
75

Zeus: A System for Algorithm
Animation and Multi-View Editing

Marc H. Brown

February 14, 1992



Systems Research Center

DEC’s business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories are
committed to filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systems so that we can investigate their properties fully. Complex systems cannot be
evaluated solely in the abstract. Based on this belief, our strategy is to demonstrate
the technical and practical feasibility of our ideas by building prototypes and using
them as daily tools. The experience we gain is useful in the short term in enabling
us to refine our designs, and invaluable in the long term in helping us to advance the
state of knowledge about those systems. Most of the major advances in information
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our
systems research. Some of this work is in established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of this work explores new ground motivated by problems
that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understanding
that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professional journals, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director



cDigital Equipment Corporation 1992

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee
to the Systems Research Center. All rights reserved.



Abstract

Algorithm animation is a form of program visualization that is concerned with
dynamic and interactive graphical displays of a program’s fundamental operations.
This paper describes the Zeus algorithm animation system. Zeus is noteworthy
for its use of objects, strong-typing, and parallelism. Also of interest is how the
system can be used for building multi-view editors.

Review by Jim Meehan

In many applications, it is at least as important to observe a program’s progress as
it is to obtain a final result, if indeed there is any. The Zeus system described in
this paper provides support for watching and hearing a program in action, through
several different views. The programmer animating an application provides a
description of the application’s fundamental operations, called “interesting events.”
Whenever an interesting event occurs, each view updates its visual or aural display
appropriately. The Zeus system exploits Modula’s object-inheritance, lightweight
threads, and compile-time type-checking, so the programmer can take advantage
of the predefined classes and methods to construct a sophisticated and efficient
animation quickly and easily.



1 Introduction

Algorithm animation systems provide facilities for users to view and interact with an
animated display of an algorithm, and for programmers to develop such animations.
For users, the system provides ways to control the data given to algorithms, the
ensemble of views, and the execution of algorithms. For programmers, the system
provides support to make producing an animation of an algorithm almost as easy
as producing a textual trace of it.

The common approach to animating algorithms specified in high-level proce-
dural languages was pioneered in BALSA [4]. Briefly, the approach is as follows:
An algorithm is annotated with markers that identify its fundamental operations
that are to be displayed. These annotations, called interesting events, can have
parameters that typically identify program data. Each view controls some screen
real estate and is notified when an event happens in the algorithm. A view is
responsible for updating its graphical display appropriately based on the event.
Views can also propagate information from the user back to the algorithm.

This paper describes the Zeus algorithm animation system. We began devel-
oping the system in the summer of 1988, and the system has been stable and in
use for the last three years. In addition to animating algorithms from the domains
of computational geometry, operating systems, hardware design, distributed span-
ning trees, and communication protocols, Zeus is the conceptual framework for
FormsEdit, a multi-view editor for building graphical user interfaces [1]. Zeus is
noteworthy for its use of objects, strong-typing, and parallelism. Also, Zeus has
allowed us to explore the use of color and sound, previously uncharted areas in
algorithm animation [3]. A videotape of some algorithm animations that have been
developed using Zeus is available [5].

All client code (as well as the system itself) is implemented in an in-house
dialect of Modula-2, tailored for building large, integrated, object-based, concurrent
programs. However, since that language is not distributed, we shall, for the sake
of illustration, present the examples in Modula-3[7, 9].

The next section describes the facilities that Zeus offers to a user. Following
that, we describe how a programmer views the system and we give an example of
how an algorithm and a view are actually coded using Zeus. Next, we present the
essentials of the system implementation. The final section describes how Zeus can
be used for building multi-view editors.

1



2 The User’s Perspective

When the user invokes a Zeus application, the control panel shown in Fig. 1 appears
in a window on the screen. The control panel provides the user with configuration
and interpretive facilities.

The configuration facilities let the user select which algorithm to run, which
views to open, and which data to give to the selected algorithm. Each view
will appear in its own window, which is installed into the workstation’s window
manager. The contents of the Data subwindow are specific to each algorithm, and
Zeus provides many defaults for giving data. Other configuration facilities let the
user write a snapshot of the state of the system to a file (e.g., the locations of view
windows, data values for the selected algorithm), and restore the system from a
previously created snapshot.

The interpretive facilities allow starting, stopping, and single-stepping an al-
gorithm. The user can also control the speed of the animation. Zeus’s “interpreter”
is special-purpose and works in terms of the interesting events generated by the
algorithm. For instance, the user’s command to single-step causes Zeus to allow
the algorithm to advance until the next event is generated.

By intention, Zeus’s runtime facilities are minimal. The specific features we
chose to implement are those we felt would be most important for our expected
users, based on our experiences using BALSA and BALSA–II [2], where consid-
erable effort was devoted to the user interface. For instance, had we expected that
Zeus would be used in a classroom setting, as the BALSA systems were, then we
would have implemented “scripts”: high-level recordings of a user’s session that
can be replayed.

2.1 Utility Views

A novel feature of Zeus is that it can generate some utility views automatically
based on the set of interesting events that the algorithm generates. Two of these
views appear in the animation of Selection sort shown in Fig. 2.

The Transcript view contains a typescript that displays each interesting event
as a symbolic-expression as it is generated. Actually, the editable part of the
typescript contains a Lisp “read-eval-print” loop, with preloaded functions whose
names are the events. When a function is invoked, the system behaves as if the
algorithm or a view had caused the event to be generated.

A second view that Zeus provides automatically is the Control Panel. This view

2



Figure 1: The Zeus control panel.

3



has buttons corresponding to each interesting event, with appropriate graphical
widgets for specifying each parameter. Clicking on a button causes an event to be
generated with the specified parameter values.

These views have proven to be extremely valuable for debugging both algo-
rithms and views. Indeed, one can develop (and debug) a view before — and even
without ever — implementing an algorithm!

3 The Programmer’s Perspective

To a programmer, Zeus can be thought of as a domain-independent framework for
associating multiple client-defined views with a set of client-defined interesting
events, generated by a client program called the algorithm. Each view is an
animated picture portraying the events as they are generated by the algorithm.

For example, the canonical view of a sorting algorithm (see Fig. 2) shows
the elements being sorted as a row of sticks, where the height of each stick is
proportional to the value of the corresponding element in the array. When the
algorithm exchanges the values of two array elements, and it generates the event
“exchange.” In response to the exchange interesting event, the view changes the
height of the sticks corresponding to the two array elements being swapped.

3.1 Interesting Events

Interesting events are specified as procedure signatures. Zeus’s preprocessor,
Zume, reads a file containing event specifications and generates definitions of al-
gorithm and view classes (we’ll use the terms “class” and “object” interchangeably).
Zume also generates the utility views described in Section 2.1, and procedures for
dispatching events between algorithms and views, as we shall see.

To a first approximation, a view object is a subclass of a window, with additional
methods to process events generated by the algorithm. Similarly, an algorithm is
a window subclass (typically never seen on the screen) with additional methods
to process events that views may generate. Recall, that a view typically generates
events in response to a user gesture. Actually, views and algorithms are both sub-
classes of a Zeus class—a window that has been subclassed to support algorithm
animation and multi-view editing.

Here is the file of event specifications that many elementary sequential sorting
algorithms use:

4



Figure 2: Animation of Selection sort.

5



EVENTS Sort;
ALGDATA
a: ARRAY [1..100] OF Key;
N: CARDINAL;

OUTPUT Init (N:CARDINAL);
OUTPUT SetVal (i:CARDINAL; old:Key);
OUTPUT SwapElts (i,j:CARDINAL);
FEEDBACK ChangeVal(i:CARDINAL; new:Key);

The name following the keyword EVENTS is used for naming the objects and files
that Zume generates. The ALGDATA keyword specifies data fields for the sorting
algorithms class that will be generated. The keyword OUTPUT indicates an event
that will flow from the algorithm to all views, and FEEDBACK is used for events
that flow from a view to an algorithm.

Here are the definitions, generated by Zume, of the procedures that dispatch
these events between algorithms and views:

INTERFACE SortIE;
PROCEDURE Init (me:SortAlg.T; N:CARDINAL);
PROCEDURE SetVal (me:SortAlg.T; i:CARDINAL; old:Key);
PROCEDURE SwapElts (me:SortAlg.T; i,j:CARDINAL);
PROCEDURE ChangeVal (me:SortView.T; i:CARDINAL; new:Key);

The algorithm is annotated with calls to the first three routines, passing an identifier
of itself as the first parameter to each. When one of these procedures is called,
it invokes a method on each view that is designated to respond to the event. In
a similar way, views may be annotated with calls to ChangeVal, typically in
response to user gestures. The body of ChangeVal invokes the corresponding
method on the algorithm. The implementation of these dispatching routines is
discussed in Section 4.

6



The flow of events between the algorithm and views appearing in Fig. 2 is as
follows:

Selection
Sort

SortIE

Sticks
View

Dots
View

Transcript
View

Control Panel
View

Output events flow from left to right; feedback events from right to left. Each
box represents a module: those in white are generated by Zume based on the
contents of the event specifications, whereas those in gray are implemented by a
programmer animating an algorithm. We’ll look at the implementation of Seletion
sort in Section 3.3 and the Sticks view in Section 3.4. The remainder of this section
describes the class hierarchy leading to the implementations of Seletion sort and
the Sticks view.

7



3.2 Basic Classes

The class hierarchy for the views and algorithms in the animation of Selection sort
appearing in Fig. 2 is as follows:

ROOT

Window

Zeus

Algorithm View

SortAlg

SelectionSort

SortView

ControlPanel Sticks Transcript

Dots

The ROOT object is part of the Modula-3 language; it is the basis of all objects.
The Window object is a window that can be installed on a screen. The contents of
windows are maintained by Window subclasses. The Zeus class is a window with
methods that Zeus needs for multi-view event processing. The Algorithm and
View subclasses are domain-independent; they are subclassed in domain-specific
ways. The SortAlg and SortView subclasses are generated by Zume from the
specifications of the sorting events we saw in Section 3.1. Subclasses of SortAlg
are sorting algorithms that have been instrumented for animation; subclasses of
SortView are the views that are meaningful for displaying sorting algorithms.
Four such views appear in Fig. 2.

8



The definition of the Zeus class is as follows:

INTERFACE Zeus;
TYPE T = Window.T OBJECT METHODS
init();
dispose();
startrun();
endrun();
configure(z: T; deleted: BOOLEAN);
snapshot(Wr.T);
restore(Rd.T);

END;

The init method is used to perform any initialization that must happen exactly
once—before any other use of a Zeus object. The dispose method is called
when the object is no longer needed. For instance, a view is no longer needed
when the view window is deleted by the user from the window manager; an
algorithm is no longer needed when the user changes which algorithm to run.
The dispose method should release any resources it has. The startrun
method is called whenever the user starts the algorithm; this is a handy way
for views to reinitialize their displays. The endrun method is called when the
algorithm finishes, possibly because the user explicitly aborted the execution using
the “Abort” button. The endrun method makes it easy for an algorithm to clean
up after itself, without concern for whether it terminated normally or prematurely
(via the “Abort” button). The configure method is invoked whenever a view
is deleted or added. Occasionally, it is useful for the algorithm or other views to
know which views are currently on the screen and available to the user. Finally,
the snapshot and restore method are used to implement the snapshot facility
mentioned in Section 2.

The Algorithm class is a subclass of the Zeus class with two additional
methods. The run is invoked when the user starts an algorithm by clicking on the
“Go” button in the Zeus control panel. The data is invoked when the user clicks
on the “Data” button in the control panel. Here is the definition:

INTERFACE Algorithm;
TYPE T = Zeus.T OBJECT METHODS
run();
data();

END;

9



The run method typically collects the data specified by the user and then starts
generating events. It is what one typically thinks of as “the algorithm.” The data
method typically displays a dialog that lets the user specify data to be given to the
algorithm. Examples of such dialogs appear in the Data subwindows in Figs. 1
and 2.

The methods that are inherited from the Zeus class have the following typical
behaviors: The init method fills in the initial values of the dialog, and the
dispose method releases all resources used by the data dialog or the algorithm.
The snapshot and restore methods cause the values of interactors in the
data dialog to be saved or restored. The startrun, endrun, and configure
methods do nothing. Finally, keep in mind that although an algorithm is, by
inheritance, also a window, it is typically not installed into the window manager.

The algorithm class SortAlg, generated by Zume from the event file, is
a domain-specific subclass of Algorithm. It contains data fields specified as
ALGDATA information in the event specifications, and methods to process each
feedback event. Here is the definition:

INTERFACE SortAlg;
TYPE T = Algorithm.T OBJECT
a: ARRAY[1..100] OF Key;
N: CARDINAL;

METHODS
feChangeVal(i:CARDINAL; new:Key);

END;

ThefeChangeValmethod will be invoked when a view interprets a user’s gesture
to mean that the value of a key being sorted should change. The algorithm is not
told which view is initiating the change, because an algorithm’s response to a
message that a key’s value has changed is independent of the view in which the
user gestured.

The implementation of SortAlg would provide default methods for all of the
Algorithm methods. These methods would support a dialog with ways to enter
a set of integers to be sorted.

The View class is simply a subclass of the Zeus class with no additional
methods:

INTERFACE View;
TYPE T = Zeus.T OBJECT END;

10



Of the methods inherited from theZeus class, only thesnapshot and restore
methods have interesting defaults. The default snapshot method records the
screen location of its window. Views that allow user interaction to control viewing
parameters, that is, information that is not given to the algorithm but is local to
the view, must override the default snapshot method to also encode the current
parameters set by the user. The restore procedure is the inverse of the snapshot
procedure.

Although the View and Zeus objects may appear to be equivalent, they are
not the same data types in Modula-3. The Zeus system exploits the fact that it can
use language features to distinguish View from Algorithm subclasses of the
Zeus class.

The view classSortView, generated by Zume from the event file, is a subclass
of View, with additional methods to process each output event:

INTERFACE SortView;
TYPE T = View.T OBJECT METHODS
oeInit (N: CARDINAL);
oeSetVal (i: CARDINAL; old: Key);
oeSwapElts (i, j: CARDINAL);

END;

These methods will be invoked as the algorithm runs and events are generated.
Thus, a view is essentially a window with two additional sets of procedures.

One set is common to all Zeus views (i.e., the Zeus class), and the other set is
common to all views of a particular algorithm (e.g., the SortView class).

3.3 Algorithms

Let’s consider the elementary sorting algorithm Selection sort. It is a subclass
of the SortAlg.T class we have examined, with the run and feChangeVal
methods overridden:

MODULE SelectionSort;
TYPE T = SortAlg.T OBJECT OVERRIDES
run := Run;
feChangeVal := FEChange;

END;

The run method can be copied almost verbatim from any textbook:

11



PROCEDURE Run(self: T) =
VAR min: INTEGER; t: Key;
BEGIN
GetData(self);
WITH a=self.a, N=self.N DO
FOR i := 1 TO N-1 DO
min := i;
FOR j := i+1 TO N DO
IF a[j] < a[min] THEN min := j END

END;
t := a[min]; a[min] := a[i]; a[i] := t;
SortIE.SwapElts(self, i, min);

END;
END;

END Run;

The call to SortIE.SwapElts is what we referred to earlier as “annotation of
an algorithm with ‘interesting events.’ ” The call to SortIE.SwapElts will
cause the oeSwapElts method on each view to be invoked in order to update
the displays; the actual implementation of SortIE.SwapElts is generated by
Zume.

The feChangeVal method is also instructive to examine. This method is
invoked whenever a view interprets a user gesture to change the value of a key.
This procedure changes the specified element, and then broadcasts to all views that
a key’s value has been changed:

PROCEDURE FEChange(self: T;
view: SortView.T; i: CARDINAL; new: Key) =

BEGIN
WITH a=self.a, N=self.N, old=a[i] DO
a[i] := new;
SortIE.SetVal(self, i, old);

END;
END FEChange;

(In a multi-threaded environment such as Zeus, it is possible thatFEChangeVal
will be called while the Run method is executing. Zeus simplifies client code by
following a reader/writer locking scheme: a view may only generate an event when
it holds the write-lock, and the algorithm may not generate an event unless it has
a read-lock. Note that this scheme allows a multi-threaded algorithm to generate
events in parallel.)

12



Of course, changing the value of data elements while a program is underway
may be a dicey proposition. It would certainly cause Selection sort to perform
incorrectly! On the other hand, editing the underlying data from within views is
the essence of multi-view editors, as we shall explore in Section 5.

3.4 Views

A difficult part of animating an algorithm is creating views. (Overall, the hardest—
but most enjoyable—part is deciding what the view should look and sound like in
order to convey interesting information!) Some systems, such as TANGO [10],
provide a powerful two-dimensional graphics package. TANGO and other systems
[6, 8] allow users to graphically demonstrate how views should look and behave.

Zeus does not have any sophisticated graphics packages or specially built
graphical editors. However, Zeus does allow the algorithm animator to graphically
demonstrate how an instance of an object used by a view should look, and does have
some rudimentary library procedures to interpolate changes of object parameters
over time. The editor for defining objects is the FormsVBT user-interface develop-
ment environment [1]. Although FormsVBT was originally designed for “dialog
boxes,” it is general-purpose and completely (and very easily) extensible. Thus,
one can quickly incorporate new widgets that are appropriate as building blocks
for views. Fig. 3 shows a view from Fig. 4 being constructed using FormsVBT.

Another way that Zeus helps programmers create views stems from the fact that
Zeus’s views are true objects. First, the standard types of behavior like saving state
and installing in the window system are provided by inheritance. Sophisticated
views can customize this behavior, whereas simple views need not be concerned at
all. The algorithm animation system does not dictate a long list of rules for how a
view must behave, as do other systems. Second, it is easy to subclass and compose
views. For example, in Fig. 4, the Back-to-Back Stem (All) view is composed of
seven instances of the same view.

Finally, views can be programmed directly. For instance, the Sticks view in
Fig. 2 is coded by subtyping SortView and using the RectsVBT window class
to maintain a collection of rectangles. Here is the definition of the SticksView
object that implements the the Sticks view:

13



Figure 3: Constructing a view graphically using a multi-view editor.

14



Figure 4: Multiple views of multiple algorithms.

15



TYPE SticksView = SortView.T OBJECT
rects: RectsVBT.T;

OVERRIDES
init := Init;
oeInit := OEInit;
oeSetVal := OESet;
oeSwapElts := OESwap;

END;

The Init method creates a new RectsVBT object, stores a handle to it in the
SticksView object, and installs it in theSticksView window. The three event
processing methods are straightforward calls to entry points in the RectsVBT
module. Here is one of the events:

PROCEDURE OESwap(self: T; i,j: CARDINAL) =
BEGIN
WITH a=Zeus.GetAlg(self).a DO
RectsVBT.Set(self.rects, i, a[i], 0, i, i+1);
RectsVBT.Set(self.rects, j, a[j], 0, j, j+1);

END
END OESwap;

The parameters to RectsVBT.Set are the handle to the window class, an unique
identifier of the rectangle, and its north, south, east and west coordinates.

It is safe for a view’s method to access a sequential algorithm’s data fields
because Zeus stops the current algorithm thread from running while an event is in
progress. A multi-threaded algorithm might have other threads modifying its data
fields while an event in one thread is in progress, so views must be careful to acquire
an appropriate lock from the algorithm before accessing the algorithm’s data.
Another complication that arises in a multi-threaded window system (regardless
of whether or not the algorithm itself is multi-threaded) concerns repaint requests
issued by the window manager. The view, as a subclass of a window, must handle
repaint requests whenever issued. The view’s repaint method must be careful either
to not use the algorithm’s data (since the algorithm may be running concurrently),
or coordinate a locking scheme with the algorithm.

16



4 System Implementation

The Zeus system comprises the control panel, event-dispatching, and the default
methods for algorithm and view classes. We have already seen the gist of the
default algorithm and view classes.

The implementation of the configuration aspects of the control panel is straight-
forward. Most of the commands (e.g., Snapshot) just invoke the appropriate Zeus
method (e.g., the snapshot method) on the algorithm and current set of views.

The implementation of the control panel’s interpretive commands is tricky,
primarily because user commands happen asynchronously while the algorithm
is running. The “Go” button (hidden by the pull-down menu in Fig. 1) causes
the algorithm’s run method to be invoked in a separate thread. This thread is
terminated when the user invokes the “Abort” button. The “Step” command is
implemented by setting the Zeus variable stepFlag to be true; this variable will
be checked by the event-dispatching code. The “Step” command also awakens the
algorithm thread, in case it is currently stopped and must be advanced. Finally,
whenever the program is stopped, the “Go” button is replaced by a “Resume”
button. The “Resume” button is implemented by awakening the algorithm thread,
but without setting the stepFlag.

Zeus event-dispatching is implemented by the bodies of the event procedures
generated by Zume. In the case of an event sent from the algorithm to the views,
the event forks a thread for each view, and the thread invokes the appropriate
method. After all views have completed, the message dispatcher returns to the
algorithm—unless the stepFlag has been set. In that case, the flag is cleared,
and the algorithm sleeps until awakened as the result of the user issuing a “Resume”
or “Step” command.

17



Here’s pseudo-code of the SwapElts implemention:

PROCEDURE SwapElts(alg:SortAlg.T; i,j:CARDINAL)=
BEGIN
FOREACH view IN Zeus.GetViewList(alg) DO
FORK view.oeSwapElts(i, j);

END;
wait for all threads to join
IF Zeus.stepFlag THEN
Zeus.stepFlag := FALSE;
sleep until awakened

END;
END SwapElts;

The actual code is slightly more complicated for two reasons: First, because user-
events can happen concurrently with event-dispatching, access to the list of views
and the step flag must be protected by a lock. Second, if any of the forked view
methods raises an exception, this must be caught and reported back to the caller.

Unlike events in other event-based algorithm animation systems (notably
BALSA and TANGO), events in Zeus are strongly typed. This makes it is im-
possible for an algorithm to invoke an event with the wrong number or types of
parameters; likewise, it is impossible for a view to respond to an event without
retrieving the correct number and types of parameters. A discussion of the benefits
and costs of strong type-checking is beyond the scope of this paper, but after expe-
riencing both types of systems, we are strong proponents of strong type-checking.

4.1 Zume Preprocessor

The Zume preprocessor plays an important role in the Zeus system: it generates
class definitions, bodies of the event procedures, and various utility views.

It has been important that Zume be flexible in what it can generate. We
achieve flexibility by driving Zume from the file of event definitions and various
template files. A template file is expanded using the event procedure signatures.
For example, the actual template for an event is as follows:

18



MODULE #(_ALGNAME_)IE;
#{
PROCEDURE #(_EVENT_)(

alg: #(_ALGNAME_)Alg.T;
#[#(_ARGNAME_): #(_ARGTYPE_); #])=

BEGIN
FOREACH view IN Zeus.GetViewList(alg) DO
FORK view.oe#(_EVENT_)(#[#(_ARGNAME_),#]);

END;
wait for all threads to join
IF Zeus.stepFlag THEN
Zeus.stepFlag := FALSE;
sleep until awakened

END;
END #(_EVENT_);
#}
END #(_ALGNAME_)IE.

Zume used this template, along with the file of sorting events, to generate the
body for SwapElts we saw above.

The initial version of Zume was written using Unix’s awk, sed, and trans (an
in-house, awk-like filter). The shell script was about 80 lines long and consisted
of about a dozen calls each to sed, awk, and trans.

Unfortunately, text manipulation of template files alone is not rich enough to
generate the Control Panel view, because that view must know the base type of
each parameter in order to use a type-specific widget for displaying the parameter’s
value. Zume was subsequently reimplemented in Modula and linked with the type
system of our existing compiler tools.

5 Multi-View Editing

Zeus can be used for building multi-view editors. In a multi-view editing system,
the “algorithm” maintains the data structures that are shared among all “views”
(i.e., the editors). Each view interprets user gestures and initiates feedback events
to the algorithm; the algorithm updates the common data structures and sends
output events to all views. Each view, including the view in which the user
initiated the editing action, updates itself in response to the output events. Although
the algorithm’s run method is never invoked, it is still important to maintain a

19



distinction between an “algorithm” and a “view” to ensure the proper directional
flow of events.

Based on this framework, we implemented FormsEdit, a multi-view editor for
creating user interfaces in the FormsVBT system (see Fig. 3). There are two editable
views: The Graphics view on the left is a direct-manipulation graphical editor, and
the Text view at the lower right uses a conventional text editor to display and edit
the s-expression underlying the user interface in the graphics view. Changes in
one editor are reflected simultaneously in the other editor. The Result view in the
upper right shows the user interface as it will look at runtime, with proper reaction
to mouse and keyboard activity, as well as proper sizing and stretching. The result
view is updated as the user edits either the graphics or text view. Editing the result
view does not change the underlying s-expression.

FormsEdit is organized around one central data structure, a parse tree. This
tree represents an s-expression, having one node for each component in the s-
expression. The “algorithm” (i.e., the ParseTree module) maintains the parse tree
and communicates all tree changes to the views as output events. A change request,
arising from user action in either of the two editable views, is issued by a feedback
event from the editor to the parse tree module. This module makes the change to
the tree itself, then generates an output event. In parallel, each view updates its
local data structures and redisplays itself appropriately.

The following block diagram shows how the information flows between the
modules in FormsEdit:

FEEDBACK FEEDBACK

OUTPUT OUTPUT

OUTPUT

Text
View

Graphics
View

Result
View

Parse
Tree

It is important to realize that the modules do not actually call each other as the
arrows in the diagram above suggest. Rather, modules are annotated with events,
and the body of the event routine (generated by hand, not by the Zume preprocessor,

20



for historical reasons) invokes a method on each editor (for output events) or on
the parse tree module (for feedback events).

Because the modules generate events rather than calling other modules directly,
new editors, or multiple instances of the same editor, can be added without changing
any of the existing editors or the algorithm module. In FormsEdit, for example, it
might be convenient to run with multiple instances of the Result view.

Finally, it is important for the view initiating the editing action to report error
conditions, even though it may be the algorithm or another view that detects
the error. This is handled by appropriate bookkeeping in the event dispatching
procedure.

6 Conclusion

Systems for algorithm animation have matured significantly in the last decade.
Zeus contributes to this evolutionary path a practical system whose design and
implementation are quite simple. Simplicity is achieved primarily by exploiting
modern programming technologies, such as objects, type-checking, and threads.

Constructing animations in Zeus appears to be as easy and straightforward as
in any other algorithm animation system. Objects make it easy to reuse views,
and to build sophisticated views by composing and subclassing other views. The
graphical editor helps to construct new views. Although it contains no support
for specification of incremental transformations, we haven’t felt hindered by this
in practice. Zeus events are strongly typed, thereby eliminating a large class
of common programming errors. Typed events allow the automatic creation of
event-generating views.

Inspired by how well-suited Zeus has turned out to be for building a multi-view
editor application, we look forward to discovering even more uses for algorithm
animation systems.

Acknowledgments

Ken Brooks and John Hershberger implemented the Zume preprocessor. John and
Lyle Ramshaw improved the clarity of this paper.

21



References

[1] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A two-view
approach to constructing user interfaces. Computer Graphics, 23(3):137–
146, July 1989.

[2] Marc H. Brown. Exploring algorithms using BALSA–II. IEEE Computer,
21(5):14–36, May 1988.

[3] Marc H. Brown and John Hershberger. Color and sound in algorithm ani-
mation. In Proc. IEEE 1991 Workshop on Visual Languages, pages 10–17,
October 1991. An expanded version of this paper is available as Research
Report 76a from DEC Systems Research Center, 130 Lytton Ave., Palo Alto,
CA 94301.

[4] Marc H. Brown and Robert Sedgewick. A system for algorithm animation.
Computer Graphics, 18(3):177–186, 1984.

[5] Marc H. Brown, ed. An anthology of algorithm animations using Zeus.
Research Report Videotape 76b, DEC Systems Research Center, 130 Lytton
Ave., Palo Alto, CA, September 1991. A segment entitled “An Introduction
to Zeus: Audio Visualization of Some Elementary Sequential and Parallel
Sorting Algorithms” is part of the CHI ’92 video program.

[6] Robert A. Duisberg. Visual programming of program visualizations. In
Proc. Conf. on Visual Languages, August 1987.

[7] Sam Harbison. Modula–3. Prentice-Hall, Englewood Cliffs, NJ, 1992.

[8] Esa Helttula, Aulikki Hyrskykari, and Kari-Jouko Räihä. Graphical specifi-
cation of algorithm animations with Aladdin. In Proc. of the 22nd Hawaii
Int’l. Conf. on System Sciences, pages 892–901, January 1989.

[9] Greg Nelson, ed. Systems Programming with Modula–3. Prentice-Hall,
Englewood Cliffs, NJ, 1991.

[10] John T. Stasko. Tango: A framework and system for algorithm animation.
IEEE Computer, 23(9):27–39, September 1990.

22


