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Systems Research Center
DEC’s business and technology objectives require a strong research program. The Systems Research
Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance the state of knowledge
in all aspects of computer systems research. Our current work includes exploring high-performance
personal computing, distributed computing, programming environments, system modelling techniques,
specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so that we can
investigate their properties fully. Complex systems cannot be evaluated solely in the abstract. Based on
this belief, our strategy is to demonstrate the technical and practical feasibility of our ideas by building
prototypes and using them as daily tools. The experience we gain is useful in the short term in enabling
us to refine our designs, and invaluable in the long term in helping us to advance the state of knowledge
about those systems. Most of the major advances in information systems have come through this strategy,
including time-sharing, the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems research. Some
of this work is in established fields of theoretical computer science, such as the analysis of algorithms,
computational geometry, and logics of programming. The rest of this work explores new ground
motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through pursuing
these activities. The Company values the improved understanding that comes with exposing and testing
our ideas within the research community. SRC will therefore report results in conferences, in professional
journals, and in our research report series. We will seek users for our prototype systems among those
with whom we have common research interests, and we will encourage collaboration with university
researchers.

Robert W. Taylor, Director
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Abstract

This guide provides an introduction to LP (the Larch Prover), Release 2.2. It describes how LP can be
used to axiomatize theories in a subset of multisorted first-order logic and to provide assistance in proving
theorems. It also contains a tutorial overview of the equational term-rewriting technology that provides, along
with induction rules and other user-supplied nonequational rules of inference, part of LP’s inference engine.
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1 Introduction

LP is a theorem prover for a subset of multisorted first-order logic. It is designed to work efficiently on
large problems and to be used by relatively naive users. It has been used to analyze formal specifications
written in Larch [14, 15, 12], to reason about algorithms involving concurrency [10, 30], and to establish
the correctness of hardware designs [10, 28].

LP is intended primarily as an interactive proof assistant or proof debugger, not as a fully automatic
theorem prover. Its design is based on the assumption that initial attempts to state conjectures correctly,
and then to prove them, usually fail. As a result, LP is designed to carry out routine (and possibly lengthy)
steps in a proof automatically and to provide useful information about why proofs fail, if and when they
do. To ensure that users will not be surprised by its behavior, LP does not employ complicated heuristics
for finding proofs automatically. It does make it easy for users to employ standard techniques such as
proofs by cases, induction, or contradiction.

Section 2 provides a context for the technical details of LP (Release 2.2) by discussing the style of use
that LP is intended to support. Section 3 tells how to get started using LP. Section 4 describes how
theories are axiomatized in LP. Sections 5 and 6 describe LP’s proof techniques. Section 7 summarizes
the features of LP, and Section 8 provides some hints for using LP. Appendix A contains a tutorial on
the theory and implementation of equational term-rewriting. Appendix B contains a complete record of
a sample proof carried out using LP.

Readers with access to LP will find it helpful to experiment with LP while reading this guide. LP has an
extensive online help facility that contains most of the information in Sections 3 through 7.
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2 The proof life cycle

Proving is similar to programming: proofs are designed, coded, and debugged. The first step in designing
a proof is to formalize the objects being reasoned about. The next is to formalize a conjecture to be
proved, for example, a property implied by a specification,or an invariant to be maintained by a concurrent
algorithm. The last step in the design is to outline a structure for the proof, including key lemmas and
methods of proof.

Formalization is straightforward for Larch Shared Language [15] specifications and has been automated
[12]. At present it is less automatic for concurrent algorithms and for circuits, although efforts are
underway to automate some of these translations [30, 21]. For large applications, formalization usually
involves identifying subtheories that are analogous to data abstractions. Generally, the most difficult
design step, and the one requiring the most insight, is determining the structure of the proof.

Designs for proofs translate into sequences of LP commands, much as program designs translate into
code in a programming language. Details of this translation are discussed later in this guide.

Once part of a proof has been coded, LP can be used to debug it. Proofs of interesting conjectures hardly
ever succeed the first time. Sometimes the conjecture is wrong. Sometimes the formalization is incorrect
or incomplete. Sometimes the proof strategy is flawed or not detailed enough. When an attempted proof
does fail, a variety of LP facilities (e.g., case analysis) can be used to understand the problem. Because
most proof attempts do fail, LP is designed to fail relatively quickly and to provide useful information
when it does.

LP is not designed to find difficult proofs automatically. Unlike the Boyer-Moore prover [3, 4], it does
not use heuristics to formulate additional conjectures that might be useful in a proof. Unlike LCF [24]
and Isabelle [25], it does not encourage users to define their own proof tactics; rather, it provides a
set of standard tactics and simple mechanisms for controlling the application of these tactics. Strategic
decisions, such as trying induction on a particular variable, must appear as explicit LP commands (either
entered by the user or generated by an application-specific front-end to LP). But LP is more than a proof
checker, since it does not require proofs to be described in minute detail. Hence it is best described as a
proof debugger.

In line with LP’s emphasis on debugging proofs, it is generally advisable to use axiomatizations that
simplify terms rather than axiomatizations that produce unique (but possibly larger) normal forms. Such
axiomatizations are often incomplete, and thereby increase the need for the kinds of auxiliary proof
mechanisms described in Sections 5 and 6.

When debugging proofs, users frequently reformulate axioms and conjectures. When verifying a circuit,
for example, users may discover that some important property does not follow from the description of
the circuit (after all, discovering such things is the whole point of the process). When changing an
axiomatization, users should recheck not only the conjecture whose proof uncovered a problem, but also
any conjecture proved with the old axiomatization. LP has facilities that support such regression testing.

LP will, upon request, record a session in a script file that can be replayed using the execute command.
In addition to recording user input, LP indents script files to reveal their proof structure, and it annotates
proofs in script files with information that indicates when subgoals are introduced (e.g., for a proof by
induction) and when subgoals or theorems are proved. On request, as LP executes an annotated (and
possibly edited) proof, it halts execution and prints an error message if the annotations do not match
the execution. These checks are useful when changes in an axiomatization cause some step in a proof
to succeed with less user guidance than expected or to require more guidance. Without the check, LP
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set name nat
declare sort Nat
declare variables i; j; k: Nat
declare operators

0: ! Nat
s: Nat! Nat
C: Nat, Nat! Nat
<: Nat, Nat! Bool
..

assert Nat generated by 0, s
assert acC
assert

i C 0 DD i
i C s. j / DD s.i C j /
not .i < 0/
0 < s.i/
s.i/ < s. j / DD i < j
..

set name lemma
prove i < j ) i < . j C k/ by induction on j

<> 2 subgoals for proof by induction on ‘ j ’
[ ] basis subgoal
resume by induction on i
<> 2 subgoals for proof by induction on ‘i’

[ ] basis subgoal
[ ] induction subgoal

[ ] induction subgoal
[ ] conjecture

qed

Figure 1: Sample LP-annotated script file

might, for example, apply a tactic that the user intended for the basis step of an induction to the proof
of the induction step. This checking helps prevent proofs from getting “out of sync” with their author’s
conception of how they should proceed.

Figure 1 displays an LP-annotated script for a simple proof (see Section 3.1 for an explanation of the
typesetting conventions). The declare commands introduce variables and operators (the .. terminates
a multiline command), the assert commands axiomatize properties of the operators (e.g., that C is
associative and commutative), and the prove command initiates a proof by induction. The next two lines
contain annotations supplied by LP. The diamond .<>/ indicates that LP has introduced two subgoals
for the proof by induction. The box ([ ]) indicates that the basis case of the induction succeeded without
further interaction. The resume command starts a subsidiary induction, and the subsequent LP-supplied
diamonds and boxes indicate that LP finished the remaining steps in the proof without further interaction.
The qed command on the last line asks LP to confirm that there are no outstanding conjectures. Details
about the commands in this script, and about their execution, are given in the following sections.
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3 Getting started

This section describes how to use elementary LP features for entering commands and displaying
information.

3.1 Typesetting conventions

This guide has been typeset using LaTeX [20]. Most of the examples of LP input and output in this guide
have been preprocessed so that they are typeset using the following conventions.

ž LP command names and other keywords are printed in boldface (e.g., assert, display, generated by,
induction, set).

ž Identifiers (see Section 4.1) are printed in italics (e.g., Bool, false, x , x1), except for numerals (e.g., 0,
1).

ž Names of facts and conjectures (see Section 3.4) are printed in italics (e.g., nat.1, lemmaCaseHyp.2).

ž Names of files (see Sections 3.3 and 3.5) are printed in italics.

ž The following multicharacter symbols are printed using special non-ASCII characters.

Symbol Printed as
-> !
=> )
<=> ,
\in 2
\union [
\subseteq �
<= �
>= ½

If you prepare input for LP based on the examples in this guide, you must enter the special symbols in the
right column of the table using the ASCII forms in the left column. While ->, =>, and <=> are built-in
symbols of LP (see Sections 4.1 and 4.8), the infix operator symbols \in, \union, \subseteq, and
<= must be declared before use (see Section 4.1). The symbol >= has a built-in meaning to the register
height command (see Section 4.9.1), but is not predeclared as an infix operator. Both it and the symbol
<= must be declared before use (see Section 4.1) and have no built-in semantics.

3.2 Online help

Much of the information in this guide is also available from LP’s online help facility.1 The command
help lp provides an overview of this facility. In general, users can type help followed by a list of topics
for which they desire help. The command help ? provides a list of all topics for which help is available.

1If LP does not seem to be behaving as described in this guide, consult the help facility. You may be using a different release
of LP.
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In most cases when LP expects input, users can type a question mark to obtain a summary of the legal
responses. For example, the command ? produces a list of all LP commands, and the command assert ?
provides a summary of the kinds of axioms that can be asserted.

3.3 Entering commands

LP generally prompts users to enter commands interactively from the keyboard. Users can also create
files containing sequences of commands and instruct LP to execute these command files; for example,
the command execute nat causes LP to execute the commands in the file nat.lp. (By convention, LP
command files have names ending with .lp, and LP supplies .lp as a default suffix when no suffix appears
in the execute command.) Command files may themselves contain execute commands; however, to
guard against infinite loops, LP treats execution of a file that is already being executed as an error.
Execution of a command file continues until the file is exhausted, until execution is interrupted by the
user, until an error occurs, or until a quit or stop command is executed.

When run under Unix, LP can also be invoked with the names of one or more command files given as
optional arguments. For example, the Unix shell command lp nat causes LP to start by executing the
commands in the file nat.lp, and then to prompt the user for input when that file is exhausted.

All LP commands begin with a keyword (e.g., display or critical-pairs), which can be abbreviated to any
unambiguous prefix (e.g., dis or crit). Some LP commands contain further keywords or phrases, which
can also be abbreviated. For example, set automatic-ordering off can be shortened to set auto-ord off.
Commands can be entered in upper, lower, or mixed case.

When an LP command requires more arguments than a user supplies, LP will prompt the user for the
missing arguments. Users who need help can type a question mark followed by a carriage return to see
what LP expects next; typing a carriage return alone aborts the command. If a missing argument is likely
to be lengthy, LP prompts the user to enter it on subsequent lines and to terminate the input with a line
consisting of two periods (..), which can be preceded by white space. The declare and assert commands
in Figure 1 use this convention.

A comment starting with a % can occur at the end of any line of input or on a line by itself. LP ignores
comments.

The following editing capabilities are available for use when typing input to LP.

Editing character Action
rubout Delete last character typed
control-U Delete current line of input
control-R Redisplay current line
control-L Clear screen and redisplay current line
control-n Continue line

Typing a control-G causes LP to interrupt execution of the current command.2 The quit command causes
LP to terminate.

2On some Unix systems, users must type control-n instead of control-G. To make control-G work, users can put stty quit
control-G in their .login scripts.
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Induction rules:
nat.1: Nat generated by 0, s

Operator theories:
nat.2: ac +

Rewrite rules:
lemma.1: (i < j) => (i < (j + k)) -> true
nat.3: 0 + i -> i
nat.4: s(j) + i -> s(i + j)
nat.5.1: i < 0 -> false
nat.6: 0 < s(i) -> true
nat.7: s(i) < s(j) -> i < j

Figure 2: Output generated by display command

3.4 Naming and displaying objects

The set name command provides users with control over the names assigned to facts (i.e., to axioms,
hypotheses, and theorems) and to conjectures. For example, the command set name nat in Figure 1
causes LP to assign the names nat.1, : : : , nat.8 to the eight subsequently asserted axioms, and the
command set name lemma causes LP to assign the name lemma.1 to the conjecture.

The display command enables users to view a set of objects. For example, if the display command is
executed after the script in Figure 1 terminates, LP produces the output shown in Figure 2. Differences
between what the user typed in Figure 1 and what LP displayed in Figure 2 reflect inferences performed
by LP, as described in this and the next sections.

Optional arguments to the display command can be used to restrict the display to objects of specified
types and with specified names. For example, if Figure 2 had been produced by the command display
rewrite-rules nat (or display r nat, for short), it would have contained only the rewrite rules nat.3 to
nat.7.

In general, names begin with an identifier that consists of a sequence of letters, digits, and special
characters such as underscores. LP is not sensitive to the case of letters in a name. Thus, Nat.1 and nat.1
refer to the same item. When displaying a name, LP uses the capitalization it found in the first occurrence
of that name.

LP assigns new names of the form prefix.number (where prefix is “user” unless changed by the set name
command, and where number increases each time a new name is required) to axioms introduced by
the assert command, to critical-pair equations deduced in response to the critical-pairs and complete
commands (see Sections 5.3 and 5.4), and to conjectures introduced by the prove command. LP assigns
names of the form prefixCaseHyp.number, prefixInductHyp.number, etc., to case, induction, and other
hypotheses it introduces during the proof of a conjecture. It assigns subnames of the form name.number
to subgoals in a proof of a conjecture named name and to consequences deduced by instantiating (see
Section 5.5) a fact named name or by applying a deduction rule (see Section 4.7).

When used as arguments to commands, names such as nat.5 encompass the item with that name as well
as all items with subnames of that name (e.g., nat.5.1). Subnames can be excluded by appending an
exclamation mark to a name (e.g., nat.5!). Ranges of names can be specified by appending a colon
followed by a number or the word last to a numbered name (e.g., nat.3:6 or nat.5:last).
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Asterisks in name prefixes supplied as arguments to commands serve as patterns that match arbitrary
sequences of characters in the prefix. For example, the command display ŁHyp causes LP to display all
facts whose name prefix ends with the letters Hyp.

Figure 14 in Section 7 provides details concerning these naming conventions.

3.5 Recording sessions

The command set log fileName causes LP to record all subsequent input and output in a file named
fileName.lplog (unless fileName contains a period, in which case LP does not supply the suffix .lplog).
Logging is ended by the unset log and quit commands.

The command set script fileName causes LP to record all subsequent user input in a file named
fileName.lpscr (unless fileName contains a period, in which case LP does not supply the suffix .lpscr). LP
annotates such a script file by commenting out illegal commands, by substituting the text of the executed
file for an execute command, by marking the creation of subgoals and the completion of proofs, and
by indenting the script file to reveal its proof structure. Scripting is ended by the unset script and quit
commands.

Script files can be replayed using the execute command, and they can be edited before being replayed.
Although a script file can be replayed directly using the command execute fileName.lpscr, it is generally
advisable to rename the script file to fileName.lp and then replay it using the command execute fileName
(lest a set script command cause LP to overwrite the command file being executed).

3.6 Settings

The set command can be used to control many aspects of LP’s behavior. Typing set alone causes LP to
display a list of its current settings. Typing set followed by the name of a setting causes LP to display
that setting and to prompt the user for a new value; responding with a carriage return leaves the setting
unchanged. Typing set followed by the name of a setting and a value changes that setting. This section
describes some elementary settings; Section 7.5 summarizes the others.

All settings have default values. The unset command can be used to reset a setting to its default value.
The unset all command returns all settings to their default values.

set directory string

The directory is the name of the directory in which LP creates script (.lpscr), log (.lplog), and other
output files. By default, directory is the name of the working directory from which LP was invoked.

set lp-path string

The lp-path is a list of names of directories that LP searches when looking for command or other input
files. By default, lp-path is “. ˜ ˜lp/axioms ˜lp”. A period (.) in the value of lp-path refers to
the current directory. A tilde (˜) refers to the user’s home directory. The characters ˜lp refer to the
directory in which the help files and examples for LP are installed. The actual location of this directory
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can be determined by typing the command version; it can be changed by invoking LP with the shell
command lp�d directoryName.

set page-mode f on j off g

When page-mode is off (the default setting), LP displays output continuously. When it is on, LP displays
output a screenful at a time. At the end of each screenful, LP prompts the user with --More-- to type
a character indicating what to do next. The options are as follows:

Response Action

<space> display next screenful
<return> display next line
<digit> display next <digit> lines

d display next half screenful
u display continuously until next user interaction
q display nothing until next user interaction
? display this menu

set prompt string

The prompt is the string that LP uses when prompting users to enter commands. The set prompt
command allows users to change this prompt. If the new prompt begins or ends with a space, it should
be enclosed within ‘’ marks, as in set prompt ‘>> ’.

LP replaces the first exclamation mark (!) in the prompt, if any, by the number of the next command. LP
numbers commands entered from the terminal by consecutive integers. It numbers commands obtained
during execution of a command file by appending a period followed by consecutive integers to the
command number for the execute command; thus command 5.2.3 is the third command in the file
executed in response to the second command in the file executed in response to the fifth command typed
by the user.

By default, prompt is ‘LP!: ’ , which causes LP to issue prompts of the form “LP1: ”, “LP2: ”,
: : :

set trace-level number

The trace-level controls how much information LP prints as it executes commands. At trace level 0,
which is the least verbose, LP prints nothingother than user interactions and the final results of commands.
At trace level 1, which is the default, LP reports major actions taken in the course of a session. At higher
trace levels, it provides more detailed information, as described by the online help facility.
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4 Defining theories

The basis for proofs in LP is a logical system consisting of a set of declared operators, the properties
of which are axiomatized by equations, rewrite rules, operator theories, induction rules, and deduction
rules (all expressed in a subset of multisorted first-order logic). Each kind of axiom has two semantics,
a definitional semantics in first-order logic and an operational semantics that is sound with respect to the
definitional semantics but not necessarily complete.

Sections 5 and 6 describe how axioms interact with LP’s proof techniques. Appendix B illustrates how
they are used in a complete proof.

4.1 Declarations and identifiers

Identifiers for sorts, operators, and variables must be declared prior to use. Declarations (such as those
in Figures 1 and 3) assign sorts to variables and signatures to operators. The symbol! (typed as ->)
separates the declaration for the domain of an operator (which is a list of sorts) from that of its range
(which is a single sort). Constants (e.g., 0 and empty) are special cases of operators.

LP predefines the sort Bool, as well as the built-in operators true, false, if, not, D, & (and), j (or),)
(implies, typed as =>), and, (if and only if, typed as <=>). It can also generate new variables, constants,
and operators during the course of a session. The name of an LP-generated variable consists of the first
letter of its sort, possibly followed by a number (e.g., n, n1 for sort Nat). The names of LP-generated
constants end with the letter c, possibly followed by a number (e.g., xc or xc1). Users are not prevented
from declaring such identifiers themselves, but may find it confusing to do so (or even unsound, if they
mistakenly believe that they are declaring new constants).

Identifiers for sorts, variables, constants, and prefix operators are sequences of letters, digits, and
special characters such as underscores ( ) and apostrophes (’). Identifiers for infix operators are
sequences of characters drawn from an implementation-defined set of infix characters (e.g., “!#$&*+-
./<=>@\ˆ|˜”); the symbolsDD and! (i.e., ->) cannot be used for infix operators because LP reserves
them for other uses. Identifiers for infix operators may also consist of a backslash (n) followed by a prefix
identifier (e.g., nin, which is printed in this guide as 2 by the conventions described in Section 3.1). The
command help operator provides a precise description of LP’s lexicographical conventions.

LP automatically overloads the built-in operatorsD and if, once for each declared sort S, with signatures
D:S; S!Bool and i f :Bool; S; S!S. Users can also overload identifiers. For example, the declarations
and axioms in Figure 3 can be used together with those in Figure 1 when reasoning about both natural
numbers and sets. LP uses context to distinguish the variable s (of sort Set) from the operator s (with
signature Nat!Nat). Users can overload other operators as well. For example, the commands

declare operators
[: Set, Elem! Set
[: Elem, Set! Set
..

assert
s [ e DD insert .e; s/
e [ s DD insert .e; s/
..

further overload the operator [ in Figure 3 to invent shorthands for adding an element to a set. The only
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set name set
declare sorts Elem, Set
declare variables e, e0: Elem, s, x , y, z: Set
declare operators

empty: ! Set
insert: Elem, Set! Set
singleton: Elem! Set
[: Set, Set! Set
2: Elem, Set! Bool
�: Set, Set! Bool
..

assert Set generated by empty, insert
assert Set partitioned by 2
assert

singleton.e/ DD insert .e; empt y/
not .e 2 empt y/
e 2 insert .e0; s/ DD e D e0 j e 2 s
e 2 .x [ y/ DD e 2 x j e 2 y
empt y � s
insert .e; x/ � y DD e 2 y & x � y
..

Figure 3: Sample axiomatization for finite sets

restrictions on overloading identifiers is that users do not overload the built-in identifiers and that they do
not declare an identifier both as a variable and as a constant of the same sort. The next section describes
how to specify, when necessary, one of several possibly ambiguous overloadings of an operator.

The command display symbols causes LP to print a list of all declared identifiers.

4.2 Terms

A term in multisorted first-order logic consists of either a variable or of an operator and a sequence
of terms, known as its arguments. The number and sorts of the arguments in a term must agree with
the declaration for (some overloading of) the operator. The number of arguments is called the arity of
the operator. An operator with arity 0 is called a constant. Infix operators are written between their
arguments (e.g., i C j ), constants are written with no arguments (e.g, 0 or empty), and prefix operators
with nonzero arity are followed by a parenthesized list of arguments (e.g, s.i/ or insert .e; x/).

LP uses a limited amount of precedence when parsing terms, but generally requires users to supply
parentheses to specify the associativity of operators in terms with multiple infix operators. User-declared
operators bind more tightly than the equality operator, which binds more tightly than the built-in boolean
operators. Thus, LP parses the term .a < b & b D cC d/) a < .c C d/ in the same way that it parses
..a < b/& .b D .c C d///) .a < .c C d//. Unparenthesized sequences of infix operators at the same
precedence level are permitted only in terms such as t1C t2C t3C t4, which consist of a sequence of terms
separated by a single operator with signature S; S! S for some sort S.3 Thus, LP allows p & q & r and

3It is considered good practice to write terms such as this only when the operator is associative. When the operator is not
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a C b C c, but not p & q j r or a C b� c.

In some cases, users must append qualifications to terms to clarify which of several overloadings of an
identifier is meant. For example, given the declarations

declare operators a; b: ! Nat,�: Nat, Nat! Nat
declare operators a; b: ! Set,�: Set, Set! Set

it is ambiguous whether the term a � b denotes the difference of two numbers or the difference of two
sets. To distinguish which of these two interpretations they intend, users must write either a:Nat� b:Nat
or a:Set � b:Set.4

4.3 Equations

LP is based on a subset of first-order logic in which equations play a prominent role. Figure 4, for
example, contains LP commands that enter the usual first-order axioms for groups. Variables appearing
in the axioms are implicitly universally quantified.

declare sort G
declare variables x; y; z: G
declare operators e: ! G, i: G! G, Ł: G; G ! G
assert

.x Ł y/ Ł z DD x Ł .y Ł z/
e DD i.x/ Ł x
x DD e Ł x
..

Figure 4: LP axiomatization of group theory

LP uses the logical symbol DD for equality in an equation. This symbol is implicit in axioms such as
0 < s.i/ in Figure 1, which are shorthands for equations with right side true. LP binds DD less tightly
than the (overloaded) equality operator D, so that, for example, e 2 insert .e0; s/ DD e D e0 j e 2 s in
Figure 3 can be written without more parentheses. It is parsed as

.e 2 insert .e0; s// DD ..e D e0/ j .e 2 s//

The connective DD can appear only once in an equation, whereas D can appear many times. The
definitional semantics makes no distinction between DD and D.

Equations can also be entered using the connective! instead of DD. This constrains the way in which
LP will orient them into rewrite rules (see Section 4.4), but does not alter their definitional semantics.

LP treats as inconsistent the equation t rue DD f alse and all equations of the form x DD t or
not .x D t/ DD t rue, where x is a variable and t is a term not containing x . Thus, LP is designed for
reasoning about models in which every sort has at least two elements.5 Inconsistencies can be used to

associative, the term is parsed from left to right, for example, as ..t1 C t2/C t3/C t4.)
4Release 2.2 of LP requires both a and b in these terms to be qualified, even though the sort of one determines the sort of

the other. For terms such as i= j , where i and j are unambiguous, but = is not, users can write .i= j /:Rational or .i= j /:Nat to
disambiguate the term. Later releases of LP will do a better job of type inference.

5In practice, axioms that constrain a sort to be empty or to have a single element are almost always either intentionally
inconsistent or result from mistaken formalizations. Hence LP chooses to treat them as inconsistent to protect users from mistakes,
and to make some proofs go faster, rather than to provide a more general (and elaborate) logical framework.

11



establish subgoals in proofs of implications and in proofs by cases and contradiction. If they arise in
other situations, they indicate flaws in the current logical system.

An equational theory is a theory (i.e., a set of facts) axiomatized by a set of equations. Equational theories
can be characterized syntactically, as follows. The set of terms constructed from a set of variables and
operators is called a free word algebra or term algebra. A set E of equations defines a congruence
relation on a term algebra, this relation being the smallest one that contains the equations in E and that is
closed under reflexivity, symmetry, transitivity, instantiation of free variables, and substitution of equals
for equals. An equation t1 DD t2 is in the equational theory of E, or is an equational consequence of E,
if t1 is congruent to t2.

Figure 5 shows a sample informal proof that i.e/ DD e is an equational consequence of the axioms for
groups in Figure 4.

Step Equation Justification
1. .x Ł y/ Ł z DD x Ł .y Ł z/ Axiom
2. e DD i.x/ Ł x Axiom
3. x DD e Ł x Axiom
4. .i.y/ Ł y/ Ł z DD i.y/ Ł .y Ł z/ Replace x by i.y/ in 1
5. e Ł z DD i.y/ Ł .y Ł z/ Apply 2 to 4 (with y for x)
6. z DD i.y/ Ł .y Ł z/ Apply 3 to 5 (with z for x)
7. z DD i.i.z// Ł .i.z/ Ł z/ Replace y by i.z/ in 6
8. z DD i.i.z// Ł e Apply 2 to 7 (with z for x)
9. .i.i.e// Ł e/ Ł i.e/ DD Replace x by i.i.e//, y by e,

i.i.e// Ł .e Ł i.e// z by i.e/ in 1
10. e Ł i.e/ DD i.i.e// Ł .e Ł i.e// Apply 8 to 9 (with e for z)
11. i.e/ DD i.i.e// Ł i.e/ Apply 3 to 10 (with e for x)
12. i.e/ DD e Apply 2 to 11 (with i.e/ for x)

Figure 5: Sample derivation from group axioms

4.4 Rewrite rules

Some of LP’s inference mechanisms work directly with equations. Most, however, require that equations
be oriented into rewrite rules. Rewrite rules have the same logical meaning as equations, but behave
differently operationally. A rewrite rule is an ordered pair hl; ri of terms, usually written l ! r, such
that l is not a variable and every variable that occurs in r also occurs in l.6 A term-rewriting system, or a
rewriting system for short, is a set of rewrite rules.

LP orients equations into rewrite rules and uses these rewrite rules to reduce terms to normal forms. For
example, LP orients the equations asserted in Figure 1 into the rewrite rules displayed in Figure 2. The
additional commands

declare operator 1: ! Nat
assert 1 DD s.0/
prove 1 < 1C 1

cause LP to orient the equation into the rewrite rule 1 ! s.0/, after which it can prove the conjecture

6As explained below, pairs that violate these restrictions have unpleasant operational consequences.
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1 < 1C 1 by reducing it to t rue, as follows.

Term Derivation
1 < 1C 1 Conjecture
s.0/ < s.0/ C s.0/ Apply 1! s.0/ three times
s.0/ < s.0 C s.0// Apply nat.4
0 < 0C s.0/ Apply nat.7
0 < s.0/ Apply nat.3
true Apply nat.6

Note that rewrite rules nat.3 and nat.7 can be applied in either order.

To describe this process more precisely, we define a substitution¦ to be a mapping from variables to terms
such that ¦.v/ is identical to v for all but a finite number of variables. The domain of a substitution is
extended to terms in the usual way: ¦. f .t1; : : : ; tn// is defined to be f .¦.t1/; : : : ; ¦.tn//. A substitution
¦ matches a term t1 to a term t2 if ¦.t1/ is identical to t2.

Each rewriting system R defines a binary relation;R (rewrites or reduces directly to) on the set of all
terms. Operationally7, t ;R u if there is some rewrite rule l ! r in R and some substitution ¦ that
matches l to a subterm of t such that u is the result of replacing that subterm by ¦.r/.

The relation;ŁR (reduces or rewrites to) is the reflexive transitive closure of;R. Thus t ;ŁR u if and
only if there are terms t1; : : : ; tn such that t D t1 ;R : : : ;R tn D u. The relation;CR is the transitive
irreflexive closure of;R. When R is clear from context, we write; for;R,;Ł for;ŁR, and;C for
;
C
R .

It is usually essential that R be terminating, in other words, that there be no infinite sequence
t1 ;R t2 ;R t3 : : : of reductions. In general, it is undecidable whether a set of rewrite rules is
terminating. However, as discussed below, LP provides several mechanisms that automatically orient
many sets of equations into terminating rewriting systems. For example, LP automatically orients the
equations for groups in Figure 4 into the rewrite rules

.x Ł y/ Ł z! x Ł .y Ł z/
i.x/ Ł x ! e
e Ł x ! x

It automatically reverses the left and right sides of the second and third equations, thus preventing
nonterminating reduction sequences such as e ; i.e/ Ł e ; i.e/ Ł i.e/ Ł e ; : : : and e ; e Ł e ;
e Ł e Ł e ; : : :8 LP’s facilities for orienting equations into rewrite rules are discussed in Section 4.9.

A term t is said to be irreducible if there is no term u such that t ; u. If t ;Ł u and u is irreducible,
then u is a terminal or normal form of t . A term can have many different terminal forms. For example,
both e Ł z and i.y/ Ł .y Ł z/ are normal forms of .i.y/ Ł y/ Ł z with respect to the rewrite rules for group
theory above.

Unless directed otherwise, LP keeps all rewrite rules and equations in normal form. If a rewrite rule or
equation reduces to an identity, that is, to one in which the right and left sides have the same normal
form, it is discarded.

If a term has only one normal form, that is called the canonical form of the term. A terminating rewriting

7Another characterization of;R is as the smallest binary relation such that ¦ .l/;R ¦ .r/ for every rewrite rule l ! r in R
and every substitution ¦ , and such that f .t1; : : : ; ti ; : : : ; tn/;R f .t1; : : : ; u; : : : ; tn/ whenever ti ;R u.

8These examples show why a rewrite rule l ! r must obey the restrictions that l cannot be a variable and that all variables in r
must also be in l.
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system in which all terms have a canonical form is said to be convergent (cf. Appendix A).

If a rewriting system is convergent, its rewriting theory (that is, the equations that can be proved by
reducing them to identities) is identical to its equational theory (that is, the equations that follow logically
from the rewrite rules considered as equations). Unfortunately, most rewriting systems that arise in
practice are not convergent. In these systems, the rewriting theory is a proper subset of the equational
theory. For example, the equation i.e/ DD e is in the equational theory of the rewrite rules for group
theory above, as proved in Figure 5, but it is not in the rewriting theory (because it is irreducible and yet
is not an identity).

The proof mechanisms discussed in Sections 5 and 6 compensate for the incompleteness that results
when a system’s rewriting theory does not include all of its equational theory.

4.5 Operator theories

LP provides special mechanisms for handling some equations that cannot be oriented into terminating
rewrite rules. The LP command assert acC in Figure 1 says that C is associative and commutative.
Logically, this assertion is merely an abbreviation for two equations:

x C .y C z/ DD .x C y/C z

x C y DD y C x
Operationally, it causes LP to use equational term-rewriting to match and unify terms (see Section 5.3)
modulo associativity and commutativity. In equational term-rewriting, a substitution ¦ matches t1 to t2

modulo a set E of equations if ¦.t1/ DD t2 is in the equational theory of E. For example, ifC is ac, the
rewrite rule a C b! c will reduce the term a C cC b to c C c.

Equational term-rewriting not only increases the number of theories that LP can reason about, but also
reduces the number of axioms required to describe various theories, the number of reductions necessary
to derive identities, and the need for certain kinds of user interaction, for example, case analysis. The
main drawback is that equational term-rewriting can be much slower than conventional term-rewriting;
associative-commutative matching, for example, is NP-hard, whereas conventional matching is linear.

LP recognizes two nonempty operator theories: the associative-commutative theory (assert ac)
and the commutative theory (assert commutative). The commutative theory is important because
commutative axioms, such as x C y DD y C x , cannot be oriented into terminating rewrite rules.
The associative-commutative theory is important because an equation describing associativity, such as
.x C y/C z DD x C .yC z/, cannot be oriented into a terminating rule if commutative matching is used
for the associative operator.

To facilitate matching terms involving ac or commutative operators, LP flattens the internal
representation of terms by arranging the arguments to associative-commutative and commutative
operators in a canonical order.9 The visible impact of this is that, when LP prints terms, the order
in which arguments appear may be affected. For example, when C is associative-commutative and D is
commutative, LP will recognize .a C b/C c D d and d D bC .cC a/ as having the same meaning, and
it will print both as aCbCc D d . Flattening also explains why the display of nat.3 and nat.4 in Figure 2
differs from the original form of those equations in Figure 1.

9When an assertion that an operator is commutative or ac is deleted, terms involving that operator are unflattened, perhaps to
different forms than they originally had.
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4.6 Induction rules

LP allows users to axiomatize theories using induction rules, which are logically equivalent to infinite
sets of first-order formulas. Induction rules increase the number of theories that can be axiomatized by
finite sets of assertions. For example, none of the infinitely many facts not .i D s.i//, not .i D s.s.i///,
: : : is an equational consequence of the equations in Figure 1.10 But this infinite set of facts does follow
when the equations are supplemented by the axiom

assert Nat generated by 0, s

The intuitive content of this axiom is that each element of sort Nat is either 0 or sn.0/, where n is a
positive integer. This axiom is equivalent to the infinite set of first-order formulas11

.E[0] ^ .8i:Nat/.E[i] ) E[s.i/]// ) .8 j :Nat/E[ j ]

where E is an arbitrary equation.12

As described in Section 6.3, LP uses induction rules to generate subgoals to be proved for the basis and
induction steps in proofs by induction. The command

prove not .i D s.i// by induction

directs LP to begin a proof of the conjecture not .i D s.i// by induction, in other words, to prove
not .0 D s.0// as the basis subgoal, and then to prove not .s.ic/ D s.s.ic/// as the induction subgoal
using the induction hypothesis not .ic D s.ic//, where ic is a new constant introduced by LP to formulate
the induction hypothesis and subgoal.

Similary, the assertion Set generated by empty, insert in Figure 3 provides an induction rule for the sort
Set that is equivalent to the infinite set of axioms

.E[empt y] ^ .8e:Elem; s:Set/.E[s] ) E[insert .e; s/]// ) .8s:Set/E[s]

Users can specify multiple induction rules for a single sort. For example, given the declarations in
Figure 3, the LP commands

set name setInduction2
assert Set generated by empty, singleton, [

change the current name prefix and then assert that all objects of sort Set can be generated by taking
unions of singleton and empty sets. Users can choose either induction rule when attempting to prove an
equation by induction; for example,

prove x � x by induction using setInduction2

As described in Section 6.11, users may use one induction rule to prove another. For example, a user
might choose to prove rather than assert the rule setInduction2.

10For each n, there is a model of the equations that contains the natural numbers plus an additional n elements that form a cycle
under s and in which the relation a < b is always false when a and b are among these n elements.

11Because LP interprets induction axioms by sets of first-order formulas, these axioms do not rule out the existence of nonstandard
models, that is, of models that contain elements not of the form 0 or sn.0/, but with the same first-order properties as these elements.
Interpreting induction axioms by single second-order sentences would rule out nonstandard models, but would not necessarily
increase the number of theorems that can be proved (because complete systems of inference do not exist for second-order logic).

12Since the set of first-order formulas corresponding to an induction axiom in LP involves arbitrary equations E, this set can
become larger when new operators are declared.
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4.7 Deduction rules

LP uses deduction rules to deduce new equations from existing equations and rewrite rules. For example,
the LP command

assert when i C j DD i C k yield j DD k

specifies a cancellation law for addition.13 Logically, this deduction rule has the same meaning as the
equation iC j D iCk ) j D k DD t rue, but there is an important operational difference: LP can apply
the deduction rule directly to the equation f .x/C c DD g.x/C c to deduce the equation f .x/ DD g.x/.
Section 8 contains a discussion of the pragmatic ramifications of the differences between expressing
axioms as deduction rules and expressing them as implications.

More powerful deduction rules allow explicit universal quantification of variables in their hypotheses.
For example, the LP command

assert when . f orall e/ e 2 x DD e 2 y yield x DD y

defines a deduction rule equivalent to the universal-existential formula

.8x; y:Set/ [..8e: Elem/.e 2 x , e 2 y//) x D y]

of set extensionality. This deduction rule, which can also be asserted by the LP command assert S
partitioned by 2, as was done in Figure 3, enables LP to deduce equations such as x DD x [ x
automatically from equations such as e 2 x DD e 2 .x [ x/. (Section 5.5 shows another way to obtain
this conclusion using the deduction rule.)

Deduction rules can have multiple hypotheses and/or multiple conclusions. For example, the transitivity
of< can be formulated as a deduction rule with two hypotheses:

when i < j , j < k yield i < k

An example of a deduction rule with two conclusions is the &-splitting law:

when p & q yield p, q

where p and q have been declared as variables of sort Bool.

A deduction rule can be applied to an equation or a rewrite rule. An application succeeds if there is
a substitution that matches the deduction rule’s first hypothesis to the equation or rewrite rule and that
maps the variables in the forall clause to distinct variables14 not appearing elsewhere15 in the matched
equation or rewrite rule.

The result of applying a deduction rule with one hypothesis is the set of equations obtained by instantiating
each of its conclusions by the substitution(s) that matched its hypothesis. LP substitutes fresh variables
for variables that occur in the range of the matching substitution, but not in the hypothesis. For example,
applying the deduction rule when P.x/ yield Q.x; y/ to P. f .y// produces the result Q. f .y/; y1/ and
not the weaker result Q. f .y/; y/.

The result of applying a deduction rule with more than one hypothesis is the set of deduction rules
obtained by deleting the first hypothesis and instantiating the remainder of the deduction rule by the
substitution(s) that matched it. For example, applying the deduction rule when x < y; y < z yield x < z

13Such cancellation laws generalize those used by Stickel [31] in reasoning about rings.
14If the matched variables were not required to be distinct, then, for example, the deduction rule when (forall x; y) x Ł z == y Ł z

yield z DD 0 would apply to the equationw Ł 1 DD w Ł 1 and yield the erroneous result 1 DD 0.
15The matched variables must not appear elsewhere lest, for example, the deduction rule for set extensionality apply to the

equation e 2 insert .e; x/ DD e 2 insert .e; y/ to yield the erroneous result insert .e; x/ DD insert .e; y/.
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to the equation a < b yields the deduction rule when b < z yield a < z.

Deduction rules serve to increase LP’s logical power, to improve its performance, and to reduce the need
for user interaction. Examples of deduction rules that serve the latter two purposes are the &-splitting
law and the cancellation law for addition. The &-splitting law is so useful that it is built into LP to further
improve performance.

LP automatically applies deduction rules to equations and rewrite rules whenever they are normalized.
The sample proof in Appendix B illustrates the logical power of deduction rules, as well as the benefits
of applying them automatically to additional hypotheses introduced in the course of a proof.

Like other facts in LP, deduction rules may be asserted as axioms or proved as theorems (cf. Section 6.10).

4.8 Built-in operators and axioms

LP provides built-in rewrite rules (see Figure 6) to simplify terms involving the Boolean operators not ,
&, j,), and,, the overloaded equality operators D, and the overloaded conditional operators if.

p & t rue! p p j t rue! t rue
p & f alse! f alse p j f alse! p
p & p! p p j p! p
p & not .p/! f alse p j not .p/! t rue

x D x ! t rue p, p! t rue
p D t rue! p p, t rue! p
p D f alse! not .p/ p, f alse! not .p/
p D not .p/! f alse p, not .p/! f alse

not .t rue/! f alse i f .t rue; p; q/! p
not . f alse/! t rue i f . f alse; p; q/! q
not .not .p//! p i f .not .p/; x; y/! i f .p; y; x/

i f .p; t rue; q/! p j q
true) p! p i f .p; f alse; q/! not .p/& q
f alse ) p! t rue i f .p; q; t rue/! p) q
p) t rue! t rue i f .p; q; f alse/! p & q
p) f alse! not .p/ i f .p; x; x/! x
p) p! t rue
p) not .p/! not .p/
not .p/) p! p
Notes:
p, q , and r are variables of sort Bool.
x and y are variables of an arbitrary sort.

Figure 6: Rewrite rules built into LP

These rewrite rules are sufficient to prove many, but not all, identities involving these operators.
Unfortunately, the sets of rewrite rules for propositional logic that are known to be complete (i.e.,
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to be convergent and to yield all propositional identities) require exponential time and space [18, 32].
Furthermore, they can expand, rather than simplify, conjectures that do not reduce to identities. These are
serious drawbacks, because when we are debugging specifications we often attempt to prove conjectures
that are not true. So a complete set of rewrite rules for propositional logic is not built into LP. Instead,
LP provides proof mechanisms that can be used to overcome incompleteness in a rewriting system, and
it allows users to add any of the complete sets (which subsume the built-in rewrite rules) when they wish
to use them.

LP also provides a built-in metarule for rewriting terms containing the conditional operator if. This
metarule has the form

i f .t1; t2[t1]; t3[t1]/! i f .t1; t2[t rue]; t3[ f alse]/

and can be applied when t1 occurs as a subterm of t2 or t3. For example, LP uses this metarule to reduce
the term i f .p; p & q; p j r/ to i f .p; q; r/.

LP treats &, j, and, as ac operators, and it treats D, in all overloadings, as a commutative operator.
Finally, LP provides the built-in deduction rules shown in Figure 7.16

lp not is true: when not .p/ yield p DD f alse
lp not is false: when not .p/ DD f alse yield p
lp and is true: when p & q yield p; q
lp or is false: when p j q DD f alse yield p DD f alse; q DD f alse
lp iff is true: when p, q yield p DD q
lp equals is true: when x D y yield x DD y

Figure 7: Deduction rules built into LP

4.9 Orienting equations into rewrite rules

Ordinarily, LP automatically orients equations into rewrite rules without users having to enter explicit
ordering commands. However, the set automatic-ordering off command causes LP to refrain from
orienting equations until it receives an explicit order command.

LP provides three types of ordering mechanisms for orienting equations into rewrite rules. The command
set ordering method can be used to select any of these mechanisms.

ž Two registered orderings (the dsmpos and noeq-dsmpos orderings), based on LP-suggested partial
orderings of operators [6, 8], that guarantee termination of sets of rewrite rules when no commutative
or associative-commutative operators are present.

ž A polynomial ordering, based on user-supplied polynomial interpretations of operators [1], that
guarantees termination even when commutative or associative-commutative operators are present.
Unfortunately, this powerful mechanism is difficult to use.

ž Three “brute-force” ordering procedures, which give users complete control over whether equations
are oriented from left to right or from right to left. These provide no guarantees about termination.

16lp and is true and lp or is false could both be written with single conclusions, because & and j are commutative.

18



Most users rely on LP’s registered orderings to order all equations; noeq-dsmpos is the default ordering.
In striking contrast to the brute-force methods, they hardly ever cause difficulties by producing a
nonterminating set of rewrite rules.

4.9.1 Registered orderings

LP’s registered orderings use information in a registry to orient equations. When no ac or commutative
operators are involved, these orderings guarantee that the resulting rewrite rules terminate. There are
two kinds of information in a registry: height information and status information.

Height information relates pairs of operators. If an operator f has greater height than another operator
g, LP will attempt to orient equations containing f and g into rewrite rules that replace an occurrence
of f by one or more occurrences of g. For example, g.g.x// DD f .x/ will be oriented into the rewrite
rule f .x/! g.g.x//.

Status information assigns relative weights to the arguments of operators with arity greater than one. If
an operator h has left-to-right (right-to-left) status, more weight is assigned to h’s leftmost (rightmost)
arguments. For example, if h has left-to-right status, h. f .x/; x/ DD h.x; f .x// will be oriented
into the rule h. f .x/; x/ ! h.x; f .x//, whereas if h has right-to-left status it will be oriented into
h.x; f .x//! h. f .x/; x/. If an operator has multiset status, its arguments are given equal weight. If h
has multiset status, the equation h. f .x/; x/ DD h.x; f .x// cannot be oriented. LP automatically assigns
multiset status to ac and commutative operators.

Figure 8 shows how the register command can be used to place information in the registry and how that
information constrains the way in which equations are oriented. As discussed in Section 8, the register
command can also be used to enhance performance.

Command Effect on ordering

register height f > g rewrite f to g
register height f D g give f and g equal height
register height f ½ g rule out g > f
register bottom f rewrite any non-bottom operator to f
register top f rewrite f to any non-top operator
register status right-to-left f assign more weight to f ’s right arguments
register status left-to-right f assign more weight to f ’s left arguments
register status multiset f assign equal weight to all arguments of f

Figure 8: LP commands for supplying ordering constraints

Information about the relative height of operators can be combined in a single command such as

register height) > .&; j/ > t rue D f alse

which suggests that) be rewritten to either & or j, and that each of these be rewritten to true or false,
which have the same height. The partial ordering on operators is transitively closed (so that)> t rue
is a consequence of this command). LP rejects register commands that do not represent a consistent
addition to the registry, for example, commands that imply both f > g and g > f .

When the current registry does not contain enough information to orient an equation, LP will generate
minimal sets of extensions to the registry,called suggestions, that would permit the equation to be oriented.
It will not generate suggestions that would cause an equation entered by the user with! instead of DD
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to be oriented from right to left. Furthermore, the noeq-dsmpos ordering does not generate suggestions
assigning equal heights to two operators; as a result, it is faster, but less powerful than dsmpos.

Ordinarily, LP adds suggestions automatically to the registry when needed. These actions can be
overridden by the command set automatic-registry off, which directs LP to ask the user to choose a
suggestion to be added to the registry. For example, when asked to orient f .a; b/ DD f .b; a/ with
an empty registry, LP presents the user with the following suggestions for adding height and status
information to the registry. Section 4.9.4 discusses how to respond to such suggestions.

Direction Suggestions
--------- -----------

1. -> a > b f(L)
2. -> b > a f(R)
3. <- b > a f(L)
4. <- a > b f(R)

Had the equation been entered as f .a; b/ ! f .b; a/, LP would have presented only the first two
suggestions.

In addition to registering height and status information, a user may register operators as top or bottom
operators. This does not immediately extend the height relation. When LP attempts to orient an equation
that cannot be oriented with the current registry, but can be oriented by adding height relations that make
non-top operators less than top operators, or non-bottom operators greater than bottom operators, LP
will automatically extend the registry by adding such height relations, even if automatic-registry is off.
Furthermore, registering an operator as bottom prevents LP from automatically extending the registry
by making that operator greater than a non-bottom operator, and registering an operator as top prevents
LP from automatically making that operator less than a non-top operator. However, unless it contradicts
the current height relation, users may explicitly introduce relations in which bottom operators are greater
than non-bottom ones and top operators are less than non-top ones.

The unregister command allows users to delete the entire registry, or to remove operators from the bottom
or top of the registry, but not to remove height or status information in the registry (see Section 7.4).

4.9.2 Polynomial orderings

The polynomial ordering requires considerable user input. It is generally used only to experiment with
termination proofs of small sets of rewrite rules, not to orient large sets of equations into rewrite rules.

The polynomial ordering is based on user-supplied interpretations of operators by sequences of
polynomials [1]. The ordering extends these interpretations to terms by interpreting a variable by a
sequence of identity polynomials and a compound term by the interpretation of its root operator applied
to the interpretations of its arguments. One term is less than another in the polynomial ordering if its
interpretation is lexicographically less than that of the second term (one polynomial is less than another
if its value is less than that of the other for all sufficiently large values of its variables).

The command set ordering polynomial length sets the current ordering to a polynomial ordering based
on sequences containing length polynomials; if no length is specified, it is assumed to be 1.

The command register polynomial f polynomialsassigns the sequence of polynomialsas the polynomial
interpretation of f . The polynomials are entered like standard LP terms separated by spaces, using the
binary operatorsC, Ł,ˆ (for exponentiation), variables, and positive integer coefficients. LP understands
operator precedence for terms representing polynomials, so these terms need not be fully parenthesized.
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If the sequence of polynomials associated with an operator is longer than the length of the current
polynomial ordering, the extra polynomials are ignored. If it is shorter, it is extended by replicating its
last element.

The commands in Figure 9, if issued before asserting the axioms in Figure 1, cause LP to use the
polynomial ordering to prove that set of rewrite rules shown in Figure 2 terminates. For example,
they cause LP to orient s.i/ C j DD s.i C j / from left to right, because the polynomial interpretation
.i C 2/ Ł j of the left side dominates the interpretation i Ł j C 2 of the right side when j is sufficiently
large, for example, when j > 1. The noeq-dsmpos ordering produces the same set of rewrite rules as
this polynomial ordering, but does not guarantee that they terminate, because C is ac.

set ordering polynomial
register polynomial 0 2
register polynomial s x C 2
register polynomial C x Ł y
register polynomial < x Ł y

Figure 9: Sample polynomial interpretation

4.9.3 Brute-force orderings

These orderings provide no guarantee about termination.

The manual ordering causes LP to ask the user how to orient each equation. The user is allowed to
choose either orientation, provided it results in a valid rewrite rule, that is, provided that the left side of
the resulting rewrite rule does not consist of a variable and that the right side does not introduce a variable
not present in the left side.

The left-to-right ordering causes LP to orient equations into rewrite rules from left to right, provided the
results are valid rewrite rules. The either-way ordering behaves like the left-to-right ordering, except
that it orients an equation into a rewrite rule from right to left if that is possible and left to right is not.

4.9.4 Interacting with the ordering procedures

When automatic-ordering is off, users must issue explicit order commands to cause LP to orient
equations into rewrite rules. When automatic-registry is off, LP will prompt users to confirm any
extensions to the registry when a registered ordering is in use, or to select an action for an equation LP
is unable to orient. When presented with a prompt like

The following sets of suggestions will allow the equation to be
ordered:

Direction Suggestions
--------- -----------

1. -> a > b
2. <- b > a

What do you want to do with the equation?

users can type ? to see a menu such as
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Enter one of the following, or type <ret> to exit.
accept[1..2] kill postpone
divide left-to-right right-to-left
interrupt ordering suggestions

of possible responses, which have the following effects.

ž accept (or a number in the indicated range): confirms the first (or the selected) extension to the registry.
If this action is missing from the menu, no extension to the registry will orient the equation.

ž divide: causes LP to add two new equations that imply the original equation. This action is useful
when an equation such as x=x DD y=y cannot be oriented because each side contains a variable not
in the other side. If the user elects to divide this equation, LP will ask the user to supply a name for
a new operator, for example, e; it will then declare the operator and assert two equations, x=x DD e
and y=y DD e, both of which can be oriented (by making = higher than e) and which normalize the
original equation to an identity.

ž interrupt: interrupts the ordering process and returns LP to command level.

ž kill: deletes the problematic equation from the system. This should be used with caution, since it may
change the theory associated with the current logical system.

ž left-to-right: orients the equation from left-to-right without extending the registry. Doing this removes
any guarantee of termination.

ž ordering: displays the current registry (as does display ordering at the command level) and prompts
the user for another response.

ž postpone: defers the attempt to orient this equation. Whenever another equation is successfully
oriented, all postponed equations are re-examined, since they may have been normalized into
something more tractable.

ž right-to-left: orients the equation from right-to-left without extending the registry. Doing this removes
any guarantee of termination.

ž suggestions: redisplays the LP-generated suggestions for extending the registry and prompts the user
for another response.
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5 Forward inference in LP

LP provides mechanisms for proving theorems using both forward and backward inference. Forward
inferences (discussed in this section) produce consequences from a logical system. Backward inferences
(discussed in the next) produce a set of subgoals whose proof will suffice to establish a conjecture.
Appendix B illustrates the use of both kinds of inference in a sample proof.

LP provides four methods of forward inference, each of which uses the axioms in LP’s logical system to
deduce new facts.

5.1 Normalization

Whenever a new rewrite rule is added to its logical system, LP automatically renormalizes all equations,
rewrite rules, and deduction rules.17 If an equation or rewrite rule normalizes to an identity, it is discarded.
If all hypotheses of a deduction rule normalize to identities, the deduction rule is replaced by the equations
in its conclusions. If all conclusions of a deduction rule normalize to identities, the deduction rule is
discarded.

5.2 Application of deduction rules

Whenever a new deduction rule is added to its logical system, LP automatically applies that deduction
rule to all equations and rewrite rules in its system. Likewise, whenever an equation or rewrite rule in
its system is normalized, LP automatically applies all deduction rules in its system to the new normal
form.18 As described in Section 4.7, these actions can produce equations (in the case of single-hypothesis
deduction rules) or deduction rules (in the case of multiple-hypothesis deduction rules). To increase the
likelihood that the hypothesis of a deduction rule will match an equation (or a rewrite rule), LP normalizes
both the deduction rule and the equation (or the rewrite rule) before attempting to apply the deduction
rule.

5.3 Critical-pair equations

A common problem arises when a set E of equations is oriented into a rewriting system R, namely,;R

is not convergent, and hence reduction to normal form does not provide a decision procedure for the
equational theory of E. Consider, for example, the rewrite rules

group.1: .x Ł y/ Ł z! x Ł .y Ł z/
group.2: i.x/ Ł x ! e
group.3: e Ł x ! x

produced by orienting the axioms for groups given in Figure 4. These rewrite rules can be used to reduce
the term .i.y/ Ł y/ Ł z to a terminal form in either of two ways. Applying rule group.1 produces the
terminal form i.y/ Ł .y Ł z/. Applying rule group.2 produces e Ł z, which rule group.3 reduces to the
terminal form z. These two terminal forms, i.y/ Ł .y Ł z/ and z, are equivalent under the equational
theory of the group axioms, but the rewrite rules group.1:3 do not reduce them to a common terminal

17Ways of preventing automatic renormalization are discussed in Section 5.6.
18Ways of preventing deduction rules from being applied automatically are discussed in Section 5.6.
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form. Likewise, as shown in Figure 5, i.e/ DD e is an equational consequence of these three axioms;
yet i.e/ and e are distinct terminal forms.

Nonconvergent rewriting systems can cause LP to exhibit even stranger behaviors. For example, LP may
fail to reduce two terms u and v to the same normal form even though u ; v. Worse yet, the behavior
of LP may be nonmonotonic; in other words, it may reduce u and v to the same normal form using the
rewriting system R but not using the system R [ fl ! rg.
The critical-pairs command provides a method of extending the rewriting theory of a system to more
nearly approximate its equational theory. The command

crititical-pairs group.1 with group.2

causes LP to compute (in a manner more fullydescribed below) the critical-pairequation i.y/Ł.yŁz/ DD
e Ł z (whose left and right sides are the results of reducing .i.y/ Ł y/ Ł z by rules group.1 and group.2,
respectively), which is then reduced by rule group.3 and oriented to give a new rewrite rule, group.4:
i.y/ Ł .y Ł z/! z.

The critical-pair computation involves unification, which generalizes matching. Recall that a substitution
¦ matches a term t1 to a term t2 if ¦.t1/ is identical to t2. It unifies t1 and t2 (or is a unifier of t1 and t2) if
¦.t1/ is identical to ¦.t2/. If E is a set of equations, ¦ unifies t1 and t2 modulo E (or is an E-unifier of t1

and t2) if ¦.t1/ DD ¦.t2/ is in the equational theory of E.

There may be no substitutions, or many substitutions, that unify a pair of terms. For example, the terms
x Ł y and i.x/ cannot be unified, and the terms x Ł y and i.w/ Ł w are unified by the substitution

¦ D fi.w/ f or x; w f or yg
and also by the substitution

¦ 0 D fi.e/ f or x; e f or y; e f or wg
which is an instance of ¦ , since ¦ 0 D fe f or wg Ž ¦ . Here the composition ¦ Ž − of two substitutions ¦
and − is the substitution defined by .¦ Ž −/.t/ D ¦.−.t//.
For ordinary unification (i.e., unification modulo an empty set of equations), if two terms can be unified,
they always have a unique (up to variable renaming) most general unifier. That is, any unifiable terms
s and t have a unifier ¦ such that, for each unifier � of s and t , there exists a substitution − such
that � D − Ž ¦ . For many equational theories, there is not always a most general E-unifier. For the
commutative and associative-commutative theories, there are instead finite sets of minimal unifiers, that
is, unifiers that are not substitution instances (except for variable renaming) of other unifiers.

LP uses unification to compute critical-pair equations, as follows. Let l1 ! r1 and l2 ! r2 be rewrite
rules such that l2 can be unified with a nonvariable subterm t1 of l1.19 When such a substitution exists,
we say that l1 and l2 overlap at t1. Let ¦ be the most general unifier (or one of the minimal unifiers,
in the case of E-unification) of l2 and t1. The critical-pair equation associated with this overlap is
¦.l1[t1  r2]/ DD ¦.r1/. (The notation t [t1 s] stands for t with the subterm t1 replaced by s.) One
way to think of this critical-pair equation is as the result of reducing ¦.l1/ by each of the two rewrite
rules.

Each critical-pair equation captures a way in which a pair of rewrite rules (or two different applications
of the same rewrite rule) might be used to reduce a single term in two different ways. For example, the
substitution fi.y/ for x , y for wg unifies i.w/ Ł w with a nonvariable subterm of .x Ł y/ Ł z, so that
e Ł z DD i.y/ Ł .y Ł z/ is a critical-pair equation between .x Ł y/ Ł z ! x Ł .y Ł z/ and i.w/ Ł w! e.

19For simplicity, we assume that the rewrite rules have no variables in common. If they do, the variables are renamed.
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When associative-commutative operators are present, it is necessary to generalize the critical-pair
computation to capture further ways in which a single term can be reduced. See Appendix A.4 for
a discussion of how this is done.

The command

critical-pairs names1 with names2

causes LP to compute all critical-pair equations between the rewrite rules named by names1 and those
named by names2. Critical-pair equations that reduce to identities are discarded; the others are added to
LP’s logical system and processed as if they had been asserted by the user. For example, starting from the
rewrite rules for group theory, the command critical-pairs Ł with Ł causes LP to deduce the critical-pair
equation e Ł z DD i.y/ Ł .y Ł z/, which reduces to z DD i.y/ Ł .y Ł z/. These equations appear on lines
5 and 6 in Figure 5. Repeating this command causes LP to deduce the critical-pair equation on line 8 in
Figure 5, and repeating it a third time causes LP to deduce to the critical-pair equation on line 10, which
reduces to the equation i.e/ DD e. Thus, three applications of the critical-pairs command suffice to
enable LP to deduce the equation i.e/ DD e from the axioms for group theory.

5.4 Completion

The complete command causes LP to compute critical-pair equations, and to orient them into rewrite
rules, until there are no nontrivial critical-pair equations between any pair of rewrite rules in the system.20

If the computation finishes with an empty set of equations and a terminating set of rewrite rules, then
that set of rewrite rules provides a decision procedure (using reduction to normal form) for its equational
theory. For example, the completion procedure produces the rewrite rules shown in Figure 10 from the
axioms for groups given in Figure 4; these rewrite rules are sufficient to reduce any equation that is true
about all groups to an identity.

.x Ł y/ Ł z! x Ł .y Ł z/ i.e/! e
i.x/ Ł x ! e i.i.z// ! z
e Ł x ! x z Ł i.z/! e
i.y/ Ł .y Ł z/! z x Ł .i.x/ Ł z/! z
z Ł e! z i.y Ł z/! i.z/ Ł i.y/

Figure 10: A complete set of rewrite rules for group theory

Appendix A provides more details concerning the computation of critical-pair equations and the
completion procedure.

When using LP, we rarely complete our rewriting systems, because a complete set of rewrite rules with
the same equational theory may not exist, may be too expensive to obtain, may be too expensive to
use, or may lead to canonical forms that are hard to read. However, we often make selective use of
critical-pair equations to derive useful consequences. We also use the completion procedure to look for
inconsistencies, and we interrupt it if none are found after a few iterations. During proofs, both the
critical-pairs and the complete commands stop computing critical-pair equations when they produce a

20Release 2.2 of LP does not compute critical-pair equations between the built-in rewrite rules and the other rewrite rules in
the system. As a result, the completion procedure may not discover some “obvious” consequences of facts that contain built-in
operators. Users can overcome this deficiency by explicitly asserting or proving an appropriate set of immune (see Section 5.6)
rewrite rules for the booleans, but even then the completion procedure may not discover some “obvious” consequences because
the built-in rewrite rules do not axiomatize all properties (e.g., distributivity) of the boolean operators.
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consequence that results in normalizing the current conjecture to an identity. This makes these commands
convenient for finishing up proofs.

5.5 Instantiation

Explicit instantiation of variables in equations, rewrite rules, and deduction rules is the final method of
forward inference in LP. The command

instantiate variable by term, : : : , variable by term in names

causes LP to substitute (simultaneously) the specified terms for variables in the named equations, rewrite
rules, and deduction rules.

A common use of the instantiate command is in connection with deduction rules. For example, given a
logical system that contains the deduction rule

when (forall e) e 2 x DD e 2 y yield x DD y

and the rewrite rule e 2 .x [ y/! e 2 x j e 2 y, instantiating y by x [ x in the deduction rule produces
the conclusion x DD x [ x .

Sometimes it is helpful to instantiate an equation to obtain an instance that is orientable even though the
original equation is not. For example, the equation insert .e; insert .e0; x// DD insert .e0; insert .e; x//
cannot be oriented into a terminating rewrite rule, but specific instances, such as the equation
insert .0; insert .s.0/; x// DD insert .s.0/; insert .0; x//, can be oriented.

Instantiation can sometimes be used as an alternative to computing critical-pair equations For example,
given the rewrite rules

group.1: .x Ł y/ Ł z! x Ł .y Ł z/
group.2: i.x/ Ł x ! e
group.3: e Ł x ! x

for groups, the command

instantiate x by i.y/ in group.1

causes LP to generate the equation .i.y/ Ł y/ Ł z DD i.y/ Ł .y Ł z/, which LP reduces (using rules
group.2:3) and orients into the rewrite rule group.1.1, i.y/ Ł .y Ł z/ ! z. Whenever a rewrite rule is
instantiated, the initial form of the instantiation can be reduced to an identity by a single application of
the original rewrite rule. To avoid this trivial reduction, LP attempts to reduce the instantiation first using
the other rewrite rules in the system. Often such a reduction produces an equation that can no longer
be reduced by the original rewrite rule, and which LP therefore retains. At other times, the instantiation
may be rewritten to an identity by the original rewrite rule even after it has been reduced by some other
rule, or because no other rewrite rule could be applied. If it is useful to retain instantiations such as these,
LP’s ancestor immunity facility (see Section 5.6) provides a means of doing so.

An advantage of the critical-pairs command is that, in effect, it finds potentially useful instantiations
automatically: the command

crititical-pairs Ł with Ł
produces the same rewrite rule as the instantiation (although with the name group.4). Furthermore, the
critical-pairs command can produce several potentially useful consequences from a pair of equations,
whereas the instantiate command produces but a single consequence.
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5.6 Activity and immunity

Ordinarily, all rewrite rules and deduction rules are “active” in that LP will apply them automatically
to normalize other facts and to deduce consequences from these facts. Likewise, all facts are ordinarily
subject to normalization and deduction. LP provides features, however, for restraining such automatic
inferences.

Users can “deactivate” rewrite rules and deduction rules to prevent them from being applied automatically.
The command make passive names deactivates the facts named by names. When a rule is known to
be inapplicable or expensive to apply, it can be deactivated to prevent LP from spending time trying to
apply it. The display command indicates passive facts by printing the letter P in parentheses following
their names. The command make active names reactivates the facts named by names.

Users can also “immunize” equations, rewrite rules, and deduction rules to protect them from automatic
normalization or deduction, either to enhance the performance of LP or to aid in proofs. The command
make immune names immunizes the facts named by names. When facts are known to be irreducible,
they can be immunized to prevent LP from wasting time trying to reduce them. For example, when
reasoning about a large set of axioms that contains axioms for the integers, one might want to immunize
all axioms that deal only with the integers. Immunization can also preserve facts for later use (e.g.,
instantiation) when they might otherwise reduce to identities and disappear. Immunity does not prevent
facts from being flattened or equations from being oriented. The display command indicates immune
facts by printing the letter I in parentheses following their names. The command make nonimmune
names deimmunizes the facts named by names.

In addition to the make command, which enables users to change the activity or immunity of existing
facts, LP provides two settings that determine the activity and immunity of newly entered or generated
facts. These settings can be changed by the set activity and set immunity commands. By default,
activity is on and immunity is off.

Facts can also be given an intermediate degree of immunity. The commands set immunity ancestor and
make ancestor-immune names prevent facts from being reduced or subjected to deduction by rules that
are ancestors of the fact. One fact is an ancestor of another if its name is a prefix of the other’s. For
example, a rewrite or deduction rule named a:1 is an ancestor of a rewrite rule named a:1:2 obtained
from it by instantiation, and LP will not apply it automatically to a:1:2 if a:1:2 is ancestor-immune.
Thus, ancestor immunity provides a way to preserve instantiations of rewrite rules. The command make
ancestor-immune names causes any named facts that were fully immune to become only ancestor-
immune. The display command indicates ancestor-immune facts by printing the letter i in parentheses
following their names.
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LP maintains the following invariants. All terms in nonimmune equations, rewrite rules, and deduction
rules are normalized with respect to all active rewrite rules. All terms in ancestor-immune facts are
normalized with respect to all active rewrite rules other than their ancestors. All active deduction rules
have been applied to all nonimmune equations and rewrite rules and to all ancestor-immune equations
and rewrite rules that do not have that deduction rule as an ancestor.

LP orients inactive and/or immune equations into inactive and/or immune rewrite rules, which remain
that way until explicitly activated or deimmunized.

Rewrite rules (passive or not) can be applied explicitly to selected facts (immune or not) by the commands
normalize factNames with ruleNames and rewrite factNames with ruleNames. The first normalizes
each of the named facts using the named rewrite rules; the second rewrites if possible some subterm
in each of the named facts using one of the named rewrite rules, if possible. (Rewrite rules named by
both factNames and ruleNames are not normalized or rewritten, because they would reduce themselves
to identities.) If with ruleNames is omitted, all rewrite rules in the system are used. These commands
can be used to control when definitions are expanded, or when nonsimplifying rewrite rules (such
as distributivity) are applied. The commands normalize conjecture with ruleNames and rewrite
conjecture with ruleNames apply the named rules to the current conjecture.

Similarly, deduction rules (passive or not) can be applied explicitly to selected equations and rewrite rules
(immune or not). The command apply ruleNames to factNames applies each of the named deduction
rules once to each of the named equations and rewrite rules.

When executing the rewrite, normalize, and apply commands, LP begins by making lists of the existing
facts named by ruleNames and factNames. New facts produced during execution of these commands are
not added to these lists, even if their names happen to fall within ruleNames or factNames. However,
re-execution of the commands will take these new facts into account.
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6 Backward inference in LP

The prove command causes LP to initiate a proof of a conjecture by backward inference. The arguments
to this command consist of the conjecture and, optionally, the proof method to be used. If no method is
supplied, LP uses one from the current list of automatic proof methods (see Section 6.9).

LP maintains a stack of conjectures and subgoals whose proofs are not yet complete. It responds to
the prove command by pushing the new conjecture on this stack and, depending on the proof method
being used, by generating a set of subgoals to be proved and pushing them on the stack as well. These
subgoals are lemmas that together are sufficient to imply the conjecture. LP may also generate additional
hypotheses that can be used to prove particular subgoals, for example, an induction hypothesis in the
induction step of a proof by induction.

The display proof-status command (or dis p for short) displays the status of all pending proofs. It shows
the inference methods and additional hypotheses being used in these proofs, as well as the progress that
has been made.

The conjecture on top of LP’s proof stack is known as the current conjecture. LP tries to make as much
progress as it can on the current conjecture before requesting more input from the user. Whenever a proof
gets stuck, LP prompts the user to supply additional commands. The user can use the prove command
to initiate a proof of a lemma that might be useful in the suspended proof, cancel the proof attempt with
the cancel command, or resume the proof of the current conjecture with the resume command. When
the user cancels the proof of a subgoal for a conjecture, LP also cancels the proofs of any other subgoals
introduced at the same time, and it resets the proof method for the parent conjecture. The cancel all
command cancels all proof attempts. Like the prove command, the resume command takes a proof
method as an optional argument.

Whenever a proof terminates or is canceled, LP pops the stack of conjectures and restores its logical
system to its state before work on the conjecture began (thereby discarding any lemmas proved while
working on the conjecture). If the conjecture was proved, LP adds it to its logical system and resumes
work on the conjecture now on top of the stack.21 As soon as it can establish the current conjecture, LP
terminates any forward inference mechanisms (such as internormalization of the rewriting system or the
computation of critical-pair equations) that may be in progress.

LP prints a line beginning with<> number whenever it creates number subgoals in a proof, and it prints
a line beginning with [ ] whenever it finishes the proof of a conjecture or subgoal. After a successful
proof, the number of [ ]’s equals the number of prove commands plus the number of subgoals that were
created by LP. LP also annotates script files with [ ]’s and <>’s. If a command file is executed with
box-checking set on (see Section 7.3.2), LP will check that proofs are proceeding in accordance with
these annotations. Whenever LP generates <> number or [ ], it checks that the next nonblank line in the
file being executed begins with a confirming <> or [ ]. If it does not, LP prints an error message and
halts execution of the file; LP also treats the occurrence of an unexpected <> or [ ] as an error.

The qed command can also be used to confirm that a proof is proceeding as expected. LP treats the
occurrence of qed as an error if any conjectures still remain to be proved.

Conjectures are assigned the default activity and immunity when they are created by the prove command;
their activity and immunity can be changed by the make command. Immune conjectures are not immune
during an attempt to prove them, but are added to the system as immune facts in their original form when

21More flexible systems of proof management in future releases of LP will enable users to work on any unproved conjecture,
not just the one on top of the stack, and to prove lemmas in any context.
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proved. Immunizing a conjecture provides a way to prevent it from disappearing once proved (because
it normalizes to an identity). Inactive conjectures remain that way when proved.

There are six methods of backward inference for proving equations in LP. In addition, LP provides
automatic methods of backward inference for proving deduction rules and induction rules.

6.1 Proofs by normalization

LP uses active rewrite rules to normalize conjectures. If a conjecture normalizes to an identity, it is a
theorem. Otherwise the normalized conjecture becomes the current subgoal to be proved. For example,
LP succeeds in proving the conjecture singleton.e/ � insert .e; s/ by using the axioms in Figure 3 to
reduce it to an identity. But the conjecture x � x is irreducible, and so becomes the current subgoal to
be proved by some other proof method.
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Passive rewrite rules can be applied explicitly to a conjecture by the commands normalize conjecture
with names and rewrite conjecture with names. The first normalizes the current conjecture using
the named rewrite rules. The second rewrites the conjecture at most once; if the conjecture contains a
subterm that can be rewritten using one of the named rewrite rules, one such subterm is rewritten. If with
names is omitted, all rewrite rules in the system are used. These commands can be used to control when
definitions are expanded, or when nonsimplifying rewrite rules (such as distributivity) are applied.

6.2 Proofs by cases

Conjectures can often be simplified by dividing a proof into cases. When a conjecture reduces to an
identity in all cases, it is a theorem. Case analysis has two primary uses. If a conjecture is a theorem,
a proof by cases may circumvent a lack of completeness in the rewrite rules. If a conjecture is not a
theorem, an attempted proof by cases may simplify the conjecture and make it easier to understand why
the proof is not succeeding.

The command prove e by cases t1; : : : ; tn, where t1; : : : ; tn are boolean terms, directs LP to prove an
equation e by division into cases t1; : : : ; tn (or into two cases, t1 and not .t1/, if n D 1). LP’s actions in
response to this command are simplest when the terms ti contain no variables. For example, given the
axioms

order.1: not .x < x/
order.2: .x < y & y < z/) x < z
order.3: 0 < x j 0 D x
order.4: x < f .x/

and the command

prove 0 < f .c/ by case c D 0

(where c is a constant), LP responds first by adding c D 0 as a case hypothesis and proving the subgoal
0 < f .c/ (by normalizing it to an identity using the case hypothesis and order.4). LP then adds
not .c D 0/ as a case hypothesis, and attempts to establish the same subgoal. The user can finish the proof
by entering the complete command, which causes LP to generate a sequence of critical-pair equations:
0 < c between the case hypothesis (which LP has oriented into the rewrite rule c D 0 ! f alse) and
order.3, c < z ) 0 < z between the new equation and order.2, and finally t rue ) 0 < f .c/ between
the newest equation and order.4. The command

prove 0 < f .c/ by case f .c/ D 0

can also be used to prove the same result. The complete command can be used to show that the case
f .c/ D 0 is impossible (by establishingc < 0, which leads to a contradiction). In the case not . f .c/ D 0/,
the complete command, or the command critical-pairs ŁCaseHyp with Ł, causes LP to establish the
subgoal immediately using order.3.

When one of the terms ti contains variables, LP must proceed more cautiously, because introducing case
hypotheses that contain variables can lead to unsound reasoning. For example, if LP responded to the
command

prove f .x/ DD 0 by case x D 0

by generating the case hypotheses x D 0 and not .x D 0/, then it would erroneously establish the
conjecture by showing both cases to be impossible. As discussed in Section 4.3, both of these equations
are inconsistent. The problem is that the variable x in the case hypothesis x D 0 is not meant to be

31



quantified universally, but to represent the same element as the variable x in the conjecture f .x/ DD 0.
To achieve this effect, and thereby preserve soundness, LP generates a new constant for each variable
that occurs in the case hypotheses. It then substitutes these constants for the corresponding variables in
both the case hypotheses and in the conjecture. For example, LP responds to the command

prove 0 < f .x/ by case x D 0

by replacing x by a new constant xc and attempting to prove the subgoal 0 < f .xc/ from each of the
case hypotheses xc D 0 and not .xc D 0/. The proofs of the subgoals proceed exactly as above, with xc
replacing c. Once the suboals have been established for the arbitrarilychosen (but fixed) value represented
by xc (i.e., without using any properties of xc other than those expressed by the case hypotheses), LP
soundly concludes that the conjecture itself holds for arbitrary values of x . Note that the conjecture
0 < f .x/ is stronger than the conjecture 0 < f .c/, because the former asserts that 0 is less than f .x/
for any value of the variable x , whereas the latter asserts only that 0 is less than f .c/ for the single value
of the constant c.

In summary, LP responds as follows to the command prove e by cases t1; : : : ; tn. When n > 1, the first
subgoal is to prove t1 j : : : j tn . When n D 1, LP generates a default second case of not .t1/, but does not
generate this first subgoal. Then, for each case ti , LP generates a subgoal e0i and a hypothesis t 0i . These are
formed from ti and e by substitutingnew constants for the variables that occur in ti . Section 4.1 describes
the conventions used to name these constants. If an inconsistency results from adding a case hypothesis t 0i ,
that case is impossible, and e0i is vacuously true. Otherwise, the subgoal e0i must be shown to follow from
the axioms supplemented by the case hypothesis. LP assigns names of the form prefixCaseHyp.number
to the hypotheses in proofs by cases.

Proofs by cases are often used to simplify implications, terms involving if, and terms involving repeated
boolean subexpressions. For example, given the axiom i f .divides.x; 2/; even.x/; odd.x//, the
command

prove even.x/ j odd.x/ by case divides.x; 2/

first adds divides.xc; 2/! t rue (where xc is a new constant) as a case hypothesis to be used in proving
the subgoal even.xc/ j odd.xc/. The command critical-pairs ŁCaseHyp with user can then be used
to cause LP to compute the critical-pair equation i f .t rue; even.xc/; odd.xc// DD t rue between the
case hypothesis and the axiom. LP normalizes this equation (using the built-in rewrite rules for i f ) and
orients it into the rewrite rule even.xc/ ! t rue, which LP then uses to normalize the subgoal in the
first case to t rue. LP next adds divides.xc; 2/! f alse as a case hypothesis and attempts to prove the
same subgoal. This subgoal can also be established by computing critical pairs, thereby completing the
proof of the conjecture.

When a case hypothesis contains new constants, it is often useful to compute critical-pair equations
between the hypothesis and other rewrite rules.

6.3 Proofs by induction

Proofs by induction are based on the induction rules described in Section 4.6.

The command prove e by induction on x using I R directs LP to prove the equation e by induction on
the variable x using the induction rule named I R. The names of the variable and/or the induction rule
can be omitted if they can be inferred (e.g., because induction is possible on only one variable in e and
there is only one induction rule for the sort of that variable).
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LP generates subgoals for the basis and induction steps in a proof by induction, as follows. The basis
subgoals involve proving the equations that result from substituting the basis generators of I R for x in
e. (Basis generators are those with no arguments of the sort of x ; fresh variables are used for arguments
of other sorts, as in singleton.e/.) LP introduces additional hypotheses for the induction subgoals by
substituting one or more new constants for x in e. (As discussed in Section 3.4, these constants have names
like xc, xc1, : : : .) Each induction subgoal involves proving an equation that results from substituting a
nonbasis generator of I R (applied to these constants) for x in e (e.g., insert .e; xc/ or xc [ xc1). As in
proofs by cases (see Section 6.2), LP substitutes new constants for variables when it generates hypotheses
to be used in proving a subgoal, and it assigns names of the form prefixInductHyp.number to induction
hypotheses.

Figures 11 and 12 show the output produced by LP as it initiates proofs by induction using the
axiomatizations in Figures 1 and 3. As in a proof by cases, it is often useful to compute critical-pair
equations between induction hypotheses and other rewrite rules.

LP101: prove i < j ) i < . j C k/ by induction on j
Conjecture lemma.1: Subgoals for proof by induction on ‘ j ’
Basis subgoal:

lemma.1.1: .i < 0/) .i < .0C k// DD t rue
Induction constant: j c
Induction hypothesis:

lemmaInductHyp.1: .i < j c/) .i < . j cC k// DD t rue
Induction subgoal:

lemma.1.2: .i < s. j c//) .i < .s. j c/ C k// DD t rue

Figure 11: Subgoals for a proof by induction over the sort Nat

LP101: set name setInduction2
LP102: assert Set generated by empty, singleton, [
LP103: set name lemma
LP104: prove x � x by induction using setInduction2
Conjecture lemma.1: Subgoals for proof by induction on ‘x’
Basis subgoals:

lemma.1.1: empt y � empt y DD t rue
lemma.1.2: singleton.e/ � singleton.e/ DD t rue

Induction constants: xc, xc1
Induction hypotheses:

lemmaInductHyp.3: xc � xc DD t rue
lemmaInductHyp.4: xc1 � xc1 DD t rue

Induction subgoal:
lemma.1.3: .xc1 [ xc/ � .xc1 [ xc/ DD t rue

Figure 12: Subgoals for a proof by induction over the sort Set
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LP also allows multilevel induction. Such inductions are useful, for example, when proving facts about
the Fibonacci numbers. The command

prove e by induction on x depth n using I R

directs LP to prove e by n-level induction using the induction rule I R. If I R is the induction rule for Nat
in Figure 1, then LP would attempt to prove an equation e by 2-level induction by proving the subgoals
e.0/ and e.s.0// in the basis step of the induction, and then by proving the subgoal e.s.s.c/// in the
induction step using e.c/ and e.s.c// as induction hypotheses.

6.4 Proofs by contradiction

Proofs by contradiction provide an indirect method of proof. If an inconsistency follows from adding the
negation of a conjecture to a logical system, then the conjecture is a theorem of that system.

When LP attempts to prove an equation t1 DD t2 by contradiction, it first generates a hypothesis
not .t 01 D t 02/ by substituting new constants for the variables in not .t1 D t2/. (This hypothesis is
logically equivalent to the negation of the conjecture because introducing the new constants is equivalent
to replacing the universally quantified variables in the conjecture by existentially quantified ones. See
Section 6.2.) LP assigns a name of the form prefixContraHyp.number to this hypothesis. It then generates
the single subgoal t rue DD f alse.

Figure 13 shows the output produced by LP as it initiates a proof by contradictionusing the axiomatization
in Figure 1. The proof can be finished by computing critical pairs between lemmaContraHyp and other
rules. One way to do this is for the user to type complete.

LP101: prove not .0 D s.i// by contradiction
Conjecture lemma.1: Subgoal for proof by contradiction
New constant: ic
Hypothesis:

lemmaContraHyp.1: not.0 D s.ic// DD f alse
Subgoal:

lemma.2.1: t rue DD f alse

Figure 13: Subgoals for proof by contradiction

6.5 Proofs of implications

Proofs of implications can be carried out using a simplified proof by cases. The command prove t1 ) t2

by) directs LP to prove the subgoal t 02 using the hypothesis t 01 DD t rue, where t 01 and t 02 are obtained as
in a proof by cases. (This suffices because the implication is vacuously true when t 01 is false.) LP assigns
a name of the form prefixImpliesHyp.number to the hypothesis in such a proof.

For example, given the axioms a ) b ! t rue and b ) c! t rue, the command prove a ) c by)
uses the hypothesis a ! t rue to normalize the axioms and to reduce the conjecture to an identity.

The command resume by) directs LP to resume the proof of the current conjecture using the by)
proof method; this command is applicable only when the current conjecture has been reduced to an
implication.
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Users should beware of using the by) proof method prematurely. When using this method in a proof
of t1 ) t2, LP replaces all variables in t2 that also occur in t1 by fresh constants, thereby making it
impossible for the user to continue the proof by induction on those variables.22

6.6 Proofs of conditionals

Proofs of equations involving the conditional operator if can also be carried out using a simplified proof
by cases. The command prove i f .t1; t2; t3/ DD t4 by if-method directs LP to prove an equation by
division into two cases, t1 and not .t1/. As in a proof by cases, LP substitutes new constants for the
variables of t1 in all terms ti to obtain terms t 0i . In the first case, LP assumes t 01 ! t rue as an additional
hypothesis and attempts to prove the subgoal t 02 DD t 04. In the second case, it assumes t 01 ! f alse as an
additional hypothesis and attempts to prove t 03 DD t 04. LP assigns names of the form prefixIfHyp.number
to the hypotheses in such a proof.

The command resume by if-method directs LP to resume the proof of the current conjecture using the
if-method; this command is applicable only when the current conjecture has been reduced to an equation
of the form i f .t1; t2; t3/ DD t4, where t4 does not begin with if.

6.7 Proofs of conjunctions

Proofs of conjunctions can be slow because & is associative and commutative, and ac-matching is
inherently slow. The command prove t1 & : : : & tn by & provides a way to reduce this expense by
directing LP to prove each of the conjuncts t1, : : : , tn as a separate subgoal.

The command resume by & directs LP to resume the proof of the current conjecture using the by
& proof method; this command is applicable only when the current conjecture has been reduced to a
conjunction.

Users should beware that employing this method too early in a proof can result in an increased need for
user interaction and even in increased computation later in the proof, for example, when the same lemma
is needed to prove more than one conjunct.

6.8 Proofs by explicit commands

The special proof-method explicit-commands directs LP not to apply any method of backward inference
automatically to a conjecture, but to wait for an explicit method to be given with a subsequent resume
command. This is used most frequently to prevent LP from attempting to normalize a conjecture when it
would be time-consuming and unfruitful to do so. For example, if a conjecture includes many conjuncts,
it may be appropriate to first compute some critical pairs, then apply the & method, and finally normalize
the individual subgoals.

6.9 Default proof methods

LP allows users to determine which methods of backward inference for proving equations are applied
automatically and in what order. The LP command

22Future versions of LP will provide mechanisms that circumvent this problem.
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set proof-methods m1; :::;mn

directs LP to use the first of the methods m1; :::;mn that applies to the current conjecture. LP does this
repeatedly (as it introduces new subgoals) until none of the methods in the list applies to the current
conjecture. The command

set proof-methods explicit-commands

prevents LP from applying any method automatically. The default proof method list is normalization
alone.

6.10 Proofs of deduction rules

LP permits users to prove deduction rules as well as to assert them. For example, the command

prove when . f orall z/ z � x DD z � y yield x DD y

directs LP to initiate a proof of a deduction rule about set inclusion. In response to this command, LP
introduces new constants xc and yc of sort Set, adds z � xc DD z � yc as a hypothesis to its logical
system (with a name of the form prefixWhenHyp.number) and attempts to prove xc DD yc as a subgoal.
User guidance is required to finish this proof, for example, by entering the complete command, which
causes LP to draw the necessary inferences from the additional hypothesis.

In general, LP responds to the command

prove when . f orall x1; : : : ; xm/ h1; : : : ; hn yield c1; : : : ; ck

by replacing all variables other than x1; : : : ; xm in the hypotheses h1; : : : ; hn of the deduction rule by
new constants (see Sections 4.1 and 6.2) to form hypotheses h01, : : : , h0n and subgoals c01; : : : ; c0k for the
proof of the deduction rule. When there is no forall clause in the deduction rule, LP replaces all variables
in the hypotheses by new constants.

6.11 Proofs of induction rules

LP also permits users to prove induction rules. For example, the command

prove Set generated by empty, singleton, [
directs LP to initiate a proof of the induction rule setInduction2 displayed in Section 4.6. In response
to this command, LP introduces a new operator isGenerated with signature Set ! Bool, adds the
hypotheses23

isGenerated .empt y/
isGenerated .singleton.e//
.isGenerated .s1/& isGenerated .s//) isGenerated .s1 [ s/

to its logical system (with names of the form prefixGenHyp.number), and attempts to prove the subgoal
isGenerated .s/. User guidance is required to finish this proof, for example, by first proving the lemma
insert .e; s/ DD s [ singleton.e/ (by instantiating the deduction rule corresponding to the assertion Set
partitioned by 2 and then issuing the commands resume by induction and complete).

23The hypotheses introduced by this proof method provide an adequate definitional semantics for isGenerated, but a rather
weak operational semantics. Future versions of LP may introduce additional hypotheses with stronger operational semantics.
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7 Features of LP

This section presents a summary of the commands available in LP, together with information about
commands not described earlier in this guide. Details concerning all commands are available from LP’s
online help facility. The following notation is used to describe the command syntax.

Notation Meaning

e a keyword
feg e as a syntactic unit
e j e0 either e or e0

[e] an optional e
eŁ zero or more e’s
eŁ; zero or more e’s, separated by commas
eŁ[; ] zero or more e’s, optionally separated by commas
eC one or more e’s
eC; one or more e’s, separated by commas
eC[; ] one or more e’s, optionally separated by commas
‘c’ the character(s) c

Many commands take named sets of objects as arguments. Figure 14 describes the syntax for names in LP.
The keywords for statement-types can be abbreviated using unambiguous prefixes (e.g., deduction-rules
can be abbreviated to d-r or to deduct). As described in Section 3.4, asterisks in name-patterns match

names ::D statement-typeŁ[; ] name-patternŁ[; ]

statement-type ::D deduction-rules j equations j induction-rules j
operator-theories j rewrite-rules

name-pattern ::D name-characterC [extension] [‘!’]
name-character ::D identifier-character j ‘*’
identifier-character ::D letter j digit j ‘ ’ j ‘’’
extension ::D ‘.’ number [‘.’ number]Ł [extension-range]
extension-range ::D ‘:’ f number j last g
number ::D digitC

Figure 14: Syntax for names of sets of objects

any sequence of identifier-characters, and, when a name-pattern does not end with an exclamation mark,
any extension of a matched name is also matched. With these conventions,

display d r arith.1:2 ŁHyp

causes LP to display all deduction and rewrite rules with names arith.1 or arith.2, with subnames of these
names, or with name prefixes that end in Hyp.

7.1 Commands for user interaction

The commands in the following table are described in Sections 3.2, 3.3, and 3.4, as well as here in
Section 7.1.
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User Interaction

clear Discard all information other than settings
delete names Delete named facts
display [display-info] [names] Display information about named objects
execute filename Execute commands from filename.lp
execute-silently filename Same as execute, but suppressing all output
forget [pairs] Discard information to save space
freeze filename Save state of LP in filename.lpfrz
help topicŁ[; ] Print help about topics
history [number jall] Print recent command history
quit Exit from LP
pop-settings Restore values of LP settings
push-settings Remember values of LP settings
set Print current values of all LP settings
set setting Print current value of setting, allow change
set setting-and-value Change value of setting
show normal-form term Display reduction of term to normal form
show unifiers term, term Display unifiers of two terms
statistics [stat-options] Display statistics on runtime, storage, rule usage
stop Stop execution of command files
thaw filename Restore frozen state from filename.lpfrz
unset fsetting j allg Reset setting to its default value
version Display information about current version of LP
write filename [names] Write declarations, registry, named facts to filename.lp
% comment Record comment in log and/or script file

7.1.1 Saving and restoring state

The command freeze filename causes LP to create a file named filename.lpfrz and to save its current state
(except for the statistics and file-system dependent settings (log-file, script-file, directory, and lp-path
) in that file. This command is useful for checkpointing attempted proofs. The command thaw filename
causes LP to restore its state to that frozen in the file filename.lpfrz.

The command write filename causes LP to create an ASCII file named filename.lp, which can be executed
to recreate the current system. LP writes declarations for all identifiers followed by commands to recreate
the current registry and to assert the current facts. Rewrite rules that are written by the write command will
be read as equations. Unlike freeze, write does not save information about the state of any uncompleted
proofs. But unlike thawing a frozen file, which replaces all of LP’s logical system, executing a written
file adds information to the current system. Hence it can be used to combine axiomatizations.

The commands push-settings and pop-settings use a stack to save and restore the values of all settings
(see Section 7.5) other than log and script files. The write command, for example, places these commands
in .lp files so that named axioms can be loaded from files without affecting the current name, activity,
and immunity settings.

7.1.2 Displaying information

The command display [display-info] [names] displays the requested informationabout the named objects.
If no names are specified, it displays the requested information for the entire logical system.
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display-info Causes display of

conjectures the named conjectures
facts the named facts (the default)
ordering-constraints the registry for operators in the named facts
proof-status status of proofs involving the current conjecture
symbols all identifiers in the named facts

The display command annotates inactive facts by printing the letter P in parentheses following their
names. It annotates immune and ancestor-immune facts by printing the letters I and i in parentheses.

The command history [n], where n is a positive integer, causes LP to print a list of the n most recent
commands executed by LP. The command history all causes LP to print a list of all commands. The
command history with no arguments is treated by LP in the same fashion as the last history command
(or as history all if there were no previous history commands). Histories differ from scripts created by
the set script command in that, after a thaw, the history shows the commands that produced the thawed
.lpfrz file, whereas the script shows the commands that have been executed since starting the script.

The show command can be used to provide information about rewriting. The command show normal-
form term displays the normal form of term. When the trace-level setting is nonzero, it also displays the
reduction sequence leading from the term to its normal form. The command show unifiers term, term
displays a complete set of minimal unifiers for the two terms.

The command statistics [time j usage [names]] displays cumulative and recent (since the last display)
information about the resources consumed by LP, as well as about the usage of rewrite and deduction
rules. The default option is time, which displays information about the time spent by LP on various
activities. The usage option displays how many times LP successfully applied each of the named rewrite
and deduction rules, as well as how many non-identity critical pairs were computed from each rewrite
rule. Setting statistics-level to 0 (the default is 2) suppresses the collection of all but summary statistics.
Setting it to 1 suppresses the collection of usage statistics. Setting it to 3 causes LP to report the number
of attempts made to apply each rewrite rule (but causes LP to run more slowly).

The version command displays information about how LP was installed (see Section 3.6).

7.1.3 Deleting information and saving space

The clear command causes LP to discard all information other than the current settings.

The command delete names causes LP to delete the named facts from its logical system. It can be used
to get rid of unhelpful facts (e.g., unorderable or unnecessary critical-pair equations) or facts that have
served their purpose and are no longer needed.

The forget pairs command causes LP to discard all information about which critical pairs have been
computed. It also prevents LP from accumulating further such information until the next complete
command is given. This command can save significant space when there are many rewrite rules. The
commands forget and forget pairs are equivalent in Release 2.2 of LP.

7.2 Commands for axiomatizing theories

The following table summarizes LP’s features for defining theories. These features are described in
Sections 4–6.
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Axioms and Facts

assert equationC[; ] Assert equations as axioms
assert deduction-ruleC[; ] Assert deduction rules as axioms
assert sort generated by operatorC; Assert induction rule as an axiom
assert sort partitioned by operatorC; Assert deduction rule as an axiom (e.g., set extensionality)
assert ac operator Assert associative-commutative axioms
assert commutative operator Assert commutative axiom
declare operators
op-declarationC[; ]

Declare operators

declare sorts sortC; Declare sorts
declare variables
var-declarationC[; ]

Declare variables

make fact-status names Change activity, immunity of facts and conjectures, where fact-status
is one of active, inactive, passive, immune, nonimmune, or
ancestor-immune

The following two tables specify the syntax for declaring and using variables and operators in LP.
Identifiers can be overloaded provided that identifiers for the built-in logical operators are not overloaded
by the user, and that the same identifier is not overloaded as a variable and a constant of the same sort.

Syntax for Variable Declarations

var-declaration ::D variable-identifierC; ‘:’ sort
variable-identifier ::D identifier
identifier ::D identifier-characterC

identifier-character ::D letter j digit j ‘ ’ j ‘’’
variable ::D variable-identifier [‘:’ sort]

Syntax for Operator Declarations

op-declaration ::D operator-identifierC; ‘:’ signature
operator-identifier ::D prefix-identifier j infix-identifier
prefix-identifier ::D identifier
infix-identifier ::D infix-characterC j ‘\’ identifier
infix-character ::D ‘!’ j ‘#’ j ‘$’ j ‘&’ j ‘*’ j ‘+’ j ‘-’ j ‘.’ j ‘/’ j

‘<’ j ‘=’ j ‘>’ j ‘@’ j ‘\’ j ‘ˆ’ j ‘|’ j ‘˜’
signature ::D domain ‘->’ range
domain ::D sortŁ;
range ::D sort
sort ::D identifier
operator ::D operator-identifier [‘:’ signature]

The following two tables specify the syntax for equations and deduction rules in LP. The sorts of subterms
in a term, and of terms in an equation, must conform to the existing declarations for identifiers.
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Syntax for Equations and Terms

equation ::D term [equals term]
equals ::D ‘==’ j‘->’
term ::D equals-term flogical-infix-identifier equals-termgŁ
equals-term ::D userOp-term [‘=’ userOp-term]
userOp-term ::D subterm finfix-identifier subtermgŁ
subterm ::D atomic-term [‘:’ sort]
atomic-term ::D variable-identifier

j prefix-identifier [‘(’ termC; ‘)’]
j ‘(’ term ‘)’

logical-infix-identifier ::D ‘&’ j ‘|’ j ‘=>’ j ‘<=>’

Syntax for Deduction Rules

deduction-rule ::D when [quantifier] equationC[; ] yield equationC[; ]

quantifier ::D forall variableC;
j ‘(’ forall variableC; ‘)’
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7.3 Commands for proving theorems

The following table summarizes LP’s inference mechanisms, as described in Sections 5–6.

Proofs and Inference Mechanisms

apply names to names Apply named deduction rules to named facts
cancel [all] Cancel current conjecture [all conjectures]
complete Run completion procedure
critical-pairs

names with names
Compute critical-pair equations between any rewrite rules in the first named set
and any in the second

instantiate fvariable
by termgC; in names

Instantiate variables by terms in named facts

normalize names
[with names]

Normalize named facts, immune or not, by all (or named) rewrite rules, active or
not

normalize conjecture
[using names]

Normalize current conjecture by all (or named) rewrite rules, active or not

prove conjecture
[by proof-method]

Attempt to prove conjecture (using proof-method)

qed Check that all conjectures have been proved
resume [by proof-method] Resume work on current conjecture (using proof-method)
rewrite names

[with names]
Rewrite each named fact, immune or not, by some (named) rewrite rule, active
or not

rewrite conjecture
[using names]

Rewrite the current conjecture by some (named) rewrite rule, active or not

<> number Confirm introduction of number subgoals in proof
[ ] Confirm conclusion of step in proof
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7.3.1 Proof methods

As discussed in Section 6, conjectures can be equations, deduction rules, or operator theories. LP
recognizes the following proof-methods for backward inferences involving equational conjectures.

Proof Methods for the prove and resume Commands

&-method
Applicable to t1 & : : : & tn DD true

)-method Applicable to t1 ) t2 DD true
cases t1; : : : ; tn Divides proof into cases t1; : : : ; tn
contradiction Initiates proof by contradiction
default Invokes method given by proof-methods setting
explicit-commands Suspends proof pending explicit resume command
if-method Applicable to i f .t1; t2; t3/ DD t4
induction [[on] variable]

[depth number]
[[using] names]

Initiates proof by induction

normalization Initiates proof by reduction to normal form

7.3.2 Box checking

As discussed in Sections 2 and 6, LP generates <>’s and [ ]’s in the history and in the script file. It
generates a line beginning with<> number whenever it creates number subgoals in a proof. It generates
a line beginning with [ ] whenever it finishes the proof of a subgoal or a conjecture. After a successful
proof, the number of [ ]’s in the history and script file equals the number of prove commands plus the
number of subgoals that were created by LP.

LP ignores <> and [ ] commands when it is not executing a command file or when the box-checking
setting is off. Otherwise, it checks these commands for errors, as follows. Whenever it generates <>
number or [ ], LP checks that the next nonblank line in the command file begins with <> number or
[ ]. The prompts <>? and [ ]? indicate that LP expects a confirming <> or [ ] in the command file. LP
prints an error message if the confirming <> or [ ] is missing, or if an unexpected <> or [ ] appears in
the command file.

Regardless of whether box-checking is on or off, LP does not copy <> and [ ] lines from its input to
the history or to a script file. Instead, it puts into the history and script file the <> and [ ] lines that
it produces as it creates and discharges goals. Thus, the history and the script file will be annotated in
a way that correctly reflects the actual progress of the proof. For this reason, it is often useful to copy
fragments of script files back into command files.

7.4 Commands for ordering equations into rewrite rules

Ordering Commands

order [names] Orient equations into rewrite rules
register constraints Constrain orientation of equations
unorder [names] Turn rewrite rules back into equations
unregister registry Discard all ordering constraints
unregister fbottom j topg operatorC[; ] Discard indicated constraints

As discussed in Section 4.9, LP automatically orients equations into rewrite rules when the automatic-
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ordering setting is on. When it is off, users must type explicit order commands to orient equations into
rewrite rules. If no names are given with the order command, LP attempts to orient all equations into
rewrite rules. If names are specified, LP attempts to orient only the named equations (including any new
equations that LP generates during the ordering process, for example, as a result of applying a deduction
rule to a newly reduced fact).

LP uses the method specified by the ordering setting to orient equations into rewrite rules. The dsmpos
and noeq-dsmpos orderings use constraints provided by the register command, or suggested by LP, to
help orient equations. LP adds suggested constraints to the registry automatically when the automatic-
registry setting is on and upon user confirmation when it is off. The polynomial ordering also uses
constraints supplied by the register command. The following table describes the syntax for specifying
ordering constraints.

Ordering Constraints

constraints ::D f bottom j top g operatorC[; ]

j height operator-set f height operator-set gC
j polynomials operator polynomialC[; ]

j status status operatorC[; ]

operator-set ::D operator j ‘(’ operatorC[; ] ‘)’
height ::D ‘>’ j ‘=’ j ‘>=’
polynomial ::D polynomial-term f‘+’ polynomial-termgŁ
polynomial-term ::D polynomial-factor f‘*’ polynomial-factorgŁ
polynomial-factor ::D polynomial-primary [‘ˆ’ number]
polynomial-primary ::D variable j number j ‘(’ polynomial ‘)’
status ::D left-to-right j multiset j right-to-left

7.5 Settings

The following three tables present a summary of the settings that govern the behavior of LP. Details
concerning the settings are located in the indicated sections of this guide and are also available from LP’s
online help facility.
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Settings, Part I

activity on-off Initial activity for axioms
Default: on [5.6]

automatic-ordering on-off Automatic ordering of new equations
Default: on [4.9, 7.4]

automatic-registry on-off Automatic extensions to registry
Default: on [4.9.4, 7.4]

box-checking on-off Checking<>, [ ] annotations of proofs in script files
Default: off [7.3.2]

completion-mode mode Completion mode: big, expert, standard
Default: standard [7.5.2]

directory string Name of directory for output files
Default: ‘.’ [3.6]

display-mode
qualify-mode

Mode for displaying identifiers
Default: unqualified [7.5.1]

immunity immunity Initial immunity for axioms
Default: off [5.6]

log-file filename File filename.lplog for logging session
Default: none [3.5]

lp-path string Search path for help, .lp, .lpfrz files
Default: ‘. ˜ ˜lp/axioms ˜lp’ [3.6]

name-prefix identifier Name prefix for facts, conjectures
Default: user [3.4]

ordering-method
ordering

Method for orienting equations into rewrite rules
Default: dsmpos [4.9]

page-mode on-off Page mode for output
Default: off [3.6]

prompt string Prompt for commands
Default: ‘LP!: ’ [3.6]

proof-methods
proof-methodC[; ]

Automatic proof methods for equational conjectures
Default: normalization [6.9, 7.3.1]

reduction-strategy mode Reduction order for terms: inside-out, outside-in
Default: outside-in [7.5.2]

rewriting-limit number Bound on rewrites per normalization
Default: 1000 [7.5.2]

script-file filename File filename.lpscr for recording input
Default: none [3.5]

Settings, Part II

statistics-level number Kinds of statistics kept
Default: 2 [7.1.2]

trace-level number Kinds of details printed
Default: 1 [3.6]

write-mode qualify-mode Mode for writing identifiers
Default: qualified [7.5.1]

Values for Settings

filename ::D string
immunity ::D on-off j ancestor
on-off ::D on j off
ordering ::D dsmpos j either-way j left-to-right jmanual

j noeq-dsmpos j polynomial [number]
qualify-mode ::D qualified j unqualified j overloaded j unambiguous
string ::D characterC j ‘‘’ characterŁ ‘’’
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7.5.1 Settings that affect output

The display-modeand write-mode settings control the manner in which the display and write commands
print qualifications in terms. These commands also qualify operators appearing outside of terms (e.g., in
induction rules) if the mode is qualified or if the operator is overloaded.

Mode Effect on terms

qualified Qualify all subterms
unqualified Qualify nothing
overloaded Qualify subterms headed by overloaded identifiers
unambiguous Qualify enough to enable reparsing

The default display-mode is unqualified, which takes less time and produces output that is easier to
read.

The default write-mode is qualified, which guarantees that the output can be reparsed even in the
presence of additional overloadings for identifiers. It is often desirable, however, to set the write-mode
to unambiguous to shorten and improve the readability of .lp files. If a problem arises in executing a .lp
file produced in this fashion (because it is being executed in a context that overloads one of its operators),
the problem can be solved by starting up a new copy of LP, executing the .lp file, and writing it out again
in qualified mode.

7.5.2 Settings that affect rewriting

The command set rewriting-limit number sets an upper bound on the number of reductions that LP will
perform when normalizing a term with respect to a rewriting system that is not guaranteed to terminate.
The default value of number is 1000.

If LP exceeds the rewriting limit when normalizing a fact, it prints a warning message and immunizes that
fact. If it exceeds the rewriting limit when normalizing a conjecture, the user can continue normalizing
the conjecture by typing resume (after raising the rewriting limit, if desired).

The set reduction-strategy command controls the strategy used by LP to reduce terms. The default is
outside-in, which causes LP to apply rewrite rules near the top of a term before it applies them near the
bottom. In inside-out mode, LP still applies the built-in rewrite rules near the top of the term, but it
applies other rewrite rules near the bottom before it applies them near the top.

The set completion-mode command controls the order in which completion tasks are executed and how
much user interaction occurs. The default standard mode requires little user interaction, even when
automatic-registry is off. However, it accomplishes this at the cost of computing critical pairs before
extending the registry, which can be inefficient. For many completions, expert mode is better. It causes
LP to extend the registry, and thereby to orient more equations, before it begins to compute critical pairs.
When automatic-registry is off, it gives users more explicit control over the completion process. The
big mode postpones the computation of critical pairs even farther, so that big equations are examined
before critical pairs are computed.
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8 Hints on using LP

This section contains a collection of hints that beginning users of LP may find helpful.

8.1 Preparing input and recording work

Start by using an editor to prepare a command file. Put all the declarations you expect to need at the
beginning of the file. This allows LP to check your declarations before beginning any time consuming
tasks. Put subproofs in separate command files. Structure the session as a sequence of execute commands.
Freeze LP’s state often. This makes it easier to try different alternatives when looking for a proof.

Although proofs are usually constructed interactively, successful proofs should be recorded in a cleaned-
up command file. Always set scripting and logging on at the start of an LP session. (If you realize that you
are not recording a session, start logging and then execute a history all command to get LP to print the
commands already executed.) After executing a step of a proof, enter a comment recording information
that may be helpful in cleaning up the LP-produced .lpscr file. If, for example, a critical-pairs command
produced no useful critical pairs, record that fact in a comment.

Keep in mind that LP automatically indents and annotates .lpscr files. It is often useful to use an editor
to replace parts of human-generated .lp files with material extracted from .lpscr files.

8.2 Formalizing axioms and conjectures

Be careful not to confuse variables and constants. If x is a variable and c is a constant, then e.x/ is a
stronger assertion than e.c/. The first means .8x/e.x/. In the absence of other assertions involving c, the
second means .9c/e.c/. If you don’t know whether an identifier is a variable or a constant, type display
symbols to find out.

Be careful about quantification. The expression x D empt y ) x � y correctly (albeit awkwardly)
captures the fact that the empty set is a subset of any set. However, its converse, x � y ) x D empt y,
does not capture the fact that any set that is a subset of all sets is itself the empty set. That fact is
expressed in first-order logic by the formula .8x/[.8y/.x � y/ ) x D empt y], which is equivalent to
.8x/.9y/[x � y ) x D empt y], and which can be expressed in LP by the deduction rule

when (forall y) x � y yield x DD empt y

but not by any equation.

An axiom or conjecture of the form when A yield B has the same logical content as one of the form
A ) B DD t rue, but different operational content. Consider Figure 15. LP will automatically derive
the fact g.a/ from f .a/ by applying the deduction rule, but it will not derive h.a/ from g.a/ unless it is
instructed to compute critical pairs.

A multiple-hypothesis deduction rule of the form when A, B yield C has the same logical content as a
single-hypothesis rule of the form when A & B yield C. They differ operationally in that, if the user
asserts or proves two equations that are matched by A and B, LP will apply the multiple-hypothesis rule
but not the single-hypothesis rule.
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declare variable x : Bool
declare operators

a: ! Bool
f; g; h: Bool! Bool
..

assert when f .x/ yield g.x/
assert

g.x/) h.x/
f .a/
..

qed

Figure 15: Deduction rules vs. implications

8.3 Ordering equations into rewrite rules

If you put some well-selected ordering constraints in the registry, LP will orient equations more quickly
and with fewer surprises. Put the generators for a sort, such as 0 and s for Nat, at the bottom of the
registry. Enter definitions, such as P.x/ DD P1.x/ & P2.x/, with! rather than DD; otherwise they
are likely to be reversed, because the right side appears more complex than the left side.

When a proof fails unexpectedly, look at the rewrite rules to see if any are ordered in surprising directions.
If so, there are several potentially useful things to try.

ž Set automatic-registry off, instruct LP to order only the offending equation, and choose one of the
presented suggestions that order the equation as desired. Then add register commands corresponding
to that suggestion to your command file and try running the proof again.

ž Alternatively, rerun the proof at a trace level (e.g., 2) that prints out extensions to the registry; then use
a text editor and the .lplog file to locate extensions dealing with operators appearing in the offending
rewrite rule. This may suggest a set of register commands that will force the equations to be ordered
as desired.

ž Alternatively, rerun the proof with automatic-registry set off to find a set of suggestions that will
order things the way you want them. Then add register commands with the appropriate suggestions
to your command file, and execute it again with automatic-registry set on. This last step is important
because proof scripts with automatic-registry off are not usually robust.

Occasionally, LP will fail to order a set of equations for which a terminating set of rewrite rules does
indeed exist. At this point you should consider changing the ordering to use a more powerful ordering
strategy (e.g., dsmpos rather than noeq-dsmpos) or an ordering strategy that makes no attempt to check
termination (e.g., left-to-right). It is also worth keeping in mind that although LP will not automatically
give operators equal height when using noeq-dsmpos, the register command can be used to do so
explicitly.
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8.4 Managing proofs

Prove as you would program. Design your proofs. Modularize them. Think about their computational
complexity.

Be careful not to let variables disappear too quickly in a proof. Once they are gone, you cannot do a
proof by induction. Start your inductions before starting proofs by cases,), or if.

Splitting a conjecture into separate conjuncts (using the & proof method) early in a proof often leads to
repeating work on multiple conjuncts, for example, doing the same case analysis several times.

To keep lemmas and theorems from disappearing (because they normalize to identities), make them
immune. Typing the commands

set immunity on
prove : : : by explicit-commands
set immunity off
resume by : : :

when you begin the proof of a conjecture immunizes that conjecture (i.e., causes it to be immune once it
becomes a theorem), but nothing else. Similarly, the commands

set immunity ancestor
instantiate : : : in : : :
set immunity off

help keep instantiations from disappearing when they are special cases of other facts.

When a proof gets stuck:

ž Be skeptical. Don’t be too sure your conjecture is a theorem.

ž If the conjecture is a conditional, conjunction, or implication, try the corresponding proof method.

ž Try computing critical pairs between hypotheses and other rewrite rules, for example, by typing
critical-pairs ŁHyp with Ł.
ž Use a proof by cases to find out what is going on. Case on repeated subterms of the conjecture, on the

antecedent of an implication in a rewrite rule, or on the test in an if in a rewrite rule.

ž Display the hypotheses and check to see if any that you expected to see are missing or are not ordered
in the way you expected.

ž Look for a useful lemma to prove. See if replacing a repeated subterm in a subgoal by a variable
results in a more general fact that you know to be true.

ž Because LP automatically internormalizes facts, you may find that what you consider to be the
information content of some user-supplied assertion has been “spread out” over several facts in the
current logical system in a way that may not be easy to understand, particularly if the system contains
dozens or hundreds of facts. Similarly, you may sometimes notice that LP is reducing (or has reduced)
some expression in some way that you don’t understand. The command show normal-form E, where
E is the expression being mysteriously reduced, or where E is the original form of one side of an
equation, will often be enlightening in such cases. Setting the trace level up to 6 will show which
rewrite rules are applied in the normalization.
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In the course of a proof, you may lose track of your place in the subgoal tree. This happens most
often if LP has just discharged several subgoals in succession without user intervention and/or it has
automatically introduced subgoals. The display, resume, and history commands can be used to help
find your place.

ž display ŁHyp is an easy way to find your place in nested case analyses.

ž display proof-status displays the entire proof stack; display conjectures names, the named
conjectures.

ž resume shows just the current conjecture (normalized, if the proof-methods setting includes
normalization).

ž history 20 (or some other number) displays an indented history, including LP-generated box and
diamond lines.

8.5 Making proofs go faster

When LP seems too slow, use the statistics command to find out which activities are consuming a lot of
time. If rewriting (particularly, unsuccessful rewriting) is costly, try one of the following.

ž Immunize facts that you know to be irreducible. LP will not waste time trying to reduce them.

ž Deactivate rewrite rules that are needed only occasionally.

ž Make definitions passive and apply them manually.

ž Avoid big terms, especially with ac operators. Seek different axiomatizations or proof strategies if
they occur.

If ordering is costly, put ordering constraints in the registry, particularly if you have declared many
operators. It may also help to put ordering constraints in the registry prior to a proof by cases to save the
cost of having LP rediscover these constraints in each of the cases.

If unification or critical pairing is costly, try to use smaller rule lists as arguments to the critical-pair
commands. Also, try to avoid computing critical pairs between rewrite rules that contain subterms such
as t1 & t2 & : : : & t5 with multiple occurrences of the same ac operator.

8.6 Overcoming installation problems

LP ordinarily expects the file lp.help, which contains messages for the help command, to reside in the
directory /usr/local/lib/lp. If it resides in some other directory named dir, invoke LP using the command
line lp �d dir (or make lp an alias for lp�d dir).

8.7 Reporting bugs

There may still be a bug (or maybe even two) in LP. Please report any bugs that you find (preferably by
e-mail). When reporting a bug, always include a sample command file that will provoke it and a .lplog
file that illustrates it. To produce the .lplog file:
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1. Follow your procedure for producing the bug until shortly before the commands that trigger the bug.

2. Type the commands

set log bugreport
history
display

3. Enter the remaining commands necessary to exhibit the bug. Include comments where appropriate. If
the last command sends LP into an infinite loop or manages to crash LP without closing the log file,
precede it with an unset log command so that bugreport.lplog will be closed.
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9 Current development

LP 2.2 is written in CLU and runs under Unix. Native CLU compilers exist for DEC VAXes as well
as the 68000-based Sun and HP workstations. A portable CLU compiler translates CLU into C and
enables LP to run on DEC, MIPS, and Sun RISC architectures. LP is available by anonymous ftp from
larch.lcs.mit.edu.

LP 1.0 [11] was in relatively heavy use at several sites for several years. During that time LP changed
dramatically, primarily in response to the needs of its users. LP continues to change in response to user
needs. Specialized front-ends are being developed, for example, to assist in checking Larch specifications
and in proving the correctness of circuits. Features for proving and using more general first-order formulas
are also being developed, as are extensions of the notions of critical pairs and completion to encompass
deduction rules. Our primary concern is to preserve the basic style and efficiency of proofs in LP.

Although LP is much faster than its ancestor Reve [22], performance continues to be an issue. Each
increase in speed tempts LP’s users to try larger examples. Frequently, these examples suggest other
desirable user amenities or further opportunities for improvements in performance. The sample proof
in Appendix B took three seconds on a DECstation 5000/200; more ambitious proofs, such as the
transparency of a cache memory subsystem, take scores of minutes. A major goal for LP is to reduce as
much as possible the costs of developing, executing, and maintaining such ambitious proofs.
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Appendices

A Equational term-rewriting tutorial

Sections 4 and 5 introduced several key notions (e.g., normal forms and critical-pair equations) concerning
equational term-rewriting. This appendix provides further details concerning both the theoretical basis
for equational term-rewriting and also its use in theorem proving. For a more comprehensive and formal
introduction to rewriting, see [7].

In general, for any set A of axioms and any assertion a, we write A jD a (a is a logical or semantic
consequence of A) to mean that a is true in all models of A. For example, if A is the set of axioms for
groups in Figure 4, then a model of A is known as a group, and the logical consequences of A are those
assertions that are true in all groups.

For some sets A of axioms, there are procedures that can be used to decide whether or not A jD a. By
Church’s Undecidability Theorem [5], which shows that the first-order theory of the natural numbers
under addition and multiplication is undecidable, such procedures do not exist for all A. This appendix
describes one approach to finding such procedures for some sets A of equations.

Appealing directly to the definition of jD is of little help, since A in general has infinitely many models,
and one cannot check whether a holds in all of them (or even in one of them, if that model happens
to be infinite). Hence our plan of attack is to define a more tractable relation A ` a (a is a syntactic
consequence of A, or a is provable from A), and then to show that ` is both sound with respect to jD
(i.e., that A jD a whenever A ` a) and complete with respect to A (i.e., that A ` a whenever A jD a).

Gödel’s Completeness Theorem [13] shows that such a notion of provability exists for first-order logic.
This theorem provides a semidecision procedure (albeit an inefficient one) for first-order logic, that
is, an effective procedure for enumerating the logical consequences of A when A itself is effectively
enumerable.

A.1 Equational theories

An equational theory is a set of equations that is axiomatized by a set of equations, that is, the equational
theory of a set E of equations is the set of all equations e such that E jD e. Birkhoff [2] proved that the
equational theory of E can be characterized syntactically in terms of the congruence relation defined by
E over its free word algebra (see Section 4.3). We write E `D t DD u to mean that t is congruent to u in
the congruence relation determined by E. Birkhoff showed that `D is sound and complete with respect
to jD for equational theories, that is, that E `D e if and only if E jD e.

Like Gödel’s Theorem, Birkhoff’s Theorem provides a semidecision procedure for equational theories:
E jD e iff e can be proved from E by a series of steps, each of which is justified by reflexivity, symmetry,
transitivity, or substitutivity of equals for equals. Figure 5 showed a sample informal derivation, from
the axioms for groups in Figure 4, of the fact that e is its own inverse.

Equational reasoning, such as used in Figure 5, does not provide a decision procedure, because the
appropriate series of steps in a proof that E jD e must be found and cannot, in general, be computed from
E and e. Indeed, some equational theories are undecidable (see [7]).
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A.2 Term-rewriting systems

As discussed in Section 4.4, a rewriting system R is a set of equations that have been oriented into rewrite
rules. When a rewriting system is terminating, all terms have normal forms; when it is also convergent,
all terms have unique normal forms. Convergent rewriting systems provide decision procedures for
equational theories: if R is convergent, then R jD t1 D t2 if and only if t1 and t2 have the same
canonical form. Hence reduction to normal form provides a decision procedure for the equational theory
of a convergent rewriting system. This section provides more details about convergent term-rewriting
systems.

Two terms t and u are joinable in R if there exists a term w such that t ;ŁR w and u ;ŁR w. R is locally
confluent if for every t , u, v such that t ; u and t ; v, the terms u and v are joinable. It is globally
confluent, or simply confluent or Church-Rosser, if for every t , u; v such that t ;Ł u and t ;Ł v, the
terms u and v are joinable.

If R is confluent, the terminal form of any term, if it exists, is unique.24 When a terminal form is unique,
we call it a canonical form. When every term has a canonical form in;, we say that; is canonical.

A canonical system is always confluent.25 However, a confluent system need not be canonical (consider
the nonterminating set fa ! b, b! ag of rewrite rules).

A rewriting system is convergent if it is terminating and confluent. A convergent rewriting system
is canonical.26 If a rewriting system R is convergent, the joinability of two terms is decidable by
reducing both terms to their canonical form and checking whether they are identical. Furthermore, if R
is convergent and E is the set of all equations u DD v such that R contains either u! v or v! u, then
E jD u DD v if and only if u and v have identical canonical forms in R.

The following important characterization of confluence in terminating rewriting systems is easily proved
by induction (see Figure 16).

Diamond lemma [23]: A terminating rewriting system is confluent if and only if it is locally confluent.

Termination is essential for the diamond lemma, as is shown by the locally confluent, but not confluent,
set fa ! b, a! c, c! a, c! dg of rewrite rules.

Despite the obvious advantages of convergent rewriting systems, nonconvergent systems are more often
used in practice. Some interesting theories, including all undecidable ones, cannot be described by
convergent systems. Sometimes a convergent system exists, but finding it is impractical. Sometimes a
convergent system exists and is easy to find, but is impractical to use.

A.3 Unification

Unification was first described by Herbrand [17] in 1930. It was put to practical use in 1965 by
Robinson [27] as the basic step in resolution, and is now most widely used in computer science for logic
programming and for type inference systems such as that in ML [16].

Figure 17 shows a simple recursive implementation of ordinary unification. (When associative-

24Proof: Suppose t ;Ł t1 and t ;Ł t2, where t1 and t2 are terminal. By confluence, there exists a v such that t1 ;Ł v and
t2 ;Ł v. Since t1 and t2 are terminal, t1, t2, and v must be identical.

25Proof: Suppose t ;Ł t1 and t ;Ł t2. Canonicity implies that t1 and t2 both have unique terminal forms, which must be the
same as the unique terminal form of t .

26Proof: Suppose that R is terminating and confluent. Termination implies that every term has at least one terminal form.
Confluence implies that this form is unique.
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Figure 16: Proof of diamond lemma

commutative operators are present, unification becomes considerably more complicated. See [29].)
Asymptotically better (e.g., linear) algorithms exist, but the ones that perform best in practice are similar
to this. The algorithm can fail to unify two terms s and t in two ways: by a clash, which occurs when s
and t are headed by different operators, and by a cycle, which prevents x from being unified with f .x/.

A.4 Critical pairs

The computation of critical-pair equations in ordinary term-rewriting was described in Section 5.3. In
equational term-rewriting, it may be necessary to generalize the critical-pair computation to capture
further ways in which a single term can be reduced. Such is the case when ac operators are present.

Suppose that Ł is an ac operator, that l1 is t1 Ł : : : Ł tn, that l1 ! r1 and l2 ! r2 are two rewrite rules, and
that l1 Ł x ! r1 Ł x is not an instance of another rewrite rule. When computing critical-pair equations
between these rewrite rules, we need to consider not only the overlaps of l1 with l2, but also the overlaps
of l1 Ł x with l2 as well. For example, there are no critical pairs between the rewrite rule i.x/Ł x ! e and
itself if Ł is an ordinary operator. But if Ł is ac, then we can unify i.x/ Ł x with the nonvariable subterm
y Ł z of i.y/ Ł y Ł z to obtain the critical-pair equation i.e/ Ł e DD e; furthermore, i.i.x// Ł i.x/ Ł x and
i.x Ł y/ Ł i.x/ Ł x Ł y are unifications of i.x/ Ł x Ł y and i.x 0/ Ł x 0 Ł y0, so that e Ł x DD i.i.x// Ł e and
e Ł i.x/ DD i.x Ł y/ Ł e Ł y are also critical-pair equations between i.x/ Ł x ! e and itself.

It is easy to see that for a finite rewriting system there are a finite number of critical pairs, and that these
are effectively computable. This is important because of the following lemma.

Critical-pair lemma [19, 26]: A rewriting system is locally confluent if and only if every critical pair is
joinable.

In conjunction with the diamond lemma, the critical-pair lemma provides a way to decide the confluence
of terminating rewriting systems. First compute all critical-pair equations among the rewrite rules. If
each of them normalizes to an identity, the rewriting system is locally, and therefore globally, confluent.
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unifyD proc (s, t : term) returns (substitution) signals (failure)
guard s, t are both variables ::

return(fs for tg)
guard s is a variable and t is not ::

if s occurs in t then failure(cycle) else return(ft for sg)
guard t is a variable and s is not ::

if t occurs in s then failure(cycle) else return(fs for tg)
guard s is f .s1; : : : ; sm/, t is g.t1; : : : ; tn/, and f 6D g ::

failure(clash)
guard s is f .s1; : : : ; sn/ and t is f .t1; : : : ; tn/ ::

¦ :D fg
for i :D 1 to n do ¦ :D uni f y.¦.si /; ¦.ti // Ž ¦

resignal failure
return(¦ )

end unify

Figure 17: Recursive implementation of unification

If any critical-pair equation does not normalize to an identity, the rewriting system is not locally (or
globally) confluent. Note the vital role played by termination. It enables us to invoke the diamond
lemma and consider only local confluence, and it assures us that the test for joinability of critical pairs
terminates.

A.5 Completion

Given a method for orienting equations into terminating rewriting systems, the critical-pair computation
can be used to complete a set of rewrite rules and thereby build a decision procedure for a set of equations.
For example, we can add the nonjoinable critical-pair equation eŁ z DD i.y/Ł .y Ł z/ to the three axioms
for group theory and continue computing critical pairs in an attempt to arrive at a convergent set of
rewrite rules.

In general, given a set of equations E, we can execute the nondeterministic procedure in Figure 18 to
compute sets En and Rn of equations and rewrite rules such that En [ Rn has the same equational theory
as E. If the computation reaches a point where all guards are false and En is empty, then Rn is convergent
and can be used to decide the equational theory of E. If it reaches a point where all the guards are
false and En is nonempty, then En contains consequences of E that cannot be oriented into rewrite rules
without causing Rn to be nonterminating. If the computation never terminates, but is nonetheless fair
(i.e., no guard remains true forever without its command being executed), then the equational theory of
E is not decidable, but normalization with respect to the successive sets Rn of rewrite rules provides a
semidecision procedure for this equational theory.

There are several reasons why the completion procedure may fail to orient an equation. Sometimes an
equation cannot be oriented because each side contains some variable that the other does not. Such an
equation is called incompatible. Sometimes an equation (e.g, x C y DD y C x) cannot be oriented into
a terminating rewrite rule. And sometimes decisions made when orienting other rewrite rules in R may
prevent the remainder of E from being oriented while still preserving termination.27

27The original formulation of the completion procedure used a fixed ordering on terms to orient equations, so there were no
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R :D fg
do while any guard is true

guard s DD t 2 E ^ terminates.R [ fs ! tg/ ::
R :D R [ fs ! tg
E :D E � fs DD tg

guard s DD t 2 E ^ terminates.R [ ft ! sg/ ::
R :D R [ ft ! sg
E :D E � fs DD tg

guard u ;ŁR s ^ u ;ŁR t ^: j oinable R.s; t/ ::
E :D E [ fs DD tg

guard s DD t 2 E ^ s ;CR u ::
E :D E [ fu DD tg � fs DD tg

guard s DD t 2 E ^ t ;CR u ::
E :D E [ fs DD ug � fs DD tg

guard s DD s 2 E ::
E :D E � fs DD sg

end

Figure 18: Abstract completion procedure

To implement the abstract version of the completion procedure, it is necessary to replace the first
two guards by conditions that are decidable (as noted earlier, termination is undecidable). The next
subsection describes several decidable conditions that ensure termination. It is also possible to optimize
the completion procedure, as follows. The third guard can be restricted to cases in which fs; tg is a
nonjoinable critical pair of the rewrite rules in R. That this is sufficient follows immediately from the
critical-pair lemma. Another useful optimization is to keep all equations and rules in normal form with
respect to R. Such a system is called internormalized. A procedure incorporating these optimizations
was first described in [19] and is well known as the Knuth-Bendix completion procedure. The completion
procedure was extended to handle associative-commutative operators in [26]. The description presented
here is closer to the one appearing in [7] than to the earlier formulations.

A.6 Proving termination

Terminating rewriting systems are desirable for three reasons. If they are confluent, then their equational
theories are decidable (by reduction to normal form). Furthermore, it is decidable whether terminating
rewriting systems are confluent (by the critical-pair lemma), and we can try to complete them with the
completion procedure when they are not confluent.

A relation ; is said to be locally finite if for every term t the set fujt ; ug is finite. It is said to be
globally finite if fujt ;Ł ug is finite. If R is finite, then ;R is locally finite, but need not be globally
finite.

A relation; is acyclic if there is no term t such that t ;C t . If; is globally finite and acyclic, it must

nondeterministic ordering choices to be made. When the ordering is fixed, there is at most one convergent rewriting system
corresponding to an equational theory [6].
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be terminating.28 The converse is not true: if ; is terminating, it is not necessarily globally finite.29

However, a locally finite relation is terminating if and only if it is both globally finite and acyclic.30 An
important corollary is that the rewriting relation of a finite set of rules is terminating if and only if it is
both globally finite and acyclic.

Although termination is undecidable, there are methods that can be used to prove the termination of
many rewriting systems. Most seek to embed the (inverse of) the rewriting relation;R in a well-founded
relation, that is, in a relation> that has no infinite decreasing sequence t1 > t2 > t3 > : : :.

A.6.1 Simplification orderings

A simplification ordering [6] is a partial ordering = (i.e., a transitive, irreflexive binary relation) that is
monotonic, in other words,

s = t ) f .: : : ; s; : : :/ = f .: : : ; t; : : :/

and that has the subterm property, in other words,

f .: : : ; t; : : :/ = t

Consider, for example, orderings on the term algebra generated by 0, 1, and +. Let num. f; u/ be
the number of times the function symbol f occurs in the term u. The ordering s = t if and
only if num.1; s/ > num.1; t/ is a simplification ordering. The ordering s = t if and only if
num.1; s/ � num.0; s/ > num.1; t/ � num.0; t/ is not a simplification ordering, because it does
not have the subterm property.

A rewriting system R terminates if there exists a simplification ordering = such that ¦.s/ = ¦.t/ for
all substitutions ¦ and all rewrite rules s ! t in R (see [6]). This result provides a means of proving
termination that is independent of the set of terms one might attempt to reduce. However, since the
number of substitution instances of rewrite rules is usually infinite, it is hard to apply directly. This leads
us to require that the ordering be stable, in other words, that

s = t ) ¦.s/ = ¦.t/

A rewriting system R terminates if there exists a stable simplification ordering = such that s = t for all
rewrite rules s ! t in R.

A.6.2 Registered orderings

A registered ordering is a function from registries to stable simplification orderings. A registry is a pair
h³; i, where ³ is a precedence relation on operators and  a status map.

A status map is a partial mapping from operators to the set fmultiset, left-to-right, right-to-leftg. A
precedence is a pair of binary relations h½; 6Di, on operators such that ½ is reflexive and transitive, 6D
is irreflexive and symmetric, and for any three operators f; g and h, . f ½ g ^ g ½ h ^ . f 6D g _ g 6D
h//) f 6D h.

28Proof: Any nonterminating sequence t1 ; t2 ; : : : would either have to repeat some elements, in which case; is cyclic,
or contain infinitely many distinct elements, in which case; is globally infinite.

29Consider the relation in which 1; n for all n > 1.
30Proof: We have just shown one direction. Conversely, if; is cyclic, then it is clearly not terminating. Suppose it is not

globally finite. Since it is locally finite, some term t1 has infinitely many descendents. By König’s lemma, there is an infinite
sequence t1 ; t2 ; : : : starting at that term.
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Two operators are comparable under ³ if they are comparable under½. We define f > g to mean f ½ g
and f 6D g, and f D g to mean f ½ g and g ½ f . The relation> is a partial ordering. A precedence is
total over a set of operators if and only if for all operators f and g in the set, f > g, g > f or f D g.

When using a registered simplification ordering O, LP orients an equation s DD t into a rewrite rule
only when s and t are related in the ordering generated by applying O to the current registry reg, that is,
only if s >O.reg/ t or t >O.reg/ s. If the equation has been entered using the syntax s ! t , the equation
will be oriented only if s >O.reg/ t in the ordering.

LP’s dsmpos ordering is a registered simplification ordering. When using conventional (as opposed to
equational) term-rewriting, it can be used to prove that the rewriting system terminates. It works as
follows. Let s and t be two terms, with s D f .s1; : : : ; sm/ and t D g.t1; : : : ; tn/. Then s ½ t in the
dsmpos ordering iff

ž si ½ t for some i, or

ž f > g (in the registry) and s > ti for all i, or

ž f D g (in the registry), or f ½ g (in the registry) and s > ti for all i, and

– f and g can have multiset status and fs1; : : : ; smg is greater than or equal to ft1; : : : ; tng as a
multiset, or

– f and g have lexicographic status (i.e., right-to-left or left-to-right), s > ti for all i, and
hs1; : : : ; smi is greater than or equal to ht1; : : : ; tni in lexicographic order.

Here M1 is less than M2 as a multiset if and only if for every element m1 that occurs with greater
multiplicity in M1 than in M2 there is an element m2 such that m1 < m2 and m2 occurs with greater
multiplicity in M2 than in M1.

Note that if an operator has multiset status, the ordering produced by the registered ordering treats the
arguments of that operator as a multiset, that is, their order is irrelevant. If an operator has left-to-right
or right-to-left status, a lexicographic ordering is produced in which either the leftmost or rightmost
arguments are given extra weight. Consider, for example, the equation f .a; b/ DD f .b; a/, where
a > b in the precedence. This equation cannot be ordered if f has multiset status; it will be ordered to
f .a; b/! f .b; a/ if f has left-to-right status and to f .b; a/! f .a; b/ if f has right-to-left status.

When asked to orient an equation that cannot be oriented using its current registry, LP attempts to find a
minimal extension to the registry that allows the equation to be oriented. If LP succeeds, it can extend
the registry and orient the equation. The algorithm in Figure 19 is an abstraction of the one used by LP
to orient a set of equations into a set of rewrite rules. This algorithm relies on the fact that the ordering
>O.reg/ is monotonic with respect to extensions to reg.

The function Extensions computes the set of all minimal extensions to the registry that make it possible
to order the pair of terms.
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% reg is the current registry
% R is the current set of rewrite rules
% E is the current set of equations
% O is the current registered ordering

for each s DD t 2 E do
guard s >O.reg/ t ::

R :D R [ fs ! tg
E :D E � fs ! tg

guard t >O.reg/ s ::
R :D R [ ft ! sg
E :D E � fs ! tg

guard neither s >O.reg/ t nor t >O.reg/ s ::
Ext : Set [Registry] :D Extensions.reg; s; t/
if is Empt y.Ext/ then failure else

reg :D choose.Ext/
R :D R [ i f .s >O.reg/ t; fs ! tg; ft ! sg/
E :D E � fs ! tg

end

Figure 19: Abstract ordering procedure

B Sample proof

Figure 20 shows the contents of a file sample.lp that contains LP commands for proving two simple
theorems about sets. The following transcript shows the output produced by LP as it executes sample.lp.
In addition to our usual typesetting conventions (see Section 3.1), we have underlined all input to LP,
whether typed by the user or read from the file sample.lp. We have also condensed the transcript slightly
by omitting some of the less interesting LP output, but none of the input.
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declare sorts Elem, Set
declare variables e, e’: Elem
declare variables x, y, z: Set
declare operators
empty: -> Set
singleton: Elem -> Set
\union: Set, Set -> Set
\in: Elem, Set -> Bool
insert: Elem, Set -> Set
..

set name set
assert ac \union
assert Set generated by empty, singleton, \union
assert
e \in empty == false
e \in singleton(e’) == e = e’
e \in (x \union y) == e \in x | e \in y
insert(e, x) == singleton(e) \union x
..

set name extensionality
assert Set partitioned by \in
display extensionality

set name thm
prove x = x \union x
instantiate s1 by x, s2 by x \union x in extensionality
qed

set proof-methods =>, normalization
prove e \in x => insert(e, x) = x by induction
resume by cases ec \in xc, ec \in xc1

critical-pairs thmCaseHyp with thmInductHyp
critical-pairs thmCaseHyp with thmInductHyp

qed
quit

Figure 20: File sample.lp of commands for proof

62



LP1: execute sample

LP1.1: declare sorts Elem, Set

LP1.2: declare variables e, e0: Elem

LP1.3: declare variables x; y; z: Set

LP1.4: declare operators
empty: ! Set
singleton: Elem! Set
[: Set, Set! Set
2: Elem, Set! Bool
insert: Elem, Set! Set
..

LP1.5:

LP1.6: set name set

LP1.7: assert ac [
LP1.8: assert Set generated by empty, singleton, [
LP1.9: assert

e 2 empty DD f alse
e 2 singleton .e0/ DD e D e0

e 2 .x [ y/ DD e 2 x j e 2 y
insert.e; x/ DD singleton .e/[ x
..

LP1.10:

LP1.11: set name extensionality

LP1.12: assert Set partitioned by 2
LP1.13: display extensionality

Deduction rules:

extensionality.1: when (forall e) e 2 s1 DD e 2 s2 yield s1 DD s2

LP1.14:

LP1.15: set name thm

LP1.16: prove x DD x [ x

Conjecture thm.1: x DD x [ x
Proof suspended.

LP1.17: instantiate s1 by x, s2 by x [ x in extensionality

Deduction rule extensionality.1 has been instantiated to deduction rule extensionality.1.1,
when (forall e) e 2 x DD e 2 .x [ x/ yield x DD x [ x

which was normalized to equation extensionality.1.1.1, x DD x [ x

Conjecture thm.1: x DD x [ x
[ ] Proved by normalization.

LP1.18: qed

All conjectures have been proved.

LP1.19:
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LP1.20: set proof-methods), normalization

LP1.21: prove e 2 x ) insert.e; x/ D x by induction

Conjecture thm.2: Subgoals for proof by induction on ‘x’
Basis subgoals:

thm.2.1: e 2 empty) empty D insert.e; empty/ DD true
thm.2.2: e 2 singleton .e0/) insert.e; singleton.e0// D singleton.e0 / DD true

Induction constants: xc, xc1
Induction hypotheses:

thmInductHyp.1: e 2 xc ) insert.e; xc/ D xc DD true
thmInductHyp.2: e 2 xc1) insert.e; xc1/ D xc1 DD true

Induction subgoal:
thm.2.3: e 2 .xc1 [ xc/) insert.e; xc1 [ xc/ D xc1 [ xc DD true

Subgoal thm.2.1: Subgoal for proof of)
New constant: ec
Hypothesis:

thmImpliesHyp.1: ec 2 empty DD true
Subgoal:

thm.2.1.1: empty D insert.ec;empty/ DD true

Subgoal thm.2.1.1: empty D insert.ec;empty/ DD true
[ ] Proved by inconsistent hypothesis.

Subgoal thm.2.1: e 2 empty) empty D insert.e; empty/ DD true
[ ] Proved).

Subgoal thm.2.2: Subgoal for proof of)
New constants: ec, e0c
Hypothesis:

thmImpliesHyp.2: ec 2 singleton.e0c/ DD true
Subgoal:

thm.2.2.1: insert.ec; singleton.e0c// D singleton .e0c/ DD true

Deduction rule lp equals is true has been applied to equation thmImpliesHyp.2 to yield equation thmImpliesHyp.2.1,
e0c DD ec, which implies thmImpliesHyp.2.

Subgoal thm.2.2.1: insert.ec; singleton.e0c// D singleton.e0c/ DD true
[ ] Proved by normalization.

Subgoal thm.2.2: e 2 singleton.e0/) insert.e; singleton .e0// D singleton.e0/ DD true
[ ] Proved).

Subgoal thm.2.3: Subgoal for proof of)
New constant: ec
Hypothesis:

thmImpliesHyp.3: ec 2 .xc1 [ xc/ DD true
Subgoal:

thm.2.3.1: insert.ec; xc1 [ xc/ D xc1 [ xc DD true

Subgoal thm.2.3.1: insert.ec; xc1 [ xc/ D xc1 [ xc DD true
Current subgoal: singleton .ec/[ xc1 [ xc D xc1 [ xc DD true

Proof suspended.

LP1.22: resume by cases ec 2 xc, ec 2 xc1

Subgoal thm.2.3.1: Subgoals for proof by cases
First subgoal:
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Cases.1: ec 2 xc j ec 2 xc1 DD true
Case hypotheses:

thmCaseHyp.1.1: ec 2 xc DD true
thmCaseHyp.1.2: ec 2 xc1 DD true

Subgoal for cases:
thm.2.3.1.1:2: singleton.ec/[ xc1 [ xc D xc1 [ xc DD true

Subgoal Cases.1: ec 2 xc j ec 2 xc1 DD true
[ ] Proved by normalization.

Added hypothesis thmCaseHyp.1.1 to the system.

Subgoal thm.2.3.1.1: singleton .ec/[ xc1 [ xc D xc1 [ xc DD true
Proof suspended.

LP1.23: critical-pairs thmCaseHyp with thmInductHyp

A critical pair between rewrite rules thmCaseHyp.1.1 and thmInductHyp.1 is
thm.3: singleton.ec/[ xc D xc DD true

Deductionrule lp equals is true has been applied to equation thm.3 to yield equation thm.3.1, singleton.ec/[xc DD
xc, which implies thm.3.

Critical pair computation abandoned because a theorem has been proved.

Subgoal thm.2.3.1.1: singleton .ec/[ xc1 [ xc D xc1 [ xc DD true
[ ] Proved by normalization.

Added hypothesis thmCaseHyp.1.2 to the system.

Subgoal thm.2.3.1.2: singleton .ec/[ xc1 [ xc D xc1 [ xc DD true
Proof suspended.

LP1.24: critical-pairs thmCaseHyp with thmInductHyp

A critical pair between rewrite rules thmCaseHyp.1.2 and thmInductHyp.2 is
thm.4: singleton.ec/[ xc1 D xc1 DD true

Deduction rule lp equals is true has been applied to equation thm.4 to yield equation thm.4.1, singleton.ec/ [
xc1 DD xc1, which implies thm.4.

Critical pair computation abandoned because a theorem has been proved.

Subgoal thm.2.3.1.2: singleton .ec/[ xc1 [ xc D xc1 [ xc DD true
[ ] Proved by normalization.

Subgoal thm.2.3.1: insert.ec; xc1 [ xc/ D xc1 [ xc DD true
[ ] Proved by cases ec 2 xc, ec 2 xc1.

Subgoal thm.2.3: e 2 .xc1 [ xc/) insert.e; xc1 [ xc/ D xc1 [ xc DD true
[ ] Proved).

Conjecture thm.2: e 2 x ) insert.e; x/ D x DD true
[ ] Proved by induction on ‘x’.

LP1.25: qed

All conjectures have been proved.

LP1.26: quit
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