
read symbol tables.

More About Versions

The version variables allowed in �le name arguments are used mainly
when referring to local �les. Most remote �les are referred to through DF

�les by speci�c version. During periods of system development, however,

9

the DF �le for one subsystem may refer to the !H version of the DF �le

for another subsystem. The !H reference provides automatic access to the
most recent version of the latter. As part of the system release process,

the !H reference is replaced by a speci�c version number and creation

time.

For an operation on a remote �le, correctly binding a version variable in

a �le name argument to a particular version requires checking with the

server. If the server is inaccessible then the binding cannot be performed
and the operation will fail, even if versions of the �le happen to be in

the workstation cache. To allow the operation to succeed in this case,

CFS lets the client specify that remote checking should not be used to

bind a version variable. Without remote checking CFS binds the version

variable relative to the (possibly incomplete) set of versions in the cache;
only if no cached version is present is the remote server interrogated.
Clients turn o� remote checking when the consequences of retrieving an
out-of-date version are small and the consequences of retrieving nothing
are unacceptable. For example, when starting up Cedar the display font
�le is opened for reading using a !H version variable. If opening the font
�le with remote checking fails then an attempt is made to open it with
no remote checking, because without a display font Cedar cannot tell the
user what happened.

Two potential problems with always creating a new version are increased
use of disk space and increased disk allocation activity. For local �les in
CFS these problems are mitigated by automatically limiting the number
of versions that are kept. Each local name has a property called its
keep, a numeric value that speci�es the number of versions of the local
name to keep around. Automatically processed keeps �rst appeared in
the Alto operating system [10], although the feature got little use. In
CFS, whenever a local name is created its keep is inherited from the

highest existing version or set from an argument to the operation doing
the creation.

Keep processing occurs when creating a new version of a local name. In
this case CFS will enumerate existing versions in decreasing order. After

keep-1 versions are encountered in this enumeration, additional versions
will be deleted if not open. The disk �le of a deleted version will be
reused for the new version being created. For example, if the only existing
version of a �le is named Example.bcd!4, if it has a keep of 1, and if no

client has it open, then creating Example.bcd will cause Example.bcd!4

to be deleted and its disk �le to be reused for the new �le Example.bcd!5.
Keeps typically are set to two for source �les and one for derived �les.

Because most �les on a particular workstation are only read, however,
the average number of versions per �le on a workstation is close to one.

CFS provides no automatic mechanisms for deleting unneeded versions

10

of remote �les. Client tools exist that will delete all �les from a remote

directory that are not named in a speci�ed set of DF �les.

Caching Immutable Files

Caching immutable �les is easy. Because remote �les are immutable,
changes that occur on �le servers need not be reected into workstation

caches. Clearly, the properties and contents of existing remote �les cannot

change and creation of new remote �les need not be reported. The case

of deletion, however, may be less clear.

With immutable �les, deletion does not change the abstract state of the

�le system. Deletion does not cause the �le to cease to exist, it just

frees some space on a �le server. Leaving a deleted remote �le in a

workstation cache is like keeping an out-of-print book on your bookshelf.
To avoid confusion, however, a remote �le should be deleted only when
it is no longer being used. Then the deleted version will fall out of the
workstation caches quietly from lack of use. While one can construct
scenarios where continued use of a cached, deleted version could cause
confusion, in practice these cases do not occur | programmers need not
use �le deletion as a mechanism for passing messages! To help users
retain their sanity, CFS does remove a deleted remote �le from the cache
on the workstation that caused the deletion.

Implementation and Performance

With the exception of a performance optimization to the existing �le
servers, CFS was implemented entirely by workstation code. Figure 2
illustrates that this code depends upon an implementation of the �le
transfer protocol to access remote �le servers. It also depends on a lower
level �le system in the workstation, called DiskFile, that allocates sectors
on the local disk into disk �les named by unique identi�ers. CFS uses
these disk �les to implement both local �les and cached, remote �les.

A disk �le includes a property page in which CFS records the complete
name, length, creation time and other properties of the corresponding
CFS �le.

The performance optimization to the �le servers is a request/response

protocol for getting information about a �le. The request packet from the
workstation contains a complete �le name with either a version number

or a version variable. The response packet from the �le server will either
indicate that no matching �le was found, or give information about the

�le that matches. The information includes the correctly capitalized �le
name (with version number), the creation time, and the byte length.

This single packet protocol is used to reduce the overhead of �nding out

versions and creation times from a �le server. In particular, when opening

11

clients of CFS

|

|CFS |

| local directory hierarchy |

| & |

| cache of remote files |

|____________________________________|

| |

_______________ _________________

|FTP | |DiskFile |

| access to | | local disk |

| file servers | | files w/ uid's |

|_______________| |_________________|

Figure 2: Structure of CFS Implementation

a �le speci�ed by version variable and no creation time, CFS uses this
protocol to bind the version variable before looking in the cache for a
speci�c remote �le.

CFS implements both the local �le name hierarchy and the index for the
cache of remote �les with a B-tree keyed by complete �le names. The
B-tree is permanently stored in a disk �le. A B-tree entry for a local �le
contains the unique identi�er of the corresponding disk �le. An entry for
an attachment contains the name and possibly the creation time of the
associated remote �le. An entry in the B-tree for a cached remote �le
contains the unique identi�er of the disk �le that is the cached copy of
the remote �le.

Determining when to ush a �le from the cache is left up to the DiskFile
machinery under CFS. When CFS starts, it registers a procedure with
DiskFile which is to be called to remove a remote �le from the cache.
DiskFile calls the procedure from a detached process that tries to keep

1000 pages free on the local disk. DiskFile will call the procedure syn-
chronously with a client allocation request only when that request cannot
be satis�ed from the set of free pages already available on the disk. As a
result, most allocation requests are satis�ed without synchronously ush-

ing the cache.

Having DiskFile trigger cache ushing helps to control disk fragmenta-
tion. DiskFile's allocator demands to �nd reasonably sized runs of pages

and will call the cache usher synchronously to make them available if

12

necessary. Another virtue of this call-back scheme for cache ushing is

that it allows DiskFile to share the disk dynamically among multiple
clients. For example, Alpine [4] is a transactional �le system that, when

run on a workstation, also uses DiskFile to provide storage for its data

base. When Alpine demands a bigger �le for its data base, DiskFile can

call CFS to ush the cache to make room.

Figure 3 shows the response time distribution for Open operations as

observed during a compilation of a large software subsystem. The work-

station computer was a Dorado [9]. The �le server computer was an

Alto [20] with 512K bytes of memory and multiple 300M byte disks. The
server-to-workstation transfer was over a 3M bps experimental Ethernet

[12]. This �le server shared all Cedar system �les for approximately 30

workstations. The �le server load during the measurement is not known

precisely, but the times recorded are representative of daily use. Note
that the distribution is bimodal. Most times are less than 0.25 second.
These times correspond either to remote �les that already are cached or
to local �les. Starting at 0.75 second are remote �les that had to be re-
trieved. The response time distribution for these �les is centered around
approximately 2 seconds. Almost all the time of an Open is spent waiting
for the disk and/or the �le server.

Discussion

A potential goal of a �le system like CFS might be workstation operation
when �le servers are unavailable. This goal was not seriously addressed by
the CFS design. Realizing the goal would require predicting future needs
in order to specify which remote �les to keep resident in the cache. A
better approach is to develop highly reliable �le servers using replication.
Immutable remote �les make replication easy to manage.

Another potential goal not addressed by CFS was eliminating the use

of workstation disks for long-term private �le storage. Such private �les
can cause our users to become dependent on a particular workstation.
We considered but did not implement a scheme where an entire private
workstation environment could be copied to a private directory on a �le

server. This saved environment would allow the user to move to another
workstation, and also would allow the user to recover from the failure
of a workstation disk. After partially developing the design for such a
mechanism, we concluded that the software management tools reduced

the need for such automatic backup. BringOver and SModel can be used
instead to backup working �les in remote private directories.

An important function of CFS is to provide a complete, consistent lo-
cal naming environment in which to do development work on a software

subsystem. In retrospect, the local locking mechanism provided by CFS

13

Count

0 10 20 30 40

| | | | |

0.00 ***->331

0.25 *

0.50

0.75 **

1.00 ****************

1.25 ***************************

1.50 **********************

1.75 **************************************

2.00 ****************************

2.25 ******************

2.50 ***********

2.75 ****************

3.00 ********

3.25 ******

3.50 ***

3.75 *****

4.00 *

4.25 *

4.50

4.75 *

>5 *****

Seconds for an Open operation

Figure 3: Histogram of File Opening Times

works against this purpose, and should be changed. The problem is that
names and contents of �les are locked together. As a result, a name can-

not be deleted from the local naming environment if the corresponding

�le is open. Since some applications depend on the Cedar garbage col-
lection mechanism [14] to close �les, �les often stay open after they are
needed. Thus, tidying up the local naming environment by deleting un-
needed names is sometimes thwarted. It would be better to allow name

deletion to occur ahead of content deletion, the latter happening auto-
matically when no more clients had the �le open. For this scheme it is

necessary to lock the name and the content of a �le separately.

DF �les look a lot like directories and provide another way to name

14

�les. It is tempting to consider integrating the DF �les with the �le sys-

tem directories to provide a single naming mechanism. One approach
to this consolidation would be starting with �le servers that named �les

with unique identi�ers. DF �les would then provide a mapping between

simple names and these uid's, and would become the directories of the

workstation �le system. In such a design it would be necessary to retain
the immutability of DF �le versions to support consistent sharing. If all

�le system directories were immutable, then any change would require

new versions of all directories in a path back to the root of the name

space. Thus, a practical system probably would require both immutable

and variable directories. Such a design requires further exploration. The
Cambridge File Server [7], with uid-named �les, multiple �le name in-

dexes and automatic deletion of unreferenced �les would provide an ideal

base for such an exploration.

The cache makes it possible to operate a Cedar programmer's workstation
e�ectively with � 20M bytes of local disk storage. This number matches
well the size of hard disk available at fairly low price today. This size cache
also lowers signi�cantly the load on the �le servers. In our experience,
a single �le server running on an Alto can support 20 or more Cedar
programmers using Dorado workstations, which are about eight times
faster than an Alto. It appears that the system will scale to con�gurations
with more servers and more workstations without su�ering serious loss of
performance or reliability. The system also works well when �le servers
and workstations are separated by gateways and slower long-distance
internetwork links, rather than all being connected to the same local area
network.

CFS started as a conservative design intended to meet the speci�c set
of needs presented by program development activities in Cedar. Fea-
tures from previous �le systems (such as versions, keeps and symbolic
links) were selected and combined with a few unproven features (such as

creation time naming, sharing only immutable remote �les and caching
whole �les) to meet the requirements of a well-understood, speci�c ap-
plication. In retrospect, the combination of CFS's semantics with the

higher-level tools for maintaining consistent versions of shared software

subsystems has worked extremely well. Given su�cient local storage, we
now believe it is unnecessary in this application to have shared �le servers
that provide mutable �les, page-at-a-time access to �les, long-term locks,

or transactions. We do not understand yet the bene�ts that come from

adding these features.

Acknowledgments

The Cedar Interim File System, a precursor to CFS developed by Dave

Gi�ord with help from Larry Stewart, �rst explored the use of an auto-

15

matically managed cache of remote �les on the local workstation disk.

The design and implementation of CFS was done primarily by Michael
Schroeder, with advice from Andrew Birrell, Mark Brown, Butler Lamp-

son, Roy Levin, Roger Needham, Eric Schmidt, Larry Stewart, Paul

Rovner and Ed Taft. Comments from Andrew Birrell, Mark Brown,

John Guttag, Cynthia Hibbard, Ed Lazowska, Roy Levin, Paul McJones
and Greg Nelson greatly improved initial versions of the paper.

16

Appendix: Abstracts of Selected Operations

This appendix presents abstracts of the key operations from the CFS

interface. The descriptions here omit some features. In particular, the

working directory mechanism is not described fully and the error report-

ing mechanisms are not mentioned. For all operations, any �le name
argument that does not start with the character \/" has the name of

the current local working directory prepended before being considered

further.

FileInfo [name, wantedCreationTime, remoteCheck] !

[fullName, attachedToName, keep, bytes, creationTime]

The FileInfo procedure returns information about the �le designated by

name and wantedCreationTime. A missing version part in name defaults
to !H, indicating the highest existing version. If wantedCreationTime is
speci�ed then the version part of name is treated merely as a hint; the
information returned is for the �le with the speci�ed creation time, found
by searching all versions of the named �le as necessary. There are three
cases of behavior for FileInfo:

Case 1: name is local and not attached | The complete name of the
designated local �le including version part is returned as fullName. The
keep, byte count and creation time for the local �le also are returned. No
attachedToName is returned. The remoteCheck argument is ignored.

Case 2: name is local, but attached to a remote �le | The complete local
name is returned as fullName. The keep of the local name is returned.
The complete name of the attached remote �le is returned as attachedTo-
Name and its creation time is returned. If remoteCheck is FALSE then
the byte count is returned as �1, thus eliminating the need to open the
remote �le from the cache or check with the server just to determine the
byte count. If remoteCheck is TRUE then the byte count is returned.

Errors such as the server being inaccessible or not �nding the remote
�le, that are encountered when trying to determine the byte count, are
suppressed and �1 is returned instead. (The client usually will want the
other information anyway.) Whenever a valid byte count is returned for

an attachment then the version part in the attachedToName is the true
version number that corresponds to the creation time for the attachment;
otherwise this version part is whatever hint or variable was presented to
the Copy operation when the attachment was made.

Case 3: name is remote | The complete remote �le name is returned as

fullName. A keep of 0 is returned (remote �les do not have keeps). The
true byte count and creation time are returned. No attachedToName is

returned. If name ends with a version variable and no creation time is
speci�ed then remoteCheck controls access to the remote server. When

17

remoteCheck is TRUE the server is always accessed for the �le infor-

mation. Otherwise the version variable is bound relative to the set of
versions in the cache; the remote server is interrogated only if no version

appears in the cache.

Open [name, wantedCreationTime, remoteCheck, readOrWrite]

! [openFile]

The Open procedure returns an object that can be used to perform read,
write and other operations on the speci�ed �le. Open �rst does File-

Info [name, wantedCreationTime, remoteCheck]. If an attachedToName

results then that remote �le is opened; otherwise the �le named by full-

Name is opened. readOrWrite speci�es the local lock to be set. Opening

a �le for writing causes the creation time to be updated. When a local
name that is attached to a remote �le is opened for writing, the attach-
ment is broken and the contents of the remote �le are copied onto a local
disk �le that is given the local name. (As an optimization, the copying
will be done by renaming the cached remote �le when it is not currently
open.) Attempting to open a remote name for writing produces an error.

Create [name, setPages, pages, setKeep, keep] ! [openFile]

A new local �le with the speci�ed name is created and opened for writing.
The creation time is set. No version part may be included in name. CFS
will assign the version number that is the successor to the existing !H
version, or !1 if no versions exist. If !1 is being created or setKeep is
TRUE then the keep of the new �le is set to keep; otherwise the keep for
the new �le is that of the existing !H version. Creating a �le triggers keep
processing for existing versions. If one or more local �les are deleted as
a result, then one of them will be reused for the new version. If setPages
is TRUE then the number of pages in the created �le is set to pages. If
setPages is FALSE then the number of pages in the new �le is the same
as the reused disk �le, if any; otherwise it is set to pages. Attempting to

create a remote name produces an error.

Copy [fromName, wantedCreationTime, remoteCheck, toName,

setKeep, keep, attach] ! [fullToName]

The Copy procedure has many cases, because it can create attachments

as well as actually transfer �les. The toName cannot contain a version

part. The version of the target �le created is one larger than the existing
!H version. In all cases, the complete name of the target �le, including

version number, is returned. Note that Copy is the only way to write a
remote �le.

18

Case 1: attach is FALSE and toName is remote | CFS does an Open

[fromName, wantedCreationTime, remoteCheck, read] and transfers the
contents and properties of the opened �le to the newly created �le on the

remote server. The �le transfer occurs synchronously. If fromName is

remote then the �le is transferred via the cache.

Case 2: attach is FALSE and toName is local | CFS opens the source

�le as in case 1 and does Create [toName, setKeep, keep] to generate the
target �le. The contents and properties are transferred from the source

to the target open �les. If the copy is from an uncached remote �le then

that �le is not added to the cache; the only pages allocated on the local

disk are those needed to hold the target �le.

Case 3: attach is TRUE, toName is remote and fromName is local |

Begin as for case 1. Once the transfer is completed the local name is
attached to the remote name and creation time. The source local disk
�le is renamed to be the cached remote �le.

Case 4: attach is TRUE, toName is local and fromName is remote | Like
case 2 except that instead of an actual transfer of contents and properties
the local name is attached to the remote name and creation time. If no
wantedCreationTime is speci�ed or if remoteCheck is TRUE then FileInfo
[toName, wantedCreationTime, remoteCheck = TRUE] is performed �rst
to determine/check the version number and creation time for the remote
�le. When remoteCheck is FALSE then the attachment is made to the
fromName and wantedCreationTime provided, without checking either
the remote server or the cache. (BringOver sets remoteCheck to FALSE

to speed operation.)

Case 5: attach is TRUE and both fromName and toName are local or
both are remote | This case is illegal.

Delete [name, wantedCreationTime]

A missing version part in name defaults to !L, meaning the lowest existing
version. The name and wantedCreationTime are resolved to a complete

�le name using the semantics described in FileInfo. The named �le is
deleted. An error occurs if the �le is currently open on this workstation.

Remote deletions occur directly on the remote server. The deleted remote
�le is removed from the cache if present. If name is local but attached

to a remote name, then just the local name is deleted; the remote �le is
una�ected.

SetKeep [name, keep]

The name must be local (keeps on remote servers have not been imple-

mented) and cannot contain a version part. The keep on the !H version

19

is set. Setting the keep causes any unopened versions that are beyond

the new keep to be deleted. Setting the keep to 0 leaves the current keep
but does the keep processing.

20

References

[1] Bensoussan, A., Clingen, C.T. and Daley, R.C., \The Multics Virtual

Memory: Concepts and Design," Comm. ACM 15, 5 (May 1972), pp.
308{318.

[2] Bobrow, D.G. et al., \TENEX, a Paged Time Sharing System for the

PDP-10," Comm. ACM 15, 3 (Mar 1972), pp. 135{143.

[3] Boggs, D.R. et al., \PUP: an Internetwork Architecture," IEEE Trans.

on Comm. 28, 4 (Apr 1980), pp. 612{634.

[4] Brown, M.R., Kolling, K.N. and Taft, E.A., \The Alpine File System,"

to appear in Trans. on Comp. Sys. 3, 4 (Nov 1985).

[5] Brownbridge, D., Marshall, L. and Randell, B., \The Newcastle Con-

nection | or UNIXes of the World Unite!," Software Practice and Expe-

rience 12, 12 (Dec 1982), pp. 1147{1162.

[6] Crisman, P.A., ed., CTSS Programmer's Guide, 2nd Edition, MIT
Press, Cambridge, Mass., 1965.

[7] Dion, J., \The Cambridge File Server," ACM SIGOPS Operating Sys.

Review 14, 4 (Oct 1980), pp. 26{35.

[8] Donahue, J., \Integration Mechanisms in Cedar," ACM SIGPLAN

Notices 20, 7 (July 1985), pp. 245{251.

[9] Lampson, B.W. and Pier, K., \A Processor for a High-Performance
Personal Computer," Xerox Palo Alto Research Center Report CSL-81-1,
Jan 1981.

[10] Lampson, B.W. and Sproull, R.F., \An Open Operating System for
a Single-User Machine," Proc. 7th ACM SIGOPS SOSP, Dec 1979, pp.
98{105.

[11] Leach, P. et al., \The Architecture of an Integrated Local Network,"
IEEE J. on Selected Areas in Comm. SAC-1, 5 (Nov. 1983), pp. 842{856.

[12] Metcalfe, R. and Boggs, D., \Ethernet: Distributed Packet Switching
for Local Computer Networks," Comm. ACM 19, 7 (July 1976), pp. 395{

404.

[13] Reed, D.P. and Svobodova, L., \SWALLOW: a distributed data stor-

age system for a local network," Local Networks for Computer Commu-

nications, North-Holland, Amsterdam, 1981, pp. 355{373.

[14] Rovner, Paul, \On Adding Garbage Collection and Runtime Types

to a Strongly-Typed, Statically-Checked, Concurrent Language," Xerox

Palo Alto Research Center Report CSL-84-7, July 1985.

[15] Satyanarayanan, M., et al., \The ITC Distributed File System: Prin-

ciples and Design," to appear in ACM SIGOPS Operating Sys. Review

19, 5 (Dec 1985).

21

[16] Schmidt, E.E., \Controlling Large Software Development in a Dis-

tributed Environment," Xerox Palo Alto Research Center Report CSL-

82-7, Dec 1982.

[17] Svobodova, L., \File Servers for Network-Based Distributed Sys-

tems," Comp. Surveys 16, 4 (Dec 1984), pp. 353{398.

[18] Swinehart, D.C., Zellweger, P.T. and Hagmann, R.B., \The Structure

of Cedar," ACM SIGPLAN Notices 20, 7 (July 1985), pp. 230{244.

[19] Teitelman, W. \The Cedar Programming Environment: A Midterm

Report and Examination,"Xerox Palo Alto Research Center Report CSL-
83-11, June 1984.

[20] Thacker, C. et al., \Alto: A Personal Computer," Xerox Palo Alto

Research Center Report CSL-79-11, Aug 1979.

[21] Walker, B. et al., \The LOCUS Distributed Operating System,"
ACM SIGOPS Operating Sys. Review 17, 5 (Oct. 1983), pp. 49{70.

[22] Walsh, D., Lyon, R. and Sager, G., \Overview of the Sun Network
File System," Usenix Winter Conf. Dallas 1985 Proc., pp. 117{124.

22

